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Preface

This book is based on the lectures given at the Oberwolfach Seminar on Tropical
Algebraic Geometry in October 2004.

Tropical Geometry first appeared as a subject of its own in 2002, while its
roots can be traced back at least to Bergman’s work [1] on logarithmic limit sets.
Tropical Geometry is now a rapidly developing area of mathematics. It is inter-
twined with algebraic and symplectic geometry, geometric combinatorics, inte-
grable systems, and statistical physics. Tropical Geometry can be viewed as a sort
of algebraic geometry with the underlying algebra based on the so-called tropical
numbers. The tropical numbers (the term “tropical” comes from computer science
and commemorates Brazil, in particular a contribution of the Brazilian school to
the language recognition problem) are the real numbers enhanced with negative
infinity and equipped with two arithmetic operations called tropical addition and
tropical multiplication. The tropical addition is the operation of taking the max-
imum. The tropical multiplication is the conventional addition. These operations
are commutative, associative and satisfy the distribution law. It turns out that
such tropical algebra describes some meaningful geometric objects, namely, the
Tropical Varieties. From the topological point of view the tropical varieties are
piecewise-linear polyhedral complexes equipped with a particular geometric struc-
ture coming from tropical algebra. From the point of view of complex geometry
this geometric structure is the worst possible degeneration of complex structure
on a manifold. From the point of view of symplectic geometry the tropical variety
is the result of the Lagrangian collapse of a symplectic manifold (along a singular
fibration by Lagrangian tori).

The target audience of the Oberwolfach seminar was graduate students. The
seminar was designed to introduce young mathematicians to this perspective re-
search field, including presentation of basic notions and motivations for tropical
algebraic geometry as well as demonstration of some of its striking applications.
During the preparation of these lecture notes for publication, we adapted the notes
to a wider audience, both beginners and established researchers. As a result, the
discussions in this book are more detailed and contain some new results that were
obtained after the seminar itself.

Besides a general introduction to tropical geometry, we discuss the concepts of
complex and non-Archimedean amoebas, as well as the patchworking construction



viii Preface

and enumerative tropical geometry. For a more advanced study of these topics, we
recommend the articles [8, 22, 28, 39, 40, 41, 42, 48, 59].

We do not in this book attempt to cover all facets of tropical geometry. For
instance, we do not discuss the combinatorial aspects of tropical varieties (see, for
example, [31, 54, 62, 64]), or abstract tropical varieties of dimension greater than
1 [18, 34, 35]. Furthermore, we do not touch various other branches of tropical
mathematics, but only recommend some references: [36, 64] (computational as-
pects), [5, 15, 53] (max-plus algebra), [9, 32, 37, 50, 52] (tropical mathematics in
applied problems).

The book consists of three chapters. The first chapter, “Introduction to tropi-
cal geometry” by G. Mikhalkin, is a basic treatment of tropical varieties and their
relation to classical geometry, in particular the theory of amoebae. Special em-
phasis is put on tropical curves. The second chapter, “Patchworking of algebraic
varieties” by E. Shustin, deals with the patchworking construction in algebraic
geometry, the link between real algebraic geometry and tropical geometry. The
chapter starts with the original Viro method of gluing real algebraic hypersurfaces,
then goes through various modifications and generalizations of the Viro method.
In the final section the patchworking construction is used to prove Mikhalkin’s cor-
respondence theorem between real and complex algebraic curves on toric surfaces
on one side and plane tropical curves on the other side. The third chapter, “Ap-
plications of tropical geometry to enumerative geometry” by I. Itenberg, presents
various applications, based on Mikhalkin’s correspondence theorem, of tropical
geometry in real and complex enumerative geometry. These applications mostly
concern calculation of Gromov–Witten invariants and Welschinger invariants (the
latter invariants can be seen as real counterparts of genus zero Gromov–Witten
invariants).

Each chapter is supplemented by exercises, most of which were proposed to
and discussed by the participants of the seminar.

Acknowledgements. We are grateful to Mathematisches Forschungsinstitut
Oberwolfach for a unique opportunity to run a seminar on tropical algebraic ge-
ometry.

Our special thanks go to Oliver Wienand. We are very grateful to him for
taking notes of our lectures and helping in expanding them for publication. His
role in the work on this book is hard to overestimate.

The first author was partially supported by the ANR-05-0053-01 grant of
Agence Nationale de la Recherche and a grant of Université Louis Pasteur, Stras-
bourg. The second author is supported in part by NSERC. The third author was
supported by the Hermann-Minkowski-Minerva center for Geometry at the Tel
Aviv University and by the grant no. 465/04 from the Israel Science Foundation.
The first and the third authors were partially supported by a grant of the Min-
istère des Affaires Etrangères, France and the Ministry of Science and Technology,
Israel.



Preface to the second edition

We are happy to observe that Tropical Geometry has become an even more pop-
ular subject. A number of new directions for tropical methods has emerged and
developed. As a result the collection of new tropical research papers is too large
to make an exhaustive list.

In this edition we have corrected some of the misprints from the first edition
and added the references [2], [23], [43], [65] to new lecture notes similar in spirit
to those from this book.



Chapter 1

Introduction to tropical
geometry

In this section the notion of an amoeba of a variety will be introduced and several
examples of such amoebas are given. Then we consider a degenerations process
where an amoeba becomes a piecewise-linear object.

1.1 Images under the logarithm

We start with an algebraic variety over (C∗)n. Namely, let I be an ideal in the
ring of polynomials in n variables over C. Then the variety is given by

V = {x ∈ (C∗)n | f(x) = 0 for all f ∈ I}.
We define the map Log : (C∗)n −→ Rn,

(z1, z2, . . . , zn) �−→ (log |z1|, log |z2|, . . . , log |zn|).
Definition 1.1. Let V ⊂ (C∗)n be an algebraic variety. Then we define its amoeba
as A(V ) = Log(V ). This is a subset of Rn:

A(V ) = LogV ⊂ Rn .

0-dimensional amoebas

If V is 0-dimensional, then it is just a collection of points and so is Log(V ).

Amoeba of a line in P2

For our first example of an amoeba of a 1-dimensional variety, consider the case
when V ⊂ (C∗)2 ⊂ CP2 is a line given by equation

z + w + 1 = 0. (1.1)



2 Chapter 1. Introduction to tropical geometry

C
C∗

R log |(|z)

0
z

z

Figure 1.1: Going from C to R with Log.

Solving it for w we get w = −z − 1.
Set x = log |z|, y = log |w|. The value of x does not determine y as it also

depends on the argument of z, but we get the following inequalities. If x ≥ 0, then

log(ex − 1) ≤ y ≤ (1 + ex);

if x ≤ 0, then
log(1− ex) ≤ y ≤ (1 + ex).

Assume now that V ⊂ (C∗)2 is given by az+bw+c = 0 with a, b, c ∈ (C∗). In
coordinates z′ = a

c z, w
′ = b

cw, we get the equation (1.1) again. Thus the amoeba
A(V ) in this case is just a translation of the one pictured in Figure 1.2 by

x �→ x+ log |c| − log |a|, y �→ y + log |c| − log |b|.

If a, b, c ∈ R, then the variety V is defined over the reals and thus we may consider
its real locus RV . Note that in this case the amoeba Log(RV ) is the boundary of
the amoeba A(V ).

In the case of a general hypersurface V ⊂ (C∗)n defined over the reals,
Log(RV ) is a subset of the discriminant locus of Log |V : V → Rn, i.e., the
locus of the critical values of Log |V . There is a class of real varieties RV such
that Log(RV ) coincides with the corresponding discriminant locus (see [38] for
the case of curves). These varieties have some extremal topological and geometric
properties. The lines (and hyperplanes in (C∗)n) are examples of such extremal
hypersurfaces.

Geometric properties of the amoeba

Amoebas of hypersurfaces have the following properties, see [16], [11], [72], [38],
[51], [44]. Let V ⊂ (C∗)n be the zero locus of a polynomial

f(z) =
∑
j∈A

ajz
j,
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Figure 1.2: The amoeba of z + w + 1 = 0.

where A ⊂ Zn is finite, aj ∈ C and zj = zj1
1 . . . zjn

n if z = (z1, . . . , zn) and
j = (j1, . . . , jn). Let Δf be the Newton polyhedron of f , i.e.,

Δf = Convex Hull{j ∈ A | aj �= 0}.

Then

• Every connected component of Rn \ A is convex.

• The number of components of Rn \ A is not greater than #(Δf ∩ Zn) and
not less than the number of vertices of Δf .

• There is a naturally defined injection from the set of components of Rn \ A
to Δf ∩ Zn. The vertices of Δf are always in the image of this injection. A
component of Rn \ A is bounded if and only if its image is in the interior of
Δf .

• If V ⊂ (C∗)2, then the area of A(V ) is not greater than π2Area(Δf ).

• If V ⊂ (C∗)2 is such that Area(A(V )) = π2 Area(Δf ), then the result of
coordinatewise multiplication of V by (c1, c2) ∈ (C∗)2 is the zero set of
a polynomial with real coefficients. Furthermore, the real zero set of this
polynomial is a real curve with a particular topology in (R∗)2. If it is non-
singular, then its isotopy class in (R∗)2 depends only on Δf . Such curves are
called simple Harnack curves; historically these were the first examples of
curves of degree d in RP2 with the maximal number of ovals.
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• If the coordinates in (C∗)n are changed by

zj �→ αj

n∏
k=1

z
pjk

k ,

with (pjk) ∈ GL(n,Z), then the amoeba of V is changed by the affine-linear
map of Rn, namely by the linear map corresponding to the matrix (pjk)
composed with the translation by (log |α1|, log |α2|, . . . , log |αn|).

1.2 Families of amoebas

Now, when we are acquainted with amoebas (at least in the case of hypersurfaces),
let us consider their families and their limits under an appropriate renormalization.

Let the coefficients of f depend on a parameter t. Let

Vt = {z ∈ (C∗)n |
∑

j∈A⊂Zn

aj(t) · zj = 0}

be the corresponding variety. To begin let us assume that aj(t) are polynomial
functions in t > 0.

Let At(Vt) be the amoeba of Vt under the coordinatewise logarithm with
base t, i.e.,

Logt : (C
∗)n −→ Rn,

(z1, z2, . . . , zn) �−→ (logt |z1|, logt |z2|, . . . , logt |zn|).
We shall see that the limit of At(Vt), t → ∞, exists in the Hausdorff metric

on compacts of Rn.

Recall the Hausdorff metric

Let A and B be subsets of some metric space (X, d). Then the Hausdorff distance
between A and B is given by

dH(A,B) = max{dasym(A,B), dasym(B,A)}

where dasym denotes the asymmetric Hausdorff distance

dasym(A,B) = sup
a∈A

d(a,B),

as usual, d(a,B) = inf
b∈B

d(a, b). Note that dH is indeed a metric on the collection of

all closed subsets of X . If d(A,B) = 0 and both A and B are closed, then A = B.
We say that a family {At}, t→∞, of subsets of X converges in the Hausdorff

metric on compacts to a set A ⊂ X , if for every compact set D ⊂ X there exists
a neighborhood U ⊃ D such that limt→∞ dH(At ∩ U,A ∩ U) = 0.
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Proposition 1.2. The family of subsets At ⊂ Rn has a limit in the Hausdorff metric
on compacts when t→∞.

To get an idea of the proof we suggest the following exercise. Let

Vt = {(z, w) ∈ (C∗)2 | a(t)z + b(t)w + c(t) = 0},

where a(t), b(t), c(t) are polynomials.

Exercise.

1. If the polynomials a b and c are non-zero constants, then

lim
t→∞

At = Y ⊂ R2,

where

Y = {(s, 0) ∈ R2 | s ≤ 0}∪{(0, s) ∈ R2 | s ≤ 0}∪{(s, s) ∈ R2 | s ≥ 0}. (1.2)

2. If a is a polynomial of degree k, b is a polynomial of degree l and c is a
non-zero constant, then

lim
t→∞

At = τk,l(Y ) ⊂ R2,

where
τk,l : R2 → R2, (x, y) �→ (x − k, y − l)

and Y is defined by (1.2).

1.3 Non-Archimedean amoebas

Alternatively we can view a family of algebraic varieties depending on t as a single
variety over a field whose elements are functions of t.

The simplest algebraic functions are just polynomials in t. All such poly-
nomials (with complex coefficients) form the ring C[t]. To introduce division we
have to pass to a larger ring C((t)) formed by the Laurent power series in t, i.e.,
functions

φ(t) =
+∞∑
j=k

ajt
j

with aj ∈ C. Here we may restrict our attention only to the Laurent series φ(t)
that converge in a neighborhood U  0. The ring C((t)) is a field, but this field
is not algebraically closed. E.g., the equation z2 = t does not have solutions in
C((t)). To make it algebraically closed one has to consider fractional powers of t
and the Puiseux series formed by them.
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For our purposes it is convenient to allow not only rational but any real
powers of t. We define the field K{t} of Puiseux series with real powers locally
converging at zero by

K{t} = {φ : U → R | φ(t) =
∑
j∈I

ajt
j , aj ∈ (C∗) , t ∈ U},

where 0 ∈ U ∈ R is some open neighborhood of 0 and I ⊂ R is a well ordered set
(i.e., any subset of I has a minimum). It can be checked that K{t} ⊃ C((t)) is an
algebraically closed field.

Furthermore, there exists a non-Archimedean valuation

val : K{t} → R ∪ {−∞},

i.e., a map which satisfies the following properties:

1. val(f) = −∞ if and only if f = 0,

2. val(fg) = val(f) + val(g),

3. val(f + g) ≤ max{val(f), val(g)}.
We define this valuation by

val(
∑
j∈I

ajt
j) = −min(I).

As in the degeneration that we considered earlier we have t → ∞, we set K =
K{ 1

t } for our function field.
Every valuation defines a norm by

|f |val = eval(f).

This norm satisfies the stronger, non-Archimedean, version of the triangle inequal-
ity

|φ+ ψ|val ≤ max{|φ|val, |ψ|val}. (1.3)

Remark 1.3. Recall that the Archimedes axiom states that for any numbers a, b ∈
R we will have

|na| = |a+ · · ·+ a| > |b|
for some number n ∈ N, where |a| stands for the standard absolute value in R.

If φ, ψ ∈ K and |φ| < |ψ|, then

|ψ + · · ·+ ψ| = |ψ| < |ψ|,

so the Archimedes axiom is not satisfied. However, in the modern terminology,
being non-Archimedean refers not simply to the absence of the Archimedes axiom,
but specifically to the inequality (1.3) that guarantees its absence.



1.4. Non-standard complex numbers 7

Since |·|val is the only norm on the Puiseux series in this section, the subscript
val to |·| will be omitted from now on.

As in the case of complex varieties, we may use the norm on K to define
amoebas of algebraic varieties over K. Let VK ⊂ (K∗)n be an algebraic variety.
Again we define the componentwise logarithm of the absolute values

LogK = Val : (K∗)n → Rn

by
LogK(φ1, . . . , φn) = (log |φ1|, . . . , log |φn|) = (val(φ1), . . . , val(φn)).

Then A(VK) = Val(VK) is the (non-Archimedean) amoeba of VK .

Theorem 1.4. [a version of Viro patchworking] Let Vt be an algebraic variety with
parameter t as defined above and VK be the corresponding variety in (K∗)n. Then
the non-Archimedean amoeba A(VK) is the limit of the amoebas A(Vt) as t goes to
infinity with respect to the Hausdorff metric on compacts. In particular, lim

t→∞
A(Vt)

exists in this sense.

Theorem 1.5 (Kapranov). If VK ⊂ (K∗)n is a hypersurface, then the non-Archi-
medean amoeba A(VK)=Val(VK) depends only on the valuation of the coefficients
of the defining equation for VK . In other words, if VK = {∑αj(t)zj = 0}, αj ∈ K,
then A(VK) is determined by the values val(αj(t)).

As it was noticed by Kapranov [8] the choice of a particular algebraically
closed non-Archimedean field K does not affect the geometry of non-Archimedean
amoebas as long as the non-Archimedean valuation K∗ → R is surjective. Another
useful choice for such K is provided by the non-standard analysis and considered
in the following subsection. Although the following content does not depend on
this subsection and uses K = K{ 1

t } as the ground non-Archimedean field, some
people might find this other example more intuitive.

1.4 Non-standard complex numbers

Here we present another construction for a non-Archimedean field K with a sur-
jective valuation to R.1

We start by recalling of one of the constructions for a generalized limit in
analysis. By an ultrafilter on the set of natural numbers N, we mean a finitely
additive measure υ with the following three properties.

• For any set S ⊂ N, either υ(S) = 0 or υ(S) = 1.

• We have υ(S) = 0, if S ⊂ N is finite.

• υ(N) = 1.
1The author is indebted to M. Kapovich for an illuminating explanation of the asymptotic

cone construction in geometry and the relevant point of view on non-standard analysis.
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Existence of such υ can be deduced from the axiom of choice.

Definition 1.6. A sequence ak ∈ C, k ∈ N is called converging to L ∈ C with
respect to the ultrafilter υ if for any ε > 0 we have

υ{k ∈ N | |ak − L| ≥ ε} = 0.

We say that ak ∈ C, k ∈ N converges to L = ∞ if for any ε > 0 we have
υ{k ∈ N | |ak| ≤ ε} = 0.

We write lim
k→+∞

υak = L.

It is easy to see that every sequence of complex number has a limit with
respect to υ. E.g., the sequence 0, 1, 0, 1, . . . has the limit 0 or 1 depending on
whether the measure of all odd numbers is 1 or the measure of all even numbers
is 1 (we should get exactly one of these cases for our υ).

Let C∞ = {{ak}+∞k=1} be the set of all sequences {ak} with ak ∈ C. Define
the equivalence relation by setting {ak} ∼υ {bk} if υ{k ∈ N | ak �= bk} = 0. Let
C∞υ be the set of the corresponding equivalence classes.

We may operate with elements of C∞υ as with usual complex numbers. We
can add them, subtract, multiply and divide coordinatewise. Furthermore, the
functions on C extend to C∞υ by coordinatewise application. Clearly, C∞υ is an
algebraically closed field.

We say that ρ = {ρk} ∈ C∞υ is positive if υ{k ∈ N |ρk > 0} = 1 (as usual,
ρk > 0 implies, in particular, that ρk ∈ R). We say that ρ is infinitely large if
lim

k→+∞
υρk =∞. Let us fix once and for all a positive infinitely large ρ.
The inequality |a| < ρN for a = {ak} ∈ C∞υ means that υ{k ∈ N | |ak| ≤

ρN
k } = 1. Define

A = {a ∈ C∞υ | ∃N ∈ N : |a| < ρN}.

Similarly, we define

B = {a ∈ C∞υ | |a| < ρN ∀N ∈ Z}.

Define Cρ
υ = A/B. Clearly, it is an algebraically closed field. Furthermore,

Logρ : Cρ
υ → R ∪ {−∞}, a �→ logρ(|a|) = {logρk

|ak|}

is a surjective valuation.
The field Cρ

υ can be considered as a field of non-standard complex numbers
and we have just seen that it is a non-Archimedean field. The choice of K = Cρ

υ

allows us to consider the map Val = Logρ. This map is a limiting map in the
family Logt and the limit can be obtained by substitution of the infinitely large
value t = ρ.
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1.5 The tropical semifield T

Definition 1.7. We set the tropical semifield T = R∪{−∞} to be the real numbers
enhanced with −∞ and equipped with the following arithmetic operations (we use
quotation marks to distinguish them from the classical arithmetic operations with
real numbers)

“x+ y” = max{x, y},
“xy” = x+ y.

It is easy to check that T is a commutative semigroup with respect to addition
(here −∞ ∈ T plays the rôle of the additive zero), a commutative group with
respect to multiplication (here 0 ∈ T plays the rôle of the multiplicative unit) and
that we have the distribution law

“x(y + z) = xy + xz”.

In other words, T is a true semifield. This semifield drastically lacks subtraction:
as tropical addition is an idempotent operation, we have “x+ x = x”.

Remark 1.8. The term tropical is borrowed from Computer Science (where it was
introduced to commemorate a Brazilian scientist Imre Simon). These arithmetic
operations under different names appeared even earlier. E.g., Litvinov and Maslov
[36] used the term idempotent analysis and related the process of passing from
the classical arithmetics to the tropical arithmetics to the quantization process of
Schrödinger, but in the opposite direction. This is the source for another name for
passing to the tropical limit, “dequantization”.

We finish this remark with the corresponding deformation of arithmetic op-
erations on T from “classical” to “tropical” (cf. e.g., [36], [72]). Let R≥0 be the
semifield of non-negative real numbers equipped with classical arithmetic opera-
tions. The map

logt : R≥0 → T,

t > 1, induces some arithmetic operations on T. Namely, we have

x⊕t y = logt(t
x + ty), x⊗t y = x+ y

for x, y ∈ T. Clearly, for any finite t > 0 the set T equipped with these operations
is a semifield isomorphic to R≥0 (the isomorphism is provided by logt itself). In
particular, the semifields (T,⊕t,⊗t) are mutually isomorphic. However, we have

lim
t→+∞

x⊕ y = “x+ y”, x⊗t y = “xy”,

thus the tropical semifield T (which not isomorphic to R≥0 as T is idempotent and
R≥0 is not) is the limit of a family of semifields isomorphic to R≥0.
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2

a

a x a x

0

1 2

Figure 1.3: The graph of a tropical parabola a0+ a1x+ a2x
2 and the graph of the

corresponding function j �→ aj .

Tropical polynomials and corresponding tropical hypersurfaces

We do not have subtraction in T, but we do not need it to define polynomials, as
a polynomial is a sum of monomials. Denote Z≥0 = N ∪ {0}.
Definition 1.9. Let A ⊂ (Z≥0)n be finite and aj ∈ T for all j ∈ A. Then a tropical
polynomial is given by

f(x) = “
∑
j∈A

ajx
j” = max

j∈A
(aj + 〈j, x〉), (1.4)

x ∈ Tn.

Remark 1.10. Equation (1.4) may recall the definition of the Legendre transform.
Recall that for an arbitrary function ϕ : Rn → R its Legendre transform Lϕ is
defined by

Lϕ(x) = max
j
(〈j, x〉 − ϕ(j)).

This definition makes sense even if ϕ is defined only on a subset A ⊂ Rn — we
just take the maximum over j ∈ A or, equivalently, extend ϕ to Rn by setting
ϕ(j) = +∞, j /∈ A. The function Lϕ is convex even if ϕ is not convex. However,
if ϕ is not convex, then there exists a (non-strictly) convex function

ϕ̃ : Rn → R ∪ {+∞}

such that Lϕ̃ = Lϕ. It is easy to see that the graph of such ϕ̃ can be obtained
from the overgraph of φ by taking the convex hull.

We have the tropical polynomial f equal to the Legendre transform of the
function j �→ −aj defined on the finite subset A ⊂ Rn. Since A is finite the function
f is a piecewise-linear convex function.

Our next step is to define hypersurfaces associated to tropical polynomials.
The neutral element with respect to addition is −∞, but tropical polymomials
almost never take value −∞. Because of the lack of subtraction we have to be
very careful in phrasing the classical definition of hypersurface in order to make
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this definition work also for T. For such definition one can take the definition of
the zero locus of a polynomial as the locus where the multiplicative inverse of the
polynomial is not regular.

Definition 1.11. Let f be a tropical polynomial. Then the corresponding tropical
hypersurface Vf is given by

Vf = {x ∈ Rn | f is not smooth in x} ⊂ Rn = (T∗)n.

It is also called the corner locus of f .

Indeed, near Vf we have “ 0
f ” not locally convex and, therefore, not regular.

Example 1.12. The locus of the tropical parabola from Figure 1.3 is formed by
the projections onto the x-axis of the two corners of the graph. One can compute
that these points are a0 − a1 and a1 − a2 if 2a1 > a0 + a1. Otherwise this locus
consists of one double point a0−a2

2 ∈ T.
Remark 1.13. For every polynomial f in K[x1, . . . , xn] we can define its tropical-
ization by replacing the Puiseux series coefficients from K with their valuations
from T.

Kapranov’s Theorem 1.5 may be now reformulated in the following way. The
hypersurface of the tropicalization of a polynomial over K coincides with its (non-
Archimedean) amoeba.

While the study of tropical hypersurfaces (and, as a matter of fact, also
complete intersections) is relatively easy, even the definition of general tropical
varieties takes time (see [45] and [46]). In the next section we give some basic
treatment of general tropical varieties in dimension 1, i.e., tropical curves. We treat
them as abstract tropical varieties, i.e., in a manner analogous to the Riemann
surfaces). The geometric structure serving as a tropical counterpart of complex
structure turns out to be integer affine structure.

1.6 Tropical curves and integer affine structure

We start with a preliminary definition that is well-known in classical geometry.

Definition 1.14. Let M be a manifold. An integer affine structure on M is given
by an open covering {Uj} of M with embedding charts

ϕj : Uj −→ Rn,

such that every overlapping transition map

ϕk ◦ ϕ−1
j : ϕj(Uj ∩ Uk)→ ϕk(Uj ∩ Uk)

can be extended to a map Rn → Rn obtained by the composition of a map

Φkj : Rn → Rn,
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linear over Z, and a translation by an arbitrary vector in Rn, in other words, by
an element of GLn(Z) � Rn.

A manifold M equipped with an integer affine structure is called a Z-affine
manifold. Let M and N be two Z-affine manifolds (of dimensions dimM and
dimN), and let f : M → N be a map. We say that f is a Z-affine map if for
every x ∈ M there exist charts Uj  x and U (N)

k  f(x) such that φ(N)
k ◦ f ◦ φ−1

can be extended to a map Rdim M → Rdim N obtained by the composition of a
map Rdim M → Rdim N , linear over Z, and a translation by an arbitrary vector in
Rdim N .

Given an integer affine structure onM , one can make it a full affine structure
by including in the set of charts all Z-affine embeddings M ⊃ U → Rn. Recall
that an (integer) affine structure is called complete if for every chart ϕj : Uj → Rn

and y ∈ Rn there exists a finite sequence of charts Uj = Uj0 , . . . , Ujl
such that

Ujm−1 ∩ Ujm �= ∅ and φjl
(Ul)  y.

Note that since Ujm−1 ∩ Ujm �= ∅, affine-linear maps Φjmjm−1 : Rn → Rn are
defined. One can check that the composition

Φ̃j(y) = φ−1
jl
◦ Φjmjm−1 ◦ . . .Φj1j0(y) ∈M

does not depend on the choice of the chart sequence and gives a well-defined
covering map Φ̃j : Rn →M called the developing map, cf. [66].

Rn Rn

M

ϕi ϕj

ϕij

Ui Uj

∈ GLn(Z)� Rn

Figure 1.4: Illustrating the Z-affine structure.

We have a well-defined notion of an integer tangent vector to a Z-affine mani-
foldM . These are the vectors corresponding to vectors in Zn under the differential
of charts φj . We say that an integer tangent vector is primitive if it is not a non-
trivial (not ±1) integer multiple of another integer tangent vector.

Note that specifying a Z-affine structure on a 1-manifold is equivalent to
specifying a metric. Indeed, we have

GLn(Z) = O(1);
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the metric is specified by setting the primitive tangent vector (which is unique up
to the sign) to have a unit length.

The simplest class of examples of Z-affine manifolds is provided by quotients
Rn/Λ where Λ is a lattice in Rn, i.e., a discrete subgroup of Rn isomorphic to Zn.
These examples play the role of tropical tori; some of them admit a polarization
and thus are tropical Abelian varieties (see [47]).

However, most tropical varieties of dimension n are not topologically man-
ifolds. They are polyhedral complexes of dimension n which still come equipped
with an integer affine structure. In this section we look only at the case n = 1.
Topologically tropical curves are graphs. Compact tropical curves are finite graphs.

Let Γ be a finite graph. Instead of defining a Z-affine structure in the non-
manifold case for a general polyhedral complex (see [45]), we take advantage of
dimension 1 where we can express a Z-affine structure by using a metric. Denote

Γ◦ = Γ\{1− valent vertices}. (1.5)

Definition 1.15. A compact tropical curve is a connected finite graph Γ equipped
with a complete inner metric on Γ◦.

Thus the length of an edge of Γ is infinite if and only if this edge is adjacent
to a 1-valent vertex. The integer affine structure near a k-valent vertex x ∈ Γ with
k > 1 can be thought as an isometric map

φ : U → Y ⊂ Rk−1 (1.6)

of a neighborhood U  x to the subspace Y ⊂ Rk−1 obtained as the union of the
negative part of the k − 1 axes of Rk−1 (considered with the metric induced by
the Euclidean metric on Rn) and the ray R = {(t, . . . , t) ∈ Rk−1 | t ≥ 0}, where
the metric is induced by the Euclidean metric on Rn scaled by

√
k − 1 (so that

the length of the primitive integer vector (1, . . . , 1) is unity).
The restriction of tropical polynomials from Rk−1 to Y define regular func-

tions on open sets of Γ. Together they form the structure sheaf O.
Note that if Γ is a 3-valent graph with n univalent vertices, then the number of

finite edges of Γ is equal to 3(dimH1(Γ))−3+n if 2g+n > 2, where g = dimH1(Γ).
Furthermore, all tropical curves with n marked (i.e., numbered) 1-valent vertices
and with dimH1(Γ) = g form the tropical moduli spaceMtrop

g,n that can be naturally
compactified. It can be shown that this compactification is a tropical orbifold (of
dimension 3g − 3 + n) as long as 2g + n > 2. Furthermore, if g = 0, then it is a
manifold.

Definition 1.16. The number g = b1(Γ) is called the genus of a tropical curve Γ.

As in the complex case the genus g can be interpreted as the dimension
of regular 1-forms on Γ (see [47]). All regular forms can be used to form the
Jacobian variety of Γ. As in classical geometry one has the tropical counterpart
of the Abel–Jacobi theorem. The Riemann–Roch theorem holds in the form of an
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inequality and can be used to give a lower bound for the dimension of the space
of deformations of a tropical curve.

Many other (but not all, see e.g., [54]) classical theorems for complex curves
also have their tropical counterpart. As we will not need them in the applications
of tropical geometry considered in the next two chapters we just refer the reader
to [45], [46], [47]. To relate abstract tropical curves to these applications we finish
this section by looking at tropical maps h : Γ◦ → Rn, where Γ◦ is defined by (1.5).

Such a map h is tropical if it is given by a Z-affine map in every small chart
(1.6). The following proposition translates this to the language of metric graphs.

Proposition 1.17. Let Γ be a compact tropical curve and Γ◦ be its finite part. A
map

h : Γ◦ → Rn

is tropical if and only if the following two conditions hold.

• For every edge E ⊂ Γ◦, h|E : E → Rn is a smooth map such that dh maps
every unit tangent vector to E to an integer vector in Rn.

• For every k-valent vertex x ∈ Γ◦ denote with v1, . . . , vk the outgoing unit
tangent vectors to the edges E1, . . . , Ek adjacent to x. Then we have

k∑
j=1

(dh|Ej )xvj = 0.

Clearly for every edge E ⊂ Γ◦ the image W ⊂ Zn of the unit tangent vector
is the same for all points of E (up to multiplication by −1). The largest natural
divisor w ∈ N of W (i.e., the GCD of its coordinates) is called the weight of the
image h(E). In the remaining part of our discussion we will be looking at the
images h(Γ◦) ⊂ R2 and using them for the needs of classical real and complex
geometry.

1.7 Exercises

Exercise 1.1. Let V ⊂ (C∗)2 be given by z + w + 1 = 0.

• Write down explicit inequalities defining the amoeba Log(V ) ⊂ R2.

• Write down explicit inequalities defining the image μ(V ) ⊂ R2, where μ :
(C∗)2 → R2 is the moment map given by

(z, w) �→
( |z|2
1 + |z|2 + |w|2 ,

|w|2
1 + |z|2 + |w|2

)
.

• Prove that Log
∣∣
(R+)2

and μ
∣∣
(R+)2

are both diffeomorphisms onto their images,
and find these images.
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• Prove that, for any convex lattice polytope Δ ⊂ Rn, the moment map

μΔ(x) =
∑

ω∈Δ∩Zn xω · ω∑
ω∈Δ∩Zn xω

is a real analytic diffeomorphism of the positive orthant Rn
+ onto the interior

Int(Δ) of Δ.

Exercise 1.2. Find a family {At}, t→ +∞ of subsets of R, a set A ⊂ R, and a set
U ⊂ R such that

lim
t→+∞

dH(At, A) = 0 and lim
t→+∞

dH(At ∩ U,A ∩ U) = +∞.

Exercise 1.3. Denote by K the field of formal power series
∑

r∈J art
r with complex

coefficients, where J ⊂ R is well-ordered. Let V ⊂ (K∗)2 be the non-Archimedean
curve defined by the equation 1+z+w+ tzw = 0, and let Vf ⊂ R2 be the tropical
curve given by the tropical polynomial f(x, y) = “0+ x+ y+1 · x · y”. Prove that
LogK(V ) = Vf .

Exercise 1.4. Let K be a field with a non-Archimedean valuation val : K∗ → R,
A ⊂ Z2 a non-empty finite set, F (z, w) =

∑
(i,j)∈A aijz

iwj a Laurent polynomial
over K. Show that the set

A(F ) = {(val(z), val(w)) : F (z, w) = 0, z, w ∈ K∗}

is contained in the tropical curve Vf defined by the tropical polynomial f(x) =
maxj∈A(aj + 〈j, x〉). Assuming in addition that K is algebraically closed of char-
acteristic zero, and the valuation val is dominant (surjective), prove that A(F ) is
dense in (coincides with) Vf .

Exercise 1.5. (A research problem.) Can you find a tropical curve in R3 that is the
limit of amoebas of real rational algebraic curves which are knotted (e.g., realize
a trefoil knot)?



Chapter 2

Patchworking of algebraic
varieties

2.1 Introduction: A general idea of the patchworking

construction

Consider the diagram

X

���
��

��
��

� � �� Y

����
��
��
�

(C, 0)

(2.1)

where Y is a germ of a 1-parameter flat1 family of algebraic varieties with dimY≥3,
such that the fibres Yt are reduced irreducible for t �= 0, and the central fibre Y0

splits into a few reduced components. Further on,X is a germ of a 1-parameter flat
family of subvarieties Xt ⊂ Yt for t ∈ (C, 0). When considering the diagram (2.1)
over the reals, we assume that X and Y are equipped with a complex conjugation
which commutes with the projections, and we restrict the parameter range to
t ∈ [0, τ), τ > 0, taking the respective preimages in X and Y .

In this situation one can state the following two problems (below K denotes
either the complex or the real field):

1The flatness over a smooth one-dimensional base means that the projection is a proper
analytic surjection.
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Degeneration (tropicalization) problem

Data: Flat families ◦
X

���
��

��
��

�
� � �� ◦

Y

����
��
��
��

(K, 0)\{0}

Aim: Find appropriate limit fibres X0 ⊂ Y0 defined over the origin.

Deformation (patchworking) problem

Data: A flat family Y −→ (K, 0) with reduced irreducible fibres Yt for
t �= 0 and reduced reducible central fibre Y0 =

⋃N
k=1 Y0,k, and a

subvariety X0 ⊂ Y0.

X0
� � �� Y0

��

� � �� Y

��
0 � � �� (K, 0)

Aim: Restore a flat familyX −→ (K, 0) so that the fibresXt will inherit
certain properties of X0 for t �= 0.

As the result of the patchworking construction, the subvariety Xt of Yt for
t �= 0 appears to be “glued” out of the components X0,k = X0 ∩ Y0,k of X0,
k = 1, 2, . . . , N .

The aim of this chapter is to demonstrate deep links of the patchworking
method with tropical geometry, in particular, to show how the patchworking ap-
plies to tropical enumerative geometry.

We have tried to present the material in a logically connected way, with basic
ideas and constructions, illustrating examples, exercises. Some proofs or details are
skipped, since they can be found in the recommended literature:

• for Section “2.2. Elements of toric geometry” we refer to [12];

• for Section 2.3. “Viro’s patchworking method” we refer to [67, 68, 70, 71, 72]
as well as to [16, 19, 20, 21, 25, 26];

• for Section 2.4. “Patchworking singular algebraic hypersurfaces” we refer to
[56];

• for Section 2.5. “Tropicalization and patchworking in the enumeration of
nodal curves” we refer to [42, 58, 59].

For other applications of the patchworking construction we refer to [24, 55, 57, 63].
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2.2 Elements of toric geometry

Definition 2.1. A complex n-dimensional toric variety is an irreducible (usually
normal) algebraic variety X with an action of the torus (C∗)n having an open
dense orbit (isomorphic just to (C∗)n).

Toric varieties include, in particular, the affine and projective spaces, the
rational geometrically ruled surfaces and some other important varieties.

2.2.1 Construction of toric varieties

A rational convex polyhedral cone is a set

σ =

{∑
i∈I

τi · vi ∈ Rn | τi ≥ 0, i ∈ I
}
,

where I is a finite index set, and vi ∈ Zn for i ∈ I are given vectors, the so-called
generators. The cone σ is called strongly convex if it does not contain a linear
subspace of positive dimension.

The dual cone

σν =
{
φ ∈ (Rn)∗ | φ(u) ≥ 0, u ∈ σ

}
is a rational convex polyhedral cone as well.

For every strongly convex rational cone, the set Sσ = σν ∩Zn equipped with
the componentwise addition is a finitely generated semigroup (Gordan’s lemma).
Therefore the set

C[Sσ]
def=

⎧⎨⎩∑
i∈S̃

aiz
i

∣∣∣∣∣∣ S̃ ⊂ Sσ finite and ai ∈ C, z = (z1, z2, . . . , zn)

⎫⎬⎭
is a finitely-generated polynomial algebra. Hence the variety Uσ = SpecC[Sσ]
associated to the cone σ is an affine algebraic variety with dimUσ = dimσν . It is
always irreducible and normal. Furthermore, it can be described as a subvariety of
an affine space in the following way: choose semigroup generators v1, v2, . . . , vs ∈
Sσ, then Uσ ⊂ Cs is defined by the equations

yn1
1 yn2

2 · · · yns
s = 1

for any relation

n1 · v1 + n2 · v2 + · · ·+ ns · vs = 0

with integers n1, n2, . . . , ns.
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Example 2.2. Let σ = {0} ⊂ Rn. Then σν = Rn and the semigroup Sσ = Zn is
generated by the finite set

{e1, e2, . . . , en,−e1,−e2, . . . ,−en}.

Thus, we obtain the polynomial algebra C[Sσ] = C[x1, x
−1
1 , x2, x

−1
2 , . . . , xn, x

−1
n ]

and the affine toric variety Uσ � (C∗)n = SpecC[Sσ] , which can be defined by
the equations

y1y2 = 1, y3y4 = 1, . . . , y2n−1y2n = 1

in C2n. The action of the torus T = (C∗)n is given by an action on the polynomial
algebra C[Sσ], which is defined by

(C∗)n × C[Sσ] −→ C[Sσ],

(λ1, λ2, . . . , λn) · (x1, x2, . . . , xn) �−→ (λ−1
1 x1, λ

−1
2 x2, . . . , λ

−1
n xn).

Example 2.3. Let τ ⊂ σ be a face of a cone σ, then

τ ⊂ σ

��

Uτ ↪→ Uσ

τν ⊃ σν 		 C[Sτ ]←↩ C[Sσ]





where the embeddings in the right-hand side are compatible with the (C∗)n-action,
and Uτ is an open subset in Uσ. In particular, for a strongly convex cone σ, the
set {0} ⊂ σ is a face and hence (C∗)n is an open subset of Uσ. Moreover, in fact,
it is dense.

2.2.2 A toric variety associated with a fan

Definition 2.4. A fan is a finite collection F of strongly convex rational polyhedral
cones, such that

• for any σ ∈ F , each face τ of σ belongs to F , and
• for any two cones σ1, σ2 ∈ F , the intersection σ1 ∩ σ2 is a common face.

Definition 2.5. Let F be a fan. Then the associated toric variety Tor(F) is defined
as the quotient

Tor(F) =
⋃

σ∈F
Uσ

/
∼ ,

that is the union of the affine toric varieties, associated with the faces σ as in
Example 2.3, modulo an equivalence relation ∼. The relation identifies for every
pair of incident faces τ ⊂ σ ∈ F the variety Uτ with its embedding into Uσ.
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2.2.3 A toric variety associated with a convex lattice polyhedron

Let Δ ⊂ Rn be a convex lattice polyhedron, we construct a cone for any face
τ ⊂ Δ. The cone of τ ,

Cτ (Δ) = 〈u− u′ | u a vertex of Δ, u′ a vertex of τ〉 ,

is generated by the integral difference vectors of vertices from τ and Δ. Then the
fan corresponding to Δ is

F(Δ) = {Cτ (Δ)ν | τ ⊂ Δ}.

C
A

(Δ)
C

B
(Δ)

C
C

(Δ)

C
A

(Δ)

C
B
(Δ)

C
C

(Δ)

A B

C

Δ

Figure 2.1: Fan of a polytope and its associated cones.

The corresponding variety Tor(Δ) = Tor(F(Δ)) is called the toric variety
associated with the polyhedron Δ. Its structure reflects the combinatorics of the
polyhedron Δ and can be described as follows.

Theorem 2.6. There is a 1-to-1 correspondence between the orbits of the (C∗)n-
action on Tor(Δ) and the faces of Δ including Δ itself, such that:

1. dimOσ = dimσ, where Oσ is the orbit corresponding to the face σ,

2. Oσ � Tor(σ),

3. Oσ ⊃ Oτ ⇐⇒ τ is a face of σ.

Here Oσ means the closure of Oσ.

Remark 2.7. The group of affine-linear automorphisms Aff(Zn) of Zn acts on the
set of convex lattice polyhedra and thus induces isomorphisms of toric varieties.
Example 2.8. Let Δ ⊂ R2 be the triangle with vertices (0, 0), (1, 0) and (0, 1).
Then Tor(Δ) � CP 2, and the sides of Δ correspond to the coordinate lines in
CP 2 (further on, the divisors on a toric surface Tor(Δ), corresponding to the sides
of Δ, will be called boundary divisors), whereas the vertices of Δ correspond to
the fundamental points in CP 2 (see Figure 2.1).
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2.2.4 Embedding of Tor(Δ) into a projective space

Define a map ϕ on (C∗)n ⊂ Tor(Δ) by

ϕ : (C∗)n −→ CPN , ϕ(z) = (zω0 : zω1 : · · · : zωN ) ,

where2

N = |Δ ∩ Zn| − 1, Δ ∩ Zn = {ω1, ω2, . . . , ωN} .

It extends up to a regular map of Tor(Δ):

ϕ : Tor(Δ) ∼−→ ϕ ((C∗)n) ↪→ CPN .

In case n = 2, the map ϕ is always embedding, i.e., the linear system on Tor(Δ),
generated by the monomials zi, i ∈ Δ∩Zn, (called the tautological linear system)
is very ample. In case n ≥ 3, it is so, provided that, for any face σ ⊂ Δ (including
Δ itself), the points σ ∩ Zn generate the lattice L(σ) ∩ Zn, where L(σ) ⊂ Rn is
the minimal affine subspace containing σ. Replacing Δ by the polytope mΔ with
a sufficiently large m, we can make the tautological linear system very ample and
thus can assume that ϕ is an embedding.

Example 2.9. Let τn
d be an n-dimensional simplex with side length d, i.e.,

τn
d = conv{0, d · e1, d · e2, . . . , d · en} ⊂ Rn,

where ei denotes the i-th unit vector in Rn. Then Tor(τn
d ) � CPn and

ϕ : Tor(τn
d ) = CPn −→ CPN

is the d-multiple Segre embedding.

2.2.5 The real part of a toric variety and the moment map

The same construction over R leads to the notion of a real toric variety TorR(Δ) ⊂
Tor(Δ). It contains as an open dense subset the real torus

(R∗)n =
∐

ε∈{±1}n

(R∗)nε ,

which can be written as the disjoint union of the open orthants (R∗)nε ⊂ Rn. We
then define

TorR,ε(Δ)
def= (R∗)nε ⊂ TorR(Δ) .

The following nice geometric description of TorR(Δ) is based on the moment map.

2Here and further on, the notation |finite set| means the cardinality of the given finite set.
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Definition 2.10. The moment map μ = μΔ : (C∗)n → Δ is defined by

μ(z) =
∑

i∈Δ∩Zn i · |z|i∑
i∈Δ∩Zn |z|i

for z ∈ (C∗)n ⊂ Tor(Δ), (2.2)

where |z|i = |z1|i1 · |z2|i2 · · · · · |zn|in . It continuously extends up to

μΔ : Tor(Δ) −→ Δ.

The following statement is well known.

Theorem 2.11. For any ε ∈ {±1}n, the restricted moment map

μΔ : TorR,ε(Δ) −→ Δ

is a homeomorphism, such that

1. μΔ : (R∗)nε −→ Int(Δ) is an analytic diffeomorphism and

2. for any face σ ⊂ Δ the set

TorR,ε(σ)
def
= Tor(σ) ∩ TorR,ε(Δ)

is mapped by μΔ homeomorphically onto σ ⊂ Δ.

Thus, the real toric variety TorR(Δ) is glued up from 2n copies TorR,ε(Δ) of Δ
by the following identification. Two faces TorR,ε(σ) and TorR,δ(σ) for ε, δ ∈ {±1}n
are identified, if either, for any i ∈ σ∩Zn it holds that εi = δi, or, for any i ∈ σ∩Zn

it holds that εi = −δi.
Remark 2.12. In formula (2.2), we can replace the right-hand side by an expression

μ(z) =
∑

i∈F i · λi|z|i∑
i∈F λi|z|i

for z ∈ (C∗)n ⊂ Tor(Δ),

where F ⊂ Δ is finite including all the vertices of Δ, the numbers λi are positive,
and the statement of Theorem 2.11 will remain valid.

Assume that Δ lies entirely in the closed non-negative orthant Rn
+, and, for

any ε ∈ {±1}n, denote by Δε the copy of Δ in the closed orthant Rn
ε obtained

by the reflection rε : Rn
+ → Rn

ε with respect to suitable coordinate hyperplanes.
Then we define the following modification of the moment map:

μΔ,ε
def= rε ◦ μΔ : TorR,ε(Δ)→ Δε .

Introduce also the map

ψΔ :
⋃

ε∈{±1}n

Δε → TorR(Δ) ,
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which is inverse to μΔ,ε on each part TorR,ε(Δ), ε ∈ {±1}n, and is onto. Geomet-
rically, ψΔ glues together the 2n symmetric copies Δε of Δ along their faces by
the rule described in Remark 2.12.

We shall also use the complexified moment map, defined as follows. Let Δ ⊂
Rn be an n-dimensional convex lattice polytope. Decompose the complex torus
(C∗)n as (R∗)n+ × (S1)n by

(z1, . . . , zn) ↔
(
(|z1|, . . . , |zn|),

(
z1
|z1|

, . . . ,
zn

|zn|

))
,

and define the complexified polytope CΔ def= Δ× (S1)n. The complexified moment
map CμΔ : (C∗)n → CΔ is given by

CμΔ(z1, . . . , zn) =
(
μΔ(z1, . . . , zn),

(
z1
|z1|

, . . . ,
zn

|zn|

))
∈ CΔ .

Theorem 2.11 immediately yields

Theorem 2.13. The map CμΔ is a real analytic diffeomorphism of (C∗)n onto
Int(Δ) × (S1)n ⊂ CΔ. Furthermore, the inverse map naturally extends up to a
surjection Cψ : CΔ→ Tor(Δ) such that, for each proper face σ ⊂ Δ,

1. Cψ takes σ × (S1)n ⊂ CΔ onto Tor(σ) ⊂ Tor(Δ);

2. the restriction Cψ : Int(σ)× (S1)n → (C∗)dim σ ⊂ Tor(σ) induces a fibration
with fibre (S1)codimσ.

2.2.6 Hypersurfaces in toric varieties

A hypersurface in Tor(Δ), which does not contain the boundary divisors, is
uniquely determined by its intersection with the torus (C∗)n, and that intersection
can be defined by an equation,

f(z) :=
∑

i∈Δ∩Zn

aiz
i = 0 , (2.3)

containing at least two monomials. We restore the original hypersurface by taking
the closure {f = 0} ∩ (C∗)n ⊂ Tor(Δ) in the toric variety Tor(Δ). We can, if
necessary, replace Δ by N ·Δ with N ∈ N, since Tor(Δ) � Tor(N ·Δ).

Consider an algebraic hypersurface defined in (C∗)n by equation (2.3). The
closure {f = 0} ∩ (C∗)n ⊂ Tor(Δ) is an algebraic hypersurface in the toric variety
Tor(Δ). The intersection of this hypersurface with the subvarieties Tor(σ), σ being
a proper face of Δ, can be described in the following way:

{f = 0} ∩ Tor(σ) = {fσ = 0} ,

where fσ =
∑

i∈σ∩Zn ai · zi is the truncation of f to σ. More generally, let Δ ⊂ Δ
be the Newton polytope of f . To recover the intersection {f = 0} ∩ Tor(σ), we
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cannot just take the restriction of f to a face σ, since maybe no integer point
of this face corresponds to a monomial of f , i.e., σ ∩ Δ′ = ∅. Instead, assuming
for simplicity that σ ⊂ Δ is a facet (face of codimension 1), we take the exterior
normal vector v ∈ Zn of σ and then choose the face σ′ ⊂ Δ′, where the functional

(Rn  u �−→ u · v)|Δ′

attains its maximum. Then we get

{f = 0} ∩ Tor(σ) = {fσ′ = 0}.

2.3 Viro’s patchworking method

In 1979–80, Viro suggested a patchworking construction for obtaining real non-
singular projective algebraic hypersurfaces with prescribed topology. This method
was a major breakthrough in Hilbert’s 16th problem, and since then it has been
the most efficient constructive method in this field. Viro immediately solved the
isotopy classification problem for plane real curves of degree 7 and made significant
progress in degree 8 (up to degree 5 it has been known since the 19th century, the
degree 6 case was completed by Gudkov in 1969). So far almost all known topologi-
cal types of real nonsingular algebraic curves and, more generally, real nonsingular
projective hypersurfaces have been constructed using Viro’s patchworking method
or its modifications.

2.3.1 Chart of a real polynomial

Let Δ ⊂ Rn
+ be an n-dimensional convex lattice polytope.

Definition 2.14. The chart ChartΔ,ε(f) of a polynomial f ∈ R[z1, . . . , zn] in the
polytope Δε is given by

ChartΔ,ε(f) = μΔ,ε({f = 0} ∩ (R∗)nε ) ⊂ Δε.

The complex chart CChartΔ(f) of a polynomial f ∈ C[z1, . . . , zn] in the complex-
ified polytope CΔ is defined as

CChartΔ,ε(f) = CμΔ({f = 0} ∩ (C∗)n) ⊂ CΔ .

Example 2.15. Let f(x, y) = xy − x − y + 1. The Newton polygon Δ of f is
the square with the vertices (0, 0), (0, 1), (1, 0), and (1, 1). Then the affine curve
{f = 0} ⊂ R2 and the charts of f in the polygons Δ++ = Δ, Δ+−, Δ−+, and
Δ−− look as shown in Figure 2.2.

The following properties of charts will be important for us.
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Figure 2.2: Chart of a real polynomial.

Lemma 2.16. Let Δ be the Newton polytope of a polynomial f . Then for any face
σ ⊂ Δ,

ChartΔ,ε(f) ∩ σε = Chartσ,ε(fσ), ε ∈ {±1}n ,

where fσ(z) =
∑

i∈σ∩Zn aiz
i. More generally, if

• Δ′ ⊂ Δ is the Newton polytope of f ,

• σ ⊂ Δ is a facet of Δ,

• π is an exterior normal vector of σ,

• ϕ(u) = 〈π, u〉 is a linear functional, and

• σ′ ⊂ Δ′ is the face of Δ′, where ϕ attains its maximum,

then
ChartΔ,ε(f) ∩ σε = Chartσ,ε(fσ′), ε ∈ {±1}n .

A similar statement is valid for the complex charts. To avoid unnecessary
complications, we formulate it in a simplified form (which however can be extended
up to a general case in view of Remark 2.7):

Lemma 2.17. Let Δ ⊂ Rn be an n-dimensional Newton polytope of a polynomial
f , and let σ be a k-dimensional face of Δ, lying in a coordinate k-plane. Then

CChartΔ(f) ∩ (σ × (S1)n)) � CChartσ(fσ)× (S1)n−k .

Lemma 2.18. Assume that f ∈ R[z1, . . . , zn] is completely non-degenerate, that
is neither f nor its truncation fσ to any face σ of its Newton polytope Δ have
singular points in the torus (C∗)n. Then the chart ChartΔ,ε(f) is a hypersurface
in Δε with boundary on ∂Δε, which is smooth in the interior of Δε and, for n ≥ 3,
has corners on the boundary.

If in addition, dimΔ = n, then CChartΔ(f) is a codimension 2 submanifold
in CΔ with boundary on ∂CΔ = ∂Δ × (S1)n. The chart CChartΔ(f) is smooth
in Int(CΔ) and, for n ≥ 3, has corners on the boundary.
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2.3.2 Patchworking of real nonsingular hypersurfaces

We present here three versions of the Viro patchworking theorem, real affine, real
projective, and equivariant ones, and give the proof of the real affine version,
leaving to the reader the proof of the remaining versions.

Let us be given the following data:

• an n-dimensional convex lattice polytope Δ ⊂ Rn
+;

• a convex piecewise-linear function ν : Δ→ R, whose linearity domains form
a subdivision

Δ = Δ1 ∪Δ2 ∪ · · · ∪ΔN

into convex lattice polytopes (such a subdivision is called convex);

• a set of numbers ai ∈ R for i ∈ Δ ∩ Zn, such that ai �= 0 for any vertex i of
the above subdivision, and the polynomials

fm(z) =
∑

i∈Δm∩Zn

aiz
i, m = 1, . . . , N ,

are completely non-degenerate.

Theorem 2.19 (Real affine patchworking). Under the above assumptions, for any
ε ∈ {±1}n and any sufficiently small t > 0, the chart ChartΔ,ε(f(t)) of the Viro
polynomial

f(t) =
∑
i∈Δ

ait
ν(i) · zi

is isotopic in Δε to
N⋃

m=1

ChartΔm,ε(fm) (2.4)

by an isotopy, which leaves the faces of Δε invariant.

Theorem 2.20 (Real projective patchworking). Under the above assumptions, for
any sufficiently small t > 0, the (singular in general) manifolds

ψΔ

⎛⎝ ⋃
ε∈{±1}n

ChartΔ,ε(f(t))

⎞⎠ ⊂ TorR(Δ)

and
N⋃

m=1

ψΔ

⎛⎝ ⋃
ε∈{±1}n

ChartΔ,ε(fm)

⎞⎠ ⊂ TorR(Δ) (2.5)

are isotopic in TorR(Δ) by an isotopy, which leaves the real toric divisors TorR(σ)⊂
TorR(Δ) invariant for all faces σ ⊂ Δ.
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Theorem 2.21 (Equivariant patchworking). Under the above assumption, for any
sufficiently small t > 0, the (singular in general) manifolds

CψΔ

(
CChartΔ(f(t))

)
and

CψΔ

(
N⋃

m=1

CChartΔm(fm)

)
(2.6)

are equivariantly isotopic in Tor(Δ) by an isotopy which leaves the toric subvari-
eties Tor(σ), σ ⊂ Δ, invariant.

Remark 2.22. From Lemmas 2.16, 2.17, and 2.18 we can deduce that the charts
ChartΔm,ε(fm) and ChartΔl,ε(fl), as well as CChartΔm(fm) and CChartΔl

(fl)
agree along the common face σε = Δm,ε ∩ Δl,ε, respectively, along σ × (S1)n =
CΔm ∩CΔl. Furthermore, all the charts ChartΔm,ε(fm), m = 1, 2, . . . , N , glue up
into a manifold with corners and boundary on ∂Δε, and the same holds for the
charts CChartΔm(fm), m = 1, . . . , N .

Proof of Viro’s theorem. First, we slightly deform the function ν in the space of
convex piecewise-linear functions determining the same subdivision of Δ in order
to get ν defined over Q. This is always possible, since the latter space is an open
rational cone. Notice also that such a deformation of ν does not affect the isotopy
type of the real and complex charts of the Viro polynomials f(t) as t > 0 is
small enough. Indeed, for a fixed ν, the charts of ft) are isotopic in some interval
0 < t < t∗, and the upper bound t∗ (corresponding to a singular hypersurface
{f(t∗) = 0} ∩ (C∗)n) depends analytically on the coordinates of the vertices of the
graph of ν.

Afterwards we multiply ν by a large integer in order to provide ν(Δ∩Zn) ⊂ Z
(such a multiplication simply means the change of parameter in (2.4)).

Now consider the convex polytope

Δ̃ = {(x, y) ∈ Rn+1 : x ∈ Δ, ν(x) ≤ y ≤M},

where M > max ν
∣∣
Δ
(see Figure 2.3). Then f(t) and t − c with c ∈ R define

hypersurfaces in Tor(Δ̃).
First, the hypersurface {t−c = 0} is for c �= 0 isomorphic to Tor(Δ), where Δ

can be interpreted as the upper facet of Δ̃. The isomorphism is provided by a family
of straight lines z = c̄ for c̄ ∈ (C∗)n, respectively compactified, which transversally
cross Tor(Δ) each at one point, and also cross {t − c = 0} transversally each at
one point. Notice that {t− c = 0} crosses Tor(σ) ⊂ Tor(Δ̃) only for lateral faces
σ ∈ Δ̃. When c→ 0, the hypersurface {t− c = 0} degenerates into

N⋃
m=1

Tor(Δ̃m),
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M

t

R n

Δ~

Δ k

Δ

Figure 2.3: Proof of Viro’s theorem.

where Δ̃1, Δ̃2, . . . , Δ̃N are the faces of the graph of ν (shown as the thick broken
line designating the bottom of Δ in Figure 2.3), that is ChartΔ̃,ε(t − c), c > 0,

(shown as dotted graph in Figure 2.3) converges to
⋃N

m=1 Δ̃m,ε as c tends to zero.
On the other hand the hypersurface {f(t) = 0} (whose chart consists of the

remaining eight graphs above the thick lines in Figure 2.3) crosses {t − c = 0}
transversally as c > 0 sufficiently small and, furthermore, {f(t) = 0} crosses⋃N

m=1Tor(Δ̃m) along
⋃N

m=1{f Δ̃m

(t) = 0}. Notice that, due to ν(Zn) ⊂ Z, the pro-

jection of Δ̃m onto Δm extends up to an affine automorphism of Zn+1. Thus it
defines an isomorphism

Tor(Δ̃m) � Tor(Δm),

which takes {f Δ̃m

(t) } to {fm = 0}. The latter can be viewed as

f Δ̃m

(t) =
∑

i∈Δm

ait
α0+α·izi = tα0 · fm(z1 · tα1 , z2 · tα2 , . . . , zn · tαn)

where

ν
∣∣
Δm

(i) = α0 + α · i = α0 + α1i1 + · · ·+ αnin .
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One can show that {f(t) = 0} crosses
⋃N

m=1Tor(Δ̃m) transversally. Hence the
following diagram holds.

ChartΔ̃,ε(f(t)) ∩ChartΔ̃,ε(t− c)
c→0 ��

��

{t−c=0}�Tor(Δ)

��

N⋃
m=1

ChartΔ̃m,ε(f
Δ̃m

(t) )
��

projection

��

ChartΔ,ε(f(c)) ⊂ Δε

N⋃
m=1

ChartΔm,ε(fm)

Now we are done, since f1, f2, . . . , fN , f(t) are completely non-degenerate. �

Example 2.23. We illustrate the Viro patchworking theorem by applying it to
the classification of nonsingular real plane curves of degree 6. By the Harnack
inequality (see, for instance, [69]), a real nonsingular plane projective curve of
degree m may have at most (m−1)(m− 2)/2+1 connected components. The real
non-singular curves of a given degree having that maximal number of connected
components are called M -curves. For an even m all the connected components of
a nonsingular real curve are ovals, that is null-homologous circles in RP 2. So, a
real plane nonsingular sextic curve may have at most 11 ovals, and, due to the
Gudkov–Rokhlin congruence (again we refer to the survey [69]), the M -sextics
must have one of the following isotopy types 〈9 + 1〈1〉〉, 〈1 + 1〈9〉〉, or 〈5 + 1〈5〉〉,
i.e., they have one oval embracing 1, 5, or 9 ovals, and outside respectively 9, 5, or
1 ovals (see Figure 2.4). Using the Viro patchworking construction we shall show
that there exist sextic curves of each of the three above isotopy types.

We divide the Newton polygon Δ = conv{(0, 0), (6, 0), (0, 6)} of a generic
plane curve of degree 6 into two triangles Δ1 = conv{(0, 0), (0, 3), (6, 0)} and
Δ2 = conv{(0, 3), (0, 6), (6, 0)} (clearly, this subdivision lifts up to the graph of
a convex piecewise-linear function on Δ). Then we find coefficients akj , k, j ≥ 0,
k + j ≤ 6, so that the corresponding polynomials f1 and f2 have charts as shown
in Figure 2.4. In fact, it is enough to build a polynomial f1 realizing one of the
required charts, and then the other polynomials can be obtained from that one by
suitable coordinate changes (see Figure 2.5).

2.3.3 Combinatorial patchworking

The combinatorial patchworking is a rather simple, but very powerful, particular
case of the Viro method.
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6

<c>

<d>

<b>
<a>

(a,b) = (4,0) or (0,4)

(c,d) = (4,0) or (0,4)

(Harnack) (Hilbert)(Gudkov)

Figure 2.4: The M -curves of degree 6.

Let Δ ⊂ Rn be an n-dimensional lattice simplex and

f(z) =
∑

i∈Δ∩Zn

aiz
i

a real polynomial such that ai �= 0 if and only if i is a vertex of Δ. Then f is called
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<4> 6

3

<4>

y’=−y−kx

x’=−x

2

6

6

3

<4>

6

6

3

<4>

F’(x,y)=y   F(y/x,1/y)
6

Figure 2.5: Construction of the block polynomials.

(a non-degenerate) (n+ 1) - nomial. Let

T n
1 = conv{(0, . . . , 0), (1, 0, . . . , 0), . . . , (0, . . . , 0, 1)}

be the unit simplex of dimension n and

Φ : Δ −→ T n
1

be an affine map taking Δ onto T n
1 . It induces a rational map of Tor(Δ) to Tor(T n

1 ),
which in turn reduces to a diffeomorphism Φ∗ : TorR,+(Δ) → TorR,+(T n

1 ) taking
ChartΔ,+(f) ⊂ Δ onto ChartT n

1 ,+(H) ⊂ T n
1 , where H is a linear polynomial,

defining a real hyperplane in Pn. The topology of the chart of a hyperplane and
its disposition with respect to the faces of T n

1 depend only on the signs of the
coefficients: namely, it is isotopic to a hyperplane section in T n

1 , which separates
the vertices of different signs (see Figure 2.6).

For any other chart ChartΔ,ε(f), ε = (ε1, . . . , εn) ∈ {±1}n, we make the
coordinate change (z1, . . . , zn) �→ (ε1z1, . . . , εnzn), sending the orthant (R∗)

n
ε to

(R∗)n+ and redefining the signs of the coefficients according to the rule

signai,ε = signai · εi, i ∈ Δ ∩ Zn , (2.7)
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+

-

+ + -

-

+

Figure 2.6: Charts of an (n+ 1)-nomial.

and construct the corresponding chart as above.

The combinatorial patchworking is the following procedure. Assume that,
in the initial data of the patchworking construction, Δ = Δ1 ∪ · · · ∪ ΔN is a
triangulation, and the numbers ai ∈ {−1, 0, 1} are non-zero if and only if i is
a vertex Δ1, . . . ,ΔN . Then by Theorems 2.19 and 2.20, the polynomial f(t) re-
alizes the gluing of charts of (n + 1)-nomials. Namely, we take the subdivision
Δ = Δ1 ∪ · · · ∪ΔN , and put at each vertex the corresponding coefficient ai. Then
reflecting with respect to the coordinate hyperplanes, we extend the subdivision
to each polytope Δε, ε ∈ {±1}n, as well as the distribution of signs at the vertices
with the rule (2.7). Finally, in every simplex Δk,ε we take the hyperplane section,
which hits the midpoint of each edge, which joins vertices with different signs. The
resulting piecewise-linear complex is isotopic to a chart of the Viro polynomial
f(t). The real algebraic hypersurfaces obtained in a combinatorial patchworking
are called T -hypersurfaces (T -curves in the planar case).

We illustrate the use of the combinatorial patchworking in two examples.

Example 2.24. In 1876, Harnack constructed, using small deformations of reducible
curves, a series of plane projective M -curves of any degree. In fact, all these M -
curves can be obtained in the combinatorial patchworking. Take the Newton tri-
angle T 2

d = conv{(0, 0), (d, 0), (0, d)} of a general plane curve of degree d, and
consider its primitive convex triangulation, i.e., a subdivision into lattice triangles
of Euclidean area 1/2 (in the n-dimensional case, a primitive triangulation is that
into lattice simplices of the minimal Euclidean volume, equal to 1/n!). Define the
coefficients as follows:

akj =

{
1, if k ≡ j ≡ 0 mod 2,
−1, otherwise

, (k, j) ∈ T 2
d ∩ Z2 .



34 Chapter 2. Patchworking construction

...

9

Figure 2.7: The Harnack M -sextic of type 〈9 + 1〈1〉〉.

The result of the patchworking is a Harnack M -curve (see Figure 2.7), and its
isotopy type does not depend on the choice of a primitive convex triangulation of
T 2

d .
Example 2.25. As another application of the combinatorial patchworking we pre-
sent the construction of a real plane curve of degree 10 found by I. Itenberg in
1993 (see Figure 2.8), which contradicts the Ragsdale conjecture formulated in
1906.

2.3.4 A tropical point of view on the combinatorial Viro
patchworking

Let A ⊂ Zn be a finite set and

y = p(x) =
∑
i∈A

aix
i , x ∈ Rn

+

a real polynomial with positive coefficients. To compare it with a tropical polyno-
mial, we pass to logarithmic coordinates, i.e.,

v = log y, u = log x.

In this coordinate system the equation y = p(x) turns into

v = Lp(u) = log

(∑
i∈A

eiu+bi

)
with ai = ebi . Now we introduce the tropical polynomial

Mp(u) = max
i∈A
{iu+ bi}.
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Figure 2.8: A counterexample to Ragsdale’s conjecture: curve of degree 10 with
real scheme 〈29〉+ 1〈2 + 1〈2〉〉.

It holds that (see Figure 2.9)

Mp(u) ≤ Lp(u) = log

(∑
i∈A

eiu+bi

)
≤ log

(
|A| ·max

i∈A
eiu+bi

)
=Mp(u)+log |A|.

To get a better approximation, we consider a family of polynomials, namely, the
Viro polynomials

p(t) =
∑
i∈A

ait
ν(i) · xi with t > 0.
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Passing to logarithmic coordinates, introducing a new parameter h = − 1
log t > 0

and applying the homothety

u1 = u · h v1 = v · h ,

we similarly obtain

p(t)(u1) = h · log
(∑

i∈A

e
iu1−ν(i)+bih

h

)

with tν(i) = elog(t)·ν(i) = e
−ν(i)

h . This polynomial converges point-wise to

MP(t)(u1) = max
i∈A

(i · u1 − ν(i))

as h→ 0, or, equivalently, as t→ 0.

M   (u)p

M   (u)+log Ap

 L   (u)p

u

v

Figure 2.9: Tropicalization of a real polynomial.

Furthermore, let us be given the following data:

• a convex piecewise-linear function ν : conv(A)→ R, and

• a general real polynomial

p(t)(x) =
∑
i∈A
ai>0

ait
ν(i)xi −

∑
i∈A
ai<0

(−ai)tν(i)xi.

Letting
p(t),+ =

∑
ai>0

ait
ν(i)xi, p(t),− =

∑
ai<0

(−ai)tν(i)xi ,

and using the preceding convergence result, we immediately obtain that the real
algebraic hypersurface {p(t) = 0} in the positive orthant Rn

+, after the coordinate
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change described above, is well approximated (in fact, converges to as t → 0)
by the projection of the intersection of the graphs of the tropical polynomials
Mp(t),+ and Mp(t),− as t tends to zero. This, in fact, is another point of view on
the combinatorial patchworking of real algebraic hypersurfaces. Recall that a close
representation of the combinatorial patchworking, based on the use of amoebas
and their limits, was proposed in Theorem 1.4, Chapter 1.

2.3.5 Patchworking of pseudo-holomorphic curves on ruled surfaces

Consider the patchworking data, given in Section 2.3.2. The convexity of the sub-
division Δ = Δ1 ∪ · · · ∪ΔN , needed in the proof of the patchworking Theorems
2.19, 2.20, and 2.21, is a restriction, i.e., there are non-convex subdivisions (see an
example in Figure 2.10 borrowed from [6]).
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Figure 2.10: A non-convex triangulation.

On the other hand, the unions of charts (2.4), (2.5), and (2.6) are piece-wise
smooth manifolds with boundary for any subdivision of Δ. It is natural to ask
what structure can be defined on such manifolds if the subdivision is not convex.
We intend to show that, if Tor(Δ) is the projective plane or a geometrically ruled
rational surface, then the union of charts as above is (equivariantly in the real
case) isotopic to a pseudo-holomorphic curve.

We, first, recall some necessary definitions and facts about pseudo-holomor-
phic curves. A Riemann surface M embedded in X (where X stands for CP 2 or
a rational ruled surface Σm, m ≥ 0) is called a pseudo-holomorphic curve, if it is
a J-holomorphic curve in some tame almost complex structure J on X (see [17]).
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If in addition Conj∗ ◦J = J−1 ◦ Conj∗ and Conj(M) = M , where Conj : X → X
is the standard real structure on X (this is the real structure of X as a real toric
surface associated with a polygon), then we call M a real pseudo-holomorphic
curve.

Pseudo-holomorphic curves and pencils of lines. To verify that the con-
structed surfaces are pseudo-holomorphic curves, we use the criterion suggested in
[10, 49]. Blowing up the plane at one of the fundamental points of the coordinate
system, we replace it by Σ1. Thus, let X be Σm, m ≥ 0, E ⊂ X be such that
E2 = −m, and let π : X → E be the respective ruling. According to [49], Section
5.3, and [10], Section 4.1, an oriented smooth surface M ⊂ X , homologous to
aE + bF (F being a fibre of π, where a > 0, b ≥ ma) is a pseudo-holomorphic
curve if any fibre Fc = π−1(c), c ∈ E, except for a finite number of them, crosses
M transversally at a points with multiplicity +1, and any of the remaining fibres
Fc crosses M at a − 2 points with multiplicity +1 and at one more point pc so
that, up to a fibre-wise homotopy in a neighborhood of pc in X , one has in suitable
local coordinates Fc = {z = 0} and M = {z = w2}.

In what follows we construct a fibration of X over CP 1 with spherical fibres,
all but finitely many of which cross V , the union of charts (2.6), transversally as
required above; after a small isotopy, the fibration becomes smooth and symplec-
tomorphic to π, and the remaining intersections of the fibres with V become as
required.

Refinement of subdivision. Let X = Σm, m ≥ 0, and let a > 0, b ≥
max{ma, 1} be integers. Denote by Δ′ the trapeze (or triangle) with vertices
(0, 1), (a, 1), (0, b + 1), and (a, b − ma + 1) (see Figure 2.11(a)), and by Δ the
trapeze with vertices (0, 0), (a, 0), (0, b + 1), and (a, b − ma + 1) (see Figure
2.11(b)). Clearly, Tor(Δ) = Σm. Given a subdivision of Δ′ into some convex
lattice polygons, we extend it up to a subdivision of Δ by cutting the rectan-
gle conv{(0, 0), (0, 1), (a, 0), (a, 1)} with vertical lines through the vertices of the
subdivision of Δ′ (see Figure 2.11(c)).

A vertex of a convex polygon in R2 is called h-extremal, if it is a strong
extremum of the projection on the horizontal axis. A subdivision of Δ into convex
polygons is called horizontally fibred if none of the subdivision polygons has h-
extremal vertices. If the given subdivision T : Δ = Δ1∪· · ·∪ΔN into convex lattice
polygons is not horizontally fibred, then we shall construct a new subdivision T ref

of Δ, which will be horizontally fibred and which we call the horizontal refinement
of T .

Denote by Vert(T ) the set of vertices of the polygons Δ1, . . . ,ΔN , by
Edges(T )0 the set of the vertical edges of Δ1, . . . ,ΔN and by Edges(T ) the set of
the remaining edges of Δ1, . . . ,ΔN . Consider continuous piecewise-linear functions
defined on [0, a] whose graphs are unions of edges belonging to E, and denote by
P the set of the graphs of these functions. For any v ∈ Vert(T ) and e ∈ Edges(T ),
put

P(v) = #{Γ ∈ P : v ∈ Γ}, P(e) = #{Γ ∈ P : e ⊂ Γ} .
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(b)

a

1

(c)(a)

a

1

a

1

Figure 2.11: Polygons Δ′, Δ, and their subdivisions.

Fix a sufficiently small ε > 0 and replace each edge e ∈ Edges(T ) by the union ẽ
of 2P(e) parallel translates of e in the following way:
• if e ⊂ ∂Δ, then put

ẽ = {e, trε(e), . . . , trP(e)−1
ε (e)} ,

or
ẽ = {e, tr−ε(e), . . . , tr

P(e)−1
−ε (e)} ,

where trδ is the translation by the vector (0, δ), and the sign is chosen so
that all new edges intersect Δ;

• if e �⊂ ∂Δ, then put

ẽ = {tr2P(e)−1
−ε/2 (e), tr2P(e)−3

−ε/2 (e), . . . , tr−ε/2(e), trε/2(e), . . . , tr
2P(e)−1
ε/2 (e)} .

All the endpoints of the edges belonging to ˜Edges(T ) =
⋃

e∈Edges(T ) ẽ and their
intersection points lie in small neighborhoods of the vertices of T . For any ver-
tex v ∈ Vert(T ), we choose such a closed neighborhood in the form of a rectangle
R1

v with vertical and horizontal sides. Choosing ε smaller if necessary, we can sup-

pose that no edge which belongs to ˜Edges(T ) intersects the horizontal sides of R1
v

(see Figure 2.12(a)). Put R2
v = R1

v ∩Δ.
The intersection points of the edges belonging to ˜Edges(T ) with the vertical

sides of R2
v is called marked points. If v = (i, j), a < i < b, then on the vertical

sides of R2
v we take the minimal segments s1, s2 containing all the marked points,

and choose R3
v to be the convex hull of the union of s1, s2 and the intersection
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points of R2
v with vertical edges of T adjacent to v (see Figure 2.12(b)). Note that

the number of marked points on s1 and s2 is the same and equal to 2P(v). Then
we subdivide R3

v by non-intersecting lines joining the respective marked points on
s1 and s2 (see Figure 2.12(c)). If the obtained subdivision of R3

v contains triangles,
then we remove the sides of these triangles lying inside of R3

v (see Figure 2.12(d)).

v
v

v

(a)

(c)(b) (d)

Figure 2.12: Refinement of a subdivision in a neighborhood of a vertex.

If R2
v has a vertical edge s1 ⊂ ∂Δ (see Figure 2.13(a)), we take the minimal

segment s2 on the other vertical side of R2
v, which contains all the intersection

points with the edges belonging to ˜Edges(T ). Then choose R3
v to be the con-

vex hull of s1 and s2 (see Figure 2.13(b)), and subdivide R3
v by horizontal lines

through marked points on s2 (see Figure 2.13(c)). If the obtained subdivision of
R3

v contains triangles, then we remove the sides of these triangles lying inside of R
3
v
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(see Figure 2.13(d)).

v

(a)

v

(b) (c) (d)

Figure 2.13: Case when v belongs to a vertical edge of Δ.

Now define the horizontal refinement T ref of Δ into the following convex
polygons3:

• the polygons of the subdivisions of R3
v, v ∈ Vert(T ), introduced above;

• the (closures of the) complements in Δ\⋃v∈Vert(T )R
3
v to the edges from

Edges(T )0 ∪ ˜Edges(T ).
The following statement accumulates the key properties of the horizontal

refinement.

Lemma 2.26. (i) The horizontal refinement is horizontally fibred.

(ii) For any i = 1, . . . , N there is exactly one element Δref
i of T ref such that

Δref
i ⊂ Δi and Δi\Δref

i lies in a small neighborhood of ∂Δi. Furthermore,
for any vertex v of Δi, the polygon Δref

i has exactly two vertices in a small
neighborhood of v.

(iii) For any edge e ∈ E there are exactly 2P(e)− 1 elements of T ref which are
congruent parallelograms, each one with a pair of sides parallel and close to
e.

(iv) The elements of T ref which are not mentioned in (i) and (ii) lie in
⋃

v∈Vert(T )

R3
v.

The proof is straightforward from the construction (see Figures 2.12 and
2.13).
Remark 2.27. According to Remark 2.12, we can modify the moment map and
its complexification, spreading the sum in formula (2.2) only to the vertices of
the respective polygon. Observe that then the map CμΔref

i
is a small equivariant

deformation of the map CμΔi for all i = 1, . . . , N .
3Observe that these polygons are not necessarily lattice polygons.
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S2-bundles over CP 1 associated with horizontally fibred subdivisions. For
further consideration we translate Δ and Δ′ inside the positive quadrant R2

+.
Let S be a horizontally fibred subdivision of Δ, and Λ be the pencil of the

(punctured) straight lines {y = const} in (C∗)2.
Lemma 2.28. (1) Let δ be a polygon of the subdivision S which has vertical edges

σ1 and σ2. Then the charts CChartδ(L) of lines L ∈ Λ are disjoint and lie in
(Int(δ)∪ Int(σ1)∪ Int(σ2))× (S1)2. Any chart CChartδ(L) is homeomorphic
to a cylinder whose boundary consists of one circle in Int(σ1) × (S1)2 and
one circle in Int(σ2)× (S1)2.

(2) Let σ be a non-vertical edge of S with vertices v1 and v2. Then the charts
CChartσ(L), L ∈ Λ, are homeomorphic to cylinders whose boundary consists
of one circle in {v1} × (S1)2 and one circle in {v2} × (S1)2. The charts of
lines {y = c1}, {y = c2} coincide if c1/c2 ∈ R, and are disjoint otherwise.

(3) Let δ′ and δ′′ be two polygons of S with a common vertical side σ. Then, for
any line L ∈ Λ, the charts CChartδ′(L) and CChartδ′′(L) intersect along
their common boundary component in σ × (S1)2. Similarly, for a pair of
non-vertical edges δ′ and δ′′ of S with a common vertex v and any line L ∈
Λ, the charts CChartδ′(L) and CChartδ′′(L) intersect along their common
boundary component in {v} × (S1)2.

The proof of Lemma 2.28 is straightforward from the definitions and Lemmas
2.16, 2.17, and 2.18.

Let σ1 and σ2 be the long and the short vertical sides of Δ, respectively, σ′1
the projection of σ1 to the vertical axis. This projection naturally extends up to
the projection π1 of σ1 × (S1)2) ⊂ CΔ onto Cσ′1 � σ1 × S1.

Lemma 2.29. There exists a surjective piece-wise smooth map Θ : CΔ → Cσ′1
such that Θ

∣∣
σ1

= π1, and all fibres of π are unions of charts of lines L ∈ Λ in
the complexifications of polygons of S, and are homeomorphic to cylinders with
boundary circles in σ1 × (S1)2, σ2 × (S1)2, respectively.

The statement immediately follows from Lemma 2.28 and the properties of
horizontally fibred subdivisions. The details can be found in the proof of Lemma
4.3 from [26].

The map ψΔ : CΔ → TorC(Δ) factors ∂CΔ by an S1-action, takes Cσ1

to TorC(σ1) = TorC(σ′1) = CP 1, and takes each fibre of π1 into a sphere S2,
contracting the boundary components into points. Observe also that the fibres of
π1 over ∂Cσ′1 are identified by ψΔ so that the induced fibration ΘS : TorC(Δ) =
Σm → TorC(σ′1) = CP 1 defines an S2-bundle with self-intersection −m of the
base section E def= TorC(σ1) ⊂ TorC(Δ). In addition, this fibration commutes with
the complex conjugation. Hence there exists an equivariant piece-wise smooth
homeomorphism TorC(Δ) → Σm which takes the fibration ΘS to the standard
projection π.
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Horizontal refinement of M and its deformation into a pseudo-holomorphic curve.
Let us be given a subdivision of Δ′ into convex lattice polygons, and a collection
{akj : (k, j) ∈ Δ′ ∩ Z2} of numbers such that akj �= 0 if (k, j) is a vertex of one
of the subdivision polygons. For any subdivision polygon Δm, we assume that the
polynomial

fm(x, y) =
∑

(k,j)∈Δm∩Z2

akjx
kyj , m = 1, . . . , N,

is completely non-degenerate. Extend the subdivision of Δ′ up to a subdivision T
of Δ as shown in Figure 2.11(c), and, for any subdivision rectangle Δj ⊂ Δ\Δ′,
having a common side σ with a subdivision polygon Δm ⊂ Δ′, put fj(x, y)

def=
F σ

m(x, y). Then

M
def= ψΔ

( ⋃
Δm∈T

CChΔi(fm)

)
⊂ Σm

is a piece-wise smooth surface.
Consider the horizontal refinement T ref of T . We define a new surface

M ref ⊂ Σm as follows. For any i = 1, . . . , N , we take the chart CChartΔref
k
(fk),

and for any non-vertical edge σ of Δj , j = 1, . . . , N , and any parallelogram
δ ∈ T ref with sides parallel and close to σ, we take the chart CChartδ(fσ

j ).
At last, we define

Mref = ψΔ

( ⋃
Δk∈T

CChΔref
k
(fk) ∪

⋃
δ

CChartδ(f δ
k )

)
⊂ Σm .

Denote by Π the family of (the closures of) the fibres of the fibration on Σm,
defined by the subdivision Tref as described above.

Lemma 2.30. (1) The set Mref is a piece-wise smooth surface in Σm, which is
(equivariantly in the real case) isotopic to M .

(2) There is a one-dimensional (over R) set K ⊂ Π � CP 1 such that, any fibre

Πp
def
= Θ−1(p) ∈ Π\K intersects with Mref exactly at d points, where d is

the length of the projection of Δ on the horizontal coordinate axis. Moreover,
all these intersection points are transverse and positive with respect to the
naturally induced orientations of Πp and Mref .

(3) The surface Mref intersects with E exactly at l = b−ma points. Moreover,
all these intersections are transverse and positive with respect to the natural
orientations of E and Mref .

Proof. We omit details, and only point out key observations.
The first statement directly follows from the construction, from Remark 2.27.

Then we define K to be the set of fibres in Π, which

• either cross {v} × (S1)2, where v is a vertex of the subdivision T ref ,
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• or cross Mref at a point, belonging to σ × (S1)2, where σ is a vertical edge
of the subdivision T ref ,

• or are tangent to Mref at a point in Int δ × (S1)2 for some polygon δ of
subdivision T ref .

Now the second statement follows from the fact that the intersection points of Πp,
p �∈ K, and Mref lie in

⋃
δ Int(Cδ) with δ running over all polygons of T ref , and

hence these intersection points are diffeomorphic (orientation preserving) images
of intersection points of {y = const} with {fi = 0} in (C∗)2. At last, the third
statement can be proven in the same way, if we put Δ in the position as in Figure
2.11(b) and then notice that the complexified momentum map smoothly extends
to C2. �

Corollary 2.31. (see [26]) There exists an almost complex structure on Σm and an
(equivariant in the real case) isotopy of Σm, preserving the lines of the pencil Π,
which deforms M into a real pseudo-holomorphic curve.

Proof. First, we deform M into Mref . Then we deform Mref and the pencil Π so
that the intersections ofMref of the fibres of the pencil will satisfy the conditions
of the criterion for pseudo-holomorphic curves, formulated in the beginning of
Section 2.3.5.

By Lemmas 2.29 and 2.30, the intersection ofMref with the fibred Πp, p �∈ K,
satisfies these conditions.

Consider now the intersection of Mref with the fibres Πp, p ∈ K.
If Πp crosses {v} × (S1)2 for some vertex v of the subdivision T ref , then

by Lemmas 2.28 and 2.29, Πp lies inside
⋃

σ σ × (S1)2, where σ runs over some
sequence of non-vertical edges of the subdivision T ref . Thus, Πp crosses Mref at
finitely many points lying on Int(σ)×(S1)2 for these non-vertical edges σ. Slightly
moving Πp in the pencil Π, we obtain a fibre disjoint with

⋃
σ σ × (S1)2, which

thereby intersects Mref transversally at a smooth points. Hence the initial fibre
Πp crosses Mref at a points with multiplicity +1.

Assume that Πp crosses Mref at a point, belonging to σ × (S1)2, where σ is
a vertical edge of the subdivision T ref . Then σ = Δref

i ∩Δref
j , where Δi, Δj are

neighboring polygons of the initial subdivision T of Δ. The intersection Πp∩Mref

contains a circle S1, lying inside σ× (S1)2, since the charts of curves in σ× (S1)2

are products of the charts in Cσ � σ × S1 by S1. We shall deform slightly Mref

and the pencil Π in a neighborhood U of that circle S1 in CΔ (here we suppose
that the size of U is small, but much larger than that of the small polygons of
the subdivision T ref ) in order to obtain finite intersections of the surface with the
fibres of the pencil in U , which all will be transverse.

Extend the pair of polygons Δi,Δj up to a convex lattice subdivision Δ =
Δi∪Δj ∪δ1∪· · ·∪δs, constructed in any possible way. Let ν : Δ→ R be a convex
piecewise-linear function, integral-valued at integral points, whose graph has facets
Δ′i,Δ

′
j , δ

′
1, . . . , δ

′
s, which respectively project onto the polygons Δi,Δj , δ1, . . . , δs.
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Introduce the overgraph of ν,

Δ̃ def= {(x, y, γ) ∈ R3 : ν(x, y) ≤ γ ≤ ν0},

with some constant ν0 > max ν. The family of the charts Pc = ChartΔ̃(t = c) ⊂
CΔ̃, c ∈ (0,∞), uniformly converges as c→ 0 to a piece-wise smooth four-manifold
with boundary

P0 =
(
Δ′i ∪Δ′j ∪ δ′1 ∪ · · · ∪ δ′s

)
× (S1)2 =

(
Δ′i ∪Δ′j ∪ δ′1 ∪ · · · ∪ δ′s

)
× (S1)2 × {1}

⊂
(
Δ′i ∪Δ′j ∪ δ′1 ∪ · · · ∪ δ′s

)
× (S1)3 ⊂ CΔ̃ ,

where the third factor S1 in the last expression contains the arguments of t. Fur-
thermore, the family Pc, c ∈ [0,∞), can be represented by a family of equivariant
homeomorphisms Hc : Pc → P0, c ∈ [0,∞), such that H0 = Id. Introduce the Viro
polynomial

f(t)(x, y) =
∑

(i,j)∈Δ

Akjx
kyjtν(k,j) .

The intersectionsMc
def= ChartΔ̃(f(t))∩Pc, c > 0, c→ 0, converge to a surface (with

boundary) M0 ⊂ P0, and the intersections Lc,ξ
def= ChartΔ̃(y = ξ) ∩ Pc, where ξ

belongs to a neighborhood Up of p ∈ C∗ ⊂ E, converge as c > 0, c→ 0, to surfaces
(with boundary) L0,ξ ⊂ P0. It can easily be seen that there is a homeomorphism
h : P0 → CΔ, which takes Δ′i × (S1)2 onto CΔi, Δ′j × (S1)2 onto CΔj , and
δ′m× (S1)2 onto CΔm, m = 1, . . . , s. Observe that the images h(M0) and h(L0,ξ),
ξ ∈ Up, are close in the neighborhood U , chosen above, to Mref ∩ U and Πξ ∩ U ,
ξ ∈ Up, respectively. Then we replace Mref ∩ U by h(Hc(Mc)) ∩ U and any line
Πξ∩U by h(Hc(L,̧ξ))∩U , ξ ∈ Up, for a sufficiently small fixed c > 0. Observe that
the intersections of h(Hc(Mc)) and h(Hc(Lc,ξ)) in U are regular (in the sense of
the criterion for pseudo-holomorphic curves) for any ξ ∈ Up. On the other hand
there is a (equivariant in the real case) homeomorphism of ∂U onto the respective
component of ∂(CΔ\U) which takes h(Hc(Mc))∩ ∂U onto Mref ∩ ∂(CΔ\U), and
takes h(Hc(L,̧ξ)) ∩ ∂U onto Πξ ∩ ∂(CΔ\U) for all ξ ∈ Up. Then we glue up U
and CΔ\U along their boundary using the latter homeomorphism, and obtain
a corrected surface M ′

ref and a corrected pencil Π′, which intersect regularly.
Now choose a complex structure on Σm so that the lines in Π′ will be complex
straight lines. Then we apply an (equivariant in the real case) isotopy of CΔ, which
preserves the lines of Π′ and makes M ′

ref smooth. This is possible, since along the
corners of M ′

ref its intersections with L ∈ Π′ are of multiplicity +1.
The proof is completed. �

2.4 Patchworking of singular algebraic hypersurfaces

The link between patchworking and tropical geometry presented above is not the
only one. We intend to demonstrate another link, which appears in the tropical
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approach to the enumeration of singular algebraic curves.
We start with a modified version of the patchworking construction, which

allows one to keep singularities in the patchworking deformation.
An important difference with respect to the original Viro method is that

singularities are not stable in general, and thus one has to modify the Viro defor-
mation and impose certain transversality conditions.

We shall treat in more detail a simplified version of patchworking of singular
hypersurfaces. Then we shall indicate how to adapt the patchworking theorem to
the concrete situation, which appears in the tropical enumeration of nodal curves
on toric surfaces.

2.4.1 Initial data

Let us be given:

(1) a classification S of isolated hypersurface singularities which is finitely deter-
mined and are invariant with respect to the (C∗)n-action, or respectively to
the Rn

+-action in the real case;

(2) a convex n-dimensional lattice polytope Δ ⊂ Rn and a subdivision Δ =
Δ1 ∪ Δ2 ∪ · · · ∪ ΔN into the linearity domains of some convex piecewise-
linear function ν : Δ→ R with ν(Zn) ⊂ Z;

(3) a collection of numbers ai ∈ C, or ai ∈ R, for i ∈ Δ ∩ Zn, such that

• ai �= 0 as a ∈
⋃N

k=1 Vert(Δk) and

• any polynomial
fk(z) =

∑
i∈Δk∩Zn

aiz
i

is peripherally non-degenerate. That means any truncation fσ
k on a

proper face σ � Δ is nonsingular in (C∗)n, and, for each such poly-
nomial fk, the set Sing(fk)

def= Sing(fk = 0) ∩ (C∗)n should be finite.

Remark 2.32 (Notation). For such a polynomial fk, denote by S(fk) ∈ ZS the
function

S(fk) ∈ ZS : S −→ Z,

S  s �−→ #{z | z is in Sing(fk) of type S}.

2.4.2 Transversality conditions

Introduce the spaces of complex polynomials

Cd[z] = {ϕ ∈ C[z] | degϕ ≤ d},
P(Δ) = {ϕ ∈ C[z] | ϕ =

∑
i∈Δ

λiz
i} .
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Let F ∈ P(Δ) have Newton polytope Δ, and let ∂Δ+ ⊂ ∂Δ be a union of some
facets of Δ. Introduce the space of polynomials

P(Δ, ∂Δ, F ) = {G ∈ P(Δ) | Gσ = F σ, σ ⊂ ∂Δ+}

(i.e., the space of polynomials from P(Δ) coinciding with F on ∂Δ+).

Definition 2.33. The triple (Δ, ∂Δ+, F ) is called S-transversal if

• for any w ∈ Sing(F ) the germ Md(w,F ) ⊂ Cd[z] with d � degF of the
family of polynomials having a singular point in a neighborhood of w, which
is S-equivalent to w ∈ Sing(F ), is a smooth complex analytic subset,

• the intersection ⋂
w∈Sing(F )

Md(w,F ) =:Md(F ) ⊂ Cd[z]

is transversal in Cd[z], and

• the intersection
Md(F ) ∩ P(Δ, ∂Δ+, F )

is transversal in Cd[z].

Remark 2.34. Instead of types of isolated singular points one can consider other
properties of polynomials (hypersurfaces) which can be localized, are invariant
under the torus action, and the corresponding equi-property strata are smooth.
Then one can speak of the respective transversality in the sense of Definition 2.33,
and prove a series of patchworking theorems similar to that discussed below.

2.4.3 The patchworking theorem

Let G be the adjacency graph of Δ1,Δ2, . . . ,ΔN . Now let G denote the set of
oriented graphs with support G having no oriented cycles (see Figure 2.14). For
Γ ∈ G let ∂Δk,+ be the union of facets of Δk, which corresponds to the edges of
Γ leaving Δk.

Theorem 2.35. In the above notation, assume that the polynomials f1, f2, . . . , fk

are peripherally non-degenerate, and there is a graph Γ ∈ G such that all the triples
(Δk, ∂Δk,+(Γ), fk) are S-transversal. Then there exists a polynomial f ∈ P(Δ)
such that

S(f) =
N∑

k=1

S(fk)

and the triple (Δ, ∅, f) is S-transversal.
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Figure 2.14: An oriented adjacency graph.

Sketch of proof. We look for the desired polynomial f in the family

f(t) =
∑

i∈Δ∩Zn

Ai(t)tν(i)zi, t �= 0,

where Ai(t) = ai+O(t), i ∈ Δ∩Zn. Here the polynomial f(t) is a modified version
of the Viro polynomial. Let λk : Rn → R be the affine function with λk

∣∣
Δk

= ν
∣∣
Δk

and put νk = ν − λk on Δ. Now replacing ν by νk we get

f(t),k(z) =
∑
i∈Δ

Ai(t)tνk(i)zi

= fk(z) +O(t) .

On the other hand we have

f(t)(z) = f(t),k

(
T

(t)
k (z)

)
· tα0,k ,

where

λk(x1, x2, . . . , xn) = α1,k · x1 + α2,k · x2 + · · ·+ αn,k · xn + α0,k ,

and the transformation T (t)
k is given by

T
(t)
k (z1, z2, . . . , zn) = (z1 · tα1,k , z2 · tα2,k , . . . , zn · tαn,k) .
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Introduce a compact Q ⊂ (C∗)n, such that Int(Q) ⊃
⋃N

k=1 Sing(fk). Next, choose
t0 ∈ R+, such that, for each t with 0 < |t| < t0, the compacts(

T
(t)
1

)−1

(Q),
(
T

(t)
2

)−1

(Q), . . . ,
(
T

(t)
N

)−1

(Q)

are pairwise disjoint in (C∗)n. For |t| small enough the polynomial

f(t),k(z) = fk(t) +O(t) (2.8)

is a small deformation of fk(z) in Q, k = 1, 2, . . . , N .
Now we impose the condition, that (2.8) is an S-equisingular deformation of

fk in Q. Under this condition, f(t) has in

Q̃ =
N⋃

k=1

(
T

(t)
k

)−1

(Q)

singularities, which are in 1-to-1 S-equivalent correspondence with the disjoint
union of the set Sing(fk) for k = 1, 2, . . . , N .

Claim: f(t) has no singularities in (C∗)
n \Q̃.

This, in fact, follows from the peripheral non-degeneracy of f1, f2, . . . , fk,
whose complexified charts glue up in a neighborhood of the boundary divisors as
in the nonsingular case.
Concluding step: It remains to satisfy the S-equisingular conditions in the defor-
mations

fk −→ f(t),k, k = 1, 2, . . . , N ,

by means of a suitable choice of the functions Ai(t) = ai + O(t). Due to the S-
transversality, the germMd(fk) is a smooth complex analytic subset and therefore
given by germs of analytic equations

ϕ
(k)
j ({Bi | |i| ≤ d}) = 0, j = 1, 2, . . . , dk.

In addition, from the S-transversality of (Δk, ∂Δk,+(Γ), fk) it follows that there
is a subset

Λk ⊂ (Δk\Δk,+(Γ)) ∩ Zn, |Λk| = dk,

such that detDk �= 0 at B̂i, where Dk is given by

Dk =
∂
{
ϕ

(k)
j ({Bi | i ∈ Δ}) | j = 1, 2, . . . , dk

}
∂{Bi | i ∈ Λk}

as B̂i =

{
ai, i ∈ Δk,

0, otherwise.
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Next we extend a partial order on Δ1,Δ2, . . . ,ΔN , defined by the graph Γ, up to
a linear order. Then determine Ai(t) = ai +O(t) from the system of equations

ϕ
(k)
j

(
Ai · tνk(i) | i ∈ Δ

)
= 0,

j = 1, 2, . . . , dk, k = 1, 2, . . . , N

which has the solution Âi = B̂i, i ∈ Δ∩Zn, as t = 0. Therefore it is soluble for small
values of t by the implicit function theorem, since the sets Λ1,Λ2, . . . ,ΛN ⊂ Δ∩Zn

are disjoint by construction, and

det

⎛⎜⎜⎝∂

{
ϕ

(k)
j (Ai · tνk(i) | i ∈ Δ)

∣∣∣∣ j = 1, 2, . . . , dk

k = 1, 2, . . . , N

}
∂{Ai | i ∈ Λ1 ∪ Λ2 ∪ · · · ∪ ΛN}

⎞⎟⎟⎠ �= 0

as t = 0. The latter can easily be extracted from the fact that the above matrix
takes a block-triangular form as t = 0 with the blocks D1,D2, . . . ,DN on the
diagonal.

The theorem follows. �
Remark 2.36. The core of the above proof is as follows. The linear space of poly-
nomials with Newton polygon Δ splits into the direct sum of subspaces gener-
ated by the monomials zi, i ∈ (Δk\∂Δk,+(Γ)) ∩ Zn, for k = 1, . . . , N . The
transversality conditions mean that one can preserve the singularities, coming
from (C∗)n ⊂ Tor(Δk), by variation of the coefficients of the monomials zi,
i ∈ (Δk\∂Δk,+(Γ)) ∩ Zn, which compensate the distortion caused by the remain-
ing monomials. In turn, the total order of these polynomial subspaces, induced by
the graph Γ, prevents cycles in these mutual compensations.

2.4.4 Some S-transversality criteria

Let n = 2, i.e., f1, f2, . . . , fN define curves on toric surfaces.
Claim: There exists a non-negative integer topological invariant b(w) of isolated
planar curve singular points w such that, if fk is irreducible and∑

w∈Sing(fk)

b(w) <
∑

σ ⊂∂Δk,+

length(σ) ,

then the triple (Δk, ∂Δk,+(Γ), fk) is S-transversal.
The precise definition of the invariant b(w) can be found, for example, in [56].

Here we simply recall that

• if w is a node, then b(w) = 0,

• if w is a cusp, then b(w) = 1,
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• if the singularity of w is defined to have tangency of order m to a given line
L ⊃ {w} at w, then b(w) = m,

• if the singularity of w is defined to have tangency of order m to a given line
L ⊃ {w} at a point near to w, then b(w) = m− 1.

Example 2.37. If under the hypotheses of the theorem on patchworking of singular
hypersurfaces, n = 2, the curves {fk = 0} ⊂ Tor(Δk), k = 1, . . . , N , are irreducible
and have only ordinary nodes as singularities, then there is an oriented graph Γ ∈ G
such that all the triples (Δk, ∂Δk,+(Γ), fk) are transversal. Indeed, orient the arcs
of Γ (supposed to be orthogonal to the dual edges of Δ1,Δ2, . . . ,ΔN ) so that they
form angles in the interval (−π/2, π/2] with the horizontal axis. Then

∂Δk,+(Γ) �= ∂Δk, k = 1, 2, . . . , N

and the above criterion implies transversality.
Remark 2.38. We should like to point out that the patchworking of pseudo-
holomorphic curves, treated in Section 2.3.5, can naturally be extended to the
case of patchworking of curves having isolated singularities in (C∗)2, where as a
result we obtain pseudo-holomorphic curves with locally analytic isolated singu-
larities. Moreover, this construction does not require any transversality conditions
and can always be performed with any number and types of singularities.

2.5 Tropicalization and patchworking in the
enumeration of nodal curves

The aim of this section is to demonstrate how the patchworking construction
and the tropicalization procedure (an inverse in a sense operation) apply to the
enumeration of real and complex nodal curves on toric surfaces. In particular,
we prove Theorem 3.6 in Chapter 3 (Mikhalkin’s correspondence theorem for the
plane) and Theorem 3.10 in Chapter 3 (the tropical formula for the Welschinger
invariants of the plane). We also explain Mikhalkin’s algorithm which reduces the
count of tropical curves to enumeration of lattice paths in a given Newton polygon
(see Section 3.6 in Chapter 3).

After basic definitions concerning plane tropical curves, we state the enu-
merative problem and present the tropical formulas for the Gromov–Witten and
Welschinger invariants. Then we describe the tropical limits of nodal curves in a
toric surface over a non-Archimedean field (Lemma 2.46 in Section 2.5.5), after-
wards refine the tropical limits, adding an extra piece of information. In the next
step we describe how to restore the tropical curves and appropriate tropical limits
out of the given configuration of points in the toric surface. Finally, the patchwork-
ing Theorem 2.51 (Section 2.5.10) and the refined condition to pass through the
given configuration of points on the toric surface (Section 2.5.9) provide us with
the required number of algebraic curves, projecting to the same tropical curve.
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We end up with an explanation of how to obtain the tropical formula for the
Welschinger invariants of toric Del Pezzo surfaces with the standard real structure
(Section 2.5.11).

2.5.1 Plane tropical curves

A plane tropical curve T with Newton polygon Δ ⊂ R2 can be defined as the
corner locus of a tropical polynomial

N(x) = max
i∈Δ∩Z2

(xi+ ci), x ∈ R2 , (2.9)

which is a graph whose edges are equipped with positive integral weights: the
weight w(e) of an edge e, on which two linear affine functions xi1+ci1 and xi2+ci2
in the right-hand side of (2.9) coincide, is the greatest common divisor of the
coordinates of the vector i1−i2. A tropical curve T satisfies the following balancing
condition at each of its vertices v:∑

v∈e

w(e) · u(e, v) = 0 , (2.10)

where e runs over all edges of T adjacent to v, and u(e, v) is the primitive integral
vector along e oriented out of v.

The Legendre transform takes the tropical polynomial N to a convex piece-
wise-linear function ν : Δ → R, whose linearity domains are convex lattice poly-
gons, forming a subdivision Δ = Δ1 ∪ · · · ∪ΔN . This subdivision S is dual to the
tropical curve T in the following sense:

• the components of R2\T are in 1-to-1 correspondence with the vertices of the
subdivision S,

• the edges of T are in 1-to-1 correspondence with the edges of the subdivision
S so that an edge e of T is dual to an orthogonal edge of the subdivision S,
having the lattice length equal to w(e),

• the vertices of T are in 1-to-1 correspondence with the polygons Δ1, . . . ,ΔN

so that the valency of a vertex of T is equal to the number of sides of the
dual polygon.

A plane tropical curve with the Newton polygon Δ is called nodal, if its dual
subdivision S of Δ consists of only triangles and parallelograms. A nodal tropical
curve is called simple if, in addition, all the integral points on ∂Δ are vertices of
S. The Mikhalkin multiplicity μ(T ) of a simple tropical curve T is the product
of areas of all the triangles in S (we normalize the area in such a way that the
area of a triangle whose only integer points are the vertices is equal to 1). The
Welschinger multiplicity W(T ) of a simple tropical curve is equal to 0, if T has
at least one edge of even weight (equivalently, if the dual subdivision S contains
an edge of even length), and is equal to (−1)s(T ), if all the edges of T have odd
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weights, where s(T ) is the total number of integral points in the interior of all the
triangles of the subdivision S.

A tropical curve is called irreducible if it is not the union of two proper
tropical subcurves.

Tropical curves with given Newton polygon Δ, which are dual to the same
convex lattice subdivision S of Δ, are parameterized by a convex polyhedron
T (Δ, S), whose dimension is called the rank of the corresponding tropical curves.
For example, for nodal curves we have

Lemma 2.39. The rank of a nodal tropical curve T is equal to the number of the
vertices of the dual subdivision S diminished by 1 and by the number of parallelo-
grams in S.

The proof is left to the reader as exercise.
In general, one can obtain the following estimate (see [59], Lemma 2.2).

Lemma 2.40. For an arbitrary plane tropical curve T ,

rankexp(T )
def
= |Vert(S)| − 1−

N∑
k=1

(|Vert(Δk)| − 3) ≤ rank(T ) .

That is
def(T )

def
= rank(T )− rankexp(T )

is always non-negative. Furthermore, if T is nodal, then def(T ) = 0, and if T is
not nodal, then

2 · def(T ) ≤
∑
m≥2

((2m− 3)N2m −N ′2m) + (2m− 2)N2m+1 − 1 , (2.11)

where Ns, s ∈ N, means the number of s-valent vertices of T and N ′2m the number
of 2m-valent vertices of T , which locally are intersections of m straight lines.

Definition 2.41. We say that the distinct points x1, . . . , xζ ∈ Q2 are in (Δ, S)-
general position, if the condition to pass through x1, . . . , xζ so that k ≤ ζ given
points are vertices of a tropical curve, cuts out of T (Δ, S) either the empty set,
or a polyhedron of codimension (ζ − k) + 2k = ζ + k. We say that the distinct
points x1, . . . , xζ are in Δ-general position, if they are (Δ, S)-general for all convex
lattice subdivisions S of Δ.

Lemma 2.42. For any given convex lattice polygon Δ, the set of Δ-general config-
urations x1, . . . , xζ is dense in the set of all ζ-tuples in Q2.

This statement is rather clear, since the set of Δ-general configurations is
the complement of finitely many hyperplanes in (Q2)ζ (the finiteness here comes
from the finiteness of the set of possible convex lattice subdivisons of the given Δ
and from the finiteness of the set of slopes of lattice segments in Δ).
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2.5.2 Algebraic enumerative problem and its tropical analogue

Let Δ ⊂ R2 be a non-degenerate convex lattice polygon, LΔ the tautological line
bundle on Tor(Δ) (i.e., generated by monomials zkwj , (k, j) ∈ Δ ∩ Z2). Let n be
a non-negative integer smaller than or equal to

∣∣Int(Δ ∩ Z2)
∣∣. Denote by Sevn(Δ)

the set of curves C in the linear system |LΔ|, which have n nodes as their only
singularities. It is a smooth quasiprojective variety of pure dimension

ζ
def= dimSevn(Δ) = dim |LΔ| − n =

∣∣Δ ∩ Z2
∣∣− 1− n.

Furthermore, it contains the subset Sevirr
n (Δ) of irreducible curves, which either

is empty, or has pure dimension ζ. The enumerative geometry problems are for-
mulated as

Question: What are deg Sevn(Δ) and deg Sevirr
n (Δ) ?

These numbers are sometimes called the relative Gromov–Witten invariants of
the toric surface Tor(Δ).

We want to translate the above question into a tropical geometry problem.
For this purpose, we restate it over the field K =

⋃
m≥1 C{{t1/m}} of lo-

cally convergent complex Puiseux series. This is an algebraically closed field of
characteristic zero with a non-Archimedean valuation

val

⎛⎝∑
τ∈Q

ατ · tτ
⎞⎠ = −min{τ | aτ �= 0} .

Geometrically, the degrees deg Sevn(Δ) and deg Sevirr
n (Δ) can be viewed as

follows. Fix ζ generic points p1, p2, . . . , pζ ∈ (K∗)2 ⊂ TorK(Δ). Then deg Sevn(Δ)
(resp., deg Sevirr

n (Δ)) is equal to the number of curves in the set

Sevn(Δ; p1, . . . , pζ) := {C ∈ Sevn(Δ) : p1, . . . , pζ ∈ C}

(resp., in the set

Sevirr
n (Δ; p1, . . . , pζ) := {C ∈ Sevirr

n (Δ) : p1, . . . , pζ ∈ C} ).

Assuming that

x1 = val(p1), x2 = val(p2), . . . , xζ = val(pζ) ∈ Q2 ⊂ R2

are distinct Δ-generic points, where val(∗) means the coordinate-wise valuation,
we consider the tropical curves AC with Newton polygon Δ, supported at the
non-Archimedean amoebas of the curves C ∈ Sevn(Δ; p1, . . . , pζ) (or, C ∈
Sevirr

n (Δ; p1, . . . , pζ)), i.e., the closures of the images val(C ∩ (K∗)2) in R2, which
then pass through the points x1, . . . , xζ . Thus, we face the two tasks:
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• describe and enumerate the tropical curves AC , which are projections of the
curves C ∈ Sevn(Δ; p1, . . . , pζ) (resp., C ∈ Sevirr

n (Δ; p1, . . . , pζ)), and

• find howmany curvesC′∈Sevn(Δ; p1, . . . , pζ) (resp., C′∈Sevirr
n (Δ; p1, . . . , pζ))

are projected to each of the above tropical curves.

The answers (which are traditionally called the correspondence statements)
are given in Theorem 2.43 below.

To fulfill the first task, we consider the curves over K as one-parametric fam-
ilies of curves over C, and define their tropical limits, which consist of a tropical
part, i.e., the respective tropical curve, and an algebraic part, a collection of cer-
tain complex algebraic curves, and then refine it. In its turn, the patchworking
technique allows one to show that each combination of a tropical curve and a col-
lection of complex curves, satisfying certain conditions, admits a one-parameter
deformation, which can be viewed as an algebraic curve over the field K.

The above enumerative question has an important real counterpart, the com-
putation of the Welschinger invariants. This problem is discussed in Chapter 3 for
the case of the projective plane. We present here a more general result. Let Σ be a
toric Del Pezzo surface, equipped with the standard real structure, i.e., Σ is either
the plane P2, or the quadric (P1)2, or P2

k, the plane blown up at k = 1, 2, 3 real
points (not lying on a line as k = 3). One can represent Σ as Tor(Δ), where Δ is
one of the lattice polygons with the side slopes 0, −1, ∞, shown in Figure 2.15,
and the complex conjugation acts trivially on the standard basis xkyj, (k, j) ∈ Δ,
of the linear system |LΔ|.

Figure 2.15: Polygons associated with toric Del Pezzo surfaces.

Given a generic configuration of ζ = |∂Δ∩Z2|−1 real points in Tor(Δ), there
are only finitely many real rational curves C ∈ |LΔ|, passing through the given
points. Summing up the weights (−1)s(C) over the latter set, where s(C) is the
number of real solitary nodes of C, we obtain a number W0(Δ), which does not
depend on the choice of the generic configuration of fixed points (Welschinger’s
theorem [73, 74]) and is called the Welschinger invariant of the surface Tor(Δ)
associated with the linear system |LΔ| (cf. Section 3.7 in Chapter 3). The tropical
approach applies to the computation of Welschinger invariants as well, due to the
fact that the tropicalization procedure and the patchworking construction respect
the real structure, i.e., from real data they produce real objects as results. In the
next section we present Theorem 2.44 with the tropical formula for the Welschinger
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invariants of toric Del Pezzo surfaces, equipped with the standard real structure
(in particular, for the plane, as considered in Theorem 3.10, Chapter 3).

2.5.3 Tropical formulas for the Gromov–Witten and Welschinger
invariants

Theorem 2.43. Given a nondegenerate lattice polygon Δ ⊂ R2 and a non-negative
integer n ≤ | Int(Δ) ∩ Z2|, we have

deg Sevn(Δ) =
∑

T∈TΔ,ζ(U)

μ(T ), deg Sevirr
n (Δ) =

∑
T∈T irr

Δ,ζ(U)

μ(T ) ,

where U ⊂ Q2 is an arbitrary Δ-general configuration of ζ = |Δ ∩ Z2| − 1 − n
distinct points, TΔ,ζ(U) (resp., T irr

Δ,ζ(U)) is the set of all (resp., only irreducible)
simple tropical curves with Newton polygon Δ of rank ζ.

Theorem 2.44. Let Δ be one of the polygons that are shown in Figure 2.15, ζ =
|∂Δ ∩ Z2| − 1, and let U ⊂ Q2 be a Δ-general configuration of ζ distinct points.
Then

W0(Δ) =
∑

T∈T irr
Δ,ζ(U)

W(T ) .

We remark that in the computation of Welschinger invariants, correspond-
ing to configurations with imaginary points (cf. Section 3.12 in Chapter 3), or
Welschinger invariants of the toric Del Pezzo surfaces with non-standard real struc-
tures, one faces additional problems caused by the fact that a generic configuration
of points in Tor(Δ) projects by the valuation to a non-generic configuration (i.e.,
the projected configuration contains coinciding points or is symmetric). However
the tropical technique gives answers in these cases as well [60, 61].

2.5.4 Tropical limit

Let a polynomial

f(z, w) =
∑

(i,j)∈Δ

akj(t) · zkwj ∈ K[z, w]

define a curve C ⊂ TorK(Δ) with only isolated singularities. Changing the pa-
rameter t �→ tM , we can make all the exponents of t in akj(t) with (k, j) ∈ Δ
integral, and thus, we obtain an analytic family C(t) of complex curves in Tor(Δ)
for {0 < |t| < δ} = D\{0}.

Lemma 2.45. For small δ, the family C(t) is equisingular, and the topological types
of singularities of C(t) are in 1-to-1 correspondence with topological types of sin-
gularities of C = {f = 0} ⊂ TorK(Δ).
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We extend the families

Tor(Δ)× (D\{0})

��

C� ���

��
D\{0} �� = �� D\{0}

to the origin as follows. Take the tropical polynomial

Nf (x) = max
i∈Δ∩Z2

(xi+ val(ai)) , x ∈ R2 ,

and consider the function ν = νf : Δ → R, Legendre dual to Nf . It is convex,
piecewise-linear, and its linearity domains form a subdivision of Δ into convex
lattice polygons: Δ = Δ1 ∪ · · · ∪ΔN . Furthermore, we can write

f(z, w) =
∑

(i,j)∈Δ

(a(0)
kj +O(t))tν(k,j)zkwj ,

where a(0)
kj ∈ C are non-zero at least for all the vertices of Δ1, . . . ,ΔN . We define

the tropicalization (tropical limit) of f as a pair consisting of

(1) the tropical curve Tf defined by the tropical polynomialNf , or, equivalently,
the function νf and the corresponding subdivision Sf : Δ = Δ1∪Δ2∪· · ·∪ΔN

and

(2) the collection of curves Cm ⊂ Tor(Δm) for m = 1, 2, . . . , N defined by

fm(z, w) =
∑

(i,j)∈Δm

a
(0)
kj z

kwj .

The family Tor(Δ) × (D\{0}) → D\{0} extends up to Tor(Δ̃) → C with Δ̃
being the overgraph of νf

4 (cf. with the same extension in the proof of Viro’s
patchworking theorem, Section 2.3.2), and the family C(t), t �= 0, is completed at
t = 0 by

C(0) =
N⋃

m=1

Cm ⊂
N⋃

m=1

Tor (Δm) ⊂ Tor
(
Δ̃
)
.

2.5.5 Tropicalization of nodal curves

Lemma 2.46. Let the points x1 = val(p1), . . . , xζ = val(pζ) be Δ-generic. Then
the tropical limit of a curve C ∈ Sevn(Δ) (or C ∈ Sevirr

n (Δ)), passing through
p1, p2, . . . , pζ consists of

4We suppose here that νf (Z2) ⊂ Z.
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(1) a simple (resp., simple irreducible) tropical curve T with Newton polygon Δ
of rankA = ζ, and

(2) a collection of curves Cm ⊂ Tor(Δm) for m = 1, 2, . . . , N such that the
following holds:

• if Δm is a triangle, then Cm ∈ |LΔk
| is an irreducible rational nodal

curve crossing Tor(∂Δm)
def
=

⋃
σ⊂Tor(Δm) Tor(σ) at precisely three points,

where it is unibranch;

• if Δm is a parallelogram, then Cm is given by fm ∈ P(Δm), which splits
into a product of a monomial and binomials.

Proof of Lemma 2.46. Our strategy is to estimate χ̂(C(t)), t �= 0, from above and
below, and then to extract the required statements from the comparison of the
obtained estimates. Here χ̂(C(t)) is meant to be the Euler characteristic of the
normalization of C(t).
Upper bound. Take a small regular neighborhood U of

⋃N
k=1 Tor(∂Δk) in Tor(Δ̃).

Then the Euler characteristic can be calculated via

χ̂(C(t)) = χ̂(C(t) ∩ U) + χ̂(C(t)\U) .

Now we claim that
χ̂(C(t) ∩ U) ≤ Br(C(0), ∂Δ) , (2.12)

where Br(C(0), ∂Δ) is the number of local branches of the curves C1, C2, . . . , CN

centered along
⋃

σ⊂∂Δ Tor(σ) ⊂ Tor( ̃) counted with their multiplicities, if they
are not reduced.

This actually follows from the fact that a local branch of Cm centered along
a divisor Tor(σ), σ = Δm∩Δk, and which topologically is a disc, cannot stay as a
disc in the deformation. Therefore it must join with another branch by a handle.

Next we have

χ̂(C(t)\U) ≤
N∑

k=1

∑
j

χ̂(Ckj\U)

≤
N∑

k=1

∑
j

( 2− Br(Ckj , ∂Δk) )

≤ −
∑
m≥2

(N2m−1 +N2m −N ′2m) .

Here Ckj denotes all components of Ck counted with their multiplicities. Further-
more, the equality in the latter relation yields that all the components Ckj are
rational, and, moreover, it follows that they do not glue up with each other by
handles in Tor(Δ̃)\U along the deformation C(t), t ∈ D. Moreover, in the last
relation, the equality means that
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• for any 2m-gon, whose opposite edges are parallel, fk splits into a product
of binomials, i.e., Br(Ckj , ∂Δk) = 2 for all Ckj , and,

• for any other polygon Δk precisely one component Ckj (counting with mul-
tiplicity) has Br(Ckj , ∂Δk) = 3 and for all other components it holds that
Br(Ckj , ∂Δk) = 2, i.e., they are defined by binomials.

So, finally, we get the following upper bound:

χ̂(C(t)) ≤ Br(C(0), ∂Δ)−
∑
m≥2

(N2m−1 +N2m −N ′2m) .

Lower bound. Since
ζ = |∂Δ ∩ Z2|+ g − 1 ,

we obtain (here S denotes the subdivision of Δ dual to T ):

χ̂(C(t)) = 2− g(C(t)) = 2− 2(ζ + 1− |∂Δ ∩ Z2|)
= 2|∂Δ ∩ Z2| − 2ζ ≥ 2

∣∣∂Δ ∩ Z2
∣∣− 2 rank(T )

= 2|∂Δ ∩ Z2| − 2 rankexp(T )− 2 def(T )

= 2|∂Δ ∩ Z2| − 2|Vert(S)|+ 2 + 2
N∑

k=1

(|Vert(Δk)| − 3)− 2 def(T )

= 2
∣∣∂Δ ∩ Z2

∣∣− 2|Vert(S)|+ 2
+ 2|Vert(S) ∩ ∂Δ|+ 4|Edges(S)| − 6N − 2 def(T )

= 2(
∣∣∂Δ ∩ Z2

∣∣− |Vert(S) ∩ ∂Δ|) + |Vert(S) ∩ ∂Δ|
+
∑
m≥3

(m− 4)Nm − 2 def(T ).

Combining the upper and lower bound of χ̂(C(t)), we conclude

2
∣∣∂Δ ∩ Z2

∣∣− |Vert(S) ∩ ∂Δ| − Br(C(0), ∂Δ)

≤ 2 def(T )−
∑
m≥2

((2m− 3)N2m −N ′2m)−
∑
m≥2

(2m− 2)N2m+1 ,

which in view of the upper bound (2.11) to def(T ) and the equality conditions
implies the lemma, and, in addition, that rankexp(T ) = rank(T ) = ζ and def(T ) =
0.

One has only to confirm the irreducibility of T . Indeed, if T = T1 ∪ T2,
then T1 and T2 cross only at four-valent vertices of T . Then the components of
C(0) naturally form two subsets and the intersections of the components from
different sets fall into the toric part of Tor(Δk) for some parallelograms Δk. These
intersecting components of C(0) do not glue up in the deformation C(t) and hence
C(t) turns out to be reducible — a contradiction. �
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Geometric point of view on the proof of Lemma 2.46. We recall that the genus of a
tropical curve T is defined as the minimal b1(Γ) over all graphs Γ, parameterizing
T (see details in Section 1.6, Chapter 1, or in [41, 42, 45, 46]). In particular, for
a nodal tropical curve T , the suitable parameterizing graph Γ can be obtained by
resolving the four-valent vertices of T (i.e., by separating the two smooth local
branches of T , intersecting at that vertex). The following statement is a kind of a
tropical Riemann–Roch theorem.

Lemma 2.47. For a nodal tropical curve T ,

rank(T ) = |Ends(T )|+ g(T )− 1 , (2.13)

where Ends(T ) is the set of infinite edges of T , and g(T ) is its genus.

The proof is left to the reader as exercise. We only show that formula (2.13)
agrees with the statement of Lemma 2.39. Indeed, compactify R2 up to S2 =
R2 ∪ {∞} and add the point ∞ to T as well. Then the number of independent
cycles in T ∪{∞} is

∣∣π0(R2\T )
∣∣−1 = |Vert(S)|−1, where S is the dual subdivision

of the Newton polygon. Removing the added point ∞ we break |Ends(T )| − 1
cycles. Resolving the four-valent vertices of T , we remove each time another cycle.
Counting independent cycles, we get

|Vert(S)| − 1− (|Ends(T )| − 1)−N4 = g(T )
=⇒ |Vert(S)| −N4 − 1 = |Ends(T )|+ g(T )− 1 ,

as claimed.
The geometric genus of the curves C ∈ Sevirr

n (Δ) is g = ζ+1−|∂Δ∩Z2|. In-
equality (2.11) and Lemma 2.47 mean, in fact, that if a tropical curve T with New-
ton polygon Δ has genus g(T ) < g, or has genus g(T ) = g, but is not nodal, then
its rank is less than ζ. Hence such curves cannot pass through Δ-generic configura-
tion x1, . . . , xζ ∈ Q2. Assume that T is simple, but has genus g(T ) > g. Consider a
cycle of the parameterizing trivalent graph. It corresponds to a cycle in T , formed
by segments in T , joined at some trivalent vertices of T (see, for example, Figure
2.16(a), where the cycle is shown by fat lines). The cycle is dual to a fragment
of the subdivision S, consisting of triangles with common edges or respectively
joined by parallelograms (see Figure 2.16(b)). The limit curves, corresponding to
the triangles and parallelograms in the fragment, must have components which
cross the toric divisors Tor(σ), where σ runs over all the common edges of the
considered triangles and parallelograms. In Figure 2.16(b) these components are
depicted as fat graphs, which model the curves in the torus: one takes a tubular
neighborhood of the graph in an open polygon and then its double cover ramified
long the boundary. So, in the example shown in Figure 2.16(b), one has a sphere
with three holes in each triangle and a cylinder in a parallelogram (cf. Sections
1.1 and 1.2, Chapter 1, presenting the relation between the algebraic curves, their
complex amoebas and the non-Archimedean amoebas, or Theorem 2.21, where we
glue up the complex charts of polynomials). In the deformation C(t), t ∈ (C, 0),
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the limit curves glue up and the curve C(t), t �= 0, develops a handle, and hence
one obtains at least g(T ) > g handles — a contradiction.

(a) (b)

Figure 2.16: Cycles of tropical curves and handles of algebraic curves.

2.5.6 Reconstruction of a simple tropical curve

Given a Δ-general configuration of ζ points in Q2, there are only finitely many
simple tropical curves or rank ζ with Newton polygon Δ, which pass through this
configuration. Reconstruction of all such curves reduces to a linear programming
problem with finite input, so can be solved by known algorithms. This approach,
however, is quite costly from the computational point of view, and, moreover, does
not allow one to effectively control the result.

We explain here another idea, which is due to Mikhalkin [40, 41] and which
reduces the enumeration of simple tropical curves through a given configuration
of points to a relatively simple combinatorial procedure, dealing with the lattice
paths in the given polygon Δ (see the detailed presentation of the procedure in
Section 3.6, Chapter 3).

The key ingredient is the choice of a specific configuration of fixed points.
Let L be a straight line in R2 with the rational slope q1/q2, where the distinct
prime numbers q1, q2 are much larger than the coordinates of the points in Δ.
Choose generic points p1, p2, . . . , pζ ∈ (K∗)2 so that their valuation images in R2

are successive rational points x1, x2, . . . , xζ on L satisfying

|xi+1 − xi| � |xi − xi−1|, for all 2 ≤ i < ζ . (2.14)
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One can show that such points are in Δ-general position5. We want to construct a
simple tropical curve T of rank ζ with Newton polygon Δ, which passes through
x1, . . . , xζ .

Let T be one of the desired tropical curves. Assume that besides x1, . . . , xζ ,
it crosses L at some more points y1, . . . , yη. Due to the generality conditions, the
points x1, . . . , xζ must be interior points of some edges of T , and, first, we draw
germs of edges of T through x1, . . . , xζ . Then, at each point y1, . . . , yη, we either
draw a germ of an edge, or choose this point as a vertex of T and draw germs of
respectively three or four adjacent edges. Further on, we orient all the edge germs
(or half-germs) to be emanating from x1, . . . , xζ , y1, . . . , yη (see Figure 2.17(a)).
They are dual (and orthogonal) to some lattice segments in Δ (see Figure 2.17(b)),
and hence we have only finitely many choices in the described step.

(a) (b)

L

Figure 2.17: Restoring a tropical curve.

Now we extend the germs of the edges of T until appearance of an intersection
point. For an intersection point we have two options (see Figure 2.17):

• either a trivalent vertex of T , and in this case the germ of the third edge is
uniquely determined by the balancing condition and the choice of weights of
the first two edges (notice that the latter choice is finite since the weights do
not exceed the diameter of Δ),

• or a four-valent vertex of T , and then the two new edge germs of T , emanating
from the vertex, are simply the continuations of the two old edges.

We naturally orient the new edges as emanating from the intersection points.
Notice that the new edges always go away from L. This, in particular, implies
that the extension of any newly constructed edge cannot lead to a vertex adjacent
to two other edges, constructed before, and the new edges never come back to L.

5In principle, one can always slightly push the points x1, . . . , xζ from the line L to a Δ-general
position, which will not affect the procedure, exposed in this section.
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So, in finitely many steps we must end up. Observe that the above procedure
applied to an arbitrary small variation of the configuration x1, . . . , xζ , y1, . . . , yη,
will lead to a tropical curve of the same combinatorial type. Hence η = 0, since
rank(T ) = ζ. This yields that the intervals L\{x1, . . . , xζ} are contained in the
complement to the tropical curve, and thus are dual to some integral points in
Δ, naturally ordered by the linear functional λ(u) = 〈a, u〉, where a is a directing
vector of L. In turn the segments dual to the initial edge germs of the tropical
curve form a λ-increasing lattice path in Δ, consisting of ζ arcs.

Then we notice that the appearance of a triple vertex of T in the above
procedure is dual to the construction of a triangle from the two given adjacent
edges, and the appearance of a four-valent vertex of T is dual to the construction
of a parallelogram from a pair of two adjacent edges. At last, condition (2.14)
assures that, on each stage, the reconstruction of a triangle or a parallelogram
should be performed with a pair of edges, which is minimal with respect to the
λ-ordering defined above.

Thus, we finally conclude that the described procedure of reconstruction of
the required simple tropical curves is dual to the compressing procedure, which
starts with a suitable lattice path in Δ consisting of ζ arcs.

2.5.7 Reconstruction of the limit curve C(0)

The tropical curve T , constructed above, determines the function ν : Δ → R up
to an additive constant. Plugging then the coordinates of pm = (ξm(t), ηm(t))
into f(z, w) = 0, and equating the coefficient of the minimal power of t in
f(ξm(t), ηm(t)) to zero, we obtain∑

(k,j)∈δm

a
(0)
kj

(
ξ(0)m

)k (
η(0)

m

)j

= 0 . (2.15)

Here σm is the m-th edge of the lattice path and ξ(0)m , η
(0)
m are the coefficients of

the minimal powers of t in ξm(t), ηm(t) respectively. Since the left-hand side of the
above equation is a power of an irreducible binomial multiplied by a monomial,
the coefficients a(0)

kj , (k, j) ∈ σm, are defined uniquely up to proportionality.
Using the compressing procedure, we restore the polynomials f1, . . . , fN by

means of the following statement.

Lemma 2.48. (i) If Δm is a triangle and σ1, σ2 edges of Δm, then there are pre-
cisely Area(Δm) (|σ1| · |σ2|)−1 polynomials fm ∈ P(Δm), whose truncations
fσ1

m , fσ2
m are fixed and which define an irreducible rational curve in Tor(Δm),

crossing Tor(∂Δm) at precisely three points, where it is unibranch6. More-
over, all these curves are nodal and nonsingular along Tor(∂Δm).

6Here Area(∗) denotes the area normalized by the condition that the minimal lattice triangle
has area 1.
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(ii) Under the hypotheses of (i), if Area(Δm) is odd, and the truncations fσ1
m , fσ2

m

are real, then there exists precisely one real rational curve in Tor(Δm), sat-
isfying the above conditions, and all its real nodes are isolated.

(iii) If Δm is a parallelogram and σ1, σ2 are spanning edges of Δm, then there is
a unique polynomial fm ∈ P(Δm), whose truncations fσ1

m , fσ2
m are fixed and

which splits into a product of a monomial and binomials.

(iv) If, under the hypotheses of (iii), the truncations fσ1
m , fσ2

m are real, then, in the
deformation C(t), t ∈ (C, 0), the nodes of C(t), t �= 0, born from the inter-
section point of the components of the limit curve Cm in (C∗)2 ⊂ Tor(Δm),
all are either imaginary, or non-isolated real.

For the proof we refer to exercises.
We say that edges σ1, σ2 of the subdivision S of Δ, which is dual to T ,

are equivalent, if they are opposite sides of some parallelogram Δk. Extend this
relation by transitivity.

Thus we obtain for a given tropical curve T that the limit curve C(0) can be
reconstructed in ∏

|Vert(Δk)|=3

Area(Δk)

∏
[σ]

|σ| ·
ζ∏

k=1

|σk|
(2.16)

ways, where [σ] runs over all aforementioned equivalence classes of edges of S.
Respectively, under the assumption that all the edges of the subdivision S

have odd lattice length, we obtain a unique real tropical limit, and the contribution
of the nodes, appearing from the limit curves, to the Welschinger weight is equal
to

(−1)s, s = #

( ⋃
0≤k≤N

|Vert(Δk)|=3

(Int(Δk) ∩ Z2)

)
. (2.17)

2.5.8 Refinement of a tropical limit

Besides the singularities of the curve C(0) =
⋃

k Ck in the tori (C∗)2 ⊂ Tor(Δk),
k = 1, . . . , N , there is another source for nodes of the curves C(t), t �= 0, namely,
the singularities of the curve C(0) at the toric divisors Tor(σ) for all common
edges σ = Δk ∩Δl, k �= l. We shall demonstrate this by means of the following
refinement of the tropical limit.

Let σ be a common edge of triangles Δk,Δl from the subdivision S of Δ. If the
lattice length of σ is m ≥ 2, then by Lemma 2.46 the curves Ck, Cl are tangent to
Tor(σ) at some point pσ ∈ Tor(σ) with multiplicity m.

We perform a monomial coordinate transformation, which geometrically
places the edge σ on the horizontal coordinate axis, and then (assuming that the
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Δ′k

Δ′l

σ′

Δ′′k

Δ′′l

m

1

−1

Mσ
shift

Figure 2.18: Refinement of the tropical limit at an isolated singularity.

transformed convex piecewise-linear function ν′ : Δ′ → R vanishes on σ) make shift
x �→ x−ξ, where ξ is the abscissa of the point pσ. After these transformations, the
polynomial f ∈ K[x, y] turns into a (Laurent) polynomial f ′′(x, y) with some New-
ton polygon Δ′′. The Newton polygons of the curves Ck, Cl will get a new shape
as shown in Figure 2.18, leaving the triangle Δ[σ] = conv{(0, 1), (0,−1), (m, 0)}
empty. The respectively changed convex piecewise-linear function ν′′ is linear on
Δ′′k and Δ′′l , and in general determines some subdivision of Δ[σ]. Observe that in
the proof of Lemma 2.46 we obtained that inequality (2.12) must be an equality,
which, in particular, means that the singular point pσ of C(0) topologically is re-
placed by a cylinder somehow mapped to a neighborhood of pσ. One can show
that this is possible only when ν′′ is linear on Δ[σ], and the corresponding limit
curve C[σ] of f ′′ with Newton triangle Δ[σ] is rational. Furthermore, we claim

Lemma 2.49. In the above notation, given non-zero coefficients at the vertices of
Δ[σ], there are precisely m (Laurent) polynomials in P(Δ[σ]), which have zero
coefficients at (m−1, 0) and define rational curve C[σ] in Tor(Δ[σ]). Each of these
curves has m− 1 nodes as only singularities.

Furthermore, if the given coefficients are real, then

(i) for even m, either there is no real rational curve C[σ] as above, or there are
precisely two such real curves: one of them has m− 1 isolated real nodes, the
other has one non-isolated real node and m− 2 imaginary nodes;

(ii) for odd m, there is precisely one real rational curve C[σ] as above, and it has
m− 1 isolated real nodes.

The proof is left to the reader as an exercise.

A little bit more complicated treatment is required for the case of a non-isolated
singularity of C(0). In this situation we have triangles Δk,Δl joined by a sequence
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of parallelograms (see Figure 2.19(a)). The corresponding edges σ, σ′ of Δk,Δl,
respectively, are included into a sequence of parallel edges of equal length m ≥ 2,
which all constitute an equivalence class [σ] as defined in Section 2.5.7 (they all
are dual to edges of the tropical curve, which together form a segment). The limit
curves Ck and Cl are tangent with multiplicitym to Tor(σ), respectively to Tor(σ′)
at some points pσ ∈ Tor(σ), pσ′ ∈ Tor(σ′). The points pσ and pσ′ are joined by
a sequence of m-multiple binomial components of the limit curves, corresponding
to the parallelograms.
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(d) (e)

Δk

Δl

Δ′k

Δ′l

Δ′′k

Δ′′l

Figure 2.19: Refinement of the tropical limit along a non-isolated singularity.

Again we perform a monomial transformation making σ and σ′ horizontal
(Figure 2.19(b)). The intersection points of C(0) with the toric divisors, corre-
sponding to the edges in the equivalence class [σ], have the same abscissa ξ, and
thus, performing the shift x �→ x− ξ (and assuming without loss of generality that
the convex function ν is constant along σ), we obtain new shapes of the Newton
polygons of the limit curves, which leave empty the trapeze Π (see Figure 2.19(c)).
The polynomial f(x, y) ∈ K[x, y], defining the curve C, transforms into a polyno-
mial f ′′(x, y) with Newton polygon Δ′′. The tropical limit of f ′′ gives a convex
piecewise-linear function ν′′ : Δ′′ → R, defining a subdivision of Π, and determines
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new limit curves with Newton polygons inside Π. As above, the equality in (2.12),
derived in the proof of Lemma 2.46, requires that the components of the new
limit curves, which cross the toric divisors corresponding to segments on the right
vertical side of Π, must be binomial, and in the deformation C(t), t ∈ (C, 0), they
do not glue up with any other components of these limit curves. Furthermore, the
other components must be rational too. One can show that then the only possible
subdivision of Π, satisfying these requirements, consists of parallelograms and one
triangle Δ[σ] with the vertical side of length 2 (see, for example, Figure 2.19(d,e)),
in turn, the limit curves in parallelograms consist of only binomial components,
whereas the limit curve C[σ] with Newton triangle Δ[σ] is as described in Lemma
2.49. Notice that the function ν′′ is linear on each of the Newton polygons sur-
rounding Π (see Figure 2.19(c)), and it admits a unique extension as a convex
piecewise-linear function determining a subdivision of Π into parallelograms and
one triangle.

Remark 2.50. The refinement procedure described here can be viewed as follows.
In case of an isolated singular point pσ ∈ Tor(σ) of C(0), we make a weighted blow-
up of the point pσ of the threefold Tor(Δ̃), so that there appears an exceptional
divisor Tor(Δ[σ]). In case of a non-isolated singularity of C(0) we, in fact, make
a combination of blow-ups along the multiple binomial components so that there
appears a sequence of exceptional toric divisors associated with the polygons,
forming a subdivision of Π.

For any equivalence class [σ] of the edges of the subdivision S (as defined in
Section 2.5.7) a pair (Δ[σ], C[σ]) is called a refinement of the tropical limit of f at
[σ]. Then we construct the refined tropical limit of a curve C ∈ |LΔ| by appending
the triangles Δ[σ] to the combinatorial part of the tropical limit and by appending
the limit curves C[σ] to the sequence C1, . . . , CN .

In view of (2.16) and Lemma 2.49, the number of the refined tropical limits
associated with the curve C is equal to∏

|Vert(Δk)|=3Area(Δk)∏r
k=1 |σk|

. (2.18)

If C is defined over KR
def=

⋃
m≥1 R{{t1/m}} ⊂ K then, taking into account

(2.17 and Lemma 2.49, we decide that the total contribution of the possible refined
tropical limits of C into the Welschinger invariant is zero as far as there is at least
one even length edge in the subdivision S, or is given by (2.17), if all the edges of
S have odd length.

2.5.9 Refinement of the condition to pass through a fixed point

We have used the fixed point condition in Section 2.5.7, taking into account the
“zero order approximation” (2.15). Now we refine the condition to pass through a
fixed point by using the next approximation.
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Assume that an edge σm of the lattice path has length d ≥ 2. After a suitable
monomial transformation, we can assume that the edge σm becomes [(0, 0), (d, 0)]
and ν

∣∣
σm

= 0. That is

f(z, w) =
d∑

k=0

(
a
(0)
k,0 + ck,0(t)

)
zk +O(t) ,

where ck,0(0) = 0. Furthermore,

f(z, w) =
d∑

k=0

ck,0(t)zk + a
(0)
k,0(z − ξ(0)m )d +O(t) .

Letting z′ = z − ξ(0)m , we obtain

f ′(z′, w) =
d∑

k=0

c′k,0(t)z
′k +

(
a
(0)
k,0 + cd,0(t)

)
(z′)d +O(t)

with c′k,0(0) = 0. Making the variable change z′ = z′′ + τ , where

τ = −
c′d−1,0(t)

d · a(0)
d,0

+ h.o.t.

is chosen so that the polynomial

f ′′(z′′, w) def= f ′(z′, w)

has coefficient 0 at (z′′)d−1, we end up with

f ′′(z′′, w) =
d−2∑
k=0

c′′k,0(t) · z′′
k + (a(0)

d,0 + c′′d,0(t))(z
′′)k

+ w ·
(
a
(0)
0,1 + c0,1(t)

)
tr + w−1 ·

(
a
(0)
0,−1 + c0,−1(t)

)
ts + h.o.t. ,

where c′′k,j(0) = 0, and r �= s (say, r < s). Then we plug the new coordinates

(tξ1m − τ + · · · , η(0)
m + η1

m · t+ · · · )

of pm into the equation f ′′(z′′, w) = 0, and equate to zero the minimal power of
t, which appears just in the coefficient of (z′′)d and y. This gives

η(0)
m a

(0)
0,1t

r + a
(0)
d,0(ξ

1
mt− τ)d + h.o.t. = 0 ,

and hence

τ = ξ1mt−
(
−
η
(0)
m a

(0)
0,1

a
(0)
d,0

) 1
d

t
r
d + h.o.t.. (2.19)
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Finally we get

c0,0(t)−
a
(0)
0,0

a
(0)
d,0

cd,0(t) = (−1)dda(0)
d,0(ξ

(0)
m )d−1ξ1mt

+(−1)d−1d(ξ(0)m )d−1
(
−η(0)

m a
(0)
0,1(a

(0)
d,0)

d−1
) 1

d

t
r
d + h.o.t. (2.20)

which gives d options for the left-hand side. In the real case, if d is even, we obtain
either no real refinements or two real refinements, if d is odd, we always have one
real refinement.

Combining the above conclusion with (2.17) and (2.18), we get, for a given tropical
curve T , precisely ∏

|Δk|=3

(Area(Δk))

choices of the refined topical limits with refined conditions to pass through the
given points p1, p2, . . . , pζ .

2.5.10 Refined patchworking theorem

The last step in the proof of Mikhalkin’s correspondence theorem and in the
tropical formula for the Welschinger invariants is the following

Theorem 2.51 (Refined patchworking theorem). Let a generic configuration p1, . . .,
pζ in (K∗)2 project by valuation to a Δ-general configuration x1, . . . , xζ ∈ Q2. Let
us be given

• a simple irreducible tropical curve T of rank ζ with Newton polygon Δ, passing
through x1, . . . , xζ ∈ Q2, and dual to a subdivision S : Δ = Δ1 ∪ · · · ∪ΔN ;

• curves Cm ∈ |LΔm |, m = 1, . . . , N , which satisfy the conditions of Lemma
2.48, are compatible to each other in the sense that Cm∩Tor(σ) = Cl∩Tor(σ)
as σ = Δm ∩Δl, and are compatible with the points p1, . . . , pζ by (2.15);

• curves C[σ], compatible with C1, . . . , CN , satisfying the conditions of Lemma
2.49, and associated with all equivalence classes of edges of S;

• refined conditions to pass through the points p1, . . . , pζ described by (2.20)
with specified roots of the coefficients of powers of t in the right-hand side.

Then there exists a unique irreducible curve C ∈ |LΔ|K with n nodes as its only
singularities, passing through p1, . . . , pζ , and such that its refined tropical limit and
refined conditions to pass through the fixed points fit the given data.

Furthermore, if the given data are real, then the curve C is defined over KR.
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We do not set forth a detailed proof, but discuss the general strategy and
comment on important points.

We define the required curve C by a polynomial

f(x, y) =
∑

(k,j)∈Δ

akj(t)xkyjtν(i,j), akj(t) = a
(0)
kj + ckj(t), ckj(0) = 0, (k, j) ∈ Δ ,

(2.21)
where

Cm =

⎧⎨⎩fm(x, y)
def=

∑
(k,j)∈Δm

a
(0)
kj x

kyj = 0

⎫⎬⎭ , m = 1, . . . , N .

For any m = 1, . . . , N , take the linear function λm : Δ → R equal to ν on
Δm, and put νm = ν − λm. Similarly, for any edge σ of S, take a linear function
λσ : Δ→ R equal to ν along σ and strongly less than ν outside σ; put νσ = ν−λσ.
Substitution of νk or νσ for ν in (2.21) is equivalent to a coordinate change (cf.
proof of Theorem 2.35).

For a given configuration x1, . . . , xζ , a given combinatorial type of the tropical
curve T and a given combinatorial type of the distribution of the points x1, . . . , xζ

on T , we perform the reconstruction procedure for T similar to that from Section
2.5.6. Namely, we start with germs of edges of T passing through x1, . . . , xζ . Denote
by σ1, . . . , σζ the dual edges of the subdivision S, respectively. Then we extend
these germs until we come to the first possible intersection point. It is a vertex
of T , whose dual polygon of S we denote by Δ1. Since we know whether it is
a triangle or a parallelogram, we can uniquely restore T in a neighborhood of
that vertex. Then we continue the extension of edges until we come to the next
possible intersection point, dual respectively to Δ2, and so on. The tropical curve
T is determined by the configuration x1, . . . , xζ and the given combinatorial types,
and thus, the procedure completely restores T . Considering this procedure as a
reconstruction of the subdivision S, we observe that each polygon Δm is built on
two of its sides, which have appeared before. We denote the union of these sides
by (∂Δm)+. We can also pick up an endpoint (∂σk)+ of each edge σk, 1 ≤ k ≤ ζ
so that the sets σk\(∂σk)+, k = 1, . . . , ζ, will be disjoint.

Our plan is as follows: we split the linear polynomial space P(Δ) generated
by the monomials xkyj , (k, j) ∈ Δ, into the direct sum of subspaces, and then
show that each of them is “responsible” for the appearance of some nodes of the
curves C(t), t �= 0, which we want to construct.

1. Let Δm be a triangle. The polynomial fm(x, y) defines a rational curve Cm ⊂
Tor(Δm) with | Int(Δm) ∩ Z2| nodes in (C∗)2. The polynomial

f(t),m(x, y) =
∑

(k,j)∈Δ

akj(t)xkyjtνm(k,j) ∈ P(Δ)
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is a small deformation of fm in P(Δ) (cf. the proof of Theorem 2.35), and we
impose the condition to keep the nodes of Cm in the deformation C(t), t ∈ (C, 0),
by means of

Lemma 2.52. The germ at fm of the set of polynomials in P(Δ), defining a curve
with | Int(Δm) ∩ Z2| nodes in a neighborhood of the nodes of Cm in(C∗)2, is
smooth, has codimension | Int(Δm) ∩ Z2|, and intersects transversally with the
space P(Δm, ∂Δm, fm) at one point (i.e., at {fm}).

This statement is a sort of the transversality conditions discussed in Sections
2.4.2 and 2.4.4, and we leave the proof as exercise.

2. Let Δm be a parallelogram. The curve Cm contains two distinct binomial com-
ponents Cm1, Cm2 of multiplicities d1, d2, respectively. Notice that the total inter-
section multiplicity of Cd1

m1 and C
d2
m2 in (C

∗)2 is equal to |(Δm\(∂Δm)+)∩Z2|. As
in the proof of Lemma 2.46, in the deformation C(t), t ∈ (C, 0), all these intersec-
tion points must turn in |(Δm\(∂Δm)+) ∩ Z2| nodes of C(t), t �= 0, in (C∗)2. We
treat this condition by means of

Lemma 2.53. The germ at fm of the set of polynomials in P(Δ), defining a curve
with |(Δm\(∂Δm)+)∩Z2| nodes in a neighborhood of the intersection points of the
components Cm1 and Cm2 in (C∗)2 is smooth, has codimension |(Δm\(∂Δm)+)∩
Z2|, and intersects transversally with the space P(Δm, (∂Δm)+, fm) at one point
(i.e., at {fm}).

Again the proof is left as an exercise.

3. Consider the edge σ = σm dual to the edge of T , passing through the point
xm, 1 ≤ m ≤ ζ. Performing if necessary a monomial transformation like that in
Section 2.5.8, we can assume that

fσ(x, y) =
∑

(k,j)∈σ

a
(0)
kj x

kyj = (x+ ξ)d, d = |σ| , (2.22)

and our requirement is that the polynomial

f(t),σ(x, y) =
∑

(k,j)∈Δ

akj(t)xkyjtνσ(k,j) , (2.23)

which is a small deformation of fσ, defines curves C(t), t �= 0, having d− 1 nodes
in a neighborhood of the point (−ξ, 0), and satisfies the condition f(t),σ(pm) = 0.
Specifying refinements of the tropical limit of f(t),σ, we shall express these require-
ments in the form of relations on the coefficients of the considered polynomials.
Denote by U the space of polynomials in K[x, y] given by the right-hand side of
(2.23), where

akj(t) = a
(0)
kj + ckj(t), ckj(0) = 0, (k, j) ∈ Δ ∩ Z2 . (2.24)
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Lemma 2.54. In the above notation, let V[σ] be the set of polynomials F ∈ U such
that

• the refinement of the tropical limit of F at [σ] is a given pair (Δ[σ], C[σ]),

• F defines a family of curves C(t), t ∈ (C, 0), in C2\{x = 0} having d − 1
nodes in a neighborhood of the point (ξ, 0),

• F satisfies the condition F (pm) = 0 refined to (2.20) with a fixed d-th root of
the expression (−ξ(0)m a

(0)
0,1(a

(0)
d,0)

d−1) in the right-hand side.

Then V[σ] is given by relations

ckj(t) = Ψkj ({ck′j′(t) : (k′, j′) ∈ Δ\(σ\∂σ+)}, t) , (k, j) ∈ σ\∂σ+ ,

where Ψkj are some analytic functions in a neighborhood of the origin such that
Ψkj(0) = 0, (k, j) ∈ σ\∂σ+.

We do not prove this statement, but should like to comment on it, since it
differs from the previous Lemmas 2.52 and 2.53. After the shift

x �→ x− ξ − τ (2.25)

with some τ = τ(t), τ(0) = 0, the polynomial F (x, y) given by (2.24) turns
into a new polynomial F ′′(x, y), which we consider over K, and whose tropi-
cal limit contains a convex piecewise-linear function ν′′ with the triangle Δ[σ] =
conv{(0, 1), (0,−1), (d, 0)} as one of the linearity domains (cf. Section 2.5.8). No-
tice that the function ν′′ is uniquely determined by the initial data of Theorem
2.51. Furthermore, assuming that ν′′ vanishes on Δ[σ], we see that

F ′′(x, y) =
∑

(k,j)∈Δ[σ]

(c(0)kj + ckj(t))xkyj +O(t), cij(0) = 0, (i, j) ∈ Δ[σ] ,

where O(t) contains monomials from outside of Δ[σ], and

Φ(x, y) =
∑

(k,j)∈Δ[σ]

b
(0)
kj x

kyj

is an equation of C[σ], in which we assume b
(0)
d−1,0 = 0. Then the problem reduces

to a transversality statement like in Lemmas 2.52 and 2.53 with an additional
equation (2.19) for τ(t) (in which one has to specify the d-th root).

4. Let σ be en edge of S, which is not equivalent to any of σ1, . . . , σζ , and has
length d ≥ 2. The equivalence class [σ] is totally ordered by the reconstruction
procedure for T , and we suppose that σ is the first in its class. As above we can
assume that σ lies on the horizontal axis, and that fσ =

∑
(k,j)∈σ a

(0)
kj x

kyj satisfies
(2.22). We require that the polynomial f(t),σ(x, y), given by (2.23), defines curves
C(t) ⊂ Tor(Δ), t �= 0, having d− 1 nodes in a neighborhood of (−ξ, 0). Similar to
the preceding step, we specify refinement of the tropical limit of f(t),σ and express
the above requirement in the following analytic form.
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Lemma 2.55. In the above notation, let V[σ] be the set of polynomials F ∈ U such
that

• the refinement of the tropical limit of F at [σ] is a given pair (Δ[σ], C[σ]),

• F defines a family of curves C(t), t ∈ (C, 0), in C2\{x = 0} having d − 1
nodes in a neighborhood of the point (ξ, 0).

Then V[σ] is given by relations

ckj(t) = Ψkj ({ck′j′(t) : (k′, j′) ∈ Δ\(σ\∂σ)}, t) , (k, j) ∈ σ\∂σ ,

where Ψkj are some analytic functions in a neighborhood of the origin such that
Ψkj(0) = 0, (k, j) ∈ σ\∂σ.

The statement is similar to Lemma 2.54. We only remark, that the edge σ
appears in the reconstruction procedure for S (dual to that for T ) as the third side
of some triangle Δs, and then the parameter τ from (2.25) is, in fact, determined
by the transversality conditions for Δs from Lemma 2.52.

5. Observe that the set of integral points of Δ is split into disjoint subsets

• (Δm\∂Δm) ∩ Z2 for all triangles Δm,

• (Δm\(∂Δm)+) ∩ Z2 for all parallelograms Δm,

• (σm\(∂σm)+) ∩ Z2, m = 1, . . . , ζ,

• (σ\∂σ) ∩ Z2 for the first edge σ in each equivalence class [σ] disjoint with
{σ1, . . . , σζ}.

Correspondingly the hyperplane in P(Δ) defined by the vanishing coefficient at
the endpoint (∂σ1)+ of σ1, splits into the direct sum of linear subspaces, which are
ordered by the reconstruction procedure for T . In the same manner as in the proof
of Theorem 2.35 (see Remark 2.36), the conditions of Lemmas 2.52, 2.53, 2.54, and
2.55 lead to a system of equations for the coefficients ckj(t), (k, j) ∈ Δ\(∂σ1)+,
with a block-triangular linearization, and then we decide on the existence and
uniqueness of a solution by the implicit function theorem.

2.5.11 The real case: Welschinger invariants

Now we explain how to obtain the tropical formula for the Welschinger invariants.
Again we state the problem over the field K, possessing the natural complex

conjugation and containing the real subfield KR ⊂ K.
Under the hypotheses of Theorem 2.44, we derive from Lemma 2.46 that

the tropical limit of a real rational curve in TorK(Δ), passing through generic
ζ = |∂Δ| − 1 real points, consists of an irreducible simple tropical curve with
Newton polygon Δ of rank ζ, and a collection of real curves as specified in Lemma
2.46(2).
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Next we notice that by Theorem 2.51, the data consisting of (i) an irreducible
simple tropical curve T with Newton polygon Δ of rank ζ, (ii) an appropriate
collection of real curves as in the assertion of Theorem 2.51, and (iii) the real refined
conditions to pass through the fixed points (2.20), produce a unique rational curve
C ∈ |LΔ|, defined over KR and passing through the fixed points. Furthermore, the
nodes of C come

• from the nodes of the real rational curves Cm such that Δm is a triangle in
the subdivision S of Δ,

• from the nodes of the curves C[σ] with [σ] running over all the equivalence
classes of edges of S,

• from the intersection points of distinct binomial components of the curves
Cm such that Δm is a parallelogram in S; in this case no real solitary node
may appear.

Observe that the choice of the curves C[σ], specified in Theorem 2.51, is
independent of the refined conditions to pass through the fixed points, provided
that the curves Cm ∈ |LΔm |, m = 1, . . . , N , are already given. Hence, if there is an
edge σ of S of an even length d, then by Lemma 2.49, either there exist no suitable
real curves C[σ], or there are two suitable real curves C[σ], having distinct parity of
the number of real solitary nodes. Thus, as noticed above, the real rational curves
C, which can be constructed out of a given tropical curve T , in total contribute
0 to the Welschinger invariant, which agrees with the definition W(T ) = 0 in this
case.

If all the edges of S have odd length, then by Lemmas 2.48 and 2.49, and
by formula (2.20), there is a unique choice of appropriate real curves Cm, m =
1, . . . , N , and C[σ], σ ∈ Edges(S), and the refined conditions to pass through the
fixed point. Hence there exists a unique real rational curve C ∈ |LΔ|, passing
through p1, . . . , pζ and projecting to T . By Lemmas 2.48 and 2.49 the total parity
of the number of real solitary nodes of the curves Cm and C[σ] coincides with the
parity of the number of interior integral points in all the triangles of the subdivision
S, which means that the contribution to the Welschinger invariant of the tropical
curve T is equal to W(T ) = (−1)s(T ).

2.6 Exercises

Exercise 2.1. Given a square ABCD, find a convex subdivision of the triangle
ABD and a convex subdivision of the triangle BCD, which together form a non-
convex subdivision of the given square.

Exercise 2.2. Using the combinatorial patchworking, construct for any positive
integer k
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• a curve C0 of degree 2k in RP 2 such that the real point set of C0 is empty,

• a curve C1 of degree 2k − 1 in RP 2 such that the real point set of C1 is
connected.

Exercise 2.3. Let m be a positive integer, and T the triangle in R2 with the ver-
tices (0, 0), (0,m), and (m, 0). Find a primitive triangulation of T and a sign
distribution at the vertices of this triangulation which produce, via the combina-
torial patchworking, a curve of degree m in RP 2 such that the real point set of
this curve is connected.

Exercise 2.4. Letm be a positive integer, and T the triangle in R2 with the vertices
(0, 0), (0,m), and (m, 0). Assume that any integral point of T is endowed with the
sign +.

• Find a primitive convex triangulation of T which together with the given
sign distribution produces, via the combinatorial patchworking, a hyperbolic
curve of degreem in RP 2 (a real curve of degreem in RP 2 is called hyperbolic
if there is a real point such that any real line through this point crosses the
curve only at real points).

• Find a primitive convex triangulation of T which together with the given
sign distribution produces, via the combinatorial patchworking, an M -curve
of degree m in RP 2.

Exercise 2.5. Construct Harnack’s, Hilbert’s and Gudkov’s M -curves of degree 6
in RP 2 using the patchworking method and charts of real cubics.

Exercise 2.6. Show that the lattice subdivision of the plane shown in Figure
2.20 is convex. Using this subdivision and an appropriate patchworking theorem,
construct for any degree d ≥ 3 a real algebraic plane curve of degree d having
[(d2 − 3d+ 4)/4] real cusps as its only singularities.

Exercise 2.7. Let m be a positive integer, Δ ⊂ R3 the tetrahedron with vertices
(0, 0, 0), (m, 0, 0), (0,m, 0), and (0, 0,m), and S a T -surface of degree m in RP 3

constructed by means of a primitive triangulation of Δ. Prove that the Euler
characteristic χ(RS) of the real point set RS of S satisfies the equality

χ(RS) = −m
3

3
+
4m
3

.

(Note that −m3

3 + 4m
3 is the signature of the complex point set CS of S in CP 3.)
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Figure 2.20: Lattice subdivision for Exercise 2.6.

Exercise 2.8. Let A ⊂ Rn
+ be a set of vertices of a non-degenerate lattice n-simplex

Δ. Assume that no hyperplane through the origin contains a facet of Δ. Prove
that a real polynomial f(x) =

∑
ω∈A aωx

ω has at most one real critical point in
the positive orthant Rn

+; moreover, such a point is non-degenerate and has index
i, or n− i, where i is the number of facets of Δ which are visible from the origin.



Chapter 3

Applications of tropical
geometry to enumerative
geometry

3.1 Introduction

The main purpose of this chapter is to present several applications of tropical
geometry in enumerative geometry. The idea to use tropical curves in enumer-
ative questions, and in particular in classical questions of enumeration of alge-
braic curves (satisfying some constraints) in algebraic varieties was suggested by
M. Kontsevich. This idea was realized by G. Mikhalkin [40, 42] who established
an appropriate correspondence theorem between the complex algebraic world and
the tropical one. This correspondence allows one to calculate Gromov–Witten type
invariants of toric surfaces, namely, to enumerate certain nodal complex curves of
a given genus which pass through given points in a general position in a toric sur-
face. Roughly speaking, Mikhalkin’s theorem affirms that the number of complex
curves in question is equal to the number of their tropical analogs passing through
given points in a general position in R2 and counted with multiplicities. In addi-
tion, [40] suggests a combinatorial algorithm for an enumeration of the required
tropical curves. An extension of Mikhalkin’s correspondence theorem to the case
of rational curves in toric varieties was proposed by T. Nishinou and B. Siebert
in [48].

The tropical approach has important applications in enumerative real alge-
braic geometry as well. Enumerative geometric problems over the reals, such as
counting real algebraic curves in real algebraic varieties, have a different character
than in the complex case, since over the reals the answer typically depends on the
configuration of the imposed constraints. Thus, the main question concerns the
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upper and lower bounds for the number of real solutions. For these problems of
counting curves, the corresponding Gromov–Witten type invariant (i.e., the num-
ber of the corresponding complex curves) is an upper bound. No non-trivial lower
bound was known until the recent discovery by J.-Y. Welschinger [73, 74, 75] of
invariants which can be seen as real analogs of genus zero Gromov–Witten invari-
ants. The theory of the Welschinger invariants is under an intensive development.
The tropical approach allows one to calculate or estimate these invariants in some
situations which leads to surprising results in enumerative real algebraic geom-
etry (for example, the logarithmic equivalence of the Gromov–Witten and the
Welschinger invariants of toric Del Pezzo surfaces [28]).

3.2 Tropical hypersurfaces in Rn

We briefly recall here the definition and the basic properties of tropical hyper-
surfaces in Rn (in fact, Rn is the tropical analog of the complex torus (C∗)n and
should be viewed here as (T∗)n = (T \ {−∞})n; cf. Chapter 1, Section 1.5).

Fix a positive integer n. A point in Rn is called integer, if all coordinates
of this point are integer. Let A be a finite collection of integer points in Rn,
and ϕ : A → R an arbitrary function. The pair (A,ϕ) gives rise to a tropical
hypersurface in Rn in the following way.

Let ϕ̂ : Rn → R be the Legendre transform of ϕ:

ϕ̂(x1, . . . , xn) = max
(i1,...,in)∈A

{i1x1 + · · ·+ inxn − ϕ(i1, . . . , in)} .

The function ϕ̂ is a tropical polynomial defining the hypersurface under description
(cf. Chapter 1, Section 1.5). Notice that ϕ̂ is convex piecewise-linear, and consider
the corner locus T (A,ϕ) of ϕ̂, i.e., the subset of Rn formed by the points where
ϕ̂ is not locally affine-linear. The graph Γ(A,ϕ) of ϕ̂ is naturally stratified. The
set T (A,ϕ) is stratified by the projections of the elements of the stratification of
Γ(A,ϕ), and defines a subdivision Θ(A,ϕ) of Rn. The (n−1)-dimensional elements
of the stratification of T (A,ϕ) are called facets.

Each facet σ of T (A,ϕ) can be equipped with a positive integer number.
Namely, let σ be the projection of an (n−1)-dimensional polyhedron Σ in Γ(A,ϕ).
Denote by Aσ the subset of A formed by the points (i1, . . . , in) such that the graph
of the affine-linear function i1x1 + · · · + inxn − ϕ(i1, . . . , in) contains Σ. Notice
that Aσ has at least two points, and all the points of Aσ belong to a straight
line. Denote by I and J the two extremal points of Aσ, i.e., the points of Aσ such
that the segment [IJ ] contains all the points of Aσ. Associate to the facet σ a
weight w(σ) equal to the integer length of [IJ ] (the integer length of a segment
with integer endpoints is the number of its integer points diminished by 1).

Definition 3.1. The polyhedral complex T (A,ϕ) whose facets are equipped with
the corresponding weights is called the tropical hypersurface associated with the
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y = 4x − 1

y = x − 2

y = 2x

Figure 3.1: Legendre transform in dimension 1.

pair (A,ϕ). One says that T (A,ϕ) is a tropical hypersurface with Newton poly-
tope Δ(A), where Δ(A) is the convex hull of A. If Δ(A) is the simplex with vertices
(0, 0, . . . , 0), (m, 0, . . . , 0), (0,m, 0, . . . , 0), . . ., (0, . . . , 0,m), then the tropical hy-
persurface T (A, f) is said to be of degree m.

Example 3.2. Let A = {(0, 0), (1, 0), (0, 1)} ⊂ R2, and ϕ : A → R an arbitrary
function. The tropical curve associated with the pair (A,ϕ) is the union of three
rays in R2 which share a common extremal point; the directions of the rays are
south, west and northeast (see Figure 3.2). In this case, a change of values of ϕ
leads to a translation of the tropical curve. The common point of the three rays
has the coordinates (ϕ(1, 0)− ϕ(0, 0), ϕ(0, 1)− ϕ(0, 0)).

(0, 0)

(0, 1)

(1, 0)

Figure 3.2: A tropical line.
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Notice that different polytopes can play the role of Newton polytope for
the same tropical hypersurface in Rn. For example, given a finite collection A
of integer points in Rn, a function ϕ : A → R, and any integer point c in Rn,
consider the pair (A′, ϕ′), where A′ = A+ c and ϕ : A′ → R is the function such
that ϕ′(x) = ϕ(x − c) for any point x ∈ A′. Then, the tropical hypersurfaces
T (A,ϕ) and T (A′, ϕ′) coincide. This example is a typical one: any two Newton
polytopes of a given tropical hypersurface in Rn differ by a translation by an
integer vector.

Consider a tropical hypersurface T (A,ϕ) ⊂ Rn associated with a pair (A,ϕ).
The function ϕ gives rise to a subdivision of the convex hull Δ(A) of A. Namely,
let F : Δ(A) → R be the convex piecewise-linear function whose graph is the
lower part of the convex hull of the graph of ϕ. The linearity domains of F are
n-dimensional polytopes with integer vertices. These polytopes produce a subdi-
vision S(A,ϕ) of Δ(A).

Figure 3.3: Examples of subdivisions of the triangle with vertices (0, 0), (2, 0), and
(0, 2).

The subdivision S(A,ϕ) is dual to the subdivision Θ(A,ϕ) in the following
sense.

Theorem 3.3 (Duality theorem). There exists a one-to-one correspondence B be-
tween the elements of S(A,ϕ) on one side and the elements of Θ(A,ϕ) on the
other side such that

• if e is an element of S(A,ϕ) having dimension i, then the element B(e)
of Θ(A,ϕ) has dimension n − i, and the linear spans of e and B(e) are
orthogonal,

• the correspondence B reverses the incidence relation.
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2

Figure 3.4: Examples of tropical conics in R2 and corresponding dual subdivisions
(the weight of an edge is indicated only if this weight is different from 1).

3.3 Geometric description of plane tropical curves

We will now restrict ourselves to the study of tropical curves in R2. These curves
can be described in the following geometric way.

Let V be a finite collection of distinct points in R2, Eb a collection of segments
whose endpoints belong to V , and Eu a finite collection of half-infinite rays whose
endpoints belong to V . Assume that the intersection of any two elements in Eb∪Eu

is either a point in V or empty. Let w : Eb ∪ Eu → N be a function (for an
element e ∈ Eb ∪Eu, the number w(e) is called the weight of e). Such a quadruple
(V,Eb, Eu, w) is called a weighted rectilinear graph. A weighted rectilinear graph
(V,Eb, Eu, w) is balanced if

• each element in Eb ∪ Eu has a rational slope,

• no element in V is adjacent to exactly two elements in Eb ∪ Eu,
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• for any element v in V , one has
∑

ek∈E(v)w(ek)·−→ek = 0, where E(v) ⊂ Eb∪Eu

is the set formed by the elements of Eb∪Eu which are adjacent to v, and −→ei is
the smallest vector with integer coordinates based at v and pointed along ei.

The last property in the definition above is called the balancing condition.

Theorem 3.4. Any tropical curve in R2 represents a balanced weighted rectilinear
graph. Conversely, any balanced weighted rectilinear graph represents a tropical
curve.

Proof. Let T (A,ϕ) be a tropical curve associated with a pair (A,ϕ). Consider the
weighted rectilinear graph Γ whose set V (respectively, Eb, Eu) is formed by the
vertices (respectively, bounded edges, unbounded edges) of T (A,ϕ), and whose
weights coincide with the corresponding weights of T (A,ϕ). Since

• any edge in S(A,ϕ) has a rational slope,
• any polygon in S(A,ϕ) has at least three sides,
• for any polygon in S(A,ϕ) with vertices p1, p2, . . . , pn, one has −−→p1p2 + · · ·+−−−−→pn−1pn +−−→pnp1 = 0,

the Duality Theorem 3.3 implies that the graph Γ verifies all three properties
appearing in the definition of balanced graphs, and thus, is balanced.

To prove the converse statement, consider a balanced weighted graph Γ, and
choose a region R of the complement of Γ in R2. Associate to R an arbitrary
affine-linear function ϕ̂R : R2 → R, ϕ̂R(x, y) = iRx+ jRy−ϕR. Let R′ be a region
neighboring to R, i.e., such that the intersection e of the closures of R and R′ is
an element of Eb ∪ Eu. Associate to R′ the affine-linear function ϕ̂R′ : R2 → R,
ϕ̂R′(x, y) = iR′x + jR′y − ϕR′ such that ((iR′ − iR)/w(e), (jR′ − jR)/w(e)) is the
smallest integer vector normal to e and pointed inside R′, and the restrictions of
ϕ̂R and ϕ̂R′ on e coincide. Continuing in the same manner, we associate to any
region P of the complement of Γ in R2 an affine-linear function ϕ̂P : R2 → R,
ϕ̂(x, y) = iPx + jP y − ϕP . The balancing condition insures that the function ϕ̂P

does not depend on the sequence of regions used in the definition of ϕ̂P . We obtain
a finite collection A of integer points (iP , jP ) and a function ϕ : A→ R defined by
(iP , jP ) �→ ϕP such that Γ represents the tropical curve associated with (A,ϕ). �

The sum T (A1, ϕ1) + · · ·+T (An, ϕn) of plane tropical curves T (A1, ϕ1), . . .,
T (An, ϕn) is the plane tropical curve defined by the tropical polynomial ϕ̂1 +
· · · + ϕ̂n. The underlying set of the tropical curve T (A1, ϕ1) + · · · + T (An, ϕn)
is the union of underlying sets of T (A1, ϕ1), . . ., T (An, ϕn), and the weight of
any edge of T (A1, ϕ1) + · · · + T (An, ϕn) is equal to the sum of the weights of
the corresponding edges of summands. A tropical curve in R2 is reducible if it is
the sum of two proper tropical subcurves. A non-reducible tropical curve in R2 is
called irreducible.

Tropical curves have many properties in common with algebraic curves. For
example, one can prove the following analog of the Bézout theorem (see, e.g., [64]).
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Theorem 3.5 (Tropical Bézout theorem). Let T1 and T2 be two tropical curves
of degrees m1 and m2, respectively, such that T1 and T2 are in general position
with respect to each other (the latter condition means that T1 and T2 intersect each
other only in inner points of edges); then the number of intersection points (counted
with certain multiplicities) of T1 and T2 is equal to m1m2. The multiplicities of
intersection points are defined as follows. Consider an intersection point of an edge
e1 of T1 and an edge e2 of T2. Let (a1, b1) and (a2, b2) be smallest integer vectors
along e1 and e2, respectively. Then, the multiplicity of the intersection point is
equal to w(e1)w(e2)|a1b2 − a2b1|.

Notice also that for any two points in general position in R2 there exists
exactly one tropical line passing through these points. This observation has an
important generalization which is the core of the remaining part of this chapter.

3.4 Count of complex nodal curves

In this section, we formulate certain enumerative problems concerning nodal curves
in the complex projective plane CP 2.

Fix a positive integer m, and choose m(m+3)
2 points in general position in

CP 2. There exists exactly one curve of degree m in CP 2 which passes through the
chosen points. Indeed, the space CCm of all the curves of degree m in CP 2 can be
identified with a complex projective space CPN of dimension N = m·(m+3)

2 : the
coefficients of a polynomial defining a given curve can be taken for homogeneous
coordinates of the corresponding point in CCm. The condition to pass through
a given point in CP 2 produces a linear equation in coefficients of a polynomial
defining the curve, and thus determines a hyperplane in CCm. If the configura-
tion of m(m+3)

2 chosen points is sufficiently generic, the corresponding m(m+3)
2

hyperplanes in CCm have exactly one common point (and in addition this point
corresponds to a nonsingular curve).

Choose now m·(m+3)
2 −1 points in general position in CP 2. How many curves

of degree m with one non-degenerate double point each pass through the chosen
points? Consider the hypersurface D ⊂ CCm formed by the points corresponding
to singular curves. The hypersurface D is called the discriminant of CCm. The
smooth part of D is formed by the points corresponding to curves whose only
singular point is non-degenerate double. If the configuration of m(m+3)

2 − 1 chosen
points is sufficiently generic, the intersection of the hyperplanes corresponding to
these points is a line in CCm, and moreover, this line intersects the discriminant
only in the smooth part and transversally. Thus, the number we are interested in
is the degree of D.

Consider the following generalization of the above questions. Pick an integer
δ verifying the inequalities 0 ≤ δ ≤ (m−1)(m−2)

2 , and choose a collection U of
m(m+3)

2 − δ points in CP 2. Consider the curves of degree m in CP 2 which pass
through all the points of U and have δ non-degenerate double points each. If U is
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sufficiently generic, then the number of these curves is finite and does not depend
on U . Denote by Nm(δ) (respectively, N irr

m (δ)) the number of curves (respectively,
of irreducible curves) of degree m in CP 2 which pass through the points of a
generic configuration of m(m+3)

2 − δ points in CP 2 and have δ non-degenerate
double points each. The expression “sufficiently generic” in the description of the
numbers Nm(δ) can be made precise in the following way. Denote by Sm(δ) the
subset of CCm formed by the points corresponding to curves of degree m having δ
non-degenerate double points each and no other singularities. The Severy variety
Sm(δ) is the closure of Sm(δ) in CCm. It is an algebraic variety of codimension δ
in CCm. Its smooth part is Sm(δ). We say that a collection U of m(m+3)

2 −δ points
is generic, if the dimension of the projective subspace Π(U) ⊂ CCm defined by
the points of U is equal to δ, the intersection Π(U)∩Sm(δ) is contained in Sm(δ),
and this intersection is transverse. Generic collections form an open dense subset
in the space of all collections of m(m+3)

2 − δ points in CP 2. If U is generic, the
number of curves of degree m in CP 2 which pass through the points of U and
have δ non-degenerate double points each is equal to the number of elements in
the finite intersection Π(U)∩Sm(δ). Thus, the number Nm(δ) is the degree of the
Severi variety Sm(δ).

The numbers Nm(δ) can be calculated starting with the numbers N irr
m (δ)

and vice versa (see, for example, [4]). The numbers N irr
m (δ) are Gromov–Witten

invariants of CP 2. The number N irr
m (δ), where δ = (m−1)(m−2)

2 , is the number of
rational curves of degree m which pass through a generic collection of m(m+3)

2 −
(m−1)(m−2)

2 = 3m−1 points in CP 2. A recursive formula for the numbers N irr
m (δ),

with δ = (m−1)(m−2)
2 , was found by M. Kontsevich (see [33]). A recursive formula

that allows one to calculate the numbers Nm(δ) with an arbitrary δ was obtained
by L. Caporaso and J. Harris [4].

G. Mikhalkin proposed a new formula for the numbers Nm(δ) (see [40, 42]).
This formula has an immediate generalization to the case of an arbitrary toric
surface (see [40, 42]). Mikhalkin’s approach is based on a reformulation of the
enumerative problem presented above into an enumerative problem concerning
tropical curves.

3.5 Correspondence theorem

To formulate Mikhalkin’s correspondence theorem, introduce additional defini-
tions.

Let m be a positive integer, Δm ⊂ R2 the triangle having the vertices (0, 0),
(m, 0), and (0,m), and T a tropical curve of degreem. The curve T is called simple
if the corresponding dual subdivision ST of Δm satisfies the following properties:

• any polygon of ST is either a triangle or a parallelogram,

• any integer point on the boundary of Δm is a vertex of ST .
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In this case, the subdivision ST is also called simple. Notice that if T is simple,
then it can be represented in a unique possible way as a sum of irreducible tropical
curves.

Assume that T is simple. Then, the rank of T is the difference diminished
by 1 between the number of vertices of ST and the number of parallelograms in ST .
The multiplicity μ(ST ) of ST (and the multiplicity μ(T ) of T ) is the product of
areas of all the triangles in ST (we normalize the area in such a way that the area
of a triangle whose only integer points are its vertices is equal to 1).

Let r be a positive integer, and U a generic collection of r points in R2. (One
can formalize the expression “generic” used here and introduce the notion of a
tropically generic collection of points in R2; this can be done in a way similar to
the one used in the complex situation.) Consider the collection C(U) of simple
tropical curves of degree m and of rank r which pass through all the points of U .
Denote by Cirr(U) the collection of irreducible curves belonging to C(U).
Theorem 3.6. (G. Mikhalkin, [42]). Let U be a generic set of r = m(m+3)

2 −δ points
in R2, where an integer δ satisfies the inequalities 0 ≤ δ ≤ (m−1)(m−2)

2 . Then,

Nm(δ) =
∑

T∈C(U)

μ(T ) and N irr
m (δ) =

∑
T∈Cirr(U)

μ(T ).

Theorem 3.6 is a particular case of Mikhalkin’s theorem which is valid in the
more general setting of projective toric surfaces. Mikhalkin’s proof of Theorem 3.6
provides a bijection between the multi-set C(U) and the set of complex curves of
degree m which pass through certain r generic points in CP 2 and have δ non-
degenerate double points each. A slightly different approach establishing such a
bijection was proposed by E. Shustin [59].

In addition, Mikhalkin [40, 42] found a combinatorial algorithm which gives
a possibility to calculate the number of tropical curves in question. We present
this algorithm in the next section.

3.6 Mikhalkin’s algorithm

Let again m be a positive integer, and Δm the triangle with vertices (0, 0), (m, 0),
and (0,m). Fix a linear function λ : R2 → R which is injective on the integer
points of Δm, and denote by p (respectively, q) the vertex of Δm where λ takes
its minimum (respectively, maximum). The points p and q divide the boundary of
Δm in two parts. Denote one of these parts by ∂Δ+, and the other part by ∂Δ−.

Let l be a natural number. A path γ : [0, l]→ Δm is called λ-admissible if

• γ(0) = p and γ(l) = q,

• the composition λ ◦ γ is injective,
• for any integer 0 ≤ i ≤ l − 1 the point γ(i) is integer, and γ([i, i + 1]) is a
segment.
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The number l is called the length of γ, and the integer points of the form γ(i),
where i is an integer satisfying the inequalities 0 ≤ i ≤ l, are called vertices of γ.
A λ-admissible path γ divides Δm in two parts: the part Δ+(γ) bounded by γ
and ∂Δ+ and the part Δ−(γ) bounded by γ and ∂Δ−. Define an operation of
compression of Δ+(γ) in the following way. Let j be the smallest positive integer
1 ≤ j ≤ l − 1 such that γ(j) is the vertex of Δ+(γ) with the angle less than π (a
compression of Δ+(γ) is defined only if such an integer j does exist). A compression
of Δ+(γ) is Δ+(γ′), where γ′ is either the path defined by γ′(i) = γ(i) for i < j
and γ′(i) = γ(i + 1) for i ≥ j, or the path defined by γ′(i) = γ(i) for i �= j
and γ′(j) = γ(j − 1) + γ(j + 1) − γ(j) (the latter path can be considered only
if γ(j − 1) + γ(j − 1) + γ(j) ∈ Δm). Note that γ′ is also a λ-admissible path. A
sequence of compressions started with Δ+(γ) and ended with a path whose image
coincides with ∂Δ+ defines a subdivision of Δ+(γ) which is called compressing.
A compression and a compressing subdivision of Δ−(γ) is defined in a completely
similar way. A pair (S+(γ), S−(γ)), where S±(γ) is a compressing subdivision of
Δ±(γ), produces a subdivision of Δm. The latter subdivision is called γ-consistent.
Denote by Nλ(γ) the collection of simple γ-consistent subdivisions of Δm.

Theorem 3.7. (G. Mikhalkin, see [40, 42]). Let 0 ≤ δ ≤ (m−1)(m−2)
2 be an integer.

There exists a generic set U of r = m(m+3)
2 − δ points in R2 such that the map

associating to a simple tropical curve T of degree m the dual subdivision ST of
Δm establishes a one-to-one correspondence between the set C(U) and the disjoint
union !γNλ(γ), where γ runs over all the λ-admissible paths in Δm of length r.
In particular, Nm(δ) =

∑
γ

∑
S∈Nλ(γ) μ(S), where μ(S) is the multiplicity of S.

Example 3.8. Figure 3.5 illustrates the algorithm in the case of rational cubics.
The function λ is given by λ(i, j) = i− εj, where ε is a positive sufficiently small
number. In this case, the number of integer points of the Newton triangle Δ3 is
greater by 1 than the number r+1 = 9 of vertices of λ-admissible paths to consider.
Therefore, each λ-admissible path γ of length r = 8 is uniquely determined by the
integer point which is not a vertex of γ. It is easy to see that the integer points
marked by small squares on Figure 3.5 are vertices of any path γ such that the
set of simple γ-consistent subdivisions is not empty.

3.7 Welschinger invariants

Mikhalkin’s correspondence theorem also gives a possibility to enumerate real
curves passing through specific configurations of real points in RP 2 (as well as on
other projective toric surfaces). Of course, in the real case the result depends on
the chosen point configuration in RP 2. Fortunately, another important discovery
was made recently by J.-Y. Welschinger [73, 74]. He found a way of attributing
weights ±1 to real rational curves which makes the number of curves counted with
the weights to be independent of the configuration of points in RP 2 and produces
lower bounds for the number of real curves in question.
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μ = 1
positive

μ = 1
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not odd

Figure 3.5: The algorithm for rational cubics.
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For a given positive integerm and an integer δ satisfying 0 ≤ δ ≤ (m−1)(m−2)
2 ,

choose a generic collection U of m(m+3)
2 −δ points in RP 2. Consider the set of real

irreducible curves of degreem passing through all the points of U and having δ non-
degenerate double points each. Denote by Rirr

m (δ, U) the number of curves in the set
considered, and by Rirr, even

m (δ, U) (resp., Rirr, odd
m (δ, U)) the number of curves in

this set which have even (resp., odd) number of solitary nodes (i.e., non-degenerate
real double points locally given by the equation x2+y2 = 0). The Welschinger sign
of a nodal real curve is (−1)s, where s is the number of solitary nodes of the curve.
Define the Welschinger number as Wm(δ, U) = Rirr, even

m (δ, U)−Rirr, odd
m (δ, U).

Theorem 3.9. (J.-Y. Welschinger, see [73, 74]). If δ = (m−1)(m−2)
2 (i.e., if the

considered curves are rational), then Wm(δ, U) does not depend on the choice of a
(generic) configuration U .

In fact, Theorem 3.9 is a particular case of Welschinger’s theorem. The gen-
eral statement in the case of real symplectic 4-manifolds and the proof can be
found in [73, 74]. Higher dimensional generalizations are found in [75].

The number Wm(
(m−1)(m−2)

2 , U) is called the Welschinger invariant and is
denoted by Wm. Clearly, the Welschinger invariant Wm gives a lower bound for
the number of real solutions to our interpolation problem: Rirr

m ( (m−1)(m−2)
2 , U) ≥

|Wm|.
Welschinger’s theorem provides another type of applications of Mikhalkin’s

correspondence. The remaining part of this chapter is mostly devoted to these
applications.

3.8 Welschinger invariants Wm for small m

Let us calculate the Welschinger invariants Wm for m = 1, 2, and 3.
If m = 1, then we should count straight lines passing through 3 · 1 − 1 = 2

points in general position in RP 2. There is exactly one straight line passing through
two points in general position in RP 2. This is a nonsingular real rational curve,
and its Welschinger sign is +1. Thus, W1 = 1.

If m = 2, then we should count real conics passing through 3 ·2−1 = 5 points
in general position in RP 2. There is exactly one curve of degree 2 passing through
five points in general position in RP 2. Once again, this curve is real, rational and
nonsingular, its Welschinger sign is +1. Thus, W2 = 1.

The case m = 3 is more complicated. If m = 3, we should count real rational
cubics passing through 3 · 3 − 1 = 8 points in general position in RP 2. Let U
be a generic configuration of 8 points in RP 2. The configuration U defines a
pencil P of real cubics passing through all the points of U . Any two cubics of
P intersect in 8 points of U , and thus have one additional point of intersection
in CP 2. Denote this point by Q. Notice that Q is real, and all the cubics of P
pass through Q. Let R̃P 2 be RP 2 blown up at 8 points of U and at the point Q.
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The Euler characteristic χ(R̃P 2) of R̃P 2 is equal to 1 − 9 = −8. On the other
hand, the calculation of the Euler characteristic of R̃P 2 via the pencil P gives
χ(R̃P 2) = Rirr, odd

3 (1, U)−Rirr, even
3 (1, U) = −W3. Thus, W3 = 8.

The lower bound 8 for the number of real rational cubics passing through 8
points in general position in RP 2 is sharp and was proved by V. Kharlamov before
the discovery of the Welschinger invariants (see, for example, [7]). It is not known
whether the lower bounds provided by the Welschinger invariants Wm, m ≥ 4 are
sharp.

3.9 Tropical calculation of Welschinger invariants

A simple tropical curve T of degree m and the corresponding subdivision ST of
Δm are called odd, if each triangle in ST has an odd (normalized) area. Such a
curve T and the dual subdivision ST are called positive (respectively, negative) if
the sum of the numbers of interior integer points over all the triangles of ST is
even (respectively, odd). Associate to any simple tropical curve T of degree m and
to the corresponding subdivision ST of Δm the Welschinger multiplicity W(T ) in
the following way. If T is not odd, then put W(T ) = 0. If T is odd and positive
(respectively, negative), then put W(T ) = 1 (respectively, W(T ) = −1).

Theorem 3.10. (cf. [40, 42], and [59]). Let U be a generic collection of r = 3m− 1
points in R2. Then,

Wm =
∑

T∈Cirr(U)

W(T ).

Take now a set U with the properties described in Theorem 3.7, and denote
by n+

λ (γ) (respectively, n
−
λ (γ)) the number of odd positive (respectively, negative)

subdivisions in Nλ(γ) which are dual to irreducible tropical curves. The following
statement is an immediate corollary of Theorems 3.10 and 3.7.

Theorem 3.11. (see [40, 42]). The Welschinger invariant Wm is equal to
∑
γ
(n+

λ (γ)−

n−λ (γ)), where γ runs over all the λ-admissible paths in Δm of length r = 3m− 1.

Figure 3.5 illustrates the tropical calculation ofW3. The subdivision with two
grey triangles has multiplicity 4. This subdivision is not odd (the grey triangles
are of area 2), and thus, it does not contribute to W3.

Remark 3.12. As it was noticed by G. Mikhalkin, one can easily prove the fol-
lowing result comparing Theorems 3.7 and 3.11: for any positive integer m, the
Welschinger invariant Wm and the corresponding Gromov–Witten invariant Nm =
N irr

m ( (m−1)(m−2)
2 ) are congruent modulo 4.

Theorem 3.11 gives a possibility to calculate or to estimate the Welschinger
invariants Wm. The following section is devoted to applications of Theorem 3.11.
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3.10 Asymptotic enumeration of real rational curves

Consider the following question: fix a positive integer m; whether for any generic
collection of 3m − 1 points in the real projective plane there always exists a real
rational curve of degree m which passes through the points of the collection ? (The
number Nm = N irr

m ( (m−1)(m−2)
2 ) of complex rational curves (see [33]) is even for

every m ≥ 3, so the existence of a required real curve does not immediately follow
from the computation in the complex case.)

The following statement is a corollary of Theorem 3.11.

Theorem 3.13. (I. Itenberg, V. Kharlamov, E. Shustin; see [27, 28]))

• For any positive integer m, the Welschinger invariant Wm is positive.

• The sequences logWm and logNm, m ∈ N, are asymptotically equivalent,
More precisely,

logWm = logNm +O(m) and
logNm = 3m logm+O(m).

As a corollary, the aforementioned question is answered in the affirmative.
Moreover, Theorems 3.9 and 3.13 imply that asymptotically in the logarithmic
scale all the complex solutions of our interpolation problem are real.

Let λ0 : R2 → R be a linear function defined by λ0(i, j) = i− εj, where ε is
a sufficiently small positive number (so that λ0 defines a kind of a lexicographical
order on the integer points of the triangle Δm).

The following statement is a key point in the proof of Theorem 3.13.

Lemma 3.14. For any λ0-admissible path γ in Δm, the number n−λ0(γ) is equal
to 0.

Proof. Let γ be a λ0-admissible path in Δm, and S a subdivision in the collection
Nλ0(γ). The subdivision S does not have an edge with the endpoints (i1, j1) and
(i2, j2) such that |i1−i2| > 1; otherwise, at least one integer point on the boundary
of Δm would not be a vertex of the corresponding compressing subdivision. This
implies that no triangle in S has interior integer points. �

Lemma 3.14 implies that, for any λ0-admissible path γ, the contribution
of any γ-consistent subdivision of Δm to the Welschinger invariant Wm is non-
negative. Thus, to prove Theorem 3.13, it is sufficient to present a λ0-admissible
path γ such that the contribution of certain γ-consistent subdivisions of Δm to
the Welschinger invariant Wm is big enough.

Sketch of the proof of Theorem 3.13. Inscribe in Δm a sequence of maximal size
squares as shown on Figure 3.6(a). Their right upper vertices have the coordinates

(xi, yi), i ≥ 1, x1 = y1 =
[m
2

]
, yi+1 =

[
m− xi

2

]
, xi+1 = xi + yi+1.
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Put (x0, y0) = (0,m). Then pick a λ0-admissible path γ consisting of segments
of integer length 1 as shown on Figure 3.6(b). This path consists of sequences
of vertical segments joining (xi, yi) with (xi, yi+1 − 1), zig-zag sequences joining
(xi, yi+1− 1) with (xi+1, yi+1) (in such a zig-zag sequence the segments of slope 1
alternate with vertical segments; it always starts and ends with segments of slope
1), and the segments [(m− 1, 1), (m− 1, 0)] and [(m− 1, 0), (m, 0)]. The length of
this path is 3m− 1.

(b)(a)

Figure 3.6: Path γ and γ-consistent subdivisions of Δm.

Now, we select some γ-consistent subdivisions of Δm. Subdivide the upper
part Δ+(γ) in vertical strips of integer width 1. Note that the rightmost strip
consists of one primitive triangle (a triangle with integer vertices is called primitive
if it is of (normalized) area 1). Pack into each strip but the rightmost one the
maximal possible number of primitive parallelograms (a parallelogramwith integer
vertices is called primitive if it is of (normalized) area 2) and place in the remaining
part of the strip two primitive triangles (see Figure 3.6(b)). Then subdivide Δ−(γ)
in slanted strips of slope 1 and horizontal width 1. Pack into each strip the maximal
possible number of primitive parallelograms. This gives a subdivision of any slanted
strip situated above the line y = x. For any strip situated below the line y = x
place in the remaining part of the strip one primitive triangle (see Figure 3.6(b)).

The total number of such γ-consistent subdivisions is

Mm ≥
∏

i

yi!(yi + 1)!
2yi

·
∏

i

yi! , (3.1)

where the first product corresponds to subdivisions of Δ+(γ) and the second one
to those of Δ−(γ).

All the constructed subdivisions of Δm are simple and odd, each of them is
dual to an irreducible tropical curve and contributes 1 to the Welschinger invariant.
The irreducibility of the dual tropical curve can easily proved by the following
induction. Let us scan the subdivision by vertical lines from right to left. The
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rightmost fragment of the tropical curve is dual to the primitive triangle Δm∩{x ≥
m − 1}, so it is irreducible. At the i-th step, i > 0, we look at the irreducible
components of the curve dual to the union of those elements of our subdivision
which intersect the stripm−i−1 < x < m−i. Each of these irreducible components
either connects the lines x = m − i − 1 to x = m − i, or contains a pattern dual
to a triangle with an edge on x = m − i, or contains a pattern dual to a slanted
parallelogram. Therefore, each component joins the curve dual to the subdivision
of Δm ∩ {x ≥ m− i}.

We have Wm ≥ Mm. This gives the first statement of Theorem 3.13, and
since logNm = 3m logm+O(m), it remains to check that

logMm ≥ 3m logm+O(m). �

Remark 3.15. The statements similar to Theorem 3.13 are proved for all unnodal
(i.e., not containing any rational (−n)-curve, n ≥ 2) toric Del Pezzo surfaces
equipped with their standard real structure, see [28]. (A real structure on a complex
variety X is an anti-holomorphic involution conj : X → X . A subvariety C ⊂ X
is real with respect to conj if conj(C) = C. The standard real structure on a
toric variety is the one which is naturally compatible with the toric structure.)
Recall that there are five unnodal toric Del Pezzo surfaces: CP 2, CP 1×CP 1, and
Pk, k = 1, 2, 3, where Pk is the projective plane CP 2 blown up at k points in
general position. The same asymptotic statements are also proved for all unnodal
toric Del Pezzo surfaces equipped with any non-standard real structure except the
standard real CP 1 × CP 1 blown up at two imaginary conjugated points; see [61,
30]. Recently, E. Brugallé and G. Mikhalkin [3] proved the statements similar to
Theorem 3.13 and Remark 3.12 for Welschinger invariants of CP 3.

3.11 Recurrence formula for Welschinger invariants

As it is shown in [29], the Welschinger invariantsWm can also be calculated using
a recurrence formula. This formula can be seen as a real analog of the Caporaso–
Harris formula [4] for relative Gromov–Witten invariants of CP 2.

Denote by G the semigroup of sequences α = (α1, α2, . . .) ∈ Z∞ with non-
negative terms and finite norm ‖α‖ = ∑

i αi. Each element of G contains only
finitely many non-zero terms, so in the description of concrete sequences we omit
zero terms after the last non-zero one. The only exception concerns the zero ele-
ment of G (the sequence with all the terms equal to zero). This element is denoted
by (0). For an element α in G, put Jα =∑∞

i=1(2i−1)αi. Define in G the following
natural partial order: if each term of a sequence α is greater than or equal to the
corresponding term of a sequence β, then we say that α is greater than or equal
to β and write α ≥ β. For two elements α = (α1, α2, . . .) and β = (β1, β2, . . .) of G
such that α ≥ β, the sequence α − β, whose i-th term is equal to αi − βi, is an
element of G. Denote by θk the element in G whose k-th term is equal to 1 and all
the other terms are equal to 0.
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For α, α(1), . . . , α(s) ∈ G such that α ≥ α(1) + · · ·+ α(s) put(
α

α(1), . . . , α(s)

)
=

∞∏
i=1

αi!

α
(1)
i ! · · ·α(s)

i !(αi −
∑s

k=1 α
(k)
i )!

.

Theorem 3.16. (I. Itenberg, V. Kharlamov, E. Shustin; cf. [29])) Consider the
family of numbers Wm(α, β) (indexed by a positive integer m and sequences α, β
in G such that Jα + Jβ = m) defined by the initial conditions W1((1), (0)) =
W1((0), (1)) = 1 and the recurrence relation (valid for any m ≥ 2)

Wm(α, β) =
∑
k≥1
βk>0

Wm(α+ θk, β − θk)

+
∑(

α
α(1), ..., α(s)

)
n!

n1!...ns!

s∏
i=1

((
β(i)

β̃(i)

)
Wm(i)(α(i), β(i))

)
, (3.2)

where
n = 2m+ ‖β‖ − 2, ni = 2m(i) + ‖β(i)‖ − 1, i = 1, ..., s,

and the latter sum in formula (3.2) is taken over all collections (m(1), . . . ,m(s)),
(α(1), . . . , α(s)), (β(1), . . . , β(s)), and (β̃(1), . . . , β̃(s)) considered up to simultaneous
permutations and satisfying the relations

m(i) ∈ Z, mi ≥ 0, α(i), β(i), β̃(i) ∈ G, Jα(i) + Jβ(i) = m(i), i = 1, . . . , s,
s∑

i=1

m(i) = m− 1,
s∑

i=1

α(i) ≤ α,

s∑
i=1

β(i) = β +
s∑

i=1

β̃(i),

s = ‖
s∑

i=1

β(i) − β‖, ‖β̃(i)‖ = 1, β(i) ≥ β̃(i), i = 1, . . . , s .

Then, for any positive integer m, we have Wm((0), (m)) =Wm.

The numbers Wm(α, β) are tropical relative Welschinger invariants. They
can be interpreted as numbers of tropical curves subject to certain constraints
and counted with appropriate multiplicities (see [29]). Theorem 3.16 is a particular
case of Theorem 4 in [29]. The latter theorem deals with tropical analogs of curves
of arbitrary genus on any unnodal toric Del Pezzo surface. The proof follows ideas
of A. Gathmann and H. Markwig [13, 14] who suggested a tropical version of the
Caporaso–Harris formula.

3.12 Welschinger invariants Wm,i

We end these lectures with a definition and some properties of the Welschinger
invariants Wm,i.
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Let m be a positive integer. Consider a configuration U of 3m− 1 points in
general position in CP 2 such that U is real, that is invariant under the involution
of complex conjugation c acting in CP 2. If the configuration U contains a non-real
point z, then U contains also the point c(z). Denote by i the number of pairs of
conjugated non-real points in U .

As in Section 3.7, consider the set of real rational curves of degree m passing
through all the points of U . Denote by Rm(U) the number of curves in the set
considered, and by Reven

m (U) (resp., Rodd
m (U)) the number of curves in this set

which have an even (resp., odd) number of solitary nodes. Define the Welschinger
number Wm,i(U) as Reven

m (U)−Rodd
m (U).

Theorem 3.17. (J.-Y. Welschinger [73, 74]). The number Wm,i(U) does not depend
on the choice of a (generic) real configuration U provided that the number of pairs
of conjugated non-real points in U is equal to i.

The number Wm,i(U) is also called Welschinger invariant and is denoted by
Wm,i. Of course, Wm,0 =Wm.

A calculation similar to that made in Section 3.8 shows that W3,i = 8 − 2i
for any integer 0 ≤ i ≤ 4. Notice that in this case the values W3,i are interpolated
by a linear function. Whatever is the integer 0 ≤ i ≤ 4, the number R3,i(U) of
real rational cubics attains the value W3,i for a suitable generic configuration U .

To calculate the Welschinger invariants Wm,i for quartics and quintics, one
can use birational transformations and Welschinger’s wall-crossing formula (see
[74], Theorem 2.2) which expresses the first finite difference of the function i �→
Wm,i as twice the Welschinger invariant of CP 2 blown up at one real point. For
quartics the answer is as follows (see [28] for details):

i 0 1 2 3 4 5
W 240 144 80 40 16 0

These values W4,i are interpolated by a polynomial of degree 3,

W4,i = −
4
3
i(i− 1)(i− 2) + 16i(i− 1)− 96i+ 240.

For quintics the Welschinger invariants take the values

i 0 1 2 3 4 5 6 7
W 18264 9096 4272 1872 744 248 64 64

which are interpolated by a polynomial of degree 6,

W5,i = 4
45 i(i− 1)(i− 2)(i− 3)(i− 4)(i− 5)
− 32

15 i(i− 1)(i− 2)(i− 3)(i− 4) + 32i(i− 1)(i− 2)(i− 3)
−320i(i− 1)(i− 2) + 2172i(i− 1)− 9168i+ 18264.

In the cases m = 3, 4, and 5, the degree of the interpolating polynomials
happens to be smaller than for a generic interpolation data, that is, smaller than
[3d−1

2 ]. It is no more the case for any m ≥ 6.
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One of the facts known about the Welschinger invariantsWm,i is the following
theorem.

Theorem 3.18. (I. Itenberg, V. Kharlamov, E. Shustin; see [28])) Let m ≥ 3 be
an integer, and i a non-negative integer such that i ≤ 3. Then, the Welschinger
invariant Wm,i is positive. Moreover,

Wm,0 > Wm,1 > Wm,2.

Furthermore, for a family of Welschinger invariants (Wm,i)m∈N, m ≥ 3, with a
given i ≤ 3, one has

logWm,i = logNm +O(m).

The proof of Theorem 3.18 is based on the tropical formulas obtained by
E. Shustin [60].
Remark 3.19. Statements of the same nature as Theorem 3.18 are proved for
all unnodal toric Del Pezzo surfaces equipped with their standard real structure;
see [28]. In the case of CP 1 × CP 1, the Welschinger invariants depend on three
integers: the bi-degree (m1,m2) of the real rational curves under consideration
and the number i of conjugated non-real points in a given configuration of points.
In this case, one can improve the result of Theorem 3.18 and show that all the
Welschinger invariants W(m1,m2),i (these invariants are defined if m1 and m2 are
positive integers, and i is a non-negative integer such that i < m1+m2) of CP 1×
CP 1 equipped with the standard real structure (z1, z2) �→ (z1, z2) are positive;
see [28].

3.13 Exercises

Exercise 3.1. Find a convex polygon Δ ⊂ R2 with integer vertices and functions
ϕ1, ϕ2 : A → R, where A = Δ ∩ Z2, such that the underlying sets of the tropical
curves T (A,ϕ1) and T (A,ϕ2) coincide, but the subdivisions of Δ defined by ϕ1

and ϕ2 do not.

Exercise 3.2. Let Δ ⊂ R2 be a convex polygon with integer vertices, and ν : Δ→ R
a convex piecewise-linear function defining a primitive triangulation of Δ (i.e., a
triangulation whose vertices are integer and whose triangles are primitive). Show
that the tropical curve T (A,ϕ), where A = Δ ∩ Z2 and ϕ = ν

∣∣
A
, is homotopy

equivalent to a bouquet of n circles, n being the number of interior integer points
of Δ.

Exercise 3.3. Let A ⊂ Z2 be a finite non-empty set, and ϕ : A → R a function.
For any c ∈ Z2, put A′ = A+ c and consider the function ϕ′ : A′ → R defined by
f ′(x) = f(x− c). Prove that the tropical curves T (A′, f ′) and T (A, f) coincide.
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Exercise 3.4. Let A = {(0, 0), (0, 1), (1, 0), (1, 1)} ⊂ Z2. The tropical curves as-
sociated with the pairs of the form (A,ϕ), where ϕ : A → R is a function, are
called tropical curves of bi-degree (1, 1). Show that, for any three points in general
position in R2, there exists precisely one tropical curve of bi-degree (1, 1) passing
through these points.

Exercise 3.5. Let A ⊂ Z2 be a set of n ≥ 2 points. Denote by T (A) the set of
tropical curves associated with the pairs of the form (A,ϕ), where ϕ : A → R is
a function. Prove that, for any n− 1 points in general position in R2, there exists
precisely one tropical curve T ∈ T (A) passing through these points.

Exercise 3.6. Show that any tropical hypersurface T in Rn is balanced, that is, for
any (n− 2)-dimensional face σ of T ,∑

δ⊃σ

w(δ) · e(δ, σ) = 0 ,

where δ runs over all (n − 1)-dimensional faces containing σ, w(δ) is the weight
of δ, and e(δ, σ) is the smallest integer inner normal vector of σ ⊂ δ. Formulate
the converse statement and prove it.

Exercise 3.7. Let A1 and A2 be two finite nonempty sets of integer points in R2.
Denote by Δi the convex hull of Ai, i = 1, 2. Consider functions ϕ1 : A1 → R and
ϕ2 : A2 → R such that the tropical curves T (A1, ϕ1) and T (A2, ϕ2) intersect each
other only at interior points of their edges. Prove the tropical Bernstein theorem:
the number of intersection points of T (A1, ϕ1) and T (A2, ϕ2), counted with the
same multiplicities as those defined in the tropical Bézout theorem, is equal to the
mixed area of Δ1 and Δ2, that is, to the Euclidean area of the Minkowski sum
Δ1 +Δ2 diminished by the Euclidean areas of Δ1 and Δ2.

Exercise 3.8. Compute the Welschinger invariants

• for rational curves of bi-degree (2, 2) on CP 1 × CP 1 equipped with the real
structure (z1, z2) �→ (z1, z2),

• for rational curves of bi-degree (2, 2) on CP 1 × CP 1 equipped with the real
structure (z1, z2) �→ (z2, z1).

Exercise 3.9. Using Mikhalkin’s algorithm, compute the number of uninodal curves
(a curve is uninodal if its only singular point is non-degenerate double) of degree
m ≥ 3 which pass through given (m2 + 3m − 2)/2 points in general position in
CP 2.
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