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Abstract—The near-field expression of the tsunami produced by the 15 November 2006 Kuril earthquake

(Mw 8.1–8.4) in the middle Kuril Islands, Russia, including runup of up to 20 m, remained unknown until we

conducted a post-tsunami survey in the summer of 2007. Because the earthquake occurred between summer field

expeditions in 2006 and 2007, we have observations, topographic profiles, and photographs from three months

before and nine months after the tsunami. We thoroughly surveyed portions of the islands of Simushir and

Matua, and also did surveys on parts of Ketoi, Yankicha, Ryponkicha, and Rasshua. Tsunami runup in the near-

field of the middle Kuril Islands, over a distance of about 200 km, averaged 10 m over 130 locations surveyed

and was typically between 5 and 15 m. Local topography strongly affected inundation and somewhat affected

runup. Higher runup generally occurred along steep, protruding headlands, whereas longer inundation distances

occurred on lower, flatter coastal plains. Sediment transport was ubiquitous where sediment was available—

deposit grain size was typically sand, but ranged from mud to large boulders. Wherever there were sandy

beaches, a more or less continuous sand sheet was present on the coastal plain. Erosion was extensive, often

more extensive than deposition in both space and volume, especially in areas with runup of more than 10 m. The

tsunami eroded the beach landward, stripped vegetation, created scours and trim lines, cut through ridges, and

plucked rocks out of the coastal plain.

Key words: Tsunami, Kuril Islands, coastal geomorphology, tsunami deposit, tsunami erosion.

1. Introduction

A pair of tsunamigenic great earthquakes occurred seaward of the middle Kuril

Islands in November 2006 and January 2007—one of the largest earthquake doublets on

record (AMMON et al., 2008). The 2006 earthquake occurred along the plate boundary,
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whereas the 2007 earthquake was produced by normal faulting on the outer rise, similar

to the interpreted source of the 1994 Shikotan earthquake (HARADA and ISHIBASHI, 2007,

and earlier references).

Everywhere the 2006 and 2007 Kuril tsunamis were measured, the 2006 tsunami was

larger (National Geophysical Data Center, NGDC database). Moreover, the 1994

Shikotan tsunami was an average of 1.5 times larger than the 2007 tsunami on trans-

Pacific tide gages (NGDC database). The records in the database, as well as arguments

we make herein, lead us to interpret our surveyed tsunami effects in the middle Kurils as

the product of the 2006 tsunami.

The 15 November 2006 middle Kurils tsunami was widely reported in the media to be

small, a report based principally on its early expression in northern Japan, where later

tsunami waves had tide-gage water heights1 reaching 0.6 m. Tide-gage heights in Hawaii

ranged up to 0.76 m, and on the far side of the Pacific, in Crescent City, California, a 0.88-

m-high wave (1.76 m peak to trough) generated $700,000-$1 million worth of damage

(KELLY, 2006) in the harbor. Tide-gage records from the southern Kurils include maximum

water heights of about 0.8 m (Sakhalin Tsunami Warning Center), however, there are no

stations in the middle Kurils. Local runup for this tsunami remained unknown until our

surveys in summer of 2007 (preliminary results reported in LEVIN et al., 2008). No one

lives in this remote area and logistics for visiting the islands are complex and expensive.

Two expeditions sponsored by the Institute of Marine Geology and Geophysics,

Yuzhno-Sakhalinsk, Russia (IMGG) and the NSF-funded Kuril Biocomplexity Project

(KBP) worked together in the middle Kurils in July and August 2007, to survey inundation,

runup and geomorphic effects of the 2006 tsunami. Inundation and runup are standard

descriptions of tsunami size and report the tsunami’s maximum inland distance and the

elevation of that position, respectively, for any given stretch of coastline (FARRERAS, 2000).

Surveys of geomorphic impacts of tsunamis are less standardized and can include field

descriptions or measurements of erosion, deposits, and other tsunami effects. In 2007, a

total of four working groups documented tsunami effects at 130 locations in 11 bays, over a

distance of about 200 km, along the rupture zone of the 15 November 2006 and 13 January

2007 earthquakes. Several members of the 2007 expeditions, including most of the authors,

had surveyed parts of these islands in the summer of 2006, under the aegis of the KBP. Our

prior surveying provided a remarkable opportunity to make direct measurements and

comparisons, at the same time of year, of shorelines before and after the tsunamis.

2. 15 November 2006 and 13 January 2007 Earthquakes and Tsunamis

The two middle Kuril great earthquakes of 2006 and 2007 filled a seismic gap

(Fig. 1). Previously, a large earthquake had not occurred in the middle Kurils Islands in at

1 ‘‘Water height’’ is the term used in the NGDC catalogue for vertical deviation from zero, which is

approximately equal to amplitude, which in turn is half the trough-to-peak wave height.
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least 150 years—a previous event believed to have occurred along the middle Kurils

(LAVEROV et al., 2006), was an earthquake and tsunami experienced by Captain Snow off

Simushir Island in 1780 (SNOW, 1910). The region had been interpreted as a seismic gap

by Fedotov as early as 1965. However, there had been recent speculation as to whether

this segment was slipping quietly (e.g., KUZIN et al., 2001; SONG and SIMONS, 2003). Our

paleotsunami field studies in the summers of 2006 and 2007 agree with the seismic-gap

hypothesis (see below), as also confirmed by the recent earthquake doublet.

The 2006 earthquake released more total energy and lasted longer, whereas the 2007

earthquake had a higher peak energy release (AMMON et al., 2008). The 15 November

2006 earthquake commenced at 11:14 UTC, according to the U.S. Geological Survey, at

a depth of *30 km on the subduction zone. The epicenter for 2006 was off Simushir

Island, and propagation proceeded northward (JI, 2006; VALLÉE, 2006; YAGI, 2006). The
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Figure 1

Tectonic setting of the Kuril Islands. Includes all historical tsunamigenic earthquakes with known source

regions. Inset in the upper left: Plate tectonic map of the region including plate motions, after APEL et al. (2006).

Measured plate motions are in mm/yr.
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13 January 2007 earthquake, which commenced at 04:23 UTC at a crustal depth

of *10 km, was a normal-faulting, outer-rise event on the Pacific Plate, directly east of

the Kuril-Kamchatka trench (JI, 2007; VALLÉE, 2007; YAGI, 2007). According to the U.S.

Geological Survey, the epicenter was approximately 100 km ESE of the 2006 event.

Global CMT solutions record the 2006 event as a MW 8.3 and the 2007 event as a MW

8.1, although analysis of tsunami waveform inversions by FUJII and SATAKE (2008)

suggest that MW 8.1 and MW 7.9 for 2006 and 2007, respectively, are more appropriate.

AMMON et al. (2008) calculate MW 8.4 for 2006 and MW 8.1 for 2007 based on source

radiation characteristics.

Both the 2006 and 2007 earthquakes produced measurable tsunamis around the

Pacific Rim, although 2007 was smaller at every reported location. Observations from

113 locations for the 2006 event, and 35 locations for 2007, are archived in the National

Geophysical Data Center (NGDC), Global Tsunami Database, and a few non-overlapping

points in the Novosibirsk Tsunami Laboratory (NTL) Historical Tsunami Database.2

Reported 2006 tide-gage water heights range from < 0.1 m at several locations to values

of 0.4 to 0.9 m at some stations in the southern Kurils, Japan, New Zealand, Chile, the

Marquesas, Hawaii, the West Coast of the U.S., and the Aleutians. Of the records of the

2007 tsunami, the maximum reported tide-gage water heights are about 0.4 m at

Malokurilsk (RABINOVICH et al., 2008) and Chichijima Island, *0.3 m at Shemya in the

Aleutians, and *0.25 m at Port Orford and Crescent City, U.S.A. The closest

measurements of the 2007 Kuril tsunami on a directed path of the earthquake, in Hawaii,

are an average of 3.5 times less than those of the 2006 Kuril tsunami.

3. Neo-Tectonic and Geomorphic Setting

The Kuril Islands are a volcanic arc associated with subduction of the Pacific Plate

under the Okhotsk Plate (Cook et al., 1986) along the Kuril-Kamchatka trench.

Subducting crust is *100 million years old, and the convergence rate is 8 cm/yr

(DEMETS et al., 1990), excluding Okhotsk Plate motion (APEL et al., 2006). The Kuril

Island chain includes more than 25 islands with roundly 30 active volcanoes and many

prominent volcanic edifices (GORSHKOV, 1970; MELEKESTSEV, 1980).

The islands surveyed in both 2006 and 2007, Simushir to Matua islands (Fig. 2), are

morphologically different than islands to the north and south. The middle Kurils span

a *208 bend in the arc and are smaller and more widely spaced than the northern and

southern islands. Primarily, the middle islands are single or multiple volcanic edifices,

with the most common coastline being steep sea cliffs. Study sites fall into two broad

geomorphologic categories—bouldery pocket beaches or broad embayments with

gravelly to sandy shorelines (Figs. 2 and 3). The coastal plain in most field locations

2 Note that the NGDC database reports water heights above zero, whereas the Novosibirsk database reports

peak-to-trough wave heights. We are using only tide-gage records for this comparison.
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is backed by a cliff or steep slope. The largest embayments have up to 500 m of sandy

coastal plain before this cliff, although more than half of the profiles measured were

along rocky beaches with shoreline widths averaging around 50 m (Fig. 3).

4. Tsunami Survey Methods

Up to four teams operated simultaneously to measure topographic profiles, to record

maximum runup and inundation, to collect tsunami-deposit samples and descriptions, and

to make observations of erosion. Most sites visited in summer 2007 had been observed by

team members previously, which helped us distinguish tsunami erosion and deposition

Figure 2

Overview of the basic morphology of the islands surveyed in 2007, including site names from Table 1. The scale

bar for each island is 5 km.

10:1 vertical exag. 50m

5m

S. Dushnaya Bay

C. Dushnaya  Bay
South Bay

N. Dushnaya Bay

Yuzhni  Bay
Toporkov Island
Sarychevo

Ainu Bay

Max. runup

Figure 3

Example profiles that illustrate differences among short, steep coastlines (dashed lines) and broad coastal plains

(solid lines). C (Central) Dushnaya Bay is an example of a profile in Table 1, where maximum runup elevation

is less than the maximum elevation on the profile.
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from other processes. Newly visited localities in 2007 include Spaseniya Bay on Simushir

Island and Toporkov Island off Matua Island (Fig. 2).

Except where noted in Table 1, we made all measurements with a tripod, level and

rod, with an individual measurement error of 0.3 cm vertically and 30 cm horizontally.

This error does not accumulate in a given segment (until the level is moved), so that

cumulative vertical error is less than 30 cm and horizontal error generally less than a few

meters; each measurement was checked for error in the field. In a few cases, we used a

hand level and tape, with error of 2 cm vertically per measurement and about 5% error

horizontally, the latter due to irregularities on the ground. Also, where slopes were steep,

we converted taped measurements trigonometrically from on-the-ground to horizontal.

Whenever possible, we also checked horizontal measurements with distances calculated

from GPS points (Table 1).

We measured profiles to or from local sea level and in most cases corrected for tide at

the time of measurement from local tide tables. Measurements were not corrected for tide

at the time of the earthquake, which began about mid-tide on the flood phase, in a low-

amplitude tidal cycle (less than 0.5 m), based on tide tables and nearby tide gages; storm

waves were active at the same time. Tidal range is typically 0.5–1.5 meters, thus even

without corrections, error in the elevation of mean sea level is slight relative to runup.

At nearly every location surveyed, we could find evidence for an inland limit of tsunami

penetration. Our primary criteria for defining runup were lines of floatable debris—

typically driftwood, cut wood, plastic bottles and floats, glass floats, and styrofoam. In

regions with short grasses and flowers, debris lines were obvious, and often one

measurement accurately reflected runup. Where floated debris was obscured by this year’s

growing vegetation so that a debris line was not clear, we bushwacked, traced debris

through the vegetation, and measured multiple points along 10–50 lateral meters. Both

individual measurements and averages are reported in Table 1 and summarized in Table 2

and Figure 4. Single pieces of debris, such as one plastic bottle, were not considered

adequate, as these bottles can blow in the wind. We observed some movement of debris

material by animals, such as foxes, but it was rare. With the exception of southern Urup

(briefly surveyed) and a small abandoned camp onMatua, we have no evidence that people

had visited these islands since our visit in summer 2006. In a few cases, we measured

heights of draped grass and seaweed on shrubs, but such flow-depth indicators were rare.

Corroborative evidence of runup, not used independently, included the limit of consistently

seaward-oriented stems of tall grasses and flowers, the limit of sand and gravel deposits on

top of turf and dead vegetation, and the elevation of fresh erosion of turf.

5. 2006 or 2007?

We assumed our maximum runup and inundation limits were due to the 2006, not

2007, tsunami partly based on survey and catalogue data. First, the 2007 tsunami was

measured to be smaller at every catalogued location around the Pacific. At the closest

14 B.T. MacInnes et al. Pure appl. geophys.,
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locations with records, the 2007 tsunami was five times smaller than 2006 at Yuzhno-

Kurilsk (*550 km to the south of our field area), and less than half as high at

Malokurilsk (*500 km to the south of our field area) (refer to RABINOVICH et al., 2008 for

tide gage records). Furthermore, the Mw 8.1–8.3 1994 Shikotan tsunami—comparable in

earthquake mechanism to 2007 and with a larger tsunami at most trans-Pacific sites—

typically produced 3–8 m (max 10 m) runup in the Habomai island group, east of

Kunashir Island, close to the trench, and 1–4 m (max 6 m) in the southern Kurils

themselves (YEH et al., 1995; KAISTRENKO, 1997; NGDC database). Average runup at sites

parallel to the 1994 source is less than 5 m, whereas the average runup we surveyed

parallel to the 2006 and 2007 ruptures (see below) is about 10 m.

In addition to arguments based on measured tsunami height and runup, we argue that

the effects we surveyed were primarily from 2006 because local conditions on the islands

were different for the two tsunamis. A Landsat image of Dushnaya Bay from 22 November

2006 shows extensive regions without snow at lower elevations. However, weather

records from December 2006 and early January 2007 in Severo-Kurilsk and Yuzhno-

Kurilsk (to the north and south of the field area) indicate that there would have been snow

accumulation on the islands before the 2007 tsunami. Thus a frozen, snow-covered coast

in January would be less susceptible to erosion and subsequent deposition, including

movement of the beach debris we used to indicate runup. Tsunamis do not necessarily

erode snow (particularly if ice-covered snow) during inundation (MINOURA et al., 1996).

In Dushnaya Bay on Simushir Island, there was evidence along many profiles for a

smaller wave postdating the largest wave to come ashore—we cannot confidently

attribute this evidence to a later wave of 2006 or to 2007. For example, we observed a

thin wrack line from a smaller wave (*3–5 m elevation). Also, we observed complex

tsunami deposits on several profiles, where a patchy sand deposit (average maximum

elevation 5 m) lay above a layer of flattened vegetation, which, in turn, covered a

Table 2

Average runup and inundation for each bay surveyed, differentiated by coastal geomorphology

Island Locality name Coastline type Average

runup (m)

Average

inundation (m)

Simushir Spaseniya Bay coastal plain 4.86 111

Simushir Dushnaya Bay coastal plain 8.08 121

Simushir Dushnaya Bay short, steep 12.56 65

Ketoi Yuzhni Bay short, steep 7.50 39

Ushishir Yankicha, Ryponkicha short, steep 10.43 49

Rasshua SW coast short, steep 6.21 61

Matua Sarychevo coastal plain 9.23 108

Matua Sarychevo short, steep 13.36 57

Matua South Bay coastal plain 6.64 152

Matua Ainu Bay coastal plain 17.02 268

Matua Toporkov short, steep 9.84 35

20 B.T. MacInnes et al. Pure appl. geophys.,



continuous, coherent deposit. Such a depositional sandwich is what we expect from a

second tsunami wave inundating over snow (Fig. 5), in which case these deposits would

be from a smaller, 2007 tsunami.

6. Runup Observations and Inundation

Measured runup in the middle Kuril Islands (Simushir to Matua, about 200 km along

strike) from the 2006 tsunami was typically 5–15 m, with a range of 2–22 m (Tables 1
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Summary of maximum runup of the 15 November 2006 tsunami, by location, for 130 field measurements.

Values are categorized by the regional coastal geomorphology (refer to Fig. 3). Inset upper left: Detailed map of

inundation and runup for southern Matua Island. Inset lower right: Location of the survey area.
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and 2, Fig. 4), and a raw average of 10.2 m. Measured inundation varied from 20 to

500 m, with a raw average of 95 m. Average runup gives the tsunami a 3.85 on the S.

Soloviev Tsunami Intensity scale (SOLOVIEV, 1972), the standard intensity scale used in

the NGDC and NTL global tsunami databases:

I ¼ 1=2þ log2 Hav;

where Hav is the average height of the tsunami on the nearest coast. This scale does not

take into account the distance along the shoreline of the surveyed region.

On some profiles (e.g., Central Dushnaya Bay profile in Fig. 3), seaward of

maximum inundation, the tsunami over-topped beach ridges or sand dunes that were

higher elevation than runup, which is by definition, elevation at maximum inundation.

For these cases, Table 1 provides both runup and also maximum elevation along the

profile, seaward of (maximum) inundation. Elevations along the profile do not take

into account tsunami water depth, consequently the water height would have been

even higher. We include the intra-profile data, in addition to runup and inundation,

because they facilitate representation of the magnitude and behavior of the tsunami

wave.

Variability in runup and inundation of the 2006 middle Kurils tsunami was in

large part due to coastal geomorphology. Naturally, our longer inundation values are

from lower, flatter coastal plains, and higher runup values generally from steep,

protruding headlands (Table 2). In many of the cases we studied, the steep slope or

cliff backing the coastal plain limited tsunami penetration. When a tsunami hits a

reflector, such as a sea cliff, the energy not reflected back to the sea will be converted

into vertical runup, increasing its height (BRIGGS et al., 1996; PELINOVSKY et al., 1999).

Tsunami modeling will enable us to determine the degree to which coastal

geomorphology, as well as bathymetry, affected tsunami runup; that work is in

progress.

Figure 5

Schematic diagram of how the stratigraphic relationship of the 15 November 2006 and 13 January 2007 tsunami

deposits appeared in the field. Snow that fell after the first tsunami would bury the 2006 deposit, floatable debris,

and any vegetation still standing. The snow is not necessarily eroded in all locations by the second tsunami, and

the resulting complex deposit has a thin layer of debris and vegetation in the middle.

22 B.T. MacInnes et al. Pure appl. geophys.,



7. Tsunami Sediment Transport and Deposition

All affected shorelines showed evidence of erosion and deposition, and we made

systematic measurements on many profiles (Table 3). Where loose sediment was

available on the beach or in the nearshore, we observed deposits of sand, gravel, and

cobbles on the coastal plain surface, burying turf and dead vegetation (Figs. 6B and D).

Most deposits resemble sediment of the beach; more detailed analyses are forthcoming.

In addition to beach sand and gravel, sediment also was derived from eroded scarps, from

plucked turf and cobbles, and from artificial structures. Where the beach was composed

of sediment larger than cobbles, no coherent, continuous deposit was present, although

scattered boulders moved by the tsunami were common (see below). Where solid rock

outcrop existed on the shore (observed on Ketoi and Matua), this rock was not noticeably

affected by the tsunami.

We observed continuous tsunami sand sheets (e.g., Fig. 6D) in areas with sandy

beaches, which also coincide with most low-relief profiles. As has been repeatedly seen

elsewhere (c.f. SHI et al., 1995; GELFENBAUM and JAFFE, 2003; BOURGEOIS, 2009), the 2006

Kurils tsunami deposits in these cases were typically thin (< 5 cm), thinning and fining

landward. Over the 11 profiles where we made detailed observations, deposits were

typically a few centimeters or less in thickness. Local variability in deposit thickness

reflected previous topography; for example, a 0.5-cm-thick deposit locally thickened to

2–5 cm in a rodent burrow. In general, only close to the shore or in these locally low

pockets did deposits exceed 5 cm in thickness.

Total volumes (average sediment thicknesses summed over distance) of sediment

deposited ranged from 0.4 to 6.3 m3/unit width (Table 3). The deposits used in these

calculations were all on vegetated surfaces, with no evidence for subsequent erosion.

Sediment volume is influenced by the amount of available sediment and by topographic

variations controlling the velocity of the flow (GELFENBAUM and JAFFE, 2003). Profiles

with less volume of sediment deposited had narrower and rockier beaches and lower

runup. The largest volumes of sediment deposition came from profiles with severe beach

erosion (see next section) and higher runup.

Sediment transport was not limited to sand- to cobble-sized material—across the

middle Kurils, we found evidence of tsunami transport of boulders, ranging from 10’s of

cm to 3 m in diameter (Table 3). Moved boulders, known as tsunami ishi (KATO and

KIMURA, 1983), were sourced from the nearshore, beach, coastal plain, and artificial

structures (Fig. 6C). We easily identified tsunami ishi from the nearshore by recently

deceased sea life on the boulders, such as attached seaweed, encrusted bryozoan

communities, and kelp holdfasts. Ishi derived from artificial structures could generally be

traced back to the dam or pier or other military structures from which they were derived.

We commonly identified the source location of boulders from within the vegetated beach

plain by the holes left behind (see the tsunami erosion section below for further

discussion). Other than typically being clean and rounded, tsunami ishi that originated on

the beach are associated with no identifiable characteristics so we only assume that if other
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equivalent-sized boulders moved, the ones on the beach could have been moved. We

recorded some tsunami ishi to have been transported at least > 85 m (Table 3), however

we did not have time to conduct an exhaustive survey of all boulders transported.

Figure 6

Deposition and erosion from the 15 November 2006 tsunami as observed in the middle Kurils. A: Ainu Bay,

Matua, which experienced the maximum amount of inundation we observed (400–500 m). White flecks in the

distance are large logs moved by the tsunami. B: A deposit of pebbles on top of soil and turf in Dushnaya Bay,

Simushir (near profile 105). New vegetation is beginning to grow through. Measuring tape is 30 cm. C: A

tsunami ishi, which was once an artificial structure offshore, with kelp holdfasts and bryozoan communities still

attached. Measuring tape is 1 m. Sarychevo coast of Matua, profile 83. D: Continuous sand sheet from Ainu

Bay, Matua, Profile 2. Here, the deposit is the thickest observed anywhere (at 20 cm thick) and is filling a

drained lake bed. E: A scour pit in Dushnaya Bay, Simushir, Profile 106. Direction of flow was from right to left.

Measuring tape is 1 m. F: Soil stripping in Ainu Bay, Matua, Profile 2. Turf and soil are still attached, but

flipped over on the left (landward). The rod is 2 m high. G: Slope-base erosion in Dushnaya Bay, Simushir,

Profile 107. The rod is 2 m high.
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8. Tsunami Erosion

Geomorphic effects of the 2006 tsunami on the landscape varied from almost

unnoticeable to devastating; two of our short-term camps from the summer field season

of 2006 would have been obliterated. In general, erosion is produced by local temporal

or spatial increases in boundary shear stress and clearly can also be affected by bed

characteristics such as grain size and cohesion. KONNO et al. (1961) identified three

types of tsunami flow over land where erosion may occur: sheet flow, linear (or

concentrated, channelized) flow, and eddy flow. Holding other factors constant (such as

soil cohesion, vegetation type, etc.), sheet flow results in uniform erosion, concentrated

flow in spatially variable erosion, and eddies in small-scale features. The different

forms of tsunami flow are generated by topography (as in UMITSU et al., 2007).

Evidence is widespread for erosion from all three types of flow in the 2006 tsunami

case in the middle Kuril Islands.

Far and away the two most common cases of erosion in our survey are what we call

scouring and soil stripping. Documentation of scours and stripped areas are also

common in tsunami literature (e.g., GELFENBAUM and JAFFE, 2003; GOFF et al., 2006;

KURIAN et al., 2006; OKAL et al., 2006), and such erosional features are typically

associated with sudden changes in topography or in soil characteristics. The literature

most often addresses scour associated with man-made features, such as roads,

buildings, bridge pylons, etc. (e.g., GOFF et al., 2006; MAHESHWARI et al., 2006; MALIK

et al., 2006). Individual scour depressions generally form from either linear or eddy

flow, but the largest scours (e.g., Fig. 7C) suggest erosional sheet flow (KONNO et al.,

1961). The upstream steep wall in a scour (and downstream sediment berm) form from

eddies within the scour on the upstream side of the direction of flow (as in KONNO

et al., 1961; ALONSO et al., 2002).

Visually, we identified scours in our survey by localized pits or eroded strips of

coastline with a steeper wall at one end (Figs. 6E and 7C). We define a ‘‘scour’’ as a

localized depression generated by erosion, where vegetation and topsoil are removed

entirely. Scours varied in size from less than a meter in diameter, to 100’s of meters long

by 10’s of meters wide, and had scour depths of centimeters to meters. Scours occurred in

both natural and artificial landforms; those in natural settings often had sediment

accumulated in the downstream end of the depression (Fig. 6E).

We identified soil stripping by removed vegetation and generally called an area

stripped rather than scoured if there was not a distinct depression. In these cases, soil or

sediment removal is uniform in depth and does not significantly extend below the turf

zone, or in some cases, below a cinder layer near the surface (Fig. 6F). Due to its

uniformity, soil stripping suggests sheet flow (c.f. KONNO et al., 1961) without the

development of strong eddies. Commonly in our field area, the tsunami exploited shallow

networks of rodent burrows or WWII military trenches to initiate erosion and strip or

‘‘flay’’ the surface. In some locations, one edge of eroded turf was still attached and the

upper soil layers were flipped over in the direction of flow (Fig. 6F).
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The prevalent styles of erosion on middle Kurils coastlines with a narrow beach plain,

where the tsunami ran up a steep slope, were trim lines and slope-base erosion. A trim

line is where soil and vegetation are removed up to an approximately uniform elevation

on a slope. In contrast, we define slope-base erosion as more isolated patches than trim

Figure 7

Examples of kinds of erosion from the 15 November 2006 tsunami as observed in the middle Kurils. A: Trim

line on Matua, Sarychevo coast. B: Gullying from outflow, Ainu Bay, Matua, Profile 2. Rod is 2 m high. C:

Large-scale scour that extends > 100 m laterally, in Ainu Bay, Matua, Profile 1. Rod is 2 m high. D: Breach

through the first beach ridge in central Dushnaya Bay, Simushir, near Profile TKP10. Shovel in center of photo

is *1.5 m high. E: En masse erosion of a stream channel wall in Dushnaya Bay, Simushir, near Profile TKP12.

Bank height is *4 m, and the cliff was eroded back *3 m between 2006 and 2007.
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lines and only extending a meter or two above the change in slope. Trim lines (Fig. 7A)

are visually striking and observable from a distance, and the uniformity of a trim line

suggests sheet flow (c.f. KONNO et al., 1961). In our survey, maximum runup and

inundation were in close proximity to the location of the trim line (Table 3); the tsunami

typically continued only a meter or two above and a few meters beyond the trim line.

Slope-base erosion (Fig. 6G) is not as closely tied to maximum runup as trim lines are.

This kind of erosion was clearly associated with sharp slope change and may have

occurred during both inflow and outflow. Because slope-base erosion is selective, it

suggests linear (channelized) flow, or eddy flow associated with the sharp change in

slope.

Other styles of erosion we observed, plucking of rocks embedded in soil, cliff retreat

of sandy back-beach edges or stream channel walls (Fig. 7E), and breaches in beach

ridges (Fig. 7D), were strongly dependent on location variables. Rocks as large as 30 cm

in diameter were pulled out of soil leaving distinct, coherent holes in the surface. We

traced some rocks a few meters to their source hole in both the seaward and landward

direction, but the tsunami also removed some boulders and cobbles entirely from land,

presumably transporting them offshore. We only observed plucking in locations where

the tsunami had no other source of sediment and was likely sediment starved.

Cliff retreat occurred in two forms, either en masse, or as scallops or gullies. En

masse, or uniform, tsunami erosion has been previously reported along the beach edge

(e.g., KURIAN et al., 2006; MARAMAI and TINTI, 2007) and along a few stream channels

(MARAMAI and TINTI, 2007). It is more likely to occur during inflow, when topographic

effects are less important (e.g., UMITSU et al., 2007). In our surveys, we identified en

masse cliff retreat by evidence that an extended stretch of coastline eroded landward in a

fairly uniform way. For example, compared to our 2006 observations, in 2007 most back-

beach scarps or stream channel walls (e.g., Fig. 7E) exposed to the ocean appeared more

straight and regular. We observed or measured up to > 50 m of en masse erosion, the

largest amount occurring in Ainu Bay, Matua (MACINNES et al., 2007).

Irregular scallops and gullies generally represent zones of concentrated outflow as

they are produced primarily in locations where troughs intersect stream channels, or

where a section of beach plain is lower then its immediate neighbors (e.g., UMITSU et al.,

2007). GELFENBAUM and JAFFE (2003) and UMITSU et al. (2007) found that incoming

tsunamis flowed nearly perpendicular to the shore, but backwash returned obliquely to the

shore in local topographic lows. In our survey of 2006 tsunami effects in the middle

Kurils, gullies and scallops were common, especially where there was a preexisting

backbeach scarp. The tsunami dug some gullies as deep as 3 m into the pre-existing

beach scarp; these gullies in 2007 resembled dry waterfalls (Fig. 7B). Some of these

dramatic gullies were produced or enhanced where inflow over a steep beach face was

then concentrated (channelized) between two beach ridges and then outflow was focused

into what we presume were pre-existing lows in the seaward-most beach ridge.

Although we are confident that most of the features we documented in our survey

were due to erosion from the 15 November 2006 tsunami, the unvegetated beach is a
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location of constant change, and it can be difficult to say what changes are directly related

to a tsunami (or in our case, two tsunamis), especially over the course of a full year

(SHEPARD et al., 1950). For this reason, we paid little attention to changes on the

unvegetated portion of our profiles. Besides the back-beach cliff retreat mentioned, the

only other kind of beach change we could attribute to the tsunami with any amount of

confidence was localized breaching through the back-beach cliff and seaward-most beach

ridge. In three locations in Dushnaya Bay, we found breaches (width on the scale of

meters) through the first beach ridge, at least one of which is known to have formed

between 2006 and 2007 (Fig. 7D). A few older beach ridges in our field area are also

breached; we tentatively suggest these breaches are preserved geomorphic change from

paleotsunamis.

Where the 2006 tsunami was large, erosion extended farther inland, and commonly

the inland limit of erosion exceeded that of deposition (Table 3). A direct comparison of

before and after using three topographic profiles from 2006, reoccupied in 2007, shows

that the tsunami removed many times more sediment than it deposited on land. Even

where erosion was at a minimum, and deposits extended almost to the limit of inundation,

more sediment was eroded than can be accounted for by the tsunami deposit (c.f.

MACINNES et al., 2007), and we presume this sediment was transported offshore.

Others have also documented beach-profile changes due to tsunami erosion. KURIAN

et al. (2006) measured before and after (unvegetated) beach profiles in India and found

some areas that experienced erosion and others that experienced deposition, but were

uncertain as to what was directly from the tsunami and what was from previous or

subsequent beach processes. UMITSU et al. (2007) also noted beaches retreated or vanished

following the 2004 Indian Ocean tsunami in Indonesia and Thailand, but were not able to

quantify the change. Breaches by tsunami have been previously documented in Japan

from the 1960 Chile event (KONNO et al., 1961) and the Maldives from the 2004 Indian

Ocean event (FRITZ et al., 2006).

9. Paleotsunami Deposits in the Affected Region – Preliminary Results

The presence of paleotsunami deposits in the middle Kurils indicates that ruptures at

least on the scale of the 2006 event are not uncommon, and support the postulate that

before 15 November 2006, the region was a seismic gap. For example, in the summer of

2006, before the 15 November 2006 tsunami, we had collected evidence of tsunami

deposits as high as 20 m above sea level in Dushnaya Bay on northern Simushir (Fig. 8,

profile 2006-2)—as many as three such deposits since *400 A.D. (tentative age of a

marker tephra, based on correlation with dated archaeological sites).

In both 2006 and 2007 field seasons, in order to develop chronologies and determine

pre-histories of eruptions, earthquakes and tsunamis, we made numerous excavations

along selected profiles, using techniques as described in BOURGEOIS et al. (2006) (e.g.,

Fig. 9). In the subsurface we identified many sand layers we interpret to be tsunami
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Figure 8

Paleotsunami deposits in peat sections on topographic profiles from Dushnaya Bay, Pacific Coast of northern

Simushir (Fig. 2). Above: Four of 25 profiles measured in Dushnaya Bay. On each profile, the limit of the 15

November 2006 tsunami is shown by a circle, and the location of peat excavations (illustrated below) is shown

by a rectangle. In addition, on profile 2006-2, the locations of three high-terrace excavations are shown with

arrows, and the number of tsunami deposits present in the upper parts of those excavations indicated. Below:

From a peat excavation in each profile, the logged description of tephra and tsunami deposits. The background

of the sections is peat unless otherwise indicated. We show only key local marker tephra—the ones we could

correlate all along the bay, in many excavations. Ages of these tephra are based on the historical record (an

observed eruption c. 1765) and on radiocarbon dating of correlative archaeological sections. These dates should

be taken as tentative.
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deposits, based on their sheet-like geometry, (beach) sand composition, and location

above storm limits. Many of our excavations have been at sites beyond the limit of the

2006 tsunami deposit (Figs. 8 and 9), indicating locally higher paleo-runup.

Herein we report only examples of the presence (not chronology or recurrence

interval) of paleotsunami deposits because our age control is still being developed. This

age control is and will be based on radiocarbon dating above and below marker tephra on

each island. Dates reported in Figures 8 and 9 should be considered tentative.

On northern Simushir Island (Dushnaya Bay, Fig. 2), in several peat excavations at

elevations at or above the limit of the 15 November 2006 tsunami, sand layers are

common in the subsurface (Fig. 8). With our tentative age control, it is fair to say that

tsunamis locally as large or larger than 15 November 2006 have occurred as often as once

per *100 years. Of course, some of these tsunamis might have been more local (less

regional) than 2006, or triggered by submarine or coastal landslides.

On southern Matua Island (South Bay, Fig. 2; inset Fig. 4), there is also a record of a

numerous prehistoric tsunamis locally larger than 15 November 2006 (Fig. 9). Compared

to Dushnaya Bay on Simushir, the record is more difficult to read because cinders from

the local volcano, Sarychevo, are common and thick. For example, some of the

interpreted tsunami deposits on Matua are cindery beds containing beach sand.

Some previous work has been published on Holocene paleotsunami deposits south of

the middle Kurils, on Kunashir and Iturup islands, north of Hokkaido (ILIEV et al., 2005).

On Kunashir, those authors found 17 thin sand layers intercalated with peat and lacustrine

deposits. Field observations, grain-size composition, and diatom data were used to

attribute the deposits to tsunamis; age control is based on radiocarbon dating and tephra
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Figure 9

Profile 216, one of ten topographic profiles measured in South Bay, Matua Island (Fig. 2 and inset Fig. 4), and

the logged description of excavations along that profile, simplified to include only prominent tephra. In 2006, we

made ten excavations on this profile, and one nearby (108). In 2007, we mapped the 15 November 2006 tsunami

deposit onto this profile, which extended just to excavation 117. Note that some paleotsunami deposits extend

beyond this limit (e.g., excavations 115, 113, 108). Age control on these sections remains tentative, pending

radiocarbon dates and additional work on tephra correlation.
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stratigraphy. The documented sand layers are present at elevations to 7 m and inland

distances up to 2.5 km. ILIEV et al. (2005) reported paleotsunami deposits as old as 6,000–

7,000 years and attempted to correlate these deposits from Iturup to Hokkaido, with

recurrence intervals for large events of about 500 yr.

10. Summary

The nearfield runup of the 15 November 2006 middle Kurils tsunami exceeds 10

times the height of water heights recorded on any Pacific Ocean tide gages (NGDC

catalogue). Average runup in the middle Kurils was about 10 m, with some field sites

recording > 20 m. In many locations the tsunami inundated the entire coastal plain area

and reflected off cliffs backing the plain. Maximum inundation reached as far as 400 m

and was mostly limited by topography.

Wherever fine-grained (primarily sand-sized) sediment was available on the beach or

nearshore, we found continuous tsunami deposits. Areas deficient in sand still showed

evidence of sediment transport, with tsunami ishi up to 3 m in diameter pulled up from

offshore, transported within the coastal plain, or washed out to sea. The presence of

paleotsunami deposits in the middle Kurils confirms that large ruptures in this section of

the subduction zone are not uncommon, although the source characteristics of these

paleoevents may vary. Many of the paleotsunami deposits are more extensive than

deposits of the 15 November 2006 tsunami.

Erosion from the 2006 tsunami was greatest where runup exceeded 10 m. We predict

some scours and gullies will likely be permanent alterations of the geomorphology of the

coastline. At sites with high runup, erosion extended almost as far as inundation.

However, erosion was minimal where runup was less than 10 m, such as in central

Dushnaya Bay, Simushir; in these localities the geomorphic effect of the tsunami will be

indistinguishable in the near future.

11. Future Work

We returned to the Kuril Islands in the summer of 2008, the final of three extended

field seasons funded by the NSF Kurils Biocomplexity Project. The aims of the geology

and tsunami team members for 2008 included visits to the Pacific coasts of Rasshua,

Shiashkotan and Onekotan, where the 2006 tsunami left a record. We also visited northern

Urup; our brief surveys in 2006 and 2007 showed that effects on southern Urup were

minimal. With a complete set of observations, we can compare our survey results with

models, e.g., by M. Nosov in LEVIN et al. (2008) and RABINOVICH et al. (2008).

From the 2007 season, we have an extensive suite of samples of the 2006 tsunami

deposit along eleven profiles, and we will report in more detail on their character,

following grain size analysis. For Dushnaya Bay (northern Simushir) and southern Matua,
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our topographic profiles are dense enough that we will be able to generate 3-D topography.

In four cases, we also have before (2006) and after (2007) profiles, and in many cases, we

have quantified erosional features. Therefore, after acquiring higher resolution shallow

bathymetry, we plan to model local runup and compare the geological effects to modeled

tsunami behavior. We also plan for our data to present suitable benchmarks for the study of

tsunami erosion and deposition (c.f. HUNTINGTON et al., 2007).

As noted above, our ongoing work on paleotsunamis in the Kurils requires more

radiocarbon dating, and more study of tephra chronology and correlation. Such work is a

challenge because of the wide spacing of the islands, and the number of active volcanoes.

However, our preliminary work is promising, and quantification of paleotsunami

frequency (and possibly size) throughout the Kurils is one of our intermediate-term goals.
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