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PREFACE

The origin of simplicial homotopy theory coincides with the beginning of alge-
braic topology almost a century ago. The thread of ideas started with the work
of Poincaré and continued to the middle part of the 20th century in the form
of combinatorial topology. The modern period began with the introduction of
the notion of complete semi-simplicial complex, or simplicial set, by Eilenberg-
Zilber in 1950, and evolved into a full blown homotopy theory in the work of
Kan, beginning in the 1950s, and later Quillen in the 1960s.

The theory has always been one of simplices and their incidence relations,
along with methods for constructing maps and homotopies of maps within
these constraints. As such, the methods and ideas are algebraic and combina-
torial and, despite the deep connection with the homotopy theory of topological
spaces, exist completely outside any topological context. This point of view was
effectively introduced by Kan, and later encoded by Quillen in the notion of
a closed model category. Simplicial homotopy theory, and more generally the
homotopy theories associated to closed model categories, can then be inter-
preted as a purely algebraic enterprise, which has had substantial applications
throughout homological algebra, algebraic geometry, number theory and alge-
braic K-theory. The point is that homotopy is more than the standard varia-
tional principle from topology and analysis: homotopy theories are everywhere,
along with functorial methods of relating them.

This book is, however, not quite so cosmological in scope. The theory has
broad applications in many areas, but it has always been quite a sharp tool
within ordinary homotopy theory — it is one of the fundamental sources of
positive, qualitative and structural theorems in algebraic topology. We have
concentrated on giving a modern account of the basic theory here, in a form
that could serve as a model for corresponding results in other areas.

This book is intended to fill an obvious and expanding gap in the litera-
ture. The last major expository pieces in this area, namely [33], [67], [61] and
[18], are all more than twenty-five years old. Furthermore, none of them take
into account Quillen’s ideas about closed model structures, which are now part
of the foundations of the subject.

We have attempted to present an account that is as linear as possible
and inclusive within reason. We begin in Chapter I with elementary definitions
and examples of simplicial sets and the simplicial set category S, classifying
objects, Kan complexes and fibrations, and then proceed quickly through much
of the classical theory to proofs of the fundamental organizing theorems of the
subject which appear in Section 11. These theorems assert that the category of
simplicial sets satisfies Quillen’s axioms for a closed model category, and that
the associated homotopy category is equivalent to that arising from topological
spaces. They are delicate but central results, and are the basis for all that
follows.

v
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Chapter I contains the definition of a closed model category. The foun-
dations of abstract homotopy theory, as given by Quillen, start to appear in
the first section of Chapter II. The “simplicial model structure” that most of
the closed model structures appearing in nature exhibit is discussed in Sections
2–7. A simplicial model structure is an enrichment of the underlying category
to simplicial sets which interacts with the closed model structure, like function
spaces do for simplicial sets; the category of simplicial sets with function spaces
is a standard example. Simplicial model categories have a singular technical ad-
vantage which is used repeatedly, in that weak equivalences can be detected in
the associated homotopy category (Section 4). There is a detection calculus for
simplicial model structures which leads to homotopy theories for various alge-
braic and diagram theoretic settings: this is given in Sections 5–7, and includes
a discussion of cofibrantly generated closed model categories in Section 6 — it
may be heavy going for the novice, but homotopy theories of diagrams almost
characterize work in this area over the past ten years, and are deeply implicated
in much current research. The chapter closes on a much more elementary note
with a description of Quillen’s non-abelian derived functor theory in Section 8,
and a description of proper closed model categories, homotopy cartesian dia-
grams and gluing and cogluing lemmas in Section 9. All subsequent chapters
depend on Chapters I and II.

Chapter III is a further repository of things that are used later, although
perhaps not quite so pervasively. The fundamental groupoid is defined in Chap-
ter I and then revisited here in Section III.1. Various equivalent formulations
are presented, and the resulting theory is powerful enough to show, for exam-
ple, that the fundamental groupoid of the classifying space of a small category
is equivalent to the free groupoid on the category, and give a quick proof of
the Van Kampen theorem. The closed model structure for simplicial abelian
groups and the Dold-Kan correspondence relating simplicial abelian groups to
chain complexes (ie. they’re effectively the same thing) are the subject of Sec-
tion 2. These ideas are the basis of most applications of simplicial homotopy
theory and of closed model categories in homological algebra. Section 3 con-
tains a proof of the Hurewicz theorem: Moore-Postnikov towers are introduced
here in a self-contained way, and then treated more formally in Chapter VII.
Kan’s Ex∞-functor is a natural, combinatorial way of replacing a simplicial
set up to weak equivalence by a Kan complex: we give updated proofs of its
main properties in Section 4, involving some of the ideas from Section 1. The
last section presents the Kan suspension, which appears later in Chapter V in
connection with the loop group construction.

Chapter IV discusses the homotopy theory, or more properly homotopy
theories, for bisimplicial sets and bisimplicial abelian groups, with major ap-
plications. Basic examples and constructions, including homotopy colimits and
the diagonal complex, appear in the first section. Bisimplicial abelian groups,
the subject of Section 2, are effectively bicomplexes, and hence have canon-
ical associated spectral sequences. One of the central technical results is the
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generalized Eilenberg-Zilber theorem, which asserts that the diagonal and to-
tal complexes of a bisimplicial abelian group are chain homotopy equivalent.
Three different closed model structures for bisimplicial sets, all of which talk
about the same homotopy theory, are discussed in Section 3. They are all impor-
tant, and in fact used simultaneously in the proof of the Bousfield-Friedlander
theorem in Section 4, which gives a much used technical criterion for detecting
fibre sequences arising from maps of bisimplicial sets. There is a small technical
innovation in this proof, in that the so-called π∗-Kan condition is formulated in
terms of certain fibred group objects being Kan fibrations. The chapter closes
in Section 4 with proofs of Quillen’s “Theorem B” and the group completion
theorem. These results are detection principles for fibre sequences and homol-
ogy fibre sequences arising from homotopy colimits, and are fundamental for
algebraic K-theory and stable homotopy theory.

From the beginning, we take the point of view that simplicial sets are
usually best viewed as set-valued contravariant functors defined on a category
Δ of ordinal numbers. This immediately leads, for example, to an easily ma-
nipulated notion of simplicial objects in a category C: they’re just functors
Δop → C, so that morphisms between them become natural transformations,
and so on. Chapter II contains a detailed treatment of the question of when
the category sC of simplicial objects in C has a simplicial model structure.

Simplicial groups is one such category, and is the subject of Chapter V.
We establish, in Sections 5 and 6, the classical equivalence of homotopy theories
between simplicial groups and simplicial sets having one vertex, from a modern
perspective. The method can the be souped up to give the Dwyer-Kan equiva-
lence between the homotopy theories of simplicial groupoids and simplicial sets
in Section 7. The techniques involve a new description of principal G-fibrations,
for simplicial groups G, as cofibrant objects in a closed model structure on the
category of G-spaces, or simplicial sets with G-action (Section 2). Then the
classifying space for G is the quotient by the G-action of any cofibrant model
of a point in the category of G-spaces (Section 3); the classical WG construc-
tion is an example, but the proof is a bit interesting. We give a new treatment
of WG as a simplicial object of universal cocycles in Section 4; one advantage
of this method is that there is a completely analogous construction for simpli-
cial groupoids, which is used for the results of Section 7. Our approach also
depends on a specific closed model structure for simplicial sets with one vertex,
which is given in Section 6. That same section contains a definition and proof of
the main properties of the Milnor FK-construction, which is a functor taking
values in simplicial groups that gives a model for loops suspension ΩΣX of a
given space X.

The first section of Chapter V contains a discussion of skeleta in the
category of simplicial groups which is later used to show the technical (and
necessary) result that the Kan loop group functor outputs cofibrant simplicial
groups. Skeleta for simplicial sets first appear in a rather quick and dirty way
in Section I.2. Skeleta for more general categories appear in various places: we
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have skeleta for simplicial groups in Chapter V, skeleta for bisimplicial sets in
Section IV.3, and then skeleta for simplicial objects in more general categories
later, in Section VII.1. In all cases, skeleta and coskeleta are left and right
adjoints of truncation functors.

Chapter VI collects together material on towers of fibrations, nilpotent
spaces, and the homotopy spectral sequence for a tower of fibrations. The
first section describes a simplicial model structure for towers, which is used
in Section 3 as a context for a formal discussion of Postnikov towers. The
Moore-Postnikov tower, in particular, is a tower of fibrations that is functori-
ally associated to a space X; we show, in Sections 4 and 5, that the fibrations
appearing in the tower are homotopy pullbacks along maps, or k-invariants,
taking values in homotopy colimits of diagrams of Eilenberg-Mac Lane spaces,
which diagrams are functors defined on the fundamental groupoid of X. The
homotopy pullbacks can be easily refined if the space is nilpotent, as is done in
Section 6. The development includes an introduction of the notion of covering
system of a connected space X, which is a functor defined on the fundamental
groupoid and takes values in spaces homotopy equivalent to the covering space
of X. The general homotopy spectral sequence for a tower of fibrations is in-
troduced, warts and all, in Section 2 — it is the basis for the construction of
the homotopy spectral sequence for a cosimplicial space that appears later in
Chapter VIII.

Chapter VII contains a detailed treatment of the Reedy model structure
for the category of simplicial objects in a closed model category. This theory
simultaneously generalizes one of the standard model structures for bisimpli-
cial sets that is discussed in Chapter IV, and specializes to the Bousfield-Kan
model structures for the category of cosimplicial objects in simplicial sets, aka.
cosimplicial spaces. The method of the application to cosimplicial spaces is to
show that the category of simplicial objects in the category Sop has a Reedy
model structure, along with an adequate notion of skeleta and an appropriate
analogue of realization, and then reverse all arrows. There is one tiny wrinkle
in this approach, in that one has to show that a cofibration in Reedy’s sense
coincides with the original definition of cofibration of Bousfield and Kan, but
this argument is made, from two points of view, at the end of the chapter.

The standard total complex of a cosimplicial space is dual to the realiza-
tion in the Reedy theory for simplicial objects in Sop, and the standard tower
of fibrations tower of fibrations from [14] associated to the total complex is
dual to a skeletal filtration. We begin Chapter VIII with these observations,
and then give the standard calculation of the E2 term of the resulting spectral
sequence. Homotopy inverse limits and p-completions, with associated spectral
sequences, are the basic examples of this theory and its applications, and are
the subjects of Sections 2 and 3, respectively. We also show that the homotopy
inverse limit is a homotopy derived functor of inverse limit in a very precise
sense, by introducing a “pointwise cofibration” closed model structure for small
diagrams of spaces having a fixed index category.
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The homotopy spectral sequence of a cosimplicial space is well known to
be “fringed” in the sense that the objects that appear along the diagonal in
total degree 0 are sets rather than groups. Standard homological techniques
therefore fail, and there can be substantial difficulty in analyzing the path
components of the total space. Bousfield has created an obstruction theory to
attack this problem. We give here, in the last section of Chapter VII, a special
case of this theory, which deals with the question of when elements in bidegree
(0, 0) in the E2-term lift to path components of the total space. This particular
result can be used to give a criterion for maps between mod p cohomology
objects in the category of unstable algebras over the Steenrod algebra to lift to
maps of p-completions.

Simplicial model structures return with a vengeance in Chapter IX, in
the context of homotopy coherence. The point of view that we take is that
a homotopy coherent diagram on a category I in simplicial sets is a functor
X : A → S which is defined on a category enriched in simplicial sets and pre-
serves the enriched structure, subject to the object A being a resolution of I
in a suitable sense. The main results are due to Dwyer and Kan: there is a
simplicial model structure on the category of simplicial functors SA (Section
1), and a large class of simplicial functors f : A → B which are weak equiva-
lences induce equivalences of the homotopy categories associated to SA and SB

(Section 2). Among such weak equivalences are resolutions A → I — in prac-
tice, I is the category of path components of A and each component of A is
contractible. A realization of a homotopy coherent diagram X : A → S is then
nothing but a diagram Y : I → S which represents X under the equivalence of
homotopy categories. This approach subsumes the standard homotopy coher-
ence phenomena, which are discussed in Section 3. We show how to promote
some of these ideas to notions of homotopy coherent diagrams and realizations
of same in more general simplicial model categories, including chain complexes
and spectra, in the last section.

Frequently, one wants to take a given space and produce a member of a
class of spaces for which homology isomorphisms are homotopy equivalences,
without perturbing the homology. If the homology theory is mod p homology,
the p-completion works in many but not all examples. Bousfield’s mod p ho-
mology localization technique just works, for all spaces. The original approach
to homology localization [8] appeared in the mid 1970’s, and has since been
incorporated into a more general theory of f -localization. The latter means
that one constructs a minimal closed model structure in which a given map f
becomes invertible in the homotopy category — in the case of homology local-
ization the map f would be a disjoint union of maps of finite complexes which
are homology isomorphisms. The theory of f -localization and the ideas under-
lying it are broadly applicable, and are still undergoing frequent revision in the
literature. We present one of the recent versions of the theory here, in Sections
1–3 of Chapter X. The methods of proof involve little more than aggressive
cardinal counts (the cogniscenti will note that there is no mention of regular
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cardinals): this is where the wide applicability of these ideas comes from —
morally, if cardinality counts are available in a model category, then it admits
a theory of localization. We describe Bousfield’s approach to localization at a
functor in Section 4, and then show that it leads to the Bousfield-Friedlander
model for the stable category.

There are ten chapters in all; we use Roman numerals to distinguish them.
Each chapter is divided into sections, plus an introduction. Results and equa-
tions are numbered consecutively within each section. The overall referencing
system for the monograph is perhaps best illustrated with an example: Lemma
8.8 lives in Section 8 of Chapter II — it is referred to precisely this way from
within Chapter II, and as Lemma II.8.8 from outside. Similarly, the corre-
sponding section is called Section 8 inside Chapter II and Section II.8 from
without.

Despite the length of this tome, much important material has been left
out: there is not a word about traditional simplicial complexes and the vast
modern literature related to them (trees, Tits buildings, Quillen’s work on
posets); the Waldhausen subdivision is not mentioned; we don’t discuss the
Hausmann-Husemoller theory of acyclic spaces or Quillen’s plus construction;
we have avoided all of the subtle aspects of categorical coherence theory, and
there is very little about simplicial sheaves and presheaves. All of these topics,
however, are readily available in the literature, and we have tried to include a
useful bibliography.

This book should be accessible to mathematicians in the second year of
graduate school or beyond, and is intended to be of interest to the research
worker who wants to apply simplicial techniques, for whatever reason. We be-
lieve that it will be a useful introduction both to the theory and the current
literature.

That said, this monograph does not have the structure of a traditional
text book. We have, for example, declined to assign homework in the form
of exercises, preferring instead to liberally sprinkle the text with examples and
remarks that are designed to provoke further thought. Everything here depends
on the first two chapters; the remaining material often reflects the original
nature of the project, which amounted to separately written self contained
tracts on defined topics. The book achieved its current more unified state thanks
to a drive to achieve consistent notation and referencing, but it remains true
that a more experienced reader should be able to read each of the later chapters
in isolation, and find an essentially complete story in most cases.

This book had a lengthy and productive gestation period as an object on
the Internet. There were many downloads, and many comments from interested
readers, and we would like to thank them all. Particular thanks go to Frans
Clauwens, who read the entire manuscript very carefully and made numerous
technical, typographical, and stylistic comments and suggestions. The printed
book differs substantially from the online version, and this is due in no small
measure to his efforts.
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Chapter I Simplicial sets

This chapter introduces the basic elements of the homotopy theory of sim-
plicial sets. Technically, the purpose is twofold: to prove that the category of
simplicial sets has a homotopical structure in the sense that it admits the
structure of a closed model category (Theorem 11.3), and to show that the
resulting homotopy theory is equivalent in a strong sense to the ordinary ho-
motopy theory of topological spaces (Theorem 11.4). Insofar as simplicial sets
are algebraically defined, and the corresponding closed model structure is com-
binatorial in nature, we obtain an algebraic, combinatorial model for standard
homotopy theory.

The substance of Theorem 11.3 is that we can find three classes of mor-
phisms within the simplicial set category S, called cofibrations, fibrations and
weak equivalences, and then demonstrate that the following list of properties
is satisfied:

CM1: S is closed under all finite limits and colimits.
CM2: Suppose that the following diagram commutes in S:

X w
g

N
N
NNPh

Y
�

�
���

f

Z.

If any two of f , g and h are weak equivalences, then so is the third.
CM3: If f is a retract of g in the category of maps of S, and g is a weak

equivalence, fibration or cofibration, then so is f .
CM4: Suppose that we are given a commutative solid arrow diagram

U w

u
i

X

u
p

V w

i
i
iij

Y

where i is a cofibration and p is a fibration. Then the dotted arrow exists,
making the diagram commute, if either i or p is also a weak equivalence.

CM5: Any map f : X → Y may be factored:

(a) f = p · i where p is a fibration and i is both a cofibration and a
weak equivalence, and

(b) f = q · j where q is a fibration and a weak equivalence, and j is
a cofibration.

1



2 I. Simplicial sets

The fibrations in the simplicial set category are the Kan fibrations, which are
defined by a lifting property that is analogous to the notion of Serre fibration.
The cofibrations are the monomorphisms, and the weak equivalences are mor-
phisms which induce homotopy equivalences of CW-complexes after passage to
topological spaces. We shall begin to investigate the consequences of this list of
axioms in subsequent chapters — they are the basis of a great deal of modern
homotopy theory.

Theorem 11.3 and Theorem 11.4 are due to Quillen [76], but the devel-
opment given here is different: the results are proved simultaneously, and their
proofs jointly depend fundamentally on Quillen’s later result that the realiza-
tion of a Kan fibration is a Serre fibration [77]. The category of simplicial sets
is historically the first full algebraic model for homotopy theory to have been
found, but the verification of its closed model structure is still one of the more
difficult proofs of abstract homotopy theory. These theorems and their proofs
effectively summarize all of the classical homotopy theory of simplicial sets, as
developed mostly by Kan in the 1950’s. Kan’s work was a natural outgrowth of
the work of Eilenberg and Mac Lane on singular homology theory, and is part
of a thread of ideas that used to be called “combinatorial homotopy theory”
and which can be traced back to the work of Poincaré at the beginning of the
twentieth century.

We give here, in the proof of the main results and the development leading
to them, a comprehensive introduction to the homotopy theory of simplicial
sets. Simplicial sets are defined, with examples, in Section 1, the functorial
relationship with topological spaces via realization and the singular functor
is described in Section 2, and we start to describe the combinatorial homo-
topical structure (Kan fibrations and Kan complexes) in Section 3. We intro-
duce the Gabriel-Zisman theory of anodyne extensions in Section 4: this is
the obstruction-theoretic machine that trivializes many potential difficulties
related to the function complexes of Section 5, the notion of simplicial homo-
topy in Section 6, and the discussion of simplicial homotopy groups for Kan
complexes in Section 7. The fundamental groupoid for a Kan complex is in-
troduced in Section 8, by way of proving a major result about composition of
simplicial sets maps which induce isomorphisms in homotopy groups (Theo-
rem 8.2). This theorem, along with a lifting property result for maps which
are simultaneously Kan fibrations and homotopy groups isomorphisms (The-
orem 7.10 — later strengthened in Theorem 11.2), is used to demonstrate in
Section 9 (Theorem 9.1) that the collection of Kan complexes and maps be-
tween them satisfies the axioms for a category of fibrant objects in the sense of
Brown [15]. This is a first axiomatic approximation to the desired closed model
structure, and is the platform on which the relation with standard homotopy
theory is constructed with the introduction of minimal fibrations in Section
10. The basic ideas there are that every Kan fibration has a “minimal model”
(Proposition 10.3 and Lemma 10.4), and the Gabriel-Zisman result that min-
imal fibrations induce Serre fibrations after realization (Theorem 10.9). It is
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then a relatively simple matter to show that the realization of a Kan fibration
is a Serre fibration (Theorem 10.10).

The main theorems are proved in the final section, but Section 10 is the
heart of the matter from a technical point of view once all the definitions and
elementary properties have been established. We have not heard of a proof of
Theorem 11.3 or Theorem 11.4 that avoids minimal fibrations. The minimality
concept is very powerful wherever it appears, but not much has yet been made
of it from a formal point of view.

I.1. Basic definitions.
Let Δ be the category of finite ordinal numbers, with order-preserving maps
between them. More precisely, the objects for Δ consist of elements n, n ≥ 0,
where n is a string of relations

0 → 1 → 2 → · · · → n

(in other words n is a totally ordered set with n + 1 elements). A morphism
θ : m → n is an order-preserving set function, or alternatively a functor. We
usually commit the abuse of saying that Δ is the ordinal number category.

A simplicial set is a contravariant functor X : Δop → Sets, where Sets
is the category of sets.

Example 1.1. There is a standard covariant functor

Δ → Top
n�→|Δn|

.

The topological standard n-simplex |Δn| ⊂ Rn+1 is the space

|Δn| = {(t0, . . . , tn) ∈ Rn+1|
n∑

i=0

ti = 1, ti ≥ 0},

with the subspace topology. The map θ∗ : |Δn| → |Δm| induced by θ : n → m
is defined by

θ∗(t0, . . . , tm) = (s0, . . . , sn),

where

si =
{ 0 θ−1(i) = ∅∑

j∈θ−1(i) tj θ−1(i) �= ∅
One checks that θ �→ θ∗ is indeed a functor (exercise). Let T be a topological
space. The singular set S(T ) is the simplicial set given by

n �→ hom(|Δn|, T ).

This is the object that gives the singular homology of the space T.
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Among all of the functors m → n appearing in Δ there are special ones,
namely

di : n− 1 → n 0 ≤ i ≤ n (cofaces)

sj : n + 1 → n 0 ≤ j ≤ n (codegeneracies)

where, by definition,

di(0 → 1 → · · · → n − 1) = (0 → 1 → · · · → i − 1 → i + 1 → · · · → n)

(ie. compose i− 1 → i → i + 1, giving a string of arrows of length n − 1 in n),
and

sj(0 → 1 → · · · → n + 1) = (0 → 1 → · · · → j
1−→ j → · · · → n)

(insert the identity 1j in the jth place, giving a string of length n + 1 in n). It
is an exercise to show that these functors satisfy a list of identities as follows,
called the cosimplicial identities:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

djdi = didj−1 if i < j

sjdi = disj−1 if i < j

sjdj = 1 = sjdj+1

sjdi = di−1sj if i > j + 1
sjsi = sisj+1 if i ≤ j

(1.2)

The maps dj , si and these relations can be viewed as a set of generators and
relations for Δ (see [66]). Thus, in order to define a simplicial set Y, it suffices
to write down sets Yn, n ≥ 0 (sets of n-simplices) together with maps

di : Yn → Yn−1, 0 ≤ i ≤ n (faces)
sj : Yn → Yn+1, 0 ≤ j ≤ n (degeneracies)

satisfying the simplicial identities:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

didj = dj−1di if i < j

disj = sj−1di if i < j

djsj = 1 = dj+1sj

disj = sjdi−1 if i > j + 1
sisj = sj+1si if i ≤ j

(1.3)

This is the classical way to write down the data for a simplicial set Y .
From a simplicial set Y, one may construct a simplicial abelian group ZY

(ie. a contravariant functor Δop → Ab), with ZYn set equal to the free abelian
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group on Yn. The simplicial abelian group ZY has associated to it a chain
complex, called its Moore complex and also written ZY, with

ZY0

∂←− ZY1

∂←− ZY2 ←− . . . and

∂ =
n∑

i=0

(−1)idi

in degree n. Recall that the integral singular homology groups H∗(X; Z) of the
space X are defined to be the homology groups of the chain complex ZSX.
The homology groups Hn(Y,A) of a simplicial set Y with coefficients in an
abelian group A are defined to be the homology groups Hn(ZY ⊗ A) of the
chain complex ZY ⊗ A.

Example 1.4. Suppose that C is a (small) category. The classifying space (or
nerve ) BC of C is the simplicial set with

BCn = homcat(n, C),

where homcat(n, C) denotes the set of functors from n to C. In other words an
n-simplex is a string

a0

α1−→ a1

α2−→ . . .
αn−−→ an

of composeable arrows of length n in C.
We shall see later that there is a topological space |Y | functorially associ-

ated to every simplicial set Y, called the realization of Y. The term “classifying
space” for the simplicial set BC is therefore something of an abuse – one really
means that |BC| is the classifying space of C. Ultimately, however, it does not
matter; the two constructions are indistinguishable from a homotopy theoretic
point of view.

Example 1.5. If G is a group, then G can be identified with a category (or
groupoid) with one object ∗ and one morphism g : ∗ → ∗ for each element g
of G, and so the classifying space BG of G is defined. Moreover |BG| is an
Eilenberg-Mac Lane space of the form K(G, 1), as the notation suggests; this
is now the standard construction.

Example 1.6. Suppose that A is an exact category, like the category P(R)
of finitely generated projective modules on a ring R (see [79]). Then A has
associated to it a category QA. The objects of QA are those of A. The arrows
of QA are equivalence classes of diagrams

· � · � ·
where both arrows are parts of exact sequences of A, and composition is repre-
sented by pullback. Then Ki−1(A) := πi|BQA| defines the K-groups of A for
i ≥ 1; in particular πi|BQP(R)| = Ki−1(R), the ith algebraic K-group of the
ring R.
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Example 1.7. The standard n-simplex, simplicial Δn in the simplicial set
category S is defined by

Δn = homΔ( ,n).

In other words, Δn is the contravariant functor on Δ which is represented by
n.

A map f : X → Y of simplicial sets (or, more simply, a simplicial map)
is a natural transformation of contravariant set-valued functors defined on Δ.
We shall use S to denote the resulting category of simplicial sets and simplicial
maps.

The Yoneda Lemma implies that simplicial maps Δn → Y classify n-
simplices of Y in the sense that there is a natural bijection

homS(Δn, Y ) ∼= Yn

between the set Yn of n-simplices of Y and the set homS(Δn, Y ) of simplicial
maps from Δn to Y (see [66], or better yet, prove the assertion as an exercise).
More precisely, write ιn = 1n ∈ homΔ(n,n). Then the bijection is given by
associating the simplex ϕ(ιn) ∈ Yn to each simplicial map ϕ : Δn → Y. This
means that each simplex x ∈ Yn has associated to it a unique simplicial map
ιx : Δn → Y such that ιx(ιn) = x. One often writes x = ιx, since it’s usually
convenient to confuse the two.

Δn contains subcomplexes ∂Δn (boundary of Δn) and Λn
k , 0 ≤ k ≤ n

(kth horn, really the cone centred on the kth vertex). The simplicial set ∂Δn

is the smallest subcomplex of Δn containing the faces dj(ιn), 0 ≤ j ≤ n of the
standard simplex ιn. One finds that ∂Δn is specified in j-simplices by

∂Δn
j =

⎧⎪⎨⎪⎩
Δn

j if 0 ≤ j ≤ n − 1,
iterated degeneracies of elements of Δn

k ,
0 ≤ k ≤ n − 1, if j ≥ n.

It is a standard convention to write ∂Δ0 = ∅, where ∅ is the “unique” simplicial
set which consists of the empty set in each degree. The object ∅ is initial for
the simplicial set category S.

The kth horn Λn
k ⊂ Δn (n ≥ 1) is the subcomplex of Δn which is gener-

ated by all faces dj(ιn) except the kth face dk(ιn). One could represent Λ2
0, for

example, by the picture

0
�
�
���

N
N
NNP

1 2

⊂
0

�
�

���

N
N
NNP

1 w 2

= Δ2.
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I.2. Realization.
Let Top denote the category of topological spaces. To go further, we have to
get serious about the realization functor | | : S → Top. There is a quick way
to construct it which uses the simplex category Δ ↓ X of a simplicial set X.
The objects of Δ ↓ X are the maps σ : Δn → X, or simplices of X. An arrow
of Δ ↓ X is a commutative diagram of simplicial maps

Δn
h
h
hhj
σ

u

θ X

Δm
�
�
���

τ

Observe that θ is induced by a unique ordinal number map θ : m → n.

Lemma 2.1. There is an isomorphism

X ∼= lim−→
Δn → X
in Δ ↓ X

Δn.

Proof: The proof is the observation that any functor C → Sets, which is
defined on a small category C, is a colimit of representable functors. �

The realization |X| of a simplicial set X is defined by the colimit

|X| = lim−→
Δn → X
in Δ ↓ X

|Δn|.

in the category of topological spaces. The construction X �→ |X| is seen to
be functorial in simplicial sets X, by using the fact that any simplicial map
f : X → Y induces a functor f∗ : Δ ↓ X → Δ ↓ Y by composition with f .

Proposition 2.2. The realization functor is left adjoint to the singular functor
in the sense that there is an isomorphism

homTop(|X|, Y ) ∼= homS(X,SY )

which is natural in simplicial sets X and topological spaces Y .

Proof: There are isomorphisms

homTop(|X|, Y ) ∼= lim←−
Δn→X

homTop(|Δn|, Y )

∼= lim←−
Δn→X

homS(Δn, S(Y ))

∼= homS(X,SY )). �
Note that S has all colimits and the realization functor | | preserves them,

since it has a right adjoint.
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Proposition 2.3. |X| is a CW-complex for each simplicial set X.

Proof: Define the nth skeleton skn X of X be the subcomplex of X which is
generated by the simplices of X of degree ≤ n. Then X is a union

X =
⋃
n≥0

skn X

of its skeleta, and there are pushout diagrams

⊔
x∈NXn

∂Δn
w

z

u

skn−1 X
z

u⊔
x∈NXn

Δn
w skn X

of simplicial sets, where NXn ⊂ Xn is the set of non-degenerate simplices of
degree n. In other words,

NXn = {x ∈ Xn|x not of the form siy for any 0 ≤ i ≤ n − 1 and y ∈ Xn−1}.
The realization of Δn is the space |Δn|, since Δ ↓ Δn has terminal object

1 : Δn → Δn. Furthermore, one can show that there is a coequalizer⊔
0≤i<j≤n

Δn−2 ⇒
n⊔

i=0

Δn−1 → ∂Δn

given by the relations djdi = didj−1 if i < j (exercise), and so there is a
coequalizer diagram of spaces⊔

0≤i<j≤n

|Δn−2| ⇒
n⊔

i=0

|Δn−1| → |∂Δn|

Thus, the induced map |∂Δn| → |Δn| maps |∂Δn| onto the (n − 1)-sphere
bounding |Δn|. It follows that |X| is a filtered colimit of spaces | skn X| where
| skn X| is obtained from | skn−1 X| by attaching n-cells according to the push-
out diagram ⊔

x∈NXn

|∂Δn| w

z

u

| skn−1 X|
z

u⊔
x∈NXn

|Δn| w | skn X|.

�
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In particular |X| is a compactly generated Hausdorff space, and so the
realization functor takes values in the category CGHaus of all such. We shall
interpret | | as such a functor. Here is the reason:

Proposition 2.4. The functor | | : S → CGHaus preserves finite limits.

We won’t get into the general topology involved in proving this result; a
demonstration is given in [33]. Proposition 2.4 avoids the problem that |X×Y |
may not be homeomorphic to |X| × |Y | in general in the ordinary category of
topological spaces, in that it implies that

|X × Y | ∼= |X| ×Ke |Y |
(Kelley space product = product in CGHaus). We lose no homotopical in-
formation by working CGHaus since, for example, the definition of homo-
topy groups of a CW-complex does not see the difference between Top and
CGHaus.

I.3. Kan complexes.
Recall the “presentation”⊔

0≤i<j≤n

Δn−2 ⇒
n⊔

i=0

Δn−1 → ∂Δn

of ∂Δn that was mentioned in the last section. There is a similar presentation
for Λn

k .

Lemma 3.1. The “fork” defined by the commutative diagram

Δn−2
w

dj−1

u

ini<j

Δn−1

u

ini

�
�
�
���

di

⊔
0≤i<j≤n

Δn−2
w
w

⊔
i 	=k

Δn−1
w Λn

k

Δn−2

u

ini<j

w

di
Δn−1

u

inj

�
�
�
�
��

dj

is a coequalizer in S.

Proof: There is a coequalizer⊔
i<j

Δn−1 ×Λn
k

Δn−1 ⇒
⊔

i �= k
0 ≤ i ≤ n

Δn−1 → Λn
k .
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But the fibre product Δn−1 ×Λn
k

Δn−1 is isomorphic to

Δn−1 ×Δn Δn−1 ∼= Δn−2

since the diagram

n− 2 w
dj−1

u

di

n− 1

u

di

n− 1 w

dj
n

is a pullback in Δ. In effect, the totally ordered set {0 . . . î . . . ĵ . . . n} is the
intersection of the subsets {0 . . . î . . . n} and {0 . . . ĵ . . . n} of {0 . . . n}, and this
poset is isomorphic to n− 2. �
The notation {0 . . . î . . . n} means that i isn’t there.

Corollary 3.2. The set homS(Λn
k ,X) of simplicial set maps from Λn

k to X
is in bijective correspondence with the set of n-tuples (y0, . . . , ŷk, . . . , yn) of
(n − 1)-simplices yi of X such that diyj = dj−1yi if i < j, and i, j �= k.

We can now start to describe the internal homotopy theory carried by S.
The central definition is that of a fibration of simplicial sets. A map p : X → Y
of simplicial sets is said to be a fibration if for every commutative diagram of
simplicial set homomorphisms

Λn
k w

z

u

i

X

u

p

Δn
w

�
�
�
��

Y

there is a map θ : Δn → X (the dotted arrow) making the diagram commute.
The map i is the inclusion of the subcomplex Λn

k in Δn.
This requirement was called the extension condition at one time (see [58],

[67], for example), and fibrations were (and still are) called Kan fibrations. The
condition amounts to saying that if (x0 . . . x̂k . . . xn) is an n-tuple of simplices
of X such that dixj = dj−1xi if i < j, i, j �= k, and there is an n-simplex y of
Y such that diy = p(xi), then there is an n-simplex x of X such that dix = xi,
i �= k, and such that p(x) = y. It is usually better to formulate it in terms of
diagrams.
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The same language may be used to describe Serre fibrations: a continuous
map of spaces f : T → U is said to be a Serre fibration if the dotted arrow
exists in each commutative diagram of continuous maps

|Λn
k | w

z

u

T

u

f

|Δn| w

�
�
�
��

U

making it commute. By adjointness (Proposition 2.2), all such diagrams may
be identified with diagrams

Λn
k w

z

u

S(T )

u

S(f)

Δn
w

�
�
�
��

S(U),

so that f : T → U is a Serre fibration if and only if S(f) : S(T ) → S(U) is
a (Kan) fibration. This is partial motivation for the definition of fibration of
simplicial sets. The simplicial set |Λn

k | is a strong deformation retract of |Δn|,
so that we’ve proved

Lemma 3.3. For each space X, the map S(X) → ∗ is a fibration.

The notation ∗ refers to the simplicial set Δ0, as is standard. It consists of a
singleton set in each degree, and is therefore a terminal object in the category
of simplicial sets.

A fibrant simplicial set (or Kan complex) is a simplicial set Y such that
the canonical map Y → ∗ is a fibration. Alternatively, Y is a Kan complex if
and only if one of the following equivalent conditions is met:

K1: Every map α : Λn
k → Y may be extended to a map defined on Δn in the

sense that there is a commutative diagram

Λn
k w

α

z

u

Y

Δn
�
�
�
��
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K2: For each n-tuple of (n − 1)-simplices (y0 . . . ŷk . . . yn) of Y such that
diyj = dj−1yi if i < j, i, j �= k, there is an n-simplex y such that
diy = yi.

The standard examples of fibrant simplicial sets are singular complexes,
as we’ve seen, as well as classifying spaces BG of groups G, and simplicial
groups. A simplicial group H is a simplicial object in the category of groups;
this means that H is a contravariant functor from Δ to the category Grp of
groups. We generally reserve the symbol e for the identities of the groups Hn,
for all n ≥ 0.

Lemma 3.4 (Moore). The underlying simplicial set of any simplicial group
H is fibrant.

Proof: Suppose that (x0, . . . , xk−1, x�−1, x�, . . . , xn), 
 ≥ k + 2, is a family of
(n − 1)-simplices of H which is compatible in the sense that dixj = dj−1xi for
i < j whenever the two sides of the equation are defined. Suppose that there
is an n-simplex y of H such that diy = xi for i ≤ k − 1 and i ≥ 
. Then the
family

(e, . . . , e,
�−1

x�−1d�−1(y−1), e, . . . , e)

is compatible, and di(s�−2(x�−1d�−1y
−1)y) = xi for i ≤ k − 1 and i ≥ 
 − 1.

This is the inductive step in the proof of the lemma. �
Recall that a groupoid is a category in which every morphism is invertible.

Categories associated to groups as above are obvious examples, so that the
following result specializes to the assertion that classifying spaces of groups are
Kan complexes.

Lemma 3.5. Suppose that G is a groupoid. Then BG is fibrant.

Proof: If C is a small category, then its nerve BC is a 2-coskeleton in the
sense that the set of simplicial maps f : X → BC is in bijective correspondence
with commutative (truncated) diagrams

X2 w

f2

u

u

BC2

u

u

X1 w

f1

u

u

BC1

u

u

X0 w

f0 BC0

in which the vertical maps are the relevant simplicial structure maps. It suffices
to prove this for X = Δn since X is a colimit of simplices. But any simplicial
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map f : Δn → BC can be identified with a functor f : n → C, and this functor
is completely specified by its action on vertices (f0), and morphisms (f1), and
the requirement that f respects composition (f2, and dif2 = f1di). Another
way of saying this is that a simplicial map X → BC is completely determined
by its restriction to sk2 X.

The inclusion Λn
k ⊂ Δn induces an isomorphism

skn−2 Λn
k
∼= skn−2 Δn.

To see this, observe that every simplex of the form didjιn, i < j, is a face of
some drιn with r �= k: if k �= i, j use di(djιn), if k = i use dk(djιn), and if k = j
use di(dkιn) = dk−1(diιn). It immediately follows that the extension problem

Λn
k w

α

z

u

BG

Δn
�
�
���

is solved if n ≥ 4, for in that case sk2 Λn
k = sk2 Δn.

Suppose that n = 3, and consider the extension problem

Λ3
0 w

α

z

u

BG

Δ3
�
�
���

Then sk1 Λ3
0 = sk1 Δ3 and so we are entitled to write α1 : a0 → a1, α2 : a1 → a2

and α3 : a2 → a3 for the images under the simplicial map α of the 1-simplices
0 → 1, 1 → 2 and 2 → 3, respectively. Write x : a1 → a3 for the image of 1 → 3
under α. Then the boundary of d0ι3 maps to the graph

a1 w

α2
�
�
��x

a2

�
�
��

α3

a3
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in the groupoid G under α, and this graph bounds a 2-simplex of BG if and
only if x = α3α2 in G. But the images of the 2-simplices d2ι3 and d1ι3 under
α together determine a commutative diagram

a0
h

h
h
hk

α1

u

α3(α2α1)

�
�
���
α2α1

a1�
�
���x

a2
h
h
h
hk

α3

a3

in G, so that
xα1 = α3(α2α1),

and x = α3α2, by right cancellation. It follows that the simplicial map α :
Λ3

0 → BG extends to ∂Δ3 = sk2 Δ3, and the extension problem is solved.
The other cases corresponding to the inclusions Λ3

i ⊂ Δ3 are similar.
If n = 2, then, for example, a simplicial map α : Λ2

0 → BG can be
identified with a diagram

a0

�
�
��

α1

�
�
��x

a1 a2

and α can be extended to a 2-simplex of BG if and only if there is an arrow
α2 : a1 → a2 of G such that α2α1 = x. But α2 = xα−1

1 does the trick. The
other cases in dimension 2 are similar. �
The standard n-simplex Δn = Bn fails to be fibrant for n ≥ 2, precisely because
the last step in the proof of Lemma 3.5 fails in that case.

I.4. Anodyne extensions.
The homotopy theory of simplicial sets is based on the definition of fibration
given in the last section. Originally, all statements involving fibrations were
expressed in terms of the extension condition, and this often led to some rather
difficult combinatorial manipulations based on the standard subdivision of a
prism.

The algorithms involved in these manipulations are actually quite formal,
and can be encoded in the Gabriel-Zisman theory of anodyne extensions [33].
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This theory suppresses or engulfs most of the old combinatorial arguments,
and is a basic element of the modern theory. We describe the Gabriel-Zisman
theory in this section.

A class M of (pointwise) monomorphisms of S is said to be saturated if
the following conditions are satisfied:

A: All isomorphisms are in M .
B: M is closed under pushout in the sense that, in a pushout square

A w

u

i

C

u

i∗

B w B ∪A C,

if i ∈ M then so is i∗ (Exercise: Show that i∗ is monic).
C: Each retract of an element of M is in M. This means that, given a

commutative diagram

1

u

A′
w

u

i′

A w

u

i

A′

u

i′

B′
w B w B′,

1

u

of simplicial set maps, if i is in M then so is i′.
D: M is closed under countable compositions and arbitrary direct sums,

meaning respectively that:

D1: Given
A1

i1−→ A2

i2−→ A3

i3−→ . . .

with ij ∈ M , the canonical map A1 → lim−→Ai is in M .

D2: Given ij : Aj → Bj in M , j ∈ I, the map

� ij :
⊔
j∈I

Aj →
⊔
j∈I

Bj

is in M .
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A map p : X → Y is said to have the right lifting property (RLP is the
standard acronym) with respect to a class of monomorphisms M if in every
solid arrow diagram

A w

u

i

X

u

p

B w

i
i
iij

Y

with i ∈ M the dotted arrow exists making the diagram commute.

Lemma 4.1. The class Mp of all monomorphisms which have the left lifting
property (LLP) with respect to a fixed simplicial map p : X → Y is saturated.

Proof: (trivial) For example, we prove the axiom B. Suppose given a com-
mutative diagram

A w

u

i

C w

u

j

X

u

p

B w B ∪A C w Y,

where the square on the left is a pushout. Then there is a map θ : B → X such
that the “composite” diagram

A w

u

i

X

u

p

B w

h
h
hhjθ

Y

commutes. But then θ induces the required lifting θ∗ : B ∪A C → X by the
universal property of the pushout. �

The saturated class MB generated by a class of monomorphisms B is the
intersection of all saturated classes containing B. One also says that MB is the
saturation of B.

Consider the following three classes of monomorphisms:

B1 := the set of all inclusions Λn
k ⊂ Δn, 0 ≤ k ≤ n, n > 0

B2 := the set of all inclusions

(Δ1 × ∂Δn) ∪ ({e} × Δn) ⊂ (Δ1 × Δn), e = 0, 1
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B3 := the set of all inclusions

(Δ1 × Y ) ∪ ({e} × X) ⊂ (Δ1 × X),

arising from inclusions Y ⊂ X of simplicial sets, where e = 0, 1.

Proposition 4.2. The classes B1, B2 and B3 have the same saturation.

MB1 is called the class of anodyne extensions.

Corollary 4.3. A fibration is a map which has the right lifting property with
respect to all anodyne extensions.

Proof of Proposition 4.2: We shall show only that MB2 = MB1 ; it is
relatively easy to see that MB2 = MB3 , since a simplicial set X can be built up
from a subcomplex Y by attaching cells. To show that MB2 ⊂ MB1 , observe
that any saturated set is closed under finite composition. The simplicial set
Δn × Δ1 has non-degenerate simplices

hj : Δn+1 → Δn × Δ1, 0 ≤ j ≤ n,

where the hj may be identified with the strings of morphisms

(0, 0) w (0, 1) w . . . w (0, j)

u

(1, j) w . . . w (1, n)

of length n + 1 in n × 1 (anything longer must have a repeat). One can show
that there are commutative diagrams

Δn
w

d0
Δn+1

u

h0

Δn × {1}

u

∼=

w Δn × Δ1

Δn
w

dn+1
Δn+1

u

hn

Δn × {0}

u

∼=

w Δn × Δ1

(4.4)
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δn
w

di

u

hj−1

Δn+1

u

hj

Δn−1 × Δ1
w

di × 1
Δn × Δ1

if i < j

Δn
w

dj+1

u

dj+1

Δn+1

u

hj+1

Δn+1
w

hj
Δn × Δ1

Δn
w

di

u

hj

Δn+1

u

hj

Δn−1 × Δ1
w

di−1 × 1
Δn × Δ1

if i > j + 1.

(4.5)

Moreover dj+1hj /∈ ∂Δn × Δ1 for j ≥ 0 since it projects to ιn under the
projection map Δn ×Δ1 → Δn. Finally, dj+1hj is not a face of hi for j ≥ i+1
since it has vertex (0, j).

Let (Δn×Δ1)(i), i ≥ 1 be the smallest subcomplex of Δn×Δ1 containing
∂Δn × Δ1 and the simplices h0, . . . , hi. Then (Δn × Δ1)(n) = Δn × Δ1 and
there is a sequence of pushouts, each having the form

Λn+1
i+2 w

(d0hi+1, . . . , ̂di+2hi+1, . . . , dn+1hi+1)

z

u

(Δn × Δ1)(i)

u

Δn+1
w

hi+1
(Δn × Δ1)(i+1)

for n − 1 ≥ i ≥ −1, by the observation above.
To see that MB1 ⊂ MB2 , suppose that k < n, and construct the functors

n
i−→ n × 1

rk−→ n,

where i(j) = (j, 1) and rk is defined by the diagram

0 w

u

1 w

u

. . . w k − 1 w

u

k w

u

k w

u

. . . w k

u

0 w 1 w . . . w k − 1 w k w k + 1 w . . . w n
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in n. Then r · i = 1n, and r and i induce a retraction diagram of simplicial set
maps

Λn
k w

z

u

(Λn
k × Δ1) ∪ (Δn × {0}) w

u

Λn
k

z

u

Δn
w Δn × Δ1

w Δn

(apply the classifying space functor B). It follows that the inclusion Λn
k ⊂ Δn

is in MB2 if k < n.
Similarly, if k > 0, then the functor vk : n×1 → n defined by the diagram

0 w

u

1 w

u

. . . w k w

u

k + 1 w

u

. . . w n

u

k w k w . . . w k w k + 1 w . . . w n

may be used to show that the inclusion Λn
k ⊂ Δn is a retract of

(Λn
k × Δ1) ∪ (Δn × {1}).

Thus, Λn
k ⊂ Δn is in the class MB2 for all n and k. �

Corollary 4.6. Suppose that i : K ↪→ L is an anodyne extension and that
Y ↪→ X is an arbitrary inclusion. Then the induced map

(K × X) ∪ (L × Y ) → (L × X)

is an anodyne extension.

Proof: The set of morphisms K′ → L′ such that

(K ′ × X) ∪ (L′ × Y ) → (L′ × X)

is anodyne is a saturated set. Consider the inclusion

(Δ1 × Y ′) ∪ ({e} × X ′) ⊂ (Δ1 × X ′) (Y ′ ⊂ X ′)

and the induced inclusion

(((Δ1 × Y ′) ∪ ({e} × X ′)) × X) ∪ ((Δ1 × X ′) × Y ) w

u

∼=
((Δ1 × X ′) × X)

u

∼=
(((Δ1 × ((Y ′ × X) ∪ (X ′ × Y ))) ∪ ({e} × (X ′ × X)) Δ1 × (X ′ × X)

This inclusion is anodyne, and so the saturated set in question contains all
anodyne morphisms. �



20 I. Simplicial sets

I.5. Function complexes.
Let X and Y be simplicial sets. The function complex Hom(X,Y ) is the sim-
plicial set defined by

Hom(X,Y )n = homS(X × Δn, Y ).

If θ : m → n is an ordinal number map, then the induced function

θ∗ : Hom(X,Y )n → Hom(X,Y )m

is defined by sending the map f : X × Δn → Y to the composite

X × Δm
1×θ−−→ X × Δn

f−→ Y.

In other words, one thinks of X × Δn as a cosimplicial “space” in the obvious
way.

There is an evaluation map

ev : X ×Hom(X,Y ) → Y

defined by (x, f) �→ f(x, ιn). To show, for example, that ev commutes with face
maps dj , one has to check that

f · (1 × dj)(djx, ιn−1) = djf(x, ιn).

But
f · (1 × dj)(djx, ιn−1) = f(djx, djιn) = djf(x, ιn).

More generally, ev commutes with all simplicial structure maps and is thus a
simplicial set map which is natural in X and Y .

Proposition 5.1 (Exponential Law). The function

ev∗ : homS(K,Hom(X,Y )) → homS(X × K,Y ),

which is defined by sending the simplicial map g : K → Hom(X,Y ) to the
composite

X × K
1×g−−→ X ×Hom(X,Y )

ev−→ Y,

is a bijection which is natural in K, X and Y .

Proof: The inverse of ev∗ is the map

homS(X × K,Y ) → homS(K,Hom(X,Y ))

defined by sending g : X × K → Y to the map g∗ : K → Hom(X.Y ), where,
for x ∈ Kn, g∗(x) is the composite

X × Δn
1×ιx−−−→ X × K

g−→ Y. �

The relation between function complexes and the homotopy theory of
simplicial sets is given by
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Proposition 5.2. Suppose that i : K ↪→ L is an inclusion of simplicial sets
and p : X → Y is a fibration. Then the map

Hom(L,X)
(i∗,p∗)−−−−→ Hom(K,X) ×Hom(K,Y ) Hom(L, Y ),

which is induced by the diagram

Hom(L,X) w

p∗

u

i∗

Hom(L, Y )

u

i∗

Hom(K,X) wp∗ Hom(K,Y ),

is a fibration.

Proof: Diagrams of the form

Λn
k w

z

u

Hom(L,X)

u

(i∗, p∗)

Δn
w Hom(K,X) ×Hom(K,Y ) Hom(L, Y )

may be identified with diagrams

(Λn
k × L) ∪(Λn

k
×K) (Δn × K) w

z

u

j

X

u

p

Δn × L w Y

by the exponential law (Proposition 5.1). But j is an anodyne extension by
Corollary 4.6, so the required lifting exists. �
Corollary 5.3.

(1) If p : X → Y is a fibration, then so is p∗ : Hom(K,X) → Hom(K,Y )
(2) If X is fibrant then the induced map i∗ : Hom(L,X) → Hom(K,X) is

a fibration.
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Proof:

(1) The diagram

Hom(K,Y ) w
1

u

Hom(K,Y )

u

∗ w ∗

is a pullback, and the following commutes:

Hom(K,X)�
�
�
��

N
N
N
N
N
N
N
N
N
N
N
NNP

p∗
�
�
�
�
�
�
��

Hom(K,Y ) w1

u

Hom(K,Y )

u

Hom(∅,X) wp∗ Hom(∅, Y )

∗ ∗

for a uniquely determined choice of map Hom(K,Y ) → Hom(∅,X).

(2) There is a commutative diagram

Hom(L,X)�
�
�
��

N
N
N
N
N
N
N
N
N
N
N
NNP

�
�
�
�
�
�
��

i∗ Hom(K,X) w

u
1

Hom(L, ∗)

u

∗

Hom(K,X) w Hom(K, ∗) ∗

where the inner square is a pullback. �
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I.6. Simplicial homotopy.
Let f, g : K → X be simplicial maps. We say that there is a simplicial homotopy
f

�−→ g from f to g if there is a commutative diagram

K × Δ0

u

1 × d1

K�
�
���
f

K × Δ1
w

h X

K × Δ0

u

1 × d0

K

h
h
h
hj

g

The map h is called a homotopy.
It’s rather important to note that the commutativity of the diagram defin-

ing the homotopy h implies that h(x, 0) = f(x) and h(x, 1) = g(x) for all
simplices x ∈ K. We have given a definition of homotopy which is intuitively
correct elementwise — it is essentially the reverse of the definition that one is
usually tempted to write down in terms of face (or coface) maps.

Suppose i : L ⊂ K denotes an inclusion and that the restrictions of f and
g to L coincide. We say that there is a simplicial homotopy from f to g, (rel

L) and write f
�−→ g (rel L), if the diagram exists above, and the following

commutes as well:

K × Δ1 w
h X

L × Δ1 wprL

u

z
i × 1

L

u

α

where α = f |L = g|L, and prL is projection onto the left factor (prR will denote
projection on the right). A homotopy of the form

L × Δ1
prL−−→ L

α−→ X

is called a constant homotopy (at α).
The homotopy relation may fail to be an equivalence relation in general.

Consider the maps ι0, ι1 : Δ0 ⇒ Δn, (n ≥ 1), which classify the vertices 0
and 1, respectively, of Δn. There is a simplex [0, 1] : Δ1 → Δn determined by

these vertices, and so ι0
�−→ ι1 (alternatively, 0

�−→ 1). But there is no 1-simplex

which could give a homotopy ι1
�−→ ι0, since 0 ≤ 1. This observation provides

a second means (see Lemma 3.5) of seeing that Δn not fibrant, since we can
prove
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Lemma 6.1. Suppose that X is a fibrant simplicial set. Then simplicial homo-
topy of vertices x : Δ0 → X of X is an equivalence relation.

Proof: There is a homotopy x
�−→ y if and only if there is a 1-simplex v of

X such that d1v = x and d0v = y (alternatively ∂v = (y, x); in general the
boundary ∂σ of an n-simplex σ is denoted by ∂σ = (d0σ, . . . , dnσ)). But then
the equation ∂(s0x) = (x, x) gives the reflexivity of the homotopy relation.

Suppose that ∂v2 = (y, x) and ∂v0 = (z, y). Then d0v2 = d1v0, and so v0

and v2 determine a map (v0, , v2) : Λ2
1 → X. Choose a lifting

Λ2
1 w

(v0, , v2)

z

u

X.

Δ2
N
N
N
N
NP

θ

Then

∂(d1θ) = (d0d1θ, d1d1θ)
= (d0d0θ, d1d2θ)
= (z, x),

and so the relation is transitive. Finally, given ∂v2 = (y, x), set v1 = s0x. Then
d1v1 = d1v2 and so v1 and v2 define a map ( , v1, v2) : Λ2

0 → X. Choose an
extension

Λ2
0 w

( , v1, v2)

z

u

X.

Δ2
N
N
N
N
NP

θ′

Then

∂(d0θ
′) = (d0d0θ

′, d1d0θ
′)

= (d0d1θ
′, d0d2θ

′)
= (x, y),

and the relation is symmetric. �
Corollary 6.2. Suppose X is fibrant and that L ⊂ K is an inclusion of
simplicial sets. Then

(a) homotopy of maps K → X is an equivalence relation, and

(b) homotopy of maps K → X (rel L) is an equivalence relation.
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Proof: (a) is a special case of (b), with L = ∅. But homotopy of maps K → X
(rel L) corresponds to homotopy of vertices in the fibres of the Kan fibration

i∗ : Hom(K,X) → Hom(L,X)

via the exponential law (Proposition 5.1). The map i∗ is a fibration by Propo-
sition 5.2. �
I.7. Simplicial homotopy groups.
Let X be a fibrant simplicial set and let v ∈ X0 be a vertex of X. Define
πn(X, v), n ≥ 1, to be the set of homotopy classes of maps α : Δn → X (rel
∂Δn) for maps α which fit into diagrams

Δn
w

α X

∂Δn
w

u

z

Δ0.

u

v

One often writes v : ∂Δn → X for the composition

∂Δn → Δ0
v−→ X.

Define π0(X) to be the set of homotopy classes of vertices of X; this is
the set of path components of X. The simplicial set X is said to be connected
if π0(X) is trivial (ie. a one-element set). We shall write [α] for the homotopy
class of α, in all contexts.

Suppose that α, β : Δn → X represent elements of πn(X, v). Then the
simplices ⎧⎪⎨⎪⎩

vi = v, 0 ≤ i ≤ n − 2,
vn−1 = α, and
vn+1 = β

satisfy divj = dj−1vi if i < j and i, j �= n, since all faces of all simplices
vi map through the vertex v. Thus, the vi determine a simplicial set map
(v0, . . . , vn−1, , vn+1) : Λn+1

n → X, and there is an extension

Λn+1
n w

(v0, . . . , vn−1, , vn+1)

z

u

X.

Δn+1
�
�
�
�
�
�
�
�
��

ω
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Observe that

∂(dnω) = (d0dnω, . . . , dn−1dnω, dndnω)
= (dn−1d0ω, . . . , dn−1dn−1ω, dndn+1ω)
= (v, . . . , v),

and so dnω represents an element of πn(X, v).

Lemma 7.1. The homotopy class of dnω (rel ∂Δn) is independent of the choices
of representatives of [α] and [β] and of the choice of ω.

Proof: Suppose that hn−1 is a homotopy α
�−→ α′ (rel ∂Δn) and hn+1 is a

homotopy β
�−→ β′ (rel ∂Δn). Suppose further that

∂ω = (v, . . . , v, α, dnω, β)

and
∂ω′ = (v, . . . , v, α′, dnω′, β′).

Then there is a map

(Δn+1 × ∂Δ1) ∪ (Λn+1
n × Δ1)

(ω′,ω,(v,...,hn−1, ,hn+1))−−−−−−−−−−−−−−−−→ X

which is determined by the data. Choose an extension

(Δn+1 × ∂Δ1) ∪ (Λn+1
n × Δ1) w

(ω′, ω, (v, . . . , hn−1, , hn+1))

z

u

X.

Δn+1 × Δ1
��

��
��

��
��

��
��

��
���

w

Then the composite

Δn × Δ1
dn×1−−−→ Δn+1 × Δ1

w−→ X

is a homotopy dnω
�−→ dnω′ (rel ∂Δn). �

It follows from Lemma 7.1 that the assignment

([α], [β]) �→ [dnω], where ∂ω = (v, . . . , v, α, dnω, β),

gives a well-defined pairing

m : πn(X, v) × πn(X, v) → πn(X, v).

Let e ∈ πn(X, v) be the homotopy class which is represented by the constant
map

Δn → Δ0
v−→ X.

Theorem 7.2. With these definitions, πn(X, v) is a group for n ≥ 1, which is
abelian if n ≥ 2.
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Proof: We shall demonstrate here that the πn(X, v) are groups; the abelian
property for the higher homotopy groups will be proved later (Lemma 7.6).

It is easily seen (exercise) that α · e = e · α = α for any α ∈ πn(X, v),
and that the map πn(X, v) → πn(X, v) induced by left multiplication by α is
bijective. The result follows, then, if we can show that the multiplication in
πn(X, v) is associative.

To see that the multiplication is associative, let x, y, z : Δn → X represent
elements of πn(X, v). Choose (n + 1)-simplices ωn−1, ωn+1, ωn+2 such that

∂ωn−1 = (v, . . . , v, x, dnωn−1, y),
∂ωn+1 = (v, . . . , v, dnωn−1, dnωn+1, z), and
∂ωn+2 = (v, . . . , v, y, dnωn+2, z).

Then there is a map

Λn+2
n

(v,...,v,ωn−1, ,ωn+1,ωn+2)−−−−−−−−−−−−−−−−−→ X

which extends to a map u : Δn+2 → X. But then

∂(dnu) = (v, . . . , v, x, dnωn+1, dnωn+2),

and so

([x][y])[z] = [dnωn−1][z]
= [dnωn+1]
= [dndnu]
= [x][dnωn+2]
= [x]([y][z]). �

In order to prove that πn(X, v) abelian for n ≥ 2, it is most instructive
to show that there is a loop-space ΩX such that πn(X, v) ∼= πn−1(ΩX, v) and
then to show that πi(ΩX, v) is abelian for i ≥ 1. This is accomplished with a
series of definitions and lemmas, all of which we’ll need in any case. The first
step is to construct the long exact sequence of a fibration.

Suppose that p : X → Y is a Kan fibration and that F is the fibre over a
vertex ∗ ∈ Y in the sense that the square

F w
i

u

X

u

p

Δ0
w∗ Y
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is cartesian. Suppose that v is a vertex of F and that α : Δn → Y represents
an element of πn(Y, ∗). Then in the diagram

Λn
0 w

( , v, . . . , v)

z

u

X

u

p

Δn
wα

A
A
A
A
A
AC

θ

Y,

the element [d0θ] ∈ πn−1(F, v) is independent of the choice of θ and represen-
tative of [α]. The resulting function

∂ : πn(Y, ∗) → πn−1(F, v)

is called the boundary map.

Lemma 7.3.

(a) The boundary map ∂ : πn(Y, ∗) → πn−1(F, v) is a group homomorphism
if n > 1.

(b) The sequence

· · · → πn(F, v)
i∗−→ πn(X, v)

p∗−→ πn(Y, ∗) ∂−→ πn−1(F, v) → . . .

. . .
p∗−→ π1(Y, ∗) ∂−→ π0(F )

i∗−→ π0(X)
p∗−→ π0(Y )

is exact in the sense that kernel equals image everywhere. Moreover,
there is an action of π1(Y, ∗) on π0(F ) such that two elements of π0(F )
have the same image under i∗ in π0(X) if and only if they are in the
same orbit for the π1(Y, ∗)-action.

Most of the proof of Lemma 7.3 is easy, once you know

Lemma 7.4. Let α : Δn → X represent an element of πn(X, v). Then [α] = e
if and only if there is an (n + 1)-simplex ω of X such that ∂ω = (v, . . . , v, α).

The proof of Lemma 7.4 is an exercise.
Proof of Lemma 7.3: (a) To see that ∂ : πn(Y, ∗) → πn−1(F, v) is a homo-
morphism if n ≥ 2, suppose that we are given diagrams

Λn
0 w

v

z

u

X

u

p

Δn
wαi

�
�
�
��θi

Y

i = n − 1, n, n + 1,
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where the αi represent elements of πn(Y, ∗). Suppose that there is an (n + 1)-
simplex ω such that

∂ω = (∗, . . . , ∗, αn−1, αn, αn+1).

Then there is a commutative diagram

Λn+1
0 w

( , v, . . . , v, θn−1, θn, θn+1)

z

u

X

u

p

Δn+1
wω

�
�
�
�
�
�
�
�
�
�
�
���

γ

Y,

and

∂(d0γ) = (d0d0γ, d1d0γ, . . . , dnd0γ)
= (d0d1γ, d0d2γ, . . . , d0dn−1γ, d0dnγ, d0dn+1γ)
= (v, . . . , v, d0θn−1, d0θn, d0θn+1)

Thus [d0θn] = [d0θn−1][d0θn+1], and so ∂([αn−1][αn+1]) = ∂[αn−1]∂[αn+1] in
πn−1(F, v).
(b) We shall show that the sequence

πn(X, v)
p∗−→ πn(Y, ∗) ∂−→ πn−1(F, v)

is exact; the rest of the proof is an exercise. The composite is trivial, since in
the diagram

Λn
0 w

v

z

u

X

u

p

Δn
wpα

�
�
�
��

α

Y

with [α] ∈ πn(X, v), we find that d0α = v. Suppose that γ : Δn → Y represents
a class [γ] such that ∂[γ] = e. Choose a diagram

Λn
0 w

v

z

u

X

u

p

Δn
wγ

�
�
�
��

θ

Y



30 I. Simplicial sets

so that [d0θ] = ∂[γ]. Then there is a simplex homotopy

Δn−1 × Δ1
h0−→ F

giving d0θ � v (rel ∂Δn). Thus, there is a diagram

(Δn × 1) ∪ (∂Δn × Δ1) w

(θ, (h0, v, . . . , v))

z

u

X.

Δn × Δ1
��
��
��
��
��

����

h

Moreover p · h is a homotopy γ � p · (h · d1) (rel ∂Δn). �
Now for some definitions. For a Kan complex X and a vertex ∗ of X, the

path space PX is defined by requiring that the following square is a pullback.

PX w
iX

u

Hom(Δ1,X)

u

(d0)∗

Δ0
w∗ Hom(Δ0,X) ∼= X.

Furthermore, the map π : PX → X is defined to be the composite

PX
iX−→ Hom(Δ1,X)

(d1)∗−−−→ Hom(Δ0,X) ∼= X.

The maps (dε)∗ are fibrations for ε = 0, 1, by Corollary 5.3. In particular, PX
is fibrant.

Lemma 7.5. πi(PX, v) is trivial for i ≥ 0 and all vertices v, and π is a fibration.

Proof: dε : Δ0 → Δ1 is an anodyne extension, and so (d0)∗ has the right
lifting property with respect to all maps ∂Δn ⊂ Δn, n ≥ 0, (see the argument
for Proposition 5.2). Thus, the map PX → Δ0 = ∗ has the right lifting property
with respect to all such maps. Any two vertices of PX are homotopic, by finding
extensions

∂Δ1
w

z

u

PX.

Δ1
�
�
�
��
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If α : Δn → PX represents an element of πn(PX, v), then there is a commu-
tative diagram

∂Δn+1
w

(v, . . . , v, α)
z

u

PX,

Δn+1
��

��
��
��

and so [α] = e in πn(PX, v). Finally, the map π sits inside the pullback diagram

PX w

u

π

Hom(Δ1,X)

u

i∗

Hom(∂Δ1,X)

u

∼=
X w

(∗, 1X)
X × X

and so π is a fibration since i∗ is, by Corollary 5.3. �
Define the loop space ΩX to be the fibre of π : PX → X over the base

point ∗. A simplex of ΩX is a simplicial map f : Δn × Δ1 → X such that the
restriction of f to Δn × ∂Δ1 maps into ∗. Now we can prove

Lemma 7.6. πi(ΩX, ∗) is abelian for i ≥ 1.

Proof: πn(ΩX, ∗), as a set, consists of homotopy classes of maps of the form

Δn × Δ1
w

α X,

(∂Δn × Δ1) ∪ (Δn × ∂Δ1)

u

z h
h
hhj∗

rel the boundary (∂Δn ×Δ1)∪ (Δn ×∂Δ1). The group πn(ΩX, ∗) has a second
multiplication [α] � [β] (in the 1-simplex direction) such that [∗] is an identity
for this multiplication and such that � and the original multiplication together
satisfy the interchange law

([α1] � [β1])([α2] � [β2]) = ([α1][α2]) � ([β1][β2]).

It follows that [α][β] = [α] � [β], and that both multiplications are abelian. �
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Corollary 7.7. Suppose that X is fibrant. Then πi(X, ∗) is abelian if i ≥ 2.

The proof of Theorem 7.2 is now complete.
Let G be a group, and recall that the classifying space BG is fibrant, by

Lemma 3.5. The simplicial set BG has exactly one vertex ∗. We can now show
that BG is an Eilenberg-Mac Lane space.

Proposition 7.8. There are natural isomorphisms

πi(BG, ∗) ∼=
{

G if i = 1,

0 if i �= 1.

Proof: BG is a 2-coskeleton (see the proof of Lemma 3.5), and so πi(BG, ∗) =
0 for i ≥ 2, by Lemma 7.4. It is an elementary exercise to check that the

identification BG1 = G induces an isomorphism of groups π1(BG, ∗)
∼=−→ G.

The set π0(BG) of path components is trivial, since BG has only one vertex.
�

Suppose that f : X → Y is a map between fibrant simplicial sets. f is
said to be a weak equivalence if⎧⎪⎨⎪⎩

for each vertex x of X the induced map f∗ : πi(X,x) → πi(Y, f(x))
is an isomorphism for i ≥ 1, and

the map f∗ : π0(X) → π0(Y ) is a bijection.
(7.9)

Theorem 7.10. A map f : X → Y between fibrant simplicial sets is a fibration
and a weak equivalence if and only if f has the right lifting property with respect
to all maps ∂Δn ⊂ Δn, n ≥ 0.

Proof: (⇒) The simplicial homotopy Δn × Δ1 → Δn, given by the diagram

0 w

u

0 w

u

. . . w 0

u

0 w 1 w . . . w n

in n, contracts Δn onto the vertex 0. This homotopy restricts to a homotopy
Λn

0 × Δ1 → Λn
0 which contracts Λn

0 onto 0.
Now suppose that we’re given a diagram

∂Δn
w

α
z

u

i

X

u

p

Δn
w

β
Y.

D



I.7. Simplicial homotopy groups 33

If there is a diagram

∂Δn

u

i

�������������

α
�
�
���d0

∂Δn × Δ1
w

hz

u
i × 1

X

u

p

Δn × Δ1
w

g
Y

Δn
N
N
N
NNPd0

��
��
��

��
��

���

β

such that the lifting exists in the diagram

∂Δn
w

h · d1

z

u

X

u
p

Δn
w

g · d1

�
�
�
��

θ

Y,

then the lifting exists in the original diagram D. This is a consequence of the
existence of the commutative diagram

α

u

∂Δn
w

d0

u
i

(∂Δn × Δ1) ∪ (Δn × {1}) w
(h, θ)

z

u

X

u

p

Δn
w

d0
Δn × Δ1

wg

�
�
�
�
�
�
���

γ

Y

β

u
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Now, the contracting homotopy H : Λn
0 × Δ1 → Λn

0 determines a diagram

Λn
0 w

j

u

d0

∂Δn

u

α

Λn
0 × Δ1

w

h1 X

Λn
0 w

u

d1

Δ0,

u

α(0)

where h1 = α · j · H. There is a diagram

(∂Δn × {1}) ∪ (Λn
0 × Δ1) w

(α, h1)

z

u

X

∂Δn × Δ1
�
�
�
�
�
�
���

h

since X is fibrant. Moreover, there is a diagram

(Δn × {1}) ∪ (∂Δn × Δ1) w

(β, ph)

z

u

Y

Δn × Δ1
�
�
�
�
�
�
���

g

since Y is fibrant. It therefore suffices to solve the problem for diagrams

∂Δn
w

(x0, ∗, . . . , ∗)
z

u

X

u

p

Δn
wω Y

D1

for some vertex ∗ (= α(0)) of X, since the composite diagram

∂Δn
w

d1

z

u

i

∂Δn × Δ1
w

h
z

u

i × 1

X

u

p

Δn
w

d1
Δn × Δ1

wg Y
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has this form. Then x0 represents an element [x0] of πn−1(X, ∗) such that
p∗[x0] = e in πn−1(Y, p∗). Thus, [x0] = e in πn−1(X, ∗), and so the trivializing
homotopy h0 : Δn−1 × Δ1 → X for x0 determines a homotopy

h′ = (h0, ∗, . . . , ∗) : ∂Δn × Δ1 → X.

But again there is a diagram

(Δn × {1}) ∪ (∂Δn × Δ1) w

(ω, ph)

z

u

Y,

Δn × Δ1
�
�
�
�
�
�
�
��

g′

so it suffices to solve the lifting problem for diagrams

∂Δn
w

∗
z

u

X

u

p

Δn
w

β
Y.

D2

The map p∗ is onto, so β � pα (rel ∂Δn) via some homotopy h′′ : Δn ×
Δ1 → Y, and so there is a commutative diagram

∂Δn
w

d0

z

u

(∂Δn × Δ1) ∪ (Δn × {0}) w

(∗, α)

z

u

X

u

p

Δn
w

d0
Δn × Δ1

w

h′′
�
�
�
�
�
�
���

Y.

D2 is the composite of these two squares, and the lifting problem is solved.
(⇐) Suppose that p : X → Y has the right lifting property with respect
to all ∂Δn ⊂ Δn, n ≥ 0. Then p has the right lifting property with respect
to all inclusions L ⊂ K, and is a Kan fibration in particular. It follows that
p∗ : π0X → π0Y is a bijection. Also, if x ∈ X is any vertex of X and Fx is
the fibre over p(x), then Fx → ∗ has the right lifting property with respect to
all ∂Δn ⊂ Δn, n ≥ 0. Then Fx is fibrant, and π0(Fx) = ∗ and πi(Fx, x) = 0,
i ≥ 1, by the argument of Lemma 7.5. Thus, p∗ : πi(X,x) → πi(Y, px) is an
isomorphism for all i ≥ 1. �
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I.8. Fundamental groupoid.

Let X be a fibrant simplicial set. Provisionally, the fundamental groupoid πfX
of X is a category having as objects all vertices of X. An arrow x → y in πfX
is a homotopy class of 1-simplices ω : Δ1 → X (rel ∂Δ1) where the diagram

Δ0

u
d1
�
�
���
x

Δ1
w

ω X

Δ0

u

d0
�
�
���

y

commutes. If v2 represents an arrow x → y of πfX and v0 represents an arrow
y → z; then the composite [v0][v2] is represented by d1ω, where ω is a 2-simplex
such that the following diagram commutes

Λ2
1 w

(v0, , v2)

z

u

X.

Δ2
N
N
N
N
NP

ω

The fact that this is well-defined should be clear. The identity at x is represented
by s0x. This makes sense because, if v2 : x → y and v0 : y → z then ∂s0v0 =
(v0, v0, s0y), and ∂(s1v2) = (s0y, v2, v2). The associativity is proved as it was
for π1. In fact, πfX(x, x) = π1(X,x) specifies the group of homomorphisms
πfX(x, x) from x to itself in πfX, by definition. By solving the lifting problem

Λ2
0 w

( , s0x, v2)

z

u

X

Δ2
B
B
B
B
B
BC

ω

for v2 : x → y, one finds a v0 : y → x (namely d0ω) such that [v0][v2] = 1x.
But then [v2] is also epi since it has a right inverse by a similar argument. Thus
[v2][v0][v2] = [v2] implies [v2][v0] = 1y, and so πfX really is a groupoid.
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Now, let α : Δn → X represent an element of πn(X,x) and let ω : Δ1 → X
represent an element of πfX(x, y). Then there is a commutative diagram

(∂Δn × Δ1) ∪ (Δn × {0})
z

u

�
�
�
�
�
��

(ω · prR, α)

Δn × Δ1
w

h(ω,α)
X,

Δn

u

d0

�
�
�
�
�
�
�
�
�
�
���

ω∗α

and ω∗α represents an element of πn(X, y).

Proposition 8.1. The class [ω∗α] is independent of choices of representatives.
Moreover, [α] �→ [ω∗α] is a group homomorphism which is functorial in [ω], and
so the assignment x �→ πn(X,x) determines a functor on πfX.

Proof: We shall begin by establishing independence of the choice of repre-
sentative for the class [ω]. Suppose that G : ω

�−→ η (rel ∂Δ1) is a homotopy of
paths from x to y. Then there is a 2-simplex σ of X such that

∂σ = (s0y, η, ω).

Find simplices of the form h(η,α) and h(ω,α) according to the recipe given above,
and let hσ be the composite

∂Δn × Δ2
pr−→ Δ2

σ−→ X.

There is a commutative diagram

(∂Δn × Δ2) ∪ (Δn × Λ2
0)

z

u

i

w

(hσ, ( , h(η, α), h(ω, α)))
X,

Δn × Δ2
��

��
��

��
��
��
��
��

θ1

since the inclusion i is anodyne. Then the composite

Δn × Δ1
1×d0

−−−→ Δn × Δ2
θ1−→ X

is a homotopy from ω∗α to η∗α (rel ∂Δn), and so [ω∗α] = [η∗α] in πn(X, y).
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Suppose that H : Δn × Δ1 → X gives α
�−→ β (rel ∂Δn), and choose a

homotopy h(ω, β) : Δn × Δ1 → X as above. Let hs0ω denote the composite

∂Δn × Δ2
pr−→ Δ2

s0ω−−→ X.

Then there is a commutative diagram

(∂Δn × Δ2) ∪ (Δn × Λ2
1) w

(hs0ω, (h(ω, β), ,H))

z

u

j

X,

Δn × Δ2
��
��

��
��
��
��

���

γ

for some map γ, since the inclusion j is anodyne. But then the simplex given
by the composite

Δn
d0

−→ Δn × Δ1
1×d1

−−−→ Δn × Δ2
γ−→ X

is a construction for both ω∗α and ω∗β, so that [ω∗α] = [ω∗β] in πn(X, y).
For the functoriality, suppose that ω : Δ1 → X and η : Δ1 → X represent

elements of πfX(x, y) and πfX(y, z) respectively, and choose a 2-simplex γ
such that ∂γ = (η, d1γ, ω). Then [d1γ] = [η] · [ω] in πfX. Choose h(ω,α) and
h(η,ω∗α) according to the recipe above. Then there is a diagram

(∂Δn × Δ2) ∪ (Δn × Λ2
1)

z

u

��������������

(γ · pr, (h(η, ω∗α), , h(ω, α))

Δn × Δ2 X,

Δn × Δ1

u

1 × d1

��
��
��

��
��

��
��

��
��

ξ

and hence a diagram

(∂Δn × Δ1) ∪ (Δn × {0})
z

u

A
A
AAC
(hd1γ , α)

Δn × Δ1
w

ξ
X,

Δn

u

d1

�
�
�
�
�
�
�
���

η∗ω∗α = (d1γ)∗α
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where hd1γ is the composite

∂Δn × Δ1
pr−→ Δ1

d1γ−−→ X.

The statement that ω∗ is a group homomorphism is easily checked. �
Theorem 8.2. Suppose that the following is a commutative triangle of sim-
plicial set maps:

X w

g
N
N
NNPh

Y

Z

�
�
���

f

with X,Y, and Z fibrant. If any two of f, g, or h are weak equivalences, then
so is the third.

Proof: There is one non-trivial case, namely to show that f is a weak equiva-
lence if g and h are. This is no problem at all for π0. Suppose y ∈ Y is a vertex.
We must show that f∗ : πn(Y, y) → πn(Z, fy) is an isomorphism. The vertex y
may not be in the image of g, but there is an x ∈ X and a path ω : y → gx
since π0(g) is epi. But then there is a diagram

πn(Y, y) w

[ω]∗

u
f∗

πn(Y, gx)

u
f∗

πn(X,x).u
g∗

�
�
���

h∗

πn(Z, fy) w

[fω]∗
πn(Z, fgx)

The maps g∗, h∗, [ω]∗, and [fω]∗ are isomorphisms, and so both of the maps
labelled f∗ are isomorphisms. �

There are three competing definitions for the fundamental groupoid of an
arbitrary simplicial set X. The most obvious choice is the classical fundamental
groupoid π|X| of the realization of X; in the notation above, this is πfS|X|.
Its objects are the elements of |X|, and its morphisms are homotopy classes of
paths in |X|. The second choice is the model GP∗X of Gabriel and Zisman.
The groupoid GP∗X is the free groupoid associated to the path category P∗X
of X. The path category has, as objects, all the vertices (elements of X0) of X.
It is generated, as a category, by the 1-simplices of X, subject to the relation
that, for each 2-simplex σ of X, the diagram

v0 w

d2σ
�
�
��d1σ

v1

�
�
��

d0σ

v2
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commutes. The free groupoid G(Δ ↓ X) associated to the simplex category
Δ ↓ X is also a good model. We shall see later on, in Section III.1, that π|X|,
GP∗X and G(Δ ↓ X) are all naturally equivalent.

I.9. Categories of fibrant objects.

Let Sf be the full subcategory of the simplicial set category whose objects
are the Kan complexes. The category Sf has all finite products. We have two
distinguished classes of maps in Sf , namely the fibrations (defined by the lifting
property) and the weak equivalences (defined via simplicial homotopy groups).
A trivial fibration p : X → Y in Sf is defined to be a map which is both a
fibration and a weak equivalence. A path object for X ∈ Sf is a commutative
diagram

XI

u

(d0, d1)

X
N
N
N
NNPs

w
Δ

X × X

where s is a weak equivalence and (d0, d1) is a fibration. The maps d0 and d1

are necessarily trivial fibrations. Any Kan complex X has a natural choice of
path object, namely the diagram

Hom(Δ1,X)

u

(d0, d1)Hom(∂Δ1,X)

u

∼=
X w

�
�
�
���

s

X × X u

where s is the map

X ∼= Hom(Δ0,X)
(s0)∗−−−→ Hom(Δ1,X).

(s0)∗ = s is a weak equivalence: it is a right inverse for the map

Hom(Δ1,X)
(d0)∗−−−→ Hom(Δ0,X),

and (d0)∗ is a trivial fibration, by Theorem 7.10, since it has the right lifting
property with respect to all inclusions ∂Δn ⊂ Δn, n ≥ 0. The map (d0)∗ is
isomorphic to one of the components of the map Hom(Δ1,X) → X × X.
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The following list of properties of Sf is essentially a recapitulation of
things that we’ve seen:

(A) Suppose given a commutative diagram

X w

g
N
N
NNPh

Y
�

�
���

f

Z.

If any two of f , g and h are weak equivalences, then so is the third.
(B) The composite of two fibrations is a fibration. Any isomorphism is a

fibration.
(C) Pullback diagrams of the form

Z ×Y X w

u
pr

X

u
p

Z w Y

exist in the case where p is a fibration. Furthermore, pr is a fibration
which is trivial if p is trivial.

(D) For any object X there is at least one path space XI .
(E) For any object X, the map X → ∗ is a fibration.

Statement (A) is Theorem 8.2. (B) is an exercise. (C) holds because fibrations
and trivial fibrations are defined by lifting properties, by Theorem 7.10. (D)
was discussed above, and (E) isn’t really worth mentioning.

Following K. Brown’s thesis [15] (where the notion was introduced), a
category C which has all finite products and has distinguished classes of maps
called fibrations and weak equivalences which together satisfy axioms (A) – (E)
is called a category of fibrant objects (for a homotopy theory). We’ve proved:

Theorem 9.1. Sf is a category of fibrant objects for a homotopy theory.

Other basic examples are the category CGHaus of compactly generated
Hausdorff spaces, and the category Top of topological spaces. In fact, more is
true. The fibrations of CGHaus are the Serre fibrations, and the weak equiv-
alences are the weak homotopy equivalences. A map i : U → V in CGHaus
is said to be a cofibration if it has the left lifting property with respect to all
trivial fibrations.
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Proposition 9.2. The category CGHaus and these three classes of maps
satisfy the following list of axioms:

CM1: CGHaus is closed under all finite limits and colimits.

CM2: Suppose that the following diagram commutes in CGHaus:

X w

g
N
N
NNPh

Y
�

�
���

f

Z.

If any two of f , g and h are weak equivalences, then so is the third.

CM3: If f is a retract of g and g is a weak equivalence, fibration or cofibration,
then so is f .

CM4: Suppose that we are given a commutative solid arrow diagram

U w

u
i

X

u
p

V w

i
i
iij

Y

where i is a cofibration and p is a fibration. Then the dotted arrow exists,
making the diagram commute, if either i or p is also a weak equivalence.

CM5: Any map f : X → Y may be factored:

(a) f = p · i where p is a fibration and i is a trivial cofibration, and

(b) f = q · j where q is a trivial fibration and j is a cofibration.

Recall that a trivial fibration is a map which is a fibration and a weak
equivalence. Similarly, a trivial cofibration is a map which is both a cofibration
and a weak equivalence.
Proof: The category CGHaus has all small limits and colimits, giving CM1
(see [66, p.182]). This fact is also used to prove the factorization axioms CM5;
this is the next step.

The map p : X → Y is a Serre fibration if and only if it has the right
lifting property with respect to all inclusions j : |Λn

k | → |Δn|. Each such j is
necessarily a cofibration. Now consider all diagrams

|ΛnD

kD
| w

αD

z

u

X

u
f

|ΔnD w
βD

| Y

D
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and form the pushout

⊔
D

|ΛnD

kD
| w

(αD)

z

u

X

u

i1

X0�
�
�
��

f = f0

⊔
D

|ΔnD | w X1 w

f1
Y.

Then we obtain a factorization

f = f0 = f1 · i1,

where i1 is a cofibration since it’s a pushout of such, and also a weak equivalence
since it is a pushout of a map which has a strong deformation retraction. We
repeat the process by considering all diagrams.

|ΛnD

kD
| w

αD

z

u

X1

u

f1

|ΔnD
w

βD
| Y

and so on. Thus, we obtain a commutative diagram

X X0 w

i1
�
�
���f0

X1 w

i2

u
f1

X2 w

h
h
h
hk

f2

. . . ,

Y

which induces a diagram

X0 w
τ0

�
�
���f = f0

lim−→Xi

�
�
���

f∞

Y
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But now τ0 has the left lifting property with respect to all trivial fibrations,
so it’s a cofibration. Moreover, τ0 is a weak equivalence since any compact
subset of lim−→Xi lies in some finite stage Xi, and all the Xi → Xi+1 are weak
equivalences. Finally, f∞ is a fibration: the space |Λn

k | is a finite CW-complex,
so that for each diagram

|Λn
k | w

α

z

u

lim−→Xi

u

f∞

|Δn| w

β
Y,

there is an index i and a map αi making the following diagram commute:

|Λn
k | w

α

z

u

N
N
N
NP

αi

lim−→Xi

u

f∞Xi

h
h
hhj

�
�
�
���

fi

|Δn| w
β

Y.

But then

|Λn
k | w

αi

z

u

Xi

u
fi

|Δn| w
β

Y

is one of the diagrams defining fi+1 and there is a diagram

|Λn
k | w

αi

z

u

Xi

u

fi

A
A
AAD

Xi+1������

|Δn| w
β

��
���θi

Y

which defines the lifting.
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The other lifting property is similar, using

Lemma 9.4. The map p : X → Y is a trivial fibration if and only if p has the
right lifting property with respect to all inclusions |∂Δn| ⊂ |Δn|.
The proof is an exercise.

Quillen calls this proof a small object argument [76]. CM4 is really a conse-
quence of this argument as well. The bulk of the proof displayed for Proposition
9.2 consists of showing that any map f : X → Y has a factorization f = p · i
such that p is a fibration and i is a weak equivalence which has the left lifting
property with respect to all fibrations.

Suppose now that we have a diagram

U w
α

u

i

X

u

p

V w

β

i
i
iij

Y,

where p is a fibration and i is a trivial cofibration. We want to construct the
dotted arrow (giving the interesting part of CM4). There is a diagram

U w
j

u

i

W

u

π

V w1V

i
i
iijr

V,

where j is a weak equivalence which has the left lifting property with respect
to all fibrations, and π is a (necessarily trivial) fibration. Thus, the dotted
arrow r exists. But then i is a retract of j, and so i has the same lifting
property. All of the other axioms are straightforward to verify, and so the proof
of Proposition 9.2 is complete.

A closed model category is a category C, together with three classes of
maps called cofibrations, fibrations and weak equivalences, such that the axioms
CM1–CM5 are satisfied. Proposition 9.2 is the statement that CGHaus has
the structure of a closed model category. The category CGHaus is also a
category of fibrant objects for a homotopy theory, by the following

Proposition 9.5. The subcategory of fibrant objects in any closed model
category C is a category of fibrant objects for a homotopy theory.
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Proof: The statement (E) is part of the definition. For (D), the map Δ :
X → X × X may be factored

XI

u

(d0, d1)

X w

Δ

N
N
N
NNPs

X × X,

where s is a trivial cofibration and (d0, d1) is a fibration. For (B) and (C), we
prove:

Lemma 9.6.

(a) A map f : X → Y in C has the right lifting property with respect to all
cofibrations (respectively trivial cofibrations) if and only if f is a trivial
fibration (respectively fibration).

(b) U → V in C has the left lifting property with respect to all fibrations
(respectively trivial fibrations) if and only if i is a trivial cofibration
(respectively cofibration).

Proof: We’ll show that f : X → Y has the right lifting property with respect
to all cofibrations if and only if f is a trivial fibration. The rest of the proof is
an exercise.

Suppose that f has the advertised lifting property, and form the diagram

X w
1X

u

i

X

u

f

V wp

h
h
hhjr

Y,

where i is a cofibration, p is a trivial fibration, and r exists by the lifting
property. Then f is a retract of p and is therefore a trivial fibration. The
reverse implication is CM4. �

Finally, since fibrations (respectively trivial fibrations) are those maps
having the right lifting property with respect to all trivial cofibrations (respec-
tively all cofibrations), they are stable under composition and pullback and
include all isomorphisms, yielding (B) and (C). (A) is CM2. This completes
the proof of Proposition 9.5.

We shall see that the category of fibrant objects structure that we have
displayed for Sf is the restriction of a closed model structure on the entire
simplicial set category; this will be proved in Section 11.



I.10. Minimal fibrations 47

I.10. Minimal fibrations.
Minimal Kan complexes play roughly the same role in the homotopy theory of
simplicial sets as minimal models play in rational homotopy theory. Minimal
Kan complexes appear as fibres of minimal fibrations; it turns out that minimal
fibrations are exactly the right vehicle for relating the homotopy theories of S
and CGHaus.

A simplicial set map q : X → Y is said to be a minimal fibration if q is a
fibration, and for every diagram

∂Δn × Δ1
w

pr

z

u

∂Δn

u

Δn × Δ1
w

h

u

pr

X

u

q

Δn
w Y

(10.1)

the composites

Δn
w

d0

w

d1
Δn × Δ1

w
h X

are equal. This means that, if two simplices x and y in Xn are fibrewise homo-
topic (rel ∂Δn), then x = y.

Note that the class of minimal fibrations is preserved by pullback.
More generally, write x �p y if there is a diagram of the form (10.1) such

that h(Δn × 0) = x, and h(Δn × 1) = y. The relation �p is an equivalence
relation (exercise).

Lemma 10.2. Suppose that x and y are degenerate r-simplices of a simplicial
set X such that ∂x = ∂y. Then x = y.

Proof: (See also [67], p.36.) Suppose that x = smz and y = snw. If m = n,
then

z = dmx = dmy = w,

and so x = y. Suppose that m < n. Then

z = dmx = dmsnw = sn−1dmw,

and so
x = smsn−1dmw = snsmdmw.

Thus
smdmw = dnx = dny = w.

Therefore x = snw = y. �
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Now we can prove:

Proposition 10.3. Let p : X → Y be a Kan fibration. Then p has a strong
fibre-wise deformation retract q : Z → Y which is a minimal fibration.

Proof: Let Z(0) be the subcomplex of X which is generated by a choice of
vertex in each p-class, and let i(0) : Z(0) ⊂ X be the canonical inclusion. There
is a map r(0) : sk0 X → Z(0) which is determined by choices of representatives.
Moreover pi(0)r(0) = p|sk0 X , and j0 � i(0)r(0), where j0 : sk0 X ⊂ X is the
inclusion of the subcomplex, via a homotopy h0 : sk0 X × Δ1 → X such that
h0(x, 0) = x and h0(x, 1) = r(0)(x), and h0 is constant on simplices of Z(0).
The map h0 can be constructed fibrewise in the sense that p ·h0 is constant, by
using the homotopies implicit in the definition of �p . The subcomplex Z(0) has
a unique simplex in each p-equivalence class that it intersects, by Lemma 10.2.

Let Z(1) be the subcomplex of X which is obtained by adjoining to Z(0)

a representative for each homotopy class of 1-simplices x such that ∂x ⊂ Z(0)

and x is not p-related to a 1-simplex of Z(0). Again, Z(1) has a unique simplex
in each p-equivalence class that it intersects, by construction in degrees ≤ 1
and Lemma 10.2 in degrees > 1.

Let x be a non-degenerate 1-simplex of X. Then there is a commutative
diagram

(Δ1 × {0}) ∪ (∂Δ1 × Δ1) w

(x, h0|∂x)

z

u

X

u

p

Δ1 × Δ1
wprL

�
�
�
�
�
�
�
�
�
�
�
���

hx

Δ1
wpx Y,

by the homotopy lifting property, where the constant homotopy is chosen for
hx if x ∈ Z(1). But then ∂(hx(Δ1 × {1})) ⊂ Z(0) and so hx(Δ1 × {1}, ) is
p-related to a unique 1-simplex r(1)(x) of Z(1) via some diagram

∂Δ1 × Δ1
w

prL

z

u

∂Δ1

u

∂hx(Δ1 × {1})

Δ1 × Δ1
w

gx

u

pr

X

u

p

Δ1
wpx Y,

where gx is constant if x ∈ Z(1), r(1)(x) = gx(Δ1 × 1), and

gx(Δ1 × {0}) = hx(Δ1 × {1}).
This defines r(1) : sk1 X → Z(1).
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We require a homotopy h1 : j1 �p i(1)r(1), such that i(1) : Z(1) ⊂ X and
j1 : sk1 X ⊂ X are the subcomplex inclusions, and such that h1 is consistent
with h0. We also require that the restriction of h1 to Z(1) be constant. This is
done for the simplex x by constructing a commutative diagram

(∂Δ1 × Δ2) ∪ (Δ1 × Λ2
1) w

(s1h0, (gx, , hx))

z

u

X

u

p

Δ1 × Δ2
wpr

�
�
�
�
�
�
�
�
�
�
�
���

θx

Δ1
wpx Y,

where the lifting θx is chosen to be the composite

Δ1 × Δ2
prL−−→ Δ1

x−→ X

if x ∈ Z(1). Then h0 can be extended to the required homotopy h1 : j1 �p

i(1)r(1) by requiring that h1|x = θx · (1 × d1).
Proceeding inductively gives i : Z = lim−→Z(n) ⊂ X and r : X → Z such

that 1X � ir fibrewise, and such that q : Z → Y has the minimality property.
Finally, q is a Kan fibration, since it is a retract of a Kan fibration. �
Lemma 10.4. Suppose that

Z w

f
N
N
NNPq

Z ′
�

�
���

q′

Y

is a fibrewise homotopy equivalence of minimal fibrations q and q′. Then f is
an isomorphism of simplicial sets.

To prove Lemma 10.4, one uses:

Sublemma 10.5. Suppose that two maps

X w

f
N
N
NNPp

Z
�
�
���

q

Y

X w

g
N
N
NNPp

Z
�
�

���
q

Y

are fibrewise homotopic, where g is an isomorphism and q is minimal. Then f
is an isomorphism.
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Proof of sublemma: Let the diagram

X

u

d0

�
�
�
���

f

X × Δ1
w

h Z

X

u

d1

N
N
N
N
NP

g

represent the homotopy. Suppose that f(x) = f(y) for n-simplices x and y of
X. Then inductively dix = diy, 0 ≤ i ≤ n, and so the composites

∂Δn × Δ1
i×1−−→ Δn × Δ1

x×1−−→ X × Δ1
h−→ Z,

and
∂Δn × Δ1

i×1−−→ Δn × Δ1
y×1−−→ X × Δ1

h−→ Z,

are both equal to a map h∗ : ∂Δn × Δ1 → Y . Write hx for the composite
homotopy

Δn × Δ1
x×1−−→ X × Δ1

h−→ Z.

Then there is a commutative diagram

(Δn × Λ2
2) ∪ (∂Δn × Δ2) w

((hx, hy, ), s0h∗)

z

u

Z

u

q

Δn × Δ2
wprL

��
��

��
��

��
��

��
���

G

Δn
wpx = py Y,

and the homotopy G · (1 × d2) shows that x = y. Thus, f is monic.
To see that f is epi, suppose inductively that f : Xi → Zi is an isomor-

phism for 0 ≤ i ≤ n− 1, and let x : Δn → Z be an n-simplex of Z. Then there
is a commutative diagram

∂Δn
w

(x0, . . . , xn)
z

u

X

u
f

Δn
wx Z
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by the inductive assumption, and so one can find a diagram

(∂Δn × Δ1) ∪ (Δn × {1}) w

(h|(x0,...,xn), x)

z

u

Z

u

q

Δn × Δ1
wprL

�
�
�
�
�
�
�
�
�
�
�
���

h1

Δn
wqx Y.

Then there is a diagram

X

u

g

Δn
w

d1

�
�
�
�
�
�
�
�
�
�
���

z

Δn × Δ1
w

h1
Z,

since g is epi. The restriction of g(z) to ∂Δn is the composite g · (x0, . . . , xn),
so that ∂z = (x0, . . . , xn) since g is monic. Thus, there is a diagram

(Δn × Λ2
0) ∪ (∂Δn × Δ2) w

(( , h1, hz), s1h|(x0,...,xn))

z

u

Z

u

q

Δn × Δ2
wprL

��
��
��

��
��

��
��
���

G′

Δn
wqx Y.

Finally, the composite

Δn × Δ1
1×d0

−−−→ Δn × Δ2
G′
−→ Z

is a fibrewise homotopy from f(z) to x, and so x = f(z). �

Lemma 10.6. Suppose given a Kan fibration p and pullback diagrams

f−1
i p w

u

pi

X

u

p

A w

fi
Y

i = 0, 1.
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Suppose further that there is a homotopy h : f0

�−→ f1. Then there is a fibrewise
homotopy equivalence

f−1
1 p w

�
�
�
��p1

f−1
2 p.

�
�
��

p2

A

Proof: Consider the diagrams of pullbacks

f−1
ε p w

xε

u
pε

h−1p w

u
ph

X

u
p

A w

dε A × Δ1
w

h
Y

ε = 0, 1.

Then there is a commutative diagram

f−1
0 p w

x0

u
d0

h−1p

u
ph

f−1
0 p × Δ1

w

p0 × 1

�
�
�
���

θ

A × Δ1,

by the homotopy lifting property. It follows that there is a diagram

f−1
0 p w

d1

������
θ∗

�
�
�
�
�
�
���

p0

f−1
0 p × Δ1

�
�
�
���

θ

f−1
1 p w

x1

u
p1

h−1p

u
ph

A w
d1

A × Δ1

and hence an induced map θ∗ as indicated. Similarly there are diagrams

f−1
1 p w

x1

u
d1

h−1p

u
ph

f−1
1 p × Δ1

w
p1 × 1

�
�
�
���

ω

A × Δ1,
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and

f−1
1 p w

d0

�
�
�
�
��

ω∗
�
�
�
�
�
�
���

p1

f−1
1 p × Δ1

�
�
�
���

ω

f−1
0 p w

x0

u

p0

h−1p

u

ph

A w

d0
A × Δ1.

Form the diagram

f−1
0 p × Λ2

0 w

( , θ, ω(θ∗ × 1))

z

u

h−1p

u

ph

f−1
0 p × Δ2

w

p0 × s1

�
�
�
�
�
�
�
���

γ

A × Δ1,

by using the homotopy lifting property and the relations

d1θ = x1θ∗ = d1(ω(θ∗ × 1)).

Then there is a commutative diagram

f−1
0 p × Δ1

w
1 × d0

�
�
�
�
��γ∗

u

prL

f−1
0 p × Δ2

�
�
�
���

γ

f−1
0 p w

x0

u

p0

h−1p

u

ph

f−1
0 p wp0

A w

d0
A × Δ1,

by the simplicial identities, so that γ∗ : ω∗θ∗ � 1 is a fibrewise homotopy. There
is a similar fibrewise homotopy θ∗ω∗ � 1. �
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Corollary 10.7. Suppose that q : Z → Y is a minimal fibration, and that fi :
X → Y , i = 0, 1 are homotopic simplicial maps. Then there is a commutative
diagram

f−1
0 q w

∼=
�
�
��q0

f−1
1 q.

�
�
��

q1

X

In particular, the pullbacks f−1
0 q and f−1

1 q are isomorphic.

Corollary 10.8. Suppose that q : Z → Y is a minimal fibration with Y
connected. Suppose that F is the fibre of q over a base point ∗ of Y. Then, for
any simplex σ : Δn → Y there is a commutative diagram

F × Δn
w

∼=
�
�
��prR

σ−1q.

�
�
��

Δn

Proof: Suppose that v and w are vertices of Y such that there is a 1-simplex z
of Y with ∂z = (v,w). Then the classifying maps v : Δ0 → Y and w : Δ0 → Y
are homotopic, and so there is an isomorphism Fv

∼= Fw of fibres induced by
the homotopy. In particular, there is an isomorphism Fv

∼= F for any vertex
v of Y. Now let i0 : Δ0 → Δn be the map that picks out the vertex 0 of Δn.
Finally, recall (see the proof of Theorem 7.10) that the composite

Δn → Δ0
i0−→ Δn

is homotopic to the identity on Δn. �

Theorem 10.9 (Gabriel-Zisman). Suppose that q : X → Y is a minimal
fibration. Then its realization |q| : |X| → |Y | is a Serre fibration.

Proof: It is enough to suppose that Y has only finitely many non-degenerate
simplices, since the image of any continuous map |Δn| → |Y | is contained in
some finite subcomplex of |Y |. We may also suppose that Y is connected. The
idea of the proof is to show that |q| : |X| → |Y | is locally trivial with fibre |F |,
where F is the fibre over some base point ∗ of Y .
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Now suppose that there is a pushout diagram

∂Δn
w

α
z

u

Z

u

Δn
w

β
Y,

where Z is subcomplex of Y with fewer non-degenerate simplices, and suppose
that U is an open subset of |Z| such that there is a fibrewise homeomorphism

U ×|Y | |X| w
ω∼=�

�
��

U × |F |.
�
�
��

prL

U

Let U1 = |α|−1(U) ⊂ |∂Δn|. Then there is an induced fibrewise homeomor-
phism

U1 ×|Y | |X| w
ω∼=�

�
��

U1 × |F |.
�
�
��

prL

U1

The fibrewise isomorphism

Δn × F w
δ∼=�

�
��prL

Δn ×Y X

�
�
��

Δn

induces a homeomorphism

V 1 × F w
δ∼=�

�
��prL

V 1 ×|Y | |X|
�
�
��

V 1
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over some open subset V 1 of |Δn| such that V 1 ∩ |∂Δn| = U1 and there is a
retraction r : V 1 → U1. The map δ restricts to a homeomorphism

U1 × F w
δ∼=�

�
��prL

U1 ×|Y | |X|
�
�
��

U1

over U1. Now consider the fibrewise homeomorphism

U1 × |F | w
δ−1ω∼=�

�
��prL

U1 × |F |.
�
�
��

prL

U1

There is a homeomorphism

V 1 × |F | w

r∗(δ−1ω)
∼=�

�
��prL

V 1 × |F |.
�
�
��

prL

V 1

which restricts to δ−1ω over U1. In effect r∗(δ−1ω)(v′, f) = (v′, ϕ(rv′, f)),
where δ−1ω(w, f) = (w,ϕ(w, f)), and this definition is “functorial”. Thus, the
fibrewise isomorphism

V 1 × F w

δr∗(δ−1ω)
∼=�

�
��prL

V 1 ×|Y | |X|
�
�
��

V 1

restricts to ω over U1. It follows that there is a fibrewise homeomorphism

(V 1 ∪U1 U) × F w∼=�
�
��prL

(V 1 ∪U1 U) ×|Y | |X|
�
�
��

(V 1 ∪U1 U)

over the open set. V 1 ∪U1 U of |Y |. �
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The following result of Quillen [77] is the key to both the closed model
structure of the simplicial set category, and the relation between simplicial
homotopy theory and ordinary homotopy theory. These results will appear in
the next section.

Theorem 10.10 (Quillen). The realization of a Kan fibration is a Serre
fibration.

Proof: Let p : X → Y be a Kan fibration. According to Proposition 10.3, one
can choose a commutative diagram

Z w

j
�
�
���q

X w

g

u
p

Z
h
h

hhk
q

Y

where q is a minimal fibrations, gj = 1Z and jg is fibrewise homotopic to 1X .
In view of Theorem 10.9, it clearly suffices to prove the following two results:

Lemma 10.11. g : X → Z has the right lifting property with respect to all
∂Δn ⊂ Δn, n ≥ 0.

Lemma 10.12. Suppose that g : X → Z has the right lifting property with
respect to all ∂Δn ⊂ Δn, n ≥ 0. Then |g| : |X| → |Z| is a Serre fibration.

Proof of Lemma 10.11: Suppose that the diagrams

X × Δ1
w

h

u
pr

X

u
p

X wp Y

X

u
d0

�
�
�
���

1X

X × Δ1
w

h
X

X

u

d1

wg Z

u

j

represent the fibrewise homotopy, and suppose that the diagram

∂Δn w
u

z

u
i

X

u
g

Δn wv Z
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commutes. Then there are commutative diagrams

∂Δn × Δ1
w

u × 1
z

u

i × 1

X × Δ1
w

h X

u

p

Δn × Δ1
wprL
Δn

wqv Y

∂Δn
w

u
z

u

i

X w

g
Z w

j
X

u

p

Δn
wv Z

�
�
���j

wq Y,

and hence a diagram

(∂Δn × Δ1) ∪ (Δn × {0}) w

(h(u × 1), jv)

z

u

X

u

p

Δn × Δ1
wprL

��
��
��
��
��

����
h1

Δn
wqv Y.

Let v1 be the simplex classified by the composite

Δn
d0

−→ Δn × Δ1
h1−→ X.

The idea of the proof is now to show that gv1 = v. The diagram

∂Δn
w

u
z

u

i

X

Δn
�
�
�
��

v1

commutes, and there is a composite

Δn × Δ1
v1×1−−−→ X × Δ1

h−→ X
g−→ Z.
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The map gh(v1×1) is a homotopy gjgv1 = gv1

�−→ gv1. Moreover, the homotopy
on the boundary is gh(u × 1). It follows that there is a commutative diagram

(∂Δn × Δ2) ∪ (Δn × Λ2
2) w

(s0(gh(u × 1)), (gh1, gh(v1 × 1), ))

z

u

Z

u

q

Δn × Δ2
wprL

���
���

���
���

���
�����

ξ

Δn wqv Y.

Then the diagram

∂Δn × Δ1 w
prL

z

u

i × 1

∂Δn

u

gu

Δn × Δ1 w
ξ(1 × d2)

u

prL

Z

u

q

Δn wqv Y

commutes, and so gv1 = gjv = v by the minimality of q. �
Proof of Lemma 10.12: Suppose that f : X → Y has the right lifting
property with respect to all ∂Δn ⊂ Δn, n ≥ 0, and hence with respect to all
inclusions of simplicial sets. Then there is a commutative diagram

X w
1X

u

(1X , f)

X

u

f

X × Y wprR

h
h
hhjr

Y,

and so f is a retract of the projection pr : X × Y → Y. But then |f | is a Serre
fibration. �
This also completes the proof of Theorem 10.10.

I.11. The closed model structure.
The results stated and proved in this section are the culmination of the work
that we have done up to this point. We shall prove here that the simplicial
set category S has a closed model structure, and that the resulting homotopy
theory is equivalent to the ordinary homotopy theory of topological spaces.
These are the central organizational theorems of simplicial homotopy theory.
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Proposition 11.1. Suppose that X is a Kan complex. Then the canonical
map ηX : X → S|X| is a weak equivalence in the sense that it induces an
isomorphism in all possible simplicial homotopy groups.

Proof: Recall that S|X| is also a Kan complex.
ηX induces an isomorphism in π0: every map v : |Δ0| → |X| factors

through the realization of a simplex |σ| : |Δn| → |X| and so S|X| is connected
if π0X = ∗. The simplicial set X is a disjoint union of its path components and
S| | preserves disjoint unions, so that π0X → π0S|X| is monic.

Suppose that we have shown that ηX induces an isomorphism

(ηX)∗ : πi(X,x)
∼=−→ πi(S|X|, ηx)

for all choice of base points x ∈ X and i ≤ n. Then, using Theorem 10.10 for
the path-loop fibration ΩX → PX → X determined by x (see the discussion
following the proof of Lemma 7.3), one finds a commutative diagram

πn+1(X,x) w

ηX

u

∂ ∼=

πn+1(S|X|, ηx)

u

∂

πn(ΩX,x) w

∼=
ηΩX

πn(S|ΩX|, ηx),

and so we’re done if we can show that PX and hence S|PX| contracts onto its
base point. But there is a diagram

(Δ0 × Δ1) ∪ (PX × ∂Δ1) w

(x, (1PX , x))

z

u

PX

u

PX × Δ1
w

�
�
�
�
�
�
�
�
���

h

Δ0,

and h exists because the unique map PX → Δ0 has the right lifting property
with respect to all ∂Δn ⊂ Δn, n ≥ 0. �

If X is a Kan complex and x is any vertex of X, then it follows from
Proposition 11.1 and adjointness that ηX induces a canonical isomorphism

πn(X,x) ∼= πn(|X|, x), n ≥ 1,

where the group on the right is the ordinary homotopy group of the space |X|.
It follows that a map f : X → Y of Kan complexes is a (simplicial) weak
equivalence if and only if the induced map |f | : |X| → |Y | is a topological weak
equivalence. Thus, we are entitled to define a map f : X → Y of arbitrary
simplicial sets to be a weak equivalence if the induced map |f | : |X| → |Y | is
a weak equivalence of spaces. Our last major technical result leading to the
closed model structure of S is
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Theorem 11.2. Suppose that g : X → Y is a map between arbitrary simplicial
sets. Then g is a Kan fibration and a weak equivalence if and only if g has the
right lifting property with respect to all inclusions ∂Δn ⊂ Δn, n ≥ 0.

Proof: Suppose that g : X → Y is a Kan fibration with the advertised lifting
property. We have to show that S|g| : S|X| → S|Y | is a weak equivalence. The
simplicial set Y is arbitrary, so we must define π0Y to be the set of equivalence
classes of vertices of Y for the relation generated by the vertex homotopy
relation. In other words, y � z if and only if there is a string of vertices

y = y0, y1, . . . , yn = z

and a string of 1-simplices
v1, . . . , vn

of X such that ∂vi = (yi−1, yi) or ∂vi = (yi, yi−1) for i = 1, . . . , n. If Y
is a Kan complex, then this definition of π0Y coincides with the old defini-
tion. Moreover, the canonical map ηY : Y → S|Y | induces an isomorphism

π0Y
∼=−→ π0S|Y | for all simplicial sets Y. The lifting property implies that

g∗ : π0X → π0Y is an isomorphism, so that the induced map π0S|X| → π0S|Y |
is an isomorphism as well. Finally, it suffices to show that the induced maps
πi(S|X|, x) → πi(S|Y |, gx) of simplicial homotopy groups are isomorphisms for
all vertices x of X and all i ≥ 1. But Theorem 10.9 implies that the the map
S|g| : S|X| → S|Y | is a Kan fibration with fibre S|Fx| over g(x), where

Fx w

u

X

u

g

Δ0
wgx Y

is a pullback in the simplicial set category. The fibre Fx is a contractible Kan
complex (see the corresponding argument for PX in the proof of Proposition
11.1), and so S|Fx| is contractible as well. The result then follows from a long
exact sequence argument.

For the reverse implication, it suffices (see the proof of Theorem 10.10) to
assume that g : X → Y is a minimal fibration and a weak equivalence and then
prove that it has the lifting property. We may also assume that Y is connected.
Consider a diagram

∂Δn
w

α
z

u

X

u

g

Δn
w

β
Y
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and the induced diagram

∂Δn
w

α∗
z

u

Δn ×Y X

u

Δn
w1 Δn.

It suffices to find a lifting for this last case. But there is a fibrewise isomorphism

Δn ×Y X w

∼=
�
�
��

Δn × Fy

�
�
��

prL

Δn

by Corollary 10.8, where Fy is the fibre over some vertex y of Y. Thus, it suffices
to find a lifting of the following sort:

∂Δn
w

z

u

Fy.

Δn
�
�
�
��

This can be done, by Theorem 7.10, since Fy is a Kan complex such that
π0(S|Fy|) is trivial, and πi(S|Fy|, ∗) = 0, i ≥ 1 for any base point ∗, and
η : Fy → S|Fy| is a weak equivalence by Proposition 11.1. �

A cofibration of simplicial sets is an inclusion map.

Theorem 11.3. The simplicial set category S, together with the specified
classes of Kan fibrations, cofibrations and weak equivalences, is a closed model
category.

Proof: CM1 is satisfied, since S is complete and cocomplete. CM2 follows
from CM2 for CGHaus. The retract axiom CM3 is easy.

To prove the factorization axiom CM5, observe that a small object ar-
gument and the previous theorem together imply that any simplicial set map
f : X → Y may be factored as:

X w
f

N
N
NNPi

Y

Z

�
�
���

p and

X w
f

�
�
��j

Y,

W

�
�
���

q
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where i is anodyne, p is a fibration, j is an inclusion, and q is a trivial fibration.
The class of inclusions i : U → V of simplicial sets such that |i| : |U | → |V |
is a trivial cofibration is saturated, by adjointness, and includes all Λn

k ⊂ Δn.
Thus all anodyne extensions are trivial cofibrations of S. To prove CM4 we
must show that the lifting (dotted arrow) exists in any commutative diagram

U w

u

i

X

u

p

V w

i
i
iij

Y,

where p is a fibration and i is a cofibration, and either i or p is trivial. The
case where p is trivial is Theorem 11.2. If i is a weak equivalence, then there is
a diagram

U w
j

u

i

Z

u

p

V w1V

h
h
hhjs

V

where j is anodyne and p is a (necessarily) trivial fibration, so that s exists.
But then i is a retract of an anodyne extension, so i has the left lifting property
with respect to all fibrations (compare the proof of Lemma 9.4). �

The homotopy category Ho(S) is obtained from S by formally inverting
the weak equivalences. There are several ways to do this [76], [33], [15] —
see also Section II.1. One may also form the category Ho(Top) by formally
inverting the weak homotopy equivalences; this category is equivalent to the
category of CW-complexes and ordinary homotopy classes of maps. For the
same reason (see [76]), Ho(S) is equivalent to the category of Kan complexes
and simplicial homotopy classes of maps. The realization functor preserve weak
equivalences, by definition. One may use Theorem 10.10 (see the argument for
Proposition 11.1) to show that the canonical map ε : |S(Y )| → Y is a weak
equivalence, for any topological space Y, and so the singular functor preserves
weak equivalences as well. It follows that the realization and singular functors
induce functors

Ho(S) w
| |∗

u

S∗
Ho(Top)

of the associated homotopy categories.

Theorem 11.4. The realization and singular functors induce an equivalence
of categories of Ho(S) with Ho(Top).
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Proof: We have just seen that ε : |S(Y )| → Y is a weak equivalence for
all topological spaces Y. It remains to show that η : X → S|X| is a weak
equivalence for all simplicial sets X. But η is a weak equivalence if X is a Kan
complex, by Proposition 11.1, and every simplicial set is weakly equivalent to a
Kan complex by CM5. The composite functor S| | preserves weak equivalences.

�
The original proof of Theorem 11.3 appears in [76], modulo some fiddling

with axioms (see [78]). Theorem 11.4 has been known in some form since the
late 1950’s (see [67], [33], [59]).

Although it may now seem like a moot point, the function complex trick
of Proposition 5.2 was a key step in the proof of Theorem 11.3. We can now
amplify the statement of Proposition 5.2 as follows:

Proposition 11.5. The category S of simplicial sets satisfies the simplicial
model axiom

SM7: Suppose that i : U → V is a cofibration and p : X → Y is a fibration.
Then the induced map

Hom(V,X)
(i∗,p∗)−−−−→ Hom(U,X) ×Hom(U,Y ) Hom(V,X)

is a fibration, which is trivial if either i or p is trivial.

Proof: Use Proposition 5.2 and Theorem 11.2. �



Chapter II Model Categories

The closed model axioms have a list of basic abstract consequences, including
an expanded notion of homotopy and a Whitehead theorem. The associated
homotopy category is defined to be the result of formally inverting the weak
equivalences within the ambient closed model category, but can be constructed
in the CW-complex style by taking homotopy classes of maps between objects
which are fibrant and cofibrant. These topics are presented in the first section
of this chapter.

The simplicial set category has rather more structure than just that of a
closed model category: the set hom(X,Y ) of maps between simplicial sets X
and Y is the set of vertices of the function complex Hom(X,Y ), and the col-
lection of all such function complexes determines a simplicial category. We’ve
already seen that the function complexes satisfy an exponential law and re-
spect cofibrations and fibrations in a suitable sense. The existence of the func-
tion complexes and the interaction with the closed model structure can be
abstracted to a definition of a simplicial model category, which is given in Sec-
tions 2 and 3 along with various examples. Basic homotopical consequences of
the additional simplicial structure are presented in Section 3.

Sections 4, 5 and 6 are concerned with detection principles for simplicial
model category structures. Generally speaking, such a structure for the cat-
egory sC of simplicial objects in a category C is induced from the simplicial
model category structure on simplicial sets in the presence of an adjoint pair
of functors

F : S � sC : G,

(or a collection of adjoint pairs) if G satisfies extra conditions, such as preser-
vation of filtered colimits, in addition to being a right adjoint — this is The-
orem 4.1. In one major stream of examples, the category C is some algebraic
species, such as groups or abelian groups, and G is a forgetful functor. There
is, however, an extra technical requirement for Theorem 4.1, namely that every
cofibration of sC having the left lifting property with respect to all fibrations
should be a weak equivalence. This condition can often be verified by brute
force, as can be done in the presence of a small object argument for the factor-
ization axioms (eg. simplicial abelian groups), but there is a deeper criterion,
namely the existence of a natural fibrant model (Lemma 5.1). The other major
source of examples has to do with G being a representable functor of the form
G = hom(Z, ), where Z is either small in the sense that hom(Z, ) respects
filtered colimits, or is a disjoint union of small objects. In this setting, Kan’s
Ex∞-construction (see Section III.4) is used to construct the natural fibrant
models required by Lemma 5.1. This line of argument is generalized signifi-
cantly in Section 6, at the cost of the introduction of cofibrantly generated
closed model categories and transfinite small object arguments.

65
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Section 7 is an apparent return to basics. We develop a criterion for a pair
of adjoint functors between closed model categories to induce adjoint functors
on the homotopy category level, known as Quillen’s total derived functor theo-
rem. Quillen’s result is, at the same time, a non-abelian version of the calculus
of higher direct images, and a generalization of the standard result that co-
homology is homotopy classes of maps taking values in Eilenberg-Mac Lane
spaces.

The category of simplicial sets, finally, has even more structure: it is a
proper simplicial model category, which means that, in addition to everything
else, weak equivalences are preserved by pullback over fibrations and by pushout
along cofibrations. This property is discussed in Section 8. Properness is the
basis of the standard results about homotopy cartesian diagrams, as well as
being of fundamental importance in stable homotopy theory. We discuss ho-
motopy cartesian diagrams in the context of Gunnarsson’s axiomatic approach
to the gluing and cogluing lemmas [40].

1. Homotopical algebra.
Recall that a closed model category C is a category which is equipped with
three classes of morphisms, called cofibrations, fibrations and weak equivalences
which together satisfy the following axioms:

CM1: The category C is closed under all finite limits and colimits.
CM2: Suppose that the following diagram commutes in C:

X w

g
N
N
NNPh

Y
�

�
���

f

Z.

If any two of f , g and h are weak equivalences, then so is the third.
CM3: If f is a retract of g and g is a weak equivalence, fibration or cofibration,

then so is f .
CM4: Suppose that we are given a commutative solid arrow diagram

U w

u
i

X

u
p

V w

i
i
iij

Y

where i is a cofibration and p is a fibration. Then the dotted arrow exists,
making the diagram commute, if either i or p is also a weak equivalence.
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CM5: Any map f : X → Y may be factored:
(a) f = p · i where p is a fibration and i is a trivial cofibration, and
(b) f = q · j where q is a trivial fibration and j is a cofibration.

Recall that a map is said to be a trivial fibration (aka. acyclic fibration)
if it is both a fibration and a weak equivalence. Dually, a trivial cofibration is
a map which is simultaneously a cofibration and a weak equivalence.

According to CM1, a closed model category C has an initial object ∅ and
a terminal object ∗. Say that an object A of C is cofibrant if the map ∅ → A is a
cofibration. Dually, an object X is fibrant if the map X → ∗ is a fibration of C.

This set of axioms has a list of standard consequences which amplifies the
interplay between cofibrations, fibrations and weak equivalences, giving rise to
collection of abstract techniques that has been known as homotopical algebra
since Quillen introduced the term in [76]. This theory is is really an older friend
in modern dress, namely obstruction theory made axiomatic. The basic results,
along with their proofs, are sketched in this section.

We begin with the original meaning of the word “closed”:

Lemma 1.1. Suppose that C is a closed model category. Then we have the
following:

(1) A map i : U → V of C is a cofibration if and only if it has the left lifting
property with respect to all trivial fibrations.

(2) The map i is a trivial cofibration if and only if it has the left lifting
property with respect to all fibrations.

(3) A map p : X → Y of C is a fibration if and only if it has the right lifting
property with respect to all trivial cofibrations.

(4) The map p is a trivial fibration if and only if it has the right lifting
property with respect to all cofibrations.

The point of Lemma 1.1 is that the various species of cofibrations and fibrations
determine each other via lifting properties.
Proof: We shall only prove the first statement; the other proofs are similar.

Suppose that i is a cofibration, p is a trivial fibration, and that there is a
commutative diagram

U w
α

u

i

X

u

p

V w

β
Y

(1.2)

Then there is a map θ : V → X such that pθ = β and θi = α, by CM4.
Conversely suppose that i : U → V is a map which has the left lifting property
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with respect to all trivial fibrations. By CM5, i has a factorization

U w

j
�
�
�
��i

W

u
q

V

where j is a cofibration and q is a trivial fibration. But then there is a commu-
tative diagram

U w

j

u
i

W

u
q

V

h
h
hhj

V

and so i is a retract of j. CM3 then implies that i is a cofibration. �
The proof of the Lemma 1.1 contains one of the standard tricks that is

used to prove that the axiom CM4 holds in a variety of settings, subject to
having an adequate proof of the factorization axiom CM5. Lemma 1.1 also
immediately implies the following:

Corollary 1.3.

(1) The classes of cofibrations and trivial cofibrations are closed under com-
position and pushout. Any isomorphism is a cofibration.

(2) The classes of fibrations and trivial fibrations are closed under compo-
sition and pullback. Any isomorphism is a fibration.

The statements in Corollary 1.3 are part of Quillen’s original definition of a
model category [76].

Quillen defines a cylinder object for an object A in a closed model category
C to be a commutative triangle

A � A�
�
���
∇

u
i

Ã wσ A

(1.4)

where ∇ : A � A → A is the canonical fold map which is defined to be the
identity on A on each summand, i is a cofibration, and σ is a weak equivalence.
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Then a left homotopy of maps f, g : A → B is a commutative diagram

A � A�
�
���
(f, g)

u
i

Ã w

h
B

where (f, g) is the map on the disjoint union which is defined by f on one
summand and g on the other, and the data consisting of

i = (i0, i1) : A � A → Ã

comes from some choice of cylinder object for A.
There are many choices of cylinder object for a given object A of a closed

model category C: any factorization of ∇ : A�A → A into a cofibration followed
by a trivial fibration that one might get out of CM5 gives a cylinder object
for A. In general, however, the object A needs to be cofibrant for its cylinder
objects to be homotopically interesting:

Lemma 1.5.

(1) Suppose that A is a cofibrant object of a closed model category C, and
that the diagram (1.4) is a cylinder object for A. Then the maps i0, i1 :
A → Ã are trivial cofibrations.

(2) Left homotopy of maps A → B in a closed model category C is an
equivalence relation if A is cofibrant.

Proof: Denote the initial object of C by ∅.
For the first part, observe that the diagram

∅ w

u

A

u
inR

A w

inL
A � A

is a pushout since cofibrations are closed under pushout by Lemma 1.1, and the
unique map ∅ → A is a cofibration by assumption. It follows that the inclusions
inL and inR are cofibrations, so that the compositions i0 = (i0, i1) · inL and
i1 = (i0, i1) · inR are cofibrations as well. Finally, the maps i0 and i1 are weak
equivalences by CM2, since the map σ is a weak equivalence.
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To prove the second statement, first observe that if τ : A � A → A � A is
the automorphism which flips summands, then the diagram

A � A�
�
���
∇

u
i · τ

Ã wσ A,

which is constructed from (1.4) by twisting by τ , is a cylinder object for A.
This implies that the left homotopy relation is symmetric.

Subject to the same definitions, the map fσ : A → B is clearly a left
homotopy from f : A → B to itself, giving reflexivity.

Suppose given cylinder objects

A � A

u
(iε0, i

ε
1)

�
�
���
∇

Aε w

σε A,

where ε = 0, 1, and form the pushout

A w

i10

u
i01

A1

u
i1∗

A0 w

i0∗
Ã

Then the map

A � A
(i0∗i00,i1∗i11)−−−−−−−→ Ã

is a composite

A � A
i001

−−−→ A0 � A
(i0∗,i1∗i11)−−−−−−→ Ã.

The map i00 � 1 is a cofibration by the first statement of the lemma, and there
is a pushout diagram

A � A w

i01 � 1

u
(i10, i11)

A0 � A

u
(i0∗, i1∗i11)

A1 w

i1∗
Ã.
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In particular, there is a cylinder object for A

A � A

u

(i0∗i00, i1∗i11)

�
�
���
∇

Aε wσ∗ A.

It follows that if there are left homotopies h0 : A0 → B from f0 to f1 and
h1 : A1 → B from f1 to f2, then there is an induced left homotopy h∗ : Ã → B
from f0 to f2. �

A path object for an object B in a closed model category C is a commutative
triangle

B̂

u
p = (p0, p1)

B
N
N
N
NNPs

w
Δ

B × B

(1.6)

where Δ is the diagonal map, s is a weak equivalence, and p (which is given by
p0 on one factor and by p1 on the other) is a fibration.

Once again, the factorization axiom CM5 dictates that there is an ample
supply of path objects for each object of an arbitrary closed model category. If
a simplicial set X is a Kan complex, then the function complex hom(Δ1,X)
is a path object for X, and the function space Y I is a path object for each
compactly generated Hausdorff space Y .

There is a notion of right homotopy which corresponds to path objects:
two maps f, g : A → B are said to be right homotopic if there is a diagram

B̂

u
(p0, p1)

A
N
N
N
NNPh

w
(f, g)

B × B

where the map (p0, p1) arises from some path object (1.6), and (f, g) is the map
which projects to f on the left hand factor and g on the right hand factor.

Lemma 1.7.

(1) Suppose that B is a fibrant object of a closed model category C, and

that B̂ is a path object for B as in (1.6). Then the maps p0 and p1 are
trivial fibrations.

(2) Right homotopy of maps A → B in C is an equivalence relation if B is
fibrant.
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Lemma 1.7 is dual to Lemma 1.5 in a precise sense. If C is a closed model
category, then its opposite Cop is a closed model category whose cofibrations
(respectively fibrations) are the opposites of the fibrations (respectively cofi-
brations) in C. A map in Cop is a weak equivalence for this structure if and only
if its opposite is a weak equivalence in C. Then Lemma 1.7 is an immediate
consequence of the instance of Lemma 1.5 which occurs in Cop. This sort of du-
ality is ubiquitous in the theory: observe, for example, that the two statements
of Corollary 1.3 are dual to each other.

Left and right homotopies are linked by the following result:

Proposition 1.8. Suppose that A is cofibrant. Suppose further that

A � A�
�
���
(f, g)

u
(i0, i1)

Ã w

h
B

is a left homotopy between maps f, g : A → B, and that

B̂

u
p = (p0, p1)

B
N
N
N
NNPs

w
Δ

B × B

is a fixed choice of path object for B. Then there is a right homotopy

B̂

u
(p0, p1)

A
N
N
N
NNPH

w
(f, g)

B × B.

This result has a dual, which the reader should be able to formulate indepen-
dently. Proposition 1.8 and its dual together imply

Corollary 1.9. Suppose given maps f, g : A → B, where A is cofibrant and
B is fibrant. Then the following are equivalent:

(1) f and g are left homotopic.

(2) f and g are right homotopic with respect to a fixed choice of path object.

(3) f and g are right homotopic.

(4) f and g are left homotopic with respect to a fixed choice of cylinder
object.
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In other words, all possible definitions of homotopy of maps A → B are the
same if A is cofibrant and B is fibrant.
Proof of Proposition 1.8: The map i0 is a trivial cofibration since A is
cofibrant, and (p0, p1) is a fibration, so that there is a commutative diagram

A w

sf

u

i0

B̂

u

(p0, p1)

Ã w

(fσ, h)

N
N
N
NNPK

B × B

for some choice of lifting K. Then the composite K · i1 is the desired right
homotopy. �

We can now, unambiguously, speak of homotopy classes of maps between
objects X and Y of a closed model category C which are both fibrant and
cofibrant. We can also discuss homotopy equivalences between such objects.
The classical Whitehead Theorem asserts that any weak equivalence f : X → Y
of CW-complexes is a homotopy equivalence. CW-complexes are spaces which
are both cofibrant and cofibrant. The analogue of this statement in an arbitrary
closed model category is the following:

Theorem 1.10 (Whitehead). Suppose that f : X → Y is a morphism of
a closed model category C such that the objects X and Y are both fibrant
and cofibrant. Suppose also that f is a weak equivalence. Then the map f is a
homotopy equivalence.

Proof: Suppose, first of all, that f is a trivial fibration, and that

X � X w
∇

u

(i0, i1)

X

X̃
N
N
N
NNPσ

is a cylinder object for X. Then one proves that f is a homotopy equivalence by
finding, in succession, maps θ and h making the following diagrams commute:

∅ w

u

X

u

f

Y

h
h
h
hj

θ

Y
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X � X w

(θ · f, 1)

u

(i0, i1)

X

u

f

X̃ w

f · σ
A
A
A
A
AAC

h

Y.

Dually, if f is a trivial cofibration, then f is a homotopy equivalence.
Every weak equivalence f : X → Y between cofibrant and fibrant objects

has a factorization

X w
f

h
hhji

Y

Z

�
�
��
p

in which i is a trivial cofibration and p is a trivial fibration. The object Z is
both cofibrant and fibrant, so i and p are homotopy equivalences. �

Suppose that X and Y are objects of a closed model category C which are
both cofibrant and fibrant. Quillen denotes the set of homotopy classes of maps
between such objects X andY by π(X,Y ). There is a category πCcf associated
to any closed model C: the objects are the cofibrant and fibrant objects of C,
and the morphisms from X to Y in πCcf are the elements of the set π(X,Y ).

For each object X of C, use CM5 to choose, in succession, maps

∗ iX−→ QX
pX−−→ X

and
QX

jX−→ RQX
qX−−→ ∗,

where iX is a cofibration, pX is a trivial fibration, jX is a trivial cofibration,
and qX is a fibration. We can and will presume that pX is the identity map if
X is cofibrant, and that jX is the identity map if QX is fibrant. Then RQX is
an object which is both fibrant and cofibrant, and RQX is weakly equivalent
to X, via the maps pX and jX .

Any map f : X → Y lifts to a map Qf : QX → QY , and then Qf extends
to a map RQf : RQX → RQY . The map Qf is not canonically defined: it is
any morphism which makes the following diagram commute:

∅ w

u

QY

u
πY

QX w
f · πX

h
h
hhjQf

Y
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Note, however, that any two liftings f1, f2 : QX → QY of the morphism f ·πX

are left homotopic since πY is a trivial fibration.
The argument for the existence of the morphism RQf : RQX → RQY is

dual to the argument for the existence of Qf . If the maps f1, f2 : QX → QY
are liftings of f · πX and gi : RQX → RQY is an extension of the map jY · fi

for i = 1, 2, then f1 is left homotopic to f2 by what we’ve already seen, and so
the composites jY · f1 and jY · f2 are right homotopic, by Lemma 1.8. Observe
finally that any right homotopy between the maps jY f1, jY f2 : QX → RQY
can be extended to a right homotopy between the maps g1, g2 : RQY → RQY .
It follows that the assignment f �→ RQf is well defined up to homotopy.

The homotopy category Ho(C) associated to a closed model category C can
be defined to have the same objects as C, and with morphism sets defined by

homHo(C)(X,Y ) = π(RQX,RQY ).

There is a functor
γ : C → Ho(C)

which is the identity on objects, and sends a morphism f : X → Y to the
homotopy class [RQf ] which is represented by any choice of map RQf :
RQX → RQY defined as above. If f : X → Y is a weak equivalence of C,
then RQf : RQX → RQY is a homotopy equivalence by the Whitehead The-
orem, and so γ(f) is an isomorphism of Ho(C).

This functor γ is universal with respect to all functors F : C → D which
invert weak equivalences:

Theorem 1.11. Suppose that F : C → D is a functor such that F (f) is an
isomorphism of D for all weak equivalences f : X → Y of C. Then there is a
unique functor F∗ : Ho(C) → D such that F∗ · γ = F .

Proof: The functor F : C → D takes (left or right) homotopic maps of C
to the same map of D, since it inverts weak equivalences. It follows that, if
g : RQX → RQY represents a morphism from X to Y in Ho(C), one can
specify a well-defined morphism F∗([g]) of D by the assignment

F∗([g]) = F (πY )F (jY )−1F (g)F (jX)F (πX)−1. (1.12)

This assignment plainly defines a functor F∗ : Ho(C) → D such that F∗γ = F .
Also, the morphisms γ(πX) and γ(jX) are both represented by the identity

map on RQX, and so the composite

γ(πY )γ(jY )−1γ(g)γ(jX)γ(jX)−1

coincides with the morphism [g] : X → Y of Ho(C). The morphism F∗([g])
must therefore have the form indicated in (1.12) if the composite functor F∗γ
is to coincide with F . �
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Remark 1.13. One can always formally invert a class Σ of morphisms of
a category C to get a functor γ : C → C[Σ−1] which is initial among functors
F : C → D which invert all members of the class of morphisms Σ (see Schubert’s
book [83]), provided that one is willing to construct C[Σ−1] in some higher set
theoretic universe. This means that the morphism “things” homC[Σ−1](X,Y )
of C[Σ−1] may no longer be sets. In Theorem 1.11, we have found an explicit
way to formally invert the class WE of weak equivalences of a closed model
category C to obtain the category Ho(C) without invoking a higher universe.
After the fact, all models of C[WE−1] must be isomorphic as categories to
Ho(C) on account of the universal property of the functor γ : C → Ho(C), so
that all possible constructions have small hom sets.

Let πCcf denote the category whose objects are the cofibrant fibrant ob-
jects of the closed model category C, and whose sets of morphisms have the
form

homπCcf
(X,Y ) = π(X,Y ).

The functor γ : C → Ho(C) induces a fully faithful embedding
γ∗ : πCcf → Ho(C),

and that every object of Ho(C) is isomorphic to an object which is in the image
of the functor γ∗. In other words the category πCcf of homotopy classes of maps
between cofibrant fibrant objects of C is equivalent to the homotopy category
Ho(C).

This observation specializes to several well-known phenomena. In par-
ticular, the category of homotopy classes of maps between CW-complexes is
equivalent to the full homotopy category of topological spaces, and the ho-
motopy category of simplicial sets is equivalent to the category of simplicial
homotopy classes of maps between Kan complexes.

We close this section by showing that the weak equivalences in a closed
model category C are exactly those maps which induce isomorphisms in the
homotopy category Ho(C).

Proposition 1.14. Suppose that f : X → Y is a morphism of a closed model
category C which induces an isomorphism in the homotopy category Ho(C).
Then f is a weak equivalence.

Proof: Suppose that the objects X and Y are both fibrant and cofibrant. In
view of the construction of the functor γ : C → Ho(C), the idea is to show that
any map f : X → Y which has a homotopy inverse must be a weak equivalence.
Any such map f has a factorization

X w

f
h
h
hji

Y

Z

�
�
��
p
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where p is a fibration and i is a trivial cofibration, by the factorization axiom
CM5. The trivial cofibration i is a homotopy equivalence, by the Whitehead
Theorem (Theorem 1.10), so it suffices to assume that the map f is a fibration.
We show that such a fibration f must have the right lifting property with
respect to all cofibrations, so that Lemma 1.1 may be invoked to conclude that
f is a weak equivalence.

Subject to proving Lemma 1.15 below, we can assume that the homotopy
inverse θ : Y → X is a section of f , and that there is a homotopy h : X̃ → X
from θ ·f to 1X which is fibrewise in the sense that f ·h = f ·σX . One constructs
path objects X̂ and Ŷ for X and Y which are compatible with f by factorizing
the map

X
(Δ,sY f)−−−−−→ (X × X) ×(Y ×Y ) Ŷ

as a trivial cofibration sX : X → X̂ followed by a fibration

π : X̂ → (X × X) ×(Y ×Y ) Ŷ .

Write f̂ for the composite

X̂
π−→ (X × X) ×(Y ×Y ) Ŷ → Ŷ .

The composite
X̂

π−→ (X × X) ×(Y ×Y ) Ŷ → X × X

is the fibration (p0, p1) : X̂ → X × X for a path object X̂ for X.
The dotted arrow Q exists in the diagram

X w

sX

u

i1

X̂

u

π

X̃ w

((h, σX), sY fσX)

�
�
�
�
�
�
�
�
�
�
���

Q

(X × X) ×(Y ×Y ) Ŷ ,

making it commute, since i1 is a trivial cofibration and π is a fibration. The
composite k = Q · i0 : X → X̂ is therefore a right homotopy from θp to 1X

such that f̂k = sY f
There is a pullback diagram

(X × X) ×(Y ×Y ) Ŷ w

u

pr

X

u

f

X ×Y Ŷ w Y
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so that the projection map pr defined by (x0, x1, ω) �→ (x0, ω) is a fibration. It
follows that the map (p0, f̂) : X̂ → X ×Y Ŷ is a fibration.

Finally, given any commutative diagram

A w
α

u

i

X

u

f

B w

β
Y

with i a cofibration, the lifting H exists in the diagram

A w
kα

u

i

X̂ w

p1

u

(p0, f̂)

X

u

f

B w

(θβ, sY β)

B
B
B
B
BBC

X ×Y Ŷ w Ŷ wp1
Y

making it commute, and the composite square solves the lifting problem. �
Lemma 1.15. Suppose that X and Y are cofibrant and fibrant objects of a
closed model category C, and that the map f : X → Y is a fibration and a
homotopy equivalence. Then f has a section θ : Y → X with a left homotopy
h : X̃ → X from θf to 1X which is fibred over f in the sense that the composite
fh : X̃ → Y is the constant homotopy fσX at f .

Proof: The map f has a homotopy inverse g : Y → X; in particular, there is
a left homotopy H : Ỹ → Y from fg to 1Y . The homotopy lifting property for
the fibration f can be used to construct a left homotopy from g to a section θ
of f .

Suppose that k : X̃ → X is a choice of left homotopy from 1X to θf .
Write k−1 = k : X̃ → X for the homotopy from θf to 1X defined on the
twisted cylinder object

X � X w
τ

u

∇
X � X w

(i0, i1)
X̃

�������������
σX

X

Here, τ is the isomorphism which flips direct summands. Now write θfk−1 ∗k :
X → X for the composite homotopy from 1X to θf , where X is defined by the
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pushout

X w

i1

u

i1

X̃

u

X̃ w X

according to the recipe for composing homotopies given in the proof of Lemma
1.5. Then there is a diagram

X

u

f

X
N
N
N
NNPθfk−1 ∗ k

w
fk−1 ∗ fk

Y

The game is now to show that the homotopy fk−1 ∗fk is homotopic to to
the constant homotopy fσX : X → Y in the sense that there is a commutative
diagram

X ∪(XX) X w
(fk−1 ∗ k, fσX)

u

j

Y

X ′
��

��
��

��
���

H

where j is a cofibration appearing in a factorization

X ∪(XX) X w
(σX , σX)

u

j

X

X ′
�
�
�
�
�
�
���

π

such that π is a trivial fibration. Write inL : X → X ∪(XX) X. Then if we
have such a map H, there is a commutative diagram

X w
θfk−1 ∗ k

u

j · inL

X

u

f

X ′
w

H

B
B
B
B
BBC

K

Y
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Then the dotted arrow K exists since the composite j·inL is a trivial cofibration,
and the composite Kj · inR is the desired fibrewise homotopy from 1X to θf .

In general, we claim that if h : X̃ → Y is a homotopy α → β of maps
X → Y , then there is a commutative diagram

X ∪(XX) X w

(h−1 ∗ h, ασX)

u

j

Y

X ′
�
�
�
�
�
�
�
�
���

H

subject to the choices made above. To see this, take a fixed path object Ŷ for
Y , and construct a commutative diagram

X w
sY α

u

i0

Ŷ

u

(p0, p1)

X̃ w
(ασX , h)

A
A
A
A
AACγ

Y × Y

where the lifting γ exists since i0 is a trivial cofibration. Then two instances of
the map γ define a map γ : X → Y which fits into a commutative diagram

X � X w
(sY α, sY α)

u

iX

Ŷ

u

(p0, p1)

X
�
�
�
�
�
�
�
���

γ

w

(ασX , h−1 ∗ h)
Y × Y

It follows that there is a commutative diagram

X ∪(XX) X w
(γ, sY ασX)

u

j

Ŷ

u

p0

X ′
wαπ

�
�
�
�
�
�
���

K

Y

and the desired map H is the composite p1K. �
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Remark 1.16. Proposition 1.14 and its proof are to Quillen [76,p.5.2]; the
proof of Lemma 1.15 that is displayed here is a special case of his method of
correspondences [76,p.2.2].

2. Simplicial categories.
A simplicial model category is, roughly speaking, a closed model category
equipped with a notion of a mapping space between any two objects. This
has to be done in such a way that it makes homotopy theoretic sense. Thus,
besides the new structure, there is an additional axiom, which is called Axiom
SM7 (See 3.1 below).

The initial property one wants is the following: let S be the category of
simplicial sets and let C be a model category, and suppose A ∈ C is cofibrant
and X ∈ C is fibrant. Then, the space of maps in C should be a functor to
simplicial sets

HomC : Cop × C → S

with the property that

π0HomC(A,X) ∼= [A,X]C .

In addition, one would want to interpret πnHomC(A,X) in C.
There are other desirable properties; for example, if A is cofibrant and

X → Y a fibration in C, one would want

HomC(A,X) → HomC(A, Y )

to be a fibration of spaces — that is, of simplicial sets.
Before imposing the closed model category structure on C, let us make

the following definition:

Definition 2.1. A category C is a simplicial category if there is a mapping
space functor

HomC(·, ·) : Cop × C → S

with the properties that for A and B objects in C
(1) HomC(A,B)0 = homC(A,B);
(2) the functor HomC(A, ·) : C → S has a left adjoint

A ⊗ · : S → C
which is associative in the sense that there is a isomorphism

A ⊗ (K × L) ∼= (A ⊗ K) ⊗ L,

natural in A ∈ C and K,L ∈ S;

(3) The functor HomC(·, B) : Cop → S has left adjoint

homC(·, B) : S → Cop.
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Of course, the adjoint relationship in (3) is phrased

homS(K,HomC(A,B)) ∼= homC(A,homC(K,B)) .

Warning: The tensor product notation goes back to Quillen, and remains for
lack of a better operator. But be aware that in this context we do not usually
have a tensor product in the sense of algebra; that is, we don’t have a pairing
arising out of bilinear maps. Instead, we have an adjoint to an internal hom
functor, and this is the sole justification for the notation — Lemma 2.2 says
that there is a right adjoint B �→ homC(K,B) to the functor A �→ A ⊗ K for
a fixed simplicial set K.

Note the plethora of distinct mapping objects. As usual, homC(A,B) is
the set of morphisms from A to B in the category C, whereas the simplicial set
HomC(A,B) is the function complex, and homC(K,B) is an object of C which
is defined for simplicial sets K and objects B ∈ C. The functor homC(K,A) is
often denoted by AK in the literature.

Observe finally that the objects homC(K,A) and HomC(K,A) coincide
when C is the category of simplicial sets, but they are necessarily quite different
elsewhere.

Lemma 2.2.

(1) For fixed K ∈ S, the functor

· ⊗ K : C → C

is left adjoint to the functor

homC(K, ·) : C → C .

(2) For all K and L in S and B in C there is a natural isomorphism

homC(K × L,B) ∼= homS(K,homC(L,B)).

(3) For all n ≥ 0, HomC(A,B)n
∼= homC(A ⊗ Δn, B).

Proof: Part 1 is a consequence of the string of natural isomorphisms

hom(A ⊗ K,B) ∼= hom(K,Hom(A,B)) ∼= hom(A,hom(K,B)).

Part 2 then follows from the associativity built into 2.1.2. Part 3 follows from
2.1.2 and the fact that homS(Δn,X) ∼= Xn. �
Remark: A consequence of Lemma 2.2.1 is that there is a composition pairing
of simplicial sets

HomC(A,B) ×HomC(B,C) → HomC(A,C)
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defined as follows. If f : A ⊗ Δn → B is an n-simplex of HomC(A,B) and g :
B⊗Δn → C is an n-simplex of HomC(B,C) then their pairing in HomC(A,C)
is the composition

A ⊗ Δn
1⊗Δ−−−→ A ⊗ (Δn × Δn) ∼= A ⊗ Δn ⊗ Δn

f⊗1−−→ B ⊗ Δn
g−→ C.

Here Δ : Δn → Δn×Δn is the diagonal. This pairing is associative, and reduces
to the composition pairing in C in simplicial degree zero. It is also unital in the
sense that if ∗ → HomC(A,A) is the vertex corresponding to the identity, then
the following diagram commutes

∗ ×HomC(A,B)

u

�
�
�
�
�
��

=

HomC(A,A) ×HomC(A,B) w HomC(A,B).

There is also a diagram using the identity of B. A shorthand way of encoding
all this structure is to say that C is enriched over simplicial sets. �

Another immediate consequence of the definition is the following result.

Lemma 2.3. For a simplicial category C then the following extended adjoint-
ness isomorphisms hold:

(1) HomS(K,HomC(A,B)) ∼= HomC(A ⊗ K,B).
(2) HomS(K,HomC(A,B)) ∼= HomC(A,hom(K,B)).

Proof: This is an easy exercise using Lemma 2.2. �
Note that, in fact, Definition 2.1 implies that there are functors

· ⊗ · : C × S → C
and

homC(·, ·) : Sop × C → C
satisfying 2.1.1, 2.1.2 and 2.2.1. In order to produce examples of simplicial
categories, we note the following:

Lemma 2.4. Let C be a category equipped with a functor

· ⊗ · : C × S → C .

Suppose the following three conditions hold:

(1) For fixed K ∈ S, · ⊗ K : C → C has a right adjoint homC(K, ·).
(2) For fixed A, the functor A⊗· : S → C commutes with arbitrary colimits

and A ⊗ ∗ ∼= A.

(3) There is an isomorphism A ⊗ (K × L) ∼= (A ⊗ K) ⊗ L natural is A ∈ C
and K,L ∈ S.
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Then C is a simplicial category with HomC(A,B) defined by:

HomC(A,B)n = homC(A ⊗ Δn, B)

Proof: We first prove 2.1.2 holds. If K ∈ S, write K as the coequalizer in a
diagram ⊔

q

Δnq ⇒
⊔
p

Δnp → K .

Then there is a coequalizer diagram⊔
q

A ⊗ Δnq ⇒
⊔
p

A ⊗ Δnp → A ⊗ K

Hence there is an equalizer diagram

homC(A ⊗ K,B) → homC(A ⊗ (
⊔
p

Δnp), B) ⇒ homC(A ⊗ (
⊔
q

Δnq ), B) .

This, in turn, is equivalent to the assertion that the equalizer of the maps

homS(
⊔
p

Δnp ,homC(A,B)) ⇒ homS(
⊔
q

Δnq ,homC(A,B))

is the induced map

homS(K,homC(A,B)) → homS(
⊔
p

Δnp ,homC(A,B))

so 2.1.2 holds. If we let homC(K, ·) be adjoint to · ⊗ K, as guaranteed by the
hypotheses, 2.1.3 holds. Then finally, 2.1.1 is a consequence of the fact that
A ⊗ ∗ = A. �

We now give some examples. Needless to say S itself is a simplicial cate-
gory with, for A,B,K ∈ S

A ⊗ K = A × K

and (a tautology)
HomS(A,B) = HomS(A,B)

and
homS(K,B) = HomS(K,B) .

Only slightly less obvious is the following: let S∗ denote the category of pointed
(i.e., based) simplicial sets. Then S∗ is a simplicial category with

A ⊗ K = A ∧ K+ = A × K/ ∗ ×K
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where ( )+ denote adding a disjoint basepoint

HomS∗
(A,B)n = homS∗

(A ∧ Δn
+, B)

and
homS∗

(K,B) = HomS(K,B)

with basepoint given by the constant map

K → ∗ → B.

Note that HomS∗
(A,B) ∈ S, but homS∗

(K,B) ∈ S∗.
This example can be radically generalized. Suppose C is a category that

is co-complete; that is, C has all colimits. Let sC denote the simplicial objects
in C. Then if K ∈ S, we may define, for A ∈ sC, an object A ⊗ K ∈ sC by

(A ⊗ K)n =
⊔

k∈Kn

An

where
⊔

denotes the coproduct in C, and if φ : n → m is an ordinal number
map φ∗ : (A ⊗ K)m → (A ⊗ K)n is given by

⊔
k∈Km

Am

⊔
φ∗

−−−→
⊔

k∈Km

An →
⊔

k∈Kn

An .

The first map is induced by φ∗ : Am → An, the second by φ∗ : Km → Kn.

Theorem 2.5. Suppose that C is complete and complete. Then with this func-
tor · ⊗ · : sC × S → sC, the category sC becomes a simplicial category with

HomsC(A,B)n = homsC(A ⊗ Δn, B) .

Proof: This is an application of Lemma 2.4. First note that it follows from
the construction that there is a natural isomorphism

A ⊗ (K × L) ∼= (A ⊗ K) ⊗ L.

And one has A ⊗ ∗ ∼= A. Thus, we need only show that, for fixed K ∈ S, the
functor · ⊗ K : sC → sC has a right adjoint. To show this, one changes focus
slightly. For Y ∈ sC, define a functor

FY : Cop → S

by
FY (A) = homC(A, Y ) .
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Then the functor Cop → Sets given by

A �→ HomS(K,FY (A))n = homS(K × Δn,homC(A, Y ))

is representable. To see this, write K × Δn as a coequalizer⊔
q

Δnq ⇒
⊔
p

Δnp → K × Δn

then the representing object is defined by the equalizer diagram∏
q

Ynq ⇔
∏
q

Ynp ← homsC(K,Y )n .

Letting the ordinal number vary yields an object homsC(K,Y ) and a natural
isomorphism of simplicial sets

homC(A,homsC(K,Y )) ∼= HomS(K,homC(A, Y )) , (2.6)

or a natural equivalence of functors

FhomsC(K,Y )(·) ∼= HomS(K,FY (·)) .

Now the morphisms X → Y in sC are in one-to-one correspondence with the
natural transformations FX → FY , by the Yoneda lemma. In formulas, this
reads

homsC(X,Y ) ∼= Nat(FX , FY ) .

Now if K ∈ S and X ∈ sC we can define a new functor

FX ⊗ K : Cop → S

by
(FX ⊗ K)(A) = FX(A) × K

we will argue below that

Nat(FX⊗K , FY ) ∼= Nat(FX ⊗ K,FY ) .

Assuming this one has:

homsC(X,homsC(K,Y )) ∼= Nat(FX , FhomsC(K,Y ))
∼= Nat(FX ,HomS(K,FY ))

by (2.6). Continuing, one has that this is isomorphic to

Nat(FX ⊗ K,FY ) ∼= Nat(FX⊗K , FY ) ∼= homsC(X ⊗ K,Y )

so that
homsC(X,homsC(K,Y )) ∼= homsC(X ⊗ K,Y ) .

as required. Thus we are left with
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Lemma 2.7. There is an isomorphism

Nat(FX⊗K , FY ) ∼= Nat(FX ⊗ K,FY ) .

Proof: It is easiest to show

Nat(FX ⊗ K,F ) ∼= homsC(X ⊗ K,Y ) .

Given a natural transformation

Φ : FX ⊗ K → FY

note that
(FX ⊗ K)(Xn)n =

∏
k∈Kn

homC(Xn,Xn) .

Thus, for each k ∈ Kn, there is a map

Φ(1)k : Xn → Yn

corresponding to the identity in the factor corresponding to k. These assemble
into a map

fn : (X ⊗ K)n =
⊔

k∈Kn

Xn → Yn .

We leave it to the reader to verify that yields a morphism

f : X ⊗ K → Y

of simplicial objects, and that the assignment Φ → f yields the desired isomor-
phism. �
Examples 2.8. One can now assemble a long list of simplicial categories: We
note in particular
1) Let C be one of the following “algebraic” categories: groups, abelian groups,
rings, commutative rings, modules over a ring R, algebras or commutative
algebras over a commutative ring R, or Lie algebras. Then sC is a simplicial
category.
2) Let C be the graded analog of one of the categories in the previous example.
Then sC is a simplicial category.
3) Let C = CA be the category of coalgebras over a field F. Then sCA is a
simplicial category.
4) Note that the hypotheses of C used Theorem 2.5 apply equally to Cop. Thus
s(Cop) is also a simplicial category. But if s(Cop) is a simplicial category, so is
(s(Cop))op. But this is the category cC of cosimplicial objects in C. One must
interpret the functors · ⊗ ·, homcC(·, ·), etc. in light of Theorem 2.5. Thus if
K ∈ S,

homcC(K,A)n =
∏

k∈Kn

An

and
HomcC(A,B)n = homcC(A,homcC(Δn, B))

and A ⊗ K is defined via Theorem 2.5.
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To conclude this section, we turn to the following question: suppose given
simplicial categories C and D and a functor G : D → C with left adjoint F . We
want a criterion under which the simplicial structure is preserved.

Lemma 2.9. Suppose that for all K ∈ S and A ∈ C there is a natural isomor-
phism F (A ⊗ K) ∼= F (A) ⊗ K. Then

(1) the adjunction extends to a natural isomorphism

HomD(FA,B) ∼= HomC(A,GB);

(2) for all K ∈ S and B ∈ D, there is a natural isomorphism

GhomD(K,B) ∼= homC(K,GB) .

Proof: Part (1) uses that HomD(FA,B)n
∼= homD(FA ⊗ Δn, B). Part (2)

is an exercise in adjunctions. �
We give some examples.

Examples 2.10.

1) Let G : D → C have a left adjoint F . Extend this to a pair of adjoint functors
by prolongation:

G : sD → sC
with adjoint F . Thus G(X)n = G(X)n, and so on. Then, in the simplicial
structure of Theorem 2.5, F (X ⊗ K) ∼= F (X) ⊗ K, since F commutes with
colimits.
2) Let C be an arbitrary simplicial category and A ∈ C. Define

G : C → S

by G(B) = HomC(A,B). Then F (X) = A ⊗ X and the requirement on 2.9 is
simply the formula

A ⊗ (X × K) ∼= (A ⊗ X) ⊗ K .

Remark 2.11. A functor F : C → D between simplicial model categories
which has an associated natural isomorphism

F (A ⊗ K)
ωA,K−−−→∼=

F (A) ⊗ K

as in the statement of Lemma 2.9 is said to be continuous, provided that it also
satisfies the requirements that the diagrams

F (A ⊗ K ⊗ L) w

ωA⊗K,L

u

∼=

F (A ⊗ K) ⊗ L w

ωA,K ⊗ L
F (A) ⊗ K ⊗ L

u

∼=

F (A ⊗ (K × L)) wωA,K×L
F (A) ⊗ (K × L)
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and

F (A ⊗ Δ0) w

ωA,Δ0

�
�
��∼=

F (A) ⊗ Δ0

A
A
AD

∼=
F (A)

commute, where the unnamed isomorphisms are induced by the simplicial struc-
ture on C and D. Such a functor F : C → D induces simplicial set maps

F : HomC(A,B) → HomD(F (A), F (B))

of function spaces which respects composition.

3. Simplicial model categories.
If a category C is at once a simplicial category and a closed model category,
we would like the mapping space functor to have homotopy theoretic content.
This is accomplished by imposing the following axiom.

3.1 Axiom SM7. Let C be a closed model category and a simplicial category.
Suppose j : A → B is a cofibration and q : X → Y is a fibration. Then

HomC(B,X)
(j∗,q∗)−−−−→ HomC(A,X) ×HomC(A,Y ) HomC(B, Y )

is a fibration of simplicial sets, which is trivial if j or q is trivial.

A category satisfying this axiom will be called a simplicial model category.
The next few sections will be devoted to producing a variety of examples, but
in this section we will explore the consequences of this axiom.

Proposition 3.2. Let C be a simplicial model category and q : X → Y a
fibration. Then if B is cofibrant

q∗ : HomC(B,X) → HomC(B, Y )

is a fibration in S. Similarly, if j : A → B is a cofibration and X is fibrant,
then

j∗ : HomC(B,X) → HomC(A,X)

is a fibration.

Proof: One sets A to be the initial object and Y to be the final object,
respectively, in Axiom SM7. �

In other words, HomC(·, ·) has entirely familiar homotopical behavior.
This is one way to regard this axiom. Another is that SM7 is a considerable
strengthening of the lifting axiom CM4 of a closed model category.
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Proposition 3.3. Axiom SM7 implies axiom CM4; that is, given a lifting
problem in simplicial category C satisfying SM7

A

u

j

w X

u

q

B
i
i
iij

w Y

with j a cofibration and q a fibration, then the dotted arrow exists if either j
or q is trivial.

Proof: Such a square is a zero-simplex in

HomC(A,X) ×HomC(A,Y ) HomC(B, Y )

and a lifting is a pre-image in the zero simplices of HomC(B,X). Since trivial
fibrations are surjective, the result follows. �

But more is true: Axiom SM7 implies that the lifting built in CM4 is
unique up to homotopy. To explain that, however, requires a few words about
homotopy. First we record

Proposition 3.4. Let C be a simplicial model category and j : K → L a
cofibration of simplicial sets. If A ∈ C is cofibrant, then

1 ⊗ j : A ⊗ K → A ⊗ L

is a cofibration in C. If X ∈ C is fibrant

j∗ : homC(L,X) → homC(K,X)

is a fibration. If j is trivial, then so are 1 ⊗ j and j∗.

Proof: For example, one needs to show 1 ⊗ j has the left lifting property
with respect to all trivial fibrations q : X → Y in C. This is equivalent, by
adjointness, to show j has the left lifting property with respect to

q∗ : HomC(A,X) → HomC(A, Y )

for all trivial fibrations q. But q∗ is a trivial fibration of simplicial sets by SM7.
The other three claims are proved similarly. �

Recall the definitions of left and right homotopy from Section 1. The
following implies that if A is cofibrant, then A⊗Δ1 is a model for the cylinder
on A.
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Lemma 3.5. Let C be a simplicial model category and let A ∈ C be cofibrant.
Then if q : Δ1 → ∗ is the unique map

1 ⊗ q : A ⊗ Δ1 → A ⊗ ∗ ∼= A

is a weak equivalence. Furthermore,

d1 � d0 : A � A → A ⊗ Δ1

is a cofibration and the composite

A � A
d0d1−−−−→ A ⊗ Δ1

1⊗q−−→ A

is the fold map.

Proof: The first claim follows from Proposition 3.4, since

d1 : A ∼= A ⊗ Δ0 → A ⊗ Δ1

is a weak equivalence. The second claim follows from 3.4 also since d1

⊔
d0 is

equivalent to
1 ⊗ j : A ⊗ ∂Δ1 → A ⊗ Δ1

where j : ∂Δ → Δ1 is inclusion of the boundary. For the third claim one checks
that (1 ⊗ q) · d1 = (1 ⊗ q) · d0 = 1. �

Thus, if C is a simplicial model category and A ∈ C is cofibrant and X is
fibrant, then two morphisms f, g : A → X are homotopic if and only if there is
a factoring

A � A

u

f � g

w

d1 � d0 A ⊗ Δ1

N
N
N
N
NQ

H

X

(3.6)

This, too, is no surprise. As a further exercise, note that if one prefers right
homotopy for a particular application, one could require a factoring

homC(Δ1,X)

u

j∗

A
�
�
�
�
�
���G

w
f × g

X × X ∼= homC(∂Δ1,X)

(3.7)

In using this formulation, one wants X to be fibrant so that j∗ is a fibration.
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To formulate the next notion, let A be cofibrant and j : A → B a cofi-
bration. Given two maps f, g : B → X so that j · f = j · g, we say f and g are
homotopic under A if there is a homotopy

H : B ⊗ Δ1 → X

so that H · (j ⊗ 1) : A ⊗ Δ1 → X is the constant homotopy on j · f . That is,
h ⊗ (j ⊗ 1) is the composite

A ⊗ Δ1
1⊗q−−→ A ⊗ ∗ ∼= A

j·f−−→ X

where q : Δ1 → ∗ is the unique map. There is a dual notion of homotopic
over Y .

The following result says that in a simplicial model category, the liftings
required by axiom CM4 are unique in a strong way.

Proposition 3.8. Let C be a simplicial model category and A a cofibrant
object. Consider a commutative square

A

u

j

w X

u

q

B w Y

where j is a cofibration, q is a fibration and one of j or q is trivial. Then any
two solutions f, g : B → X of the lifting problem are homotopic under A and
over Y .

Proof: The commutative square is a zero-simplex α in

HomC(A,X) ×HomC(A,Y ) HomC(B, Y )

Let s0α be the corresponding degenerate 1-simplex. Then s0α is the commu-
tative square

A ⊗ Δ1

u

j ⊗ 1

w X

u

q

B ⊗ Δ1
w Y

where the horizontal maps are the constant homotopies. Let

f, g ∈ HomC(B,X)0 = homC(B,X)
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be two solutions to the lifting problem. Thus (i∗, q∗)f = (i∗, q∗)g = α. Then by
SM7, there is a 1-simplex

β ∈ HomC(B,X)1 ∼= homC(B ⊗ Δ1,X)

so that d1β = f, d0β = g, and (i∗, q∗)β = s0α. Then

β : B ⊗ Δ1 → X

is the required homotopy. �
We now restate a concept from Section 1. For a simplicial model category

C, we define the homotopy category Ho(C) as follows: the objects are the objects
of C and the morphisms are defined by

[A,X]C = homC(B, Y )/ ∼ (3.9)

where q : B → A is a trivial fibration with B cofibrant, i : X → Y is a trivial
cofibration with Y fibrant and f ∼ g if and only if f is homotopic to g. It
is a consequence of Lemma 1.5 that ∼ is an equivalence relation, and it is a
consequence of the proof of Theorem 1.11 [A,X]C coincides with morphisms
from A to X in the homotopy category Ho(C).

There is some ambiguity in the notation: [A,X]C depends not only on C,
but on the particular closed model category structure. In the sequel, [ , ] means
[ , ]S.

The following result gives homotopy theoretic content to the functors ·⊗K
and homC(K, ·).
Proposition 3.10. Let C be a simplicial model category and A and B a
cofibrant and a fibrant object of C, respectively. Then

[K,HomC(A,B)] ∼= [A ⊗ K,B]C

and
[K,HomC(A,B)] ∼= [A,homC(K,B)]C .

Proof: Note that HomC(A,B) is fibrant, by Proposition 3.2. Hence

[K,HomC(A,B)] = homS(K,HomC(A,B))/ ∼
where ∼ means “homotopy” as above. But, since

A ⊗ (K × Δ1) = (A ⊗ K) ⊗ Δ1

we have that

homS(K,HomC(A,B))/ ∼ ∼= homC(A ⊗ K,B)/ ∼
∼= [A ⊗ K,B]C

where we use Proposition 3.4 to assert that A ⊗ K is cofibrant. �
We now concern ourselves with developing a way of recognizing when

SM7 holds.
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Proposition 3.11. Let C be a closed model category and a simplicial category.
Then the axiom SM7 holds if and only if for all cofibrations i : K → L in S
and cofibrations j : A → B in C, the map

(j ⊗ 1) ∪ (1 ⊗ i) : (A ⊗ L) ∪(A⊗K) (B ⊗ K) → B ⊗ L .

is a cofibration which is trivial if either j or i is.

Proof: A diagram of the form

K

u

w HomC(B,X)

u

L w HomC(A,X) ×HomC(A,Y ) HomC(B, Y )

is equivalent, by adjointness, to a diagram

(A ⊗ L) ∪(A⊗K) (B ⊗ K)

u

w X

u

B ⊗ L w Y .

The result follows by using the fact that fibrations and cofibrations are deter-
mined by various lifting properties. �

From this we deduce

Corollary 3.12. (Axiom SM7b) Let C be a closed model category and a
simplicial category. The axiom SM7 is equivalent to the requirement that for
all cofibrations j : A → B in C

(A ⊗ Δn) ∪(A⊗∂Δn) (B ⊗ ∂Δn) → B ⊗ Δn

is a cofibration (for n ≥ 0) that is trivial if j is, and that

(A ⊗ Δ1) ∪(A⊗{e}) (B ⊗ {e}) → B ⊗ Δ1

is the trivial cofibration for e = 0 or 1.

Proof: Let i : K → L be a cofibration of simplicial sets. Then, since i can be
built by attaching cells to K, the first condition implies

(A ⊗ L) ∪(A⊗K) (B ⊗ K) → (B ⊗ L)

is a cofibration which is trivial if j is. The second condition and proposition
I.4.2 (applied to B2) yields that (j ⊗ 1) ∪ (1 ⊗ i) is trivial if i is. �
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In the usual duality that arises in these situations, we also have

Proposition 3.13. Let C be a simplicial category and a model category and
suppose i : K → L is a cofibration in S and q : X → Y a fibration in C. Then
the following are equivalent:

(1) SM7,

(2) homC(L,X) → homC(K,X) ×homC(K,Y ) homC(L, Y ) is a fibration
which is trivial if q or j is;

(3) (SM7a) homC(Δn,X) → homC(∂Δn,X)×homC(∂Δn,Y ) homC(Δn, Y )
is a fibration which is trivial if q is, and

homC(Δ1,X) → homC(e,X) ×homC(e,Y ) homC(Δ1, Y )

is a trivial fibration for e = 0, 1.

Example 3.14. A simplicial model category structure on CGHaus
We can now show that the category CGHaus of compactly generated Haus-
dorff spaces is a simplicial model category. To supply the simplicial structure
let X ∈ CGHaus and K ∈ S. Define

X ⊗ K = X ×Ke |K|
where | · | denotes the geometric realization and ×Ke the Kelley product, which
is the product internal to the category CGHaus. Then if X and Y are in
CGHaus, the simplicial set of maps between X and Y is given by

HomCGHaus(X,Y )n = homCGHaus(X × Δn, Y )

regarded as a set. And the right adjoint to · ⊗ K is given by

homCGHaus(K,X) = F(|K|,X)

where F denotes the internal function space to CGHaus.
We have seen that CGHaus is a closed model category with the usual

weak equivalences and Serre fibrations. In addition, Proposition 3.13 immedi-
ately implies that CGHaus is a simplicial model category.

It is worth pointing out that the realization functor | · | and its adjoint
S(·) the singular set functor pass to the level of simplicial categories. Indeed,
we’ve seen (Proposition I.2.4) that if X ∈ S and K ∈ S, then

|X × K| = |X| ×Ke |K|.
This immediately implies that if Y ∈ CGHaus, then

SF(|K|, Y ) = HomS(K,SY )

and
HomCGHaus(|X|, Y ) = HomS(X,SY ).

We close this section with the following lemma, which gives a standard
method for detecting weak equivalences in a closed simplicial model category:
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Lemma 3.15. Suppose that f : A → B is a map between cofibrant objects in
a simplicial model category C. Then f is a weak equivalence if and only if the
induced map

f∗ : Hom(B,Z) → Hom(A,Z)

is a weak equivalence of simplicial sets for each fibrant object Z of C.

Proof: We use the fact, which appears as Lemma 8.4 below, that a map f :
A → B between cofibrant objects in a closed model category has a factorization

X

u

q

A
h
h
hhjj

w
f

B

such that j is a cofibration and the map q is left inverse to a trivial cofibration
i : B → X.

If f : A → B is a weak equivalence, then the map j : A → X is a
trivial cofibration, and hence induces a trivial fibration j∗ : Hom(X,Z) →
Hom(A,Z) for all fibrant objects Z. Similarly, the trivial cofibration i induces
a trivial fibration i∗, so that the map q∗ : Hom(B,Z) → Hom(X,Z) is a weak
equivalence.

Suppose that the map f∗ : Hom(B,Z) → Hom(A,Z) is a weak equiva-
lence for all fibrant Z. To show that f is a weak equivalence, we can presume
that the objects A and B are fibrant as well as cofibrant. In effect, there is a
commutative diagram

A w
f

u

B

u

A′
w

f ′ B′

in which the objects A′ and B′ are fibrant, and the vertical maps are trivial
cofibrations, and then one applies the functor Hom( , Z) for Z fibrant and
invokes the previous paragraph.

Finally, suppose that A and B are fibrant as well as cofibrant, and presume
that f∗ : Hom(B,Z) → Hom(A,Z) is a weak equivalence for all fibrant Z. We
can assume further that f is a cofibration, by taking a suitable factorization.
The map f∗ : Hom(B,A) → Hom(A,A) is therefore a trivial Kan fibration,
and hence surjective in all degrees, so that there is a map g : B → A such that
g · f = 1A. The maps f · g and 1B are both pre-image of the vertex f under the
trivial fibration f∗ : Hom(B,B) → Hom(A,B), so that there is a homotopy
f · g � 1B. In particular, f is a homotopy equivalence and therefore a weak
equivalence, by Lemma 1.14. �
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4. The existence of simplicial model category structures.
Here we concern ourselves with the following problem: Let C be a category and
sC the category of simplicial objects over C. Then, does sC have the structure of
a simplicial model category? We will assume that there is a functor G : sC → S
with a left adjoint

F : S → sC .

Examples include algebraic categories such as the categories of groups,
abelian groups, algebras over some ring R, commutative algebras, Lie algebras,
and so on. In these cases, G is a forgetful functor. See the examples in 2.10.

Define a morphism f : A → B is sC to be

a) a weak equivalence if Gf is a weak equivalence in S;
b) a fibration if Gf is a fibration in S;
c) a cofibration if it has the left lifting property with respect to all trivial

fibrations in sC.

A final definition is necessary before stating the result. Let {Xα}α∈I be
a diagram in C. Then, assuming the category C has enough colimits, there is a
natural map

lim−→
I

G(Xα) −→ G(lim−→
I

Xα).

This is not, in general, an isomorphism. We say that G commutes with
filtered colimits if this is an isomorphism whenever the index category I is
filtered.

Theorem 4.1. Suppose C has all limits and colimits and that G commutes
with filtered colimits. Then with the notions of weak equivalence, fibration, and
cofibration defined above, sC is a closed model category provided the following
assumption on cofibrations holds: every cofibration with the left lifting property
with respect to fibrations is a weak equivalence.

We will see that, in fact, sC is a simplicial model category with the sim-
plicial structure of Theorem 2.5.

The proof of Theorem 4.1 turns on the following observation. As we have
seen, a morphism f : X → Y is a fibration of simplicial sets if and only if it
has the right lifting property with respect to the inclusions for all n, k

Λn
k ↪→ Δn

and f is a trivial fibration if and only if it has the right lifting property with
respect to the inclusions ∂Δn → Δn of the boundary for all n. The objects
Λn

k , ∂Δn, and Δn are small in the following sense: the natural map

lim−→
I

homS(Λn
k ,Xα) −→ homS(Λn

k , lim−→
I

Xα)

is an isomorphism for all filtered colimits in S. This is because Λn
k has only

finitely many non-degenerate simplices. Similar remarks hold for ∂Δn and Δn.
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Lemma 4.2. Any morphism f : A → B in sC can be factored

A
j→X

q→B

where the morphism j is a cofibration and q is a trivial fibration.

Proof: Coproducts of cofibrations are cofibrations, and given a pushout dia-
gram

A0

u

i

w A2

u

j

A1 w B

in sC, then i a cofibration implies j is a cofibration, and that if X → Y is a
cofibration in S, then FX → FY is a cofibration in sC. Inductively construct
objects Xn ∈ sC with the following properties:

a) One has A = X0 and there is a cofibration jn : Xn → Xn+1.
b) There are maps qn : Xn → B so that qn = qn+1 · jn and the diagram

A�
�
�
��

w Xn

u
qn

B

commutes, where A → Xn is the composite jn−1 · · · · · j0.
c) Any diagram

F∂Δm

u

w

ϕ
Xn

u
qn

FΔm
w

ψ
B

can be completed to a diagram

F∂Δm

u

w

ϕ
Xn

u
jn

�
�
�
���

qn

FΔm
w Xn+1 wqn+1

B

where the bottom morphism is ψ.
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Condition c) indicates how to construct Xn+1 given Xn. Define jn : Xn →
Xn+1 by the pushout diagrams

⊔
F∂Δm

u

w Xn

u

jn⊔
FΔm

w Xn+1

where the coproduct is over all diagrams of the type presented in c).
Then condition c) automatically holds. Further, qn+1 : Xn+1 → B is

defined and satisfies condition b) by the universal property of pushouts. Lastly,
condition a) holds by the remarks at the beginning of the proof.

Now define X = lim−→Xn and notice that we have a factoring

A
j→X

q→B

of the original morphism. The morphism j is a cofibration since directed col-
imits of cofibrations are cofibrations. We need only show q : X → B is a trivial
fibration. This amounts to showing that any diagram

∂Δn
w

u

GX

u

Gq

Δn
w GB

can be completed. But GX ∼= lim−→n
GXn by hypothesis on G, and the result

follows by the small object argument. �
The same argument, but using the trivial cofibrations Λm

k ↪→ Δm in S,
proves the following lemma.

Lemma 4.3. Any morphism f : A → B in sC can be factored

A
j−→ X

q−→ B

where q is a fibration and j is a cofibration which has the left lifting property
with respect to all fibrations.
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Proof of Theorem 4.1: The axioms CM1–CM3 are easily checked. The
axiom CM5b is Lemma 4.2; the axiom CM5a follows from Lemma 4.3 and
the assumption on cofibrations. For axiom CM4, one half is the definition of
cofibration. For the other half, one proceeds as follows. Let

i : A → B

be a trivial cofibration. Then by Lemma 4.3 we can factor the morphism i as

A
j→X

q→B

where j is a cofibration with the left lifting with respect to all fibrations, and q
is a fibration. By the hypothesis on cofibrations, j is a weak equivalence. Since
i is a weak equivalence, so is q. Hence, one can complete the diagram

A

u

i

w

j
X

u

q

B w
= B

and finds that i is a retract of j. Hence i has the left lifting property with
respect to fibrations, because j does. This completes the proof. �

We next remark that, in fact, sC is a simplicial model category. For this,
we impose the simplicial structure guaranteed by Theorem 2.5. Thus if X ∈ sC
and K ∈ S, we have that

(A ⊗ K)n =
⊔

k∈Kn

An.

From this, one sees that if X ∈ S

F (X × K) ∼= F (X) ⊗ K.

This is because F , as a left adjoint, preserves coproducts. Thus Lemma 2.9
applies and

GhomsC(K,B) ∼= homS(K,GB).

Theorem 4.4. With this simplicial structure, sC becomes a simplicial model
category.
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Proof: Apply Proposition 3.13.1. If j : K → L is a cofibration in S and
q : X → Y is a fibration in sC, the map

GhomsC(L,X) −→ G(homsC(K,X) ×homsC(K,Y ) homsC(L, Y ))

is isomorphic to

homS(L,GX) −→ homS(K,GX) ×homS(K,GY ) homS(L,GY )

by the remarks above and the fact that G, as a right adjoint, commutes with
pullbacks. Since the simplicial set category S has a simplicial model structure,
the result holds. �

4.5 A remark on the hypotheses. Theorem 4.1 and, by extension, Theo-
rem 4.4 require the hypothesis that every cofibration with the left lifting prop-
erty with respect to all fibrations is, in fact, a weak equivalence. This is so
Lemma 4.3 produces the factoring of a morphism as a trivial cofibration fol-
lowed by a fibration. In the next section we will give some general results about
when this hypothesis holds; however, in a particular situation, one might be
able to prove directly that the factoring produced in Lemma 4.3 actually yields
a trivial cofibration. Then the hypothesis on cofibrations required by these the-
orems holds because any cofibration with the left lifting property with respect
to all fibrations will be a retract of a trivial cofibration. Then one need say no
more.

For example, in examining the proof of Lemma 4.3 (see Lemma 4.2), one
sees that we would have a factorization of f : A → B as a trivial cofibration
followed by a fibration provided one knows that 1.) F (Λn

k ) → F (Δn) is a weak
equivalence or, more generally, that F preserves trivial cofibrations, and 2.)
trivial cofibrations in sC are closed under coproducts, pushouts, and colimits
over the natural numbers.

5. Examples of simplicial model categories.

As promised, we prove that a variety of simplicial categories satisfy the hy-
potheses necessary for Theorem 4.4 of the previous section to apply.

We begin with a crucial lemma.

Lemma 5.1. Assume that for every A ∈ sC there is a natural weak equivalence

εA : A → QA

where QA is fibrant. Then every cofibration with the left lifting property with
respect to all fibrations is a weak equivalence.
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Proof: This is the argument given by Quillen, on page II.4.9 of [76]. Let
j : A → B be the given cofibration. Then by hypothesis, we may factor

A

u

j

w

εA QA

u

B

i
i
iij

w ∗

to get a map u : B → QA so that uj = εA. Then we contemplate the lifting
problem

A

u

j

w
f

homsC(Δ1, QB)

u

q

B
��
��
��
��

w
g

homsC(∂Δ1, QB) ∼= QB × QB

where q is induced by ∂Δ1 ⊆ Δ1, f is the composite

A
j−→ B

εB−→ QB = homsC(∗, QB) → homsC(Δ1, QB)

and
g = (εB , Qj · u) .

Note that f is adjoint to the constant homotopy on

εB · j = Qj · εA : A → QB .

Then q is a fibration since

GhomsC(K,X) = homS(K,GX) ,

and S is a simplicial model category. Hence, since j is a cofibration having the
left lifting property with respect to all fibrations, there exists

H : B → homsC(Δ1, QB)

making both triangles commute. Then H is a right homotopy from

εB : B → QB
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to Qj · u, and this homotopy restricts to the constant homotopy on εB · j =
Qj · εA : A → QB. In other words, we have a diagram

A w

εA

u

j

QA

u

Qj

B wεB

h
h
hhju

QB

such that the upper triangle commutes and the lower triangle commutes up
to homotopy. Apply the functor G to this diagram. Then G preserves right
homotopies, and one checks directly on the level of homotopy groups that Gj
is a weak equivalence, which, by definition, implies j is a weak equivalence. �
Example 5.2. Suppose that every object of sC is fibrant. Then we may take
εA : A → QA to be the identity. This happens, for example, if the functor
G : sC → S factors through the sub-category of simplicial groups and simplicial
group homomorphisms. Thus, Theorem 4.4 applies to

(1) simplicial groups, simplicial abelian groups and simplicial R-modules,
where G is the forgetful functor;

(2) more generally to simplicial modules over a simplicial ring R, where G
is the forgetful functor,

(3) for a fixed commutative ring R; simplicial R-algebras, simplicial com-
mutative R-algebras and simplicial Lie algebras over R. Again G is the
forgetful functor.

Another powerful set of examples arises by making a careful choice of the
form the functor G can take.

Recall that an object A ∈ C is small if homC(A, ·) commutes with filtered
colimits. Fix a small Z ∈ C and define

G : sC → S (5.3)

by
G(X) = homsC(Z,X) .

Then G has left adjoint
FK = Z ⊗ K

and G(·) commutes with filtered colimits. Thus, to apply Theorem 4.4, we need
to prove the existence of the natural transformation

ε : A → QA
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as in Lemma 5.1. Let
Ex : S → S

be Kan’s Extension functor1. Then for all K ∈ S there is a natural map

εK : K → ExK

which is a weak equivalence. Furthermore, most crucially for the application
here, Ex(·) commutes with all limits. This is because it’s a right adjoint. Finally,
if Exn K is this functor applied n times and

Exn εK : Exn K −→ Exn+1 K

the induced morphism, then Ex∞ K = lim−→Exn K is fibrant in S and the induced
map

K −→ Ex∞ K

is a trivial cofibration.

Lemma 5.4. Suppose the category C is complete and cocomplete. Fix n ≥ 0.
Then there is a functor

Q0(·)n : sC −→ C
so that, for all Z ∈ C, there is a natural isomorphism of sets

homC(Z, (Q0A)n) ∼= Ex(HomsC(Z,A))n .

Proof: Recall that that the functor Ex on S is right adjoint to the the sub-
division functor sd. Then one has a sequence of natural isomorphisms

ExHomsC(Z,A)n
∼= homS(Δn,ExHomsC(Z,A))
∼= homS(sdΔn,HomsC(Z,A))
∼= homsC(Z ⊗ sdΔn, A)
∼= homsC(Z,homsC(sdΔn, A))
∼= homC(Z,homsC(sd Δn, A)0).

The last isomorphism is due to the fact that Z is a constant simplicial object
and maps out of a constant simplicial object are completely determined by
what happens on zero simplices. Thus we can set

(Q0A)n = homsC(sdΔn, A)0. �

1 This construction is discussed in Section III.4 below.
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The simplicial object Q0A defined by

n �→ (Q0A)n = homsC(sdΔn, A)0

is natural in A; that is, we obtain a functor Q0 : sC → sC. Since we regard
Z ∈ C as a constant simplicial object in sC

HomsC(Z, Y )n
∼= homsC(Z ⊗ Δn, Y )
∼= homC(Z, Yn)

one immediately has that

HomsC(Z,Q0A) ∼= ExHomsC(Z,A).

Finally the natural transformation εK : K → ExK yields a natural map

εA : A −→ Q0A

and, by iteration, maps

Qn
0 εA : Qn

0A −→ Qn+1
0 A.

Define QA = lim−→Qn
0A. The reader will have noticed that Q0A and QA are

independent of Z.
Now fix a small object Z ∈ C and regard Z as a constant simplicial object

in sC. Then we define a morphism A → B in sC to be a weak equivalence (or
fibration) if and only if the induced map

HomsC(Z,A) −→ HomsC(Z,B)

is a weak equivalence (or fibration) of simplicial sets.

Proposition 5.5. If Z is small, the morphism εA : A → QA is a weak equiv-
alence and QA is fibrant.

Proof: Since Z is small, we have that

HomsC(Z,QA) ∼= Ex∞ HomsC(Z,A).

The morphism εA is a weak equivalence if and only if

HomsC(Z,A) → HomsC(Z,QA) ∼= Ex∞ HomsC(Z,A)

is a weak equivalence and QA → ∗ is a fibration if and only if

HomsC(Z,QA) ∼= Ex∞ HomsC(Z,A) → HomsC(Z, ∗) = ∗
is a fibration. Both of these facts follow from the properties of the functor
Ex∞(·). �
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Corollary 5.6. Let C be a complete and cocomplete category and Z ∈ C
a small object. Then sC is a simplicial model category with A → B a weak
equivalence (or fibration) if and only if

HomsC(Z,A) −→ HomsC(Z,B)

is a weak equivalence (or fibration) of simplicial sets.

In practice one wants an intrinsic definition of weak equivalence and fi-
bration, in the manner of the following example.

Example 5.7. All the examples of 5.2 can be recovered from Corollary 5.6.
For example, C be the category of algebras over a commutative ring. Then C
has a single projective generator; namely A[x], the algebra on one generator.
Then one sets Z = A[x], which is evidently small, and one gets a closed model
category structure from the previous result. However, if B ∈ sC, then

HomsC(A[x], B) ∼= B

in the category of simplicial sets, so one recovers the same closed model category
structure as in Example 5.2.

If C is a category satisfying 4.1 with a single small projective generator,
then C is a category of universal algebras. Setting Z to be the generator, one
immediately gets a closed model category structure on sC from Corollary 5.6.
This is the case for all the examples of 5.2.

To go further, we generalize the conditions of Theorem 4.1 a little, to
require the existence of a collection of functors Gi : sC → S, i ∈ I, each of
which has a left adjoint Fi : S → sC. We now say that a morphism f : A → B
of sC is

a) a weak equivalence if Gif is a weak equivalence of simplicial sets for all
i ∈ I;

b) a fibration if all induced maps Gif are fibrations of S;

c) a cofibration if it has the left lifting property with respect to all trivial
cofibrations of sC.

Then Theorem 4.1 and Theorem 4.4 together have the following analogue:

Theorem 5.8. Suppose that C has all small limits and colimits and that all
of the functors Gi : C → S preserve filtered colimits. Then with the notions
of weak equivalence, fibration and cofibration defined above, and if every cofi-
bration with the left lifting property with respect to all fibrations is a weak
equivalence, then sC is a simplicial model category.
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Proof: The proof is the same as that of Theorem 4.1, except that the small
object arguments for the factorization axiom are constructed from all diagrams
of the form

Fi∂Δm
w

u

A

u

FiΔm
w B

and

FiΛn
k w

u

A

u

FiΔn
w B

�

Theorem 5.8 will be generalized significantly in the next section — it is a
special case of Theorem 6.8.

Now fix a set of small objects Zi ∈ C, i ∈ I, and regard each Zi as a
constant simplicial object in sC. Then we define a morphism A → B in sC to
be a weak equivalence (or fibration) if and only if the induced map

HomsC(Zi, A) −→ HomsC(Zi, B)

is a weak equivalence (or fibration) of simplicial sets. In the case where C is
complete and cocomplete, we are still entitled to the construction of the natural
map εA : A → QA in sC. Furthermore, each of the objects Zi is small, so that
Proposition 5.5 holds with Z replaced by Zi, implying that the map εA is a
weak equivalence and that QA is fibrant. Then an analogue of Lemma 5.1
holds for the setup of Theorem 5.8 (with G replaced by Gi in the proof), and
we obtain the following result:

Theorem 5.9. Suppose that C is a small complete and cocomplete category,
and let Zi ∈ C, i ∈ I, be a set of small objects. Then sC is a simplicial model
category with A → B a weak equivalence (respectively fibration) if and only if
the induced map

HomsC(Zi, A) → HomsC(Zi, B)

is a weak equivalence (respectively fibration) for all i ∈ I

Example 5.10. Suppose that C is small complete and cocomplete, and has
a set {Pα} of small projective generators. Theorem 5.9 implies that C has a
simplicial model category structure, where A → B is a weak equivalence (or
fibration) if

HomsC(Pα, A) → HomsC(Pα, B)

is a weak equivalence (or fibration) for all α.
Note that the requirement that the objects Pα are projective generators

is not necessary for the existence of the closed model structure. However, if we
also assume that the category C has sufficiently many projectives in the sense
that there is an effective epimorphism P → C with P projective for all objects
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C ∈ C, then it can be shown that a morphism f : A → B of sC is a weak
equivalence (respectively fibration) if every induced map

HomsC(P,A) → HomsC(P,B)

arising from a projective object P ∈ C is a weak equivalence (respectively
fibration) of simplicial sets. This is a result of Quillen [76, II.4], and its proof
is the origin of the stream of ideas leading to Theorem 5.9. We shall go further
in this direction in the next section.

To be more specific now, let C be the category of graded A-algebras for
some commutative ring A and let, for n ≥ 0,

Pn = A[xn]

be the free graded algebra or an element of degree n. Then {Pn}n≥0 form a set
of projective generators for C. Thus sC gets a closed model category structure
and B → C in sC is a weak equivalence if and only if

(B)n → (C)n

is a weak equivalence of simplicial sets for all n. Here (·)n denotes the elements
of degree n. This is equivalent to the following: if M is a simplicial graded
A-module, define

π∗M = H∗(M,∂)

where ∂ is the alternating of the face operators. Then B → C in sC is a weak
equivalence if and only if

π∗B → π∗C

is an isomorphism of bigraded A-modules.
This formalism works for graded groups, graded abelian groups, graded

A-modules, graded commutative algebras, graded Lie algebras, and so on.

Example 5.11. Let F be a field and let C = CA be the category of coalgebras
over F. Then, by [88, p.46] every coalgebra C ∈ CA is the filtered colimit of its
finite dimensional sub-coalgebras. Thus CA has a set of generators {Cα} where
Cα runs over a set of representatives for the finite dimensional coalgebras. These
are evidently small. Hence, sCA has a closed model category structure where
A → B is a weak equivalence if and only if

HomsCA(Cα, A) → HomsCA(Cα, B)

is a weak equivalence for all Cα. The significance of this example is that the
Cα are not necessarily projective.
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6. A generalization of Theorem 4.1.

The techniques of the previous sections are very general and accessible to vast
generalization. We embark some ways on this journey here. First we expand on
what it means for an object in a category to be small. Assume for simplicity
that we are considering a category C which has all limits and colimits. We shall
use the convention that a cardinal number is the smallest ordinal number in a
given bijection class.

Fix an infinite cardinal number γ, and let Seq(γ) denote the well-ordered
set of ordinals less than γ. Then Seq(γ) is a category with hom(s, t) one element
if s ≤ t and empty otherwise. A γ-diagram in C is a functor X : Seq(γ) → C.
We will write lim−→γ

Xs for the colimit. We shall say that X is a γ-diagram of

cofibrations if each of the transition morphisms Xs → Xt is a cofibration of C.

Definition 6.1. Suppose that β is an infinite cardinal. An object A ∈ C is
β-small if for all γ-diagrams of cofibrations X in C with γ ≥ β, the natural
map

lim−→
γ

homC(A,Xs) → homC(A, lim−→
γ

Xs)

is an isomorphism. A morphism A → B of C is said to be β-small if the objects
A and B are both β-small.

Example 6.2. The small objects of the previous sections were ω-small, where
ω is the first infinite cardinal. Compact topological spaces are also ω-small, but
this assertion requires proof.

Suppose that X : Seq(γ) → Top is a γ-diagram of cofibrations. Then
X is a retract of a γ-diagram of cofibrations X, where each of the transition
morphisms Xs ↪→ Xt is a relative CW-complex. In effect, set X0 = X0, and
set Xα = lim−→s<α

Xs for limit ordinals α < γ. Suppose given maps

Xs

rs−→ Xs

πs−→ Xs

with πsrs = 1. Then Xs+1 is defined by choosing a trivial fibration πs+1 and
a relative CW-complex map js+1 : Xs ↪→ Xs+1 (ie. Xs+1 is obtained from
Xs by attaching cells, and js+1 is the corresponding inclusion), such that the
following diagram commutes:

Xs w

js+1

u

πs

Xs+1

u

πs+1

Xs w

is+1
Xs+1,
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where the map is+1 : Xs → Xs+1 is the cofibration associated to the relation
s ≤ s + 1 by the functor X. Then there is a lifting in the diagram

Xs w

js+1rs

u

is+1

Xs+1

u

πs+1

Xs+1 w1

h
h
hhjrs+1

Xs+1

so that the section rs extends to a section rs+1 of the trivial fibration πs+1.
The inclusion

X0 = X0 ↪→ lim−→
γ

Xs

is a relative CW-complex map, and every compact subset of the colimit only
meets finitely many cells outside of X0. Every compact subset of lim−→γ

Xs is

therefore contained in some subspace Xs. It follows that every compact subset
of lim−→γ

Xs is contained in some Xs.

We next produce an appropriate generalization of saturation.

Definition 6.3. Suppose that β is an infinite cardinal. A class M of mor-
phisms in C is β-saturated if it is closed under

1) retracts: Suppose there is a commutative diagram in C

X w

u

i

X ′ w

u

i′

X

u

i

Y w Y ′
w Y

with the horizontal composition the identity. Then if i′ ∈ M , then
i ∈ M.

2) coproducts: if each jα : Xα → Yα is in M, then
⊔

α jα :
⊔

α Xα → ⊔
α Yα

is in M;

3) pushouts: given a pushout diagram in C

A w

u

i

X

u

j

B w Y,

if i is in M, then so is j.
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4) colimits of β-sequences: Suppose we are given a β-sequence

X : Seq(β) → C

with the following properties: a) for each successor ordinal s + 1 ∈
Seq(β), the map Xs → Xs+1 is in M, and b) for each limit ordinal
s ∈ Seq(β), the map lim−→t<s

Xt → Xs is in M. Then

Xs → lim−→
β

Xs

is in M for all s ∈ Seq(β).

Up until now we have considered only saturated classes of morphisms with
β = ω, the cardinality of a countable ordinal. In this case, one doesn’t need
the extra care required in making the definition of what it means to be closed
under colimits.

Lemma 6.4. Let C be a closed model category. Then the class of cofibrations
and the class of trivial cofibrations are both β-saturated for all β.

Proof: This is an exercise using the fact that cofibrations (or trivial cofibra-
tions) are characterized by the fact that they have the left lifting property with
respect to trivial fibrations (or fibrations). �

The next step is to turn these concepts around.

Definition 6.5. Let M0 be a class of morphisms in C. Then the β-saturation
of M0 is the smallest β-saturated class of morphisms in C containing M0.

We now come to the crucial axiom.

Definition 6.6. A closed model category is cofibrantly generated with respect
to a cardinal β if the class of cofibrations and the class of trivial cofibrations
are the β-saturations of sets of β-small morphisms M0 and M1 respectively.

Remarks 6.7.

1) Suppose that β and γ are cardinals such that β ≤ γ. Then every γ-saturated
class is β-saturated, because every sequence X : Seq(β) → C can be extended
to a sequence X∗ : Seq(γ) → C having the same colimit. It follows that the
β-saturation of any set of morphisms is contained in its γ-saturation. Observe
also that every β-small object is γ-small, directly from Definition 6.1. The size
of the cardinal β in Definition 6.6 therefore doesn’t matter, so long as it exists.
One says that the closed model category C is cofibrantly generated in cases
where the cardinal β can be ignored.
2) Until now, we’ve taken β to ω. Then the category of simplicial sets is cofi-
brantly generated, for example, by the usual small object argument. Similarly,
modulo the care required for the assertion that finite CW-complexes are ω-small
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(Example 6.2), the category of topological spaces is cofibrantly generated with
respect to ω. We will see larger cases later.
3) One could require one cardinal β0 for cofibrations and β1 for trivial cofibra-
tions. However, β = max{β0, β1} would certainly work in either case, by 1).

To give the generalization of Theorem 4.1 we establish a situation. We fix
a simplicial model category C and a simplicial category D. Suppose we have
a set of functors Gi : D → C, indexed by the elements i in some set I, and
suppose each Gi has a left adjoint Fi which preserves the simplicial structure
in the sense that there is a natural isomorphism

Fi(X ⊗ K) ∼= F (Xi) ⊗ K

for all X ∈ C and K ∈ S. Define a morphism f : A → B in D to be a weak
equivalence (or fibration) is

Gif : GiA → GiB

is a weak equivalence (or fibration). A cofibration of D is a map which has the
left lifting property with respect to all trivial fibrations.

Theorem 6.8. Suppose the simplicial model category C is cofibrantly gener-
ated with respect to a cardinal β, and that

(1) all of the functors Gi commute with colimits over Seq(β), and

(2) the functors Gi take the β-saturation of the collection of all maps FjA →
FjB arising from maps A → B in the generating family for the cofibra-
tions of C and elements j of I to cofibrations of C.

Then if every cofibration in D with the left lifting property with respect to all
fibrations is a weak equivalence, D is a simplicial model category.

Proof (Outline): There are no new ideas — only minor changes from the
arguments of Section 5. The major difference is in how the factorizations are
constructed. For example, to factor X → Y as X

j→Z
q→Y where j is a cofi-

bration which has the left lifting property with respect to all fibrations and q
is a fibration, one forms a β-diagram {Zs} in D where

i) Z0 = X;
ii) if s ∈ Seq(β) is a limit ordinal, Zs = lim−→t<s

Zt and

iii) if s + 1 is a successor ordinal, there is a pushout diagram

⊔
i

⊔
f

Fi(A) w

u

Zs

u⊔
i

⊔
f

Fi(B) w Zs+1
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where f runs over all diagrams

A

u

w Gi(Zs)

u

B w Gi(Y )

where A → B is in the set M1 of β-small cofibrations in C whose β-
saturation is all trivial cofibrations. �

Example 6.9. Suppose that C is a cofibrantly generated simplicial model cat-
egory and I is a fixed small category. Write CI for the category of functors
X : I → C and natural transformations between them. There are i-section
functors Gi : CI → C defined by GiX = X(i), i ∈ I, and each such Gi has a
left adjoint Fi : C → CI defined by

FiD(j) =
⊔

i→j in I

D.

Say that a map X → Y of CI is a pointwise cofibration if each of the maps
GiX → GiY is a respectively cofibration of C. If A → B is a generating
cofibration for C, the induced maps FiA(j) → FiB(j) are coproducts of cofi-
brations and hence are cofibrations of C. The induced maps maps FiA → FiB
are therefore pointwise cofibrations of CI . The functors Gj preserve all colimits,
and so the collection of pointwise cofibrations of CI is saturated (meaning β-
saturated for some infinite cardinal β — similar abuses follow). The saturation
of the collection of maps FiA → FiB therefore consists of pointwise cofibrations
of CI .

A small object argument for CI produces a factorization

X w

j
�
�
���f

Z

u
q

Y

for an arbitrary map f : X → Y of CI , with q a fibration, and for which j is in
the saturation of the collection of maps FiC → FiD arising from the generating
set C → D for the class of trivial cofibrations of C. But again, each induced
map FiC(j) → FiD(j) is a trivial cofibration of C, and the j-section functors
preserve all colimits. The collection of maps of CI which are trivial cofibrations
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in sections is therefore saturated, and hence contains the saturation of the
maps FiC → FiD. It follows that the map j is a weak equivalence as well as a
cofibration. In particular, by a standard argument, every map of CI which has
the left lifting property with respect to all fibrations is a trivial cofibration.

It therefore follows from Theorem 6.8 that every diagram category CI

taking values in a cofibrantly generated simplicial model category has a simpli-
cial model structure for which the fibrations and weak equivalences are defined
pointwise. This result applies in particular to diagram categories TopI taking
values in topological spaces.

Here’s the analog of Lemma 5.1:

Proposition 6.10. Suppose there is a functor Q : D → D so that QX is
fibrant for all X and there is a natural weak equivalence εX : X → QX. Then
every cofibration with the left lifting property with respect to all fibrations is
a weak equivalence.

Proof: The argument is similar to that of Lemma 5.1; in particular, it begins
the same way.

The map j has the advertised lifting property, so we may form the dia-
grams

A w

εA

u

j

QA

u

B w

N
N
N
NNP

u

∗

and

A w
sεBj

u

j

hom(Δ1, QB)

u

B w
(εB, Qj · u)

N
N
N
NNP

QB × QB

where sεBj is the constant (right) homotopy on the composite

A
j−→ B

εB−→ QB.

The functors Gi preserve right homotopies, so the diagram

A w
εA

u

j

QA

u

Qj

B wεB

h
h
hhju

QB

remains homotopy commutative after applying each of the functors Gi. It fol-
lows that the map Gi(j) is a retract of the map Gi(εA) in the homotopy category
Ho(C), and is therefore an isomorphism in Ho(C). But then a map in a simpli-
cial model category which induces an isomorphism in the associated homotopy
category must itself be a weak equivalence: this is Lemma 1.14. �
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Example 6.11. The factorization axioms for a cofibrantly generated simplicial
model category C can always be proved with a possibly transfinite small object
argument (see, for example, the proofs of Proposition V.6.2, Lemma VIII.2.10
and Lemma X.1.8). Such arguments necessarily produce factorizations which
are natural in morphisms in C, so that there is a natural fibrant model X ↪→ X̃
for all objects X of C. It follows that there are natural fibrant models for the
objects of any diagram category CI taking values in C. We therefore obtain
a variation of the proof of the existence of the closed model structure for CI

of Example 6.9 which uses Proposition 6.10. This means that the requirement
in Theorem 6.8 that every cofibration which has the left lifting property with
respect to all fibrations should be a weak equivalence is not particularly severe.

Example 6.12. As an instance where the cofibrant generators are not ω-small,
we point out that in Section IX.3 we will take the category of simplicial sets,
with its usual simplicial structure and impose a new closed model category
structure. Let E∗ be any homology theory and we demand that a morphism
f : X → Y in S be a

1) E∗ equivalence if E∗f is an isomorphism
2) E∗ cofibration if f is a cofibration as simplicial sets
3) E∗ fibration if f has the right lifting property with respect to all E∗

trivial cofibrations.

The E∗ fibrant objects are the Bousfield local spaces. In this case the
E∗-trivial cofibrations are the saturation of a set of E∗ trivial cofibrations
f : A → B where B is β-small with β some infinite cardinal greater than the
cardinality of E∗(pt). One has functorial factorizations, so Example 6.11 can
be repeated to show that SI has a simplicial model category structure with
f : X → Y a weak equivalence (or fibration) if and only if X(i) → Y (i) is an
E∗ equivalence (or E∗ fibration) for all i.

7. Quillen’s total derived functor theorem.
Given two closed model categories C and D and adjoint functors between them,
we wish to know when these induce adjoint functors on the homotopy cate-
gories. This is Quillen’s Total Derived Functor Theorem. We also give criteria
under which the induced adjoint functors give an equivalence of the homotopy
categories.

The main result of this section is a generalization to non-abelian settings of
an old idea of Grothendieck which can be explained by the following example.
If R is a commutative ring and M,N are two R-modules, one might want
to compute TorR

p (M,N), p ≥ 0. However, there is a finer invariant, namely,
the chain homotopy type of M ⊗R P∗ where P∗ is a projective resolution of
N . One calls the chain homotopy equivalence class of M ⊗R P∗ by the name
TorR(M,N). This is the total derived functor. The individual Tor terms can
be recovered by taking homology groups.
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For simplicity we assume we are working with simplicial model categories,
although many of the results are true without this assumption.

Definition 7.1. Let C be a simplicial model category and A any category.
Suppose F : C → A is a functor that sends weak equivalences between cofibrant
objects to isomorphisms. Define the total left derived functor

LF : Ho(C) → A.

by LF (X) = F (Y ) where Y → X is a trivial fibration with Y cofibrant.

It is not immediately clear that LF is defined on morphisms or a functor.
If f : X → X ′ is a morphism in C and Y → X and Y ′ → X ′ are trivial
cofibrations with Y and Y ′ cofibrant, then there is a morphism g making the
following diagram commute:

Y w

g

u

Y ′

u

X w

f
X ′

(7.2)

and we set LF (f) = F (g).

Lemma 7.3. The objects LF (X) and morphisms LF (f) are independent of
the choices and LF : Ho(C) → A is a functor.

Proof: Note that LF (f) is independent of the choice of g in diagram (7.2)
up to isomorphism. This is because any two lifts g and g′ are homotopic and
one has

F (Y ) � F (Y ) w�
�
�
��F (1)F (1)

F (Y ⊗ Δ1)

u
∼=

w
FH F (Y ′)

F (Y )

where H is the homotopy. Next, if we let f be the identity in (7.2), the same
argument implies LF (X) is independent of the choice of Y . Finally, letting
f = f1 · f2 be a composite in diagram (7.2) the same argument shows LF (f1 ·
f2) = LF (f1) · LF (f2). �
Remark 7.4. For those readers attuned to category theory we note that LF
is in fact a Kan extension in the following sense. Let γ : C → Ho(C) be the
localization functor and

C w

γ

u
F

Ho(C)
�
���

A
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the diagram of categories. There may or may not be a functor Ho(C) → A
completing the diagram; however, one can consider functors T : Ho(C) → A
equipped with a natural transformation

εT : Tγ → F.

The Kan extension is the final such functor T , if it exists. If R denotes this Kan
extension, final means that given any such T , there is a natural transformation
σ : T → R so that εT = εRσγ. The Kan extension is unique if it exists. To
see that it exists one applies Theorem 1, p. 233 of Mac Lane’s book [66]. This
result, in this context reads as follows: one forms a category X ↓ γ consisting
of pairs (Z, f) where Z ∈ C and f : X → Z is a morphism in Ho(C). Then if

R(X) = lim←−
X↓γ

F (Z)

exists for all X, then R exists. However, the argument of Lemma 6.3 says that
the diagram F : (X ↓ γ) → A has a terminal object. In fact, X ↓ γ has a
terminal object, namely X → Y where Y → X is a trivial fibration (which has
an inverse in Ho(C)) with Y cofibrant. This shows that R = LF . �
Corollary 7.5. Let X ∈ C. If X is cofibrant, then LF (X) ∼= F (X). If Y → X
is any weak equivalence, with Y cofibrant, then LFX ∼= FY .

Proof: The first statement is obvious, and the second follows from

FY ∼= LF (Y )
∼=→LF (X)

since Y → X is an isomorphism in Ho(C). �
Example 7.6. Let C = C∗R be chain complexes of left modules over a ring R,
and let A = nAb be graded abelian groups. Define

F (C) = H∗(M ⊗R C)

for some right module M . Then

LF (C) = H∗(M ⊗R D)

where D → C is a projective resolution of C. There is a spectral sequence

TorR
p (M,HqC) ⇒ (LF (C))p+q.

In particular, if H∗C = N concentrated in degree 0,

LF (C) ∼= TorR
∗ (M,N),

bringing us back to what we normally mean by derived functors.
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If G : C → A sends weak equivalences between fibrant objects to isomor-
phisms, one also gets a total right derived functor

RG : Ho(C) → A.

It is also a Kan extension, suitably interpreted: it is initial among all functors
S : Ho(C) → A equipped with a natural transformation ηS : F → Sγ.

Now suppose we are given two simplicial model categories C and D and a
functor F : C → D with a right adjoint G. The following is one version of the
total derived functor theorem:

Theorem 7.7. Suppose F preserves weak equivalences between cofibrant ob-
jects and G preserves weak equivalences between fibrant objects. Then LF :
Ho(C) → Ho(D) and RG : Ho(D) → Ho(C) exist, and RG is right adjoint to
LF .

Note: This result is stronger than the original statement of Quillen [76, p.I.4.5]:
there is no assumption that F preserves cofibrations and G preserves fibrations.

Proof: That LF and RG exist is a consequence of Lemma 7.3 and its analog
for total right derived functors. We need only prove adjointness.

If X ∈ C, choose Y → X a trivial fibration with Y cofibrant. Hence
LF (X) ∼= F (Y ). Now choose F (Y ) → Z, a trivial cofibration with Z fibrant.
Then RG · LF (X) ∼= G(Z) and one gets a unit

η : X → RG · LF (X)

by X ← Y → GF (Y ) → G(Z).
Similarly, let A ∈ D. Choose A → B a trivial cofibration with B fibrant.

Then RG(A) ∼= G(B). Next choose C → G(B) a trivial fibration with C
cofibrant. Then LF ·RG(A) ∼= F (C) and one gets a counit ε : LF ·RG(A) → A
by

F (C) → FGB → B ← A.

We now wish to show

LF (X)
LFη−−−→ LF ·RG · LF (X)

εRG−−→ LF (X)

is the identity. In evaluating εRG we set A = LF (X) = F (Y ), so that B = Z.
Factor the composite Y → GF (Y ) → G(Z) by

Y
j→C

q→G(Z)

where j is a cofibration (so C is cofibrant) and q is a trivial fibration. Then
εRG is given by

F (C)
Fq−−→ FG(Z) → Z ← F (Y ).
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Furthermore there is a commutative square

Y

u

j

w GF (Y )

u

C wq G(Z)

and Fj ∼= LFηX . Expanding the diagram gives:

F (Y ) w

u

Fj

FGFY

u

w FY

u

∼=

F (C) w
Fq

FGZ w Z

The line across the top is the identity and represents the composite

LF (X)
LFη−−−→ LF · RG · LF (X)

εRG−−→ LF (X).

Hence we have proved the assertion.
The other assertion — that

RG(A)
ηε−−→RG · LF · RG(A)

RGε−−→RG(A)

is an isomorphism — is proved similarly. The result now holds by standard
arguments; e.g., [66: Thm. 2v), p.81]. �

An immediate corollary used several times in the sequel is:

Corollary 7.8. Under the hypotheses of Theorem 7.7 assume further that
for X ∈ C cofibrant and A ∈ D fibrant

X → GA

is a weak equivalence if and only if its adjoint FX → A is a weak equivalence.
Then LF and RG induce an adjoint equivalence of categories:

Ho(C) ∼= Ho(D).

Proof: We need to check that η : X → RG · LF (X) is an isomorphism and
ε : LF · RG(A) → A is an isomorphism. Using the notation established in the
previous argument, we have a sequence of arrows that define η:

X ← Y → GZ.

Now Y is cofibrant and Z is fibrant, and FY → Z is a weak equivalence; so
Y → GZ is a weak equivalence and this shows η is an isomorphism. The other
argument is identical. �

In practice one may not know a priori that F and G satisfy the hypotheses
of Theorem 7.7. The following result is often useful. We shall assume that the
model categories at hand are, in fact, simplicial model categories; however, it
is possible to prove the result more generally.
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Lemma 7.9. Let F : C → D be a functor between simplicial model categories,
and suppose F has a right adjoint G. If G preserves fibrations and trivial fibra-
tions, then F preserves cofibrations, trivial cofibrations and weak equivalences
between cofibrant objects.

Proof: It follows from an adjointness argument that F preserves trivial cofi-
brations and cofibrations; for example, suppose j : X → Y is a cofibration in
C. To show Fj is a cofibration, one need only solve the lifting problem

FX

u

Fj

w A

u

q

FY
�
���

w B

for every trivial fibration q in D. This problem is adjoint to

X w

u

GA

u

Gq

Y
�
���

w GB

which has a solution by hypothesis.
Now suppose f : X → Y is a weak equivalence between cofibrant objects.

Factor f as X
j→Z

q→Y where j is a trivial cofibration and q a trivial fibration.
We have just shown Fj is a weak equivalence. Also q is actually a homotopy
equivalence: there is a map s : Y → Z so that qs = 1Y and sq � 1Z . Here X
and Y are cofibrant. We claim that Fq is a homotopy equivalence, so that it is
a weak equivalence by Lemma 1.14.

To see that Fq is a homotopy equivalence, note that F (q)F (s) = 1FY .
Next note that since Z is cofibrant, Z⊗Δ1 is a cylinder object for Z and, since
F preserves trivial cofibrations F (Z ⊗Δ1) is a cylinder object for F (Z). Hence
F (s)F (q) � 1FZ . �
Remark 7.10. As usual, the previous result has an analog that reverses the
roles of F and G; namely, if F preserves cofibrations and trivial cofibrations,
then G preserves fibrations, trivial fibrations, and weak equivalences between
fibrant objects. The proof is the same, mutatis mutandis.

Example 7.11. Let I be a small category and SI the category of I diagrams.
Then SI becomes a simplicial model category, where a morphism of diagrams
X → Y is a weak equivalence or fibration of I diagrams if and only if each
X(i) → Y (i) is a weak equivalence or fibration of simplicial sets. The constant
functor S → SI preserves fibrations and weak equivalences, so (by Lemma 7.9),
the left adjoint

F = lim−→
I

: SI → S
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preserves weak equivalences among cofibrant diagrams. Hence the total left
derived functor

L lim−→
I

: Ho(SI) → Ho(S)

exists. This functor is the homotopy colimit and we write L lim−→I
= holim−−−→I

. In a
certain sense, made precise by the notion of Kan extensions in Remark 7.4, this
is the closest approximation to colimit that passes to the homotopy category.
In any application it is useful to have an explicit formula for holim−−−→I

X in terms
of the original diagram X; this is given by the coend formula

holim−−−→
I

X =
∫ i

B(i ↓ I)op ⊗ X(i).

These are studied in detail elsewhere — see Chapter IV.
This example can be greatly generalized. If C is any cofibrantly generated

simplicial model category, CI becomes a simplicial model category and one gets

holim−−−→
I

: Ho(CI) → Ho(C)

in an analogous manner. �
8. Homotopy cartesian diagrams.
We return, in this last section, to concepts which are particular to the cate-
gory of simplicial sets and its close relatives. The theory of homotopy cartesian
diagrams of simplicial sets is, at the same time, quite deep and essentially ax-
iomatic. The axiomatic part of the theory is valid in arbitrary categories of
fibrant objects such as the category of Kan complexes, while the depth is im-
plicit in the passage from the statements about Kan complexes to the category
of simplicial sets as a whole. This passage is non-trivial, even though it is com-
pletely standard, because it involves (interchangeably) either Quillen’s theorem
that the realization of a Kan fibration is a Serre fibration (Theorem I.10.10) or
Kan’s Ex∞ construction (see III.4).

A proper closed model category C is a closed model category such that

P1 the class of weak equivalences is closed under base change by fibrations,
and

P2 the class of weak equivalences is closed under cobase change by cofibra-
tions.

In plain English, axiom P1 says that, given a pullback diagram

X w

g∗

u

Y

u

p

Z wg W
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of C with p a fibration, if g is a weak equivalence then so is g∗. Dually, axiom
P2 says that, given a pushout diagram

A w

f

u

i

B

u

C w

f∗
D

with i a cofibration, if f is a weak equivalence then so is f∗.
The category of simplicial sets is a canonical example of a proper closed

model category (in fact, a proper simplicial model category) — see Corollary
8.6. Furthermore, this is the generic example: most useful examples of proper
closed model categories inherit their structure from simplicial sets. The asser-
tion that the category of simplicial sets satisfies the two axioms above requires
proof, but this proof is in part a formal consequence of the fact that every
simplicial set is cofibrant and every topological space is fibrant. The formalism
itself enjoys wide applicability, and will be summarized here, now.

A category of cofibrant objects is a category D with all finite coproducts
(including an initial object ϕ ), with two classes of maps, called weak equiva-
lences and cofibrations, such that the following axioms are satisfied:

(A) Suppose given a commutative diagram

X w

g
N
N
NNPh

Y
�
�
���

f

Z

in D. If any two of f , g and h are weak equivalences, then so is the third.
(B) The composite of two cofibrations is a cofibration. Any isomorphism is

a cofibration.
(C) Pushout diagrams of the form

A w

u
i

B

u
i∗

C w D

exist in the case where i is a cofibration. Furthermore, i∗ is a cofibration
which is trivial if i is trivial.

(D) For any object X there is at least one cylinder object X ⊗ I.
(E) For any object X, the unique map ∅ → X is a cofibration.
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To explain, a trivial cofibration is a morphism of D which is both a cofi-
bration and a weak equivalence. A cylinder object X⊗I for X is a commutative
diagram

X � X w
∇

u

i = (i0, i1)

X

X ⊗ I
�
�
�
��

σ

in which i is a cofibration and σ is a weak equivalence, just like in the context
of a closed model category (see Section 1 above). Each of the components iε of
i must therefore be a trivial cofibration.

The definition of category of cofibrant objects is dual to the definition
of category of fibrant objects given in Section I.9. All results about categories
of fibrant objects therefore imply dual results for categories of cofibrant ob-
jects, and conversely. In particular, we immediately have the dual of one of the
assertions of Proposition I.9.5:

Proposition 8.1. The full subcategory of cofibrant objects Cc in a closed
model category C, together with the weak equivalences and cofibrations between
them, satisfies the axioms (A)–(E) for a category of cofibrant objects.

Remark 8.2. One likes to think that a category of cofibrant objects structure
(respectively a category of fibrant objects structure) is half of a closed model
structure. This intuition fails, however, because it neglects the power of the
axiom CM4.

Corollary 8.3.

(1) The category of simplicial sets is a category of cofibrant objects.

(2) The category of compactly generated Hausdorff spaces is a category of
fibrant objects.

Lemma 8.4. Suppose that f : A → B is an arbitrary map in a category of
cofibrant objects D. Then f has a factorization f = q ·j, where j is a cofibration
and q is left inverse to a trivial cofibration. In particular, q is a weak equivalence.

Proof: The proof of this result is the mapping cylinder construction. It’s also
dual of the classical procedure for replacing a map by a fibration.

Choose a cylinder object

A � A w
∇

u

(i0, i1)

A

A ⊗ I

h
h
hhj
σ
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for A, and form the pushout diagram

A w

f

u

i0

B

u

i0∗

A ⊗ I w

f∗
B∗.

Then (fσ) · i0 = f , and so there is a unique map q : B∗ → B such that
q · f∗ = fσ and q · i0∗ = 1B. Then f = q · (f∗i1).

The composite map f∗i1 is a cofibration, since the diagram

A � A w

f � 1A

u

(i0, i1)

B � A

u

(i0∗, f∗i1)

A ⊗ I w

f∗
B∗

is a pushout. �
Lemma 8.5. Suppose that

A w
u

u

i

B

u

C wu∗ D

is a pushout in a category of cofibrant objects D, such that i is a cofibration
and u is a weak equivalence. Then the map u∗ is a weak equivalence.

Proof: Trivial cofibrations are stable under pushout, so Lemma 8.4 implies
that it suffices to assume that there is a trivial cofibration j : B → A such that
u · j = 1B.

Form the pushout diagram

B w

j

u
j

A

u

j∗A

u
i

C w

j̃
D̃

Then j̃ is a trivial cofibration.
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Let f : D̃ → C be the unique map which is determined by the commuta-
tive diagram

B w

j

u
j

A

u

iA

u
i

C w1C
C.

Form the prism

A w
u

u

j∗

�
�
�
�
�
�
��

i

B

u

�
�
�
�
�
�
��

D̃ w
ũ

N
N
NNPf

B∗N
N
NNPf∗

C wu∗ D

such that the front and back faces are pushouts (ie. push out the triangle on the
left along u). Then ũ is a weak equivalence, since j̃ is a weak equivalence and
u · j = 1B. It therefore suffices to show that the map f∗ is a weak equivalence.

The bottom face

D̃ w
ũ

u
f

B∗

u
f∗

C wu∗ D

is a pushout, and the map f is a weak equivalence. The morphism

A
h
h
hhk

j∗
�
�
���
i

D̃ w
f

C

is therefore a weak equivalence in the category A ↓ D, and the argument of
Lemma 8.4 says that this map has a factorization in A ↓ D of the form f = q ·j,
where j is a trivial cofibration and q is left inverse to a trivial cofibration. It
follows that pushing out along u preserves weak equivalences of A ↓ D, so that
f∗ is a weak equivalence of D. �
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Corollary 8.6. The category S of simplicial sets is a proper simplicial model
category.

Proof: Axiom P2 is a consequence of Lemma 8.5 and Corollary 8.3. The cate-
gory CGHaus of compactly generated Hausdorff spaces is a category of fibrant
objects, so the dual of Lemma 8.5 implies Axiom P1 for that category. One
infers P1 for the simplicial set category from the exactness of the realization
functor (Proposition I.2.4), the fact that the realization functor preserves fibra-
tions (Theorem I.10.9), and the assertion that the canonical map η : X → S|X|
is a weak equivalence for all X (see the proof of Theorem I.11.4). �

Remark 8.7. Axiom P1 for the category of simplicial sets can alternatively be
seen by observing that Kan’s Ex∞ preserves fibrations and pullbacks (Lemma
III.4.5), and preserves weak equivalences as well (Theorem III.4.6). Thus, given
a pullback diagram

X w

g∗

u

Y

u

p

Z wg W

with p a fibration and g a weak equivalence, if we want to show that g∗ is
a weak equivalence, it suffices to show that the induced map Ex∞ g∗ in the
pullback diagram

Ex∞ X w

Ex∞ g∗

u

Ex∞ Y

u

Ex∞ p

Ex∞ Z w

Ex∞ g
Ex∞ W

is a weak equivalence. But all of the objects in this last diagram are fibrant
and the map Ex∞ g is a weak equivalence, so the desired result follows from
the dual of Lemma 8.5.

The following result is commonly called the gluing lemma. The axiomatic
argument for it that is given here is due to Thomas Gunnarsson [40].



8. Homotopy cartesian diagrams 127

Lemma 8.8. Suppose given a commutative cube

A1 w

j1
�
�
�
��

i1

u

fA

B1�
�
�
��

u

fB

C1 w

u

fC

D1

u

fDA2 w

j2�
�
�
��i2

B2�
�
�
��

C2 w D2

(8.9)

in a category of cofibrant objects D. Suppose further that the top and bottom
faces are pushouts, that i1 and i2 are cofibrations, and that the maps fA, fB

and fC are weak equivalences. Then fD is a weak equivalence.

Proof: It suffices to assume that the maps j1 and j2 are cofibrations. To see
this, use Lemma 8.4 to factorize j1 and j2 as cofibrations followed by weak
equivalences, and then use Lemma 8.5 to analyze the resulting map of cubes.

Form the diagram

A1 w

j1
�
�
���i1

u

fA

B1�����

u
fA∗

C1 w

j1∗

u

fC

D1

u

fC∗B′

u

nB

�����
θ

D′

u

nDA2

A
A
A
A
A
A
A
A
AC

w
j2

�
�
���

i2

B2�����
i2∗

C2

A
A
A
A
A
A
A
A
AC

w D2.
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by pushing out the top face along the left face of the cube (8.9). The square

A2 w

u

i2

B′

u

θ

C2 w D′

is a pushout, so the square

B′
w

nB

u

θ

B2

u

i2∗

D′
wnD
D2

is a pushout, and θ is a cofibration. The map fA∗ is a weak equivalence, since
j1 is a cofibration and fA is a weak equivalence. Similarly, fC∗ is a weak
equivalence, since j1∗ is a cofibration and fC is a weak equivalence. The map
fB = nB · fA∗ is assumed to be a weak equivalence, so it follows that nB is a
weak equivalence. Then nD is a weak equivalence, so fD = nD · fC∗ is a weak
equivalence. �

The dual of Lemma 8.8 is the cogluing lemma for categories of fibrant
objects:

Lemma 8.10. Suppose given a commutative cube

A1 w�
�
�
��

u

fA

B1�
�
�
��

p1

u

fB

C1 w

u

fC

D1

u

fDA2 w�
�
�
��

B2�
�
�
��

p2

C2 w D2

(8.11)

in a category of fibrant objects E . Suppose further that the top and bottom
squares are pullbacks, that the maps p1 and p2 are fibrations, and that the maps
fB, fC and fD are weak equivalences. Then the map fA is a weak equivalence.

The gluing lemma also holds in an arbitrary proper closed model category
C; the proof is exactly that of Lemma 8.8.

Lemma 8.12. Let C be a proper closed model category. Suppose given a com-
mutative diagram

D1

u

C1u

j1
w

u

X1

u

D2 C2 wu
j2

X2
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where j1 and j2 are cofibrations and the three vertical maps are weak equiva-
lences. Then the map

D1 ∪C1 X1 → D2 ∪C2 X2

is a weak equivalence.

The dual statement is the cogluing lemma for proper closed model cate-
gories:

Corollary 8.13. Suppose that C is a proper closed model category. Consider
a diagram

X1 w

u

Y1

u

Z1u

p1

u

X2 w Y2 Z2u p2

where the maps p1 and p2 are fibrations and the three vertical maps are weak
equivalences. Then the induced map

X1 ×Y1 Z1 → X2 ×Y2 Z2

is a weak equivalence.

Corollary 8.13 is the basis for the theory of homotopy cartesian diagrams
in a proper closed model category C. We say that a commutative square of
morphisms

X w

u

Y

u

f

W w Z

(8.14)

is homotopy cartesian if for any factorization

Y w

f
h
hhji

Z

Ỹ

�
�
��
p (8.15)

of f into a trivial cofibration i followed by a fibration p the induced map

X
i∗−→ W ×Z Ỹ

is a weak equivalence.
In fact (and this is the central point), for the diagram (8.14) to be homo-

topy cartesian, it suffices to find only one such factorization f = p · i such that
the map i∗ is a weak equivalence. This is a consequence of the following:
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Lemma 8.16. Suppose given a commutative diagram

X w

u

Y

u

f

W w Z

of morphisms in a proper closed model category C, and factorizations

Y w

f
h
hhjij

Z

Yj

�
�
��
pj

of f as trivial cofibration ij followed by a fibration pj for j = 1, 2. Then the
induced map i1∗ : X → W ×Z Y1 is a weak equivalence if and only if the map
i2∗ : X → W ×Z Y2 is a weak equivalence.

Proof: There is a lifting θ in the diagram

Y w

i2

u
i1

Y2

u
p2

Y1 wp1

h
h
hhjθ

Z,

by the closed model axioms. Form the commutative cube

W ×Z Y1 w������

u

θ∗

Y1�
�
���
p1

u

θ
W w

u

1W

Z

u

1ZW ×Z Y2 w������

Y2�
�
���
p2

W w Z.
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Then the map θ∗ is a weak equivalence by Corollary 8.13. There is a commu-
tative diagram

W ×Z Y1

u

θ∗X
��
���i1∗

�����
i2∗

W ×Z Y2,

and the desired result follows. �
Remark 8.17. The argument of Lemma 8.16 implies that the definition of
homotopy cartesian diagrams can be relaxed further: the diagram (8.14) is
homotopy cartesian if and only if there is a factorization (8.15) with p a fibration
and i a weak equivalence, and such that the induced map i∗ : X → W ×Z Ỹ is
a weak equivalence.

The way that the definition of homotopy cartesian diagrams has been
phrased so far says that the diagram

X w

u

Y

u
f

W wg Z

is homotopy cartesian if a map induced by a factorization of the map f into a
fibration following a trivial cofibration is a weak equivalence. In fact, it doesn’t
matter if we factor f or g:

Lemma 8.18. Suppose given a commutative diagram

X w

u

Y

u
f

W wg Z

in a proper closed model category C. Suppose also that we are given factoriza-
tions

Y w
f

�
�
���i

Z

Ỹ

h
h
hhj
p

W w
g

�
�
���j

Z

W̃

h
h
hhj
q
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of f and g respectively such that i and j are trivial cofibrations and p and q
are fibrations. Then the induced map i∗ : X → W ×Z Ỹ is a weak equivalence
if and only if the map j∗ : X → W̃ ×Z Y is a weak equivalence.

Proof: There is a commutative diagram

X w

i∗

u

j∗

W ×Z Ỹ

u

j × 1

W̃ ×Z Y w1 × i
W̃ ×Z Ỹ .

The map p is a fibration, so the map j × 1 is a weak equivalence, and q is a
fibration, so 1 × i is a weak equivalence, all by Corollary 8.13. �

The cogluing lemma also has the following general consequence for homo-
topy cartesian diagrams:

Corollary 8.19. Suppose given a commutative cube

X1 w�
�
�
��

u

fX

Y1�
�
�
��

u

fY

W1 w

u

fW

Z1

u

fZX2 w�
�
�
��

Y2�
�
�
��

W2 w Z2

of morphisms in a proper closed model category C. Suppose further that the
top and bottom squares are homotopy cartesian diagrams, and that the maps
fY , fW and fZ are weak equivalences. Then the map fX is a weak equivalence.

Example 8.20. A homotopy fibre sequence of simplicial sets is a homotopy
cartesian diagram in S

X w

j

u

Y

u
f

∗ wx Z.
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In effect, one requires that the composite f · j factor through the base point
x of Z, and that if f = p · i is a factorization of f into a trivial cofibration
followed by a fibration, then the canonical map X → F is a weak equivalence,
where F is the fibre of p over x. More colloquially (see also Remark 8.17), this
means that X has the homotopy type of the fibre F of any replacement of the
map f by a fibration up to weak equivalence. It is common practice to abuse
notation and say that

X
j−→ Y

f−→ Z

is a homotopy fibre sequence, and mean that these maps are a piece of a
homotopy cartesian diagram as above. Every fibration sequence

F → E → B

is plainly a homotopy fibre sequence.

Example 8.21. Suppose that

X
j−→ Y

f−→ Z

is a homotopy fibre sequence, relative to a base point x of Z, and that there is
a vertex y ∈ Y such that f(y) = x. Suppose that the canonical map Y → ∗ is a
weak equivalence. Then X is weakly equivalent to the loop space ΩZ̃ for some
(and hence any) fibrant model Z̃ for Z. To see this, choose a trivial cofibration
j : Z → Z̃, where Z̃ is a Kan complex, and use the factorization axioms to
form the commutative square

Y w

j

u

f

Ỹ

u

p

Z w

j
Z̃,

where both maps labelled j are trivial cofibrations and p is a fibration. Let F
denote the fibre of the fibration p over the image of the base point x in Z̃. Then
Corollary 8.19 implies that the induced map X → F is a weak equivalence. Now
consider the diagram

Ỹ ×Z̃ PZ̃ w

prR

u

prL

PZ̃

u

π

Ỹ wp Z̃,

where PZ̃ is the standard path space for the Kan complex Z̃ and the base
point x, and π is the canonical fibration. Then the map y : ∗ → Ỹ is a weak
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equivalence, so that the inclusion ΩZ̃ → Ỹ ×Z̃ PZ̃ of the fibre of the fibration
prL is a weak equivalence, by properness, as is the inclusion F → Ỹ ×Z̃ PZ̃ of
the fibre of prR. In summary, we have constructed weak equivalences

X
�−→ F

�−→ Ỹ ×Z̃ PZ̃
�←− ΩZ̃.

This collection of ideas indicates that it makes sense to define the loop
space of a connected simplicial set X to be the loops ΩX̃ of a fibrant model X̃
for X — the loop space of X is therefore an example of a total right derived
functor, in the sense of Section II.7.

Here is a clutch of results that illustrates the formal similarities between
homotopy cartesian diagrams and pullbacks:

Lemma 8.22. Suppose that C is a proper closed model category.

(1) Suppose that

X w
α

u

Y

u

Z w

β
W

is a commutative diagram in C such that the maps α and β are weak
equivalences. Then the diagram is homotopy cartesian.

(2) Suppose given a commutative diagram

X1 w

u

X2 w

u

X3

u

Y1 w

I

Y2 w

II

Y3

in C. Then

(a) if the diagrams I and II are homotopy cartesian then so is the
composite diagram I + II

X1 w

u

X3

u

Y1 w Y3,

(b) if the diagrams I + II and II are homotopy cartesian, then I is
homotopy cartesian.

The proof of this lemma is left to the reader as an exercise.
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We close with a further application of categories of cofibrant objects struc-
tures. Let C be a fixed choice of simplicial model category having an adequate
supply of colimits. Suppose that β is a limit ordinal, and say that a cofibrant
β-sequence in C is a functor X : Seq(β) → C, such that all objects Xi are
cofibrant, each map Xi → Xi+1 is a cofibration, and Xt = lim−→i<t

Xi for all
limit ordinals t < β. The cofibrant β-sequences, with ordinary natural trans-
formations between them, form a category which will be denoted by Cβ . Say
that a map f : X → Y in Cβ is a weak equivalence if all of its components
f : Xi → Yi are weak equivalences of C, and say that g : A → B is a cofibration
of Cβ if the maps g : Ai → Bi are cofibrations of C, as are all induced maps
Bi ∪Ai Ai+1 → Bi+1.

Lemma 8.23. Let C be a simplicial model category having all filtered colimits.
With these definitions, the category Cβ of cofibrant β-sequences in C satisfies
the axioms for a category of cofibrant objects.

Proof: Suppose that A → B → C are cofibrations of Cβ . To show that the
composite A → C is a cofibration, observe that the canonical map Ci ∪Ai

Ai+1 → Ci+1 has a factorization

Ci ∪Ai Ai+1 wA
A
AAC

Ci+1

Ci ∪Bi Bi+1

h
h
h
hj

and there is a pushout diagram

Bi ∪Ai Ai+1 w

u

Bi+1

u

Ci ∪Ai Ai+1 w Ci ∪Bi Bi+1.

Suppose that

A w

u
i

B

u
i∗

C w D
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is a pushout diagram of Seq(β)-diagrams in C, where A, B and C are cofibrant
β-sequences and the map i is a cofibration of same. We show that D is a
cofibrant β-sequence and that i∗ is a cofibration by observing that there are
pushouts

Ci ∪Ai Ai+1 w

u

Di ∪Bi Bi+1

u

Ci+1 w Di+1,

and that the maps Di → Di ∪Bi Bi+1 are cofibrations since B is a cofibrant
β-sequence.

Suppose that A is a cofibrant β-sequence, and let K be a simplicial set.
Then the functor A ⊗ K : Seq(β) → C is defined by (A ⊗ K)i = Ai ⊗ K. The
functor X �→ X ⊗ K preserves cofibrations and filtered colimits of C, so that
A ⊗ K is a cofibrant β-sequence. Furthermore, if K → L is a cofibration of S
then the induced map A ⊗ K → A ⊗ L is a cofibration of Cβ: the proof is an
instance of SM7. It follows that the diagram

A ⊗ ∂Δ1
w

u

A ⊗ Δ0

A ⊗ Δ1
�
�
�
��

is a candidate for the cylinder object required by the category of cofibrant
objects structure for the category Cβ. �
Lemma 8.24. Suppose that C is a simplicial model category having all filtered
colimits. Suppose that f : A → B is a cofibration and a weak equivalence of
Cβ. Then the induced map

f∗ : lim−→
i<β

Ai → lim−→
i<β

Bi

is a trivial cofibration of C.

Proof: Suppose given a diagram

lim−→
i<β

Ai w

u

f∗

X

u

p

lim−→
i<β

Bi w Y
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where p is a fibration of C. We construct a compatible family of lifts

Ai w

u

fi

X

u

p

Bi w

h
h
h
hjθi

Y

(8.25)

as follows:

1) Let θs be the map induced by all θi for i < s at limit ordinals s < β.
2) Given a lifting θi as in diagram (8.25), form the induced diagram

Bi ∪Ai Ai+1 w
θ∗

u

f∗

X

u

p

Bi+1 w

O
O
O
O
OP

θi+1

Y.

The map f∗ is a trivial cofibration of C, since f is a cofibration and a weak
equivalence of Cβ, so the indicated lift θi+1 exists. �
Corollary 8.26. Suppose that C is a simplicial model category having all
filtered colimits, and that f : X → Y is a weak equivalence of cofibrant β-
sequences in C. Then the induced map

f∗ : lim−→
i<β

Xi → lim−→
i<β

Yi

is a weak equivalence of C.

Proof: We have it from Lemma 8.23 that Cβ is a category of cofibrant objects,
and Lemma 8.4 says that f : X → Y has a factorization f = q · j, where j
is a cofibration and q is left inverse to a trivial cofibration. Then j is a trivial
cofibration since f is a weak equivalence, and so Lemma 8.24 implies that both
j and p induce weak equivalences after taking filtered colimits. �

The dual assertion for Corollary 8.26 is entertaining. Suppose again that
β is a limit ordinal and that C is a simplicial model category having enough
filtered inverse limits. Define a fibrant β-tower in C to be (contravariant) functor
X : Seq(β)op → C such that each Xi is a fibrant object of C, each map Xi+1 →
Xi is a fibration of C, and Xt = lim←−i<t

Xi for all limit ordinals t < β. Then the
dual of Lemma 8.23 asserts that, for pointwise weak equivalences and a suitable
definition of fibration, the category of fibrant β-towers in C has a category of
fibrant objects structure. The dual of Lemma 8.24 asserts that the inverse limit
functor takes trivial fibrations of fibrant β-towers to trivial fibrations of C, and
then we have
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Lemma 8.27. Suppose that C is a simplicial model category having all filtered
inverse limits, and that f : X → Y is a weak equivalence of fibrant β-towers in
C. Then the induced map

f∗ : lim←−
i<β

Xi → lim←−
i<β

Yi

is a weak equivalence of C.

For fibrant β-towers X : Seq(β)op → S taking values in simplicial sets, one
can take a different point of view, in a different language. In that case, fibrant β-
towers are globally fibrant Seq(β)op-diagrams, and inverse limits and homotopy
inverse limits coincide up to weak equivalence for globally fibrant diagrams, for
all β. Homotopy inverse limits preserve weak equivalences, so inverse limits
preserve weak equivalences of fibrant β-towers. Homotopy inverse limits and
homotopy theories for categories of diagrams will be discussed in Chapters 6
and 7.



Chapter III Classical results and constructions

This chapter is a rather disparate collection of stories, most of them old and
well known, but told from a modern point of view.

The first section contains several equivalent descriptions of the funda-
mental groupoid, one of which (ie. left adjoint to a classifying space functor) is
powerful enough to show that the fundamental groupoid of a classifying space
of a small category is the free groupoid on that category (Corollary 1.2), as
well as prove the Van Kampen theorem (Theorem 1.4).

The second section, on simplicial abelian groups, contains a complete de-
velopment of the Dold-Kan correspondence. This correspondence is an equiva-
lence of categories between chain complexes and simplicial abelian groups; the
result appears as Corollary 2.3. We also give an elementary description of the
proper simplicial model structure for the category of simplicial abelian groups
(Theorem 2.8, Proposition 2.13, and Remark 2.14), and then use this structure
to derive the standard isomorphism

Hn(X,A) ∼= [X,K(A,n)]

relating cohomology to homotopy classes of maps which take values in an Eilen-
berg-Mac Lane space (Theorem 2.19). We close Section 2 by showing that every
simplicial abelian group is non-canonically a product of Eilenberg-Mac Lane
spaces up to homotopy equivalence (Proposition 2.20).

We have included Section 3, on the Hurewicz theorem, as further evidence
for the assertion that many results in the Algebraic Topology canon have very
clean simplicial homotopy proofs. We use Postnikov towers and the Serre spec-
tral sequence, both of which appear here for the first time in the book and are
described more fully in later chapters. The Hurewicz homomorphism itself has
a very satisfying functorial description in this context: it is the adjunction map
X → ZX from a simplicial set X to the corresponding free abelian simplicial
group ZX.

Section 4 contains a modernized treatment of Kan’s Ex∞ functor. This
functor gives a combinatorial (even intuitionistic), natural way of mapping a
simplicial set into a Kan complex, via a weak equivalence. The construction is
therefore preserved by left exact functors which have right adjoints — these
appear throughout topos theory [38]. We have seen similar applications al-
ready in Chapter II in connection with detecting simplicial model structures
on categories of simplicial objects. The main theorem here is Theorem 4.8. The
proof is an updated version of the original: the fundamental groupoid trick in
Lemma 4.2 may be new, but the heart of the matter is Lemma 4.7.

There are two different suspension functors for a pointed simplicial set
X, namely the smash product S1 ∧ X (where S1 = Δ1/∂Δ1 is the simpli-
cial circle), and the Kan suspension ΣX. These are homotopy equivalent but
not isomorphic constructions which have naturally homeomorphic realizations.

139
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They further represent two of the standard subdivisions for the suspension
of a pointed simplicial complex. Both have their uses; in particular, the Kan
suspension is more easily related to the classifying space of a simplicial group
which appears in Chapter V, and hence to Eilenberg-Mac Lane spectra [52].
We give a full treatment of the Kan suspension in Section 5, essentially to have
it “in the bank” for later. Along the way, we say formally what it means for
a simplicial set to have an extra degeneracy. This last idea has been in the
folklore for a long time — it means, most succinctly, that the identity map on
a simplicial set factors through a cone.

1. The fundamental groupoid, revisited.

Recall from Section I.8 that the classical fundamental groupoid π|X| of the
realization of a simplicial set X coincides with the groupoid πfS|X| associated
to the singular complex S|X|. In that section, there is a remark to the effect
that this groupoid is equivalent to the free groupoids GP∗X and G(Δ ↓ X)
which are associated, respectively, to the path category P∗X and the simplex
category Δ ↓ X for X. This claim has the following precise form:

Theorem 1.1. The groupoids G(Δ ↓ X), GP∗X and π|X| are naturally equiv-
alent as categories.

Proof: A functor f : G → H between groupoids is an equivalence if and only
if

(1) the induced function f : homG(a, b) → homH(f(a), f(b)) is a bijection
for every pair of objects a, b of G, and

(2) for every object c of H there is a morphism c → f(a) in H.

The groupoids GP∗S|X| and π|X| are naturally isomorphic. The 1-sim-
plices of S|X| are paths of |X|, and [d1σ] = [d0σ] · [d2σ] for every 2-simplex
σ : |Δ2| → |X| of S|X|. It follows that there is a functor γX : GP∗S|X| → π|X|
which is defined by sending a path to its associated homotopy class. The inverse
of γX is constructed by observing that homotopic paths in |X| represent the
same element of GP∗S|X|.

The next step is to show that the functor GP∗ takes weak equivalences
of simplicial sets to equivalences of groupoids. If f is a weak equivalence of S,
then f has a factorization f = q ·j where q is a trivial fibration and j is a trivial
cofibration. The map q is left inverse to a trivial cofibration, and every trivial
cofibration is a retract of a map which is a filtered colimit of pushouts of maps
of the form Λn

k ⊂ Δn. It suffices, therefore to show that GP∗ takes pushouts of
maps Λn

k ⊂ Δn to equivalences of categories.
The induced map GP∗(Λn

k ) → GP∗(Δn) is an isomorphism of groupoids
if n ≥ 2. The groupoid GP∗(Λ1

i ) is a strong deformation retract of GP∗(Δ1) in
the category of groupoids for i = 0, 1. Isomorphisms and strong deformation
retractions of groupoids are closed under pushout, and so GP∗ takes weak
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equivalences of simplicial sets to equivalences of groupoids as claimed. It follows
in particular that the groupoids GP∗X and π|X| are naturally equivalent.

We can assign, to each 1-simplex x : d1x → d0x, the morphism (d0)−1(d1)
of G(Δ ↓ X) arising from the diagram

Δ0
w

d1

�
�
���d1x

Δ1

u
x

Δ0
u

d0

h
h

hhk
d0x

X.

This assignment defines a functor ωX : GP∗X → G(Δ ↓ X), since the following
diagram of simplicial maps commutes:

Δ0
w

d0

�
�
�
�
�
�
��

d1

Δ1

u

d2

Δ0
u

d1

�
�
�
�
�
�
��

d1Δ2

Δ1

N
NNPd0

Δ1

�
���
d1

Δ0

�
���

d0
N
NNP
d0

Let vn : Δ0 → Δn denote the simplicial map which picks out the last vertex n
of the ordinal number n. Then the assignment

Δn
σ−→ X �→ Δ0

vn−→ Δn
σ−→ X

is the object function of a functor Δ ↓ X → P∗X. Write νX : G(Δ ↓ X) →
GP∗X for the induced functor on associated groupoids. Then the composite
functor νX · ωX is the identity on GP∗X, and the composite ωX · νX is nat-
urally isomorphic to the identity on G(Δ ↓ X). The natural isomorphism is
determined by the maps

Δ0
w

σ · vn

u

vn

X

Δn
h
h
hhj
σ

of the simplex category Δ ↓ X. �
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From now on, the fundamental groupoid of a simplicial set X, in any of
its forms, will be denoted by πX.

A simplicial set map f : X → BC associates to each n-simplex x of X a
functor f(x) : n → C which is completely determined by the 1-skeleton of x
and the composition relations arising from 2-simplices of the form

Δ2 → Δn
x−→ X.

It follows that f can be identified with the graph morphism

X1 w

f

u u

Mor(C)

u u

X0 w

f

u

Ob(C)

u

subject to the relations f(d1σ) = f(d0σ) · f(d2σ) arising from all 2-simplices σ
of X. The path category P∗X is the category which is freely associated to the
graph

X1
w

w
X0u

and the 2-simplex relations, so that there is an adjunction isomorphism

homcat(P∗X,C) ∼= homS(X,BC).

A small category C is completely determined by its set of arrows and
composition relations. It follows that the path category P∗BC of the nerve BC
is isomorphic to C. We therefore immediately obtain the following assertion:

Corollary 1.2. Let C be a small category. Then the fundamental groupoid
πBC of the nerve of C is equivalent, as a category, to the free groupoid GC on
the category C.

Corollary 1.2 may be used to give a direct proof of the fact that the
fundamental group π1BQA of the nerve of the Q-construction QA on an exact
category A is isomorphic to the 0th K-group K0A of A (see [48]).

Remark 1.3. In the proof of Theorem 1.1, observe that the composite

S|X| → BP∗S|X| → BGP∗S|X| γX∗−−→ Bπ|X|
sends a path α : Δ1 → S|X| of |X| to its homotopy class [α] (rel ∂Δ1). It
follows that the composite

S|X| → BP∗S|X| → BGP∗S|X|
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induces isomomorphisms π1(S|X|, x) ∼= π1(BGP∗S|X|, x) for all choices of ver-
tex x ∈ S|X|. We have also seen that the functor GP∗ takes weak equivalences
of simplicial sets to equivalences of groupoids, so that the commutativity of the
diagram

X w

u

η

BP∗X w

u

η∗

BGP∗X

u

η∗

S|X| w BP∗S|X| w BGP∗S|X|

implies that the composite

X → BP∗X → BGP∗X

induces isomorphisms

π1(X,x) ∼= π1(BGP∗X,x) ∼= homGP∗X(x, x)

for any choice of vertex x ∈ X, if X is a Kan complex.
Note, in particular, that if X is connected, then there is a deformation

retraction map of groupoids r : GP∗X → homGP∗X(x, x) for any choice of
vertex of X. This map r determines a composite map

X → BP∗X → BGP∗X
r∗−→ B(homGP∗X(x, x)),

which induces isomorphisms

π1(X, y) ∼= π1(B homGP∗X(x, x)) ∼= homGP∗X(x, x)

for all vertices y of X. It follows that there is a map

X → B(π1(X,x))

which induces isomorphisms on all fundamental groups if X is a connected Kan
complex with base point x.

Again, the fundamental groupoid construction takes weak equivalences
of simplicial sets to equivalences of groupoids. It follows, in particular, that
there is a purely categorical definition of the fundamental group π1(X,x) of an
arbitrary simplicial set X at a vertex x, given by

π1(X,x) = homπX(x, x).

This definition can be used, along with the observation that the fundamental
groupoid construction π = GP∗ has a right adjoint and therefore preserves
colimits, to give a rather short proof of the Van Kampen theorem:
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Theorem 1.4 (Van Kampen). Suppose that

A z w
i

u

j

X

u

B w Y

is a pushout diagram of simplicial sets, where the map j is a cofibration, and
A, B and X are connected. Then, for any vertex x of A, the induced diagram

π1(A, x) w

i∗

u

j∗

π1(X,x)

u

π1(B, x) w π1(Y, x)

is a pushout in the category of groups.

Proof: The glueing lemma II.8.8 implies that we can presume that the map
i is also a cofibration.

The induced maps i∗ : πA → πX and j∗ : πA → πB of fundamental
groupoids are monomorphisms on objects, and so the strong deformation r :
πA → π1(A, x), by suitable choice of paths in X and B, can be extended to a
strong deformation

πB

u

r

πAu

i∗

u

r

w

j∗ πX

u

r

π1(B, x) π1(A, x)u

i∗
w

j∗
π1(X,x)

in a suitable diagram category in groupoids, meaning that the homotopy h :
πA → πA1 giving the deformation extends to a homotopy

πB

u

h

πAu

i∗

u

h

w

j∗ πX

u

h

πB1 πA1
u

i∗
w

j∗
πX1
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But then, if

π1(A, x) w

i∗

u

j∗

π1(X,x)

u

π1(B, x) w G

is a pushout in the category of groups, it is also a pushout in the category
of groupoids, and so the group G is a strong deformation retraction of the
groupoid πY , since the diagram

πA w

i∗

u

j∗

πX

u

πB w πY

is a pushout in groupoids. The group G is therefore isomorphic to π1(Y, x). �
2. Simplicial abelian groups.
Suppose that A is a simplicial abelian group, and define

NAn =
n−1⋂
i=0

ker(di) ⊂ An.

The maps

NAn

(−1)ndn−−−−−→ NAn−1

form a chain complex, on account of the simplicial identity

dn−1dn = dn−1dn−1.

Denote the corresponding chain complex by NA; this is the normalized chain
complex associated to the simplicial abelian group A. The assignment A �→ NA
is plainly a functor from the category sAb of simplicial abelian groups to the
category Ch+ of chain complexes.

The Moore complex of a simplicial abelian group A has the group An of
n-simplices of A as n-chains, and has boundary ∂ : An → An−1 defined by

∂ =
n∑

i=0

(−1)idi : An → An−1.
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Of course, one has to verify that ∂2 = 0, but this is a consequence of the
simplicial identities. The notation A will be used for the second purpose of
denoting the Moore complex of the simplicial abelian group A — this could be
confusing, but it almost never is.

Let DAn denote the subgroup of An which is generated by the degenerate
simplices. The boundary map ∂ of the Moore complex associated to A induces
a homomorphism

∂ : An/DAn → An−1/DAn−1.

The resulting chain complex will be denoted by A/D(A), meaning “A modulo
degeneracies”. One sees directly from the definitions that there are chain maps

NA
i−→ A

p−→ A/D(A),

where i is the obvious inclusion and p is the canonical projection.

Theorem 2.1. The composite

NA
p·i−→ A/D(A)

is an isomorphism of chain complexes.

Proof: Write

NjAn =
j⋂

i=0

ker(di) ⊂ An,

and let Dj(An) be the subgroup of An which is generated by the images of the
degeneracies si for i ≤ j. One shows that the composite

NjAn ↪→ An

p−→ An/Dj(An)

is an isomorphism for all n and j < n. Let φ denote this composite.
The claim is proved by induction on j. Here is the case j = 0: any class

[x] ∈ An/s0(An−1) is represented by x− s0d0x, and d0(x− s0d0x) = 0, so φ is
onto; if d0x = 0 and x = s0y, then

0 = d0x = d0s0y = y,

so x = 0.
Suppose that the map

φ : NkAm → Am/Dk(Am)

is known to be an isomorphism if k < j, and consider the map

φ : NjAn → An/Dj(An).
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Form the commutative diagram

Nj−1An w

φ
∼= An/Dj−1(An)

u

u

NjAn

u

z

w

φ
An/Dj(An).

On account of the displayed isomorphism, any class [x] ∈ An/Dj(An) can be
represented by an element x ∈ Nj−1An. But then x − sjdjx is in NjAn and
represents [x], so the bottom map φ in the diagram is onto. The simplicial
identities imply that the degeneracy sj : An−1 → An maps Nj−1An−1 into
Nj−1An, and takes Dj−1(An−1) to Dj−1(An), and so there is a commutative
diagram

Nj−1An−1 w

φ
∼=

u

sj

An−1/Dj−1(An−1)

u

sj

Nj−1An w

∼=
φ

An/Dj−1(An).

Furthermore, the sequence

0 → An−1/Dj−1(An−1)
sj−→ An/Dj−1(An) → An/Dj(An) → 0

is exact. Thus, if φ(x) = 0 for some x ∈ NjAn, then x = sjy for some y ∈
Nj−1An. But (again), djx = 0, so that

0 = djx = djsjy = y,

so that x = 0, and our map is injective. �
Every simplicial structure map d∗ : An → Am corresponding to a mono-

morphism d : m ↪→ n of ordinal numbers takes NAn into NAm. In fact, such
maps are 0 unless d is of the form d = dn : n − 1 → n. Put a different way,
suppose given a collection of abelian group homomorphisms

∂ : Cn → Cn−1, n ≥ 0.

Associate to each ordinal number n the group Cn, and map each ordinal number
monomorphism to an abelian group homomorphism by the rule

d �→
{

0 if d is not some dn, and

Cn

(−1)n∂−−−−→ Cn−1 if d = dn.
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Then we get a contravariant functor on the category of ordinal number mor-
phisms from such an assignment if and only if we started with a chain complex.

There is a simplicial abelian group whose n-simplices have the form⊕
n�k

NAk.

The map
θ∗ :

⊕
n�k

NAk →
⊕
m�r

NAr

associated to the ordinal number map θ : m → n is given on the summand
corresponding to σ : n → k by the composite

NAk

d∗
−→ NAs

int−−→
⊕
m�r

NAr,

where
m

t� s
d

↪→ k

is the epi-monic factorization of the composite

m
θ−→ n

σ� k.

Note as well that there is a morphism of simplicial abelian groups which
is given in degree n by the map

Ψ :
⊕
n�k

NAk → An,

which is given at the summand corresponding to σ : n → k by the composite

NAk ↪→ Ak

σ∗
−→ An.

Proposition 2.2. The map Ψ is a natural isomorphism of simplicial abelian
groups.

Proof: An induction on the degree n starts with the observation that NA0 =
A0, and that there’s only one map from the ordinal number 0 to itself. Suppose
that Ψ is known to be an isomorphism in degrees less than n. Then any degen-
eracy sjx ∈ An is in the image of Ψ, because x is in the image of Ψ in degree
n− 1. On the other hand, Ψ induces an isomorphism of normalized complexes,
so Ψ is epi in degree n by Theorem 2.1.

Suppose that (xσ) maps to 0 under Ψ, where xσ is the component of (xσ)
which corresponds to σ : n � k. If k < n, then σ has a section d : k → n,
and the component of d∗(xσ) which corresponds to the identity on k is xσ. But
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Ψd∗(xσ) = 0, so d∗(xσ) = 0 by the inductive hypothesis, and so xσ = 0 in
NAk. Thus, xσ = 0 for σ : n � k with k < n. The remaining component is
x1n ∈ NAn, but the restriction of Ψ to NAn is the inclusion NAn ↪→ An, so
that x1n = 0 as well. �

We have implicitly defined a functor

Γ : Ch+ → sAb

from chain complexes to simplicial abelian groups, with

Γ(C)n =
⊕
n�k

Ck

for a chain complex C, and with simplicial structure maps given by the recipe
above. The following result is now clear from the work that we have done:

Corollary 2.3 (Dold-Kan correspondence). The functors

N : sAb → Ch+ and Γ : Ch+ → sAb

form an equivalence of categories.

Proof: The natural isomorphism ΓN(A) ∼= A is Proposition 2.2, and the nat-
ural isomorphism NΓ(C) ∼= C can be derived from Theorem 2.1 by collapsing
Γ(C) by degeneracies. �

There is a subcomplex NjA of the Moore complex A, which is defined for
j ≥ 0 by

NjAn =
{ ⋂j

i=0 ker(di) for n ≥ j + 2,
NAn for n ≤ j + 1.

To see that these groups form a subcomplex, one has to verify that given
x ∈ NjAn with n ≥ j + 2, then

dk(
n∑

i=j+1

(−1)idi(x)) = 0

if k ≤ j. This is a consequence of the simplicial identities dkdi = di−1dk that
hold for i > k.

Set N−1A = A. Observe that Nj+1A ⊂ NjA, and that NA = ∩j≥0NjA.
Let ij denote the inclusion of Nj+1A into NjA.

Now define abelian group homomorphisms fj : NjAn → Nj+1An by spec-
ifying that

fj(x) =
{

x − sj+1dj+1(x) if n ≥ j + 2, and
x if n ≤ j + 1.
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One has to check that fj takes values in Nj+1An, but this is a simplicial identity
argument. The simplicial identities also imply that the collection of maps fj

defines a chain map fj : NjA → Nj+1A. The composite fj · ij is the identity
on the chain complex Nj+1A.

Now define an abelian group homomorphisms tj : NjAn → NjAn+1 by

tj(x) =
{

(−1)jsj+1 if n ≥ j + 1, and
0 otherwise.

Then a little more calculating shows that

1 − ijfj = ∂tj + tj∂ : NjAn → NjAn

in all degrees n, and that both sides of the equation are 0 in degrees n ≤ j +1.
It follows that the composite abelian group homomorphisms

An = N0An

f0−→ N1An

f1−→ N2An

f2−→ · · ·
fn−2−−−→ Nn−1An = NAn

define a chain map f : A → NA such that f · i : NA → NA is the identity.
The collection of homomorphisms T : An → An+1 defined by

T = i0 · · · in−2tn−1fn−2 · · · f0 + i0 · · · in−3tn−2fn−3 · · · f0 + · · · + i0t1f0 + t0

specifies a chain homotopy i · f � 1A.
The chain maps i, f and the chain homotopy T are natural with respect

to morphisms of simplicial abelian groups A. We have proved

Theorem 2.4. The inclusion i : NA → A of the normalized chain complex in
the Moore complex of a simplicial abelian group A is a chain homotopy equiv-
alence. This equivalence is natural with respect to simplicial abelian groups
A.

The development starting at Theorem 2.1 and finishing at Theorem 2.4
can be generalized to the category sA of simplicial objects in an abelian cat-
egory A. Let Ch+(A) denote th category of chain complexes in A. There is a
normalization functor N and a Moore complex functor sA → Ch+(A) defined
by analogy with the construction for simplicial abelian groups, as well as a
functor Γ : Ch+(A) → sA. The degeneracy subobject DAn is defined for a
simplicial object A to be the image of the map

n−1⊕
i=0

An−1

s−→ An

defined by adding up the degeneracy maps taking values in An.
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Theorem 2.5. Suppose that A is an abelian category, and let A be a simplicial
object in A. Then we have the following:

(1) The objects DAn, n ≥ 0, define a subcomplex of the Moore complex for
A, and the composition

NA → A → A/DA

is an isomorphism.

(2) The functors N : sA → Ch+(A) and Γ : Ch+(A) → sA define an
equivalence of categories.

(3) The inclusion NA → A is a natural chain homotopy equivalence.

Proof: This can be checked directly, by replacing the element chases in the
proofs of Theorem 2.1, Corollary 2.3 and Theorem 2.4 by “class” chases in the
sense of Mac Lane [66, p.200]. �

There is a further detail that is used and requires independent proof,
namely that the degenerate objects DAn for a simplicial object A in an abelian
category should be expressible in a form that one expects from simplicial sets.

Lemma 2.6. Suppose that A is a simplicial object in an abelian category A,
and let DAn ⊂ An be the degenerate part of the object of n-simplices An.
Then there is a coequalizer

⊕
0≤i<j≤n−1

An−2 ⇒
n−1⊕
i=0

An−1 → DnA

where for i < j the restrictions of the two displayed maps f, g to An−2 are
given, respectively, by the composites

An−2

si−→ An−1

inj−−→
n−1⊕
i=0

An−1

and

An−2

sj−1−−−→ An−1

ini−−→
n−1⊕
i=0

An−1.

Proof: The proof ultimately devolves onto the fact that, given subobjects C
and D of an object E in an abelian category A, the diagram

C ∩ D w

u

D

u

C w C + D
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is a pushout, where C + D is the image of the map C ⊕ D → E. This is an
elementary exercise in manipulating exact sequences.

The statement of the lemma amounts to the requirement that any collec-
tion of morphisms fi : An−1 → B, 0 ≤ i ≤ n − 1, with fjsi = fisj−1 for i < j
together determine a map

f :
⊕

0≤i≤n−1

An−1 → B

which factors through a morphism f∗ : DAn → B.
Write D(r)An for the image of the map

s :
⊕

0≤i≤r

An−1 → An

which is determined by the degeneracies si with 0 ≤ i ≤ r. Suppose that every
collection of maps fi : An−1 → B with 0 ≤ i ≤ r satisfying fjsi = fisj−1

for i < j ≤ r determines a unique map f∗ : D(r)An → B. Then there is a
commutative diagram

⊕
0≤i≤r

An−2 w

⊕sr

u

⊕
0≤i≤r

An−1

u

D(r)An−1 w

u

D(r)An

u

An−1 wsr+1
An

in which both squares are pullbacks by the simplicial identities. Given a com-
patible collection of maps fi : An−1 → B, 0 ≤ i ≤ r + 1, there is a unique
induced map f∗ : D(r)An → B which restricts to all fi, 0 ≤ i ≤ r. The mor-
phisms f∗ and fr+1 restrict to the same map on D(r)An−1, and hence determine
a unique map

D(r+1)An
∼= An−1 + D(r)An−1 → B. �

Suppose that A is a simplicial abelian group. Then there is an induced
abelian group structure on the set

πn(A, 0) = [(Δn, ∂Δn), (A, 0)]
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of homotopy classes of pairs of maps, which structure satisfies an interchange
law with respect to the standard group structure for πn(A, 0). It follows that the
homotopy group structure and the induced abelian group structure coincide.
In particular, there is a natural isomorphism

πn(A, 0) ∼= Hn(NA)

for n ≥ 0. Theorem 2.4 therefore immediately implies the following:

Corollary 2.7. Suppose that A is a simplicial abelian group. Then there are
isomorphisms

πn(A, 0) ∼= Hn(NA) ∼= Hn(A),

where Hn(A) is the nth homology group of the Moore complex associated to
A. These isomorphisms are natural in simplicial abelian groups A.

The group A0 of vertices of A acts on the simplicial set underlying A, via
the composite

A0 × A
c×1−−→ A × A

+−→ A,

where c : A0 → A is the simplicial abelian group homomorphism given by
inclusion of vertices, and + is the abelian group structure on A. It follows that
multiplication by a vertex a induces an isomorphism of homotopy groups

πn(A, 0)
+a∗−−→∼= πn(A, a)

for n ≥ 0. It also follows that a homomorphism f : A → B of simplicial abelian
groups is a weak equivalence of the underlying Kan complexes if and only if f
induces a homology isomorphism (or quasi-isomorphism) f∗ : NA → NB of the
associated normalized chain complexes. Equivalently, f is a weak equivalence
if and only if the induced map f : A → B of Moore complexes is a homology
isomorphism.

Say that a simplicial abelian group homomorphism f : A → B is a weak
equivalence if f is a weak equivalence of the underlying Kan complexes. We
say that f is a fibration if the underlying simplicial set map is a Kan fibration.
Finally, cofibrations in the category sAb of simplicial abelian groups are mor-
phisms which have the left lifting property with respect to all maps which are
fibrations and weak equivalences.

Theorem 2.8. With these definitions, the category sAb of simplicial abelian
groups satisfies the axioms for a closed model category.

This result is a consequence of Theorem II.4.1 — see also Remark II.5.2. One
can also argue directly as follows:
Proof: The limit axiom CM1, the weak equivalence axiom CM2 and the
retraction axiom CM3 are easy to verify.
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A map p : A → B of simplicial abelian groups is a fibration if and only if
it has the right lifting property with respect to all morphisms i : ZΛn

k → ZΔn

induced by the inclusions Λn
k ⊂ Δn. The simplicial abelian group ZΛn

k is a
degreewise direct summand of ZΔn. Note as well that each of these maps i is a
weak equivalence, because the underlying inclusions are weak equivalences and
therefore integral homology isomorphisms. A small object argument therefore
implies that any map f : C → D of simplicial abelian groups has a factorization

C w

f
���
j

D

E

���p

such that p is a fibration and j is a morphism which has the left lifting property
with respect to all fibrations, is a weak equivalence, and is a monomorphism
in each degree. In particular, j is a cofibration and a weak equivalence, and so
the corresponding factorization axiom is verified.

Similarly, a map p : A → B is a fibration and a weak equivalence if
and only if it has the right lifting property with respect to all morphisms
Z∂Δn → ZΔn induced by the inclusions ∂Δn ⊂ Δn. It follows again by a
small object argument that any map f : C → D has a factorization

C w

f
���
i

D

E

���q

such that q is a fibration and a weak equivalence, and such that i is a cofibra-
tion and a levelwise monomorphism. We have therefore completely verified the
factorization axiom CM5.

By standard nonsense, any map α which is a cofibration and a weak
equivalence is a retract of a map of the form j in the proof of the factorization
axiom, so that α has the left lifting property with respect to all fibrations. This
implies the lifting axiom CM4. �

Remark 2.9. It is a corollary of the proof of Theorem 2.8 that all cofibrations
of sAb are levelwise monomorphisms.

Lemma 2.10. Suppose that f : A → B is a homomorphism of simplicial
abelian groups which is surjective in all degrees. Then f is a fibration of sim-
plicial abelian groups.
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Proof: Suppose given a commutative diagram of simplicial set maps

Λn
k

z

u

w
α A

u

f

Δn
w

β
B.

Then, by the assumptions, there is a simplex θ ∈ An such that f(θ) = β. But
then

θ|Λn
k
− α : Λn

k → A

factors through the kernel K of f , and so θ|Λn
k
− α extends to an n-simplex

x of K by Lemma I.3.4, in the sense that there is a commutative diagram of
simplicial set maps

Λn
k w

θ|Λn
k
− α

z

u

K

Δn
N
N
N
N
NP

x

Then (θ − x)|Λn
k

= α and f(θ − x) = β. �
Lemma 2.11.

(1) A homomorphism f : A → B of simplicial abelian groups is surjective
(in all degrees) if and only if the associated chain complex map f :
NA → NB is surjective in all degrees.

(2) The homomorphism f : A → B of simplicial abelian groups is a fibration
if and only if the induced abelian group maps f : NAn → NBn are
surjective for n ≥ 1.

Proof: For (1), note that the map f : NA → NB of normalized chain com-
plexes is a retract of the map f : A → B of Moore complexes by Theorem 2.1.
Thus, if the simplicial abelian group homomorphism f : A → B is surjective in
all degrees, then so is the associated map of normalized chain complexes.

Conversely, one shows that if f : Nj+1A → Nj+1B is surjective in all
degrees, then the abelian group homomorphisms f : NjAn → NjBn are sur-
jective for all n ≥ 0. This is proved by induction on n. Take x ∈ NjBn. Then
x − sj+1dj+1x is in Nj+1Bn and so is in the image of f : Nj+1An → Nj+1Bn.
Also, dj+1x ∈ NjBn−1 and is therefore in the image of f : NjAn−1 → NjBn−1

by the inductive assumption. It follows that x is in the image of f : NjAn →
NjBn.
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For (2), suppose that f : A → B is a fibration of simplicial abelian groups.
Then the existence of solutions to the lifting problems of the form

Λn
n w

0
z

u

A

u

f

Δn
w

�
�
�
��

B

implies that f : NAn → NBn is surjective for n ≥ 1.
Conversely, suppose that f : NAn → NBn is surjective in non-zero de-

grees. Form the diagram

AAAAAAAAAAAAAAAAAAC

f
�
�
�
�
�
�
�
�
��

�
�
���
θ

K(π0A, 0) ×K(π0B,0) B wpr

u

B

u

K(π0A, 0) w

f∗
K(π0B, 0),

where (for example) K(π0A, 0) is the constant simplicial abelian group on the
abelian group π0A. The hypotheses imply that applying the normalization func-
tor to the map θ gives a surjective chain map

θ : NA → NK(π0A, 0) ×NK(π0B,0) NB ∼= π0A[0] ×π0B[0] NB,

and so (1) implies that the simplicial abelian group map

θ : A → K(π0A, 0) ×K(π0B,0) B

is surjective in all degrees and is therefore a fibration by Lemma 2.10. The map
f∗ : K(π0A, 0) → K(π0B, 0) is a fibration, so that pr is a fibration. It follows
that f = pr · θ is a fibration. �

Corollary 2.12. The homomorphism f : A → B is a trivial fibration of
simplicial abelian groups if and only if the induced morphism f : NA → NB
of normalized chain complexes is surjective in all degrees, with acyclic kernel.
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It follows that the category Ch+ of chain complexes of abelian groups
inherits a closed model structure from the simplicial abelian group category,
in which the fibrations are the chain maps f : C → D such that f is surjec-
tive in degree n for n ≥ 1, and where the weak equivalences are the quasi-
isomorphisms, or rather the maps which induce isomorphisms in all homology
groups. The cofibrations of Ch+ are those maps which have the left lifting prop-
erty with respect to all trivial fibrations. After the fact, it turns out that the
cofibrations are those monomorphisms of chain complexes having degreewise
projective cokernels.

One can, alternatively, give a direct proof of the existence of this closed
model structure on the chain complex category Ch+. The proof of the fac-
torization axioms is a small object argument which is based on some rather
elementary constructions. Explicitly, let Z[n] be the chain complex consisting
of a copy of the integers Z in degree n and 0 elsewhere, and let Z〈n+1〉 be the
chain complex

· · · → 0 →
n+1

Z
∂=1−−→

n

Z → 0 → · · · .

Then maps Z[n] → C classify n-cycles of C, and Z〈n + 1〉 is the free chain
complex on an element of degree n + 1. Write x for the generator of Z[n] in
degree n and write y for the generator of Z〈n + 1〉 in degree n + 1. There is
a canonical map j : Z[n] → Z〈n + 1〉 which is defined by j(x) = ∂(y). Then
f : C → D is a fibration if and only if f has the right lifting property with
respect to all chain maps 0 → Z〈n + 1〉 for n ≥ 0. Further, one can show that
f is a trivial fibration if and only if f : C0 → D0 is surjective and f has the
right lifting property with respect to all maps j : Z[n] → Z〈n + 1〉, n ≥ 0.

The chain complex category Ch+ has a natural cylinder construction. For
any chain complex C, there is a chain complex CI with

CI
n =

{
Cn ⊕ Cn ⊕ Cn+1 if n ≥ 1, and
{(x, y, z) ∈ C0 ⊕ C0 ⊕ C1|(x − y) + ∂z = 0} if n = 0.

and with
∂(x, y, z) = (∂x, ∂y, (−1)n(x − y) + ∂z).

Then there is a commutative diagram of chain maps

CI

u

p

C
N
N
N
NNPs

w
Δ

C ⊕ C,

where p is the fibration defined by p(x, y, z) = (x, y) and s is a weak equivalence
which is defined by s(x) = (x, x, 0). It is an exercise to show that there is a
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homotopy h : D → CI from f to g if and only if the maps f, g : C → D are
chain homotopic.

Proposition 2.13. The category of simplicial abelian groups admits a sim-
plicial model structure.

Proof: If K is a simplicial set and A is a simplicial abelian group, then there
is a simplicial abelian group A ⊗ K, which is defined by

A ⊗ K = A ⊗ ZK,

where (in this case) ZK denotes the free simplicial abelian group associated to
K. Equivalently, on the level of n-simplices, there is a canonical isomorphism

A ⊗ K =
⊕

σ∈Kn

An,

with simplicial structure maps induced by the corresponding maps for A and the
simplicial set K. Dually, the simplicial abelian group structure on A induces a
simplicial abelian group structure on the simplicial function space Hom(K,A).
Finally, for simplicial abelian groups A and B, one defines the simplicial set
HomsAb(A,B) to have n-simplices given by the set (actually abelian group) of
simplicial abelian group homomorphisms A⊗Δn → B. Then there are natural
isomorphisms

HomsAb(A ⊗ K,B) ∼= Hom(K,HomsAb(A,B)
∼= HomsAb(A,Hom(K,B)).

The first of these isomorphisms follows from the exponential law

homsAb(A ⊗ K,B) ∼= homS(K,HomsAb(A,B)),

which itself is a specialization of the simplicial set exponential law. The second
follows from the definition of HomsAb(A,B), together with the observation
that the simplicial set K is a colimit of its simplices. If f : A → B is a fibration
of simplicial abelian groups and i : K ↪→ L is a cofibration of simplicial sets,
then the induced map

Hom(L,A)
(i∗,f∗)−−−−→ Hom(K,A) ×Hom(K,B) Hom(L,B)

is a fibration of simplicial abelian groups which is trivial if either i or f is trivial,
by remembering that the underlying simplicial set map has the same properties.
This is Quillen’s axiom SM7(a), whence the simplicial model structure on
sAb. �

Proposition 2.13 can also be proved by appealing to Theorem II.5.4.
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Remark 2.14. The category of simplicial abelian groups is also a proper sim-
plicial model category (see Section II.8). In particular,

(1) weak equivalences are stable under pullback along fibrations, and

(2) the pushout of a weak equivalence along a cofibration is a weak equiva-
lence.

The first requirement means that, in the pullback diagram

C ×B A w

g∗

u

A

u

p

C wg B,

if p is a fibration and g is a weak equivalence, then g∗ is a weak equivalence.
This follows from the corresponding property for the category of simplicial sets.

The second requirement says that, given a pushout diagram

A w

f

u

i

C

u

i∗

B w

f∗
B ∪A C,

if i is a cofibration and f is a weak equivalence, then f∗ is a weak equivalence.
But of course i and i∗ are monomorphisms which have the same cokernel, and so
a comparison of long exact sequences in homology shows that f∗ is a homology
isomorphism.

The simplicial model structure on the simplicial abelian group category
gives rise to a canonical choice of cylinder for cofibrant objects A. In effect,
tensoring such an A with the commutative simplicial set diagram

∂Δ1
w

z

u

i

Δ0

Δ1
�
�
�
��
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gives a natural diagram of simplicial abelian group homomorphisms of the form

A ⊕ A w
∇

u

i∗ = (d0, d1)

A

A ⊗ Δ1
h
h
h
hj

s

The map i∗ coincides up to isomorphism with the map

1 ⊗ i : A ⊗ ∂Δ1 → A ⊗ Δ1,

while the map d0 coincides with

1 ⊗ d0 : A ⊗ Δ0 → A ⊗ Δ1.

Since A is cofibrant, the simplicial model structure implies that 1 ⊗ i is a
cofibration and 1 ⊗ d0 is a trivial cofibration. It follows that the map s is a
weak equivalence.

The free simplicial abelian group ZX on a simplicial set X is a cofi-
brant simplicial abelian group, and there is a natural isomorphism ZX ⊗ K ∼=
Z(X×K). It follows that an ordinary simplicial homotopy X×Δ1 → B taking
values in a simplicial abelian group B induces a homotopy ZX ⊗ Δ1 → B for
the cylinder ZX ⊗ Δ1. Since ZX is cofibrant and B is fibrant, the existence
of a simplicial homotopy X × Δ1 → B between maps f and g is equivalent to
the existence of a chain homotopy between the induced maps f∗, g∗ : ZX → B
of Moore complexes: the induced maps Nf∗, Ng∗ : NZX → NB must be
chain homotopic by formal nonsense, and so the induced maps of Moore com-
plexes must be chain homotopic by Theorem 2.4. There is a classical alternative
method of seeing this point, based on the following

Lemma 2.15. Any “homotopy” h : A ⊗ Δ1 → B from f : A → B to g :
A → B gives rise to a chain homotopy between the associated maps of Moore
complexes.

Proof: Let θj : n → 1 be the ordinal number morphism such that θj(i) = 0 if
and only if i ≤ j. Now, given the map h, define abelian group homomorphisms
hj : An → Bn+1, 0 ≤ j ≤ n, by specifying that

hj(a) = h(sj(a) ⊗ θj).

Then, as a consequence of the simplicial identities and the relations

di(θj) =
{

θj−1 if i ≤ j,
θj if i > j,
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and

si(θj) =
{

θj+1 if i ≤ j,
θj if i > j

in the simplicial set Δ1, one finds the relations

d0h0 = f,

dn+1hn = g,

dihj = hj−1di if i < j,

dj+1hj = dj+1hj+1,

dihj = hjdi−1 if i > j + 1,
sihj = hj+1si if i ≤ j, and
sihj = hjsi−1 if i > j.

It’s now straightforward to verify that the collection of alternating sums

s =
n∑

i=0

(−1)ihi : An → Bn+1

forms an explicit chain homotopy between the Moore complex maps f and g.
�

It follows that every simplicial abelian group homomorphism A⊗Δ1 → B
gives rise to a chain homotopy of maps NA → NB between the associated
normalized complexes. The converse is far from clear, unless A is cofibrant.

The following result establishes the relation between weak equivalence and
homology isomorphism:

Proposition 2.16. The free abelian simplicial group functor X �→ ZX pre-
serves weak equivalences.

Proof: Any weak equivalence f : X → Y can be factored f = q · j, where j
is a trivial cofibration and q has a section by a trivial cofibration. It therefore
suffices to show that the free abelian group functor takes trivial cofibrations to
weak equivalences of simplicial abelian groups. But every fibration of simplicial
abelian groups is a fibration of simplicial sets, so the free abelian group functor
takes trivial cofibrations of simplicial sets to trivial cofibrations of simplicial
abelian groups. �

Write π(ZX,A) to denote homotopy classes of maps between the named
objects in the simplicial abelian group category, computed with respect to the
cylinder object ZX ⊗ Δ1.

The free abelian simplicial group functor X �→ ZX and the inclusion
functor i : sAb ⊂ S both preserve weak equivalences. These functors are also
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adjoint. It follows that they induce corresponding functors i : Ho(sAb) →
Ho(S) and Z : Ho(S) → Ho(sAb), and that these functors are adjoint.

One way of seeing this (see also Section II.7, or Brown’s “adjoint functor
lemma” [15, p. 426]) begins with the observation that there is a composite

[X,A] → [ZX, ZA]sAb

ε∗−→ [ZX,A]sAb,

where [ , ]sAb denotes morphisms in the homotopy category Ho(sAb). The first
function is induced by the free simplicial abelian group functor, and ε : ZA → A
is one of the adjunction maps. The corresponding composite

π(X,A) → π(ZX, ZA)
ε∗−→ π(ZX,A)

is an isomorphism, since Z(X ×Δ1) ∼= ZX ⊗Δ1. All sources are cofibrant and
all targets are fibrant, so there is a commutative diagram

π(X,A) w

u

∼=

π(ZX, ZA) w

ε∗

u

∼=

π(ZX,A)

u

∼=

[X,A] w [ZX, ZA] wε∗ [ZX,A]

in which all vertical maps are canonical bijections. It follows that the bottom
horizontal composite is a bijection.

Now observe that there is a commutative diagram of isomorphisms

π(ZX,A)

u

N ∼=
O
O
O
O
O
O
O
O
O
O
O
O
O
O
OOP

πCh+(NZX,NA) πCh+(ZX,NA)u

∼=
i∗

w

∼=
i∗

πCh+(ZX,A)

(2.17)

in which the map labelled by N is induced by the normalization functor, and
is well defined because ZX is cofibrant and A is fibrant, and the other labelled
maps are induced by the chain homotopy equivalences i : NA ⊂ A and i :
NZX ⊂ ZX. The dotted arrow takes the homotopy class of a simplicial abelian
group map f : ZX → A to the chain homotopy class which is represented by
the map of Moore complexes induced by f . In particular, we have proved

Proposition 2.18. Suppose that X is a simplicial set and A is a simplicial
abelian group. Then the group of simplicial homotopy classes π(ZX,A) can
be canonically identified up to isomorphism with the group of chain homotopy
classes πCh+(ZX,A) between the associated Moore complexes.
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We also have the following well known result, which represents cohomology
as homotopy classes of maps. It is implicit in the proof of this theorem that the
Eilenberg-Mac Lane object K(B,n) = ΓB[n] represents normalized n-cocycles
with coefficients in B on the simplicial abelian group category, by adjointness.

Theorem 2.19. Suppose that X is a simplicial set and B is an abelian group.
Then there are canonical isomorphisms

[X,K(B,n)] ∼= Hn(X,B),

for n ≥ 0.

Proof: The simplicial abelian group K(B,n) is ΓB[n], where B[n] is the
chain complex which consists of the abelian group B concentrated in degree
n. We know that the set [X,K(B,n)] of morphisms in Ho(S) is canonically
isomorphic to the set π(X,K(B,n)) of simplicial homotopy classes, which in
turn is isomorphic to the set (really group) of homotopy classes

π(ZX,K(B,n)) = π(ZX,ΓB[n])

in the simplicial abelian group category. But from the diagram (2.17), there
are isomorphisms

π(ZX,ΓB[n]) ∼= πCh+(NZX,NΓB[n])
∼= πCh+(ZX,B[n]).

The group πCh+(ZX,B[n]) is isomorphic to Hn(X,B). �
Suppose that C is a chain complex, let Zn denote the subgroup of n-

cycles and let Bn = ∂(Cn+1) be the subgroup of boundaries in Cn. Pick an
epimorphism p : Fn � Zn, where Fn is a free abelian group. Then the kernel
Kn of the composite

Fn � Zn � HnC

is free abelian, and the composite

Kn ⊂ Fn

p−→ Zn

factors through a map p′ : Kn → Bn. Since Kn is free abelian and the map
Cn+1 → Bn is surjective, the map p′ lifts to a map p : Kn → Cn+1. Write FnC
for the chain complex

· · · → 0 →
n+1

Kn ↪→
n

Fn → 0 → · · · .

Then the epimorphism Fn → HnC defines a quasi-isomorphism

qn : FnC → HnC[n],
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while the maps labelled by p define a chain map

pn : FnC → C

which induces an isomorphism Hn(FnC) ∼= HnC. It follows that there are
quasi-isomorphisms ⊕

n≥0

HnC[n]
⊕qn←−−

⊕
n≥0

FnC
⊕pn−−→ C.

Note that the canonical map⊕
n≥0

HnC[n] →
∏
n≥0

HnC[n]

is an isomorphism of chain complexes.
If the chain complex C happens to be the normalized complex NA of

a simplicial abelian group A, then this construction translates through the
functor Γ into weak equivalences of simplicial abelian groups∏

n≥0

K(πnA,n) ←
⊕
n≥0

ΓFnNA → A.

These objects are fibrant in the category of simplicial sets, and so the weak
equivalences induce homotopy equivalences of simplicial sets, proving

Proposition 2.20. Suppose that A is a simplicial abelian group. Then, as
a simplicial set, A is non-canonically homotopy equivalent to the product of
Eilenberg-Mac Lane spaces ∏

n≥0

K(πnA,n).

The key point in the argument for Proposition 2.20 is that a subgroup of a
free abelian group is free, or at least projective. An analogous statement holds
for modules over a principal ideal domain R so the simplicial abelian group A
in the statement of the proposition can be replaced (at least) by a simplicial
module over such a ring.

This is implicit above, but there is a natural short exact sequence

0 → K(A,n) → WK(A,n)
p−→ K(A,n + 1) → 0

which are constructed by applying the functor Γ to the short exact sequence

0 → A[n] → A〈n + 1〉 → A[n + 1] → 0

of chain complexes. The simplicial abelian group WK(A,n) is contractible, and
the sequence

K(A,n) → WK(A,n)
p−→ K(A,n + 1)

is one of the standard fibre sequences which is used to construct an equivalence
K(A,n) � ΩK(A,n + 1) in the literature. There is one final observation about
the Eilenberg-Mac Lane spaces K(A,n) = ΓA[n] and the fibration p which is
very commonly used:
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Lemma 2.21. The map p : WK(A,n) → K(A,n + 1) is a minimal fibration,
and K(A,n) is a minimal Kan complex, for all n ≥ 0.

Proof: There is a relation x �p y (in the sense of Section I.10) if and only
if (x − y) �p 0, so it suffices to show that z �p 0 implies that z = 0 for any
simplex z of WK(A,n). But z �p 0 forces z to be in the fibre K(A,n), and
so to show that p is a minimal fibration we need only prove that K(A,n) is a
minimal Kan complex.

Suppose that z is an r-simplex of K(A,n). If z � 0 in K(A,n) (rel ∂Δr),
then diz = 0 for all i, so that z is a normalized r-chain of K(A,n). By the
Dold-Kan correspondence, NK(A,n)r

∼= A[n]r, which group is 0 if r �= n, so it
suffices to concentrate on the case r = n. There are identifications NK(A,n)n =
K(A,n)n = A, and the resulting map K(A,n)n → πn(K(A,n), 0) is an isomor-
phism. Thus z � 0 (rel ∂Δn) means that z �→ 0 in πn(K(A,n), 0). But then
z = 0. �
3. The Hurewicz map.
Suppose that X is a simplicial set. The Hurewicz map h : X → ZX is alternate
notation for the adjunction homomorphism which associates to an n-simplex x
of X the corresponding generator of the free abelian group ZXn on Xn. If X
happens to be a connected Kan complex with base point ∗, then h induces a
composite homomorphism of groups

πnX → πn(ZX, ∗) → πn(ZX/Z∗, 0) ∼= H̃n(X, Z),

where H̃∗(X, Z) is reduced homology of X. Write

h∗ : πnX → H̃n(X, Z)

for this composite — the map h∗ is the Hurewicz homomorphism. The simplicial
set X will be a connected Kan complex with base point ∗ throughout this
section, and all homology groups will be integral, so we shall write H̃∗X to
mean H̃∗(X, Z). For ease of notation, write

Z̃X = ZX/Z ∗ .

The Hurewicz homomorphism h∗ : πnX → H̃nX is the traditional map.
To see this, let Sn = Δn/∂Δn, with the obvious choice of base point. Then
πnX is pointed simplicial homotopy classes of maps Sn → X, and the homotopy
group

πn(Z̃Sn) ∼= H̃nSn

is a copy of the integers, canonically generated by the homotopy element κn

which is represented by the composite map

Sn
h−→ ZSn → Z̃Sn.
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One sees, by drawing an appropriate commutative diagram, that if α : Sn → X
represents an element [α] ∈ πnX, then

h∗([α]) = α∗(κn) ∈ H̃nX,

as in the standard definition.

Suppose that p : E → B is a Kan fibration, where B is a simply connected
Kan complex with base point ∗, and let F be the fibre over ∗. There is a
complete description of the Serre spectral sequence

Ep,q
2 = Hp(B,HqF ) ⇒ Hp+qB

given below in IV.5.1, but it is somewhat non-standard. To recover the more
usual form, filter the base B by skeleta skn B, and form the pullback diagrams

FnE z w

u

p∗

E

u

p

skn B z w B

to obtain a filtration FnE of the total space E and fibrations p∗ : FnE → skn B
for which π1 skn B acts trivially on the homology H∗F of F .

Recall that NnB denotes the set of non-degenerate n-simplices of B. The
pushout diagram ⊔

x∈NnB

∂Δn
w

z

u

skn−1 B
z

u⊔
x∈NnB

Δn
w skn B

can be pulled back along p to obtain an identification of the filtration quotient
FnE/Fn−1E with the wedge∨

x∈NnB

p−1(Δn)/p−1(∂Δn).

The spectral sequence

Hr(∂Δn,HsF ) ⇒ Hr+sp
−1(∂Δn)
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of IV.5 is used, along with the fact that H∗F splits off H∗p−1(∂Δn) to show
that there is an isomorphism

H∗p−1(∂Δn) ∼= H∗F ⊕ H∗F [n − 1],

and that the map induced in homology by the inclusion p−1(∂Δn) ⊂ p−1(Δn)
can be identified up to isomorphism with the projection

H∗F ⊕ H∗F [n − 1] → H∗F

In particular, there is an isomorphism

H̃∗(p−1(Δn)/p−1(∂Δn)) ∼= H∗F [n],

and hence isomorphisms

H̃∗(FnE/Fn−1E) ∼=
⊕

x∈NnB

H∗F [n].

Thus,
H̃p+q(FpE/Fp−1E) ∼=

⊕
x∈NpB

HqF,

and it’s a matter of chasing simplices through the boundary map of the nor-
malized complex NZB⊗HqF to see that the E2-term of the spectral sequence
for H∗E arising from the skeletal filtration for B has the form

Ep,q
2 = Hp(B,HqF ).

All appeals to the Serre spectral sequence in the rest of this section will be
specifically to this form.

Now suppose that Y is a pointed Kan complex, and observe that the
canonical path object PY is that pointed function complex

PY = Hom∗(Δ1
∗, Y ),

where Δ1
∗ is a copy of the standard 1-simplex Δ1, pointed by the vertex 1. The

loop space ΩY can be identified with the complex Hom∗(S1, Y ), and the path
loop fibration for Y is the fibre sequence

Hom∗(S1, Y )
π∗
−→ Hom∗(Δ1

∗, Y )
d1−→ Y,

where π : Δ1 → S1 is the canonical map.
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There is a canonical contracting pointed homotopy

h : Δ1
∗ ∧ Δ1

∗ → Δ1
∗,

which is defined by the picture

0 w

u

�
�
���

1

u

1 w 1

in the poset 1. This homotopy h induces a contracting homotopy

Hom∗(Δ1
∗, Y ) ∧ Δ1

∗
h∗−→ Hom∗(Δ1

∗, Y )

for the path space on Y , by adjointness.
Suppose that f : X → Hom∗(S1, Y ) is a pointed map, and denote the

composite

X ∧ Δ1
∗

π∗f∧1−−−−→ Hom∗(Δ1
∗, Y ) ∧ Δ1

∗
h−→ Hom∗(Δ1

∗, Y )

by f∗. Then there is a commutative diagram of pointed simplicial set maps

X w
d1

u
f

X ∧ Δ1
∗ w

1 ∧ π

u
f∗

X ∧ S1

u
f̃

Hom∗(S1, Y ) w

π∗ Hom∗(Δ1
∗, Y ) w

d1
Y,

(3.1)

where the indicated map f̃ is the adjoint of f , or rather the composite

X ∧ S1
f∧1−−→ Hom∗(S1, Y ) ∧ S1

ev−→ Y.

Note as well that X ∧ Δ1
∗ is a model for the pointed cone on X (a different

model for the cone is given in Section III.5 below).

Suppose that

F → E
p−→ B
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is a fibre sequence of pointed Kan complexes, and that B is simply connected.
The edge maps

F w

u

E w

u

p

B

u

1

∗ w B w B

and the calculation of the E2-terms for the Serre spectral sequences for the
corresponding fibrations together imply that En,0

n in the Serre spectral sequence
for H∗E is the subgroup of HnB consisting of elements x which can be “lifted
along the staircase”

Hn−1F

u

Hn(FnE/Fn−1E) w
∂

u

p∗
Hn−1Fn−1E

Hn(skn B) w

u

Hn(skn B/ skn−1 B)

HnB

to an element z ∈ Hn−1F , in the sense that there are elements x1 ∈ Hn(skn B)
and x2 ∈ Hn(FnE/Fn−1E) such that x1 �→ x, x1 �→ p∗(x2), and z �→ ∂(x2).
Furthermore, the image of such an x under the differential dn : En,0

n →
E0,n−1

n is represented by the element z. But then comparing long exact se-
quences shows that the element x2 is in the image of the map Hn(FnE/F ) →
Hn(FnE/Fn−1E). As a consequence, the elements x of En,0

n can be identified
with elements of Hn(B/∗) which are in the image of the map p∗ : Hn(E/F ) →
Hn(B/∗), and for such x, if there is an element x1 ∈ Hn(E/F ) such that
p∗(x1) = x, then dn(x) is represented by ∂(x1) ∈ Hn−1F . This is a classical
description of the transgression.

Suppose that Y is an n-connected pointed Kan complex, where n ≥ 1,
and consider the Serre spectral sequence for the path loop fibre sequence

ΩY → PY
d1−→ Y.

Then H̃iY = 0 for i ≤ n, while H̃jΩY = 0 for j ≤ n − 1. The assumption
on the connectivity of Kan complex Y implies that there is a strong deforma-
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tion retract Z of Y such that the n-skeleton skn Z is a point2. It follows that
Ei,0

2 = Ei,0
i and E0,i−1

2 = E0,i−1
i for i ≤ 2n, and the only possible non-trivial

differential into or out of either group is the transgression, so that there is an
exact sequence

0 → Ei,0
∞ → Ei,0

i

di−→ E0,i−1
i → E0,i−1

∞ → 0.

The space PY is acyclic, so all E∞-terms vanish in non-zero total degree, so
we have shown that the transgression

HiY
di−→ Hi−1ΩY

is an isomorphism for i ≤ 2n under the assumption that Y is n-connected.
The transgression di : HiY → Hi−1ΩY is, at the same time, related to

the boundary map

∂ : H̃i(X ∧ S1)
∼=−→ H̃i−1X,

in the sense of the following result:

Lemma 3.2. Suppose that f : X → ΩY is a map of pointed simplicial sets,
where Y is an n-connected Kan complex with n ≥ 1. Then, for i ≤ 2n, there is
a commutative diagram of the form

H̃i(X ∧ S1) w
∂∼=

u

f̃∗

H̃i−1X

u

f∗

H̃iY w

∼=
di

H̃i−1ΩY,

where f̃ : X ∧ S1 → Y is the adjoint of the map f .

Proof: Write ΣX = X ∧ S1 and CX = X ∧ Δ1
∗, as usual. Then the diagram

(3.1) induces a commutative diagram

H̃iΣX ∼= H̃i(ΣX/∗)

u

f̃∗

H̃i(CX/X)u

∼=
w

∂

u

f∗

H̃i−1X

u

f∗

H̃iY ∼= H̃i(Y/∗) H̃i(PY/ΩY )u

d1∗
w

∂
H̃i−1ΩY

The top composite in the diagram is the boundary map ∂ : H̃iΣX → H̃i−1X.
The bottom “composite” is the transgression, according to the discussion pre-
ceding the statement of the lemma. �
2 This is an old idea. People sometimes say that complexes of the form Z are n-reduced. The
construction of the deformation retraction (via an iterated homotopy extension property
argument) is one of the early applications of the Kan complex concept, and should be done
as an exercise.
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Corollary 3.3. Suppose that Y is an n-connected pointed Kan complex,
with n ≥ 1. Then, for i ≤ 2n, the transgression di : H̃iY → H̃i−1ΩY can be
identified with the composite

H̃i(Y )
ε∗←−∼= H̃i((ΩY ) ∧ S1)

∂−→∼= H̃i−1(ΩY ).

Proof: The adjunction map ε : (ΩY ) ∧ S1 → Y is the adjoint of the identity
map on the loop space ΩY . �

The link between the Hurewicz homomorphism and the transgression is
the following:

Proposition 3.4. Suppose that Y is an n-connected pointed Kan complex,
with n ≥ 1. Then, for i ≤ 2n, there is a commutative diagram

πiY w
∂∼=

u

h∗

πi−1(ΩY )

u

h∗

H̃iY w

∼=
di

H̃i−1(ΩY )

Proof: The instance of the diagram (3.1) corresponding to the identity map
on ΩY and the naturality of the Hurewicz map together give rise to a commu-
tative diagram

Z̃ΩY

u

Z̃ΩY

u

ΩYu
h

u

Z̃CΩY w

u

Z̃PY

u

d1∗

PYu
h

u

Z̃((ΩY ) ∧ S1) wε∗ Z̃Y Yu

h

The homomorphism d1∗ : Z̃PY → Z̃Y has a factorization

Z̃PY
j−→ B

q−→ Z̃Y

in the category of simplicial abelian groups (or of simplicial sets — your choice),
where j is a trivial cofibration and q is a fibration. Then, by comparing bound-
ary maps for the resulting fibrations of simplicial sets, one finds a commutative
diagram

πiY w
∂∼=

u

h∗

πi−1(ΩY )

u

h∗

H̃iY H̃i((ΩY ) ∧ S1)u

∼=
ε∗ w

∼=
∂

H̃i−1(ΩY ).

Now use Corollary 3.3. �
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Write x
r∼ y for n-simplices x and y of a simplicial set Z if x|skr Δn =

y|skr Δn , or equivalently if the composite simplicial set maps

skr Δn ⊂ Δn
ιx−→ Z and skr Δn ⊂ Δn

ιy−→ Z

coincide. The relation r∼ is clearly an equivalence relation on the simplices
of Z, and we may form the quotient simplicial set Z(r) = Z/

r∼ and write
pr : Z → Z(r). The simplicial set Z(r) is called either the rth Moore-Postnikov
section of Z, or the rth Postnikov section of Z. This construction is natural in Z:
one can show quickly (see also Exercise V.3.8) that if Z is a Kan complex then
so is Z(r), and furthermore pr induces isomorphisms πj(Z, x) ∼= πj(Z(r), x) for
j ≤ r and all vertices x of Z, and πj(Z(r), x) = 0 for j > r.

Postnikov sections will be discussed more thoroughly in Chapter VI.
If X is a pointed connected Kan complex, then the object X(1) is a

pointed connected Kan complex of type K(π1X, 1), meaning that its homotopy
groups consist of π1X in dimension one and 0 elsewhere. There is, however, a
more geometrically satisfying way to construct a space naturally having the
homotopy type of X(1) which uses the fundamental groupoid construction: we
have seen in Section III.1 that there is a map

X → B(π1X)

of Kan complexes which induces an isomorphism on fundamental groups. It
follows, for example, that a connected Kan complex of type K(π, 1) is weakly
equivalent to the space Bπ.

The Hurewicz homomorphism h∗ : π1(Bπ) → H̃1(Bπ) is isomorphic to
the canonical group homomorphism π → π/[π, π] from π to its abelianization
— this may be seen directly, or by invoking the following result:

Lemma 3.5. Suppose that Z is a Kan complex, such that the set Z0 of vertices
of Z consists of a single point. The the Hurewicz map

h∗ : π1Z → H̃1(Z)

can be identified up to isomorphism with the canonical homomorphism

π1Z → π1Z/[π1Z, π1Z].

Proof: Since Z is reduced, the integral homology group H1(Z) is the quotient

H1(Z) =
⊕

ω∈Z1

Z/〈d0σ − d1σ + d2σ|σ ∈ Z2〉.

Up to this identification, the Hurewicz map

h : π1Z →
⊕

ω∈Z1

Z/〈d0σ − d1σ + d2σ|σ ∈ Z2〉

is defined by [ω] �→ [ω], for 1-simplices ω of Z. One then shows, by chasing
elements, that the map h is initial among all group homomorphisms f : π1Z →
A which take values in abelian groups A. �
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Corollary 3.6. Suppose that X is a connected pointed Kan complex. Then
the Hurewicz homomorphism h∗ : π1X → H̃1X is isomorphic to the canonical
homomorphism

π1X → π1X/[π1X,π1X]

from the fundamental group of X to its abelianization.

Proof: The space X has a strong deformation retract Z which is reduced.
Now apply Lemma 3.5. �

Theorem 3.7 (Hurewicz). Suppose that X is an n-connected Kan complex,

where n ≥ 1. Then the Hurewicz homomorphism h∗ : πiX → H̃iX is an
isomorphism if i = n + 1 and an epimorphism if i = n + 2.

Proof: Suppose that F is the homotopy fibre of the map pn+1 : X → X(n+1).
Then there are commutative diagrams

πn+1X w

∼=

u

h∗

πn+1X(n + 1)

u

h∗

H̃n+1X w H̃n+1X(n + 1)

πn+2F w

∼=

u

h∗

πn+2X

u

h∗

H̃n+2F w H̃n+2X

A Serre spectral sequence argument for the fibration pn+1 shows that the map
H̃n+1X → H̃n+1X(n + 1) is an isomorphism, since the space F is (n + 1)-
connected, and that it suffices to show

(1) that the Hurewicz homomorphism h∗ : πn+1X(n + 1) → H̃n+1X(n + 1)
is an isomorphism, and

(2) H̃n+2X(n + 1) = 0.

If these two statements are demonstrated (for all n), then the general statement
that h∗ : πn+1X → H̃n+1X is an isomorphism would be true, so that the map
h∗ : πn+2F → H̃n+2F would be an isomorphism as well. Furthermore, the
assertion that H̃n+2X(n + 1) = 0 implies, via the Serre spectral sequence for
pn+1, that the map H̃n+2F → H̃n+2X is an epimorphism.

But the claim that h∗ : πn+1X(n+1) → H̃n+1X(n+1) is an isomorphism
reduces, by an inductive transgression argument involving Proposition 3.4, to
Corollary 3.6, so statement (1) is proved. Similarly, statement (2) is reduced to
showing that H̃3Y = 0 for any connected Kan complex Y of type K(A, 2).

Let Y be such a Kan complex, and pick a strong deformation retraction
map r : Y → W onto a 2-reduced subcomplex. Then there is a commutative
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diagram

Y w
h

u

r

Z̃Y

u

r∗

W w

h
Z̃W

The map r∗ is a weak equivalence of simplicial abelian groups, hence of sim-
plicial sets, and the complex Z̃W is 0 in degrees less than 2, as is its asso-
ciated normalized chain complex N Z̃W . There is a map of chain complexes
N Z̃W → H̃2Y [2] which induces an isomorphism in H2. It follows that the
induced composite

Y
h−→ Z̃Y

r∗−→ Z̃W → ΓH̃2Y [2] = K(H̃2Y, 2)

is a weak equivalence.
We are therefore required only to show that H3K(A, 2) = 0 for any abelian

group A. The functor A �→ H3K(A, 2) preserves filtered colimits, so it suffices
to presume that A is finitely generated. The functor A �→ K(A, 2) takes fi-
nite direct sums to products of simplicial sets, and a Künneth exact sequence
argument shows that H3K(A ⊕ B, 2) = 0 if H3K(A, 2) = H3K(B, 2) = 0. Fi-
nally, a few more Serre spectral sequence arguments, combined with knowing
that the circle has type K(Z, 1) imply (successively) that H3K(Z, 2) = 0 and
H3K(Z/n, 2) = 0 for any n. �

One can form what could be called the nth Postnikov section C(n) of a
chain complex C as follows: define C(n) to be the chain complex

· · · → 0 → Cn/Im ∂ → Cn−1 → · · · → C0.

Here, Im ∂ is the image of the boundary map ∂ : Cn+1 → Cn. There is a
chain map pn : C → C(n) which induces an isomorphism in Hi for i ≤ n,
and HiC(n) is plainly trivial for i > n. There is also a natural chain map
in : HnC[n] → C(n), and this map is a homology isomorphism in degree n. We
could have used this construction in place of the retraction onto the 2-reduced
complex W in the proof of the Hurewicz Theorem. This construction is also
used to prove the following:

Corollary 3.8. Let Y be a connected Kan complex with πnY ∼= A, and
πjY = 0 for j �= n, where n ≥ 2. Then Y is naturally weakly equivalent to the
space K(A,n) = ΓA[n].

The naturality in the statement of this result is with respect to maps Y → Z
of connected Kan complexes having only one non-trivial homotopy group, in
degree n.
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Proof: Let pn∗ : Z̃Y → Γ(N Z̃Y (n)) be the simplicial abelian group map
induced by the nth Postnikov section map pn : N Z̃Y → N Z̃(n) of the associated
normalized chain complex. Then the composite

Y
h−→ Z̃Y

pn∗−−→ Γ(N Z̃Y (n))

is a natural weak equivalence, by the Hurewicz Theorem and the construc-
tion of the chain map pn. But then the following maps are both natural weak
equivalences

Y
pn∗h−−−→ Γ(N Z̃Y (n))

in∗←−− ΓA[n] = K(A,n),

and the result is proved. �
Remark 3.9. The construction in this last proof is the only known way of
showing that a diagram of spaces having only one non-trivial presheaf of ho-
motopy groups is weakly equivalent to a diagram of spaces K(A,n) = ΓA[n],
for some presheaf (aka. diagram) of abelian groups A.

Theorem 3.10 (Freudenthal). Suppose that X is an n-connected pointed
space, where n ≥ 0. Then the canonical map η : X → Ω(X∧S1) induces a map
πiX → πiΩ(X ∧ S1) which is an isomorphism if i ≤ 2n and an epimorphism if
i = 2n + 1.

Proof: We shall suppose that n ≥ 1, and leave the case n = 0 for the reader.
From the characterization of the transgression for the path-loop fibre se-

quence of Corollary 3.3, the map

ε∗ : H̃i(ΩX ∧ S1) → H̃iX

is an isomorphism for i ≤ 2n. One then uses the triangle identity

X ∧ S1
w

η ∧ S1

�
�
�
�
�
��1

Ω(X ∧ S1) ∧ S1

u

ε

X ∧ S1

to infer that η∗ : H̃iX → H̃iΩ(X ∧ S1) is an isomorphism if i ≤ 2n + 1. The
space Ω(X∧S1) is simply connected by assumption, so a Serre spectral sequence
argument says that the homotopy fibre F of the map η : X → Ω(X ∧ S1) has
homology groups H̃iF which vanish for i ≤ 2n. But F is a simply connected
space, by the Hurewicz theorem together with the fact that η is a homology
isomorphism in degree 2, so that F is 2n-connected (by Hurewicz again), giving
the result. �

Theorem 3.10 is the classical Freudenthal suspension theorem, since the
homomorphism η∗ : πiX → πiΩ(X∧S1) is isomorphic to the suspension homo-
morphism πiX → πi+1(X ∧ S1). We shall finish this section with the relative
Hurewicz theorem:
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Theorem 3.11. Suppose that f : X → Y is a map with homotopy fibre F
and homotopy cofibre Y/X. Suppose that F is n-connected for some n ≥ 0,
the total space X is simply connected, and the base Y is connected. Then the
homotopy fibre of the induced map f∗ : F ∧ S1 → Y/X is (n + 2)-connected.

Proof: The diagram

F w

u

∗

u

X w Y

induces the map f∗ : F ∧ S1 → Y/X of associated homotopy cofibres.
The spaces X and Y are both simply connected, by the assumptions on

the map f , and so the Serre exact sequence for the map f

Hn+2X → Hn+2Y
dn+2−−−→ Hn+1F → Hn+1X → . . .

extends to a sequence of the form

Hn+3Y
dn+3−−−→ E0,n+2

n+3 → Hn+2X → Hn+2Y → . . . .

The classical description of the transgression says that there is a comparison
of exact sequences

Hn+3(X/F ) w
∂

u

u

Hn+2F w

u

u

Hn+2X w

u

=
Hn+2(X/F ) w

∂

u

u

. . .

Hn+3Y w

dn+3
E0,n+2

n+3 w Hn+2X w Hn+2Y w

dn+2
. . .

Chasing elements shows that the map Hi(X/F ) → HiY is an isomorphism for
i ≤ n + 2; it is an epimorphism for i = n + 3 because every element of Hn+3Y
is transgressive. Comparing Puppe sequences gives a diagram

Hn+3X w

u

=
Hn+3(X/F ) w

u

u

Hn+3(F ∧ S1) w

u

f∗

Hn+3(X ∧ S1) w

u

=
. . .

Hn+3X w Hn+3Y w Hn+3(Y/X) w Hn+3(X ∧ S1) w . . .

Then one chases some more elements to show that f∗ : Hi(F ∧S1) → Hi(Y/X)
is an epimorphism if i = n + 3 and is an isomorphism in all lower degrees. The
space Y/X is simply connected, so the homotopy fibre of f∗ : F ∧ S1 → Y/X
must be (n + 2)-connected. �

One has a right to ask why Theorem 3.11 should be called a relative
Hurewicz theorem. Here’s the usual statement:



3. The Hurewicz map 177

Corollary 3.12. Suppose that A is a simply connected subcomplex of X,
and that the pair (X,A) is n-connected for some n ≥ 1. Then the Hurewicz
map

πi(X,A)
h−→ H̃i(X,A)

is an isomorphism if i = n + 1 and is surjective if i = n + 2.

Proof: The relative homotopy group πi(X,A) is the homotopy group πi−1F
of the homotopy fibre F of the inclusion j : A ↪→ X, and the relative Hurewicz
map h is the composite

πi(X,A) = πi−1F
Σ−→ πi(F ∧ S1)

j∗−→ πi(X/A)
h−→ H̃i(X/A) = H̃i(X,A)

It is standard to say that (X,A) is n-connected (for n ≥ 0), and mean both
that the homotopy fibre F is (n−1)-connected and the function π0A → π0X is
surjective. The Freudenthal suspension theorem says that the suspension map
Σ : πi−1F → πi(F ∧ S1) is an isomorphism if i = n + 1 and an epimorphism if
i = n+2 (for all n ≥ 2). Theorem 3.11 implies that j∗ : πi(F ∧S1) → πi(X/A)
is an isomorphism if i = n + 1 and an epi if i = n + 2. Theorem 3.11 also
implies that the space X/A is n-connected, so that the ordinary Hurewicz map
h : πi(X/A) → H̃i(X/A) is an isomorphism if i = n + 1 and an epimorphism if
i = n + 2. �
Theorem 3.13 (Homotopy Addition). Suppose that X is a pointed Kan
complex and that αi : Δn/∂Δn → X, 0 ≤ i ≤ n + 1, are pointed maps. Then
there is an (n + 1)-simplex w of X such that diw = αi for 0 ≤ i ≤ n + 1 if and
only if

n+1∑
i=0

(−1)i[αi] = 0

in πnX.

Proof: Suppose that the simplex w exists, with diw = αi.
The statement in degree 1 is that

[α0][α1]−1[α2] = e

in π1X if the αi bound a 2-simplex, and it’s a trivial consequence of the def-
inition of the multiplication in the fundamental group, so we’ll assume that
n ≥ 2.

Consider the fibre sequence

F
j−→ X

p−→ X(n − 1),

where X(n − 1) is the (n − 1)st Postnikov section of X. Then F is (n − 1)-
connected, and we can assume, by a homotopy extension argument, that the
maps αi factor through F .
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We can also assume that the simplex w lives in F . The simplex p(w) is
homotopic rel boundary to ∗ in X(n− 1) since πn+1X(n− 1) = 0. Then there
is a diagram

Δn+1 × {0} ∪ ∂Δn+1 × Δ1
w

(w, c(α0,...,αn+1))

y

u

X

u

p

Δn+1 × Δ1
w

h

��
��
��

��
��

��
��

X(n − 1)

where h be a specific choice of homotopy p(w) � ∗ rel boundary, and the map
(w, c(α0,...,αn+1)) is defined by the simplex w and the constant homotopy on its
boundary. Then the (n + 1)-simplex at the other end of the indicated lifted
homotopy is in the fibre F .

We can therefore assume that our space X is (n − 1)-connected, where
n ≥ 2. Consider the Hurewicz map

X → ZX → ZX/Z ∗ .

The Hurewicz theorem implies that this composite induces an isomorphism

πnX ∼= H̃n(X, Z),

and of course

∂w =
n+1∑
i=0

(−1)iαi

in the reduced chain complex ZX/Z∗. Each αi is a cycle in the reduced chain
complex, and

n+1∑
i=0

(−1)i[αi] = 0

in H̃n(X, Z).
For the converse, suppose that the simplices αi satisfy the formula

n+1∑
i=0

(−1)i[αi] = 0

where n ≥ 2 (the case n = 1 is similar).
In the diagram

Λn+1
0 w

(α1, . . . , αn+1)

y

u

X

Δn+1
�
�
�
�
�
�
���

θ
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the boundary simplices of the simplex θ satisfy the formula

[d0θ] − [α1] + · · · + (−1)n+1[αn+1] = 0,

so that [d0θ] = [α0]. It follows that the map (α0, . . . , αn) : ∂Δn+1 → X is
homotopic to a map extends to Δn+1, namely (d0θ, α1, . . . , αn+1), so a homo-
topy extension property argument shows that (α0, . . . , αn+1) has the required
extension. �

The standard proof for the homotopy addition theorem [18] is a basic
combinatorial manipulation, but the arguments involved become quite compli-
cated when one tries to replace the boundary of a simplex by a slightly more
exotic shape, such as the boundary of a prism.

Write
∂(Δn × Δ1) = (Δn × ∂Δ1) ∪ (∂Δn × Δ1).

Let X be a pointed Kan complex and consider the set of pointed homotopy
classes of maps

α : Δn × Δ1/∂(Δn × Δ1) → X.

This set is in bijective correspondence with πn+1X by a standard homotopy
extension argument: the map α determines a map

((α, ∗, . . . , ∗), ∗) : (∂Δn+1 × Δ1) ∪ (Δn+1 × {0}) → X

which is α on the 0th face of ∂Δn+1 ×Δ1 and constant at ∗ on all other faces.
Then there is an extension

(∂Δn+1 × Δ1) ∪ (Δn+1 × {0}) w

((α, ∗, . . . , ∗), ∗)
y

u

X

Δn+1 × Δ1
�
�
�
�
�
�
�
�
�
�
�
���

hα

and the restriction γα of the extension hα to Δn+1 × {1} determines a well
defined element [γα] in πn+1X. One can reverse the construction, and show
that [α] �→ [γα] is a bijection.

In the fibre sequence

F
j−→ X

p−→ X(n),

p∗(πjX) = 0 for j ≥ n + 1, so that by arguing successively as in the proof of
Theorem 3.13 that α, γα and the prism hα relating them are in the image of j :
F → X up to pointed homotopy. Keep the same notation for the corresponding
maps taking values in the fibre F . We are then entitled to study the image of
the prism hα : Δn+1 × Δ1 → F under the Hurewicz map

F → ZF → ZF/Z ∗ .
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Given a map β : Δn ×Δ1 → X, we have seen in the proof of Lemma 2.16
that the non-degenerate simplex hj = (sjιn, θj) determines an (n + 1)-simplex
hj(β) = β(hj), and the chain

s(β) =
n∑

i=0

(−1)ihj(β) ∈ ZXn+1

satisfies an equation

∂s(β) + s(∂β) = d0h0(β) − dn+1hn(β).

Here,

∂β =
n∑

i=0

(−1)iβ · (di × Δ1).

It follows that if β|∂(Δn×Δ1) = ∗, then the chain s(β) is an (n + 1)-cycle of
ZX/Z∗.

In the notation above, we see that

∂s(hα) + s(α) = γα

in the reduced chain complex ZF/Z∗, and so it follows that the image of the
simplex γα under the Hurewicz map represents the cohomology class [s(α)] ∈
H̃n+1(F, Z).

We are now ready to prove the following:

Theorem 3.14. Suppose that X is a pointed Kan complex, and that n ≥ 2.
Suppose that β : Δn × Δ1 → X is a prism which maps the boundary of each
end face

ωε(β) : Δn ∼= Δn × {ε} ⊂ Δn × Δ1
β−→ X,

ε = 0, 1, and the boundary of each side

βj : Δn−1 × Δ1
dj×1−−−→ Δn × Δ1

β−→ X,

0 ≤ j ≤ n, into the base point. Associate elements [γβj ] ∈ πnX to each map βj

according to the recipe above. Then there is a relation

n∑
i=0

(−1)i[γβi ] = [ω1(β)] − [ω0(β)]

in πnX. Conversely, if the formula holds, then the map ∂(Δn × Δ1) → X
determined by the simplices ωε(β) and the prisms βi extends to a map β :
Δn × Δ1 → X.
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Proof: Form the fibre sequence

F
j−→ X

p−→ X(n)

as before, and argue as previously to push the simplices ωε(β), the prisms βi

and β itself into F up to pointed homotopy. Consider the image of β under the
Hurewicz map

F → ZF → ZF/Z ∗ .

Then on the chain level

∂s(β) +
n∑

i=0

(−1)is(βi) = ω1(β) − ω0(β),

so that
n∑

i=0

(−1)i[s(βi)] = [ω1(β)] − [ω0(β)]

in H̃n(F, Z). But [s(βi)] is the image of the homotopy class [γβi ], so that

n∑
i=0

(−1)i[γβi ] = [ω1(β)] − [ω0(β)]

in πnF , hence in πnX.
The existence of the extension Δn ×Δ1 → X extending the map ∂(Δn ×

Δ1) → X determined by ωε(β) and the βi satisfying the boundary formula

n∑
i=0

(−1)i[γβi ] = [ω1(β)] − [ω0(β)]

follows from the reverse implication and a homotopy extension argument, as in
the proof of Theorem 3.13. �
Remark 3.15. The statement corresponding to Theorem 3.14 for n = 1 asserts
that under the stated conditions there is a relation

[ω1(β)][β1] = [β0][ω0(β)]

in π1X. The proof of this assertion is an easy exercise.

Rather a lot of standard homotopy theory is amenable to proof by sim-
plicial techniques. The reader may find it of particular interest to recast the
Hausmann-Husemoller treatment of acyclic spaces and the Quillen plus con-
struction [41] in this setting. In order to achieve this, it’s helpful to know at
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the outset that the universal cover X̃ of a connected pointed Kan complex X
is, generally, the homotopy fibre of the map X → B(π1X) — see as well the
definition of covering system in Section VI.3. This means, in particular, that
the homotopy type of X̃ can be recovered from the pullback diagram

X̃ w

u

π

E(π1X)

u

X w B(π1X),

so that the map π : X̃ → X is a principal π1X-fibration.

4. The Ex∞ functor.
Kan’s Ex∞ functor is a combinatorial construction which associates a Kan com-
plex Ex∞ X to an arbitrary simplicial set X, up to natural weak equivalence.
It is constructed as an inductive limit of spaces Exn X, in such a way that the
m-simplices of Exn+1 X are a finite inverse limit of sets of simplices of Exn X.
This means in particular that this construction has very useful analogues in
categories other than simplicial sets. It remains interesting in its own right in
the simplicial set context, since it involves subdivision in a fundamental way.

We give the details of this construction and establish its basic properties
in this section. It is one of the few remaining areas of simplicial homotopy
theory in which the original combinatorial flavour of the subject (see the proof
of Lemma 4.7) has not been engulfed by the calculus of anodyne extensions.

Recall that the non-degenerate simplices of the standard n-simplex

Δn = homΔ( ,n)

are the monic ordinal number maps m ↪→ n. There is exactly one such mono-
morphism for each subset of n of cardinality m + 1. It follows that the non-
degenerate simplices of Δn form a poset PΔn, ordered by the face relation,
and this poset is isomorphic to the non-empty subsets of the ordinal number
n, ordered by inclusion.

The poset has a nerve BPΔn. We shall write

sdΔn = BPΔn,

and call it the subdivision of Δn.

Lemma 4.1. There is a homeomorphism

h : | sd Δn|
∼=−→ |Δn|,

where h is the affine map which takes a vertex σ = {v0, . . . , vk} of sdΔn to the
barycentre 1

k+1 (v0 + · · · + vk) of the corresponding vertices.

In other words, | sdΔn| is the barycentric subdivision of |Δn|.
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Proof: To see the co-ordinate transformation, take

α0v0 + α1v1 + · · · + αnvn ∈ |Δn|,

and rewrite it as
t1X1 + t2X2 + . . . trXr,

where 0 < t1 < t2 < · · · < tr and Xi = vj0 + vj1 + · · · + vjni
. More precisely,

the numbers ti are the distinct values of the αj , arranged in order, and Xi is
the sum of the vertices having coefficient ti.

Write

Nj =
r∑

k=j

(nk + 1).

Then

t1X1 + · · · + trXr

= t1(X1 + · · · + Xr) + (t2 − t1)(X2 + · · · + Xr) + · · · + (tr − tr−1)Xr

= t1N1(
1

N1
)(X1 + · · · + Xr) + (t2 − t1)N2(

1
N2

)(X2 + · · · + Xr) + . . .

+ (tr − tr−1)Nr(
1

Nr
)Xr.

Note that
t1N1 + (t2 − t1)N2 + · · · + (tr − tr−1)Nr = 1,

so that we’ve rewritten α0v0+· · ·+αnvn as an affine sum of uniquely determined
barycentres. �

Any function f : n → m determines a map of posets f∗ : PΔn → PΔm

via f∗(X) = f(X) = image of X under f . It follows that any poset morphism
θ : n → m determines a poset map θ̃ : PΔn → PΔm, and hence induces a
simplicial set map θ̃ : sdΔn → sd Δm. This assignment is functorial, so we
obtain a cosimplicial object n �→ sdΔn in the category of simplicial sets.

The subdivision sdX of a simplicial set X is defined by

sdX = lim−→
σ:Δn→X

sdΔn,

where the colimit is indexed over the simplex category Δ ↓ X for X.
The functor X �→ sdX is left adjoint to a functor Y �→ ExY , where

the simplicial set ExY is defined to have n-simplices given by the set of all
simplicial set maps sdΔn → Y .

There is a natural map h : sdΔn → Δn, called the last vertex map. It is
specified as a map of posets PΔn → n by the assignment

[v0, v1, . . . , vk] �→ vk,
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where [v0, . . . , vk] : k → n is a non-degenerate simplex of Δn specified by
i �→ vi. There is also a map of posets g : n → PΔn defined by g(i) = [0, 1, . . . , i].
Clearly hg = 1 and there is a relation

[v0, v1, . . . , vk] ≤ [0, 1, . . . , vk]

in PΔn. It follows that the last vertex map h : sdΔn → Δn is a simplicial
homotopy equivalence.

The natural maps h : sd Δn → Δn induce a natural simplicial map

η = h∗ : Y → ExY,

which is given on n-simplices by precomposition by the indicated map h.

Lemma 4.2. The map η : Y → ExY is a π0 isomorphism, and induces a
surjection on fundamental groupoids.

Proof: The map η is an isomorphism on the vertex level. A 1-simplex of ExY
is a diagram

x
α−→ y

β←− z

of 1-simplices of Y , and η(α) is the diagram

x
α−→ y

s0y←−− y

for any 1-simplex x
α−→ y of Y (incidentally, the notation means that d0(α) = y

and d1(α) = x). Thus, two vertices of ExY are related by a string of 1-simplices
of ExY if and only if the corresponding vertices are related by a string on 1-
simplices of Y , so that η is a π0-isomorphism as claimed.

For each 1-simplex

x
α−→ y

β←− z

of ExY , there is a 2-simplex σ of ExY

y

N
N

N
N

N
NQ

y

u

y

�
�
�
�
�
��

y

y�
�
�
��

y

y
h
h
h
hk

y

y

x

�
�
�
�
�
�
��

α

��
��
��
��
��

α

wα y

u

y

z

�
�
�
�
�
�
��

β

h
h
h
h
h
h
h
hhk

β

u
β
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Here, x is the 0th vertex v0 of σ, v1 = z and v2 is the top copy of y. The two
lower left 2-simplices of y are copies of s1α, the two lower right 2-simplices
are copies of s1β, and the two upper 2-simplices are constant simplices of Y
associated to the vertex y. It follows that there is a relation

[η(α)] = [x
α−→ y

β←− z][η(β)]

in the path category associated to ExY . But then

[x
α−→ y

β←− z] = [η(α)][η(β)]−1

in the fundamental groupoid π(ExY ). Every generator of π(ExY ) is therefore
in the image of the induced functor η∗ : π(Y ) → π(ExY ). �
Lemma 4.3. The map η : Y → ExY induces an isomorphism

η∗ : H∗(Y, Z)
∼=−→ H∗(ExY, Z)

in integral homology.

Proof: The natural maps η : Δk → ExΔk can be used to show that the Ex
functor preserves homotopies. It follows that Ex sdΔn is contractible; in effect,
the poset PΔn contracts onto the top non-degenerate simplex of Δn. It follows
that Ex sd Δn has the homology of a point.

The natural map η : Y → ExY induces an isomorphism π0Y ∼= π0 ExY ,
by Lemma 4.2. It follows that η induces a natural isomorphism

η∗ : H0(Y, Z)
∼=−→ H0(ExY, Z)

in the 0th integral homology group. The simplices σ : Δn → ExY factor
through maps Exσ∗ : Ex sdΔn → ExY . A standard acyclic models argument
therefore implies that there is a natural chain map γ : Z ExY → ZY between
the associated Moore complexes which induces the map η−1

∗ : H0(Z Ex Y ) →
H0(ZY ), and any two natural chain maps which induce η−1

∗ are naturally chain
homotopic. Similarly, the composite natural chain map

Z ExY
γ−→ ZY

η∗−→ Z ExY

is naturally chain homotopic to the identity map, and the models ZΔn are used
to show that the composite

ZY
η∗−→ Z ExY

γ−→ ZY

is naturally chain homotopic to the identity. The map η∗ : ZY → Z ExY is
therefore a natural chain homotopy equivalence, and so the map η : Y → ExY
is a homology isomorphism. �
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Corollary 4.4. If the canonical map Y → ∗ is a weak equivalence, then so
is the map ExY → ∗.
Proof: The fundamental groupoid πY for Y is trivial, and η induces a surjec-
tion η∗ : πY → π ExY by Lemma 4.2, so that ExY has a trivial fundamental
groupoid as well. But ExY is acyclic by Lemma 4.3, so that ExY is weakly
equivalent to a point, by the Hurewicz Theorem (Theorem 3.7). �
Lemma 4.5. The functor Ex preserves Kan fibrations.

Proof: We show that the induced map sd Λn
k ↪→ sdΔn is a weak equivalence.

The simplicial set sdΛn
k can be identified with the nerve of the poset of

non-degenerate simplices of Λn
k , and the homeomorphism

h : | sdΔn|
∼=−→ |Δn|

restricts to a homeomorphism

| sdΛn
k |

∼=−→ |Λn
k |.

It follows that sdΛn
k ↪→ sdΔn is a weak equivalence. �

Theorem 4.6. The natural map η : Y → ExY is a weak equivalence.

Proof: Let Yf be a fibrant model for Y in the sense that there is a weak
equivalence α : Y → Yf . Pick a base point y for Y , and let PYf be path space
for Yf corresponding to the base point α(y). Form the pullback diagram

α−1PYf w

α∗

u

π∗

PYf

u

π

Y wα Yf ,

where π : PYf → Yf is the canonical fibration. Then α∗ is a weak equivalence
(Corollary II.8.6), so that α−1PYf is weakly equivalent to a point, and the fibre
sequence

ΩYf → α−1PYf

π∗−→ Y.

gives rise to a comparison of fibre sequences

ΩYf w

u

η

α−1PYf w

π∗

u

η

Y

u

η

ExΩYf w Exα−1PYf w

Exπ∗
ExY,
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by Lemma 4.5. Computing in homotopy groups of realizations (and thereby im-
plicitly using the fact that the realization of a Kan fibration is a Serre fibration
— Theorem I.10.10), we find a commutative diagram

π1(Y, y) w

∼=

u

η∗

π0(ΩYf )

u

∼= η∗

π1(ExY, y) w∼= π0(ExΩYf ).

One uses Corollary 4.4 to see that the indicated boundary maps are isomor-
phisms. It follows that η induces an isomorphism

η∗ : π1(Y, y)
∼=−→ π1(ExY, y)

for all choices of base point y of Y . Inductively then, one shows that all maps

η∗ : πi(Y, y)
∼=−→ πi(ExY, y)

are isomorphisms for all choices of base point y. �
Lemma 4.7. For any map λ : Λn

k → ExY , the dotted arrow exists in the
diagram

Λn
k w

λ

z

u

ExY

u

η

Δn
w Ex2 Y.

Proof: The adjoint of the composite map

Λn
k

λ−→ ExY
η−→ Ex2 Y

is the composite

sdΛn
k

h−→ Λn
k

λ−→ ExY.

It therefore suffices to show that the dotted arrow h∗ exists in the diagram

sd Λn
k w

h

z

u

Λn
k

u

η̃

sdΔn
w Ex sdΛn

k ,
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making it commute, where η̃ : K → Ex sdK is the counit of the adjunction,
and is defined by sending a simplex σ : Δn → K to the simplex of Ex sdK
given by the induced map sdσ : sdΔn → sd K.

Let σ = (σ0, . . . , σq) be a q-simplex of sdΔn, where the maps σi : ni ↪→ n
are simplices of Δn. Define a function fσ : q → n by the assignment

fσ(i) =
{

σi(ni) if σi �= dkιn or ιn, and
k if σi = dkιn or σi = ιn.

The assignment σ �→ fσ is natural with respect to morphisms of ordinal num-
bers θ : q′ → q in the sense that fσθ = fσθ̃. There is a unique pair (Xσ, πσ)
consisting of a poset monic Xσ : r ↪→ n and a surjective function πσ : q � r
such that the diagram of functions

q w

fσ
�
�
���πσ

n

r
��
�
��
Xσ

commutes. Then a simplicial map h∗ : sdΔn → Ex sdΛn
k is defined by the

assignment σ �→ π∗
σ(η̃(Xσ)). Note that, whereas πσ : q → r is only a function,

it induces a poset map πσ∗ : PΔq → PΔr and hence a simplicial map πσ∗ :
sdΔq → sdΔr, so that the definition of the map h∗ makes sense. �

For any simplicial set X, define Ex∞ X to be the colimit in the simplicial
set category of the string of maps

X
ηX−−→ ExX

ηEx X−−−→ Ex2 X
ηEx2 X−−−−→ Ex3 X → . . .

Then the assignment X �→ Ex∞ X defines a functor from the simplicial set
category to itself, which is commonly called the Ex∞ functor . Write ν : X →
Ex∞ X for the canonical natural map which arises from definition of Ex∞ X.
The results of this section imply the following:

Theorem 4.8.

(1) The canonical map ν : X → Ex∞ X is a weak equivalence, for any
simplicial set X.

(2) For any X, the simplicial set Ex∞ X is a Kan complex.

(3) The Ex∞ functor preserves Kan fibrations.

Proof: The first statement is a consequence of Theorem 4.6. Statement (2)
is implied by Lemma 4.7. The third statement follows from Lemma 4.5. �
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5. The Kan suspension.
The ordinal number map d0 : n → n + 1 induces an inclusion d0 : Δn → Δn+1.
Let the vertex 0 be a base point for Δn+1, and observe that any simplicial map
θ : Δn → Δm uniquely extends to a simplicial map θ̃ : Δn+1 → Δm+1, which
is pointed in the sense that θ̃(0) = 0, and such that θ̃d0 = d0θ. Note that
d̃i = di+1 and s̃j = sj+1 for all i and j.

The cone CY of a simplicial set Y is the pointed simplicial set

CY = lim−→
Δn→Y

Δn+1,

where the colimit is indexed in the simplex category of all simplices Δn → Y ,
and is formed in the pointed simplicial set category. The maps d0 : Δn → Δn+1

induce a natural map j : Y → CY .
The cone CY on a simplicial set Y is contractible: the contracting ho-

motopies h : Δn+1 × Δ1 → Δn+1 given by the transformations 0 → i in the
ordinal numbers n + 1 glue together along the simplices of Y to give a con-
tracting homotopy h : CY × Δ1 → CY onto the base point of Y , since there
are commutative diagrams

Δn+1 × Δ1
w

h

u

θ̃ × 1

Δn+1

u

θ̃

Δm+1 × Δ1
w

h
Δm+1

for any ordinal number map θ : n → m.
We can see now that a simplicial set map f : Y → X can be extended to

a map g : CY → X in the sense that there is a commutative diagram

CY�
�
���
g

Y

u

j

w

f
X

if and only if for each n-simplex x of Y there is an (n + 1)-simplex g(x) of X
such that

(1) d0(g(x)) = f(x),
(2) d1d2 · · · dn+1(g(x)) is some fixed vertex v of X for all simplices x of Y ,

and
(3) for all i, j ≥ 0 and all simplices x of Y , we have

di+1(g(x)) = g(dix) and sj+1(g(x)) = g(sjx).
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For the moment, given a simplicial set X, let X−1 = π0X and write
d0 : X0 → X−1 for the canonical map X0 → π0X.

A simplicial set X is said to have an extra degeneracy if there are functions
s−1 : Xn → Xn+1 for all n ≥ −1, such that, in all degrees,

(1) d0s−1 is the identity on Xn,
(2) for all i, j ≥ 0, we have the identities

di+1s−1(x) = s−1di(x) and sj+1s−1(x) = s−1sj(x).

Lemma 5.1. Suppose that a simplicial set X has an extra degeneracy. Then
the canonical map X → K(π0X, 0) is a homotopy equivalence.

Proof: It suffices to assume that X is connected. Then the association x �→
s−1(x) determines an extension

CX�
�
���
s−1

X

u

j

w1 X

of the identity map on X, according to the criteria given above. Also, CX
contracts onto its base point, which point maps to s−1(∗) in X, where ∗ denotes
the unique element of π0X. �

Example 5.2. Suppose that G is a group. The translation category EG asso-
ciated to the G-action G × G → G has the elements of G for objects, and has
morphisms of the form h : g → hg. The nerve of this category is commonly also
denoted by EG. Note in particular that an n-simplex of the resulting simplicial
set EG has the form

g0

g1−→ g1g0

g2−→ . . .
gn−→ gn · . . . · g0,

and may therefore be identified with a string (g0, g1, . . . , gn) of elements of the
group G. The simplicial set EG is plainly connected. By thinking in terms of
strings of arrows, it is seen that the assignment

(g0, g1, . . . , gn) �→ (e, g0, g1, . . . , gn)

defines an extra degeneracy s−1 : EGn → EGn+1 for EG, so that EG is
contractible.
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If K is a pointed simplicial set, then the pointed cone C∗K is defined by
the pushout

CΔ0
w

C∗

u

CK

u

∗ w C∗K.

Here, the map C∗ is induced by the inclusion of the base point ∗ : Δ0 → K in
K.

The maps d0 : Δn → Δn+1 induce a natural pointed map i : K → C∗K.
The Kan suspension ΣK of K is defined to be the quotient

ΣK = C∗K/K.

The Kan suspension ΣK is a reduced simplicial set, and is a concrete
model for the suspension of the associated pointed space |K|, in the sense that
the realization |ΣK| is naturally homeomorphic to the topological suspension
of |K|. The existence of this homeomorphism is one of the reasons that the
Kan suspension functor Σ : S∗ → S∗ preserves weak equivalences — one could
also argue directly from the definitions by using the cofibre sequence

K ⊂ C∗K → ΣK

and the contracting homotopy on the cone C∗K.
A pointed simplicial set map φ : ΣK → Y consists of pointed functions

φn : Kn → Yn+1 (5.3)

such that

(1) d1 . . . dn+1φn(x) = ∗, and d0φn(x) = ∗ for each x ∈ Kn, and

(2) for each ordinal number map θ : n → m, the diagram of pointed func-
tions

Kn w

φn

u

θ∗

Yn+1

u

(θ̃)∗

Km w

φm
Ym+1

commutes.
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Pointed simplicial set maps of the form ψ : C∗K → Y have a very similar char-
acterization; one simply deletes the requirement that d0ψn(x) = ∗. It follows
that the pointed cone and Kan suspension functors preserve colimits of pointed
simplicial sets.

An equivalent description of C∗K starts from the observation that the
pointed simplicial set K is a member of a coequalizer diagram of the form∨

θ:n→m

Km ∧ Δn
+ ⇒

∨
n≥0

Kn ∧ Δn
+ → K

where, for example, Km∧Δn
+ is the wedge of the pointed set of m-simplices Km,

thought of as a discrete pointed simplicial set, with Δn
+, and Δn

+ is notation
for the simplicial set Δn � {∗}, pointed by the disjoint vertex ∗. Then C∗K is
defined by the coequalizer diagram∨

θ:n→m

Km ∧ Δn+1 ⇒
∨
n≥0

Kn ∧ Δn+1 → C∗K.

The set of m-simplices of Δn+1 is the set of ordinal number maps of the
form γ : m → n + 1. Each such γ fits into a pullback diagram

j w

γ∗

u

(d0)m−j

n

u

d0

m wγ n + 1

in the ordinal number category, for some uniquely determined map γ∗ : j → n
if γ−1(n) �= ∅. It follows that, as a pointed set, Δn+1

m has the form

Δn+1
m = Δn

m � Δn
m−1 � · · · � Δn

0 � {∗}
= (Δn

+)m ∨ (Δn
+)m−1 ∨ · · · ∨ (Δn

+)0,

where the base point corresponds to the case γ(m) = 0. Now take another map
ζ : k → m; there is a pullback diagram of ordinal number maps

ζ−1(j) w

ζ̂

u

j

u

(d0)m−j

k w

ζ
m

(5.4)
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in the case where r = ζ−1(j) �= ∅. It follows that the restriction of ζ∗ : Δn+1
m →

Δn+1
k to the summand (Δn

+)j is the map

ζ̂∗ : (Δn
+)j → (Δn

+)r

if ζ−1(j) �= ∅, and is the map to the base point otherwise.
Suppose that K is a pointed simplicial set. There is a a pointed simplicial

set C̃∗(K) whose set of n-simplices is given by

C̃∗(K)n = Kn ∨ Kn−1 ∨ · · · ∨ K0.

The map ζ∗ : C̃∗(K)m → C̃∗(K)k associated to ζ : k → m is given on the
summand Kj by the composite

Kj

ζ̂∗

−→ Kr ↪→ C̃∗(Kk)

in the case where ζ−1(j) �= ∅, r = ζ−1(j), and the map ζ̂ is defined by the
diagram (5.4). If ζ−1(j) = ∅, then the restriction of ζ∗ to Kj maps to the base
point.

One checks that C̃∗(K) is indeed a pointed simplicial set, and that the
construction is functorial in K. Furthermore, the functor preserves colimits, so
that the diagram

∨
θ:n→m

C̃∗(Km ∧ Δn
+) ⇒

∨
n≥0

C̃∗(Kn ∧ Δn
+) → C̃∗K.

is a coequalizer. On the other hand, the definitions imply that there are iso-
morphisms

C̃∗(Y ∧ Δn
+) ∼= Y ∧ C̃∗(Δn

+)
∼= Y ∧ Δn+1,

which are natural in the pointed sets Y and simplices Δn. This is enough to
prove

Lemma 5.5. There is a pointed simplicial set isomorphism

C̃∗(K) ∼= C∗(K),

which is natural in K.
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The composite

K
i−→ C∗(K) ∼= C̃∗(K),

in degree n is the inclusion of the wedge summand Kn. The canonical map
i : K → C∗(K) is therefore an inclusion. Collapsing by K in each degree also
gives a nice description of the Kan suspension ΣK: the set of (n + 1)-simplices
of ΣK is given by the wedge sum

ΣKn+1 = Kn ∨ Kn−1 ∨ · · · ∨ K0.

It’s also a worthy exercise to show that the maps ηn : Kn → ΣKn+1 cor-
responding to the identity map ΣK → ΣK under the association (5.3) are
inclusions Kn → Kn ∨ Kn−1 ∨ · · · ∨ K0 of wedge summands.

Remark 5.6. The abelian version of Kan suspension is the Eilenberg-Mac
Lane W construction A �→ WA, for simplicial abelian groups A. This construc-
tion is a also a special case of a functor G �→ WG which is defined for simplicial
groups G — the functor for simplicial groups is discussed at some length in
Section V.4.

The group of (n+1)-simplices of the simplicial abelian group WA is given
by the direct sum

WAn+1 = An ⊕ An−1 ⊕ · · · ⊕ A0,

and the simplicial structure maps are defined on direct summands by anal-
ogy with the structure maps for the Kan suspension functor. Collapsing by
degeneracies according to Theorem 2.1 yields natural isomorphisms

NWAn
∼= NAn−1,

and these isomorphisms fit into a commutative diagram

NWAn w

∼=

u

∂

NAn−1

u

(−1)ndn−1

NWAn−1 w∼= NAn−2

The W construction for simplicial abelian groups thus corresponds to a shift on
the chain complex level, and it is therefore the “good” suspension for simplicial
abelian groups. This phenomenon and its consequences are discussed more fully
in Section 4.6 of [52].



Chapter IV Bisimplicial sets

This chapter is a basic exposition of the homotopy theory of bisimplicial sets
and bisimplicial abelian groups.

A bisimplicial set can be viewed either as a simplicial object in the cat-
egory of simplicial sets or a contravariant functor on the product Δ × Δ of
two copies of ordinal number category Δ: both points of view are constantly
exploited. Similar considerations apply to bisimplicial objects in any category,
and to bisimplicial abelian groups in particular.

Categories of bisimplicial objects are ubiquitous sources of spectral se-
quence constructions. In many contexts, bisimplicial sets and bisimplicial abe-
lian groups function as analogs of projective resolutions for homotopy theoretic
objects. The Serre spectral sequence is one of the original examples: pullbacks
over simplices of the base of a map p : E → B form a bisimplicial resolu-
tion of the total space. Then every bisimplicial set has canonically associated
bisimplicial abelian groups and hence bicomplexes, and so a spectral sequence
(5.3) drops out. If the map p happens to be a fibration, the resulting spectral
sequence is the Serre spectral sequence (5.5). It is not much of a conceptual
leap from this construction to the notion of a homology fibre sequence, which
is the basis for the group completion theorem (Theorem 5.15). These ideas are
essentially non-abelian, so the theory can be pushed to give the basic detection
principle for homotopy cartesian diagrams (Lemma 5.7) that is the basis of
proof for Quillen’s Theorem B (Theorem 5.6). Group completion and Theo-
rem B are fundamental tools for algebraic K-theory. This collection of results
appears in Section 5.

We begin in Section 1 with some definitions and examples of bisimplicial
sets and abelian groups, which examples include the bisimplicial sets underly-
ing homotopy colimits. Section 2 contains a discussion of the basic features of
bisimplicial abelian groups, including homotopy colimit objects and the gener-
alized Eilenberg-Zilber theorem (Theorem 2.4). This theorem asserts that the
two standard ways of extracting a chain complex from a bisimplicial abelian
group, namely the chain complex associated to the diagonal simplicial abelian
group and the total complex, are naturally chain homotopy equivalent. We
show (Lemma 2.11) that the homotopy groups of homotopy colimit simplicial
abelian groups are the left derived functors of the colimit functor.

A description of the formal homotopy theory of bisimplicial sets is given
in Section 3. This homotopy theory is a little complicated, because there are
closed model structures associated to multiple definitions of weak equivalence
for these objects. The diagonal functor creates an external notion — one says
that a map of bisimplicial sets is a diagonal weak equivalence if it induces a
weak equivalence of associated diagonal simplicial sets. There are also two in-
ternal descriptions of weak equivalence, corresponding to viewing a bisimplicial
set as a diagram in its vertical or horizontal simplicial sets. In particular, we

195
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say that a bisimplicial set map is a pointwise (or vertical) weak equivalence if
each of the induced maps of vertical simplicial sets is a weak equivalence. We
discuss closed model structures associated to all of these definitions. Diagonal
weak equivalences are the objects of study in the Moerdijk structure, whereas
pointwise weak equivalences figure into two different structures, namely the
Bousfield-Kan structure in which the fibrations are defined pointwise, and the
Reedy structure where the cofibrations are defined pointwise. All of these the-
ories are useful, and they are used jointly in the applications that follow, but
this is by no means the end of the story: there is a further notion of E2-weak
equivalence due to Dwyer, Kan and Stover [28], [29] and a corresponding closed
model structure that is not discussed here.

We confine ourselves here to applications of the homotopy theory of bisim-
plicial sets that involve detection of cartesian squares of bisimplicial set mor-
phisms that become homotopy cartesian after applying the diagonal functor.
There are two extant non-trivial techniques. One of these is the circle of ideas
related to the Serre spectral sequence in Section 5, which has already been dis-
cussed. The other is the theorem of Bousfield and Friedlander (Theorem 4.9)
which is dealt with in Section 4, and arises from the Reedy closed model struc-
ture in the presence of the so-called π∗-Kan condition. The π∗-Kan condition is
satisfied widely in nature, in particular for all pointwise connected bisimplicial
sets; it is best expressed by saying that the canonical maps from the homotopy
group objects fibred over the simplicial set of vertical vertices of a bisimplicial
set to the vertices are Kan fibrations. The Bousfield-Friedlander theorem leads
to a spectral sequence (see (4.14)) for the homotopy groups of the diagonal of
a pointwise connected bisimplicial set. This spectral sequence is the origin of
the definition of E2-weak equivalence that is referred to above.

1. Bisimplicial sets: first properties.

A bisimplicial set X is a simplicial object in the category of simplicial sets,
or equivalently a functor X : Δop → S where Δ is the ordinal number cate-
gory and S denotes the category of simplicial sets as before. Write S2 for the
category of bisimplicial sets.

A bisimplicial set X can also be viewed as a functor

X : Δop ×Δop → S,

or as a contravariant functor on the category Δ×Δ, by the categorical expo-
nential law. From this point of view, the data for X consists of sets X(m,n)
with appropriately defined functions between them. The set X(m,n) will often
be called the set of bisimplices of X of bidegree (m,n), or the (m,n)-bisimplices
of X. We shall also say that a bisimplex x ∈ X(m,n) has horizontal degree m
and vertical degree n.
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Example 1.1. The bisimplicial set Δk,l is the simplicial object in S which is
composed of the simplicial sets ⊔

n
θ−→k

Δl,

where Δl is the standard l-simplex in S and the disjoint union is indexed over
morphisms θ : n → k in the ordinal number category Δ. The bisimplicial set
Δk,l classifies bisimplices of bidegree (k, l): there is a simplex

ιk,l ∈
⊔

k
τ−→k

Δl,

which is a classifying (k, l)-simplex in the sense that the bisimplices x ∈ X(k, l)
in a bisimplicial set X are in one to one correspondence with maps ιx : Δk,l →
X such that ι(ιk,l) = x. Specifically, the classifying bisimplex ιk,l is the copy of
the classifying l-simplex ιl ∈ Δl

l in the summand corresponding to the identity
map 1 : k → k.

It follows that Δk,l is the contravariant functor on Δ×Δ which is repre-
sented by the object (k, l).

Example 1.2. Suppose that K and L are simplicial sets. Then there is a
bisimplicial set K×̃L with (m,n)-bisimplices specified by

K×̃L(m,n) = Km × Ln.

The bisimplicial set K×̃L will be called the external product of K with L. Note
that the bisimplicial set Δk,l may be alternatively described as the external
product Δk×̃Δl.

The diagonal simplicial set d(X) of a bisimplicial set X has n-simplices
given by

d(X)n = X(n, n).

It can also be viewed as the composite functor

Δop
Δ−→ Δop ×Δop

X−→ S,

where Δ is the diagonal functor.
Think of the bisimplicial set X as a simplicial object in the simplicial set

category by defining the vertical simplicial sets Xn = X(n, ∗). Any morphism
θ : m → n gives rise to a diagram

Xn × Δm
w

1 × θ∗

u

θ∗ × 1

Xn × Δn

Xm × Δm.

(1.3)
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The collection of all such maps θ therefore determines a pair of maps⊔
m

θ−→n

Xn × Δm ⇒
⊔
n

Xn × Δn,

by letting the restriction of the displayed maps to the summand corresponding
to θ be 1 × θ∗ and θ∗ × 1, respectively. There are also simplicial set maps

γn : Xn × Δn → d(X)

defined on r-simplices by

γn(x, r
τ−→ n) = τ∗(x).

Here, x is an r-simplex of Xn, and τ∗ : Xn → Xr is a simplicial structure map
of X, so that τ∗(x) is an r-simplex of X(r, ∗) and is therefore an r-simplex of
d(X). The collection of the maps γn together determine a simplicial set map

γ :
⊔
n

Xn × Δn → d(X).

Exercise 1.4. Show that the resulting diagram⊔
m

θ−→n

Xn × Δm ⇒
⊔
n

Xn × Δn
γ−→ d(X)

is a coequalizer in the category of simplicial sets.

The exercise implies that the diagonal simplicial set d(X) is a coend in
the category of simplicial sets for the data given by all diagrams of the form
(1.3).

The diagonal simplicial set d(X) has a natural filtration by subobjects
d(X)(p), p ≥ 0, where

d(X)(p) = image of (
⊔

0≤n≤p

Xn × Δn) in d(X).

The degenerate part (with respect to the horizontal simplicial structure) of
Xp+1 is filtered by subobjects

s[r]Xp =
⋃

0≤i≤r

si(Xp) ⊂ Xp+1.
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It follows from the simplicial identities that there are pushout diagrams

s[r]Xp−1 w

sr+1

z

u

s[r]Xp
z

u

Xp wsr+1
s[r+1]Xp,

(1.5)

and

(s[p]Xp × Δp+1) ∪ (Xp+1 × ∂Δp+1) w

z

u

d(X)(p)

z

u

Xp+1 × Δp+1
w d(X)(p+1).

(1.6)

Diagrams (1.5) and (1.6) and the gluing lemma (Lemma II.8.8) are the
basis of an inductive argument leading to the proof of

Proposition 1.7. Suppose that f : X → Y is a map of bisimplicial sets which
is a pointwise weak equivalence in the sense that all of the maps f : Xn → Yn are
weak equivalences of simplicial sets. Then the induced map f∗ : d(X) → d(Y )
of associated diagonal simplicial sets is a weak equivalence.

Example 1.8. Any simplicial set-valued functor Z : I → S gives rise to a
bisimplicial set BEZ = BEIZ, with (m,n)-bisimplices

BEIZm,n =
⊔

i0→i1→···→im

Z(i0)n. (1.9)

Note that the indexing is over simplices of degree m in the nerve BI of the
category I, or equivalently over strings of arrows of length m in I.

The homotopy colimit of the functor Z is the diagonal d(BEIZ); one
usually writes holim−−−→I

Z = d(BEIZ).
As the notation suggests, each of the n-simplex functors Zn gives rise

to a translation category EIZn having objects (i, x) with i an object of I and
x ∈ Zn(i), and with morphisms α : (i, x) → (j, y) where α : i → j is a morphism
of I such that Zn(α)(x) = y. Then the set of m-simplices of the nerve BEIZn

is the set displayed in (1.9). Furthermore, the data is simplicial in n, so the
simplicial object BEIZ is indeed a bisimplicial set.

This definition of homotopy colimit is standard and we have given one
of the standard notations for it, but there is some tendency in the literature
(eg. [48]) to confuse homotopy colimits with their underlying bisimplicial sets.
The diagonal simplicial set functor associates the “correct” homotopy type to
a bisimplicial set (see Sections 3 and 4), so the distinction between the internal
homotopy type of a bisimplicial set and that of its associated diagonal is rather
slight in practice.
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Example 1.10. Suppose that G is a group and that X is a simplicial set ad-
mitting a left G-action. The homotopy colimit holim−−−→G

X for the corresponding
functor X : G → S has n-simplices is isomorphic to the traditional Borel con-
struction EG ×G X for the action of G on X. To see this, recall that EG is
the nerve of the translation category arising from the left action of G on itself
given by the multiplication map G × G → G. Then the set of n-simplices of
the Borel construction EG ×G X is defined to be the quotient of the product
EGn ×Xn for the G-action given in terms of the evident right G-action on EG
by

g · (ω, x) = (ωg−1, gx).

It follows that there is a bijection

(EG ×G X)n
∼= holim−−−→

G

Xn

which is defined on the n-simplex level by sending the class

[(e
g1−→ g1

g2−→ g2g1 → · · · , x)]

to the n-simplex
x

g1−→ g1x
g2−→ g2g1x → · · ·

of the homotopy colimit. One shows that the simplex level bijections determine
an isomorphism

EG ×G X ∼= holim−−−→
G

X

by checking that simplicial structure maps are respected.

2. Bisimplicial abelian groups.
We collect here the basic theory of bisimplicial abelian groups, in two subsec-
tions.

The first of these is effectively about homotopy colimit constructions in
the category of simplicial abelian groups. Any functor A : I → sAb taking
values in simplicial abelian groups has an associated bisimplicial abelian group
which we call translation object, and is formed by analogy with the homotopy
colimit of a diagram of simplicial sets. We derive the basic technical result
that translation object for the diagram A is weakly equivalent to the simplicial
abelian group A(t) if the index category I has a terminal object t.

When we say that a bisimplicial abelian group B is weakly equivalent to a
simplicial abelian group C, we mean that the diagonal simplicial abelian group
d(B) is weakly equivalent to C within the simplicial abelian group category.
One could alternatively interpret B as a bicomplex and C as a chain complex,
and then ask for a weak equivalence between the chain complexes Tot(B) and
C. The generalized Eilenberg-Zilber theorem says that Tot(B) and the chain
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complex d(B) are naturally chain homotopy equivalent, so in fact there is no
difference between the two approaches to defining such weak equivalences. This
is the subject of the second subsection. We further show that the standard
spectral sequence

Ep,q
2 = Hp(HqA∗) ⇒ Hp+q(d(A))

for a bisimplicial abelian group A can be derived by methods which are com-
pletely internal to the simplicial abelian group category. The section closes with
the example of this spectral sequence which calculates the homology of a homo-
topy colimit; the E2 term is identified by showing that the homotopy groups of
the translation object for a functor A : I → Ab are the higher derived functors
of the colimit functor.
2.1. The translation object.

This section contains technical results concerning a simplicial abelian group-
valued analogue of the homotopy colimit construction for diagrams of abelian
groups, called the translation object. This construction is of fundamental im-
portance for the description of the Serre spectral sequence that appears in a
subsequent section of this chapter. More generally, it appears canonically in
any homology spectral sequence arising from a homotopy colimit of a diagram
of simplicial sets.

Suppose that A : I → Ab is an abelian group valued functor, where I is
a small category. There is a simplicial abelian group EA, with

EAn =
⊕

γ:n→I

Aγ(0),

where the direct sum is indexed by the n-simplices of the nerve BI of the index
category I. The abelian group homomorphism θ∗ : EAn → EAm induced by
an ordinal number map θ : m → n is specified by requiring that all diagrams

Aγ(0) w

u

inγ

Aγθ(0)

u

inγθ⊕
γ:n→I

Aγ(0) w

θ∗
⊕

ζ:m→I

Aζ(0)

commute, where the homomorphism Aγ(0) → Aγθ(0) is induced by the relation
0 ≤ θ(0) in the ordinal number n. The simplicial abelian group EA is called
the translation object associated to the functor A.

Note that EA is not the nerve of a category, even though its definition is
analogous to that of the nerve of a translation category for a set-valued functor.

Suppose given functors

J
F−→ I

A−→ Ab,



202 IV. Bisimplicial sets

where J and I are small categories. The functor F induces a simplicial abelian
group homomorphism F∗ : E(AF ) → EA, which is defined on n-simplices in
such a way that the diagram

AFθ(0) w
1

u

inθ

AFθ(0)

u

inF ·θ⊕
θ:n→J

AFθ(0) w

F∗

⊕
γ:n→I

Aγ(0)

commutes.
Any natural transformation ω : A → B of functors I → Ab determines

a morphism ω∗ : EA → EB of simplicial abelian groups. This morphism ω∗
is defined on n-simplices by the requirement that the following diagram com-
mutes:

Aθ(0) w
ω

u

inθ

Bθ(0)

u

inθ⊕
θ:n→I

Aθ(0) wω∗
⊕

θ:n→I

Bθ(0).

Now consider a functor B : I × 1 → Ab, and let d1 : I → I × 1 and
d0 : I → I × 1 be defined, respectively, by d1(i) = (i, 0) and d0(i) = (i, 1). The
maps (i, 0) → (i, 1) in I × 1 induce a natural transformation η : Bd1 → Bd0 of
functors I → Ab, and hence induce a simplicial abelian group homomorphism
η∗ : EBd1 → EBd0. In general, the group of n-simplices of the simplicial
abelian group EA ⊗ Δ1 can be identified with the direct sum⊕

(θ,γ):n→I×1

Aθ(0).

In the case at hand, one finds a canonical map h : EBd1 ⊗Δ1 → EB, which is
defined on n-simplices by the requirement that the diagram

B(θ(0),0) w

u

in(θ,γ)

B(θ(0),γ(0))

u

in(θ,γ)⊕
(θ,γ):n→I×1

B(θ(0),0) w

h

⊕
(θ,γ):n→I×1

B(θ(0),γ(0))
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commutes, where the top horizontal map is induced by the morphism

(θ(0), 0) → (θ(0), γ(0))

in I × 1. One can now check that there is a commutative diagram of simplicial
abelian group homomorphisms

EBd1

u

d1

�
�
�
�
�
�
�
�
�
�
���

d1
∗

EBd1 ⊗ Δ1
w

h
EB.

EBd1

u

d0

wη∗ EBd0
h
h
h
hj

d0
∗

(2.1)

Lemma 2.2. Let A : I → Ab be an abelian group valued functor on a small
category I, and suppose that I has a terminal object t. Then there is a canonical
weak equivalence EA → K(At, 0), which is specified on n-simplices by the
homomorphism ⊕

θ:n→I

Aθ(0) → At

given on the summand corresponding to θ : n → I by the map Aθ(0) → At

induced by the unique morphism θ(0) → t of the index category I.

Proof: Let t also denote the composite functor

I → {t} ⊂ I.

Then the discrete category {t} is a strong deformation retract of the category
I in the sense that there is a commutative diagram of functors

I

u

d1

�
�
�
���

1

I × 1 w
H I.

I

u

d0

N
N
N
NNP

t
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Now, EAHd1 = EA, so that (2.1) can be used to show there is a commutative
diagram of simplicial abelian group homomorphisms

EA

u

d1

�
�
�
�
�
�
�
�
�
�
���

1

EA ⊗ Δ1
w

h
EAH w

H∗
EA.

EA

u

d0

wη∗ EAt
�
�
�
���

t∗

Note that η∗t∗ is the identity map on the simplicial abelian group EAt, so
that the Moore complex of EA is chain homotopy equivalent to the Moore
complex of EAt. The map EA → K(At, 0) factors as the weak equivalence
η∗ : EA → EAt, followed by the map EAt → K(At, 0), which map is defined
on n-simplices by the codiagonal map

⊕
θ:n→I

At

∇−→ At.

This last homomorphism is a weak equivalence, because the space BI is con-
tractible. �
2.2. The generalized Eilenberg-Zilber theorem.

A bisimplicial abelian group A is a simplicial object in the category of simplicial
abelian groups, or equivalently a functor of the form

A : Δop ×Δop → Ab,

where Ab denotes the category of abelian groups, as before. Subject to the
latter description, the simplicial abelian groups A(n, ∗) will be referred to as
the vertical simplicial abelian groups, while the objects A(∗,m) are the hor-
izontal simplicial abelian groups. The category of bisimplicial abelian groups
and natural transformations between them will be denoted by s2Ab.

It is often convenient to write An = A(n, ∗) for the vertical simplicial
abelian group in horizontal degree n. The simplicial abelian group morphism
An → Am associated to an ordinal number map θ : m → n will sometimes
be denoted by θ∗h: this morphism is given on k-simplices by the abelian group
homomorphism (θ, 1)∗ : A(n, k) → A(m,k). We shall also occasionally write
τ∗v = (1, τ)∗ : A(n, k) → A(n, p) for the vertical structure maps associated to
τ : p → k.
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The diagonal simplicial abelian group d(A) associated to the bisimplicial
abelian group A has n-simplices given by d(A)n = A(n, n), and the association
A �→ d(A) defines a functor d : s2Ab → sAb. The diagonal functor is plainly
exact. Furthermore, if B is a simplicial abelian group and K(B, 0) is the as-
sociated horizontally (or vertically) constant bisimplicial abelian group, then
there is a natural isomorphism d(K(B, 0)) ∼= B.

The Moore bicomplex for a bisimplicial abelian group A is the bicomplex
having (p, q)-chains A(p, q), horizontal boundary

∂h =
p∑

i=0

(−1)idi : A(p, q) → A(p − 1, q),

and vertical boundary

∂v =
q∑

j=0

(−1)p+jdj : A(p, q) → A(p, q − 1).

We shall also write A for the Moore bicomplex of a bisimplicial abelian group
A, and TotA will denote the associated total complex. Write also An = A(n, ∗)
for the Moore complex in horizontal degree n. Then filtering the bicomplex A
in the horizontal direction gives a spectral sequence

Ep,q
2 = Hp(HqA∗) ⇒ Hp+q(Tot A). (2.3)

It follows that, if the bisimplicial abelian group map f : A → B is a pointwise
weak equivalence in the sense that all of the maps f : An → Bn, n ≥ 0,
of vertical simplicial abelian group are weak equivalences, then f induces an
homology isomorphism f∗ : TotA → Tot B of the associated total complexes.
Of course, the meaning of “vertical” and “horizontal” are in the eyes of the
beholder, so it follows immediately that any map of bisimplicial abelian groups
which consists of weak equivalences on the horizontal simplicial abelian group
level must again induce a homology isomorphism of total complexes. One can,
alternatively, make an argument with the second spectral sequence for the
homology of TotA (constructed by filtering in the Moore bicomplex in the
vertical direction).

The generalized Eilenberg-Zilber theorem of Dold and Puppe [20] asserts
the following:

Theorem 2.4. The chain complexes d(A) and Tot A are chain homotopy
equivalent. This equivalence is natural with respect to morphisms of bisim-
plicial abelian groups A.

Proof: Suppose that K and L are simplicial sets. The usual Eilenberg-Zilber
theorem asserts that there are natural chain maps

f : Z(K × L) → Tot(ZK ⊗ ZL),

and
g : Tot(ZK ⊗ ZL) → Z(K × L),
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and that there are natural chain homotopies fg � 1 and gf � 1. Specializing
K and L to the standard simplices gives bicosimplicial chain maps

f : Z(Δp × Δq) → Tot(ZΔp ⊗ ZΔq),

and
g : Tot(ZΔp ⊗ ZΔq) → Z(Δp × Δq),

as well as bicosimplicial chain homotopies fg � 1 and gf � 1.
Observe that Δp ×Δq = d(Δp,q), where Δp,q is the bisimplicial set repre-

sented by the pair of ordinal numbers (p,q). It follows that the chain complex
Z(Δp × Δq) can be identified up to natural isomorphism with d(ZΔp,q). Note
as well that, up to natural isomorphism, Tot(ZΔp ⊗ZΔq) is the total complex
of the bisimplicial abelian group ZΔp,q. Every bisimplicial abelian group A sits
in a functorial exact sequence⊕

τ→σ

ZΔr,s →
⊕

σ:Δp,q→A

ZΔp,q → A → 0.

The functors Tot and d are both right exact and preserve direct sums, so the
chain maps

f : d(ZΔp,q) → Tot ZΔp,q

uniquely extend to a natural chain map

f : d(A) → Tot A.

which is natural in bisimplicial abelian groups A. Similarly, the chain maps

g : Tot ZΔp,q → d(ZΔp,q)

induce a natural chain map

g : TotA → d(A).

The same argument implies that the bicosimplicial chain homotopies fg � 1
and gf � 1 extend uniquely to chain homotopies which are natural in bisim-
plicial abelian groups. �
Remark 2.5. The maps f and g in the proof of Theorem 2.4 can be precisely
specified as the unique extensions of the classical Alexander-Whitney and shuf-
fle maps, respectively. The definitions will not be written down here (see [20],
[64, pp. 241–243]).

The underlying acyclic models argument for the Eilenberg-Zilber theorem
is somewhat less than conceptual, so that the usual approach of using the spec-
tral sequence (2.3) and the generalized Eilenberg-Zilber theorem to construct
the standard spectral sequence

Ep,q
2 = πp(πqA∗) ⇒ πp+qd(A)
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is rather indirect. We can now give an alternative construction — the method
is to arrange for some independent means of showing the following:

Lemma 2.6. A pointwise weak equivalence f : A → B of bisimplicial abelian
groups induces a weak equivalence f∗ : d(A) → d(B) of the associated diagonal
complexes.

Proof: There is a bisimplicial abelian group given in vertical degree m by the
simplicial abelian group ⊕

m→n0→···→nk

A(nk,m).

This simplicial abelian group is the translation object associated to the functor
A(∗,m) : (m ↓ Δ)op → Ab which is defined by associating to the object m → n
the abelian group A(n,m). The category (m ↓ Δ)op has a terminal object,
namely the identity map 1 : m → m, so Lemma 2.2 implies that the canonical
simplicial abelian group map EA(∗,m) → K(A(m,m), 0) is a weak equiva-
lence. It follows that the Moore complex for EA(∗,m) is canonically weakly
equivalent to the chain complex A(m,m)[0] consisting of the group A(m,m)
concentrated in degree 0. The morphism of bicomplexes which is achieved by
letting m vary therefore induces a natural weak equivalence of chain complexes
Tot EA(∗, ∗) → d(A). On the other hand, the vertical simplicial abelian group
of EA(∗, ∗) in horizontal degree k has the form⊕

n0→···→nk

Δn0 ⊗ A(nk, ∗).

It follows that any pointwise equivalence f : A → B induces a homology
isomorphism f∗ : TotEA(∗, ∗) → Tot EB(∗, ∗), and hence a weak equivalence
f∗ : d(A) → d(B). �

Define the horizontal normalization NhA of a bisimplicial abelian group A
to be the simplicial chain complex whose “n-simplices” are given by the chain
complex NhAn = NA(∗, n). The bisimplicial abelian group A can be recovered
from the simplicial chain complex NhA by applying the functor Γ in all ver-
tical degrees. The simplicial chain complex NhA can be filtered: one defines a
simplicial chain complex FpNhA as a chain complex object by specifying

FpNhAi =
{

NhAi if i ≤ p, and
0 if i > p.

Now, Fp−1NhA ⊂ FpNhA, with quotient NhAp[p], which can be thought of
as the simplicial chain complex which is the simplicial abelian group NhAp in
chain degree p and is 0 in other chain degrees. Applying the functor Γ to the
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corresponding short exact sequence gives a short exact sequence of bisimplicial
abelian groups

0 → ΓFp−1NhA → ΓFpNhA → ΓNhAp[p] → 0.

It follows that the bisimplicial abelian groups ΓFpNhA filter A. In vertical
degree n, we have an identification

ΓNhAp[p](∗, n) = K(NA(∗, n)p, p),

since, in general, the Eilenberg-Mac Lane space K(B,n) can be defined to be
the simplicial abelian group ΓB[n] which arises by applying the functor Γ to the
chain complex B[n] which consists of B concentrated in degree n (see Corollary
III.3.8).

Lemma 2.7. There is an isomorphism

πnNhAp
∼= N(πnA∗)p.

Proof: Write

N j
hAp =

j⋂
i=0

ker(dh
i ) ⊂ Ap

for 0 ≤ j ≤ p − 1. We show that the canonical map

πnN j
hAp → N j(πnA∗)p (2.8)

is an isomorphism for all j.
The degree 0 case is shown by observing that there is a short exact se-

quence

0 → N0
hAp → Ap

dh
0−→ Ap−1 → 0

which is split by sh
0 : Ap−1 → Ap, so that the map πnN0

hAp → N0(πnA∗)p is an
isomorphism. Furthermore, the induced map πnN0

hAp → πnAp is a monomor-
phism.

Assume that the map (2.8) is an isomorphism, and that the induced map

πnNh
j Ap → πnAp

is monic. Consider the pullback diagram of simplicial abelian groups

N j+1
h Ap w

z

u

ker(dh
j+1)

u

N j
hAp w Ap,
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and form the pushout

N j+1
h Ap w

z

u

ker(dh
j+1)

u

N j
hAp w N j

hAp + ker(dh
j+1).

The inclusion map N j+1
h Ap ⊂ N j

hAp is split by the map x �→ x − sh
j+1d

h
j+1(x),

and so a comparison of long exact sequences shows that the induced diagram
of abelian group homomorphisms

πnN j+1
h Ap w

z

u

πn ker(dh
j+1)

u

πnN j
hAp w πn(N j

hAp + ker(dh
j+1))

is a pushout. But the inclusion ker(dh
j+1) ⊂ Ap is a split monomorphism, so that

the induced map πn ker(dh
j+1) → πnAp is monic, and the map πnN j

hAp → πnAp

is monic by the inductive assumption. It follows that the induced map

πn(N j
hAp + ker(dh

j+1)) → πnAp

is a monomorphism, and that the canonical sequence

0 → πnN j+1
h Ap → πnN j

hAp ⊕ πn ker(dh
j+1) → πnAp

is exact. �
The alternative method for constructing a spectral sequence

Ep,q
2 = πp(πqA∗) ⇒ πp+qd(A) (2.9)

for a bisimplicial abelian group A is now clear. The filtration ΓFpNhA for the
bisimplicial abelian group A gives rise to short exact sequences

0 → ΓFp−1NhA → ΓFpNhA → ΓNhAp[p] → 0

Let NhAp〈p〉 be simplicial chain complex

· · · → 0 →
p

NhAp[p]
1−→

p−1

NhAp[p] → 0 → · · ·
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which is non-trivial in horizontal degrees p and p − 1 only. Then NhAp〈p〉 is
horizontally acyclic, and there is a short exact sequence of simplicial chain
complexes

0 → NhAp[p − 1] → NhAp〈p〉 → NhAp[p] → 0.

It therefore follows from Lemma 2.7 that there are natural isomorphisms

πp+qΓNhAp[p] ∼= πqNhAp
∼= N(πqA∗)p. (2.10)

Furthermore, if we define a spectral sequence by letting

Ep,q
1 = πp+qΓNhAp[p],

then the differential d1 : Ep,q
1 → Ep−1,q

1 is identified by the isomorphisms (2.10)
with the standard differential

∂ : N(πqA∗)p → N(πqA∗)p−1

in the normalized complex for the simplicial abelian group πqA∗. It follows that
there are canonical isomorphisms

Ep,q
2

∼= πp(πqA∗),

and the construction of the spectral sequence (2.9) is complete.

Suppose again that A : I → Ab is an abelian group valued functor on a
small index category I. The homotopy groups of the simplicial abelian group
EA are the higher derived functors of the colimit functor:

Lemma 2.11. Suppose that A : I → Ab is a functor which is defined on a
small index category I. Then there is a natural isomorphism

πn(EA, 0) ∼= Ln(lim−→)A

for each n ≥ 0.

Proof: The groups πn(EA, 0) coincide up to isomorphism with the homology
groups HnEA of the associated Moore complex, by Theorem III.2.4. The group
π0EA ∼= H0EA sits in an exact sequence⊕

i→j

Ai

d0−d1−−−−→
⊕
i∈I

Ai → H0EA → 0,

and therefore coincides up to natural isomorphism with the group lim−→A.
The functor FiZ is defined at j ∈ I by

FiZ(j) =
⊕
i→j

Z.

The functors FiZ are projective, and give an adequate supply of projectives
to construct a projective resolution F∗ → A. The derived functor Ln(lim−→)A is
defined to be the homology group Hn(lim−→F∗), as is standard.
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In particular, the simplicial abelian group EFiZ has n-simplices

(EFiZ)n
∼=

⊕
i→j0→···→jn

Z,

so that there is an isomorphism of simplicial abelian groups

EFiZ ∼= ZB(i ↓ I).

The space B(i ↓ I) is contractible, so there are isomorphisms

HnEFiZ ∼= 0

for n > 0. All members Fm of the projective resolution F∗ are direct sums of
objects FiZ, so that HnEFm

∼= 0 for n > 0 and all m. Both spectral sequences
for the bicomplex EF∗ therefore collapse at the E2 level, yielding isomorphisms
HnEA ∼= Ln(lim−→)A. �
Corollary 2.12. Suppose that X : I → S is a simplicial set valued functor
which is defined on a small index category I, and let A be an abelian group.
Then there is a convergent spectral sequence

Ep,q
2

∼= Lp(lim−→)Hq(X,A) ⇒ Hp+q(holim−−−→X,A).

Proof: This is the spectral sequence (2.9) for the bisimplicial abelian group
ZBEIX ⊗ A. The E2 term is identified by using Lemma 2.11. �

With a little more care (see Section 4.3 of [52]), one can derive a similar
convergent spectral sequence

Ep,q
2 = Lp(lim−→)hqX ⇒ hp+q(holim−−−→X)

for the homology of the homotopy colimit holim−−−→X for any decently behaved
homology theory h∗.

3. Closed model structures for bisimplicial sets.
There are three closed model structures on the category S2 of bisimplicial sets
that will be discussed in this section, namely

(1) the Bousfield-Kan structure, in which a fibration is a pointwise fibration
and a weak equivalence is a pointwise weak equivalence,

(2) the Reedy structure, in which a cofibration is a pointwise cofibration (aka.
inclusion) of bisimplicial sets, and a weak equivalence is a pointwise weak
equivalence, and

(3) the Moerdijk structure, in which a fibration (respectively weak equiva-
lence) is a map f which induces a fibration (respectively weak equiva-
lence) d(f) of associated diagonal simplicial sets.

In all of the above, a map f : X → Y is said to be a pointwise weak equivalence
(respectively fibration, cofibration) if each of the simplicial set maps f : Xn →
Yn is a weak equivalence (respectively fibration, cofibration). This idea was
partially introduced at the end of Section 1.
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3.1. The Bousfield-Kan structure.

The Bousfield-Kan closed model structure on the category S2 is a special case
of a closed model structure introduced by Bousfield and Kan for the category
SI of I-diagrams of simplicial sets arising from a small category I and natu-
ral transformations between such — see Example II.7.11. The special case in
question corresponds to letting I be the opposite category Δop of the ordinal
number category.

A map f : X → Y is defined to be a weak equivalence (respectively fi-
bration) in the Bousfield-Kan structure on SI if each induced simplicial set
map f : X(i) → Y (i) (“in sections”) is a weak equivalence (respectively fibra-
tion). One says that such maps are pointwise weak equivalences (respectively
pointwise fibrations). Cofibrations are defined by the left lifting property with
respect to pointwise trivial fibrations, suitably defined.

The closed model axioms for the Bousfield-Kan structure on SI are verified
in Example II.5.9. They can also be seen directly by using a small object
argument based on the observation that a map f : X → Y of SI is a pointwise
fibration if it has the right lifting property with respect to all maps

FiΛn
k → FiΔn, i ∈ I,

and f is a pointwise trivial fibration if it has the right lifting property with
respect to all induced maps

Fi∂Δn → FiΔn, i ∈ I.

Here, we need to know that K �→ FiK is the left adjoint of the i-sections
functor X �→ X(i), and explicitly

FiK(j) =
⊔
i→j

K

defines the functor FiK at j ∈ I.
3.2. The Reedy structure.

First, a word or two about skeleta and coskeleta of simplicial sets — the skeleton
construction for more general simplicial objects will be discussed in Section V.1.

Write Δn for the full subcategory of the ordinal numbers on the objects
0, . . . ,n. An n-truncated simplicial set Y is a functor Y : Δop

n → Sets. Let Sn

denote the category of n-truncated simplicial sets.
Every simplicial set X : Δop → Sets gives rise to an n-truncated sim-

plicial set in∗X by composition with the inclusion functor in : Δn ⊂ Δ. The
n-truncation functor X �→ in∗X has a left adjoint Y �→ i∗nY and a right ad-
joint Z �→ i!nZ, and these adjoints are defined by left and right Kan extension
respectively. Explicitly, the set i∗nYm of m-simplices of i∗nY is defined by

i∗nYm = lim−→
m→k≤n

Yk, while i!nZm = lim←−
n≥k→m

Zk,

where the indicated morphisms in both cases are in the ordinal number cate-
gory Δ.
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Exercise 3.1. Show that the canonical maps

η : Y → in∗i∗nY and ε : in∗i!nZ → Z

are isomorphisms.

There is a canonical map of simplicial sets φ : i∗nZ → i!nZ and a commu-
tative diagram

Zm w

(θγ)∗

u

θ∗

Zk

i∗nZn+1 w

φ
i!nZn+1

u

γ∗

for each composite

k
γ−→ n + 1

θ−→ m

in the ordinal number category with k,m ≤ n. It follows that an extension of
the n-truncated simplicial set Z to an (n + 1)-truncated simplicial set consists
precisely of a factorization

i∗nZn+1 z wA
A
AACφ

Zn+1

u

i!nZn+1

(3.2)

of the function φ : i∗nZn+1 → i!nZn+1. The indicated map is a monomorphism,
because i∗nZn+1 must be the degenerate part of Zn+1 on account of the universal
property implicit in diagram (1.5).

All of the foregoing is completely natural, and gives corresponding results
for diagrams of simplicial sets. In particular, an extension of an n-truncated
bisimplicial set Z : Δop

n → S to an (n + 1)-truncated bisimplicial set consists
of a factorization of the canonical simplicial set map φ : i∗nZn+1 → i!nZn+1 of
the form (3.2). Of course, the extended object consists of the simplicial sets
Z0, . . . , Zn, Zn+1.

In the literature, the simplicial set in∗i!n−1i(n−1)∗X arising from a bisim-
plicial set X is denoted by MnX, and is called the nth matching object for X
[28], [29].

A map p : X → Y of bisimplicial sets is said to be Reedy fibration if

(1) the map p : X0 → Y0 is a Kan fibration of simplicial sets, and
(2) each of the induced maps p∗ : Xn → Yn ×MnY MnX is a Kan fibration

for n > 0.
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It is common to write
coskn X = i!nin∗X,

and
skn X = i∗nin∗X,

and we shall have occasion to think about the sets of simplices

coskn Xm = (coskn X)m.

From this point of view, the canonical maps in condition (2) in the definition
of a Reedy fibration are induced by the commutative diagram of simplicial set
maps

Xn w

η

u

p

coskn−1 Xn

u

p∗

Yn wη coskn−1 Yn

which arises from the naturality of the adjunction maps. In particular, a bisim-
plicial set X is Reedy fibrant if the simplicial set X0 is a Kan complex and
each of the maps Xn → coskn−1 Xn, n > 0, is a Kan fibration.

Lemma 3.3.

(1) Suppose that a map p : X → Y is a Reedy fibration. Then p has the
right lifting property with respect to all maps of bisimplicial sets which
are pointwise cofibrations and pointwise weak equivalences.

(2) Suppose that p : X → Y is a Reedy fibration such that each of the
fibrations

Xn → Yn ×coskn−1 Yn coskn−1 Xn

is also a weak equivalence. Then p has the right lifting property with
respect to all maps which are pointwise cofibrations.

Proof: We’ ll prove the first assertion. The second is similar.
Suppose given a commutative diagram

U w

u

i

X

u

p

V w Y
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of bisimplicial set maps in which the map i is a pointwise cofibration and a
pointwise weak equivalence. Suppose inductively that there is a commutative
diagram of n-truncated bisimplicial set maps of the form

in∗U w

u

i

in∗X

u

p

in∗V w

h
h
hhjθ

in∗Y

Then there is an induced solid arrow diagram of simplicial set maps

skn Vn+1 ∪skn Un+1 Un+1 w

u

i∗

Xn+1

u

p∗

Vn+1

��
��
��
��

��
���

w Yn+1 ×coskn Yn+1 coskn Xn+1

The map i∗ is a trivial cofibration, since the functor U �→ skn Un+1 takes
maps which are pointwise weak equivalences to weak equivalences of simplicial
sets via diagram (1.5). The map p∗ is a Kan fibration by assumption, so the
indicated dotted arrow exists. �
Corollary 3.4. Suppose that p : X → Y is a Reedy fibration. Then all of
the fibrations

Xn → Yn ×coskn−1 Yn coskn−1 Xn (3.5)

are weak equivalences if and only if p is a pointwise weak equivalence.

Proof: The left adjoint Fn of the “level n” functor X �→ Xn can be defined
in terms of the external product by Fn(K) = Δn×̃K. The functor Fn takes
cofibrations to pointwise cofibrations. If all of the maps (3.5) are trivial fibra-
tions, then the map p is a has the right lifting property with respect to the
cofibrations Fn∂Δn → FnΔn by Lemma 3.3, so that p is a pointwise trivial
fibration. The converse is left to the reader. �
Lemma 3.6. Suppose that f : X → Y is a map of bisimplicial sets. Then f
has factorizations

Z�
���p

X
N
NNPi

w
f

�
���

j

Y

W,
�
���
q
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where

(1) the map i is a pointwise cofibration and a pointwise weak equivalence
and p is a Reedy fibration, and

(2) the map j is a pointwise cofibration and q is a Reedy fibration and a
pointwise weak equivalence.

Proof: We’ll prove the second claim. The first has a similar argument.
It suffices to find a factorization f = q ·j, where j is a pointwise cofibration

and q meets the conditions of Corollary 3.4.
Suppose, inductively, that we’ve found a factorization

in∗X w

j
�
�
�
��f

W

u

q

in∗Y

in the category of n-truncated bisimplicial sets, such that j is a pointwise
cofibration, and such that the maps q : W0 → Y0 and

q∗ : Wm → Ym ×i!m−1Ym
i!m−1Wm, 0 < m ≤ n

are trivial fibrations of simplicial sets. The commutative diagram

i∗nXn+1 w

u
j∗

N
N
N
N
N
N
NNP

f∗

Xn+1 wN
N
N
N
N
N
NNP

f∗

i!nXn+1

u
j∗

N
N
N
N
N
N
NNP

f∗i∗nWn+1 w�
�
��q∗

i!nWn+1�
�
��q∗

i∗nYn+1 w Yn+1 w i!nYn+1

induces a diagram

i∗nWn+1 w

u

i∗nWn+1 ∪i∗nXn+1 Xn+1

u

�
�
�
��

γ

Yn+1 ×i!nYn+1
i!nWn+1 w i!nWn+1.
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Choose a factorization

i∗nWn+1 ∪i∗nXn+1 Xn+1 w

j′
A
A
A
ACγ

Wn+1

u
q′

Yn+1 ×i!nYn+1
i!nWn+1

such that j′ is a cofibration and q′ is a trivial fibration of simplicial sets. Then
the desired factorization of f at level n + 1 is given by the maps

Xn+1

j′·j∗−−−→ Wn+1

q∗·q′

−−−→ Yn+1.

Note that the map

j∗ : Xn+1 → i∗nWn+1 ∪i∗nXn+1 Xn+1

is a cofibration. �
The matching space MnX = coskn−1 Xn is a special case of a construction

which associates a simplicial set MKX to each pair consisting of a simplicial
set K and a bisimplicial set X. Explicitly, the p-simplices of MKX are defined
to be a set of simplicial set morphisms by setting

MKXp = homS(K,X(∗, p)).

The simplicial set MKX is a matching space for K in the bisimplicial set X.
Subject to the tacit indentification

Xn = X(n, ∗),

the bisimplicial set coskn−1 X has (m, p)-bisimplices specified by

coskn−1 X(m, p) = (coskn−1 X(∗, p))m.

It follows that the p-simplices of the simplicial set coskn−1 Xn have the form

coskn−1 X(n, p) = (coskn−1 X(∗, p))n

= homS(skn−1 Δn,X(∗, p))
= homS(∂Δn,X(∗, p))
= M∂ΔnXp,
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so that M∂ΔnX is naturally isomorphic to MnX = coskn−1 Xn. The functor
K �→ MKX is right adjoint to the functor S → S2 which is defined by L �→
K×̃L.

Suppose given integers s0, . . . , sr such that 0 ≤ s0 < s1 < · · · < sr ≤ n,
and let Δn〈s0, . . . , sr〉 be the subcomplex of ∂Δn which is generated by the
simplices dsj ιn, j = 0, . . . , r. Then the simplicial identities didj = dj−1di for
i < j imply that the complex Δn〈s0, . . . , sr〉 can be inductively constructed by
pushout diagrams or the form

Δn−1〈s0, . . . , sr−1〉 w
dsr−1

z

u

Δn〈s0, . . . , sr−1〉
z

u

Δn−1
w

dsr
Δn〈s0, . . . , sr〉.

(3.7)

If k �= sj for j = 0, . . . , r, so that Δn〈s0, . . . , sr〉 is a subcomplex of Λn
k , then k is

a vertex of all of the generating simplices of the object Δn−1〈s0, . . . , sr−1〉 in the
diagram (3.7). It follows that this copy of Δn−1〈s0, . . . , sr−1〉 is a subcomplex
of Λn−1

q ⊂ Δn−1, where q = k if k < sr and q = k − 1 if k > sr.
Following Bousfield and Friedlander, we shall write

M (s0,...,sr)
n X = MΔn〈s0,...,sr〉X.

Then, in particular, M
(0,1,...,n)
n X is yet another notation for coskn−1 Xn.

Lemma 3.8. Suppose that the map p : X → Y is a Reedy fibration and a
pointwise weak equivalence. Then p has the right lifting property with respect
to all pointwise cofibrations.

Proof: We show that each of the fibrations

Xm → Ym ×coskm−1 Ym coskm−1 Xm

is a weak equivalence, and then apply Lemma 3.3.
There are canonical simplicial set morphisms

Xn+1 → Yn+1 ×M
(0,...,k)
n+1 Y

M
(0,...,k)
n+1 X

which generalize the map

Xn+1 → Yn+1 ×coskn Yn+1 coskn Xn+1.

The idea of proof is to show inductively that each of the maps

Xn+1 → Yn+1 ×M
(0,...,k)
n+1 Y

M
(0,...,k)
n+1 X

is a trivial fibration of simplicial sets, by induction on n.
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There is a pullback diagram

Yn+1 ×M
(0,...,k+1)
n+1 Y

M
(0,...,k+1)
n+1 X w

u

Xn

u

Yn+1 ×M
(0,...,k)
n+1 Y

M
(0,...,k)
n+1 X w Yn ×

M
(0,...,k)
n Y

M (0,...,k)
n X,

and so each of the vertical maps in the diagram

Xn+1 w

p

Yn+1 ×M
(0,...,n+1)
n+1 Y

M
(0,...,n+1)
n+1 X

u

Yn+1 ×M
(0,...,n)
n+1 Y

M
(0,...,n)
n+1 X

u

...
u

Yn+1 ×M
(0)
n+1Y

M
(0)
n+1X

u

w Yn+1

is a trivial fibration by the inductive hypothesis. The map p is a weak equiva-
lence, so that all of the intermediate maps

Xn+1 → Yn+1 ×M
(0,...,k)
n+1 Y

M
(0,...,k)
n+1 X

are weak equivalences as well. �
We’ve now done all the work that goes into the proof of

Theorem 3.9. The category S2 of bisimplicial sets, together with the classes
of pointwise weak equivalences, pointwise cofibrations and Reedy fibrations,
satisfies the axioms for a proper closed simplicial model category.

Proof: The factorization axiom CM5 is Lemma 3.6, and the lifting axiom
CM4 is Lemma 3.3 together with Lemma 3.8. The simplicial model struc-
ture is the internal one, for which X�K is specified in horizontal degree n by
(X�K)n = Xn×K, for a bisimplicial set X and a simplicial set K (see Section
VII.4). Properness is a consequence of properness for the category of simplicial
sets, since all Reedy fibrations are pointwise fibrations by Lemma 3.3.1. �
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Remark 3.10. There is a completely different approach to proving Theo-
rem 3.9, which involves a closed model structure for a certain category of
presheaves of simplicial sets [46], [51] (ie. for the “chaotic topology” on the
ordinal number category Δ). The global fibrations for that theory coincide
with the Reedy fibrations: seeing this requires having both the Reedy structure
and the closed model structure for the simplicial presheaf category in hand.
The applications of the Reedy structure given in the next section depend on
the matching space description of Reedy fibrations.

Remark 3.11. The external simplicial model structure for bisimplicial sets is
specified by

(X⊗K)n =
⊔

σ∈Kn

Xn = Xn × Kn.

In other words, X × K is defined in vertical degree m by

(X ⊗ K)∗,m = X∗,m × K,

and is therefore the “vertical” analogue of the “horizontal” construction X�K.
Quillen’s simplicial model axiom SM7 fails for the external structure: a cofi-
bration i : K → L of simplicial sets and a pointwise (aka. Reedy) cofibration
j : X → Y together induce a pointwise cofibration

(i, j)∗ : X ⊗ L ∪X⊗K Y ⊗ K → Y ⊗ L

which is a pointwise weak equivalence if j is trivial, but can fail to be a pointwise
weak equivalence if i is trivial. In particular, it is easily seen that the map
Z ⊗ Δ0 → Z ⊗ Δ1 induced by d0 : Δ0 → Δ1 is almost never a pointwise weak
equivalence. This is a symptom of a general phenomenon, which is discussed
further in Section VII.2.

3.3. The Moerdijk structure.

A map f : X → Y is said to be a diagonal fibration (respectively diagonal
weak equivalence) if the induced map f∗ : d(X) → d(Y ) of associated diagonal
simplicial sets is a Kan fibration (respectively weak equivalence). A Moerdijk
cofibration is a map which has the left lifting property with respect to all maps
which are diagonal fibrations and diagonal weak equivalences.

The diagonal functor d : S2 → S has a left adjoint d∗ : S → S2, which is
completely determined by the requirements

(1) d∗(Δn) = Δn,n, and

(2) d∗ preserves colimits.

This is a consequence of the fact that every simplicial set is a colimit of its
simplices. It follows that the bisimplicial set d∗(Λn

k ) is the subcomplex of Δn,n
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which is generated by the bisimplices (diιn, diιn) for i �= k, whereas d∗(∂Δn)
is the subcomplex of Δn,n which is generated by all (diιn, diιn).

Alternatively, the set of bisimplices d∗(Λn
k )(r, s) can be characterized as

the set of all pairs of ordinal number maps (α : r → n, β : s → n) such
that the images of the functions α and β miss some common element i, where
i �= k. Put a different way, the simplicial set of bisimplices d∗(Λn

k )(∗, β) can be
identified with the subcomplex Cβ of Λn

k which is generated by the faces diιn
which contain the s-simplex β. This observation is the heart of the proof of

Lemma 3.12. The inclusion map d∗(Λn
k ) ⊂ d∗(Δn) = Δn,n is a diagonal weak

equivalence of bisimplicial sets.

Proof: The projection map

(α : r → n, β : s → n) �→ β

defines a map of bisimplicial sets⊔
β∈Λn

k

Cβ →
⊔

β∈Λn
k

∗,

which in turn induces a map of simplicial sets

pr : d(d∗(Λn
k )) → Λn

k

after applying the diagonal functor. The complex Cβ of Δn is covered by sub-
complexes isomorphic to Δn−1, each of which contains the vertex k. It follows
that the contracting homotopy

(x, t) �→ tx + (1 − t)vk

of the affine simplex |Δn| onto the vertex vk corresponding to the element k ∈ n
restricts to a contracting homotopy

|Cβ| × I → |Cβ|.

The map pr is therefore a weak equivalence of simplicial sets, by Proposition 1.7,
so d(d∗(Λn

k )) is contractible. �
Remark 3.13. In the proof of Lemma 3.12, the complex Cβ is a subcomplex
of Λn

k of the form
Cβ = Δn〈s0, . . . , sr〉.

One can alternatively give a combinatorial argument for the “contractibility”
of this complex by making an inductive argument based on the existence of the
pushout diagram (3.7).
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The diagonal functor d also has a right adjoint d∗ : S → S2: the bisim-
plicial set d∗K which is associated to the simplicial set K by this functor is
defined by

d∗Kp,q = homS(Δp × Δq,K).

Lemma 3.14. The functor d∗ : S → S2 takes fibrations to diagonal fibrations.

Proof: Suppose that p : X → Y is a Kan fibration, and suppose that there
is a commutative diagram of simplicial set maps

Λn
k w

u

j

d(d∗X)

u

d(d∗p)

Δn
w

i
i
iij

d(d∗Y )

Then the indicated lifting exists if and only if the lifting exists in the diagram

d(d∗Λn
k ) w

u

d(d∗j)

X

u

p

d(d∗Δn) w

�
�
�
��

Y,

and Lemma 3.12 says that the inclusion d(d∗j) is a trivial cofibration. �
Now suppose that the map i : U → V of bisimplicial sets has the left

lifting property with respect to all diagonal fibrations. Then the lifting exists
in all diagrams

U w

u

i

d∗X

u

d∗p

V w

i
i
iij

d∗Y

where p : X → Y is a Kan fibration, so that the induced simplicial set map i∗ :
d(U) → d(V ) has the left lifting property with respect to all Kan fibrations. In
particular, the map i is a diagonal weak equivalence. In view of Theorem II.4.1,
this implies the following:

Theorem 3.15. The category S2 of bisimplicial sets, together with the classes
of Moerdijk cofibrations, diagonal fibrations and diagonal weak equivalences,
satisfies the axioms for a closed model category.
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An alternative proof of this result can be given by using a small object argument
(as was done originally in [73]), based on the observation that a map p : X → Y
of bisimplicial sets is a diagonal fibration (respectively a diagonal fibration and
a diagonal weak equivalence) if and only if f has the right lifting property
with respect to all maps d∗(Λn

k ) ⊂ Δn,n (respectively with respect to all maps
d∗(∂Δn) ⊂ Δn,n). One of the outcomes of the small object argument is the
assertion that every Moerdijk cofibration is a monomorphism of bisimplicial
sets.

4. The Bousfield-Friedlander theorem.
Suppose that X is a pointwise fibrant bisimplicial set. The simplicial set πnX
having m-simplices ⊔

x∈X(m,0)

πn(Xm, x)

and the simplicial map

πnXm =
⊔

x∈X(m,0)

πn(Xm, x) →
⊔

x∈X(m,0)

∗ = X(m, 0)

together form a group object in the category S ↓ X(∗, 0) of simplicial sets over
the vertex simplicial set X(∗, 0). This group object is abelian if m > 1.

Recall that a vertex v ∈ MKX is a simplicial set morphism v : K →
X(∗, 0). The set of morphisms

MK(πmX, v) = homS↓X(∗,0)(v, πmX)

therefore has a group structure for m ≥ 1, which is abelian for m ≥ 2.
Suppose that i �→ K(i) defines an I-diagram K : I → S in the category

of simplicial sets, and let

v : lim−→
i∈I

K(i) → X(∗, 0)

be a map of simplicial sets. Let v(i) : K(i) → X(∗, 0) be the composite

K(i)
ini−−→ lim−→

i∈I

K(i)
v−→ X(∗, 0)

of v with the canonical map ini of the colimiting cone. Then

v = lim−→
i∈I

vi

in the category S ↓ X(∗, 0) of simplicial sets over X(∗, 0), and so there is an
isomorphism

homS↓X(∗,0)(v, πmX) ∼= lim←−
i∈I

homS↓X(∗,0)(vi, πmX).
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It follows that there is an isomorphism

Mlim−→i
K(i)(πmX, v) ∼= lim←−

i∈I

MK(i)(πmX, vi).

In particular, the group MΔn(πmX, v) is canonically isomorphic to the
group πm(Xn, v), where the map v : Δn → X(∗, 0) is identified with a vertex
v ∈ X(n, 0). Any such vertex v : Δn → X(∗, 0) restricts to a composite map

Λn
k ⊂ Δn

v−→ X(∗, 0),

which will also be denoted by dv. It follows in particular that the corresponding
group MΛn

k
(πmX, dv) fits into an equalizer diagram

MΛn
k
(πmX, dv) →

∏
i 	=k

πm(Xn−1, div) ⇒
∏

i<j;i,j 	=k

πm(Xn−2, didjv), (4.1)

where the parallel pair of arrows is defined by the simplicial identities didj =
dj−1di.

A pointwise fibrant bisimplicial set X is said to satisfy the π∗-Kan con-
dition if the map

d : πm(Xn, v) → MΛn
k
(πmX, dv)

induced by restriction along the inclusion Λn
k ⊂ Δn is a surjective group ho-

momorphism for all m ≥ 1 and all n, k that make sense. The π∗-Kan condition
for X is equivalent to the requirement that all of the structure maps

πmX → X(∗, 0)

for the homotopy group objects πmX, m ≥ 1, are Kan fibrations, on account
of the description of MΛn

k
(πmX, dv) given in (4.1).

Suppose that Y is an arbitrary bisimplicial set, and write π0Y for the
simplicial set having n-simplices π0Yn = π0Y (n, ∗). This is the simplicial set of
vertical path components of the bisimplicial set Y . There is a canonical simplicial
set map Y (∗, 0) → π0Y .

Lemma 4.2.

(1) A pointwise fibrant bisimplicial set X satisfies the π∗-Kan condition if
all of the vertical simplicial sets Xn = X(n, ∗) are path connected.

(2) Suppose that f : X → Y is a pointwise weak equivalence of pointwise
fibrant bisimplicial sets. Then X satisfies the π∗-Kan condition if and
only if Y satisfies the π∗-Kan condition.
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Proof: In the case of statement (1), there is a path ω from a given vertex
x ∈ X(n, 0) to a horizontally degenerate vertex s(y), where y ∈ X(0, 0) and
so the action the corresponding morphism [ω] of the fundamental groupoid for
Xn induces an isomorphism of maps

πm(Xn, x) w
d

u

[ω]∗ ∼=

MΛn
k
(πmX,x)

u

∼= [ω]∗

πm(Xn, s(y)) w

d
MΛn

k
(πmX, s(y)),

and the simplicial group n �→ πm(Xn, s(y)) is a Kan complex.
To prove statement (2), note first of all that the map f : X → Y is a

pointwise weak equivalence of pointwise fibrant bisimplicial sets if and only if

(a) the induced map f∗ : π0X → π0Y is an isomorphism of simplicial sets,
and

(b) the induced simplicial set diagrams

πmX w

f∗

u

πmY

u

X(∗, 0) w

f∗
Y (∗, 0)

(4.3)

are pullbacks for m ≥ 1.

Kan fibrations are stable under pullback, so if f is a pointwise weak equiv-
alence and Y satisfies the π∗-Kan condition, then X satisfies the π∗-Kan con-
dition.

Suppose that X satisfies the π∗-Kan condition, and that there is a diagram

Λn
k w

α

z

u

πmY

u

Δn
wv Y (∗, 0)

The simplicial set map f∗ : π0X → π0Y is an isomorphism, so that the vertex
v ∈ Y (n, ∗) is homotopic to a vertex f(w) for some vertex w ∈ X(n, ∗). The
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argument for statement (1) implies that the π∗-Kan condition for the vertex v
is equivalent to the π∗-Kan condition for the vertex f(w), so we can replace v
by f(w). But now the diagram (4.3) is a pullback, by assumption, and so there
is a commutative diagram

Λn
k w

α∗
z

u

πmX w

f∗

u

πmY

u

Δn
ww

�
�
�
���

X(∗, 0) w
f∗

Y (∗, 0)

where f∗ · α∗ = α. Then X satisfies the π∗-Kan condition, by assumption, so
that the indicated lifting exists, and the π∗-Kan condition for the vertex f(w)
is verified. �

A pointwise fibrant model of a bisimplicial set X consists of a pointwise
weak equivalence j : X → Z, where Z is a pointwise fibrant bisimplicial set.

We shall say that an arbitrary bisimplicial set X satisfies the π∗-Kan
condition if for any pointwise fibrant model j : X → Z of X, the pointwise
fibrant object Z satisfies the π∗-Kan condition in the sense described above.
Lemma 4.2 says that the π∗-Kan condition for pointwise fibrant bisimplicial sets
is an invariant of pointwise weak equivalence, so (by appropriate manipulation
of the Bousfield-Kan closed model structure for bisimplicial sets) it suffices
to find only one pointwise fibrant model j : X → Z which satisfies the π∗-
Kan condition. The π∗-Kan condition for arbitrary bisimplicial sets is also an
invariant of weak equivalence.

Suppose that f : X → Y is a Reedy fibration. Let i : K ⊂ L be an
inclusion of simplicial sets, and observe that all induced bisimplicial set maps

(K×̃Δn) ∪(K×̃Λn
k
) (L×̃Λn

k) ↪→ L×̃Δn

are pointwise trivial cofibrations of bisimplicial sets. The functor X �→ MKX
is right adjoint to the functor Y �→ K×̃Y , so it follows that the simplicial set
map

MLX
(f∗,i∗)−−−−→ MLY ×MKY MKX (4.4)

which is jointly induced by the Reedy fibration f and the inclusion i is a Kan
fibration.

Lemma 4.5. Suppose X is a Reedy fibrant bisimplicial set X that satisfies
the π∗-Kan condition. Take a vertex x ∈ X(n, ∗). Then there is a canonical
isomorphism

πm(MΛn
k
X, dx) ∼= MΛn

k
(πmX, dx).
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There is also an isomorphism

π0(MΛn
k
X) ∼= MΛn

k
(π0X).

Proof: Choose integers 0 ≤ s0 < s1 < · · · < sr ≤ n with si �= k, and recall
that

M (s0,...,sr)
n X = MΔn〈s0,...,sr〉X

is a subcomplex of MΛn
k
X. Write

M (s0,...,sr)
n (πmX, dx) = MΔn〈s0,...,sr〉(πmX, dx),

and let M
(s0,...,sr)
n π0X denote the set

MΔn〈s0,...,sr〉(π0X) = homS(Δn〈s0, . . . , sr〉, π0X).

The pushout diagram (3.7) induces a pullback diagram

M (s0,...,sr)
n X w

u

Xn−1

u

d

M (s0,...,sr−1)
n X w M

(s0,...,sr−1)
n−1 X

(4.6)

Then the map d is an instance of the fibration (4.4), and inductively the canon-
ical map

πm(M (s0,...,sr−1)
n X, dx) → M (s0,...,sr−1)

n (πmX, dx)

is an isomorphism. The map

d : πm(Xn−1, dsrx) → M
(s0,...,sr−1)
n−1 (πmX, dx)

is surjective for all m ≥ 1, since X satisfies the π∗-Kan condition. It follows
that the induced map

d∗ : πm(Xn−1, x) → πm(M (s0,...,sr−1)
n−1 X, dx)

is surjective for all m ≥ 1, and so the commutative square

πm(M (s0,...,sr)
n X, dx) w

u

πm(Xn−1, dsrx)

u

d∗

πm(M (s0,...,sr−1)
n X, dx) w πm(M (s0,...,sr−1)

n−1 X, ddsrx)
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of group homomorphisms is a pullback. The group πm(M (s0,...,sr)
n X, dx) there-

fore has the required form.
The map

d∗ : π1(Xn−1, x) → π1(M
(s0,...,sr−1)
n−1 X, dx)

is surjective for all choices of base point x ∈ Xn−1, and so all inclusions
Fx ↪→ Xn−1 of fibres over dx induce injections π0Fx → π0Xn−1. It follows
that applying the path component functor π0 to all diagrams of the from (4.6)
gives pullback diagrams of sets. This is what is required to show inductively
that the canonical maps

π0(M (s0,...sr)
n X) → M (s0,...,sr)

n π0X

are bijections. �
Lemma 4.7. Suppose that X and Y are Reedy fibrant bisimplicial sets which
satisfy the π∗-Kan condition, and that the bisimplicial set map f : X → Y
is a Reedy fibration. Suppose further that the induced simplicial set map f∗ :
π0X → π0Y of vertical path components is a Kan fibration. Then the map f
is a horizontal pointwise Kan fibration.

To understand the meaning of the word “horizontal” in the statement of
Lemma 4.7, note that every Reedy fibration is a pointwise Kan fibration, since
the maps FnΛm

k → FnΔm are trivial cofibrations (see the proof of Corollary
3.4). The assumptions of the lemma therefore imply that the simplicial sets
X(n, ∗) and Y (n, ∗) are Kan complexes, and that the simplicial set maps f :
X(n, ∗) → Y (n, ∗) are Kan fibrations. The lemma asserts that under the stated
conditions the simplicial set maps f : X(∗,m) → Y (∗,m) are Kan fibrations
as well.
Proof: We shall prove the lemma by showing that each canonical map

d : Xn → Yn ×MΛn
k

Y MΛn
k
X

is a surjective simplicial set map. The map d is an instance of (4.4), hence a
Kan fibration, so it suffices to show that d induces a surjective function

d∗ : π0Xn → π0(Yn ×MΛn
k

Y MΛn
k
X)

in path components.
From the previous result, the induced map

π0Xn → π0(Yn ×MΛn
k

Y MΛn
k
X)

can be identified up to isomorphism with the map

π0Xn → π0Yn ×MΛn
k

π0Y MΛn
k
π0X,

and the latter is surjective on account of the assumption that the induced map
π0X → π0Y in vertical path components is a Kan fibration. �
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Lemma 4.8. Suppose that f : X → Y is a Reedy fibration and a horizontal
pointwise Kan fibration in the sense that each of the maps f : X(∗,m) →
Y (∗,m) is a Kan fibration. Then f is a diagonal fibration.

Proof: The cofibration

d∗Λn
k → d∗Δn = Δn,n

factors as a composite of two maps

d∗Λn
k ⊂ Λn

k ×̃Δn ⊂ Δn×̃Δn.

The first map is a pointwise trivial cofibration, by the proof of Lemma 3.12.
The second has the left lifting property with respect to all horizontal pointwise
Kan fibrations. �

A commutative square

X w

u

Y

u

Z w W

of bisimplicial set maps is said to be pointwise homotopy cartesian if each of
the induced squares of simplicial set maps

Xn w

u

Yn

u

Zn w Wn

is homotopy cartesian, for n ≥ 0.

Theorem 4.9 (Bousfield-Friedlander). Suppose given a pointwise homo-
topy cartesian square

X w

u

Y

u

p

Z w W
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in the category of bisimplicial sets such that Y and W satisfy the π∗-Kan
condition. Suppose further that the induced map p : π0Y → π0W of vertical
path components is a Kan fibration. Then the associated commutative square

d(X) w

u

d(Y )

u

d(p)

d(Z) w d(W )

of diagonal simplicial sets is homotopy cartesian.

Proof: Construct a diagram

Y w

jY

u

p

Y ′

u

p′

W w

jW
W ′

in which jY and jW are pointwise trivial cofibrations, W ′ is Reedy fibrant, and
p′ is a Reedy fibration. Then the composite square

X w

u

Y w

jY

u

p

Y ′

u

p′

Z w

I

W w

jW

II

W ′

is pointwise homotopy cartesian by Lemma II.8.22, and the bisimplicial sets Y ′

and W ′ satisfy the π∗-Kan condition by Lemma 4.2. The Reedy fibrant objects
Y ′ and W ′ are both pointwise fibrant.

Applying the diagonal functor gives a composite diagram in the simplicial
set category

d(X) w

u

d(Y ) w

jY ∗

u

p∗

d(Y ′)

u

p′∗

d(Z) w

I

d(W ) w

jW∗

II

d(W ′),

(4.10)
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in which the induced maps jY ∗ and jW∗ are weak equivalences by Proposi-
tion 1.7. Thus, in order to demonstrate that the square

d(X) w

u

d(Y )

u

p∗

d(Z) w

I

d(W )

is homotopy cartesian, it suffices, by Lemma II.8.22, to show that the composite
square (4.10) is homotopy cartesian.

The map p′ is a diagonal fibration, by Lemma 4.7 and Lemma 4.8, and
the induced bisimplicial set map

X → Z ×W ′ Y ′

is a pointwise weak equivalence, since the Reedy fibration p′ is a pointwise
fibration. It follows that the induced map

d(X) → d(Z) ×d(W ′) d(Y ′)

of diagonal simplicial sets is a weak equivalence. �
Corollary 4.11. Suppose that a pointed bisimplicial set X is pointwise fi-
brant and pointwise connected. Then there is a weak equivalence

d(ΩX) � Ωd(X).

Proof: We have tacitly chosen a base point x ∈ X(0, 0) for all of the vertical
simplicial sets X(n, ∗) in our assumption that X is pointed. The loop object
ΩX can then be characterized as the pointed bisimplicial set having vertical
simplicial sets ΩX(n, ∗). There is a corresponding path space PX, which is the
pointed bisimplicial set with vertical simplicial sets PX(n, ∗), and a pointwise
fibre sequence

ΩX → PX
p−→ X.

The map p induces an isomorphism π0PX ∼= π0X of vertical path component
simplicial sets. The bisimplicial sets PX and X both satisfy the π∗-Kan con-
dition, and so applying the diagonal functor gives a homotopy fibre sequence

d(ΩX) → d(PX)
d(p)−−→ d(X)

in the category of pointed simplicial sets, by Theorem 4.9. The simplicial set
d(PX) is contractible, by Proposition 1.7. �

A bisimplicial set X is said to be pointwise k-connected if each of the
associated simplicial sets Xn is k-connected, for n ≥ 0. A pointwise connected
(or 0-connected) bisimplicial set can also be characterized as a bisimplicial set
X such that the associated vertical path component simplicial set π0X is a
copy of the terminal object ∗.
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Lemma 4.12. Suppose that X is a bisimplicial set which is pointwise con-
nected. Then the diagonal simplicial set d(X) is connected.

Proof: There is a coequalizer diagram

π0X(1, ∗) w

d0∗
w

d1∗
π0X(0, ∗) w π0d(X),

where d0∗ and d1∗ are induced by the horizontal face maps d0, d1 : X(1, ∗) →
X(0, ∗). �
Proposition 4.13. Suppose that X is a pointed bisimplicial set which is
pointwise k-connected. Then the diagonal d(X) is a k-connected simplicial set.

Proof: Choose a pointwise weak equivalence i : X → X̃, where X̃ is pointwise
fibrant. Then d(i) : d(X) → d(X̃) is a weak equivalence. We may therefore
presume that X is pointwise fibrant.

The space d(X) is connected, by Lemma 4.12. Also, the bisimplicial set
ΩX is pointwise (k − 1)-connected, and there are isomorphisms

πjd(X) ∼= πj−1d(ΩX),

for j ≥ 1, by Corollary 4.11. This does it, by induction on k. �
Proposition 4.13 is also a consequence of a very general spectral sequence

calculation. The existence of the spectral sequence in question is a consequence
of Theorem 4.9, modulo a few technical observations.

First of all, if G is a simplicial group, then there is a bisimplicial set BG
whose vertical simplicial in horizontal degree n is the classifying space BGn of
the group Gn of n-simplices of G. Similarly, the translation categories of the
various groups Gn can be collected together to form a bisimplicial set EG and a
canonical map π : EG → BG. These bisimplicial sets are pointwise fibrant and
connected in each horizontal degree, and the map π is a pointwise fibration. It
therefore follows from Theorem 4.9 that there is an induced fibre sequence

G → d(EG)
π∗−→ d(BG).

Furthermore, the bisimplicial set EG consists of contractible simplicial sets
EGn, so that the associated diagonal d(EG) is contractible, by Proposition 1.7.
It follows that there are natural isomorphisms

πnd(BG) ∼= πn−1G

for n ≥ 1. The space d(BG) is connected, by Lemma 4.12.
Suppose that X is a pointwise fibrant and pointed bisimplicial set such

that each of the vertical simplicial sets Xn is an Eilenberg-Mac Lane space
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of the form K(πm,m), for some fixed number m ≥ 2. Then Corollary III.3.8
implies that there is a pointwise weak equivalence of bisimplicial sets of the
form

X → Γ(πmX[m]),

where πmX[m] denotes the chain complex of simplicial groups, concentrated
in chain degree m. Then, by Theorem 4.9 or via chain complex arguments, one
sees that there are natural isomorphisms

πjd(X) ∼= πj−m(πmX)

for j ≥ 0.
Suppose finally that X is a pointwise fibrant bisimplicial set which is

pointed and pointwise connected. Then the Postnikov tower construction ap-
plied to each of the vertical simplicial sets Xn induces a tower of pointwise
fibrations

· · · → X(n) → X(n − 1) → · · · → X(1) → X(0),

such that the the fibre Fn of the map X(n) → X(n − 1) is a diagram of
Eilenberg-Mac Lane spaces of the form K(πnX,n). Each of the pointwise fibre
sequences

Fn → X(n) → X(n − 1)

induces a fibre sequence of associated diagonal simplicial sets, by Theorem 4.9.
The resulting long exact sequences

· · · → πj+1d(X(n − 1))
∂−→ πjd(Fn) → πjd(X(n)) → πjd(X(n − 1)) → . . .

determine an exact couple which gives rise to a convergent spectral sequence
with

Es,t
2 = πs+tFt

∼= πs(πtX) ⇒ πs+td(X), t + s ≥ 0. (4.14)

This spectral sequence is due to Bousfield and Friedlander [12, p.122]. It is
a reindexed example of the spectral sequence for a tower of fibrations, which
will be discussed at more length in Section VI.2. Convergence for such spectral
sequences is usually an issue, but it follows in this case from Proposition 4.13,
which implies that the map X → X(n) induces isomorphisms

πjd(X) ∼= πjd(X(n))

for j ≤ n.

5. Theorem B and group completion.

The stream of ideas leading to Quillen’s Theorem B begins with the most
general formulation of the Serre spectral sequence.
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5.1. The Serre spectral sequence.

Suppose that f : E → B is an arbitrary map of simplicial sets, and recall that
Δ ↓ B denotes the simplex category for B. There is a functor f−1 : Δ ↓ B → S
taking values in the simplicial set category which is defined by associating to
the simplex σ : Δn → B the simplicial set f−1(σ), where f−1(σ) is defined by
the pullback diagram

f−1(σ) w

σ∗

u

E

u

f

Δn
wσ B.

The homotopy colimit holim−−−→ f−1 arising from the functor f−1 : Δ ↓ B →
S is the diagonal of a bisimplicial set BEf−1 which has vertical simplicial set
in horizontal degree n given by ⊔

σ0→···→σn

f−1(σ0).

Note that this disjoint union is indexed by strings of arrows of length n in the
simplex category Δ ↓ B, and that these strings form the set of n-simplices of
the nerve B(Δ ↓ B).

The simplicial set B is a colimit of its simplices in the simplicial set
category, and pulling back along f : E → B is right exact, so that the maps
σ∗ : f−1(σ) → E induce an isomorphism of simplicial sets

lim−→
σ∈Δ↓B

f−1(σ) ∼= E.

In particular, the set Em of m-simplices of E may be identified with the set of
path components of the translation category Ef−1

m arising from the functor

σ �→ f−1(σ)m.

The objects of this category are pairs (σ, x), where σ : Δn → B is a simplex of
B and x ∈ f−1(σ)m, and a morphism θ : (σ, x) → (τ, y) consists of a morphism
θ : σ → τ in Δ ↓ B such that τ∗(x) = y. The nerve BEf−1

m for this translation
category coincides with the horizontal simplicial set for BEf−1 which appears
in vertical degree m.

Write Ef−1
m,x for the path component of the translation category Ef−1

m

corresponding to a simplex x of Em. This component Ef−1
m,x is the full subcat-

egory of Ef−1
m on objects of the form (σ, y), where σ∗(y) = x. In particular, y

must have the form y = (γ, x) in f−1(σ) = Δn×B E. The object (f(x), (ιm, x))
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is initial in the category Ef−1
m,x, so that BEf−1

m,x is contractible, and the sim-
plicial set map

BEf−1
m → Em (5.1)

is a weak equivalence. We have taken the liberty of identifying the set Em with
the corresponding constant simplicial set K(Em, 0); by further abuse, the maps
(5.1) are the horizontal components of a bisimplicial set map

BEf−1 → E,

which is a weak equivalence in each vertical degree. Proposition 1.7 therefore
implies the following:

Lemma 5.2. Suppose that f : E → B is a map of simplicial sets. Then the
canonical simplicial set map holim−−−→ f−1 → E is a weak equivalence.

Now let A be an abelian group, and consider the bisimplicial abelian
group Z(BEf−1)⊗A. The diagonal of this object is Z(holim−−−→ f−1)⊗A, and the
weak equivalence holim−−−→ f−1 → E of Lemma 5.2 induces a weak equivalence of
simplicial abelian groups

Z(holim−−−→ f−1) ⊗ A → Z(E) ⊗ A,

by universal coefficients and the fact that the free abelian group functor pre-
serves weak equivalences (see Lemma III.2.16). Note as well that the bisim-
plicial abelian group Z(BEf−1) ⊗ A can be identified with the translation
object associated to the functor defined on the simplex category Δ ↓ B by
σ �→ Z(f−1(σ)) ⊗ A (Section II.4). It follows, by the results of Section 2, that
there is a spectral sequence

Ep,q
2 = πpEHq(Z(f−1) ⊗ A) ⇒ Hp+q(E,A). (5.3)

In other words, Ep,q
2 is the pth homotopy group of the translation object for

the abelian group valued functor Hq(Z(f−1) ⊗ A) : Δ ↓ B → Ab defined by

σ �→ Hq(Z(f−1(σ)) ⊗ A) = Hq(f−1(σ), A). (5.4)

The spectral sequence (5.3) is sometimes called the Grothendieck spectral
sequence, and is defined for any simplicial set map f : E → B. This spectral
sequence specializes to the Serre spectral sequence in the case where the map
f : E → B is a fibration. When f is a fibration, any map θ : σ → τ in the
simplex category Δ ↓ B induces a weak equivalence θ∗ : f−1(σ) → f−1(τ), and
hence induces isomorphisms

Hq(f−1(σ), A)
θ∗−→∼= Hq(f−1(τ), A)
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for all q ≥ 0. It follows that the functors (5.4) factor through functors

Hq(Z(f−1) ⊗ A) : π(B) = G(Δ ↓ B) → Ab,

which are defined on the fundamental groupoid π(B) of the space B (see The-
orem III.1.1).

If in addition B is simply connected, and F is the fibre over a choice of
base point for B, then the functor Hq(Z(f−1) ⊗ A) is naturally isomorphic to
the constant functor σ �→ Hq(F,A) on the simplex category for B, and so there
is a natural isomorphism

Ep,q
2 = πpEHq(Z(f−1) ⊗ A) ∼= Hp(B(Δ ↓ B),Hq(F,A)).

The assertion that there is a natural weak equivalence holim−−−→ f−1 → E can
be specialized to the case of the identity map B → B, implying that the
bisimplicial set map ⊔

σ0→···→σn

Δm0 → B

(where σj : Δmj → B are simplices of B) induces a weak equivalence of diagonal
simplicial sets. One also knows that the canonical bisimplicial set map⊔

σ0→···→σn

Δm0 →
⊔

σ0→···→σn

∗

is a pointwise weak equivalence, and hence induces a weak equivalence

d(
⊔

σ0→···→σn

Δm0) → B(Δ ↓ B).

It follows that there are isomorphisms

Hp(B(Δ ↓ B),Hq(F,A)) ∼= Hp(B,Hq(F,A)),

p ≥ 0, and we obtain the standard form of the Serre spectral sequence

Ep,q
2 = Hp(B,Hq(F,A)) ⇒ Hp+q(E,A). (5.5)
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5.2. Theorem B.

Quillen’s Theorem B is the following:

Theorem 5.6. Suppose that F : C → D is a functor between small categories
such that for every morphism α : y → y′ of D the induced simplicial set map
α∗ : B(y′ ↓ F ) → B(y ↓ F ) is a weak equivalence. Then, for every object y of
D, the commutative diagram

B(y ↓ F ) w

u

BC

u

F∗

B(y ↓ D) w BD

of simplicial set maps is homotopy cartesian.

Here, one should recall that the objects of the comma category y ↓ F are
pairs (τ, x), where x is an object of C and τ : y → F (x) is a morphism of D. A
morphism α : (τ0, x0) → (τ1, x1) of y ↓ F is a morphism α : x0 → x1 of C such
that the diagram

F (x0)

u

F (α)y
�
�
���

τ0

�
�
���τ1

F (x1)

commutes in the category D.
Theorem B has important applications in algebraic K-theory. In some

sense, however, one of the steps in its proof is even more important, this being
the following result:

Lemma 5.7. Suppose that X : I → S is a simplicial set valued functor which
is defined on a small category I. Suppose further that the induced simplicial set
map X(α) : X(i) → X(j) is a weak equivalence for each morphism α : i → j
of the index category I. Then, for each object j of I the pullback diagram of
simplicial sets

X(j) w

u

holim−−−→X

u

π

∗ w
j

BI

(5.8)

is homotopy cartesian.
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Proof: The diagram (5.8) is obtained by applying the diagonal functor to the
following pullback diagram of bisimplicial sets:

X(j) w

u

⊔
i0→···→in

X(i0)

u

∗ w

⊔
i0→···→in

∗

The strategy of proof is to find a factorization

∗ w

j
h
hhji

BI

U

�
�
��
p

of the inclusion of the vertex j in BI such that i is a trivial cofibration, p is
a fibration, and such that the induced map X(j) → U ×BI holim−−−→X is a weak
equivalence.

Pulling back along the map π : holim−−−→X → BI preserves colimits in the
category S ↓ BI of simplicial set maps K → BI. The small object argument
therefore implies that it suffices to show that any diagram

holim−−−→X

u
π

Λn
k w

i
Δn

wσ BI

(5.9)

induces a weak equivalence

i∗ : Λn
k ×BI holim−−−→X → Δn ×BI holim−−−→X. (5.10)

The simplex σ in the diagram (5.9) is a functor σ : n → I, and the space
Δn ×BI holim−−−→X is isomorphic to the homotopy colimit holim−−−→Xσ associated to
the composite functor

n
σ−→ I

X−→ S.
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Furthermore, the map i∗ in (5.10) can be identified with the diagonal of the
map i∗ in the following pullback diagram of bisimplicial sets:

⊔
k0→···→kr

∈Λn
k

Xσ(k0) w

i∗

u

⊔
k0→···→kr

∈Δn

Xσ(k0)

u⊔
k0→···→kr

∈Λn
k

∗ w

i

⊔
k0→···→kr

∈Δn

∗.

The initial object 0 ∈ n determines a natural transformation θ : Xσ(0) → Xσ,
where Xσ(0) denotes the constant functor at the object of the same name, and
there is an induced diagram of bisimplicial set maps

⊔
k0→···→kr

∈Λn
k

Xσ(0) w

u

θ∗

⊔
k0→···→kr

∈Δn

Xσ(0)

u

θ∗⊔
k0→···→kr

∈Λn
k

Xσ(k0) w

i∗

⊔
k0→···→kr

∈Δn

Xσ(k0).

The vertical maps θ∗ induce weak equivalences of associated diagonal simplicial
sets, by Proposition 1.7, and the diagonal of the top horizontal map is the weak
equivalence

i × 1 : Λn
k × Xσ(0) → Δn × Xσ(0).

It follows that the map i∗ of (5.10) is a weak equivalence. �
There is a homology version of Lemma 5.7 for every homology theory h∗

which satisfies the wedge axiom. Here is a specimen statement:

Lemma 5.11. Suppose that X : I → S is a simplicial set valued functor which
is defined on a small category I, and that A is an abelian group. Suppose
further that the induced simplicial set map X(α) : X(i) → X(j) induces an
isomorphism H∗(X(i), A) ∼= H∗(X(j), A) for each morphism α : i → j of the
index category I. Then, for each object j of I the pullback diagram of simplicial
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sets

X(j)

u

w holim−−−→X

u

π

∗ w

j
BI

is homology cartesian in the sense that the corresponding map X(j) → Fj from
X(j) to the homotopy fibre Fj over j induces an isomorphism H∗(X(j), A) ∼=
H∗(Fj , A).

The proof of Lemma 5.11 is a spectral sequence argument which follows the
basic outline of the proof of Lemma 5.7.
Proof of Theorem 5.6: The functor y �→ B(y ↓ F ) determines a contravari-
ant simplicial set valued functor D → S, and hence a bisimplicial set having
(n,m)-bisimplices ⊔

yn→···→y0

B(y0 ↓ F )m

This set of bisimplices can also be identified with the set of all strings of arrows
in D of the form

yn → · · · → y0 → F (x0) → · · · → F (xm).

The degenerate simplices

y
1−→ y

1−→ . . .
1−→ y

determine a commutative diagram of bisimplicial set maps

B(y ↓ F )m w

u

⊔
yn→···→y0

B(y0 ↓ F )m w

Q∗

u

BCm

u

F∗

B(y ↓ D)m w

u

�

⊔
yn→···→y0

B(y0 ↓ D)m w

Q∗

u

�

BDm

∗ w

⊔
yn→···→y0

∗.

(5.12)

The bisimplicial set map ⊔
yn→···→y0

B(y0 ↓ F )m

Q∗−−→ BCm (5.13)
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is an alternate way of representing the forgetful map⊔
yn→...y0→F (x0)→···→F (xm)

∗ →
⊔

x0→···→xm

∗

corresponding to the functor F , and can also be identified with the map⊔
x0→···→xm

B(F (x0) ↓ D)op →
⊔

x0→···→xm

∗.

The category (F (x0) ↓ D)op has a terminal object, so the map Q∗ in (5.13)
induces a weak equivalence of associated diagonals, by Proposition 1.7. The
bisimplicial set map ⊔

yn→···→y0

B(y0 ↓ D)m

Q∗−−→ BDm

is an instance of the map in (5.13), corresponding to the case where F is
the identity functor on the category D, so it induces a weak equivalence of
associated diagonal simplicial sets as well. The categories y ↓ D and y0 ↓ D
have initial objects, so Proposition 1.7 implies that the indicated maps in the
diagram (5.12) induce weak equivalences of associated diagonals.

Thus (see Lemma II.8.22), to show that the simplicial set diagram

B(y ↓ F ) w

u

BC

u

F∗

B(y ↓ D) w BD

is homotopy cartesian, it is enough to see that the bisimplicial set diagram

B(y ↓ F )m w

u

⊔
yn→···→y0

B(y ↓ F )m

u

∗ wy

⊔
yn→···→y0

∗

induces a homotopy cartesian diagram of the associated diagonal simplicial
sets. This is a consequence of Lemma 5.7. �
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5.3. The group completion theorem.

Suppose that M is a simplicial monoid, and that X is a simplicial set with an
M -action M × X → X. There is a Borel construction for this action, namely
a bisimplicial set EM ×M X having vertical simplicial set in horizontal degree
m given by M×m × X. The fastest way to convince yourself that this thing
actually exists is to observe that the action M × X → X is composed of
actions Mn×Xn → Xn of monoids of n-simplices on the corresponding sets Xn.
These actions admit Borel constructions EMn×Mn Xn (or nerves of translation
categories), and this construction is natural in n.

The canonical maps π : EMn ×Mn Xn → BMn are also natural in n, and
therefore define a map

π : EM ×M X → BM

of bisimplicial sets, which is given in horizontal degree m by the projection

M×m × X → M×m.

There is a pullback diagram of bisimplicial set maps

X w

u

EM ×M X

u

π

∗ w BM

(5.14)

The group completion theorem gives a criterion for this diagram to be homology
cartesian.

Theorem 5.15 (Group Completion). Suppose that M × X → X is an
action of a simplicial monoid M on a simplicial set X, and let A be an abelian
group. Suppose further that the action of each vertex v of M induces an iso-
morphism v∗ : H∗(X,A) ∼= H∗(X,A). Then the diagram (5.14) is homology
cartesian in the sense that the map X → F to the homotopy fibre of the simpli-
cial set map d(π) induces an isomorphism in homology with coefficients in A.

Theorem 5.15 is used, in the main, to analyze the output of infinite loop space
machines. It implies, for example, that each connected component of the 0th

space of the Ω-spectrum corresponding to the sphere spectrum is a copy of
the space BΣ+

∞ obtained by applying Quillen’s plus construction to the clas-
sifying space of the infinite symmetric group [6], [84]. Here is another typical
calculation:
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Example 5.16. Suppose that R is a ring with identity. Then matrix addition
induces a simplicial monoid structure on the simplicial set

M(R) =
⊔
n≥0

BGln(R).

In particular, right multiplication by the vertex e = ∗ ∈ BGl1(R)0 (and all of
its degeneracies) induces a simplicial set map

? ⊕ e : M(R) → M(R),

which restricts, on the nth summand, to the map BGln(R) → BGln+1(R)
which is induced by the canonical inclusion Gln(R) ↪→ Gln+1(R) defined by
A �→ A⊕I, where I denotes the identity element of Gl1(R). The filtered colimit
of the system

M(R)
?⊕e−−→ M(R)

?⊕e−−→ . . .

can be identified up to isomorphism with the simplicial set

X(R) =
⊔
Z

BGl(R).

The simplicial set X(R) has a left M(R) action, and Theorem 5.15 implies that
the diagram

X(R) w

u

EM(R) ×M(R) X(R)

u

∗ w BM(R)

is homology cartesian. In effect, left multiplication by a vertex n ∈ M(R) shifts
the vertices of X(R): the summand corresponding to r ∈ Z is taken to the
summand corresponding to n + r. The map induced on the rth summand itself
is the simplicial set map BGl(R) → BGl(R) which is induced by the group
homomorphism In⊕? : Gl(R) → Gl(R) defined by A �→ In ⊕ A, where In is
the n×n identity matrix. As such, the group homomorphism In⊕? is a filtered
colimit of group homomorphisms Glm(R) → Glm+n(R). The key point is that
In ⊕ A is conjugate, via a suitable choice of permutation matrix, to A ⊕ In in
Glm+n(R). It follows that (vertical) components of the comparison map

H∗(BGlm(R), Z) w

can∗

u

(In⊕?)∗

H∗(BGlm+1(R), Z) w

can∗

u

(In⊕?)∗

. . .

H∗(BGlm+n(R), Z) wcan∗ H∗(BGlm+n+1(R), Z) wcan∗ . . .
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coincide with morphisms induced by canonical inclusions, and so the group
homomorphism In⊕? induces the identity map on H∗(BGl(R), Z).

The space arising from the bisimplicial set EM(R) ×M(R) X(R) is con-
tractible, since it is a filtered colimit of objects of the form EM(R)×M(R)M(R).
It follows that X(R) has the homology of the loop space Ωd(BM(R)), and that
the component Ωd(BM(R))0 of 0 ∈ Z is an H-space having the homology of
BGl(R). This component Ωd(BM(R))0 must therefore be a copy of Quillen’s
space BGl(R)+.

Finally (without going into a lot of details), the monoidal structure on
M(R) is abelian up to coherent isomorphism, so effectively one is entitled to
form a collection of connected objects

BM(R), BBM(R), B3M(R), . . .

such that Bn+1M(R) is a delooping of BnM(R) for all n, just like one could
do if M(R) happened to be a simplicial abelian group. The list of spaces cor-
responding to

ΩBM(R), BM(R), BBM(R), B3M(R), . . .

is a model for the algebraic K-theory spectrum of the ring R; we have used the
group completion theorem to identify its 0th term.

There are several proofs of the group completion theorem in the literature:
[48], [49], [73], [70]. The most elementary of these, and the one that will be given
here, involves an analogue of the construction leading to the Serre spectral
sequence, for maps of bisimplicial sets.

Suppose that f : X → Y is a map of bisimplicial sets, and consider all
bisimplices σ : Δr,s → Y of Y . Form the pullback diagram

f−1(σ) w

u

X

u

f

Δr,s
w Y

in the category of bisimplicial sets. The bisimplices Δm,n → Y of Y are the
objects of the category Δ×2 ↓ Y , called the category of bisimplices of Y . A
morphism σ → τ of this category is a commutative diagram of bisimplicial set
maps

Δr,s

u

h
h
hhj
σ

Y.

Δm,n
�
�
���

τ
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One sees immediately that the assignment σ �→ f−1(σ) defines a functor

f−1 : Δ×2 ↓ Y → S2.

Lemma 5.17. Suppose that f : X → Y is a map of bisimplicial sets. Then the
corresponding map ⊔

σ0→···→σr

∈B(Δ×2↓Y )

f−1(σ0) → X

of trisimplicial sets induces a weak equivalence of associated diagonal simplicial
sets.

Proof: The bisimplicial set Y is a colimit of its bisimplices, and so X is a
colimit of their pullbacks, giving rise to a coequalizer⊔

σ0→σ1

f−1(σ0) ⇒
⊔
σ

f−1(σ) → Y.

Also, the component of the simplicial set⊔
σ0→···→σr

f−1(σ0)(m,n)

corresponding to each bisimplex x ∈ X(m,n) is contractible, since it’s the nerve
of a category having an initial object. It follows that partially diagonalizing the
trisimplicial set map ⊔

σ0→···→σr

∈B(Δ×2↓Y )

f−1(σ0)(m,n) → X(m,n)

with respect to the variables r and m gives a bisimplicial set map⊔
σ0→···→σr

∈B(Δ×2↓Y )

f−1(σ0)(r, n) → X(r, n)

which is a weak equivalence of simplicial sets in each vertical degree n, by
Proposition 1.7. This same result then implies that the simplicial set map⊔

σ0→···→σr

∈B(Δ×2↓Y )

f−1(σ0)(r, r) → X(r, r)

is a weak equivalence. �
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Remark 5.18. There is a paradigm in the proof of Lemma 5.17 for the ma-
nipulation of trisimplicial sets. The diagonal of a trisimplicial set X is the
simplicial set whose set of n-simplices is the set X(n, n, n). This simplicial set
defines the homotopy type arising from X, and it can be formed by iterating
the diagonal construction for bisimplicial sets in three different ways. One picks
the most convenient iteration for the problem at hand. Similar considerations
apply, more generally, to n-fold simplicial sets

Consider the diagram of trisimplicial set maps

f−1(v) w

u

⊔
σ0→···→σr

f−1(σ0) w
�

u

X

u

Δ0,0
w

u

�

⊔
σ0→···→σr

Δm0,n0
w�

u

�

Y

∗ wv

⊔
σ0→···→σr

∗,

where v : Δ0,0 → Y is a vertex of Y . Observe that ∗ = Δ0,0 is the terminal
object in the bisimplicial set category. The labelled horizontal maps induce
weak equivalences of the corresponding diagonal simplicial sets by Lemma 5.17,
while the corresponding vertical maps induce weak equivalences of diagonals
by iterated application of Proposition 1.7. It follows from Lemma 5.11 that the
pullback diagram

f−1(v) w

u

X

u

f

∗ w Y

of bisimplicial sets induces a homology cartesian diagram of associated diago-
nals if each morphism of bisimplices

Δr0,s0

u

h
h
hhj
σ0

Y.

Δr1,s1

�
�
���

σ1
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induces an isomorphism

H∗(f−1(σ0))
∼=−→ H∗(f−1(σ1)).

By this, it is meant that there should be an induced isomorphism

H∗(d(f−1(σ0)), A)
∼=−→ H∗(d(f−1(σ1)), A),

relative to some choice of coefficient group A. Let’s agree to suppress mention
of the diagonals and the coefficient groups in the rest of this section.
Proof of Theorem 5.15: We will show that each morphism

Δr,s

u

(ζ1, ζ2)

h
h
hhj
τ

BM.

Δk,�
�
�
���

σ

(5.19)

induces an isomorphism

(ζ1, ζ2)∗ : H∗(π−1(τ))
∼=−→ H∗(π−1(σ)),

where π : EM ×M X → BM is the canonical map.
Recall that, in horizontal degree m, Δk,�

m may be identified with the sim-
plicial set ⊔

m→k

Δ�.

There is a pullback diagram of simplicial sets

⊔
m→k

(Δ� × X) w

u

M×m × X

u

pr

⊔
m→k

Δ�
w M×m,

where the map on the left is a disjoint union of projections. Each ordinal number
map θ : n → m induces a simplicial map⊔

m→k

(Δ� × X)
θ∗
−→

⊔
n→k

(Δ� × X),
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according to the horizontal structure of the bisimplicial set π−1(σ). There is a
commutative diagram

Δ� × X w

θ∗γ

u

inγ

Δ� × X

u

inγθ⊔
m→k

(Δ� × X) w

θ∗
⊔

n→k

(Δ� × X),

where θ∗γ is defined on the simplex level by

(ζ, x) �→ (ζ,m∗(ζ, x)).

Here, m∗ is the composite simplicial set map

Δ� × X
ν×1−−→ M×m × X → X,

where the map M×m ×X → X is an iterate of the action of M on X, and ν is
some 
-simplex of M . The assumptions on the action m therefore imply that
θ∗γ is a homology isomorphism.

One of the spectral sequences for the homology of the diagonal of the
bisimplicial set ⊔

m→k

(Δ� × X)

has E2-term
H∗(

⊕
ω:m→k

A(ω)),

where A is a contravariant functor on the simplices of Δk: the group A(ω) is a
copy of Hq(Δ� × X). We have just seen that every morphism

mh
h
hhj

γθ

u

θ k

n
�
�
���

γ

induces an isomorphism θ∗ : A(γ) ∼= A(γθ). The morphism 1k is terminal in
the simplex category for Δk, so there is a natural isomorphism which is defined
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by diagrams

A(1k) w

∼=

u

1

A(γ)

u

θ∗

A(1k) w∼= A(γθ).

Lemma 2.2 says that there are isomorphisms

Hi(
⊕

ω:m→k

A(ω)) ∼=
{

A(1k) if i = 0,
0 if i > 0.

In particular, the inclusion

X × Δ�
inv−−→

⊔
0→k

(X × Δ�)

corresponding to a vertex v of Δk induces an isomorphism

Hq(X × Δ�) ∼= Hq(π−1(σ))

Finally, observe that every bisimplex map of the form (5.19) induces a commu-
tative diagram of simplicial set maps

X × Δs
w

1 × ζ2

u

inw

X × Δ�

u

inζ1w⊔
0→r

(X × Δs) w

(ζ1, ζ2)∗

⊔
0→k

(X × Δ�),

where w is a vertex of Δr. It follows that the map (ζ1, ζ2)∗ is a homology
isomorphism. �



Chapter V Simplicial groups

This is a somewhat complex chapter on the homotopy theory of simplicial
groups and groupoids, divided into seven sections. Many ideas are involved.
Here is a thumbnail outline:

Section 1, Skeleta: Skeleta for simplicial sets were introduced briefly in Chapter
I, and then discussed more fully in the context of the Reedy closed model struc-
ture for bisimplicial sets in Section IV.3.2. Skeleta are most precisely described
as Kan extensions of truncated simplicial sets. The current section gives a gen-
eral description of such Kan extensions in a more general category C, followed
by a particular application to a description of the skeleta of almost free mor-
phisms of simplicial groups. The presentation of this theory is loosely based
on the Artin-Mazur treatment of hypercovers of simplicial schemes [3], but the
main result for applications that appear in later sections is Proposition 1.9. This
result is used to show in Section 5 that the loop group construction outputs
cofibrant simplicial groups.

Section 2, Principal Fibrations I: Simplicial G-spaces: The main result of this
section asserts that the category SG of simplicial sets admitting an action by a
fixed simplicial group G admits a closed model structure: this is Theorem 2.3.
Principal G-fibrations in the classical sense may then be identified with cofi-
brant objects of SG, by Corollary 2.10, and an equivariant map between two
such objects is an isomorphism if and only if it induces an isomorphism of
coinvariants (Lemma 2.11).

Section 3, Principal Fibrations II: Classifications: This section contains a proof
of the well known result (Theorem 3.9) that isomorphism classes of principal
G-fibrations p : E → B can be classified by homotopy classes of maps B → BG,
where BG = EG/G, and EG is an arbitrary cofibrant object of SG admitting
a trivial fibration EG → ∗, all with respect to the the closed model structure
for SG of Section 2.

Section 4, Universal cocycles and WG: It is shown here that the classical model
WG for the classifying object BG of Section 3 can be constructed as a simplicial
set of cocycles taking values in the simplicial group G. This leads to “global”
descriptions of the simplicial structure maps for WG, as well as for the G-
bundles associated to simplicial set maps X → WG. The total space WG for
the canonical bundle associated to the identity map on WG is contractible
(Lemma 4.6).

Section 5, The loop group construction: The functor G �→ WG has a left adjoint
X �→ GX, defined on reduced simplicial sets X (Lemma 5.3). The simplicial
group GX is the loop group of the reduced simplicial set X, in the sense that
the total space of the bundle associated to the adjunction map X → WGX is
contractible: this is Theorem 5.10. The proof of this theorem is a modernized
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version of the Kan’s original geometric proof, in that it involves a reinterpre-
tation of the loop group GX as an object constructed from equivalence classes
of loops.

Section 6, Reduced simplicial sets, Milnor’s FK-construction: This section gives
a closed model structure for the category S0 of reduced simplicial sets. This
structure is used to show (in conjunction with the results of Section 1) that the
loop group functor preserves cofibrations and weak equivalences, and that W
preserves fibrations and weak equivalences (Proposition 6.3). In particular, the
loop group functor and the functor W together induce an equivalence between
the homotopy categories associated to the categories of reduced simplicial sets
and simplicial groups (Corollary 6.4). Furthermore, any space of the form WG
is a Kan complex (Corollary 6.8); this is the last piece of the proof of the
assertion that WG is a classifying space for the simplicial group G, as defined
in Section 3. Milnor’s FK-construction is a simplicial group which gives a
fibrant model for the space ΩΣK: Theorem 6.15 asserts that FK is a copy of
G(ΣK), by which is meant the loop group of the Kan suspension of K. The
Kan suspension was introduced in Section III.5.

Section 7, Simplicial groupoids: The main result of Section 5, which leads to
the equivalence of homotopy theories between reduced simplicial sets and sim-
plicial groups of Section 6, fails badly for non-reduced simplicial sets. We can
nevertheless recover an analogous statement for the full category of simplicial
sets if we replace simplicial groups by simplicial groupoids, by a series of results
of Dwyer and Kan. This theory is presented in this section. There is a closed
model structure on the category sGd of simplicial groupoids (Theorem 7.6)
whose associated homotopy category is equivalent to that of the full simplicial
set category (Corollary 7.11). The classifying object and loop group functors
extend, respectively, to functors W : sGd → S and G : S → sGd; the object
WA associated to a simplicial groupoid A is a simplicial set of cocycles in a way
that engulfs the corresponding object for simplicial groups, and the extended
functor G is its left adjoint.

1. Skeleta.

Suppose that C is a category having all finite colimits, and let sC denote the
category of simplicial objects in C. Recall that simplicial objects in C are con-
travariant functors of the form Δop → C, defined on the ordinal number cate-
gory Δ.

The ordinal number category contains a full subcategory Δn, defined
on the objects m with 0 ≤ m ≤ n. Any simplicial object X : Δop → C
restricts to a contravariant functor in∗X : Δop

n → C, called the n-truncation
of X. More generally, an n-truncated simplicial object in C is a contravariant
functor Y : Δop

n → C, and the category of such objects (functors and natural
transformations between them) will be denoted by snC.
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The n-truncation functor sC → snC defined by X �→ in∗X has a left
adjoint i∗n : snC → sC, on account of the completeness assumption on the
category C. Explicitly, the theory of left Kan extensions dictates that, for an
n-truncated object Y , i∗nYm should be defined by

i∗nYm = lim−→
m

θ−→i, i≤n

Yi.

As the notation indicates, the colimit is defined on the finite category whose
objects are ordinal number morphisms θ : m → i with i ≤ n, and whose
morphisms γ : θ → τ are commutative diagrams

i

u

γm
�
�
���θ

�
�
���τ

j

in the ordinal number category. The simplicial structure map ω∗ : i∗nYm → i∗nYk

is defined on the index category level by precomposition with the morphism
ω : k → m.

The functor Y �→ i∗nY is left adjoint to the n-truncation functor: this can
be seen by invoking the theory of Kan extensions, or directly.

If m ≤ n, then the index category of arrows m → i, i ≤ n, has an initial
object, namely 1m : m → m, so that the canonical map

Ym

in1m−−−→ lim−→
m

θ−→i, i≤n

Yi

is an isomorphism by formal nonsense. Furthermore, maps of this form in C are
the components of the adjunction map

Y
η−→ in∗i∗nY,

so that this map is an isomorphism of snC.
The objects i∗nYm, m > n, require further analysis. The general statement

that is of the most use is the following:

Lemma 1.1. There is a coequalizer diagram

⊔
i<j

Yn−1 ⇒
n⊔

i=0

Yn

s−→ i∗nYn+1,
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where the maps in the coequalizer are defined by the commutativity of the
following diagram:

Yn−1 w

si

u

ini<j

Yn

u

inj

A
A
A
AAC

insj

⊔
i<j

Yn−1
w

w

n⊔
i=0

Yn ws i∗nYn+1.

Yn−1 wsj−1

u

ini<j

Yn

u

ini

Proof: Write D for the category of ordinal number morphisms θ : n + 1 → j,
j ≤ n. Suppose that t : n + 1 → i is an ordinal number epimorphism, where
i ≤ n, and write Dt for the category of ordinal number morphisms θ : n + 1 →
j, j ≤ n, which factor through t. Then Dt has an initial object, namely t, so
that the canonical map int induces an isomorphism

Yi

int−−→∼= lim−→
n+1

θ−→j ∈Dt

Yj

Furthermore, if t has a factorization

n + 1 w
t

�
�
��r

i

m
�
�
��
s

where r and s are ordinal number epimorphisms, the inclusion Dt ⊂ Dr induces
a morphism s∗ of colimits which fits into a commutative diagram

Yi w
s∗

u
int

∼=
Ym

u
∼= inr

lim−→
n+1→j ∈Dt

Yj w

s∗
lim−→

n+1→j ∈Dr

Yj .

Write Dj for the category Dsj , 0 ≤ j ≤ n.
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For i < j, the diagram

n + 1 w
sj

u

si

n

u

si

n w

sj−1
n− 1

(1.2)

is a pushout in the ordinal number category: this is checked by fiddling with
simplicial identities. Now, suppose given a collection of maps

fj : lim−→
n+1

θ−→i ∈Dj

Yi → X,

0 ≤ j ≤ n, such that the diagrams

lim−→
n+1→i ∈Dt

Yi w

sj−1

u

si

lim−→
n+1→i ∈Dsi

Yi

u

fi

lim−→
n+1→i ∈Dsj

Yi w

fj
X

(1.3)

commute, where t = sisj = sj−1si. Let θ : n + 1 → k be an object of D. Then
θ ∈ Di for some i, and we define a morphism fθ : Yk → X to be the composite

Yk

inθ−−→ lim−→
n+1→k ∈Di

Yk

fi−→ X.

The pushout diagram (1.2) and the commutativity conditions (1.3) together
imply that the definition of fθ is independent of i. The collection of maps fθ,
θ ∈ D, determine a unique map

f∗ : lim−→
n+1→k ∈D

Yk

which restricts to the maps fi, for 0 ≤ i ≤ n, and the lemma is proved. �
Write skn Y = i∗nin∗Y , and write ε : skn Y → Y for the counit of the

adjunction. The simplicial set sknY is the n-skeleton of Y .
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Lemma 1.4. Let Y be a simplicial object in the category C, and suppose that
there is a morphism f : N → Yn+1 such that the canonical map ε : skn Y → Y
and f together induce an isomorphism

skn Yn+1 � N
(ε,f)−−−→∼= Yn+1.

Then an extension of a map g : skn Y → Z to a map g′ : skn+1 Y → Z
corresponds to a map g̃ : N → Zn+1 such that dig̃ = gdif for 0 ≤ i ≤ n + 1.

Proof: Given such a map g̃, define a map

g′′ : Yn+1
∼= skn Yn+1 � N → Zn+1

by g′ = (g, g̃). In effect, we are looking to extend a map g : in∗Y → in∗Z to
a map g′ : i(n+1)∗Y → i(n+1)∗Z. The truncated map g′ will be the map g′′ in
degree n + 1 and will coincide with the map g in degrees below n + 1, once
we show that g′ respects simplicial identities in the sense that the following
diagram commutes:

Yn+1 w

g′

u

γ∗

Zn+1

u

γ∗

Ym

u

θ∗

wg Zm

u

θ∗

for all ordinal number maps γ : m → n + 1 and θ : n + 1 → m, where
m < n + 1. The canonical map ε : skn Y → Y consists of isomorphisms

skn Yi

ε−→∼= Yi

in degrees i ≤ n, so that θ∗ : Ym → Yn+1 factors through the map ε :
skn Yn+1 → Yn+1; the restriction of g′ to skn Yn+1 is a piece of a simplicial
map, so that g′ respects θ∗. The map γ∗ factors through some face map di, so
it’s enough to show that g′ respects the face maps, but this is automatic on
skn Yn+1 and is an assumption on g̃.

The converse is obvious. �

Lemma 1.5. Suppose that i : A → B is a morphism of sn+1C which is an
isomorphism in degrees j ≤ n. Suppose further that there is a morphism f :
N → Bn+1 such that the maps i and f together determine an isomorphism

An+1 � N
(i,f)−−−→∼= Bn+1.
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Suppose that g : A → Z is a morphism of sn+1C. Then extensions

A w

g

u

i

Z

B

h
h
hhj

g′

of the morphism g to morphisms g′ : B → Z are in one to one correspondence
with morphisms g̃ : N → Zn+1 of C such that dig̃ = gdif for 0 ≤ i ≤ n.

Proof: This lemma is an abstraction of the previous result. The proof is the
same. �

A morphism j : G → H of simplicial groups is said to be almost free if
there is a contravariant set-valued functor X defined on the epimorphisms of
the ordinal number category Δ such that there are isomorphisms

Gn ∗ F (Xn)
θn−→∼= Hn

which

(1) are compatible with the map j in the sense that θn · inGn = jn for all
n, and

(2) respect the functorial structure of X in the sense that the diagram

Gn ∗ F (Xn) w
θn

u

t∗ ∗ F (t∗)

Hn

u

t∗

Gm ∗ F (Xm) w
θm

Hm

commutes for every ordinal number epimorphism t : m → n.

The n-skeleton skn(j) of the simplicial group homomorphism j : G → H
is defined by the pushout diagram

skn G w
j∗

u

skn H

u

G w skn(j)
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in the category of groups. There are maps skn(j) → skn+1(j) and morphisms
skn(j) → H such that the diagrams

G

A
A
AD

�
�
��

skn(j) w�
�
��

skn+1(j)
N
N
NQ

H

and

G w�
�
�
���j

skn(j)

u

H

commute, and such that j : G → H is a filtered colimit of the maps G → skn(j)
in the category of simplicial groups under G. The maps skn(j)i → Hi are
group isomorphisms for i ≤ n, so the map skn(j) → skn+1(j) consists of group
isomorphisms in degrees up to n.

Write DXn for the degenerate part of Xn+1. This subset can be described
(as usual) as the union of the images of the functions si : Xn → Xn+1, 0 ≤ i ≤
n. For i < j the diagram of group homomorphisms

Hn−1 w

si

u

sj−1

Hn

u

sj

Hn wsi
Hn+1

(1.6)

is a pullback, by manipulating the simplicial identities. Pullback diagrams are
closed under retraction, so the diagram of group homomorphisms

F (Xn−1) w

si

u

sj−1

F (Xn)

u

sj

F (Xn) wsi
F (Xn+1)

(1.7)

is also a pullback. All the homomorphisms in (1.7) are monomorphisms (since
they are retracts of such), so an argument on reduced words shows that (1.7)
restricts on generators to a pullback

Xn−1 w

si

u

sj−1

Xn

u

sj

Xn wsi
Xn+1

(1.8)
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in the set category. It follows that the degenerate part DXn of the set Xn+1

can be defined by a coequalizer

⊔
i<j

Xn−1 ⇒
n⊔

i=0

Xn

s−→ DXn

such as one would expect if X were part of the data for a simplicial set, in
which case DXn would be a copy of skn Xn+1.

Lemma 1.1 implies that the diagram of group homomorphisms

skn Gn+1 w

u

skn Hn+1

u

Gn+1 w skn(j)n+1

can be identified up to canonical isomorphism with the diagram

skn Gn+1 w

u

skn Gn+1 ∗ F (DXn)

u

Gn+1 w Gn+1 ∗ F (DXn).

The map skn(i)n+1 → skn+1(i)n+1 can therefore be identified up to isomor-
phism with the monomorphism

Gn+1 ∗ F (DXn) → Gn+1 ∗ F (Xn+1)

which is induced by the inclusion DXn ⊂ Xn+1.
Let NXn+1 = Xn+1 − DXn be the non-degenerate part of Xn+1. The

truncation at level n + 1 of the map skn(j) → skn+1(j) is an isomorphism in
degrees up to n, and is one of the components of an isomorphism

skn(j)n+1 ∗ F (NXn+1) ∼= skn+1(j)n+1.

in degree n + 1.
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Proposition 1.9. Suppose that j : G → H is an almost free simplicial group
homomorphism, with H generated over G by the functor X as described above.
Let NXn+1 be the non-degenerate part of Xn+1. Then there is pushout diagram
of simplicial groups of the form

∗
x∈NXn+1

F (∂Δn+1) w

u

skn(j)

u

∗
x∈NXn+1

F (Δn+1) w skn+1(j)

(1.10)

for each n ≥ −1.

Proof: From the discussion above, truncating the diagram (1.10) at level
n + 1 gives a pushout of (n + 1)-truncated simplicial groups. All objects in
(1.10) diagram are isomorphic to their (n + 1)-skeleta, so (1.10) is a pushout.

�
Corollary 1.11. Any almost free simplicial group homomorphism j : G → H
is a cofibration of simplicial groups.

2. Principal fibrations I: simplicial G-spaces.
A principal fibration is one in which the fibre is a simplicial group acting in a
particular way on the total space. They will be defined completely below and
we will classify them, but it simplifies the discussion considerably if we discuss
more general actions first.

Definition 2.1. Let G be a simplicial group and X a simplicial set. Then G
acts on X if there is a morphism of simplicial sets

μ : G × X → X

so that the following diagrams commute:

G × G × X w

1 × μ

u

m × 1

G × X

u

μ

G × X wμ X

and

X

u

i
�
�
��1X

G × X wμ X

where m is the multiplication in G and i(X) = (e,X).
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In other words, at each level, Xn is a Gn-set and the actions are compatible
with the simplicial structure maps.

Let SG be the category of simplicial sets with G-action, hereinafter known
as G-spaces. Note that SG is a simplicial category. Indeed, if K ∈ S, then K
can be given the trivial G-action. Then for X ∈ SG set

X ⊗ K = X × K (2.2.1)

with diagonal action,

homSG(K,X) = HomS(K,X) (2.2.2)

with action in the target, and for X and Y in SG,

HomSG(X,Y )n = homSG(X ⊗ Δn, Y ). (2.2.3)

Then the preliminary result is:

Theorem 2.3. There is a simplicial model category structure on SG such that
f : X → Y is

1) a weak equivalence if and only if f is a weak equivalence in S;

2) a fibration if and only if f is a fibration in S; and

3) a cofibration if and only if f has the left lifting property with respect to
all trivial fibrations.

Proof: The forgetful functor SG → S has a left adjoint given by

X �→ G × X.

Thus we can apply Theorem II.6.8 once we show that every cofibration having
the left lifting property with respect to all fibrations is a weak equivalence.
Every morphism X → Y can be factored as X

j→Z
q→X where q is a fibration

and j is obtained by setting Z = lim−→n
Zn with Z0 = X and Xn defined by a

pushout diagram ⊔
α

G × Λn
k

u
in

w Zn−1

u

jn⊔
α

G × Δn
w Zn

where α runs over all diagrams in SG

G × Λn
k

u
in

w Zn−1

u

G × Δn
w Y.



262 V. Simplicial groups

Since in is a trivial cofibration in S, we have that jn a trivial cofibration in S
(and also in SG). So j : X → Z is a trivial cofibration in S (and SG).

If i : X → Y is a cofibration having the left lifting property with respect
to all fibrations, then i has a factorization i = q · j as above, so that i is a
retract of the cofibration j by the standard argument. �

A crucial structural fact about SG is the following:

Lemma 2.4. Let f : X → Y be a cofibration in SG. Then f is an inclusion
and at each level Yk − f(Xk) is a free Gk-set.

Proof: Every cofibration is a retract of a cofibration j : X → Z where Z =
lim−→Zn and Zn is defined recursively by setting Z0 = X and defining Zn by a
pushout diagram ⊔

α

G × ∂Δn

u

w Zn−1

u

jn⊔
α

G × Δn
w Zn.

So it is sufficient to prove the result for these more specialized cofibrations.
Now each jn is an inclusion, so j : X → Z is an inclusion. Also, at each level,
we have a formula for k simplices

(Zn)k − (Zn−1)k = (�αG × Δn)k − (�αG × ∂Δn)k

is free. Hence
(Z)k − (X)k =

⋃
n

(Zn)k − (Zn−1)k

is free. �
For X ∈ SG, let X/G be the quotient space by the G-action. Let q :

X → X/G be the quotient map. If X ∈ SG is cofibrant this map has special
properties.

Lemma 2.5. Let X ∈ SG have the property that Xn is a free Gn set for all n.
Let x ∈ (X/G)n be an n-simplex. If fx : Δn → X represents x, define Fx by
the pullback diagram

Fx w

u

X

u

q

Δn
w

fx
X/G.

Then for every z ∈ X so that q(z) = x, there is an isomorphism in SG

ϕz : G × Δn → Fx
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so that the following diagram commutes

G × Δn

u

π2

w

ϕz Fx

u

Δn
w= Δn.

(2.6)

Proof: First note that there is a natural G-action on Fx so that Fx → X is a
morphism of G-spaces. Fix z ∈ Xn so that q(z) = x. Now every element of Δn

can be written uniquely as θ∗ιn where ιn ∈ Δn
n is the canonical n-simplex and

θ : m → n is an ordinal number map. Define ϕz by the formula, for g ∈ Gm:

ϕz(g, θ∗ιn) = (θ∗ιn, gθ∗z).

One must check this is a simplicial G-map. Having done so, the diagram (2.6)
commutes, so we need only check ϕz is a bijection.

To see ϕz is onto, for fixed (a, b) ∈ Fx one has fxa = q(b). We can write
a = θ∗ιn for some θ, so

fxa = θ∗fxιn = θ∗x = qθ∗z

so b is in the same orbit as θ∗z, as required.
To see ϕz is one-to-one, suppose

(θ∗ιn, gθ∗z) = (ψ∗ιn, hψ∗z).

Then θ = ψ and, hence, gθ∗z = hθ∗z. The action is level-wise free by assump-
tion, so g = h. �
Corollary 2.7. Let X ∈ SG have the property that each Xn is a free Gn set.
The quotient map q : X → X/G is a fibration in S. It is a minimal fibration if
G is minimal as a Kan complex.

Proof: Consider a lifting problem

Λn
k w

y

u

X

u

q

Δn
O
OOP

w X/G.

This is equivalent to a lifting problem

Λn
k w

y

u

Fx

u

Δn
O
OP

w= Δn.
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By Lemma 2.5, this is equivalent to a lifting problem

Λn
k w

y

u

G × Δn

u

πj

Δn
B
BBC

w= Δn.

Because G is fibrant in S (Lemma I.3.4), πj is a fibration, so the problem has
a solution. If G is minimal, the lifting has the requisite uniqueness property to
make q a minimal fibration (see Section I.10). �
Lemma 2.8. Let X ∈ SG have the property that each Xn is a free Gn set.
Then X = lim−→X(n) where X(−1) = ∅ and for each n ≥ 0 there is a pushout

diagram ⊔
α

∂Δn × G

u

w X(n−1)

u⊔
α

Δn × G w X(n)

where α runs over the non-degenerate n-simplices of X/G.

Proof: Define X(n)n by the pullback diagram

X(n)

u

w X

u

π

skn(X/G) w X/G.

Then X(−1) = ∅ and lim−→X(n) = X. Also, the pushout diagram

⊔
α

∂Δn
w

u

skn−1(X/G)

u⊔
α

Δn
w skn(X/G)

pulls back along the canonical map X → X/G to a diagram⊔
α

F (α)|∂Δη

u

w X(n−1)

u⊔
α

F (α) w X(n),

(2.9)
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where F (α) is defined to be the pullback along α. But Lemma 2.5 rewrites
F (α) ∼= Δn × G and, hence, F (α)|∂Δn ∼= ∂Δn ×G. Finally, pulling back along
π preserves pushouts, so the diagram (2.9) is a pushout. �
Corollary 2.10. An object X ∈ SG is cofibrant if and only if Xn is a free
Gn set for all n.

Proof: One implication is Lemma 2.4. The other is a consequence of Lemma
2.8. �
Lemma 2.11. Suppose given a morphism in SG f : Y → X so that

1) Xn is a free Gn set for all n

2) the induced map Y/G → X/G is an isomorphism

then f is an isomorphism.

Proof: This is a variation on the proof of the 5-lemma. To show f is onto,
choose z ∈ X. Let qX : X → X/G and qY : Y → Y/G be the quotient maps.
Then there is a w ∈ Y/G so that (f/G)(w) = qX(z). Let y ∈ Y be so that
qY (y) = w. Then there is a g ∈ G so that gf(y) = f(gy) = z. To show f is one-
to-one suppose f(y1) = f(y2). Then qXf(y1) = qXf(y2) so qY (y1) = qY (y2) or
there is a g ∈ G so that gy1 = y2. Then

gf(y1) = f(y2) = f(y1)

Since X is free at each level, g = e, so y1 = y2. �
3. Principal fibrations II: classifications.
In this section we will define and classify principal fibrations. Let G be a fixed
simplicial group.

Definition 3.1. A principal fibration (or principal G-fibration) f : E → B is
a fibration in SG so that

1) B has trivial G-action;

2) E is a cofibrant G-space; and

3) the induced map E/G → B is an isomorphism.

Put another way, f : E → B is isomorphic to a quotient map

q : X → X/G

where X ∈ SG is cofibrant. Such a map q is automatically a fibration by Corol-
lary 2.7. Cofibrant objects can be recognized by Corollary 2.10, and Lemma 2.5
should be regarded as a local triviality condition. Finally, there is a diagram

G × E w

μ

u

∗ × f

E

u

f

∗ × B w∼= B
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where μ is the action; such diagrams figure in the topological definition of
principal fibration.

In the same vein, it is quite common to say that a principal G-fibration
is a G-bundle.

Definition 3.2. Two principal fibrations f1 : E1 → B and f2 : E2 → B
will be called isomorphic if there is an isomorphism g : E1 → E2 of G-spaces
making the diagram commute

E1 w

g
���
f1

E2
h
hkf2

B

Remark 3.3. By Lemma 2.11 it is sufficient to construct a G-equivariant
map g : E1 → E2 making the diagram commute. Then g is automatically an
isomorphism.

Let PFG(B) be the set of isomorphism class of principal fibrations over
B. The purpose of this section is to classify this set.

To begin with, note that PFG(·) is a contravariant functor. If q : E → B is
a principal fibration and f : B′ → B is any map of spaces, and if q′ : E(f) → B′

is defined by the pullback diagram

E(f) w

uq′
E

u
q

B′ w
f

B,

then f ′ is a principal fibration. Indeed

E(g) = {(b, e) ∈ B′ × E | f(b) = q(e)}
has G action given by g(b, e) = (b, ge). Then parts 1) and 3) of Definition 3.1
are obvious and part 2) follows from Corollary 2.10.

But, in fact, PFG(·) is a homotopy functor. Recall that two maps f0, f1 :
B′ → B are simplicially homotopic if there is a diagram

B′ � B′ w
d0 � d1

�
��

f0 � f1

B′ × Δ1

h
hk

B

Lemma 3.4. If f0 and f1 are simplicially homotopic, PFG(f0) = PFG(f1).
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Proof: It is sufficient to show that given q : E → B a principal fibration, the
pullbacks E(f0) → B′ and E(f1) → B′ are isomorphic. For this it is sufficient
to consider the universal example: given a principal fibration E → B×Δ1, the
pullbacks E(d0) → B and E(d1) → B are isomorphic. For this consider the
lifting problem in SG

E(d0) w

u
d0

E

u

E(d0) × Δ1
B
B
BBC

w B × Δ1.

Since E(d0) is cofibrant in SG, d0 is a trivial cofibration, so the lifting exists
and by Lemma 1.8 defines an isomorphism of principal fibrations

E(d0) × Δ1
w

∼=
AAC

E
�
��

B × Δ1

Pulling back this diagram along d1 gives the desired isomorphism. �
A similar sort of argument proves the following lemma:

Lemma 3.5. Let B ∈ S be contractible. Then any principal fibration over B
is isomorphic to π2 : G × B → B.

Proof: The isomorphism is given by lifting in the diagram (in SG).

G

uj
w E

u

G × B wπ2

O
OP

B

Here j is induced by any basepoint ∗ → B; since G is cofibrant in SG, j is a
trivial cofibration in SG. �

We can now define the classifying object for principal fibrations.

Definition 3.6. Let EG ∈ SG be any cofibrant object so that the unique
map EG → ∗ is a fibration and a weak equivalence. Let BG = EG/G and
q : EG → BG the resulting principal fibration.

Note that EG is unique up to equivariant homotopy equivalence, so q :
EG → BG is unique up to homotopy equivalence.

In other words we require more than that EG be a free contractible G-
space; EG must also be fibrant. The extra condition is important for the proof
of Theorem 3.9 below. It also makes the following result true.
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Lemma 3.7. The space BG is fibrant as a simplicial set.

Proof: By Corollary 2.7, the map q : EG → BG is a Kan fibration. It is also
surjective, so that any map Λn

k → BG lifts to a map Λn
k → EG. But then EG

is fibrant, so that the map Λn
k → EG extends to an n-simplex Δn → EG in

EG, hence in BG. �
Exercise 3.8. There is a general principle at work in the proof of Lemma 3.7.
Suppose given a diagram of simplicial set maps

X w

p
�
�
���q · p

Y

u
q

Z

such that p and the composite q · p are Kan fibrations, and that p is surjective.
Show that q is a Kan fibration.

Note that the same argument proves that if E ∈ SG is cofibrant and
fibrant, the resulting principal fibration E → E/G has fibrant base.

We now come to the main result.

Theorem 3.9. For all spaces B ∈ S, the map

θ : [B,BG] → PFG(B)

sending the class [f ] ∈ [B,BG] to the pullback of EG → BG along f is a
bijection.

Here, [B,BG] denotes morphisms in the homotopy category Ho(S) from B to
BG. The space BG is fibrant, so this morphism set cat be identified with the
set of simplicial homotopy classes of maps from B to BG.
Proof: Note that θ is well-defined by Lemma 3.4. To prove the result we
construct an inverse. If q : E → B is a principal fibration, there is a lifting in
the diagram in SG

φ w

u

EG

u

E

h
hj

w ∗
(3.10)

since E is cofibrant and EG is fibrant, and this lifting is unique up to equivariant
homotopy. Let f : B → BG be the quotient map. Define Ψ : PFG(B) →
[B,BG], by sending q : E → B to the class of f .
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Note that if E(f) is the pullback of f , there is a diagram

E wAAC
E(f)

�
��

B

so Lemma 2.11 implies θΨ = 1. On the other hand, given a representative
g : B → BG of a homotopy class in [B,BG], the map g′ in the diagram

E(g)

u

w

g′
EG

u

B wg BG

makes the diagram (3.10) commute, so by the homotopy uniqueness of liftings
Ψθ = 1. �
4. Universal cocycles and WG.
In the previous sections, we took a simplicial group G and assigned to it a
homotopy type BG; that is, the space BG depended on a choice EG of a
fibrant, cofibrant contractible G-space.

In this section we give a natural, canonical choice for EG and BG called,
respectively, WG and WG. The spaces WG and WG are classically defined by
letting WG be the simplicial set with

WGn = Gn × Gn−1 × · · · × G0

and

di (gn, gn−1, . . . g0)

=
{

(dign, di−1gn−1, . . . , (d0gn−i)gn−i−1, gn−i−2, ...g0) i < n,

(dngn, dn−1gn−1, . . . d1g1) i = n.

si(gn, gn−1 . . . , g0) = (sign, si−1gn−1 . . . s0gn−1, e, gn−i−1, . . . g0)

where e is always the unit. Note that WG becomes a G-space if we define
G × WG → WG by:

(h, (gn, gn−1, . . . , g0) −→ (hg, gn−1, . . . g0).

Then WG is the quotient of WG by the left G-action; write q = qG : WG →
WG for the quotient map. We establish the most of the basic properties of this
construction in this section; WG will be shown to be fibrant in Corollary 6.8.



270 V. Simplicial groups

Lemma 4.1. The map q : WG → WG is a fibration.

Proof: This follows from Corollary 2.7 since (WG)n is a free Gn set. �
The functor G �→ WG takes values in the category S0 of reduced simplicial

sets, where a reduced simplicial set is a simplicial set having only one vertex.
The salient deeper feature of the functor W : sGr → S0 is that it has a left
adjoint G : S0 → sGr, called the loop group functor, such that the canonical
maps G(WG) → G and X → W (GX) are weak equivalences for all simplicial
groups G and reduced simplicial sets X. A demonstration of these assertions
will occupy this section and the following two. These results are originally due
to Kan, and have been known since the late 1950’s. The original proofs were
calculational — we recast them in modern terms here. Kan’s original geometric
insights survive and are perhaps sharpened, in the presence of the introduction
of a closed model structure for reduced simplicial sets and a theory of simplicial
cocycles.

A segment of an ordinal number n is an ordinal number monomorphism
n− j ↪→ n which is defined by i �→ i + j. This map can also be variously
characterized as the unique monomorphism n− j ↪→ n which takes 0 to j,
or as the map (d0)j . This map will also be denoted by [j, n], as a means of
identifying its image. There is a commutative diagram of ordinal number maps

n− kh
h
hhj

[k, n]

u

τ n

n− j
�
�
���

[j, n]

if and only if j ≤ k. The map τ is uniquely determined and must be a segment
map if it exists: it’s the map (d0)k−j. Thus, we obtain a poset Seg(n) of seg-
ments of the ordinal number n. This poset is plainly isomorphic to the poset
opposite to the ordinal n.

Suppose that G is a simplicial group. An n-cocycle f : Seg(n) 	 G as-
sociates to each relation τ : [k, n] ≤ [j, n] in Seg(n) an element f(τ) ∈ Gn−k,
such that the following conditions hold:

(1) f(1j) = e ∈ Gn−j , where 1j is the identity relation [j, n] ≤ [j, n],

(2) for any composeable pair of relations [l, n]
ζ−→ [k, n]

τ−→ [j, n], there is an
equation

ζ∗(f(τ))f(ζ) = f(τζ).
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Any ordinal number map γ : r → s has a unique factorization

r w

γ
�
�
��γ∗

s

s − γ(0)
N
N
NP
[γ(0), s] = (d0)γ(0)

where γ∗ is an ordinal number map such that γ∗(0) = 0. It follows that any
relation τ : [k,m] ≤ [j,m] in Seg(m) induces a commutative diagram of ordinal
number maps

m− k w

θk

u

[k,m]

�
�
���τ

n− θ(k)

u

[θ(k), n]

�
�
���
τ∗

m− j w

θj

�
�
�
���

[j,m]

n − θ(j)
N
N

N
N
NQ

[θ(j), n]

m w
θ

n

(4.2)

where the maps θj and θk take 0 to 0. Given an n-cocyle f : Seg(n) 	 G, define,
for each relation τ : [k,m] ≤ [j,m] in Seg(m), an element θ∗(f)(τ) ∈ Gm−k by

θ∗(f)(τ) = θ∗k(f(τ∗)).

It’s not hard to see now that the collection of all such elements θ∗(f)(τ) de-
fines an m-cocycle θ∗(f) : Seg(m) 	 G, and that the assignment θ �→ θ∗ is
contravariantly functorial in ordinal maps θ. We have therefore constructed a
simplicial set whose n-simplices are the n-cocycles Seg(n) 	 G, and whose
simplicial structure maps are the induced maps θ∗.

This simplicial set of G-cocycles is WG . This claim is checked by chas-
ing the definition through faces and degeneracies, while keeping in mind the
observation that an n-cocycle f : Seg(n) 	 G is completely determined by the
string of relations

[n, n]
τ0−→ [n − 1, n]

τ1−→ . . .
τn−2−−−→ [1, n]

τn−1−−−→ [0, n], (4.3)

and the corresponding element

(f(τn−1), f(τn−2), . . . , f(τ0)) ∈ Gn−1 × Gn−2 × · · · × G0.

Of course, each τi is an instance of the map d0.
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The identification of the simplicial set of G-cocycles with WG leads to a
“global” description of the simplicial structure of WG. Suppose that θ : m → n
is an ordinal number map, and let

g = (gn−1, gn−2, . . . , g0)

be an element of Gn−1 × Gn−2 × · · · × G0. Let Fg be the cocycle Seg(n) 	 G
associated to the n-tuple g. Then, subject to the notation appearing in diagram
(4.2), we have the relation

θ∗(gn−1, gn−2, . . . , g0) = (θ∗1Fg(τm−1∗), θ∗2Fg(τm−2∗), . . . , θ∗mFg(τ0∗)),

where τm−i∗ = (d0)θ(i)−θ(i−1) is the induced relation [θ(i), n] ≤ [θ(i − 1), n] of
Seg(n).

A simplicial map f : X → WG, from this point of view, assigns to each
n-simplex x a cocycle f(x) : Seg(n) 	 G, such that for each ordinal number
map θ : m → n and each map τ : [k,m] → [j,m] in Seg(m) there is a relation

θ∗kf(x)(τ∗) = f(θ∗(x))(τ).

Any element j ∈ n determines a unique diagram

n�
�
�
���

[0, n] = 1

n

n− j

u

[j, n]

�
�
���

[j, n]

and hence unambiguously gives rise to elements
f(x)([j, n]) ∈ Gn−j .

Observe further that if j ≤ k and τ : [k, n] ≤ [j, n] denotes the corresponding
relation in Seg(n), then the cocyle condition for the composite

[k, n]
τ−→ [j, n]

[j,n]−−→ [0, n]
can be rephrased as the relation

τ∗(f(x)([j, n])) = f(x)([k, n])f(x)(τ)−1.

Now, given a map (cocycle) f : X → WG, and an ordinal number map
θ : m → n, there is an induced function

θ∗ : Gn × Xn → Gm × Xm,

which is defined by
(g, x) �→ (θ∗(g)θ∗0(f(x)([θ(0), n])), θ∗(x)), (4.4)

where θ0 : m → n− θ(0) is the unique ordinal number map such that
[θ(0), n] · θ0 = θ.

Lemma 4.5. The maps θ∗ defined in (4.4) are functorial in ordinal number
maps θ.



4. Universal cocycles and WG 273

Proof: Suppose given ordinal number maps

k
γ−→ m

θ−→ n,

and form the diagram

k

u

γ0

h
h
h
h
h
h
h
hhj

γ

m− γ(0) w

[γ(0),m]

u

θγ(0)

m

u

θ0

�
�
�
�
�
�
���

θ

n− θ(γ(0)) w

[γ(0),m]∗
n − θ(0) w

[θ(0), n]
n

in the ordinal number category. In order to show that γ∗θ∗(g, x) = (θγ)∗(g, x)
in Gk × Xk, we must show that

γ∗θ∗0(f(x)([θ(0), n]))γ∗
0 (f(θ∗(x))([γ(0),m])) = γ∗

0θ∗γ(0)(f(x)([θ(γ(0)), n]))

in Gk. But
γ∗θ∗0 = γ∗

0θ∗γ(0)[γ(0),m]∗∗,

and

[γ(0),m]∗∗(f(x)[θ(0), n]) = f(x)([θγ(0), n])(f(x)([γ(0),m]∗))−1

by the cocycle condition. Finally,

θ∗γ(0)(f(x)([γ(0),m]∗)) = f(θ∗(x))([γ(0),m]),

since f is a simplicial map. The desired result follows. �
The simplicial set constructed in Lemma 4.5 from the map f : X → WG

will be denoted by Xf . The projection maps Gn×Xn → Xn define a simplicial
map π : Xf → X, and this map π has the structure of a G-bundle, or principal
fibration. This is a natural construction: if h : Y → X is a simplicial set map,
then the maps Gn × Yn → Gn × Xn defined by (g, y) �→ (g, h(y)) define a
G-equivariant simplicial set map h∗ : Yfh → Xf such that the diagram

Yfh w

h∗

u

π

Xf

u

π

Y w

h
X

commutes. Furthermore, this diagram is a pullback.
The simplicial set WG1 associated to the identity map 1 : WG → WG is

WG, and the G-bundle π : WG → WG is called the canonical G-bundle.
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Lemma 4.6. WG is contractible.

Proof: Suppose given an element (gn, (gn−1, . . . , g0)) ∈ WGn. Then the (n+
2)-tuple (e, (gn, gn−1, . . . g0)) defines an element of WGn+1, in such a way that
the following diagram of simplicial set maps commutes:

Δn+1
�
�
�
�
�
�
�
�
�
�
���

(e, (gn, gn−1, . . . , g0))

Δn

u

d0

w

(gn, (gn−1, . . . , g0))
WG

commutes. Furthermore, if θ : m → n is an ordinal number map, and θ∗ :
m + 1 → n + 1 is the unique map such that θ∗(0) = 0 and θ∗d0 = d0θ, then

θ∗∗(e, (gn, gn−1, . . . , g0)) = (e, θ∗(gn, (gn−1, . . . , g0)).

It follows that the simplices (e, gn, . . . , g0) define an extra degeneracy on WG in
the sense of Section III.5, and so Lemma III.5.1 implies that WG is contractible.

�

Remark 4.7. Every principal G-fibration p : Y → X is isomorphic to a
principal fibration Xf → X for some map f : X → WG. In effect, let Δ∗
denote the subcategory of the category Δ consisting of all ordinal number
morphisms γ : m → n such that γ(0) = 0. Then the map p restricts to a nat-
ural transformation p∗ : Y |Δ∗ → X|Δ∗ , and this transformation has a section
σ : X|Δ∗ → X|Δ∗ in the category of contravariant functors on Δ∗, essentially
since the simplicial map p is a surjective Kan fibration. Classically, the map σ
is called a pseudo cross-section for the bundle p. The pseudo cross-section σ
defines Gn-equivariant isomorphisms

φn : Gn × Xn
∼= Yn

given by (g, x) �→ g · σ(x). If τ : n− k → n− j is a morphism of Seg(n) then

τ∗(σ(dj
0x)) = fx(τ)σ(τ∗dj

0x)

for some unique element fx(τ) ∈ Gn−k. The elements fx(τ) define a cocycle
fx : Seg(n) 	 G for each simplex x of X, and the collection of cocycles fx,
x ∈ X, defines a simplicial map f : X → WG such that Y is G-equivariantly
isomorphic to Xf over X via the maps φn. The classical approach to the classi-
fication of principal G-bundles is based on this construction, albeit not in these
terms.
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5. The loop group construction.
Suppose that f : X → WG is a simplicial set map, and let x ∈ Xn be an
n-simplex of X. Recall that the associated cocycle f(x) : Seg(n) 	 G is com-
pletely determined by the group elements

f(x)(d0 : (d0)k+1 → (d0)k).

On the other hand,

f(x)(d0 : (d0)k+1 → (d0)k) = f(dk
0(x))(d0 : d0 → 1n−k).

It follows that the simplicial map f : X → WG is determined by the elements

f(x)(d0) = f(x)(d0 → 1n) ∈ Gn−1,

for x ∈ Xn, n ≥ 1. Note in particular that f(s0x)(d0) = e ∈ Gn−1.
Turning this around, suppose that x ∈ Xn+1, and the ordinal number

map θ : m → n has the factorization

n− θ(0)

u

τ

m
h
h
hhjθ0

w
θ

n,

where θ0(0) = 0 and τ is a segment map, and suppose that d0 : d0 → 1n+1 is
the inclusion in Seg(n + 1). Then

τ∗(f(x)(d0)) = f(x)(d0τ)(f(d0(x))(τ))−1.

by the cocycle condition for f(x), and so

θ∗(f(x)(d0)) = θ∗0τ∗(f(x)(d0))

= θ∗0(f(x)(d0τ))θ∗0(f(d0(x))(τ))−1

= f(θ̃∗(x))(d0)(f((cθ)∗(d0(x)))(d0))−1,

where θ̃ : m + 1 → n + 1 is defined by

θ̃(i) =
{

0 if i = 0, and
θ(i − 1) + 1 if i ≥ 1,

and cθ : m + 1 → n is the ordinal number map defined by (cθ)(0) = 0 and
(cθ)(i) = θ(i − 1) for i ≥ 1. Observe that cθ = s0θ̃.
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Define a group GXn = F (Xn+1)/s0F (Xn) for n ≥ 0, where F (Y ) denotes
the free group on a set Y . Note that GXn may also be described as the free
group on the set Xn+1 − s0Xn.

Given an ordinal number map θ : m → n, define a group homomorphism
θ∗ : GXn → GXm on generators [x], x ∈ Xn+1 by specifying

θ∗([x]) = [θ̃∗(x)][(cθ)∗(d0(x))]−1. (5.1)

If γ : k → m is an ordinal number map which is composeable with θ, then the
relations

(cγ)∗d0θ̃
∗(x) = (cγ)∗θ∗d0(x)

= (cγ)∗d0(cθ)∗d0(x)

and
γ̃∗(cθ)∗d0(x) = (c(θγ))∗d0(x)

together imply that γ∗θ∗([x]) = (θγ)∗([x]) for all x ∈ Xn+1, so that we have a
simplicial group, called the loop group of X, which will be denoted GX. This
construction is plainly functorial in simplicial sets X.

Each n-simplex x ∈ X gives rise to a string of elements

([x], [d0x], [d2
0x], . . . , [dn−1

0 x]) ∈ GXn−1 × GXn−2 × · · · × GX0,

which together determine a cocycle Fx : Seg(n) 	 GX. Suppose that θ : m →
n is an ordinal number map such that θ(0) = 0. The game is now to obtain a
recognizable formula for [θ∗x], in terms of the simplicial structure of GX.

Obviously, if θ(1) = θ(0), then [θ∗x] = e ∈ GXm−1. Suppose that θ(1) >
0. Then there is a commutative diagram of ordinal number maps

m− 1 w

θ1

u

d0

n− θ(1)

u

τ

�
�
���
(d0)θ(1)−1

n− 1
�

�
�
��� d0

m w
θ

n

If γ = (d0)θ(1)−1θ1, then θ = γ̃, and so

[θ∗(x)] = (θ∗1d
θ(1)−1
0 [x])[f(θ)∗(d0x)],



5. The loop group construction 277

where f(θ) is defined by f(θ) = cγ. We have f(θ)(0) = 0 by construction, and
there is a commutative diagram

m − 1 w

θ1

u

d0

n− θ(1)

u

(d0)θ(1)−1

m w

f(θ)
n − 1,

so an inductive argument on the exponent θ(1) − 1 implies that there is a
relation

[f(θ)∗(d0x)] = (θ∗1d
θ(1)−2
0 [d0x]) . . . (θ∗1 [dθ(1)−1

0 (x)]).

It follows that

[θ∗(x)] = (θ∗1d
θ(1)−1
0 [x])(θ∗1d

θ(1)−2
0 [d0x]) . . . (θ∗1 [dθ(1)−1

0 (x)]) = θ∗1(Fx(τ)). (5.2)

Lemma 5.3.

(a) The assignment

x �→ ([x], [d0x], [d2
0x], . . . , [dn−1

0 x])

defines a natural simplicial map η : X → WGX.

(b) The map η is one of the canonical homomorphisms for an adjunction

homsGr(GX,H) ∼= homS(X,WH),

where sGr denotes the category of simplicial groups.

Proof:

(a) Suppose that θ : m → n is an ordinal number map, and recall the de-
composition of (4.2). It will suit us to observe once again that the map [j,m]
is the composite (d0)j , and that τ∗ = (d0)θ(k)−θ(j). Note in particular that
θ = (d0)θ(0)θ0, and recall that θ0(0) = 0. It is also clear that there is a commu-
tative diagram

Xn w

η

u

d
θ(0)
0

WGXn

u

d
θ(0)
0

Xn−θ(0) wη WGXn−θ(0)

Let Fx be the cocycle Seg(n) 	 GX associated to the element

([x], [d0x], [d2
0x], . . . , [dn−1

0 x]).
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Then, for x ∈ Xn,

θ∗0([dθ(0)
0 x],[dθ(0)+1

0 x], . . . , [dn−1
0 x]) = (θ∗1Fx(τm−1∗), . . . , θ∗mFx(τ0∗))

= ([θ∗0d
θ(0)
0 x], [θ∗1d

θ(1)
0 x], . . . , [θ∗m−1d

θ(m−1)
0 x])

= ([θ∗x], [d0θ
∗x], . . . , [dm−1

0 θ∗x]),

where τm−i∗ = (d0)θ(i)−θ(i−1) as before, and this by repeated application of the
formula (5.2). In particular, η is a simplicial set map. The naturality is obvious.

(b) Suppose that f : X → WH is a simplicial set map, where H is a simplicial
group. Recall that the cocycle f(x) : Seg(n) 	 H can be identified with the
element

(f(x)(d0), f(d0x)(d0), . . . , f(dn−1
0 x)(d0)) ∈ Hn−1 × Hn−2 × · · · × H0.

The simplicial structure for GX given by the formula (5.1) implies that f :
X → WH induces a simplicial group map f∗ : GX → H which is specified on
generators by f∗([x]) = f(x)(d0). It follows that the function

homsGr(GX,H) → homS(X,WH)

defined by g �→ (Wg) · η is surjective. Furthermore, any map f : X → WH is
uniquely specified by the elements f(x)(d0), and hence by the simplicial group
homomorphism f∗. �
Remark 5.4. Any simplicial group homomorphism f : G → H induces a
f -equivariant morphism of associated principal fibrations of the form

G w

f

u

H

u

WG w

Wf

u

WH

u

WG w

Wf
WH,

as can be seen directly from the definitions. The canonical map η : X → WGX
induces a morphism

GX

u

GX

u

Xη w

u

WGX

u

X wη WGX
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of GX-bundles. It follows that, for any simplicial group homomorphism f :
GX → H, the map f and its adjoint f∗ = Wf · η fit into a morphism of
bundles

GX w

f

u

H

u

Xη w

u

WH

u

X w

f∗
WH.

Suppose now that the simplicial set X is reduced in the sense that it has
only one vertex. A closed n-loop of length 2k in X is defined to be a string

(x2k, x2k−1, . . . , x2, x1)

of (n +1)-simplices xj of X such that d0x2i−1 = d0x2i for 1 ≤ i ≤ k. Define an
equivalence relation on loops by requiring that

(x2k, . . . , x1) ∼ (x2k, . . . , xi+2, xi−1, . . . , x1)

if xi = xi+1. Let
〈x2k, . . . , x1〉

denote the equivalence class of the loop (x2k, . . . , x1). Write G′Xn for the set
of equivalence classes of n-loops under the relation ∼. Loops may be concate-
nated, giving G′Xn the structure of a group having identity represented by
the empty n-loop. Any ordinal number morphism θ : m → n induces a group
homomorphism

θ∗ : G′Xn → G′Xm,

which is defined by the assignment

〈x2k, . . . , x2, x1〉 �→ 〈θ̃∗x2k, . . . θ̃∗x2, θ̃
∗x1〉.

The corresponding simplicial group will be denote by G′X. This construction
is clearly functorial with respect to morphisms of reduced simplicial sets.

There is a homomorphism

φn : G′Xn → GXn

which is defined by

φn〈x2k, x2k−1, . . . , x2, x1〉 = [x2k][x2k−1]−1 . . . [x2][x1]−1.
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Observe that

θ∗([x2i][x2i−1]−1) = [θ̃∗(x2i)][(cθ)∗d0(x2i)]−1[(cθ)∗d0(x2i−1)][θ̃∗(x2i−1]−1

= [θ̃∗(x2i)][θ̃∗(x2i−1]−1,

so that

θ∗([x2k][x2k−1]−1 . . . [x2][x1]−1) = [θ̃∗x2k][θ̃∗x2k−1]−1 . . . [θ̃∗x2][θ̃∗x1]−1.

The homomorphisms φn : G′Xn → GXn, taken together, therefore define a
simplicial group homomorphism φ : G′X → GX.

Lemma 5.5. The homomorphism φ : G′X → GX is an isomorphism of sim-
plicial groups which is natural with respect to morphisms of reduced simplicial
sets X.

Proof: The homomorphism φn : G′Xn → GXn has a section, which is defined
on generators by

[x] �→ 〈x, s0d0x〉,
and elements of the form 〈x, s0d0x〉 generate G′Xn. �

Again, let X be a reduced simplicial set. The set E′Xn consists of equiv-
alence classes of strings of (n + 1)-simplices

(x2k, . . . , x1, x0)

with d0x2i = d0x2i−1, i ≥ 1, subject to an equivalence relation generated by
relations if the form

(x2k, . . . , x0) ∼ (x2k, . . . , xi+2, xi−1, . . . , x0)

if xi = xi+1. We shall write 〈x2k, . . . , x0〉 for the equivalence class containing
the element (x2k, . . . , x0). Any ordinal number map θ : m → n determines a
function θ∗ : E′Xn → E′Xm, which is defined by

θ∗〈x2k, . . . , x0〉 = 〈θ̃∗(x2k), . . . , θ̃∗(x0)〉,

and so we obtain a simplicial set E′X. Concatenation induces a left action
G′X × E′X → E′X of the simplicial group G′X on E′X.

There is a function

φ′
n : E′Xn → GXn × Xn

which is defined by

φ′
n〈x2k, . . . , x1, x0〉 = ([x2k][x2k−1]−1 . . . [x2][x1]−1[x0], d0x0).
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The function φ′
n is φn-equivariant, and so

φ′
n(φ−1

n (g)〈s0x〉) = (g, x)

for any (g, x) ∈ GXn × Xn, and φ′
n is surjective. There is an equation

〈x2k, . . . , x0〉 = 〈x2k, . . . , x0, s0d0(x0)〉〈s0d0(x0)〉
for every element of E′Xn, so that E′Xn consists of G′Xn-orbits of elements
〈s0x〉. The function φ′

n preserves orbits and φn is a bijection, so that φ′
n is

injective as well.
The set GXn × Xn is the set of n-simplices of the GX-bundle Xη which

is associated to the natural map η : X → WGX. If θ : m → n is an ordinal
number map, then the associated simplicial structure map θ∗ in Xη has the
form

θ∗([x2k] . . . [x1]−1[x0], d0x0)

= ([θ̃∗(x2k)] . . . [θ̃∗(x1)]−1[θ̃∗(x0)][(cθ)∗(d0x0)]−1θ∗0(η(x)([θ(0), n])), d0 θ̃
∗(x0))

since d0θ̃
∗(x0) = θ∗(d0x0). But

[(cθ)∗(d0x0))] = θ∗0(η(x)([θ(0), n]),

by equation (5.2). The bijections φ′
n therefore define a φ-equivariant simplicial

map, and so we have proved

Lemma 5.6. There is a φ-equivariant isomorphism

φ′ : E′X → Xη.

This isomorphism is natural with respect to maps of reduced simplicial sets.

There is a simplicial set E′′X whose n-simplices consist of the strings of
(n + 1)-simplices (x2k, . . . , x0) of X as above, and with simplicial structure
maps defined by

θ∗(x2k, . . . , x0) = (θ̃∗x2k, . . . , θ̃∗x0)

for θ : m → n. Observe that E′X = E′′X/ ∼.
Given this description of the simplicial structure maps in E′′X, the best

way to think of the members of an n-simplex is as a string (x2k, . . . , x0) of
cones on their 0th faces, with the obvious incidence relations. A homotopy
Δn × Δ1 → E′′X can therefore be identified with a string

(h2k, . . . , h1, h0),

where

(1) hi : C(Δn ×Δ1) → X is a map defined on the cone C(Δn ×Δ1) for the
simplicial set Δn × Δ1, and

(2)
h2i|Δn×Δ1 = h2i−1|Δn×Δ1

for 1 ≤ i ≤ k.
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We shall say that maps of the form C(Δn×Δ1) → Y are cone homotopies.
Examples of such include the following:

(1) The canonical contracting homotopy

0 w

u

0 w

u

· · · w 0
u

0 w 1 w · · · w n + 1

of Δn+1 onto the vertex 0 induces a map C(Δn × Δ1) → Δn+1 which
is jointly specified by the vertex 0 and the restricted homotopy

0 w

u

0 w

u

· · · w 0
u

1 w 2 w · · · w n + 1.

This map is a “contracting” cone homotopy.
(2) The vertex 0 and the constant homotopy

1 w

u

2 w

u

· · · w n + 1
u

1 w 2 w · · · w n + 1.

jointly specify a “constant” cone homotopy C(Δn × Δ1) → Δn+1.

In both of these cases, it’s helpful to know that the cone CBP on the
nerve BP of a poset P can be identified with the nerve of the cone poset CP
which is obtained from P by adjoining a disjoint initial object. Furthermore,
a poset map γ : P → Q can be extended to a map CP → Q by mapping the
initial object of CP to some common lower bound of the objects in the image
of γ, if such a lower bound exists.

Lemma 5.7. E′X is acyclic in the sense that H̃∗(E′X, Z) = 0.

Proof: Both the contracting and constant cone homotopies defined above are
natural in Δn in the sense that the diagram

C(Δm × Δ1) w
h

u

C(θ × 1)

Δm+1

u

θ̃∗

C(Δn × Δ1) w

h
Δn+1
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commutes for each ordinal number map θ : m → n, where h denotes one of the
two types. It follows that there is a homotopy from the identity map on E′′X
to the map E′′X → E′′X defined by

(x2k, . . . , x1, x0) �→ (x2k, . . . , x1, ∗),

and that this homotopy can be defined on the level of simplices by strings of
cone homotopies

(h(x2k), . . . , h(x1), h(x0)),

where h(x0) is contracting on d0x0, and all other h(xi) are constant. This
homotopy, when composed with the canonical map E′′X → E′X, determines a
chain homotopy S from the induced map ZE′′X → ZE′X to the map ZE′′X →
ZE′X which is induced by the simplicial set map defined by

(x2k, . . . , x1, x0) �→ 〈x2k, . . . , x1, ∗〉.

For each element (x2k, . . . , x1, x0), the chain S(x2k, . . . , x1, x0) is an alternating
sum of the simplices comprising the homotopy (h(x2k), . . . , h(x1), h(x0)). It
follows in particular, that if xi = xi+1 for some i ≥ 1, then the corresponding
adjacent simplices of the components of S(x2k, . . . , x1, x0) are also equal.

It also follows that there is a chain homotopy defined by

(x2k, . . . , x1, x0) �→ S(x2k, . . . , x1, x0) − S(x2k, . . . , x1, x1),

and that this is a chain homotopy from the chain map induced by the canonical
map E′′X → E′X to the chain map induced by the simplicial set map

(x2k, . . . , x1, x0) �→ 〈x2k, . . . , x3, x2〉

This construction can be iterated, to produce a chain homotopy H defined by

(x2k, . . . , x0) �→ (
k−1∑
i=0

(S(x2k, . . . , x2i+1, x2i)−S(x2k, . . . , x2i+1, x2i+1)))+S(x2k)

from the chain map ZE′′X → ZE′X to the chain map induced by the simplicial
set map E′′X → E′X which takes all simplices to the base point ∗. One can
show that

H(x2k, . . . , x0) = H(x2k, . . . xi+2, xi−1, . . . , x0)

if xi = xi+1. It follows that H induces a contracting chain homotopy on the
complex ZE′X. �

Lemma 5.8. E′X is simply connected.
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Proof: Following Lemma 5.6, we shall do a fundamental groupoid calculation
in Xη

∼= E′X.
The boundary of the 1-simplex (s0g, x) in Xη has the form

∂(s0g, x) = ((g[x], ∗), (g, ∗)).

There is an oriented graph T (X) (hence a simplicial set) having vertices coin-
ciding with the elements of GX0 and with edges x : g → gx for x ∈ X1 − {∗}.
There is plainly a simplicial set map T (X) → Xη which is the identity on
vertices and sends each edge x : g → gx to the 1-simplex (s0g, x). This map
induces a map of fundamental groupoids

πT (X) → πXη

which is bijective on objects. A reduced word argument shows that T (X) is
contractible, hence has trivial fundamental groupoid, so we conclude that Xη

is simply connected if we can show that the 1-simplices (s0g, x) generate the
fundamental groupoid πXη.

There are boundary relations

∂(s1g, s0x) = (d0(s1g, s0x), d1(s1g, s0x), d2(s1g, s0x))
= (s0d0g, x), (g, x), (g, ∗))

and in the same notation,

∂(s0g, y) = ((g[y], d0y), (g, d1y), (s0d1g, d2y)).

The upshot is that there are commuting diagrams in πXη of the form

∗ w

(s0d1g, d2y)
�
�
�
�
��(g, d1y)

∗
h
h

h
h
hk

(g[y], d0y)

�
�
�
�
��

(g[y], ∗)
w

(g[y], x) ∗

∗ ∗u

(s0d0(g[y]), d0y)

h
h
h
h
hj

(s0d0(g[y]), x)

and

∗�
�
�
�
�
��

(g, d0y)

∗u

(s0d1(g[y]−1), d2y)

h
h

h
h
h
hk

(g[y]−1, d1y)

�
�
�
�
�
��

(g[y]−1, ∗)
w

(g[y]−1, x) ∗

∗ ∗u

(s0d0(g[y]−1), d1y)

h
h
h
h
h
hj

(s0d0(g[y]−1), x)



6. Reduced simplicial sets, Milnor’s FK-construction 285

It follows that any generator (g[y], x) (respectively (g[y]−1, x) of πXη can be
replaced by a generator (g, d1y) (respectively (g, d0y)) of πXη up to multipli-
cation by elements of πT (X). In particular, any generator (h, x) of πXη can
be replaced up to multiplication by elements of πT (X) by a generator (h′, x′)
such that h′ has strictly smaller word length as an element of the free group
GX1. An induction on word length therefore shows that the groupoid πXη is
generated by the image of T (X). �
Remark 5.9. The object T (X) in the proof of Lemma 5.8 is the Serre tree
associated to the generating set X1 − {∗} of the free group GX0. See p.16 and
p.26 of [85].

An acyclic space which has a trivial fundamental group is contractible
in the sense that it is weakly equivalent to a point, by a standard Hurewicz
argument, so Lemmas 5.6 through 5.8 together imply the following:

Theorem 5.10. Suppose that X is a reduced simplicial set. Then the total
space Xη of the principal GX-fibration Xη → X is weakly equivalent to a
point.

Corollary 5.11. There are weak equivalences

GX
�−→ Xη ×X PX

�←− ΩX,

which are natural with respect to morphisms of reduced Kan complexes X.

6. Reduced simplicial sets, Milnor’s FK-construction.

The proof of Theorem 5.10 depends on an explicit geometric model for the space
Xη, and the construction of this model uses the assumption that the simplicial
set X is reduced. There is no such restriction on the loop group functor: GY is
defined for all simplicial sets Y . The geometric model for Xη can be expanded to
more general simplicial sets (see Kan’s paper), but Theorem 5.10 fails badly in
the non-reduced case: the loop group G(Δ1) on the simplex Δ1 is the constant
simplicial group on the free group Z on one letter, which is manifestly not
contractible. This sort of example forces us (for the time being — see Section
8) to restrict our attention to spaces with one vertex.

We now turn to the model category aspects of the loop group and W
functors.

Lemma 6.1. Let f : X → Y be a cofibration of simplicial sets. Then Gf :
GX → GY is a cofibration of simplicial groups. In particular, for all simplicial
sets X, GX is a cofibrant simplicial group.

Proof: This result is a consequence of Corollary 1.11.
Note that since s0Xn ⊆ Xn+1 there is an isomorphism of groups

GXn
∼= F (Xn+1 − s0Xn).
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Furthermore, for all i ≥ 0, the map si+1 : Xn → Xn+1 restricts to a map

si+1 : Xn − s0Xn−1 → Xn+1 − s0Xn

since si+1s0X = s0siX. Hence there is a diagram

GXn−1 w

∼=

u

si

F (Xn − s0Xn−1)

u

Fsi+1

GXn w

∼= F (Xn+1 − s0Xn)

and GX is almost free, hence cofibrant. For the general case, if X → Y is a
level-wise inclusion

Yn+1 − s0Yn = (Xn+1 − s0Xn) ∪ Zn+1

where Zn+1 = Yn+1 − (Xn+1 ∪ s0Yn). Thus

GYn
∼= GXn ∗ FZn+1

where the ∗ denotes the free product. Now si+1 : Yn → Yn+1 restricts to a map
si+1 : Zn → Zn+1 and, hence, the inclusion GX → GY is almost-free and a
cofibration. �

As a result of Theorem 5.10, Lemma 6.1 and a properness argument one
sees that G preserves cofibrations and weak equivalences between spaces with
one vertex. This suggests that the proper domain category for G — at least
from a model category point of view — is the category S0 of simplicial sets
with one vertex. Our next project then is to give that category a closed model
structure.

Proposition 6.2. The category S0 has a closed model category structure
where a morphism f : X → Y is a

1) a weak equivalence if it is a weak equivalence as simplicial sets;

2) a cofibration if it is a cofibration as simplicial sets; and

3) a fibration if it has the right lifting property with respect to all trivial
cofibrations.

The proof is at the end of the section, after we explore some consequences.

Proposition 6.3.

1) The functor G : S0 → sGr preserves cofibrations and weak equivalences.

2) The functor W : sGr → S0 preserves fibrations and weak equivalences.

3) Let X ∈ S0 and G ∈ sGr. Then a morphism f : GX → G is a weak
equivalence in sGr if only if the adjoint f∗ : X → WG is a weak
equivalence in S0.
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Proof: Part 1) follows from Lemma 6.1 and Theorem 5.10. For part 2) no-
tice that since W is right adjoint to a functor which preserves trivial cofibra-
tions, it preserves fibrations. The clause about weak equivalences follows from
Lemma 4.6 Finally, part 3), follows from Remark 5.4, Lemma 4.6, Theorem 5.10
and properness for simplicial sets.

Corollary 6.4. Let Ho(S0) and Ho(sGr) denote the homotopy categories.
Then the functors G and W induce an equivalence of categories

Ho(S0) ∼= Ho(sGr).

Proof: Proposition 6.3 implies that the natural maps ε : GWH → H and
η : X → WGX are weak equivalences for all simplicial groups H and reduced
simplicial sets X. �

Remark 6.5. If Ho(S)c ⊆ Ho(S) is the full sub-category of the usual homo-
topy category with objects the connected spaces, then the inclusion Ho(S0) →
Ho(S)c is an equivalence of categories. To see this, it is sufficient to prove if X
is connected there is a Y weakly equivalent to X with a single vertex. One way
is to choose a weak equivalence X → Z with Z fibrant and then let Y ⊆ Z be
a minimal subcomplex weakly equivalent to Z.

We next relate the fibrations in S0 to the fibrations in S.

Lemma 6.6. Let f : X → Y be a fibration in S0. Then f is a fibration in S if
and only if f has the right lifting property with respect to

∗ → S1 = Δ1/∂Δ1.

Proof: First suppose f is a fibration in S. Consider a lifting problem

Δ0
w

y

u

di

∗ w

u

X

u

f

Δ1
w S1

�
�
��

w Y.

(6.7)

Since f is a fibration in S, there is a map g : Δ1 → X solving the lifting
problem for the outer rectangle. Since X has one vertex g factors through the
quotient map,

Δ1 → Δ1/ sk0 Δ1 = S1 g−→X

and g solves the original lifting problem.
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Now suppose f has the stipulated lifting property. Then one must solve
all lifting problems

Λn
k w

y

u

X

u

Δn
w

�
�
��

Y.

If n > 1, this diagram can be expanded to

Λn
k w

y

u

Λn
k/ sk0 Λn

k w

u

X

u

f

Δn
w Δn/ sk0 Δn

w

�
�
��

Y.

The map
Λn

k/ sk0 Λn
k → Δn/ sk0 Δn

is still a trivial cofibration, now in S0. So the lift exists. If n = 1, the expanded
diagram is an instance of diagram (6.7), and the lift exists by hypothesis. �
Corollary 6.8. Let X ∈ S0 be fibrant in S0, then X is fibrant in S. In
particular, if G ∈ sGr, then WG is fibrant in S.

Proof: The first clause follows from the previous lemma. For the second, note
that every object of sGr is fibrant. Since W : sGr → S0 preserves fibrations,
WG is fibrant in S0. �
Corollary 6.9. Let f : X → Y be a fibration in S0 between fibrant spaces.
Then f is a fibration in S if and only if

f∗ : π1X → π1Y

is onto. In particular, if G → H is a fibration of simplicial groups, WG → WH
is a fibration of simplicial sets if and only if π0G → π0H is onto.

Proof: Consider a lifting problem

∗ w

u

X

u

S1

�
�
��

wα Y.
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This can be solved up to homotopy; that is there is a diagram

S1
w

u

d1

X

u

S1
w

d0
S1 ∧ Δ1

+ w
h Y.

where h · d0 = α. But d1 : S1 → S1 ∧ Δ1
+ is a trivial cofibration in S0 so the

homotopy h can be lifted to h̃ : S1 ∧ Δ1
+ → X and h̃ · d0 solves the original

lifting problem.
For the second part of the corollary, note that Corollary 2.7 and Lemma

4.6 together imply that π1WG ∼= π0G. �
We now produce the model category structure promised for S0. The follow-

ing lemma sets the stage. If X is a simplicial set, let #X denote the cardinality
of the non-degenerate simplices in X. Let ω be the first infinite cardinal.

Lemma 6.10.

1) Let A → B be a cofibration in S and x ∈ Bk a k-simplex. Then there is
a subspace C ⊆ B so that #C < ω and x ∈ C.

2) Let A → B be a trivial cofibration in S and x ∈ Bk a k-simplex. Then
there is a subspace D ⊆ B so that #D ≤ ω, x ∈ D and A ∩ D → D is
a trivial cofibration.

Proof: Part 1) is a reformulation of the statement that every simplicial set
is the filtered colimit of its finite subspaces. For part 2) we will construct an
expanding sequence of subspaces

D1 ⊆ D2 ⊆ · · · ⊆ B

so that x ∈ D1, #Dn ≤ ω and

πp(|Dn|, |Dn ∩ A|) → πp(|Dn+1|, |Dn+1 ∩ A|)
is the zero map. Then we can set D =

⋃
n

Dn.

To get D1, simply choose a finite subspace D1 ⊆ B with x ∈ D1. Now
suppose Dq, q ≤ n, have been constructed and satisfy the above properties. Let

α ∈ π∗(|Dn|, |Dn ∩ A|).
Since α maps to zero under

π∗(|Dn|, |Dn ∩ A|) → π∗(|B|, |A|)
there must be a subspace Dα ⊆ B, such that #D < ω and so that α maps to
zero under

π∗(|Dn|, |Dn ∩ A|) → π∗(|Dn ∪ Dα|, (Dn ∪ Dα) ∩ A|).
Set Dn+1 = Dn ∪ (

⋃
α

Dα). �
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Remark 6.11. The relative homotopy groups π∗(|B|, |A|) for a cofibration
i : A → B of simplicial sets are defined to be the homotopy groups of the
homotopy fibre of the realized map i∗ : |A| ↪→ |B|, up to a dimension shift. The
realization of a Kan fibration is a Serre fibration (Theorem I.10.10), so it follows
that these groups coincide up to isomorphism with the simplicial homotopy
groups π∗Fi of any choice of homotopy fibre Fi in the simplicial set category.
One can use Kan’s Ex∞ functor along with an analog of the classical method of
replacing a continuous map by a fibration to give a rigid construction of the Kan
complex Fi which satisfies the property that the assignment i �→ Fi preserves
filtered colimits in the maps i. The argument for part 2) of Lemma 6.10 can
therefore be made completely combinatorial. This observation becomes quite
important in contexts where functoriality is vital — see [38].

Lemma 6.12. A morphism f : X → Y in S0 is a fibration if and only if it has
the right lifting property with respect to all trivial cofibrations C → D in S0

with #D ≤ ω.

Proof: Consider a lifting problem

A w
a

u

j

X

u

f

B

�
�
��

w Y

where j is a trivial cofibration. We solve this by a Zorn’s Lemma argument.
Consider the set Λ of pairs (Z, g) where A ⊆ Z ⊆ B, A → Z is a weak
equivalence and g is a solution to the restricted lifting problem

A w
a

u

X

u

f

Z

�
�
��

w Y.

Partially order Λ by setting (Z, g) < (Z ′, g′) if Z ⊆ Z ′ and g′ extends g. Since
(A, a) ∈ Λ, Λ is not empty and any chain

· · · < (Zi, gi) < (Zi+1, gi+1) < · · ·

in Λ has an upper bound, namely (∪Zi,∪gi). Thus Λ satisfies the hypotheses of
Zorn’s lemma and has a maximal element (B0, g0). Suppose B0 �= B. Consider
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the diagram

B0 w

g0

u

i

X

u

f

B w Y.

Then i is a trivial cofibration. Choose x ∈ B with x �∈ B0. By Lemma 6.10.2
there is a subspace D ⊆ B with x ∈ D, #D ≤ ω and B0 ∩ D → D a trivial
cofibration. The restricted lifting problem

B0 ∩ D w

u

X

u

f

D

i
i
i
ij

w Y

has a solution, by hypotheses. Thus g0 can be extended over B0 ∪ D. This
contradicts the maximality of (B0, g0). Hence B0 = B. �
Remark 6.13. The proofs of Lemma 6.10 and Lemma 6.12 are actually stan-
dard moves. The same circle of ideas appears in the arguments for the closed
model structures underlying both the Bousfield homology localization theories
[8], [9] and the homotopy theory of simplicial presheaves [46], [51], [38]. We
shall return to this topic in Chapter IX.

The Proof of Proposition 6.2: Axioms CM1–CM3 for a closed model
category are easy in this case. Also, the “trivial cofibration-fibration” part of
CM4 is the definition of fibration. We next prove the factorization axiom CM5
holds, then return to finish CM4.

Let f : X → Y be a morphism in S0. To factor f as a cofibration followed
by a trivial fibration, use the usual small object argument with pushout along
cofibrations A → B in S0 with #B < ω to factor f as X

j−→Z
q−→Y where j

is cofibration and q is a map with the right lifting property with respect to all
cofibrations A → B with #B < ω. The evident variant on the Zorn’s lemma
argument given in the proof of Lemma 6.12 using 6.10.1 implies that q has
the right lifting property with respect to all cofibrations in S0. Hence q is a
fibration. We claim it is a weak equivalence and, in fact, a trivial fibration in
S. To see this consider a lifting problem

∂Δn w
y

u

Z

u

q

Δn
�
�
���

w Y.
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If n = 0 this has a solution, since Z0
∼= Y0. If n > 0, this extends to a diagram

∂Δn
w

y

u

∂Δn/ sk0(∂Δn) w

u

j

Z

u

q

Δn
w Δn/ sk0 Δn

�
�
���

w Y.

Since n ≥ 1, sk0(∂Δn) = sk0(Δn), so j is a cofibration between finite complexes
in S0 and the lift exists.

Return to f : X → Y in S0. To factor f as a trivial cofibration followed
by a fibration, we use a transfinite small object argument.

We follow the convention that a cardinal number is the smallest ordinal
number within a given bijection class; we further interpret a cardinal number
β as a poset consisting of strictly smaller ordinal numbers, and hence as a
category. Choose a cardinal number β such that β > 2ω.

Take the map f : X → Y , and define a functor X : β → S0 and a natural
transformation fs : X(s) → Y such that

(1) X(0) = X,
(2) X(t) = lim−→s<t

X(s) for all limit ordinals t < β, and

(3) the map X(s) → X(s + 1) is defined by the pushout diagram

∨
D

AD w

(αD)

u

∨iD

X(s)

u∨
D

BD w X(s + 1)

where the index D refers to a set of representatives for all diagrams

AD w

αD

u

iD

X(s)

u

fs

BD w Y

such that iD : AD → BD is a trivial cofibration in S0 with #BD ≤ ω.



6. Reduced simplicial sets, Milnor’s FK-construction 293

Then there is a factorization

X w

i0
�
�
�
��f

Xβ

u
fβ

Y

for the map f , where Xβ = lim−→s
X(s), and i0 : X = X(0) → Xβ is the

canonical map into the colimit. A pushout of a trivial cofibration in S0 is
a trivial cofibration in S0 because the same is true in S, so i0 is a trivial
cofibration. Also, any map A → Xβ must factor through one of the canonical
maps is : X(s) → Xβ if #A ≤ ω, for otherwise A would have too many
subobjects on account of the size of β. It follows that the map fβ : Xβ → Y is
a fibration of S0. This finishes CM5.

To prove CM4 we must show any trivial fibration f : X → Y in S0 has
the right lifting property with respect to all cofibrations. However, we factored
f as a composite

X
j−→Z

q−→Y

where j is a cofibration and q is a trivial fibration with the right lifting property
with respect to all cofibrations. Now j is a trivial cofibration, since f is a weak
equivalence. Thus there is a lifting in

X w
=

u
j

X

u
f

Z wq

�
�
��

Y

since f is a fibration. This shows f is a retract of q and has the requisite lifting
property, since q does. �

As an artifact of the proof we have:

Lemma 6.14. A morphism f : X → Y in S0 is a trivial fibration in S0 if and
only if it is a trivial fibration in S.

The Milnor FK construction associates to a pointed simplicial set K the
simplicial group FK, which is given in degree n by

FKn = F (Kn − {∗}),
so that FKn is the free group on the set Kn − {∗}. This construction gives a
functor from pointed simplicial sets to simplicial groups. The group FK is also
a loop group:
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Theorem 6.15. There is a natural isomorphism

G(ΣK) ∼= FK,

for pointed simplicial sets K.

Proof: Recall that ΣK denotes the Kan suspension of K. The group of n-
simplices of G(ΣK) is defined to be the quotient

G(ΣK)n = F (ΣKn+1)/F (s0ΣKn).

The map s0 : ΣKn → ΣKn+1 can be identified with the wedge summand
inclusion

Kn−1 ∨ · · · ∨ K0 ↪→ Kn ∨ Kn−1 ∨ · · · ∨ K0,

so that the composite group homomorphism

F (Kn)
ηn∗−−→ F (ΣKn+1) → F (ΣKn+1)/F (s0ΣKn)

can be identified via an isomorphism

F (ΣKn+1)/F (s0ΣKn) ∼= FKn (6.16)

with the quotient map

F (Kn) → F (Kn)/F (∗) ∼= FKn.

Recall that for θ : m → n, the map θ∗ : G(ΣK)n → G(ΣK)m is specified on
generators [x] by

θ∗([x]) = [θ̃∗(x)][(cθ)∗(d0(x))]−1.

But then

θ∗([ηn(x)]) = [θ̃∗(ηn(x))][(cθ)∗(d0(ηn(x)))]−1

= [θ̃∗(ηn(x))]
= [ηm(θ∗(x))],

since d0(ηn(x)) = ∗. It follows that the isomorphisms (6.16) respect the simpli-
cial structure maps. �

The proof of Theorem 6.15 is easy enough, but this result has important
consequences:

Corollary 6.17.

(1) The Milnor FK construction takes weak equivalences of pointed simpli-
cial sets to weak equivalences of simplicial groups.

(2) The simplicial group FK is a natural fibrant model for ΩΣK, in the
category of pointed simplicial sets.
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Proof: The first assertion is proved by observing that the Kan suspension
functor preserves weak equivalences; the loop group construction has the same
property by Theorem 5.10 (see Section III.5).

Let ΣK → Y be a fibrant model for ΣK in the category of reduced simpli-
cial sets. Then Y is a Kan complex which is weakly equivalent to ΣK, so that
ΩY is a model for ΩΣK. The loop group functor preserves weak equivalences,
so that the induced map G(ΣK) → GY is a weak equivalence of simplicial
groups. Finally, we know that GY is weakly equivalent to ΩY , so that G(ΣK)
and hence FK is a model for ΩΣK. �
7. Simplicial groupoids.
A simplicial groupoid G, for our purposes, is a simplicial object in the category
of groupoids whose simplicial set of objects is discrete. In other words, G con-
sists of small groupoids Gn, n ≥ 0 with a functor θ∗ : Gm → Gn for each ordinal
number map θ : n → m, such that all sets of objects Ob(Gn) coincide with a
fixed set Ob(G), and all functors θ∗ induce the identity function on Ob(G). Of
course, θ �→ θ∗ is also contravariantly functorial in ordinal number maps θ. The
set of morphisms from x to y in Gn will be denoted by Gn(x, y), and there is a
simplicial set G(x, y) whose n-simplices are the morphism set Gn(x, y) in the
groupoid Gn. We shall denote the category of simplicial groupoids by sGd.

The free groupoid G(X) on a graph X has the same set of objects as
X, and has morphisms consisting of reduced words in arrows of X and their
inverses. There is a canonical graph morphism η : X → G(X) which is the
identity on objects, and takes an arrow α to the reduced word represented by
the string consisting of α alone. Any graph morphism f : X → H taking values
in a groupoid H extends uniquely to a functor f∗ : G(X) → H, in the sense
that the following diagram commutes:

X w

f

u

η

H

G(X)
h
h
hhj

f∗

There is a similar construction of a free groupoid GC on a category C, which
has been used without comment until now. The groupoid GC is obtained by
the free groupoid on the graph underlying the category C by killing the nor-
mal subgroupoid generated by the composition relations of C and the strings
associated to the identity morphisms of C (see also Sections I.8 and III.1). The
category of groupoids has all small coproducts, given by disjoint unions. This
category also has pushouts, which are actually pushouts in the category of
small categories, so the category of groupoids is cocomplete. Note that filtered
colimits are formed in the category of groupoids as filtered colimits of sets on
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the object and morphism levels. The initial object in the category of groupoids
has an empty set of morphisms and an empty set of objects and is denoted by ∅.

It is also completely straightforward to show that the category of simplicial
groupoids has all small inverse limits.

Dwyer and Kan define [25], for every simplicial set X, a groupoid F ′X
having object set {0, 1}, such that the set of n-simplices Xn is identified with
a set of arrows from 0 to 1, and such that F ′Xn is the free groupoid on the
resulting graph.

The groupoid F ′K is morally the same thing as the Milnor construction,
for pointed simplicial sets K. If x denotes the base point of K, then there is a
homomorphism of simplicial groups

g : FK → F ′K(0, 0)

which is defined on generators y ∈ Kn − {x} by y �→ x−1y. Also, regarding
FK as a simplicial groupoid with one object, we see that there is a map of
simplicial groupoids

f : F ′K → FK

defined by sending x to e in all degrees and such that y ∈ Kn−{x} maps to the
arrow y. The collection of all products y−1z, y, z ∈ Kn, generates F ′K(0, 0) in
degree n, and so it follows that the composite simplicial group homomorphism

F ′K(0, 0)
f−→ FK

g−→ F ′K(0, 0)

is the identity. The composite

FK
g−→ F ′K(0, 0)

f−→ FK

sends y ∈ Kn to x−1y = y ∈ FKn, so the homomorphism g is an isomorphism.

Lemma 7.1. Suppose that K is a pointed simplicial set. Then the simplicial
sets F ′K(a, b), a, b ∈ {0, 1}, are all isomorphic to the Milnor FK construction.

Proof: The base point x of K determines an isomorphism x : 0 → 1 in the
groupoid F ′Kn for all n ≥ 0. Composition and precomposition with x therefore
determines a commutative diagram of simplicial set isomorphisms

F ′K(0, 0) w

x∗∼= F ′K(0, 1)

F ′K(1, 0) w

∼=
x∗

u

x∗ ∼=

F ′K(1, 1),

u

∼= x∗ (7.2)

and of course we’ve seen that F ′K(0, 0) ∼= FK. �
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Corollary 7.3. A weak equivalence f : X → Y of simplicial sets induces
weak equivalences f∗ : F ′X(a, b) → F ′Y (a, b) for all objects a, b ∈ {0, 1}.
Proof: We can suppose that X is non-empty. Pick a base point x in X, and
observe that the diagram (7.2) is natural in pointed simplicial set maps, as is the
isomorphism F ′X(0, 0) ∼= FX. We’ve seen that the Milnor FX construction
preserves weak equivalences in Corollary 6.17. �

For an ordinary groupoid H, it’s standard to write π0H for the set of path
components of H. By this one means that

π0H = Ob(H)/ ∼,

where there is a relations x ∼ y between two objects of H if and only if there
is a morphism x → y in H. This is plainly an equivalence relation since H is
a groupoid, but more generally π0H is the specialization of a notion of the set
of path components π0C for a small category C.

If now G is a simplicial groupoid, all of the simplicial structure functors
θ∗ : Gn → Gm induce isomorphisms π0Gn

∼= π0Gm. We shall therefore refer to
π0G0 as the set of path components of the simplicial groupoid G, and denote it
by π0G.

A map f : G → H of simplicial groupoids is said to be a weak equivalence
of sGd if

(1) the morphism f induces an isomorphism π0G ∼= π0H, and
(2) each induced map f : G(x, x) → H(f(x), f(x)), x ∈ Ob(G) is a weak

equivalence of simplicial groups (or of simplicial sets).

Corollary 7.3 says that the functor F ′ : S → sGd takes weak equivalences of
simplicial sets to weak equivalences of simplicial groupoids.

A map g : H → K of simplicial groupoids is said to be a fibration if

(1) the morphism g has the path lifting property in the sense for every object
x of H and morphism ω : g(x) → y of the groupoid K0, there is a
morphism ω̂ : x → z of H0 such that g(ω̂) = ω, and

(2) each induced map g : H(x, x) → K(g(x), g(x)), x ∈ Ob(H), is a fibration
of simplicial groups (or of simplicial sets).

According to this definition, every simplicial groupoid G is fibrant, since the
map G → ∗ which takes values in the terminal simplicial groupoid ∗ is a
fibration. A cofibration of simplicial groupoids is defined to be a map which has
the left lifting property with respect to all morphisms of sGd which are both
fibrations and weak equivalences.

Picking a representative x ∈ [x] for each [x] ∈ π0G determines a map of
simplicial groupoids

i :
⊔

[x]∈π0G

G(x, x) → G
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which is plainly a weak equivalence. But more is true, in that the simplicial
groupoid

⊔
[x]∈π0G G(x, x) is a deformation retract of G in the usual groupoid-

theoretic sense. To see this, pick morphisms ωy : y → x in G0 for each y ∈
[x] and for each [x] ∈ π0G, such that ωx = 1x for all the fixed choices of
representatives x of the various path components x. Then there is a simplicial
groupoid morphism

r : G →
⊔

[x]∈π0G

G(x, x),

which is defined by conjugation by the paths ωy, in that r(y) = x if and only
if y ∈ [x] for all objects y of G, and r : G(y, z) → G(x, x) is the map sending
α : y → z to the composite ωzαω−1

y ∈ G(x, x) for all y, z ∈ [x], and for each
[x] ∈ π0G. The morphisms ωy also determine a groupoid homotopy

h : G × I → G

where I denotes the free groupoid on the ordinal number (category) 1. This
homotopy is from the identity on G to the composite ir, and is given by the
obvious conjugation picture. It follows that the maps r and i are weak equiva-
lences of simplicial groupoids.

The choices of the paths which define the retraction map r are non-
canonical and fail to be natural with respect to morphisms of simplicial group-
oids, except in certain useful isolated cases.

Lemma 7.4. Suppose that A is a connected simplicial groupoid, and that the
morphism j : A → B of simplicial groupoids is a bijection on the object level.
Pick an object x of A. Then all squares in the diagram

A(x, x) w
i

u

j

A w
r

u

j

A(x, x)

u

j

B(jx, jx) w

i
B wr B(jx, jx)

are pushouts of simplicial groupoids.

Proof: The paths ωy : y → x in A (with ωx = 1x) are used to define both
retraction maps r in the diagram (so it makes sense), and the top and bottom
horizontal compositions are the identity.

It suffices to show that the diagram

A(x, x) w
i

u

j

A

u

j

B(jx, jx) w

i
B
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is a pushout. But any commutative diagram

A(x, x) w
i

u

j

A

u

f

B(jx, jx) wg D

completely determines a function h : Ob(B) → Ob(D), since i is a bijection on
the object level, and then a simplicial groupoid map h : B → D is specified
by the observation that every morphism α : v → w of B has a representation
α = i(ωw)−1θi(ωv), where θ is a uniquely determined morphism jx → jx. �

Write F ′∂Δ0 to denote the discrete simplicial groupoid on the object set
{0, 1}, and write F ′Λ0

0 to denote the terminal groupoid ∗. The statement of
Lemma 7.4 fails for the map j : F ′Λ0

0 → F ′Δ0, precisely because the object
sets do not agree.

Lemma 7.5. Suppose that

F ′Λn
k w

u

j

C

u

j∗

F ′Δn
w D

is a pushout in the category of simplicial groupoids. Then the map j∗ is a weak
equivalence.

Proof: The simplicial groupoid F ′Λ0
0 is a strong deformation retraction of

F ′Δ0 on the groupoid level, and such strong deformation retractions are closed
under pushout in the category of simplicial groupoids. The maps involved in a
strong deformation retraction are weak equivalences of simplicial groupoids.

If n ≥ 1, it is harmless to suppose that C is connected. The maps j and j∗
are bijective on the object level, so that Lemma 7.4 applies, to give a composite
pushout diagram

F ′Λn
k (0, 0) w

i

u

j

F ′Λn
k w

u

j

C w
r

u

j∗

C(x, x)

u

j∗

F ′Δn(0, 0) w

i
F ′Δn

w D wr D(j∗x, j∗x)

The composite square is a pushout in the category of simplicial groups, so that
the map j∗ : C(x, x) → D(j∗x, j∗x) is a weak equivalence. �
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Theorem 7.6. With the definitions of weak equivalence, fibration and cofibra-
tion given above, the category sGd of simplicial groupoids satisfies the axioms
for a closed model category.

Proof: Only the factorization axiom has an interesting proof. A map of sim-
plicial groupoids f : G → H is a fibration if and only if it has the right lifting
property with respect to all morphisms F ′Λn

k → F ′Δn, 0 ≤ k ≤ n, and f is a
trivial fibration (aka. fibration and weak equivalence) if and only if it has the
right lifting property with respect to all morphisms F ′∂Δn → F ′Δn, n ≥ 0,
and the morphism ∅ → ∗ (compare [25]). We can therefore use a small object
argument to show that every simplicial groupoid morphism g : K → L has
factorizations

Nh
hhjp

K

�
�
��i

h
hhjj

w

g
L

M

�
�
��
q

where p is a fibration and i has the left lifting property with respect to all
fibrations, and q is a trivial fibration and j is a cofibration. Lemma 7.5 further
implies that i is a weak equivalence.

The proof of the lifting axiom CM4 is a standard consequence of the
proof of the factorization axiom: any map which is both a cofibration and a
weak equivalence (ie. a trivial cofibration) is a retract of a map which has the
left lifting property with respect to all fibrations, and therefore has that same
lifting property. �

There is a simplicial set WG for a simplicial groupoid G that is defined
by analogy with and extends the corresponding object for a simplicial group.
Explicitly, suppose that G is a simplicial groupoid. An n-cocycle X : Seg(n) 	
G associates to each object [k, n] an object Xk of G, and assigns to each relation
τ : [j, n] ≤ [k, n] in Seg(n) a morphism X(τ) : Xj → Xk in Gn−j , such that
the following conditions hold:

(1) X(1j) = 1Xj ∈ Gn−j , where 1j is the identity relation [j, n] ≤ [j, n],

(2) for any composeable pair of relations [l, n]
ζ−→ [k, n]

τ−→ [j, n], there is a
commutative diagram

Xl w

X(ζ)
�
�
���X(τζ)

Xk

u
ζ∗X(τ)

Xj

in the groupoid Gn−l.
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Suppose that θ : m → n is an ordinal number map. As before, θ induces
a functor θ∗ : Seg(m) → Seg(n), which is defined by sending the morphism
τ : [k,m] → [j,m] to the morphism τ∗ : [θ(k), n] → [θ(j), n]. “Composing” the
n-cocycle X : Seg(n) 	 G with θ∗ gives a cocycle θ∗X : Seg(m) 	 G, defined
for each relation τ : [k,m] ≤ [j,m] in Seg(m), (and in the notation of (4.2)) by
the morphism

θ∗X(τ) = θ∗k(X(τ∗)) : Xθ(k) → Xθ(j).

of Gm−k The assignment θ �→ θ∗ is contravariantly functorial in ordinal maps θ.
We have therefore constructed a simplicial set whose n-simplices are the

n-cocycles Seg(n) 	 G, and whose simplicial structure maps are the induced
maps θ∗. This simplicial set of G-cocycles is WG. In particular, an n-cocycle
X : Seg(n) 	 G is completely determined by the string of relations

[n, n]
τ0−→ [n − 1, n]

τ1−→ . . .
τn−2−−−→ [1, n]

τn−1−−−→ [0, n],

and the corresponding maps

Xn

X(τ0)−−−→ Xn−1

X(τ1)−−−→ Xn−2 → · · · → X1

X(τn−1)−−−−−→ X0.

Each τi is an instance of the map d0, and X(τi) is a morphism of the groupoid
Gi. Note, in particular, that the ith vertex of the cocycle X : Seg(n) 	 G is
the object Xi of G: this means that Xi can be identified with the “cocycle”
i∗X, where i : 0 → n.

Suppose that θ : m → n is an ordinal number map, and let g denote the
string of morphisms

Xn

g0−→ Xn−1

g1−→ Xn−2 → · · · → X1

gn−1−−−→ X0

in G, with gi a morphism of Gi. Let Xg be the cocycle Seg(n) 	 G associated
to the n-tuple g. Then, subject to the notation appearing in diagram (4.2),
θ∗Xg is the string

Xθ(m)

θ∗
mXg(τ0∗)

−−−−−−−→ Xθ(m−1) → · · · → Xθ(1)

θ∗
1Xg(τm−1∗)

−−−−−−−−→ Xθ(0).

This definition specializes to the cocycle definition of WG in the case where G
is a simplicial group.

A simplicial map f : X → WG assigns to each n-simplex x a cocycle
f(x) : Seg(n) 	 G, such that for each ordinal number map θ : m → n and
each map τ : [k,m] → [j,m] in Seg(m) there is a relation

θ∗kf(x)(τ∗) = f(θ∗(x))(τ).
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Furthermore, f(x) is determined by the string of maps

f(xn)
f(x)(τ0)−−−−−→ f(xn−1)

f(x)(τ1)−−−−−→ f(xn−2) → · · · → f(x1)
f(x)(τn−1)−−−−−−−→ f(x0),

in G, where xi is the ith vertex of x, and τn−i is the map τn−i = d0 : [i, n] →
[i− 1, n] of Seg(n). By the simplicial relations, f(x)(τn−i) = f(di−1

0 (x))(τn−i),
so that the simplicial map f : X → WG is completely determined by the
morphisms

f(x)(d0 = τn−1 : [1, n] → n) : f(x1) → f(x0)

in Gn−1, x ∈ X. In alternate notation then, the cocycle f(x) is given by the
string of morphisms

f(xn)
f(dn−1

0 x)(d0)

−−−−−−−−→ f(xn−1) → . . .
f(d0x)(d0)−−−−−−−→ f(x1)

f(x)(d0)−−−−−→ f(x0)

in G.
The morphism f(s0x)(d0) is the identity on f(x0). We now can define

a groupoid GXn to be the free groupoid on generators x : x1 → x0, where
x ∈ Xn+1, subject to the relations s0x = 1x0 , x ∈ Xn. The objects of this
groupoid are the vertices of X. Following the description of the loop group
from a previous section, we can define a functor θ∗ : GXn → GXm for each
ordinal number morphism θ : m → n by specifying that θ∗ is the identity
on objects, and is defined on generators [x], x ∈ Xn+1, by requiring that the
following diagram commutes:

xθ(0)+1 w

[(cθ)∗d0x]
�
�
�
�
���[θ̃∗(x)]

x1

u

θ∗[x]

x0,

or rather that
θ∗[x] = [θ̃∗(x)][(cθ)∗d0x]−1.

One checks, as before, that this assignment is functorial in ordinal number
morphisms θ, so that the groupoids GXn, n ≥ 0, and the functors θ∗ form a
simplicial groupoid GX, which we call the loop groupoid for X.

Any n-simplex x of the simplicial set X determines a string of morphisms

xn

[dn−1
0 x]

−−−−−→ xn−1 −→ . . .
[d0x]−−−→ x1

[x]−→ x0

in GX, which together determine a cocycle η(x) : Seg(n) 	 GX in the sim-
plicial groupoid GX. The calculations leading to Lemma 5.3 also imply the
following:
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Lemma 7.7.

(a) The assignment x �→ η(x) defines a natural simplicial map η : X →
WGX.

(b) The map η is one of the canonical homomorphisms for an adjunction

homsGd(GX,H) ∼= homS(X,WH),

where sGd denotes the category of simplicial groupoids.

Here’s the homotopy theoretic content of these functors:

Theorem 7.8.

(1) The functor G : S → sGd preserves cofibrations and weak equivalences.

(2) The functor W : sGd → S preserves fibrations and weak equivalences.

(3) A map K → WX ∈ S is a weak equivalence if and only if its adjoint
GK → X ∈ sGd is a weak equivalence.

Proof: The heart of the matter for this proof is statement (2). We begin by
showing that W preserves weak equivalences.

Suppose that A is a simplicial groupoid, and choose a representative x for
each [x] ∈ π0A. Recall that the inclusion

i :
⊔

[x]∈π0A

A(x, x) → A

is a homotopy equivalence of simplicial groupoids in the sense that there is a
groupoid map

r : A →
⊔

[x]∈π0A

A(x, x)

which is determined by paths, such that ri is the identity and such that the
paths defining r determine a groupoid homotopy

h : A × I → A

from the identity on A to the composite morphism ir. The object I is the
constant simplicial groupoid associated to the groupoid having two objects 0, 1
and exactly one morphism a → b for any a, b ∈ {0, 1}. One sees that WI =
BI and that W preserves products. It follows that the groupoid homotopy h
induces a homotopy of simplicial sets from the identity on WA to the composite
map Wi · Wr, and so Wi is a weak equivalence. If f : A → B is a weak
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equivalence of simplicial groupoids, then f induces an isomorphism π0A ∼= π0B,
and there is a commutative diagram of simplicial groupoid maps

⊔
x∈π0A

A(x, x) w

u

i

⊔
x∈π0A

B(f(x), f(x))

u

i

A w B

in which the vertical maps are homotopy equivalences. To see that Wf is a
weak equivalence, it therefore suffices to show that W takes the top horizontal
map to a weak equivalence. But W preserves disjoint unions, and then one uses
the corresponding result for simplicial groups (ie. Proposition 6.3).

To show that W preserves fibrations, we have to show that a lifting exists
for all diagrams

Λn
k w

α

y

u

WA

u

Wf

Δn
w

β
WB,

(7.9)

given that f : A → B is a fibration of sGd. We can assume that A and B are
connected. The lifting problem is solved by the path lifting property for f if
n = 1.

Otherwise, take a fixed x ∈ A0 and choose paths ηi : yi → x in A0, where
yi is the image of the ith vertex in Λn

k . Note that the vertices of Λn
k coincide with

those of Δn, since n ≥ 2. These paths, along with their images in the groupoid
B0 determine “cocycle homotopies” from the diagram (7.9) to a diagram

Λn
k w

α′

y

u

WA(x, x)

u

Wf

Δn
w

β′

B
B
B
B
BBCγ

WB(f(x), f(x)).

(7.10)

More explicitly, if the simplicial set map β is determined by the string of
morphisms

f(yn)
gn−1−−−→ f(yn−1)

gn−2−−−→ f(yn−2) → · · · → f(y1)
g0−→ f(y0)
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in B, then the cocycle homotopy from β to β′ is the diagram

f(yn) w

gn−1

u

f(ηn)

f(yn−1) w

gn−2

u

f(ηn−1)

. . . w

g1 f(y1) w

g0

u

f(η1)

f(y0)

u

f(η0)

f(x) w

hn−1
f(x) w

hn−2
. . . w

h1
f(x) w

h0
f(x)

where hi = f(ηi)gif(ηi+1)−1, and β′ is defined by the string of morphisms hi.
The cocycle β′ is a cocycle conjugate of β, in an obvious sense.

The indicated lift exists in the diagram (7.10), because the simplicial set
map Wf : A(x, x) → B(f(x), f(x)) satisfies the lifting property for n ≥ 2 (see
the proof of Lemma 6.6). The required lift for the diagram (7.9) is cocycle
conjugate to γ.

We have therefore proved statement (2) of the theorem. An adjointness
argument now implies that the functor G preserves cofibrations and trivial
cofibrations. Every weak equivalence K → L of simplicial sets can be factored
as a trivial cofibration, followed by a trivial fibration, and every trivial fibration
in S is left inverse to a trivial cofibration. It follows that G preserves weak
equivalences, giving statement (1).

Statement (3) is proved by showing that the unit and counit of the ad-
junction are both weak equivalences. Let A be a simplicial groupoid. To show
that the counit ε : GWA → A is a weak equivalence, we form the diagram

GW (
⊔

x∈π0A

A(x, x)) w
ε

u

GWi

⊔
x∈π0A

A(x, x)

u

� i

GWA wε A,

where we note that GWi is a weak equivalence by statements (1) and (2).
The functors G and W both preserve disjoint unions, so it’s enough to show
that the simplicial group map ε : GWA(x, x) → A(x, x) is a weak equivalence,
but this is the traditional result for simplicial groups (Proposition 6.3; see also
Corollary 6.4).

Let K be a simplicial set. To show that the unit η : K → WGK is a
weak equivalence, it suffices to assume that K is a reduced Kan complex, by
statements (1) and (2). Now apply Proposition 6.3. �
Corollary 7.11. The functors G and W induce an equivalence of homotopy
categories

Ho(sGd) � Ho(S).
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Towers of fibrations are everywhere. The homotopy spectral sequence for a
tower of fibrations is a fundamental device in modern homotopy theory and its
applications in other fields such as algebraic K-theory, while Postnikov towers
and the analysis of k-invariants are basic classical themes. These are the major
objects of study of this chapter.

We begin in Section 1 by describing an approach to constructing homo-
topy inverse limits of towers: a closed model structure of towers of spaces is
introduced, for which towers of fibrations between Kan complexes are the fi-
brant objects. The homotopy inverse limit of a tower can then be defined as
the inverse limit of an associated fibrant model — this is a special case of a
general concept which is more fully described in Chapters VIII and X.

Section 2 contains a description of the homotopy spectral sequence of a
tower of fibrations of Kan complexes

X0 ← X1 ← X2 ← · · ·
The controlling idea is that the long exact sequences in homotopy for each of
the fibrations in the tower can be pieced together in a canonical way to give
a spectral sequence, which converges in well behaved cases to the homotopy
groups of the inverse limit of the tower.

That said, this spectral sequence involves non-abelian groups and pointed
sets, so its homological behaviour can be difficult to analyze in general. It is also
“fringed”as a result of the fact that the induced maps π0Xs → π0Xs−1 are not
necessarily surjective functions. Further, the general question of convergence of
such spectral sequences is famously difficult: we give the usual partial answer
here (the “complete convergence lemma”, Lemma 2.20), and then consider
the problem further in a discussion of Bousfield’s obstruction theory for the
homotopy spectral sequence for a cosimplicial space in Chapter VIII. This
spectral sequence for a cosimplicial space occurs quite naturally in descriptions
of homotopy theoretic resolutions, and is one of the most widely used tools in
modern homotopy theory: it is the subject of Chapter VIII, and its construction
depends in part on the material presented here.

The Postnikov tower construction gives a method of breaking up a space
X into a collection of spaces X(n), n ≥ 0, such that X(n) carries the homotopy
groups of X up to level n, along with a tower of fibrations X(n) → X(n − 1)
each of which gives a calculus of adding the nth homotopy group of X to
X(n− 1) to create the space X(n). We’ve already seen an application, namely
the proof of the Hurewicz theorem in Section III.3. Section 3 of this chapter
contains a formal introduction to Postnikov towers, both for spaces and maps.
The construction is the standard one for simplicial sets, which is due to Moore.

In many applications, say in rational homotopy theory or more generally
in the theory of R-completions and localizations, one is presented with a suite
of results which says
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1) Eilenberg-Mac Lane spaces have property P,
2) If X → Y is a principal K(A,n)-fibration and Y has property P, then

so does X, and
3) If · · · → X1 → X0 → ∗ is a tower of fibrations such that all Xi have

property P, then so does lim←−Xi.

This gives a method of inferring that a certain class of spaces X has property
P, which involves “crawling up a Postnikov tower” or some refinement thereof
provided that all of the fibrations in the tower are principal fibrations, at least
up to homotopy equivalence. There is a good class of spaces for which this yoga
works, namely nilpotent spaces, and the method for establishing it involves a
careful analysis of k-invariants.

For us, a k-invariant is a map

kn : X(n − 1) → holim−−−→
Γ

K(πnX,n + 1)

for a connected space X, taking values in a homotopy colimit arising from the
action of the fundamental groupoid Γ on the homotopy group πnX. This map
is implicitly fibred over the classifying space BΓ of the fundamental groupoid
Γ, and can be interpreted as a representative of a class in a suitably defined
equivariant cohomology group Hn+1

Γ (X(n − 1), πnX). The main point overall
(Proposition 5.1) is that the fibration X(n) → X(n−1) in the Postnikov tower
for X sits in a homotopy cartesian diagram

X(n) w

u

holim−−−→
Γ

L(πnX,n + 1)

u

p∗

X(n − 1) w

kn
holim−−−→

Γ

K(πnX,n + 1)

where the map p∗ is induced by a natural (hence equivariant) contractible
covering L(πnX,n+1) → K(πnX,n+1) of the space K(πnX,n+1). From this,
it’s pretty much immediate (Corollary 5.3) that the fibration X(n) → X(n−1)
is homotopy equivalent to a principal K(πn, n)-fibration if the fundamental
group acts trivially on πnX. Similarly, if X is nilpotent then the covering
L(πnX,n+1) → K(πn, n+1) has a finite refinement by fibrations that induce
principal fibrations after taking homotopy colimit (Proposition 6.1), giving the
refined Postnikov tower for a nilpotent space.

This collection of results is the subject of the last three sections of this
chapter. The main techniques involve relating homotopy classes of maps

[X,holim−−−→
Γ

K(A,n)]
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fibred over the classifying space BΓ of a groupoid Γ to equivariant cohomology
in various forms (Theorems 4.10, 4.11) — this is the subject of Section 4, along
with some formalities about equivariant homotopy theory. The introduction of
k-invariants and the proofs of their main properties occupy Section 5, and we
construct the refined Postnikov tower for a nilpotent space in Section 6.

1. A model category structure for towers of spaces.

The purpose of this section is to introduce the structure of a simplicial model
category on the category tow(S) of towers of simplicial sets. This will have
implications for Postnikov systems as well as allowing us to define homotopy
inverse limits for towers of spaces.

Let C be a category having an adequate supply of inverse limits, and let
tow(C) denote the category of towers in C. An object in tow(C) is a diagram

· · · → Xn → Xn−1 → · · · → X1 → X0

in C, and a morphism in tow(C) is a morphism of diagrams; that is, a “com-
mutative ladder”. It will be convenient to write X for a tower {Xn}

First notice that if C is a simplicial category, then tow(C) is a simplicial
category. Indeed if X ∈ tow(C) and K ∈ S, let

X⊗ K = {Xn ⊗ K}

and
hom(K,X) = {homC(K,Xn)}.

Then tow(C) is a simplicial category with

Hom(X,Y)n = hom(X⊗ Δn,Y).

The subscript in the last equation is the simplicial degree.

Definition 1.1. Define a morphism f : X → Y in tow(C) to be

1) a weak equivalence if fn : Xn → Yn is a weak equivalence for all n ≥ 0;

2) a cofibration if fn : Xn → Yn is a cofibration for all n ≥ 0; and

3) a fibration if f0 : X0 → Y0 is a fibration and for all n ≥ 1, the induced
map

Xn → Yn ×Yn−1 Xn−1

is a fibration.

A useful preliminary lemma is:

Lemma 1.2. Let q : X → Y be a fibration in tow(C). Then for all n ≥ 0,
qn : Xn → Yn is a fibration.
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Proof: This is true if n = 0. If it is true for n − 1, contemplate the induced
diagram

Xn w

pn

�
�
�
���qn

Yn ×Yn−1 Xn−1

u
qn

w Xn−1

u
qn−1

Yn w Yn−1

The morphism pn is a fibration by hypothesis; the morphism qn is a fibration
because the pullback of a fibration is a fibration. So qn is a fibration. �
Proposition 1.3. With these definitions, tow(C) becomes a simplicial model
category.

Proof: Axioms CM1–CM3 are obvious. Suppose given a lifting problem in
tow(C)

A w

uj

X
u
q

B w Y

with j a cofibration and q a fibration. If j is also a weak equivalence, one can
recursively solve the lifting problem

An w

uj

Xn

u

Bn w

�
�
���

Yn ×Yn−1 Xn−1

(1.4)

to solve the lifting problem in tow(C). If q is a weak equivalence, the pullback
diagram

Yn ×Yn−1 Xn−1 w

uq′
n

Xn−1

u
qn−1

Yn w Yn−1

shows q′n is a trivial fibration, since qn−1 is a fibration and a weak equivalence.
Hence Xn → Yn ×Yn−1 Xn−1 is a trivial fibration and we can again recursively
solve the lifting problem of (1.4). This proves CM4.

To prove CM5 fix a morphism f : X → Y. To factor f as a cofibration
followed by a trivial fibration, proceed inductively as follows. First, factor f0 :
X0 → Y0 as a cofibration followed by a trivial fibration

X0

j0−→ Z0

q0−→ Y0.
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Then, having factored through level n − 1, consider the induced maps

Xn w

pn Zn−1 ×Yn−1 Yn

u

w

qn−1
Yn

u

Zn−1 wqn−1
Yn−1.

Since qn−1 is a trivial fibration so is qn−1. Factor pn as

Xn

jn−→ Zn

q′
n−→ Zn−1 ×Yn−1 Yn

where jn is a cofibration and q′n is a trivial fibration, so that the composite map
qn = qn−1q

′
n is a trivial fibration. The other factoring is similar, but easier.

Finally, SM7 is equivalent to SM7b (Corollary II.3.12), which is obvious
in this case. �
Remark 1.5.

1) If every object of C is cofibrant, then every object of tow(C) is cofibrant.
This applies, for example, if C is the category S of simplicial sets or the
pointed simplicial set category S∗.

2) The fibrant objects of tow(C) are the ones where X0 is fibrant in C and
every qn : Xn → Xn−1 is a fibration.

Remark 1.6. The model structure of Proposition 1.3 extends easily to bigger
towers. Suppose that β is a limit ordinal, and identify it with a poset. A β-
tower is a simplicial set-valued functor X : βop → S which is contravariant on
β. Say that a map f : X → Y between β-towers is a cofibration (respectively
weak equivalence) if the maps f : Xs → Ys are cofibrations (respectively weak
equivalences) for s < β. A map g : Z → W is a fibration if the following
conditions hold:

1) the map g : Z0 → W0 is a fibration,
2) for all ordinals s < β the induced map Zs+1 → Ws+1 ×Ws Zs is a

fibration, and
3) for all limit ordinals α < β the map

Zα → Wα ×(lim←−
s<α

Ws) (lim←−
s<α

Zs)

is a fibration.

With these definitions, the category of β-towers satisfies the conditions for
a simplicial model category. This model structure could be arrived at in a
different way, by using the model structure for βop-diagrams of simplicial sets
which appears in Section IX.5 below, but that method does not produce the
completely explicit description of fibration that you see here.
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The notion of homotopy inverse limit is extremely flexible. Here is one of
its equivalent formulations for towers:

Definition 1.7. Let X ∈ tow(C). Choose a weak equivalence X → Y where
Y is fibrant in tow(C). The homotopy inverse limit holim←−−− X of the tower X is

defined to be the inverse limit lim←− Y of the tower Y.

As usual, holim←−−− X is well-defined and functorial up to homotopy; in-
deed, holim←−−−(·) is the total right derived functor of lim←−(·). Notice that lim←−(·) :
tow(C) → C is right adjoint to the constant tower functor, which preserves
cofibrations and weak equivalences, so lim←−(·) preserves fibrations and trivial
fibrations and hence preserves weak equivalences between fibrant objects. Fur-
thermore if X → X′ is a weak equivalence, holim←−−− X → holim←−−− X′ is a weak
equivalence. It is this invariance property that justifies the name homotopy
inverse limit.

Exercise 1.8 (Homotopy pullbacks). Let I be the category with objects
1, 2, and 12 and non-identity morphisms as follows:

1 → 12 ← 2.

If C is a category, let CI denote the resulting diagram category. An object in
CI is a diagram

Y2

u

Y1 w Y12

in C. Suppose C is a simplicial model category. Then CI becomes a simplicial
model category with, for K ∈ S,

⎛⎜⎜⎝ Y2

u

Y1 w Y12

⎞⎟⎟⎠⊗ K =
Y2 ⊗ K

u

Y1 ⊗ K w Y12 ⊗ K.

The techniques of this section can be adapted to prove the following:

Theorem 1.9. The category CI is a simplicial model category with a mor-
phism

X1

u

f1

w X12

u

f12

X2u

u

f2

Y1 w Y12 Y2u
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1) a weak equivalence if f1, f2, and f12 are;

2) a cofibration if f1, f2, and f12 are; and

3) a fibration if f12 : X12 → Y12 is a fibration and for i = 1, 2 the induced
maps

Xi → X12 ×Y12 Yi

are fibrations.

A crucial lemma is:

Lemma 1.10. If a morphism f : X• → Y• in CI is a trivial fibration, then the
induced maps

Xi → X12 ×Y12 Yi

are trivial fibrations.

Note the fibrant objects in CI are those diagrams

Y1 → Y12 ← Y2

with Y12 fibrant and Yi → Y12 a fibration.
If X• ∈ CI is a diagram, define the homotopy pullback by taking the actual

pullback of a fibrant replacement. This has the usual homotopy invariance
properties, much as after Definition 1.7. Prove that if C is a proper model
category and

Y1 → Y12 ← Y2

is a diagram with Y12 fibrant and one of Y1 → Y12 or Y2 → Y12 a fibration,
then Y1 ×Y12 Y2 is weakly equivalent to the homotopy pullback.

Here is another description of the homotopy inverse limit of a tower that
is often useful for computations. Fix a simplicial model category C and write,
for X ∈ C,

D : homC(Δ1,X) → homC(∂Δ1,X) ∼= X × X.

Then define, for a tower X = {Xn} ∈ tow(C), the object T (X) ∈ C by the
pullback diagram

T (X) w

u

∏
n

hom(Δ1,Xn)

u

∏
Dn∏

n

Xn w

(1,q)

∏
n

Xn × Xn

(1.11)
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where (1, q) is the product of the maps

∏
n

Xn → Xn × Xn+1

1×qn−−−→ Xn × Xn.

Lemma 1.12. Let X = {Xn} ∈ tow(C) be a tower so that each Xn is fibrant
in C. Then there is a weak equivalence

T (X) � holim←−−−X.

Proof: The functor T : tow(C) → C has a left adjoint defined as follows. Note
that specifying a map f : Y → T (X) is equivalent to specifying a sequence of
maps gn : Y → Xn and right homotopies

Y → hom(Δ1,Xn)

between gn and qn+1 · gn+1. Define [0,∞) ∈ S to be the simplicial “half-line”;
thus [0,∞) has non-degenerate 1-simplices [n, n + 1], 0 ≤ n < ∞, and d0[n −
1, n] = d1[n, n + 1]. Let [n,∞) ⊆ [0,∞) be the evident sub-complex. Then the
left adjoint to T is given by the functor F (·):

F (Y ) = {Y ⊗ [n,∞)}.

Since this left adjoint preserves cofibrations and weak equivalences among cofi-
brant objects, F (·) has a total left derived functor LF . But the unique maps
[n,∞) → ∗ induces a weak equivalence F (Y ) → {Y }n≥0 from F (Y ) to the
constant tower for Y cofibrant, so LF : Ho(C) → Ho(tow(C)) is the total left
derived functor of the constant tower functor.

The functor T preserves fibrations, since it is right adjoint to a functor
that preserves trivial cofibrations; T also preserves weak equivalences between
objects X = {Xn} where Xn is fibrant for each n. This is because∏

Dn :
∏
n

hom(Δ1,Xn) →
∏
n

Xn × Xn

is a fibration, so we may apply the definition and homotopy invariance property
of homotopy pullback given in Exercise 1.8. Thus T has a total right derived
functor RT : Ho(tow(C)) → Ho(C), right adjoint to LF . However, LF is the
total left derived functor of the constant diagram functor; hence, by uniqueness
of adjoints

RT ∼= holim←−−− : Ho(tow(C)) → Ho(C).

Since T preserves weak equivalences among objects X = {Xn} with all Xn

fibrant one has for such X, holim←−−−X � RT (X) � T (X). �
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2. The spectral sequence of a tower of fibrations.

Given a tower of pointed fibrations, the exact sequences in homotopy give rise
to a spectral sequence, which is introduced in this section.

There are a number of problems with this spectral sequence. First, there
is the problem that π0 and π1 are not generally abelian groups; second, the
spectral sequence need not converge to anything homotopical; third, the spec-
tral sequence is “fringed” in the sense that E∞ can contain extra elements; and,
fourth, the E2 term may not have a sensible description in terms of homological
algebra.

We analyze these difficulties in turn. The first two difficulties are addressed
in this section, and a homological description of the E2 term and the fringing
effect are both considered in the case of cosimplicial spaces in Chapter VIII.

Let

· · · w Xs w

ps Xs−1 w · · · w X1 w

p1 X0 w ∗

Fs

u

is

Fs−1

u

is−1

F1

u

i1

F0

be a tower of pointed fibrations, with Fs the fibre of ps. Write

X = lim←−
s

Xs.

Applying homotopy groups to each of the fibre sequences yields

· · · w π∗Xs w

ps∗ π∗Xs−1 w

i
i
ik

∂

· · · w
i
i
ik

π∗X1 w
p1∗ π∗X0
i

i
ik

∂

π∗Fs

u

is∗

π∗Fs−1

u

π∗F1

u

i1∗

π∗F0

where each of the dotted maps is of degree −1. This gives an exact couple and
hence a spectral sequence. We will be explicit because π1 is not abelian and
because

π1Xs−1 → π0Fs → π0Xs → π0Xs−1

is exact only in the sense of pointed sets, with the additional proviso that the
action of π1Xs−1 on π0Fs extends to an injection of sets

∗ → π0Fs/π1Xs−1 → π0Xs.



316 VI. The homotopy theory of towers

Note that π0Xs → π0Xs−1 need not be onto, although the pre-image of the
basepoint is π0Fs/π1Xs−1.

The spectral sequence is now defined as follows. Let

πiX
(r)
s = im(πiXs+r → πiXs) ⊆ πiXs, (2.1)

and for t − s ≥ 0, let

Zs,t
r = Ker(πt−sFs → πt−sXs/πt−sX

(r−1)
s ). (2.2)

Then let
Bs,t

r = Ker(πt−s+1Xs−1 → πt−s+1Xs−r). (2.3)

Then we set
Es,t

r = Zs,t
r /Bs,t

r (2.4)

where this formula must be interpreted: if t − s ≥ 1 and ∂ : πt−s+1Xs−1 →
πt−sFs is the connecting homomorphism, ∂Bs,t

r ⊆ Zs,t
r is a normal subgroup

and Es,t
r is the quotient group, and if t − s = 0, Bs,t

r acts on Zs,t
r and Es,t

r is
the set of orbits. Define differentials for t − s ≥ 1

dr : Es,t
r → Es+r,t+r−1

r (2.5)

by the composite map

Es,t
r → πt−sX

(r−1)
s → Es+r,t+r−1

r (2.6)

where the first map is induced by noticing that if x ∈ Zs,t
r ⊆ πt−sFs, then

is∗x ∈ πt−sX
(r−1)
s and the second by noticing that if y is in πt−sX

(r−1)
s we

may choose z ∈ πt−sXs+r−1 mapping to y and

j∗z ∈ Es+r,t+r−1
r

is independent of that choice. Notice that no differential is defined on Es,s
r and,

indeed, that Es,t
r is not defined for t − s < 0.

The following result is left as an exercise:

Lemma 2.7.

1) Es,t
r is a pointed set if t− s ≥ 0, a group if t− s ≥ 1, and an abelian group

if t − s ≥ 2;

2) The function dr : Es,t
r → Es+r,t+r−1

s is a homomorphism if t − s ≥ 2 and a
map of pointed sets if t − s ≥ 1.

3) The image of dr : Es,t
r → Es+r,t+r−1

r is in the center of Es+r,t+r−1
r if t−s ≥ 2

and if t − s ≥ 1, Es,t
r+1 = Ker(dr)/ im(dr).

4) The map dr : Es,s+1
r → Es+r,s+r

r extends to an action of the source on the
target and Es,s

r+1 ⊆ Es,s
r /Es−r,s−r+1

r .
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Proof: All these facts follow from the properties of the long exact sequence
in homotopy of a fibration. �

The long exact sequences for the fibrations Xs → Xs−1 can be “derived”
to give the following:

Lemma 2.8. Write Xi = ∗ for i < 0. Then there are long exact sequences

· · · → πt−s+1X
(r−1)
s−r+1 → πt−s+1X

(r−1)
s−r

→ Es,t
r → πt−sX

(r−1)
s πt−sX

(r−1)
s−1 → · · ·

In addition, there is an action

π1X
(r−1)
s−r × Es,s

r → Es,s
r

such that two elements of Es,s
r have the same image under the map Es,s

r →
π0X

(r−1)
s if and only if they are related by the action of π1X

(r−1)
s−r .

Remark 2.9. The fact that Es,s
r+1 ⊆ Es,s

r /Es−r,s−r+1
r and is not necessarily

equal to what is meant by saying the spectral sequence is fringed. The failure
of equality arises from the fact that π0Xs → π0Xs−1 need not be onto.

The collection {Es,t
r ; dr}r≥1 is the homotopy spectral sequence of the

tower of fibrations. It is natural in the tower and we may write {Es,t
r X}. We

now begin to address what it might converge to.
Notice that if r > s, Es,t

r+1 ⊂ Es,t
r . Define

Es,t
∞ = lim←−

r>s

Es,t
r =

⋂
r>s

Es,t
r . (2.10)

One hopes that Es,t
∞ may have something to do with the homotopy groups of

lim←−Xs. For this, we must first decide how to compute π∗(lim←−Xs) in terms of

the tower of groups {π∗Xs}. This is done by a lim←−
1 exact sequence, once we

have defined lim←−
1 for non-abelian groups.

First recall that lim←−
1 for a tower of abelian groups A = {An}n≥0 is defined

by the exact sequence

0 → lim←−An →
∏
n

An

∂−→
∏
n

An → lim←−
1 An → 0

where ∂(an) = (an − f(an+1)), with f : An+1 → An the maps in the tower.
The following is an easy exercise in homological algebra.

Lemma 2.11. The functor lim←−
1 : tow(Ab) → Ab is characterized up to nat-

ural isomorphism by:

1) If 0 → A → B → C → 0 is a short exact of towers of abelian groups, then
there is a six-term exact sequence

0 → lim←−A → lim←−B → lim←−C → lim←−
1 A → lim←−

1 B → lim←−
1 C → 0.

2) If A is any tower so that An+1 → An is surjective for all n, then lim←−
1 A = 0.
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More generally, let G = {Gn} be a tower of groups. Then the group∏
n Gn acts on the set Z =

∏
n Gn by (gn) ◦ (xn) = (gnxnf(gn+1)−1). Then

the stabilizer subgroup of e ∈ Z is lim←−Gn, and we define lim←−
1 Gn to be the

pointed set of orbits. If G is a tower of abelian groups these definitions agree
with those above.

Lemma 2.12. The functor lim←−
1 : tow(Gr) → pointed sets has the following

properties:

1) If ∗ → G1 → G2 → G2 → ∗ is a short exact sequence of towers of groups
then there is a six term sequence

∗ → lim←−G1 → lim←−G2 → lim←−G3 → lim←−
1 G1 → lim←−

1 G2 → lim←−
1 G3 → ∗

which is exact as groups at the first three terms, as pointed sets at the last
three terms, and lim←−G3 acts on lim←−

1 G1 and there is an induced injection

lim←−
1 G1/ lim←−G3 → lim←−

1 G2.

2) If G is any tower so that Gn+1 → Gn is surjective for all n, then lim←−
1 Gn = ∗.

Proof: The proof is the same as in the abelian case. �
Remark 2.13. It is good to have examples where lim←−

1 is non-zero. Let B be
any group and let B also be the constant tower on that group. let An ⊆ B be a
descending (ie. An+1 ⊂ An) sequence of normal subgroups so that

⋂
n An = e.

Let A = {An} be the resulting tower. Then there is a short exact sequence

∗ → B → lim←−
n

(B/An) → lim←−
1 A → ∗ (2.14)

so that lim←−
1 A = ∗ if and only if B is complete in the topology defined by the

An.
For example, if B = Z and An = pnZ for some prime p, (2.14) becomes

0 → Z → Zp → Zp/Z → 0

where Zp is the group of p-adic integers, which is uncountable.
A second example comes from setting B =

⊕
s≥1 Z and An =

⊕
s≥n Z ⊆

B. Then (2.14) becomes

0 →
⊕
s≥1

Z →
∏
s≥1

Z →
∏
s≥1

Z/
⊕
s≥1

Z → 0.

Now let {Xs} be a tower of pointed fibrations.
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Proposition 2.15 (Milnor Exact Sequence). For every i ≥ 0 there is a
sequence

∗ → lim←−
1 πi+1Xs → πi(lim←−Xs) → lim←−πiXs → ∗

which is exact as groups if i ≥ 1 and as pointed sets if i = 0.

Proof: Consider the description of the homotopy inverse limit given in Section
VI.1. Then one has a homotopy fibration sequence∏

s

ΩXs → lim←−Xs →
∏

Xs

by Lemma 1.12. A simple calculation with the homotopy exact sequence of
this fibration gives the result except possibly for the claim that π0 lim←−Xs →
lim←−π0Xs is onto. But it is an easy exercise to show that for a tower of fibrations
π0 lim←−Xs → lim←−π0Xs is onto. �

We now return to computing π∗ lim←−Xs by the homotopy spectral se-
quence. Recall the notation X = lim←−Xs.

Because of the definition of Es,t
r given in (2.1)–(2.4) and Es,t

∞ in (2.10),
we can think of an element z = [x] ∈ Es,t

∞ as an equivalence class of elements
x ∈ πt−sFs so that for each r ≥ 0 there is an element yr ∈ πt−sXs+r mapping
to is∗x ∈ πt−sXs. (Notice we do not say yr maps to yr−1; see Example 2.18.2
below.) If an element u ∈ πt−sX maps to zero in πt−sXs−1, then one gets such
an equivalence class. To make this precise, let

GsπiX = im(πiX → πiXs)

and
es,t
∞ = ker{Gsπt−sX → Gs−1πt−sX}. (2.16)

If y ∈ es,t
∞ , let x ∈ πt−sFs be any element so that i∗x = y.

Lemma 2.17.

1) The assignment y �→ x induces a well-defined monomorphism es,t
∞ → Es,t

∞ .

2) The inclusion maps Gsπ∗X → π∗Xs induce an isomorphism

lim←−
s

Gsπ∗X
∼=−→ lim←−

s

π∗Xs.

Proof: This is an exercise in unraveling the definitions. �
Notice that any element of lim←−

1 π∗Xs maps to zero in all Gsπ∗X, so will
not be detected in any es,t

∞ . It also turns out that es,t
∞ → Es,t

∞ need not be an
isomorphism.

Here are two examples of the potential difficulties.
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Example 2.18.

1) Consider the tower of abelian groups

· · · ×p−−→ Z
×p−−→ Z

×p−−→ Z
×p−−→ Z

where p ∈ Z is a prime number. The resulting tower of Eilenberg-Mac Lane
spaces

→ K(Z, n)
×p−−→ K(Z, n)

×p−−→ · · · ×p−−→ K(Z, n)

with n ≥ 1 can be transformed into a tower of fibrations. One easily calculates
that E0,n

1 = Z and Es,s+n−1
1 = Z/pZ and Es,t

1 = 0 otherwise. Next E0,n
r =

pr−1Z ⊆ Z = E0,n
1 and dr : E0,n

r → Er,r+n−1
r = Z/pZ is onto.. Thus Es,t

∞ = 0
for all t − s ≥ 0. However

πn−1 lim←−Xs = Zp/Z ∼= lim←−
r

1(prZ) �= 0.

Note that in this case lim←−
1 E0,n

r �= 0.

2) Consider the tower of abelian groups, where a is the addition map,

→
⊕
s≥3

Z →
⊕
s≥2

Z →
⊕
s≥1

Z
a−→ Z

and let {Xm} be the tower obtained by applying K(·, n) with n > 1, and then
convert to a tower of fibrations. Now

πn−1 lim←−Xm
∼= lim←−

1 πnXm
∼=

∏
s≥1

Z/
⊕
s≥1

Z

and πk lim←−Xm = 0 otherwise. Then

Es,t
1 =

⎧⎨⎩Z s = 0, t = n⊕
i≥1 Z s = 1, t = n + 1

Z s ≥ 2, t = s + n − 1

and dr : E1,n+1
r → Er+1,n+r

r is onto. Thus E0,n
∞ = Z and Es,t

∞ = 0 otherwise.
Thus e0,n

∞ �= E0,n
∞ . Note also lim←−

1 E1,n+1
r �= 0. �

The following definition now seems appropriate.

Definition 2.19. The spectral sequence of the pointed tower of fibrations
{Xs} converges completely if

1) lim←−
1 πiXs = ∗ for i ≥ 1, and

2) es,t
∞ ∼= Es,t

∞ for all (s, t) with t − s ≥ 1.
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When 2.19.2 holds, the spectral sequence effectively computes lim←−π∗Xs,
subject to the fringing effect when t − s = 0, and when 2.19.1 holds, we have
π∗(lim←−Xs) ∼= lim←−π∗Xs. One would like to be able to decide when one has
complete convergence from knowledge of the spectral sequence, rather than
using knowledge of π∗ lim←−Xs, which Definition 2.19 demands — after all one
is trying to compute π∗ lim←−Xs. The next lemma is the best possible result.
Compare the examples of 2.18.

Lemma 2.20 (Complete Convergence Lemma). The spectral sequence of
the pointed tower of fibrations {Xs} converges completely if and only if

lim←−
r

1Es,t
r = ∗, t − s ≥ 1.

This will be proved below, after some examples and preliminaries.

Corollary 2.21. Suppose that for each integer i ≥ 0 there are only finitely
many s, so that Es,s+i

2 �= ∗. Then the spectral sequence converges completely.

More generally we have

Corollary 2.22. Suppose that for each integer i ≥ 0 and each integer s,
there is an integer N so that

Es,s+i
∞ ∼= Es,s+i

N .

Then the spectral sequence converges completely.

Proof: In this case lim←−
1 Es,t

r = ∗. See 2.23.1 below. �
The phenomenon encountered in Corollary 2.22 is called Mittag-Leffler

convergence. The wider implications are explored in [14, p.264].

As a preliminary to proving the complete convergence lemma, we discuss
derived towers of group. Suppose that {Gn} is a tower of groups. Define G

(r)
n =

im{Gn+r → Gn}. We already encountered π∗X
(r)
s = (π∗Xs)(r) in (2.1)–(2.4).

There are maps
G(r)

n → G
(r+1)
n−1 ⊆ G

(r)
n−1

and one has two new towers of groups

{G(r)
n }n≥0 {G(r)

n }r≥0.

Lemma 2.23.

1) The inclusions G
(r)
n ⊆ Gn induce isomorphisms

lim←−
n

G(r)
n

∼= lim←−
n

Gn and lim←−
1

n

G(r)
n

∼= lim←−
1

n

Gn.
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2) There is a natural isomorphism

lim←−
n

lim←−
r

G(r)
n

∼= lim←−
n

Gn

and a natural short exact sequence

∗ → lim←−
1

n

lim←−
r

G(r)
n → lim←−

1 Gn → lim←−
n

lim←−
1

r

G(r)
n → ∗.

Proof: For 1) note that the functor {Gn}n≥0 �→ {G(r)
n }n≥0 is exact and takes

tower of surjections to surjections. By inspection, one has isomorphisms

lim←−
n

G(1)
n

∼= lim←−
n

Gn and lim←−
1

n

G(1)
n

∼= lim←−
1

n

Gn.

One shows that G
(1)(r)
n

∼= G
(r+1)
n , so there are isomorphisms

lim←−
n

G(r)
n

∼= lim←−
n

Gn and lim←−
1

n

G(r)
n

∼= lim←−
1

n

Gn

for all r ≥ 1.
For 2), note that if the groups were abelian, what we would have is a

degenerate form of a composite functor spectral sequence. In the non-abelian
case, it is better to proceed topologically. For fixed r define a tower Yr = {Yr,n}
with Yr,n = BG

(r)
n . There are maps of towers Yr+1 → Yr; convert the resulting

tower of towers into a tower of fibrations in tow(S∗):

· · · → Z2 → Z1 → Z0.

Thus Y0 → Z0 is a weak equivalence in tow(S∗) with Z0 fibrant (i.e., a tower
of fibrations) and Yr → Zr → Zr−1 factors Yr → Yr−1 → Zr−1 as a weak
equivalence followed by a fibration. Then

· · · → lim←−
n

Z2 → lim←−
n

Z1 → lim←−
n

Z0

is a tower of fibrations and for all r, π1 lim←−n
Zr

∼= lim←−n
Gn and π0 lim←−n

Zr
∼=

lim←−
1

n

Gn, by part 1). Hence

π1(lim←−
r

lim←−
n

Zr,n) ∼= lim←−
n

Gn

π0(lim←−
r

lim←−
n

Zr,n) ∼= lim←−
1

n

Gn.

Now one takes limits in the other direction: for fixed n, {Zr,n}r≥0 is a tower of
fibrations, so

π1 lim←−
r

Zr,n
∼= lim←−

r

G(r)
n

π0 lim←−
r

Zr,n
∼= lim←−

1

r

G(r)
n

Now we calculate π∗ lim←−n
lim←−r

Zr,n and use the fact that inverse limits commute
to finish the proof. �
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Proof of the Complete Convergence Lemma 2.20: There are exact
sequences

∗ → Es,s+i
r → πiX

(r−1)
s → πiX

(r)
s−1 → ∗ (2.24)

for r > s and i ≥ 1, so there is a comparison of exact sequences

∗ w es,s+i
∞ w

u

∼=

GsπiX w

u

Gs−1πiX w

u

∗

∗ w Es,s+i
∞ w lim←−

r

πiX
(r)
s w lim←−

r

πiX
(r)
s−1

(2.25)

in which the bottom sequence arises by taking an inverse limit of the sequences
(2.24). It follows from the definitions that there are isomorphisms

E0,i
r+1

∼= πiX
(r)
0

for r ≥ 0 and i ≥ 1.
Suppose that lim←−

1

r

Es,s+i
r = ∗ for i ≥ 1. Then the map

lim←−
r

πiX
(r)
s → lim←−

r

πiX
(r)
s−1 (2.26)

is surjective for i, s ≥ 1. It follows that the composite map

πiX → lim←−
s

πiXs → lim←−
r

πiX
(r)
s

is surjective, so that the canonical inclusion

GsπiX → lim←−
r

πiX
(r)
s

is a bijection, as is the canonical map

es,s+i
∞ → Es,s+i

∞

on account of the comparison diagram (2.25).
The surjectivity of the maps (2.26) also implies that

lim←−
1

s

lim←−
r

πiX
(r)
s = ∗.
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The isomorphism
πiX

(r)
0

∼= E0,i
r+1,

and the sequences (2.24) together inductively imply that

lim←−
1

r

πiX
(r)
s = ∗.

It follows from Lemma 2.23 that

lim←−
1

s

πiXs = ∗

for i ≥ 1.
For the converse, suppose that i ≥ 1, and presume that

es,s+i
∞ ∼= Es,s+i

∞ and lim←−
1

s

πiXs = ∗

for s ≥ 0 and i ≥ 1. In particular, the map

G0πiX → lim←−
r

πiX
(r)
0

is an isomorphism, so inductively all canonical maps GsπiX → lim←−r
πiX

(r)
s are

isomorphisms, and the maps

lim←−
r

πiX
(r)
s → lim←−

r

πiX
(r)
s−1

are surjective.
The exact sequence

lim←−
1

s

πiXs → lim←−
s

lim←−
1

r

πiX
(r)
s → ∗

from Lemma 2.23 and the assumption lim←−
1

s

πiXs = ∗ together force

lim←−
s

lim←−
1

r

πiX
(r)
s = ∗.

At the same time, the maps

lim←−
1

r

πiX
(r)
s → lim←−

1

r

πiX
(r)
s−1

are surjective, so that lim←−
1

r

πiX
(r)
s = ∗. It follows that lim←−

1

r

Es,s+i
r = ∗. �

It is worth pointing out that even without convergence one has a compar-
ison result.
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Proposition 2.27. Suppose f : X = {Xs} → Y = {Ys} is a map of towers of
pointed fibrations and suppose there is a (finite) N ≥ 1 so that

f∗ : Es,t
N X → Es,t

N Y

is an isomorphism for all (s, t). If Es,s
r X = ∗ for all s, then the map lim←−Xs →

lim←−Ys is a weak equivalence of connected spaces.

Proof: Note that f∗ : Es,t
r X → Es,t

r Y is an isomorphism for all r ≥ N by
Lemma 2.7. Then induction on s and the exact sequence

∗ → Es+1,t+1
r → πt−sX

(r−1)
s+1 → πt−sX

(r)
s → ∗

(see (2.24)) implies that πkX
(r)
s → πkY

(r)
s is an isomorphism for r > s,N and

k ≥ 1. It follows that the induced maps

f∗ : lim←−
r

πkX(r)
s → lim←−

r

πkY (r)
s

and
f∗ : lim←−

1

r

πkX(r)
s → lim←−

1

r

πkY (r)
s

are isomorphisms for k ≥ 1 and all s. Lemma 2.23 then implies that the induced
maps

f∗ : lim←−
s

πkXs → lim←−
s

πkYs

and
f∗ : lim←−

1

s

πkXs → lim←−
1 πkYs

are isomorphisms for k ≥ 1. It follows from the Milnor exact sequence (Propo-
sition 2.15) that the induced map

f∗ : πk(lim←−
s

Xs) → πk(lim←−
s

Ys)

is an isomorphism for k ≥ 1.
The hypotheses on Es,s

r and the low end

π1X
(r)
s−r → π1X

(r)
s−(r+1) → Es,s

r+1 → π0X
(r)
s → π0X

(r)
s−1

of the exact sequence in Lemma 2.8 together imply π0X
(r)
n = ∗ = π0Y

(r)
n and

π1X
(r)
n → π1X

(r)
n−1 is onto. It follows from Proposition 2.15 that the spaces

lim←−s
Xs and lim←−Ys are path connected. �
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3. Postnikov towers.
This section presents basic facts about Postnikov towers, including the con-
struction of Moore. The material on k-invariants, which uses cohomology with
twisted coefficients is presented in Section 4.

Definition 3.1. Let X be a space. A Postnikov tower {Xn} for X is a tower
of spaces

· · · → X2

q1−→ X1

q0−→ X0

equipped with maps in : X → Xn so that qnin = in−1 : X → Xn−1 and so
that for all vertices v ∈ X, πiXn = 0 for i > n and

(in)∗ : πiX
∼=−→ πiXn

for i ≤ n.

The purpose of the next few sections is to construct such and to prove a
uniqueness theorem.

Remark 3.2. If X is not connected we may write X =
⊔

α Xα as the disjoint
union of its components. If {(Xα)n} is a Postnikov tower for Xα, then, by
setting Xn =

⊔
α(Xα)n we create a Postnikov tower for X. Conversely, if

{Xn} is a Postnikov tower for X and v ∈ Xα ⊂ X is a vertex of Xα, then
if (Xα)n ⊆ Xn is the component of in(v), {(Xα)n} is a Postnikov tower for
Xα. Hence without loss of generality, we may assume X is connected.

Remark 3.3. We also may assume that X is fibrant. For if X → Y is a weak
equivalence with Y fibrant, then a Postnikov tower for Y is a Postnikov tower
for X.

We now give a specific model for the Postnikov tower, due to Moore.
For this reason it is called the Moore-Postnikov tower. This construction is
functorial in fibrant X.

Definition 3.4. Let X be a fibrant simplicial set. Define, for each integer
n ≥ 0, an equivalence relation ∼n on the simplices of X as follows: two q-
simplices

α, β : Δq → X

are equivalent if
α = β : skn Δq → X;

that is, the classifying maps α and β agree on the n-skeleton. Define X(n) =
X/∼n.

Then there are evident maps qn : X(n) → X(n − 1) and in : X → X(n)
yielding a map of towers ι : {X} → {X(n)}. The principal result of this
section is
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Theorem 3.5. The tower {X(n)} is a Postnikov tower for X, and it is a tower
of fibrations. Furthermore, the evident map

X → lim←− X(n)

is an isomorphism.

Each map X → X(n) is a surjective fibration, so {X(n)} is a tower of
fibrations (see Exercise V.3.8). Thus it suffices to prove

Lemma 3.6. For any choice of base point in X, πkX(n) = 0 for k > n and
(in)∗ : πkX → πkX(n) is an isomorphism for k ≤ n.

Recall from Section I.7 that an element in πkX can be represented by a
pointed map

f : Sk = Δk/∂Δk → X

Two such maps yield the same element in πkX if they are related by a pointed
homotopy

H : Sk ∧ Δ1
+ → X.

Proof of Lemma 3.6: First notice that πkX(n) = 0 for k > n. This is
because any representative of an element in πkX(n)

f : Sk → X(n)

has the property that the composite

Δk → Sk
f−→ X(n)

is the constant map, by the definition of ∼n. Next, let E(n) ⊆ X be the fibre
of the projection X → X(n) at some vertex v. Then E(n) consists of those
simplices f : Δq → X so that

f : skn Δq → X

is constant. In particular E(n) is fibrant and E(n)k = {v} for k ≤ n, where v
is the chosen base point. Hence πkE(n) = 0 for k ≤ n. The result now follows
from the long exact sequence of the fibration

E(n) → X → X(n). �

The complex E(n) ⊆ X of this proof is called, by Moore, the n-th Eilen-
berg subcomplex of X. It depends on the choice of base point. It is worth
pointing out that X(0) has contractible components; however, it is not neces-
sarily true that these components have a single vertex. Indeed X(0)0 = X0, so
that, for example, X(0) is a one-point space if and only if X0 = {v}.
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Corollary 3.7. Let X be fibrant and connected, and v ∈ X a vertex. Let
v ∈ X(n) be the image of v under X → X(n) and K(n) the fibre at v of the
projection qn : X(n) → X(n − 1). Then there is a weak equivalence

K(n) → K(πnX,n).

Proof: See Corollary III.3.8. This follows from the long exact sequence of the
fibration sequence

K(n) → X(n) → X(n − 1). �
In particular, since X is assumed to be connected,

K(1) → X(1)

is a weak equivalence, so there is a weak equivalence

X(1) � K(π1X, 1) = Bπ1X.

The following is also worth noting:

Proposition 3.8. Suppose X is connected, fibrant, and minimal. Then qn :
X(n) → X(n − 1) is a minimal fibration and X(0) = {v} where v ∈ X is the
unique vertex. Furthermore K(n) is a minimal complex and there are isomor-
phisms, n ≥ 1,

K(n) ∼= K(πnX,n)
K(1) ∼= Bπ1X.and

Next, let us remark that there is a relative version of the Moore construc-
tion.

Definition 3.9. Let f : X → B be a morphism of simplicial sets. Then a
Postnikov tower for f is a tower of space {Xn} equipped with a map

i : {X} → {Xn}
from the constant tower and a map

p : {Xn} → {B}
to the constant tower so that

1) for all n, the composite X
in−→ Xn

pn−→ B is f .

2) for any choice of vertex of X, the map (in)∗ : πkX → πkXn is an
isomorphism for k ≤ n;

3) for any choice of vertex of X, the map (pn)∗ : πkXn → πkB is an
isomorphism for k > n + 1.

4) for any choice of vertex v of X, there is an exact sequence

0 → πn+1Xn → πn+1B
∂−→ πnFv

where Fv is the homotopy fibre of f at v and ∂ is the connecting
homomorphism in the long exact sequence of the homotopy fibration
Fv → X → B.



4. Local coefficients and equivariant cohomology 329

Definition 3.10. Suppose f : X → B is a fibration and B is fibrant. Define
an equivalence relation ∼n as simplices

α, β : Δq → X

by saying α ∼n β if and only if

1) fα = fβ and

2) α = β : skn Δq → X.

Then there are maps in : X → X(n) and pn : X(n) → B and the
appropriate generalization of Theorem 3.5 is:

Theorem 3.11. Suppose that X is a fibrant simplicial set. Then the tower
{X(n)} is a Postnikov tower for f , and it is a tower of fibrations. Furthermore,
the evident map

X → lim←− X(n)

is an isomorphism.

Proof: Again we need only check the statements about homotopy groups.
Choose a vertex in X and let F (n) be the fibre of the fibration X(n) → B. Then
a moment’s thought shows the notation F (n) is unambiguous — F (n) really
is the n-th stage in the Moore-Postnikov tower of the fibre F of f : X → B.
The result thus follows from Lemma 3.6 and the long-exact sequence of the
fibration F (n) → X(n) → B. �

Note that we have used

Lemma 3.12. Let f : X → B be a fibration with B fibrant and fibre F , for
some vertex of B. Then the fibre of pn : X(n) → B is the n-th stage F (n) in
the Moore-Postnikov tower for F .

Corollary 3.13. If F is connected p0 : X(0) → B is a weak equivalence.

4. Local coefficients and equivariant cohomology.
The purpose of this section is to demonstrate that cohomology with local coef-
ficients is representable in an appropriate homotopy category, and to identify
the homotopy type of the representing object. We then develop a calculation
scheme in terms of equivariant cohomology on the universal cover.

Let X be a fibrant space (meaning fibrant simplicial set) and Γ = πfX its
fundamental groupoid (see Sections I.8, III.1). There is a canonical simplicial
map φ : X → BΓ which associates to the simplex τ : Δn → X the string

τ(0) → τ(1) → · · · → τ(n)

in Γ arising from the image of the string

0 → 1 → · · · → n

in the 1-skeleton of Δn.



330 VI. The homotopy theory of towers

We shall, more generally, consider the category of spaces S ↓ BΓ over
BΓ. The objects of this category are the simplicial set maps Y → BΓ, and the
morphisms are commutative diagrams of simplicial set maps

Y wh
hhj

Z

�
�
��

BΓ

The following is an exercise in formal homotopical algebra:

Lemma 4.1. Suppose that X is an object of a closed model category C. Then
the category C ↓ X has a closed model structure, in which a morphism

Z w

f
���

Y

���
X

is a weak equivalence, fibration, or cofibration if the same is true for the map
f : Z → Y of C.

In particular, the category S ↓ BΓ inherits a closed model structure from
the category of simplicial sets. Furthermore, the fibrant objects in S ↓ BΓ are
fibrations Y → BΓ. At this level of generality, the following result gives us an
good selection of fibrations and fibrant objects (compare with Lemma IV.5.7):

Lemma 4.2. Suppose that p : Z → Y is a natural transformation of functors
Γ → S such that each map p : Zv → Yv is a fibration. Then the induced map

p∗ : holim−−−→
Γ

Z → holim−−−→
Γ

Y

is a fibration. If all fibrations pv are minimal then p∗ is minimal.

Proof: Consider a commutative solid arrow diagram

Λn
k w

α

u

holim−−−→
Γ

Z

u
p∗

Δn
i
i
iij

w
β

holim−−−→
Γ

Y.

(4.3)

We need to show that the dotted arrow exists, making the diagram commute.
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The pullback of the canonical map π : holim−−−→Γ
Y → BΓ along the compos-

ite

Δn
β−→ holim−−−→

Γ

Y
π−→ BΓ

is the homotopy colimit of the functor Y π(β) : n → S. The category Γ is a
groupoid, so that there is a natural isomorphism of functors

Y (π(β)(0)) w
1

u

∼=
Y (π(β)(0)) w

1

u

∼=
. . . w

1 Y (π(β)(0))

u

∼=
Y (π(β)(0)) w Y (π(β)(1)) w . . . w Y (π(β)(n))

on the category n. It follows that the induced map Δn ×BΓ holim−−−→Γ
Y → Δn is

isomorphic over Δn to Δn × Y (π(β)(0)) → Δn. Similarly, the map

Δn ×BΓ holim−−−→
Γ

Z → Δn

is isomorphic over Δn to the projection Δn × Z(π(β)(0)) → Δn. The original
diagram (4.3) therefore factors (uniquely) through a diagram

Λn
k w

α∗

u

Δn × Z(π(β)(0))

u

1 × p

Δn
w

β∗

i
i
iij

Δn × Y (π(β)(0))

The map 1× p is a fibration since p is a fibration by assumption, so the dotted
arrow exists. Observe further that if all fibrations p : Zv → Yv are minimal,
then 1 × p is minimal, and so p∗ is minimal. �

Corollary 4.4. Suppose that K : Γ → S is a functor such that Kv is fibrant
for each v, then the canonical map π : holim−−−→Γ

K → BΓ is a fibration.

A local coefficient system is a functor A : Γ → Ab. We shall write Ax for
A(x). Note there is nothing special about abelian groups. If C is a category,
a local system of objects in C is simply a functor Γ → C. In particular, the
functors of Lemma 4.2 are local systems of simplicial sets.

The cohomology of X with local coefficients in A can be defined via
cochains. The group Cn

Γ (X,A) of n-cochains with coefficients in A is defined
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to be the collection of commutative diagrams

Xn w
α

�
�
��φ

holim−−−→
Γ

An

N
N
NQ

BΓn

or rather Cn
Γ (X,A) is the collection of all assignments x �→ α(x) ∈ Aφ(x)(0),

x ∈ Xn.
All calculations in such groups of cochains depend (initially) on the fol-

lowing observation:

Lemma 4.5. Suppose that ψ : Y → BΓ is a second space over BΓ, θ : m → n
is an ordinal number map, and that f : Yn → Xm is a function such that the
diagram

Yn w

f

u

ψ

Xm

u

φ

BΓn w

θ∗
BΓm

commutes. Then, given any cochain α : Xm → holim−−−→Γ
Am, there is a unique

cochain f∗(α) : Yn → holim−−−→Γ
An such that the diagram

Yn w

f∗(α)

u

f

holim−−−→
Γ

An

u

θ∗

Xm wα holim−−−→
Γ

Am

commutes.

Proof: Recall that the simplicial structure map θ∗ : holim−−−→Γ
An → holim−−−→Γ

Am

is defined on the component Aσ(0) of

holim−−−→
Γ

An =
⊔

σ(0)→σ(1)→···→σ(n)

Aσ(0)

corresponding to the simplex σ : n → Γ by the composite

Aσ(0)

σ(0,θ(0))∗−−−−−−→ Aσ(θ(0))

inσθ−−−→ holim−−−→
Γ

Am,
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where σ(0, θ(0)) denotes the composite of the morphisms

σ(0) → σ(1) → · · · → σ(θ(0))
in Γ. For y ∈ Yn, f∗(α)(y) is therefore the unique element in Aψ(y)(0) which
maps to α(f(y)) ∈ Aφ(f(y))(0) = Aθ∗ψ(y)(0) = Aψ(y)θ(0) under the isomorphism

Aψ(y)(0)

ψ(y)(0,θ(0))−−−−−−−→∼=
Aψ(y)θ(0). �

Lemma 4.5 gives a cosimplicial object C∗
Γ(X,A) — write H∗

Γ(X,A) for
the corresponding cohomology groups.

Suppose that y is an object of the groupoid Γ. Recall that the groupoid
Γ ↓ y has for objects all morphisms τ : x → y, and has morphisms given by
commutative diagrams

x w
α

h
hhjτ

x′

�
�
��

τ ′

y

in Γ. As usual, write B(Γ ↓ y) for the nerve of the category Γ ↓ y. The functor
Γ ↓ y → Γ which forgets y induces a simplicial set map πy : B(Γ ↓ y) → BΓ,
whereas composition with β : y → z induces a functor β∗ : Γ ↓ y → Γ ↓
z which commutes with forgetful functors. It follows that there is a functor
Γ → S defined by y �→ B(Γ ↓ y) which is fibred over BΓ. Note that each of
the categories Γ ↓ y has a terminal object, namely the identity 1y : y → y,
so that all spaces B(Γ ↓ y) are contractible. Observe finally that the maps
πy : B(Γ ↓ y) → BΓ are Kan fibrations.

Suppose that φ : X → BΓ is a simplicial set map, and define a collection
of spaces X̃y by forming pullbacks

X̃y w

u

B(Γ ↓ y)

u
πy

X w

φ
BΓ

In this way, we define a functor X̃ : Γ → S. We shall call X̃ the covering system
for φ; the construction specializes to a Γ-diagram of covering spaces for X in
the case where Γ is the fundamental groupoid of X and φ : X → BΓ is the
canonical map.

Write SΓ for the category of diagrams X : Γ → S taking values in simpli-
cial sets. There is plainly a functor holim−−−→Γ

: SΓ → S ↓ BΓ defined by taking

homotopy colimits. The covering system construction X �→ X̃ defines a functor
S ↓ BΓ → SΓ. These two functors are adjoint:
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Lemma 4.6. There is a natural bijection

homSΓ(X̃, Y ) ∼= homS↓BΓ(X,holim−−−→
Γ

Y ).

Proof: For each object y ∈ Γ, the simplicial set X̃y has n-simplices (X̃y)n

consisting of all pairs (x, α), where x ∈ Xn and α : φ(x)(0) → y is a morphism
of Γ. The simplicial structure map θ∗ : (X̃y)n → (X̃y)m associated to θ : m → n
is defined by

θ∗(x, α) = (θ∗(x), αφ(x)(0, θ(0))−1).

There is a natural bijection

homSetsΓ(X̃n, A) ∼= homSets↓BΓn(Xn,holim−−−→
Γ

An) (4.7)

in each degree n. In effect, if A : Γ → Sets is an arbitrary set valued functor,
then a natural transformation

gy : (X̃y)n → Ay y ∈ Γ,

is completely determined by its effect on the elements (x, 1φ(x)(0)), x ∈ Xn,
and g(x, 1φ(x)(0)) ∈ Aφ(x)(0), so the assignment x �→ g(x, 1φ(x)(0)) determines
an element of homSets↓BΓn(Xn,holim−−−→Γ

An).
One checks to see that the isomorphisms (4.7) assemble to give the desired

adjunction on the simplicial set level. �
If Y : Γ → S is a Γ-diagram of simplicial sets and A : Γ → Ab is a local

coefficient system, there is an obvious way to form a cochain complex (aka.
cosimplicial abelian group) homΓ(Y,A), having n-cochains given by the group
homΓ(Yn, A) of all natural transformations from Yn to A.

Corollary 4.8. There is a natural isomorphism of cosimplicial abelian groups

C∗
Γ(X,A) ∼= homΓ(X̃,A)

for all spaces X over BΓ and all local coefficient systems A.

Proof: Use the calculation in the proof of Lemma 4.5 to show that the natural
bijections (4.7) from the proof of Lemma 4.6 preserve cosimplicial structure. �

The category SΓ has a simplicial model structure for which a map f :
Z → W is a weak equivalence (respectively fibration) if and only if each of the
components f : Zv → Wv, v ∈ Γ, is a weak equivalence (respectively fibration)
of simplicial sets. This is the Bousfield-Kan structure for Γ-diagrams — see
Example II.6.9. The homotopy colimit construction takes weak equivalences of
SΓ to weak equivalences of S ↓ BΓ (Proposition IV.1.7), whereas the covering
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system functor S ↓ BΓ → SΓ preserves weak equivalences by the coglueing
lemma (Lemma II.8.13). There are therefore induced functors

Ho(SΓ) 
 Ho(S ↓ BΓ)

which are adjoint, and so the natural isomorphism of Lemma 4.6 extends to a
natural bijection

[X̃, Y ]SΓ
∼= [X,holim−−−→

Γ

Y ]S↓BΓ

on the homotopy category level.
To go further, we need to know the following:

Lemma 4.9. For any object φ : X → BΓ, the corresponding covering system
X̃ is a cofibrant object of SΓ.

Proof: It is enough to suppose that the groupoid Γ is connected, and pick an
object v ∈ Γ. Write π = homΓ(v, v), and pick a morphism ηx : x → v in Γ for
each object x, such that ηv = 1v.

There is an inclusion functor i : π → Γ which identifies the group π with
the group of automorphisms of v in Γ. There is also a functor r : Γ → π
which is defined by sending ω : x → y to the composite ηyωη−1

x : v → v,
and the functors r and i are the component functors of an equivalence of the
(connected) groupoid Γ with the group π: r · i = 1π, and the isomorphisms
ηx : x → v determine a natural isomorphism 1Γ

∼= i · r.
The functors i and r induce functors i∗ : SΓ → Sπ and r∗ : Sπ → SΓ, by

precomposition. The composite i∗ · r∗ is the identity functor on Sπ, while the
isomorphisms ηx∗ : Xv → Xx define a natural isomorphism r∗ · i∗(X) ∼= X, so
that SΓ and Sπ are equivalent categories.

The functor i∗ reflects cofibrations, so it suffices to show that X̃v is a
cofibrant π-space. To see this, observe that the functor r induces a commutative
diagram

EΓv w

u

Eπ

u

BΓ w Bπ,

and this diagram is a pullback. But then there is a π-equivariant isomorphism
(EΓv)n

∼= π × BΓn; in other words, EΓv is a free π-set in each degree, so it
must be a cofibrant π-space, by Corollary V.2.11. �

We can now relate elements in the cohomology groups Hn
Γ (X,A) arising

from fibred spaces X → BΓ and local coefficient systems A : Γ → Ab to
morphisms in some homotopy category. The method is to use a Γ-equivariant
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version of the Dold-Kan correspondence (Section III.2), in conjunction with
Lemma 4.9.

First of all, recall from Corollary 4.8 that Hn
Γ (X,A) is the nth cohomology

group of the cochain complex homΓ(X̃,A) which is defined in degree n by the
set homΓ(X̃n, A) of natural transformations X̃n → A. It follows that Hn

Γ (X,A)
is canonically isomorphic to the group π(Z(X̃), A[n]) of chain homotopy classes
of morphisms of Γ-diagrams of chain complexes from the Γ-diagram of Moore
chains Z(X̃) to A[n], where A[n] is the Γ-diagram of chain complexes which
consists of a copy of A concentrated in degree n. The normalized chain complex
NZ(X̃) is naturally chain homotopy equivalent to Z(X̃), so that there is an
isomorphism

π(Z(X̃), A[n])
i∗−→∼= π(NZ(X̃), A[n])

which is induced by the inclusion i : NZ(X̃) ↪→ Z(X̃). But now there are
isomorphisms

π(NZ(X̃), A[n]) ∼= π(Z(X̃),K(A,n))
∼= π(X̃,K(A,n))
∼= [X̃,K(A,n)]Γ,

where the first isomorphism is induced by the Dold-Kan correspondence, the
second isomorphism relates naive homotopy classes in Γ-diagrams of simpli-
cial abelian groups to naive homotopy classes in Γ-diagrams of simplicial sets,
and the last isomorphism relating naive homotopy classes to morphisms in the
homotopy category of Γ-spaces results from the fact that X̃ is cofibrant and
the Eilenberg-Mac Lane object K(A,n) is fibrant. Subject to chasing an ex-
plicit cochain through these identifications (which is left to the reader), we have
proved:

Theorem 4.10. Suppose that X → BΓ is a space over BΓ, and let A : Γ →
Ab be a local coefficient system. Then there is an isomorphism

[X̃,K(A,n)]Γ
∼=−→ Hn

Γ (X,A),

which is defined by sending a class represented by a map f : X̃ → K(A,n) to
the class represented by the cocycle fn : Xn → holim−−−→Γ

An.

In the connected case, the equivalence of categories i∗ : SΓ ↔ Sπ : r∗ in-
duces an equivalence of associated homotopy categories, giving an isomorphism

[X̃,K(A,n)]Γ
i∗−→∼= [X̃v,K(Av, n)]π,

while the identifications leading to Theorem 4.10 are preserved by r∗ as well
as being valid in the category of π-diagrams. This leads to an identification of
H∗

Γ(X,A) with ordinary π-equivariant cohomology:
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Theorem 4.11. Suppose that X and A are as in the statement of Theorem
4.10, suppose that Γ is a connected groupoid and let π be the group homΓ(v, v)
of an object v ∈ Γ. Then restriction to π-spaces determines a commutative
diagram of isomorphisms

[X̃,K(A,n)]Γ w

∼=

u

i∗ ∼=

Hn
Γ (X,A)

u

∼= i∗

[X̃v,K(Av, n)]π w∼= Hn
π (X̃v, Av).

Observe, from the proof of Lemma 4.9, that X̃v is a copy of the universal cover
of X if the underlying map φ : X → BΓ is the canonical map arising from the
fundamental groupoid Γ of X.

Remark 4.12. Suppose that Γ is a connected groupoid, and let F : Γ → S
be a functor taking values in simplicial sets. Let v be an object of Γ, and let
π = homΓ(v, v) denote the group of automorphisms of v in Γ. Let Fv denote
the composite functor

π ⊂ Γ
F−→ S.

Then the induced map
holim−−−→

π

Fv → holim−−−→
Γ

F

is a weak equivalence. This follows from the observation that the translation
categories Eπ(Fv)n and EΓFn for the set-valued functors on the n-simplex
level are homotopy equivalent for each n (see Example IV.1.8 and Proposi-
tion IV.1.7). Finally, the homotopy colimit holim−−−→π

Fv is a copy of the Borel
construction Eπ ×π Fv for the π-space Fv (Example IV.1.10).

There is a notion of reduced cohomology with local coefficients. Suppose
Γ = πfX is the fundamental groupoid and the map X → BΓ has a section
s : BΓ → X. Such a section is a map from the terminal object to X in S ↓ BΓ,
which is the natural notion of base point. For example, we could take

X = holim−−−→
Γ

K(A,n)

and let s(σ) = (0, σ). A pointed map in S ↓ Γ

X → holim−−−→
Γ

K(A,n)

is a map commuting with sections.
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In gross generality, if C is a simplicial model category, then the category
C∗ of pointed objects in C (meaning morphisms t → X, where t is terminal)
satisfies the axioms for a closed model category, where a map of C∗ is a fibration,
cofibration or weak equivalence if and only if it is so as a map of C (compare
Lemma 4.1).

A reduced cochain ϕ ∈ Cn
Γ (X,A) is a cochain so that ϕ(s(x)) = 0 for all

x ∈ BΓ; if C̃n
Γ (X,A) is the group of such there is a split short exact sequence

of cosimplicial abelian groups

0 → C̃∗
Γ(X,A) → C∗

Γ(X,A)
σ∗
−→ C∗

Γ(BΓ, A) → 0

and a split short exact sequence of graded groups

0 → H̃∗
Γ(X,A) → H∗

Γ(X,A) → H∗
Γ(BΓ, A) → 0.

Of course, if X is connected, then for any vertex v ∈ X

H∗
Γ(BΓ, A) ∼= H∗(π1(X, v), Av),

by Theorem 4.11, so that the groups H∗
Γ(BΓ, A) for the groupoid Γ coincide

up to isomorphism with traditional group cohomology groups in the connected
case.

The following is left as an exercise for anyone who has read the proof of
Theorem 4.10. Let S ↓ BΓ∗ denote the category of pointed objects over BΓ.

Lemma 4.13. For X ∈ S ↓ BΓ∗ there are natural isomorphisms

[X,holim−−−→
Γ

K(A,n)]S↓BΓ∗
∼= H̃n

Γ (X;A).

Now suppose X ⊆ Y — that is, X is a subspace of Y — and Γ = πfX ∼=
πfY : This would happen for example, if X and Y have the same 2-skeleton.
Define BΓ ∪X Y by the push-out diagram in S ↓ BΓ

X w

u

Y

u

BΓ w BΓ ∪X Y.

Then BΓ ∪X Y is an object of S ↓ BΓ∗ and we define

H∗
Γ(Y,X;A) = H̃∗

Γ(BΓ ∪X Y ;A).

For a different point of view, observe that the covering system construc-
tion preserves cofibrations and pushouts, and the covering system B̃Γ for BΓ
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consists of contractible spaces, so that the covering system for BΓ∪XY is equiv-
alent to the homotopy cofibre Ỹ /X̃ of the inclusion X̃ ↪→ Ỹ in the category of
Γ-diagrams. It follows that there is an isomorphism

Hn
Γ (Y,X;A) ∼= [Ỹ /X̃,K(A,n)]Γ∗.

Proposition 4.14. There is a long exact sequence

· · · → Hn
Γ (Y,X;A) → Hn

Γ (Y ;A) → Hn
Γ (X;A) → Hn+1

Γ (Y,X;A) → · · ·

Proof: One easily checks

0 → C̃∗
Γ(BΓ ∪X Y ;A) → C∗

Γ(Y ;A) → C∗
Γ(X;A) → 0

is exact.
Alternatively, one could use Theorem 4.10, Corollary 4.13, and the Puppe

sequence. For this, let ΩC denote the “loop space” functor in any simplicial
model category C. Then Lemma 4.2 implies that there is a natural weak equiv-
alence

ΩS↓BΓ(holim−−−→
Γ

K(A,n)) � holim−−−→
Γ

K(A,n − 1). �

We shall now write down some variants of a spectral sequence (Proposition
4.17) which computes equivariant cohomology.

Fix a discrete group π, and observe that, if A is a Zπ module then for all
n ≥ 0, K(A,n) is a fibrant object in the model structure for Sπ of Section V.1.

Let X ∈ Sπ be cofibrant, and suppose that n ≥ 0. We have already seen
that there is a natural isomorphism

Hn
π (X,A) ∼= [X,K(A,n)]π

in the proof of Theorem 4.11. If X is not cofibrant we make the following:

Definition 4.15. For arbitrary π-spaces X, define Hn
π (X,A) by setting

Hn
π (X,A) = [X,K(A,n)]π.

The moral is that if X is cofibrant, then Hn
π (X,A) has a cochain description;

otherwise, take a weak equivalence Y → X and Y cofibrant in Sπ, so that

[X,K(A,n)]π ∼= [Y,K(A,n)]π ∼= Hn
π (Y,A).

While less important for our applications, this also tells one how to define
homology.
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Definition 4.16. Let A be a Zπ module, X ∈ Sπ and Y → X a weak equiv-
alence of π-spaces with Y cofibrant. Then define

Hπ
n (X,A) = πn(ZY ⊗Zπ A).

The standard model category arguments (cf. Section II.1) show that Hπ
∗ (X,A)

is independent of the choice of Y .
For calculational purposes one has the following result. If X ∈ Sπ, then

H∗X = H∗(X, Z) is a graded Zπ module.

Proposition 4.17. There is a first quadrant cohomology spectral sequence

Extp
Zπ(HqX,A) ⇒ Hp+q

π (X,A).

Proof: We may assume X is cofibrant and, indeed, that Xn is a free π-set
for all n, by Lemma V.2.4. Let P•(·) = {· · · → P1(·) → P0(·) → (·)} denote
a functorial projective resolution — for example the bar resolution — of Zπ
modules. We require each Ps(·) to be exact. Form the double complex

homZπ(P•(ZX), A) = {homZπ(Pp(ZXq), A}.
Filtering by degree in p we get a spectral sequence with

Ep,q
1 = homZπ(Pp(HqX), A)

so that E2 is as required. To determine what the spectral sequence abuts to,
filter by degree in p, whence

Ep,q
1 = Extp

Zπ(ZXq, A).

But ZXq is a free Zπ module, so Ep,q
1 = 0 if p > 0 and

E0,q
1 = homZπ(ZXq, A).

Hence the spectral sequence abuts to E0,∗
2 = H∗

π(X,A), as required. �
Proposition 4.17 is a special case of a result that holds in great generality,

in the context of homotopy theories of simplicial sheaves and presheaves [45],
[46]. We shall confine ourselves here to displaying a few of its close relatives.

An argument similar to the one given in Proposition 4.17 yields a first
quadrant homology spectral sequence

TorZπ
p (HqX,A) ⇒ Hπ

p+q(X,A). (4.18)

There are further refinements. For example, if A is an Fπ module where F is a
field one has

Extp
Fπ(Hq(X; F), A) ⇒ Hp+q

π (X;A). (4.19)

Example 4.20. Let X = ∗ be a point. Then H∗X = Z concentrated in degree
0 and

Hp
π(∗;A) ∼= Extp

Zπ(Z, A) = Hq(π,A).

Note that unlike ordinary homology, H∗
π(∗;A) need not split off of H∗

π(X;A).
The reader is invited to calculate H∗

Z/2Z
(Sn, Z) where Sn has the “antipodal

point” action and Z the trivial action. Use the next observation.
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Example 4.21. If A is a trivial π module and X is a cofibrant π-space, there
is an isomorphism

Hn
π (X,A) ∼= Hn(X/π,A).

This follows from the definition.

There is a relative version of this cohomology. In fact, let Sπ∗ denote
pointed π-spaces. For all Zπ modules A, K(A,n) has an evident base point.

Definition 4.22. For X ∈ Sπ∗, let

H̃n
π (X;A) = [X,K(A,n)]Sπ∗ .

Hence one factors ∗ → X as ∗ i−→ Y → X where i is a cofibration in Sπ

and
H̃n

π (X;A) = π0 HomSπ∗(Y,K(A,n)).

Proposition 4.23.

1) For X ∈ Sπ∗ there is a split natural short exact sequence

0 → H̃∗
π(X;A) → H∗

π(X;A) → H∗(π;A) → 0.

2) There is a first quadrant cohomology spectral sequence

Extp
Zπ(H̃qX,A) ⇒ H̃p+q

π (X;A).

We leave the proof of this, and of the homology analogs, as an exercise.

Definition 4.24. Let X → Y be an inclusion in Sπ. Define relative cohomol-
ogy by

Hn
π (Y,X;A) = H̃n

π (Y/X;A).

Proposition 4.25. There is a natural long exact sequence

· · · → Hn
π (Y,X;A) → Hn

π (Y ;A) → Hn
π (X;A) → Hn+1

π (Y,X;A) → · · · .

Proof: Consider the diagram in Sπ

U w
i

u

�
V

u

�

X w Y

where U → X is a weak equivalence with U cofibrant, U
i−→ V → Y factors

U → X → Y as a cofibration followed by a weak equivalence. Then ∗ → V/U

is a cofibration and H̃∗(Y/X) ∼= H∗(V/U), so

H̃n
π (Y/X;A) ∼= H̃n

π (V/U,A).

Now use the chain description of the various cohomology groups. �



342 VI. The homotopy theory of towers

5. On k-invariants.
This section is devoted to k-invariants — their definition and properties. We
will end with a discussion of the uniqueness of Postnikov towers.

Let X be a connected fibrant space and X = {Xn}n≥0 a Postnikov tower
for X. Let πfXn−1 be the fundamental groupoid for Xn−1 and πn the local
coefficient system on Xn−1 obtained as follows: factor Xn → Xn−1 as

Xn

i−→ Y
q−→ Xn−1

with i a weak equivalence and q a fibration. Then if v ∈ Xn−1 a vertex, let
Fv = q−1(v) and

πn(v) = πn(Fv).
If πfXn = πfXn−1, as in the case of the Moore-Postnikov tower, there is
obviously no ambiguity in πn(v), since the fibre has a single vertex. In general,
however, the fibre is simply connected, and for any two choice of vertices x and
y in Fv there is a canonical isomorphism πn(Fv, x) ∼= πn(Fv, y), so we identify
the two groups via this isomorphism and obtain πn(Fv).

Let p : L(π, n + 1) → K(π, n + 1) be a fixed functorial fibration with
L(π, n+1) contractible. Setting L(π, n+1) = WK(π, n) would certainly suffice
— this has the advantage that the corresponding fibration p : L(π, n + 1) →
K(π, n + 1) is minimal (Lemma III.2.21).

The cohomology class kn in the statement of the following result is known
as the nth k-invariant.

Proposition 5.1. Suppose that X is a connected fibrant simplicial set. There
is a cohomology class kn ∈ Hn+1

Γ (Xn−1, πn) and a homotopy pullback diagram
over BΓ

Xn w

u

holim−−−→
Γ

L(πn, n + 1)

u

Xn−1 w
kn

holim−−−→
Γ

K(πn, n + 1).

This is a consequence of the more general result Theorem 5.9 below. For
now, we state some consequences.

Corollary 5.2. Suppose X is connected and pointed, with base point v. Let
π1 = π1(X, v). Then there is a homotopy pullback diagram of over Bπ1

Xn w

u

holim−−−→
π1

L(πn(v), n + 1)

u

Xn−1 w
kn

holim−−−→
π1

K(πn(v), n + 1).
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Proof: This result is equivalent to Proposition 5.1, since there is a homotopy
cartesian square

holim−−−→
Γ

L(πn, n + 1) w
�

u

holim−−−→
π1

L(πn(v), n + 1)

u

holim−−−→
Γ

K(πn, n + 1) w� holim−−−→
π1

K(πn(v), n + 1).

�

Corollary 5.3. Suppose that X is simple and pointed, with base point v.
Then there is a homotopy pullback diagram

Xn w

u

L(πn(v), n + 1)

u

Xn−1 w K(πn(v), n + 1).

Proof: Again, let π1 = π1(X, v) and consider the homotopy pullback diagram
that appears in Corollary 5.2. Then

holim−−−→
π1

K(πn(v), n + 1) = K(πn(v), n + 1) × Bπ1

as spaces over Bπ1 and similarly for holim−−−→π1
L(πn(v)), and the diagram

L(πn(v), n + 1) × Bπ1 w

prL

u

p × 1

L(πn(v), n + 1)

u

p

K(πn(v), n + 1) × Bπ1 wprL
K(πn(v), n + 1)

is homotopy cartesian. �
To prove Proposition 5.1, we return to essentials. Let f : Y → X be a

map of spaces over BΓ, where Γ is the fundamental groupoid of Y and Y is
connected. If we factor f as

Y
j−→ Z

q−→ X

where j is a trivial cofibration and q is a fibration, then for each vertex v of Y
we get a relative homotopy group

πn(f, v) = πn−1(Fv, v),
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where Fv is the fibre of q over v, or in other words the homotopy fibre of
Y → X. This gives a local system πn(f) over BΓ and, if Γ is equivalent to the
fundamental groupoid of X, there is a long exact sequence of local systems

· · · → πn+1(f) → πn(Y )
f∗−→ πn(X) → πn(f) → · · · .

Lemma 5.4. Suppose f : Y → X is a morphism of spaces over BΓ, where
Γ is the fundamental groupoid of Y and Y is connected. Suppose n ≥ 2 and
for all choices of base point of Y , the map f∗ : πk(Y, v) → πk(X, fv) is an
isomorphism for k < n and a surjection for k = n. Then for any local system
of abelian groups A over BΓ, there is an isomorphism

f∗ : Hk
Γ(X,A)

∼=−→ Hk
Γ(Y,A), k < n

and an exact sequence

0 → Hn
Γ (X,A)

f∗

−→ Hn
Γ (Y,A) → homΓ(πn+1(f), A)

d−→ Hn+1
Γ (X,A)

f∗

−→ Hn+1
Γ (Y,A).

The sequence is natural in maps f satisfying the hypotheses.

Proof: The hypotheses on homotopy groups in degree 0 and degree 1 imply
that Γ is equivalent to the fundamental groupoid on X. Hence, the long exact
sequence of local systems above exists, and the groups H∗

Γ(X,A) are defined.
We may assume that f : Y → X is a cofibration over BΓ and use the long

exact sequence of 4.14:

· · · → Hk
Γ(X,A) → Hk

Γ(Y,A) → Hk+1
Γ (X,Y,A) → Hk+1

Γ (X,A) → · · · .

Note that the results of Section 4 imply

Hk
Γ(Y,X,A) ∼= H̃k

Γ(BΓ ∪Y X,A) ∼= H̃k
π(Z,Av)

where Z is the universal cover of BΓ∪Y X. The latter group may be computed
using Proposition 4.23.2, and one gets H̃k

π(Z,Av) = 0 for k ≤ n and

H̃n+1
π (Z,Av) ∼= homZπ(H̃n+1Z,Av)

∼= homZπ(πn+1(f, v)), Av)
∼= homΓ(πn+1(f), A),

by appropriate use of the relative Hurewicz theorem (Theorem III.3.12). �
In particular, in Lemma 5.4, one can set A = πn+1(f) and define the

k-invariant of f to be

k(f) = d(1πn+1(f)) ∈ Hn+1
Γ (X,πn+1(f)). (5.5)



5. On k-invariants 345

Remark 5.6. Given the identifications that have been made, the k-invariant
k(f) is also represented by the composite

X̃ → X̃/Ỹ → X̃/Ỹ (n + 1) � K(πn+1(X̃/Ỹ ), n + 1) ∼= K(πn+1(f), n + 1)

in the homotopy category of Γ-diagrams. The object X̃/Ỹ (n+1) is the (n+1)st

Postnikov section of a fibrant model of X̃/Ỹ — this is sensible, because the
Postnikov section construction is functorial. The relative Hurewicz isomorphism
is also functorial, so that there is an isomorphism πn+1(X̃/Ỹ ) ∼= πn+1(f) of
local coefficient systems.

One possible way to build maps f : Y → X satisfying the hypotheses of
Lemma 5.4 is to kill a cohomology class by the following method. Let X be a
connected space with fundamental groupoid Γ and let A be a local coefficient
system. Fix x ∈ Hn+1

Γ (X,A) with n ≥ 2 and form the pullback diagram

Y w

u

p

holim−−−→
Γ

L(A,n + 1)

u

X w
θ

holim−−−→
Γ

K(A,n + 1)

(5.7)

where θ represents x. By construction, πn+1(p) ∼= A and we have the following
result.

Lemma 5.8. There is an equality k(p) = x ∈ Hn+1
Γ (X,A).

Proof: By naturality, we may take θ to the identity, so that p is the projection

q : holim−−−→
Γ

L(A,n + 1) → holim−−−→
Γ

K(A,n + 1)

and x is the universal class. The zero section s : BΓ → holim−−−→Γ
L(A,n + 1) is a

weak equivalence, and we may calculate using the composite

q · s : BΓ → holim−−−→
Γ

K(A,n + 1).

Then BΓ ∪BΓ holim−−−→Γ
K(A,n + 1) has as universal cover

Z = holim−−−→
Γ

K(A,n + 1) � K(Av, n + 1).

Thus
H̃n+1

π (Z,Av) ∼= hom(Av, Av) ∼= homΓ(A,A)
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and
d : homΓ(A,A) → Hn+1

Γ (holim−−−→
Γ

K(A,n + 1), A)

is the standard isomorphism taking 1A to the universal class. �
We point out that in the diagram (5.7) the object holim−−−→Γ

K(A,n) is a
group object over BΓ and it acts on the space Y over BΓ; that is, there is a
map

μ : holim−−−→
Γ

K(A,n) ×BΓ Y → Y

over BΓ satisfying the usual associativity and unital conditions. Notice fur-
ther that this action descends to the trivial action on X in the sense that the
following diagram commutes

holim−−−→
Γ

K(A,n) ×BΓ Y w

μ

u

p2

Y

u

p

X w= X

where p2(a, b) = p(b).
Now suppose we are given f : Y → X satisfying the hypotheses of Lemma

5.4. Then we may form the k-invariant k(f) as in (5.5), and the pullback dia-
gram with A = πn+1(f),

Z w

u

p

holim−−−→
Γ

L(A,n + 1)

u

X w

k(f)
holim−−−→

Γ

K(A,n + 1).

Notice that we have confused the cohomology class k(f) with a map represent-
ing it. This abuse of notation pervades the literature, and is suggestive: the
homotopy type of Z does not depend on the choice of a representative for k(f).

Theorem 5.9. The map f : Y → X lifts to a map g : Y → Z inducing an
isomorphism

g∗ : πn+1(f) → πn+1(p).

Proof: Since f∗k(f) is in the image of the composite

homΓ(A,A)
d−→ Hn+1

Γ (X,A)
f∗

−→ Hn+1
Γ (Y,A)
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the composite k(f) · f is null-homotopic, and hence lifts to holim−−−→Γ
L(A,n + 1).

Choose a lifting, and let h : Y → Z be the induced map. We wish to modify h,
if necessary, to a homotopy equivalence.

By the naturality clause of Lemma 5.4, there is a diagram of exact se-
quences

0 w Hn
Γ (X,A) w

u

=

Hn
Γ (Z,A) w

u
h∗

homΓ(A,A) w

dZ

u
h	

Hn+1
Γ (X,A)

u

=

0 w Hn
Γ (X,A) w Hn

Γ (Y,A) w homΓ(A,A) w
dY

Hn+1
Γ (X,A).

Note that dY (1A) = k(f) by definition and dZ(1A) = k(f) by Lemma 4.5.
Furthermore h�(1A) = h∗ where we write h∗ for the composite

A = πn+1(f) → πn+1(p) ∼= A.

Since dY (1A − h∗) = k(f) − k(f) = 0, there is a class x ∈ Hn
Γ (Y,A) mapping

to 1A − h∗. Let g : Y → Z be the composite

Y
x×h−−−→ holim−−−→

Γ

K(A,n) ×BΓ Z
μ−→ Z.

Then the map g� : homΓ(A,A) → homΓ(A,A) takes 1A to 1A, so the induced
map πn+1(f) → πn+1(p) must be an isomorphism. �
Remarks 5.10.

1) Note that the map g : Y → Z of Theorem 5.9 is not unique, but may be
modified by any element of Hn(X,A).
2) The proof of Theorem 5.9 can also be carried out entirely within the Γ-
diagram category. Writing the argument that way is a good exercise.

Now let X be space and let {Xn} be any Postnikov tower for X. Let
qn : Xn → Xn−1 be the projection. Then πk(qn) = 0 for k �= n + 1 and
πn+1(qn) = πnX. Thus Proposition 5.1 follows immediately from Theorem 5.9.

More generally, let f : X → B be any map and {Xn} a Postnikov tower
for f (see Definition 3.9). Again, let qn : Xn → Xn−1 be the projection. Then
πk(qn) = 0 for k �= n + 1 and

πn+1(qn) = πn(F )

by the relative Hurewicz theorem, and one obtains a homotopy pullback square

Xn w

u

holim−−−→
Γ

L(πnF, n + 1)

u

Xn−1 w
kn

holim−−−→
Γ

K(πnF, n + 1).
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We now examine the consequences for Postnikov towers. Let X be a fibrant
connected space and {Xn} a Postnikov tower for X. Let πn = πnX regarded as
a local coefficient system as Xn−1. Then there is a homotopy cartesian square,
with Γ = πfXn−1

Xn w

u

qn

holim−−−→
Γ

L(πn, n + 1)

u

p∗

Xn−1 w
kn

holim−−−→
Γ

K(πn, n + 1)

(5.11)

and so Xn is weakly equivalent to the pullback. More is true:

Corollary 5.12. If the tower map qn : Xn → Xn−1 is a minimal fibration
then the diagram (5.11) is a pullback.

Proof: The map

p∗ : holim−−−→
Γ

L(πn, n + 1) → holim−−−→
Γ

K(πn, n + 1)

is a minimal fibration (Lemma 4.2), and so the induced map

Xn w

kn∗
�
�
�
�
�
�
�
�
�
���

qn

Xn−1 ×holim−−−→Γ
K(πn,n+1)

holim−−−→
Γ

L(πn, n + 1)

u

Xn−1

is a weak equivalence (and hence a homotopy equivalence) of minimal fibrations
over Xn−1. Lemma I.10.4 implies that the map kn∗ is an isomorphism. �

This applies, for example, to the Moore-Postnikov tower {X(n)}. In that
case Γ = πfX = πfXn for all n. If X is minimal, then qn : X(n) → X(n − 1)
is a minimal fibration.

Corollary 5.13. Let X be a connected fibrant minimal space. Then for all
n ≥ 2 there is a pullback diagram

X(n) w

u

qn

holim−−−→
π

L(πn, n + 1)

u

X(n − 1) w
kn

holim−−−→
π

K(πn, n + 1)

where π = π1X. If the fundamental group π1(X) acts trivially on πn(X), then
the map qn : X(n) → X(n − 1) is a principal K(πn, n)-fibration.
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Proof: If X is minimal and connected it has a single vertex, so

holim−−−→
Γ

K(πn, n + 1) = holim−−−→
π

K(πn, n + 1),

etc. If π1 acts trivially on πn, then

p∗ : holim−−−→
π

L(πn, n + 1) → holim−−−→
π

K(πn, n + 1)

can be identified up to isomorphism with the map

p × 1 : L(πn, n + 1) × Bπ → K(πn, n + 1)

as in the proof of Corollary 5.3, and p × 1 is a principal K(πn, n)-fibration. �
Theorem 5.14. Let X be a connected fibrant space. Then any two Postnikov
towers for X are weakly equivalent as towers under X.

Proof: Choose a minimal subcomplex X0 ⊆ X which is a weak equivalence
and let v ∈ X0 be the vertex. Choose a retraction g : X → X0. Then the
Moore-Postnikov tower {X0(n)} is a Postnikov tower under X. We will show
that any Postnikov tower {Xn} under X is weakly equivalent (under X) to
{X0(n)}.

Inductively define tower maps fn : Xn → X0(n) as follows. Let π =
π1(X, v). Then for n = 1 choose a weak equivalence X1 → X0(1) = Bπ. Sup-
pose Xk → X0(k) have been defined, and are compatible and weak equivalences
for k < n. Then Theorem 5.9 implies that there is a diagram

X0(n)

u

w holim−−−→
π

L(πn, n + 1)

u

Xn w

h
h
hjfn

X0(n − 1) w holim−−−→
π

K(πn, n + 1)

where πn = πn(X, v), and fn is a weak equivalence. Thus we have a weak
equivalence of towers f : {Xn} → {X0(n)}. To modify this is into a weak
equivalence of towers under X, consider the induced map

f : holim←−−−Xn → lim←−X0(n) = X0.

The canonical map X → holim←−−−Xn is a weak equivalence, and the induced map

f : X → X0 is a weak equivalence. There is an isomorphism θ : X0 → X0 so
that

X
f−→ X0

θ−→ X0

is g. Since the Moore-Postnikov tower is natural we get an induced isomorphism
of towers θ : {X0(n)} → {X0(n)} and the composite

θ · f : {Xn} → {X0(n)}
is a weak equivalence of towers under X. �
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6. Nilpotent spaces.
We now describe how to refine a Postnikov tower for a nilpotent space. A group
G is nilpotent if the lower central series eventually stabilizes at the trivial group.
Thus, if we define FnG ⊆ G by F0G = G and FnG = [Fn−1G,G], we are asking
that there be an integer k so that FkG = {e}. If G is a group, a G-module M
is nilpotent if there is finite filtration of M by G-modules

0 = FkM ⊆ Fk−1M ⊆ · · ·F1M ⊆ M

so that G acts trivially on the successive quotients. A simplicial set X is nilpo-
tent if X is connected, π1X is a nilpotent group and πnX is nilpotent π1X
module for n ≥ 2.

Proposition 6.1. Let X be a nilpotent space and {Xn} a Postnikov tower
for X. Each of the maps qn : Xn → Xn−1 can be refined to a finite composition

Xn = Yk → Yk−1 → · · ·Y1 → Y0 = Xn−1

so that each of the maps Yi → Yi−1 fits into a homotopy pullback square

Yi w

u

L(Ai, n + 1)

u

Yi−1 w K(Ai, n + 1)

for some abelian group Ai

Proof: We begin with the case n = 1. Then X1 → X0 is weakly equivalent
to Bπ1 → ∗ where π1 = π1X. Let {Fi} be the lower central series of π1X and
let Gi = π1/Fi. Let k be an integer so that Fk = {e}. Then there is a tower

Bπ1 = BGk → BGk−1 → · · ·BG1 → ∗.
Since

{e} → Fi−1/Fi → Gi → Gi−1 → {e}
is a central extension, there is homotopy pullback diagram, with Ai = Fi−1/Fi,

BGi w

u

L(Ai, 2)

u

BGi−1 w K(Ai, 2).

In effect, the map BGi−1 → K(Ai, 2) classifies the principal BAi-fibration
BGi → BGi−1.

Next we assume that n ≥ 2. Let {Fi} be a filtration of πnX by π1 modules
so that each of the successive quotients is a trivial π1 module. We define Yi by



6. Nilpotent spaces 351

the homotopy pullback diagram

Yi w

u

holim−−−→
π1

K(Fi, n + 1)

u

Xn−1 w holim−−−→
π1

K(πnX,n + 1)

where the bottom map is the k-invariant. Since there is a homotopy pullback
diagram

holim−−−→
π1

K(Fi, n + 1) w

0∗

u

holim−−−→
π1

L(Fi−1/Fi, n + 1)

u

holim−−−→
π1

K(Fi−1, n + 1) w holim−−−→
π1

K(Fi−1/Fi, n + 1).

there is a homotopy pullback diagram

Yi w

u

holim−−−→
π1

L(Fi−1/Fi, n + 1)

u

Yi−1 w holim−−−→
π1

K(Fi−1/Fi, n + 1).

Since π1 acts trivially on Fi−1/Fi, one can finish the proof by arguing as in
Proposition 5.3. �

The previous result has the following consequence.

Corollary 6.2. Let X be a nilpotent space. Then there is a tower of fibrations
{Zj} so that X � lim←−Zj and each of the maps Zj → Zj−1 fits into a homotopy

pullback square

Zj w

u

L(Aj, nj + 1)

u

Zj−1 w K(Aj , nj + 1)

where each Aj is an abelian group and {nj} is a non-decreasing sequence of
positive integers so that lim−→nj = ∞

Further variations on this result are possible. For example, one can remove
the hypothesis that X be connected, or consider nilpotent fibrations. It is also
possible to construct this refined Postnikov tower by a method similar to the
construction of the Moore-Postnikov tower. See Bousfield and Kan [14].



Chapter VII Reedy model categories

This chapter contains an exposition of the Bousfield-Kan model structure on the
category cS of cosimplicial objects in simplicial sets, also known as cosimplicial
spaces. It appears here as the dual of a Reedy model category structure on the
category of simplicial objects sC in a suitable closed model category C. Another
standard example of a Reedy structure on a simplicial object category is the
Reedy structure on the category of bisimplicial sets, or simplicial objects in
simplicial sets — see Section IV.3.

Much of the chapter concerns the general Reedy theory. We preface this
development in Section 1 with a discussion of skeleta in a very general context.
The main results are Proposition 1.9 and Corollary 1.14; they discuss to what
extent a simplicial object in a category C with enough colimits can be built by
“attaching cells”. One application is a characterization of cofibrations in the
kind of model category considered in Section II.4. See Example 1.15.

In general, if a category C is a closed model category, then the Reedy
structure of the category sC of simplicial objects in C has as weak equivalences
those morphisms X → Y in sC for which each Xn → Yn is a weak equivalence
for all n ≥ 0. One of the main auxiliary results is that there is a geometric
realization functor

| · | : sC −→ C
which preserves weak equivalences between Reedy cofibrant objects — see
Proposition 3.6. The Reedy model category structure is discussed in detail
in Section 2, and the geometric realization functor is the subject of Section 3.

This theory is specialized in Section 4 to the case of cosimplicial spaces
cS; that is, to the case of the opposite category to the category of simplicial
objects in Sop. The resulting model category structure on cS is the standard
one discussed by Bousfield and Kan. In particular, we show in Proposition
4.18 that the cofibrations A → B defined by the Reedy structure are exactly
those maps which are monomorphisms in all levels and induce isomorphisms
H0A ∼= H0B on maximal augmentations.

The material in Section 4, along with that appearing in Section VI.2, is the
basis for the construction of the homotopy spectral sequence for a cosimplicial
space which is given in Chapter VIII.

1. Decomposition of simplicial objects.

Let C be a category with all limits and colimits. The purpose of this section is
to analyze how simplicial objects are constructed out of smaller components.
We will use this inductive argument in later sections.

We begin with skeleta. The category sC is the functor category CΔΔΔop

. Let
in : ΔΔΔn ⊆ ΔΔΔ be the inclusion of the full subcategory with objects k, k ≤ n, and
let snC = CΔΔΔop

n . There is a restriction function in∗ : sC → snC which simply
forgets the k-simplices, k > n. This restriction functor has a left adjoint given

353



354 VII. Reedy model categories

by
(i∗nX)m = lim−→

m→k

Xk = lim−→
m↓ΔΔΔn

Xk (1.1)

and the colimit is over morphisms m → k in ΔΔΔ with k ≤ n. This is an example
of a left Kan extension. Every morphism m → k in ΔΔΔ can be factored uniquely
as

m
φ−→ k′ ψ−→ k

where φ is a surjection and ψ is one-to-one, so the surjections m → k, k ≤ n,
can be used to define the colimit of (1.1) and we get

(i∗nX)m
∼= lim−→

m↓ΔΔΔ+
n

Xk (1.2)

where ΔΔΔ+ ⊆ ΔΔΔ is the subcategory with the same objects but only surjections
as morphisms, and ΔΔΔ+

n = ΔΔΔn ∩ΔΔΔ+.
If X ∈ sC we define the nth skeleton of X by the formula

skn X = i∗nin∗X. (1.3)

There are natural maps skm X → skn X, m ≤ n, and skn X → X. The mor-
phism 1m is an initial object in the category m ↓ Δn if m ≤ n, so there is an
isomorphism (skn X)m

∼= Xm in that range. It follows that there is a natural
isomorphism

lim−→
n

skn X
∼=−→ X.

Here is an example. Because C has limits and colimits, sC has a canonical
structure as a simplicial category. (See Section II.2). In particular if X ∈ sC
and K ∈ S, then

(X ⊗ K)n =
⊔
Kn

Xn.

It is now a straightforward exercise to prove

Proposition 1.4. If X ∈ sC is constant and K ∈ S, then there are natural
isomorphisms

skn X ∼= X and X ⊗ skn K ∼= skn(X ⊗ K).

To explain how skn X is built from skn−1 X we define the nth latching
object LnX of X by the formula

LnX = (skn−1 X)n (1.5)
∼= lim−→

n↓ΔΔΔ+
n−1

Xk.
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If Z ∈ C, we may regard Z as a constant object in sC and there is an adjoint
isomorphism

homC(Z,Xn) ∼= homsC(Z ⊗ Δn,X)

for all n ≥ 0. This immediately supplies maps in sC
LnX ⊗ Δn → skn−1 X

and
Xn ⊗ Δn → skn X.

Furthermore, by Proposition 1.4, skn−1(Xn⊗Δn) = Xn⊗skn−1 Δn = Xn⊗∂Δn

and we obtain a diagram

LnX ⊗ ∂Δn
w

u

LnX ⊗ Δn

u

Xn ⊗ ∂Δn
w skn−1 X.

(1.6)

Proposition 1.7. For all X ∈ sC there is a natural pushout diagram, n ≥ 0,

Xn ⊗ ∂Δn ∪LnX⊗∂Δn LnX ⊗ Δn
w

u

skn−1 X

u

Xn ⊗ Δn
w skn X

Proof: In light of Proposition 1.4, if we apply i∗nin∗ = skn(·) to this diagram
we obtain an isomorphic diagram. Since i∗n : snC → sC is a left adjoint, we need
only show this is a pushout diagram in degrees less than or equal to n.

In degrees m < n, the map (LnX ⊗ ∂Δn)m → (LnX ⊗ Δn)m is an
isomorphism, so

(Xn ⊗ ∂Δn ∪LnX⊗∂Δn LnX ⊗ Δn)m → (Xn ⊗ Δm)m

is an isomorphism, and the assertion is that (skn−1 X)m
∼= (skn X)m, which is

true since both are isomorphic to Xm.
In degree n, the left vertical map is isomorphic to

(
⊔

(∂Δn)n

Xn) � LnX → (
⊔

(∂Δn)n

Xn) � Xn

and the right vertical map is isomorphic to the natural map LnX → Xn, by
definition of LnX. This is enough to show that the diagram is a pushout in
degree n. �
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Remark 1.8. There is another, more explicit, description of the latching ob-
jects LnX, which can be summarized as follows:

(1) By convention, L0X = ∅, where ∅ denotes the initial object of the cate-
gory C.

(2) There is an isomorphism L1X ∼= X0, and the canonical map L1X → X1

can be identified with the degeneracy map s0 : X0 → X1.
(3) For n > 1, the object LnX is defined by the coequalizer⊔

0≤i<j≤n−1

Xn−2 ⇒
n−1⊔
i=0

Xn−1 → LnX

where for i < j the restrictions of the two displayed maps to Xn−2 are
given by the composites

Xn−2

si−→ Xn−1

inj−−→
n−1⊔
i=0

Xn−1

and

Xn−2

sj−1−−−→ Xn−1

ini−−→
n−1⊔
i=0

Xn−1

(this definition corresponds to the simplicial identity sjsi = sisj−1).
The canonical map s : LnX → Xn is induced by the degeneracies si :
Xn−1 → Xn.

Claims (2) and (3) follow from the description of LnX = skn−1 Xn given in
(1.2) — this is an exercise for the reader.

Morphisms also have skeletal filtrations. If f : A → X is a morphism
in sC, define skA

n X by setting skA
−1 = A and, for n ≥ 0, defining skA

n by the
pushout diagram

skn A w

u

skn f

A

u

skn X w skA
n X.

The analog of Proposition 1.7 is the next result, which is proved in an identical
manner. Let Ln(f) = (skA

n−1 X)n = An ∪LnA LnX.

Proposition 1.9. For all morphisms A → X in sC there is a pushout diagram

Xn ⊗ ∂Δn ∪Ln(f)⊗∂Δn Ln(f) ⊗ Δn
w

u

skA
n−1 X

u

Xn ⊗ Δn
w skA

n X.

�
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There is a situation under which the pushout diagrams of Proposition 1.7
and 1.9 simplify considerably. This we now explain.

If I is a small category, let Iδ be the discrete category with the same
objects as I, but no non-identity morphism. The left adjoint r∗ to the restriction
functor r∗ : CI → CIδ

has a very simple form

(r∗Z)j =
⊔
i→j

Zi.

We call such a diagram I-free. More generally, a morphism f : A → X in CI

is I-free if there is an I-free object X ′ ∈ CI and an isomorphism under A of f
with the inclusion of the summand A → A � X ′. This implies that there is an
object {Zi} ∈ CIδ

so that

Xj
∼= Aj � (

⊔
i→j

Zi).

Notice an object X is I-free if and only if the morphism φ → X from the initial
object is I-free.

Definition 1.10. An object X ∈ sC is degeneracy free if the underlying de-
generacy diagram is free. That is, if ΔΔΔ+ ⊆ ΔΔΔ is the subcategory with same
objects but only surjective morphisms, then X regarded as an object in CΔΔΔop

+

is ΔΔΔop
+ -free. A morphism A → X is degeneracy free if, when regarded as a

morphism in CΔΔΔop
+ , is ΔΔΔop

+ free.

If X is degeneracy free, then there is a sequence {Zn}n≥0 of objects in C
so that

Xn
∼=

⊔
φ:n→m

Zm

where φ runs over the epimorphisms in ΔΔΔ. A degeneracy free map A → X
yields a similar decomposition:

Xn
∼= An �

⊔
φ:n→m

Zm. (1.11)

We say A → X is degeneracy free on {Zm}.
The following result says that degeneracy free maps are closed under a

variety of operations.

Lemma 1.12.

1) Let fα : Aα → Xα be a set of maps so that fα is degeneracy free on {Zn}.
Then

⊔
α fα is free on {⊔α Zα

n}.
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2) Suppose f : A → X is degeneracy free on {Zn} and

A w

u

f

B

u

g

X w Y

is a pushout diagram. Then g is degeneracy free on {Zn}.
3) Let A0 → A1 → A2 → · · · be a sequence of morphisms so that Aj−1 → Aj

is degeneracy free on {Zj
n}. Then A0 → lim−→ Aj is degeneracy free on {⊔j Zj

n}.
4) Let F : C → D be a functor that preserves coproducts. If f : A → X in sC
is degeneracy free on {Zn}, then Ff : FA → FX is degeneracy free on {FZn}.
Lemma 1.13. A morphism f : A → X is degeneracy free if and only if there
are objects Zn and maps Zn → Xn so that the induced map

(An ∪LnA LnX) � Zn → Xn

is an isomorphism.

Proof: If f is degeneracy free on {Zn}, the decomposition follows from the
formulas (1.5) and (1.11). To prove the converse, fix the given isomorphisms.
Then Proposition 1.9 implies there is a pushout diagram

Zn ⊗ ∂Δn
w

u

skA
n−1 X

u

Zn ⊗ Δn
w skA

n X

in CΔΔΔop
+ .
However, the morphism of simplicial sets ∂Δn → Δn is degeneracy free

on the canonical n-simplex in Δn
n; hence, skA

n−1 X → skA
n X is degeneracy free

on Zn in degree n. The result now follows from Lemma 1.12.3; indeed A → X
is degeneracy free on {Zn}. �

Here is a consequence of the proof of Lemma 1.13:

Corollary 1.14. Suppose A → X is degeneracy-free on {Zn} in sC. Then
for all n ≥ 0 there is a pushout diagram,

Zn ⊗ ∂Δn
w

u

skA
n−1 X

u

Zn ⊗ Δn
w skA

n X.

Notice that one can interpret this result as saying skA
n X is obtained from

skA
n−1 X by attaching n-cells.
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Example 1.15. Lemmas 1.12 and 1.13 provide any number of examples of
degeneracy free morphisms. For example, a cofibration in simplicial sets is
degeneracy free, by Lemma 1.13. Also, consider a category C equipped with a
functor G : C → Sets with a left adjoint F and satisfying the hypotheses of
Theorem II.4.1. Define a morphism f : A → X in sC to be free (this terminology
is from Quillen) if there is a sequence of sets {Zn} so that f is degeneracy free
on {FZn}. Then a morphism in sC is a cofibration if and only if it is a retract of
a free map. To see this, note that the small object argument of Lemma II.4.2,
coupled with Lemma 1.12 factors any morphism A → B as

A
j−→ X

q−→ Y

where j is a free map and a cofibration and q is a trivial fibration. Thus any
cofibration is a retract of a free map. Conversely, Corollary 1.14 and Proposi-
tion II.3.4 imply any free map is a cofibration. Similar remarks apply to the
model categories supplied in Theorems II.5.8 and II.6.8. In the latter case one
must generalize Lemma 1.12.3 to longer colimits.

The notion of coskeleta is dual to the notion of skeleta. The theory is
analogous, and we give only an outline.

The restriction functor in∗ : sC → snC has right adjoint i!n with

(i!nX)m = lim←−
k→m

Xk,

with the limit over all morphism k → m in ΔΔΔ with k ≤ n. Equally, one can take
the limit over morphisms k → m which are injections. The composite gives the
nth coskeleton functor:

coskn X = i!nin∗X. (1.16)

More generally, if f : X → B is a morphism in sC, let coskB
−1 X = B and let

coskB
n X be defined by the pullback

coskB
n X w

u

coskn X

u

B w coskn B.

(1.17)

Then there are maps coskB
n X → coskB

n−1 X and

X ∼= lim←−
n

coskB
n X.

Note that if B = ∗, the terminal object, then coskB
n X = coskn X.

For X ∈ sC, define the nth matching object MnX by the formula

MnX = (coskn−1 X)n = lim←−
k→n

Xk (1.18)

where k → n runs over all morphisms (or all monomorphisms) in ΔΔΔ with k < n.
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Remark 1.19. The matching object MnX has a more explicit description:

(1) By convention, M0X = ∗, where ∗ denotes the terminal object of the
category C.

(2) There is an isomorphism M1X ∼= X0×X0, and the canonical map X1 →
M1X can be identified with the product d = (d0, d1) : X1 → X0 × X0

of the face maps d0, d1 : X1 → X0.
(3) For n > 1, the matching object MnX is defined by an equalizer diagram

MnX →
n∏

i=0

Xn−1 ⇒
∏

0≤i<j≤n

Xn−2.

Here, the parallel arrows are determined by the simplicial identities
didj = dj−1di for i < j; more explicitly, the images of these maps on
the factor corresponding to i < j are the maps

n∏
i=0

Xn−1

prj−−→ Xn−1

di−→ Xn−2

and
n∏

i=0

Xn−1

pri−−→ Xn−1

dj−1−−−→ Xn−2.

The canonical map d : Xn → MnX is induced by the face maps di :
Xn → Xn−1.

Claims (2) and (3) follow from the description of (i!n−1X)n = MnX as an
inverse limit indexed over ordinal number monomorphisms. This is an exercise
for the reader.

To fit the map coskB
n X → coskB

n−1 X into a pullback diagram, we make
some definitions. Let ρn : sC → C be the functor ρnX = Xn. This is a restriction
functor between diagram categories and has a right adjoint ρ!

n. The functor
Ln : sC → C assigning each simplicial object the latching object LnX also has
a right adjoint, which we will call μ!

n. To see this, see Lemma 1.25 below, or
note that we may write

LnX = (skn−1 X)n = ρni∗n−1i(n−1)∗X

where i(n−1)∗ : sC → sn−1C is the restriction functor. Hence

μ!
nZ = i!n−1i(n−1)∗ρ!

nZ = coskn−1(ρ!
nZ).

The natural map s : LnX → X gives a natural transformation ρ!
n → μ!

n. The
reader is invited to prove the following result.
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Proposition 1.20. Let f : X → B be a morphism in sC. Then for all n ≥ 0
there is a pullback diagram

coskB
n X w

u

ρ!
nXn

u

coskB
n−1 X w ρ!

nMn(f) ×μ!
nMn(f) μ!

nXn

where Mn(f) = Bn ×MnB MnX.

We have never encountered the analog of degeneracy-free morphisms, and
don’t include an exposition here.

The latching and matching object functors Ln and Mn are examples of a
much more general sort of functor, which we now introduce and analyze. We
begin with generalized matching objects.

Proposition 1.21. Let K ∈ S be a simplicial set. Then the functor

−⊗ K : C → sC
has right adjoint MK . For fixed X ∈ sC, the assignment K �→ MKX induces a
functor Sop → C which has a left adjoint.

Proof: For objects Z of C and all n ≥ 0, there are isomorphisms

homsC(Z ⊗ Δn,X) ∼= homC(Z,Xn).

It follows that there are isomorphisms

homsC(Z ⊗ K,X) ∼= lim←−
Δn→K

homsC(Z ⊗ Δn,X)

∼= lim←−
Δn→K

homC(Z,Xn)

∼= homC(Z, lim←−
Δn→K

Xn)

= homC(Z,MKX).

Furthermore,

homC(Z,MKX) ∼= homsC(Z ⊗ K,X) ∼= homS(K,HomsC(Z,X)). �
Notice the explicit description of MKX that arose in the proof of Propo-

sition 1.21:
MKX ∼= lim←−

(Δ↓K)op

X (1.22)

is the limit of a contravariant functor on the simplex category Δ ↓ K which
sends an object Δn → K of Δ ↓ K to the object Xn of C. In particular, there
is an isomorphism

MΔnX ∼= Xn,

since the category Δ ↓ Δn has an initial object.
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Example 1.23. Let φ : Δk → Δn be any morphism in S. Then φ factors
uniquely as a composition

Δk
φ′

−→ Δm
ψ−→ Δn

where φ′ is a surjection and ψ is an injection. Thus if K ⊆ Δn is any sub-
complex, the full subcategory Δ ↓ K0 ⊆ Δ ↓ K with objects

σ : Δm → K

with σ an injection determines colimits on the larger category. Equivalently,
restriction to Δ ↓ Kop

0 determines inverse limits for Δ ↓ Kop; it follows that
there is an isomorphism

MKX ∼= lim←−
Δ↓Kop

0

X.

In particular M∂ΔnX ∼= lim←−φ:k→n
Xk where φ ∈ ΔΔΔ is an injection and k < n.

Thus M∂ΔnX ∼= MnX. Note that the inclusion map ∂Δn → Δn induces the
projection

Xn → MnX.

To generalize the latching objects we use the formulation of matching
objects presented in (1.22). Let J be a small category and F : J → ΔΔΔop. For
X ∈ sC = CΔΔΔop

, define the generalized latching object to be

LJX = lim−→
J

(X ◦ F ) (1.24)

= lim−→
j

XF (j).

We are primarily interested in sub-categories J of ΔΔΔop. We write X
∣∣
J

for X ◦F .

Lemma 1.25. For fixed F : J → ΔΔΔop, the functor LJ : sC → C has a right
adjoint and, hence, preserves colimits.

Proof: For homC(LJX,Z) ∼= homCJ (X ◦F,Z) where Z is regarded as a con-
stant diagram. But

homCJ (X
∣∣
J
, Z) = homsC(X,F !Z)

where F ! is the right Kan extension functor. �
An example of a generalized latching object is the following. Let On be

the category with objects the morphisms φ : n → m with φ surjective and
m < n. The morphisms in On are commutative triangles in ΔΔΔ under n. Define
F : Oop

n → ΔΔΔop by F (φ : n → m) = m. Then there is a natural isomorphism

LnX ∼= LOop
n

X.
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In the next section we will need a decomposition of LnX. To accomplish
this define sub-categories Mn,k ⊆ On, 0 ≤ k ≤ n, to be the full sub-category
of surjections φ : n → m, m < n, with φ(k) < k. Define, for X ∈ sC

Ln,kX = LMop
n,k

X.

Then Ln,0X = φ is the initial object in C (since Mn,0 is empty) and Ln,nX =
LnX, since Mn,n = On.

Also define M(k) ⊆ On to be the full subcategory of surjections φ : n →
m, m < n, with φ(k) = φ(k + 1). Notice that sk : n → n − 1 is the initial
object of M(k). Hence for X ∈ sC

LM(k)opX ∼= Xn−1.

The reader can verify the following statements about these subcategories.

Lemma 1.26.

1) Mn,k and M(k) are subcategories of Mn,k+1, and every object in Mn,k+1

is in Mn,k or M(k) (or both).

2) There is an isomorphism of categories

− ◦ sk : Mn−1,k → M(k) ∩Mn,k

sending φ to φ ◦ sk.

3) If φ is an object of Mn,k (or M(k)) and φ → ψ is a morphism in Mn,k+1,
then φ → ψ is a morphism in Mn,k (or M(k)).

The following example, illustrating the case n = 3, k = 2, might be
helpful.

In the following diagram the symbol 012 near a dot (•) indicates the object
s0s1s2 in the appropriate category. The unlabeled arrows indicated composition
with si for some i; for example 0 • → • 02 means s0 �→ s1s0 = s0s2.

0 1
•

u

•
�
�
��•

01

M2,2 = O2

0 1
•�
�
�
��u

•
�
��

���

�
�
�
��

01 •�
�
�
��

• 02

u

• 12
N
N
N
NQ•

012

M3,2
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2
•

u

h
h
hk

02 •

u

• 12
�
�
��•

012

M(2)

0 1 2
•

u

�
�
���

•
h
h

hhk

�
�
���

•

u

�
��

hhk01 •A
A
A
AC

• 02

u

• 12
�
�
�
��•

012

M3,3 = O3

Proposition 1.27. Let X ∈ sC. Then there is a pushout diagram in C

Ln−1,kX w

u

Xn−1

u

Ln,kX w Ln,k+1X.

Proof: Lemma 1.26 implies that

Mn−1,kX w

u

M(k)

u

Mn,kX wMn,k+1

is a pushout in the category of small categories. The same is then true of the
opposite categories. The result follows. �

2. Reedy model category structures.

Let C be a closed model category. Using the considerations of the previous
section, this structure can be promoted to a closed model category structure on
the category sC of simplicial objects in C that is particularly useful for dealing
with geometric realization. The results of this section are a recapitulation of
the highly influential, but unpublished paper of C.L. Reedy [81].

In the following definition, let L0X and M0X denote the initial and final
object of C respectively.
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Definition 2.1. A morphism f : X → Y in sC is a

1) Reedy weak equivalence if f : Xn → Yn is a weak equivalence for all
n ≥ 0;

2) a Reedy fibration if

Xn → Yn ×MnY MnX

is a fibration for all n ≥ 0;
3) a Reedy cofibration if

Xn ∪LnX LnY → Yn

is a cofibration for all n ≥ 0.

The main result is that this defines a model category structure on sC.
Before proving this we give the following lemma.

Lemma 2.2. A morphism f : X → Y in sC is a

1) Reedy trivial fibration if and only if

Xn → Yn ×MnY MnX

is a trivial fibration for n ≥ 0;

2) a Reedy trivial cofibration if and only if

Xn ∪LnX LnY → Yn

is a trivial cofibration for all n ≥ 0.

Proof: Let Δn,k = d0Δn−1 ∪ · · · ∪ dkΔn−1 ⊆ ∂Δn, −1 ≤ k ≤ n. Then
Δn,−1 = φ and Δn,n = ∂Δn. There are pushout diagrams −1 ≤ k ≤ n − 1

Δn−1,k
w

u

Δn−1

u

Δn,k
w Δn,k+1.

Taking matching objects yields a natural pullback square

Mn,k+1X w

u

Xn−1

u

Mn,kX w Mn−1,kX
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where we have written Mn,kX for MΔn,kX. It follows that there is a pullback
square

Yn ×Mn,k+1Y Mn,k+1X w

u

Xn−1

u

Yn ×Mn,kY Mn,kX w Yn−1 ×Mn−1,kY Mn−1,kX.

(2.3)

Assume f : X → Y is a Reedy fibration. Then X0 → Y0 is a fibration and
this begins an induction where the induction hypothesis is that

Xn−1 → Yn−1 ×Mn−1,kY Mn−1,kX (2.4)

is a fibration. To complete the inductive step, one uses (2.3) to show

Yn ×Mn,k+1Y Mn,k+1X → Yn ×Mn,kY Mn,kX (2.5)

is a fibration for all k, −1 ≤ k ≤ n − 1. Since composites of fibrations are
fibrations and Xn → Yn ×MnY MnX is a fibration, we close the loop.

Now suppose f : X → Y is a Reedy trivial fibration. Then, inductively,
each of the maps of (2.4) is a trivial fibration. For the inductive step, use (2.3)
to show each of the maps (2.5) is a trivial fibration. Then the axiom CM2 and
the fact that Xn → Yn a trivial fibration finishes the argument. In particular
Xn → Yn ×MnY MnX is a trivial fibration for all n.

Conversely, suppose Xn → Xn×MnY MnX is a trivial fibration. Then one
runs a similar argument to conclude Xn → Yn is a trivial fibration.

The argument for part 2) is similar, using the pushout diagram

Ln−1,kX w

u

Xn−1

u

Ln,kX w Ln,k+1X

of Proposition 1.27. �
As a corollary of the proof of Lemma 2.2 we have the following:

Corollary 2.6.

(1) Every Reedy fibration p : X → Y of sC is a level fibration in the sense
that all component maps p : Xn → Yn are fibrations of C.

(2) Every Reedy cofibration i : A → B of sC is a level cofibration in the
sense that all component maps i : An → Bn are cofibrations of C.
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We break the proof of the verification of the Reedy model category struc-
ture into several steps.

Lemma 2.7. The Reedy structure on sC satisfies the lifting axiom CM4.

Proof: Suppose we are given a lifting problem in sC

A w

u

j

X

u

q

B w Y

where j is cofibration, q is a fibration and either j or q is a weak equivalence.
We inductively solve the lifting problems

skA
n−1 B w

u

X

u

skA
n B w Y

for n ≥ 0. Because of the pushout diagram of Proposition 1.9 it is sufficient to
solve the lifting problems, with Ln(j) = An ∪LnA LnB

Ln(j) ⊗ Δn ∪Ln(j)⊗∂Δn Bn ⊗ ∂Δn
w

u

X

u

Bn ⊗ Δn
w Y.

By an adjunction argument this is equivalent to the lifting problem

An ∪LnA LnB w

u

Xn

u

Bn w Yn ×MnY MnX.

This is solvable by Lemma 2.2. �
For the proof of the factorization axiom we need to know how much data

we need to build a simplicial object.
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Lemma 2.8. Let X ∈ sC. Then skn X is determined up to natural isomorphism
by the following natural data: skn−1 X, Xn, and maps LnX → Xn → MnX so
that the composite LnX → MnX is the canonical map.

Proof: The given map Xn → MnX is adjoint to a map Xn⊗∂Δn → X which
factors uniquely through skn−1 X. The data listed thus yields the pushout
square

LnX ⊗ Δn ∪LnX⊗∂Δn Xn ⊗ ∂Δn
w

u

skn−1 X

u

Xn ⊗ Δn
w skn X

of Proposition 1.7. �
This can be restricted: let snC be the functor category CΔΔΔop

n and X ∈ snC.
Let r∗X ∈ sn−1C be the restriction and r∗ : sn−1C → snC the left Kan extension
functor. Hence (r∗r∗X)n = LnX.

Lemma 2.8 immediately implies

Lemma 2.9. Let X ∈ snC. Then X is determined up to natural isomorphism
by the following natural data: r∗X, Xn, and maps LnX → Xn → MnX so that
the composite LnX → MnX is the canonical map.

Proof: Let in∗ : sC → snC be the restriction and i∗n : snC → sC the left
adjoint. Then in∗i∗n ∼= 1 and i∗nin∗ = skn. Thus

i∗nX ∼= skn i∗nX

is determined up to natural isomorphism by skn−1 i∗nX ∼= i∗n−1r∗X, the object
Xn and maps Lni∗nX → Xn → Mni∗nX that compose to the canonical map
Lni∗nX → Mni∗nX. But LnX ∼= Lni∗nX and MnX ∼= Mni∗nX. �
Lemma 2.10. The Reedy structure on sC satisfies the factorization axiom
CM5.

Proof: Let us do the trivial cofibration-fibration factorization (compare the
proof of Lemma IV.3.6).

Let X → Y be a morphism in sC and let in∗X → in∗Y be the induced
morphism in snC. For each n ≥ 0 we construct a factorization

in∗X → Z(n) → in∗Y

in snC with the property that restricted to sn−1C we get the factorization
i(n−1)∗X → Z(n − 1) → i(n−1)∗Y .

For n = 0, simply factor X0 → Y0 as

X0

j−→ Z(0)
q−→ Y0
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where j is a trivial cofibration in C and q is a fibration in C. Suppose the factor-
ization in sn−1C has been constructed. Then there is a commutative diagram

LnX w

u

Xn w MnX

u

LnZ

u

MnZ

u

LnY w Yn w MnY

and hence a map
Xn ∪LnX LnZ → Yn ×MnY MnZ.

Factor this map as

Xn ∪LnX LnZ
j−→ Zn

q−→ Yn ×MnY MnZ (2.11)

where j is a trivial cofibration and q is a fibration. The morphisms j and q
yield diagrams

LnX w

u

Xn

u

w MnX

u

LnZ w

u

Zn

u

w MnZ

u

LnY w Yn w MnY

and so Lemma 2.9 produces a factorization

in∗X → Z(n) → in∗Y.

Finally, define Z ∈ sC by Zk = Z(n)k, k ≤ n. There is a factoring

X
j−→ Z

q−→ Y

and using (2.11) j is a trivial cofibration by Lemma 2.2 and q is a fibration by
definition.

The other factorization is similar. �
We now state

Theorem 2.12. With the definitions of Reedy weak equivalence, cofibration,
and fibration given in Definition 2.1, the category sC is a closed model category.
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Proof: The axioms CM1–CM3 are easy and Lemmas 2.7 and 2.10 prove
CM4 and CM5 respectively. �

Next suppose C is in fact a simplicial model category. For K ∈ S and
Y,Z ∈ C write Z�K, homC(K,Z), and HomC(Y,Z) for the tensor object, the
exponential object, and the mapping space. We use this notation to distinguish
the internal object Z�K from the construction Z⊗K defined by the simplicial
structure.

The category sC inherits a simplicial structure. If X ∈ sC and K ∈ S,
then X�K and homC(K,X) are defined level-wise

(X�K)n = Xn�K and homC(K,X)n = homC(K,Xn).

The mapping space is defined by the usual formula

HomsC(X,Y )n
∼= homsC(X�Δn, Y ).

We call this the internal structure on sC.

Corollary 2.13. With this internal simplicial structure on sC, the Reedy
model category structure is a simplicial model category.

Proof: We claim Mn(homC(K,Y )) ∼= homC(K,MnY ). For there is a se-
quence of natural isomorphisms, Z ∈ C,

homC(Z,Mn(homC(K,Y ))) ∼= homsC(Z ⊗ ∂Δn,homC(K,Y ))
∼= homsC((Z ⊗ ∂Δn)�K,Y )
∼= homsC((Z�K) ⊗ ∂Δn, Y )
∼= homsC(Z�K,MnY )
∼= homsC(Z,homC(K,MnY )).

The isomorphism (Z ⊗ ∂Δn)�K ∼= (Z�K) ⊗ ∂Δn follows by a level-wise cal-
culation. The result follows from the claim using Proposition II.3.13. �

One can ask if sC in the Reedy model category is a simplicial model
category in the standard simplicial structure obtained by Quillen’s method (as
in the previous section). The answer is no; for if Z ∈ C is cofibrant in C, then

1 ⊗ d0 : Z ⊗ Δ0 → Z ⊗ Δ1

is a Reedy cofibration, but not, in general, a Reedy weak equivalence (see
Remark IV.3.13).

As a corollary of the proof of Theorem 2.12 (more specifically Lemma
2.7), we have the following:
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Corollary 2.14. Suppose that j : A → B is a Reedy cofibration. Then all
maps

Ln(j) ⊗ Δn ∪Ln(j)⊗∂Δn Bn ⊗ ∂Δn → Bn ⊗ Δn

are Reedy cofibrations. In particular, if X is a Reedy cofibrant object, then all
maps

LnX ⊗ Δn ∪LnX⊗∂Δn Xn ⊗ ∂Δn → Xn ⊗ Δn

are Reedy cofibrations.

It is true (Proposition 2.15 below), however, that if f : X → Y is a Reedy
cofibration in sC and j : K → L is a cofibration of simplicial sets, then the
induced map

X ⊗ L ∪X⊗K Y ⊗ K → Y ⊗ L

is a Reedy cofibration which is a Reedy weak equivalence if f is a Reedy weak
equivalence. The proof of this statement requires that we first recast the def-
inition of Reedy fibration, and properly describe function complex objects for
the external structure.

Recall the definition: a map p : Z → W is a Reedy fibration of sC if the
induced map

Zn → Wn ×MnW MnZ

is a fibration of the closed model category C for every n ≥ 0. This means that
all such maps should have the right lifting property with respect to all trivial
cofibrations of C, so an adjointness argument says that p : Z → W is a Reedy
fibration if it has the right lifting property in sC with respect to all maps

B ⊗ ∂Δn ∪A⊗∂Δn A ⊗ Δn → B ⊗ Δn

associated to trivial cofibrations A → B of C and simplicial set inclusions
∂Δn ↪→ Δn. The underlying category C has all colimits, so p is a Reedy fibration
if and only if it has the right lifting property with respect to all maps

B ⊗ K ∪A⊗K A ⊗ L → B ⊗ L

induced by trivial cofibrations A → B of C and simplicial set inclusions K ↪→ L.
We have seen in Proposition 1.21 that the functor MK : sC → C is right

adjoint to Z �→ Z ⊗ K, and this adjunction is defined and natural for all
simplicial sets K. For such K, define a functor MK : sC → sC by specifying
MKYn = MΔn×KY . Then the adjunction isomorphisms

hom(Xn,MΔn×KY ) ∼= hom(Xn ⊗ Δn ⊗ K,Y )

jointly induce an adjunction isomorphism

hom(X,MKY ) ∼= hom(X ⊗ K,Y ).

To see this, it helps to know that there is a natural coequalizer⊔
θ:m→n

Xn ⊗ Δm ⇒
⊔
n

Xn ⊗ Δn → X

in the simplicial object category sC, and that tensoring with K preserves col-
imits.
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Proposition 2.15.

(1) Let f : X → Y be a Reedy cofibration in sC and j : K → L a cofibration
in S. Then

X ⊗ L ∪X⊗K Y ⊗ K → Y ⊗ L

is a Reedy cofibration which is a Reedy weak equivalence if f is a Reedy
weak equivalence.

(2) Suppose f : X → Y is a Reedy fibration in sC and j : K → L is a
cofibration in S. Then

MLX → MKX ×MKY MLY

is a Reedy fibration which is a Reedy weak equivalence if f is a Reedy
weak equivalence.

Proof: These two statements are equivalent by an adjunction argument, and
we shall prove the second.

The map
MLX → MKX ×MKY MLY

has the right lifting property with respect to a class of maps C → D if and only
if f : X → Y has the right lifting property with respect to all induced maps

D ⊗ K ∪C⊗K C ⊗ L → D ⊗ L

The corresponding map induced by the morphism

B ⊗ ∂Δn ∪A⊗∂Δn A ⊗ Δn → B ⊗ Δn

arising from a trivial cofibration A → B of C has the form

B ⊗ K′ ∪A⊗K′ A ⊗ L′ → B ⊗ L′

where the simplicial set inclusion K ′ ↪→ L′ is the morphism

L × ∂Δn ∪K×∂Δn K × Δn ↪→ L × Δn.

Any Reedy fibration f : X → Y has the right lifting property with respect to
all such morphisms.

The second part of claim (2) follows in a similar way from Lemma 2.2. �
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3. Geometric realization.

Suppose C is a simplicial category and X ∈ sC. Then the geometric realization
|X| ∈ C is defined by the coequalizer diagram

⊔
φ:n→m

Xm�Δn
d0

⇒
d1

⊔
n≥0

Xn�Δn → |X| (3.1)

where φ runs over the morphisms of ΔΔΔ, and d0 and d1 on the factor associated
to φ : n → m are respectively

Xm�Δn
w

φ∗�1
Xn�Δn

w

⊔
n≥0

Xn�Δn

Xm�Δn
w

1�φ
Xm�Δm

w

⊔
n≥0

Xn�Δn.

This is the obvious generalization of the geometric realization of Chapters I
and III. Note that |X| is a coend:

|X| =
∫ ΔΔΔ

X�Δ,

where Δ denotes the covariant functor n �→ Δn on ΔΔΔ. We discuss the homo-
topical properties of |X|.

First note that | · | : sC → C has a right adjoint

Y �→ Y Δ = {homC(Δn, Y )}. (3.2)

If we give sC the internal (or level-wise) simplicial structure induced from C, it
follows immediately that if X ∈ sC and K ∈ S, then

|X�K| ∼= |X|�K. (3.3)

Indeed, homsC(X�K,Y Δ) ∼= homsC(X,homC(K,Y )Δ).
Now assume C is a simplicial model category. Endow sC with the Reedy

model category structure. By Corollary 2.13, this is a simplicial model category
in the internal simplicial structure.

Lemma 3.4. The functor (·)Δ : C → sC preserves fibrations and trivial fibra-
tions.
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Proof: The first point to be proved is this: if K ∈ S and Y ∈ C, then

MK(Y Δ) ∼= homC(K,Y ). (3.5)

There are isomorphisms

MK(Y Δ) ∼= lim←−
Δn→K

(Y Δ)n

∼= lim←−
Δn→K

homC(Δn, Y )

∼= homC( lim−→
Δn→K

Δn, Y )

∼= homC(K,Y ),

where the limits and colimits are indexed over objects Δn → K of the simplex
category Δ ↓ K of K (cf. Example 1.23).

Now let X → Y be a fibration in C. Then

(XΔ)n → (Y Δ)n ×Mn(Y Δ) Mn(XΔ)

is isomorphic to

homC(Δn,X) → homC(Δn, Y ) ×homC(∂Δn,Y ) homC(∂Δn,X)

and the result follows from Lemma 2.2 and SM7 for C.
The claim about preservation of trivial fibrations has a similar proof. �

Proposition 3.6. The geometric realization functor | · | : sC → C preserves
cofibrations, trivial cofibrations and weak equivalences between Reedy cofibrant
objects.

Proof: Use Lemma 3.4 and Lemma II.7.9. �
The proof of Lemma 3.4 implicitly involves the assertion that if Z ∈ sC is

constant and K ∈ S then there is a natural isomorphism

|Z ⊗ K| ∼= Z�K. (3.7)

Indeed, using Proposition 1.10 the isomorphism (3.5), we have

homC(|Z ⊗ K|, Y ) ∼= homC(Z,homC(K,Y )),

and the assertion follows. Therefore, for X ∈ sC Reedy cofibrant, the realization
comes with a natural skeletal filtration. Define

skn |X| = | skn X|.
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Then Proposition 1.7 and the natural isomorphism of (3.7) together show that
there are natural pushout squares

Xn�∂Δn ∪LnX�∂Δn Ln�Δn
w

u

skn−1 |X|

u

Xn�Δn
w skn |X|.

(3.8)

This is because the realization functor | · | is a left adjoint and hence commutes
with all colimits. If X is cofibrant, then Proposition 3.6 and Corollary 2.14
together imply that each of the maps skn−1 |X| → skn |X| is a cofibration.
Furthermore, again since the functor | · | commutes with colimits

lim−→
n

skn |X| ∼= |X|. (3.9)

Finally if X happens to be degeneracy free on some set {Zn} of objects in C,
then (3.8) can be refined (as in Corollary 1.14) to a pushout diagram

Zn�∂Δn
w

u

skn−1 |X|

u

Zn�Δn
w skn |X|.

(3.10)

The object skn |X| can also be described as a coend. Let skn Δ be the functor
from ΔΔΔ to S with

m �→ skn Δm.

Proposition 3.11. Let X ∈ sC. Then there is a natural isomorphism

skn |X| ∼=
∫ ΔΔΔ

X� skn Δ

and this isomorphism is compatible with the skeletal filtrations of source and
target.

Proof: There is a sequence of natural isomorphisms, where

in∗ : sC → snC
is the restriction functor

homC(skn |X|, Y ) ∼= homsC(skn X,Y Δ)
∼= homsC(i∗nin∗X,Y Δ)
∼= homsC(X, i!nin∗Y

Δ)
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Now i!nin∗Y
Δ ∼= coskn(Y Δ) ∼= Y skn Δ, where Y skn Δ is defined on the simplex

level by
Y skn Δ

r = homC(skn Δr, Y ).

It follows that

homC(skn |X|, Y ) ∼= homsC(X,Y skn Δ)

∼= homC(
∫ Δ

X� skn Δ, Y ). �

4. Cosimplicial spaces.
The language and technology of the previous three sections can be used to
give a discussion of the homotopy theory of cosimplicial spaces; that is, of the
category cS = SΔΔΔ of functors from the ordinal number category to simplicial
sets. We go through some of the details and give some examples. It turns out
that cofibrations in cS have a very simple characterization; we close the section
with a proof of this fact.

We begin with two important examples.

Example 4.1. Let R = Fp, the prime field with p > 0, or let R be a subring
of the rationals. The forgetful functor from R-modules to sets has left adjoint
X �→ RX, where RX is the free R-module on X. These functors prolong to
an adjoint pair between simplicial R-modules and simplicial sets. By abuse of
notation we write

R : S → S

for the composite of these two functors. Then R is the functor underlying a
triple on S and, if X ∈ S,

π∗RX ∼= H∗(X;R).

Let T : S → S be any triple (or monad) on S with natural structure maps
η : X → TX and ε : T 2X → TX. If X ∈ S is any object, there is a natural
augmented cosimplicial space

X → T •X

with (T •X)n = Tn+1X and

di = T iηTn+1−i : (T •X)n → (T •X)n+1

si = T iεTn−i : (T •X)n+1 → (T •X)n.

The augmentation is given by η : X → TX = (T •X)0; note that

d0η = d1η : X → (T •X)1.
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In particular, if we let T = R : S → S we get an augmented cosimplicial space

X → R•X

with the property that di, i ≥ 1, and si, i ≥ 0, are all morphisms of simplicial R-
modules. Furthermore, if we apply R one more time, the augmented cosimplicial
R-module

RX → R(R•X)

has a cosimplicial contraction; hence

Hs(H∗(R•X;R)) ∼=
{

H∗(X;R), s = 0
0, s > 0.

The object X → R•X is a variation on the Bousfield-Kan R-resolution of X.

Example 4.2. Let J be a small category and SJ the category of J-diagrams
in S. Let Jδ be the category with the same objects as J but no non-identity
morphisms—Jδ is J made discrete. There is an inclusion functor Jδ → J , hence
a restriction functor

r∗ : SJ → SJδ

.

The functor r∗ has a right adjoint r! given by right Kan extension; in formulas

r!X(j) =
∏
j→i

X(i)

where the product is over morphisms in J with source j. Let

T = r!r∗ : SJ → SJ .

Then T is the functor of a triple on SJ , and if Y ∈ SJ , there is a natural
cosimplicial object in SJ

Y → T •Y. (4.3)

This cosimplicial object has the property that the underlying Jδ diagram has
a cosimplicial contraction. Put another way, for each j ∈ J , the augmented
cosimplicial space

Y (j) → T •Y (j)

has a cosimplicial contraction. We can apply the functor lim←−J
(·) to (4.3) to

obtain an augmented cosimplicial space

lim←−
J

Y → lim←−
J

T •Y. (4.4)

Note that lim←−J
(T •Y )n can be easily computed because

lim←−
J

r!X ∼=
∏
j

X(j)
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where j runs over the objects on J . This last assertion follows from the isomor-
phisms

homS(Z, lim←−
J

r!X) ∼= homSJ (Z, r!X)

∼= homSJδ (Z,X) ∼=
∏
j

homS(Z,X(j))

where Z ∈ S is regarded as a constant diagram in SJ or SJs

.
It follows that the functor TnY is defined for objects j of J by

TnY (j) =
∏

j→j0→···→jn

Y (jn),

and that
lim←−

j

TnY (j) ∼=
∏

j0→···→jn

Y (jn).

The canonical map lim←−j
Tn(j) → Tn(j) can therefore be identified with the

simplicial set map ∏
j0→···→jn

Y (jn) →
∏

j→j0→···→jn

Y (jn)

whose projection onto the factor Y (jn) corresponding to the string

j → j0
α1−→ j1

α1−→ · · · αn−−→ jn

is the projection
prα :

∏
j0→···→jn

Y (jn) → Y (jn)

corresponding to the string

α : j0
α1−→ j1

α1−→ · · · αn−−→ jn.

One also finds that the cosimplicial structure map associated to θ : m → n for
the object lim←−j

T •Y (j) can be identified with the unique simplicial set map∏
i0→···→im

Y (im)
θ∗−→

∏
j0→···→jn

Y (jn)

which makes the diagrams∏
i0→···→im

Y (im) w
θ∗

u

prα·θ

∏
j0→···→jn

Y (jn)

u

prα

Y (jθ(m)) w

(αn · · ·αθ(m)+1)∗
Y (jn)

commute.
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This is the standard description of the cosimplicial object which underlies
the homotopy inverse limit of Y ∈ SJ — see Section VIII.1.

With these examples in hand, we begin to analyze the homotopy theory
of cS. Since S is a simplicial model category, so is the opposite category Sop.
Thus the category (s(Sop))op = cS acquires a Reedy model category structure
as in Section 2. We take some care with the definitions as the opposite category
device can be confusing.

To begin with, cS is a simplicial category: if K ∈ S and X ∈ cS define
X�K and homcS(K,X) in cS by

(X�K)n = Xn × K (4.5)

and
homcS(K,X)n = hom(K,Xn). (4.6)

One often writes X⊗K for X�K; however, we are—in this chapter—reserving
the tensor product notation for the external operation on sC. The mapping
spaces functor is then

HomcS(X,Y )n
∼= homcS(X�Δn, Y ). (4.7)

There are also latching and matching objects, but at this point the litera-
ture goes to pieces. The matching objects in cS defined in [BK] are the latching
objects in s(Sop) as defined in Section 1. Since we would hope the reader will
turn to the work of Bousfield and Kan as needed, we will be explicit.

Let X ∈ cS. The nth matching space MnX ∈ S is the (n + 1)st latching
object Ln+1X of X ∈ s(Sop). Specifically,

MnX ∼= lim←−
φ:n+1→k

Xk (4.8)

where φ : n + 1 → k runs over the surjections in ΔΔΔ with k ≤ n. Thus n ≥ −1,
and Remark 1.8 implies the following:

Lemma 4.9.

(1) The simplicial set M−1X is isomorphic to the terminal object ∗.
(2) There is an isomorphism M0X ∼= X0, and the canonical map X1 →

M0X can be identified with the codegeneracy map s0 : X1 → X0.

(3) For n > 0, the object MnX is defined by the equalizer

MnX →
n∏

i=0

Xn ⇒
∏

0≤i<j≤n

Xn−1
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where the images of the two displayed maps on the factor corresponding
to the relation i < j on Xn−1 are given by the composites

n∏
i=0

Xn
prj−−→ Xn

si

−→ Xn−1 and
n∏

i=0

Xn
pri−−→ Xn

sj−1

−−−→ Xn−1.

The canonical map s : Xn+1 → MnX is induced by the codegeneracies
si : Xn+1 → Xn.

The reader should be aware of 1) the shift in indices MnX = Ln+1X and
2) the superscript versus the subscript: MnX �= MnX.

A map f : X → Y in cS is a fibration if and only if

Xn+1 → Y n+1 ×MnY MnX (4.10)

is a fibration for n ≥ −1.
Similarly, there are latching objects. If X ∈ cS, LnX = Mn+1X, the

matching spaces of X ∈ s(Sop), where n ≥ −1; thus

LnX = lim−→
φ:k→n+1

Xk

where φ runs over the injections in ΔΔΔ with k ≤ n. The following is a consequence
of Remark 1.19:

Lemma 4.11.

(1) The space L−1X is the initial object ∅ in the category of simplicial sets.

(2) There is an isomorphism L0X ∼= X0�X0, and the canonical map L0X →
X1 can be identified with the coproduct d = (d0, d1) : X0 � X0 → X1

of the coface maps d0, d1 : X0 → X1.

(3) For n > 1, the latching object LnX is defined by a coequalizer diagram

⊔
0≤i<j≤n+1

Xn−1 ⇒
n+1⊔
i=0

Xn → LnX.

Here, the restrictions of the displayed maps on the summand Xn−1

corresponding to the relation i < j are the composites

Xn−1
di

−→ Xn
inj−−→

n+1⊔
i=0

Xn and Xn−1
dj−1

−−−→ Xn
ini−−→

n+1⊔
i=0

Xn.

The canonical map d : LnX → Xn+1 is induced by the coface maps
di : Xn → Xn+1.
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A morphism X → Y in cS is a cofibration if and only if

Xn+1 ∪LnX LnY → Y n+1 (4.12)

is a cofibration (that is, inclusion) of simplicial sets.
Finally, we define a morphism X → Y in cS to be a weak equivalence if

Xn → Y n is a weak equivalence for all n ≥ 1.

Theorem 4.13. With the definitions above, the category cS of cosimplicial
spaces is a proper closed simplicial model category.

Proof: Applying Theorem 2.12 and Corollary 2.13 to the case of the category
sSop of simplicial objects in Sop gives the simplicial model structure. Properness
is a consequence of Corollary 2.6 �

We can give a simple characterization of cofibrations in cS, and along the
way show that cS is cofibrantly generated. First, let us define a set of specific
cofibrations.

The functors from cS → S

ρn : X �→ Xn, n ≥ 0

and
μn : X �→ MnX,n ≥ −1

all have left adjoints, given by variations on left Kan extension. Indeed, the
adjoint to ρn is given by the formula

(ρ∗nY )k =
⊔

φ:n→k

Y

where φ runs over all morphisms in ΔΔΔ with source n. This is a left Kan exten-
sion.

The adjoint to μn is slightly more complicated: if J is the category with
objects surjections n + 1 → k in ΔΔΔ, and r : J → ΔΔΔ the functor sending
n + 1 → k to k, then the left adjoint μ∗

n to μn is characterized by

homcS(μ∗
nZ,X) ∼= homSJ (Z, r∗X)

∼= homS(Z,MnX)

where Z ∈ SJ is the constant diagram. Thus μ∗
nZ is a left Kan extension of a

constant diagram. Alternatively, one can use the equalizer description of MnX
given in Lemma 4.9 to show that there is a natural coequalizer

⊔
0≤i<j≤n

ρn−1Z ⇒
n⊔

i=o

ρnZ → μnZ

for n > 0, and that μ0Z ∼= ρ0Z.
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Note that the natural transformation

s : Xn → Mn−1X

induces a natural transformation

μ∗
n−1Z → ρ∗nZ.

Define morphisms in cS as follows:

ρ∗n∂Δm ∪μ∗
n−1∂Δm μ∗

n−1Δ
m = ∂Δ

[
m
n

] im
n−→ Δ

[
m
n

]
= ρ∗nΔm, (4.14)

for n ≥ 0, m ≥ 0, and

ρ∗nΛm
k ∪μ∗

n−1Λ
m
k

μ∗
n−1Δ

m = Δ
[

m
n,k

] jm
n,k−−→ Δ

[
m
n

]
= ρ∗nΔm, (4.15)

for n ≥ 0, 0 ≤ k ≤ m, m ≥ 1.

Lemma 4.16. A morphism f : X → Y in cS is a fibration if and only if it
has the right lifting property with respect to the morphisms jm

n,k of (4.15).
A morphism in cS is a trivial fibration if and only if it has the right lifting
property with respect to the morphisms imn of (4.14).

Proof: We prove the trivial fibration case; the other is similar. A lifting prob-
lem

∂Δ
[

m
n

]
w

u

X

u

Δ
[

m
n

]
w Y

is equivalent, by adjointness to a lifting problem

∂Δm
w

u

Xn

u

s

Δm
w Y n ×Mn−1Y Mn−1X.

Lemma 2.2.2 implies that f : X → Y is a trivial fibration if and only if

(f, s) : Xn → Y n ×Mn−1Y Mn−1X

is a trivial fibration for all n. The result follows. �
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Proposition 4.17. The simplicial model category structure on cS is cofi-
brantly generated: the morphisms imn of (4.14) generate the cofibrations and
the morphisms jm

n,k of (4.15) generate the trivial cofibrations.

Proof: In light of Lemma 4.16, the small object argument now applies. �
We can use this result to characterize cofibrations. If X ∈ cC is a cosim-

plicial object in any category C with enough limits, define the maximal aug-
mentation H0X by the equalizer diagram

H0X → X0
d0

⇒
d1

X1.

Let d0 :0 X → X0 be the natural map.

Proposition 4.18. A morphism f : X → Y in cS is a cofibration if and only if
Xn → Y n is a cofibration in S for all n ≥ 0 and the induced map H0X → H0Y
of maximal augmentations is an isomorphism.

We give the proof below, after some technical preliminaries.
Let ΔΔΔ−1 be the augmented ordinal number category; this has objects

n = {0, 1, . . . , n − 1}, n ≥ −1,

(−1 = φ) and ordering preserving maps. An augmented cosimplicial object in
C is a functor X : ΔΔΔ−1 → C. We write d0 : X−1 → X0 for the unique map.
Note that the maximal augmentation extends any cosimplicial object to an
augmented cosimplicial object.

Lemma 4.19. Let X be an augmented cosimplicial set, and

Zn = Xn −
n⋃

i=0

diXn−1

If d0 : X−1 → X0 is isomorphic to the inclusion of the maximal augmentation,
then the map ⊔

φ

Zk → Xn

with φ : k → n running over all injections, −1 ≤ k ≤ n, is an isomorphism.

Proof: Out of any cosimplicial set X we may construct a simplicial set Y
“without d0” as follows: Yn = Xn and

di = sn−i : Yn → Yn−1, 1 ≤ i ≤ n

si = dn−i : Yn → Yn+1, 0 ≤ i ≤ n.
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Notice that this construction does not use dn : Xn−1 → Xn. Let Zn ⊆ Yn be
the non-degenerate simplices:

Zn = Yn −
⋃
i

siYn−1.

The standard argument for simplicial sets (see Example 1.15) shows that

Yn
∼=

⊔
ψ:n→k

Zk

where ψ runs over the surjections in ΔΔΔ. Unraveling the definitions shows that
our claim will follow if we can show that dn : Xn−1 → Xn induces an isomor-
phism Zn � Zn−1

∼=−→ Zn or, equivalently, an isomorphism

Zn−1
∼=−→ Zn ∩ dnXn−1.

First note that dn does induce an injection

dn : Zn−1 → Zn ∩ dnXn−1. (4.20)

For this, it is sufficient to show that if y ∈ Zn−1, then dny ∈ Zn; that is, if y �∈
∪n−1

i=0 diXn−2, then dny �∈ ∪n−1
i=0 diXn−1. The contrapositive of this statement

reads: if dny ∈ ∪n−1
i=0 diXn−1, then y ∈ ∪n−1

i=0 diXn−2. So assume dny = diz with
i < n. If i < n − 1, then

z = sidny = dn−1siy

so
dny = diz = didn−1siy = dndisiy

and y = disiy. If i = n − 1 and n > 1, then

y = sn−1dny = sn−1dn−1z = z

so dny = dn−1y; hence

y = sn−2dn−1y = sn−2dny = dn−1sn−2y.

If n = 1 and i = n−1, we have d1y = d0z, hence y = z; since d0 : X−1 → X0 is
the inclusion of the maximal augmentation, y = d0w for some w This is where
the hypothesis is used.

We now must show that dn, as in (4.20) is onto. If n = 0, Z0 = X0 and the
result is clear. If n ≥ 1, we need to show that if x = dny and x �∈ ∪n−1

i=0 diXn−1,
then y �∈ ∪n−1

i=0 diXn−2. The contrapositive of this statement is: if x = dny and
y = diw, i ≤ n − 1, then x = djz for j ≤ n − 1. But

x = dny = dndiw = didn−1w. �
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We can now prove Proposition 4.18:
Proof of 4.18: For the purposes of this argument, we say a morphism f :
X → Y in cS has Property C if Xn → Y n is a cofibration in S for all n ≥
0 and H0X ∼= H0Y . We leave it as an exercise to show that the class of
morphisms satisfying Property C is closed under isomorphisms, coproducts,
retracts, cobase change, and colimits over ordinal numbers. Only the statement
about cobase change is non-trivial. Furthermore, the generating cofibrations
ιmn : ∂Δ

[
m
n

] → Δ
[

m
n

]
have Property C. Hence Proposition 4.17 implies all

cofibrations have Property C.
For the converse, suppose f : X → Y has Property C. Referring to Lemma

4.19, write Zn(Xm) for Zn obtained from the cosimplicial set of m simplices
Xm. Then, Lemma 4.19 implies

(L0X)m
∼= Z0(Xm) � Z−1(Xm) � Z0(Xm) � Z−1(Xm),

X1
m = Z−1(Xm) � Z0(Xm) � Z0(Xm) � Z1(Xm),

and if n > 1,
(Ln−1X)m

∼=
⊔

φ:k→n

Zk(Xm)

with φ running over injections with −1 ≤ k < n. Since f : Xn
m → Y n

m is
one-to-one, Zk(·) is natural in f . Since Z−1(Xm) ∼= Z−1(Ym),

[Xn ∪Ln−1X Ln−1Y ]m ∼= Zn(Xm) �
⊔

φ:k→n

Zk(Ym)

for all n ≥ 0. Again φ runs over injections k, −1 ≤ k < n. The result follows. �
Second proof of Proposition 4.18: Note, first of all, that by manipulating
cosimplicial identities, one can show that all of the diagrams

Xn−2
w

dj−1

u

di

Xn−1

u

di

Xn−1
w

dj
Xn

are pullbacks. It follows that the maps d : Ln−1X → Xn is a monomorphism
if n > 1. Note further that Lemma 4.11 says that L0X = X0 � X0.

Now suppose that f : X → Y is a cofibration. Then f : X0 → Y 0 is
monic, so that f : L0X → L0Y is monic, and the assumption that the map

L0Y ∪L0X X1 → Y 1
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is a monomorphism implies that f : X1 → Y 1 is a monomorphism. One uses
cosimplicial identities (using Remark 1.19) to show that if f : Xi → Y i

is a monomorphism for i ≤ n then the induced map LnX → LnY is a
monomorphism. Then the assumption that f is a cofibration implies that
f : Xn+1 → Y n+1 is a monomorphism in degree n + 1. In particular, f is
a monomorphism in all degrees.

To see that the map f : H0X → H0Y on maximal augmentations is an
isomorphism, observe that there is a natural coequalizer

H0X ⇒ X0 � X0 → im(d),

where
im(d) = im(d0) ∪ im(d1) ⊂ X1.

Write PO = im(f) ∪ im(d) ⊂ Y 1 for the diagram

X0 � X0
w

f � f

u

d

Y 0 � Y 0

u

d

X1
w

f
Y 1

This diagram is a pullback by cosimplicial identities, so the induced diagram

X0 � X0
w

f � f

u

d

Y 0 � Y 0

u

d∗

X1
w

f∗
PO

(4.21)

is a pullback. This latter diagram (4.21) is also a pushout if and only if the
induced diagram

X0 � X0
w

f � f

u

d

Y 0 � Y 0

u

d∗

im(d) w im(d∗)

is a pushout, since epi-monic factorizations are preserved by pushout. The
diagram (4.21) is therefore a pushout if and only if f induces an isomorphism
H0X ∼= H0Y . The map

L0Y ∪L0X Y 1 → X1

is therefore a monomorphism if and only if the diagram (4.21) is a pushout.
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It follows that the map f : H0X → H0Y on maximal augmentations is a
bijection.

For the converse, one can show that any levelwise monomorphism f :
X → Y induces monomorphisms LnX → LnY , and that all induced diagrams

LnX w
d

u

Xn+1

u

LnY w

d
Y n+1

are pullbacks. The maps d are monomorphisms if n > 0, as are the vertical
maps, so the induced maps

LnY ∪LnX Xn+1 → Y n+1

are monomorphisms for n > 0. The assertion that the map

L0Y ∪L0X X1 → Y 1

is a monomorphism when f is a levelwise monic that induces an isomorphism
of maximal augmentations is proved in the previous paragraph. �

Proposition 4.18 makes it very easy to decide when an object of cS is
cofibrant for the Reedy structure. For example, a constant object on a non-
empty simplicial set is not cofibrant, but the standard simplices Δn form a
cosimplicial space Δ which is cofibrant. Also, every subobject of a cofibrant
simplicial space is cofibrant.



Chapter VIII Cosimplicial spaces: applications

The homotopy spectral sequence of a cosimplicial space is one of the most
commonly used tools in homotopy theory. It first appeared in the work of
Bousfield and Kan [14] and has been further analyzed by Bousfield [10]. Two
of the standard examples include the Bousfield-Kan spectral sequence — an
unstable Adams spectral sequence that arose before the general example [7] —
and the spectral sequence for computing the homotopy groups of the homotopy
inverse limit of a diagram of pointed spaces. The main purpose of this chapter is
to define and discuss this spectral sequence, and outline some of its applications.

We begin with the point of view that the total space Tot(X) of a cosim-
plicial space X is dual to the geometric realization of X, when interpreted as
an element of sSop; that is,

Tot(·) = | · |op : cS = (s(S)op)op → (Sop)op,

where the realization functor on s(Sop) is that of Chapter VII. Simplicial objects
are filtered colimits of skeleta, so that Tot(X) is the inverse limit of a tower of
fibrations

Tot0(X) ← Tot1(X) ← Tot2(X) ← · · ·
if X is a fibrant cosimplicial space. It is then a matter of manipulating adjoints
to show that Tot(X) can expressed in the standard way in terms of function
complexes as

Tot(X) = Hom(Δ,X),

and that
Totn(X) = Hom(skn Δ,X).

If X is pointed, the tower is pointed, and there is spectral sequence in homotopy
groups arising from the homotopy spectral sequence for a tower of fibrations,
as constructed in Section VI.2. This is the homotopy spectral sequence of a
fibrant pointed cosimplicial space, and its construction occupies Section 1. One
of the main results is the standard cohomological identification of the E2-term.

The discussion of the two fundamental examples VII.4.1 and VII.4.2 con-
tinues in the following two sections.

We have collected together the basic results on homotopy inverse limits
in Section 2. We give various constructions of the homotopy inverse limit func-
tor, including an identification with the total right derived functor for inverse
limit which arises from a pointwise cofibration model structure for a diagram
category of simplicial sets (Proposition 2.4). The section closes with an iden-
tification of the E2-term of the homotopy spectral sequence for a homotopy
inverse limit, expressed in terms of the higher derived functors of inverse limit
for categories of groups — the resulting spectral sequence is (2.18).

Bousfield-Kan completions are the object of study of Section 3, and appear
again at the end of Section 4. In particular, the E2-term of the homotopy

389
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spectral sequence for the p-completion Xp = Tot F•
pX of a space X is identified

with higher ext groups, computed in the category of unstable coalgebras over
the Steenrod algebra, and yielding the well known unstable Adams spectral
sequence for the homotopy groups of the Xp (3.6) of Bousfield and Kan. We give
a brief overview of the homotopy properties of the p-completion of a nilpotent
space at the end of the section.

The spectral sequence of a cosimplicial space inherits several technical
difficulties from the general construction of the homotopy spectral sequence for
a tower of fibrations, including the definition of the spectral sequence in low
degrees in homotopy, where one might not have groups, let alone abelian groups,
and the question of whether the spectral sequence converges to π∗ Tot(X) or
not. There is also a possibility that Tot(X) might be empty — it is an inverse
limit, and inverse limits can be empty. To analyze this question, and to address
the calculation of π0 Tot(X) in general, Bousfield has developed an extensive
obstruction theory in [10]. We give a small, but very useful, example of this
theory in Section 4: the main results are Lemma 4.6 and Theorem 4.9. The
section closes with an application (Proposition 4.16) which asserts that a map
H∗Y → H∗X in mod p cohomology can be lifted to a map of spaces X → Yp

if certain obstructions vanish.

1. The homotopy spectral sequence of a cosimplicial space.
The results on geometric realization from Section VII.3, interpreted in the con-
text of cosimplicial spaces, lead to the study of the total space of a cosimplicial
space and an associated tower of fibrations. The purpose of this section is to
work through these results.

If X ∈ cS ∼= (s(Sop))op, we can define the geometric realization |X| ∈
(Sop)op = S; we will write Tot(X) for this object. Using the coequalizer
VII.(3.1), suitably interpreted, we find that Tot(X) fits into an equalizer dia-
gram

Tot(X) →
∏
n≥0

Hom(Δn,Xn) ⇒
∏

φ:n→m

Hom(ΔmXm). (1.1)

If Δ = {Δn} ∈ cS is the cosimplicial space composed of the standard simplices,
(1.1) implies there is a natural isomorphism in S

Tot(X) ∼= HomsS(Δ,X). (1.2)

Since Δ ∈ cS is cofibrant, SM7 for cS implies that Tot(·) preserves weak
equivalences between fibrant objects; alternatively, this fact is a consequence
of Proposition VII.3.6.

The skeletal filtration on the geometric realization (VII.(3.8), VII.(3.9))
dualizes to Tot(X) as the inverse limit of a tower. We define Totn(X) =
skn |X| ∈ (Sop)op; arguing as in (1.1) and (1.2) and using Proposition VII.3.11,
we have

Totn(X) ∼= HomcS(skn Δ,X) (1.3)
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and the natural projection Totn(X) → Totn−1(X) is induced by the inclusion
skn−1 Δ → skn Δ. Note that

Tot(X) ∼= lim←−Totn(X). (1.4)

By Proposition VII.4.18, skn−1 Δ → skn Δ is a cofibration in cS, hence, if
X ∈ cS is fibrant, SM7 for cS implies that

{Totn(X)}n≥0 (1.5)

is a tower of fibrations. This fact equally follows from Proposition VII.3.6 and
Corollary VII.2.14. This is the total tower of X.

The diagrams VII.(3.8) and VII.(3.10) tell us how Totn(X) is built from
Totn−1(X). Recalling that for X ∈ cS, Mn−1X ∼= LnX, X ∈ s(Sop), VII.(3.8)
implies that for all X ∈ cS there is a pullback diagram

Totn(X) w

u

Hom(Δn,Xn)

u

Totn−1(X) w Hom(∂Δn,Xn) ×Hom(∂Δn,Mn−1X) Hom(Δn,Mn−1X).

(1.6)
Note Tot0(X) ∼= X0. If X is fibrant, the vertical maps in (1.6) are fibrations.
Finally, if the cosimplicial object X ∈ cS is codegeneracy-free in the sense that
the underlying codegeneracy diagram is the right Kan extension of a discrete
diagram {Zn}, then VII.(3.10) implies that there is a pullback diagram in S.

Totn X w

u

Hom(Δn, Zn)

u

Totn−1 X w Hom(∂Δn, Zn).

(1.7)

If X is a pointed fibrant cosimplicial space, then the tower {Totn X}n≥0

has a homotopy spectral sequence which arises from the homotopy spectral
sequence for a tower of fibrations of Section VI.2. The constant map is the
basepoint of Totn X and by the diagram (1.6), the fibre of Totn X → Totn−1 X
is ΩnNnX, where NnX is the fibre of s : Xn → Mn−1X. Thus the E1 term of
the associated spectral sequence is, for t − s ≥ 0,

Es,t
1 = πt−sΩsNsX ∼= πtN

sX.

If G is a cosimplicial (not necessarily abelian) group, define

NsG =
s−1⋂
i=0

ker{si : Gs → Gs−1}.

If G is a cosimplicial abelian group, then NG = {NsG,Σ(−1)idi} becomes a
cochain complex. Define Nπ0X = π0X

0.
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Lemma 1.8. For a fibrant pointed cosimplicial space X, there is a natural
isomorphism

Es,t
1

∼= πtN
sX ∼= NsπtX, t − s ≥ 0

Proof: First assume t ≥ 2. The cases t = 0, 1 will be handled at the end. We
use the pullback square

Mn−1,k+1X w

u

Xn−1

u

Mn−1,kX w Mn−2,kX

(1.9)

of Proposition VII.1.25, and a double induction on the following two statements.
Notice that Mn,k is a functor defined on cC where C is any category with finite
limits.

H(n, k): The natural map πtM
n−1,kX → Mn−1,kπtX is an isomor-

phism.
I(n, k): Let Nn,kX be the fibre of s : Xn → Mn−1,kX. Then

0 → πtN
n,kX → πtX

n → πtM
n−1,kX → 0

is short exact.

The result follows from setting n = k = s in I(n, k) and H(n, k).
First notice that I(0, 0) is trivial since M−1,0X = ∗. Also H(n, 0) and

I(n, 0) are trivial since Mn−1,0X = ∗ and Mn−1,0πtX = 0.
Next, H(n, k),H(n − 1, k), and I(n − 1, k) yield H(n, k + 1), since πt(·)

applied to (1.9) gives a pullback diagram

πtM
n−1,k+1X w

u

πtXn−1

u

Mn−1,kπtX w Mn−2,kπtX.

Finally, H(n, k) ⇒ I(n, k) because πtX
n → Mn−1,kπtX is surjective.

Indeed,
Mn−1,kπtX ∼=

⊕
φ:n→m

NmπtX

where φ runs over the objects of Mn,k.
For the cases t = 0 and 1 of Lemma 1.8, note that if t = 0 then s = 0, so

one need only check π0N
0X = π0X

0 = Nπ0X which is true since N0X = X0.
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If t = 1 then s = 0 or 1. If s = 0, one has π1N
0X = π1X

0 as required. If s = 1,
the sequence

∗ → π1N
1X → π1X

1
s0

−→ π1X
0 → ∗

is exact, since s0d0 = 1 and X0 = M0X. �
We single out the following statement from the proof of Lemma 1.8:

Corollary 1.10. Suppose that X is a fibrant pointed cosimplicial space.
Then there are natural short exact sequences

∗ → πtN
nX → πtX

n → πtM
nX → ∗

for all n, t ≥ 1.

Lemma 1.8 is used as the input for the calculation of the E2 term. In fact,
we wish to claim that Es,t

2 is a cohomology group Hs(πtX), but we need to
take some care with the definitions, especially for t = 1.

If A is a cosimplicial abelian group, we can make A into a cochain complex

A0
∂−→ A1

∂−→ A2
∂−→ · · ·

with ∂ = Σ(−1)idi. Following Bousfield and Kan, we shall write πsA = HsA
for the sth cohomology group of the cochain complex associated to A, say that
these cohomology groups are the cohomotopy groups of the cosimplicial abelian
group A.

It follows from Theorem III.2.5 that computing cohomotopy groups for
A is equivalent to computing HsN∗A, where N∗A is the normalized cochain
complex with

N∗A = {NsA,Σ(−1)idi}.
This means that one has natural isomorphisms

πsA = HsA ∼= HsN∗A. (1.11)

If G is a cosimplicial (not necessarily abelian) group, one still has coho-
motopy objects π0G and π1G. The group π0G is the equalizer of d0, d1:

π0G → G0
d0

⇒
d1

G1. (1.12)

The pointed set π1G is defined by the formula

π1G = Z1G/G0 (1.13)

where Z1G is the pointed set of cocycles

Z1G = {x ∈ G1|(d2x)(d1x)−1(d0x) = e}
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and G0 acts on Z1G by

g ◦ x = d0g · x(d1g)−1.

Notice that if G is a cosimplicial abelian group, the two definitions of π1G
agree. One can also normalize in the non-abelian case; indeed, the situation is
already normalized in the sense that if x ∈ Z1G, then x ∈ N1G because

e = s0[(d2x)(d1x)−1(d0x)] = d1s0x

so
e = s0d1s0x = s0x.

Thus N1G ∩ Z1G = Z1G and

π1G = (N1G ∩ Z1G)/G0. (1.14)

If X is a cosimplicial set we define π0X to be the equalizer of d0, d1 :
X0 → X1.

Proposition 1.15. Let X be a pointed fibrant cosimplicial space. Then the
E2 term of the spectral sequence of the tower of fibrations {Tots X} can be
calculated by natural isomorphisms

Es,t
2

∼= πsπtX, t − s ≥ 0.

Because of this result, one often writes

πsπtX ⇒ πt−s Tot X

for the homotopy spectral sequence arising from a pointed cosimplicial space.
The double arrow is not meant to prejudice anyone for or against convergence
of the spectral sequence; for this, one must appeal to the results of Section
VI.2.

Before proving Proposition 1.15, we line up some notation and ideas. We
are interested in the tower {Tots X}, where the tower maps

Tots X = HomcS(sks Δ,X) → HomcS(sks−1 Δ,X) = Tots−1 X

are induced by the inclusion sks−1 Δ → sks Δ. Thus the fibre at the constant
map is the space of pointed maps

HomcS∗(sks Δ/ sks−1 Δ,X).
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If f : sks Δ/ sks−1 Δ → X is a pointed map one gets a diagram

Δs/∂Δs
w

f

u

Xs

u

∗ w MsX

and hence a map of spaces

HomcS∗(sks Δ/ sks−1 Δ,X) → Hom∗(Δs/∂Δs, NsX).

Diagram (1.6) implies that this map is an isomorphism. To calculate Es,t
2 =

Zs,t
2 /Bs,t

2 (see VI.(2.1)–VI.(2.4)) we calculate Zs,t
2 and the action of Bs,t

2 in
Lemmas 1.17, 1.19, and 1.20 below. The proof of Proposition 1.15 will follow.

Definition 1.16. Recall that for t ≥ 2, we may define

∂ =
s+1∑
i=0

(−1)idi : πtN
sX → πtN

s+1X,

and this defines the sub-group ker(∂) ⊆ πtN
sX. If t = 1, define a pointed set

ker(∂) ⊆ π1N
1X by

ker(∂) = Z1π1N
∗X

(see (1.12)–(1.13)).
If t = 0 or 1 define ker(∂) ⊆ πtN

0X = πtX
0 to be the equalizer of

d0, d1 : πtX
0 → πtX

1.

If t = 1, ker(∂) is a group; if t = 0, ker(∂) is a pointed set.

Lemma 1.17. Suppose that t − s ≥ 1. If also t ≥ 2 then the composition

πt−sHom∗(Ss, NXs) → πt−s Tots X
∂−→ πt−s−1Hom∗(Ss+1, NXs+1) (1.18)

can be identified up to isomorphism with the restricted homomorphism

s+1∑
i=0

(−1)i+1di : NπtX
s → NπtX

s+1.

If t = 1, the composite (1.18) can be identified with the function

Nπ1X
0 → Nπ1X

1

which is defined by sending α to d0(α)d1(α)−1.
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Proof: First of all we note something elementary. Suppose that p : X → Y
is a pointed Kan fibration with fibre F , with inclusion i : F → X. Recall that
there is an isomomorphism

[Sn, Y ]∗ ∼= [Sn−1 ∧ S1, Y ]∗

which can be given explicitly (see the preamble to Theorem III.3.14) as follows.
Suppose that α : Δn−1 × Δ1 → Y takes boundary to base point, and hence
determines a pointed map Sn−1 ∧ S1 → Y . Choose a lifting

(∂Δn × Δ1) ∪ (Δn × {0}) w

((α, ∗, . . . , ∗), ∗)
y

u

Y

Δn × Δ1
�
�
�
�
�
�
�
�
�
�
�
���

θ

Then the restriction of θ to Δn ×{1} represents the image of [α] in πnY . Using
this, it’s an exercise to show that there is a commutative diagram

πnY w
∂

u

∼=
πn−1F

u

∼=

π1Hom∗(Sn−1, Y ) w

∂
π0Hom∗(Sn−1F ),

where the vertical isomorphisms are canonical, and the bottom boundary map
is for the induced fibre sequence

Hom∗(Sn−1, F ) → Hom∗(Sn−1,X) → Hom∗(Sn−1, Y ),

and Sn−1 = Δn−1/∂Δn−1. By taking loop spaces of the pointed fibrant cosim-
plicial space X within the closed simplicial model structure for cosimplicial
spaces, one sees that it suffices to show that the composite map

π1Hom∗(Ss, NXs) → π1 Tots X
∂−→ π0Hom∗(Ss+1, NXs+1)

is isomorphic to the map

s+1∑
i=0

(−1)i+1di : Nπs+1X
s → Nπs+1X

s+1.
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Interpret representatives for elements of π1Fs
∼= π1Hom∗(Ss, NXs) as

morphisms αs : Δs × Δ1 → NXs such that α(∂(Δs × Δ1)) = ∗. Then the
image of [αs] in π1 Tot(X) is represented by the map α : sks Δ × Δ1 → X
which is defined to be the composite

Δs × Δ1
αs−→ NXs ⊂ Xs

in degree s, and is the basepoint in lower degrees. Then the lifting θ in the
diagram

Δ0
w

∗

u

d1

Tots+1 X

u

Δ1
wαs

�
�
�
�
�
�
�
���

θ

Fs w Tots X

amounts to a choice of simplicial set map θs+1 : Δs+1 ×Δ1 → Xs+1 such that
the following diagram commutes

(∂Δs+1 × Δ1) ∪ (Δs+1 × {0}) w

((diαs), ∗)

u

Xs+1

u

Δs+1 × Δ1
wα∗

�
�
�
�
�
�
�
�
���

θs+1

MsX

The restriction θs+1(1 × d0) of θs+1 represents the image of ∂[αs] in

[Ss+1,Xs+1] ∼= πs+1X
s+1,

and Theorem III.3.14 says that
s+1∑
i=0

(−1)idi[αs] = −[θs+1(1 × d0)]

in π1Hom∗(Ss,Xs+1). The inclusion NXs+1 ⊂ Xs+1 induces an inclusion
on homotopy groups (Lemma 1.8, Corollary 1.10), so there is a commutative
diagram of group homomorphisms

π1Hom∗(Ss, NXs) w�
�
�
�
�
�
�
�
�
�
�
���

∑s+1
i=0 (−1)i+1di

π1 Tots X w
∂ π0Hom∗(Ss+1, NXs+1)

u

∼=

π1Hom∗(Ss, NXs+1)

where the indicated isomorphism is the one discussed at the beginning of the
proof. �

For the moment (see Section 4), the cases not covered by this last result
are taken care of by the following:
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Lemma 1.19. Consider the diagram

π0 Tots+1 X

u

π0Hom∗(Ss, NXs) w

i∗
π0 Tots(X)

and take an element x ∈ π0Hom∗(Ss, NXs).

(1) If s ≥ 2, then i∗(x) lifts to π0 Tots+1(X) if and only if

s+1∑
i=0

(−1)idi(x) = 0

in πsX
s+1.

(2) If s = 1, then i∗(x) lifts to π0 Tots+1(X) if and only if

d1(x) = d0(x)d2(x)

in π1X
s+1.

(3) If s = 0, then x ∈ π0Hom∗(S0, NX0) = π0X
0 lifts to π0 Tot1 X if and

only if d0x = d1x in π0X
1.

Proof: We shall prove only part (1) — the other cases are similar.
Let α : Δs/∂Δs → NXs represent an element of π0Hom∗(Ss, NXs).

Then its image in π0 Tots(X) lifts to π0 Tots+1(X) if and only if there is a
simplex θ : Δs+1 → Xs+1 making the following diagram commute:

∂Δs+1
w

(diα)
y

u

Xs+1

u

Δs+1
wα∗

�
�
�
��

θ

MsX

In particular, if such a lift θ exists then
∑s+1

i=0 (−1)idi[α] = 0 by the homotopy
addition theorem (Theorem III.3.13). The converse is a formal exercise which
depends on knowing that the fibration Xs+1 → MsX is surjective in all πi —
this is Corollary 1.10. �
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Lemma 1.20. The group π1Hom∗(Ss, NXs) acts on π0Hom∗(Ss+1, NXs+1)
through the action of π1 Tots(X) on the fibre of Tots+1(X) → Tots(X). Given
[α] ∈ π1Hom∗(Ss, NXs) and [βε] ∈ π0Hom∗(Ss+1, NXs+1), we have the fol-
lowing:

(1) If s > 0, then [α] · [β0] = [β1] if and only if

[β1∗] − [β0∗] =
s+1∑
i=0

(−1)i[diα]

in π1Hom∗(Ss, NXs+1).
(2) If s = 0, then [α] · [β0] = [β1] if and only if

[β1][d1α] = [d0α][β0]

in π1NX1.

Proof: We shall prove only part (1).
Suppose that the simplices β0, β1 : Δs+1 → NXs+1 represent the corre-

sponding elements of π0Hom∗(Ss+1, NXs+1), and that the map α : Δs×Δ1 →
NXs represents the element [α]. Then [α] · [β0] = [β1] if and only if there is a
map θ : Δs+1 × Δ1 → Xs+1 making the following diagram commute:

(∂Δs+1 × Δ1) ∪ Δs+1 × ∂Δ1) w

((diα), (β0, β1))

y

u

Xs+1

u

Δs+1 × Δ1
wα∗

�
�
�
�
�
�
�
�
�
�
�
���

θ

MsX

Let [βε∗] denote the elements corresponding to [βε] in π1Hom∗(Ss, NXs+1)
according to the method described at the beginning of the proof of Lemma
1.17. Then Theorem III.3.14 and the existence of the lift θ together imply that

[β1∗] − [β0∗] =
s+1∑
i=0

(−1)i[diα]

in π1Hom∗(Ss, NXs+1). The converse, as in the proof of Lemma 1.19, is a
formal consequence of the surjectivity in homotopy groups of the fibration
Xs+1 → MsX. �
Proof of Proposition 1.15: The identification

Zs,t
2

∼= ker(∂) ⊆ πtN
sX
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(see Definition 1.16) is a consequence of Lemma 1.17 for t− s > 0 and Lemma
1.19 for t = s. The identification

Es,t
2

∼= HsNπtX

then follows from Lemma 1.17 if t− s ≥ 1, and from Lemma 1.20 if t = s. The
isomorphisms

HsNπtX ∼= HsπtX = πsπtX

appear in (1.12)–(1.14). �
2. Homotopy inverse limits.
Recall the cosimplicial object T •Y ∈ cSJ constructed in Example VII.4.2 for
a functor Y : J → S taking values in simplicial sets. Examining the definitions
we have

(T •Y )n(j) = Tn+1Y (j) =
∏

j→i0→···→in

Y (in).

It follows that T •Y is naturally codegeneracy free as an object in cSJ on Zn(Y )
where

Zn(Y ) =
∏

j→i0→i1→···→in

Yin

where it → it+1 is not the identity for any t, 0 ≤ t ≤ n − 1. It follows that
lim←−J

T •Y at cS is also codegeneracy free, since the inverse limit functor pre-
serves products.

Note that the matching space Mn lim←−J
T •Y can be identified with the

product ∏
σ∈DBJn

Y (σ(n))

indexed over all degenerate n-simplices

σ : σ(0) → · · · → σ(n)

of the nerve BJ , and the canonical map s : lim←−J
TnY → Mn−1 lim←−J

T •Y can
be naturally identified with the projection∏

α∈BJn

Y (α(n)) →
∏

σ∈DBJn

Y (σ(n)).

It is a simple exercise to use this observation to show the following central
result:

Lemma 2.1. Suppose that p : X → Y is a natural transformation of functors
J → S such that each component map p : X(j) → Y (j) is a fibration of
simplicial sets. Then the induced map

p∗ : lim←−
J

T •X → lim←−
J

T •Y

is a fibration of cosimplicial spaces.
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Suppose that Y : J → S is a small diagram of simplicial sets which is
pointwise fibrant in the sense that each Y (j) is a Kan complex. Then Lemma
2.1 implies that the cosimplicial space lim←−J

T •Y is a fibrant cosimplicial space,
so that the simplicial set

Tot lim←−
J

T •Y = HomcS(Δ, lim←−
J

T •Y )

is a Kan complex. It is standard to write

holim←−−−
J

Y = Tot lim←−
J

T •Y,

and say that holim←−−−J
Y is the homotopy inverse limit of the diagram Y . If

X : J → S does not consist of Kan complexes, holim←−−−J
X is defined by finding

a pointwise fibrant replacement i : X → Y according to the pointwise fibration
closed model structure given in Example II.6.9.

Recall that a natural transformation p : X → Y of functors J → S is
said to be a pointwise fibration if each component map p : X(j) → Y (j) is a
fibration of simplicial sets. Lemma 2.1 can now be paraphrased by saying that
the homotopy inverse limit functor takes pointwise fibrations to fibrations. The
homotopy inverse limit functor also takes pointwise weak equivalences between
pointwise fibrant diagrams to weak equivalences, on account of the following:

Lemma 2.2. Suppose that f : X → Y is a natural transformation of pointwise
fibrant diagrams J → S of simplicial sets such that each component f : X(j) →
Y (j) is a weak equivalence of simplicial sets. Then the induced map

f∗ : holim←−−−
J

X → holim←−−−
J

Y

is a weak equivalence.

Proof: The pointwise equivalence f induces weak equivalences∏
j0→···→jn

X(jn) →
∏

j0→···→jn

Y (jn)

for all n ≥ 0, and hence induces a weak equivalence of fibrant cosimplicial
spaces

lim←−
J

T •X → lim←−
J

T •Y,

by Lemma 2.1. It follows that the induced map

HomcS(Δ, lim←−
J

T •X) → HomcS(Δ, lim←−
J

T •Y )

is a weak equivalence of simplicial sets. �
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Suppose that the functor Y : J → S is pointwise fibrant. The description
of the Tot functor given in (1.1) implies that holim←−−−J

X is the equalizer of a pair
of morphisms∏

n≥0

Hom(Δn,
∏

j0→···→jn

Y (jn)) ⇒
∏

θ:m→n

Hom(Δm,
∏

j0→···→jn

Y (jn)).

At the same time, the standard function complex for J-diagrams of simplicial
sets has the form

HomSJ (X,Y )n = homSJ (X�Δn, Y ),

where the functor X�Δn : J → S is defined by

(X�Δm)(j) = X(j) × Δn

for all objects j of J . The homotopy inverse limit holim←−−−J
Y of a J-diagram has

a function complex description with respect to the category of J-diagrams in
the following sense:

Lemma 2.3. Suppose that Y : J → S is a diagram of simplicial sets, and let
B(J ↓ ?) be the diagram which is defined by j �→ B(J ↓ j). Then there is a
natural isomorphism of simplicial sets

holim←−−−
J

Y ∼= HomSJ (B(J ↓ ?), Y ).

Proof: It suffices to prove the result in degree 0, since

holim←−−−
J

Yn
∼= (holim←−−−

J

Hom(Δn, Y ))0.

From the equalizer description, a 0-simplex of holim←−−−J
Y consists of a collection

of simplicial set maps
Δn

ασ−−→ Y (jn),

one for each simplex σ : j0 → · · · → jn, and these should patch properly in the
sense that every ordinal number map θ : m → n determines a commutative
diagram

Δm
w

ασ·θ

u

θ∗

Y (jθ(m))

u

Δn
wασ
Y (jn).
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Any natural transformation f : B(J ↓ j) → Y (j) determines and is completely
determined by the collection of simplices

αf (σ) = f(j0 → · · · → jn

1−→ jn) ∈ Y (jn)n,

indexed over the simplices σ : j0 → · · · → jn of BJ . The collection of sim-
plices {αf (σ)} patches, and the assignment f �→ {αf (σ)} gives the desired
isomorphism. �

It has been shown (in various places: Section IV.3.1, Example II.6.11)
that there is a simplicial model structure on the category SJ of J-diagrams
in simplicial sets, for which a map f : X → Y is a fibration (respectively
weak equivalence) if all the component maps f : X(i) → Y (i) are fibrations
(respectively weak equivalences) of simplicial sets. This is the pointwise fibration
structure.

There is, however, another model category structure on diagrams which is
especially suited for discussing homotopy limits, and is often called the point-
wise cofibration structure.

Proposition 2.4. With its standard simplicial structure, the category SJ has
a simplicial model category structure where a morphism f : X → Y is

1) a weak equivalence if each component map f : X(i) → Y (i) is a weak
equivalence;

2) a cofibration if each component map f : X(i) → Y (i) is a cofibration
(that is, an injection), and

3) a fibration if it has the right lifting property with respect to all trivial
cofibrations.

Fibrations for the pointwise cofibration structure are called global fibra-
tions.

It helps to know that the functor

Gi : SJ → S (2.5)

given by GiX = X(i) has both a left and right adjoint. The left adjoint is given
by

(LiY )(j) =
⊔
i→j

Y (2.6)

and the right adjoint given by

(TiY )(j) =
∏
j→i

Y (2.7)
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Proof of Proposition 2.4: Assume first that we can prove CM5. Then
axioms CM1–CM3 clearly hold, and so we need only prove the “cofibration-
trivial fibration” half of CM4 to get a closed model category. For this, consider
a lifting problem in SJ

A w

u

i

X

u

p

B
�
���

w Y

where i is a cofibration and p is a trivial fibration. Form the diagram

X w
=

u

ı
X

u

p

X �A B w
j

Z
�
���

w
q

Y

where we have used CM5 to factor X �A B → Y as a cofibration j by a trivial
fibration q. Then q(jı) = p is a weak equivalence and q is a weak equivalence,
so ji is a trivial cofibration and the indicated lift exists. The composite B →
X �A B → Z → X solves the original lifting problem. Finally, Axiom SM7
follows from the corresponding property for simplicial sets.

This leaves CM5. The argument is completed in Lemma 2.10, once we
prove two preliminary lemmas. �

If X ∈ SJ let #X be the cardinality of the simplices of
⊔

i X(i). Let β be
a fixed infinite cardinal greater than the cardinality of the set⊔

(i,j)

homJ(i, j),

of all morphisms of J .

Lemma 2.8. Suppose that A → B is any trivial cofibration, and that x ∈ B(i)
is a simplex. Then there is a sub-object C ⊆ B so that x ∈ C(i), #C ≤ β, and
A ∩ C → C is a trivial cofibration.

Proof: One constructs objects Cn ⊆ B so that x ∈ C0(i), #Cn ≤ β, Cn ⊆
Cn+1 and πk(|Cn|, |Cn ∩ A|) → πk(|Cn+1|, |Cn+1 ∩ A|) is trivial for all k ≥ 0
(Note that π0(P,Q) is the quotient set π0P/π0Q.) and all choices of basepoint.
Then C =

⋃
n Cn.

To construct the objects Cn, choose C0 to be any sub-object with x ∈
C0(i) and #C0 ≤ β. This is possible: choose x ∈ K0 ⊆ B(i) where K0 has
only finitely non-degenerate simplices, and let C0 be the image of the induced



2. Homotopy inverse limits 405

map LiK0 → B where Li is as in (2.6). Having produced Cn, proceed as
follows. For each i and each k and any choice of basepoint in Cn(i) ∩ A, let
z ∈ πk(|Cn(i)|, |Cn(i) ∩ A|). There is a sub-complex Kz ⊆ B(i) with finitely
many non-degenerate simplices so that z is trivial in πk(|Cn(i)∪Kz|, |(Cn(i)∪
Kz) ∩ A(i)|). This is because A(i) → B(i) is a trivial cofibration. Let Dz be
the image of LiKz → B and let Cn+1 = Cn ∪ (

⋃
z Dz). �

Lemma 2.9. A morphism q : X → Y is a global fibration if and only if it has
the right lifting property with respect to all trivial cofibrations j : A → B with
#B ≤ β.

Proof: Suppose that q : X → Y has the right lifting property with respect
to all trivial cofibrations j : A → B with #B ≤ β, and consider a diagram

C w

u

i

X

u

q

D w Y

where i is a trivial cofibration. Consider also the collection of partial lifts

C w

u

i′
X

u

qC ′
�
�
���

u

i′′

D w Y

where i′ and i′′ are trivial cofibrations, i = i′′ · i′, and C �= C ′. This collection
of partial lifts is non-empty, since every simplex x ∈ D(i) − C(i) is contained
in a subobject B ⊂ D with #B ≤ β and B ∩ C → B a trivial cofibration by
Lemma 2.8, and there is a diagram

B ∩ C w

u

C w

u

i′
X

u

B w B ∪ C
�
�
���

u

i′′

D w Y
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where the dotted arrow exists making the diagram commute, since i′ is a
pushout of the trivial cofibration B ∩ C → B where B has appropriately
bounded cardinality.

The proof is finished with a Zorn’s lemma argument: the collection of
partial lifts has maximal elements, and such maximal elements must solve the
lifting problem by an argument similar to that for existence. �
Lemma 2.10. Axiom CM5 holds for the level-wise cofibration structure on SJ .

Proof: The “trivial cofibration-fibration” half of this axiom is a transfinite
small object argument which is based on Lemma 2.9. Let γ be a cardinal
which is strictly larger than 2β , take a map f : X → Y , and define a functor
X : γ → SJ and factorizations

X
is−→ X(s)

ps−→ Y

of f , which are jointly defined by specifying

(1) X(0) = X,
(2) the diagram ⊔

D

AD w

u

X(s)

u⊔
D

BD w X(s + 1)

should be a pushout, where D refers to the set of all diagrams

AD w

u

X(s)

u

BD w Y

with AD → BD a trivial cofibration with #BD ≤ β and the map ps+1 :
X(s + 1) → Y is the obvious induced map,

(3) X(t) = lim−→s<t
X(s) at limit ordinals t.

Write X(γ) = lim−→s<γ
X(s). Then the induced factorization

X
iγ−→ X(γ)

pγ−→ Y
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is a factorization of f as a trivial cofibration followed by a global fibration.
Note in particular that if α : A → X(γ) is a map with #A ≤ β, then α must
factor through some X(s) with s < γ, and so pγ is a global fibration by Lemma
2.9.

An argument which is similar to that for Lemma 2.9 shows that a map
p : Z → W has the right lifting property with respect to all cofibrations if and
only if it has the right lifting property with respect to the set of all cofibrations
A ⊂ LiΔn. A transfinite small object then shows that every map f : X → Y
has a factorization

X
j−→ W

p−→ Y

where j is a cofibration and p has the right lifting property with respect to
all cofibrations. The functor Li preserves cofibrations, so that all component
maps p : W (i) → Y (i) must be trivial fibrations. In particular, p is a weak
equivalence as well as a global fibration. �

The constant diagram functor S → SJ (sending X ∈ S to the diagram
X(i) = X with all the maps the identity) sends cofibrations to level-wise cofi-
brations and preserves weak equivalences. Thus the inverse limit functor

lim←− = lim←−
J

: SJ → S

preserves weak equivalences between globally fibrant objects (in the level-wise
cofibration structure) and hence there is a total right derived functor

R lim←−
J

: Ho(SJ) → Ho(S).

If X ∈ SJ one chooses a level-wise trivial cofibration X → Y to a fibrant object,
and then lim←−J

Y is a model for R lim←−J
X. The total derived functor for inverse

limit coincides in the homotopy category with the homotopy inverse limit on
account of the following:

Lemma 2.11. Suppose that Y : J → S is an J-diagram of simplicial sets such
that every simplicial set Y (i) is a Kan complex. Let j : Y → Z be a globally
fibrant model in the sense for Y in the sense that Z is a globally fibrant diagram
and j is a pointwise weak equivalence. Then there is a weak equivalence

holim←−−−
J

Y � lim←−
J

Z.

Proof: A simple adjunction trick shows that every globally fibrant diagram
is pointwise fibrant, so that the map j induces a weak equivalence

j∗ : holim←−−−
J

Y → holim←−−−
J

Z
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by Lemma 2.2. At the same time, the canonical map B(J ↓ ?) → ∗ to the
terminal diagram is a pointwise weak equivalence, so that the induced map of
function complexes

HomSJ (∗, Z) → HomSJ (B(J ↓ ?), Z)

is a weak equivalence, since every diagram is cofibrant for the pointwise cofi-
bration structure. Finally, there is an isomorphism

HomSJ (∗, Z) ∼= lim←−
J

Z. �

Note that Lemma 2.11 specializes to the definition of homotopy inverse
limit for a tower given in Lemma VI.1.12.

Lemma 2.12. Suppose that X is a fibrant cosimplicial space, and interpret X
as a diagram of spaces X : Δ → S on the ordinal number category Δ. Then
there is a natural weak equivalence

Tot(X) � holim←−−−
Δ

X.

Proof: According to Proposition 2.4, there is a globally fibrant replacement
j : X → Z in the category of cosimplicial spaces. The map j is a weak equiva-
lence of cosimplicial spaces in particular, and every global fibration is a fibration
of cosimplicial spaces on account of Proposition VII.4.18, so that Z is a fibrant
cosimplicial space. It follows that the map j induces a weak equivalence

Tot(X) = Hom(Δ,X)
j∗−→ Hom(Δ, Z) = Tot(Z).

The map Δ → ∗ is a weak equivalence of cofibrant objects in the Δ-diagram
category, so that the induced map

lim←−
Δ

Z ∼= Hom(∗, Z) → Hom(Δ, Z)

is a weak equivalence. Finally, there is a weak equivalence

lim←−
Δ

Z ∼= Hom(∗, Z) � holim←−−−
Δ

X

by Lemma 2.11. �
We finish this section by using the results of Section 1 to construct a

spectral sequence for computing the homotopy groups of a pointed homotopy
inverse limit.
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We begin with a discussion of the derived functors of limit on J-diagrams
of abelian groups. Let AbJ be the category of these diagrams. Then the functor
Gi : AbJ → Ab with GiA = A(i) has both a left and a right adjoint; in
particular, the right adjoint is given by

TiB(j) =
∏
j→i

B. (2.13)

If B ∈ Ab is injective, then TiB is injective in AbJ and this implies AbJ

has enough injectives; indeed, if we embed each A(i) in an injective abelian
group Bi, then A → ∏

i TiBi is an embedding of A into an injective in AbJ .
We define the functors lim←−

s = lim←−
s

J
to be the right derived functors of lim←−J

.

Since limit is left exact, lim←− = lim←−
0. The standard observation is that one need

not go all the way to injectives to compute the derived functors. As with sheaf
cohomology one can resolve by “flabby” objects rather than injective ones. The
crucial result is:

Lemma 2.14. Let B be an abelian group. Then for all i we have lim←−TiB ∼= B

and lim←−
s TiB = 0 if s > 0.

Proof: To prove lim←−TiB ∼= B, let A ∈ AbJ be a constant diagram on an
abelian group A. Then

homAb(A, lim←−TiB) ∼= homAbJ (A,TiB) ∼= homAb(A,B).

To obtain the vanishing of the higher derived functors, let B → I∗ be
an injective resolution of B. Then (see (2.13)), TiB → TiI

∗ is an injective
resolution of TiB. Applying lim←− to this resolution, one recovers B → I∗, which
is acyclic by construction. �

We use this construction to build a cosimplicial resolution of A ∈ AbJ

suitable for computing lim←−
s. For our category J let Jδ be the associated discrete

category; i.e., Jδ has the same objects as J but no non-identity morphisms.
There is a functor Jδ → J , inducing a forgetful functor AbJ → AbJδ

. The
category AbJδ

has for objects all J-indexed families of abelian groups A =
{Ai}i∈J . This forgetful functor has a right adjoint given by

TA =
∏

i

TiAi.

We also write T : AbJ → AbJ for the composite functor. This functor is
analogous to the functor T of Example VII.4.2. Then T is the functor of a
triple on AbJ and one, therefore, obtains a natural augmented cosimplicial
object in AbJ

A → T •A. (2.15)

If one forgets to AbJδ

this cosimplicial object has a retraction and so is acyclic.
This implies it is acyclic in AbJ and Lemma 2.14 implies:
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Lemma 2.16. For all A ∈ AbJ there is a natural isomorphism

lim←−
s A ∼= πs lim←−T •A.

By analogy we use this construction to define lim←−
1 G where G is an J-

diagram of non-abelian groups. The reader will have noticed that there is noth-
ing special about abelian groups in the construction of the cosimplicial object
A → T •A of (2.15). Indeed, if C is any category and C ∈ CJ is an J-diagram,
we obtain a cosimplicial object C → T •C. In particular if G is an J-diagram
of (not necessarily abelian) groups, one has a cosimplicial J-diagram of groups

G → T •G

and we define
lim←−

1 G = π1 lim←−T •G. (2.17)

Thus lim←−
1 G is a pointed set and is a group of cycles modulo a group of bound-

aries. See (1.13). At this point we have potentially two different definitions
of lim←−

1 Gn for a tower of groups, one from (2.17) and the other from Lemma
VI.2.12; this difficulty will be resolved by Proposition 2.19 below.

Now let X ∈ SJ
∗ be an J-diagram of pointed fibrant spaces. We wish

to calculate with holim←−−−X. We use the cosimplicial diagram T •X of Example
VII.4.2, and note that by definition

holim←−−−
J

X = Tot lim←−
J

T •X.

The cosimplicial space lim←−T •X can be identified up to isomorphism in cosim-
plicial degree n with the space ∏

j0→···→jn

X(jn),

where the product is indexed over n-simplices of the classifying space BJ . The
isomorphism is formal, and there is a similar isomorphism

lim←−TnA ∼=
∏

j0→···→jn

A(jn)

for any functor A on J taking values in either groups or abelian groups. It
follows that there is an isomorphism of cosimplicial groups

πi lim←−T •X ∼= lim←−T •πiX,

and so there are isomorphisms

Es,t
2

∼= πsπt lim←−T •X ∼= lim←−
s

J

πtX,
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and hence a spectral sequence

lim←−
s

J

πtX ⇒ πt−s holim←−−−
J

X. (2.18)

This follows from Lemma 2.14 and a simple calculation in the case t = s = 0.

Finally, we show that our two potentially different definitions of lim←−
1 Gn

agree up to natural isomorphism for a tower of groups {Gn}. Let lim←−
1 Gn be

defined as in Section VI.2, and suppose that lim1Gn is a temporary name for
lim←−

1 Gn as defined in (2.17).

Lemma 2.19. There are natural isomorphisms

π0 holim←−−−BGn
∼= lim1Gn

∼= lim←−
1 Gn.

Proof: We will show π0 holim←−−−BGn
∼= lim1Gn and π0 holim←−−−BGn

∼= lim←−
1 Gn.

The second of these isomorphisms is a consequence of the Milnor exact sequence
(Proposition VI.2.15) and Lemma 2.11.

For the first, we have that

π0 holim←−−−BGn
∼= π0 Tot lim←−T •{BGn}.

There is an isomorphism

π0 Tot0 lim←−T •{BGn} = π0

∏
n

BGn = ∗,

while the diagram (1.7) implies that the canonical maps induce isomorphisms

π0 Tots+1 lim←−T •{BGn} ∼= π0 Tots lim←−T •{BGn}
for s ≥ 2 and a monomorphism

π0 Tot2 lim←−T •{BGn} → π0 Tot1 lim←−T •{BGn}.
Also, for dimensional reasons, the image of this last monomorphism can be
identified with the set E1,1

2 , so that there is an induced bijection

lim←−
s

π0 Tots lim←−T •{BGn} ∼= lim1Gn.

The fibre of the map

Tots+1 lim←−T •{BGn} → Tots lim←−T •{BGn}
is contractible for s ≥ 2, again on account of (1.7), so that the maps

π1 Tots+1 lim←−T •{BGn} ∼= π1 Tots lim←−T •{BGn}
are isomorphisms in that range. The Milnor exact sequence then implies that
there is an isomorphism

π0 Tot lim←−T •{BGn} ∼= lim←−
s

π0 Tots lim←−T •{BGn},

and so we have the desired isomorphism. �
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3. Completions.
The category of cosimplicial abelian groups is equivalent to (s(Abop))op. The
category Abop is abelian; hence the normalization functor N : s(Abop) →
C∗Abop defines an equivalence of categories, by Theorem III.2.5. In partic-
ular every object A ∈ s(Abop) is naturally degeneracy free on {NAs}. An
examination of the proof shows that d0 plays no role in the decomposition of
A ∈ s(Abop); specifically if nAbop denotes the category with objects {Xn}n≥0,
Xn ∈ Abop, then normalization and its adjoint define an equivalence of cate-
gories

N : s0(Ab)op → nAbop.

Here s0C denotes the category of functors ΔΔΔop
0 → C where ΔΔΔ0 ⊆ ΔΔΔ is the sub-

category with the same objects and morphisms satisfying φ(0) = 0. These are
simplicial objects without d0.

If c+Ab denotes the cosimplicial abelian groups without d0, these remarks
supply an equivalence categories

N∗ : c+Ab → nAb

sending A to N∗A with

(N∗A)n =
n−1⋂
s=0

ker{si : An → An−1}.

In particular any object A ∈ c+Ab is naturally codegeneracy free on N∗A.
Now let X ∈ S and R•X the Bousfield-Kan R-resolution of Example VII.4.1.
Then R•X ∈ cS is not a cosimplicial simplicial abelian group; however, when re-
stricted, an object R•X ∈ c+S has a natural structure as an object in c+(sAb).
Since products in sAb are products in S, we have that R•X is naturally code-
generacy free on N∗R•X. Then (1.7) gives the existence of a pullback diagram

Totn R•X w

u

Hom(Δn, N∗RnX)

u

Totn−1 R•X w Hom(∂Δn, N∗RnX).

In particular, TotR•X is a Kan complex. One can see, alternatively, that
the Bousfield-Kan R-resolution is a fibrant cosimplicial space by observing that
all maps s : Rn+1X → MnR•X are surjective simplicial R-module maps. The
surjectivity follows from the fact that the map is dual to the inclusion of the
degenerate subobject in Rn+1X in the category s0(Ab)op — see the proof of
Lemma III.2.6, and note that it does not involve d0.



3. Completions 413

The total complex Tot R•X is called the Bousfield-Kan R-completion of
the space X. One often writes

R∞X = Tot R•X.

Let X be a pointed space and let X → F•
pX be the Bousfield-Kan reso-

lution of X. Then the total space Tot(F•
pX) = Xp is more usually called the

Bousfield-Kan p-completion of X, and π∗Xp may be calculated by the spectral
sequence

πsπtF
•
pX ⇒ πt−sXp.

We will now show how the E2 term can be rewritten in terms of homological
algebra. We assume the reader is familiar with the category CA of unstable
coalgebras over the Steenrod algebra. See [71, Sec. 1].

If X is a space, H∗X = H∗(X, Fp) is a member of the category CA. Let
CA∗ be the category of augmented (or pointed) coalgebras in CA; thus an object
in CA∗ is an unstable coalgebra C over the Steenrod algebra equipped with a
morphism of such coalgebras Fp → C. The homology of a pointed space is in
CA∗.

First notice that if V is any simplicial vector space, then, choosing 0 ∈ V
as the basepoint,

πtV ∼= homCA∗(H∗St,H∗V ). (3.1)

One way to see this is to note that there is a (non-canonical) weak equivalence
V � ⊕

α K(Z/p, nα) for some set of non-negative integers {nα}, and to use
the calculations of Serre and Cartan on H∗K(Z/p, nα). Now the fact that V is
a simplicial abelian group implies that (3.1) holds for any choice of basepoint.
Since a choice of basepoint for X induces a basepoint for F•

pX,

πsπtF
•
pX

∼= πs homCA∗(H∗St,H∗F•
pX). (3.2)

Now, the forgetful functor CA → nFp to the category of graded vector
spaces has a right adjoint G. The functor G is characterized by the fact that it
commutes with products and filtered colimits, and by the fact that if W ∈ nFp

is of dimension 1 concentrated in degree n, then

G(W ) ∼= H∗K(Z/p, n). (3.3)

(Note that G is the functor of a triple on nFp and CA is the category of
coalgebras over G.)

Let G : CA → CA be the composite of G and the forgetful functor. Then
G is a triple on CA, so if C ∈ CA, we have an augmented cosimplicial object
(see Example VII.4.1).

C → G•C. (3.4)



414 VIII. Cosimplicial spaces: applications

This is a resolution of augmented cosimplicial graded vector spaces, so π∗G•C ∼=
C via the augmentation. Thus we define, for C ∈ CA∗,

Exts
CA∗(H∗St, C) = πs homCA∗(H∗St, G•C). (3.5)

Now if X is a space, H∗F•
pX

∼= G(H∗X). This follows from (3.1), (3.3) and the
properties of G. Thus combining (3.2) with (3.5) we have

πsπtF
•
pX

∼= Exts
CA∗(H∗St,H∗X)

and the homotopy spectral sequence of F•
pX is the Bousfield-Kan spectral se-

quence
Exts

CA∗(H∗St,H∗X) ⇒ πt−sXp. (3.6)

This is an unstable Adams spectral sequence.
The reader might object that, for pointed coalgebras, one should define

the Ext groups differently. If C ∈ CA∗, define the “coaugmentation ideal” by

JC = coker{Fp → C}.
Then J : CA∗ → nFp has a right adjoint G∗ with G∗V = GV augmented by
G(0) ∼= Fp → G(V ). Let G∗ = G∗ ◦ J : CA∗ → CA∗ and one might demand
that the Ext object be

πs homCA∗(H∗St, G•
∗C).

However, a bicomplex argument with

homCA∗(H∗St, G•G∗C)

shows that this definition agrees with the previous one (3.5); furthermore, (3.5)
offers additional flexibility with basepoints.

We shall now give a brief sketch of an alternative construction of the
Bousfield-Kan p-completion. The main source is [14], but many of the ideas
here are also examined in [37] and [75].

Let tow be the category of towers X = {Xn} of simplicial sets with
morphisms the pro-maps

hom(X,Y ) = lim←−
n

lim−→
k

homS(Xk, Yn).

Then a morphism X → Y is an equivalence class of tower maps, meaning a
“commutative ladder” of the form

· · · w Xks+1 w

u

Xks w

u

· · ·Xk2 w

u

Xk1

u

· · · w Yns+1 w Yns w · · ·Yn2 w Yn1

where the horizontal maps are induced from the tower projections of X and Y
and lim−→ ks = ∞ = lim−→ns.
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There is a simplicial model category structure on tow where a pro-map
f : X → Y is a weak equivalence if the induced map

f∗ : lim−→H∗(Yn, Fp) → lim−→H∗(Xn, Fp)

is an isomorphism, and f : X → Y is a cofibration if lim←−Xn → lim←−Yn is an
injection of simplicial sets. If X ∈ S is a space, the p-completion of X is defined
as follows: regard X ∈ tow as a constant tower, choose a weak equivalence
X → Y with Y fibrant and set

Xp = lim←−Yn.

Note that Y is actually a tower of fibrations. There is a map η : X → Xp called
the completion map, and X is p-complete if this map is a weak equivalence.
Note also that if X → Y is an H∗(·, Fp) isomorphism, then Xp � Yp.

If X → F•
pX is the Bousfield-Kan resolution of X then the total tower of

this cosimplicial space {Totn F•
pX} (see Section VII.5) is a fibrant model for X

in tow by [21], hence
Xp � Tot(F•

pX).

This is the original definition of the completion.
To analyze the homotopy type of Xp we introduce and discuss the p-

completion functor on abelian groups. If A is an abelian group define

Ap = lim←−(Z/pnZ ⊗ A).

A group is p-complete if the map A → Ap is an isomorphism. We write Abp

for the category of p-complete groups. Then completion is left adjoint to the
inclusion functor Abp → Ab. Note that the functor A �→ Ap is neither left nor
right exact, which implies that Abp is not an abelian sub-category. Nonetheless,
completion has left derived functors Ls(·)p and one has that Ls(A)p = 0 for
s > 1, a short exact sequence

0 → lim←−
1 Tor(Z/pnZ, A) → L0(A)p → Ap → 0,

and a natural isomorphism

L1(A)p
∼= lim←−Tor(Z/pnZ, A).

See [39]. For example, if Z/p∞Z = lim−→Z/pnZ, then L0(Z/p∞Z)p = 0 and
L1(Z/p∞Z)p

∼= Zp, the p-adic numbers. Since

Tor(Z/pnZ, A) ∼= Hom(Z/pnZ, A)
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one has
L1(A)p

∼= lim←−Hom(Z/pnZ, A) ∼= Hom(Z/p∞Z, A)

from which it follows that

L0(A)p
∼= Ext(Z/p∞Z, A).

The smallest abelian sub-category of Ab containing the p-complete groups is
the category of groups so that

Hom(Z[1/p], A) = 0 = Ext(Z[1/p], A).

These are known variously as Ext−p complete groups , p-cotorsion groups , or
weakly p-complete groups. See Section 4 of [44].

The functors of p-completion and its derived functors can be extended to
the class of nilpotent groups, which are those groups for which the lower central
series is eventually zero. See [14].

Now we consider nilpotent spaces. These are connected simplicial sets X
for which π1X is a nilpotent group and for which π1X acts nilpotently on
πn for all n. See Section VI.6 for complete definitions. The main result is the
following.

Theorem 3.7. Let X be a nilpotent space. Then

1) H∗(X, Fp) → H∗(Xp, Fp) is an isomorphism and Xp is the p-completion of
X;

2) for all n ≥ 1 there is short exact sequence

0 → L0(πnX)p → πnXp → L1(πn−1X)p → 0.

This sequence is split, but not naturally.

Remark 3.8. Note that the p-completion Xp is H∗(·, Fp)-local in the sense of
Chapter X, according to the construction above. It must therefore be a model
for the H∗(·, Fp)-localization of X if it has the right mod p homology. More
generally, can also show directly that the Bousfield-Kan R-completion R∞X is
weakly equivalent to an H∗(·, R)-local space. See Remark 3.7 below.

Here is an outline of the proof of Theorem 3.7. First one shows the result
for K(A,n) where A is an abelian group and n ≥ 1. If

0 → F1 → F0 → A → 0

is a free resolution of A, let K be the simplicial abelian group with normalized
chain complex

· · · → 0 → F1 → F0 → 0 → · · · → 0
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with F0 in degree n. Then K is weakly equivalent to K(A,n) and the simplicial
abelian group Kp is a model for K(A,n)p.

Next is X is nilpotent, we have, by the results of Section VI.6, a refined
Postnikov tower for X; in particular, X may be written as X � lim←−k

Xk where
the Xk fit into a tower and each successive stage is built by a pullback diagram

Xk w

u

WK(A,nk)

u

Xk−1 w K(A,nk + 1),

and lim−→k
nk = ∞. Thus one can proceed inductively using the “nilpotent fibre

lemma” of Bousfield and Kan [14]. The necessary corollary of that result which
is needed here is the following.

Proposition 3.9. Let K(A,n) → E → B be a principal fibration, and sup-
pose n ≥ 1. Then

K(A,n)p → Ep → Bp

is a fibration sequence up to homotopy.

This can be proved by arguing directly that it holds for

K(A,n) → WK(A,n) → K(A,n + 1)

and then using the Serre spectral sequence. Specifically, if we define E′ by the
pullback diagram

E′
w

u

WK(A,n)p

u

Bp w K(A,n)p,

there is a map E → E′ which is an H∗(·, Fp) isomorphism by the Serre spectral
sequence. Since E′ is p-complete — the class of p-complete spaces is closed
under homotopy inverse limits — we have Ep � E′ and the result follows.

4. Obstruction theory.
The purpose of this section is to develop a small amount of the theory of Bous-
field’s paper [10], and to discuss to some extent the meaning of the elements on
the fringe of the spectral sequence of a cosimplicial space. We close the section
with an extended example intended to make the theory concrete.

We wish to address the following question: when is an element [α] ∈
π0π0X in the image of π0 Tot X → π0 Tot0 X = π0X? We will develop some
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elementary cohomological obstructions to lifting [α] in successive stages up the
Tot tower. The enterprise is complicated by the fact that the term “cohomo-
logical” has to be interpreted with some care at the bottom of the tower, where
the obstructions most naturally lie in pointed sets or non-abelian groups.

In order to make the arguments of the general theory work, it is common to
assume [10] at the outset that X is a fibrant cosimplicial space with the property
that for all n ≥ 0 and every choice of basepoint v ∈ Xn, Whitehead products
in π∗(Xn, v) vanish. Thus π1(Xn, v) is abelian and the action of π1(Xn, v) on
πm(Xn, v), m ≥ 1, is trivial. We do not assume π0(Xn, v) = ∗, as one of our
main examples will be X = Hom(Y,R•Z), where Y ∈ S, and R•Z is the
R-resolution of Z ∈ S.

The obstructions considered in this section are at a low level, and a
weaker assertion suffices, namely that the fundamental groupoid πXn acts
trivially on all fundamental groups π1(Xn, x). This assumption means ex-
plicitly that any two paths ω, η : x → y should induce the same morphism
ω∗ = η∗ : π1(Xn, x) → π1(Xn, y) by conjugation at the level of fundamental
groups of Xn for all n ≥ 0. In particular, all fundamental groups π1(Xn, x)
of Xn must be abelian. The reader will note that this assumption is only nec-
essary for computing obstructions that take values in π1, and in fact can be
further weakened with a little care so that it’s necessary for only low values of
n. No such assumption on fundamental groupoid actions is necessary to define
or compute the obstructions that take values in higher homotopy groups.

Let α : skn Δ → X be a cosimplicial map representing [α] ∈ π0 Totn X,
where n ≥ 2. Suppose that θ : r → s is an ordinal number map, and let
ωθ : 0 → ω(0) be the obvious path (aka. relation) in skn Δs. It τ : s → t is a
second ordinal number map, then by the assumption on n there is a 2-simplex

0 w

ωτ
A
A
AACωτθ

τ(0)

u
τ(ωθ)

τθ(0)

in skn Δt.
The ordinal number map θ : r → s induces a homomorphism

θ̃ : πi(Xr, α(0)) → πi(Xs, α(0)),

which is defined to be the composite

πi(Xr, α(0))
θ∗−→ πi(Xs, θα(0))

α(ωθ)∗←−−−−∼=
πi(Xs, α(0)),
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where α(ωθ)∗ is the isomorphism induced by the fundamental groupoid element
represented by α(ωθ). There is a commutative diagram

πi(Xr, α(0)) w

θ∗
�
�
�
��θ̃

πi(Xs, θα(0)) w

τ∗ πi(Xt, τθα(0))

πi(Xs, α(0)) w

τ∗

u

α(ωθ)∗

�
�
�
���τ̃

πi(Xt, τα(0))

u

α(τ(ωθ))∗

πi(Xt, α(0))

u

α(ωτ )∗

But τ(ωθ) = ωτθ, so that τ̃ θ̃ = τ̃ θ, and so the groups πi(Xr, α(0)) and the
homomorphisms θ̃ determine a cosimplicial group.

We shall need to know that the Hurewicz map respects this construction.
Specifically, let α : skn Δ → X be a cosimplicial space map as before, and
form the cosimplicial space map h : X → ZX by applying the Hurewicz map
h : Xr → ZXr in each degree. There is a diagram

πi(Xr, α(0)) w

θ∗

u
h

πi(Xs, θα(0))

u
h

πi(Xs, α(0))u

α(ωθ)∗

u
h

πi(ZXr, hα(0)) w

θ∗
πi(ZXs, hθα(0)) πi(ZXs, hα(0))u

hα(ωθ)∗

πi(ZXr, 0) w

θ∗

u

γhα(0) ∼=

πi(ZXs, 0)

u

∼= γhθα(0)

πi(ZXs, 0)

u

∼= γhα(0)

(4.1)

Here, the map γx : πi(ZY, 0) → πi(ZY, x) is defined by [β] �→ [β + x]. It is
easily seen that the simplicial abelian group structure on ZXs implies that
hα(ωθ) coincides with the map [β] �→ [β − hα(0) + hθα(0)], so the diagram
(4.1) commutes. It follows that there is a commutative diagram

πi(Xr, α(0)) w
θ̃

u
h∗

πi(Xs, α(0))

u
h∗

Hi(Xr, Z) w

θ∗
Hi(Xs, Z)

(4.2)

for each ordinal number map θ : r → s.
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Suppose that n ≥ 1. The element [α] ∈ π0 Totn X lifts to π0 Totn+1 X if
and only if the lifting β exists in the diagram

∂Δn+1
w

α

u

Xn+1

u

s

Δn+1
wα∗

�
�
�
��β

MnX

(4.3)

The indicated map α is the piece of the cosimplicial map α : skn Δ → X
that lives in degree n + 1. It represents an element of the collection of pointed
homotopy classes of maps [(∂Δn+1, 0),Xn+1, α(0)]. The isomorphism

[(∂Δn+1, 0), (Xn+1, α(0))] ∼= πn(Xn+1, α(0)) (4.4)

is geometrically obvious, and it’s an exercise to show that a pointed map
γ : (∂Δn+1, 0) → (Xn+1, α(0)) is pointed homotopically trivial if and only
γ extends to a map Δn+1 → Xn+1, since Xn+1 is a Kan complex.

We know, therefore, that if the lifting β exists in the diagram (4.3), then
α : ∂Δn+1 → Xn+1 represents the trivial element of πn(Xn+1, α(0)). Con-
versely, if [α] = 0, then there is a pointed homotopy hα : ∂Δn+1 ×Δ1 → Xn+1

from α to the constant map at the vertex α(0), and this homotopy extends to
a homotopy of diagrams

∂Δn+1 × Δ1
w

hα

u

Xn+1

u

s

Δn+1 × Δ1
w

Hα
MnX

from the diagram (4.3) to a diagram

∂Δn+1
w

α(0)

u

Xn+1

u

s

Δn+1
w

α̂

�
�
�
��

θ

MnX

(4.5)

and a lift β exists in the diagram (4.3) if and only if the dotted arrow exists in
(4.5), making it commute.
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The same argument as for Lemma 1.8 shows that there is an isomorphism

πi(MnX,α(0)) ∼= Mnπi(X,α(0)),

and so all induced maps

s∗ : πi(Xn+1, α(0)) → πi(MnX,α(0))

are surjective for i ≥ 2. Note that ωθ is the identity relation if θ : r → s is a
surjective ordinal number map, so that

θ̃ = θ∗ : πi(Xr, α(0)) → πi(Xs, α(0)),

and the last assertion makes sense. The surjectivity of s∗ in degree n+1 there-
fore implies that the dotted lift exists in the diagram (4.5). It follows that the
pointed homotopy class of the map

α : (∂Δn+1, 0) → (Xn+1, α(0))

is the obstruction to extending the cosimplicial space map α : skn Δ → X to
skn+1 Δ.

We can be more precise about where the obstruction class [α] lies if n ≥
2. First of all, s∗([α]) ∈ πn(MnX,α(0)) is plainly trivial, so that [α] is in
Nπn(X,α(0))n+1. Secondly, there are commutative diagrams

Hn(|∂Δn+1|)

u

dj
∗

πn(|∂Δn+1|, 0)u

h∗∼=

u

d̃j

w

α∗ πn(|Xn+1|, α(0))

u

d̃j

Hn(| skn Δn+2|) πn(| skn Δn+2|, 0)u

∼=
h∗

wα∗ πn(|Xn+2|, α(0))

The cycle z =
∑n+1

i=0 (−1)idi(ιn+1) represents a generator of the integral ho-
mology group Hn(|∂Δn+1|) ∼= Z, and

n+2∑
j=0

(−1)jdj
∗(z) = 0

in Hn(| skn Δn+2|). Chasing the generator of πn(|∂Δn+1|, 0) under α∗ into
πn(|Xn+1|, α(0)) shows that

n+2∑
j=0

(−1)jdj
∗([α]) = 0.

We have proved most of the following:
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Lemma 4.6. Suppose that X is a fibrant cosimplicial space, and that the map
α : skn Δ → X represents an element of π0 Totn X.

(1) If n = 0, then [α] lifts to π0 Tot1 X if and only if [α] ∈ π0π0X.

(2) If n ≥ 1, then [α] lifts to π0 Totn+1 X if and only if the component
α : ∂Δn+1 → Xn+1 in cosimplicial degree n + 1 represents the trivial
element of ZNπn(Xn+1, α(0)).

Proof: Part (2) is Lemma 1.19.3. For part (1), we have only to consider the
case n = 1.

If α : Δ1 → X1 is the component of the cosimplicial map α : sk1 Δ → X
in cosimplicial degree 1, then the component in cosimplicial degree 2 is the
map α2 = (d0α, d1α, d2α) : ∂Δ2 → X2, and the corresponding obstruction
class in π1(X2, α(0)) can be identified with the fundamental groupoid element
(d1α)−1(d0α)(d2α). One can check directly in the fundamental groupoid for
sk1 Δ3 that there is a relation

d2(α2)−1d1(α2)d3(α2) = α(ωd0)−1d0(α2)α(ωd0),

so that
d̃2(α2)−1d̃1(α2)d̃3(α2) = d̃0(α2)

in π1(X3, α(0)), and [α2] is a cocycle. �
Suppose that n ≥ 1 and that the simplices β, β′ : Δn+1 → Xn+1 define

maps β, β′ : skn+1 Δ → X which restrict to α : skn Δ → X. Then β and β′

together determine a morphism

(β, β′) : skn+1 Δ ∪skn Δ skn+1 Δ → X

of cosimplicial spaces which has component

(β, β′) : Δn+1 ∪∂Δn+1 Δn+1 → Xn+1

in cosimplicial degree n + 1.
The map (β, β′) determines an element [(β, β′)] ∈ πn+1(Xn+1, α(0)), and

there are commutative diagrams

Hn+1(Δn+1 ∪∂Δn+1 Δn+1)

u

dj

πn+1(|Δn+1 ∪∂Δn+1 Δn+1|, 0)u
h∼=

u

d̃j

Hn+1(∂Δn+2 ∪skn Δn+2 ∂Δn+2) πn+1(|∂Δn+2 ∪skn−1 Δn+2 ∂Δn+2|, 0)u

∼=
h
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and

πn+1(|Δn+1 ∪∂Δn+1 Δn+1|, 0) w

(β, β′)∗

u

d̃j

πn+1(|Xn+1|, α(0))

u

d̃j

πn+1(|∂Δn+2 ∪skn Δn+2 ∂Δn+2|, 0) w

(β, β′)∗
πn+1(|Xn+2|, α(0))

The two inclusions iL, iR : Δn+1 → Δn+1 ∪∂Δn+1 Δn+1 represent the
top dimensional non-degenerate simplices of Δn+1 ∪∂Δn+1 Δn+1, and the cycle
iL − iR represents the generator of Hn+1(Δn+1 ∪∂Δn+1 Δn+1) ∼= Z. Recall that
the cycle ζ =

∑n+2
j=0 (−1)jdj(ιn+2) represents the generator of Hn+1(∂Δn+2),

and write ∂ =
∑n+2

j=0 (−1)jdj . Then there is a relation

∂([iL − iR]) = iL∗([ζ]) − iR∗([ζ])

in Hn+1(∂Δn+2 ∪skn Δn+2 ∂Δn+2), and so

∂[(β, β′)] = [β] − [β′]

in πn+1(Xn+2, α(0)).

Suppose that n = 0 and that the 1-simplices β, β′ : Δ1 → X1 separately
extend the map α : sk0 Δ → X to a map sk1 Δ → X. Under these circum-
stances, all vertices of sk0 Δn are mapped into the same path component of Xn,
but there are no canonical choices of paths up to homotopy in sk1 Δn between
these vertices. We circumvent this problem by (somewhat grossly) assuming
that the fundamental groupoid πXm acts trivially on all groups π1(Xm, x) for
all m ≥ 0. This means precisely that any two 1-simplices ω, η : x → y in Xm

induce the same group homomorphism

ω∗ = η∗ : π1(Xm, x) → π1(Xm, y)

by conjugation in the fundamental groupoid. It follows that all fundamental
groups π1(Xm, x) are abelian. This assumption further implies that there is
a cosimplicial group, given by assigning the group homomorphism θ̃∗ to each
ordinal number map θ : m → n, where θ̃∗ is the composite

π1(Xm, α(0))
θ∗−→ π1(Xn, α(θ(0)))

ωα(θ(0))−−−−−→ π1(Xn, α(0)),

where ωα(θ(0)) : α(θ(0)) → α(0) is a 1-simplex connecting the vertices α(θ(0))
and α(0) in Xn. We can and will assume that ωα(θ(0)) is the identity map if
θ(0) = 0.
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The 1-simplices β, β′ : α(0) → α(1) of X1 determine an element

β−1β′ ∈ πX1(α(0), α(0)) ∼= π1(X1, α(0)),

and there are relations in the fundamental groupoid πX2 of the form

d1(β−1β′)−1d̃0(β−1β′)d2(β−1β′)

= d1(β−1β′)−1d2(β)−1d0(β−1β′)d2(β)d2(β−1β′)

= d1(β′)−1d1(β)d2(β)−1d0(β)−1d0(β′)d2(β′)

= d1(β′)−1d1(β)d2(β)−1d0(β)−1d1(β)d1(β)−1d1(β′)d1(β′)−1d0(β′)d2(β′)

= d1(β−1β′)−1d2(β)−1d0(β)−1d1(β)d1(β−1β′)d1(β′)−1d0(β′)d2(β′)

= (d1(β)−1d0(β)d2(β))−1(d1(β′)−1d0(β′)d2(β′)).

We have proved the following:

Lemma 4.7. Suppose that β, β′ : skn+1 → X both extend a map α : skn Δ →
X.

(1) If n ≥ 1, then the simplices β, β′ : Δn+1 → Xn+1 determine a canonical
class [(β, β′)] ∈ πn+1(Xn+1, α(0)) such that

∂[(β, β′)] = [β] − [β′] ∈ πn+1(Xn+2, α(0)),

where [β] and [β′] are the obstructions to extending the corresponding
maps to cosimplicial space maps skn+2 Δ → X.

(2) Suppose that n = 0 and that the fundamental groupoid πXm acts
trivially on all groups π1(Xm, x) for m ≥ 0 if n = 0. Then the class
[(β)−1β′] ∈ π1(X1, α(0)) satisfies

∂[(β)−1β′] = [β′] − [β] ∈ π1(X2, α(0)),

where [β] and [β′] are the obstructions to extending the corresponding
maps to cosimplicial space maps sk2 Δ → X.

It follows that the obstruction cocycle β : ∂Δn+2 → Xn+2 associated to
an extension β of α : skn Δ → X determines an element

[β] ∈ πn+2πn+1(X,α(0))

which is independent of the choice of extension β for n ≥ 1, and that there is
a corresponding statement for n = 0 subject to the assumption about funda-
mental groupoid actions in Lemma 4.7.2.
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Lemma 4.8. Suppose that β : skn+1 Δ → X is an extension of α : skn Δ → X
and that [ω] is an element of Nπn+1(X,α(0))n+1. Then there is an extension
γ : skn+1 Δ → X of α such that

∂([ω]) = [β] − [γ] ∈ πn+1(Xn+2, α(0)).

The proof of Lemma 4.8 will appear after the following:

Theorem 4.9. Suppose that β : skn+1 Δ → X extends α : skn Δ → X.

(1) Suppose that n ≥ 1. Then the element [β] ∈ πn+2πn+1(X,α(0)) associ-
ated to the obstruction cocycle represented by β : ∂Δn+2 → Xn+2 is 0
if and only if α extends to a map skn+2 Δ → X.

(2) Suppose that n = 0 and that the fundamental groupoid πXm acts triv-
ially on all π1(Xm, x) for m ≥ 0. Then the element [β] ∈ π2π1(X,α(0))
associated to the obstruction cocycle represented by β : ∂Δ2 → X2 is 0
if and only if α extends to a map sk2 Δ → X.

Before proving Theorem 4.9, we mention an obvious corollary:

Corollary 4.10. Suppose that X is a fibrant cosimplicial space such that the
fundamental groupoid πXm acts trivially on all fundamental groups π1(Xm, x)
for m ≥ 0. Suppose that α : sk0 Δ → X represents an element of π0π0X, and
that

πn+1πn(X,α(0)) = 0

for all n ≥ 1. Then [α] lifts to π0 Tot X.

Proof of Theorem 4.9: If α extends to a map γ : skn+2 Δ → X, then
[γ] = [β] ∈ πn+2πn+1(X,α(0)) and [γ] = 0, so that the map β : ∂Δn+2 → X
represents a boundary.

If β represents a boundary, say

[β] = ∂(ω)

for some ω ∈ Nπn+1(X,α(0))n+1, then there is an extension γ : skn+1 Δ → X
such that

∂(ω) = [β] − [γ].

But then [γ] = 0 ∈ πn+1(Xn+2, α(0)), so γ extends to a map skn+2 Δ → X. �
Proof of Lemma 4.8: Suppose that τ : (Δn+1, ∂Δn+1) → (NXn+1, α(0))
represents an element of Nπn+1(X,α(0))n+1, and let h : Δn+1 × Δ1 → Δn+1

be the canonical contracting homotopy onto the vertex 0. Then there is an
extension

(Δn+1 × Δ1) ∪ ((Δn+1 ∪∂Δn+1 Δn+1) × {0}) w

(β · h, (α(0), τ))

u

Xn+1

(Δn+1 ∪∂Δn+1 Δn+1) × Δ1
�
�
�
�
�
�
�
�
�
�
�
���

H
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and the restriction of H to (Δn+1∪∂Δn+1Δn+1)×{1} determines a commutative
diagram

Δn+1
w

β

u

inL

Xn+1

Δn+1 ∪∂Δn+1 Δn+1
h
h
hhj
τ∗

where the map τ∗ represents an element of the pointed homotopy class

[(Δn+1 ∪∂Δn+1 Δn+1, 0), (NXn+1, α(0))].

The association [τ ] �→ [τ∗] is well defined (so in particular [τ∗] is independent
of the choice of lift H), and gives an explicit bijection

πn+1(NXn+1, α(0)) ∼= [(Δn+1 ∪∂Δn+1 Δn+1, 0), (NXn+1, α(0))].

We can assume that the representative ω of [ω] is chosen such that the
composite

Δn+1
inL−−→ Δn+1 ∪∂Δn+1 Δn+1

ω−→ NXn+1

is the simplex β, by a standard argument. One can therefore reverse the process
of the previous paragraph to produce a pointed map ω∗ : (Δn+1, ∂Δn+1) →
(NXn+1, α(0)) where [ω∗] �→ [ω].

The map s : Δn+1 → MnΔ and the map of cosimplicial spaces β :
skn+1 Δ → X together determine a pointed composite s∗

Δn+1 ∪∂Δn+1 Δn+1
(s,s)−−−→ MnΔ

β∗−→ MnX.

The proof of the lemma will be complete if we can show that the lifting θ exists
in the diagram

Δn+1 w
β

u

inL

Xn+1

u

s

Δn+1 ∪∂Δn+1 Δn+1 ws∗

i
i
iijθ

MnX

and [θ] = [ω], for then θ · inR : Δn+1 → Xn+1 defines the required second
extension γ of α, and ∂[ω] = [β]− [γ] according to the proof of the Lemma 4.7.

The map s∗ is pointed homotopy trivial, since

πn+1(MnX,α(0)) ∼= Mnπn+1(X,α(0))
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and the composite with each codegeneracy sj : MnX → Xn factors through
the space Δn. It follows that there is an extension

(Δn+1 × Δ1) ∪ ((Δn+1 ∪∂Δn+1 Δn+1) × ∂Δ1) w

(sβ · h, (α(0), s∗))

u

MnX

(Δn+1 ∪∂Δn+1 Δn+1) × Δ1
��
��

��
��

��
����

K

Now form the diagram

(Δn+1 × Δ1) ∪ ((Δn+1 ∪∂Δn+1 Δn+1) × {0}) w
(β · h, (α(0), ω∗))

u

Xn+1

u

s

(Δn+1 ∪∂Δn+1 Δn+1) × Δ1
w

K

��
��

��
��

��
����

L

MnX

The restriction of the lift L to Δn+1 ∪∂Δn+1 Δn+1 × {1} is the required lift θ,
and [θ] = [ω] by independence of the choice of lift defining [ω] from [ω∗]. �

Now we come to the example. Let Y ∈ S be a space and let F•
pY be

the Bousfield-Kan resolution of Y . Given another space X there a cosimplicial
space Hom(X, F•

pY ) with

TotHom(X, F•
pY ) ∼= Hom(X,Tot(F•

pY ))
∼= Hom(X,Yp)

where Yp is the Bousfield-Kan completion of Y . We now describe the sets

πsπtHom(X, F•
pY ).

Let H∗ = H∗(·, Fp) and let K be the category of unstable algebras over
the Steenrod algebra. Then for any space Z there is a Hurewicz homomorphism

π0Hom(X,Z) → homK(H∗Z,H∗Y ) (4.11)

sending f to f∗. If f ∈ Hom(X,Z) is a chosen basepoint, and ϕ : St →
Hom(X,Z) represents a class in πtHom(X,Z) with this basepoint, then ϕ is
adjoint to a map ψ : St × X → Z that appears in the diagram

St × X w
ψ

Z

∗ × X.

u

�
�
��

f
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The morphism ψ∗ : H∗Z → H∗(St × X) ∼= H∗St ⊗ H∗X can be decomposed

ψ∗(x) = 1 ⊗ f∗(x) + xt ⊗ ∂(x)

where xt ∈ HtSt is a chosen generator. Because ψ∗ is a morphism in K, the
induced map of graded vector spaces

∂ : H∗Z → ΣtH∗X

is a morphism of unstable modules over the Steenrod algebra and a derivation
over f∗:

∂(xy) = (−1)t|x|f∗x∂(y) + ∂(x)f∗y.

We write DerK(H∗Z,ΣtH∗X; f∗) or simply DerK(H∗Z,ΣtH∗X) for the vector
space of such derivations. Hence we get a Hurewicz map

πtHom(X,Z) −→ DerK(H∗Z,ΣtH∗X; f∗). (4.12)

If Z is a simplicial Fp vector space and Z and X are of finite type in the sense
that HnZ and HnX are finite dimensional for all n, then the Hurewicz maps
of (4.11) and (4.12) are isomorphisms. Therefore, if X and Y are of finite type
then

π0π0Hom(X, F•
pY ) ∼= homK(H∗Y,H∗X) (4.13)

and for any ϕ ∈ homK(H∗Y,H∗X)

πsπtHom(X, F•
pY ) ∼= πs DerK(H∗F•

pY,ΣtX;ϕ). (4.14)

In the last equation we have written ϕ for any composition of face operators

H∗(Fs
pY ) → H∗Y w

ϕ
H∗X.

The category sK of simplicial objects in in K has a simplicial model cate-
gory structure, as in Example II.5.2. Also the objects H∗K(Z/p, n) form a set
of projective generators for K. If we regard H∗Y as a constant object in sK,
then the augmentation

H∗F•
pY → H∗Y

is a weak equivalence in sK and H∗F•
pY is cofibrant — indeed, degeneracy free

as in Example VII.1.15. Thus

DerK(H∗F•
pY,ΣtX;ϕ)

is a model for the total derived functor of DerK(·,ΣtH∗X;ϕ) applied to H∗Y ,
and we may as well write

πs DerK(H∗F•
pY,ΣtX;ϕ) = Rs DerK(H∗Y,ΣtX;ϕ). (4.15)

This is an example of an André-Quillen cohomology, and a great deal
of work has gone into learning how to compute this object in special cases.
For a general viewpoint one might look at [35]. However, the most successful
application of this and related techniques is given by Lannes in [62].

Combining (4.15) with (4.13) and (4.14) and appealing to Corollary 4.10
we have
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Proposition 4.16. Suppose X and Y are spaces of finite type. A morphism
ϕ : H∗Y → H∗X in K can be lifted to a map X → Yp if

Rs+1 DerK(H∗Y,ΣsX;ϕ) = 0

for s ≥ 1.

The techniques of Lannes’s paper [62] show that if X = B(Z/p)n is the
classifying space of an elementary abelian p-group and A ∈ K is any unstable
algebra, then

Rs+1 DerK(A,ΣtX;ϕ) = 0

for all ϕ ∈ homK(A,H∗B(Z/p)n) and all s ≥ 0, t ≥ 0.



Chapter IX Simplicial functors and homotopy coherence

Suppose that A is a simplicial category. The main objects of study in this
chapter are the functors X : A → S taking values in simplicial sets, and which
respect the simplicial structure of A. In applications, the simplicial category A
is typically a resolution of a category I, and the simplicial functor X describes a
homotopy coherent diagram. The main result of this chapter (due to Dwyer and
Kan, Theorem 2.13 below) is a generalization of the assertion that simplicial
functors of the form X : A → S are equivalent to diagrams of the form I → S
in the case where A is a resolution of the category I. The proof of this theorem
uses simplicial model structures for categories of simplicial functors, given in
Section 1, and then the result itself is proved in Section 2.

The Dwyer-Kan theorem immediately leads to realization theorems for
homotopy coherent diagrams in cases where the simplicial categories A model
homotopy coherence phenomena. A realization of a homotopy coherent diagram
X : A → S is a functor Y : I → S which is weakly equivalent to X in a strong
sense. Insofar as the information arising from X typically consists of simplicial
set maps X(α) : X(i) → X(j), one for each morphism α of I which only
respect the composition laws of I up to some system of higher homotopies, a
realization Y is a replacement of X, up to weak equivalence, by a collection
of maps Y (α) : Y (i) → Y (j) which define a functor on the nose. Diagrams
of spaces which are not quite functorial are really very common: the machines
which produce the algebraic K-theory spaces, for example, are not functors (on
scheme categories in particular), but they have homotopy coherent output for
categorical reasons [49].

Approaches to homotopy coherence for simplicial set diagrams arising
from some specific resolution constructions are discussed in Section 3; tradi-
tional homotopy coherence, as in [91], is one of the examples.

More generally, we take the point of view that a homotopy coherent di-
agram on a fixed index category I is a simplicial functor X : A → S defined
on any simplicial resolution A of I. We can further ask for realization results
concerning homotopy coherent diagrams A → M taking values in more general
simplicial model categories M. This is the subject of Section 4. We derive, in
particular, realization theorems for homotopy coherent diagrams taking values
in pointed simplicial sets, spectra and simplicial abelian groups (aka. chain
complexes).

1. Simplicial functors.

We shall take the point of view throughout this chapter that a simplicial cat-
egory A is a simplicial object in the category of categories having a discrete
simplicial class of objects. This is a weaker definition than that appearing in
Section II.2. The full simplicial set category S with the function complexes
Hom(X,Y ) is a simplicial category in this sense, but of course it also, canon-
ically, has the extra structure required by Definition II.2.1.

431
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The simplicial set of morphisms from A to B in a simplicial category A
is denoted by Hom(A,B); from this point of view, the corresponding set of
n-simplices Hom(A,B)n is the set of morphisms from A to B in the category
at level n. Any morphism α : B → C in Hom(B,C)0 induces a simplicial set
map

α∗ : Hom(A,B) → Hom(A,C),

which one understands to be composition with α, and which is identified with
the composite simplicial set map

Hom(A,B) × Δ0
1×ια−−−→ Hom(A,B) ×Hom(B,C)

◦−→ Hom(A,C).

Similarly, any morphism β : A → B induces a simplicial set map

β∗ : Hom(B,C) → Hom(A,C),

that one thinks of as precomposition with β. Composition and precomposition
respect composition in α and β in the traditional sense.

A simplicial functor f : A → B is a morphism of simplicial categories.
This means that f consists of a function f : Ob(A) → Ob(B) and simplicial
set maps f : Hom(A,B) → Hom(f(A), f(B)) which respect identities and
composition at all levels.

A natural transformation η : f → g of simplicial functors f, g : A → B
consists of morphisms

ηA : f(A) → g(A)

in hom(f(A), g(A)) = Hom(f(A), g(A))0, one for each object A of A, such
that the following diagram of simplicial set maps commutes

Hom(A,B) w

f

u

g

Hom(f(A), f(B))

u

ηB∗

Hom(g(A), g(B)) w

η∗
A

Hom(f(A), g(B))

for each pair of objects A,B of A. Notice that this is just another way of saying
that the various degeneracies of the morphisms ηA are natural transformations
between the functors induced by f and g at all levels. The collection of all
simplicial functors from A to B and all natural transformations between them
form a category, which we shall denote by BA. Write Nat(f, g) for the set of all
natural transformations from f to g.

The category SA of simplicial functors taking values in the simplicial set
category S are of particular interest, and can be given a much more explicit
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description. Suppose that An denotes the small category at level n within the
simplicial category A. Then a simplicial functor X : A → S consists of a
function X : Ob(A) → Ob(S) as before, together with a collection of simplicial
set maps X(α) : X(A) × Δn → X(B), one for each morphism α : A → B in
An, n ≥ 0, such that

(1) the simplicial set map X(βα) is the composite

X(A) × Δn
1×Δ−−−→ X(A) × Δn × Δn

X(α)×1−−−−−→ X(B) × Δn
X(β)−−−→ X(C)

for each composeable string of morphisms

A
α−→ B

β−→ C

in An,
(2) the simplicial set map X(1A) associated to the identity on A ∈ An is

the projection X(A) × Δn → X(A), and
(3) for each ordinal number map θ : m → n and each morphism α : A → B

of An, the following diagram commutes:

X(A) × Δm
A
A
AAC
X(θ∗(α))

u
1 × θ∗

X(A) × Δn
w

X(α)
X(B).

Then, from this point of view, a natural transformation η : X → Y of simplicial
functors taking values in simplicial sets consists of simplicial set maps ηA :
X(A) → Y (A), one for each A ∈ Ob(A), such that the diagram

X(A) × Δn
w

X(α)

u
ηA × 1

X(B)

u
ηB

Y (A) × Δn
w

Y (α)
Y (B)

commutes for each morphism α : A → B of An, and for all n ≥ 0.
Now it’s easy to see that the category SA is the category at level 0 of a

simplicial category in the sense of Definition II.2.1. Given a simplicial functor
X : A → S and a simplicial set K, there is a simplicial functor K × X which
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assigns to each A ∈ Ob(A) the simplicial set K ×X(A) and to each morphism
α : A → B in An the simplicial set map

K × X(A) × Δn
1×X(α)−−−−−→ K × X(B).

Dually, there is a simplicial functor hom(K,X) which associates to each A ∈
Ob(A) the simplicial set hom(K,X(A)), and to each morphism α : A → B
of An the simplicial set map hom(K,X(A))×Δn → hom(K,X(B)) which is
defined to be the adjoint of the composite

K × hom(K,X(A)) × Δn
ev×1−−−→ X(A) × Δn

X(α)−−−→ X(B),

where ev : K × hom(K,X(A)) → X(A) is the standard evaluation map. It
follows immediately that the collection of all such evaluation maps induces a
natural bijection

Nat(K × Y,X) ∼= Nat(Y,hom(K,X)).

There is also, plainly, a simplicial set Hom(Y,X) whose set of n-simplices is
the set Nat(Δn × Y,X). Finally, since the simplicial set K is a colimit of its
simplices, there is a natural bijection (exponential law)

hom(K,Hom(Y,X)) ∼= Nat(K × Y,X) (1.1)

relating morphisms in the simplicial set category to natural transformations of
simplicial functors.

The representable simplicial functor Hom(A, ) is the simplicial functor
which associates to each B ∈ Ob(A) the simplicial set Hom(A,B), and asso-
ciates to each morphism β : B → C of An the composite simplicial set map

Hom(A,B) × Δn
1×ιβ−−−→ Hom(A,B) ×Hom(B,C)

◦−→ Hom(A,C).

It is central to observe that the representable simplicial functors in SA satisfy
the Yoneda lemma:

Lemma 1.2. Suppose that A is an object of a simplicial category A, and that
X : A → S is a simplicial functor. Then there is a natural isomorphism of
simplicial sets

Hom(Hom(A, ),X) ∼= X(A).

Proof: The natural transformations η : Hom(A, ) → X are in one to one
correspondence with the vertices of X(A). In effect, given a morphism α : A →
B of Am, there is a commutative diagram

Hom(A,A) × Δm
w

ηA × 1

u

α∗

X(A) × Δm

u

X(α)

Hom(A,B) wηB
X(B),
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so that
ηB(α) = X(α)(ηA(1A), ιm),

where ιm = 1m ∈ Δm
m is the classifying simplex. But 1A = s(1A,0) where 1A,0

denotes the identity on A in A0. Thus, η is completely determined by the vertex
ηA(1A,0) of X(A).

It follows that there are natural bijections

Nat(Δn ×Hom(A, ),X) ∼= Nat(Hom(A, ),hom(Δn,X))
∼= hom(Δn,X(A))0
∼= X(A)n

and that these bijections respect the simplicial structure. �
A natural transformation η : Δn × Hom(A, ) → X is completely deter-

mined by the n-simplex η(ιn, 1A) of the simplicial set X(A): this is a corollary
of the proof of Lemma 1.2.

The functor S → S defined by K �→ K × Δn preserves all small colimits
of simplicial sets and takes limits to limits fibred over Δn. It follows that the
category SA of simplicial functors from A to S is complete and co-complete,
and that all limits and colimits are formed pointwise.

There is an analogue of the simplex category for each simplicial functor
X ∈ SA. Write A ↓ X for the category whose objects are the transformations

Δn ×Hom(A, ) → X,

and whose objects are all commutative triangles of transformations of the form

Δn ×Hom(A, )�
�
���

u

X

Δm ×Hom(B, )
�
�
���

The objects of this category are simplices of sections of X, and the morphisms
form its structural data. It follows that X is a colimit of its simplices in SA in
the sense that there is a natural isomorphism

X ∼= lim−→
Δn×Hom(A, )→X

Δn ×Hom(A, ). (1.3)

Say that a map f : X → Y of SA is a fibration (respectively weak equiv-
alence) if the component maps f : X(A) → Y (A) are fibrations (respectively
weak equivalences) of simplicial sets, for all objects A of A. Such maps will
be called pointwise fibrations and pointwise weak equivalences, respectively. A
cofibration of SA is a map which has the left lifting property with respect to
all trivial fibrations.
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Proposition 1.4. With these definitions, the category SA of simplicial set-
valued simplicial functors defined on a small simplicial category A satisfies the
axioms for a simplicial model category.

Proof: CM1 is a consequence of the completeness and cocompleteness of SA,
as described above. The weak equivalence axiom CM2 and the retract axiom
CM3 are both trivial consequences of the corresponding axioms for simplicial
sets.

Note that a map f : X → Y of SA is a fibration if and only if f has the
right lifting property with respect to all maps

Λn
k ×Hom(A, )

i×1−−→ Δn ×Hom(A, ),

and f is a trivial fibration if and only if it has the right lifting property with
respect to all maps

∂Δn ×Hom(A, )
i′×1−−−→ Δn ×Hom(A, ),

where i : Λn
k ↪→ Δn and i′ : ∂Δn ↪→ Δn denote the respective canonical inclu-

sions. Both statements follow from the exponential law (1.1) and Lemma 1.2.
The map i × 1 is a weak equivalence.

We may therefore apply standard small object arguments to prove the
factorization axiom CM5 for SA. In particular, any map f : X → Y has a
factorization

X w

j
�
�
���f

Z

u
p

Y,

where p is a fibration and j is a filtered colimit of maps of the form jn : Xn →
Xn+1, each of which is defined by a pushout diagram

⊔
r

Hom(Ar, ) × Λnr

kr
w

u

⊔
r (i × 1)

Xn

u

jn⊔
r

Hom(Ar, ) × Δnr
w Xn+1.

It follows that each of the maps jn is a pointwise weak equivalence, and has the
left lifting property with respect to all fibrations, and so the map j has the same
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properties, giving one of the factorizations required by CM5 in particular. The
other factorization has a similar construction.

The axiom CM4 is a standard consequence of the method of proof of the
factorization axiom CM5, in that any map f : X → Y which is a cofibration
and a pointwise weak equivalence has a factorization f = p · j, where p is a
fibration and where j is a pointwise weak equivalence and has the right lifting
property with respect to all fibrations. In particular, p is a pointwise weak
equivalence, and so the indicated lifting exists in the diagram

X w

j

u

f

Z

u

p

Y w1G

�
�
�
��

Y.

The map f is therefore a retract of j, and therefore has the left lifting property
with respect to all fibrations.

The axiom SM7 is a consequence of the corresponding statement for
simplicial sets. �
Remark 1.5. Proposition 1.4 is a special case of a result of Dwyer and Kan
[24]. The proof given here is simpler.

Remark 1.6. The Bousfield-Kan closed model structure for small I-diagrams
of simplicial sets given in Example II.6.11 and Section IV.3.1 is a special case
of Proposition 1.4.

2. The Dwyer-Kan theorem.
Suppose, throughout this section, that A and B are small simplicial categories.
A simplicial functor X : A → S can alternatively be described as a “rule” which
associates to each object A of A a simplicial set X(A), and to each morphism
α : A → B of An a function α∗ : X(A)n → X(B)n on the n-simplex level such
that

(1) the assignment α �→ α∗ is functorial in morphisms α of An, for all n ≥ 0,
and

(2) for each morphism α : A → B of An and each ordinal number map
θ : m → n, the following diagram commutes:

X(A)n w
α∗

u

θ∗

X(B)n

u

θ∗

X(A)m w
(θ∗α)∗

X(B)m.
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Given a simplicial functor X, with induced maps α∗ : X(A) × Δn → X(B)
as defined above for α : A → B, the corresponding morphism α∗ : X(A)n →
X(B)n is the assignment x �→ α∗(x, ιn). Conversely, given a system of maps
α∗ : X(A)n → X(B)n having the properties described in (1) and (2) above, one
defines a map α∗ : X(A)×Δn → X(B) on m-simplices (x, θ) by the assignment
(x, θ) �→ (θ∗α)∗(x). These two assignments are inverse to each other.

Example 2.1. Suppose that C is an object of the simplicial category A. Then,
according to this new description, the representable simplicial functor

Hom(C, ) : A → S

associates to each object A the simplicial set Hom(C,A) and to each morphism
α : A → B of An the function

Hom(C,A)n

α∗−→ Hom(C,B)n

defined by composition with α in An.

From this new point of view, a natural transformation of simplicial func-
tors f : X → Y is a collection of simplicial set maps f : X(A) → Y (A) such
that, for each morphism α : A → B of An the diagram of functions

X(A)n w

α∗

u

f

X(B)n

u

f

Y (A)n wα∗ Y (B)n

commutes.
Suppose that f : A → B and X : A → S are simplicial functors and

that B is an object of the simplicial category B. Then the bisimplicial object
f̃∗X(B) is defined by setting f̃∗X(B)n,m to be the disjoint union⊔

X(A)0,m ×Hom(A0, A1)m × · · · ×Hom(An−1, An)m ×Hom(fAn, B)m.

The horizontal simplicial set f̃∗X(B)∗,m is the nerve of the translation category
associated to the composite functor

f ↓ B
Q−→ Am

Xm−−→ Sets,

and each morphism ω : B → C of Bm determines a simplicial set map

ω∗ : f̃∗X(B)∗,m → f̃∗X(C)∗,m.
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On the other hand, if τ : k → m is an ordinal number map, then there is a
commutative diagram of simplicial set maps

f̃∗X(B)∗,m w

ω∗

u

τ∗

f̃∗X(C)∗,m

u

τ∗

f̃∗X(B)∗,k w

(τ∗ω)∗
f̃∗X(C)∗,k.

(2.2)

It follows that applying the diagonal simplicial set functor gives a simplicial
functor B → S defined by (n, B) �→ f̃∗X(B)n,n, which will also be denoted
by f̃∗X. The simplicial functor f̃∗X is the homotopy left Kan extension of X
along the simplicial functor f .

We’ve already noted that the simplicial set f̃∗X(B)∗,m is the nerve of a
translation category. Furthermore, the simplicial set diagram (2.2) is induced
by a commutative diagram of functors. Suppose, for example, that the simpli-
cial functor X is the representable functor Hom(A, ). Then the corresponding
simplicial set f̃∗Hom(A, )(B)∗,m can be identified with the nerve of the trans-
lation category associated to the composite contravariant functor

A ↓ Am

Q−→ Am

f−→ Bm

Hom( ,B)m−−−−−−−−→ Sets.

The identity morphism on A is initial in A ↓ Am, so the category

f̃∗Hom(A, )(B)∗,m

contracts canonically onto the discrete subcategory on the set of objects

Hom(f(A), B)m.

In this way, we obtain maps{
Hom(f(A), B)m

s−→ f̃∗Hom(A, )(B)∗,m,

f̃∗Hom(A, )(B)∗,m

r−→ Hom(f(A), B)m

(2.3)

such that rs = 1, as well as a natural transformation

f̃∗Hom(A, )(B)∗,m × 1
H−→ f̃∗Hom(A, )(B)∗,m

from the composite functor sr to the identity. All of this data is natural in B,
and simplicial, and so we have proved
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Lemma 2.4. Suppose that f : A → B is a simplicial functor between small
simplicial categories, and let A be an object of A. Then the simplicial functor
Hom(f(A), ) is a strong deformation retract of f̃∗Hom(A, ).

We shall also need

Lemma 2.5. The simplicial functors Hom(f(A), ) and f̃∗Hom(A, ) are cofi-
brant.

Proof: The assertion about Hom(f(A), ) is a consequence of the Yoneda
lemma and the observation that any trivial fibration p : X → Y of SB consists
of maps p : X(B) → Y (B) which are trivial fibrations of simplicial sets and are
therefore surjective on vertices.

The object f̃∗Hom(A, ) may also be interpreted as a simplicial object in
the category SB of simplicial functors defined on B.

Suppose, for the moment, that Z is an arbitrary simplicial object in SB.
Then Z consists of simplicial functors Zn, n ≥ 0, and simplicial structure maps
θ∗ : Zn → Zm in SB corresponding to ordinal number maps θ : m → n. The
object Z is, in other words, a type of diagram taking values in bisimplicial
sets. The standard constructions on bisimplicial sets apply to Z. There is, in
particular, an associated diagonal simplicial functor d(Z) which is defined by
d(Z)n = Zn,n, and d(Z) is a co-end in the simplicial functor category for the
diagrams of simplicial functor maps

Zn × Δm
w

1 × θ∗

u

θ∗ × 1

Zn × Δn

Zm × Δm

arising from ordinal number maps θ : m → n. This means that there are
simplicial functor maps γn : Zn ×Δn → d(Z) defined “in sections” by (x, τ) �→
τ∗(x), and these maps assemble to give the universal arrow in a coequalizer
diagram ⊔

θ:m→n

Zn × Δm ⇒
⊔
n

Zn × Δn → d(Z).

Finally, d(Z) has a filtration d(Z)(p) ⊂ d(Z)(p+1) ⊂ . . . , where d(Z)(p) is
generated by the images of the maps γr, 0 ≤ r ≤ p. We are interested in
proving that the simplicial functor d(Z) is cofibrant, so the key, for us, is the
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existence of the pushout diagram

(s[p]Zp × Δp+1) ∪ (Zp+1 × ∂Δp+1) w

y

u

d(Z)(p)

y

u

Zp+1 × Δp+1
w d(Z)(p+1).

in the category SB. Here, the inclusion on the left is induced by the inclusion
s[p]Zp ↪→ Zp+1 of the “horizontally degenerate part” in Zp+1. The central
observation is that the simplicial model structure on SB implies that d(Z) is
cofibrant if each of the inclusions s[p]Zp ↪→ Zp+1 is a cofibration.

The object at level n for the simplicial object f̃∗Hom(A, ) is the disjoint
union ⊔

Hom(A,A0) × . . .Hom(An−1, An) ×Hom(f(An), ),

which may in turn be written as a disjoint union⊔
C∈Ob(B)

B(A ↓ A)C
n ×Hom(f(C), ),

where B(A ↓ A)C
n indicates the simplicial set of strings

A → A0 → · · · → An−1 → An = C,

ending at C. The horizontal degeneracies preserve this decomposition, and so
the inclusion of the degenerate part in⊔

C∈Ob(A)

B(A ↓ A)C
n+1 ×Hom(f(C), ),

can be identified with the map⊔
C

DB(A ↓ A)C
n+1×Hom(f(C), ) ↪→

⊔
C

B(A ↓ A)C
n+1×Hom(f(C), ), (2.6)

which is induced by the simplicial set inclusions

DB(A ↓ A)C
n+1 ⊂ B(A ↓ A)C

n+1.

Each of the simplicial functors Hom(f(C), ) is cofibrant, so the map (2.6) is
a cofibration of simplicial functors, and the simplicial functor f̃∗Hom(A, ) is
cofibrant, as claimed. �
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Suppose now that Y : B → S is a simplicial functor. Then a simplicial
functor f̃∗Y : A → S is specified at an object A of A by

f̃∗Y (A) = Hom(f̃∗Hom(A, ), Y ).

In other words, an n-simplex of f̃∗(Y )(A), or rather a morphism

Δn ×Hom(A, ) → f̃∗Y

is defined to be a morphism

f̃∗Hom(A, ) × Δn → Y.

There is an isomorphism

f̃∗Hom(A, ) × Δn ∼= f̃∗(Hom(A, ) × Δn),

by formal nonsense. The resulting isomorphisms

Nat(Hom(A, ) × Δn, f̃∗Y ) ∼= Nat(f̃∗Hom(A, ) × Δn, Y )
∼= Nat(f̃∗(Hom(A, ) × Δn), Y )

are natural with respect to maps

Hom(B, ) × Δm → Hom(A, ) × Δn.

Furthermore, every simplicial functor X : A → S is a colimit of its simplices,
as in (1.3), and the functor f̃∗ preserves colimits. It follows that there is an
adjunction isomorphism

Nat(f̃∗X,Y ) ∼= Nat(X, f̃∗Y ). (2.7)

The simplicial functor f : A → B also induces a functor f∗ : SB → SA,
which is defined by f∗Y (A) = Y (f(A)). The notation is supposed to remind
one of a direct image functor.

Note in particular, that the adjoint of a n-simplex

Hom(A, ) × Δn
x−→ f̃∗Y

is the composite

f̃∗(Hom(A, ) × Δn) ∼= f̃∗Hom(A, ) × Δn
x−→ Y

It follows that the canonical map

η : Hom(A, ) × Δn → f̃∗f̃∗(Hom(A, ) × Δn)
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is the map which sends the classifying simplex (1A, ιn) to the canonical isomor-
phism

f̃∗Hom(A, ) × Δn
∼=−→ f̃∗(Hom(A, ) × Δn),

since η must be adjoint to the identity on f̃∗(Hom(A, ) × Δn). Thus, if x is
an n-simplex of X(A), then η(x) ∈ f̃∗f̃∗X(A) is the simplex defined by the
composite

f̃∗Hom(A, ) × Δn
∼=−→ f̃∗(Hom(A, ) × Δn)

f̃∗(x)−−−→ f̃∗X. (2.8)

The adjunction (2.7) is easily promoted to a natural isomorphism of sim-
plicial sets

Hom(f̃∗X,Y ) ∼= Hom(X, f̃∗Y ). (2.9)

We have therefore proved the first part of the following result:

Proposition 2.10. Suppose that f : A → B is a simplicial functor between
small simplicial categories. Then

(1) The functors

f̃∗ : SA ↔ SB : f̃∗

are simplicially adjoint in the sense that there is a natural isomorphism
of simplicial sets

Hom(f̃∗X,Y ) ∼= Hom(X, f̃∗Y ).

(2) the functor f̃∗ preserves weak equivalences and fibrations.

(3) the functor f̃∗ preserves weak equivalences and cofibrations.

Proof: To prove Part (2), observe that f̃∗Hom(A, ) is cofibrant for every
object A ∈ A, by Lemma 2.5, so that every map

Λn
k × f̃∗Hom(A, ) → Δn × f̃∗Hom(A, )

is a trivial cofibration on account of the simplicial model structure of the cat-
egory SB. It follows that the functor f̃∗ preserves fibrations.

The retraction map

r : f̃∗Hom(A, ) → Hom(f(A), )

is natural in A, and therefore induces a map

r∗ : f∗Y → f̃∗Y
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which is natural in Y ∈ SB. It follows that f̃∗ preserves weak equivalences, if
it can be shown that the map r∗ is a natural weak equivalence.

Recall that the map r has a section

s : Hom(f(A), ) → f̃∗Hom(A, ),

and that there is a homotopy

H : f̃∗Hom(A, ) × Δ1 → f̃∗Hom(A, )

from the composite sr to the identity. The induced map

H∗ : Hom(f̃∗Hom(A, ), Y ) → Hom(f̃∗Hom(A, ) × Δ1, Y )

can be composed with the canonical map

Hom(f̃∗Hom(A, ) × Δ1, Y ) → hom(Δ1,Hom(f̃∗Hom(A, ), Y ))

to give a map which is adjoint to a simplicial homotopy

Hom(f̃∗Hom(A, ), Y ) × Δ1 → Hom(f̃∗Hom(A, ), Y )

from the identity map to s∗r∗. This implies that r∗ is a pointwise weak equiv-
alence, as required.

For Part (3), the functor f̃∗ preserves weak equivalences as a consequence
of its definition as a type of homotopy colimit. Also, f̃∗ is left adjoint to the
functor f̃∗, and it is a consequence of Part (2) that the latter preserves triv-
ial fibrations. Standard closed model category tricks therefore imply that the
functor f̃∗ preserves cofibrations. �

Corollary 2.11. The functor f∗ : SB → SA induces an equivalence

f∗ : Ho(SB) → Ho(SA)

of homotopy categories if and only if the adjunction maps

η : X → f̃∗f̃∗X and ε : f̃∗f̃∗Y → Y

are weak equivalences.

Proof:

The functors f̃∗ and f̃∗ induce an adjoint pair of functors

f̃∗ : Ho(SA) ↔ Ho(SB) : f̃∗
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between the associated homotopy categories, by Proposition 2.10. If the in-
duced functor f̃∗ is an equivalence of categories, then it is part of an adjoint
equivalence (see [66, p.91]). The adjoint to f̃∗ of that adjoint equivalence is
therefore naturally isomorphic to f̃∗ in Ho(SB), and so the adjunction maps η
and ε induce isomorphisms on the homotopy category level. It follows that η
and ε are weak equivalences.

The converse is clear. �
There is a simplicial map i : X(A) → f̃∗X(f(A)) that is defined on the

bisimplicial set level to be the map from X(A) to⊔
X(A0) ×Hom(A0, A1) × · · · ×Hom(An−1, An) ×Hom(f(An), f(A))

which is given by sending an n-simplex x to the element (x, 1A, . . . , 1A, 1f(A))
in the summand

X(A) ×Hom(A,A) × · · · ×Hom(A,A) ×Hom(f(A), f(A))

corresponding to Ai = A for 0 ≤ i ≤ n. It follows from the description of the
adjunction map η given in (2.8) that i is the composite of the map

X(A)
η−→ f̃∗f̃∗X(A) = Hom(f̃∗Hom(A, ), f̃∗X)

with the map

Hom(f̃∗Hom(A, ), f̃∗X)
s∗
−→ Hom(Hom(f(A), ), f̃∗X) ∼= f̃∗X(f(A))

induced by precomposition with the section s : Hom(f(A), ) → f̃∗Hom(A, )
given in (2.3). Neither s nor i is natural in A.

Corollary 2.12. The functor f∗ : SB → SA induces an equivalence

f∗ : Ho(SB) → Ho(SA)

of homotopy categories if and only if the following conditions are satisfied:

(1) for every simplicial functor X ∈ SA and every object A ∈ A the map

i : X(A) → f̃∗X(f(A)) = f∗f̃∗X(A)

is a weak equivalence,

(2) a map α : Y1 → Y2 of SB is a weak equivalence if and only if the induced
map f∗α : f∗Y1 → f∗Y2 is a weak equivalence of SA.
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Proof: If f∗ is an equivalence of homotopy categories, then (2) holds, by
Proposition II.1.14. Furthermore, the canonical map map η is a weak equiva-
lence by Corollary 2.11. It follows from the proof of Proposition 2.10 that s∗

is a weak equivalence in general, and so the map i is a weak equivalence as
claimed.

Conversely, if conditions (1) and (2) are satisfied, then η is a weak equiv-
alence, and then f̃∗(ε) is a weak equivalence on account of a triangle identity.
The conditions for Corollary 2.11 are therefore met, since f∗(ε) must also be a
weak equivalence. �

Dwyer and Kan say that a simplicial functor f : A → B between small
simplicial categories is a weak r-equivalence if two conditions hold:

(a) for every pair of objects A1, A2 of A, the simplicial functor f induces a
weak equivalence of simplicial sets

Hom(A1, A2) → Hom(f(A1), f(A2)),

(b) every object in the category of path components π0B is a retract of an
object in the image of π0f .

Here, the path component category π0B is the category having the same objects
as B, and with morphisms specified by

homπ0B(A,B) = π0Hom(A,B).

Every simplicial functor f : A → B which satisfies condition (a) and
is surjective on objects is a weak r-equivalence. Most examples of weak r-
equivalences that are encountered in nature have this form.

The following is the main result of this chapter:

Theorem 2.13 (Dwyer-Kan). Suppose that f : A → B is a simplicial func-
tor between small simplicial categories. Then the induced functor

f∗ : Ho(SB) → Ho(SA)

of homotopy categories is an equivalence of categories if and only if the functor
f is a weak r-equivalence.

Proof: Suppose that the functor f is a weak r-equivalence. We shall verify
the conditions of Corollary 2.12.

The instance of i corresponding to the identity functor 1A on A has the
form

i : X(A) → 1̃∗AX(A).
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This map is a weak equivalence since 1A induces an equivalence Ho(SA) →
Ho(SA), and it fits into a commutative diagram

1̃∗AX(A)

u

f∗X(A)
�
�
�
���i

�
�
���

i
f̃∗X(f(A)),

where the indicated map f∗ is induced by a bisimplicial set map given on
summands by the simplicial set maps

X(A0) × · · · ×Hom(An, A) → X(A0) × · · · ×Hom(f(An), f(A))

defined by 1 × · · · × 1 × f . This map f∗ is a weak equivalence, by assumption,
and so the map i : X(A) → f̃∗X(f(A)) is a weak equivalence as well.

Suppose that α : Y1 → Y2 is a map of SB such that f∗α : f∗Y1 → f∗Y2 is a
weak equivalence of SA. Then the induced simplicial set maps α : Y1(f(A)) →
Y2(f(A)) are weak equivalences for all objects A ∈ A. The assumption that f
is a weak r-equivalence means, in part, that for each B ∈ B there is an object
A ∈ A and maps j : B → f(A) and q : f(A) → B in B such that qj maps to the
identity in π0B. It follows that, for each Y ∈ SB, there is a path of simplicial
homotopies from the composite simplicial set map

Y (B)
Y (j)
−−−→ Y (f(A))

Y (q)
−−−→ Y (B)

to the identity on Y (B). It follows that this composite is a weak equivalence
for any Y . In particular, in the diagram

Y1(B) w

Y1(j)

u

α

Y1(f(A)) w

Y1(q)

u

α

Y1(B)

u

α

Y2(B) w

Y2(j)
Y2(f(A)) w

Y2(q)
Y2(B)

both horizontal composites are weak equivalences, so that α : Y1(B) → Y2(B)
is a weak equivalence as well.
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Conversely, suppose that f : A → B induces the indicated equivalence of
homotopy categories. The following diagram commutes:

Hom(B,A) w
i

A
A
AACf

f̃∗Hom(B, )(A)

u
r

Hom(f(B), f(A))

The map i is a weak equivalence by assumption, and r is the weak equivalence
of Lemma 2.4, and so the condition (a) for f to be weak r-equivalence is verified.

The simplicial functor f̃∗f̃∗Hom(B, ) is the colimit

lim−→
x:f̃∗Hom(A, )×Δn→Hom(B, )

f̃∗Hom(A, ) × Δ,

and the canonical map

ε : f̃∗f̃∗Hom(B, ) → Hom(B, )

is the unique map having components given by the morphisms

x : f̃∗Hom(A, ) × Δn → Hom(B, )

in the definition of the colimit. The natural map ε is a weak equivalence by
assumption, and the path component functor commutes with colimits, so there
is a map

f̃∗Hom(A, ) × Δn → Hom(B, )

such that 1B ∈ Hom(B,B)0 lifts to a vertex of f̃∗Hom(A,B) × Δn up to
(iterated) homotopy. The map

Hom(f(A), B) × Δn
s×1−−→ f̃∗Hom(A,B) × Δn

is a weak equivalence, so that 1B is in the image of the composite

Hom(f(A), B) × Δn
s×1−−→ f̃∗Hom(A,B) × Δn → Hom(B,B)

up to homotopy. The composite

Hom(f(A), ) × Δn
s×1−−→ f̃∗Hom(A, ) × Δn → Hom(B, )

classifies an n-simplex α of Hom(B, f(A)), and one verifies that this maps
sends a 0-simplex (γ, v) of Hom(f(A), B)×Δn maps to the composite γ◦v∗(α).

�
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3. Homotopy coherence.

The point of homotopy coherence theory is to determine when a diagram which
commutes up to a system of higher homotopies can be replaced by a diagram
which commutes on the nose. To this end, the game is either to recognize when
systems of higher homotopies can be suitably defined to serve as input for the
Dwyer-Kan theorem (Theorem 2.13), or to avoid that result altogether, as one
does normally with lax functors. Various examples of these phenomena will be
described here, in the context of homotopy coherent diagrams of simplicial sets,
or spaces. A discussion of homotopy coherence phenomena for other selected
simplicial model categories appears in Section 4.
3.1. Classical homotopy coherence.
Suppose that I is a small category, and write UI for the underlying directed
graph of I. The graph UI is pointed in the sense that there is a distinguished
element, namely 1a, in the set I(a, a) of arrows from a to itself, for all ob-
jects a ∈ I. There is a free category FX associated to each pointed directed
graph X, which has the same objects as X, and all finite composeable strings
of non-identity arrows in X as morphisms. Composition in FX is given by con-
catenation. The free category functor F is left adjoint to the underlying graph
functor U , with canonical maps η : 1 → UF and ε : FU → 1. The canonical
maps can be used, along with various iterations of the composite functor FU
to define a simplicial category F∗I. The category FnI of n-simplices of F∗I has
the form FnI = (FU)n+1I, and the faces and degeneracies of F∗I are defined
by {

di = (FU)i−1ε(FU)n−i, and
sj = (FU)jFηU(FU)n−j .

One can appeal to the dual of results of [66, p.134,171] to see that this definition
works, or check the simplicial identities directly. The diagram

FUFU(I) w

d0

w

d1

FU(I) w
ε I

is a coequalizer in the category of small categories. It follows that, for any pair
of objects a, b of I, the diagram of functions between morphism sets

FUFU(I)(a, b) w

d0

w

d1

FU(I)(a, b) w
ε I(a, b)

is a coequalizer. It can be shown directly that the underlying simplicial graph
UF∗I has an extra degeneracy (see Section III.5), given by the functors

s−1 = ηU(FU)n(I) → U(FU)n+1(I).
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Now, UF∗(I)(a, b) = F∗(I)(a, b) as a simplicial set, so that F∗(I)(a, b) has an
extra degeneracy. The simplicial set map

F∗I(a, b) → K(I(a, b), 0)

induced by ε is therefore a weak equivalence by Lemma III.5.1, so we have
constructed a weak r-equivalence

ε : F∗I → K(I, 0)

of simplicial categories called simplicial free resolution of the category I.

The simplicial free resolution F∗I of a category I is the traditional basis
of the definition of homotopy coherence. Explicitly, a homotopy coherent I-
diagram is classically defined to be a simplicial functor X : F∗I → S.

Homotopy coherent diagrams are notoriously difficult to interpret, much
less construct. Intuitively, X : F∗I → S associates a simplicial map α∗ : X(a) →
X(b) to each non-identity morphism α : a → b of I (α∗ is the image of the
string (α) ∈ FU(I)). Given β : b → c in I, it’s not the case that (βα)∗ =
β∗α∗, but rather that the two maps are homotopic in a precise way, via the
homotopy X((β, α)) : X(a) × Δ1 → X(c) which is the image of the arrow
((β, α)) ∈ FUFU(I). Given yet another I-morphism γ : c → d, one sees that
the associativity relationship γ(βα) = γβα in I in the sense that the morphism
(((γ), (β, α))) of FUFUFU(I) determines a map X(a)×Δ2 → X(d), which is
a higher homotopy that has the homotopies

(γβα)∗ w

X((γ, βα))
�
�
�
�
�
��X((γ, β, α))

γ∗(βα)∗

u

X((γ), (β, α))

γ∗β∗α∗

appearing in its 1-skeleton. The higher, or iterated, associativity relation

ω(γ(αβ)) = ωγαβ

corresponds to the 3-simplex ((((ω)), ((γ), (β, α)))) of F∗I. The homotopy co-
herent diagram X is determined by all higher associativities or iterated brack-
eting of strings αnαn−1 · · ·α1 of morphisms in I.

Homotopy coherent diagrams are very rarely constructed from scratch,
although there are obstruction theoretic techniques for doing so [27]. They
nevertheless appear quite naturally, usually as the output of large categorical
machines — more will be said about this below.

Most of the point of having a homotopy coherent diagram in hand is that
one can immediately replace it up to pointwise weak equivalence by a diagram
that commutes on the nose. This is a consequence of the following realization
theorem:
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Theorem 3.1 (Realization). Suppose that X : F∗I → S is a homotopy co-
herent diagram in the category of simplicial sets. Then X is naturally pointwise
weakly equivalent to a diagram ε∗Y , for some ordinary I-diagram Y : I → S.

Proof: This result follows easily from the Dwyer-Kan theorem 2.13 and its
proof: the simplicial functor ε : F∗I → K(I, 0) is a weak r-equivalence, so there
are natural pointwise weak equivalences

X
i−→ ε̃∗ε̃∗X

r∗
←− ε∗ε̃∗X.

Take Y to be ε̃∗X. �
3.2. Homotopy coherence: an expanded version.
The classical definition of homotopy coherence is interesting and complicated,
but not flexible enough for all applications. It does not, for example, take into
account diagrams where images of identity maps could wiggle away from actual
identities up to controlled homotopy. The realization result, Theorem 3.1, is also
obviously just a special case of a much broader statement.

Define a resolution of a category I to be a simplicial functor π : A →
K(I, 0) such the π is a weak r-equivalence. A homotopy coherent diagram on
the category I shall henceforth be defined to be a simplicial functor X : A → S,
where π : A → K(I, 0) is a resolution of I. We now have an expanded form of
the realization theorem:

Theorem 3.2. Suppose that X : A → S is a homotopy coherent diagram
which is defined with respect to some resolution π : A → K(I, 0) of I. Then
X is naturally pointwise equivalent to a diagram of the form π∗Y , for some
I-diagram Y : I → S.

Proof: The proof is a copy of the proof of Theorem 3.1. �
The rest of this section will be taken up with a description of a natu-

ral resolution BIs → K(I, 0) of the category I which is different from the
simplicial free resolution of the previous section. Homotopy coherent diagrams
X : BIs → S provide for variance of morphisms induced by the identities of I
up to homotopy.

Let a and b be objects of the small category I. There is a category, denoted
Is(a, b), whose objects are the functors of the form θ : n → I, with θ(0) = a
and θ(n) = b. The morphisms of Is(a, b) are commutative diagrams

n0

u

γ

�
�
�
��

θ0

I

n1

�
�
���

θ1
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where θ0 and θ1 are objects of Is(a, b) and γ : n0 → n1 is an ordinal number
map which is end point preserving in the sense that γ(0) = 0 and γ(n0) = n1.

Suppose that θ : n → I is an object of Is(a, b) and ω : m → I is an object
of Is(b, c). The poset join n ∗m may be identified up to isomorphism with the
ordinal number n + m, in such a way that the inclusion n ↪→ n∗m is identified
with the ordinal number map n → n + m defined by j �→ j + n for 0 ≤ j ≤ m.
The objects θ and γ together determine a functor θ ∗ γ : n + m → I, defined
by

θ ∗ γ(j) =
{

θ(j), if 0 ≤ j ≤ n,
γ(j − n), if n ≤ j ≤ m + n.

This is plainly the object level description of a functor

Is(a, b) × Is(b, c)
∗−→ Is(a, c),

which is called the join functor. This operation is associative, and has a two-
sided identity in each Is(a, a) given by the object a : 0 → I.

We have constructed a category Is which has the same objects as I, and is
enriched in the category cat of small categories. Applying the nerve construc-
tion to each of the categories Is(a, b) gives simplicial sets BIs(a, b), which then
form the morphism objects for a simplicial category BIs, which has the same
objects as I. These constructions are obviously natural: a functor f : I → J in-
duces a functor f : Is → Js of categories enriched in cat, and hence determines
a functor f : BIs → BJs of simplicial categories.

The category Is(a, b) has the form

Is(a, b) =
⊔

f :a→b
in I

Is(a, b)f ,

where Is(a, b)f is the subcategory of those strings α : n → Is whose composite
is f : a → b. The category Is(a, b)f has an initial object, namely the functor
f : 1 → Is which is determined by f, so that, on the simplicial set level, we
have a decomposition

BIs(a, b) =
⊔

f :a→b
in I

BIs(a, b)f ,

of BIs(a, b) into connected components, each of which is contractible. It follows
that the path component functor determines a resolution BIs → K(I, 0) of the
category I.

A homotopy coherent diagram X : BIs → S exhibits the standard homo-
topy coherence phenomena. Suppose that

a0

α1−→ a1

α2−→ a2
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is a composeable pair of morphisms of I, and let these morphisms canonically
determine a functor α : 2 → I, which in turn is a 0-simplex of BIs(a0, a2).
Then X associates simplicial set morphisms (α1)∗ : X(a0) → X(a1) and (α2)∗ :
X(a1) → X(a2) to the morphisms (aka. 0-simplices) α1 and α2 respectively,
and associates the composite simplicial set map

(α2)∗(α1)∗ : X(a0) → X(a2)

to the simplex α, since X takes joins to composites. There is a 1-simplex σ of
BIs(a0, a2), defined by the picture

2�����α

Is,

1

u

d1

��
���

α2α1

where 1 → 2 is the unique endpoint preserving ordinal number map, and
this 1-simplex is mapped to a homotopy X(σ) : X(a0) × Δ1 → X(a2) from
(α2α1)∗ to the composite (α2)∗(α1)∗. In the same way, the associativity relation
α3(α2α1) = α3α2α1 gives rise to a 2-simplex

1 w
d1

�
�
�
�
�
��

α3α2α1

2 w
d2

u

(α3α2,α1)

3
h
h
h
h
h
hk

(α3,α2,α1)

I

and hence to a higher homotopy X(a0) × Δ2 → X(a3).
If a is an object of I, then the identity map 1a : a → a defines a 0-simplex

1a : 1 → I, and hence gets mapped to the simplicial set map (1a)∗ : X(a) →
X(a), whereas the 0-simplex a : 0 → I is an identity for BIs, and is therefore
sent to the identity 1X(a) on X(a). There is a 1-simplex η of BIs(a, a), of the
form

0�����a

I

1

u

��
���

1a

which is then mapped to a homotopy X(η) : X(a)×Δ1 → X(α) from (1a)∗ to
1X(a).
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3.3. Lax functors.
A lax functor F : I 	 cat associates a category F (a) to each object a of I, and
associates a functor α∗ : F (a) → F (b) to each morphism α : a → b, in such a
way that there are natural transformations

θ(β, α) : (βα)∗ → β∗α∗ and ηa : (1a)∗ → 1F (a),

which together satisfy the cocycle conditions

(βαγ)∗ w

θ(βα, γ)

u

θ(β, αγ)

(βα)∗γ∗

u

θ(β, α)γ∗

β∗(αγ)∗ w

β∗θ(α, γ)
β∗α∗γ∗

(3.3)

α∗1F (a) α∗(1a)∗u

α∗ηa

α∗ (α1a)∗

u

θ(α, 1a)

(1b)∗α∗ w

ηbα∗ 1F (b)α∗

(1bα)∗

u

θ(1b, α)

α∗.

(3.4)

The category cat of (small) categories is enriched in categories. Its mor-
phism categories Hom(A,B) have the functors from A to B as objects with
natural transformations as morphisms. The composition functor

Hom(A,B) ×Hom(B,C) → Hom(A,C)

is defined on morphisms as follows: given natural transformations α1 and α2

w

F1
w

F2

A ↓ α1 B ↓ α2 C

w

G1
w

G2

one defines the composition α2α1 of α1 and α2 to be the diagonal transforma-
tion appearing in the commutative diagram

F2F1 w

F2α1

u

α2F1

�
�
�
��

F2G1

u
α2G1

G2F1 w

G2α1
G2G1.
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There is a one to one correspondence between functors

Is → cat

and lax functors on I. In particular, given a lax functor F as above, associate
to each string n → I in I of the form

a0

α1−→ a1

α2−→ . . .
αn−−→ an

the composite functor

(αn)∗ . . . (α1)∗ : F (a0) → F (an).

The requisite functors

Is(a0, an) → Hom(F (a0), F (an))

are defined on morphisms of Is(a0, an) by first making a definition on cofaces
and codegeneracies, which are completely determined up to join by the trans-
formations θ and η, and then by showing that the relevant cosimplicial identi-
ties are satisfied. The non-trivial cosimplicial identities amount to the cocycle
conditions which appear in the definition of the lax functor F .

The object cat has associated to it a simplicial category Bcat in the ob-
vious way: one uses the nerves BHom(A,C) of the categories of morphisms
Hom(A,C) appearing in cat. Note that BHom(A,C) is canonically isomor-
phic to the function complex Hom(BA,BC). The collection of such canonical
isomorphisms respects the composition laws of Bcat and S and hence de-
termines a functor Bcat → S. It follows in particular that any lax functor
F : Is → cat determines a homotopy coherent diagram

BIs

BF−−→ Bcat → S

on I.

3.4. The Grothendieck construction.
Homotopy coherent diagrams arising from lax functors are most often real-
ized (or rectified) by using a category theoretic method that is known as the
Grothendieck construction in place of a result like Theorem 3.2. Suppose that
F : I 	 cat is a lax functor. The Grothendieck construction associated to F is a
category LF whose set of objects consists of all pairs (a, x), where a is an object
of I and x is an object of the category F (a). A morphism (α, f) : (a, x) → (b, y)
is a pair consisting of a morphism α : a → b of the base category I and a mor-
phism f : α∗(x) → y of the category F (b). The composite of (α, f) with the
morphism (β, g) : (b, y) → (c, z) of LF is defined to be the map (βα, g ∗ f),
where g ∗ f is the composite

(βα)∗(x)
θ(β,α)−−−−→ β∗α∗(x)

β∗(f)−−−→ β∗(y)
g−→ z
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of F (c). The identity morphism on an element (a, x) of LF is the morphism
(1a, ηa). The associativity of the composition operation in LF and the fact that
the morphisms (1a, x) are two-sided identities are, respectively, consequences
of the cocycle conditions (3.3) and (3.4).

Projection onto the first variable, for both objects and morphisms, defines
a canonical functor πF : LF → I. The comma category πF ↓ c associated to an
object c of I has all morphisms α : πF (a, x) → c for objects. There is a functor
fc : πF ↓ c → F (c) which associates the object α∗(x) ∈ F (I) to the object
α : πF (a, x) → c. Also, there is a functor gc : F (c) → πF ↓ c which associates
the object 1c : πF (c, x) → c to x ∈ F (c). The functor fc is left adjoint to gc, as
can be seen by observing that the commutative diagram

πF (a, x)�
�
���
α

u

(α, h) c

πF (c, y)
�
�
���

1c

is uniquely determined by the map h : α∗(x) → y of F (c).
Any morphism β : c → d induces a functor β∗ : πF ↓ c → πF ↓ d in an

obvious way, and this assignment determines a functor πF ↓? : I → cat. The
diagram of functors

F (c) w

gc

u

β∗

πF ↓ c

u

β∗

F (c) wgd
πF ↓ d

commutes up to canonically determined natural transformation.
Generally, any functor f : D → E that has a left or right adjoint induces

a homotopy equivalence f∗ : BD → BE of the associated nerves. This is a
result of the fact that any natural transformation of functors gives rise to a
homotopy of the respective induced maps of simplicial sets. The Grothendieck
construction therefore gives rise to homotopy equivalences

gc∗ : BF (c)
�−→ B(πF ↓ c)
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such that the diagrams

BF (c) w

gc∗

u

β∗

B(πF ↓ c)

u

β∗

BF (c) wgd∗ B(πF ↓ d)

commute up to homotopy. In other words, the I-diagram c �→ B(πF ↓ c) is a
realization of the homotopy coherent diagram c �→ BF (c).

4. Realization theorems.

Suppose that π : A → K(I, 0) is a resolution of a small category I, and let
X : A → S be a homotopy coherent diagram on I. A realization of X is a
simplicial set valued functor Y : I → S such that there is a pointwise weak
equivalence X � π∗Y in the simplicial functor category SA. Theorem 3.2 says
that any homotopy coherent diagram X has a realization, and that the weak
equivalence in SA can be chosen canonically.

Given an arbitrary simplicial model category M and a resolution π : A →
K(I, 0), it is certainly sensible to say that a homotopy coherent diagram on I
is a simplicial functor X : A → M. One analogously defines a realization of
X to be a functor Y : I → M such that there is a pointwise weak equivalence
X � π∗Y . The purpose of this section is to show that all homotopy coherent
diagrams in M admit realizations if the simplicial model category M has an
adequate notion of homotopy colimit. This is done by giving a proof of Theo-
rem 3.2 which does not depend on the Yoneda lemma 1.2. The proof is achieved
by thinking about the functor π̃∗ in a different way; we lose the functor π̃∗ and
along with it any notion of an equivalence of homotopy categories associated to
the categories SA and SI . We begin with a weakened version of the Dwyer-Kan
theorem.

Theorem 4.1. Suppose that a simplicial functor f : A → B is homotopically
full and faithful in the sense that all induced simplicial set maps

f∗ : Hom(A,B) → Hom(f(A), f(B))

are weak equivalences, and let X : A → S be a simplicial functor. Then X is
naturally pointwise weakly equivalent to the simplicial functor f∗f̃∗X.
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Proof: The assumption on f implies that the map of simplicial objects in SB

defined by

⊔
(A0,...,An)

X(A0) ×Hom(A0, A1) × · · · ×Hom(An, A)

u

1 × f∗⊔
(A0,...,An)

X(A0) ×Hom(A0, A1) × · · · ×Hom(f(An), f(A))

is a levelwise weak equivalence, which is natural in A ∈ A. The simplicial object⊔
(A0,...,An)

X(A0) ×Hom(A0, A1) × · · · ×Hom(An, A)

is, in m-simplices, the nerve of the translation category associated to the com-
posite functor

Am ↓ A
Q−→ Am

Xm−−→ Sets,

and the identity element 1A is terminal in Am ↓ A. It follows (see the develop-
ment around (2.3)) that there is a canonical weak equivalence induced by the
bisimplicial set map

r :
⊔

(A0,...,An)

X(A0) ×Hom(A0, A1) × · · · ×Hom(An, A) → X(A)

which is induced on the translation category level by functors

(x, α : A′ → A) �→ α∗(x).

We therefore have natural pointwise weak equivalences

f∗f̃∗X
�←− 1∗1̃∗X

r−→
�

X. �

Suppose now that f : A → B is a simplicial functor, and that Y : A → M
is a simplicial functor taking values in a simplicial model category M. We are
entitled to an analogue of the functor f̃∗; in particular, we define f̃∗Y (B) to
be the simplicial object having n-simplices⊔

(A0,...,An)

Y (A0) ⊗Hom(A0, A1) ⊗ · · · ⊗Hom(f(An), B).
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In this way, we define a functor

f̃∗ : MA → S(MB),

where S(MB) denotes the category of simplicial objects in MB. We also have
the following analogues of the maps appearing in the proof of Theorem 4.1 in
the category S(MB):

⊔
(A0,...,An)

Y (A0) ⊗Hom(A0, A1) ⊗ · · · ⊗Hom(An, A) w
r

u

f∗

Y (A)

⊔
(A0,...,An)

Y (A0) ⊗Hom(A0, A1) ⊗ · · · ⊗Hom(f(An), f(A)).

(4.2)
The trick, either for a given simplicial model category or for a particular class
of objects of the simplicial functor category MA, is to find a realization functor
S(M) → M which takes the maps in this diagram to weak equivalences of MB.

The naive realization d(Z) of a simplicial object Z in M is the coend,
given by the coequalizer⊔

m→n

Zn ⊗ Δm ⇒
⊔
n≥0

Zn ⊗ Δn → d(Z).

The object d(Z) has a filtration

d(Z)(n) ⊂ d(Z)(n+1) ⊂ . . . ,

where d(Z)(n) is the epimorphic image of the restricted map⊔
p≤n

Zp ⊗ Δp → d(Z).

There are pushout diagrams

(s[n]Zn ⊗ Δn+1) ∪ (Zn+1 ⊗ ∂Δn+1) w

u

j∗

d(Z)(n)

u

Zn+1 ⊗ Δn+1
w d(Z)(n+1),
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in M, where the map j∗ is canonically induced by the monomorphism j :
s[n]Zn ↪→ Zn+1 given by taking the epimorphic image of the map

s :
⊔

0≤i≤n

Zn → Zn+1

which applies the ith degeneracy si on the ith summand. The monomorphism
d(Z)(n) ↪→ d(Z)(n+1) is a cofibration of M if j : s[n]Zn → Zn+1 is a cofibration.

Say that a simplicial object Z in M is diagonally cofibrant if

(1) Z0 is a cofibrant object of M, and
(2) each morphism j : s[n]Zn → Zn+1 is a cofibration.

If Z is a diagonally cofibrant simplicial object of M in this sense, then

d(Z)(0) = Z0

is cofibrant and all of the maps d(Z)(n) ↪→ d(Z)(n+1) are cofibrations, and so the
realization d(Z) is a cofibrant object of M. It also follows that if f : Z → W
is a map of diagonally cofibrant simplicial objects which is a levelwise weak
equivalence in the sense that all of the maps f : Zn → Wn are weak equivalences
of M, then the induced map f∗ : d(Z) → d(W ) is a weak equivalence as well.

Theorem 4.3. Suppose that f : A → B is a simplicial functor which is ho-
motopically full and faithful. Suppose that Y : A → M is a simplicial functor
taking values in simplicial model category M, such that Y (A) is a cofibrant ob-
ject of M for all objects A ∈ A. Then the morphisms f∗ and r induce pointwise
weak equivalences

f∗(df̃∗Y ) ∼= d(f∗f̃∗Y )
f∗←−
�

d(1∗1̃∗Y )
r−→
�

d(Y ) = Y.

Proof: The assumptions imply that the simplicial object f̃∗Y (B) is diago-
nally cofibrant, for all B ∈ B. This is seen by observing that the object⊔

(A0,...,An)

Y (A0) ⊗Hom(A0, A1) ⊗ · · · ⊗Hom(f(An), B)

can be rewritten in the form⊔
A0

Y (A0) ⊗ B(f ↓ B)A0
n ,

where
B(f ↓ B)A0

n = Hom(A0, A1) × · · · ×Hom(f(An), B)
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means strings of length n in the simplicial nerve B(f ↓ B) which begin at A0.
This decomposition is preserved by all degeneracies, and so we have

s[n]f̃
∗Y (B) =

⊔
A0

Y (A0) ⊗ DB(f ↓ B)A0
n+1,

where DB(f ↓ B)A0
n+1 denotes the degenerate strings of length n + 1 which

begin at A0. Each map

Y (A0) ⊗ DB(f ↓ B)A0
n+1 → Y (A0) ⊗ B(f ↓ B)A0

n+1

induced by the simplicial set inclusion DB(f ↓ B)A0
n+1 ⊂ B(f ↓ B)A0

n+1 is a
cofibration, since Y (A0) is cofibrant, and the claim is verified.

The maps⊔
(A0,...,An)

Y (A0) ⊗Hom(A0, A1) ⊗ · · · ⊗Hom(An, A)

u

1 ⊗ f∗⊔
(A0,...,An)

Y (A0) ⊗Hom(A0, A1) ⊗ · · · ⊗Hom(f(An), f(A))

are weak equivalences since all Y (A0) are cofibrant and f∗ is a weak equivalence
by assumption. It follows that the map

f∗ : d(1∗1̃∗Y (A)) → d(f∗f̃∗(Y (A)))

is a weak equivalence, since the simplicial objects at issue are diagonally cofi-
brant.

The retraction map r : 1∗1̃∗Y (A) → Y (A) has a section s : Y (A) →
1∗1̃∗Y (A), along with an associated homotopy

h : 1∗1̃∗Y (A) ⊗ Δ1 → 1∗1̃∗Y (A)

from sr to the identity on 1∗1̃∗Y (A). Applying the coend functor to h gives a
homotopy

d(h) : d(1∗1̃∗Y (A)) ⊗ Δ1 → d(1∗1̃∗Y (A)),

from s∗r∗ to the identity, again since 1∗1̃∗Y (A) is diagonally cofibrant. It follows
from Lemma II.1.14 that r∗ is a weak equivalence of M. �
All pointed simplicial sets are cofibrant, so Theorem 4.3 immediately implies

Corollary 4.4. Suppose that a simplicial functor f : A → B is homotopically
full and faithful, and let X : A → S∗ be a simplicial functor taking values in the



462 IX. Simplicial functors and homotopy coherence

category S∗ of pointed simplicial sets. Then X is naturally pointwise weakly
equivalent to the simplicial functor f∗d(f̃∗X).

Spectra, and the Bousfield-Friedlander model for the stable category, are
formally discussed in Section X.6. Within that model, it is not true that all
spectra are cofibrant, but homotopy colimits in the category of spectra are
constructed levelwise within the category of pointed simplicial sets, giving

Corollary 4.5. Suppose that a simplicial functor f : A → B is homotopically
full and faithful, and let X : A → Spt be a simplicial functor taking values
in the category Spt of spectra. Then X is naturally pointwise strictly weakly
equivalent to the simplicial functor f∗d(f̃∗X).

A simplicial functor X : A → Spt taking values in the category of spectra can
be identified with a spectrum object in the category SA

∗ of pointed simplicial set
valued simplicial functors. The object X therefore consists of simplicial functors
Xn : A → S∗ and pointed transformations S1∧Xn → Xn+1. A map X → Y in
SptA is a pointwise strict weak equivalence if all of the maps Xn(A) → Yn(A)
are weak equivalences of pointed simplicial sets.

Despite all the huffing and puffing above, Theorem 4.3 is a formal result
which may not always be the best tool. To illustrate, suppose that Y : A →
sAb is a simplicial functor taking values in the category of simplicial abelian
groups, and consider the maps of bisimplicial abelian groups corresponding to
the diagram (4.2). One uses spectral sequence arguments and the generalized
Eilenberg-Zilber theorem (Theorem IV.2.4) to see that, if f : A → B is ho-
motopically faithful, then the maps f∗ and r induce weak equivalences of the
associated diagonal simplicial abelian groups, proving

Lemma 4.6. Suppose that a simplicial functor f : A → B is homotopically
full and faithful, and let Y : A → sAb be a simplicial functor taking values in
the category sAb of simplicial abelian groups. Then Y is naturally pointwise
weakly equivalent to the simplicial functor f∗d(f̃∗Y ).

Here, d is the diagonal functor. Note that the simplicial abelian groups Y (A)
do not have to be cofibrant.

The Dold-Kan equivalence (Corollary III.2.3) relating the categories sAb
of simplicial abelian groups and the category Ch+ of ordinary chain complexes,
gives a simplicial model structure to the chain complex category. It also imme-
diately implies the following result:

Corollary 4.7. Suppose that a simplicial functor f : A → B is homotopically
full and faithful, and let Y : A → Ch+ be a simplicial functor taking values in
the category Ch+ of ordinary chain complexes. Then Y is naturally pointwise

weakly equivalent to the simplicial functor f∗d(f̃∗Y ).

In this case, d(f̃∗Y ) is the normalized chain complex Nd(f̃∗(ΓY )), where ΓY
is the diagram of simplicial abelian groups associated to the diagram of chain
complexes Y .
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Localization is more a way of life than any specific collection of results. For ex-
ample, under this rubric one can include Bousfield localization with respect to a
homology theory, localization with respect to a map as pioneered by Bousfield,
Dror-Farjoun and elaborated on by many others, and even the formation of
the stable homotopy category. We will touch on all three of these subjects, but
we also have another purpose. There is a body of extremely useful techniques
that we will explore and expand on. These have come to be known as Bous-
field factorization, which is a kind of “trivial cofibration-fibration” factorization
necessary for producing localizations, and the Bousfield-Smith cardinality ar-
gument. This latter technique arises when one is confronted with a situation
where a fibration is defined to be a map which has the right lifting property
with respect to some class of maps. However, for certain arguments one needs
to know it is sufficient to check that the map has the right lifting property
with respect to a set of maps. We explain both Bousfield factorization and the
cardinality argument and explore the implications in several contexts.

The concept of localization probably has its roots in the notion of a Serre
class of abelian groups and the Whitehead Theorem mod a Serre class [87,
§9.6]. This result is still useful and prevalent — so prevalent, in fact, that it
is often used without reference. The idea of localizing a space with respect
to a homology theory appeared in Sullivan’s work on the Adams conjecture
[86], where there is an explicit localization of a simply connected space with
respect to ordinary homology with Z[1/p] coefficients. Bousfield and Kan [14]
gave the first categorical definition of localization with respect to homology
theory and provided a localization for nilpotent spaces with respect to H∗(·, R),
where R = Fp for some prime p or R a subring of the rationals. Their original
technique was the R-completion of space, which we have discussed in Section
VIII.3.

Bousfield later introduced model category theoretic techniques to provide
the localization of any space with respect to an arbitrary homology theory. His
paper [8] has been enormously influential, as much for the methods as for the
results, and it’s hard to overestimate its impact. For example, the concept of
localization with respect to a map and the proof of its existence, which appears
in the work for Dror-Farjoun [22] and [23] is directly influenced by Bousfield’s
ideas. About the time Dror-Farjoun’s papers were first circulating, a whole
group of people began to explore these ideas, both in homotopy theory and in
related algebraic subjects — the paper by Cascuberta [17] is a useful survey.
One should also mention the important paper of Bousfield [11], which uses
similar techniques for its basic constructions. The longest and most general
work in this vein, a work that includes an exposition of the localization model
category in a highly general setting, is that of Hirschhorn [42], available at this
writing over the Internet.
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We emphasize, however, that Bousfield’s ideas had influence outside of the
area of homotopy localization. For example, Jeff Smith realized very early on
that one could use these constructions to put a model category structure on the
category of small diagrams of simplicial sets, so that homotopy inverse limits
can be computed as total right derived functors of inverse limit. This never
made it into print under his name, but we have presented the arguments in
Section VIII.2. Beyond this, there is the second author’s work on the homotopy
theory of simplicial presheaves [46], see also [38] as well as Joyal’s result for
simplicial sheaves [53]. In the context of the present discussion that work can
be interpreted as follows: the category of presheaves on a Grothendieck site is
a category of diagrams and there is a closed model category structure obtained
by localizing with respect to a class of cofibrations determined by the topology
of the underlying site.

1. Localization with respect to a map.

This section is an exposition of a technique due to Bousfield for defining local-
ization with respect to a map in a simplicial model category. We explain the
technique for the category S of simplicial sets.

In the category S of simplicial sets we fix a cofibration f : A → B.

Definition 1.1. A space Z ∈ S is f -local if Z is fibrant and

f∗ : Hom(B,Z) → Hom(A,Z)

is a weak equivalence.

Remarks 1.2.

1) Because f is a cofibration, f∗ is a fibration. Hence we could equally require
that f∗ be a trivial fibration.

2) The hypothesis that f be a cofibration is innocuous. Indeed, if we drop the
hypothesis that f be a cofibration, we have the following observation. Factor
f as

A
f0−→ B0

q−→ B

where f0 is a cofibration and q is a trivial fibration. Then f∗ is a weak equiva-
lence if and only if f∗

0 is a weak equivalence, because q is left inverse to a trivial
cofibration.

3) If F is a set of cofibrations fα : Aα → Bα we could define a space Z to be
F-local if it is fibrant and f∗

α is a weak equivalence for all fα ∈ F . However, Z
would be F-local if and only if Z were f -local where f = �fα. Hence we would
achieve no greater generality.

We expand on the notion of f -local:
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Definition 1.3. A map q : X → Y in S is an f -injective if q is a fibration
and

(q∗, f∗) : Hom(B,X) → Hom(B, Y ) ×Hom(A,Y ) Hom(A,X)

is a trivial fibration.

Since this map is a fibration by SM7, we are only requiring it to be weak
equivalence. In light of Remark 1.2.1, Z is f -local if and only if the unique map
Z → ∗ is an f -injective.

It is convenient to have a recognition principle for f -injectives. First, if
j : C → D and q : X → Y are maps in S, let us write

D(j, q) = Hom(D,Y ) ×Hom(C,Y ) Hom(C,X).

Note that D(j, q) is a space of diagrams; indeed an n-simplex is a commutative
diagram

C × Δn
w

u

j×1

X

u

q

D × Δn
w Y.

If L is a simplicial set, let #L denote the cardinality of the set of non-degenerate
simplices in L.

Lemma 1.4. A morphism q : X → Y in S is an f -injective if and only if it is
a fibration and has the right lifting property with respect to all maps

A × L ∪A×K B × K → B × L

where K → L is a cofibration in S with #L finite.

Proof: A map in S is a trivial fibration if and only if it has the right lifting
property with respect to all cofibrations K → L with #L finite. Now use an
adjunction argument. �

Note that one could specialize to the cases

K = ∂Δn ↪→ Δn = L.

Lemma 1.5. If q : X → Y is an f -injective and K ∈ S, then

q∗ : Hom(K,X) → Hom(K,Y )

is an f -injective.
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Proof: Since q is an f -injective

Hom(B,X) → D(f, q)

is a trivial fibration. Hence

Hom(K,Hom(B,X)) → Hom(K,D(f, q))

is a trivial fibration. But this is isomorphic to

Hom(B,Hom(K,X)) → D(f, q∗). �

From this it follows that the f -local spaces and f -injectives defined above,
with the usual notion of weak equivalence, form a category of fibrant objects
for a homotopy theory. This is direct from the definitions, using the previous
two lemmas. In particular the mapping object is supplied by, for f -local Z,
Hom(Δ1, Z). This uses Lemma 1.4.

We now let Locf be the resulting homotopy category of f -local spaces
obtained as the full subcategory of Ho(S) with the f -local spaces. Since every
object of S is cofibrant and every f -local space if fibrant, this is the equivalent to
the category of f -local spaces and homotopy classes of maps. We will examine
the inclusion functor

Locf → Ho(S)

Definition 1.6. A localization with respect to f is a functor

Lf : Ho(S) → Ho(S)

equipped with a natural transformation ηX : X → LfX so that

1) LfX ∈ Locf and the restricted functor Lf : Ho(S) → Locf is left
adjoint to the inclusion; and

2) for all X, the two morphisms LfηX , ηLf X : LfX → LfLfX are equal
and isomorphisms.

If it exists, such a localization will be unique up to isomorphism in the
homotopy category Ho(S). The existence follows from Bousfield’s factorization,
embodied in Proposition 1.8 below. Before stating this we need a definition of
a class of cofibrations which behave much like a class of trivial cofibrations.

Definition 1.7. A cofibration j : C → D is an f -cofibration if the map

(q∗, j∗) : Hom(D,X) −→ Hom(D,Y ) ×Hom(C,Y ) Hom(C,X)

is a trivial fibration for all f -injectives q : X → Y . Let Cf be the class of
f -cofibrations.
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Proposition 1.8 (Bousfield factorization). Every morphism g : X → Y
may be factored

X
j−→ Ef

q−→ Y

where j is an f -cofibration and q is an f -injective. Furthermore, this factoriza-
tion is natural in the morphism g.

We prove this below after some further preliminaries and proving the
existence of the localization demanded by Definition 1.6.

First some basic properties of f -cofibrations.

Lemma 1.9.

1) The morphism f : A → B is an f -cofibration.

2) Any trivial cofibration is an f -cofibration.

3) Suppose i : C → D and j : D → E are cofibrations and i is an f -
cofibration. Then if either of j or ji is an f -cofibration so is the other.

Proof: Only part 3) needs comment. We use the following fact: if one has a
diagram

X�
�
��

w

q
Y

u

Z

and a morphism W → Z, then there is a pullback square

W ×Z X

u

w X

u

q

W ×Z Y w Y.

Hence if q is a trivial fibration so is W ×Z X → W ×Z Y . Applying this remark
to the diagram

Hom(D,X) w�
�
�
�
�
�
���

Hom(D,Y ) ×Hom(C,Y ) Hom(C,X)

u

Hom(D,Y )
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and the map Hom(E, Y ) → Hom(D,Y ) we have that if i is an f -cofibration
and q : X → Y is an f -injective, then

Hom(E, Y ) ×Hom(D,Y ) Hom(D,X) → Hom(E, Y ) ×Hom(C,Y ) Hom(C,X)

is a trivial fibration. Now consider the composite

Hom(E,X) w Hom(E, Y ) ×Hom(D,Y ) Hom(D,X)

u

Hom(E, Y ) ×Hom(C,Y ) Hom(C,X).

If j is an f -cofibration, the first map is a trivial fibration, so the composite is
a trivial cofibration and ji is an f -cofibration. The converse equally applies to
show that if ji is an f -cofibration so is j. �

More constructive properties of f -cofibrations are given in the next result.

Lemma 1.10.

1) Any retract of an f -cofibration is an f -cofibration. Any coproduct of
f -cofibrations is an f -cofibration.

2) Given a pushout diagram with j an f -cofibration

C w

u

j

C ′

u

j′

D w D′,

then j′ is an f -cofibration.

3) If j : C → D is an f -cofibration and K → L is any cofibration, then

C × L ∪C×K D × K → D × L

is an f -cofibration.

Proof: Again only part 3) needs comment. First note that if K = φ, we
are asserting C × L → D × L is an f -cofibration. This requires that for all
f -injectives q : X → Y

Hom(D × L,X) → Hom(D × L, Y ) ×Hom(C×L,Y ) Hom(C × L,X)
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be a trivial fibration. But this is isomorphic to

Hom(D,Hom(L,X))

u

Hom(D,Hom(L, Y )) ×Hom(C,Hom(L,Y )) Hom(C,Hom(L,X))

and Hom(L,X) → Hom(L, Y ) is an f -injective by Lemma 1.5.
For the general case consider the diagram

C × K w

u

C × L

u

i

D × K w C × L ∪C×K D × K

u

j

D × L.

Part 2) of this lemma says i is a f -cofibration. Since ji is a f -cofibration, the
previous lemma says j is. �

Next is the crucial lifting result.

Proposition 1.11. Given a lifting problem

C w

u

j

X

u

q

D

�
�
��

w Y

where j is a f -cofibration and q is an f -injective, the lift exists and is unique
up to homotopy under C and over Y .

Proof: Consider the trivial fibration

Hom(D,X) → Hom(D,Y ) ×Hom(C,Y ) Hom(C,X) = D(j, q).

A solid arrow diagram as above is a 0-simplex in the target. Since a trivial
fibration is surjective such a lift exists. The required homotopy is adjoint to a
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lift in

∂Δ1
w

u

Hom(D,X)

u

Δ1
O
O
O
OOP

w D(j, q).

�

Suppose that we have demonstrated the existence of Bousfield factoriza-
tion, as in Proposition 1.8. Define a functor L : S → S and a natural transfor-
mation j : X → LX, by taking the Bousfield factorization of X → ∗ as

X
j−→ LX

q−→ ∗
where j is an f -cofibration and q is a f -injective. This is a functor since the
factorization is natural. Then LX is f -local. The previous result implies that
j has the following universal property: given a diagram

X

u

j

w
g

Z

LX

�
�
��
g

with Z f -local, then the dotted arrow exists and is unique up to homotopy. If
g is a f -cofibration, g is a homotopy equivalence.

The first result is that L(·) passes to a functor on the homotopy category.

Lemma 1.12. If ϕ : X → Y is a weak equivalence, then Lϕ : LX → LY is a
weak equivalence.

Proof: First of all, L takes trivial cofibrations to homotopy equivalences.
In effect, if i : X → Y is a trivial cofibration, then i is an f -cofibration by
Lemma 1.9, and so the composites

X
jX−→ LX → ∗ and X

jY i−−→ LY → ∗
are two factorizations of X → ∗ as an f -injective following an f -cofibration. It
follows from Proposition 1.11 that Li : LX → LY is a homotopy equivalence.

More generally, any weak equivalence f : X → Y has a factorization
f = p · i, where i is a trivial cofibration and p is left inverse to a trivial
cofibration. Thus, Lp is a weak equivalence, as is the map Lf . �

Let Lf : Ho(S) → Ho(S) be the functor induced by L, and η : X → LfX
be induced in Ho(S) by the map jX : X → LX.
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Proposition 1.13. The functor Lf : Ho(S) → Ho(S) is an f -localization.

Proof: Since LX is f -local, Lf restricts to a functor

Lf : Ho(S) → Locf .

By the universal property of LX, Lf is left adjoint to the inclusion.
If j : X → Y is an f -cofibration, then any choice of extension Lj : LX →

LY is a homotopy equivalence, by an obvious extension of the argument giving
Lemma 1.12. It follows that LjX is a homotopy equivalence, for any X. Also,
the map jX : X → LX and the composite

X
jX−→ LX

jLX−−→ L2X

are f -cofibrations taking values in f -local spaces, and the diagram

X w

jX

u

jX

LX w

jLX L2X

LX
�
�
�
�
�
�
�
���

θ

commutes, where θ could be either LjX or jLX . It follows that the maps LjX

and jLX are homotopic. �
We now turn to the existence of Bousfield factorizations. To start, we

must expand on Lemmas 1.9 and 1.10 and supply one more construction that
preserves f -cofibrations, namely certain types of directed colimits.

Fix an infinite cardinal number β and let Seq(β) denote the well-ordered
set of ordinals less than β. Then Seq(β) is a category with hom(s, t) having
one element of s ≤ t and empty otherwise.

Lemma 1.14. Let C• ∈ S be a diagram of spaces over Seq(β). If

1) for each successor ordinal s < β, Cs−1 → Cs is an f -cofibration, and

2) for each limit ordinal t < β, lim−→ Cs = Ct,

then the map

C0 → lim−→
s<β

Cs

is an f -cofibration.
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Proof: If K is a simplicial set, denote by #K the cardinality of the member
of non-degenerate simplices of K. Notice that D → E is an f -cofibration if and
only if every lifting problem

D × L ∪D×K E × K

u

w X

u

q

E × L
B
B
B
B
B
BC

w Y

can be solved, where q is an f -injective and K → L is a cofibration in S with
#L finite. The strategy is this: we will use transfinite induction and solve the
successive lifting problems

C0 × L ∪C0×K Cs × K w

u

X

u

q

Cs × L
B
B
B
B
B
BC

w Y

(1.15)

in a compatible way, meaning that if s < t, the solution of the lifting problem
for t will restrict to the solution for s. Then taking the colimit over s < β will
solve the problem for C0 → lim−→s<β

Cs.

So regard the lifting problem for s given in (1.15). If s is a successor
ordinal, we can complete the diagram

C0 × L ∪C0×K Cs−1 × K w

u

C0 × L ∪C0×K Cs × K w

u

X

u

Cs−1 × L w Cs−1 × L ∪Cs−1×K Cs × K
B
B
B
B
B
BC

w Y

since we have a solution for s − 1 and the left square is a pushout. Thus we
need to solve a lifting problem

Cs−1 × L ∪Cs−1×K Cs × K w

u

X

u

Cs × L
B
B
B
B
B
BBC

w Y.

But this is possible since Cs−1 → Cs is an f -cofibration. Note that the con-
structed lift satisfies the compatibility requirement spelled out above.
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If s is a limit ordinal, we have constructed compatible lifts, t < s,

C0 × L ∪C0×K Ct × K w

u

X

u

Ct × L
A
A
A
A
A
AC

w Y.

Taking the colimit over t yields a solution to the lifting problem for C0 →
lim−→t<s

Ct = Cs compatible with all previous lifts. �
We now come to the factorization result Proposition 1.8. It turns on the

following construction.

Main Construction 1.16.

Let g : X → Y be a map in S, and let I be the set of morphisms

A × L ∪A×K B × K → B × L,

where K ⊆ L runs over representatives for isomorphism classes of cofibrations
of simplicial sets so that #L is finite. Write jα : Cα → Dα for a typical element
in I.

Define a factorization

X
j1−→ E1X

g1−→ Y

of g by the pushout diagram⊔
I

Cα × D(jα, g) w
ε

u

X

u

j1⊔
I

Dα × D(jα, g) w E1

where
D(jα, g) = Hom(Cα,X) ×Hom(Cα,Y ) Hom(Dα, Y )

is the space of commutative squares and ε is induced by evaluation. Evaluation
also defines a map Dα × D(jα, g) → Y and g1 : E1 → Y is induced by the
universal property of pushouts.

Note that since every morphism in I is an f -cofibration, Lemma 1.10
implies j1 is an f -cofibration. Equally important, note that if one has any
diagram

Cα w

u

jα

X

u

g

Dα wϕ Y

where jα ∈ I, then ϕ factors through E1. This is because such a diagram is a
0-simplex of D(jα, g). Finally, note this construction is natural in g.
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Proof of Proposition 1.8: This is a transfinite variation on the small object
argument. Pick an infinite cardinal γ > #B, and choose an infinite cardinal
β > 2γ . Note that #Cα < γ for all α. Fix a map g : X → Y . Using recursion,
we construct a diagram {Es} over Seq(β), with E0 = X and so that there is a
map {gs} : {Es} → {Y } to the constant diagram on Y .

For s = 0, let g0 : X = E0 → Y . If s + 1 is a successor ordinal, let Es+1

be defined by applying the main construction 1.16 to gs : Es → Y to obtain a
factorization

Es → E1Es

(gs)1−−−→ Y.

Then Es+1 = E1Es and gs+1 = (gs)1. If s is a limit ordinal, let Es = lim−→t<s
Et

and gs the induced map. This defines {Es}.
Define Ef = lim−→s<β

Es. Then g : X → Y factors as

X
j−→ Ef

q−→ Y

where j is an f -cofibration by Lemma 1.14. To see that q is an f -injective, it
is sufficient to show that any lifting problem

Cα w

ψ

u

jα

Ef

u

g

Dα

�
���

wϕ Y

with jα ∈ I can be solved. Since 2#Cα < β,

hom(Cα, Ef ) ∼= lim−→
β

hom(Cα, Es),

for otherwise Cα has too many subobjects. Thus, there is an s < β, and a
factorization of ψ

Cα → Es → Ef .

Then the main construction implies that ϕ factors through Es+1 and the result
follows. �

The constructive part of this argument allows us to identify the class of f -
cofibrations in another way. Let β be a cardinal, and recall from Definition II.6.3
that a class M of morphisms in a cocomplete category C is β-saturated if

1) coproducts and retracts of morphisms in M are in M
2) given a pushout diagram

C w

u

j

C ′

u

j′

D w D′

with j in M, then j′ is in M.
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3) If C : Seq(β) → C is a diagram over β, and
a) for each successor ordinal s, Cs−1 → Cs is in M and
b) for each limit ordinal s, lim−→t<s

Ct
∼= Cs,

then C0 → lim−→t<β
Ct is in M.

Corollary 1.17. Suppose that β is an infinite cardinal greater than 2γ , where
γ is an infinite cardinal larger than #B. Then the class of f -cofibrations in S
is the β-saturation of the morphisms

A × L ∪A×K B × K → B × L

with K → L a cofibration in S and #L < ∞.

Proof: Let Cf be this saturation. Then every morphism in Cf is an f -cofib-
ration since the class of f -cofibrations is β-saturated. Also if g : X → Y is
factored

X
j−→ Z

q−→ Y

as in the proof of Proposition 1.8, then j ∈ Cf . If g is any f -cofibration, then
there is a lifting

X

u

g

w

j
Z

u

q

Y

�
�
��

w Y

since q is an f -injective. This lifting shows g is a retract of j, hence in Cf . �
We end this section with a sequence of technical lemmas on the properties

of the functor L(·). The purpose here is to have in place the structure necessary
to prove the existence of the model category structure in the next section.

Recall that L(X) = lim−→s<β
Es(X) where Es+1(X) is obtained from Es =

Es(X) by a pushout diagram

⊔
jα∈J

Cα ×Hom(Cα, Es(X)) w

u

Es(X)

u⊔
jα∈J

Dα ×Hom(Cα, Es(X)) w Es+1(X)

(1.18)

Of course E0(X) = X, and if s is a limit ordinal then Es(X) = lim−→t<s
Et(X).
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Lemma 1.19. Let λ be a cardinal larger than 2γ , where γ is an infinite cardinal
larger than #B. Let X : Seq(λ) → S be λ-diagram. Suppose for each s < λ,
Xs → Xs+1 is a cofibration, and suppose for each limit ordinal Xs = lim−→t<s

Xt.

Then the natural map
lim−→
s<λ

L(Xs) → L(lim−→
s<λ

Xs)

is an isomorphism.

Proof: It is sufficient, since colimits commute, to show this statement holds
for each of the functors Es(·). For the same reason, it is sufficient to show, that
if this statement holds for Et(·) it holds for Et+1(·). Then it will automatically
hold for limit ordinals. Now, since 2#Cα < λ for all α, the natural map

lim−→
s<λ

hom(Cα × Δn, Et(Xs)) →hom(Cα × Δn, lim−→
s<λ

EtXs)

∼= hom(Cα × Δn, Et(lim−→
s<λ

Xs))

is an isomorphism in each degree n. It follows that the simplicial map

lim−→
s<λ

Hom(Cα, Et(Xs)) → Hom(Cα, Et(lim−→
s<λ

Xs))

is an isomorphism. Now use the diagram (1.18) and the fact that colimits
commute. �

For the next result we need a “Reedy Lemma”. Suppose we have two
pushout squares

A1 w

u

B1

u

C1 w D1

A2 w

u

B2

u

C2 w D2

and a map from the first square to the second.

Lemma 1.20. If B1 → B2 is a cofibration and the induced map C1∪A1A2 → C2

is a cofibration, then the map D1 → D2 is a cofibration.

Proof: The hypotheses are what is required to show D1 → D2 has the left
lifting property with respect to all trivial fibrations. �
Lemma 1.21. The functor L(·) preserves cofibrations.

Proof: Suppose that X → Y is a cofibration, and presume that the induced
map EsX → EsY is a cofibration. We will show that the map Es+1X → Es+1Y
is a cofibration.
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The diagram (1.18) for X maps to the corresponding diagram for Y . The
diagram

⊔
J

Cα ×Hom(Cα, EsX) w

u

⊔
J

Dα ×Hom(Cα, EsX)

u⊔
J

Cα ×Hom(Cα, EsY ) w

⊔
J

Dα ×Hom(Cα, EsY )

is a disjoint union of diagrams of the form

Cα × K w

jα × 1

u

1 × i

Dα × K

u

1 × i

Cα × L w

jα × 1 Dα × L

which are induced by cofibrations jα : Cα → Dα and i : K → L. Each induced
map

Cα × L ∪Cα×K Dα × K → Dα × L

is plainly a cofibration. Now use Lemma 1.20. �
The next result is a variation on Lemma 1.19.

Lemma 1.22. Let λ be a cardinal number with λ > γ. For X ∈ S, let {Xj} be
the filtered system of sub-complexes Xj ⊆ X with #Xj ≤ λ. Then the natural
map

lim−→
j

L(Xj) → L(X)

is an isomorphism.

Proof: The proof is the same as that for Lemma 1.19, once one notices that

lim−→
j

Hom(Cα,Xj) → Hom(Cα,X)

is an isomorphism on account of the size of Cα. �
We now have a counting argument:

Lemma 1.23. Let λ be any cardinal such that λ ≥ β. If X ∈ S has #X ≤ 2λ,
then #L(X) ≤ 2λ.

Proof: Recall that β was chosen such that β > 2γ , where γ is an infinite
cardinal with γ > #B.
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We show that for each ordinal s < β, #Es(X) ≤ 2λ. This is done by
induction: it is true for E0(X) = X; if s is a limit ordinal and it is true for
Et(X), t < s, then it is true for Es(X). Finally, if it is true for s it is true for
s + 1 by the defining diagram (1.18) and because

#(Dα ×Hom(Cα, Es(X)) ≤ β · (2λ)β = β · 2λ·β = 2λ. �

Because its definition involves a sequence of pushouts, one would not ex-
pect the functor L to preserve inverse limits; however, we do have the following
result. Recall that L preserves cofibrations and the cofibrations are inclusions.

Lemma 1.24. Let X be a simplicial set and C,D ⊆ X two sub-simplicial sets.
Then L(C ∩ D) = L(C) ∩ L(D).

Proof: First suppose that we can show that for every ordinal s there is an
equality Es+1(C ∩ D) = Es+1(C) ∩ Es+1(D). Then, because Es(·) ⊆ Es+1(·),
an inductive argument shows that we have the following equalities for any limit
ordinal s

Es(C ∩D) =
⋃
t<s

[Et(C ∩D)] =
⋃
t<s

[Et(C)∩Et(D)] = [
⋃
t<s

Et(C)]∩ [
⋃
t<s

Et(D)].

The last of these equalities uses the observation that we have a nested sequence
of inclusions, and the last listed object is Es(C) ∩ Es(D).

Now suppose that we can show E1(C∩D) = E1(C)∩E1(D). Then another
inductive argument implies

Es+1(C ∩ D) = E1(Es(C ∩ D)) = E1(Es(C) ∩ Es(D)) = Es+1(C) ∩ Es+1(D).

Finally, to see that E1(C ∩D) = E1(C)∩E1(D), note that E1Xn has the form

(E1X)n = (
⊔
α

(Dα − Cα)n ) ×Hom(Cα,X)n)
⊔

Xn

in each simplicial degree n. �
2. The closed model category structure.
We have presented Bousfield factorization as if it were a “trivial cofibration-
fibration” factorization for an appropriate closed model category structure on
simplicial sets. This is not quite the case, but a minor variation makes this
statement true and precise.

Fix a cofibration f : A → B and note that the previous section gives a
functor L : S → S equipped with a natural f -cofibration

j : X → LX.

The functor L preserves weak equivalences and induces the localization functor
Lf on the homotopy category. We now define a morphism g : C → D in S to
be an f -local equivalence if the induced map

g∗ : Hom(D,X) → Hom(C,X)

is a weak equivalence for all f -local spaces X.
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Lemma 2.1.

1) Any f -cofibration is an f -local equivalence.

2) A morphism g : C → D is an f -local equivalence if and only if Lg :
LC → LD is a weak equivalence.

Proof: Part 1) is a consequence of Definition 1.7 with q the unique morphism
X → ∗. For part 2) consider the induced diagram, with X f -local

Hom(LD,X)

u

Lg∗

w

j∗ Hom(D,X)

u

g∗

Hom(LC,X) w

j∗
Hom(C,X).

By part 1) both maps labeled j∗ are weak equivalences. If Lg is a weak equiv-
alence, then Lg∗ and, hence, g∗ are weak equivalences, so g is a f -local equiv-
alence. Conversely, if g∗ is a weak equivalence, so is Lg∗ and

Lg∗ : [LD,X] → [LC,X]

is a bijection for all f -local X. This implies Lg is a homotopy equivalence. To
see this, set X = LC, then there is a map h : LD → LC so that Lg∗h =
h ◦ Lg � 1LC . Then set X = LD and compute

Lg∗(Lg ◦ h) = Lg ◦ h ◦ Lg � Lg = 1LD ◦ Lg = Lg∗(1LD)

so Lg ◦ h � 1LD. �
Definition 2.2. We define a morphism g : C → D to be

1) an f-local cofibration if it is a cofibration; and

2) an f-local fibration if it has the right lifting property with respect to all
cofibrations which are also f -local equivalences.

The main result of this section is:

Theorem 2.3. With its usual simplicial structure and the above definitions of
f -local equivalence, cofibrations, and f -local fibration, the category S becomes
a simplicial model category.

Remark 2.4. If every f -injective were an f -local fibration, this would be easy.
However, this need not be the case as the following example shows. Let f :
∂Δn+1 → Δn+1 be the inclusion and consider the fibration q : WK(Z, n−1) →
K(Z, n). Note that q is an f -injective; that is,

Hom(Δn+1,WK(Z, n − 1)) → D(f, q)
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is a trivial fibration. This is equivalent to the assertion that D(f, q) is con-
tractible. For this, there is a pullback diagram

D(f, q) w

u

Hom(Δn+1,K(Z, n))

u

Hom(∂Δn+1,WK(Z, n − 1)) w Hom(∂Δn+1,K(Z, n))

so that the fibre of the induced fibration D(f, q) → Hom(∂Δn,WK(Z, n− 1))
is the pointed function complex

hom∗(Δn+1/∂Δn+1,K(Z, n)) � Ωn+1K(Z, n) � ∗.
Now let ∗ → ∂Δn+1 be any vertex. Then ∗ → Δn+1 is a trivial cofi-

bration and ∂Δn+1 → Δn+1 is an f -local equivalence (by Lemma 2.1.1 and
Lemma 1.9.1) so ∗ → ∂Δn+1 is an f -local equivalence. But if i : ∂Δn+1 →
K(Z, n) is non-trivial in homotopy, there is no solution to the lifting problem

∗ w

u

WK(Z, n − 1)

u

q

∂Δn+1
�
���

w
i

K(Z, n),

so q is an f -injective which is not an f -local fibration. We will have more to
say about f -local fibrations after the proof of Theorem 2.3.

We start the proof of Theorem 2.3 with the following lemmas.

Lemma 2.5. A morphism in S is at once an f -local fibration and an f -local
equivalence if and only if it is a trivial fibration.

Proof: If q : X → Y is a trivial fibration it has the right lifting prop-
erty with respect to all cofibrations. Furthermore Lq is a weak equivalence
by Lemma 1.12. So Lemma 2.1 implies q is a f -local fibration and an f -local
equivalence.

For the converse, fix q : X → Y which is an f -local fibration and an
f -local equivalence. Factor q as

X
i−→ Z

p−→ Y,

where i is a cofibration and p is a trivial fibration. Then Lemmas 1.12 and 2.1
imply i is an f -local equivalence, so there is a solution to the lifting problem

X w

u

i

X

u

q

Z
�
���

wp Y.

Thus q is a retract of p and is therefore a trivial fibration. �
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Lemma 2.6. Any morphism g : X → Y in S can be factored as

X
j−→ Z

q−→ Y

where q is an f -local fibration and j is at once a cofibration and an f -local
equivalence.

This is the heart of the matter and will be proved below. We also record:

Lemma 2.7.

1) The class of morphisms which are at once cofibrations and f -local equiv-
alences is closed under pushouts and colimits over ordinal numbers.

2) Let j : C → D be at once a cofibration and an f -local equivalence, and
let K → L be any cofibration, then

D × K ∪C×K C × L → D × L

is a cofibration and an f -local equivalence.

Proof: Observe that j : C → D is a cofibration and an f -local equivalence if
and only if the induced map

j∗ : Hom(D,X) → Hom(C,X)

is a trivial fibration for all f -local spaces X. Part 1) follows immediately.
For part 2), it suffices to show that the map j × 1 : C ×K → D ×K is a

cofibration and an f -local equivalence if the same is true for j : C → D. But
the map

Hom(D × K,X)
(j×1)∗−−−−→ Hom(C × K,X)

is isomorphic to

Hom(K,Hom(D,X))
j∗−→ Hom(K,Hom(C,X)),

which is a trivial fibration if X is f -local and j is a cofibration and f -local
equivalence. �
Proof of Theorem 2.3: The “trivial cofibration-fibration” factorization is
Lemma 2.6. The other part of CM5 follows from Lemma 2.5 and the axioms
for S in its usual closed model category structure. The remaining closed model
axioms are automatic. Finally, SM7 follows from Lemma 2.7.2. and Corollary
II.3.12. �

We now must prove Lemma 2.6. This argument that we shall give is a
sequence of ideas originally due to Bousfield, and then later modified by by J.
Smith and Hirschhorn. The argument that we shall give here is the iteration
presented in [38]. The central device is the following:
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Lemma 2.8. Suppose that γ is an infinite cardinal, and suppose given a dia-
gram of simplicial set maps

X
y

u

j

A y w Y

where #A ≤ γ and the inclusion j : X ↪→ Y is a weak equivalence. Then there
is a subcomplex B ⊂ Y containing A, such that #B ≤ γ and the inclusion
jB : B ∩ X ↪→ B is a weak equivalence.

In the language of [38], Lemma 2.8 is called the “bounded cofibration property”
for simplicial set cofibrations. To effect the proof, we need the following method
of converting a map to a fibration:

Lemma 2.9. Suppose that f : X → Y is a map of simplicial sets. Then there
is a diagram

X w

f
h
hhjσf

Y

Zf

�
�
��
πf

such that π is a fibration and σ is a weak equivalence. Furthermore, this fac-
torization preserves filtered colimits in f .

Proof: Let f : X → Y be any simplicial set map, and use Kan’s Ex∞-
construction (see III.4) to form the diagram

X w

νX

u
f

Ex∞X

u
f∗

Y wνY
Ex∞Y

(2.10)

Note that the Ex∞ construction commutes with filtered colimits. The next step
is to use the dual of Lemma II.8.4 to convert the map f∗ : Ex∞X → Ex∞Y into
a fibration according to the standard classical method — this works because
f∗ is a map between Kan complexes. In the current context, one forms the
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diagram

Ex∞X ×Ex∞Y Hom(Δ1, Ex∞Y ) w

f̃

u

prL

Hom(Δ1, Ex∞Y ) w
d1∗

u

d0∗

Ex∞Y

Ex∞X w

f∗
Ex∞Y

Write π = d1∗ · f̃ , and observe that prL has a section σ which is induced
by the map Δ1 → Δ0. Then π · σ = f∗, the map π is a fibration, and σ
is a section of the trivial fibration prL and is therefore a weak equivalence.
Write Z̃f = Ex∞X ×Ex∞Y Hom(Δ1, Ex∞Y ). Finally, one forms the pullback
diagram

Y ×Ex∞Y Z̃f w

ν∗

u

πf

Z̃f

u

π

Y wνY
Ex∞Y

(2.11)

Write Zf = Y ×Ex∞Y Z̃f . The factorization π · σ = f∗ determines a map
from diagram (2.10) to diagram (2.11), and hence there is an induced map
σf : X → Zf such that f = πf · σf . Furthermore, π is a fibration so that πf is
a fibration and the map ν∗ is a weak equivalence by properness of the closed
model structure for the simplicial set category (Corollary II.8.6). It follows that
the map σf is a weak equivalence.

Note that all constructions here are natural in f and either involve finite
limits or filtered colimits, all of which commute with filtered colimits in f . �
Proof of Lemma 2.8: Say that a subcomplex B of Y is γ-bounded if #B ≤
γ. In the language of Lemma 2.9, we must show that there is a γ-bounded
subcomplex B ⊂ Y containing A such that the induced fibration πjB is trivial.
Note further that ZjB is γ-bounded if B is γ-bounded.

Write A = B0, and consider all diagrams of the form

∂Δn
w

y

u

ZjB0
w Zj

u

πj

Δn
w

�
�
�
�
�
�
�
���

θ

B0 w Y.

(2.12)

Observe that the lifting θ always exists, because πj is a trivial fibration by
assumption. The simplicial set Y is a filtered colimit of its γ-bounded subcom-
plexes B so that Zj = lim−→B

ZjB , and there are at most γ such (solid arrow)



484 X. Localization

diagrams. It follows that there is a γ-bounded subcomplex B1 of Y such that
all such solid arrow lifting problems have solutions in ZjB1

. Repeat this con-
struction countably many times to form a sequence of γ-bounded subcomplexes
A = B0 ⊂ B1 ⊂ B2 ⊂ . . . , so that all lifting problems of the form (2.12) over Bi

are solved over Bi+1. Then B = ∪i≥0Bi is γ-bounded, and each lifting problem

∂Δn
w

y

u

ZjB

u

πjB

Δn
w B

factors through a corresponding lifting problem over some Bi and is therefore
solved over Bi+1. �
Lemma 2.13. Let λ = 2β , where β > 2γ and γ > #B are the choices of
cardinals appearing in the proof of Proposition 1.8 Let j : X → Y be at once
a cofibration and an f -local equivalence, and suppose that A is a λ-bounded
subcomplex of Y . Then there is a λ-bounded sub-complex B ⊂ Y so that
A ⊂ B and B ∩ X ↪→ B is an f -local equivalence.

Proof: We inductively define a chain of λ-bounded sub-objects A = A0 ⊆
A1 ⊆ A2 ⊆ · · · ⊆ Y over λ, and a chain of sub-objects

L(A) = L(A0) ⊆ X1 ⊆ L(A1) ⊆ X2 ⊆ L(A2) ⊆ · · · L(Y ),

also over λ, with the property that

L(X) ∩ Xs → Xs

is a weak equivalence. Then we set B = lim−→s<λ
As and, by Lemmas 1.19 and

1.24,

L(X ∩ B) = L(X) ∩ L(B) = lim−→
s<λ

L(X) ∩ Xs

→ lim−→
s<λ

Xs
∼= L(B)

is a weak equivalence as required.
The objects As and Xs are defined recursively. Suppose s + 1 is a suc-

cessor ordinal and As has been defined. Then, since As is λ-bounded, LAs is
λ-bounded by Lemma 1.23. Then Lemma 2.8 implies that there is a λ-bounded
sub-object Xs+1 ⊆ L(Y ) so that L(As) ⊆ Xs+1 and L(X) ∩ Xs+1 → Xs+1
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is a weak equivalence. Since L(Y ) = lim−→j
L(Yj) where Yj ⊆ Y runs over the

λ-bounded sub-objects of Y (Lemma 1.22), there is a λ-bounded sub-object
A′

s+1 so that Xs+1 ⊆ L(A′
s+1). Let As+1 = As ∪ A′

s+1. Finally, suppose s is
a limit ordinal. Then set Xs = lim−→t<s

L(At) ∼= lim−→t<s
Xt. The object Xs is

λ-bounded and L(X)∩Xs → Xs is a weak equivalence. Choose A′
s ⊆ Y so that

A′
s is λ-bounded and Xs ⊆ L(A′

s) and set As = lim−→t<s
At ∪ A′

s. �

Lemma 2.14. Suppose that λ is the cardinal chosen in Lemma 2.13. A map
q : X → Y in S is an f -local fibration if and only if it has the right lifting
property with respect of all morphisms j : C → D which are at once cofibrations
and f -local equivalences and so that #D ≤ λ.

Proof: The “only if” implication is clear. For the reverse implication we use
a Zorn’s Lemma argument. Consider an arbitrary lifting problem

C w

u

j

X

u

q

D
�
���

w Y

where j is any cofibration which is also an f -local equivalence. We must com-
plete the dotted arrow. Define Ω to be the set of pairs (C ′, g) where C ⊆ C ′ ⊆ D
and C → C ′ is a f -local equivalence, and g solves the lifting problem

C w

u

X

u

q

C ′
�
���g

w Y.

Define (C ′, g) < (C ′′, h) if C ′ ⊆ C ′′ and h|C′ = g. Then Ω satisfies the hy-
potheses of Zorn’s Lemma and, thus, has a maximal element (C0, g0). We show
C0 = D. Consider the new lifting problem

C0 w
g0

u

X

u

q

D
�
�
��

w Y.

If C0 �= D, choose x ∈ D so that x �∈ C0. By the previous lemma, there is a
λ-bounded subobject D0 ⊆ D so that x ∈ D0 and C0 ∩ D0 → D0 is an f -local
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equivalence. By hypothesis, the restricted lifting problem

C0 w

g0

u

X

u

q

C0 ∪ D0

i
iij

w Y

has a solution. Lemma 2.7.1 implies C0 → C0∪D0 is an f -local equivalence, so
we have a contradiction to the maximality of (C0, g0). Thus C0 = D and the
proof is complete. �
The proof of Lemma 2.6:

We use a Bousfield factorization. Let J be a set of maps containing one
representative for each isomorphism class of cofibrations j : C → D which are
f -local equivalences and so that #D ≤ λ. Define

ϕ =
⊔
J

j : C̃ =
⊔
J

C →
⊔
J

D = D̃

and factor g : X → Y as

X
i−→ Eϕ

q−→ Y

where i is the ϕ-cofibration of Proposition 1.8 and q is a ϕ-injective.
The class of ϕ-cofibrations is the saturation of the class of all cofibrations

C̃ × L ∪C̃×K D̃ × K → D̃ × L

induced by ϕ and all inclusions K ↪→ L of finite simplicial sets, by Corol-
lary 1.17. Each such map is an f -local equivalence, by Lemma 2.7.2, as well
as a cofibration. The class of morphisms which are cofibrations and f -local
equivalences is saturated, by Lemma 2.6.1. It follows that all ϕ-cofibrations
are f -local equivalences. The definition of ϕ-injective (see 1.3) implies q has
the right lifting property with respect to ϕ and, hence, with respect to all
j : C → D of J . Hence the result follows from Lemma 2.14. �

One can also make an argument for Lemma 2.6 directly from Lemma 2.14,
by means of a transfinite small object argument.

The reader who has come this far will have noticed that we used Bous-
field factorization twice: once to produce the functor L(·) and once to prove
Lemma 2.6. Local objects are produced using L(X) and fibrant objects by us-
ing Lemma 2.6 to factor X → ∗ as a trivial cofibration followed by a fibration;
therefore, they might be different. However, we have:

Proposition 2.15. A space X ∈ S is f -local if and only if it is fibrant in the
f -local model category structure.
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Proof: Suppose that j : C → D is a cofibration and an f -local equivalence.
in particular that the induced map

j∗ : Hom(D,X) → Hom(C,X)

is a trivial fibration for all f -local spaces X. The map j∗ is surjective in degree
0, so that the lifting problem

C w

u

j

X

u

D w

i
i
iij

∗

can always be solved. Every f -local space is therefore fibrant in the f -local
model structure.

Now suppose that X is fibrant. The map f : A → B is an f -local cofibra-
tion by Lemma 1.9, and is therefore an f -local equivalence by Lemma 2.1 as
well as a cofibration. Each induced map

A × Δn ∪A×∂Δn B × ∂Δn → B × Δn

is an f -local equivalence and a cofibration, by Lemma 2.6, so that the map

f∗ : Hom(B,X) → Hom(A,X)

is a trivial Kan fibration. In particular, the space X is f -local. �
We close this section with a preliminary indication of the interaction of

the f -local homotopy theory with the homotopy theory of cosimplicial spaces.

Lemma 2.16. Suppose that p : X → Y is a map of cosimplicial spaces such
that

(1) the map p : X0 → Y 0 is an f -fibration, and

(2) the canonical maps (p, s) : Xn+1 → Y n+1 ×MnY MnX are f -fibrations.

Then the induced map p∗ : Tot(X) → Tot(Y ) is an f -fibration of simplicial
sets.

Proof: The map p∗ : Tot(X) → Tot(Y ) is an f -fibration if the lifting θ exists
in all diagrams of cosimplicial space maps

Δ × C w

u

1 × g

X

u

p

Δ × D w

i
i
i
ij

θ

Y

where g : C → D is a cofibration and an f -local equivalence of simplicial sets.
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The map θ is constructed by induction on cosimplicial degree, where θ0 :
Δ0×D → X0 exists by assumption (1). Given compatible lifts θs : Δs×D → Xs

for 0 ≤ s ≤ n, finding θn+1 amounts to solving a lifting problem

∂Δn+1 × D ∪∂Δn+1×C Δn+1 × C w

u

j

Xn+1

u

(p, s)

Δn+1 × D w

�
�
�
�
�
�
�
�
�
�
�
���

Y n+1 ×MnY MnX

in the category of simplicial sets. But the map j is a cofibration and an f -
local equivalence by the simplicial model category axiom SM7 for the f -local
structure, so that the lift exists by assumption (2). �
Corollary 2.17. Suppose that J is a small category and that p : X → Y is
a map of J-diagrams of simplicial sets which is a pointwise f -fibration in the
sense that the map p : X(i) → Y (i) is an f -fibration for each object i of J .
Then the induced map

p∗ : holim←−−−
J

X → holim←−−−
J

Y

is an f -fibration of simplicial sets.

Proof: For the purposes of this proof, we have to be careful to use the stan-
dard model for homotopy inverse limit. Write

holim←−−−
J

X = Tot lim←−
J

T •X,

as in Section VIII.2, and recall that the cosimplicial space lim←−J
T •X can be

specified in cosimplicial degree n + 1 by

(lim←−
J

T •X)n+1 =
∏

i0→···→in+1

X(in+1),

where the product in indexed over the n-simplices of the nerve BJ . Recall
further that there is an identification

Mn(lim←−
J

T •X) =
∏

i0→···→in+1
degenerate

X(in+1)

where the product is indexed over degenerate (n + 1)-simplices of BJ , and the
map

s : (lim←−
J

T •X)n+1 → Mn(lim←−
J

T •X)

is a projection.
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The map p∗ :
∏

i X(i) → ∏
i Y (i) in cosimplicial degree 0 is an f -fibration

of simplicial sets, so that condition (1) of Lemma 2.16 is satisfied. The map
(p, s) of condition (2) can be identified up to isomorphism with the product of
the map

p∗ :
∏

i0→···→in+1
non-degenerate

X(in+1) →
∏

i0→···→in+1
non-degenerate

Y (in+1)

with the identity map on the product∏
i0→···→in+1

degenerate

X(in+1).

Condition (2) of Lemma 2.16 is therefore satisfied. �
3. Bousfield localization.
Let S be the category of simplicial sets and let E∗ a generalized homology
theory which satisfies the limit axiom in the sense that it preserves filtered
colimits. A space Z ∈ S is E∗-local if and only if Z is fibrant, and any diagram

X w

u

g

Z

Y

�
�
��

with E∗g an isomorphism can be completed uniquely up to homotopy. The
E∗-localization of a space X is a map η : X → Z with Z E∗-local and E∗η an
isomorphism. One easily checks that if such a localization exists, it is unique up
to homotopy. The existence hinges on the existence of an appropriate Bousfield
factorization and, hence, is best described under the rubric of the previous two
sections.

Definition 3.1. A morphism g : X → Y in S is said to be

1) an E∗-equivalence if E∗g is an isomorphism,

2) an E∗-cofibration if it is a cofibration in S, and

3) an E∗-fibration if it has the right lifting property with respect to all
E∗-trivial cofibrations.

Then one has

Theorem 3.2. With these definitions and its usual simplicial structure, S
becomes a simplicial model category.

This will be proved below.
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Corollary 3.3.

1) A space Z ∈ S is E∗-local if and only if it is E∗-fibrant.

2) Every space X ∈ S has an E∗-localization.

Proof: For 1) first assume Z is E∗-fibrant and factor any E∗-equivalence
X → Y as

X
i−→ W

q−→ Y

where q is a trivial fibration and i is a cofibration. Then i will be an E∗-
trivial cofibration, so Hom(W,Z) → Hom(X,Z) is a weak equivalence. The
trivial fibration q has a section σ : Y → W which is a trivial cofibration, so
Hom(Y,Z) → Hom(W,Z) is a weak equivalence. It follows that Z is E∗-local.
Conversely, if Z is E∗-local and X → Y is an E∗-trivial cofibration, then we
need to solve any lifting problem

X

u

w

f
Z

Y

�
�
��

Since Z is E∗ local it can be solved up to homotopy. Since Z is fibrant, the
original lifting problem can be solved by appropriate use of the homotopy
extension property.

For 2), simply factor the unique map X → ∗ as

X
j−→ Z

q−→ ∗
where j is a trivial E∗-cofibration and q is an E∗-fibration. �
Corollary 3.4. Let j : X → Z be an E∗-localization of X. Then the map j
is, up to homotopy, both the terminal E∗-equivalence out of X and the initial
map to an E∗-local space.

Proof: Both statements follow from the definition of localization. �
The difficulty in proving Theorem 3.3 arises in verifying the “trivial cofib-

ration-fibration” factoring axiom. This is done by using Bousfield factorization
for a particular map f : A → B in S. The next three lemmas construct and
identify the map f . Choose an infinite cardinal β greater than the cardinality
of E∗ — that is, greater than the cardinality of the set

⊔
n En(∗).

Lemma 3.5. Let g : C → D be a cofibration and an E∗ equivalence. Let x ∈ D
be a simplex. Then there is a subcomplex D0 ⊆ D so that x ∈ D, #D0 ≤ β,
and

C ∩ D0 → D0

is an E∗ equivalence.
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Proof: We use that for any simplicial set Z, the natural map

lim−→
α

E∗Zα → E∗Z

is an isomorphism, where Zα ⊆ Z runs over the sub-simplicial sets with finitely
many non-degenerate simplices.

We recursively define a sequence of sub-simplicial sets

K0 ⊆ K1 ⊆ K2 ⊆ · · · ⊆ D

with the properties that x ∈ K0, #Ks ≤ β, and

Ẽ∗(Kn/Kn ∩ C) → Ẽ∗(Kn+1/Kn+1 ∩ C)

is the zero map. Then we can set D0 =
⋃

Kn.
For K0, choose any sub-simplicial set with #K0 finite and x ∈ K0. Having

defined Kn, produce Kn+1 as follows. For each y ∈ Ẽ∗(Kn/Kn ∩ C) there is a
finite sub-complex Zy ⊆ D/C so that y maps to zero in Ẽ∗((Kn/Kn∩C)∪Zy).
Choose a finite sub-complex Yy ⊆ D that maps onto Zy and then let Kn+1 =
Kn∪

⋃
y Yy. The collection of all such elements y has cardinality bounded above

by β. �
Lemma 3.6. A morphism q : Z → W in S is an E∗ fibration if and only if it
has the right lifting property with respect to all E∗-trivial cofibrations X → Y
with #Y ≤ β.

Proof: Use the same Zorn’s lemma argument as for Lemma 2.14. �
The proof of Theorem 3.2: As in Lemma 2.5, a morphism is at once
an E∗-fibration and an E∗-equivalence if and only if it is a trivial fibration.
Then all but the “trivial cofibration-fibration” factorization axiom follow im-
mediately. For the final factorizations, let J be a set of E∗-trivial cofibrations
jα : Cα → Dα containing one representative of each isomorphism class of E∗
trivial cofibrations j : C → D with #D ≤ β. Let

f =
⊔

jα :
⊔

Cα →
⊔

Dα

with the coproduct over J . Fix a morphism X → Y in S and let

X → Ef → Y

be the Bousfield Factorization with respect to f . Then the Mayer-Vietoris se-
quence and the main construction 1.16 implies X → Ef is an E∗ trivial cofibra-
tion and, using Lemma 3.6 and arguing as in Proposition 1.8, one sees Ef → Y
is an E∗-fibration.

To prove SM7 we know it is sufficient to show that if C → D is an E∗
trivial cofibration and K → L is any cofibration, then

D × K ∪C×K C × L → D × L

is a trivial E∗-cofibration. Use the Mayer-Vietoris sequence. �
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Remark 3.7. Lemma 2.16 implies that the Bousfield-Kan R-completion R∞X
is H∗(·, R)-local. To see this, note that the spaces RnX are simplicial R-modules
and are therefore H∗(·, R)-local, and all maps s : Rn+1X → MnR•X are
surjective simplicial R-module homomorphisms, and are therefore H∗(·, R)-
fibrations. It follows in particular that if a space X is “R-good” (see [14])
in the sense that the canonical map X → R∞X induces an isomorphism in
H∗(·, R), then R∞X is a model for the H∗(·, R)-localization of X. Warning:
not all spaces are R-good, but the class of R-good spaces includes all nilpotent
spaces [14, p.134]. See also Theorem VIII.3.7.

4. A model for the stable homotopy category.

We have so far concentrated on the concept of localization at a cofibration or set
of cofibrations. This is not the only method for constructing localization the-
ories: there are also theories which arise from classes of cofibrations satisfying
certain axioms — this is the approach taken in [38], and it completely subsumes
the material presented here in cases where the ambient closed model category
admits cardinality arguments. There is another, older approach, which involves
localizing at a sufficiently well-behaved functor Q : C → C from a proper simpli-
cial model category to itself. This technique is due to Bousfield and Friedlander
[12], and is the basis for their approach to constructing the stable homotopy
category. We shall present this method here.

Suppose that C is a proper closed (simplicial) model category, and let
Q : C → C be a functor. Suppose further that there is a natural transformation
ηX : X → Q(X) from the identity functor on C to Q. Say that a map f : X → Y
is a Q-weak equivalence if the induced map Q(f) : Q(X) → Q(Y ) is a weak
equivalence of C, and say that a map is a Q-fibration if it has the right lifting
property with respect to all cofibrations of C which are Q-weak equivalences.

We shall require that the functor Q and the natural map η together satisfy
the following list of properties:

A1 The functor Q preserves weak equivalences.
A2 The maps ηQX , Q(ηX) : Q(X) → Q2(X) are weak equivalences of C.
A3 The class of Q-weak equivalences is closed under pullback along Q-fib-

rations: given maps

B
g−→ Y

p←− X

with p a Q-fibration and g a Q-weak equivalence, the induced map g∗ :
B ×Y X → X is a Q-weak equivalence. Dually, the class of Q-weak
equivalences is closed under pushout along cofibrations of C.

The first major result of this section is the following:

Theorem 4.1. Suppose that C is a proper closed model category, Q : C → C
is a functor, and ηX : X → Q(X), x ∈ Ob(C), is a natural transformation, all
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satisfying the properties A1–A3 above. Then there is a closed model struc-
ture on C for which the weak equivalences are the Q-weak equivalences, the
cofibrations are the cofibrations of C, and the fibrations are the Q-fibrations.

We shall refer to the closed model structure of Theorem 4.1 as the Q-
structure on the category C. Note first that this result implies that there is an
idempotent functor G : Ho(C) → Ho(C) in the sense of Adams, and hence an
associated categorical localization theory (see [8, p.135]):

Corollary 4.2. Suppose that the conditions for Theorem 4.1 hold. Then
there is a functor G : Ho(C) → Ho(C) and a natural transformation j : 1Ho(C) →
G such that jGX = G(jX), and jGX is an isomorphism of Ho(C) for all X.

Proof: It suffices to work on the level of objects of C which are fibrant and
cofibrant for the original closed model structure on C, so that the morphisms
of Ho(C) can be identified with homotopy classes of maps.

Choose a map jX : X → GX such that jX is a cofibration and a Q-weak
equivalence, and GX is Q-fibrant. Every trivial cofibration of C is a Q-weak
equivalence, by A1, so GX is fibrant in the original structure on C.

If f : X → Y is a map such that Y is Q-fibrant, then there is an extension
f∗ : GX → Y such that f∗ · jX = f . Furthermore, the choice of f∗, up to
homotopy, depends only on the homotopy class of f . It follows that any map
f : X → Y determines an extension Gf : GX → GY such that Gf ·jX = jY ·f ,
so this construction induces a functor G : Ho(C) → Ho(C), and a natural
transformation j : 1Ho(C) → G. The maps jGX and GjX are two extensions
of a common map X → G2X, so they coincide up to homotopy, and the map
GjX : GX → G2X is a Q-weak equivalence between objects which are Q-
fibrant and cofibrant, so GjX is a homotopy equivalence. �

The proof of Theorem 4.1 will be given in a series of lemmas.

Lemma 4.3. Assume the conditions of Theorem 4.1. Then a map f : X → Y is
a fibration and a weak equivalence of C if and only if it is a Q-weak equivalence
and a Q-fibration.

Proof: If f is a fibration and a weak equivalence of C, it is a Q-weak equiva-
lence by A1 and has the right lifting property with respect to all cofibrations,
so it’s a Q-fibration.

Suppose that f is a Q-weak equivalence and a Q-fibration, and take a
factorization f = p · i, where where i : X → Z is a cofibration and p : Z → Y
is a trivial fibration in C. Then i is a Q-weak equivalence by A1, so the lifting
θ exists in the diagram

X w
=

u

i

X

u

f

Z wp

�
�
���

θ

Y

and so f is a retract of p. �
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Lemma 4.4. Suppose that f : X → Y is a fibration of C, and that ηX : X →
QX and ηY : Y → QY are weak equivalences of C. Then f is a Q-fibration.

Proof: Start with a lifting problem

A w
α

u

i

X

u

f

B w

β

�
�
���

Y

where i is a cofibration and a Q-weak equivalence. We have to show that the
dotted arrow exists.

There is a diagram

QA w
Qα

u

Qi

�
�
�
���

jα

QX

u

QfZ

u

π

�
�
���

pα

QB w�
�
���

jβ

QY

W
�
�
���

pβ

where jα and jβ are trivial cofibrations of C and pα and pβ are fibrations. To
see this, find the factorization Qβ = pβjβ , and then factorize the induced map
QA → W ×QY QX as a trivial cofibration jα followed by a fibration. There is
an induced diagram

A w

u
i

Z ×QX X w

u
π∗

X

u
f

B w W ×QY Y w Y

such that the top horizontal composite is α and the bottom composite is β.
We will show that the conditions on f and i imply that the map π∗ is a

weak equivalence of C. This suffices, for then π∗ has a factorization π∗ = q · j
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where q is a trivial fibration and j is a trivial cofibration, and there is a diagram

A w

u

i

Z ×QX X w

u

j

X

u

fU
A
A
A
A
AC

ω

u

q

B w

A
A
A
AACθ

W ×QY Y w Y

so that ω · θ is the desired lift.
There is finally a diagram

QA w
jα

u

Qi

Z

u

π

Z ×QX Xu

pr

u

π∗

QB w
jβ

W W ×QY Yu pr

The map Qi is a weak equivalence since i is a Q-weak equivalence, so that π is
a weak equivalence. The maps ηX and ηY are weak equivalences by assumption
and pα and pβ are fibrations, so the maps labelled pr are weak equivalences by
properness for C. It follows that π∗ is a weak equivalence of C. �
Lemma 4.5. Any map f : QX → QY has a factorization f = p · i where
p : Z → QY is a Q-fibration and i : QX → Z is a cofibration and a Q-weak
equivalence.

Proof: Take a factorization f = p · i where p : Z → QY is a fibration and
i : QX → Z is a cofibration and a weak equivalence. Applying the functor
Q to this diagram, one sees that ηQX is a weak equivalence by A2, and i is
a weak equivalence so that Qi is a weak equivalence by A1. It follows that
ηZ : Z → QZ is a weak equivalence, as is ηQY , so that p is a Q-fibration by
Lemma 4.4. �
Lemma 4.6. Any map f : X → Y of C has a factorization f = q · j where
q : Z → Y is a Q-fibration and j : X → Z is a cofibration and a Q-weak
equivalence.

Proof: Take the factorization f = p · i of Lemma 4.5 and pull ηY : Y → QY
along p to give a diagram

X w
i∗

u

ηX

Z ×QY Y w
p∗

u

η∗

Y

u

ηY

QX w
i

Z wp QY,
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where p∗ · i∗ = f . Then η∗ is a Q-weak equivalence by A2 and A3, as are both
ηX and i. It follows that i∗ is a Q-weak equivalence.

Now factorize i∗ in C as i∗ = π · j, where j is a cofibration and π is a
trivial fibration. Then π is a Q-fibration by Lemma 4.3, so that q = p∗ · π is a
Q-fibration. �
Proof of Theorem 4.1: The closed model axioms CM1–CM3 are trivial
to verify. One part of the factorization axiom is Lemma 4.6. The other is a
consequence of Lemma 4.3, as is CM4. �
Remark 4.7. Observe that if C has a simplicial model structure in addition to
the conditions of Theorem 4.1, then the Q-structure on C is a simplicial model
structure, essentially for free. Axiom SM7 is a consequence of the fact that the
two structures have the same cofibrations, and every trivial cofibration of C is
a Q-weak equivalence.

Similarly, the full statement of A3 (we’ve only used the fibration part of
it up to now) implies that the Q-structure is proper.

Here’s the second major result:

Theorem 4.8. Suppose that the proper closed model category C and the func-
tor Q together satisfy the conditions for Theorem 4.1. Then a map f : X → Y
is a Q-fibration if and only if it is a fibration and the square

X w

ηX

u

f

QX

u

Qf

Y wηY
QY

(4.9)

is a homotopy cartesian diagram of C.

Proof: Suppose that the diagram (4.9) is homotopy cartesian and that f :
X → Y is a fibration of C. We will show that the map f is a retract of a
Q-fibration.

Factorize Qf as Qf = p · i, where p : Z → QY is a fibration of C and
i : QX → Z is a trivial cofibration. Then, as in the proof of Lemma 4.5, the
map p is a Q-fibration, so that the induced map p∗ : Y ×QY Z → Y is a Q-
fibration. The induced map i∗ : X → Y ×QY Z is a weak equivalence of C, since
C is proper, and so it has a factorization i∗ = π ·j, where j : X → W is a trivial
cofibration and π : W → Y ×QY Z of C is a trivial fibration of C. Then the
composite p∗π : W → Y is a Q-fibration by Lemma 4.3, and the lifting exists
in the diagram

X w
=

u

j

X

u

f

W
�
�
���

wp∗π Y

since f is a fibration. It follows that f is a retract of p∗π.
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For the converse, suppose that f : X → Y is a Q-fibration. We show that
f is a retract of a fibration g for which the diagram

Z w

ηZ

u

g

QZ

u

Qg

Y wηY
QY

(4.10)

is homotopy cartesian in C.
Observe that the class of maps g which are fibrations of C and for which

the diagram (4.10) is homotopy cartesian is closed under composition, and
includes all trivial fibrations of C by A1. It suffices therefore, with respect to
the construction giving the first part of the proof, to show that the map p∗ is
a candidate for one of these maps g.

The component square diagrams in

Y ×QY Z w

η∗

u

Z w

ηZ

u

p

QZ

u

Qp

Y wηY
QY wηQY

Q2Y

are homotopy cartesian since ηZ and ηQY are weak equivalences (see the proof
of Lemma 4.5), so that the composite square is homotopy cartesian. This com-
posite coincides with the composite of the squares

Y ×QY Z w

η

u

p∗

Q(Y ×QY Z) w

Qη∗

u

Qp∗

QZ

u

Qp

Y wηY
QY w

QηY
QQY

(4.11)

The map η∗ is a Q-weak equivalence by A3, so that Qη∗ is a weak equivalence,
as is QηY . It follows that the square on the left in (4.11) is homotopy cartesian,
but this is what we had to prove. �
Corollary 4.12. Suppose that the proper closed model category C and the
functor Q together satisfy the conditions for Theorem 4.1. Then an object X
of C is Q-fibrant if and only if it is fibrant in C and the map ηX : X → QX is
a weak equivalence of C.

The main application of this theory is the Bousfield-Friedlander construc-
tion of the stable homotopy category.
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A spectrum X (or rather a spectrum object in simplicial sets) consists of
pointed simplicial sets Xn, n ≥ 0, together with pointed simplicial set maps
σ : S1 ∧ Xn → Xn+1, which we call bonding maps. Here, S1 = Δ1/∂Δ1 is the
simplicial circle. A map of spectra f : X → Y consists of pointed simplicial
set maps f : Xn → Y n, n ≥ 0, which respect structure in the sense that all
diagrams

S1 ∧ Xn
w

σ

u

S1 ∧ f

Xn+1

u

f

S1 ∧ Y n
wσ Y n+1

commute. The resulting category of spectra will be denoted by Spt.
A map f : X → Y of spectra is said to be a strict weak equivalence

(respectively strict fibration) if all of the component maps f : Xn → Y n are
weak equivalences (respectively fibrations) of simplicial sets. A map j : A → B
of spectra is said to be a cofibration if the following two conditions are satisfied:

(1) the map i : A0 → B0 is a cofibration (or monomorphism) of simplicial
sets, and

(2) each induced map

S1 ∧ Bn ∪S1∧An An+1 → Bn+1

is a cofibration of simplicial sets.

Proposition 4.13. With the definitions of strict fibration, strict weak equiv-
alence, and cofibration given above, the category Spt satisfies the axioms for
a proper simplicial model category.

It follows from the definition of cofibration that a spectrum X is cofibrant
if and only if the bonding maps S1 ∧ Xn → Xn+1 are all cofibrations. Notice
further that if i : A → B is a cofibration of spectra, then all of the maps i :
An → Bn are cofibrations of simplicial sets, but the converse may not be true.
We usually say that a map j : C → D of spectra for which all the maps j : Cn →
Dn are cofibrations is a pointwise cofibration. In the same terminology, strict
fibrations are pointwise fibrations and strict weak equivalences are pointwise
weak equivalences.

Remark 4.14. To see the simplicial structure for Spt a little more clearly,
note that if X is a spectrum and K is a pointed simplicial set, then there is a
spectrum X ∧ K with (X ∧ K)n = Xn ∧ K, and having bonding maps of the
form

S1 ∧ Xn ∧ K
σ∧K−−−→ Xn+1 ∧ K.
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Then, for an arbitrary simplicial set L and a spectrum X, X ⊗ L = X ∧ L+,
where L+ = L�∗ is L with a disjoint base point attached. Dually, the pointed
function complex spectrum hom∗(K,X) (denoted by homS∗(K,X) in Section
II.2) is the spectrum with

hom∗(K,X)n = hom∗(K,Xn),

with bonding map S1 ∧ hom∗(K,Xn) → hom∗(K,Xn+1) adjoint to the com-
posite

S1 ∧ hom∗(K,Xn) ∧ K
S1∧ev−−−−→ S1 ∧ Xn

σ−→ Xn+1

It follows that the evaluation maps ev : hom∗(K,Xn) ∧K → Xn determine a
map of spectra ev : hom∗(K,X) ∧ K → X.

Given a spectrum X, there is a spectrum ΣX having (ΣX)n = S1 ∧ Xn

and with bonding maps

S1 ∧ S1 ∧ Xn
S1∧σ−−−→ S1 ∧ Xn+1.

This spectrum ΣX is not the suspension object X ∧ S1 arising from the sim-
plicial structure on Spt: the two differ by a twist of circle smash factors — this
fact is an avatar of one of the standard dangerous bends in the foundations of
stable homotopy theory. We say that ΣX is the fake suspension spectrum of X.

Similarly, there is a fake loop spectrum ΩY , which does not coincide with
the function complex object hom∗(S1, Y ). In effect, (ΩY )n = hom∗(S1, Y n),
but the bonding map is the composite

S1 ∧ hom∗(S1, Y n)
τ−→∼= hom∗(S1, Y n) ∧ S1

ev−→ Y n
σ∗−→ hom∗(S1, Y n+1),

where σ∗ : Y n → hom∗(S1, Y n+1) is adjoint to the composite

Y n ∧ S1
τ−→∼= S1 ∧ Y n

σ−→ Y n+1.

The fake loop construction is right adjoint to the fake suspension.

The closed model structure determined by Proposition 4.13 is usually
called the strict closed model structure on the category of spectra. The associ-
ated homotopy category is not yet the stable category. We stabilize by localizing
at a suitable functor Q.

The construction of the functor Q : Spt → Spt requires a natural strictly
fibrant model. There are both geometric and combinatorial ways of producing
such an object, corresponding to the two standard methods of functorially
replacing simplicial set by a Kan complex. For the geometric method, observe
that there is a natural map

S|K| ∧ S|L| → S|K ∧ L|
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for each pair of pointed simplicial sets K and L. Given a spectrum X, the
bonding maps σ : S1 ∧ Xn → Xn+1 therefore induce composites

S1 ∧ S|Xn| η∧1−−→ S|S1| ∧ S|Sn| → S|S1 ∧ Xn| S|σ|−−→ S|Xn+1|,
so that applying realization and singular functors levelwise to a spectrum X
determines a spectrum S|X|. It’s not hard to see that the canonical weak equiv-
alences η : Xn → S|Xn| collectively determine a natural strict equivalence of
spectra η : X → S|X|. Of course, S|X| is strictly fibrant. Kan’s Ex∞ construc-
tion can be goaded into performing a similar service: the natural composite

K × Ex∞L
ν∧1−−→ Ex∞K × Ex∞L ∼= Ex∞(K × L)

induces a natural map

ν∗ : K ∧ Ex∞L → Ex∞(K ∧ L)

which, in the presence of a spectrum X determines composites

S1 ∧ Ex∞Xn → Ex∞(S1 ∧ Xn)
Ex∞σ−−−−→ Ex∞Xn+1.

Furthermore, the canonical maps ν : Xn → Ex∞Xn together determine a
natural strict equivalence ν : X → Ex∞X, taking values in a strictly fibrant
spectrum. Observe that Ex∞X and S|X| are naturally strictly equivalent.

The indices in spectra can be shifted at will: if X is a spectrum and n is
an integer, there is a spectrum X[n] with

X[n]k =
{

Xn+k if n + k ≥ 0, and
∗ if n + k < 0.

Shifting indices is functorial, and is cumulative in the sense that there are
canonical natural isomorphisms X[n][k] ∼= X[n + k].

The bonding maps σ : S1 ∧Xn → Xn+1 of a fixed spectrum X determine
a map of spectra σ : ΣX → X[1]. This map is natural in X, and has a natural
adjoint σ∗ : X → ΩX[1], which is defined levelwise by the (twisted) adjoints σ∗ :
Xn → hom∗(S1,Xn+1) of the maps σ : S1 ∧ Xn → Xn+1. This construction
can be repeated, to form an inductive system of maps

X
σ∗−→ ΩX[1]

Ωσ∗[1]−−−−→ Ω2X[2]
Ω2σ∗[2]−−−−−→ . . . .

Write Ω∞X = lim−→n
ΩnX[n]

The functor Q : Spt → Spt is defined for spectra X by QX = Ω∞ Ex∞ X,
and there is a natural map ηX : X → QX given by the composite

X
ν−→ Ex∞X

τ−→ Ω∞Ex∞X.

where τ : Y → Ω∞Y denotes the canonical map to the colimit.
Say that a map f : X → Y of spectra is a stable equivalence if it induces

a strict equivalence Qf : QX → QY . The map p : Z → W is said to be a stable
fibration if it has the right lifting property with respect to all maps which are
cofibrations and stable equivalences.
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Theorem 4.15. With these definitions, the category Spt of spectra, together
with cofibrations, stable equivalences and stable fibrations satisfies the axioms
for a proper simplicial model category.

Proof: We need only verify that the functor Q satisfies axioms A1–A3. Of
these, A1 is clear, and A2 is a consequence of the observation that

Ω∞τY = τΩ∞Y : Ω∞Y → Ω∞Ω∞Y

is an isomorphism by a cofinality argument. The functor Q preserves strict fi-
brations and pullbacks, giving the pullback part of A3. Recall from the proof of
Theorem 4.1 that this is enough to give the desired simplicial model structure.

Suppose given maps of spectra

A w

g

u

j
C

B

where j is a cofibration and g is a stable equivalence. To finish verifying A3,
we have to show that the induced map g∗ : B → B∪A C is a stable equivalence.
Construct a diagram

C̃

u

πC

B Au

j
wg

�
�
���g̃

C

where g̃ is a cofibration, and the map πC is a strict fibration and a strict weak
equivalence. The gluing lemma for simplicial sets implies that the induced map
π∗ : B ∪A C̃ → B ∪A C is a strict weak equivalence. It is therefore enough to
show that the induced map g̃∗ : B → B ∪A C̃ is a stable equivalence. But g̃ is
a stable equivalence as well as a cofibration, and such maps are closed under
pushout. �

Remarks 4.16.

1) In view of the coincidence of the homotopy groups of a space with the sim-
plicial homotopy groups of its associated singular complex (Proposition I.11.1),
the definition of QX implies that the homotopy groups πkQXn coincide up to
isomorphism with the stable homotopy groups πk−n|X| of the (pre)spectrum
|X|, so that Q-weak equivalence is stable equivalence in the traditional sense:
a map f : X → Y of spectra is a Q-weak equivalence if and only if it induces
an isomorphism in all stable homotopy groups.
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2) Corollary 4.12 implies that a spectrum X is stably fibrant if and only if X is
strictly fibrant and all associated adjoints σ∗ : Xn → hom∗(S1,Xn+1) of the
bonding maps σ : S1 ∧ Xn → Xn+1 are weak equivalences. In other words, a
stably fibrant spectrum X is a type of Ω-spectrum, and one commonly lapses
into describing it that way.

Write SptQ for the closed model structure on the category of spectra of
Theorem 4.15. The associated homotopy category Ho(SptQ) is a model for the
stable category, in view of the above remarks. This is far from being the only
(or even best) construction of the stable category, but it has the advantage
of giving descriptions of stable homotopy theory in a variety of non-standard
situations [52]. There is even a collection of ways to describe the closed model
structure SptQ: one could, for example, localize Spt at the family of stably
trivial cofibrations, as is done in [38].
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A

Alexander-Whitney map, 206
almost free morphism, 257
anodyne extensions, 17

B

barycentric subdivision, 182
bisimplex, 196
bisimplicial

abelian group, 204
set, 196

bonding maps, 498
boundary

map, of a fibration, 28
of Δn, ∂Δn, 6
of a simplex, 24

Bousfield factorization, 467
Bousfield-Kan

R-completion, 413
R-resolution, 377

bundle
G-bundle, 266
canonical G-bundle, 273

C

cardinal number, 109
category

nerve of, 5
of bisimplices, 244
of cofibrant objects, 122
of diagrams, 114
of fibrant objects, 41
ordinal number, 3
path category, 39
resolution of, 451
simplex, 7
translation, 190, 199, 234

chain complex, 145
normalized, 145

classifying
bisimplex, 197
object, 267
space, 5

closed n-loop, 279

closed model category, 45, 66

proper, 121

closed model structure

CGHaus, 42

f-local, 479

Q-structure, 493

Bousfield-Kan, 212

cofibrantly generated, 111

Moerdijk, 220

pointwise cofibration, 403

pointwise fibration, 403

Reedy, 212, 369

simplicial functors, 436

simplicial model axiom SM7, 64

simplicial sets, 62

stable, for spectra, 501

strict, for spectra, 499

towers, 309

cocycle, 270, 300

codegeneracies, 4

cofaces, 4

cofibrant, 67

cofibrant β-sequence, 135

diagonally cofibrant, 460

cofibration

E∗-cofibration, 489

f-cofibration, 466

f-local, 479

bounded cofibration property, 482

Moerdijk, 220

of simplicial groupoids, 297

of simplicial sets, 62

of spectra, 498

pointwise, 113, 498

Reedy, 365

trivial, 42, 67

cogluing lemma, 128

cohomotopy groups, 393

cone, 189

pointed, 168, 191

poset, 282

connected, 25

continuous functor, 88
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convergence

complete, 320

Mittag-Leffler, 321

cosimplicial identities, 4

coskeleton, 214, 359

covering system, 333

cylinder object, 68

D

degeneracies, 4

degeneracy free, 357

Dold-Kan correspondence, 149

equivariant, 336

duality, 72

Dwyer-Kan theorem, 446, 457

E

Ex∞ functor, 188

Ext−p complete groups, 416

E∗-localization, 489

Eilenberg subcomplex, 327

Eilenberg-Mac Lane space, 5, 163

Eilenberg-Zilber theorem, generalized, 205

end point preserving, 452

equivariant cohomology, 339

relative, 341

equivariant homology, 340

exponential law, 20, 158, 434

extension condition, 10

external product, 197

extra degeneracy, 190

F

f-injective map, 465

f-local space, 464

f-localization, 466

faces, 4

fibrant, 67

β-tower, 137

simplicial set, 11

fibrant model, pointwise, 226

fibration

E∗-fibration, 489

f-local, 479

Q-fibration, 492

acyclic, 67

diagonal, 220

global, 403

Kan, 10

minimal, 47

of reduced simplicial sets, 286

of simplicial groupoids, 297

of simplicial sets, 10

pointwise, 212, 401, 435

principal, 265

Reedy, 213, 365

Serre, 11

stable, 500

strict, 498

trivial, 40, 42, 67

free

I-free, 357

morphism, 359

simplicial free resolution, 450

Freudenthal suspension theorem, 175

fringed spectral sequence, 317

function complex, 20

G

gluing lemma, 126

Grothendieck

construction, 455

spectral sequence, 235

group completion, 242

group object, 223, 346

groupoid, 12

free groupoid, 39

fundamental groupoid, 36, 39, 142, 329

H

homology, 5, 153

homotopically full and faithful, 457

homotopy

cone homotopy, 282

constant, 23

homotopy cartesian, 129

pointwise, 229

homotopy category, 63, 75

homotopy coherent diagram, 451

homotopy colimit, 199

homotopy fibre sequence, 132
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homotopy inverse limit, 401
of a tower, 312

homotopy left Kan extension, 439
homotopy pullback, 312
homotopy spectral sequence

for a cosimplicial space, 394
for a homotopy inverse limit, 411
of a tower, 317

horizontal normalization, 207
kth horn of Δn, Λn

k , 6
Hurewicz

map, 165
theorem, 173
theorem, relative, 176, 344

I

interchange law, 31

J

join functor, 452

K

k-invariant, 344
Kan

complex, 11
extension, 116
suspension, 191, 294

L

lim←−
1, 317

exact sequence in homotopy, 319
last vertex map, 183
latching object, 354, 380

generalized, 362
lax functor, 454
left homotopy, 69
local coefficient system, 331
loop

group, 276
groupoid, 302
loop spectrum, fake, 499
space, 31

M

matching object, 213, 359
generalized, 361

matching space, 379
Milnor

FK-construction, 293
exact sequence, 319

Moore
bicomplex, 205
complex, 5, 145

Moore-Postnikov
section, 172
tower, 326

N

nilpotent space, 350, 416
non-degenerate, 8

P

π∗-Kan condition, 224, 226
p-complete, 415
p-completion

of a space, 413
for abelian groups, 415

path
components, 25
lifting property, 297
object, 40, 71
space, 30

pointwise
k-connected, 231
fibration, 401

Postnikov section
for a chain complex, 174
for a space, 172

Postnikov tower
for a map, 328
for a space, 326

projective generator, 106
pseudo cross-section, 274

Q

quasi-isomorphism, 157

R

realization, 7
of a homotopy coherent diagram, 457
of a simplicial object, 373

n-reduced, 170
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n-reduced (continued)
relative homotopy group, 177
retract, of a map, 15
right homotopic, 71
right lifting property, 16

S

saturated
β-saturated, 110
class, 15

segment, 270
Serre spectral sequence, 166, 235
shuffle map, 206
simplicial

abelian group, 103, 145
algebra, 103
category, 81, 431
circle, 498
coalgebra, 108
functor, 432
functor, representable, 434
graded algebra, 108
graded module, 108
group, 12, 103
group action, 260
groupoid, 295
homotopy, 23
identities, 4
map, 6
model category, 89
module, 103
presheaves, 220, 291, 340

simplicial set, 3
n-fold, 246
n-truncated, 212
diagonal, 197
reduced, 270

singular set, 3
skeleton, 8

n-skeleton, 214, 255, 257, 354
small object, 97, 109
small object argument, 45

transfinite, 292, 406, 474, 486
spectrum, 498

Ω-spectrum, 502
stable category, 502
standard n-simplex

simplicial, 6

topological, 3

subcomplex

γ-bounded, 483

subdivision, 183

suspension

Kan, 191, 294

spectrum, 499

T

Theorem B, 237

total

derived functor theorem, 116

tower, of a cosimplicial space, 391

β-tower, 311

transgression, 169

translation object, 201

tree, 285

trisimplicial sets, 246

U

universal cover, 182

unstable algebras over A, 427

V

Van Kampen theorem, 144

vertical

path components, 224

simplicial sets, 197

W

WG, 271, 300

weak equivalence

E∗-equivalence, 489

f-local equivalence, 478

Q-weak equivalence, 492

diagonal, 220

of Kan complexes, 32

of simplicial groupoids, 297

of simplicial sets, 60

pointwise, 205, 212, 435

Reedy, 365

stable equivalence, 500

strict, of spectra, 498

weak r-equivalence, 446
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