
Chapter II Model Categories

The closed model axioms have a list of basic abstract consequences, including
an expanded notion of homotopy and a Whitehead theorem. The associated
homotopy category is defined to be the result of formally inverting the weak
equivalences within the ambient closed model category, but can be constructed
in the CW-complex style by taking homotopy classes of maps between objects
which are fibrant and cofibrant. These topics are presented in the first section
of this chapter.

The simplicial set category has rather more structure than just that of a
closed model category: the set hom(X,Y ) of maps between simplicial sets X
and Y is the set of vertices of the function complex Hom(X,Y ), and the col-
lection of all such function complexes determines a simplicial category. We’ve
already seen that the function complexes satisfy an exponential law and re-
spect cofibrations and fibrations in a suitable sense. The existence of the func-
tion complexes and the interaction with the closed model structure can be
abstracted to a definition of a simplicial model category, which is given in Sec-
tions 2 and 3 along with various examples. Basic homotopical consequences of
the additional simplicial structure are presented in Section 3.

Sections 4, 5 and 6 are concerned with detection principles for simplicial
model category structures. Generally speaking, such a structure for the cat-
egory sC of simplicial objects in a category C is induced from the simplicial
model category structure on simplicial sets in the presence of an adjoint pair
of functors

F : S � sC : G,

(or a collection of adjoint pairs) if G satisfies extra conditions, such as preser-
vation of filtered colimits, in addition to being a right adjoint — this is The-
orem 4.1. In one major stream of examples, the category C is some algebraic
species, such as groups or abelian groups, and G is a forgetful functor. There
is, however, an extra technical requirement for Theorem 4.1, namely that every
cofibration of sC having the left lifting property with respect to all fibrations
should be a weak equivalence. This condition can often be verified by brute
force, as can be done in the presence of a small object argument for the factor-
ization axioms (eg. simplicial abelian groups), but there is a deeper criterion,
namely the existence of a natural fibrant model (Lemma 5.1). The other major
source of examples has to do with G being a representable functor of the form
G = hom(Z, ), where Z is either small in the sense that hom(Z, ) respects
filtered colimits, or is a disjoint union of small objects. In this setting, Kan’s
Ex∞-construction (see Section III.4) is used to construct the natural fibrant
models required by Lemma 5.1. This line of argument is generalized signifi-
cantly in Section 6, at the cost of the introduction of cofibrantly generated
closed model categories and transfinite small object arguments.
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66 II. Model Categories

Section 7 is an apparent return to basics. We develop a criterion for a pair
of adjoint functors between closed model categories to induce adjoint functors
on the homotopy category level, known as Quillen’s total derived functor theo-
rem. Quillen’s result is, at the same time, a non-abelian version of the calculus
of higher direct images, and a generalization of the standard result that co-
homology is homotopy classes of maps taking values in Eilenberg-Mac Lane
spaces.

The category of simplicial sets, finally, has even more structure: it is a
proper simplicial model category, which means that, in addition to everything
else, weak equivalences are preserved by pullback over fibrations and by pushout
along cofibrations. This property is discussed in Section 8. Properness is the
basis of the standard results about homotopy cartesian diagrams, as well as
being of fundamental importance in stable homotopy theory. We discuss ho-
motopy cartesian diagrams in the context of Gunnarsson’s axiomatic approach
to the gluing and cogluing lemmas [40].

1. Homotopical algebra.
Recall that a closed model category C is a category which is equipped with
three classes of morphisms, called cofibrations, fibrations and weak equivalences
which together satisfy the following axioms:

CM1: The category C is closed under all finite limits and colimits.
CM2: Suppose that the following diagram commutes in C:

X w

g
N
N
NNPh

Y
�

�
���

f

Z.

If any two of f , g and h are weak equivalences, then so is the third.
CM3: If f is a retract of g and g is a weak equivalence, fibration or cofibration,

then so is f .
CM4: Suppose that we are given a commutative solid arrow diagram

U w

u
i

X

u
p

V w

i
i
iij

Y

where i is a cofibration and p is a fibration. Then the dotted arrow exists,
making the diagram commute, if either i or p is also a weak equivalence.
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CM5: Any map f : X → Y may be factored:
(a) f = p · i where p is a fibration and i is a trivial cofibration, and
(b) f = q · j where q is a trivial fibration and j is a cofibration.

Recall that a map is said to be a trivial fibration (aka. acyclic fibration)
if it is both a fibration and a weak equivalence. Dually, a trivial cofibration is
a map which is simultaneously a cofibration and a weak equivalence.

According to CM1, a closed model category C has an initial object ∅ and
a terminal object ∗. Say that an object A of C is cofibrant if the map ∅ → A is a
cofibration. Dually, an object X is fibrant if the map X → ∗ is a fibration of C.

This set of axioms has a list of standard consequences which amplifies the
interplay between cofibrations, fibrations and weak equivalences, giving rise to
collection of abstract techniques that has been known as homotopical algebra
since Quillen introduced the term in [76]. This theory is is really an older friend
in modern dress, namely obstruction theory made axiomatic. The basic results,
along with their proofs, are sketched in this section.

We begin with the original meaning of the word “closed”:

Lemma 1.1. Suppose that C is a closed model category. Then we have the
following:

(1) A map i : U → V of C is a cofibration if and only if it has the left lifting
property with respect to all trivial fibrations.

(2) The map i is a trivial cofibration if and only if it has the left lifting
property with respect to all fibrations.

(3) A map p : X → Y of C is a fibration if and only if it has the right lifting
property with respect to all trivial cofibrations.

(4) The map p is a trivial fibration if and only if it has the right lifting
property with respect to all cofibrations.

The point of Lemma 1.1 is that the various species of cofibrations and fibrations
determine each other via lifting properties.
Proof: We shall only prove the first statement; the other proofs are similar.

Suppose that i is a cofibration, p is a trivial fibration, and that there is a
commutative diagram

U w
α

u

i

X

u

p

V w

β
Y

(1.2)

Then there is a map θ : V → X such that pθ = β and θi = α, by CM4.
Conversely suppose that i : U → V is a map which has the left lifting property
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with respect to all trivial fibrations. By CM5, i has a factorization

U w

j
�
�
�
��i

W

u
q

V

where j is a cofibration and q is a trivial fibration. But then there is a commu-
tative diagram

U w

j

u
i

W

u
q

V

h
h
hhj

V

and so i is a retract of j. CM3 then implies that i is a cofibration. �
The proof of the Lemma 1.1 contains one of the standard tricks that is

used to prove that the axiom CM4 holds in a variety of settings, subject to
having an adequate proof of the factorization axiom CM5. Lemma 1.1 also
immediately implies the following:

Corollary 1.3.

(1) The classes of cofibrations and trivial cofibrations are closed under com-
position and pushout. Any isomorphism is a cofibration.

(2) The classes of fibrations and trivial fibrations are closed under compo-
sition and pullback. Any isomorphism is a fibration.

The statements in Corollary 1.3 are part of Quillen’s original definition of a
model category [76].

Quillen defines a cylinder object for an object A in a closed model category
C to be a commutative triangle

A � A�
�
���
∇

u
i

Ã wσ A

(1.4)

where ∇ : A � A → A is the canonical fold map which is defined to be the
identity on A on each summand, i is a cofibration, and σ is a weak equivalence.
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Then a left homotopy of maps f, g : A → B is a commutative diagram

A � A�
�
���
(f, g)

u
i

Ã w

h
B

where (f, g) is the map on the disjoint union which is defined by f on one
summand and g on the other, and the data consisting of

i = (i0, i1) : A � A → Ã

comes from some choice of cylinder object for A.
There are many choices of cylinder object for a given object A of a closed

model category C: any factorization of ∇ : A�A → A into a cofibration followed
by a trivial fibration that one might get out of CM5 gives a cylinder object
for A. In general, however, the object A needs to be cofibrant for its cylinder
objects to be homotopically interesting:

Lemma 1.5.

(1) Suppose that A is a cofibrant object of a closed model category C, and
that the diagram (1.4) is a cylinder object for A. Then the maps i0, i1 :
A → Ã are trivial cofibrations.

(2) Left homotopy of maps A → B in a closed model category C is an
equivalence relation if A is cofibrant.

Proof: Denote the initial object of C by ∅.
For the first part, observe that the diagram

∅ w

u

A

u
inR

A w

inL
A � A

is a pushout since cofibrations are closed under pushout by Lemma 1.1, and the
unique map ∅ → A is a cofibration by assumption. It follows that the inclusions
inL and inR are cofibrations, so that the compositions i0 = (i0, i1) · inL and
i1 = (i0, i1) · inR are cofibrations as well. Finally, the maps i0 and i1 are weak
equivalences by CM2, since the map σ is a weak equivalence.
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To prove the second statement, first observe that if τ : A � A → A � A is
the automorphism which flips summands, then the diagram

A � A�
�
���
∇

u
i · τ

Ã wσ A,

which is constructed from (1.4) by twisting by τ , is a cylinder object for A.
This implies that the left homotopy relation is symmetric.

Subject to the same definitions, the map fσ : A → B is clearly a left
homotopy from f : A → B to itself, giving reflexivity.

Suppose given cylinder objects

A � A

u
(iε0, i

ε
1)

�
�
���
∇

Aε w

σε A,

where ε = 0, 1, and form the pushout

A w

i10

u
i01

A1

u
i1∗

A0 w

i0∗
Ã

Then the map

A � A
(i0∗i00,i1∗i11)−−−−−−−→ Ã

is a composite

A � A
i00
1

−−−→ A0 � A
(i0∗,i1∗i11)−−−−−−→ Ã.

The map i00 � 1 is a cofibration by the first statement of the lemma, and there
is a pushout diagram

A � A w

i01 � 1

u
(i10, i11)

A0 � A

u
(i0∗, i1∗i11)

A1 w

i1∗
Ã.
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In particular, there is a cylinder object for A

A � A

u

(i0∗i00, i1∗i11)

�
�
���
∇

Aε wσ∗ A.

It follows that if there are left homotopies h0 : A0 → B from f0 to f1 and
h1 : A1 → B from f1 to f2, then there is an induced left homotopy h∗ : Ã → B
from f0 to f2. �

A path object for an object B in a closed model category C is a commutative
triangle

B̂

u
p = (p0, p1)

B
N
N
N
NNPs

w
Δ

B × B

(1.6)

where Δ is the diagonal map, s is a weak equivalence, and p (which is given by
p0 on one factor and by p1 on the other) is a fibration.

Once again, the factorization axiom CM5 dictates that there is an ample
supply of path objects for each object of an arbitrary closed model category. If
a simplicial set X is a Kan complex, then the function complex hom(Δ1,X)
is a path object for X, and the function space Y I is a path object for each
compactly generated Hausdorff space Y .

There is a notion of right homotopy which corresponds to path objects:
two maps f, g : A → B are said to be right homotopic if there is a diagram

B̂

u
(p0, p1)

A
N
N
N
NNPh

w
(f, g)

B × B

where the map (p0, p1) arises from some path object (1.6), and (f, g) is the map
which projects to f on the left hand factor and g on the right hand factor.

Lemma 1.7.

(1) Suppose that B is a fibrant object of a closed model category C, and

that B̂ is a path object for B as in (1.6). Then the maps p0 and p1 are
trivial fibrations.

(2) Right homotopy of maps A → B in C is an equivalence relation if B is
fibrant.
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Lemma 1.7 is dual to Lemma 1.5 in a precise sense. If C is a closed model
category, then its opposite Cop is a closed model category whose cofibrations
(respectively fibrations) are the opposites of the fibrations (respectively cofi-
brations) in C. A map in Cop is a weak equivalence for this structure if and only
if its opposite is a weak equivalence in C. Then Lemma 1.7 is an immediate
consequence of the instance of Lemma 1.5 which occurs in Cop. This sort of du-
ality is ubiquitous in the theory: observe, for example, that the two statements
of Corollary 1.3 are dual to each other.

Left and right homotopies are linked by the following result:

Proposition 1.8. Suppose that A is cofibrant. Suppose further that

A � A�
�
���
(f, g)

u
(i0, i1)

Ã w

h
B

is a left homotopy between maps f, g : A → B, and that

B̂

u
p = (p0, p1)

B
N
N
N
NNPs

w
Δ

B × B

is a fixed choice of path object for B. Then there is a right homotopy

B̂

u
(p0, p1)

A
N
N
N
NNPH

w
(f, g)

B × B.

This result has a dual, which the reader should be able to formulate indepen-
dently. Proposition 1.8 and its dual together imply

Corollary 1.9. Suppose given maps f, g : A → B, where A is cofibrant and
B is fibrant. Then the following are equivalent:

(1) f and g are left homotopic.

(2) f and g are right homotopic with respect to a fixed choice of path object.

(3) f and g are right homotopic.

(4) f and g are left homotopic with respect to a fixed choice of cylinder
object.



1. Homotopical algebra 73

In other words, all possible definitions of homotopy of maps A → B are the
same if A is cofibrant and B is fibrant.
Proof of Proposition 1.8: The map i0 is a trivial cofibration since A is
cofibrant, and (p0, p1) is a fibration, so that there is a commutative diagram

A w

sf

u

i0

B̂

u

(p0, p1)

Ã w

(fσ, h)

N
N
N
NNPK

B × B

for some choice of lifting K. Then the composite K · i1 is the desired right
homotopy. �

We can now, unambiguously, speak of homotopy classes of maps between
objects X and Y of a closed model category C which are both fibrant and
cofibrant. We can also discuss homotopy equivalences between such objects.
The classical Whitehead Theorem asserts that any weak equivalence f : X → Y
of CW-complexes is a homotopy equivalence. CW-complexes are spaces which
are both cofibrant and cofibrant. The analogue of this statement in an arbitrary
closed model category is the following:

Theorem 1.10 (Whitehead). Suppose that f : X → Y is a morphism of
a closed model category C such that the objects X and Y are both fibrant
and cofibrant. Suppose also that f is a weak equivalence. Then the map f is a
homotopy equivalence.

Proof: Suppose, first of all, that f is a trivial fibration, and that

X � X w
∇

u

(i0, i1)

X

X̃
N
N
N
NNPσ

is a cylinder object for X. Then one proves that f is a homotopy equivalence by
finding, in succession, maps θ and h making the following diagrams commute:

∅ w

u

X

u

f

Y

h
h
h
hj

θ

Y
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X � X w

(θ · f, 1)

u

(i0, i1)

X

u

f

X̃ w

f · σ
A
A
A
A
AAC

h

Y.

Dually, if f is a trivial cofibration, then f is a homotopy equivalence.
Every weak equivalence f : X → Y between cofibrant and fibrant objects

has a factorization

X w
f

h
hhji

Y

Z

�
�
��
p

in which i is a trivial cofibration and p is a trivial fibration. The object Z is
both cofibrant and fibrant, so i and p are homotopy equivalences. �

Suppose that X and Y are objects of a closed model category C which are
both cofibrant and fibrant. Quillen denotes the set of homotopy classes of maps
between such objects X andY by π(X,Y ). There is a category πCcf associated
to any closed model C: the objects are the cofibrant and fibrant objects of C,
and the morphisms from X to Y in πCcf are the elements of the set π(X,Y ).

For each object X of C, use CM5 to choose, in succession, maps

∗ iX−→ QX
pX−−→ X

and
QX

jX−→ RQX
qX−−→ ∗,

where iX is a cofibration, pX is a trivial fibration, jX is a trivial cofibration,
and qX is a fibration. We can and will presume that pX is the identity map if
X is cofibrant, and that jX is the identity map if QX is fibrant. Then RQX is
an object which is both fibrant and cofibrant, and RQX is weakly equivalent
to X, via the maps pX and jX .

Any map f : X → Y lifts to a map Qf : QX → QY , and then Qf extends
to a map RQf : RQX → RQY . The map Qf is not canonically defined: it is
any morphism which makes the following diagram commute:

∅ w

u

QY

u
πY

QX w
f · πX

h
h
hhjQf

Y
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Note, however, that any two liftings f1, f2 : QX → QY of the morphism f ·πX

are left homotopic since πY is a trivial fibration.
The argument for the existence of the morphism RQf : RQX → RQY is

dual to the argument for the existence of Qf . If the maps f1, f2 : QX → QY
are liftings of f · πX and gi : RQX → RQY is an extension of the map jY · fi

for i = 1, 2, then f1 is left homotopic to f2 by what we’ve already seen, and so
the composites jY · f1 and jY · f2 are right homotopic, by Lemma 1.8. Observe
finally that any right homotopy between the maps jY f1, jY f2 : QX → RQY
can be extended to a right homotopy between the maps g1, g2 : RQY → RQY .
It follows that the assignment f �→ RQf is well defined up to homotopy.

The homotopy category Ho(C) associated to a closed model category C can
be defined to have the same objects as C, and with morphism sets defined by

homHo(C)(X,Y ) = π(RQX,RQY ).

There is a functor
γ : C → Ho(C)

which is the identity on objects, and sends a morphism f : X → Y to the
homotopy class [RQf ] which is represented by any choice of map RQf :
RQX → RQY defined as above. If f : X → Y is a weak equivalence of C,
then RQf : RQX → RQY is a homotopy equivalence by the Whitehead The-
orem, and so γ(f) is an isomorphism of Ho(C).

This functor γ is universal with respect to all functors F : C → D which
invert weak equivalences:

Theorem 1.11. Suppose that F : C → D is a functor such that F (f) is an
isomorphism of D for all weak equivalences f : X → Y of C. Then there is a
unique functor F∗ : Ho(C) → D such that F∗ · γ = F .

Proof: The functor F : C → D takes (left or right) homotopic maps of C
to the same map of D, since it inverts weak equivalences. It follows that, if
g : RQX → RQY represents a morphism from X to Y in Ho(C), one can
specify a well-defined morphism F∗([g]) of D by the assignment

F∗([g]) = F (πY )F (jY )−1F (g)F (jX)F (πX)−1. (1.12)

This assignment plainly defines a functor F∗ : Ho(C) → D such that F∗γ = F .
Also, the morphisms γ(πX) and γ(jX) are both represented by the identity

map on RQX, and so the composite

γ(πY )γ(jY )−1γ(g)γ(jX)γ(jX)−1

coincides with the morphism [g] : X → Y of Ho(C). The morphism F∗([g])
must therefore have the form indicated in (1.12) if the composite functor F∗γ
is to coincide with F . �
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Remark 1.13. One can always formally invert a class Σ of morphisms of
a category C to get a functor γ : C → C[Σ−1] which is initial among functors
F : C → D which invert all members of the class of morphisms Σ (see Schubert’s
book [83]), provided that one is willing to construct C[Σ−1] in some higher set
theoretic universe. This means that the morphism “things” homC[Σ−1](X,Y )
of C[Σ−1] may no longer be sets. In Theorem 1.11, we have found an explicit
way to formally invert the class WE of weak equivalences of a closed model
category C to obtain the category Ho(C) without invoking a higher universe.
After the fact, all models of C[WE−1] must be isomorphic as categories to
Ho(C) on account of the universal property of the functor γ : C → Ho(C), so
that all possible constructions have small hom sets.

Let πCcf denote the category whose objects are the cofibrant fibrant ob-
jects of the closed model category C, and whose sets of morphisms have the
form

homπCcf
(X,Y ) = π(X,Y ).

The functor γ : C → Ho(C) induces a fully faithful embedding
γ∗ : πCcf → Ho(C),

and that every object of Ho(C) is isomorphic to an object which is in the image
of the functor γ∗. In other words the category πCcf of homotopy classes of maps
between cofibrant fibrant objects of C is equivalent to the homotopy category
Ho(C).

This observation specializes to several well-known phenomena. In par-
ticular, the category of homotopy classes of maps between CW-complexes is
equivalent to the full homotopy category of topological spaces, and the ho-
motopy category of simplicial sets is equivalent to the category of simplicial
homotopy classes of maps between Kan complexes.

We close this section by showing that the weak equivalences in a closed
model category C are exactly those maps which induce isomorphisms in the
homotopy category Ho(C).

Proposition 1.14. Suppose that f : X → Y is a morphism of a closed model
category C which induces an isomorphism in the homotopy category Ho(C).
Then f is a weak equivalence.

Proof: Suppose that the objects X and Y are both fibrant and cofibrant. In
view of the construction of the functor γ : C → Ho(C), the idea is to show that
any map f : X → Y which has a homotopy inverse must be a weak equivalence.
Any such map f has a factorization

X w

f
h
h
hji

Y

Z

�
�
��
p
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where p is a fibration and i is a trivial cofibration, by the factorization axiom
CM5. The trivial cofibration i is a homotopy equivalence, by the Whitehead
Theorem (Theorem 1.10), so it suffices to assume that the map f is a fibration.
We show that such a fibration f must have the right lifting property with
respect to all cofibrations, so that Lemma 1.1 may be invoked to conclude that
f is a weak equivalence.

Subject to proving Lemma 1.15 below, we can assume that the homotopy
inverse θ : Y → X is a section of f , and that there is a homotopy h : X̃ → X
from θ ·f to 1X which is fibrewise in the sense that f ·h = f ·σX . One constructs
path objects X̂ and Ŷ for X and Y which are compatible with f by factorizing
the map

X
(Δ,sY f)−−−−−→ (X × X) ×(Y ×Y ) Ŷ

as a trivial cofibration sX : X → X̂ followed by a fibration

π : X̂ → (X × X) ×(Y ×Y ) Ŷ .

Write f̂ for the composite

X̂
π−→ (X × X) ×(Y ×Y ) Ŷ → Ŷ .

The composite
X̂

π−→ (X × X) ×(Y ×Y ) Ŷ → X × X

is the fibration (p0, p1) : X̂ → X × X for a path object X̂ for X.
The dotted arrow Q exists in the diagram

X w

sX

u

i1

X̂

u

π

X̃ w

((h, σX), sY fσX)

�
�
�
�
�
�
�
�
�
�
���

Q

(X × X) ×(Y ×Y ) Ŷ ,

making it commute, since i1 is a trivial cofibration and π is a fibration. The
composite k = Q · i0 : X → X̂ is therefore a right homotopy from θp to 1X

such that f̂k = sY f
There is a pullback diagram

(X × X) ×(Y ×Y ) Ŷ w

u

pr

X

u

f

X ×Y Ŷ w Y
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so that the projection map pr defined by (x0, x1, ω) �→ (x0, ω) is a fibration. It
follows that the map (p0, f̂) : X̂ → X ×Y Ŷ is a fibration.

Finally, given any commutative diagram

A w
α

u

i

X

u

f

B w

β
Y

with i a cofibration, the lifting H exists in the diagram

A w
kα

u

i

X̂ w

p1

u

(p0, f̂)

X

u

f

B w

(θβ, sY β)

B
B
B
B
BBC

X ×Y Ŷ w Ŷ wp1
Y

making it commute, and the composite square solves the lifting problem. �
Lemma 1.15. Suppose that X and Y are cofibrant and fibrant objects of a
closed model category C, and that the map f : X → Y is a fibration and a
homotopy equivalence. Then f has a section θ : Y → X with a left homotopy
h : X̃ → X from θf to 1X which is fibred over f in the sense that the composite
fh : X̃ → Y is the constant homotopy fσX at f .

Proof: The map f has a homotopy inverse g : Y → X; in particular, there is
a left homotopy H : Ỹ → Y from fg to 1Y . The homotopy lifting property for
the fibration f can be used to construct a left homotopy from g to a section θ
of f .

Suppose that k : X̃ → X is a choice of left homotopy from 1X to θf .
Write k−1 = k : X̃ → X for the homotopy from θf to 1X defined on the
twisted cylinder object

X � X w
τ

u

∇
X � X w

(i0, i1)
X̃

�������������
σX

X

Here, τ is the isomorphism which flips direct summands. Now write θfk−1 ∗k :
X → X for the composite homotopy from 1X to θf , where X is defined by the
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pushout

X w

i1

u

i1

X̃

u

X̃ w X

according to the recipe for composing homotopies given in the proof of Lemma
1.5. Then there is a diagram

X

u

f

X
N
N
N
NNPθfk−1 ∗ k

w
fk−1 ∗ fk

Y

The game is now to show that the homotopy fk−1 ∗fk is homotopic to to
the constant homotopy fσX : X → Y in the sense that there is a commutative
diagram

X ∪(X
X) X w
(fk−1 ∗ k, fσX)

u

j

Y

X ′
��

��
��

��
���

H

where j is a cofibration appearing in a factorization

X ∪(X
X) X w
(σX , σX)

u

j

X

X ′
�
�
�
�
�
�
���

π

such that π is a trivial fibration. Write inL : X → X ∪(X
X) X. Then if we
have such a map H, there is a commutative diagram

X w
θfk−1 ∗ k

u

j · inL

X

u

f

X ′
w

H

B
B
B
B
BBC

K

Y
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Then the dotted arrow K exists since the composite j·inL is a trivial cofibration,
and the composite Kj · inR is the desired fibrewise homotopy from 1X to θf .

In general, we claim that if h : X̃ → Y is a homotopy α → β of maps
X → Y , then there is a commutative diagram

X ∪(X
X) X w

(h−1 ∗ h, ασX)

u

j

Y

X ′
�
�
�
�
�
�
�
�
���

H

subject to the choices made above. To see this, take a fixed path object Ŷ for
Y , and construct a commutative diagram

X w
sY α

u

i0

Ŷ

u

(p0, p1)

X̃ w
(ασX , h)

A
A
A
A
AACγ

Y × Y

where the lifting γ exists since i0 is a trivial cofibration. Then two instances of
the map γ define a map γ : X → Y which fits into a commutative diagram

X � X w
(sY α, sY α)

u

iX

Ŷ

u

(p0, p1)

X
�
�
�
�
�
�
�
���

γ

w

(ασX , h−1 ∗ h)
Y × Y

It follows that there is a commutative diagram

X ∪(X
X) X w
(γ, sY ασX)

u

j

Ŷ

u

p0

X ′
wαπ

�
�
�
�
�
�
���

K

Y

and the desired map H is the composite p1K. �
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Remark 1.16. Proposition 1.14 and its proof are to Quillen [76,p.5.2]; the
proof of Lemma 1.15 that is displayed here is a special case of his method of
correspondences [76,p.2.2].

2. Simplicial categories.
A simplicial model category is, roughly speaking, a closed model category
equipped with a notion of a mapping space between any two objects. This
has to be done in such a way that it makes homotopy theoretic sense. Thus,
besides the new structure, there is an additional axiom, which is called Axiom
SM7 (See 3.1 below).

The initial property one wants is the following: let S be the category of
simplicial sets and let C be a model category, and suppose A ∈ C is cofibrant
and X ∈ C is fibrant. Then, the space of maps in C should be a functor to
simplicial sets

HomC : Cop × C → S

with the property that

π0HomC(A,X) ∼= [A,X]C .

In addition, one would want to interpret πnHomC(A,X) in C.
There are other desirable properties; for example, if A is cofibrant and

X → Y a fibration in C, one would want

HomC(A,X) → HomC(A, Y )

to be a fibration of spaces — that is, of simplicial sets.
Before imposing the closed model category structure on C, let us make

the following definition:

Definition 2.1. A category C is a simplicial category if there is a mapping
space functor

HomC(·, ·) : Cop × C → S

with the properties that for A and B objects in C
(1) HomC(A,B)0 = homC(A,B);
(2) the functor HomC(A, ·) : C → S has a left adjoint

A ⊗ · : S → C
which is associative in the sense that there is a isomorphism

A ⊗ (K × L) ∼= (A ⊗ K) ⊗ L,

natural in A ∈ C and K,L ∈ S;

(3) The functor HomC(·, B) : Cop → S has left adjoint

homC(·, B) : S → Cop.
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Of course, the adjoint relationship in (3) is phrased

homS(K,HomC(A,B)) ∼= homC(A,homC(K,B)) .

Warning: The tensor product notation goes back to Quillen, and remains for
lack of a better operator. But be aware that in this context we do not usually
have a tensor product in the sense of algebra; that is, we don’t have a pairing
arising out of bilinear maps. Instead, we have an adjoint to an internal hom
functor, and this is the sole justification for the notation — Lemma 2.2 says
that there is a right adjoint B �→ homC(K,B) to the functor A �→ A ⊗ K for
a fixed simplicial set K.

Note the plethora of distinct mapping objects. As usual, homC(A,B) is
the set of morphisms from A to B in the category C, whereas the simplicial set
HomC(A,B) is the function complex, and homC(K,B) is an object of C which
is defined for simplicial sets K and objects B ∈ C. The functor homC(K,A) is
often denoted by AK in the literature.

Observe finally that the objects homC(K,A) and HomC(K,A) coincide
when C is the category of simplicial sets, but they are necessarily quite different
elsewhere.

Lemma 2.2.

(1) For fixed K ∈ S, the functor

· ⊗ K : C → C

is left adjoint to the functor

homC(K, ·) : C → C .

(2) For all K and L in S and B in C there is a natural isomorphism

homC(K × L,B) ∼= homS(K,homC(L,B)).

(3) For all n ≥ 0, HomC(A,B)n
∼= homC(A ⊗ Δn, B).

Proof: Part 1 is a consequence of the string of natural isomorphisms

hom(A ⊗ K,B) ∼= hom(K,Hom(A,B)) ∼= hom(A,hom(K,B)).

Part 2 then follows from the associativity built into 2.1.2. Part 3 follows from
2.1.2 and the fact that homS(Δn,X) ∼= Xn. �
Remark: A consequence of Lemma 2.2.1 is that there is a composition pairing
of simplicial sets

HomC(A,B) ×HomC(B,C) → HomC(A,C)
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defined as follows. If f : A ⊗ Δn → B is an n-simplex of HomC(A,B) and g :
B⊗Δn → C is an n-simplex of HomC(B,C) then their pairing in HomC(A,C)
is the composition

A ⊗ Δn
1⊗Δ−−−→ A ⊗ (Δn × Δn) ∼= A ⊗ Δn ⊗ Δn

f⊗1−−→ B ⊗ Δn
g−→ C.

Here Δ : Δn → Δn×Δn is the diagonal. This pairing is associative, and reduces
to the composition pairing in C in simplicial degree zero. It is also unital in the
sense that if ∗ → HomC(A,A) is the vertex corresponding to the identity, then
the following diagram commutes

∗ ×HomC(A,B)

u

�
�
�
�
�
��

=

HomC(A,A) ×HomC(A,B) w HomC(A,B).

There is also a diagram using the identity of B. A shorthand way of encoding
all this structure is to say that C is enriched over simplicial sets. �

Another immediate consequence of the definition is the following result.

Lemma 2.3. For a simplicial category C then the following extended adjoint-
ness isomorphisms hold:

(1) HomS(K,HomC(A,B)) ∼= HomC(A ⊗ K,B).
(2) HomS(K,HomC(A,B)) ∼= HomC(A,hom(K,B)).

Proof: This is an easy exercise using Lemma 2.2. �
Note that, in fact, Definition 2.1 implies that there are functors

· ⊗ · : C × S → C
and

homC(·, ·) : Sop × C → C
satisfying 2.1.1, 2.1.2 and 2.2.1. In order to produce examples of simplicial
categories, we note the following:

Lemma 2.4. Let C be a category equipped with a functor

· ⊗ · : C × S → C .

Suppose the following three conditions hold:

(1) For fixed K ∈ S, · ⊗ K : C → C has a right adjoint homC(K, ·).
(2) For fixed A, the functor A⊗· : S → C commutes with arbitrary colimits

and A ⊗ ∗ ∼= A.

(3) There is an isomorphism A ⊗ (K × L) ∼= (A ⊗ K) ⊗ L natural is A ∈ C
and K,L ∈ S.
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Then C is a simplicial category with HomC(A,B) defined by:

HomC(A,B)n = homC(A ⊗ Δn, B)

Proof: We first prove 2.1.2 holds. If K ∈ S, write K as the coequalizer in a
diagram ⊔

q

Δnq ⇒
⊔
p

Δnp → K .

Then there is a coequalizer diagram⊔
q

A ⊗ Δnq ⇒
⊔
p

A ⊗ Δnp → A ⊗ K

Hence there is an equalizer diagram

homC(A ⊗ K,B) → homC(A ⊗ (
⊔
p

Δnp), B) ⇒ homC(A ⊗ (
⊔
q

Δnq ), B) .

This, in turn, is equivalent to the assertion that the equalizer of the maps

homS(
⊔
p

Δnp ,homC(A,B)) ⇒ homS(
⊔
q

Δnq ,homC(A,B))

is the induced map

homS(K,homC(A,B)) → homS(
⊔
p

Δnp ,homC(A,B))

so 2.1.2 holds. If we let homC(K, ·) be adjoint to · ⊗ K, as guaranteed by the
hypotheses, 2.1.3 holds. Then finally, 2.1.1 is a consequence of the fact that
A ⊗ ∗ = A. �

We now give some examples. Needless to say S itself is a simplicial cate-
gory with, for A,B,K ∈ S

A ⊗ K = A × K

and (a tautology)
HomS(A,B) = HomS(A,B)

and
homS(K,B) = HomS(K,B) .

Only slightly less obvious is the following: let S∗ denote the category of pointed
(i.e., based) simplicial sets. Then S∗ is a simplicial category with

A ⊗ K = A ∧ K+ = A × K/ ∗ ×K
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where ( )+ denote adding a disjoint basepoint

HomS∗
(A,B)n = homS∗

(A ∧ Δn
+, B)

and
homS∗

(K,B) = HomS(K,B)

with basepoint given by the constant map

K → ∗ → B.

Note that HomS∗
(A,B) ∈ S, but homS∗

(K,B) ∈ S∗.
This example can be radically generalized. Suppose C is a category that

is co-complete; that is, C has all colimits. Let sC denote the simplicial objects
in C. Then if K ∈ S, we may define, for A ∈ sC, an object A ⊗ K ∈ sC by

(A ⊗ K)n =
⊔

k∈Kn

An

where
⊔

denotes the coproduct in C, and if φ : n → m is an ordinal number
map φ∗ : (A ⊗ K)m → (A ⊗ K)n is given by

⊔
k∈Km

Am

⊔
φ∗

−−−→
⊔

k∈Km

An →
⊔

k∈Kn

An .

The first map is induced by φ∗ : Am → An, the second by φ∗ : Km → Kn.

Theorem 2.5. Suppose that C is complete and complete. Then with this func-
tor · ⊗ · : sC × S → sC, the category sC becomes a simplicial category with

HomsC(A,B)n = homsC(A ⊗ Δn, B) .

Proof: This is an application of Lemma 2.4. First note that it follows from
the construction that there is a natural isomorphism

A ⊗ (K × L) ∼= (A ⊗ K) ⊗ L.

And one has A ⊗ ∗ ∼= A. Thus, we need only show that, for fixed K ∈ S, the
functor · ⊗ K : sC → sC has a right adjoint. To show this, one changes focus
slightly. For Y ∈ sC, define a functor

FY : Cop → S

by
FY (A) = homC(A, Y ) .
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Then the functor Cop → Sets given by

A �→ HomS(K,FY (A))n = homS(K × Δn,homC(A, Y ))

is representable. To see this, write K × Δn as a coequalizer⊔
q

Δnq ⇒
⊔
p

Δnp → K × Δn

then the representing object is defined by the equalizer diagram∏
q

Ynq ⇔
∏
q

Ynp ← homsC(K,Y )n .

Letting the ordinal number vary yields an object homsC(K,Y ) and a natural
isomorphism of simplicial sets

homC(A,homsC(K,Y )) ∼= HomS(K,homC(A, Y )) , (2.6)

or a natural equivalence of functors

FhomsC(K,Y )(·) ∼= HomS(K,FY (·)) .

Now the morphisms X → Y in sC are in one-to-one correspondence with the
natural transformations FX → FY , by the Yoneda lemma. In formulas, this
reads

homsC(X,Y ) ∼= Nat(FX , FY ) .

Now if K ∈ S and X ∈ sC we can define a new functor

FX ⊗ K : Cop → S

by
(FX ⊗ K)(A) = FX(A) × K

we will argue below that

Nat(FX⊗K , FY ) ∼= Nat(FX ⊗ K,FY ) .

Assuming this one has:

homsC(X,homsC(K,Y )) ∼= Nat(FX , FhomsC(K,Y ))
∼= Nat(FX ,HomS(K,FY ))

by (2.6). Continuing, one has that this is isomorphic to

Nat(FX ⊗ K,FY ) ∼= Nat(FX⊗K , FY ) ∼= homsC(X ⊗ K,Y )

so that
homsC(X,homsC(K,Y )) ∼= homsC(X ⊗ K,Y ) .

as required. Thus we are left with
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Lemma 2.7. There is an isomorphism

Nat(FX⊗K , FY ) ∼= Nat(FX ⊗ K,FY ) .

Proof: It is easiest to show

Nat(FX ⊗ K,F ) ∼= homsC(X ⊗ K,Y ) .

Given a natural transformation

Φ : FX ⊗ K → FY

note that
(FX ⊗ K)(Xn)n =

∏
k∈Kn

homC(Xn,Xn) .

Thus, for each k ∈ Kn, there is a map

Φ(1)k : Xn → Yn

corresponding to the identity in the factor corresponding to k. These assemble
into a map

fn : (X ⊗ K)n =
⊔

k∈Kn

Xn → Yn .

We leave it to the reader to verify that yields a morphism

f : X ⊗ K → Y

of simplicial objects, and that the assignment Φ → f yields the desired isomor-
phism. �
Examples 2.8. One can now assemble a long list of simplicial categories: We
note in particular
1) Let C be one of the following “algebraic” categories: groups, abelian groups,
rings, commutative rings, modules over a ring R, algebras or commutative
algebras over a commutative ring R, or Lie algebras. Then sC is a simplicial
category.
2) Let C be the graded analog of one of the categories in the previous example.
Then sC is a simplicial category.
3) Let C = CA be the category of coalgebras over a field F. Then sCA is a
simplicial category.
4) Note that the hypotheses of C used Theorem 2.5 apply equally to Cop. Thus
s(Cop) is also a simplicial category. But if s(Cop) is a simplicial category, so is
(s(Cop))op. But this is the category cC of cosimplicial objects in C. One must
interpret the functors · ⊗ ·, homcC(·, ·), etc. in light of Theorem 2.5. Thus if
K ∈ S,

homcC(K,A)n =
∏

k∈Kn

An

and
HomcC(A,B)n = homcC(A,homcC(Δn, B))

and A ⊗ K is defined via Theorem 2.5.
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To conclude this section, we turn to the following question: suppose given
simplicial categories C and D and a functor G : D → C with left adjoint F . We
want a criterion under which the simplicial structure is preserved.

Lemma 2.9. Suppose that for all K ∈ S and A ∈ C there is a natural isomor-
phism F (A ⊗ K) ∼= F (A) ⊗ K. Then

(1) the adjunction extends to a natural isomorphism

HomD(FA,B) ∼= HomC(A,GB);

(2) for all K ∈ S and B ∈ D, there is a natural isomorphism

GhomD(K,B) ∼= homC(K,GB) .

Proof: Part (1) uses that HomD(FA,B)n
∼= homD(FA ⊗ Δn, B). Part (2)

is an exercise in adjunctions. �
We give some examples.

Examples 2.10.

1) Let G : D → C have a left adjoint F . Extend this to a pair of adjoint functors
by prolongation:

G : sD → sC
with adjoint F . Thus G(X)n = G(X)n, and so on. Then, in the simplicial
structure of Theorem 2.5, F (X ⊗ K) ∼= F (X) ⊗ K, since F commutes with
colimits.
2) Let C be an arbitrary simplicial category and A ∈ C. Define

G : C → S

by G(B) = HomC(A,B). Then F (X) = A ⊗ X and the requirement on 2.9 is
simply the formula

A ⊗ (X × K) ∼= (A ⊗ X) ⊗ K .

Remark 2.11. A functor F : C → D between simplicial model categories
which has an associated natural isomorphism

F (A ⊗ K)
ωA,K−−−→∼=

F (A) ⊗ K

as in the statement of Lemma 2.9 is said to be continuous, provided that it also
satisfies the requirements that the diagrams

F (A ⊗ K ⊗ L) w

ωA⊗K,L

u

∼=

F (A ⊗ K) ⊗ L w

ωA,K ⊗ L
F (A) ⊗ K ⊗ L

u

∼=

F (A ⊗ (K × L)) wωA,K×L
F (A) ⊗ (K × L)
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and

F (A ⊗ Δ0) w

ωA,Δ0

�
�
��∼=

F (A) ⊗ Δ0

A
A
AD

∼=
F (A)

commute, where the unnamed isomorphisms are induced by the simplicial struc-
ture on C and D. Such a functor F : C → D induces simplicial set maps

F : HomC(A,B) → HomD(F (A), F (B))

of function spaces which respects composition.

3. Simplicial model categories.
If a category C is at once a simplicial category and a closed model category,
we would like the mapping space functor to have homotopy theoretic content.
This is accomplished by imposing the following axiom.

3.1 Axiom SM7. Let C be a closed model category and a simplicial category.
Suppose j : A → B is a cofibration and q : X → Y is a fibration. Then

HomC(B,X)
(j∗,q∗)−−−−→ HomC(A,X) ×HomC(A,Y ) HomC(B, Y )

is a fibration of simplicial sets, which is trivial if j or q is trivial.

A category satisfying this axiom will be called a simplicial model category.
The next few sections will be devoted to producing a variety of examples, but
in this section we will explore the consequences of this axiom.

Proposition 3.2. Let C be a simplicial model category and q : X → Y a
fibration. Then if B is cofibrant

q∗ : HomC(B,X) → HomC(B, Y )

is a fibration in S. Similarly, if j : A → B is a cofibration and X is fibrant,
then

j∗ : HomC(B,X) → HomC(A,X)

is a fibration.

Proof: One sets A to be the initial object and Y to be the final object,
respectively, in Axiom SM7. �

In other words, HomC(·, ·) has entirely familiar homotopical behavior.
This is one way to regard this axiom. Another is that SM7 is a considerable
strengthening of the lifting axiom CM4 of a closed model category.
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Proposition 3.3. Axiom SM7 implies axiom CM4; that is, given a lifting
problem in simplicial category C satisfying SM7

A

u

j

w X

u

q

B
i
i
iij

w Y

with j a cofibration and q a fibration, then the dotted arrow exists if either j
or q is trivial.

Proof: Such a square is a zero-simplex in

HomC(A,X) ×HomC(A,Y ) HomC(B, Y )

and a lifting is a pre-image in the zero simplices of HomC(B,X). Since trivial
fibrations are surjective, the result follows. �

But more is true: Axiom SM7 implies that the lifting built in CM4 is
unique up to homotopy. To explain that, however, requires a few words about
homotopy. First we record

Proposition 3.4. Let C be a simplicial model category and j : K → L a
cofibration of simplicial sets. If A ∈ C is cofibrant, then

1 ⊗ j : A ⊗ K → A ⊗ L

is a cofibration in C. If X ∈ C is fibrant

j∗ : homC(L,X) → homC(K,X)

is a fibration. If j is trivial, then so are 1 ⊗ j and j∗.

Proof: For example, one needs to show 1 ⊗ j has the left lifting property
with respect to all trivial fibrations q : X → Y in C. This is equivalent, by
adjointness, to show j has the left lifting property with respect to

q∗ : HomC(A,X) → HomC(A, Y )

for all trivial fibrations q. But q∗ is a trivial fibration of simplicial sets by SM7.
The other three claims are proved similarly. �

Recall the definitions of left and right homotopy from Section 1. The
following implies that if A is cofibrant, then A⊗Δ1 is a model for the cylinder
on A.
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Lemma 3.5. Let C be a simplicial model category and let A ∈ C be cofibrant.
Then if q : Δ1 → ∗ is the unique map

1 ⊗ q : A ⊗ Δ1 → A ⊗ ∗ ∼= A

is a weak equivalence. Furthermore,

d1 � d0 : A � A → A ⊗ Δ1

is a cofibration and the composite

A � A
d0
d1−−−−→ A ⊗ Δ1

1⊗q−−→ A

is the fold map.

Proof: The first claim follows from Proposition 3.4, since

d1 : A ∼= A ⊗ Δ0 → A ⊗ Δ1

is a weak equivalence. The second claim follows from 3.4 also since d1

⊔
d0 is

equivalent to
1 ⊗ j : A ⊗ ∂Δ1 → A ⊗ Δ1

where j : ∂Δ → Δ1 is inclusion of the boundary. For the third claim one checks
that (1 ⊗ q) · d1 = (1 ⊗ q) · d0 = 1. �

Thus, if C is a simplicial model category and A ∈ C is cofibrant and X is
fibrant, then two morphisms f, g : A → X are homotopic if and only if there is
a factoring

A � A

u

f � g

w

d1 � d0 A ⊗ Δ1

N
N
N
N
NQ

H

X

(3.6)

This, too, is no surprise. As a further exercise, note that if one prefers right
homotopy for a particular application, one could require a factoring

homC(Δ1,X)

u

j∗

A
�
�
�
�
�
���G

w
f × g

X × X ∼= homC(∂Δ1,X)

(3.7)

In using this formulation, one wants X to be fibrant so that j∗ is a fibration.



92 II. Model Categories

To formulate the next notion, let A be cofibrant and j : A → B a cofi-
bration. Given two maps f, g : B → X so that j · f = j · g, we say f and g are
homotopic under A if there is a homotopy

H : B ⊗ Δ1 → X

so that H · (j ⊗ 1) : A ⊗ Δ1 → X is the constant homotopy on j · f . That is,
h ⊗ (j ⊗ 1) is the composite

A ⊗ Δ1
1⊗q−−→ A ⊗ ∗ ∼= A

j·f−−→ X

where q : Δ1 → ∗ is the unique map. There is a dual notion of homotopic
over Y .

The following result says that in a simplicial model category, the liftings
required by axiom CM4 are unique in a strong way.

Proposition 3.8. Let C be a simplicial model category and A a cofibrant
object. Consider a commutative square

A

u

j

w X

u

q

B w Y

where j is a cofibration, q is a fibration and one of j or q is trivial. Then any
two solutions f, g : B → X of the lifting problem are homotopic under A and
over Y .

Proof: The commutative square is a zero-simplex α in

HomC(A,X) ×HomC(A,Y ) HomC(B, Y )

Let s0α be the corresponding degenerate 1-simplex. Then s0α is the commu-
tative square

A ⊗ Δ1

u

j ⊗ 1

w X

u

q

B ⊗ Δ1
w Y

where the horizontal maps are the constant homotopies. Let

f, g ∈ HomC(B,X)0 = homC(B,X)
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be two solutions to the lifting problem. Thus (i∗, q∗)f = (i∗, q∗)g = α. Then by
SM7, there is a 1-simplex

β ∈ HomC(B,X)1 ∼= homC(B ⊗ Δ1,X)

so that d1β = f, d0β = g, and (i∗, q∗)β = s0α. Then

β : B ⊗ Δ1 → X

is the required homotopy. �
We now restate a concept from Section 1. For a simplicial model category

C, we define the homotopy category Ho(C) as follows: the objects are the objects
of C and the morphisms are defined by

[A,X]C = homC(B, Y )/ ∼ (3.9)

where q : B → A is a trivial fibration with B cofibrant, i : X → Y is a trivial
cofibration with Y fibrant and f ∼ g if and only if f is homotopic to g. It
is a consequence of Lemma 1.5 that ∼ is an equivalence relation, and it is a
consequence of the proof of Theorem 1.11 [A,X]C coincides with morphisms
from A to X in the homotopy category Ho(C).

There is some ambiguity in the notation: [A,X]C depends not only on C,
but on the particular closed model category structure. In the sequel, [ , ] means
[ , ]S.

The following result gives homotopy theoretic content to the functors ·⊗K
and homC(K, ·).
Proposition 3.10. Let C be a simplicial model category and A and B a
cofibrant and a fibrant object of C, respectively. Then

[K,HomC(A,B)] ∼= [A ⊗ K,B]C

and
[K,HomC(A,B)] ∼= [A,homC(K,B)]C .

Proof: Note that HomC(A,B) is fibrant, by Proposition 3.2. Hence

[K,HomC(A,B)] = homS(K,HomC(A,B))/ ∼
where ∼ means “homotopy” as above. But, since

A ⊗ (K × Δ1) = (A ⊗ K) ⊗ Δ1

we have that

homS(K,HomC(A,B))/ ∼ ∼= homC(A ⊗ K,B)/ ∼
∼= [A ⊗ K,B]C

where we use Proposition 3.4 to assert that A ⊗ K is cofibrant. �
We now concern ourselves with developing a way of recognizing when

SM7 holds.
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Proposition 3.11. Let C be a closed model category and a simplicial category.
Then the axiom SM7 holds if and only if for all cofibrations i : K → L in S
and cofibrations j : A → B in C, the map

(j ⊗ 1) ∪ (1 ⊗ i) : (A ⊗ L) ∪(A⊗K) (B ⊗ K) → B ⊗ L .

is a cofibration which is trivial if either j or i is.

Proof: A diagram of the form

K

u

w HomC(B,X)

u

L w HomC(A,X) ×HomC(A,Y ) HomC(B, Y )

is equivalent, by adjointness, to a diagram

(A ⊗ L) ∪(A⊗K) (B ⊗ K)

u

w X

u

B ⊗ L w Y .

The result follows by using the fact that fibrations and cofibrations are deter-
mined by various lifting properties. �

From this we deduce

Corollary 3.12. (Axiom SM7b) Let C be a closed model category and a
simplicial category. The axiom SM7 is equivalent to the requirement that for
all cofibrations j : A → B in C

(A ⊗ Δn) ∪(A⊗∂Δn) (B ⊗ ∂Δn) → B ⊗ Δn

is a cofibration (for n ≥ 0) that is trivial if j is, and that

(A ⊗ Δ1) ∪(A⊗{e}) (B ⊗ {e}) → B ⊗ Δ1

is the trivial cofibration for e = 0 or 1.

Proof: Let i : K → L be a cofibration of simplicial sets. Then, since i can be
built by attaching cells to K, the first condition implies

(A ⊗ L) ∪(A⊗K) (B ⊗ K) → (B ⊗ L)

is a cofibration which is trivial if j is. The second condition and proposition
I.4.2 (applied to B2) yields that (j ⊗ 1) ∪ (1 ⊗ i) is trivial if i is. �
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In the usual duality that arises in these situations, we also have

Proposition 3.13. Let C be a simplicial category and a model category and
suppose i : K → L is a cofibration in S and q : X → Y a fibration in C. Then
the following are equivalent:

(1) SM7,

(2) homC(L,X) → homC(K,X) ×homC(K,Y ) homC(L, Y ) is a fibration
which is trivial if q or j is;

(3) (SM7a) homC(Δn,X) → homC(∂Δn,X)×homC(∂Δn,Y ) homC(Δn, Y )
is a fibration which is trivial if q is, and

homC(Δ1,X) → homC(e,X) ×homC(e,Y ) homC(Δ1, Y )

is a trivial fibration for e = 0, 1.

Example 3.14. A simplicial model category structure on CGHaus
We can now show that the category CGHaus of compactly generated Haus-
dorff spaces is a simplicial model category. To supply the simplicial structure
let X ∈ CGHaus and K ∈ S. Define

X ⊗ K = X ×Ke |K|
where | · | denotes the geometric realization and ×Ke the Kelley product, which
is the product internal to the category CGHaus. Then if X and Y are in
CGHaus, the simplicial set of maps between X and Y is given by

HomCGHaus(X,Y )n = homCGHaus(X × Δn, Y )

regarded as a set. And the right adjoint to · ⊗ K is given by

homCGHaus(K,X) = F(|K|,X)

where F denotes the internal function space to CGHaus.
We have seen that CGHaus is a closed model category with the usual

weak equivalences and Serre fibrations. In addition, Proposition 3.13 immedi-
ately implies that CGHaus is a simplicial model category.

It is worth pointing out that the realization functor | · | and its adjoint
S(·) the singular set functor pass to the level of simplicial categories. Indeed,
we’ve seen (Proposition I.2.4) that if X ∈ S and K ∈ S, then

|X × K| = |X| ×Ke |K|.
This immediately implies that if Y ∈ CGHaus, then

SF(|K|, Y ) = HomS(K,SY )

and
HomCGHaus(|X|, Y ) = HomS(X,SY ).

We close this section with the following lemma, which gives a standard
method for detecting weak equivalences in a closed simplicial model category:
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Lemma 3.15. Suppose that f : A → B is a map between cofibrant objects in
a simplicial model category C. Then f is a weak equivalence if and only if the
induced map

f∗ : Hom(B,Z) → Hom(A,Z)

is a weak equivalence of simplicial sets for each fibrant object Z of C.

Proof: We use the fact, which appears as Lemma 8.4 below, that a map f :
A → B between cofibrant objects in a closed model category has a factorization

X

u

q

A
h
h
hhjj

w
f

B

such that j is a cofibration and the map q is left inverse to a trivial cofibration
i : B → X.

If f : A → B is a weak equivalence, then the map j : A → X is a
trivial cofibration, and hence induces a trivial fibration j∗ : Hom(X,Z) →
Hom(A,Z) for all fibrant objects Z. Similarly, the trivial cofibration i induces
a trivial fibration i∗, so that the map q∗ : Hom(B,Z) → Hom(X,Z) is a weak
equivalence.

Suppose that the map f∗ : Hom(B,Z) → Hom(A,Z) is a weak equiva-
lence for all fibrant Z. To show that f is a weak equivalence, we can presume
that the objects A and B are fibrant as well as cofibrant. In effect, there is a
commutative diagram

A w
f

u

B

u

A′
w

f ′ B′

in which the objects A′ and B′ are fibrant, and the vertical maps are trivial
cofibrations, and then one applies the functor Hom( , Z) for Z fibrant and
invokes the previous paragraph.

Finally, suppose that A and B are fibrant as well as cofibrant, and presume
that f∗ : Hom(B,Z) → Hom(A,Z) is a weak equivalence for all fibrant Z. We
can assume further that f is a cofibration, by taking a suitable factorization.
The map f∗ : Hom(B,A) → Hom(A,A) is therefore a trivial Kan fibration,
and hence surjective in all degrees, so that there is a map g : B → A such that
g · f = 1A. The maps f · g and 1B are both pre-image of the vertex f under the
trivial fibration f∗ : Hom(B,B) → Hom(A,B), so that there is a homotopy
f · g � 1B. In particular, f is a homotopy equivalence and therefore a weak
equivalence, by Lemma 1.14. �
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4. The existence of simplicial model category structures.
Here we concern ourselves with the following problem: Let C be a category and
sC the category of simplicial objects over C. Then, does sC have the structure of
a simplicial model category? We will assume that there is a functor G : sC → S
with a left adjoint

F : S → sC .

Examples include algebraic categories such as the categories of groups,
abelian groups, algebras over some ring R, commutative algebras, Lie algebras,
and so on. In these cases, G is a forgetful functor. See the examples in 2.10.

Define a morphism f : A → B is sC to be

a) a weak equivalence if Gf is a weak equivalence in S;
b) a fibration if Gf is a fibration in S;
c) a cofibration if it has the left lifting property with respect to all trivial

fibrations in sC.

A final definition is necessary before stating the result. Let {Xα}α∈I be
a diagram in C. Then, assuming the category C has enough colimits, there is a
natural map

lim−→
I

G(Xα) −→ G(lim−→
I

Xα).

This is not, in general, an isomorphism. We say that G commutes with
filtered colimits if this is an isomorphism whenever the index category I is
filtered.

Theorem 4.1. Suppose C has all limits and colimits and that G commutes
with filtered colimits. Then with the notions of weak equivalence, fibration, and
cofibration defined above, sC is a closed model category provided the following
assumption on cofibrations holds: every cofibration with the left lifting property
with respect to fibrations is a weak equivalence.

We will see that, in fact, sC is a simplicial model category with the sim-
plicial structure of Theorem 2.5.

The proof of Theorem 4.1 turns on the following observation. As we have
seen, a morphism f : X → Y is a fibration of simplicial sets if and only if it
has the right lifting property with respect to the inclusions for all n, k

Λn
k ↪→ Δn

and f is a trivial fibration if and only if it has the right lifting property with
respect to the inclusions ∂Δn → Δn of the boundary for all n. The objects
Λn

k , ∂Δn, and Δn are small in the following sense: the natural map

lim−→
I

homS(Λn
k ,Xα) −→ homS(Λn

k , lim−→
I

Xα)

is an isomorphism for all filtered colimits in S. This is because Λn
k has only

finitely many non-degenerate simplices. Similar remarks hold for ∂Δn and Δn.
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Lemma 4.2. Any morphism f : A → B in sC can be factored

A
j→X

q→B

where the morphism j is a cofibration and q is a trivial fibration.

Proof: Coproducts of cofibrations are cofibrations, and given a pushout dia-
gram

A0

u

i

w A2

u

j

A1 w B

in sC, then i a cofibration implies j is a cofibration, and that if X → Y is a
cofibration in S, then FX → FY is a cofibration in sC. Inductively construct
objects Xn ∈ sC with the following properties:

a) One has A = X0 and there is a cofibration jn : Xn → Xn+1.
b) There are maps qn : Xn → B so that qn = qn+1 · jn and the diagram

A�
�
�
��

w Xn

u
qn

B

commutes, where A → Xn is the composite jn−1 · · · · · j0.
c) Any diagram

F∂Δm

u

w

ϕ
Xn

u
qn

FΔm
w

ψ
B

can be completed to a diagram

F∂Δm

u

w

ϕ
Xn

u
jn

�
�
�
���

qn

FΔm
w Xn+1 wqn+1

B

where the bottom morphism is ψ.
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Condition c) indicates how to construct Xn+1 given Xn. Define jn : Xn →
Xn+1 by the pushout diagrams

⊔
F∂Δm

u

w Xn

u

jn⊔
FΔm

w Xn+1

where the coproduct is over all diagrams of the type presented in c).
Then condition c) automatically holds. Further, qn+1 : Xn+1 → B is

defined and satisfies condition b) by the universal property of pushouts. Lastly,
condition a) holds by the remarks at the beginning of the proof.

Now define X = lim−→Xn and notice that we have a factoring

A
j→X

q→B

of the original morphism. The morphism j is a cofibration since directed col-
imits of cofibrations are cofibrations. We need only show q : X → B is a trivial
fibration. This amounts to showing that any diagram

∂Δn
w

u

GX

u

Gq

Δn
w GB

can be completed. But GX ∼= lim−→n
GXn by hypothesis on G, and the result

follows by the small object argument. �
The same argument, but using the trivial cofibrations Λm

k ↪→ Δm in S,
proves the following lemma.

Lemma 4.3. Any morphism f : A → B in sC can be factored

A
j−→ X

q−→ B

where q is a fibration and j is a cofibration which has the left lifting property
with respect to all fibrations.
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Proof of Theorem 4.1: The axioms CM1–CM3 are easily checked. The
axiom CM5b is Lemma 4.2; the axiom CM5a follows from Lemma 4.3 and
the assumption on cofibrations. For axiom CM4, one half is the definition of
cofibration. For the other half, one proceeds as follows. Let

i : A → B

be a trivial cofibration. Then by Lemma 4.3 we can factor the morphism i as

A
j→X

q→B

where j is a cofibration with the left lifting with respect to all fibrations, and q
is a fibration. By the hypothesis on cofibrations, j is a weak equivalence. Since
i is a weak equivalence, so is q. Hence, one can complete the diagram

A

u

i

w

j
X

u

q

B w
= B

and finds that i is a retract of j. Hence i has the left lifting property with
respect to fibrations, because j does. This completes the proof. �

We next remark that, in fact, sC is a simplicial model category. For this,
we impose the simplicial structure guaranteed by Theorem 2.5. Thus if X ∈ sC
and K ∈ S, we have that

(A ⊗ K)n =
⊔

k∈Kn

An.

From this, one sees that if X ∈ S

F (X × K) ∼= F (X) ⊗ K.

This is because F , as a left adjoint, preserves coproducts. Thus Lemma 2.9
applies and

GhomsC(K,B) ∼= homS(K,GB).

Theorem 4.4. With this simplicial structure, sC becomes a simplicial model
category.
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Proof: Apply Proposition 3.13.1. If j : K → L is a cofibration in S and
q : X → Y is a fibration in sC, the map

GhomsC(L,X) −→ G(homsC(K,X) ×homsC(K,Y ) homsC(L, Y ))

is isomorphic to

homS(L,GX) −→ homS(K,GX) ×homS(K,GY ) homS(L,GY )

by the remarks above and the fact that G, as a right adjoint, commutes with
pullbacks. Since the simplicial set category S has a simplicial model structure,
the result holds. �

4.5 A remark on the hypotheses. Theorem 4.1 and, by extension, Theo-
rem 4.4 require the hypothesis that every cofibration with the left lifting prop-
erty with respect to all fibrations is, in fact, a weak equivalence. This is so
Lemma 4.3 produces the factoring of a morphism as a trivial cofibration fol-
lowed by a fibration. In the next section we will give some general results about
when this hypothesis holds; however, in a particular situation, one might be
able to prove directly that the factoring produced in Lemma 4.3 actually yields
a trivial cofibration. Then the hypothesis on cofibrations required by these the-
orems holds because any cofibration with the left lifting property with respect
to all fibrations will be a retract of a trivial cofibration. Then one need say no
more.

For example, in examining the proof of Lemma 4.3 (see Lemma 4.2), one
sees that we would have a factorization of f : A → B as a trivial cofibration
followed by a fibration provided one knows that 1.) F (Λn

k ) → F (Δn) is a weak
equivalence or, more generally, that F preserves trivial cofibrations, and 2.)
trivial cofibrations in sC are closed under coproducts, pushouts, and colimits
over the natural numbers.

5. Examples of simplicial model categories.

As promised, we prove that a variety of simplicial categories satisfy the hy-
potheses necessary for Theorem 4.4 of the previous section to apply.

We begin with a crucial lemma.

Lemma 5.1. Assume that for every A ∈ sC there is a natural weak equivalence

εA : A → QA

where QA is fibrant. Then every cofibration with the left lifting property with
respect to all fibrations is a weak equivalence.
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Proof: This is the argument given by Quillen, on page II.4.9 of [76]. Let
j : A → B be the given cofibration. Then by hypothesis, we may factor

A

u

j

w

εA QA

u

B

i
i
iij

w ∗

to get a map u : B → QA so that uj = εA. Then we contemplate the lifting
problem

A

u

j

w
f

homsC(Δ1, QB)

u

q

B
��
��
��
��

w
g

homsC(∂Δ1, QB) ∼= QB × QB

where q is induced by ∂Δ1 ⊆ Δ1, f is the composite

A
j−→ B

εB−→ QB = homsC(∗, QB) → homsC(Δ1, QB)

and
g = (εB , Qj · u) .

Note that f is adjoint to the constant homotopy on

εB · j = Qj · εA : A → QB .

Then q is a fibration since

GhomsC(K,X) = homS(K,GX) ,

and S is a simplicial model category. Hence, since j is a cofibration having the
left lifting property with respect to all fibrations, there exists

H : B → homsC(Δ1, QB)

making both triangles commute. Then H is a right homotopy from

εB : B → QB
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to Qj · u, and this homotopy restricts to the constant homotopy on εB · j =
Qj · εA : A → QB. In other words, we have a diagram

A w

εA

u

j

QA

u

Qj

B wεB

h
h
hhju

QB

such that the upper triangle commutes and the lower triangle commutes up
to homotopy. Apply the functor G to this diagram. Then G preserves right
homotopies, and one checks directly on the level of homotopy groups that Gj
is a weak equivalence, which, by definition, implies j is a weak equivalence. �
Example 5.2. Suppose that every object of sC is fibrant. Then we may take
εA : A → QA to be the identity. This happens, for example, if the functor
G : sC → S factors through the sub-category of simplicial groups and simplicial
group homomorphisms. Thus, Theorem 4.4 applies to

(1) simplicial groups, simplicial abelian groups and simplicial R-modules,
where G is the forgetful functor;

(2) more generally to simplicial modules over a simplicial ring R, where G
is the forgetful functor,

(3) for a fixed commutative ring R; simplicial R-algebras, simplicial com-
mutative R-algebras and simplicial Lie algebras over R. Again G is the
forgetful functor.

Another powerful set of examples arises by making a careful choice of the
form the functor G can take.

Recall that an object A ∈ C is small if homC(A, ·) commutes with filtered
colimits. Fix a small Z ∈ C and define

G : sC → S (5.3)

by
G(X) = homsC(Z,X) .

Then G has left adjoint
FK = Z ⊗ K

and G(·) commutes with filtered colimits. Thus, to apply Theorem 4.4, we need
to prove the existence of the natural transformation

ε : A → QA
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as in Lemma 5.1. Let
Ex : S → S

be Kan’s Extension functor1. Then for all K ∈ S there is a natural map

εK : K → ExK

which is a weak equivalence. Furthermore, most crucially for the application
here, Ex(·) commutes with all limits. This is because it’s a right adjoint. Finally,
if Exn K is this functor applied n times and

Exn εK : Exn K −→ Exn+1 K

the induced morphism, then Ex∞ K = lim−→Exn K is fibrant in S and the induced
map

K −→ Ex∞ K

is a trivial cofibration.

Lemma 5.4. Suppose the category C is complete and cocomplete. Fix n ≥ 0.
Then there is a functor

Q0(·)n : sC −→ C
so that, for all Z ∈ C, there is a natural isomorphism of sets

homC(Z, (Q0A)n) ∼= Ex(HomsC(Z,A))n .

Proof: Recall that that the functor Ex on S is right adjoint to the the sub-
division functor sd. Then one has a sequence of natural isomorphisms

ExHomsC(Z,A)n
∼= homS(Δn,ExHomsC(Z,A))
∼= homS(sdΔn,HomsC(Z,A))
∼= homsC(Z ⊗ sdΔn, A)
∼= homsC(Z,homsC(sdΔn, A))
∼= homC(Z,homsC(sd Δn, A)0).

The last isomorphism is due to the fact that Z is a constant simplicial object
and maps out of a constant simplicial object are completely determined by
what happens on zero simplices. Thus we can set

(Q0A)n = homsC(sdΔn, A)0. �

1 This construction is discussed in Section III.4 below.
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The simplicial object Q0A defined by

n �→ (Q0A)n = homsC(sdΔn, A)0

is natural in A; that is, we obtain a functor Q0 : sC → sC. Since we regard
Z ∈ C as a constant simplicial object in sC

HomsC(Z, Y )n
∼= homsC(Z ⊗ Δn, Y )
∼= homC(Z, Yn)

one immediately has that

HomsC(Z,Q0A) ∼= ExHomsC(Z,A).

Finally the natural transformation εK : K → ExK yields a natural map

εA : A −→ Q0A

and, by iteration, maps

Qn
0 εA : Qn

0A −→ Qn+1
0 A.

Define QA = lim−→Qn
0A. The reader will have noticed that Q0A and QA are

independent of Z.
Now fix a small object Z ∈ C and regard Z as a constant simplicial object

in sC. Then we define a morphism A → B in sC to be a weak equivalence (or
fibration) if and only if the induced map

HomsC(Z,A) −→ HomsC(Z,B)

is a weak equivalence (or fibration) of simplicial sets.

Proposition 5.5. If Z is small, the morphism εA : A → QA is a weak equiv-
alence and QA is fibrant.

Proof: Since Z is small, we have that

HomsC(Z,QA) ∼= Ex∞ HomsC(Z,A).

The morphism εA is a weak equivalence if and only if

HomsC(Z,A) → HomsC(Z,QA) ∼= Ex∞ HomsC(Z,A)

is a weak equivalence and QA → ∗ is a fibration if and only if

HomsC(Z,QA) ∼= Ex∞ HomsC(Z,A) → HomsC(Z, ∗) = ∗
is a fibration. Both of these facts follow from the properties of the functor
Ex∞(·). �
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Corollary 5.6. Let C be a complete and cocomplete category and Z ∈ C
a small object. Then sC is a simplicial model category with A → B a weak
equivalence (or fibration) if and only if

HomsC(Z,A) −→ HomsC(Z,B)

is a weak equivalence (or fibration) of simplicial sets.

In practice one wants an intrinsic definition of weak equivalence and fi-
bration, in the manner of the following example.

Example 5.7. All the examples of 5.2 can be recovered from Corollary 5.6.
For example, C be the category of algebras over a commutative ring. Then C
has a single projective generator; namely A[x], the algebra on one generator.
Then one sets Z = A[x], which is evidently small, and one gets a closed model
category structure from the previous result. However, if B ∈ sC, then

HomsC(A[x], B) ∼= B

in the category of simplicial sets, so one recovers the same closed model category
structure as in Example 5.2.

If C is a category satisfying 4.1 with a single small projective generator,
then C is a category of universal algebras. Setting Z to be the generator, one
immediately gets a closed model category structure on sC from Corollary 5.6.
This is the case for all the examples of 5.2.

To go further, we generalize the conditions of Theorem 4.1 a little, to
require the existence of a collection of functors Gi : sC → S, i ∈ I, each of
which has a left adjoint Fi : S → sC. We now say that a morphism f : A → B
of sC is

a) a weak equivalence if Gif is a weak equivalence of simplicial sets for all
i ∈ I;

b) a fibration if all induced maps Gif are fibrations of S;

c) a cofibration if it has the left lifting property with respect to all trivial
cofibrations of sC.

Then Theorem 4.1 and Theorem 4.4 together have the following analogue:

Theorem 5.8. Suppose that C has all small limits and colimits and that all
of the functors Gi : C → S preserve filtered colimits. Then with the notions
of weak equivalence, fibration and cofibration defined above, and if every cofi-
bration with the left lifting property with respect to all fibrations is a weak
equivalence, then sC is a simplicial model category.
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Proof: The proof is the same as that of Theorem 4.1, except that the small
object arguments for the factorization axiom are constructed from all diagrams
of the form

Fi∂Δm
w

u

A

u

FiΔm
w B

and

FiΛn
k w

u

A

u

FiΔn
w B

�

Theorem 5.8 will be generalized significantly in the next section — it is a
special case of Theorem 6.8.

Now fix a set of small objects Zi ∈ C, i ∈ I, and regard each Zi as a
constant simplicial object in sC. Then we define a morphism A → B in sC to
be a weak equivalence (or fibration) if and only if the induced map

HomsC(Zi, A) −→ HomsC(Zi, B)

is a weak equivalence (or fibration) of simplicial sets. In the case where C is
complete and cocomplete, we are still entitled to the construction of the natural
map εA : A → QA in sC. Furthermore, each of the objects Zi is small, so that
Proposition 5.5 holds with Z replaced by Zi, implying that the map εA is a
weak equivalence and that QA is fibrant. Then an analogue of Lemma 5.1
holds for the setup of Theorem 5.8 (with G replaced by Gi in the proof), and
we obtain the following result:

Theorem 5.9. Suppose that C is a small complete and cocomplete category,
and let Zi ∈ C, i ∈ I, be a set of small objects. Then sC is a simplicial model
category with A → B a weak equivalence (respectively fibration) if and only if
the induced map

HomsC(Zi, A) → HomsC(Zi, B)

is a weak equivalence (respectively fibration) for all i ∈ I

Example 5.10. Suppose that C is small complete and cocomplete, and has
a set {Pα} of small projective generators. Theorem 5.9 implies that C has a
simplicial model category structure, where A → B is a weak equivalence (or
fibration) if

HomsC(Pα, A) → HomsC(Pα, B)

is a weak equivalence (or fibration) for all α.
Note that the requirement that the objects Pα are projective generators

is not necessary for the existence of the closed model structure. However, if we
also assume that the category C has sufficiently many projectives in the sense
that there is an effective epimorphism P → C with P projective for all objects
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C ∈ C, then it can be shown that a morphism f : A → B of sC is a weak
equivalence (respectively fibration) if every induced map

HomsC(P,A) → HomsC(P,B)

arising from a projective object P ∈ C is a weak equivalence (respectively
fibration) of simplicial sets. This is a result of Quillen [76, II.4], and its proof
is the origin of the stream of ideas leading to Theorem 5.9. We shall go further
in this direction in the next section.

To be more specific now, let C be the category of graded A-algebras for
some commutative ring A and let, for n ≥ 0,

Pn = A[xn]

be the free graded algebra or an element of degree n. Then {Pn}n≥0 form a set
of projective generators for C. Thus sC gets a closed model category structure
and B → C in sC is a weak equivalence if and only if

(B)n → (C)n

is a weak equivalence of simplicial sets for all n. Here (·)n denotes the elements
of degree n. This is equivalent to the following: if M is a simplicial graded
A-module, define

π∗M = H∗(M,∂)

where ∂ is the alternating of the face operators. Then B → C in sC is a weak
equivalence if and only if

π∗B → π∗C

is an isomorphism of bigraded A-modules.
This formalism works for graded groups, graded abelian groups, graded

A-modules, graded commutative algebras, graded Lie algebras, and so on.

Example 5.11. Let F be a field and let C = CA be the category of coalgebras
over F. Then, by [88, p.46] every coalgebra C ∈ CA is the filtered colimit of its
finite dimensional sub-coalgebras. Thus CA has a set of generators {Cα} where
Cα runs over a set of representatives for the finite dimensional coalgebras. These
are evidently small. Hence, sCA has a closed model category structure where
A → B is a weak equivalence if and only if

HomsCA(Cα, A) → HomsCA(Cα, B)

is a weak equivalence for all Cα. The significance of this example is that the
Cα are not necessarily projective.
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6. A generalization of Theorem 4.1.

The techniques of the previous sections are very general and accessible to vast
generalization. We embark some ways on this journey here. First we expand on
what it means for an object in a category to be small. Assume for simplicity
that we are considering a category C which has all limits and colimits. We shall
use the convention that a cardinal number is the smallest ordinal number in a
given bijection class.

Fix an infinite cardinal number γ, and let Seq(γ) denote the well-ordered
set of ordinals less than γ. Then Seq(γ) is a category with hom(s, t) one element
if s ≤ t and empty otherwise. A γ-diagram in C is a functor X : Seq(γ) → C.
We will write lim−→γ

Xs for the colimit. We shall say that X is a γ-diagram of

cofibrations if each of the transition morphisms Xs → Xt is a cofibration of C.

Definition 6.1. Suppose that β is an infinite cardinal. An object A ∈ C is
β-small if for all γ-diagrams of cofibrations X in C with γ ≥ β, the natural
map

lim−→
γ

homC(A,Xs) → homC(A, lim−→
γ

Xs)

is an isomorphism. A morphism A → B of C is said to be β-small if the objects
A and B are both β-small.

Example 6.2. The small objects of the previous sections were ω-small, where
ω is the first infinite cardinal. Compact topological spaces are also ω-small, but
this assertion requires proof.

Suppose that X : Seq(γ) → Top is a γ-diagram of cofibrations. Then
X is a retract of a γ-diagram of cofibrations X, where each of the transition
morphisms Xs ↪→ Xt is a relative CW-complex. In effect, set X0 = X0, and
set Xα = lim−→s<α

Xs for limit ordinals α < γ. Suppose given maps

Xs

rs−→ Xs

πs−→ Xs

with πsrs = 1. Then Xs+1 is defined by choosing a trivial fibration πs+1 and
a relative CW-complex map js+1 : Xs ↪→ Xs+1 (ie. Xs+1 is obtained from
Xs by attaching cells, and js+1 is the corresponding inclusion), such that the
following diagram commutes:

Xs w

js+1

u

πs

Xs+1

u

πs+1

Xs w

is+1
Xs+1,
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where the map is+1 : Xs → Xs+1 is the cofibration associated to the relation
s ≤ s + 1 by the functor X. Then there is a lifting in the diagram

Xs w

js+1rs

u

is+1

Xs+1

u

πs+1

Xs+1 w1

h
h
hhjrs+1

Xs+1

so that the section rs extends to a section rs+1 of the trivial fibration πs+1.
The inclusion

X0 = X0 ↪→ lim−→
γ

Xs

is a relative CW-complex map, and every compact subset of the colimit only
meets finitely many cells outside of X0. Every compact subset of lim−→γ

Xs is

therefore contained in some subspace Xs. It follows that every compact subset
of lim−→γ

Xs is contained in some Xs.

We next produce an appropriate generalization of saturation.

Definition 6.3. Suppose that β is an infinite cardinal. A class M of mor-
phisms in C is β-saturated if it is closed under

1) retracts: Suppose there is a commutative diagram in C

X w

u

i

X ′ w

u

i′

X

u

i

Y w Y ′
w Y

with the horizontal composition the identity. Then if i′ ∈ M , then
i ∈ M.

2) coproducts: if each jα : Xα → Yα is in M, then
⊔

α jα :
⊔

α Xα → ⊔
α Yα

is in M;

3) pushouts: given a pushout diagram in C

A w

u

i

X

u

j

B w Y,

if i is in M, then so is j.
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4) colimits of β-sequences: Suppose we are given a β-sequence

X : Seq(β) → C

with the following properties: a) for each successor ordinal s + 1 ∈
Seq(β), the map Xs → Xs+1 is in M, and b) for each limit ordinal
s ∈ Seq(β), the map lim−→t<s

Xt → Xs is in M. Then

Xs → lim−→
β

Xs

is in M for all s ∈ Seq(β).

Up until now we have considered only saturated classes of morphisms with
β = ω, the cardinality of a countable ordinal. In this case, one doesn’t need
the extra care required in making the definition of what it means to be closed
under colimits.

Lemma 6.4. Let C be a closed model category. Then the class of cofibrations
and the class of trivial cofibrations are both β-saturated for all β.

Proof: This is an exercise using the fact that cofibrations (or trivial cofibra-
tions) are characterized by the fact that they have the left lifting property with
respect to trivial fibrations (or fibrations). �

The next step is to turn these concepts around.

Definition 6.5. Let M0 be a class of morphisms in C. Then the β-saturation
of M0 is the smallest β-saturated class of morphisms in C containing M0.

We now come to the crucial axiom.

Definition 6.6. A closed model category is cofibrantly generated with respect
to a cardinal β if the class of cofibrations and the class of trivial cofibrations
are the β-saturations of sets of β-small morphisms M0 and M1 respectively.

Remarks 6.7.

1) Suppose that β and γ are cardinals such that β ≤ γ. Then every γ-saturated
class is β-saturated, because every sequence X : Seq(β) → C can be extended
to a sequence X∗ : Seq(γ) → C having the same colimit. It follows that the
β-saturation of any set of morphisms is contained in its γ-saturation. Observe
also that every β-small object is γ-small, directly from Definition 6.1. The size
of the cardinal β in Definition 6.6 therefore doesn’t matter, so long as it exists.
One says that the closed model category C is cofibrantly generated in cases
where the cardinal β can be ignored.
2) Until now, we’ve taken β to ω. Then the category of simplicial sets is cofi-
brantly generated, for example, by the usual small object argument. Similarly,
modulo the care required for the assertion that finite CW-complexes are ω-small
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(Example 6.2), the category of topological spaces is cofibrantly generated with
respect to ω. We will see larger cases later.
3) One could require one cardinal β0 for cofibrations and β1 for trivial cofibra-
tions. However, β = max{β0, β1} would certainly work in either case, by 1).

To give the generalization of Theorem 4.1 we establish a situation. We fix
a simplicial model category C and a simplicial category D. Suppose we have
a set of functors Gi : D → C, indexed by the elements i in some set I, and
suppose each Gi has a left adjoint Fi which preserves the simplicial structure
in the sense that there is a natural isomorphism

Fi(X ⊗ K) ∼= F (Xi) ⊗ K

for all X ∈ C and K ∈ S. Define a morphism f : A → B in D to be a weak
equivalence (or fibration) is

Gif : GiA → GiB

is a weak equivalence (or fibration). A cofibration of D is a map which has the
left lifting property with respect to all trivial fibrations.

Theorem 6.8. Suppose the simplicial model category C is cofibrantly gener-
ated with respect to a cardinal β, and that

(1) all of the functors Gi commute with colimits over Seq(β), and

(2) the functors Gi take the β-saturation of the collection of all maps FjA →
FjB arising from maps A → B in the generating family for the cofibra-
tions of C and elements j of I to cofibrations of C.

Then if every cofibration in D with the left lifting property with respect to all
fibrations is a weak equivalence, D is a simplicial model category.

Proof (Outline): There are no new ideas — only minor changes from the
arguments of Section 5. The major difference is in how the factorizations are
constructed. For example, to factor X → Y as X

j→Z
q→Y where j is a cofi-

bration which has the left lifting property with respect to all fibrations and q
is a fibration, one forms a β-diagram {Zs} in D where

i) Z0 = X;
ii) if s ∈ Seq(β) is a limit ordinal, Zs = lim−→t<s

Zt and

iii) if s + 1 is a successor ordinal, there is a pushout diagram

⊔
i

⊔
f

Fi(A) w

u

Zs

u⊔
i

⊔
f

Fi(B) w Zs+1
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where f runs over all diagrams

A

u

w Gi(Zs)

u

B w Gi(Y )

where A → B is in the set M1 of β-small cofibrations in C whose β-
saturation is all trivial cofibrations. �

Example 6.9. Suppose that C is a cofibrantly generated simplicial model cat-
egory and I is a fixed small category. Write CI for the category of functors
X : I → C and natural transformations between them. There are i-section
functors Gi : CI → C defined by GiX = X(i), i ∈ I, and each such Gi has a
left adjoint Fi : C → CI defined by

FiD(j) =
⊔

i→j in I

D.

Say that a map X → Y of CI is a pointwise cofibration if each of the maps
GiX → GiY is a respectively cofibration of C. If A → B is a generating
cofibration for C, the induced maps FiA(j) → FiB(j) are coproducts of cofi-
brations and hence are cofibrations of C. The induced maps maps FiA → FiB
are therefore pointwise cofibrations of CI . The functors Gj preserve all colimits,
and so the collection of pointwise cofibrations of CI is saturated (meaning β-
saturated for some infinite cardinal β — similar abuses follow). The saturation
of the collection of maps FiA → FiB therefore consists of pointwise cofibrations
of CI .

A small object argument for CI produces a factorization

X w

j
�
�
���f

Z

u
q

Y

for an arbitrary map f : X → Y of CI , with q a fibration, and for which j is in
the saturation of the collection of maps FiC → FiD arising from the generating
set C → D for the class of trivial cofibrations of C. But again, each induced
map FiC(j) → FiD(j) is a trivial cofibration of C, and the j-section functors
preserve all colimits. The collection of maps of CI which are trivial cofibrations
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in sections is therefore saturated, and hence contains the saturation of the
maps FiC → FiD. It follows that the map j is a weak equivalence as well as a
cofibration. In particular, by a standard argument, every map of CI which has
the left lifting property with respect to all fibrations is a trivial cofibration.

It therefore follows from Theorem 6.8 that every diagram category CI

taking values in a cofibrantly generated simplicial model category has a simpli-
cial model structure for which the fibrations and weak equivalences are defined
pointwise. This result applies in particular to diagram categories TopI taking
values in topological spaces.

Here’s the analog of Lemma 5.1:

Proposition 6.10. Suppose there is a functor Q : D → D so that QX is
fibrant for all X and there is a natural weak equivalence εX : X → QX. Then
every cofibration with the left lifting property with respect to all fibrations is
a weak equivalence.

Proof: The argument is similar to that of Lemma 5.1; in particular, it begins
the same way.

The map j has the advertised lifting property, so we may form the dia-
grams

A w

εA

u

j

QA

u

B w

N
N
N
NNP

u

∗

and

A w
sεBj

u

j

hom(Δ1, QB)

u

B w
(εB, Qj · u)

N
N
N
NNP

QB × QB

where sεBj is the constant (right) homotopy on the composite

A
j−→ B

εB−→ QB.

The functors Gi preserve right homotopies, so the diagram

A w
εA

u

j

QA

u

Qj

B wεB

h
h
hhju

QB

remains homotopy commutative after applying each of the functors Gi. It fol-
lows that the map Gi(j) is a retract of the map Gi(εA) in the homotopy category
Ho(C), and is therefore an isomorphism in Ho(C). But then a map in a simpli-
cial model category which induces an isomorphism in the associated homotopy
category must itself be a weak equivalence: this is Lemma 1.14. �
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Example 6.11. The factorization axioms for a cofibrantly generated simplicial
model category C can always be proved with a possibly transfinite small object
argument (see, for example, the proofs of Proposition V.6.2, Lemma VIII.2.10
and Lemma X.1.8). Such arguments necessarily produce factorizations which
are natural in morphisms in C, so that there is a natural fibrant model X ↪→ X̃
for all objects X of C. It follows that there are natural fibrant models for the
objects of any diagram category CI taking values in C. We therefore obtain
a variation of the proof of the existence of the closed model structure for CI

of Example 6.9 which uses Proposition 6.10. This means that the requirement
in Theorem 6.8 that every cofibration which has the left lifting property with
respect to all fibrations should be a weak equivalence is not particularly severe.

Example 6.12. As an instance where the cofibrant generators are not ω-small,
we point out that in Section IX.3 we will take the category of simplicial sets,
with its usual simplicial structure and impose a new closed model category
structure. Let E∗ be any homology theory and we demand that a morphism
f : X → Y in S be a

1) E∗ equivalence if E∗f is an isomorphism
2) E∗ cofibration if f is a cofibration as simplicial sets
3) E∗ fibration if f has the right lifting property with respect to all E∗

trivial cofibrations.

The E∗ fibrant objects are the Bousfield local spaces. In this case the
E∗-trivial cofibrations are the saturation of a set of E∗ trivial cofibrations
f : A → B where B is β-small with β some infinite cardinal greater than the
cardinality of E∗(pt). One has functorial factorizations, so Example 6.11 can
be repeated to show that SI has a simplicial model category structure with
f : X → Y a weak equivalence (or fibration) if and only if X(i) → Y (i) is an
E∗ equivalence (or E∗ fibration) for all i.

7. Quillen’s total derived functor theorem.
Given two closed model categories C and D and adjoint functors between them,
we wish to know when these induce adjoint functors on the homotopy cate-
gories. This is Quillen’s Total Derived Functor Theorem. We also give criteria
under which the induced adjoint functors give an equivalence of the homotopy
categories.

The main result of this section is a generalization to non-abelian settings of
an old idea of Grothendieck which can be explained by the following example.
If R is a commutative ring and M,N are two R-modules, one might want
to compute TorR

p (M,N), p ≥ 0. However, there is a finer invariant, namely,
the chain homotopy type of M ⊗R P∗ where P∗ is a projective resolution of
N . One calls the chain homotopy equivalence class of M ⊗R P∗ by the name
TorR(M,N). This is the total derived functor. The individual Tor terms can
be recovered by taking homology groups.
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For simplicity we assume we are working with simplicial model categories,
although many of the results are true without this assumption.

Definition 7.1. Let C be a simplicial model category and A any category.
Suppose F : C → A is a functor that sends weak equivalences between cofibrant
objects to isomorphisms. Define the total left derived functor

LF : Ho(C) → A.

by LF (X) = F (Y ) where Y → X is a trivial fibration with Y cofibrant.

It is not immediately clear that LF is defined on morphisms or a functor.
If f : X → X ′ is a morphism in C and Y → X and Y ′ → X ′ are trivial
cofibrations with Y and Y ′ cofibrant, then there is a morphism g making the
following diagram commute:

Y w

g

u

Y ′

u

X w

f
X ′

(7.2)

and we set LF (f) = F (g).

Lemma 7.3. The objects LF (X) and morphisms LF (f) are independent of
the choices and LF : Ho(C) → A is a functor.

Proof: Note that LF (f) is independent of the choice of g in diagram (7.2)
up to isomorphism. This is because any two lifts g and g′ are homotopic and
one has

F (Y ) � F (Y ) w�
�
�
��F (1)
F (1)

F (Y ⊗ Δ1)

u
∼=

w
FH F (Y ′)

F (Y )

where H is the homotopy. Next, if we let f be the identity in (7.2), the same
argument implies LF (X) is independent of the choice of Y . Finally, letting
f = f1 · f2 be a composite in diagram (7.2) the same argument shows LF (f1 ·
f2) = LF (f1) · LF (f2). �
Remark 7.4. For those readers attuned to category theory we note that LF
is in fact a Kan extension in the following sense. Let γ : C → Ho(C) be the
localization functor and

C w

γ

u
F

Ho(C)
�
���

A
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the diagram of categories. There may or may not be a functor Ho(C) → A
completing the diagram; however, one can consider functors T : Ho(C) → A
equipped with a natural transformation

εT : Tγ → F.

The Kan extension is the final such functor T , if it exists. If R denotes this Kan
extension, final means that given any such T , there is a natural transformation
σ : T → R so that εT = εRσγ. The Kan extension is unique if it exists. To
see that it exists one applies Theorem 1, p. 233 of Mac Lane’s book [66]. This
result, in this context reads as follows: one forms a category X ↓ γ consisting
of pairs (Z, f) where Z ∈ C and f : X → Z is a morphism in Ho(C). Then if

R(X) = lim←−
X↓γ

F (Z)

exists for all X, then R exists. However, the argument of Lemma 6.3 says that
the diagram F : (X ↓ γ) → A has a terminal object. In fact, X ↓ γ has a
terminal object, namely X → Y where Y → X is a trivial fibration (which has
an inverse in Ho(C)) with Y cofibrant. This shows that R = LF . �
Corollary 7.5. Let X ∈ C. If X is cofibrant, then LF (X) ∼= F (X). If Y → X
is any weak equivalence, with Y cofibrant, then LFX ∼= FY .

Proof: The first statement is obvious, and the second follows from

FY ∼= LF (Y )
∼=→LF (X)

since Y → X is an isomorphism in Ho(C). �
Example 7.6. Let C = C∗R be chain complexes of left modules over a ring R,
and let A = nAb be graded abelian groups. Define

F (C) = H∗(M ⊗R C)

for some right module M . Then

LF (C) = H∗(M ⊗R D)

where D → C is a projective resolution of C. There is a spectral sequence

TorR
p (M,HqC) ⇒ (LF (C))p+q.

In particular, if H∗C = N concentrated in degree 0,

LF (C) ∼= TorR
∗ (M,N),

bringing us back to what we normally mean by derived functors.
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If G : C → A sends weak equivalences between fibrant objects to isomor-
phisms, one also gets a total right derived functor

RG : Ho(C) → A.

It is also a Kan extension, suitably interpreted: it is initial among all functors
S : Ho(C) → A equipped with a natural transformation ηS : F → Sγ.

Now suppose we are given two simplicial model categories C and D and a
functor F : C → D with a right adjoint G. The following is one version of the
total derived functor theorem:

Theorem 7.7. Suppose F preserves weak equivalences between cofibrant ob-
jects and G preserves weak equivalences between fibrant objects. Then LF :
Ho(C) → Ho(D) and RG : Ho(D) → Ho(C) exist, and RG is right adjoint to
LF .

Note: This result is stronger than the original statement of Quillen [76, p.I.4.5]:
there is no assumption that F preserves cofibrations and G preserves fibrations.

Proof: That LF and RG exist is a consequence of Lemma 7.3 and its analog
for total right derived functors. We need only prove adjointness.

If X ∈ C, choose Y → X a trivial fibration with Y cofibrant. Hence
LF (X) ∼= F (Y ). Now choose F (Y ) → Z, a trivial cofibration with Z fibrant.
Then RG · LF (X) ∼= G(Z) and one gets a unit

η : X → RG · LF (X)

by X ← Y → GF (Y ) → G(Z).
Similarly, let A ∈ D. Choose A → B a trivial cofibration with B fibrant.

Then RG(A) ∼= G(B). Next choose C → G(B) a trivial fibration with C
cofibrant. Then LF ·RG(A) ∼= F (C) and one gets a counit ε : LF ·RG(A) → A
by

F (C) → FGB → B ← A.

We now wish to show

LF (X)
LFη−−−→ LF ·RG · LF (X)

εRG−−→ LF (X)

is the identity. In evaluating εRG we set A = LF (X) = F (Y ), so that B = Z.
Factor the composite Y → GF (Y ) → G(Z) by

Y
j→C

q→G(Z)

where j is a cofibration (so C is cofibrant) and q is a trivial fibration. Then
εRG is given by

F (C)
Fq−−→ FG(Z) → Z ← F (Y ).
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Furthermore there is a commutative square

Y

u

j

w GF (Y )

u

C wq G(Z)

and Fj ∼= LFηX . Expanding the diagram gives:

F (Y ) w

u

Fj

FGFY

u

w FY

u

∼=

F (C) w
Fq

FGZ w Z

The line across the top is the identity and represents the composite

LF (X)
LFη−−−→ LF · RG · LF (X)

εRG−−→ LF (X).

Hence we have proved the assertion.
The other assertion — that

RG(A)
ηε−−→RG · LF · RG(A)

RGε−−→RG(A)

is an isomorphism — is proved similarly. The result now holds by standard
arguments; e.g., [66: Thm. 2v), p.81]. �

An immediate corollary used several times in the sequel is:

Corollary 7.8. Under the hypotheses of Theorem 7.7 assume further that
for X ∈ C cofibrant and A ∈ D fibrant

X → GA

is a weak equivalence if and only if its adjoint FX → A is a weak equivalence.
Then LF and RG induce an adjoint equivalence of categories:

Ho(C) ∼= Ho(D).

Proof: We need to check that η : X → RG · LF (X) is an isomorphism and
ε : LF · RG(A) → A is an isomorphism. Using the notation established in the
previous argument, we have a sequence of arrows that define η:

X ← Y → GZ.

Now Y is cofibrant and Z is fibrant, and FY → Z is a weak equivalence; so
Y → GZ is a weak equivalence and this shows η is an isomorphism. The other
argument is identical. �

In practice one may not know a priori that F and G satisfy the hypotheses
of Theorem 7.7. The following result is often useful. We shall assume that the
model categories at hand are, in fact, simplicial model categories; however, it
is possible to prove the result more generally.
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Lemma 7.9. Let F : C → D be a functor between simplicial model categories,
and suppose F has a right adjoint G. If G preserves fibrations and trivial fibra-
tions, then F preserves cofibrations, trivial cofibrations and weak equivalences
between cofibrant objects.

Proof: It follows from an adjointness argument that F preserves trivial cofi-
brations and cofibrations; for example, suppose j : X → Y is a cofibration in
C. To show Fj is a cofibration, one need only solve the lifting problem

FX

u

Fj

w A

u

q

FY
�
���

w B

for every trivial fibration q in D. This problem is adjoint to

X w

u

GA

u

Gq

Y
�
���

w GB

which has a solution by hypothesis.
Now suppose f : X → Y is a weak equivalence between cofibrant objects.

Factor f as X
j→Z

q→Y where j is a trivial cofibration and q a trivial fibration.
We have just shown Fj is a weak equivalence. Also q is actually a homotopy
equivalence: there is a map s : Y → Z so that qs = 1Y and sq � 1Z . Here X
and Y are cofibrant. We claim that Fq is a homotopy equivalence, so that it is
a weak equivalence by Lemma 1.14.

To see that Fq is a homotopy equivalence, note that F (q)F (s) = 1FY .
Next note that since Z is cofibrant, Z⊗Δ1 is a cylinder object for Z and, since
F preserves trivial cofibrations F (Z ⊗Δ1) is a cylinder object for F (Z). Hence
F (s)F (q) � 1FZ . �
Remark 7.10. As usual, the previous result has an analog that reverses the
roles of F and G; namely, if F preserves cofibrations and trivial cofibrations,
then G preserves fibrations, trivial fibrations, and weak equivalences between
fibrant objects. The proof is the same, mutatis mutandis.

Example 7.11. Let I be a small category and SI the category of I diagrams.
Then SI becomes a simplicial model category, where a morphism of diagrams
X → Y is a weak equivalence or fibration of I diagrams if and only if each
X(i) → Y (i) is a weak equivalence or fibration of simplicial sets. The constant
functor S → SI preserves fibrations and weak equivalences, so (by Lemma 7.9),
the left adjoint

F = lim−→
I

: SI → S
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preserves weak equivalences among cofibrant diagrams. Hence the total left
derived functor

L lim−→
I

: Ho(SI) → Ho(S)

exists. This functor is the homotopy colimit and we write L lim−→I
= holim−−−→I

. In a
certain sense, made precise by the notion of Kan extensions in Remark 7.4, this
is the closest approximation to colimit that passes to the homotopy category.
In any application it is useful to have an explicit formula for holim−−−→I

X in terms
of the original diagram X; this is given by the coend formula

holim−−−→
I

X =
∫ i

B(i ↓ I)op ⊗ X(i).

These are studied in detail elsewhere — see Chapter IV.
This example can be greatly generalized. If C is any cofibrantly generated

simplicial model category, CI becomes a simplicial model category and one gets

holim−−−→
I

: Ho(CI) → Ho(C)

in an analogous manner. �
8. Homotopy cartesian diagrams.
We return, in this last section, to concepts which are particular to the cate-
gory of simplicial sets and its close relatives. The theory of homotopy cartesian
diagrams of simplicial sets is, at the same time, quite deep and essentially ax-
iomatic. The axiomatic part of the theory is valid in arbitrary categories of
fibrant objects such as the category of Kan complexes, while the depth is im-
plicit in the passage from the statements about Kan complexes to the category
of simplicial sets as a whole. This passage is non-trivial, even though it is com-
pletely standard, because it involves (interchangeably) either Quillen’s theorem
that the realization of a Kan fibration is a Serre fibration (Theorem I.10.10) or
Kan’s Ex∞ construction (see III.4).

A proper closed model category C is a closed model category such that

P1 the class of weak equivalences is closed under base change by fibrations,
and

P2 the class of weak equivalences is closed under cobase change by cofibra-
tions.

In plain English, axiom P1 says that, given a pullback diagram

X w

g∗

u

Y

u

p

Z wg W
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of C with p a fibration, if g is a weak equivalence then so is g∗. Dually, axiom
P2 says that, given a pushout diagram

A w

f

u

i

B

u

C w

f∗
D

with i a cofibration, if f is a weak equivalence then so is f∗.
The category of simplicial sets is a canonical example of a proper closed

model category (in fact, a proper simplicial model category) — see Corollary
8.6. Furthermore, this is the generic example: most useful examples of proper
closed model categories inherit their structure from simplicial sets. The asser-
tion that the category of simplicial sets satisfies the two axioms above requires
proof, but this proof is in part a formal consequence of the fact that every
simplicial set is cofibrant and every topological space is fibrant. The formalism
itself enjoys wide applicability, and will be summarized here, now.

A category of cofibrant objects is a category D with all finite coproducts
(including an initial object ϕ ), with two classes of maps, called weak equiva-
lences and cofibrations, such that the following axioms are satisfied:

(A) Suppose given a commutative diagram

X w

g
N
N
NNPh

Y
�
�
���

f

Z

in D. If any two of f , g and h are weak equivalences, then so is the third.
(B) The composite of two cofibrations is a cofibration. Any isomorphism is

a cofibration.
(C) Pushout diagrams of the form

A w

u
i

B

u
i∗

C w D

exist in the case where i is a cofibration. Furthermore, i∗ is a cofibration
which is trivial if i is trivial.

(D) For any object X there is at least one cylinder object X ⊗ I.
(E) For any object X, the unique map ∅ → X is a cofibration.
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To explain, a trivial cofibration is a morphism of D which is both a cofi-
bration and a weak equivalence. A cylinder object X⊗I for X is a commutative
diagram

X � X w
∇

u

i = (i0, i1)

X

X ⊗ I
�
�
�
��

σ

in which i is a cofibration and σ is a weak equivalence, just like in the context
of a closed model category (see Section 1 above). Each of the components iε of
i must therefore be a trivial cofibration.

The definition of category of cofibrant objects is dual to the definition
of category of fibrant objects given in Section I.9. All results about categories
of fibrant objects therefore imply dual results for categories of cofibrant ob-
jects, and conversely. In particular, we immediately have the dual of one of the
assertions of Proposition I.9.5:

Proposition 8.1. The full subcategory of cofibrant objects Cc in a closed
model category C, together with the weak equivalences and cofibrations between
them, satisfies the axioms (A)–(E) for a category of cofibrant objects.

Remark 8.2. One likes to think that a category of cofibrant objects structure
(respectively a category of fibrant objects structure) is half of a closed model
structure. This intuition fails, however, because it neglects the power of the
axiom CM4.

Corollary 8.3.

(1) The category of simplicial sets is a category of cofibrant objects.

(2) The category of compactly generated Hausdorff spaces is a category of
fibrant objects.

Lemma 8.4. Suppose that f : A → B is an arbitrary map in a category of
cofibrant objects D. Then f has a factorization f = q ·j, where j is a cofibration
and q is left inverse to a trivial cofibration. In particular, q is a weak equivalence.

Proof: The proof of this result is the mapping cylinder construction. It’s also
dual of the classical procedure for replacing a map by a fibration.

Choose a cylinder object

A � A w
∇

u

(i0, i1)

A

A ⊗ I

h
h
hhj
σ
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for A, and form the pushout diagram

A w

f

u

i0

B

u

i0∗

A ⊗ I w

f∗
B∗.

Then (fσ) · i0 = f , and so there is a unique map q : B∗ → B such that
q · f∗ = fσ and q · i0∗ = 1B. Then f = q · (f∗i1).

The composite map f∗i1 is a cofibration, since the diagram

A � A w

f � 1A

u

(i0, i1)

B � A

u

(i0∗, f∗i1)

A ⊗ I w

f∗
B∗

is a pushout. �
Lemma 8.5. Suppose that

A w
u

u

i

B

u

C wu∗ D

is a pushout in a category of cofibrant objects D, such that i is a cofibration
and u is a weak equivalence. Then the map u∗ is a weak equivalence.

Proof: Trivial cofibrations are stable under pushout, so Lemma 8.4 implies
that it suffices to assume that there is a trivial cofibration j : B → A such that
u · j = 1B.

Form the pushout diagram

B w

j

u
j

A

u

j∗A

u
i

C w

j̃
D̃

Then j̃ is a trivial cofibration.
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Let f : D̃ → C be the unique map which is determined by the commuta-
tive diagram

B w

j

u
j

A

u

iA

u
i

C w1C
C.

Form the prism

A w
u

u

j∗

�
�
�
�
�
�
��

i

B

u

�
�
�
�
�
�
��

D̃ w
ũ

N
N
NNPf

B∗N
N
NNPf∗

C wu∗ D

such that the front and back faces are pushouts (ie. push out the triangle on the
left along u). Then ũ is a weak equivalence, since j̃ is a weak equivalence and
u · j = 1B. It therefore suffices to show that the map f∗ is a weak equivalence.

The bottom face

D̃ w
ũ

u
f

B∗

u
f∗

C wu∗ D

is a pushout, and the map f is a weak equivalence. The morphism

A
h
h
hhk

j∗
�
�
���
i

D̃ w
f

C

is therefore a weak equivalence in the category A ↓ D, and the argument of
Lemma 8.4 says that this map has a factorization in A ↓ D of the form f = q ·j,
where j is a trivial cofibration and q is left inverse to a trivial cofibration. It
follows that pushing out along u preserves weak equivalences of A ↓ D, so that
f∗ is a weak equivalence of D. �
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Corollary 8.6. The category S of simplicial sets is a proper simplicial model
category.

Proof: Axiom P2 is a consequence of Lemma 8.5 and Corollary 8.3. The cate-
gory CGHaus of compactly generated Hausdorff spaces is a category of fibrant
objects, so the dual of Lemma 8.5 implies Axiom P1 for that category. One
infers P1 for the simplicial set category from the exactness of the realization
functor (Proposition I.2.4), the fact that the realization functor preserves fibra-
tions (Theorem I.10.9), and the assertion that the canonical map η : X → S|X|
is a weak equivalence for all X (see the proof of Theorem I.11.4). �

Remark 8.7. Axiom P1 for the category of simplicial sets can alternatively be
seen by observing that Kan’s Ex∞ preserves fibrations and pullbacks (Lemma
III.4.5), and preserves weak equivalences as well (Theorem III.4.6). Thus, given
a pullback diagram

X w

g∗

u

Y

u

p

Z wg W

with p a fibration and g a weak equivalence, if we want to show that g∗ is
a weak equivalence, it suffices to show that the induced map Ex∞ g∗ in the
pullback diagram

Ex∞ X w

Ex∞ g∗

u

Ex∞ Y

u

Ex∞ p

Ex∞ Z w

Ex∞ g
Ex∞ W

is a weak equivalence. But all of the objects in this last diagram are fibrant
and the map Ex∞ g is a weak equivalence, so the desired result follows from
the dual of Lemma 8.5.

The following result is commonly called the gluing lemma. The axiomatic
argument for it that is given here is due to Thomas Gunnarsson [40].
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Lemma 8.8. Suppose given a commutative cube

A1 w

j1
�
�
�
��

i1

u

fA

B1�
�
�
��

u

fB

C1 w

u

fC

D1

u

fDA2 w

j2�
�
�
��i2

B2�
�
�
��

C2 w D2

(8.9)

in a category of cofibrant objects D. Suppose further that the top and bottom
faces are pushouts, that i1 and i2 are cofibrations, and that the maps fA, fB

and fC are weak equivalences. Then fD is a weak equivalence.

Proof: It suffices to assume that the maps j1 and j2 are cofibrations. To see
this, use Lemma 8.4 to factorize j1 and j2 as cofibrations followed by weak
equivalences, and then use Lemma 8.5 to analyze the resulting map of cubes.

Form the diagram

A1 w

j1
�
�
���i1

u

fA

B1�����

u
fA∗

C1 w

j1∗

u

fC

D1

u

fC∗B′

u

nB

�����
θ

D′

u

nDA2

A
A
A
A
A
A
A
A
AC

w
j2

�
�
���

i2

B2�����
i2∗

C2

A
A
A
A
A
A
A
A
AC

w D2.
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by pushing out the top face along the left face of the cube (8.9). The square

A2 w

u

i2

B′

u

θ

C2 w D′

is a pushout, so the square

B′
w

nB

u

θ

B2

u

i2∗

D′
wnD
D2

is a pushout, and θ is a cofibration. The map fA∗ is a weak equivalence, since
j1 is a cofibration and fA is a weak equivalence. Similarly, fC∗ is a weak
equivalence, since j1∗ is a cofibration and fC is a weak equivalence. The map
fB = nB · fA∗ is assumed to be a weak equivalence, so it follows that nB is a
weak equivalence. Then nD is a weak equivalence, so fD = nD · fC∗ is a weak
equivalence. �

The dual of Lemma 8.8 is the cogluing lemma for categories of fibrant
objects:

Lemma 8.10. Suppose given a commutative cube

A1 w�
�
�
��

u

fA

B1�
�
�
��

p1

u

fB

C1 w

u

fC

D1

u

fDA2 w�
�
�
��

B2�
�
�
��

p2

C2 w D2

(8.11)

in a category of fibrant objects E . Suppose further that the top and bottom
squares are pullbacks, that the maps p1 and p2 are fibrations, and that the maps
fB, fC and fD are weak equivalences. Then the map fA is a weak equivalence.

The gluing lemma also holds in an arbitrary proper closed model category
C; the proof is exactly that of Lemma 8.8.

Lemma 8.12. Let C be a proper closed model category. Suppose given a com-
mutative diagram

D1

u

C1u

j1
w

u

X1

u

D2 C2 wu
j2

X2
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where j1 and j2 are cofibrations and the three vertical maps are weak equiva-
lences. Then the map

D1 ∪C1 X1 → D2 ∪C2 X2

is a weak equivalence.

The dual statement is the cogluing lemma for proper closed model cate-
gories:

Corollary 8.13. Suppose that C is a proper closed model category. Consider
a diagram

X1 w

u

Y1

u

Z1u

p1

u

X2 w Y2 Z2u p2

where the maps p1 and p2 are fibrations and the three vertical maps are weak
equivalences. Then the induced map

X1 ×Y1 Z1 → X2 ×Y2 Z2

is a weak equivalence.

Corollary 8.13 is the basis for the theory of homotopy cartesian diagrams
in a proper closed model category C. We say that a commutative square of
morphisms

X w

u

Y

u

f

W w Z

(8.14)

is homotopy cartesian if for any factorization

Y w

f
h
hhji

Z

Ỹ

�
�
��
p (8.15)

of f into a trivial cofibration i followed by a fibration p the induced map

X
i∗−→ W ×Z Ỹ

is a weak equivalence.
In fact (and this is the central point), for the diagram (8.14) to be homo-

topy cartesian, it suffices to find only one such factorization f = p · i such that
the map i∗ is a weak equivalence. This is a consequence of the following:
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Lemma 8.16. Suppose given a commutative diagram

X w

u

Y

u

f

W w Z

of morphisms in a proper closed model category C, and factorizations

Y w

f
h
hhjij

Z

Yj

�
�
��
pj

of f as trivial cofibration ij followed by a fibration pj for j = 1, 2. Then the
induced map i1∗ : X → W ×Z Y1 is a weak equivalence if and only if the map
i2∗ : X → W ×Z Y2 is a weak equivalence.

Proof: There is a lifting θ in the diagram

Y w

i2

u
i1

Y2

u
p2

Y1 wp1

h
h
hhjθ

Z,

by the closed model axioms. Form the commutative cube

W ×Z Y1 w������

u

θ∗

Y1�
�
���
p1

u

θ
W w

u

1W

Z

u

1ZW ×Z Y2 w������

Y2�
�
���
p2

W w Z.
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Then the map θ∗ is a weak equivalence by Corollary 8.13. There is a commu-
tative diagram

W ×Z Y1

u

θ∗X
��
���i1∗

�����
i2∗

W ×Z Y2,

and the desired result follows. �
Remark 8.17. The argument of Lemma 8.16 implies that the definition of
homotopy cartesian diagrams can be relaxed further: the diagram (8.14) is
homotopy cartesian if and only if there is a factorization (8.15) with p a fibration
and i a weak equivalence, and such that the induced map i∗ : X → W ×Z Ỹ is
a weak equivalence.

The way that the definition of homotopy cartesian diagrams has been
phrased so far says that the diagram

X w

u

Y

u
f

W wg Z

is homotopy cartesian if a map induced by a factorization of the map f into a
fibration following a trivial cofibration is a weak equivalence. In fact, it doesn’t
matter if we factor f or g:

Lemma 8.18. Suppose given a commutative diagram

X w

u

Y

u
f

W wg Z

in a proper closed model category C. Suppose also that we are given factoriza-
tions

Y w
f

�
�
���i

Z

Ỹ

h
h
hhj
p

W w
g

�
�
���j

Z

W̃

h
h
hhj
q
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of f and g respectively such that i and j are trivial cofibrations and p and q
are fibrations. Then the induced map i∗ : X → W ×Z Ỹ is a weak equivalence
if and only if the map j∗ : X → W̃ ×Z Y is a weak equivalence.

Proof: There is a commutative diagram

X w

i∗

u

j∗

W ×Z Ỹ

u

j × 1

W̃ ×Z Y w1 × i
W̃ ×Z Ỹ .

The map p is a fibration, so the map j × 1 is a weak equivalence, and q is a
fibration, so 1 × i is a weak equivalence, all by Corollary 8.13. �

The cogluing lemma also has the following general consequence for homo-
topy cartesian diagrams:

Corollary 8.19. Suppose given a commutative cube

X1 w�
�
�
��

u

fX

Y1�
�
�
��

u

fY

W1 w

u

fW

Z1

u

fZX2 w�
�
�
��

Y2�
�
�
��

W2 w Z2

of morphisms in a proper closed model category C. Suppose further that the
top and bottom squares are homotopy cartesian diagrams, and that the maps
fY , fW and fZ are weak equivalences. Then the map fX is a weak equivalence.

Example 8.20. A homotopy fibre sequence of simplicial sets is a homotopy
cartesian diagram in S

X w

j

u

Y

u
f

∗ wx Z.
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In effect, one requires that the composite f · j factor through the base point
x of Z, and that if f = p · i is a factorization of f into a trivial cofibration
followed by a fibration, then the canonical map X → F is a weak equivalence,
where F is the fibre of p over x. More colloquially (see also Remark 8.17), this
means that X has the homotopy type of the fibre F of any replacement of the
map f by a fibration up to weak equivalence. It is common practice to abuse
notation and say that

X
j−→ Y

f−→ Z

is a homotopy fibre sequence, and mean that these maps are a piece of a
homotopy cartesian diagram as above. Every fibration sequence

F → E → B

is plainly a homotopy fibre sequence.

Example 8.21. Suppose that

X
j−→ Y

f−→ Z

is a homotopy fibre sequence, relative to a base point x of Z, and that there is
a vertex y ∈ Y such that f(y) = x. Suppose that the canonical map Y → ∗ is a
weak equivalence. Then X is weakly equivalent to the loop space ΩZ̃ for some
(and hence any) fibrant model Z̃ for Z. To see this, choose a trivial cofibration
j : Z → Z̃, where Z̃ is a Kan complex, and use the factorization axioms to
form the commutative square

Y w

j

u

f

Ỹ

u

p

Z w

j
Z̃,

where both maps labelled j are trivial cofibrations and p is a fibration. Let F
denote the fibre of the fibration p over the image of the base point x in Z̃. Then
Corollary 8.19 implies that the induced map X → F is a weak equivalence. Now
consider the diagram

Ỹ ×Z̃ PZ̃ w

prR

u

prL

PZ̃

u

π

Ỹ wp Z̃,

where PZ̃ is the standard path space for the Kan complex Z̃ and the base
point x, and π is the canonical fibration. Then the map y : ∗ → Ỹ is a weak
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equivalence, so that the inclusion ΩZ̃ → Ỹ ×Z̃ PZ̃ of the fibre of the fibration
prL is a weak equivalence, by properness, as is the inclusion F → Ỹ ×Z̃ PZ̃ of
the fibre of prR. In summary, we have constructed weak equivalences

X
�−→ F

�−→ Ỹ ×Z̃ PZ̃
�←− ΩZ̃.

This collection of ideas indicates that it makes sense to define the loop
space of a connected simplicial set X to be the loops ΩX̃ of a fibrant model X̃
for X — the loop space of X is therefore an example of a total right derived
functor, in the sense of Section II.7.

Here is a clutch of results that illustrates the formal similarities between
homotopy cartesian diagrams and pullbacks:

Lemma 8.22. Suppose that C is a proper closed model category.

(1) Suppose that

X w
α

u

Y

u

Z w

β
W

is a commutative diagram in C such that the maps α and β are weak
equivalences. Then the diagram is homotopy cartesian.

(2) Suppose given a commutative diagram

X1 w

u

X2 w

u

X3

u

Y1 w

I

Y2 w

II

Y3

in C. Then

(a) if the diagrams I and II are homotopy cartesian then so is the
composite diagram I + II

X1 w

u

X3

u

Y1 w Y3,

(b) if the diagrams I + II and II are homotopy cartesian, then I is
homotopy cartesian.

The proof of this lemma is left to the reader as an exercise.
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We close with a further application of categories of cofibrant objects struc-
tures. Let C be a fixed choice of simplicial model category having an adequate
supply of colimits. Suppose that β is a limit ordinal, and say that a cofibrant
β-sequence in C is a functor X : Seq(β) → C, such that all objects Xi are
cofibrant, each map Xi → Xi+1 is a cofibration, and Xt = lim−→i<t

Xi for all
limit ordinals t < β. The cofibrant β-sequences, with ordinary natural trans-
formations between them, form a category which will be denoted by Cβ . Say
that a map f : X → Y in Cβ is a weak equivalence if all of its components
f : Xi → Yi are weak equivalences of C, and say that g : A → B is a cofibration
of Cβ if the maps g : Ai → Bi are cofibrations of C, as are all induced maps
Bi ∪Ai Ai+1 → Bi+1.

Lemma 8.23. Let C be a simplicial model category having all filtered colimits.
With these definitions, the category Cβ of cofibrant β-sequences in C satisfies
the axioms for a category of cofibrant objects.

Proof: Suppose that A → B → C are cofibrations of Cβ . To show that the
composite A → C is a cofibration, observe that the canonical map Ci ∪Ai

Ai+1 → Ci+1 has a factorization

Ci ∪Ai Ai+1 wA
A
AAC

Ci+1

Ci ∪Bi Bi+1

h
h
h
hj

and there is a pushout diagram

Bi ∪Ai Ai+1 w

u

Bi+1

u

Ci ∪Ai Ai+1 w Ci ∪Bi Bi+1.

Suppose that

A w

u
i

B

u
i∗

C w D
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is a pushout diagram of Seq(β)-diagrams in C, where A, B and C are cofibrant
β-sequences and the map i is a cofibration of same. We show that D is a
cofibrant β-sequence and that i∗ is a cofibration by observing that there are
pushouts

Ci ∪Ai Ai+1 w

u

Di ∪Bi Bi+1

u

Ci+1 w Di+1,

and that the maps Di → Di ∪Bi Bi+1 are cofibrations since B is a cofibrant
β-sequence.

Suppose that A is a cofibrant β-sequence, and let K be a simplicial set.
Then the functor A ⊗ K : Seq(β) → C is defined by (A ⊗ K)i = Ai ⊗ K. The
functor X �→ X ⊗ K preserves cofibrations and filtered colimits of C, so that
A ⊗ K is a cofibrant β-sequence. Furthermore, if K → L is a cofibration of S
then the induced map A ⊗ K → A ⊗ L is a cofibration of Cβ: the proof is an
instance of SM7. It follows that the diagram

A ⊗ ∂Δ1
w

u

A ⊗ Δ0

A ⊗ Δ1
�
�
�
��

is a candidate for the cylinder object required by the category of cofibrant
objects structure for the category Cβ. �
Lemma 8.24. Suppose that C is a simplicial model category having all filtered
colimits. Suppose that f : A → B is a cofibration and a weak equivalence of
Cβ. Then the induced map

f∗ : lim−→
i<β

Ai → lim−→
i<β

Bi

is a trivial cofibration of C.

Proof: Suppose given a diagram

lim−→
i<β

Ai w

u

f∗

X

u

p

lim−→
i<β

Bi w Y
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where p is a fibration of C. We construct a compatible family of lifts

Ai w

u

fi

X

u

p

Bi w

h
h
h
hjθi

Y

(8.25)

as follows:

1) Let θs be the map induced by all θi for i < s at limit ordinals s < β.
2) Given a lifting θi as in diagram (8.25), form the induced diagram

Bi ∪Ai Ai+1 w
θ∗

u

f∗

X

u

p

Bi+1 w

O
O
O
O
OP

θi+1

Y.

The map f∗ is a trivial cofibration of C, since f is a cofibration and a weak
equivalence of Cβ, so the indicated lift θi+1 exists. �
Corollary 8.26. Suppose that C is a simplicial model category having all
filtered colimits, and that f : X → Y is a weak equivalence of cofibrant β-
sequences in C. Then the induced map

f∗ : lim−→
i<β

Xi → lim−→
i<β

Yi

is a weak equivalence of C.

Proof: We have it from Lemma 8.23 that Cβ is a category of cofibrant objects,
and Lemma 8.4 says that f : X → Y has a factorization f = q · j, where j
is a cofibration and q is left inverse to a trivial cofibration. Then j is a trivial
cofibration since f is a weak equivalence, and so Lemma 8.24 implies that both
j and p induce weak equivalences after taking filtered colimits. �

The dual assertion for Corollary 8.26 is entertaining. Suppose again that
β is a limit ordinal and that C is a simplicial model category having enough
filtered inverse limits. Define a fibrant β-tower in C to be (contravariant) functor
X : Seq(β)op → C such that each Xi is a fibrant object of C, each map Xi+1 →
Xi is a fibration of C, and Xt = lim←−i<t

Xi for all limit ordinals t < β. Then the
dual of Lemma 8.23 asserts that, for pointwise weak equivalences and a suitable
definition of fibration, the category of fibrant β-towers in C has a category of
fibrant objects structure. The dual of Lemma 8.24 asserts that the inverse limit
functor takes trivial fibrations of fibrant β-towers to trivial fibrations of C, and
then we have



138 II. Model Categories

Lemma 8.27. Suppose that C is a simplicial model category having all filtered
inverse limits, and that f : X → Y is a weak equivalence of fibrant β-towers in
C. Then the induced map

f∗ : lim←−
i<β

Xi → lim←−
i<β

Yi

is a weak equivalence of C.

For fibrant β-towers X : Seq(β)op → S taking values in simplicial sets, one
can take a different point of view, in a different language. In that case, fibrant β-
towers are globally fibrant Seq(β)op-diagrams, and inverse limits and homotopy
inverse limits coincide up to weak equivalence for globally fibrant diagrams, for
all β. Homotopy inverse limits preserve weak equivalences, so inverse limits
preserve weak equivalences of fibrant β-towers. Homotopy inverse limits and
homotopy theories for categories of diagrams will be discussed in Chapters 6
and 7.




