
Chapter 3

Applications of tropical
geometry to enumerative
geometry

3.1 Introduction

The main purpose of this chapter is to present several applications of tropical
geometry in enumerative geometry. The idea to use tropical curves in enumer-
ative questions, and in particular in classical questions of enumeration of alge-
braic curves (satisfying some constraints) in algebraic varieties was suggested by
M. Kontsevich. This idea was realized by G. Mikhalkin [40, 42] who established
an appropriate correspondence theorem between the complex algebraic world and
the tropical one. This correspondence allows one to calculate Gromov–Witten type
invariants of toric surfaces, namely, to enumerate certain nodal complex curves of
a given genus which pass through given points in a general position in a toric sur-
face. Roughly speaking, Mikhalkin’s theorem affirms that the number of complex
curves in question is equal to the number of their tropical analogs passing through
given points in a general position in R2 and counted with multiplicities. In addi-
tion, [40] suggests a combinatorial algorithm for an enumeration of the required
tropical curves. An extension of Mikhalkin’s correspondence theorem to the case
of rational curves in toric varieties was proposed by T. Nishinou and B. Siebert
in [48].

The tropical approach has important applications in enumerative real alge-
braic geometry as well. Enumerative geometric problems over the reals, such as
counting real algebraic curves in real algebraic varieties, have a different character
than in the complex case, since over the reals the answer typically depends on the
configuration of the imposed constraints. Thus, the main question concerns the



78 Chapter 3. Applications of tropical geometry to enumerative geometry

upper and lower bounds for the number of real solutions. For these problems of
counting curves, the corresponding Gromov–Witten type invariant (i.e., the num-
ber of the corresponding complex curves) is an upper bound. No non-trivial lower
bound was known until the recent discovery by J.-Y. Welschinger [73, 74, 75] of
invariants which can be seen as real analogs of genus zero Gromov–Witten invari-
ants. The theory of the Welschinger invariants is under an intensive development.
The tropical approach allows one to calculate or estimate these invariants in some
situations which leads to surprising results in enumerative real algebraic geom-
etry (for example, the logarithmic equivalence of the Gromov–Witten and the
Welschinger invariants of toric Del Pezzo surfaces [28]).

3.2 Tropical hypersurfaces in Rn

We briefly recall here the definition and the basic properties of tropical hyper-
surfaces in Rn (in fact, Rn is the tropical analog of the complex torus (C∗)n and
should be viewed here as (T∗)n = (T \ {−∞})n; cf. Chapter 1, Section 1.5).

Fix a positive integer n. A point in Rn is called integer, if all coordinates
of this point are integer. Let A be a finite collection of integer points in Rn,
and ϕ : A → R an arbitrary function. The pair (A,ϕ) gives rise to a tropical
hypersurface in Rn in the following way.

Let ϕ̂ : Rn → R be the Legendre transform of ϕ:

ϕ̂(x1, . . . , xn) = max
(i1,...,in)∈A

{i1x1 + · · ·+ inxn − ϕ(i1, . . . , in)} .

The function ϕ̂ is a tropical polynomial defining the hypersurface under description
(cf. Chapter 1, Section 1.5). Notice that ϕ̂ is convex piecewise-linear, and consider
the corner locus T (A,ϕ) of ϕ̂, i.e., the subset of Rn formed by the points where
ϕ̂ is not locally affine-linear. The graph Γ(A,ϕ) of ϕ̂ is naturally stratified. The
set T (A,ϕ) is stratified by the projections of the elements of the stratification of
Γ(A,ϕ), and defines a subdivision Θ(A,ϕ) of Rn. The (n−1)-dimensional elements
of the stratification of T (A,ϕ) are called facets.

Each facet σ of T (A,ϕ) can be equipped with a positive integer number.
Namely, let σ be the projection of an (n−1)-dimensional polyhedron Σ in Γ(A,ϕ).
Denote by Aσ the subset of A formed by the points (i1, . . . , in) such that the graph
of the affine-linear function i1x1 + · · · + inxn − ϕ(i1, . . . , in) contains Σ. Notice
that Aσ has at least two points, and all the points of Aσ belong to a straight
line. Denote by I and J the two extremal points of Aσ, i.e., the points of Aσ such
that the segment [IJ ] contains all the points of Aσ. Associate to the facet σ a
weight w(σ) equal to the integer length of [IJ ] (the integer length of a segment
with integer endpoints is the number of its integer points diminished by 1).

Definition 3.1. The polyhedral complex T (A,ϕ) whose facets are equipped with
the corresponding weights is called the tropical hypersurface associated with the
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y = 4x − 1

y = x − 2

y = 2x

Figure 3.1: Legendre transform in dimension 1.

pair (A,ϕ). One says that T (A,ϕ) is a tropical hypersurface with Newton poly-
tope Δ(A), where Δ(A) is the convex hull of A. If Δ(A) is the simplex with vertices
(0, 0, . . . , 0), (m, 0, . . . , 0), (0,m, 0, . . . , 0), . . ., (0, . . . , 0,m), then the tropical hy-
persurface T (A, f) is said to be of degree m.

Example 3.2. Let A = {(0, 0), (1, 0), (0, 1)} ⊂ R2, and ϕ : A → R an arbitrary
function. The tropical curve associated with the pair (A,ϕ) is the union of three
rays in R2 which share a common extremal point; the directions of the rays are
south, west and northeast (see Figure 3.2). In this case, a change of values of ϕ
leads to a translation of the tropical curve. The common point of the three rays
has the coordinates (ϕ(1, 0)− ϕ(0, 0), ϕ(0, 1)− ϕ(0, 0)).

(0, 0)

(0, 1)

(1, 0)

Figure 3.2: A tropical line.
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Notice that different polytopes can play the role of Newton polytope for
the same tropical hypersurface in Rn. For example, given a finite collection A
of integer points in Rn, a function ϕ : A → R, and any integer point c in Rn,
consider the pair (A′, ϕ′), where A′ = A+ c and ϕ : A′ → R is the function such
that ϕ′(x) = ϕ(x − c) for any point x ∈ A′. Then, the tropical hypersurfaces
T (A,ϕ) and T (A′, ϕ′) coincide. This example is a typical one: any two Newton
polytopes of a given tropical hypersurface in Rn differ by a translation by an
integer vector.

Consider a tropical hypersurface T (A,ϕ) ⊂ Rn associated with a pair (A,ϕ).
The function ϕ gives rise to a subdivision of the convex hull Δ(A) of A. Namely,
let F : Δ(A) → R be the convex piecewise-linear function whose graph is the
lower part of the convex hull of the graph of ϕ. The linearity domains of F are
n-dimensional polytopes with integer vertices. These polytopes produce a subdi-
vision S(A,ϕ) of Δ(A).

Figure 3.3: Examples of subdivisions of the triangle with vertices (0, 0), (2, 0), and
(0, 2).

The subdivision S(A,ϕ) is dual to the subdivision Θ(A,ϕ) in the following
sense.

Theorem 3.3 (Duality theorem). There exists a one-to-one correspondence B be-
tween the elements of S(A,ϕ) on one side and the elements of Θ(A,ϕ) on the
other side such that

• if e is an element of S(A,ϕ) having dimension i, then the element B(e)
of Θ(A,ϕ) has dimension n − i, and the linear spans of e and B(e) are
orthogonal,

• the correspondence B reverses the incidence relation.
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2

Figure 3.4: Examples of tropical conics in R2 and corresponding dual subdivisions
(the weight of an edge is indicated only if this weight is different from 1).

3.3 Geometric description of plane tropical curves

We will now restrict ourselves to the study of tropical curves in R2. These curves
can be described in the following geometric way.

Let V be a finite collection of distinct points in R2, Eb a collection of segments
whose endpoints belong to V , and Eu a finite collection of half-infinite rays whose
endpoints belong to V . Assume that the intersection of any two elements in Eb∪Eu

is either a point in V or empty. Let w : Eb ∪ Eu → N be a function (for an
element e ∈ Eb ∪Eu, the number w(e) is called the weight of e). Such a quadruple
(V,Eb, Eu, w) is called a weighted rectilinear graph. A weighted rectilinear graph
(V,Eb, Eu, w) is balanced if

• each element in Eb ∪ Eu has a rational slope,

• no element in V is adjacent to exactly two elements in Eb ∪ Eu,
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• for any element v in V , one has
∑

ek∈E(v)w(ek)·−→ek = 0, where E(v) ⊂ Eb∪Eu

is the set formed by the elements of Eb∪Eu which are adjacent to v, and −→ei is
the smallest vector with integer coordinates based at v and pointed along ei.

The last property in the definition above is called the balancing condition.

Theorem 3.4. Any tropical curve in R2 represents a balanced weighted rectilinear
graph. Conversely, any balanced weighted rectilinear graph represents a tropical
curve.

Proof. Let T (A,ϕ) be a tropical curve associated with a pair (A,ϕ). Consider the
weighted rectilinear graph Γ whose set V (respectively, Eb, Eu) is formed by the
vertices (respectively, bounded edges, unbounded edges) of T (A,ϕ), and whose
weights coincide with the corresponding weights of T (A,ϕ). Since

• any edge in S(A,ϕ) has a rational slope,
• any polygon in S(A,ϕ) has at least three sides,
• for any polygon in S(A,ϕ) with vertices p1, p2, . . . , pn, one has −−→p1p2 + · · ·+−−−−→pn−1pn +−−→pnp1 = 0,

the Duality Theorem 3.3 implies that the graph Γ verifies all three properties
appearing in the definition of balanced graphs, and thus, is balanced.

To prove the converse statement, consider a balanced weighted graph Γ, and
choose a region R of the complement of Γ in R2. Associate to R an arbitrary
affine-linear function ϕ̂R : R2 → R, ϕ̂R(x, y) = iRx+ jRy−ϕR. Let R′ be a region
neighboring to R, i.e., such that the intersection e of the closures of R and R′ is
an element of Eb ∪ Eu. Associate to R′ the affine-linear function ϕ̂R′ : R2 → R,
ϕ̂R′(x, y) = iR′x + jR′y − ϕR′ such that ((iR′ − iR)/w(e), (jR′ − jR)/w(e)) is the
smallest integer vector normal to e and pointed inside R′, and the restrictions of
ϕ̂R and ϕ̂R′ on e coincide. Continuing in the same manner, we associate to any
region P of the complement of Γ in R2 an affine-linear function ϕ̂P : R2 → R,
ϕ̂(x, y) = iPx + jP y − ϕP . The balancing condition insures that the function ϕ̂P

does not depend on the sequence of regions used in the definition of ϕ̂P . We obtain
a finite collection A of integer points (iP , jP ) and a function ϕ : A→ R defined by
(iP , jP ) �→ ϕP such that Γ represents the tropical curve associated with (A,ϕ). �

The sum T (A1, ϕ1) + · · ·+T (An, ϕn) of plane tropical curves T (A1, ϕ1), . . .,
T (An, ϕn) is the plane tropical curve defined by the tropical polynomial ϕ̂1 +
· · · + ϕ̂n. The underlying set of the tropical curve T (A1, ϕ1) + · · · + T (An, ϕn)
is the union of underlying sets of T (A1, ϕ1), . . ., T (An, ϕn), and the weight of
any edge of T (A1, ϕ1) + · · · + T (An, ϕn) is equal to the sum of the weights of
the corresponding edges of summands. A tropical curve in R2 is reducible if it is
the sum of two proper tropical subcurves. A non-reducible tropical curve in R2 is
called irreducible.

Tropical curves have many properties in common with algebraic curves. For
example, one can prove the following analog of the Bézout theorem (see, e.g., [64]).
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Theorem 3.5 (Tropical Bézout theorem). Let T1 and T2 be two tropical curves
of degrees m1 and m2, respectively, such that T1 and T2 are in general position
with respect to each other (the latter condition means that T1 and T2 intersect each
other only in inner points of edges); then the number of intersection points (counted
with certain multiplicities) of T1 and T2 is equal to m1m2. The multiplicities of
intersection points are defined as follows. Consider an intersection point of an edge
e1 of T1 and an edge e2 of T2. Let (a1, b1) and (a2, b2) be smallest integer vectors
along e1 and e2, respectively. Then, the multiplicity of the intersection point is
equal to w(e1)w(e2)|a1b2 − a2b1|.

Notice also that for any two points in general position in R2 there exists
exactly one tropical line passing through these points. This observation has an
important generalization which is the core of the remaining part of this chapter.

3.4 Count of complex nodal curves

In this section, we formulate certain enumerative problems concerning nodal curves
in the complex projective plane CP 2.

Fix a positive integer m, and choose m(m+3)
2 points in general position in

CP 2. There exists exactly one curve of degree m in CP 2 which passes through the
chosen points. Indeed, the space CCm of all the curves of degree m in CP 2 can be
identified with a complex projective space CPN of dimension N = m·(m+3)

2 : the
coefficients of a polynomial defining a given curve can be taken for homogeneous
coordinates of the corresponding point in CCm. The condition to pass through
a given point in CP 2 produces a linear equation in coefficients of a polynomial
defining the curve, and thus determines a hyperplane in CCm. If the configura-
tion of m(m+3)

2 chosen points is sufficiently generic, the corresponding m(m+3)
2

hyperplanes in CCm have exactly one common point (and in addition this point
corresponds to a nonsingular curve).

Choose now m·(m+3)
2 −1 points in general position in CP 2. How many curves

of degree m with one non-degenerate double point each pass through the chosen
points? Consider the hypersurface D ⊂ CCm formed by the points corresponding
to singular curves. The hypersurface D is called the discriminant of CCm. The
smooth part of D is formed by the points corresponding to curves whose only
singular point is non-degenerate double. If the configuration of m(m+3)

2 − 1 chosen
points is sufficiently generic, the intersection of the hyperplanes corresponding to
these points is a line in CCm, and moreover, this line intersects the discriminant
only in the smooth part and transversally. Thus, the number we are interested in
is the degree of D.

Consider the following generalization of the above questions. Pick an integer
δ verifying the inequalities 0 ≤ δ ≤ (m−1)(m−2)

2 , and choose a collection U of
m(m+3)

2 − δ points in CP 2. Consider the curves of degree m in CP 2 which pass
through all the points of U and have δ non-degenerate double points each. If U is
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sufficiently generic, then the number of these curves is finite and does not depend
on U . Denote by Nm(δ) (respectively, N irr

m (δ)) the number of curves (respectively,
of irreducible curves) of degree m in CP 2 which pass through the points of a
generic configuration of m(m+3)

2 − δ points in CP 2 and have δ non-degenerate
double points each. The expression “sufficiently generic” in the description of the
numbers Nm(δ) can be made precise in the following way. Denote by Sm(δ) the
subset of CCm formed by the points corresponding to curves of degree m having δ
non-degenerate double points each and no other singularities. The Severy variety
Sm(δ) is the closure of Sm(δ) in CCm. It is an algebraic variety of codimension δ
in CCm. Its smooth part is Sm(δ). We say that a collection U of m(m+3)

2 −δ points
is generic, if the dimension of the projective subspace Π(U) ⊂ CCm defined by
the points of U is equal to δ, the intersection Π(U)∩Sm(δ) is contained in Sm(δ),
and this intersection is transverse. Generic collections form an open dense subset
in the space of all collections of m(m+3)

2 − δ points in CP 2. If U is generic, the
number of curves of degree m in CP 2 which pass through the points of U and
have δ non-degenerate double points each is equal to the number of elements in
the finite intersection Π(U)∩Sm(δ). Thus, the number Nm(δ) is the degree of the
Severi variety Sm(δ).

The numbers Nm(δ) can be calculated starting with the numbers N irr
m (δ)

and vice versa (see, for example, [4]). The numbers N irr
m (δ) are Gromov–Witten

invariants of CP 2. The number N irr
m (δ), where δ = (m−1)(m−2)

2 , is the number of
rational curves of degree m which pass through a generic collection of m(m+3)

2 −
(m−1)(m−2)

2 = 3m−1 points in CP 2. A recursive formula for the numbers N irr
m (δ),

with δ = (m−1)(m−2)
2 , was found by M. Kontsevich (see [33]). A recursive formula

that allows one to calculate the numbers Nm(δ) with an arbitrary δ was obtained
by L. Caporaso and J. Harris [4].

G. Mikhalkin proposed a new formula for the numbers Nm(δ) (see [40, 42]).
This formula has an immediate generalization to the case of an arbitrary toric
surface (see [40, 42]). Mikhalkin’s approach is based on a reformulation of the
enumerative problem presented above into an enumerative problem concerning
tropical curves.

3.5 Correspondence theorem

To formulate Mikhalkin’s correspondence theorem, introduce additional defini-
tions.

Let m be a positive integer, Δm ⊂ R2 the triangle having the vertices (0, 0),
(m, 0), and (0,m), and T a tropical curve of degreem. The curve T is called simple
if the corresponding dual subdivision ST of Δm satisfies the following properties:

• any polygon of ST is either a triangle or a parallelogram,

• any integer point on the boundary of Δm is a vertex of ST .
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In this case, the subdivision ST is also called simple. Notice that if T is simple,
then it can be represented in a unique possible way as a sum of irreducible tropical
curves.

Assume that T is simple. Then, the rank of T is the difference diminished
by 1 between the number of vertices of ST and the number of parallelograms in ST .
The multiplicity μ(ST ) of ST (and the multiplicity μ(T ) of T ) is the product of
areas of all the triangles in ST (we normalize the area in such a way that the area
of a triangle whose only integer points are its vertices is equal to 1).

Let r be a positive integer, and U a generic collection of r points in R2. (One
can formalize the expression “generic” used here and introduce the notion of a
tropically generic collection of points in R2; this can be done in a way similar to
the one used in the complex situation.) Consider the collection C(U) of simple
tropical curves of degree m and of rank r which pass through all the points of U .
Denote by Cirr(U) the collection of irreducible curves belonging to C(U).
Theorem 3.6. (G. Mikhalkin, [42]). Let U be a generic set of r = m(m+3)

2 −δ points
in R2, where an integer δ satisfies the inequalities 0 ≤ δ ≤ (m−1)(m−2)

2 . Then,

Nm(δ) =
∑

T∈C(U)

μ(T ) and N irr
m (δ) =

∑
T∈Cirr(U)

μ(T ).

Theorem 3.6 is a particular case of Mikhalkin’s theorem which is valid in the
more general setting of projective toric surfaces. Mikhalkin’s proof of Theorem 3.6
provides a bijection between the multi-set C(U) and the set of complex curves of
degree m which pass through certain r generic points in CP 2 and have δ non-
degenerate double points each. A slightly different approach establishing such a
bijection was proposed by E. Shustin [59].

In addition, Mikhalkin [40, 42] found a combinatorial algorithm which gives
a possibility to calculate the number of tropical curves in question. We present
this algorithm in the next section.

3.6 Mikhalkin’s algorithm

Let again m be a positive integer, and Δm the triangle with vertices (0, 0), (m, 0),
and (0,m). Fix a linear function λ : R2 → R which is injective on the integer
points of Δm, and denote by p (respectively, q) the vertex of Δm where λ takes
its minimum (respectively, maximum). The points p and q divide the boundary of
Δm in two parts. Denote one of these parts by ∂Δ+, and the other part by ∂Δ−.

Let l be a natural number. A path γ : [0, l]→ Δm is called λ-admissible if

• γ(0) = p and γ(l) = q,

• the composition λ ◦ γ is injective,
• for any integer 0 ≤ i ≤ l − 1 the point γ(i) is integer, and γ([i, i + 1]) is a
segment.
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The number l is called the length of γ, and the integer points of the form γ(i),
where i is an integer satisfying the inequalities 0 ≤ i ≤ l, are called vertices of γ.
A λ-admissible path γ divides Δm in two parts: the part Δ+(γ) bounded by γ
and ∂Δ+ and the part Δ−(γ) bounded by γ and ∂Δ−. Define an operation of
compression of Δ+(γ) in the following way. Let j be the smallest positive integer
1 ≤ j ≤ l − 1 such that γ(j) is the vertex of Δ+(γ) with the angle less than π (a
compression of Δ+(γ) is defined only if such an integer j does exist). A compression
of Δ+(γ) is Δ+(γ′), where γ′ is either the path defined by γ′(i) = γ(i) for i < j
and γ′(i) = γ(i + 1) for i ≥ j, or the path defined by γ′(i) = γ(i) for i �= j
and γ′(j) = γ(j − 1) + γ(j + 1) − γ(j) (the latter path can be considered only
if γ(j − 1) + γ(j − 1) + γ(j) ∈ Δm). Note that γ′ is also a λ-admissible path. A
sequence of compressions started with Δ+(γ) and ended with a path whose image
coincides with ∂Δ+ defines a subdivision of Δ+(γ) which is called compressing.
A compression and a compressing subdivision of Δ−(γ) is defined in a completely
similar way. A pair (S+(γ), S−(γ)), where S±(γ) is a compressing subdivision of
Δ±(γ), produces a subdivision of Δm. The latter subdivision is called γ-consistent.
Denote by Nλ(γ) the collection of simple γ-consistent subdivisions of Δm.

Theorem 3.7. (G. Mikhalkin, see [40, 42]). Let 0 ≤ δ ≤ (m−1)(m−2)
2 be an integer.

There exists a generic set U of r = m(m+3)
2 − δ points in R2 such that the map

associating to a simple tropical curve T of degree m the dual subdivision ST of
Δm establishes a one-to-one correspondence between the set C(U) and the disjoint
union !γNλ(γ), where γ runs over all the λ-admissible paths in Δm of length r.
In particular, Nm(δ) =

∑
γ

∑
S∈Nλ(γ) μ(S), where μ(S) is the multiplicity of S.

Example 3.8. Figure 3.5 illustrates the algorithm in the case of rational cubics.
The function λ is given by λ(i, j) = i− εj, where ε is a positive sufficiently small
number. In this case, the number of integer points of the Newton triangle Δ3 is
greater by 1 than the number r+1 = 9 of vertices of λ-admissible paths to consider.
Therefore, each λ-admissible path γ of length r = 8 is uniquely determined by the
integer point which is not a vertex of γ. It is easy to see that the integer points
marked by small squares on Figure 3.5 are vertices of any path γ such that the
set of simple γ-consistent subdivisions is not empty.

3.7 Welschinger invariants

Mikhalkin’s correspondence theorem also gives a possibility to enumerate real
curves passing through specific configurations of real points in RP 2 (as well as on
other projective toric surfaces). Of course, in the real case the result depends on
the chosen point configuration in RP 2. Fortunately, another important discovery
was made recently by J.-Y. Welschinger [73, 74]. He found a way of attributing
weights ±1 to real rational curves which makes the number of curves counted with
the weights to be independent of the configuration of points in RP 2 and produces
lower bounds for the number of real curves in question.
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Figure 3.5: The algorithm for rational cubics.
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For a given positive integerm and an integer δ satisfying 0 ≤ δ ≤ (m−1)(m−2)
2 ,

choose a generic collection U of m(m+3)
2 −δ points in RP 2. Consider the set of real

irreducible curves of degreem passing through all the points of U and having δ non-
degenerate double points each. Denote by Rirr

m (δ, U) the number of curves in the set
considered, and by Rirr, even

m (δ, U) (resp., Rirr, odd
m (δ, U)) the number of curves in

this set which have even (resp., odd) number of solitary nodes (i.e., non-degenerate
real double points locally given by the equation x2+y2 = 0). The Welschinger sign
of a nodal real curve is (−1)s, where s is the number of solitary nodes of the curve.
Define the Welschinger number as Wm(δ, U) = Rirr, even

m (δ, U)−Rirr, odd
m (δ, U).

Theorem 3.9. (J.-Y. Welschinger, see [73, 74]). If δ = (m−1)(m−2)
2 (i.e., if the

considered curves are rational), then Wm(δ, U) does not depend on the choice of a
(generic) configuration U .

In fact, Theorem 3.9 is a particular case of Welschinger’s theorem. The gen-
eral statement in the case of real symplectic 4-manifolds and the proof can be
found in [73, 74]. Higher dimensional generalizations are found in [75].

The number Wm(
(m−1)(m−2)

2 , U) is called the Welschinger invariant and is
denoted by Wm. Clearly, the Welschinger invariant Wm gives a lower bound for
the number of real solutions to our interpolation problem: Rirr

m ( (m−1)(m−2)
2 , U) ≥

|Wm|.
Welschinger’s theorem provides another type of applications of Mikhalkin’s

correspondence. The remaining part of this chapter is mostly devoted to these
applications.

3.8 Welschinger invariants Wm for small m

Let us calculate the Welschinger invariants Wm for m = 1, 2, and 3.
If m = 1, then we should count straight lines passing through 3 · 1 − 1 = 2

points in general position in RP 2. There is exactly one straight line passing through
two points in general position in RP 2. This is a nonsingular real rational curve,
and its Welschinger sign is +1. Thus, W1 = 1.

If m = 2, then we should count real conics passing through 3 ·2−1 = 5 points
in general position in RP 2. There is exactly one curve of degree 2 passing through
five points in general position in RP 2. Once again, this curve is real, rational and
nonsingular, its Welschinger sign is +1. Thus, W2 = 1.

The case m = 3 is more complicated. If m = 3, we should count real rational
cubics passing through 3 · 3 − 1 = 8 points in general position in RP 2. Let U
be a generic configuration of 8 points in RP 2. The configuration U defines a
pencil P of real cubics passing through all the points of U . Any two cubics of
P intersect in 8 points of U , and thus have one additional point of intersection
in CP 2. Denote this point by Q. Notice that Q is real, and all the cubics of P
pass through Q. Let R̃P 2 be RP 2 blown up at 8 points of U and at the point Q.
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The Euler characteristic χ(R̃P 2) of R̃P 2 is equal to 1 − 9 = −8. On the other
hand, the calculation of the Euler characteristic of R̃P 2 via the pencil P gives
χ(R̃P 2) = Rirr, odd

3 (1, U)−Rirr, even
3 (1, U) = −W3. Thus, W3 = 8.

The lower bound 8 for the number of real rational cubics passing through 8
points in general position in RP 2 is sharp and was proved by V. Kharlamov before
the discovery of the Welschinger invariants (see, for example, [7]). It is not known
whether the lower bounds provided by the Welschinger invariants Wm, m ≥ 4 are
sharp.

3.9 Tropical calculation of Welschinger invariants

A simple tropical curve T of degree m and the corresponding subdivision ST of
Δm are called odd, if each triangle in ST has an odd (normalized) area. Such a
curve T and the dual subdivision ST are called positive (respectively, negative) if
the sum of the numbers of interior integer points over all the triangles of ST is
even (respectively, odd). Associate to any simple tropical curve T of degree m and
to the corresponding subdivision ST of Δm the Welschinger multiplicity W(T ) in
the following way. If T is not odd, then put W(T ) = 0. If T is odd and positive
(respectively, negative), then put W(T ) = 1 (respectively, W(T ) = −1).

Theorem 3.10. (cf. [40, 42], and [59]). Let U be a generic collection of r = 3m− 1
points in R2. Then,

Wm =
∑

T∈Cirr(U)

W(T ).

Take now a set U with the properties described in Theorem 3.7, and denote
by n+

λ (γ) (respectively, n
−
λ (γ)) the number of odd positive (respectively, negative)

subdivisions in Nλ(γ) which are dual to irreducible tropical curves. The following
statement is an immediate corollary of Theorems 3.10 and 3.7.

Theorem 3.11. (see [40, 42]). The Welschinger invariant Wm is equal to
∑
γ
(n+

λ (γ)−

n−λ (γ)), where γ runs over all the λ-admissible paths in Δm of length r = 3m− 1.

Figure 3.5 illustrates the tropical calculation ofW3. The subdivision with two
grey triangles has multiplicity 4. This subdivision is not odd (the grey triangles
are of area 2), and thus, it does not contribute to W3.

Remark 3.12. As it was noticed by G. Mikhalkin, one can easily prove the fol-
lowing result comparing Theorems 3.7 and 3.11: for any positive integer m, the
Welschinger invariant Wm and the corresponding Gromov–Witten invariant Nm =
N irr

m ( (m−1)(m−2)
2 ) are congruent modulo 4.

Theorem 3.11 gives a possibility to calculate or to estimate the Welschinger
invariants Wm. The following section is devoted to applications of Theorem 3.11.
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3.10 Asymptotic enumeration of real rational curves

Consider the following question: fix a positive integer m; whether for any generic
collection of 3m − 1 points in the real projective plane there always exists a real
rational curve of degree m which passes through the points of the collection ? (The
number Nm = N irr

m ( (m−1)(m−2)
2 ) of complex rational curves (see [33]) is even for

every m ≥ 3, so the existence of a required real curve does not immediately follow
from the computation in the complex case.)

The following statement is a corollary of Theorem 3.11.

Theorem 3.13. (I. Itenberg, V. Kharlamov, E. Shustin; see [27, 28]))

• For any positive integer m, the Welschinger invariant Wm is positive.

• The sequences logWm and logNm, m ∈ N, are asymptotically equivalent,
More precisely,

logWm = logNm +O(m) and
logNm = 3m logm+O(m).

As a corollary, the aforementioned question is answered in the affirmative.
Moreover, Theorems 3.9 and 3.13 imply that asymptotically in the logarithmic
scale all the complex solutions of our interpolation problem are real.

Let λ0 : R2 → R be a linear function defined by λ0(i, j) = i− εj, where ε is
a sufficiently small positive number (so that λ0 defines a kind of a lexicographical
order on the integer points of the triangle Δm).

The following statement is a key point in the proof of Theorem 3.13.

Lemma 3.14. For any λ0-admissible path γ in Δm, the number n−λ0(γ) is equal
to 0.

Proof. Let γ be a λ0-admissible path in Δm, and S a subdivision in the collection
Nλ0(γ). The subdivision S does not have an edge with the endpoints (i1, j1) and
(i2, j2) such that |i1−i2| > 1; otherwise, at least one integer point on the boundary
of Δm would not be a vertex of the corresponding compressing subdivision. This
implies that no triangle in S has interior integer points. �

Lemma 3.14 implies that, for any λ0-admissible path γ, the contribution
of any γ-consistent subdivision of Δm to the Welschinger invariant Wm is non-
negative. Thus, to prove Theorem 3.13, it is sufficient to present a λ0-admissible
path γ such that the contribution of certain γ-consistent subdivisions of Δm to
the Welschinger invariant Wm is big enough.

Sketch of the proof of Theorem 3.13. Inscribe in Δm a sequence of maximal size
squares as shown on Figure 3.6(a). Their right upper vertices have the coordinates

(xi, yi), i ≥ 1, x1 = y1 =
[m
2

]
, yi+1 =

[
m− xi

2

]
, xi+1 = xi + yi+1.
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Put (x0, y0) = (0,m). Then pick a λ0-admissible path γ consisting of segments
of integer length 1 as shown on Figure 3.6(b). This path consists of sequences
of vertical segments joining (xi, yi) with (xi, yi+1 − 1), zig-zag sequences joining
(xi, yi+1− 1) with (xi+1, yi+1) (in such a zig-zag sequence the segments of slope 1
alternate with vertical segments; it always starts and ends with segments of slope
1), and the segments [(m− 1, 1), (m− 1, 0)] and [(m− 1, 0), (m, 0)]. The length of
this path is 3m− 1.

(b)(a)

Figure 3.6: Path γ and γ-consistent subdivisions of Δm.

Now, we select some γ-consistent subdivisions of Δm. Subdivide the upper
part Δ+(γ) in vertical strips of integer width 1. Note that the rightmost strip
consists of one primitive triangle (a triangle with integer vertices is called primitive
if it is of (normalized) area 1). Pack into each strip but the rightmost one the
maximal possible number of primitive parallelograms (a parallelogramwith integer
vertices is called primitive if it is of (normalized) area 2) and place in the remaining
part of the strip two primitive triangles (see Figure 3.6(b)). Then subdivide Δ−(γ)
in slanted strips of slope 1 and horizontal width 1. Pack into each strip the maximal
possible number of primitive parallelograms. This gives a subdivision of any slanted
strip situated above the line y = x. For any strip situated below the line y = x
place in the remaining part of the strip one primitive triangle (see Figure 3.6(b)).

The total number of such γ-consistent subdivisions is

Mm ≥
∏

i

yi!(yi + 1)!
2yi

·
∏

i

yi! , (3.1)

where the first product corresponds to subdivisions of Δ+(γ) and the second one
to those of Δ−(γ).

All the constructed subdivisions of Δm are simple and odd, each of them is
dual to an irreducible tropical curve and contributes 1 to the Welschinger invariant.
The irreducibility of the dual tropical curve can easily proved by the following
induction. Let us scan the subdivision by vertical lines from right to left. The
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rightmost fragment of the tropical curve is dual to the primitive triangle Δm∩{x ≥
m − 1}, so it is irreducible. At the i-th step, i > 0, we look at the irreducible
components of the curve dual to the union of those elements of our subdivision
which intersect the stripm−i−1 < x < m−i. Each of these irreducible components
either connects the lines x = m − i − 1 to x = m − i, or contains a pattern dual
to a triangle with an edge on x = m − i, or contains a pattern dual to a slanted
parallelogram. Therefore, each component joins the curve dual to the subdivision
of Δm ∩ {x ≥ m− i}.

We have Wm ≥ Mm. This gives the first statement of Theorem 3.13, and
since logNm = 3m logm+O(m), it remains to check that

logMm ≥ 3m logm+O(m). �

Remark 3.15. The statements similar to Theorem 3.13 are proved for all unnodal
(i.e., not containing any rational (−n)-curve, n ≥ 2) toric Del Pezzo surfaces
equipped with their standard real structure, see [28]. (A real structure on a complex
variety X is an anti-holomorphic involution conj : X → X . A subvariety C ⊂ X
is real with respect to conj if conj(C) = C. The standard real structure on a
toric variety is the one which is naturally compatible with the toric structure.)
Recall that there are five unnodal toric Del Pezzo surfaces: CP 2, CP 1×CP 1, and
Pk, k = 1, 2, 3, where Pk is the projective plane CP 2 blown up at k points in
general position. The same asymptotic statements are also proved for all unnodal
toric Del Pezzo surfaces equipped with any non-standard real structure except the
standard real CP 1 × CP 1 blown up at two imaginary conjugated points; see [61,
30]. Recently, E. Brugallé and G. Mikhalkin [3] proved the statements similar to
Theorem 3.13 and Remark 3.12 for Welschinger invariants of CP 3.

3.11 Recurrence formula for Welschinger invariants

As it is shown in [29], the Welschinger invariantsWm can also be calculated using
a recurrence formula. This formula can be seen as a real analog of the Caporaso–
Harris formula [4] for relative Gromov–Witten invariants of CP 2.

Denote by G the semigroup of sequences α = (α1, α2, . . .) ∈ Z∞ with non-
negative terms and finite norm ‖α‖ = ∑

i αi. Each element of G contains only
finitely many non-zero terms, so in the description of concrete sequences we omit
zero terms after the last non-zero one. The only exception concerns the zero ele-
ment of G (the sequence with all the terms equal to zero). This element is denoted
by (0). For an element α in G, put Jα =∑∞

i=1(2i−1)αi. Define in G the following
natural partial order: if each term of a sequence α is greater than or equal to the
corresponding term of a sequence β, then we say that α is greater than or equal
to β and write α ≥ β. For two elements α = (α1, α2, . . .) and β = (β1, β2, . . .) of G
such that α ≥ β, the sequence α − β, whose i-th term is equal to αi − βi, is an
element of G. Denote by θk the element in G whose k-th term is equal to 1 and all
the other terms are equal to 0.
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For α, α(1), . . . , α(s) ∈ G such that α ≥ α(1) + · · ·+ α(s) put(
α

α(1), . . . , α(s)

)
=

∞∏
i=1

αi!

α
(1)
i ! · · ·α(s)

i !(αi −
∑s

k=1 α
(k)
i )!

.

Theorem 3.16. (I. Itenberg, V. Kharlamov, E. Shustin; cf. [29])) Consider the
family of numbers Wm(α, β) (indexed by a positive integer m and sequences α, β
in G such that Jα + Jβ = m) defined by the initial conditions W1((1), (0)) =
W1((0), (1)) = 1 and the recurrence relation (valid for any m ≥ 2)

Wm(α, β) =
∑
k≥1
βk>0

Wm(α+ θk, β − θk)

+
∑(

α
α(1), ..., α(s)

)
n!

n1!...ns!

s∏
i=1

((
β(i)

β̃(i)

)
Wm(i)(α(i), β(i))

)
, (3.2)

where
n = 2m+ ‖β‖ − 2, ni = 2m(i) + ‖β(i)‖ − 1, i = 1, ..., s,

and the latter sum in formula (3.2) is taken over all collections (m(1), . . . ,m(s)),
(α(1), . . . , α(s)), (β(1), . . . , β(s)), and (β̃(1), . . . , β̃(s)) considered up to simultaneous
permutations and satisfying the relations

m(i) ∈ Z, mi ≥ 0, α(i), β(i), β̃(i) ∈ G, Jα(i) + Jβ(i) = m(i), i = 1, . . . , s,
s∑

i=1

m(i) = m− 1,
s∑

i=1

α(i) ≤ α,

s∑
i=1

β(i) = β +
s∑

i=1

β̃(i),

s = ‖
s∑

i=1

β(i) − β‖, ‖β̃(i)‖ = 1, β(i) ≥ β̃(i), i = 1, . . . , s .

Then, for any positive integer m, we have Wm((0), (m)) =Wm.

The numbers Wm(α, β) are tropical relative Welschinger invariants. They
can be interpreted as numbers of tropical curves subject to certain constraints
and counted with appropriate multiplicities (see [29]). Theorem 3.16 is a particular
case of Theorem 4 in [29]. The latter theorem deals with tropical analogs of curves
of arbitrary genus on any unnodal toric Del Pezzo surface. The proof follows ideas
of A. Gathmann and H. Markwig [13, 14] who suggested a tropical version of the
Caporaso–Harris formula.

3.12 Welschinger invariants Wm,i

We end these lectures with a definition and some properties of the Welschinger
invariants Wm,i.
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Let m be a positive integer. Consider a configuration U of 3m− 1 points in
general position in CP 2 such that U is real, that is invariant under the involution
of complex conjugation c acting in CP 2. If the configuration U contains a non-real
point z, then U contains also the point c(z). Denote by i the number of pairs of
conjugated non-real points in U .

As in Section 3.7, consider the set of real rational curves of degree m passing
through all the points of U . Denote by Rm(U) the number of curves in the set
considered, and by Reven

m (U) (resp., Rodd
m (U)) the number of curves in this set

which have an even (resp., odd) number of solitary nodes. Define the Welschinger
number Wm,i(U) as Reven

m (U)−Rodd
m (U).

Theorem 3.17. (J.-Y. Welschinger [73, 74]). The number Wm,i(U) does not depend
on the choice of a (generic) real configuration U provided that the number of pairs
of conjugated non-real points in U is equal to i.

The number Wm,i(U) is also called Welschinger invariant and is denoted by
Wm,i. Of course, Wm,0 =Wm.

A calculation similar to that made in Section 3.8 shows that W3,i = 8 − 2i
for any integer 0 ≤ i ≤ 4. Notice that in this case the values W3,i are interpolated
by a linear function. Whatever is the integer 0 ≤ i ≤ 4, the number R3,i(U) of
real rational cubics attains the value W3,i for a suitable generic configuration U .

To calculate the Welschinger invariants Wm,i for quartics and quintics, one
can use birational transformations and Welschinger’s wall-crossing formula (see
[74], Theorem 2.2) which expresses the first finite difference of the function i �→
Wm,i as twice the Welschinger invariant of CP 2 blown up at one real point. For
quartics the answer is as follows (see [28] for details):

i 0 1 2 3 4 5
W 240 144 80 40 16 0

These values W4,i are interpolated by a polynomial of degree 3,

W4,i = −
4
3
i(i− 1)(i− 2) + 16i(i− 1)− 96i+ 240.

For quintics the Welschinger invariants take the values

i 0 1 2 3 4 5 6 7
W 18264 9096 4272 1872 744 248 64 64

which are interpolated by a polynomial of degree 6,

W5,i = 4
45 i(i− 1)(i− 2)(i− 3)(i− 4)(i− 5)
− 32

15 i(i− 1)(i− 2)(i− 3)(i− 4) + 32i(i− 1)(i− 2)(i− 3)
−320i(i− 1)(i− 2) + 2172i(i− 1)− 9168i+ 18264.

In the cases m = 3, 4, and 5, the degree of the interpolating polynomials
happens to be smaller than for a generic interpolation data, that is, smaller than
[3d−1

2 ]. It is no more the case for any m ≥ 6.
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One of the facts known about the Welschinger invariantsWm,i is the following
theorem.

Theorem 3.18. (I. Itenberg, V. Kharlamov, E. Shustin; see [28])) Let m ≥ 3 be
an integer, and i a non-negative integer such that i ≤ 3. Then, the Welschinger
invariant Wm,i is positive. Moreover,

Wm,0 > Wm,1 > Wm,2.

Furthermore, for a family of Welschinger invariants (Wm,i)m∈N, m ≥ 3, with a
given i ≤ 3, one has

logWm,i = logNm +O(m).

The proof of Theorem 3.18 is based on the tropical formulas obtained by
E. Shustin [60].
Remark 3.19. Statements of the same nature as Theorem 3.18 are proved for
all unnodal toric Del Pezzo surfaces equipped with their standard real structure;
see [28]. In the case of CP 1 × CP 1, the Welschinger invariants depend on three
integers: the bi-degree (m1,m2) of the real rational curves under consideration
and the number i of conjugated non-real points in a given configuration of points.
In this case, one can improve the result of Theorem 3.18 and show that all the
Welschinger invariants W(m1,m2),i (these invariants are defined if m1 and m2 are
positive integers, and i is a non-negative integer such that i < m1+m2) of CP 1×
CP 1 equipped with the standard real structure (z1, z2) �→ (z1, z2) are positive;
see [28].

3.13 Exercises

Exercise 3.1. Find a convex polygon Δ ⊂ R2 with integer vertices and functions
ϕ1, ϕ2 : A → R, where A = Δ ∩ Z2, such that the underlying sets of the tropical
curves T (A,ϕ1) and T (A,ϕ2) coincide, but the subdivisions of Δ defined by ϕ1

and ϕ2 do not.

Exercise 3.2. Let Δ ⊂ R2 be a convex polygon with integer vertices, and ν : Δ→ R
a convex piecewise-linear function defining a primitive triangulation of Δ (i.e., a
triangulation whose vertices are integer and whose triangles are primitive). Show
that the tropical curve T (A,ϕ), where A = Δ ∩ Z2 and ϕ = ν

∣∣
A
, is homotopy

equivalent to a bouquet of n circles, n being the number of interior integer points
of Δ.

Exercise 3.3. Let A ⊂ Z2 be a finite non-empty set, and ϕ : A → R a function.
For any c ∈ Z2, put A′ = A+ c and consider the function ϕ′ : A′ → R defined by
f ′(x) = f(x− c). Prove that the tropical curves T (A′, f ′) and T (A, f) coincide.
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Exercise 3.4. Let A = {(0, 0), (0, 1), (1, 0), (1, 1)} ⊂ Z2. The tropical curves as-
sociated with the pairs of the form (A,ϕ), where ϕ : A → R is a function, are
called tropical curves of bi-degree (1, 1). Show that, for any three points in general
position in R2, there exists precisely one tropical curve of bi-degree (1, 1) passing
through these points.

Exercise 3.5. Let A ⊂ Z2 be a set of n ≥ 2 points. Denote by T (A) the set of
tropical curves associated with the pairs of the form (A,ϕ), where ϕ : A → R is
a function. Prove that, for any n− 1 points in general position in R2, there exists
precisely one tropical curve T ∈ T (A) passing through these points.

Exercise 3.6. Show that any tropical hypersurface T in Rn is balanced, that is, for
any (n− 2)-dimensional face σ of T ,∑

δ⊃σ

w(δ) · e(δ, σ) = 0 ,

where δ runs over all (n − 1)-dimensional faces containing σ, w(δ) is the weight
of δ, and e(δ, σ) is the smallest integer inner normal vector of σ ⊂ δ. Formulate
the converse statement and prove it.

Exercise 3.7. Let A1 and A2 be two finite nonempty sets of integer points in R2.
Denote by Δi the convex hull of Ai, i = 1, 2. Consider functions ϕ1 : A1 → R and
ϕ2 : A2 → R such that the tropical curves T (A1, ϕ1) and T (A2, ϕ2) intersect each
other only at interior points of their edges. Prove the tropical Bernstein theorem:
the number of intersection points of T (A1, ϕ1) and T (A2, ϕ2), counted with the
same multiplicities as those defined in the tropical Bézout theorem, is equal to the
mixed area of Δ1 and Δ2, that is, to the Euclidean area of the Minkowski sum
Δ1 +Δ2 diminished by the Euclidean areas of Δ1 and Δ2.

Exercise 3.8. Compute the Welschinger invariants

• for rational curves of bi-degree (2, 2) on CP 1 × CP 1 equipped with the real
structure (z1, z2) �→ (z1, z2),

• for rational curves of bi-degree (2, 2) on CP 1 × CP 1 equipped with the real
structure (z1, z2) �→ (z2, z1).

Exercise 3.9. Using Mikhalkin’s algorithm, compute the number of uninodal curves
(a curve is uninodal if its only singular point is non-degenerate double) of degree
m ≥ 3 which pass through given (m2 + 3m − 2)/2 points in general position in
CP 2.




