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1. Introduction

In this expository paper we present a survey of the work done in the last forty
years on various extensions of the Classical Hopkins-Levitzki Theorem: Relative,
Absolute or Categorical, Latticial, and Krull dimension-like.

We shall also illustrate a general strategy which consists on putting a module-
theoretical theorem in a latticial frame, in order to translate that theorem to
Grothendieck categories and module categories equipped with hereditary torsion
theories.
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The (Molien-)Wedderburn-Artin Theorem

One can say that the Modern Ring Theory begun in 1908, when Joseph Henry
Maclagan Wedderburn (1882–1948) proved his celebrated Classification Theorem
for finitely dimensional semi-simple algebras over a field F (see [49]). Before that,
in 1893, Theodor Molien or Fedor Eduardovich Molin (1861–1941) proved the
theorem for F = C (see [36]).

In 1921, Emmy Noether (1882–1935) considers in her famous paper [42], for
the first time in the literature, the Ascending Chain Condition (ACC)

I1 ⊆ I2 ⊆ · · · ⊆ In ⊆ · · ·

for ideals in a commutative ring R.
In 1927, Emil Artin (1898–1962) introduces in [17] the Descending Chain

Condition (DCC)

I1 ⊇ I2 ⊇ · · · ⊇ In ⊇ · · ·
for left/right ideals of a ring and extends the Wedderburn Theorem to rings satis-
fying both the DCC and ACC for left/right ideals, observing that both ACC and
DCC are a good substitute for finite dimensionality of algebras over a field:

The (Molien-)Wedderburn-Artin Theorem. A ring R is semi-simple if and
only if R is isomorphic to a finite direct product of full matrix rings over skew-
fields

R � Mn1(D1)× · · · ×Mnk
(Dk).

Recall that by a semi-simple ring one understands a ring R which is left (or
right) Artinian and has Jacobson radical or prime radical zero. Since 1927, the
(Molien-)Wedderburn-Artin Theorem became a cornerstone of the Noncommuta-
tive Ring Theory.

In 1929, Emmy Noether observes (see [43, p. 643]) that the ACC in Artin’s
extension of the Wedderburn Theorem can be omitted: Im II. Kapitel werden die
Wedderburnschen Resultate neu gewonnen und weitergefürt, . . . . Und zwar zeigt
es sich das der “Vielfachenkettensatz” für Rechtsideale oder die damit identische
“Minimalbedingung” (in jeder Menge von Rechtsidealen gibt es mindestens ein –
in der Menge – minimales) als Endlichkeitsbedingung ausreicht (Die Wedderburn-
schen Schlußweissen lassen sich übertragen wenn “Doppelkettensatz” vorausgesezt
wird. Vgl. E. Artin [17]).

It took, however, ten years until it has been proved that always the DCC in
a unital ring implies the ACC.

The Classical Hopkins-Levitzki Theorem (H-LT)

One of the most lovely result in Ring Theory is the Hopkins-Levitzki Theorem,
abbreviated H-LT. This theorem, saying that any right Artinian ring with identity
is right Noetherian, has been proved independently in 1939 by Charles Hopkins
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[27]1 (1902–1939) for left ideals and by Jacob Levitzki [31]2 (1904–1956) for right
ideals. Almost surely, the fact that the DCC implies the ACC for one-sided ideals
in a unital ring was unknown to both E. Noether and E. Artin when they wrote
their pioneering papers on chain conditions in the 1920’s.

An equivalent form of the H-LT, referred in the sequel also as the Classical
H-LT , is the following one:
Classical H-LT. Let R be a right Artinian ring with identity, and let MR be a
right module. Then MR is an Artinian module if and only if MR is a Noetherian
module.

Proof. The standard proof of this theorem, as well as the original one of Hopkins
[27, Theorem 6.4] for M = R, uses the Jacobson radical J of R. Since R is right
Artinian, J is nilpotent and the quotient ring R/J is a semi-simple ring. Let n be a
positive integer such that Jn = 0, and consider the descending chain of submodules
of MR

M ⊇ MJ ⊇ MJ2 ⊇ · · · ⊇ MJn−1 ⊇MJn = 0.

Since the quotients MJk/MJk+1 are killed by J , k = 0, 1, . . . , n − 1, each
MJk/MJk+1 becomes a right module over the semi-simple ring R/J , so each
MJk/MJk+1 is a semi-simple (R/J)-module.

Now, observe that MR is Artinian (resp. Noetherian) ⇐⇒ all MJk/MJk+1

are Artinian (resp. Noetherian) R (or R/J)-modules. Since a semi-simple module
is Artinian if and only if it is Noetherian, it follows that MR is Artinian if and
only if it is Noetherian, which finishes the proof. �

Extensions of the H-LT

In the last fifty years, especially in the 1970’s, 1980’s, and 1990’s the (Classical)
H-LT has been generalized and dualized as follows:
1957 Fuchs [21] shows that a left Artinian ring A, not necessarily unital, is

Noetherian if and only if the additive group of A contains no subgroup
isomorphic to the Prüfer quasi-cyclic p-group Zp∞ .

1In fact, he proved that any left Artinian ring (called by him MLI ring) with left or right identity
is left Noetherian (see Hopkins [27, Theorems 6.4 and 6.7]).
2The result is however, surprisingly, neither stated nor proved in his paper, though in the litera-
ture, including our papers, the Hopkins’ Theorem is also wrongly attributed to Levitzki. Actually,
what Levitzki proved was that the ACC is superfluous in most of the main results of the original
paper of Artin [17] assuming both the ACC and DCC for right ideals of a ring. This is also
very clearly stated in the Introduction of his paper: “In the present note it is shown that the
maximum condition can be omitted without affecting the results achieved by Artin.” Note that
Levitzki considers rings which are not necessarily unital, so anyway it seems that he was even
not aware about DCC implies ACC in unital rings; this implication does not hold in general in
non unital rings, as the example of the ring with zero multiplication associated with any Prüfer
quasi-cyclic p-group Zp∞ shows. Note also that though all sources in the literature, including
Mathematical Reviews, indicate 1939 as the year of appearance of Levitzki’s paper in Compositia

Mathematica, the free reprint of the paper available at http://www.numdam.org indicates 1940 as
the year when the paper has been published.
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1972 Shock [46] provides necessary and sufficient conditions for a non unital
Artinian ring and an Artinian module to be Noetherian; his proofs avoid
the Jacobson radical of the ring and depend primarily upon the length of
a composition series.

1976 Albu and Năstăsescu [9] prove the Relative H-LT, i.e., the H-LT relative
to a hereditary torsion theory, but only for commutative unital rings, and
conjecture it for arbitrary unital rings.

1978–1979 Murase [37] and Tominaga and Murase [48] show, among others, that
a left Artinian ring A, not necessarily unital, is Noetherian if and only
J/AJ is finite (where J is the Jacobson radical of R) if and only if the
largest divisible torsion subgroup of the additive group of A is 0.

1979 Miller and Teply [35] prove the Relative H-LT for arbitrary unital rings.
1979–1980 Năstăsescu [38], [39] proves the Absolute or Categorical H-LT , i.e., the

H-LT for an arbitrary Grothendieck category.
1980 Albu [3] proves the Absolute Dual H-LT for commutative Grothendieck

categories.
1982 Faith [20] provides another module-theoretical proof of the Relative H-LT,

and gives two interesting versions of it: Δ-Σ and counter .
1984 Albu [4] establishes the Latticial H-LT for upper continuous modular lat-

tices.
1996 Albu and Smith [12] prove the Latticial H-LT for arbitrary modular lat-

tices.
1996 Albu, Lenagan, and Smith [7] establish a Krull dimension-like extension

of the Classical H-LT and Absolute H-LT.
1997 Albu and Smith [13] extend the result of Albu, Lenagan, and Smith [7]

from Grothendieck categories to upper continuous modular lattices, using
the technique of localization of modular lattices they developed in [12].

In the sequel we shall be discussing in full detail all the extensions of the HL-T
for unital rings listed above.

2. The Relative H-LT

The next result is due to Albu and Năstăsescu [9, Théorème 4.7] for commutative
rings, conjectured for noncommutative rings by Albu and Năstăsescu [9, Problème
4.8], and proved for arbitrary unital rings by Miller and Teply [35, Theorem 1.4].

Theorem 2.1. (Relative H-LT). Let R be a ring with identity, and let τ be a
hereditary torsion theory on Mod-R. If R is a right τ-Artinian ring, then every
τ-Artinian right R-module is τ-Noetherian.

Let us mention that the module-theoretical proofs available in the literature
of the Relative H-LT, namely the original one in 1979 due to Miller and Teply
[35, Theorem 1.4], and another one in 1982 due to Faith [20, Theorem 7.1 and
Corollary 7.2], are very long and complicated.
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The importance of the Relative H-LT in investigating the structure of some
relevant classes of modules, including injectives as well as projectives, is revealed
in Albu and Năstăsescu [10] and Faith [20], where the main body of both these
monographs deals with this topic.

We are now going to explain all the terms occurring in the statement above.

Hereditary torsion theories

The concept of torsion theory for Abelian categories has been introduced by S.E.
Dickson [19] in 1966. For our purposes, we present it only for module categories in
one of the many equivalent ways that can be done. Basic torsion-theoretic concepts
and results can be found in Golan [23] and Stenström [47].

All rings considered in this paper are associative with unit element 1 �= 0,
and modules are unital right modules. If R is a ring, then Mod-R denotes the
category of all right R-modules. We often write MR to emphasize that M is a
right R-module; L(MR), or just L(M), stands for the lattice of all submodules of
M . The notation N �M means that N is a submodule of M .

A hereditary torsion theory on Mod-R is a pair τ = (T , F) of nonempty
subclasses T and F of Mod-R such that T is a localizing subcategory of Mod-R
in the Gabriel’s sense [22] (this means that T is a Serre class of Mod-R which
is closed under direct sums) and F = {FR |HomR(T, F ) = 0, ∀T ∈ T }. Thus,
any hereditary torsion theory τ = (T , F) is uniquely determined by its first
component T . Recall that a nonempty subclass T of Mod-R is a Serre class if for
any short exact sequence 0 −→ X ′ −→ X −→ X ′′ −→ 0 in Mod-R, one has
X ∈ T ⇐⇒ X ′ ∈ T & X ′′ ∈ T , and T is closed under direct sums if for any family
(Xi)i∈I , I arbitrary set, with Xi ∈ T , ∀ i ∈ I, it follows that

⊕
i∈I Xi ∈ T .

The prototype of a hereditary torsion theory is the pair (A,B) in Mod-Z,
where A is the class of all torsion Abelian groups, and B is the class of all
torsion-free Abelian groups.

Throughout this paper τ = (T , F) will be a fixed hereditary torsion theory
on Mod-R. For any module MR we denote

τ(M) :=
∑

N�M, N∈T
N.

Since T is a localizing subcategory of Mod-R, it follows that τ(M) ∈ T , and we
call it the τ -torsion submodule of M . Note that, as for Abelian groups, we have

M ∈ T ⇐⇒ τ(M) = M and M ∈ F ⇐⇒ τ(M) = 0.

The members of T are called τ -torsion modules, while the members of F are
called τ -torsion-free modules .

For any N � M we denote by N the submodule of M such that N/N =
τ(M/N), called the τ -closure or τ -saturation of N (in M). One says that N is
τ -closed or τ -saturated if N = N, or equivalently, if M/N ∈ F , and the set of all
τ -closed submodules of M is denoted by Satτ (M). It is well known that Satτ (M)
is an upper continuous modular lattice. Note that though Satτ (M) is a subset of
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the lattice L(M) of all submodules of M , it is not a sublattice, because the sum
of two τ -closed submodules of M is not necessarily τ -closed.

Definition 2.2. A module MR is said to be τ -Noetherian (resp. τ -Artinian) if
Satτ (M) is a Noetherian (resp. Artinian) poset. The ring R is said to be τ -
Noetherian (resp. τ -Artinian) if the module RR is τ -Noetherian (resp. τ -Artinian).

Recall that a partially ordered set, shortly poset, (P,�) is called Noetherian
(resp. Artinian) if it satisfies the ACC (resp. DCC), i.e., if there is no strictly
ascending (resp. descending) chain x1 < x2 < · · · (resp. x1 > x2 > · · · ) in P .

Relativization

The Relative H-LT nicely illustrates a general direction in Module Theory, namely
the so-called Relativization. Roughly speaking, this topic deals with the following
matter:

Given a property P in the lattice L(MR) investigate
the property P in the lattice Satτ (MR).

Since about forty years Module Theorists were dealing with the following problem:

Having a theorem T on modules, is its relativization τ-T true?

As we mentioned just after the statement of the Relative H-LT, its known module-
theoretical proofs are very long and complicated; so, the relativization of a result
on modules is not always a simple job, and as this will become clear with the next
statement, sometimes it may be even impossible.

Theorem 2.3. (Metatheorem). The relativization T � τ-T of a theorem T in
Module Theory is not always true/possible.

Proof. Consider the following lovely theorem (see Lenagan [30, Theorem 3.2]):

T : If R has right Krull dimension then the prime radical N(R) is nilpotent.

The relativization of T is the following:

τ -T: If R has right τ-Krull dimension then the τ-prime radical Nτ (R) is
τ-nilpotent.

Recall that Nτ (R) is the intersection of all τ -closed two-sided prime ideals of R,
and a right ideal I of R is said to be τ -nilpotent if In ∈ T for some integer n > 0.

The truth of the relativization τ -T of T has been asked by Albu and Smith
[11, Problem 4.3]. Surprisingly, the answer is “no” in general, even if R is (left
and right) Noetherian, by Albu, Krause, and Teply [6, Example 3.1]. This proves
our Metatheorem.

However, τ -T is true for any ring R and any ideal invariant hereditary
torsion theory τ , including any commutative ring R and any τ (see Albu, Krause,
and Teply [6, Section 6]). �
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3. The Absolute (or Categorical) H-LT

The next result is due to Năstăsescu, who actually gave two different short nice
proofs: [38, Corollaire 1.3] in 1979, based on the Loewy length, and [39, Corollaire
2] in 1980, based on the length of a composition series.

Theorem 3.1. (Absolute H-LT). Let G be a Grothendieck category having an
Artinian generator. Then any Artinian object of G is Noetherian.

Recall that a Grothendieck category is an Abelian category G, with exact
direct limits (or, equivalently, satisfying the axiom AB5 of Grothendieck), and
having a generator G (this means that for every object X of G there exist a set
I and an epimorphism G(I) � X). A family (Uj)j∈J of objects of G is said to
be a family of generators of G if ⊕j∈JUj is a generator of G. The Grothendieck
category G is called locally Noetherian (resp. locally Artinian) if it has a family of
Noetherian (resp. Artinian) generators. Also, recall that an object X ∈ G is said
to be Noetherian (resp. Artinian) if the lattice Sub(X) of all subobjects of X is
Noetherian (resp. Artinian).

Note that J.E. Roos [45] has produced in 1969 an example of a locally Ar-
tinian Grothendieck C category which is not locally Noetherian; thus, the so-called
Locally Absolute H-LT fails. Even if a locally Artinian Grothendieck category C
has a family of projective Artinian generators, then it is not necessarily locally
Noetherian, as an example due to Menini [33] shows. However, the Locally Ab-
solute H-LT is true if the family of Artinian generators of C is finite (because in
this case C has an Artinian generator), as well as if the Grothendieck category C
is commutative, by Albu and Năstăsescu [9, Corollaire 4.38] (see Section 6 for the
definition of a commutative Grothendieck category).

Quotient categories and the Gabriel-Popescu Theorem

Clearly, for any ring R with identity element, the category Mod-R is a Grothendieck
category. A procedure to construct new Grothendieck categories is by taking the
quotient category Mod-R/T of Mod-R modulo any of its localizing subcategories
T . The construction of the quotient category of Mod-R/T , or more generally, of
the quotient category A/C of any locally small Abelian category A modulo any
of its Serre subcategories C is quite complicated and goes back to Serre’s “langage
modulo C” (1953), Grothendieck (1957), and Gabriel (1962) [22].

Recall briefly this construction. The objects of the category A/C are the same
as those of A, while the morphisms in this category are defined not so simple: for
every objects X, Y of A, one sets

HomA/C(X, Y ) := lim−→
(X′,Y ′)∈IX,Y

HomA(X ′, Y/Y ′),

where IX,Y := {(X ′, Y ′) |X ′ � X, Y ′ � Y, X/X ′ ∈ C, Y ′ ∈ C } is considered as
an ordered set in an obvious manner, and with this order it is actually a directed
set (it is indeed a set because the given Abelian category A was supposed to be
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locally small, i.e., the class of all subobjects of every object of A is a set). Then
A/C is an Abelian category, and there exists a canonical covariant exact functor

T : A −→ A/C
defined as follows: for every objects X, Y of A and every f ∈ HomA(X, Y )
one sets T (X) := X and T (f) := the image of f in the inductive limit. It
turns out that the exact functor T annihilates C (i.e., “kills” each X ∈ C),
and, as for quotient modules, the pair (A/C, T ) is universal for exact functors,
which annihilate C, from A into Abelian categories. Moreover, the given Serre
subcategory C of A is a localizing subcategory of A if and only if the functor T
has a right adjoint, and in this case the quotient category A/C is a Grothendieck
category if A is so. In particular, for any unital ring R, the quotient category
Mod-R/T of Mod-R modulo any of its localizing subcategories T is a Grothen-
dieck category.

Roughly speaking, the renowned Gabriel-Popescu Theorem, discovered ex-
actly forty five years ago, states that in this way we obtain, up to an equivalence
of categories, all the Grothendieck categories. More precisely,

Theorem 3.2. (The Gabriel-Popescu Theorem). For any Grothendieck cat-
egory G there exist a unital ring R and a localizing subcategory T of Mod-R
such that G � Mod-R/T .

Notice that the ring R and the localizing subcategory T of Mod-R can
be obtained in the following (noncanonical) way: Let U be any generator of the
Grothendieck category G, and let RU be the ring EndG(U) of endomorphims of
U . If SU : G −→ Mod-RU is the functor HomG(U,−), then SU has a left adjoint
TU , TU ◦ SU � 1G , and Ker(TU ) := {M ∈ Mod-RU |TU (M) = 0 } is a localizing
subcategory of Mod-RU . Take now as R any such RU and as T such a Ker(TU ).

The reader is referred to Albu and Năstăsescu [10], Gabriel [22], and Sten-
ström [47] for the concepts, constructions, and facts presented in this subsection.

Absolutization

Let τ = (T , F) be a hereditary torsion theory on Mod-R. Then, because T is a
localizing subcategory of Mod-R one can form the quotient category Mod-R/T .
Denote by

Tτ : Mod-R −→ Mod-R/T
the canonical functor from the category Mod-R to its quotient category Mod-R/T .

Proposition 3.3. (Albu and Năstăsescu [10, Proposition 7.10]). With the notation
above, for every module MR there exists a lattice isomorphism

Satτ (M) � Sub(Tτ (M)).

In particular, M is a τ-Noetherian (resp. τ-Artinian) module if and only if Tτ (M)
is a Noetherian (resp. Artinian) object of Mod-R/T .
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Absolutization is a technique to pass from τ -relative results in Mod-R to
absolute properties in the quotient category Mod-R/T via the canonical functor
Tτ : Mod-R −→ Mod-R/T . This technique is, in a certain sense, opposite to
relativization, meaning that absolute results in a Grothendieck category G can be
translated, via the Gabriel-Popescu Theorem, into τ -relative results in Mod-R as
follows:

Let U be any generator of the Grothendieck category G, let RU be the
ring EndG(U) of endomorphims of U . As we have already mentioned above, if
SU : G −→ Mod-RU is the functor HomG(U,−), then SU has a left adjoint TU ,
TU ◦ SU � 1G , and Ker(TU ) := {M ∈ Mod-RU |TU (M) = 0 } is a localizing
subcategory of Mod-RU . Let now τU be the hereditary torsion theory (uniquely)
determined by the localizing subcategory Ker(TU ) of Mod-RU . Many properties
of an object X ∈ G can now be translated as τU -relative properties of the right
RU -module SU (X); e.g., X ∈ G is an Artinian (resp. Noetherian) object if and
only if SU (X) is a τU -Artinian (resp. τU -Noetherian) right RU -module. Observe
that this relativization strongly depends on the choice of the generator U of G.

As mentioned before, the two module-theoretical proofs available in the lit-
erature of the Relative H-LT due to Miller and Teply [35] and Faith [20], are very
long and complicated. On the contrary, the two categorical proofs of the Absolute
H-LT due to Năstăsescu [38], [39] are very short and simple.

Using the interaction relativization ←→ absolutization, we shall prove in Sec-
tion 5 that Relative H-LT ⇐⇒ Absolute H-LT ; this means exactly that any of this
theorems can be deduced from the other one. In this way we can obtain two short
categorical proofs of the Relative H-LT.

However, some module theorists are not so comfortable with categorical
proofs of module-theoretical theorems: they cannot touch the elements of an object
because categories work only with objects and morphisms and not with elements
of an object.

Good news for those people: There exists an alternative, namely the latticial
setting . Why? If τ is a hereditary torsion theory on Mod-R and MR is any
module then Satτ (M) is an upper continuous modular lattice, and if G is a
Grothendieck category then the lattice Sub(X) of all subobjects of any object
X ∈ G is also an upper continuous modular lattice. Therefore, a strong reason to
study such kinds of lattices exists.

A latticial strategy

Let P be a problem, involving subobjects or submodules, to be investigated in
Grothendieck categories or in module categories with respect to hereditary torsion
theories. Our main strategy in this direction since more than twenty five years
consists of the following three steps:

I. Translate/formulate, if possible, the problem P to be investigated in a Gro-
thendieck category or in a module category equipped with a hereditary tor-
sion theory into a latticial setting.
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II. Investigate the obtained problem P in this latticial frame.
III. Back to basics, i.e., to Grothedieck categories and module categories equipped

with hereditary torsion theories.
The advantage to deal in such a way, is, in our opinion, that this is the most
natural and the most simple as well, because we ignore the specific context of
Grothendieck categories and module categories equipped with hereditary torsion
theories, focussing only on those latticial properties which are relevant in our given
specific categorical or relative module-theoretical problem P. The best illustration
of this approach is, as we will see later, that both the Relative H-LT and the
Absolute H-LT are immediate consequences of the so-called Latticial H-LT , which
will be amply discussed in Sections 4 and 5.

4. The latticial H-LT and latticial dual H-LT

The Classical/Relative/Absolute H-LT deals with the question when a particular
Artinian lattice L(MR)/Satτ (MR)/Sub(X) is Noetherian. Our contention is that
the natural setting for the H-LT and its various extensions is Lattice Theory, being
concerned as it is with descending and ascending chains in certain lattices. There-
fore we shall present in this section the Latticial H-LT which gives an exhaustive
answer to the following more general question:

When an arbitrary Artinian modular lattice is Noetherian?

The answer, given in an “if and only” form, is due to Albu and Smith [11, Theorem
1.9], and will be discussed in the next subsections.

Lattice background

All lattices considered in this paper are assumed to have a least element denoted
by 0 and a last element denoted by 1, and (L,�,∧,∨, 0, 1), or more simply, just
L, will always denote such a lattice. We denote by M the class of all modular
lattices with 0 and 1. The opposite lattice of L will be denoted by L0 . We shall
use N to denote the set {0, 1, . . .} of all natural numbers.

Recall that a lattice L is called modular if

a ∧ (b ∨ c) = b ∨ (a ∧ c), ∀ a, b, c ∈ L with b � a.

A lattice L is said to be upper continuous if L is complete and

a ∧ (
∨
c∈C

c) =
∨
c∈C

(a ∧ c)

for every a ∈ L and every chain (or, equivalently, directed subset) C ⊆ L.
If x, y are elements in L with x � y, then y/x will denote the interval

[x, y] , i.e.,
y/x = { a ∈ L |x � a � y }.

An element e of L is called essential if e ∧ a �= 0 for all 0 �= a ∈ L . Dually, an
element s of L is called superfluous or small if s ∨ b �= 1 for all 1 �= b ∈ L, i.e.,
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if s is an essential element of L0. A composition series of a lattice L is a chain
0 = a0 < a1 < · · · < an = 1 in L which has no refinement, except by introducing
repetitions of the given elements ai, and the integer n is called the length of the
chain. If L is a modular lattice having a composition series, then we say that L is
a lattice of finite length, and in this case any two composition series of L have the
same length, called the length of L and denoted by l(L). A modular lattice is of
finite length if and only if L is both Noetherian and Artinian.

For all undefined notation and terminology on lattices, the reader is referred
to Crawley and Dilworth [18], Grätzer [26], and Stenström [47].

The H-LT and Dual H-LT for arbitrary modular lattices

In this subsection we present a very general form of the H-LT for an arbitrary
modular lattice, saying that an Artinian lattice L is Noetherian if and only if it
satisfies two conditions, one of which guaranteeing that L has a good supply of es-
sential elements and the second ensuring that there is a bound for the composition
lengths of certain intervals of L.

More precisely, consider the following two properties that a lattice L may
have (“E” for Essential and “BL” for Bounded Length):

(E) for all a � b in L there exists c ∈ L such that b ∧ c = a and b ∨ c is
an essential element of 1/a .

(BL) there exists a positive integer n such that for all x < y in L with y/0
having a composition series there exists cxy ∈ L with cxy � y, cxy �� x,
and l(cxy/0) � n .

Any pseudo-complemented modular lattice, in particular any upper continuous
modular lattice satisfies (E). Also, any Noetherian lattice satisfies (E).

The dual properties of (E) and (BL) are respectively:
(E0) for all a � b in L there exists c ∈ L such that a ∨ c = b and a ∧ c is a

superfluous element of b/0 .
(BL0) there exists a positive integer n such that for all x < y in L with 1/x

having a composition series there exists cxy in L with x � cxy, y �� cxy,
and l(1/cxy) � n .

The next result, due to Albu and Smith [12, Theorem 1.9] is the Latticial
H-LT for an arbitrary modular lattice, which, on one hand, is interesting in its
own right, being the most general form of the H-LT we know, and, on the other
hand is crucial in proving other versions of the H-LT.

Theorem 4.1. (Latticial H-LT). Let L be an Artinian modular lattice. Then L
is Noetherian if and only if L satisfies both conditions (E) and (BL).

Since the opposite of a modular lattice is again a modular lattice, it fol-
lows that the above result can be dualized as follows (see Albu and Smith [12,
Theorem 1.11]):

Theorem 4.2. (Latticial Dual H-LT). Let L be a Noetherian modular lattice.
Then L is Artinian if and only if L satisfies both conditions (E0) and (BL0).
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The condition (l∗) and lattice generation

The following condition for a lattice L has been considered in Albu [4]:

(l∗) there exists a positive integer n such that for all x < y in L there exists
cxy ∈ L with cxy � y, cxy �� x, cxy/0 Artinian, and l∗(cxy/0) � n.

If A is an Artinian lattice, then l∗(A) denotes the so-called reduced length of A,
that is l(1/a∗), where a∗ is the least element of the set { a ∈ A | 1/a is Noetherian},
see Albu [4, Lemma 0.3]. It is clear that for an Artinian lattice L, the condition
(l∗) implies the condition (BL).

Recall that if MR and UR are two modules, then the module M is said to be
U -generated if there exists a set I and an epimorphism U (I) �M . The fact that
M is U -generated can also be expressed as follows: for any proper submodule N
of M there exists a submodule P of M which is not contained in N , such that P
is isomorphic to a quotient of the module U . Further, M is said to be completely
U-generated in case every submodule of M is U -generated. These concepts have
been naturally extended in Albu [5] to posets as follows:

We say that a poset L is generated by a poset G, or is G-generated , if for
every a �= 1 in L there exist c ∈ L and g ∈ G such that c �� a and c/0 � 1/g .
The poset L is called completely generated by G or completely G-generated if for
every b ∈ L, the interval b/0 is G-generated, that is, for every a < b in L, there
exist c ∈ L and g ∈ G such that c � b, c �� a, and c/0 � 1/g.

Clearly, if the module M is (completely) U -generated, then the lattice L(MR)
is (completely) L(UR)-generated, but not conversely.

Note that if L and G are two Artinian lattices, and if L is completely
G-generated, then the lattice L satisfies the condition (l∗), and so, also the con-
dition (BL). This immediately implies the following version of the Latticial H-LT
(Theorem 4.1) in terms of lattice complete generation:

Theorem 4.3. If L is a modular Artinian lattice which is completely generated by
a modular Artinian lattice G , then L is Noetherian if and only if L satisfies (E).

The H-LT for upper continuous modular lattices

We present below a version in terms of condition (l∗), due to Albu [4, Corollary 1.8],
of the Latticial H-LT for modular lattices which additionally are upper continuous:

Theorem 4.4. (Latticial H-LT for upper continuous lattices). Let L be
an Artinian upper continuous modular lattice. Then L is Noetherian if and only if
L satisfies the condition (l∗).

Observe that Theorem 4.1 is an extension of Theorem 4.4 from upper con-
tinuous modular lattices to arbitrary modular lattices. More precisely, the upper
continuity from Theorem 4.4 is replaced by the less restrictive condition (E), while
the condition (l∗) by the condition (BL).
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5. Connections between various forms of the H-LT

In this section we are going to discuss the connections between the Classical
H-LT, Relative H-LT, Absolute H-LT , and Latticial H-LT, and to present the
Faith’s Δ-Σ and counter versions of the Relative H-LT.

Latticial H-LT =⇒ Relative H-LT

As mentioned above, the module-theoretical proofs available in the literature of
the Relative H-LT (namely, the original one in 1979 due to Miller and Teply [35],
and another one in 1982 due to Faith [20]) are very long and complicated. We
present below a very short proof based on the Latticial H-LT in terms of complete
generation (Theorem 4.3).

So, let τ = (T , F) be a hereditary torsion theory on Mod-R. Assume that
R is τ -Artinian, and let MR be a τ -Artinian module. The Relative H-LT states
that MR is a τ -Noetherian module.

Set G := Satτ (RR) and L := Satτ (MR). Then G and L are Artinian upper
continuous modular lattices. We have to prove that MR is a τ -Noetherian module,
i.e., L is a Noetherian lattice. By Theorem 4.3, it is sufficient to check that L is
completely G-generated, i.e., for every a < b in L, there exist c ∈ L and g ∈ G
such that c � b, c �� a, and c/0 � 1/g.

Since Satτ (M) � Satτ (M/τ(M)) we may assume, without loss of generality,
that M ∈ F . Let a = A < B = b in L = Satτ (MR). Then, there exists x ∈ B \A.
Set C := xR and I = AnnR(x). We have R/I � xR �M ∈ F , so R/I ∈ F , i.e.,
I ∈ Satτ (RR) = G. Using known properties of lattices of type Satτ (N), we deduce
that

[I, R] � Satτ (R/I) � Satτ (xR) � Satτ (xR) = Satτ (C) = [0, C],

where the intervals [I, R] and [0, C] are considered in the lattices G and L,
respectively. Then, if we denote c = C and g = I, we have c ∈ L, g ∈ G, c � b,
c �� a, and c/0 � 1/g, which shows that L is completely G-generated, as desired.

Absolute H-LT =⇒ Relative H-LT

We are going to show how the Relative H-LT can be deduced from the Absolute
H-LT. Let τ = (T , F) be a hereditary torsion theory on Mod-R. Assume that
R is τ -Artinian ring, and let MR be a τ -Artinian module. We pass from Mod-R
to the Grothendieck category Mod-R/T with the use of the canonical functor
Tτ : Mod-R −→ Mod-R/T . Since RR is a generator of Mod-R and Tτ is an exact
functor we deduce that Tτ (R) is a generator of Mod-R/T , which is Artinian by
Proposition 3.3. Now, again by Proposition 3.3, Tτ (M) is an Artinian object of
Mod-R/T , so, it is also Noetherian by the Absolute H-LT, i.e., M is τ -Noetherian,
and we are done.

Relative H-LT =⇒ Absolute H-LT

We prove that the Absolute H-LT is a consequence of the Relative H-LT. Let G
be a Grothendieck category having an Artinian generator U . Set RU := EndG(U),
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and let SU = HomG(U,−) : G −→ Mod-RU and TU : Mod-RU −→ G be the pair of
functors from the Gabriel-Popescu Theorem setting, described in Section 3, after
Proposition 3.3. Then TU◦SU � 1G , and Ker(TU ) := {M ∈ Mod-RU |TU (M) = 0}
is a localizing subcategory of Mod-RU . Let now τU be the hereditary torsion
theory (uniquely) determined by the localizing subcategory TU := Ker(TU ) of
Mod-RU . Then, the Gabriel-Popescu Theorem says that G � Mod-RU/TU and

U � (TU ◦ SU )(U) = TU (SU (U)) = TU (RU ).

Since U is an Artinian object of G, so is also TU (RU ), which implies, by Proposition
3.3, that RU is a τU -Artinian ring.

Now, let X ∈ G be an Artinian object of G. Then, there exists a right
RU -module M such that X � TU (M), so TU (M) is an Artinian object of G, i.e.,
M is a τU -Artinian module. By the Relative H-LT, M is τU -Noetherian, so, again
by Proposition 3.3, X � TU (M) is a Noetherian object of G, as desired.

The Faith’s Δ-Σ version of the Relative H-LT

Recall that an injective module QR is said to be Σ-injective if any direct sum of
copies of Q is injective. This concept is related with the concept of τ -Noetherian
module as follows:

Let QR be an injective module, and denote TQ := {MR |HomR(M, Q) = 0}.
Then TQ is a localizing category of Mod-R, and let τQ be the hereditary torsion
theory on Mod-R (uniquely) determined by TQ. Note that for any hereditary
torsion theory τ on Mod-R there exists an injective module QR such that τ = τQ.

A renowned theorem of Faith (1966) says that an injective module QR is
Σ-injective if and only if RR is τQ-Noetherian, or equivalently, if R satisfies the
ACC on annihilators of subsets of Q. In order to uniformize the notation, Faith [20]
introduced the concept of a Δ-injective module as being an injective module Q
such that RR is τQ-Artinian, or equivalently, R satisfies the DCC on annihilators
of subsets of Q. Thus, the Relative H-LT is equivalent with the following:

Theorem 5.1. (Faith [20, p. 3]). Any Δ-injective module is Σ-injective.

Faith also proved a converse of Theorem 5.1: An injective module QR is
Δ-injective if and only QR is Σ-injective and the ring BiendR(Q) of biendomor-
phisms of QR is semiprimary (see Faith [20, Theorem 8.9]).

The Faith’s counter version of the Relative H-LT

Let MR be a module, and let S := EndR(M). Then M becomes a left S-module,
and the module SM is called the counter-module of MR. We say that MR is
counter-Noetherian (resp. counter-Artinian) if SM is a Noetherian (resp. Artinian)
module.

The next result is an equivalent version, in terms of counter-modules, of the
Relative H-LT.

Theorem 5.2. (Faith [20, Theorem 7.1]). If QR is an injective module which is
counter-Noetherian, then QR is counter-Artinian.
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In fact, Faith proved a sharper form of Theorem 5.2, namely for quasi-
injective modules.

Absolute H-LT ⇐⇒ Classical H-LT

The Grothendieck categories having an Artinian generator are very special in view
of the following surprising result.

Theorem 5.3. (Năstăsescu [41, Théorème 3.3]). A Grothendieck category G has
an Artinian generator if and only if G � Mod-A, with A a right Artinian ring
with identity.

Note that a heavy artillery has been used in the original proof of Theorem
5.3, namely: the Gabriel-Popescu Theorem, the Relative H-LT, as well as struc-
ture theorems for Δ-injective and Δ∗-projective modules. The Σ∗-projective and
Δ∗-projective modules, introduced and investigated by Năstăsescu [40], [41], are
in a certain sense dual to the notions of Σ-injective and Δ-injective modules.

A more general result, whose original proof is direct, without involving the
many facts listed above, is the following one:

Theorem 5.4. (Albu and Wisbauer [16, Theorem 2.2]). Let G be a Grothedieck
category having a (finitely generated ) generator U with S = EndG(U) a right
perfect ring. Then G has a (finitely generated ) projective generator.

Observe now that if G has an Artinian generator U , then, by the Absolute
H-LT, U is also Noetherian, so, an object of finite length. Then S = EndG(U) is a
semi-primary ring, in particular it is right perfect. Now, by Theorem 5.4, G has a
finitely generated projective generator, say P . If A = EndG(P ) then A is a right
Artinian ring, and G � Mod-A, which shows how Theorem 5.3 is an immediate
consequence of Theorem 5.4.

Remark . If G is a Grothendieck category having an Artinian generator U , then
the right Artinian ring A in Theorem 5.3 for which G �Mod-A is far from being
the endomorphism ring of U , and does not seem to be canonically associated with
G. The existence of a right Artinian ring B, canonically associated with G, such
that G � Mod-B, is an easy consequence of a more general and more sophisti-
cated construction of the basic ring of an arbitrary locally Artinian Grothendieck
category, due to Menini and Orsatti [34, Section 3].

Clearly Relative H-LT =⇒ Classical H-LT by taking as τ the hereditary
torsion theory (0, Mod-R) on Mod-R, and Absolute H-LT =⇒ Classical H-LT by
taking as G the category Mod-R.

We conclude that the following implications between the various aspects of
the H-LT discussed so far hold:

Latticial H-LT =⇒ Relative H-LT ⇐⇒ Absolute H-LT ⇐⇒ Classical H-LT

Faith’s Δ-Σ Theorem ⇐⇒ Relative H-LT ⇐⇒ Faith’s counter Theorem



16 T. Albu

6. The Absolute and Relative Dual H-LT

Remember that the Absolute H-LT states that if G is a Grothendieck category
with an Artinian generator, then any Artinian object of G is necessarily Noether-
ian, so it is natural to ask whether its dual holds, that is:

Problem 6.1. (Absolute Dual H-LT). If G is a Grothendieck category with
a Noetherian cogenerator, then does it follow that any Noetherian object of G is
Artinian?

Bad News: The Absolute Dual H-LT fails even for a module category Mod-R. To
see this, let k be a universal differential field of characteristic zero with derivation
D; then, the Cozzens domain R = k[y, D] of differential polynomials over k in
the derivation D is a principal right ideal domain which has a simple injective
cogenerator S. So, C = R⊕ S is both a Noetherian generator and cogenerator of
Mod-R, which is clearly not Artinian (see Albu [3, Section 4]).

Good News: The Absolute Dual H-LT holds for large classes of Grothendieck cat-
egories, namely for the so-called commutative Grothendieck categories , introduced
by Albu and Năstăsescu [8]. A Grothendieck category C is said to be commuta-
tive if there exists a commutative ring A with identity such that G � Mod-A/T
for some localizing subcategory T of Mod-A. By Albu [2, Proposition], these are
exactly those Grothendieck categories G having at least a generator U with a
commutative ring of endomorphisms.

Recall that an object G of a Grothendieck category G is a generator of G if
every object X of G is an epimorphic image G(I) � X of a direct sum of copies
of G for some set I. Dually, an object C ∈ G is said to be a cogenerator of G if
every object X of G can be embedded X � CI into a direct product of copies
of C for some set I.

Theorem 6.2. (Albu [3, Theorem 3.2]). The following assertions are equivalent for
a commutative Grothendieck category G.
(1) G has a Noetherian cogenerator.
(2) G has an Artinian generator.
(1) G � Mod-A for some commutative Artinian ring with identity.

Corollary 6.3. (Absolute Dual HL-T). If G is any commutative Grothendieck
category having a Noetherian cogenerator, then every Noetherian object of G is
Artinian.

We are now going to present the relative version of the Absolute Dual H-LT.
If τ = (T , F) is a hereditary torsion theory on Mod-R. then a module CR is said
to be a τ -cogenerator of Mod-R if C ∈ F and every module in F is cogenerated
by C.

Theorem 6.4. (Relative Dual HL-T). Let R be a commutative ring with iden-
tity, and let τ be a hereditary torsion theory on Mod-R such that Mod-R has a
τ-Noetherian τ-cogenerator. Then every τ-Noetherian R-module is τ-Artinian.
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7. The Krull dimension-like H-LT

In this section we shall discuss extensions of the Absolute H-LT and Latticial H-LT
in terms of Krull dimension, due to Albu, Lenagan, and Smith [7] and Albu and
Smith [12], [13], respectively. For the last one we present an outline of a localization
technique of modular lattices, which has been invented exactly in order to prove
such an extension.

Krull dimension: a brief history

1923 E. Noether explores the relationship between chains of prime ideals and
dimensions of algebraic varieties.

1928 W. Krull develops Noether’s idea into a powerful tool for arbitrary com-
mutative Noetherian rings. Later, writers gave the name (classical ) Krull
dimension to the supremum of lengths of finite chains of prime ideals in a
ring.

1962 P. Gabriel [22] introduces an ordinal-valued dimension which he named
“Krull dimension” for objects in an Abelian category using a transfinite
sequence of localizing subcategories.

1967 R. Rentschler and P. Gabriel introduce the deviation of an arbitrary poset,
but only for finite ordinals.

1970 G. Krause introduces the ordinal-valued version of the Rentschler-Gabriel
definition, but only for modules over an arbitrary unital ring.

1972 B. Lemonnier [28] introduces the general ordinal-valued notion of deviation
of an arbitrary poset, called in the sequel Krull dimension.

1973 R. Gordon and J.C. Robson [24] give the name Gabriel dimension to
Gabriel’s original definition after shifting the finite values by 1, and provide
an incisive investigation of the Krull dimension of modules and rings.

1985 M. Pouzet and N. Zaguia [44] introduce the more general concept of
Γ-deviation of an arbitrary poset, where Γ is any set of ordinals.

The definition of the Krull dimension of a poset

Denote by P the class of all partially ordered sets, shortly posets . Without loss
of generality we can suppose that all the posets which occur have a least element
0 and a greatest element 1.

If (P, �) is a poset, shortly denoted by P , and x, y are elements in P with
x � y, then recall that y/x denotes the interval [x, y] , i.e.,

y/x = { a ∈ P |x � a � y }.

The Krull dimension of a poset P (also called deviation of P and denoted
by dev(P )) is an ordinal number denoted by k(P ), which may or may not exist,
and is defined recursively as follows:

• k(P ) = −1 ⇐⇒ P = {0}, where −1 is assumed to be the predecessor of 0.
• k(P ) = 0 ⇐⇒ P �= {0} and P is Artinian.



18 T. Albu

• Let α � 1 be an ordinal number, and assume that we have already defined
which posets have Krull dimension β for any ordinal β < α. Then we define
what it means for a poset P to have Krull dimension α : k(P ) = α if
and only if we have not defined k(P ) = β for some β < α , and for any
descending chain

x1 � x2 � · · · � xn � xn+1 � · · ·
of elements of P , ∃n0 ∈ N such that ∀n � n0, k(xn/xn+1) < α, i.e.,
k(xn/xn+1) has previously been defined and it is an ordinal < α.

• If no ordinal α exists such that k(P ) = α , we say that P does not have
Krull dimension.

As in Albu and Smith [13], an alternative more compact equivalent definition is
that involving the concept of an Artinian poset relative to a class of posets. If X
is an arbitrary nonempty subclass of P , a poset P is said to be X -Artinian if
for every descending chain x1 � x2 � · · · in P, ∃ k ∈ N such that xi/xi+1 ∈
X , ∀ i � k. The notion of an X -Noetherian poset is defined similarly.

For every ordinal α � 0 , we denote by Pα the class of all posets having Krull
dimension < α. Then, by Albu and Smith [13, Proposition 3.3], a poset P has
Krull dimension an ordinal α � 0 if and only if P �∈ Pα and P is Pα-Artinian.
So, roughly speaking, the Krull dimension of a poset P measures how close P is
to being Artinian.

The definition of the dual Krull dimension of a poset

The dual Krull dimension of a poset P (also called codeviation of P and denoted by
codev(P )), denoted by k0(P ), is defined as being (if it exists!) the Krull dimension
k(P 0) of the opposite poset P 0 of P .

If α is an ordinal, then the notation k(P ) � α (resp. k0(P ) � α ) will be
used to indicate that P has Krull dimension (resp. dual Krull dimension) and it
is less than or equal to α.

The existence of the dual Krull dimension k0(P ) of a poset P is equivalent
with the existence of the Krull dimension k(P ) of P in view of the following nice
result of Lemonnier:

Theorem 7.1. (Lemonnier [28, Théorème 5, Corollaire 6]). An arbitrary poset P
does not have Krull dimension if and only if P contains a copy of the (usually)
ordered set D = {m/2n |m ∈ Z, n ∈ N } of diadic real numbers. Consequently,
P has Krull dimension if and only if P has dual Krull dimension.

Remember that
P is Artinian (resp. Noetherian) ⇐⇒ k(P ) � 0 (resp. k0(P ) � 0).

So, we immediately deduce from Theorem 7.1 the following fact: Any Noetherian
poset has Krull dimension, which usually is proved in a more complicated way.

The following problem naturally arises:
Problem. Let P be a poset with Krull dimension. Then P also has dual Krull
dimension. How are the ordinals k(P ) and k0(P ) related?
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For other basic facts on the Krull dimension and dual Krull dimension of
an arbitrary poset the reader is referred to Lemonnier [28] and McConnell and
Robson [32].

Krull dimension of modules and rings

Recall that for a module MR one denotes by L(M) the lattice of all submodules of
M . The following ordinals (if they exist) are defined in terms of the lattice L(M):
• Krull dimension of M : k(M) := k(L(M))
• Dual Krull dimension of M : k0(M) := k0(L(M))
• Right Krull dimension of R: k(R) := k(RR))
• Right dual Krull dimension of R: k0(R) := k0(RR))

The problem we presented above for arbitrary posets can be specialized to modules
and rings as follows (see also Section 8):
Problem. Compare the ordinals k(M) and k0(M) of a given module MR with
Krull dimension. In particular, compare the ordinals k(R) and k0(R) of a ring
R with right Krull dimension.

A crucial concept in Commutative Algebra, which actually originated the
general concept of Krull dimension of an arbitrary poset, is that of classical Krull
dimension cl.K.dim(R) of a commutative ring R, introduced by W. Krull in 1928:
this is the supremum of length of chains of prime ideals of R, which is either a
natural number or ∞. The following result relates the Krull dimension of a ring
with its classical Krull dimension.
Theorem. (Gordon and Robson [24, Proposition 7.8]). If R is a commutative ring
with finite Krull dimension k(R), then k(R) = cl.K.dim(R).

A more accurate ordinal-valued variant of the original Krull’s classical Krull
dimension of a not necessarily commutative ring R is due to Gabriel (1962) [22] and
Krause (1970). Note that this can be easily carried out from the poset Spec(R) of
all two-sided prime ideals of R to an arbitrary poset P to define a so-called classical
Krull dimension cl.K.dim(P ) of P (see Albu [1, Section 1]). A different classical
Krull dimension cl.k.dim(R) of a ring R, called little classical Krull dimension of
R is also defined in the literature, and its relations with k(R) and cl.K.dim(R)
are established in Gordon and Robson [24, Proposition 7.9].

A Krull dimension-like extension of the Absolute H-LT

If G is a Grothendieck category and X is an object of G, then the Krull dimension
of X , denoted by k(X), is defined as k(X) := k(Sub(X)).

The definition of the Krull dimension of an object in a Grothendieck category
G can also be given using a transfinite sequence of Serre subcategories of G and
suitable quotient categories of G (see Gordon and Robson [25, Proposition 1.5]).
Using this approach, the following extension of the Absolute H-LT has been proved:

Theorem 7.2. (Albu, Lenagan, and Smith [7, Theorem 3.1]). Let G be a Grothen-
dieck category, and let U be a generator of G such that k(U) = α + 1 for some
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ordinal α � −1. Then, for every object X of G having Krull dimension and for
every ascending chain

X1 � X2 � · · · � Xn � · · ·

of subobjects of X , ∃m ∈ N such that k(Xi+1/Xi) � α, ∀ i � m.

Note that for α = −1 we obtain exactly the Absolute H-LT, because in this
case, X ∈ G has Krull dimension if and only if k(X) � 0, i.e., if and only if X is
Artinian.

It seems that the above result is really a categorical property of Grothendieck
categories. As we already stressed before, the natural frame for the H-LT and its
various extensions is Lattice Theory, being concerned as it is with descending and
ascending chains in certain lattices, and therefore we shall present in the next
subsection a very general version of Theorem 7.2 for upper continuous modular
lattices.

A Krull dimension-like extension of the Latticial H-LT

In order to present an extension of Theorem 7.2 to lattices, which, on one hand,
is interesting in his own right, and, on the other hand, provides another proof of
Theorem 7.2, avoiding the use of quotient categories, we need first a good substitute
for the notion of generator of a Grothendieck category, which has already been
presented in Section 4.

Theorem 7.3. (Albu and Smith [13, Theorem 3.16]). Let L and G be upper con-
tinuous modular lattices. Suppose that k(G) = α + 1 for some ordinal α � −1 ,
and L is completely generated by G. If L has Krull dimension, then k(L) � α+1,
and for every ascending chain

x1 � x2 � · · · � xn � · · ·

of elements of L, ∃m ∈ N such that k(xi+1/xi) � α, ∀ i � m.

Two main ingredients are used in the proof of this result, namely:

• first, the Latticial H-LT , and
• second, a localization technique for modular lattices, developed by Albu and

Smith [12], [13] in analogy with that for Grothendieck categories.

In the next subsection we shall briefly discuss this technique, and thereafter we
shall provide a sketch of the proof of Theorem 7.3.

Localization of modular lattices

The terminology and notation below are taken from the localization theory in
Grothendieck categories. First, in analogy with the notion of a Serre subcategory
of an Abelian category, we present below, as in Albu and Smith [12], the notion
of a Serre class of lattices:
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Definition 7.4. By an abstract class of lattices we mean a nonempty subclass X
of the class M of all modular lattices with 0 and 1, which is closed under lattice
isomorphisms (this means that if L, K ∈M, K � L and L ∈ X , then K ∈ X ).

We say that a subclass X of M is a Serre class for L ∈ M if X is an
abstract class of lattices, and for all a � b � c in L, c/a ∈ X if and only if
b/a ∈ X and c/b ∈ X . A Serre class of lattices is an abstract class of lattices
which is a Serre class for all lattices L ∈M.

Let X be an arbitrary nonempty subclass of M and let L ∈M be a lattice.
Define a relation ∼X on L by:

a ∼X b ⇐⇒ (a ∨ b)/(a ∧ b) ∈ X .

Then ∼X is a congruence on L if and only if X is a Serre class for L. Recall that
a congruence on a lattice L is an equivalence relation ∼ on L such that for all
a, b, c ∈ L, a ∼ b implies a∨ c ∼ b∨ c and a∧ c ∼ b∧ c. It is well known that in
this case the quotient set L/∼ has a natural lattice structure, and the canonical
mapping L −→ L/∼ is a lattice morphism. If X is a Serre class for L ∈M, then
the lattice L/∼X is called the quotient lattice of L by (or modulo) X .

We define now for any nonempty subclass X of M and for any lattice L, a
certain subset SatX (L) of L, called the X -saturation of L or the X -closure of L:

SatX (L) = { x ∈ L | x � y ∈ L, y/x ∈ X =⇒ x = y }.
This is the precise analogue of the subset Satτ (M) = {N � MR |M/N ∈ F } of
the lattice L(MR) of all submodules of a given module MR, where τ = (T , F)
is a hereditary torsion theory on Mod-R.

Definition 7.5. Let X be an arbitrary nonempty subclass of M. We say that a
lattice L has an X -closure or an X -saturation if there exists a mapping, called
the X -closure or X -saturation of L

L −→ SatX (L) , x �−→ x,

such that
(1) x � x and x/x ∈ X for all x ∈ L.
(2) x � y in L =⇒ x � y.

If X is a Serre class for L ∈M such that L has an X -closure x �−→ x, and
if we define x∨y = x ∨ y, ∀x, y ∈ SatX (L), then it is easy to check that SatX (L)
becomes a modular lattice with respect to � , ∧ , ∨ , 0 , 1 .

By Proposition 3.3, for any hereditary torsion theory τ = (T , F) on Mod-R,
and any module MR, the lattice Satτ (M) is isomorphic to the lattice Sub(Tτ (M))
of all subobjects of the object Tτ (M) in the quotient category Mod-R/T , where
Tτ : Mod-R −→ Mod-R/T is the canonical functor. The same happens also in our
latticial frame: if X is a Serre class for L ∈ M such that L has an X -closure,
then

L/∼X � SatX (L).



22 T. Albu

This implies that the lattice L is X -Noetherian (resp. X -Artinian) ⇐⇒ the lattice
SatX (L) is Noetherian (resp. Artinian) ⇐⇒ the lattice L/ ∼ X is Noetherian
(resp. Artinian).

The Serre classes of lattices which are closed under taking arbitrary joins,
which we next introduce, are called localizing classes of lattices and they play
the same role as that of localizing subcategories in the setting of Grothendieck
categories. More precisely, we have the following:

Definition 7.6. Let X be a nonempty subclass of M and let L be a complete
modular lattice. We say that X is a localizing class for L if X is a Serre class
for L, and for any x ∈ L and for any family (xi)i∈I of elements of 1/x such
that xi/x ∈ X for all i ∈ I, we have (

∨
i∈I xi)/x ∈ X . By a localizing class

of lattices we mean a Serre class of lattices which is a localizing class for every
complete modular lattice.

Note that if X is a localizing class for a complete modular lattice L then L
has an X -closure, which is uniquely determined.

Sketch of the proof of Theorem 7.3

We shall preserve the notation from the statement of Theorem 7.3. The full details
of the proof can be found in Albu and Smith [13, Section 3].

Denote for every ordinal β � 0,

Kβ = {X ∈M| k(X) � β }.
It is easy to check that Kβ is a Serre class, but, in general, not a localizing class
of lattices. For a nonempty subclass A of M we denote

〈A 〉 = {X ∈ M|∀ a ∈ X, a �= 1, ∃ b ∈ X, a < b, b/a ∈ A}.
If A is a Serre class of lattices, then 〈A 〉 is a localizing class of lattices which
contains A.

Because L is completely generated by G we deduce that L ∈ 〈Kα+1 〉. Now,
if X is an upper continuous modular lattice with Krull dimension, and β � 0 is
an arbitrary ordinal, then, using a latticial version of a nice result of Lemonnier
[29, Lemme 1.1] originally proved for modules, we deduce that

X ∈ Kβ ⇐⇒ X ∈ 〈Kβ 〉.
Thus L ∈ Kα+1, i.e., k(L) � α + 1, in other words, L is Kα-Artinian.

In order to pass to an Artinian lattice related to L, which is suitable for the
application of the Relative H-LT (Theorem 4.1), we need a Serre class of lattices
X for which L has an X -closure. This cannot be Kα, so take as such an X the
localizing class of lattices 〈Kα 〉 “generated” by Kα. As we have seen above, with
this X , L has an X -closure, and L is still X -Artinian because Kα ⊆ X . Also,
G is X -Artinian. For simplicity denote L = SatX (L), and G = SatX (G). Then
L and G are both Artinian modular lattices, and since L is upper continuous,
it satisfies the condition (E), so too does L, because this condition behaves well
under localization. The same argument shows that L satisfies the condition (BL)
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too, hence, by the Relative H-LT, we deduce that L is a Noetherian lattice, and
so, L is X -Noetherian.

Now let
x1 � x2 � · · ·

be an ascending chain of elements in L. Then, there exists m ∈ N such that
xi+1/xi ∈ X = 〈Kα 〉, ∀ i � m. But xi+1/xi has Krull dimension because L
does. As above, it follows that xi+1/xi ∈ Kα, i.e., k(xi+1/xi) � α, ∀ i � m, which
completes the proof. �

A Krull dimension-like extension of the Classical H-LT

If we specialize Theorem 7.2 to Mod-R, one obtains at once the following result,
which can be also proved using only module-theoretical tools (see Albu, Lenagan,
and Smith [7, Section 2]:

Corollary 7.7. Let R is a ring having Krull dimension k(R) = α + 1 for some
ordinal α � −1. Then, for any module MR having Krull dimension and for any
ascending chain

N1 � N2 � · · · � Nn � · · ·
of submodules of M , ∃m ∈ N such that k(Ni+1/Ni) � α, ∀ i � m.

Note that a relative version of Theorem 7.2, in terms of τ -Krull dimension
also holds (see Albu and Smith [13, Theorem 4.1]).

8. Four open problems

We present below a list of four open problems related with the topics discussed in
this paper.

1. Compare the ordinals k(M) and k0(M) of a given module MR with Krull
dimension. In particular, compare the ordinals k(R) and k0(R) of a ring R
with right Krull dimension.

2. If R is a ring with right Krull dimension, is it true that k0(R) � k(R)? This
question has been raised by Albu and Smith in 1991, and also mentioned in
Albu and Smith [14, Question 1].

Observe that this is true for k(R) = 0; this is exactly the Classical
H-LT. Other cases when the answer is yes , according to Albu and Smith [14],
are when R is one of the following types of rings:
• a commutative Noetherian ring, or
• a commutative ring with Krull dimension 1, or
• a commutative domain with Krull dimension 2, or
• a valuation domain with Krull dimension, or
• a right Noetherian right V -ring.

3. Similarly with the right global homological dimension of a ring R, two kinds of
“global dimension” related to the Krull dimension and dual Krull dimension
of a ring R have been defined in Albu and Smith [14]: the right global Krull
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dimension r.gl.k(R) and the right global dual Krull dimension r.gl.k0(R) of a
ring, as being the supremum of k(MR) and k0(MR), respectively, when MR

is running in the class of all modules having Krull dimension.
Similarly with Question 1, one may ask: what is the order relation be-

tween r.gl.k(R) and r.gl.k0(R)?
Note that, though according to Albu and Vámos [15, Corollary 1.3],

k0(R) � k(R) for any valuation ring (this is a commutative ring with iden-
tity whose ideals are totally ordered by inclusion) having Krull dimension,
unexpectedly one has the opposite order relation r.gl.k(R) �r.gl.k0(R) for
any valuation ring, by Albu and Vámos [15, Theorem 2.4].

4. Does the result of Corollary 7.7 fail when k(R) is a limit ordinal? We suspect
that the answer is yes.
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[38] C. Năstăsescu, Conditions de finitude pour les modules, Rev. Roumaine Math. Pures
Appl. 24 (1979), 745–758.
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