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Abstract. The aim of this expository paper is to discuss various aspects of the
Hopkins-Levitzki Theorem (H-LT), including the Relative H-LT, the Absolute
or Categorical H-LT, the Latticial H-LT, as well as the Krull dimension-like
H-LT.
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1. Introduction

In this expository paper we present a survey of the work done in the last forty
years on various extensions of the Classical Hopkins-Levitzki Theorem: Relative,
Absolute or Categorical, Latticial, and Krull dimension-like.

We shall also illustrate a general strategy which consists on putting a module-
theoretical theorem in a latticial frame, in order to translate that theorem to
Grothendieck categories and module categories equipped with hereditary torsion
theories.

The author gratefully acknowledges partial financial support from the Grant ID-PCE 1190/2008

awarded by the Consiliul Naţional al Cercetării Ştiinţifice ı̂n Învăţământul Superior (CNCSIS),
România.
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The (Molien-)Wedderburn-Artin Theorem

One can say that the Modern Ring Theory begun in 1908, when Joseph Henry
Maclagan Wedderburn (1882–1948) proved his celebrated Classification Theorem
for finitely dimensional semi-simple algebras over a field F (see [49]). Before that,
in 1893, Theodor Molien or Fedor Eduardovich Molin (1861–1941) proved the
theorem for F = C (see [36]).

In 1921, Emmy Noether (1882–1935) considers in her famous paper [42], for
the first time in the literature, the Ascending Chain Condition (ACC)

I1 ⊆ I2 ⊆ · · · ⊆ In ⊆ · · ·

for ideals in a commutative ring R.
In 1927, Emil Artin (1898–1962) introduces in [17] the Descending Chain

Condition (DCC)

I1 ⊇ I2 ⊇ · · · ⊇ In ⊇ · · ·
for left/right ideals of a ring and extends the Wedderburn Theorem to rings satis-
fying both the DCC and ACC for left/right ideals, observing that both ACC and
DCC are a good substitute for finite dimensionality of algebras over a field:

The (Molien-)Wedderburn-Artin Theorem. A ring R is semi-simple if and
only if R is isomorphic to a finite direct product of full matrix rings over skew-
fields

R � Mn1(D1)× · · · ×Mnk
(Dk).

Recall that by a semi-simple ring one understands a ring R which is left (or
right) Artinian and has Jacobson radical or prime radical zero. Since 1927, the
(Molien-)Wedderburn-Artin Theorem became a cornerstone of the Noncommuta-
tive Ring Theory.

In 1929, Emmy Noether observes (see [43, p. 643]) that the ACC in Artin’s
extension of the Wedderburn Theorem can be omitted: Im II. Kapitel werden die
Wedderburnschen Resultate neu gewonnen und weitergefürt, . . . . Und zwar zeigt
es sich das der “Vielfachenkettensatz” für Rechtsideale oder die damit identische
“Minimalbedingung” (in jeder Menge von Rechtsidealen gibt es mindestens ein –
in der Menge – minimales) als Endlichkeitsbedingung ausreicht (Die Wedderburn-
schen Schlußweissen lassen sich übertragen wenn “Doppelkettensatz” vorausgesezt
wird. Vgl. E. Artin [17]).

It took, however, ten years until it has been proved that always the DCC in
a unital ring implies the ACC.

The Classical Hopkins-Levitzki Theorem (H-LT)

One of the most lovely result in Ring Theory is the Hopkins-Levitzki Theorem,
abbreviated H-LT. This theorem, saying that any right Artinian ring with identity
is right Noetherian, has been proved independently in 1939 by Charles Hopkins
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[27]1 (1902–1939) for left ideals and by Jacob Levitzki [31]2 (1904–1956) for right
ideals. Almost surely, the fact that the DCC implies the ACC for one-sided ideals
in a unital ring was unknown to both E. Noether and E. Artin when they wrote
their pioneering papers on chain conditions in the 1920’s.

An equivalent form of the H-LT, referred in the sequel also as the Classical
H-LT , is the following one:
Classical H-LT. Let R be a right Artinian ring with identity, and let MR be a
right module. Then MR is an Artinian module if and only if MR is a Noetherian
module.

Proof. The standard proof of this theorem, as well as the original one of Hopkins
[27, Theorem 6.4] for M = R, uses the Jacobson radical J of R. Since R is right
Artinian, J is nilpotent and the quotient ring R/J is a semi-simple ring. Let n be a
positive integer such that Jn = 0, and consider the descending chain of submodules
of MR

M ⊇ MJ ⊇ MJ2 ⊇ · · · ⊇ MJn−1 ⊇MJn = 0.

Since the quotients MJk/MJk+1 are killed by J , k = 0, 1, . . . , n − 1, each
MJk/MJk+1 becomes a right module over the semi-simple ring R/J , so each
MJk/MJk+1 is a semi-simple (R/J)-module.

Now, observe that MR is Artinian (resp. Noetherian) ⇐⇒ all MJk/MJk+1

are Artinian (resp. Noetherian) R (or R/J)-modules. Since a semi-simple module
is Artinian if and only if it is Noetherian, it follows that MR is Artinian if and
only if it is Noetherian, which finishes the proof. �

Extensions of the H-LT

In the last fifty years, especially in the 1970’s, 1980’s, and 1990’s the (Classical)
H-LT has been generalized and dualized as follows:
1957 Fuchs [21] shows that a left Artinian ring A, not necessarily unital, is

Noetherian if and only if the additive group of A contains no subgroup
isomorphic to the Prüfer quasi-cyclic p-group Zp∞ .

1In fact, he proved that any left Artinian ring (called by him MLI ring) with left or right identity
is left Noetherian (see Hopkins [27, Theorems 6.4 and 6.7]).
2The result is however, surprisingly, neither stated nor proved in his paper, though in the litera-
ture, including our papers, the Hopkins’ Theorem is also wrongly attributed to Levitzki. Actually,
what Levitzki proved was that the ACC is superfluous in most of the main results of the original
paper of Artin [17] assuming both the ACC and DCC for right ideals of a ring. This is also
very clearly stated in the Introduction of his paper: “In the present note it is shown that the
maximum condition can be omitted without affecting the results achieved by Artin.” Note that
Levitzki considers rings which are not necessarily unital, so anyway it seems that he was even
not aware about DCC implies ACC in unital rings; this implication does not hold in general in
non unital rings, as the example of the ring with zero multiplication associated with any Prüfer
quasi-cyclic p-group Zp∞ shows. Note also that though all sources in the literature, including
Mathematical Reviews, indicate 1939 as the year of appearance of Levitzki’s paper in Compositia

Mathematica, the free reprint of the paper available at http://www.numdam.org indicates 1940 as
the year when the paper has been published.
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1972 Shock [46] provides necessary and sufficient conditions for a non unital
Artinian ring and an Artinian module to be Noetherian; his proofs avoid
the Jacobson radical of the ring and depend primarily upon the length of
a composition series.

1976 Albu and Năstăsescu [9] prove the Relative H-LT, i.e., the H-LT relative
to a hereditary torsion theory, but only for commutative unital rings, and
conjecture it for arbitrary unital rings.

1978–1979 Murase [37] and Tominaga and Murase [48] show, among others, that
a left Artinian ring A, not necessarily unital, is Noetherian if and only
J/AJ is finite (where J is the Jacobson radical of R) if and only if the
largest divisible torsion subgroup of the additive group of A is 0.

1979 Miller and Teply [35] prove the Relative H-LT for arbitrary unital rings.
1979–1980 Năstăsescu [38], [39] proves the Absolute or Categorical H-LT , i.e., the

H-LT for an arbitrary Grothendieck category.
1980 Albu [3] proves the Absolute Dual H-LT for commutative Grothendieck

categories.
1982 Faith [20] provides another module-theoretical proof of the Relative H-LT,

and gives two interesting versions of it: Δ-Σ and counter .
1984 Albu [4] establishes the Latticial H-LT for upper continuous modular lat-

tices.
1996 Albu and Smith [12] prove the Latticial H-LT for arbitrary modular lat-

tices.
1996 Albu, Lenagan, and Smith [7] establish a Krull dimension-like extension

of the Classical H-LT and Absolute H-LT.
1997 Albu and Smith [13] extend the result of Albu, Lenagan, and Smith [7]

from Grothendieck categories to upper continuous modular lattices, using
the technique of localization of modular lattices they developed in [12].

In the sequel we shall be discussing in full detail all the extensions of the HL-T
for unital rings listed above.

2. The Relative H-LT

The next result is due to Albu and Năstăsescu [9, Théorème 4.7] for commutative
rings, conjectured for noncommutative rings by Albu and Năstăsescu [9, Problème
4.8], and proved for arbitrary unital rings by Miller and Teply [35, Theorem 1.4].

Theorem 2.1. (Relative H-LT). Let R be a ring with identity, and let τ be a
hereditary torsion theory on Mod-R. If R is a right τ-Artinian ring, then every
τ-Artinian right R-module is τ-Noetherian.

Let us mention that the module-theoretical proofs available in the literature
of the Relative H-LT, namely the original one in 1979 due to Miller and Teply
[35, Theorem 1.4], and another one in 1982 due to Faith [20, Theorem 7.1 and
Corollary 7.2], are very long and complicated.
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The importance of the Relative H-LT in investigating the structure of some
relevant classes of modules, including injectives as well as projectives, is revealed
in Albu and Năstăsescu [10] and Faith [20], where the main body of both these
monographs deals with this topic.

We are now going to explain all the terms occurring in the statement above.

Hereditary torsion theories

The concept of torsion theory for Abelian categories has been introduced by S.E.
Dickson [19] in 1966. For our purposes, we present it only for module categories in
one of the many equivalent ways that can be done. Basic torsion-theoretic concepts
and results can be found in Golan [23] and Stenström [47].

All rings considered in this paper are associative with unit element 1 �= 0,
and modules are unital right modules. If R is a ring, then Mod-R denotes the
category of all right R-modules. We often write MR to emphasize that M is a
right R-module; L(MR), or just L(M), stands for the lattice of all submodules of
M . The notation N �M means that N is a submodule of M .

A hereditary torsion theory on Mod-R is a pair τ = (T , F) of nonempty
subclasses T and F of Mod-R such that T is a localizing subcategory of Mod-R
in the Gabriel’s sense [22] (this means that T is a Serre class of Mod-R which
is closed under direct sums) and F = {FR |HomR(T, F ) = 0, ∀T ∈ T }. Thus,
any hereditary torsion theory τ = (T , F) is uniquely determined by its first
component T . Recall that a nonempty subclass T of Mod-R is a Serre class if for
any short exact sequence 0 −→ X ′ −→ X −→ X ′′ −→ 0 in Mod-R, one has
X ∈ T ⇐⇒ X ′ ∈ T & X ′′ ∈ T , and T is closed under direct sums if for any family
(Xi)i∈I , I arbitrary set, with Xi ∈ T , ∀ i ∈ I, it follows that

⊕
i∈I Xi ∈ T .

The prototype of a hereditary torsion theory is the pair (A,B) in Mod-Z,
where A is the class of all torsion Abelian groups, and B is the class of all
torsion-free Abelian groups.

Throughout this paper τ = (T , F) will be a fixed hereditary torsion theory
on Mod-R. For any module MR we denote

τ(M) :=
∑

N�M, N∈T
N.

Since T is a localizing subcategory of Mod-R, it follows that τ(M) ∈ T , and we
call it the τ -torsion submodule of M . Note that, as for Abelian groups, we have

M ∈ T ⇐⇒ τ(M) = M and M ∈ F ⇐⇒ τ(M) = 0.

The members of T are called τ -torsion modules, while the members of F are
called τ -torsion-free modules .

For any N � M we denote by N the submodule of M such that N/N =
τ(M/N), called the τ -closure or τ -saturation of N (in M). One says that N is
τ -closed or τ -saturated if N = N, or equivalently, if M/N ∈ F , and the set of all
τ -closed submodules of M is denoted by Satτ (M). It is well known that Satτ (M)
is an upper continuous modular lattice. Note that though Satτ (M) is a subset of
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the lattice L(M) of all submodules of M , it is not a sublattice, because the sum
of two τ -closed submodules of M is not necessarily τ -closed.

Definition 2.2. A module MR is said to be τ -Noetherian (resp. τ -Artinian) if
Satτ (M) is a Noetherian (resp. Artinian) poset. The ring R is said to be τ -
Noetherian (resp. τ -Artinian) if the module RR is τ -Noetherian (resp. τ -Artinian).

Recall that a partially ordered set, shortly poset, (P,�) is called Noetherian
(resp. Artinian) if it satisfies the ACC (resp. DCC), i.e., if there is no strictly
ascending (resp. descending) chain x1 < x2 < · · · (resp. x1 > x2 > · · · ) in P .

Relativization

The Relative H-LT nicely illustrates a general direction in Module Theory, namely
the so-called Relativization. Roughly speaking, this topic deals with the following
matter:

Given a property P in the lattice L(MR) investigate
the property P in the lattice Satτ (MR).

Since about forty years Module Theorists were dealing with the following problem:

Having a theorem T on modules, is its relativization τ-T true?

As we mentioned just after the statement of the Relative H-LT, its known module-
theoretical proofs are very long and complicated; so, the relativization of a result
on modules is not always a simple job, and as this will become clear with the next
statement, sometimes it may be even impossible.

Theorem 2.3. (Metatheorem). The relativization T � τ-T of a theorem T in
Module Theory is not always true/possible.

Proof. Consider the following lovely theorem (see Lenagan [30, Theorem 3.2]):

T : If R has right Krull dimension then the prime radical N(R) is nilpotent.

The relativization of T is the following:

τ -T: If R has right τ-Krull dimension then the τ-prime radical Nτ (R) is
τ-nilpotent.

Recall that Nτ (R) is the intersection of all τ -closed two-sided prime ideals of R,
and a right ideal I of R is said to be τ -nilpotent if In ∈ T for some integer n > 0.

The truth of the relativization τ -T of T has been asked by Albu and Smith
[11, Problem 4.3]. Surprisingly, the answer is “no” in general, even if R is (left
and right) Noetherian, by Albu, Krause, and Teply [6, Example 3.1]. This proves
our Metatheorem.

However, τ -T is true for any ring R and any ideal invariant hereditary
torsion theory τ , including any commutative ring R and any τ (see Albu, Krause,
and Teply [6, Section 6]). �
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3. The Absolute (or Categorical) H-LT

The next result is due to Năstăsescu, who actually gave two different short nice
proofs: [38, Corollaire 1.3] in 1979, based on the Loewy length, and [39, Corollaire
2] in 1980, based on the length of a composition series.

Theorem 3.1. (Absolute H-LT). Let G be a Grothendieck category having an
Artinian generator. Then any Artinian object of G is Noetherian.

Recall that a Grothendieck category is an Abelian category G, with exact
direct limits (or, equivalently, satisfying the axiom AB5 of Grothendieck), and
having a generator G (this means that for every object X of G there exist a set
I and an epimorphism G(I) � X). A family (Uj)j∈J of objects of G is said to
be a family of generators of G if ⊕j∈JUj is a generator of G. The Grothendieck
category G is called locally Noetherian (resp. locally Artinian) if it has a family of
Noetherian (resp. Artinian) generators. Also, recall that an object X ∈ G is said
to be Noetherian (resp. Artinian) if the lattice Sub(X) of all subobjects of X is
Noetherian (resp. Artinian).

Note that J.E. Roos [45] has produced in 1969 an example of a locally Ar-
tinian Grothendieck C category which is not locally Noetherian; thus, the so-called
Locally Absolute H-LT fails. Even if a locally Artinian Grothendieck category C
has a family of projective Artinian generators, then it is not necessarily locally
Noetherian, as an example due to Menini [33] shows. However, the Locally Ab-
solute H-LT is true if the family of Artinian generators of C is finite (because in
this case C has an Artinian generator), as well as if the Grothendieck category C
is commutative, by Albu and Năstăsescu [9, Corollaire 4.38] (see Section 6 for the
definition of a commutative Grothendieck category).

Quotient categories and the Gabriel-Popescu Theorem

Clearly, for any ring R with identity element, the category Mod-R is a Grothendieck
category. A procedure to construct new Grothendieck categories is by taking the
quotient category Mod-R/T of Mod-R modulo any of its localizing subcategories
T . The construction of the quotient category of Mod-R/T , or more generally, of
the quotient category A/C of any locally small Abelian category A modulo any
of its Serre subcategories C is quite complicated and goes back to Serre’s “langage
modulo C” (1953), Grothendieck (1957), and Gabriel (1962) [22].

Recall briefly this construction. The objects of the category A/C are the same
as those of A, while the morphisms in this category are defined not so simple: for
every objects X, Y of A, one sets

HomA/C(X, Y ) := lim−→
(X′,Y ′)∈IX,Y

HomA(X ′, Y/Y ′),

where IX,Y := {(X ′, Y ′) |X ′ � X, Y ′ � Y, X/X ′ ∈ C, Y ′ ∈ C } is considered as
an ordered set in an obvious manner, and with this order it is actually a directed
set (it is indeed a set because the given Abelian category A was supposed to be
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locally small, i.e., the class of all subobjects of every object of A is a set). Then
A/C is an Abelian category, and there exists a canonical covariant exact functor

T : A −→ A/C
defined as follows: for every objects X, Y of A and every f ∈ HomA(X, Y )
one sets T (X) := X and T (f) := the image of f in the inductive limit. It
turns out that the exact functor T annihilates C (i.e., “kills” each X ∈ C),
and, as for quotient modules, the pair (A/C, T ) is universal for exact functors,
which annihilate C, from A into Abelian categories. Moreover, the given Serre
subcategory C of A is a localizing subcategory of A if and only if the functor T
has a right adjoint, and in this case the quotient category A/C is a Grothendieck
category if A is so. In particular, for any unital ring R, the quotient category
Mod-R/T of Mod-R modulo any of its localizing subcategories T is a Grothen-
dieck category.

Roughly speaking, the renowned Gabriel-Popescu Theorem, discovered ex-
actly forty five years ago, states that in this way we obtain, up to an equivalence
of categories, all the Grothendieck categories. More precisely,

Theorem 3.2. (The Gabriel-Popescu Theorem). For any Grothendieck cat-
egory G there exist a unital ring R and a localizing subcategory T of Mod-R
such that G � Mod-R/T .

Notice that the ring R and the localizing subcategory T of Mod-R can
be obtained in the following (noncanonical) way: Let U be any generator of the
Grothendieck category G, and let RU be the ring EndG(U) of endomorphims of
U . If SU : G −→ Mod-RU is the functor HomG(U,−), then SU has a left adjoint
TU , TU ◦ SU � 1G , and Ker(TU ) := {M ∈ Mod-RU |TU (M) = 0 } is a localizing
subcategory of Mod-RU . Take now as R any such RU and as T such a Ker(TU ).

The reader is referred to Albu and Năstăsescu [10], Gabriel [22], and Sten-
ström [47] for the concepts, constructions, and facts presented in this subsection.

Absolutization

Let τ = (T , F) be a hereditary torsion theory on Mod-R. Then, because T is a
localizing subcategory of Mod-R one can form the quotient category Mod-R/T .
Denote by

Tτ : Mod-R −→ Mod-R/T
the canonical functor from the category Mod-R to its quotient category Mod-R/T .

Proposition 3.3. (Albu and Năstăsescu [10, Proposition 7.10]). With the notation
above, for every module MR there exists a lattice isomorphism

Satτ (M) � Sub(Tτ (M)).

In particular, M is a τ-Noetherian (resp. τ-Artinian) module if and only if Tτ (M)
is a Noetherian (resp. Artinian) object of Mod-R/T .
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Absolutization is a technique to pass from τ -relative results in Mod-R to
absolute properties in the quotient category Mod-R/T via the canonical functor
Tτ : Mod-R −→ Mod-R/T . This technique is, in a certain sense, opposite to
relativization, meaning that absolute results in a Grothendieck category G can be
translated, via the Gabriel-Popescu Theorem, into τ -relative results in Mod-R as
follows:

Let U be any generator of the Grothendieck category G, let RU be the
ring EndG(U) of endomorphims of U . As we have already mentioned above, if
SU : G −→ Mod-RU is the functor HomG(U,−), then SU has a left adjoint TU ,
TU ◦ SU � 1G , and Ker(TU ) := {M ∈ Mod-RU |TU (M) = 0 } is a localizing
subcategory of Mod-RU . Let now τU be the hereditary torsion theory (uniquely)
determined by the localizing subcategory Ker(TU ) of Mod-RU . Many properties
of an object X ∈ G can now be translated as τU -relative properties of the right
RU -module SU (X); e.g., X ∈ G is an Artinian (resp. Noetherian) object if and
only if SU (X) is a τU -Artinian (resp. τU -Noetherian) right RU -module. Observe
that this relativization strongly depends on the choice of the generator U of G.

As mentioned before, the two module-theoretical proofs available in the lit-
erature of the Relative H-LT due to Miller and Teply [35] and Faith [20], are very
long and complicated. On the contrary, the two categorical proofs of the Absolute
H-LT due to Năstăsescu [38], [39] are very short and simple.

Using the interaction relativization ←→ absolutization, we shall prove in Sec-
tion 5 that Relative H-LT ⇐⇒ Absolute H-LT ; this means exactly that any of this
theorems can be deduced from the other one. In this way we can obtain two short
categorical proofs of the Relative H-LT.

However, some module theorists are not so comfortable with categorical
proofs of module-theoretical theorems: they cannot touch the elements of an object
because categories work only with objects and morphisms and not with elements
of an object.

Good news for those people: There exists an alternative, namely the latticial
setting . Why? If τ is a hereditary torsion theory on Mod-R and MR is any
module then Satτ (M) is an upper continuous modular lattice, and if G is a
Grothendieck category then the lattice Sub(X) of all subobjects of any object
X ∈ G is also an upper continuous modular lattice. Therefore, a strong reason to
study such kinds of lattices exists.

A latticial strategy

Let P be a problem, involving subobjects or submodules, to be investigated in
Grothendieck categories or in module categories with respect to hereditary torsion
theories. Our main strategy in this direction since more than twenty five years
consists of the following three steps:

I. Translate/formulate, if possible, the problem P to be investigated in a Gro-
thendieck category or in a module category equipped with a hereditary tor-
sion theory into a latticial setting.
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II. Investigate the obtained problem P in this latticial frame.
III. Back to basics, i.e., to Grothedieck categories and module categories equipped

with hereditary torsion theories.
The advantage to deal in such a way, is, in our opinion, that this is the most
natural and the most simple as well, because we ignore the specific context of
Grothendieck categories and module categories equipped with hereditary torsion
theories, focussing only on those latticial properties which are relevant in our given
specific categorical or relative module-theoretical problem P. The best illustration
of this approach is, as we will see later, that both the Relative H-LT and the
Absolute H-LT are immediate consequences of the so-called Latticial H-LT , which
will be amply discussed in Sections 4 and 5.

4. The latticial H-LT and latticial dual H-LT

The Classical/Relative/Absolute H-LT deals with the question when a particular
Artinian lattice L(MR)/Satτ (MR)/Sub(X) is Noetherian. Our contention is that
the natural setting for the H-LT and its various extensions is Lattice Theory, being
concerned as it is with descending and ascending chains in certain lattices. There-
fore we shall present in this section the Latticial H-LT which gives an exhaustive
answer to the following more general question:

When an arbitrary Artinian modular lattice is Noetherian?

The answer, given in an “if and only” form, is due to Albu and Smith [11, Theorem
1.9], and will be discussed in the next subsections.

Lattice background

All lattices considered in this paper are assumed to have a least element denoted
by 0 and a last element denoted by 1, and (L,�,∧,∨, 0, 1), or more simply, just
L, will always denote such a lattice. We denote by M the class of all modular
lattices with 0 and 1. The opposite lattice of L will be denoted by L0 . We shall
use N to denote the set {0, 1, . . .} of all natural numbers.

Recall that a lattice L is called modular if

a ∧ (b ∨ c) = b ∨ (a ∧ c), ∀ a, b, c ∈ L with b � a.

A lattice L is said to be upper continuous if L is complete and

a ∧ (
∨
c∈C

c) =
∨
c∈C

(a ∧ c)

for every a ∈ L and every chain (or, equivalently, directed subset) C ⊆ L.
If x, y are elements in L with x � y, then y/x will denote the interval

[x, y] , i.e.,
y/x = { a ∈ L |x � a � y }.

An element e of L is called essential if e ∧ a �= 0 for all 0 �= a ∈ L . Dually, an
element s of L is called superfluous or small if s ∨ b �= 1 for all 1 �= b ∈ L, i.e.,
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if s is an essential element of L0. A composition series of a lattice L is a chain
0 = a0 < a1 < · · · < an = 1 in L which has no refinement, except by introducing
repetitions of the given elements ai, and the integer n is called the length of the
chain. If L is a modular lattice having a composition series, then we say that L is
a lattice of finite length, and in this case any two composition series of L have the
same length, called the length of L and denoted by l(L). A modular lattice is of
finite length if and only if L is both Noetherian and Artinian.

For all undefined notation and terminology on lattices, the reader is referred
to Crawley and Dilworth [18], Grätzer [26], and Stenström [47].

The H-LT and Dual H-LT for arbitrary modular lattices

In this subsection we present a very general form of the H-LT for an arbitrary
modular lattice, saying that an Artinian lattice L is Noetherian if and only if it
satisfies two conditions, one of which guaranteeing that L has a good supply of es-
sential elements and the second ensuring that there is a bound for the composition
lengths of certain intervals of L.

More precisely, consider the following two properties that a lattice L may
have (“E” for Essential and “BL” for Bounded Length):

(E) for all a � b in L there exists c ∈ L such that b ∧ c = a and b ∨ c is
an essential element of 1/a .

(BL) there exists a positive integer n such that for all x < y in L with y/0
having a composition series there exists cxy ∈ L with cxy � y, cxy �� x,
and l(cxy/0) � n .

Any pseudo-complemented modular lattice, in particular any upper continuous
modular lattice satisfies (E). Also, any Noetherian lattice satisfies (E).

The dual properties of (E) and (BL) are respectively:
(E0) for all a � b in L there exists c ∈ L such that a ∨ c = b and a ∧ c is a

superfluous element of b/0 .
(BL0) there exists a positive integer n such that for all x < y in L with 1/x

having a composition series there exists cxy in L with x � cxy, y �� cxy,
and l(1/cxy) � n .

The next result, due to Albu and Smith [12, Theorem 1.9] is the Latticial
H-LT for an arbitrary modular lattice, which, on one hand, is interesting in its
own right, being the most general form of the H-LT we know, and, on the other
hand is crucial in proving other versions of the H-LT.

Theorem 4.1. (Latticial H-LT). Let L be an Artinian modular lattice. Then L
is Noetherian if and only if L satisfies both conditions (E) and (BL).

Since the opposite of a modular lattice is again a modular lattice, it fol-
lows that the above result can be dualized as follows (see Albu and Smith [12,
Theorem 1.11]):

Theorem 4.2. (Latticial Dual H-LT). Let L be a Noetherian modular lattice.
Then L is Artinian if and only if L satisfies both conditions (E0) and (BL0).
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The condition (l∗) and lattice generation

The following condition for a lattice L has been considered in Albu [4]:

(l∗) there exists a positive integer n such that for all x < y in L there exists
cxy ∈ L with cxy � y, cxy �� x, cxy/0 Artinian, and l∗(cxy/0) � n.

If A is an Artinian lattice, then l∗(A) denotes the so-called reduced length of A,
that is l(1/a∗), where a∗ is the least element of the set { a ∈ A | 1/a is Noetherian},
see Albu [4, Lemma 0.3]. It is clear that for an Artinian lattice L, the condition
(l∗) implies the condition (BL).

Recall that if MR and UR are two modules, then the module M is said to be
U -generated if there exists a set I and an epimorphism U (I) �M . The fact that
M is U -generated can also be expressed as follows: for any proper submodule N
of M there exists a submodule P of M which is not contained in N , such that P
is isomorphic to a quotient of the module U . Further, M is said to be completely
U-generated in case every submodule of M is U -generated. These concepts have
been naturally extended in Albu [5] to posets as follows:

We say that a poset L is generated by a poset G, or is G-generated , if for
every a �= 1 in L there exist c ∈ L and g ∈ G such that c �� a and c/0 � 1/g .
The poset L is called completely generated by G or completely G-generated if for
every b ∈ L, the interval b/0 is G-generated, that is, for every a < b in L, there
exist c ∈ L and g ∈ G such that c � b, c �� a, and c/0 � 1/g.

Clearly, if the module M is (completely) U -generated, then the lattice L(MR)
is (completely) L(UR)-generated, but not conversely.

Note that if L and G are two Artinian lattices, and if L is completely
G-generated, then the lattice L satisfies the condition (l∗), and so, also the con-
dition (BL). This immediately implies the following version of the Latticial H-LT
(Theorem 4.1) in terms of lattice complete generation:

Theorem 4.3. If L is a modular Artinian lattice which is completely generated by
a modular Artinian lattice G , then L is Noetherian if and only if L satisfies (E).

The H-LT for upper continuous modular lattices

We present below a version in terms of condition (l∗), due to Albu [4, Corollary 1.8],
of the Latticial H-LT for modular lattices which additionally are upper continuous:

Theorem 4.4. (Latticial H-LT for upper continuous lattices). Let L be
an Artinian upper continuous modular lattice. Then L is Noetherian if and only if
L satisfies the condition (l∗).

Observe that Theorem 4.1 is an extension of Theorem 4.4 from upper con-
tinuous modular lattices to arbitrary modular lattices. More precisely, the upper
continuity from Theorem 4.4 is replaced by the less restrictive condition (E), while
the condition (l∗) by the condition (BL).
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5. Connections between various forms of the H-LT

In this section we are going to discuss the connections between the Classical
H-LT, Relative H-LT, Absolute H-LT , and Latticial H-LT, and to present the
Faith’s Δ-Σ and counter versions of the Relative H-LT.

Latticial H-LT =⇒ Relative H-LT

As mentioned above, the module-theoretical proofs available in the literature of
the Relative H-LT (namely, the original one in 1979 due to Miller and Teply [35],
and another one in 1982 due to Faith [20]) are very long and complicated. We
present below a very short proof based on the Latticial H-LT in terms of complete
generation (Theorem 4.3).

So, let τ = (T , F) be a hereditary torsion theory on Mod-R. Assume that
R is τ -Artinian, and let MR be a τ -Artinian module. The Relative H-LT states
that MR is a τ -Noetherian module.

Set G := Satτ (RR) and L := Satτ (MR). Then G and L are Artinian upper
continuous modular lattices. We have to prove that MR is a τ -Noetherian module,
i.e., L is a Noetherian lattice. By Theorem 4.3, it is sufficient to check that L is
completely G-generated, i.e., for every a < b in L, there exist c ∈ L and g ∈ G
such that c � b, c �� a, and c/0 � 1/g.

Since Satτ (M) � Satτ (M/τ(M)) we may assume, without loss of generality,
that M ∈ F . Let a = A < B = b in L = Satτ (MR). Then, there exists x ∈ B \A.
Set C := xR and I = AnnR(x). We have R/I � xR �M ∈ F , so R/I ∈ F , i.e.,
I ∈ Satτ (RR) = G. Using known properties of lattices of type Satτ (N), we deduce
that

[I, R] � Satτ (R/I) � Satτ (xR) � Satτ (xR) = Satτ (C) = [0, C],

where the intervals [I, R] and [0, C] are considered in the lattices G and L,
respectively. Then, if we denote c = C and g = I, we have c ∈ L, g ∈ G, c � b,
c �� a, and c/0 � 1/g, which shows that L is completely G-generated, as desired.

Absolute H-LT =⇒ Relative H-LT

We are going to show how the Relative H-LT can be deduced from the Absolute
H-LT. Let τ = (T , F) be a hereditary torsion theory on Mod-R. Assume that
R is τ -Artinian ring, and let MR be a τ -Artinian module. We pass from Mod-R
to the Grothendieck category Mod-R/T with the use of the canonical functor
Tτ : Mod-R −→ Mod-R/T . Since RR is a generator of Mod-R and Tτ is an exact
functor we deduce that Tτ (R) is a generator of Mod-R/T , which is Artinian by
Proposition 3.3. Now, again by Proposition 3.3, Tτ (M) is an Artinian object of
Mod-R/T , so, it is also Noetherian by the Absolute H-LT, i.e., M is τ -Noetherian,
and we are done.

Relative H-LT =⇒ Absolute H-LT

We prove that the Absolute H-LT is a consequence of the Relative H-LT. Let G
be a Grothendieck category having an Artinian generator U . Set RU := EndG(U),
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and let SU = HomG(U,−) : G −→ Mod-RU and TU : Mod-RU −→ G be the pair of
functors from the Gabriel-Popescu Theorem setting, described in Section 3, after
Proposition 3.3. Then TU◦SU � 1G , and Ker(TU ) := {M ∈ Mod-RU |TU (M) = 0}
is a localizing subcategory of Mod-RU . Let now τU be the hereditary torsion
theory (uniquely) determined by the localizing subcategory TU := Ker(TU ) of
Mod-RU . Then, the Gabriel-Popescu Theorem says that G � Mod-RU/TU and

U � (TU ◦ SU )(U) = TU (SU (U)) = TU (RU ).

Since U is an Artinian object of G, so is also TU (RU ), which implies, by Proposition
3.3, that RU is a τU -Artinian ring.

Now, let X ∈ G be an Artinian object of G. Then, there exists a right
RU -module M such that X � TU (M), so TU (M) is an Artinian object of G, i.e.,
M is a τU -Artinian module. By the Relative H-LT, M is τU -Noetherian, so, again
by Proposition 3.3, X � TU (M) is a Noetherian object of G, as desired.

The Faith’s Δ-Σ version of the Relative H-LT

Recall that an injective module QR is said to be Σ-injective if any direct sum of
copies of Q is injective. This concept is related with the concept of τ -Noetherian
module as follows:

Let QR be an injective module, and denote TQ := {MR |HomR(M, Q) = 0}.
Then TQ is a localizing category of Mod-R, and let τQ be the hereditary torsion
theory on Mod-R (uniquely) determined by TQ. Note that for any hereditary
torsion theory τ on Mod-R there exists an injective module QR such that τ = τQ.

A renowned theorem of Faith (1966) says that an injective module QR is
Σ-injective if and only if RR is τQ-Noetherian, or equivalently, if R satisfies the
ACC on annihilators of subsets of Q. In order to uniformize the notation, Faith [20]
introduced the concept of a Δ-injective module as being an injective module Q
such that RR is τQ-Artinian, or equivalently, R satisfies the DCC on annihilators
of subsets of Q. Thus, the Relative H-LT is equivalent with the following:

Theorem 5.1. (Faith [20, p. 3]). Any Δ-injective module is Σ-injective.

Faith also proved a converse of Theorem 5.1: An injective module QR is
Δ-injective if and only QR is Σ-injective and the ring BiendR(Q) of biendomor-
phisms of QR is semiprimary (see Faith [20, Theorem 8.9]).

The Faith’s counter version of the Relative H-LT

Let MR be a module, and let S := EndR(M). Then M becomes a left S-module,
and the module SM is called the counter-module of MR. We say that MR is
counter-Noetherian (resp. counter-Artinian) if SM is a Noetherian (resp. Artinian)
module.

The next result is an equivalent version, in terms of counter-modules, of the
Relative H-LT.

Theorem 5.2. (Faith [20, Theorem 7.1]). If QR is an injective module which is
counter-Noetherian, then QR is counter-Artinian.
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In fact, Faith proved a sharper form of Theorem 5.2, namely for quasi-
injective modules.

Absolute H-LT ⇐⇒ Classical H-LT

The Grothendieck categories having an Artinian generator are very special in view
of the following surprising result.

Theorem 5.3. (Năstăsescu [41, Théorème 3.3]). A Grothendieck category G has
an Artinian generator if and only if G � Mod-A, with A a right Artinian ring
with identity.

Note that a heavy artillery has been used in the original proof of Theorem
5.3, namely: the Gabriel-Popescu Theorem, the Relative H-LT, as well as struc-
ture theorems for Δ-injective and Δ∗-projective modules. The Σ∗-projective and
Δ∗-projective modules, introduced and investigated by Năstăsescu [40], [41], are
in a certain sense dual to the notions of Σ-injective and Δ-injective modules.

A more general result, whose original proof is direct, without involving the
many facts listed above, is the following one:

Theorem 5.4. (Albu and Wisbauer [16, Theorem 2.2]). Let G be a Grothedieck
category having a (finitely generated ) generator U with S = EndG(U) a right
perfect ring. Then G has a (finitely generated ) projective generator.

Observe now that if G has an Artinian generator U , then, by the Absolute
H-LT, U is also Noetherian, so, an object of finite length. Then S = EndG(U) is a
semi-primary ring, in particular it is right perfect. Now, by Theorem 5.4, G has a
finitely generated projective generator, say P . If A = EndG(P ) then A is a right
Artinian ring, and G � Mod-A, which shows how Theorem 5.3 is an immediate
consequence of Theorem 5.4.

Remark . If G is a Grothendieck category having an Artinian generator U , then
the right Artinian ring A in Theorem 5.3 for which G �Mod-A is far from being
the endomorphism ring of U , and does not seem to be canonically associated with
G. The existence of a right Artinian ring B, canonically associated with G, such
that G � Mod-B, is an easy consequence of a more general and more sophisti-
cated construction of the basic ring of an arbitrary locally Artinian Grothendieck
category, due to Menini and Orsatti [34, Section 3].

Clearly Relative H-LT =⇒ Classical H-LT by taking as τ the hereditary
torsion theory (0, Mod-R) on Mod-R, and Absolute H-LT =⇒ Classical H-LT by
taking as G the category Mod-R.

We conclude that the following implications between the various aspects of
the H-LT discussed so far hold:

Latticial H-LT =⇒ Relative H-LT ⇐⇒ Absolute H-LT ⇐⇒ Classical H-LT

Faith’s Δ-Σ Theorem ⇐⇒ Relative H-LT ⇐⇒ Faith’s counter Theorem
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6. The Absolute and Relative Dual H-LT

Remember that the Absolute H-LT states that if G is a Grothendieck category
with an Artinian generator, then any Artinian object of G is necessarily Noether-
ian, so it is natural to ask whether its dual holds, that is:

Problem 6.1. (Absolute Dual H-LT). If G is a Grothendieck category with
a Noetherian cogenerator, then does it follow that any Noetherian object of G is
Artinian?

Bad News: The Absolute Dual H-LT fails even for a module category Mod-R. To
see this, let k be a universal differential field of characteristic zero with derivation
D; then, the Cozzens domain R = k[y, D] of differential polynomials over k in
the derivation D is a principal right ideal domain which has a simple injective
cogenerator S. So, C = R⊕ S is both a Noetherian generator and cogenerator of
Mod-R, which is clearly not Artinian (see Albu [3, Section 4]).

Good News: The Absolute Dual H-LT holds for large classes of Grothendieck cat-
egories, namely for the so-called commutative Grothendieck categories , introduced
by Albu and Năstăsescu [8]. A Grothendieck category C is said to be commuta-
tive if there exists a commutative ring A with identity such that G � Mod-A/T
for some localizing subcategory T of Mod-A. By Albu [2, Proposition], these are
exactly those Grothendieck categories G having at least a generator U with a
commutative ring of endomorphisms.

Recall that an object G of a Grothendieck category G is a generator of G if
every object X of G is an epimorphic image G(I) � X of a direct sum of copies
of G for some set I. Dually, an object C ∈ G is said to be a cogenerator of G if
every object X of G can be embedded X � CI into a direct product of copies
of C for some set I.

Theorem 6.2. (Albu [3, Theorem 3.2]). The following assertions are equivalent for
a commutative Grothendieck category G.
(1) G has a Noetherian cogenerator.
(2) G has an Artinian generator.
(1) G � Mod-A for some commutative Artinian ring with identity.

Corollary 6.3. (Absolute Dual HL-T). If G is any commutative Grothendieck
category having a Noetherian cogenerator, then every Noetherian object of G is
Artinian.

We are now going to present the relative version of the Absolute Dual H-LT.
If τ = (T , F) is a hereditary torsion theory on Mod-R. then a module CR is said
to be a τ -cogenerator of Mod-R if C ∈ F and every module in F is cogenerated
by C.

Theorem 6.4. (Relative Dual HL-T). Let R be a commutative ring with iden-
tity, and let τ be a hereditary torsion theory on Mod-R such that Mod-R has a
τ-Noetherian τ-cogenerator. Then every τ-Noetherian R-module is τ-Artinian.
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7. The Krull dimension-like H-LT

In this section we shall discuss extensions of the Absolute H-LT and Latticial H-LT
in terms of Krull dimension, due to Albu, Lenagan, and Smith [7] and Albu and
Smith [12], [13], respectively. For the last one we present an outline of a localization
technique of modular lattices, which has been invented exactly in order to prove
such an extension.

Krull dimension: a brief history

1923 E. Noether explores the relationship between chains of prime ideals and
dimensions of algebraic varieties.

1928 W. Krull develops Noether’s idea into a powerful tool for arbitrary com-
mutative Noetherian rings. Later, writers gave the name (classical ) Krull
dimension to the supremum of lengths of finite chains of prime ideals in a
ring.

1962 P. Gabriel [22] introduces an ordinal-valued dimension which he named
“Krull dimension” for objects in an Abelian category using a transfinite
sequence of localizing subcategories.

1967 R. Rentschler and P. Gabriel introduce the deviation of an arbitrary poset,
but only for finite ordinals.

1970 G. Krause introduces the ordinal-valued version of the Rentschler-Gabriel
definition, but only for modules over an arbitrary unital ring.

1972 B. Lemonnier [28] introduces the general ordinal-valued notion of deviation
of an arbitrary poset, called in the sequel Krull dimension.

1973 R. Gordon and J.C. Robson [24] give the name Gabriel dimension to
Gabriel’s original definition after shifting the finite values by 1, and provide
an incisive investigation of the Krull dimension of modules and rings.

1985 M. Pouzet and N. Zaguia [44] introduce the more general concept of
Γ-deviation of an arbitrary poset, where Γ is any set of ordinals.

The definition of the Krull dimension of a poset

Denote by P the class of all partially ordered sets, shortly posets . Without loss
of generality we can suppose that all the posets which occur have a least element
0 and a greatest element 1.

If (P, �) is a poset, shortly denoted by P , and x, y are elements in P with
x � y, then recall that y/x denotes the interval [x, y] , i.e.,

y/x = { a ∈ P |x � a � y }.

The Krull dimension of a poset P (also called deviation of P and denoted
by dev(P )) is an ordinal number denoted by k(P ), which may or may not exist,
and is defined recursively as follows:

• k(P ) = −1 ⇐⇒ P = {0}, where −1 is assumed to be the predecessor of 0.
• k(P ) = 0 ⇐⇒ P �= {0} and P is Artinian.
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• Let α � 1 be an ordinal number, and assume that we have already defined
which posets have Krull dimension β for any ordinal β < α. Then we define
what it means for a poset P to have Krull dimension α : k(P ) = α if
and only if we have not defined k(P ) = β for some β < α , and for any
descending chain

x1 � x2 � · · · � xn � xn+1 � · · ·
of elements of P , ∃n0 ∈ N such that ∀n � n0, k(xn/xn+1) < α, i.e.,
k(xn/xn+1) has previously been defined and it is an ordinal < α.

• If no ordinal α exists such that k(P ) = α , we say that P does not have
Krull dimension.

As in Albu and Smith [13], an alternative more compact equivalent definition is
that involving the concept of an Artinian poset relative to a class of posets. If X
is an arbitrary nonempty subclass of P , a poset P is said to be X -Artinian if
for every descending chain x1 � x2 � · · · in P, ∃ k ∈ N such that xi/xi+1 ∈
X , ∀ i � k. The notion of an X -Noetherian poset is defined similarly.

For every ordinal α � 0 , we denote by Pα the class of all posets having Krull
dimension < α. Then, by Albu and Smith [13, Proposition 3.3], a poset P has
Krull dimension an ordinal α � 0 if and only if P �∈ Pα and P is Pα-Artinian.
So, roughly speaking, the Krull dimension of a poset P measures how close P is
to being Artinian.

The definition of the dual Krull dimension of a poset

The dual Krull dimension of a poset P (also called codeviation of P and denoted by
codev(P )), denoted by k0(P ), is defined as being (if it exists!) the Krull dimension
k(P 0) of the opposite poset P 0 of P .

If α is an ordinal, then the notation k(P ) � α (resp. k0(P ) � α ) will be
used to indicate that P has Krull dimension (resp. dual Krull dimension) and it
is less than or equal to α.

The existence of the dual Krull dimension k0(P ) of a poset P is equivalent
with the existence of the Krull dimension k(P ) of P in view of the following nice
result of Lemonnier:

Theorem 7.1. (Lemonnier [28, Théorème 5, Corollaire 6]). An arbitrary poset P
does not have Krull dimension if and only if P contains a copy of the (usually)
ordered set D = {m/2n |m ∈ Z, n ∈ N } of diadic real numbers. Consequently,
P has Krull dimension if and only if P has dual Krull dimension.

Remember that
P is Artinian (resp. Noetherian) ⇐⇒ k(P ) � 0 (resp. k0(P ) � 0).

So, we immediately deduce from Theorem 7.1 the following fact: Any Noetherian
poset has Krull dimension, which usually is proved in a more complicated way.

The following problem naturally arises:
Problem. Let P be a poset with Krull dimension. Then P also has dual Krull
dimension. How are the ordinals k(P ) and k0(P ) related?
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For other basic facts on the Krull dimension and dual Krull dimension of
an arbitrary poset the reader is referred to Lemonnier [28] and McConnell and
Robson [32].

Krull dimension of modules and rings

Recall that for a module MR one denotes by L(M) the lattice of all submodules of
M . The following ordinals (if they exist) are defined in terms of the lattice L(M):
• Krull dimension of M : k(M) := k(L(M))
• Dual Krull dimension of M : k0(M) := k0(L(M))
• Right Krull dimension of R: k(R) := k(RR))
• Right dual Krull dimension of R: k0(R) := k0(RR))

The problem we presented above for arbitrary posets can be specialized to modules
and rings as follows (see also Section 8):
Problem. Compare the ordinals k(M) and k0(M) of a given module MR with
Krull dimension. In particular, compare the ordinals k(R) and k0(R) of a ring
R with right Krull dimension.

A crucial concept in Commutative Algebra, which actually originated the
general concept of Krull dimension of an arbitrary poset, is that of classical Krull
dimension cl.K.dim(R) of a commutative ring R, introduced by W. Krull in 1928:
this is the supremum of length of chains of prime ideals of R, which is either a
natural number or ∞. The following result relates the Krull dimension of a ring
with its classical Krull dimension.
Theorem. (Gordon and Robson [24, Proposition 7.8]). If R is a commutative ring
with finite Krull dimension k(R), then k(R) = cl.K.dim(R).

A more accurate ordinal-valued variant of the original Krull’s classical Krull
dimension of a not necessarily commutative ring R is due to Gabriel (1962) [22] and
Krause (1970). Note that this can be easily carried out from the poset Spec(R) of
all two-sided prime ideals of R to an arbitrary poset P to define a so-called classical
Krull dimension cl.K.dim(P ) of P (see Albu [1, Section 1]). A different classical
Krull dimension cl.k.dim(R) of a ring R, called little classical Krull dimension of
R is also defined in the literature, and its relations with k(R) and cl.K.dim(R)
are established in Gordon and Robson [24, Proposition 7.9].

A Krull dimension-like extension of the Absolute H-LT

If G is a Grothendieck category and X is an object of G, then the Krull dimension
of X , denoted by k(X), is defined as k(X) := k(Sub(X)).

The definition of the Krull dimension of an object in a Grothendieck category
G can also be given using a transfinite sequence of Serre subcategories of G and
suitable quotient categories of G (see Gordon and Robson [25, Proposition 1.5]).
Using this approach, the following extension of the Absolute H-LT has been proved:

Theorem 7.2. (Albu, Lenagan, and Smith [7, Theorem 3.1]). Let G be a Grothen-
dieck category, and let U be a generator of G such that k(U) = α + 1 for some
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ordinal α � −1. Then, for every object X of G having Krull dimension and for
every ascending chain

X1 � X2 � · · · � Xn � · · ·

of subobjects of X , ∃m ∈ N such that k(Xi+1/Xi) � α, ∀ i � m.

Note that for α = −1 we obtain exactly the Absolute H-LT, because in this
case, X ∈ G has Krull dimension if and only if k(X) � 0, i.e., if and only if X is
Artinian.

It seems that the above result is really a categorical property of Grothendieck
categories. As we already stressed before, the natural frame for the H-LT and its
various extensions is Lattice Theory, being concerned as it is with descending and
ascending chains in certain lattices, and therefore we shall present in the next
subsection a very general version of Theorem 7.2 for upper continuous modular
lattices.

A Krull dimension-like extension of the Latticial H-LT

In order to present an extension of Theorem 7.2 to lattices, which, on one hand,
is interesting in his own right, and, on the other hand, provides another proof of
Theorem 7.2, avoiding the use of quotient categories, we need first a good substitute
for the notion of generator of a Grothendieck category, which has already been
presented in Section 4.

Theorem 7.3. (Albu and Smith [13, Theorem 3.16]). Let L and G be upper con-
tinuous modular lattices. Suppose that k(G) = α + 1 for some ordinal α � −1 ,
and L is completely generated by G. If L has Krull dimension, then k(L) � α+1,
and for every ascending chain

x1 � x2 � · · · � xn � · · ·

of elements of L, ∃m ∈ N such that k(xi+1/xi) � α, ∀ i � m.

Two main ingredients are used in the proof of this result, namely:

• first, the Latticial H-LT , and
• second, a localization technique for modular lattices, developed by Albu and

Smith [12], [13] in analogy with that for Grothendieck categories.

In the next subsection we shall briefly discuss this technique, and thereafter we
shall provide a sketch of the proof of Theorem 7.3.

Localization of modular lattices

The terminology and notation below are taken from the localization theory in
Grothendieck categories. First, in analogy with the notion of a Serre subcategory
of an Abelian category, we present below, as in Albu and Smith [12], the notion
of a Serre class of lattices:
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Definition 7.4. By an abstract class of lattices we mean a nonempty subclass X
of the class M of all modular lattices with 0 and 1, which is closed under lattice
isomorphisms (this means that if L, K ∈M, K � L and L ∈ X , then K ∈ X ).

We say that a subclass X of M is a Serre class for L ∈ M if X is an
abstract class of lattices, and for all a � b � c in L, c/a ∈ X if and only if
b/a ∈ X and c/b ∈ X . A Serre class of lattices is an abstract class of lattices
which is a Serre class for all lattices L ∈M.

Let X be an arbitrary nonempty subclass of M and let L ∈M be a lattice.
Define a relation ∼X on L by:

a ∼X b ⇐⇒ (a ∨ b)/(a ∧ b) ∈ X .

Then ∼X is a congruence on L if and only if X is a Serre class for L. Recall that
a congruence on a lattice L is an equivalence relation ∼ on L such that for all
a, b, c ∈ L, a ∼ b implies a∨ c ∼ b∨ c and a∧ c ∼ b∧ c. It is well known that in
this case the quotient set L/∼ has a natural lattice structure, and the canonical
mapping L −→ L/∼ is a lattice morphism. If X is a Serre class for L ∈M, then
the lattice L/∼X is called the quotient lattice of L by (or modulo) X .

We define now for any nonempty subclass X of M and for any lattice L, a
certain subset SatX (L) of L, called the X -saturation of L or the X -closure of L:

SatX (L) = { x ∈ L | x � y ∈ L, y/x ∈ X =⇒ x = y }.
This is the precise analogue of the subset Satτ (M) = {N � MR |M/N ∈ F } of
the lattice L(MR) of all submodules of a given module MR, where τ = (T , F)
is a hereditary torsion theory on Mod-R.

Definition 7.5. Let X be an arbitrary nonempty subclass of M. We say that a
lattice L has an X -closure or an X -saturation if there exists a mapping, called
the X -closure or X -saturation of L

L −→ SatX (L) , x �−→ x,

such that
(1) x � x and x/x ∈ X for all x ∈ L.
(2) x � y in L =⇒ x � y.

If X is a Serre class for L ∈M such that L has an X -closure x �−→ x, and
if we define x∨y = x ∨ y, ∀x, y ∈ SatX (L), then it is easy to check that SatX (L)
becomes a modular lattice with respect to � , ∧ , ∨ , 0 , 1 .

By Proposition 3.3, for any hereditary torsion theory τ = (T , F) on Mod-R,
and any module MR, the lattice Satτ (M) is isomorphic to the lattice Sub(Tτ (M))
of all subobjects of the object Tτ (M) in the quotient category Mod-R/T , where
Tτ : Mod-R −→ Mod-R/T is the canonical functor. The same happens also in our
latticial frame: if X is a Serre class for L ∈ M such that L has an X -closure,
then

L/∼X � SatX (L).
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This implies that the lattice L is X -Noetherian (resp. X -Artinian) ⇐⇒ the lattice
SatX (L) is Noetherian (resp. Artinian) ⇐⇒ the lattice L/ ∼ X is Noetherian
(resp. Artinian).

The Serre classes of lattices which are closed under taking arbitrary joins,
which we next introduce, are called localizing classes of lattices and they play
the same role as that of localizing subcategories in the setting of Grothendieck
categories. More precisely, we have the following:

Definition 7.6. Let X be a nonempty subclass of M and let L be a complete
modular lattice. We say that X is a localizing class for L if X is a Serre class
for L, and for any x ∈ L and for any family (xi)i∈I of elements of 1/x such
that xi/x ∈ X for all i ∈ I, we have (

∨
i∈I xi)/x ∈ X . By a localizing class

of lattices we mean a Serre class of lattices which is a localizing class for every
complete modular lattice.

Note that if X is a localizing class for a complete modular lattice L then L
has an X -closure, which is uniquely determined.

Sketch of the proof of Theorem 7.3

We shall preserve the notation from the statement of Theorem 7.3. The full details
of the proof can be found in Albu and Smith [13, Section 3].

Denote for every ordinal β � 0,

Kβ = {X ∈M| k(X) � β }.
It is easy to check that Kβ is a Serre class, but, in general, not a localizing class
of lattices. For a nonempty subclass A of M we denote

〈A 〉 = {X ∈ M|∀ a ∈ X, a �= 1, ∃ b ∈ X, a < b, b/a ∈ A}.
If A is a Serre class of lattices, then 〈A 〉 is a localizing class of lattices which
contains A.

Because L is completely generated by G we deduce that L ∈ 〈Kα+1 〉. Now,
if X is an upper continuous modular lattice with Krull dimension, and β � 0 is
an arbitrary ordinal, then, using a latticial version of a nice result of Lemonnier
[29, Lemme 1.1] originally proved for modules, we deduce that

X ∈ Kβ ⇐⇒ X ∈ 〈Kβ 〉.
Thus L ∈ Kα+1, i.e., k(L) � α + 1, in other words, L is Kα-Artinian.

In order to pass to an Artinian lattice related to L, which is suitable for the
application of the Relative H-LT (Theorem 4.1), we need a Serre class of lattices
X for which L has an X -closure. This cannot be Kα, so take as such an X the
localizing class of lattices 〈Kα 〉 “generated” by Kα. As we have seen above, with
this X , L has an X -closure, and L is still X -Artinian because Kα ⊆ X . Also,
G is X -Artinian. For simplicity denote L = SatX (L), and G = SatX (G). Then
L and G are both Artinian modular lattices, and since L is upper continuous,
it satisfies the condition (E), so too does L, because this condition behaves well
under localization. The same argument shows that L satisfies the condition (BL)
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too, hence, by the Relative H-LT, we deduce that L is a Noetherian lattice, and
so, L is X -Noetherian.

Now let
x1 � x2 � · · ·

be an ascending chain of elements in L. Then, there exists m ∈ N such that
xi+1/xi ∈ X = 〈Kα 〉, ∀ i � m. But xi+1/xi has Krull dimension because L
does. As above, it follows that xi+1/xi ∈ Kα, i.e., k(xi+1/xi) � α, ∀ i � m, which
completes the proof. �

A Krull dimension-like extension of the Classical H-LT

If we specialize Theorem 7.2 to Mod-R, one obtains at once the following result,
which can be also proved using only module-theoretical tools (see Albu, Lenagan,
and Smith [7, Section 2]:

Corollary 7.7. Let R is a ring having Krull dimension k(R) = α + 1 for some
ordinal α � −1. Then, for any module MR having Krull dimension and for any
ascending chain

N1 � N2 � · · · � Nn � · · ·
of submodules of M , ∃m ∈ N such that k(Ni+1/Ni) � α, ∀ i � m.

Note that a relative version of Theorem 7.2, in terms of τ -Krull dimension
also holds (see Albu and Smith [13, Theorem 4.1]).

8. Four open problems

We present below a list of four open problems related with the topics discussed in
this paper.

1. Compare the ordinals k(M) and k0(M) of a given module MR with Krull
dimension. In particular, compare the ordinals k(R) and k0(R) of a ring R
with right Krull dimension.

2. If R is a ring with right Krull dimension, is it true that k0(R) � k(R)? This
question has been raised by Albu and Smith in 1991, and also mentioned in
Albu and Smith [14, Question 1].

Observe that this is true for k(R) = 0; this is exactly the Classical
H-LT. Other cases when the answer is yes , according to Albu and Smith [14],
are when R is one of the following types of rings:
• a commutative Noetherian ring, or
• a commutative ring with Krull dimension 1, or
• a commutative domain with Krull dimension 2, or
• a valuation domain with Krull dimension, or
• a right Noetherian right V -ring.

3. Similarly with the right global homological dimension of a ring R, two kinds of
“global dimension” related to the Krull dimension and dual Krull dimension
of a ring R have been defined in Albu and Smith [14]: the right global Krull
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dimension r.gl.k(R) and the right global dual Krull dimension r.gl.k0(R) of a
ring, as being the supremum of k(MR) and k0(MR), respectively, when MR

is running in the class of all modules having Krull dimension.
Similarly with Question 1, one may ask: what is the order relation be-

tween r.gl.k(R) and r.gl.k0(R)?
Note that, though according to Albu and Vámos [15, Corollary 1.3],

k0(R) � k(R) for any valuation ring (this is a commutative ring with iden-
tity whose ideals are totally ordered by inclusion) having Krull dimension,
unexpectedly one has the opposite order relation r.gl.k(R) �r.gl.k0(R) for
any valuation ring, by Albu and Vámos [15, Theorem 2.4].

4. Does the result of Corollary 7.7 fail when k(R) is a limit ordinal? We suspect
that the answer is yes.
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Abstract. In this expository paper, we survey results on the concept of a hull
of a ring or a module with respect to a specific class of rings or modules. A hull
is a ring or a module which is minimal among essential overrings or essential
overmodules from a specific class of rings or modules, respectively. We begin
with a brief history highlighting various types of hulls of rings and modules.
The general theory of hulls is developed through the investigation of four
problems with respect to various classes of rings including the (quasi-) Baer
and (FI-) extending classes. In the final section, application to C∗-algebras
are provided.
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1. Introduction

Throughout this paper all rings are associative with unity unless indicated oth-
erwise and R denotes such a ring. Subrings and overrings preserve the unity of
the base ring. Ideals without the adjective “right” or “left” mean two-sided ideals.
All modules are unital and we use MR (resp., RM) to denote a right (resp., left)
R-module.

If NR is a submodule of MR, then NR is called essential (resp., dense also
called rational) in MR if for each 0 �= x ∈ M , there exists r ∈ R such that
0 �= xr ∈ N (resp., for x, y ∈ M with y �= 0, there exists r ∈ R such that xr ∈ N
and yr �= 0). We use NR ≤ess MR and NR ≤den MR to denote that NR is an
essential submodule of MR and NR is a dense submodule of MR, respectively.

Recall that a right ring of quotients T of R is an overring of R such that RR

is dense in TR. The maximal right (resp., left) ring of quotients of R is denoted
by Q(R) (resp., Q�(R)). We say that T is a right essential overring of R if T is
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an overring of R such that RR is essential in TR. The right injective hull of R is
denoted by E(RR) and we use ER to denote End(E(RR)). Unless noted otherwise,
we work with right-sided concepts. However most of the results and concepts have
left-sided analogues.

One of the major efforts in Ring Theory has been, for a given ring R, to
find a “well-behaved” overring Q in the sense that it has better properties than
R and such that a rich information transfer between R and Q can take place.
Alternatively, given a “well-behaved” ring, to find conditions which describe those
subrings for which there is some fruitful transfer of information.

The search for such overrings motivates the notion of a hull (i.e., an overring
that is “close to” the base ring, in some sense, so as to facilitate the transfer of
information). Since we want the overring to have some “desirable properties” the
hull should come from a class of rings possessing these properties.

In 1999, the authors embarked on a research program to develop methods
that enable one to select a specific class K of rings and then to describe all right
essential overrings or all right rings of quotients of a given ring R which lie in K.
Moreover, the transfer of information between the base ring R and the essential
overring in the class K is also investigated.

We have tried to make our definitions flexible enough to encompass the exist-
ing theory, apply to many classes of rings, and shed new light on the relationship
between a base ring and its essential overrings.

Much of the current theory of rings of quotients emphasizes investigating
when a relatively small number of right rings of quotients of R (e.g., its classical
right ring of quotients Qr

c�(R), the symmetric ring of quotients Qs(R), the Martin-
dale right ring of quotients Qm(R), and Q(R)) are in a few standard classes of rings
(e.g., semisimple Artinian, right Artinian, right Noetherian, right self-injective, or
regular).

Some of the deficiencies of this approach are illustrated in the following ex-

amples. First take R =
(

Z Q
0 Z

)
, where Z and Q denote the ring of integers and

the ring of rational numbers, respectively. The ring R is neither right nor left Noe-
therian and its prime radical is nonzero. However, Q(R) is simple Artinian. Next
take R to be a domain which does not satisfy the right Ore condition. Then Q(R)
is a simple right self-injective regular ring which has an infinite set of orthogonal
idempotents and an unbounded nilpotent index. The sharp disparity between R
and Q(R) in the aforementioned examples limits the transfer of information be-
tween R and Q(R). These examples illustrate a need to find overrings of a given
ring that have some weaker versions of the properties traditionally associated with
right rings of quotients such as mentioned above. Furthermore, this need is rein-
forced when one studies classes of rings for which R = Q(R) (e.g., right Kasch
rings). For these classes the theory of right rings of quotients is virtually useless.

Our theory makes no particular restriction on the classes that we consider
for our essential overrings. Further, the properties of the classes determine the
existence and characterizations of the hulls which may not coincide with Qr

c�(R),
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Qs(R), Qm(R), or Q(R). However those classes which are generalizations of the
class of right self-injective rings, regular rings, or classes which are closed under
dense or essential extensions work especially well with our methods.

We recall the definitions of some of the classes that generalize the class of
right self-injective rings or the class of regular right self-injective rings. A ring R
is: right (FI -) extending if every (ideal) right ideal of R is essential in a right ideal
generated by an idempotent; right (quasi-) continuous if R is right extending and
(if AR and BR are direct summands of RR with A ∩ B = 0, then AR ⊕ BR is a
direct summand of RR) R satisfies the (C2) condition, that is, if X and Y are right
ideals of R with XR

∼= YR and XR is a direct summand of RR, then YR is a direct
summand of RR; (quasi-) Baer if the right annihilator of every (ideal) nonempty
subset of R is an idempotent generated right ideal. The classes of Baer rings,
quasi-Baer rings, right extending rings, right FI-extending rings, right continuous
rings, and right quasi-continuous rings are denoted by B,qB, E, FI, Con, and
qCon, respectively (See [11, 58, 63, 76] for B, [13, 15, 16, 17, 20, 23, 39, 73, 76]
for qB, [37, 38, 43] for E, [18, 22, 23, 28] for FI, and [49, 64, 65, 84, 85] for Con
and qCon.)

Recall from [14] that a ring R is called right principally quasi-Baer (simply,
right p.q.-Baer) if the right annihilator of a principal right ideal is generated, as a
right ideal, by an idempotent (equivalently, R modulo the right annihilator of each
principal right ideal is projective). Left principally quasi-Baer (simply, left p.q.-
Baer) rings are defined similarly. Rings which are both right and left principally
quasi-Baer are called principally quasi-Baer (simply, p.q.-Baer) rings. We use pqB
to denote the class of right p.q.-Baer rings (see [14] and [30] for more details on
right p.q.-Baer rings). A ring R is called right PP (also called right Rickart) if the
right annihilator of each element is generated, as a right ideal, by an idempotent.
Left PP (also called left Rickart) rings are defined in a similar way. Rings which
are both right and left PP are called PP ring (also called Rickart rings).

The right essential overrings, which are in some sense “minimal” with respect
to belonging to a specific class of rings, are important tools in our investigations.
Hence we define several types of ring hulls to accommodate the various notions of
“minimality” among the class of right essential overrings of a given ring. Our search
for such minimal overrings for a given ring R includes the seemingly unexplored
region that lies between Q(R) and E(RR) (e.g., when R = Q(R)). We consider two
basic types (the others are their derivatives). Let S be a right essential overring
of R and K be a specific class of rings. We say that S is a K right ring hull of R
if S is minimal among the right essential overrings of R belonging to the class K
(i.e., whenever T is a subring of S where T is a right essential overring of R in
the class K, then T = S). For the other basic type, we generate S with R and
certain subsets of E(RR) so that S is in K in some “minimal” fashion. This leads
to our concepts of a C pseudo and C ρ pseudo right ring hull of R, where ρ is
an equivalence relation on a certain set of idempotents from ER. These ring hull
concepts are “tool” concepts in that they appear in the proofs of various results
but do not appear in the statements of the results. Let M be a class of right
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R-modules and let MR be a right R-module. The smallest essential extension of
MR (if it exists) in a fixed injective hull of MR, that belongs to M is called the
absolute M hull of MR (see Definition 8.1 for details).

The following four problems provide the driving force for our program.

Problem I. Assume that a ring R and a class K of rings are given.

(i) Determine conditions to ensure the existence of right rings of quotients and
that of right essential overrings of R which are, in some sense, “minimal”
with respect to belonging to the class K.

(ii) Characterize the right rings of quotients and the right essential overrings of
R which are in the class K, possibly by using the “minimal” ones obtained in
part (i).

Problem II. Given a ring R and a class K of rings, determine what information
transfers between R and its right essential overrings in K (especially the right
essential overrings which are, in some sense, “minimal” with respect to belonging
to K).

Problem III. Given classes of rings K and S, determine those T ∈ K such that
Q(T ) ∈ S.

Problem IV. Given a ring R and a class of rings K, let X(R) denote some standard
type of extension of R (e.g., X(R) = R[x], or X(R) = Matn(R), the n-by-n matrix
ring over R, etc.) and let H(R) denote a right essential overring of R which is
“minimal” with respect to belonging to the class K (i.e., a hull). Determine when
H(X(R)) is comparable to X(H(R)).

We recall from [13] that an idempotent e of a ring R is called left (resp., right)
semicentral if xe = exe (resp., ex = exe) for all x ∈ R. Observe that e = e2 ∈ R is
left (resp., right) semicentral if and only if eR (resp., Re) is an ideal of R. We let
S�(R) (resp., Sr(R)) denote the set of all left (resp., right) semicentral idempotents
of R. Note that S�(R) = {0, 1} if and only if Sr(R) = {0, 1}. A ring R is said to
be semicentral reduced if S�(R) = {0, 1} or equivalently Sr(R) = {0, 1}. We use
B(R) to denote the set of all central idempotents of a ring R. It can be shown that
B(R) = S�(R) ∩ Sr(R). If R is a semiprime ring, then B(R) = S�(R) = Sr(R).

For a ring R, we use I(R),U(R), Z(RR), Cen(R), P (R), and J(R) to denote
the idempotents, units, right singular ideal, center, prime radical, and Jacobson
radical of R, respectively. For ring extensions of R, we use RB(Q(R)) and Tn(R)
to denote the idempotent closure (i.e., the subring of Q(R) generated by R and
B(Q(R)) [9]) and the n-by-n upper triangular matrix ring over R, respectively. For
a nonempty subset X of a ring R, the symbols rR(X), �R(X), and 〈X〉R denote
the right annihilator of X in R, the left annihilator of X in R, and the subring
of R generated by X , respectively. Also Q, Z, and Zn denote the field of rational
numbers, the ring of integers, and the ring of integers modulo n, respectively. We
use I � R to denote that I is an ideal of a ring R. Finally recall that a ring R is
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called reduced if R has no nonzero nilpotent elements and Abelian if I(R) = B(R).
Throughout the paper, a regular ring means a von Neumann regular ring.

We let QR = End(ERE(RR)) (recall that ER = End(E(RR))). Note that
Q(R) = 1 · QR (i.e., the canonical image of QR in E(RR)) and that B(QR) =
B(ER) [61, pp. 94–96]. Also, B(Q(R)) = {b(1) | b ∈ B(QR)} [60, p. 366]. Thus
RB(ER) = RB(Q(R)). Recall that the extended centroid of R is Cen(Q(R)). If R
is semiprime, then Cen(Q(R)) = Cen(Qm(R)) = Cen(Qs(R)) [60, pp. 389–390],
where Qm(R) and Qs(R) denote the Martindale right ring of quotients of R and
the symmetric ring of quotients of R, respectively. (See [2] for more details on
Qm(R).)

2. Brief history of hulls

In this section, we summarize the definitions and results that provide the back-
ground for our definitions of various ring hulls. The story begins in 1940 with the
famous paper of R. Baer [8]. In that paper, Baer introduced the concept of an
injective module by calling a module MR complete (injective in current terminol-
ogy) if to every right ideal I of R and to every R-homomorphism h of I into MR

there is some m ∈ M with h(x) = mx for all x ∈ I. This definition incorporates
the celebrated “Baer Criterion”. Moreover he proved the following result.

Theorem 2.1. ([8, Baer])

(i) A module MR is injective if and only if whenever MR ≤ NR then MR is a
direct summand of NR.

(ii) Every module is a submodule of an injective module.

Further, Baer indicated that each module can be embedded in some “essen-
tially smallest” injective module. In 1952, Shoda [79] and independently in 1953
Eckmann and Schopf [44] explicitly established the existence of a minimal (up to
isomorphism) injective extension (hull) of a module. Eckmann and Schopf charac-
terized the injective hull of a module as its maximal essential extension.

Johnson and Wong [56], in 1961, defined a module KR to be quasi-injective
if for every R-homomorphism h : S → K, of a submodule S of K, there is an
f ∈ End(KR) such that f(s) = h(s) for all s ∈ S. They proved that every module
MR has a unique (up to isomorphism) quasi-injective hull in the following result.

Theorem 2.2 ([56, Johnson and Wong]) Let E(MR) be an injective hull of a module
MR. Take EM = End(E(MR)), and let EMMR denote the R-submodule of E(MR)
generated by all the h(M) where h ∈ EM . Then the following hold.

(i) EMMR is quasi-injective.
(ii) EMMR is the intersection of all quasi-injective submodules of E(MR) con-

taining MR.
(iii) MR is quasi-injective if and only if MR = EMMR.
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In 1963, J. Kist [59] defined a commutative PP ring R to be a Baer extension
of a commutative PP ring R if the following conditions hold.

(i) R is (isomorphic to) a subring of R;
(ii) C(R) is (isomorphic to) a dense semilattice of C(R), and the Boolean sub-

algebra of C(R) is generated by this dense subsemilattice is all of R, where
C(−) consists of the open-and-closed sets in the hull-kernel topology on the
set of minimal prime ideals of a ring; and

(iii) If x ∈ R, then there exist finitely many idempotents e1, . . . , en in R which
are mutually orthogonal, and whose sum is 1; and elements x1 . . . , xn in R
such that x = e1x1 + · · ·+ enxn.

We note that in [59], Kist uses the terminology “Baer ring” for what are more
commonly called PP rings. Thus a Baer extension may not be a Baer ring in the
sense of Kaplansky [58]. Kist proved the following result.

Theorem 2.3. ([59, Kist]) If R is a commutative semiprime ring, then it has a Baer
extension. Moreover, isomorphic rings have isomorphic Baer extensions.

For a commutative semiprime ring R, in 1968 H. Storrer [82], called the
intersection of all regular subrings of Q(R) containing R the epimorphic hull of
R. By showing this intersection was regular, he showed that every commutative
semiprime ring has a smallest regular ring of quotients.

The Baer hull, namely the ring B(R) in the next theorem, for a commutative
semiprime ring R, was defined by Mewborn [63] in 1971.

Theorem 2.4. ([63, Mewborn]) Let R be a commutative semiprime ring. Let B(R)
be the intersection of all Baer subrings of Q(R) containing R. Then B(R) is a
Baer ring and it is the subring of Q(R) generated by R and I(Q(R)).

In [66], Oshiro used sheaf theoretic methods to construct the Baer hull of a
commutative regular ring.

The absolute π-injective (equivalently, quasi-continuous) hull of a module
was defined by Goel and Jain in 1978 [49]. The following theorem is an immediate
consequence of their results.

Theorem 2.5. ([49, Goel and Jain]) Let V be the subring of EM = End(E(MR))
generated by I(EM ). Then V MR is the unique (up to isomorphism) absolute quasi-
continuous hull of MR.

For any submodule A of a quasi-continuous module M , there exists a direct
summand P = M ∩E(A) of M which contains A as an essential submodule. This
P is called the internal quasi-continuous hull of A in M and was shown to be
unique up to isomorphism by Müller and Rizvi [65].

Theorem 2.6. ([65, Müller and Rizvi]) Let M be a quasi-continuous module, A1, A2

submodules of M , and P1, P2 internal hulls of A1 and A2, respectively. If A1
∼= A2,

then P1
∼= P2.
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In 1982, Müller and Rizvi [64] defined three types of continuous hulls for
modules as follows.

Definitions 2.7. ([64, Müller and Rizvi]) Let M be a module with an injective hull
E, and let H be a continuous overmodule of M .

(I) H is called a type I continuous hull of M , if M ⊆ X ⊆ H for a continuous
module X implies X = H .

(II) H is called a type II continuous hull of M , if for every continuous overmodule
X of M , there exists a monomorphism μ : H → X over M .

(III) H is called a type III continuous hull of M (in E), if M ⊆ H ⊆ E, and if
H ⊆ X for every continuous module M ⊆ X ⊆ E.

Observe that a type III continuous hull is uniquely determined as a submodule
of a fixed injective hull. They gave an example of a module which has neither a
type II nor a type III continuous hull. However they proved the following result.

Theorem 2.8. ([64, Müller and Rizvi]) Every cyclic module over a commutative
ring whose singular submodule is uniform, has a type III continuous hull.

Also, in 1982, Hirano, Hongan, and Ohori [54] defined the Baer hull and the
strongly regular hull for a reduced right Utumi ring. Recall that a right nonsingular
ring R is called a right Utumi ring if every non-essential right ideal of R has a
nonzero left annihilator. They defined the strongly regular hull of a reduced right
Utumi ring to be the intersection of all regular subrings of Q(R). Note that their
definition of a strongly regular hull generalizes the epimorphic hull of Storrer [82].

Theorem 2.9. ([54, Hirano, Hongan, and Ohori]) Let R be a reduced right Utumi
ring and let B(R) be the intersection of all the Baer subrings of Q(R) containing
R. Then B(R) is a Baer ring and coincides with the subring of Q(R) generated by
R and B(Q(R)).

This result generalizes Theorem 2.4 to noncommutative rings.

Corollary 2.10. ([54, Hirano, Hongan, and Ohori]) Every reduced PI ring has a
Baer hull and a strongly regular hull.

The idempotent closure of a module was introduced by Beidar and Wisbauer
[9] in 1993. Recall that EMMR is the quasi-injective hull of MR by Theorem 2.2.
The idempotent closure of MR is the submodule of EMMR generated by {e(M) |
e ∈ B(EM )}. For a ring R, we identify the idempotent closure of RR with the
subring of Q(R) generated by R and B(Q(R)) and denote it by RB(Q(R)). Thus
if R is a commutative semiprime ring, then the idempotent closure of R is the
Baer hull of R as already shown by Mewborn in 1971 (Theorem 2.4). Beidar and
Wisbauer indicated that if End(EMMR) is Abelian then the idempotent closure
of MR is π-injective (equivalently, quasi-continuous) hull of MR. In [9] and [10],
they showed that information about prime ideals and various types of regularity
conditions transfer between R and RB(Q(R)).
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Theorem 2.11. ([9, Beidar and Wisbauer]) Let R be a semiprime ring. Then the
following hold.

(i) For every prime ideal K of RB(Q(R)), P = K ∩R is a prime ideal of R and
RB(Q(R))/K = (R + K)/K ∼= R/P .

(ii) For any prime ideal P of R, there exists a prime ideal K of RB(Q(R)) with
K ∩R = P (i.e., LO (lying over) holds between R and RB(Q(R))).

Theorem 2.12. ([9, Beidar and Wisbauer]) Let R be a ring. Then R is biregular if
and only if R is semiprime and RB(Q(R)) is biregular.

Theorem 2.13. ([10, Beidar and Wisbauer]) Let R be a ring. Then R is regular and
biregular if and only if RB(Q(R)) is regular and biregular.

Burgess and Raphael call a regular ring with bounded index an almost biregu-
lar ring if and only if for each x ∈ R there is an e ∈ B(R) such that RxRR ≤ess eRR

[34]. Recall that if R is a right nonsingular ring, then Q(R) is a Baer ring. From
[58, p. 9] each element of a Baer ring R has a central cover (recall that e ∈ R is
a central cover for r ∈ R if e is the smallest central idempotent in the Boolean
algebra of the central idempotents of R such that er = r). In the following result,
Burgess and Raphael show that every regular ring with bounded index is contained
in a smallest almost biregular right ring of quotients.

Theorem 2.14. ([34, Burgess and Raphael]) Let R be a regular ring of bounded
index. Define R# to be the ring generated by R and the central covers from Q(R)
of all elements of R. Then R# is the unique smallest almost biregular ring among
the regular rings S such that R ⊆ S ⊆ Q(R). Moreover:

(i) If R# ⊆ T ⊆ Q(R) and T is generated as a subring of Q(R) by R and B(T ),
then T is almost biregular; and

(ii) Let A be the sub-Boolean algebra of B(Q(R)) generated by the central covers
of elements of R. Then B(R#) = A.

In 1980, Picavet defined a commutative ring R to be a weak Baer ring if and
only if R is a PP ring (in our terminology), that is, for each a ∈ R there exists
e = e2 ∈ R such that rR(a) = eR [71]. He defined the weak Baer envelope for
a commutative reduced ring to be the subring of Q(R) generated by R ∩ {aq |
a ∈ R and q ∈ Q(R) such that aqa = a}. He showed that the weak Baer envelope
of a commutative reduced ring R is the smallest weak Baer subring of Q(R) that
contains R. Various applications of the weak Baer envelope appear in [72] and [42].

3. Definitions of a ring hull

In this section, we provide several definitions of the concept of a ring hull to ab-
stract, unify, and encompass the various definitions of particular ring hulls (e.g.,
Baer extension, Baer hull, epimorphic hull, strongly regular hull, etc.) given in
Section 2. These definitions are established in the context of intermediate rings
between a base ring R and its injective hull E(RR) to insure some flow of infor-
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mation between the base ring R and the overrings under consideration. Moreover,
our definitions are in terms of abstract classes of rings so as to guarantee their
flexibility and versatility.

Henceforth we assume that all right essential overrings of a ring R are con-
tained as right R-modules in a fixed injective hull E(RR) of RR and that all right
rings of quotients of R are subrings of a fixed maximal right ring of quotients Q(R)
of R.

In our next definition we exploit the notion of a right essential overring which
is minimal with respect to belonging to a class K of rings.

Definition 3.1. ([24, Definition 2.1]) Let K denote a class of rings. For a ring R, let
S be a right essential overring of R and T an overring of R. Consider the following
conditions.

(i) S ∈ K.
(ii) If T ∈ K and T is a subring of S, then T = S.
(iii) If S and T are subrings of a ring V and T ∈ K, then S is a subring of T .
(iv) If T ∈ K and T is a right essential overring of R, then S is a subring of T .

If S satisfies (i) and (ii), then we say that S is a K right ring hull of R, denoted
by Q̃K(R). If S satisfies (i) and (iii), then we say that S is the K absolute to V
right ring hull of R, denoted by QV

K (R); for the K absolute to Q(R) right ring hull,
we use the notation Q̂K(R). If S satisfies (i) and (iv), then we say that S is the K
absolute right ring hull of R, denoted by QK(R). Observe that if Q(R) = E(RR),
then Q̂K(R) = QK(R). The concept of a K absolute right ring hull was already
implicit in [64] from their definition of a type III continuous (module) hull (see
Definition 2.7).

Moreover, the notions of K absolute to Q(R) right ring hull and K absolute
right ring hull incorporate many of the hull definitions in Section 2 that utilized the
intersection of all right rings of quotients from a certain class of rings (e.g., Baer
hull, epimorphic hull, etc.) which contain the base ring. This will be illustrated in
the next section.

Now we consider generating a right essential overring in a class K from a base
ring R and some subset of ER. By using equivalence relations, we can effectively
reduce the size of the subsets of ER needed to generate a right essential overring
of R in K.

Definition 3.2. ([24, Definition 2.2]) Let R denote a class of rings and X a class of
subsets of rings such that for each R ∈ R all subsets of ER are contained in X. Let
K be a subclass of R such that there exists an assignment δK : R → X such that
δK(R) ⊆ ER and δK(R)(1) ⊆ R implies R ∈ K, where δK(R)(1) = {h(1) ∈ E(RR) |
h ∈ δK(R)}. Let S be a right essential overring of R and ρ an equivalence relation
on δK(R). Note that there may be distinct assignments for the same R, X, and
K say δ1K and δ2K such that for a given R, δ1K(R) �= δ2K(R); but δ1K(R)(1) ⊆ R
implies R ∈ K and δ2K(R)(1) ⊆ R implies R ∈ K.
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(i) If δK(R)(1) ⊆ S and 〈R ∪ δK(R)(1)〉S ∈ K, then we call 〈R ∪ δK(R)(1)〉S the
δK pseudo right ring hull of R with respect to S and denote it by R(K, δK, S).
If S = R(K, δK, S), then we say that S is a δK pseudo right ring hull of R.

(ii) If δρ
K(R)(1) ⊆ S and 〈R∪δρ

K(R)(1)〉S ∈ K, then we call 〈R∪δρ
K(R)(1)〉S a δK ρ

pseudo right ring hull of R with respect to S and denote it by R(K, δK, ρ, S),
where δρ

K(R) is a set of representatives of all equivalence classes of ρ and
δρ
K(R)(1) = {h(1) ∈ E(RR) | h ∈ δρ

K(R)}. If S = R(K, δK, ρ, S), then we say
that S is a δK ρ pseudo right ring hull of R.

If a δK has been fixed for a class K, then in the above nomenclature we
replace δK (resp., δK ρ) with K (resp., K ρ) (e.g., δK pseudo right ring hull becomes
K pseudo right ring hull) and delete δK from the notation (e.g., R(K, δK, S) becomes
R(K, S)). Observe that if δK(R)(1) ⊆ Q(R) and S is a right essential overring of
R such that R(K, δK, S) exists, then R(K, δK, S) = R(K, δK, Q(R)).

Throughout the remainder of this paper take R to be the class of all rings
unless indicated otherwise. Some examples illustrating Definition 3.2 are:

(1) K = SI = {right self-injective rings}, δSI(R) = ER.
(2) K = qCon, δqCon(R) = I(ER).
(3) K = {right P-injective rings}, δK(R) = {h ∈ ER | there exist a ∈ R and an

R-homomorphism f : aR → R such that h|aR = f}.
(4) Let R = {right nonsingular rings}, K = B, δB(R) = {e ∈ I(ER) | there exists

∅ �= X ⊆ R such that rQ(R)(X) = eQ(R)}.
Also note that Definition 3.2 allows us the flexibility to consider any right

essential overring S of a ring R, such that S ∈ K and S = 〈R ∪ δ(1)〉S , to be a
R(K, δK, ρ, S) where ∅ �= δ ⊆ δK(R) and δ(1) = {e(1) | e ∈ δ}. To see this, choose
f ∈ δ. Let X = δK(R)\ {e | e ∈ δ and e �= f}. Then {X}∪{{e} | e ∈ δ and e �= f}
is a partition of δK(R). Let ρ be the equivalence relation induced on δK(R) by this
partition and take δρ

K(R)(1) = δ(1). Then S = R(K, δK, ρ, S).

Observe that the concept of a δK pseudo right ring hull incorporates that
of Goel and Jain [49] for quasi-continuous ring hull (when it exists) by taking
δqCon(R) = I(ER), and that of Mewborn [63] for the Baer hull when R is the class
of commutative semiprime rings by taking δB(R) = I(ER). Also note that several
of the hulls considered in Section 2, are types of hulls indicated in both Definitions
3.1 and 3.2.

Definition 3.3. ([24, Definition 1.6]) Let R be a class of rings, K a subclass of R,
and Y a class containing all sets of subsets of every ring. We say that K is a class
determined by a property on right ideals if there exist an assignment DK : R → Y
such that DK(R) ⊆ {right ideals of R} and a property P such that DK(R) has P
if and only if R ∈ K.

If K is such a class where P is the property that a right ideal is essential in
an idempotent generated right ideal, then we say that K is a D-E class and use C
to designate a D-E class.
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Some examples illustrating Definition 3.3 are:

(1) K is the class of right Noetherian rings, DK(R) = {right ideals of R}, and P
is the property that a right ideal is finitely generated;

(2) K is the class of regular rings, DK(R) = {principal right ideals of R}, and
P is the property that a right ideal is generated by an idempotent as a right
ideal;

(3) K = B, DB(R) = {rR(X) | ∅ �= X ⊆ R}, and P is the property that a right
ideal is generated by an idempotent as a right ideal;

(4) C = E (resp., C = FI, C = eB), DE(R) = {I | IR ≤ RR} (resp., DFI(R) =
{I | I � R}, DeB(R) = {rR(X) | ∅ �= X ⊆ R}).

Our primary focus in this paper is on classes of rings which are either D-E
classes or subclasses of D-E. Note that any D-E class always contains the class of
right extending (and hence all right self-injective) rings. Moreover, many known
classes of rings are subclasses of a D-E class

Theorem 3.4 illustrates the generality achieved by working in the context
of a D-E class, while Corollary 3.5 demonstrates its application to concrete D-E
classes.

Theorem 3.4. ([24, Theorem 1.7]) Assume that C is a D-E class of rings.

(i) Let T be a right essential overring of R. Suppose that for each Y ∈ DC(T )
there exist XR ≤ RR and e ∈ I(T ) such that XR ≤ess eRR, XR ≤ess YR,
and eY ⊆ Y . Then T ∈ C.

(ii) Let T be a right ring of quotients of R and R ∈ C. If Y ∈ DC(T ) implies
Y ∩R ∈ DC(R), then T ∈ C.

Classes of rings which are closed with respect to right rings of quotients (resp.,
right essential overrings) work especially well with a hull concept in that once one
finds a hull from such a class then one has that all right rings of quotients (resp.,
right essential overrings) of that hull are also in the class. Among our final results
of this section, we give several examples of classes of rings that are closed with
respect to right rings of quotients or right essential overrings.

Recall the following definitions:

1. A ring R is called right finitely Σ-extending if any finitely generated free right
R-module is extending [43].

2. A ring R is said to be right uniform extending if each uniform right ideal of
R is essential as a right R-module in a direct summand of RR [43].

3. A ring R is said to be right C11 if every right ideal of R has a complement
which is a direct summand [80].

4. A ring R is called right G-extending if for each right ideal Y of R there is a
direct summand D of RR with (Y ∩D)R ≤ess YR and (Y ∩D)R ≤ess DR [1].

5. A ring R is called ideal intrinsic over its center, IIC, if every nonzero ideal
of R has nonzero intersection with the center of R [6].
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As a consequence of Theorem 3.4, the next corollary exhibits the transfer of
the right (FI-) extending property from R to its (right essential overrings) right
rings of quotients. Also note that whenever a property is carried from R to its
(right essential overrings) right rings of quotients, then a Zorn’s lemma argument
can be used to show that R has a (right essential overring) right ring of quotients
which is maximal with respect to having that property.

Corollary 3.5. ([24, Corollary 1.8])
(i) Any right essential overring of a right FI-extending ring is right FI-extending.
(ii) Any right ring of quotients of a right extending ring is right extending.
(iii) Any right ring of quotients of a right finitely Σ-extending ring is right finitely

Σ-extending.
(iv) Any right ring of quotients of a right uniform extending ring is right uniform

extending.

Theorem 3.6.

(i) ([31, Theorem 3.5]) If R is a right C11-ring and T is a right essential overring
of R, then T is a right C11-ring.

(ii) ([1]) If R is a right G-extending ring and T is a right essential overring of
R, then T is a right G-extending ring.

(iii) If R is an IIC-ring and T is a right essential overring with Cen(R) ⊆ Cen(T )
(e.g., T = Q(R)), then T is an IIC-ring.

We say that a ring R is right essentially Baer (resp., right essentially quasi-
Baer ) if the right annihilator of any nonempty subset (resp., ideal) of R is essential
in a right ideal generated by an idempotent ([24, Definition 1.1]). We use eB (resp.,
eqB) to denote the class of right essentially Baer (resp., right essentially quasi-
Baer) rings.

Note that the classes B and qB are not C classes, but they are contained
in the C classes eB and eqB, respectively. It can be seen that eB (resp., eqB)
properly contains E (resp., FI) and B (resp., qB): If S = A ⊕ B, where A is a
domain which is not right Ore and B is a prime ring with Z(BB) �= 0 [33, Example
4.4], then S is neither right extending nor Baer. But S ∈ eB. Next take

R =
(

Z4 2Z4

0 Z4

)
.

Then the ring R is neither right FI-extending nor quasi-Baer. However R ∈ eqB.

The following two results provide connections between the classes FI, B, qB,
eB, and eqB.

Proposition 3.7. ([24, Proposition 1.2]) Assume that R is a right nonsingular ring.
(i) If R ∈ eB (resp., R ∈ eqB), then R ∈ B (resp., R ∈ qB).
(ii) If R ∈ FI, then R ∈ qB.

Proposition 3.8. ([12, Lemma 2.2] and [18, Theorem 4.7]) Assume that R is a
semiprime ring. Then the following are equivalent.
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(i) R ∈ FI.
(ii) For any I � R, there is e ∈ B(R) such that IR ≤ess eRR.
(iii) R ∈ qB.
(iv) R ∈ eqB.

Theorem 3.9. ([24, Theorem 1.9])

(i) Let T be a right and left essential overring of R. If R ∈ qB, then T ∈ qB.
(ii) Let T be a right essential overring of R which is also a left ring of quotients

of R. If R ∈ B (resp., R ∈ eqB), then T ∈ B (resp., T ∈ eqB).
(iii) Let T be a right and left ring of quotients of R. If R ∈ eB, then T ∈ eB.

The following corollary generalizes the well-known result that a right ring of
quotients of a Prüfer domain is a Prüfer domain [48, pp. 321–323].

Corollary 3.10. ([24, Corollary 1.10]) Let T be a right and left ring of quotients
of R. If R is right semihereditary and every finitely generated free right R-module
satisfies the ACC on direct summands, then T is right and left semihereditary.

4. Existence and uniqueness of ring hulls

In this section, we not only explicitly show how our theory encompasses the par-
ticular hulls indicated in Section 2, but how it can be used in a much wider context
by applying the theory to many classes of rings not considered in Section 2. Also
our results will often show an interplay between the ring hull concept (Definition
3.1) and the pseudo ring hull concept (Definition 3.2). These results also provide
answers to Problem I of Section 1.

Our first result illustrates Definitions 3.1 and 3.2 by taking advantage of
several well-known facts to provide ring hulls for the classes of semisimple Artinian
rings, right self-injective rings, and right duo rings.

Proposition 4.1. ([24, Proposition 2.3])

(i) Let A be the class of semisimple Artinian rings and R a right nonsingular
ring with finite right uniform dimension. Then QA(R) = Q(R).

(ii) If Q(R) = E(RR), then QSI(R) = Q(R) = R(SI, δSI, Q(R)), where SI is the
class of right self-injective rings.

(iii) If Q(R) = E(RR), then QqCon(R) = 〈R ∪ I(Q(R))〉Q(R) = R(qCon, δqCon,
Q(R)).

(iv) If R is a commutative semiprime ring, then QB(R) = 〈R ∪ I(Q(R))〉Q(R) =
QqCon(R).

(v) Assume that R has finite right uniform dimension and S is a right ring of
quotients of R. Then Matn(S) = Q̃B(Matn(R)) for all positive integers n if
and only if S is a right and left semihereditary right ring hull of R.

(vi) If R is a right Ore domain, then R has a right duo absolute right ring hull.
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For Proposition 4.1(vi), the next example is that of a right Ore domain R
which is not right duo, but it has a right duo absolute right ring hull properly
between R and Q(R).

Example 4.2. ([24, Example 2.4]) Take A = Z + Zi + Zj + Zk, the integer quater-
nions. Let P = 5Z and ẐP the P -adic completion of Z. Also let

R = ẐP + ẐP i + ẐP j + ẐP k.

Then R is a right Ore domain. Note that R is not right duo because (3 + i)R is
not a left ideal. Take

λ = (1/2)(1 + i + j + k) ∈ Q(A) = Q + Qi + Qj + Qk.

Let S = A + λA. Then by [74, p. 131, Exercise 2] S is a maximal Z-order in
Q(A). Thus the P -adic completion ŜP = ẐP ⊗Z S of S is a maximal ẐP -order in
Q(R) = Q(ẐP ) ⊗Q Q(A) by [74, p. 134, Corollary 11.6]. Since ẐP is a complete
discrete valuation ring and Q(R) is a division ring, ŜP is the unique maximal ẐP -
order in Q(R), thus ŜP is right duo by [74, p. 139, Theorem 13.2]. So ŜP is a proper
intermediate right duo ring between R and Q(R). Thus, by Proposition 4.1(vi),
there exists a right duo absolute right ring hull properly between R and Q(R).

Let U denote the class {R | R ∩U(Q(R)) = U(R)} of rings, where U(−) is
the set of units of a ring. Recall from [84] and [85] that R is called directly finite
if every one-sided inverse of an element of R is two-sided. Note that if R has finite
right uniform dimension, or if R satisfies the condition that rR(x) = 0 implies
�R(x) = 0, or if R is Abelian, then R is directly finite.

For our next result, let i < j be ordinal numbers. We define R1 = 〈R ∪
{q ∈ U(Q(R)) | q−1 ∈ R}〉Q(R), Rj = 〈Ri ∪ {q ∈ U(Q(R)) | q−1 ∈ Ri}〉Q(R)

for j = i + 1, and Rj =
⋃

i<j Ri for j a limit ordinal. The following theorem
characterizes Qr

c�(R) as a U absolute to Q(R) right ring hull.

Theorem 4.3. ([24, Theorem 2.7])

(i) Q̂U(R) exists and Q̂U(R) = Rj for any j with |j| > |Q(R)|.
(ii) Assume that T is a directly finite right essential overring of R and TT satisfies

(C2). Then Q̂U(R) is a subring of T .
(iii) If R is a right Ore ring, then Q̂U(R) = Qr

c�(R).

Note that from Theorem 4.3, Q̂U(R) may be thought of as a generalization
of Qr

c�(R) since Q̂U(R) = Qr
c�(R) whenever Qr

c�(R) exists. But Q̂U(R) has the
advantage in that it always exists which is not the case, in general, for Qr

c�(R).
The next results are inspired by the work on continuous module hulls in [64]

or [75].

Proposition 4.4. ([24, Proposition 2.9]) Assume that R is a right Ore ring such that
rR(x) = 0 implies �R(x) = 0 for x ∈ R. If Qr

c�(R) is Abelian and right extending,
then Q̂Con(R) = Qr

c�(R).
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Corollary 4.5. ([24, Corollary 2.10]) Let R be a right Ore ring. If any one of the
following conditions is satisfied, then Q̂Con(R) = Qr

c�(R).
(i) R is Abelian, right extending, and rR(x) = 0 implies �R(x) = 0.
(ii) R is right uniform and rR(x) = 0 implies �R(x) = 0.
(iii) R is Abelian, right extending, and Z(RR) = 0.

The following theorem is an adaptation of [75, Theorem 4.25].

Theorem 4.6. ([24, Theorem 2.11]) Let R be a right nonsingular ring and S the in-
tersection of all right continuous right rings of quotients of R. Then QCon(R) = S.

Theorem 4.7. ([24, Theorem 2.12]) Let R be a ring such that Q(R) is Abelian.

(i) Q(R) is a right extending ring if and only if Q̂E(R)=Q̂qCon(R)=RB(Q(R)).
(ii) Assume that R is a right Ore ring such that rR(x) = 0 implies �R(x) = 0

for x ∈ R and Z(RR) has finite right uniform dimension. Then Q(R) ∈ E
if and only if Q̂Con(R) exists and Q̂Con(R) = H1 ⊕ H2 (ring direct sum),
where H1 is a right continuous strongly regular ring and H2 is a direct sum
of right continuous local rings.

For commutative rings, the preceding results yield the following corollary
which is related to [64, Corollaries 3 and 7], in particular Corollary 4.8 is related
to Theorem 2.6.

Corollary 4.8. ([24, Corollary 2.13]) Let R be a commutative ring.

(i) If R or Qr
c�(R) is extending, then Q̂Con(R) = Qr

c�(R).
(ii) If R is uniform, then QCon(R) = Qr

c�(R) and is also a local ring.
(iii) If Z(RR) = 0, then QCon(R) =

⋂ {T | B(Q(R)) ⊆ T and T is a regular right
ring of quotients of R}.

(iv) Assume that Z(RR) has finite uniform dimension. Then Q(R) is right extend-
ing if and only if Q̂Con(R) exists and Q̂Con(R) = H1⊕H2 (ring direct sum),
where H1 is a continuous regular ring and H2 is a direct sum of continuous
local rings.

We note that in Corollary 4.8(i), the hypothesis “R or Qr
c�(R) is extending” is

not superfluous. Let T be a countably infinite direct product of copies of a field F .
Take R = 〈

⊕∞
i=1 Fi ∪ {1}〉T . Then Qr

c�(R) is the subring of T whose elements are
eventually constant. It can be seen that neither R nor Qr

c�(R) is extending. Hence
Qr

c�(R) is not continuous. Also, in general, R may not satisfy the (C2) property
(e.g., take F = Q); but Qr

c�(R) does satisfy the (C2) property since it is regular.
To develop the theory of pseudo hulls for D-E classes C, we define (and fix)

δC(R) = {e ∈ I(End (E(RR)) | XR ≤ess eE(RR) for some X ∈ DC(R)}.
To find a right essential overring S of R such that S ∈ C, one might naturally

look for a right essential overring T of R with δC(R)(1) ⊆ T . Then take S =
〈R ∪ δC(R)(1)〉T . In order to obtain a right essential overring with some hull-like
behavior, we need to determine subsets Ω of δC(R)(1) for which 〈R ∪ Ω〉T ∈ C in
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some minimal sense. Moreover, to facilitate the transfer of information between R
and 〈R∪Ω〉T , one would want to include in Ω enough of δC(R)(1) so that for all (or
almost all) X ∈ DC(R) there is e ∈ δC(R) with XR ≤ess e(1)·〈R∪Ω〉T and e(1) ∈
Ω. To accomplish this, we use equivalence relations on δC(R).

Since we have fixed the δC assignment for all D-E classes C, we will use the
terminology C (resp., C ρ) pseudo right ring hull for δC pseudo right ring hull and
use R(C, S) for R(C, δC, S) and R(C, ρ, S) for R(C, δC, ρ, S).

In the next few results, we show that for the concept of idempotent closure [9],
we can find a D-E class of rings IC such that RB(Q(R)) becomes an IC absolute
to Q(R) right ring hull and a δIC pseudo right ring hull, where δIC(R) = B(ER).

Definition 4.9. ([26, Definition 2.1])
(i) For a ring R, let DIC(R)={I�R |I∩�R(I)=0 and �R(I)∩�R(�R(I))=0}.
(ii) Let IC denote the class of rings R such that for each I ∈ DIC(R) there exists

some e ∈ I(R) such that IR ≤ess eRR. We call the class IC the idempotent
closure class.

The set DIC(R) of ideals of R was studied by Johnson and denoted by F′(R),
who showed that if Z(RR) = 0, then DIC(R) = {I � R | I∩�R(I) = 0} [55, p. 538].

Remark 4.10. ([26, Remark 2.2])
(i) R is semiprime if and only if DIC(R) is the set of all ideals of R.
(ii) Let e ∈ I(R) with eR � R. Then eR ∈ DIC(R) if and only if e ∈ B(R).
(iii) For a prime ideal P of R, P ∈ DIC(R) if and only if P ∩ �R(P ) = 0.
(iv) Let P be a prime ideal of R and P ∈ DIC(R). If I � R such that P ⊆ I,

then I ∈ DIC(R).
(v) If I � R such that �R(I) ∩ P (R) = 0, then I ∈ DIC(R).
(vi) If Z(RR) = 0 and I � R such that I ∩ P (R) = 0, then I ∈ DIC(R).

Proposition 4.11. ([26, Proposition 2.4]) Let R be a ring. Then DIC(R) = {I �
R | there exists J � R with I ∩ J = 0 and (I ⊕ J)R ≤den RR}.
Theorem 4.12. ([26, Theorem 2.11])

(i) DIC(R) is a sublattice of the lattice of ideals of R.
(ii) If DIC(R) is a complete sublattice of the lattice of ideals of R, then B(Q(R))

is a complete Boolean algebra.
(iii) If R is a ring with unity which is right and left FI-extending, then DIC(R)

is a complete sublattice of the lattice of ideals of R.

The following result answers the question: Which ideals of a ring R are dense
in ring direct summands of Q(R)?

Theorem 4.13. ([26, Theorem 2.10]) Let I � R. Then IR ≤den eQ(R)R for some
unique e ∈ B(Q(R)) if and only if I ∈ DIC(R).

The next result indicates that RB(Q(R)) is a ring hull according to Defini-
tions 3.1 and 3.2 for the IC class of rings. Thus these hulls exist for every ring R.
We observe that δIC(R) = B(ER) and δIC(R)(1) = B(Q(R)).
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Theorem 4.14. ([26, Theorem 2.7])

(i) Let T be a right ring of quotients of R. Then T ∈ IC if and only if
B(Q(R)) ⊆ T .

(ii) R ∈ IC if and only if B(Q(R)) ⊆ R.
(iii) RB(Q(R)) = Q̂IC(R) = R(IC, δIC, Q(R)).

Our next result is a structure theorem for the idempotent closure RB(Q(R))
when R is a semiprime ring with only finitely many minimal prime ideals. It is
used for a characterization of C∗-algebras with only finitely many minimal prime
ideals in Section 9. Many well-known finiteness conditions on a ring imply that it
has only finitely many minimal prime ideals (see [60, p. 336, Theorem 11.43]).

Theorem 4.15. ([26, Theorem 3.15]) The following are equivalent for a ring R.
(i) R is semiprime and has exactly n minimal prime ideals.
(ii) Q̂IC(R) = RB(Q(R)) is a direct sum of n prime rings.
(iii) Q̂IC(R) = RB(Q(R)) ∼= R/P1 ⊕ · · · ⊕ R/Pn, where each Pi is a minimal

prime ideal of R.

The following example illustrates Definitions 3.1 and 3.2. In [24] we develop,
in detail, the general consequences of Definitions 3.1 and 3.2. The independence
of these definitions is beneficial in the sense that they provide distinct tools for
analyzing interconnections between a ring and its right essential overrings relative
to a class K. Also the following example shows that there is a quasi-Baer ring R
(hence R itself is a quasi-Baer right ring hull of R), but R does not have a unique
right FI-extending right ring hull.

Example 4.16. ([27, Example 1.7]) Let F be a field. Consider the following subrings
of Mat3(F ):

R =

⎧⎨⎩
⎛⎝a 0 x

0 a y
0 0 b

⎞⎠∣∣ a, b, x, y ∈ F

⎫⎬⎭ , H1 =

⎛⎝F 0 F
0 F F
0 0 F

⎞⎠ ,

H2 =

⎧⎨⎩
⎛⎝a + b a x

0 b y
0 0 c

⎞⎠∣∣ a, b, c, x, y ∈ F

⎫⎬⎭ ,

and

H3 =

⎧⎨⎩
⎛⎝a + b a x

a b y
0 0 c

⎞⎠∣∣ a, b, c, x, y ∈ F

⎫⎬⎭ .

Then the following facts are illustrated in [24, Example 3.19].
(i) Z(RR) = 0 and R is quasi-Baer, but R is not right FI-extending.
(ii) H1, H2, and H3 are right FI-extending right ring hulls of R with H1

∼= H2,
but H1 �∼= H3 for appropriate choices of F .

(iii) H1 is not a right FI-extending pseudo right ring hull of R.
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(iv) R(FI, Q(R)) =

⎛⎝F F F
F F F
0 0 F

⎞⎠.

The following example also illustrates Definition 3.1. In fact, there is a ring
R which has mutually isomorphic right FI-extending right ring hulls, but R has
no quasi-Baer right essential overring.

Recall from [25, p. 30] that a ring R is right Osofsky compatible if E(RR) has
a ring multiplication that extends its R-module scalar multiplication (i.e., E(RR)
has a ring structure that is compatible with its R-module scalar multiplication).

Example 4.17. ([27, Example 1.8]) Assume that n = pm, where p is a prime integer
and m ≥ 2. Let A = Zn, the ring of integers modulo n and let

R =
(

A A/J(A)
0 A/J(A)

)
.

Then Q(R) = R by [19]. Further, from [19, Theorem 1]

E =
(

A⊕A/J(A) A/J(A)
A/J(A) A/J(A)

)
is an injective hull of RR, where the addition is componentwise and the R-module
scalar multiplication is given by(

s + a b

c d

)(
t x
0 y

)
=
(

st + at sx + ax + by

ct cx + dy

)
,

where a, x ∈ A/J(A), etc. denote canonical images of a, x ∈ A.
It is shown in [19, Theorem 1] that the ring R is right Osofsky compatible.

Let Soc(A) denote the socle of A. By a direct computation using the associativity
of multiplication and the distributivity of multiplication over addition, we get
that {(E, +, ◦(α,β)) | α, β ∈ Soc(A)} is the set of all compatible ring structures
on E(RR), where the addition is componentwise and the multiplication ◦(α,β) is
defined by (

s1 + a1 b1

c1 d1

)
◦(α,β)

(
s2 + a2 b2

c2 d2

)
=
(

x y
z w

)
,

where

x = s1s2 + αa1a2 + βc1a2 + (−β)s1c2 + αb1c2 + βd1c2 + a1a2 + a1s2 + s1a2 + b1c2,

y = a1b2 + s1b2 + b1d2, z = c1a2 + c1s2 + d1c2, and w = c1b2 + d1d2.

Thus E has exactly | Soc(A)|2 = p2 ring structures extending the R-module scalar
multiplication (i.e., compatible ring structures). Define θ(α,β) : (E, +, ◦(α,β)) →
(E, +, ◦(0,0)) by

θ(α,β)

[(
s + a b

c d

)]
=
(

s + a + (−α)a + (−β)c b

c d

)
.
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Then θ(α,β) is a ring isomorphism. Hence (E, +, ◦(α,β)) are all isomorphic. Let

e =
(

1− 1 0
0 0

)
∈ (E, +, ◦(0,0)) and f =

(
1 0
0 1

)
∈ (E, +, ◦(0,0)). Then e and

f are central idempotents in (E, +, ◦(0,0)) and e + f = 1. Thus (E, +, ◦(0,0)) ∼=
e(E, +, ◦(0,0))⊕ f(E, +, ◦(0,0)) ∼= A⊕Mat2(A/J(A)). Hence (E, +, ◦(0,0)) is a QF-
ring, and so all (E, +, ◦(α,β)) are QF-rings for α, β ∈ Soc(A). Let

T =
(

A⊕A/J(A) A/J(A)
0 A/J(A)

)
.

Then T is the only proper R-submodule of E with R ⊆ T ⊆ E (and R �= T �=
E) which can have a ring structure that is compatible with its R-module scalar
multiplication. Also, {(T, +, ◦(α,0)) | α ∈ Soc(A)} is the set of all compatible ring
structures on T , where the multiplication ◦(α,0) is the restriction of ◦(α,β) on E
to T for β ∈ Soc(A). Hence (T, +, ◦(α,0)) is a subring of (E, +, ◦(α,β)) for each
β ∈ Soc(A). Define λ(α,0) : (T, +, ◦(α,0))→ (T, +, ◦(0,0)) by

λ(α,0)

[(
s + a b

0 d

)]
=
(

s + (−α)a + a b

0 d

)
.

Then we see that λ(α,0) is a ring isomorphism.

We note that all right essential overrings of R are {(E, +, ◦(α,β)) | α, β ∈
Soc(A)}, {(T, +, ◦(α,0)) | α ∈ Soc(A)}, and R itself.

Take g =
(

1 0
0 0

)
∈ R. Then g = g2 ∈ R and gRg ∼= A. Note that A is not

quasi-Baer. Thus R is not quasi-Baer by [39, Lemma 2] or [23, Theorem 3.2]. Next

observe that e =
(

1− 1 0
0 0

)
∈ T . Then e(T, +, ◦(0,0))e ∼= A, which is not quasi-

Baer. Thus (T, +, ◦(0,0)) is not quasi-Baer by [39, Lemma 2] or [23, Theorem 3.2].
So all (T, +, ◦(α,0)) with α ∈ Soc(A) cannot be quasi-Baer since (T, +, ◦(α,0)) ∼=
(T, +, ◦(0,0)). Further, e(E, +, ◦(0,0))e ∼= A is not quasi-Baer, so (E, +, ◦(0,0)) is
not quasi-Baer again from [39, Lemma 2] or [23, Theorem 3.2]. Thus (E, +, ◦(α,β))
cannot be quasi-Baer for α, β ∈ Soc(A) since (E, +, ◦(α,β)) ∼= (E, +, ◦(0,0)). Hence
R has no quasi-Baer right essential overring.

Finally, let I =
(

J(A) 0
0 0

)
� R. Then there is no h = h2 ∈ R with IR ≤ess

hRR. Hence R is not right FI-extending. Note that f =
(

1 0
0 1

)
∈ T . Thus

(T, +, ◦(0,0)) = e(T, +, ◦(0,0)) ⊕ f(T, +, ◦(0,0)) ∼= A ⊕ T2(A/J(A)), where T2(−)
is the 2-by-2 upper triangular matrix ring over a ring. From [18, Theorem 1.3
and Corollary 2.5], (T, +, ◦(0,0)) is right FI-extending. Thus all (T, +, ◦(α,0)) with
α ∈ Soc(A) are right FI-extending. Therefore the (T, +, ◦(α,0)) with α ∈ Soc(A)
are right FI-extending right ring hulls of R.

In Example 4.16, we have seen that, in general, C right ring hulls and C pseudo
right ring hulls are distinct and may not be unique (when they exist) even if the
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ring is right nonsingular. Also in Example 4.17, there is a ring where all right
FI-extending ring hulls are mutually isomorphic, but it does not have a quasi-Baer
right ring hull. However, the semiprime condition on the ring rescues us from this
somewhat chaotic situation, for the classes C = FI or C = eqB. In the following
theorem, we establish the existence and uniqueness of quasi-Baer and right FI-
extending right ring hulls of a semiprime ring. This result indicates the ubiquity
of the right FI-extending and quasi-Baer ring hulls by showing that every nonzero
ring R has a nontrivial homomorphic image, R/P (R), which has each of these hulls.
Mewborn [63] (see Theorem 2.4) showed the existence of a Baer (absolute) hull
for a commutative semiprime ring. Our next theorem also generalizes Mewborn’s
result since a commutative quasi-Baer ring is a Baer ring.

Theorem 4.18. ([27, Theorem 3.3]) Let R be a semiprime ring. Then:

(i) Q̂FI(R) = RB(Q(R)) = R(FI, Q(R)).
(ii) Q̂qB(R) = Q̂eqB(R) = RB(Q(R)) = R(eqB, Q(R)).
(iii) If R is right Osofsky compatible, then RB(Q(R)) = QFI(R) = QqB(R) =

QeqB(R).

Corollary 4.19. ([27, Corollary 3.16]) Let R be a semiprime ring and T a right ring
of quotients of R. Then T is quasi-Baer (hence right FI-extending) if and only if
B(Q(R)) ⊆ T .

Our first corollary to Theorem 4.18 generalizes both the result of Mewborn,
Theorem 2.4, and the result of Hirano, Hongan, and Ohori, Theorem 2.8.

Corollary 4.20. (see [27, Theorem 3.8]) If R is a reduced ring, then QB(R) =
RB(Q(R)) (i.e., R has a Baer hull).

Corollary 4.21. ([27, Corollary 3.17])

(i) If R is a semiprime ring, then the central closure of R, the normal closure of
R, Qm(R), Qs(R), and Q(R) are all quasi-Baer and right FI-extending.

(ii) Assume that Q(R) is semiprime. Then Q(R) is quasi-Baer and right FI-
extending. Also there exists a right essential overring of R containing Q(R)
which is maximal with respect to being quasi-Baer (or right FI-extending).

In [47], Ferrero has shown that Qs(R) ∈ qB for a semiprime ring R. There
is a semiprime ring R for which neither Qm(R) nor Qs(R) is Baer. In fact, there
is a simple ring R given by Zalesski and Neroslavskii [50] which is not a domain
and 0, 1 are its only idempotents. Then Qm(R) = R (and hence Qs(R) = R). In
this case, Qm(R) is not a Baer ring.

In [67] Osofsky poses the question: If E(RR) has a ring multiplication which
extends its right R-module scalar multiplication, must E(RR) be a right self-
injective ring? Example 4.23 below shows that this is not true in general. We
can, however, show that the ring E(RR) does satisfy the right FI-extending prop-
erty – a generalization of right self-injectivity, for the case when the ring R is right
FI-extending or when Q(R) is semiprime.
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Corollary 4.22. ([27, Corollary 3.18]) Let R be a right Osofsky compatible ring. If
R has a right FI-extending right essential overring which is a subring of E(RR),
then E(RR) is a right FI-extending ring. In particular, if Q(R) is semiprime, then
E(RR) is a right FI-extending ring.

The following example, due to Camillo, Herzog, and Nielsen [36] illustrates
Corollary 4.22. In fact, in the following example, there exists a right Osofsky
compatible ring R which is right extending, but the compatible ring structure on
E(RR) is not right self-injective. However, by Corollary 4.22, the compatible ring
structure on E(RR) is right FI-extending.

Example 4.23. ([27, Example 3.19]) Let R{X1, X2, . . . } be the free algebra over
the field R of real numbers with indeterminates X1, X2, . . . . Put

R = R{X1, X2, . . . }/〈XiXj − δij X2
1 〉,

where 〈XiXj − δij X2
1 〉 is the ideal of R{X1, X2, . . . } generated by XiXj − δij X2

1

with i, j = 1, 2, . . . and δij the Kronecker delta. We denote the canonical image of
Xi by xi in R. Set V = Rx1⊕Rx2 ⊕ · · · , P = Rx2

1 and let the bilinear form on V
be given by B(xi, xj) = δij . Then B is non-degenerate and symmetric. Hence we
see that

R =

⎧⎨⎩
⎛⎝k v p

0 k v
0 0 k

⎞⎠∣∣ k ∈ R, v ∈ V, and p ∈ P

⎫⎬⎭ ,

where the addition is componentwise and the multiplication is defined by⎛⎝k1 v1 p1

0 k1 v1

0 0 k1

⎞⎠⎛⎝k2 v2 p2

0 k2 v2

0 0 k2

⎞⎠
=

⎛⎝k1k2 k1v2 + k2v1 k1p2 + k2p1 + B(v1, v2)x2
1

0 k1k2 k1v2 + k2v1

0 0 k1k2

⎞⎠ .

Let ER = [HomR(RR, RR)]R. Then it is shown in [23] that ER is an injective
hull of RR. Further, ER has a compatible ring structure with its R-module scalar
multiplication, but it is not right self-injective. Note that R is a commutative local
ring. Also ⎛⎝0 0 P

0 0 0
0 0 0

⎞⎠
is the smallest nonzero ideal of R and it is essential in R. Hence R is uniform,
so it is extending. Thus by Corollary 4.22, the compatible ring structure on the
injective hull ER is right FI-extending.

The following example provides a ring R which is neither semiprime, right
(nor left) nonsingular, right (nor left) FI-extending, nor quasi-Baer. However, we
have that QFI(R) = RB(Q(R)). Thus, even without the semiprime condition, a
ring can have a natural unique FI-extending absolute right ring hull. Recall from
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[22] that a ring R is right strongly FI-extending if for each I � R there is e = e2 ∈ R
such that IR ≤ess eRR and eR � R.

Example 4.24. Let A be a QF-ring with J(A) �= 0. Assume that A is right strongly
FI-extending, and A has nontrivial central idempotents while the subring of A
generated by 1A contains no nontrivial idempotents (e.g., A = Q⊕Mat2(Z4)). Let
1∏∞

i=1 Ai
denote the unity of

∏∞
i=1 Ai, where Ai = A. Take R to be the subring

of
∏∞

i=1 Ai generated by 1∏∞
i=1 Ai

and
⊕∞

i=1 Ai. Observe that Q(R) =
∏∞

i=1 Ai =
E(RR) by [85, 2.1]. Now R has the following properties:

(i) R is neither semiprime nor right FI-extending.
(ii) RB(Q(R)) = R(FI, Q(R)) = QFI(R).
(iii) RB(Q(R)) is neither right extending nor quasi-Baer.

Let c be a nontrivial idempotent of A. Let πi and κi denote the i-th projection
and injection, respectively, of the direct product. Let K be the ideal of R generated
by {κi(c) | 1 ≤ i < ∞}. Then there exists no b = b2 ∈ R such that KR ≤ess bRR.
Thus R is not right FI-extending.

Now let I � R. Then πi(I) � Ai. By [60, p. 421, Exercise 16], there exists
ei ∈ B(Ai) such that πi(I)Ai ≤ess eiAiAi

, since Ai is right strongly FI-extending
by assumption. Let e ∈ Q(R) such that πi(e) = ei. Then

IR ≤ess eQ(R)R and e ∈ B(Q(R)).

Hence B(ER) = δFI(R). Let S = 〈R ∪ δFI(R)(1)〉Q(R) = RB(Q(R)). Then
DFI(S → R) holds (see [24, p. 638]). By [24, Lemma 2.19 and Corollary 2.18],
S = R(FI, Q(R)).

Next we show that S = QFI(R). Let T be a right FI-extending right ring of
quotients of R. Take e ∈ B(Q(R)) = δFI(R)(1). Then eQ(R) ∩ T � T . Since T
is right FI-extending, there is f = f2 ∈ T such that (eQ(R) ∩ T )T ≤ess fTT . So
(eQ(R) ∩ T )R ≤ess fTR from [24, Lemma 1.4]. Since fTR ≤ess fQ(R)R, (eQ(R)∩
T )R ≤ess fQ(R)R. Hence (eQ(R) ∩ R)R ≤ess fQ(R)R. Also (eQ(R) ∩ R)R ≤ess

eQ(R)R. Since e ∈ B(Q(R)), fQ(R) ∩ eQ(R) = efQ(R) and ef = (ef)2. Thus
fQ(R) = eQ(R), so e = f ∈ T . Therefore B(Q(R)) ⊆ T . Hence S is a subring of
T . Consequently, S is the right FI-extending absolute right ring hull of R.

To see that S, in general, is not right extending, take A = Q⊕Mat2(Z4) and
let V be a right ideal of S generated by{

κi

[(
0,

(
1 0
0 0

))]
| 1 ≤ i < ∞

}
.

Then V is not right essential in a right direct summand of SS .
Since Q(R) is a QF-ring, Q(R) = Q�(R) = E(RR). By [60, p. 421, Exercise

16], S�(Q(R)) = B(Q(R)). Note that Q(R) is not semiprime, so Q(R) cannot be
right p.q.-Baer from [14, Proposition 1.7]. By Theorem 3.9(i), RB(Q(R)) is not
quasi-Baer.

After giving some preliminary results on the class pqB of right p.q.-Baer
rings, we describe ring hulls for this and related classes over semiprime rings.
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Proposition 4.25.

(i) ([15, Proposition 1.8] and [14, Proposition 1.12]) The center of a quasi-Baer
(resp., right p.q.-Baer) ring is Baer (resp., PP).

(ii) ([14, Proposition 3.11]) Assume that a ring R is semiprime. Then R is quasi-
Baer if and only if R is p.q.-Baer and the center of R is Baer.

(iii) ([81, pp. 78–79] and [15, Theorem 3.5]) Let a ring R be regular (resp., bi-
regular). Then R is Baer (resp., quasi-Baer) if and only if the lattice of
principal right ideals (resp., principal ideals) is complete.

(iv) A ring R is biregular if and only if R is right (or left) p.q.-Baer ring and
rR(�R(RaR)) = RaR, for all a ∈ R.

Recall from [30], we say that a ring R is principally right FI-extending (resp.,
finitely generated right FI-extending ) if every principal ideal (resp., finitely gener-
ated ideal) of R is essential as a right R-module in a right ideal of R generated by
an idempotent. We use pFI (resp., fgFI) to denote the class of principally (resp.,
finitely generated) right FI-extending rings.

Lemma 4.26. ([14, Corollary 1.11]) Let R be a semiprime ring. Then the following
conditions are equivalent.

(i) R is right p.q.-Baer.
(ii) R is principally right FI-extending.
(iii) R is finitely generated right FI-extending.

Our next result, when applied to a commutative reduced ring yields Picavet’s
weak Baer envelope [71]; and when it is applied to a regular ring of bounded index,
it yields the unique smallest almost biregular ring of Burgess and Raphael [34,
Theorem 1.7] (see Section 2).

Theorem 4.27. ([30, Theorem 8]) Let R be a semiprime ring. Then:

(i) 〈R ∪ δpFI(R)(1)〉Q(R) = Q̂pFI(R) = R(pFI, Q(R)).
(ii) 〈R ∪ δpFI(R)(1)〉Q(R) = Q̂pqB(R).
(iii) 〈R ∪ δpFI(R)(1)〉Q(R) = Q̂fgFI(R) = R(fgFI, Q(R)).

Note that δpFI(R)(1)={c∈B(Q(R)) |there is x∈R with RxRR≤ess cRR}.

Corollary 4.28. ([30, Theorem 15]) Let R be a reduced ring. Then QpqB(R) exists
and is the PP absolute right ring hull.

The next two equivalence relations are particularly important to our study.

Definition 4.29. ([24, Definition 2.4])

(i) Let A be a ring and let δ ⊆ I(A). We define an equivalence relation α on δ
by e α c if and only if ce = e and ec = c.

(ii) We define an equivalence relation β on δC(R) by e β c if and only if there
exists XR ≤ RR such that XR ≤ess eE(RR) and XR ≤ess cE(RR).
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Note that for e, c ∈ δC(R), e α c implies e β c. Also note that α = β if and
only if every element of DC(R) has a unique essential closure in E(RR). So if
Z(RR) = 0, then α = β.

The following example again indicates the independence of Definition 3.1 and
3.2 for D-E classes. Moreover, it shows that a nonsemiprime commutative ring R
can have an absolute self-injective right ring hull even when R is not right Osofsky
compatible. Recall from [60, Corollary 8.28] that a ring R is right Kasch if the left
annihilator of every maximal right ideal of R is nonzero.

Example 4.30. ([24, Example 2.15]) For a field F , let T = F [x]/x4F [x] and x be the
canonical image of x in T . Then T = F +Fx+Fx2 +Fx3. Let R = F +Fx2 +Fx3

which is a subring of T . Now R and T have the following properties.
(i) R is right Kasch, so R = Q(R) [60, Corollary 13.24].
(ii) T is a QF right essential overring of R. There is no proper intermediate ring

between R and T . Hence T = QFI(R) = QE(R) = QSI(R).
(iii) T is not a C ρ pseudo right ring hull of R for any choice of C and any

equivalence relation ρ on δC(R). Indeed, there is no c ∈ δC(R) such that
c(1) ∈ T \R and IR ≤ess cE(RR) for any nonzero ideal I of R.

(iv) TR is not FI-extending (hence not extending). In fact, xRR � RR. But there
does not exist e ∈ I(End (TR)) such that xRR ≤ess eTR.

(v) Since TT is injective, T is maximal among right extending right essential
overrings of R.

(vi) By [62, Theorem 4] E(RR) has no ring multiplication which extends its R-
module scalar multiplication.

Our next result shows that when Q(R) = E(RR) the α pseudo right ring hulls
and β pseudo right ring hulls also exist, respectively for the right FI-extending and
right essentially quasi-Baer properties.

Corollary 4.31. ([24, Corollary 2.21]) Assume that Q(R) = E(RR).

(i) For each δα
E(R) (resp., δβ

FI(R)), R(E, α, Q(R)) (resp., R(FI, β, Q(R)) exists.
Moreover, every right ring of quotients of R containing R(E, α, Q(R)) (resp.,
R(FI, β, Q(R)) is right extending (resp., right FI-extending).

(ii) Let S = 〈R ∪ δ(1)〉Q(R). If δ(1) = δα
eB(R)(1) (resp., δ(1) = δβ

eqB(R)(1)) and S

is a left ring of quotients of R, then R(eB, α, Q(R)) (resp., R(eqB, β, Q(R)))
exists. Moreover, any right and left ring of quotients of R which also lies
between R(eB, α, Q(R)) (resp., R(eqB, β, Q(R))) and Q(R) is right essen-
tially Baer (resp., right essentially quasi-Baer). If Z(RR) = 0, then these
intermediate rings are Baer (resp., quasi-Baer).

We remark that the K absolute (absolute to Q(R)) right ring hull of R is
the intersection of all right essential overrings (of all right rings of quotients) of
R which are in K (see for example, Theorem 4.8). Our next result shows that
under suitable conditions, these intersections coincide with the intersections of the
α pseudo or the β pseudo right ring hulls for various D-E classes (e.g., E,FI,
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eB, and eqB). Also under these conditions a C right ring hull will be a C α or a
C β pseudo right ring hull. We note that the condition X � R implies XT � T
holds for example when T is a centralizing extension of R or when R is a right
Noetherian ring and T is a right ring of quotients of R contained in Qr

c�(R) [60,
pp. 314–315]. This condition is useful in the following result.

Corollary 4.32. ([24, Corollary 2.23]) Let T be a right ring of quotients of R.

(i) Suppose that either α = β or some δβ
E(R)(1) ⊆ Cen(T ). Then T ∈ E if and

only if there exists an R(E, α, Q(R) which is a subring of T .
(ii) If X � R implies XT � T , then T ∈ FI if and only if there exists a

R(FI, β, Q(R)) which is a subring of T .
(iii) Suppose that either α = β or some δβ

eB(R)(1) ⊆ Cen(T ). If T is also
a left ring of quotients of R, then T ∈ eB if and only if there exists a
R(eB, α, Q(R)) which is a subring of T .

(iv) If T is also a left ring of quotients of R and X � R implies TX � T , then
T ∈ eqB if and only if there is a R(eqB, β, Q(R)) which is a subring of T .

Proposition 4.33. ([24, Corollary 2.24]) Assume that E(RR) = Q(R), Q(R) is a
left ring of quotients of R, and T is a right ring of quotients of R. Then:

(i) δE(R) = δeB(R).
(ii) Assume that α = β or some δβ

E(R)(1) ⊆ Cen(T ). Then T ∈ E if and only if
T ∈ eB. Also every right extending α pseudo right ring hull of R is a right
essentially Baer α pseudo right ring hull of R and conversely.

(iii) Assume that Z(RR) = 0. Then T ∈ E if and only if T ∈ B. Moreover every
right extending α pseudo right ring hull of R is a right essentially Baer α
pseudo right ring hull of R which is Baer and conversely.

The following result provides an answer to Problem I of Section 1 for the case
when K = E, the class of right extending rings, and R = T2(W ) by characterizing
the right extending right rings of quotients which are intermediate between T2(W )
and Mat2(W ), where W is from a large class of local right finitely Σ-extending
rings (see [43] for finitely Σ-extending modules).

Theorem 4.34. ([24, Theorem 3.11]) Let W be a local ring, V a subring of W with

J(W ) ⊆ V , R =
(

V W
0 W

)
, S =

(
V W

J(W ) W

)
, and T = Mat2(W ). Then:

(i) For each e ∈ I(T ), there exists f ∈ I(S) such that e α f .
(ii) S ∈ E if and only if T ∈ E if and only if S = R(E, ρ, T ) for some ρ.
(iii) If W is right self-injective, then S =R(E,α,T ), and QqCon(R)=R(E,T )=T .
(iv) If T ∈ E (resp., W is right self-injective) and at least one of the following

conditions is satisfied, then S = QT
E(R) (resp., S = QE(R)):
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(a) J(W ) ⊆ Cen(W );
(b) U(W ) ⊆ Cen(W );
(c) J(W ) is nil;
(d) W is right nonsingular.

(v) Assume that S = QT
E(R) and M is an intermediate ring between R and T .

Then M ∈ E if and only if M =
(

A W
J(W ) W

)
or M = T , where A is an

intermediate ring between V and W .
(vi) R ∈ FI if and only if W ∈ FI.

5. Transference between R and overrings

In this section, we consider Problem II from the introduction. Since RB(Q(R)) is
used in the construction of several hulls, we show how various types of information
transfer between R and RB(Q(R)). Indeed, we prove that the properties of lying
over, going up, and incomparability of prime ideals hold between R and RB(Q(R))
and so do the π-regularity and classical Krull dimension properties. Moreover, we
show that �(R) = �(RB(Q(R))) ∩ R, where � is a special radical. We use LO,
GU, and INC for “lying over”, “going up”, and “incomparability” [77, p. 292],
respectively.

Lemma 5.1. ([27, Lemma 2.1]) Assume that R is a subring of a ring T and E is a
subset of S�(T ) ∪ Sr(T ). Let S be the subring of T generated by R and E.

(i) If K is a prime ideal of S, then R/(K ∩R) ∼= S/K.
(ii) LO, GU, and INC hold between R and S. In particular, LO, GU, and INC

hold between R and RB(Q(R)).

We note that Lemma 5.1 generalizes results of Beidar and Wisbauer [9] for
RB(Q(R)) (see Theorem 2.9). Recall that a ring R is left π-regular if for each a ∈ R
there exist b ∈ R and a positive integer n such that an = ban+1. Observe from
[41] that the class of special radicals includes most well-known radicals (e.g., the
prime radical, the Jacobson radical, the Brown-McCoy radical, the nil radical, the
generalized nil radical, etc.). For a ring R, the classical Krull dimension kdim(R)
is the supremum of all lengths of chains of prime ideals of R.

Theorem 5.2. ([27, Theorem 2.2]) Assume that R is a subring of a ring T and
E ⊆ S�(T )∪Sr(T ). Let S be the subring of T generated by R and E. Then we have
the following.

(i) �(R) = �(S) ∩R, where � is a special radical. In particular,
�(R) = �(RB(Q(R))) ∩R.

(ii) R is left π-regular if and only if S is left π-regular. Hence, R is left π-regular
if and only if RB(Q(R)) is left π-regular.

(iii) kdim (R) = kdim (S). Thus, kdim (R) = kdim (RB(Q(R))).
(iv) If S is regular, then so is R.

The following corollary complements Theorems 2.12 and 2.13.
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Corollary 5.3. ([27, Corollary 3.6]) For a ring R, the following are equivalent.
(i) R is regular.
(ii) RB(Q(R)) is regular.
(iii) R is semiprime and Q̂qB(R) is regular.

Lemma 5.1 and Corollary 5.3 show a transference of properties between R

and RB(Q(R)) or Q̂qB(R). Our next example indicates that this transference, in
general, fails between R and its right rings of quotients which properly contain
RB(Q(R)) or Q̂qB(R).

Example 5.4. ([27, Example 3.7]) Let Z[G] be the group ring of the group G =
{1, g} over the ring Z. Then Z[G] is semiprime and Q(Z[G]) = Q[G]. Note that
B(Q[G]) = {0, 1, (1/2)(1 + g), (1/2)(1− g)}. Thus, using Theorem 4.18(ii),

Z[G] �= Q̂qB(Z[G])

and Z[G] ⊆ Q̂qB(Z[G]) = {(a + c/2 + d/2) + (b + c/2 − d/2)g | a, b, c, d ∈ Z} ⊆
Z[1/2][G] ⊆ Q[G], and Q̂qB(Z[G]) �= {(a+c/2+d/2)+(b+c/2−d/2)g | a, b, c, d ∈
Z} ⊆ Z[1/2][G] ⊆ Q[G], where Z[1/2] = 〈Z ∪ {1/2}〉Q.

In this case, for example, LO does not hold between Z[G] and Z[1/2][G].
Assume to the contrary that LO holds. From [77, Theorem 4.1], LO holds between
Z and Z[G]. Hence there exists a prime ideal P of Z[G] such that P ∩ Z = 2Z.
By LO, there is a prime ideal K of Z[1/2][G] such that K ∩ Z[G] = P . Now
K∩Z[1/2] = K0 is a prime ideal of Z[1/2]. So K0∩Z = K∩Z[1/2]∩Z = K∩Z = 2Z.
Thus 2 ∈ K0. But since K0 is an ideal of Z[1/2], 1 = 2·(1/2) ∈ K0, a contradiction.

Next, Q[G] is regular but Z[G] is not, so Corollary 5.3 does not hold for right
rings of quotients properly containing RB(Q(R)) or Q̂qB(R).

By [53, Proposition 4] a semiprime ring R with bounded index is right and
left nonsingular. Thus in this case Q̂qB(R) = QqB(R).

Theorem 5.5. ([27, Theorem 3.8]) Let R be a semiprime ring. Then R has bounded
index at most n if and only if QqB(R) (QpqB(R)) has bounded index at most n.
In particular, if R is reduced, then QqB(R) = QB(R) and it is reduced.

We note that if R is a domain which is not right Ore, then R = QqB(R) has
bounded index 1, but Q(R) does not have bounded index. So we cannot replace
“QqB(R)” with “Q(R)” in Theorem 5.5. An immediate consequence of Corollary
5.3 and Theorem 5.5 is the next result.

Corollary 5.6. ([27, Corollary 3.9]) A ring R is strongly regular if and only if
RB(Q(R)) (QpqB(R)) is strongly regular.

In Theorem 4.18, for every semiprime ring R, we show that Q̂qB(R) and
Q̂FI(R) exist. Also as we see in Theorem 5.5, a semiprime ring with bounded
index 1 (i.e., a reduced ring) always has a Baer absolute right ring hull. However
a Baer absolute right ring hull does not always exist even for prime PI-rings with
bounded index 2, as shown in our next example.
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Example 5.7. ([27, Example 3.10]) For an infinite field F and a positive integer
k > 1, let R = Matk(F [x, y]), where F [x, y] is the ordinary polynomial ring over
F . Then R is a prime PI-ring with bounded index k. (In particular, if k = 2,
then R has bounded index 2.) Now R has the following properties (observe that
Q(R) = E(RR), hence Q̂K(R) = QK(R) for any class K of rings).

(i) QB(R) does not exist.
(ii) QE(R) does not exist.

Since R is prime, R = QqB(R) = QFI(R). We claim that QB(R) does
not exist (the same argument shows that QE(R) does not exist). Assume to the
contrary that QB(R) exists. Note that F (x)[y] and F (y)[x] are Prüfer domains.
So Matk(F (x)[y]) and Matk(F (y)[x]) are Baer rings [58, p. 17, Exercise 3] (and
right extending rings [43, pp. 108–109]). Note that Q(R) = Matk(F (x, y)). Hence
QB(R) ⊆ Matk(F (x)[y]) ∩Matk(F (y)[x]) = Matk(F (x)[y] ∩ F (y)[x]). To see that
F (x)[y] ∩ F (y)[x] = F [x, y], let

γ(x, y) = f0(x)/g0(x) + (f1(x)/g1(x))y + · · ·
· · ·+ (fm(x)/gm(x))ym

= h0(y)/k0(y) + (h1(y)/k1(y))x + · · ·
· · ·+ (hn(y)/kn(y))xn ∈ F (x)[y] ∩ F (y)[x]

with fi(x), gi(x) ∈ F [x], hj(y), kj(y) ∈ F [y], and gi(x) �= 0, kj(y) �= 0 for i =
0, 1, . . . , m, j = 0, 1, . . . , n. Let F be the algebraic closure of F . If deg g0(x) ≥ 1,
then there is α ∈ F with g0(α) = 0. So γ(α, y) cannot be defined. But γ(α, y) =
h0(y)/k0(y)+(h1(y)/k1(y))α+· · ·+(hn(y)/kn(y))αn, a contradiction. Thus g0(x) ∈
F . Similarly, g1(x), . . . , gm(x) ∈ F . Hence γ(x, y) ∈ F [x, y]. Therefore F (x)[y] ∩
F (y)[x] = F [x, y]. Hence QB(R) = Matk(F (x)[y] ∩ F (y)[x]) = Matk(F [x, y]).
Thus Matk(F [x, y]) ∈ B, a contradiction because F [x, y] is a non-Prüfer domain
[58, p. 17, Exercise 3].

A ring is called right Utumi [81, p. 252] if it is right nonsingular and right
cononsingular (Recall that a ring R is called right cononsingular if any right ideal
I of R with �R(I) = 0 is right essential in R).

Corollary 5.8. ([27, Corollary 3.11]) A reduced ring R is right Utumi if and only if
RB(Q(R)) = QE(R) = QqCon(R).

There is a non-reduced right Utumi ring R for which the equalities RB(Q(R))
= QqCon(R) and QE(R) = QqCon(R) in Corollary 5.8 do not hold, as the following
example shows.

Example 5.9. ([27, Example 3.12]) Let R = Matk(F [x]), where F [x] is the poly-
nomial ring over a field F and k > 1. Then R is right Utumi by [81, p. 252,
Proposition 4.9]. We show that R is not right quasi-continuous. For this, let Eij

denote the matrix in R with 1 in the (i, j)-position and 0 elsewhere. Take

f1 = xE11 + (1− x)E12 + xE21 + (1− x)E22 and f2 = xE12 + E22
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in R. Then f1 = f2
1 , f2 = f2

2 and f1R ∩ f2R = 0. Also (f1R ⊕ f2R)R ≤ess fRR

since the uniform dimension of fRR is 2, where f = E11 + E22 ∈ R. If there is an
idempotent g ∈ R such that f1R ⊕ f2R = gR, then gRR ≤ess fRR. So gR = fR
by the modular law. But this is impossible because (x2 + 1)E11 + E12 ∈ fR \ gR.
Therefore R is not right quasi-continuous. Now RB(Q(R)) = R �= QqCon(R).
Also by [43, Lemma 12.8 and Corollary 12.10], R ∈ E, so R = QE(R). Thus
QE(R) �= QqCon(R).

6. How does Q(R) determine R?

In this section, we investigate Problem III listed in the Introduction (i.e., Given
classes K and S of rings, determine those T ∈ K such that Q(T ) ∈ S). We take
the class S to be

S := {Mat2(D) | D is a division ring}
and K to be E, B, or related classes.

Our first result of the section characterizes any right extending ring whose
maximal right ring of quotients is the 2× 2 matrix ring over a division ring.

Theorem 6.1. ([24, Theorem 3.1]) Let D be a division ring and assume that T is
a ring such that Q(T ) = Mat2(D) (resp., Q(T ) = Q�(T ) = Mat2(D)). Then T
is right extending (resp., T is Baer) if and only if the following conditions are
satisfied:

(i) there exist v, w ∈ D such that
(

1 v
0 0

)
∈ T and

(
0 0
w 1

)
∈ T ; and

(ii) for each 0 �= d ∈ D at least one of the following conditions is true:

(1)
(

0 d
0 1

)
∈ T ,

(2)
(

1 0
d−1 0

)
∈ T , or

(3) there exists a ∈ D such that a− a2 �= 0 and
(

a (1− a)d
d−1a d−1(1− a)d

)
∈ T .

Corollary 6.2. ([24, Corollary 3.3])
(i) Let T be a ring such that Q(T ) = Mat2(D), where D is a division ring and(

1 0
0 0

)
∈ T . If

(
0 D
0 0

)
⊆ T or

(
0 0
D 0

)
⊆ T , then T is right extending

and Baer.

(ii) Let A be a right Ore domain with D = Qr
c�(A). Then

(
A D
0 A

)
is a right

extending right ring hull of T2(A) and it is Baer.

As a consequence of Corollary 6.2, our next example provides a right extend-
ing generalized 2-by-2 triangular matrix ring T such that Q(T ) = Mat2(D), where
D = Qr

c�(A) and A is a right Ore domain, but T is not necessarily an overring of
T2(A).
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Example 6.3. ([24, Example 3.4]) Let A be a right Ore domain with D = Qr
c�(A)

and B any subring of D. Then T =
(

B D
0 A

)
is right extending and Q(T ) =

Mat2(D). For an explicit example, take A = Z[x] or Q[x], and B = Z.

From [58, p. 16, Exercise 2] it is well known that if A is a commutative
domain with F as its field of fractions and A �= F , then Tn(A) (n > 1) is not Baer,
but by Theorem 3.9 any right ring of quotients of Tn(A) which contains Tn(F ) is
Baer. This result motivates the question: If A is a commutative domain, can we
find C right ring hulls or C ρ pseudo right ring hulls for Tn(A) and use these
to describe all C right rings of quotients of Tn(A) when C is a class related to
the Baer class? (See Problem I and Problem II in Section 1). Using Theorem 6.1,
we answer this question when A is either a PID or a Bezout domain (i.e., every
finitely generated ideal of A is principal [48]) and n = 2.

Theorem 6.4. ([24, Theorem 3.7]) Let A be a commutative Bezout domain with F
as its field of fractions, A �= F , and T be a right ring of quotients of T2(A). If any
one of the following conditions holds, then T is right extending and Baer.

(i)
(

A F
0 A

)
is a subring of T .

(ii)
(

A a−1A
aA A

)
is a subring of T for some 0 �= a ∈ A.

(iii)
(

A (pk1−1
1 · · · pkm−1

m )−1A
aA A

)
is a subring of T for some 0 �= a ∈ A, where

a = pk1
1 · · · pkm

m , each pi is a distinct prime, and each ki is a positive integer.

The following corollary illustrates how both Definitions 3.1 and 3.2 can be
used to characterize all right rings of quotients from a D-E class C (see Problem
I in Section 1).

Corollary 6.5. ([24, Corollary 3.9]) Let A be a commutative PID with F as its field
of fractions, A �= F , and let R = T2(A).

(i) Let T be a right ring of quotients of R. Then T is right extending if and only
if either the ring

U =
(

A F
0 A

)
is a subring of T , or the ring

V =
(

A (pk1−1
1 · · · pkm−1

m )−1A
aA A

)
is a subring of T for some nonzero a = pk1

1 · · · pkm
m , where each pi is a distinct

prime of A.

(ii)
(

A F
0 A

)
is the unique right extending right ring hull of R.

(iii) R has no right extending absolute right ring hull.
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(iv) In (i)–(iii) we can replace “right extending” with “Baer”, “right PP”, or
“right semihereditary”.

We remark that U and V , in Corollary 6.5, are right extending α pseudo
right ring hulls of R; whereas Q(R) = R(E, Q(R)). Moreover, if {p1, p2, . . . } is an
infinite set of distinct primes of A and

Vi =
(

A A
p1 · · · piA A

)
,

then V1 ⊇ V2 · · · forms an infinite descending chain of right extending α pseudo
right ring hulls none of which contains U . Thus no Vi is a right extending right
ring hull.

Corollary 6.6. ([24, Corollary 3.10]) Let A be a commutative PID with F as its
field of fractions, A �= F , and let T be a right ring of quotients of R = T2(A). Take

S =
(

A F
0 F

)
and V =

(
A (p1

k1−1 · · · pm
km−1)−1A

p1
k1 · · · pm

kmA A

)
,

where each pi is a distinct prime of A.
(i) If T is right hereditary, then either S or V is a subring of T . The converse

holds when T is right Noetherian.
(ii) The ring S is the unique right hereditary right ring hull of R; but R has no

right hereditary absolute right ring hull.

7. Hulls of ring extensions

In this section, we seek solutions to Problem IV of Section 1 (i.e., Given a ring
R and a class of rings K, let X(R) denote some standard type of extension of
R (e.g., X(R) = R[x], or X(R) = Matn(R), etc.) and let H(R) denote a right
essential overring of R which is “minimal” with respect to belonging to the class
K. Determine when H(X(R)) is comparable to X(H(R))), where K is qB or FI
and the types of ring extensions include monoid rings, full and triangular matrix
rings, infinite matrix rings, etc.

Theorem 7.1. ([29, Theorem 4]) Let R[G] be a semiprime monoid ring of a monoid
G over a ring R. Then:

(i) Q̂qB(R)[G] ⊆ Q̂qB(R[G]).
(ii) If G is a u.p.-monoid, then Q̂qB(R[G]) = Q̂qB(R)[G].

In [49] Goel and Jain posed the open question: If G is an infinite cyclic group
and A is a prime right quasi-continuous ring, is it true that A[G] ∈ qCon? Since a
semiprime right quasi-continuous ring is quasi-Baer (see [24, Proposition 1.3]) and
A[G] is semiprime, Theorem 7.1 and [24, Proposition 1.3] show that A[G] ∈ FI.
Thus, from Theorem 7.1, when A is a commutative semiprime quasi-continuous
ring and G is torsion-free Abelian, then A[G] ∈ E, hence A[G] ∈ qCon. This



58 G.F. Birkenmeier, J.K. Park and S. Tariq Rizvi

provides an affirmative answer to this question when A is a commutative semiprime
quasi-continuous ring.

Corollary 7.2. ([29, Corollary 5]) Let R be a semiprime ring. Then:

(i) Q̂qB(R[x, x−1]) = Q̂qB(R)[x, x−1].
(ii) Q̂qB(R[X ]) = Q̂qB(R)[X ] and Q̂qB(R[[X ]]) = Q̂qB(R)[[X ]] for a nonempty

set X of not necessarily commuting indeterminates.

Example 7.3.

(i) ([27, Example 3.7]) Let Z[G] be the group ring of the group G = {1, g} over Z.
Then Z[G] is semiprime, Q̂qB(Z)[G] = Z[G] ⊆ Q̂qB(Z[G]) = Z[G]B(Q[G]),
and Z[G] �= Q̂qB(Z[G]). Thus the “u.p.-monoid” condition is not superfluous
in Theorem 7.1(ii).

(ii) Let F be a field. Then F [x] is a semiprime u.p.-monoid ring and F [x] =
Q(F )[x] �= Q(F [x]) = F (x), where F (x) is the field of fractions of F [x]. Thus
“Q” cannot replace “Q̂qB” in Theorem 7.1(ii).

Theorem 7.4. ([29, Theorem 7]) Let K be a class of rings such that Λ ∈ K if and
only if Matn(Λ) ∈ K for any positive integer n, and let HK(−) denote any of
the right ring hulls indicated in Definition 3.1 for the class K. Then for a ring
R, HK(R) exists if and only if HK(Matn(R)) exists for any n. In this case,
HK(Matn(R)) = Matn(HK(R)).

Corollary 7.5. ([29, Corollary 9]) Let R be a ring and n a positive integer. Then:

(i) Q̂IC(Matn(R)) = Matn(Q̂IC(R)) = Matn(RB(Q(R)).
(ii) Q̂IC(Tn(R)) = Tn(Q̂IC(R)) = Tn(RB(Q(R))).
(iii) If R is semiprime, then Q̂K(Matn(R)) = Matn(Q̂K(R)), where K = qB

or FI.

Theorem 7.6. ([29, Theorem 11]) Let R be a semiprime ring. If R and a ring S

are Morita equivalent, then Q̂qB(R) and Q̂qB(S) are Morita equivalent.

In contrast to Theorem 4.18, the following result provides a large class of
nonsemiprime rings T for which QqB(T ) = Q̂FI(T ) = TB(Q(T )).

Theorem 7.7. ([29, Theorem 18]) Let R be a semiprime ring and n a positive
integer. Then:

(i) Q̂qB(Tn(R)) = Tn(Q̂qB(R)) = Tn(R)B(Q(Tn(R))).
(ii) Q̂FI(Tn(R)) = Tn(Q̂FI(R)) = Tn(R)B(Q(Tn(R))).

For a ring R and a nonempty set Γ, CFMΓ(R), RFMΓ(R), and CRFMΓ(R)
denote the column finite, the row finite, and the column and row finite matrix
rings over R indexed by Γ, respectively.

In [35, Theorem 1], it was shown that CRFMΓ(R) is a Baer ring for all infinite
index sets Γ if and only if R is semisimple Artinian. Our next result shows that
the quasi-Baer property is always preserved by infinite matrix rings.
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Theorem 7.8. ([29, Theorem 19])
(i) R ∈ qB if and only if CFMΓ(R) (resp., RFMΓ(R) and CRFMΓ(R)) ∈ qB.
(ii) If R ∈ FI, then CFMΓ(R) (resp., CRFMΓ(R)) ∈ FI.
(iii) If R is semiprime, then we have that

Q̂qB(CFMΓ(R)) ⊆ CFMΓ(Q̂qB(R)),

Q̂qB(RFMΓ(R)) ⊆ RFMΓ(Q̂qB(R)),
and

Q̂qB(CRFMΓ(R)) ⊆ CRFMΓ(Q̂qB(R)).

Example 7.9. There exist a commutative regular ring R and a set Γ such that

Q̂qB(CFMΓ(R)) ⊆ CFMΓ(Q̂qB(R)), Q̂qB(CFMΓ(R)) �= CFMΓ(Q̂qB(R)),

Q̂qB(RFMΓ(R)) ⊆ RFMΓ(Q̂qB(R)), Q̂qB(RFMΓ(R)) �= RFMΓ(Q̂qB(R)),
and
Q̂qB(CRFMΓ(R)) ⊆ CRFMΓ(Q̂qB(R)), Q̂qB(CRFMΓ(R)) �= CRFMΓ(Q̂qB(R))

(see [29, Example 20] for details).

8. Modules with FI-extending hulls

In module theory the class of injective modules and, its generalization, the class of
extending modules have the property that every submodule of a member is essen-
tial in a direct summand of that member. This property, originated by Chatters
and Hajarnavis in [37], ensures a rich structure theory for these classes. Although
every module has an injective hull, it is usually hard to compute. For many mod-
ules a minimal essential extension which belongs to the class of extending modules
may not exist (e.g., ⊕∞n=1ZZ, see comment above Proposition 8.4). Moreover the
class of extending modules lacks some important closure properties (e.g., it is not
closed under direct sums).

Recall from [18] that a right R-module MR is FI-extending if every fully in-
variant submodule of MR is essential in a direct summand of MR. A ring R is right
FI-extending if RR is FI-extending. Note that the set of fully invariant submod-
ules of a module MR includes the socle, Jacobson radical, torsion submodule for a
torsion theory (e.g., Z2(MR) the second singular submodule), and MI for all right
ideals I of R, etc. Hence, the FI-extending condition provides an “economical use”
of the extending condition by targeting only the fully invariant submodules, and
thus some of the most significant submodules of MR for an essential splitting of
MR. Natural examples of FI-extending modules abound: direct sums of uniform
modules, more specifically all finitely generated Abelian groups, and semisimple
modules.

We show that over a semiprime ring R, every finitely generated projective
module PR has a smallest FI-extending essential extension HFI(PR) (called the ab-
solute FI-extending hull of PR) in a fixed injective hull of PR. Moreover, HFI(PR)
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is easily computable (see Theorem 8.2 and Proposition 8.4), it is from a class
for which direct sums and direct summands are FI-extending, and since HFI(PR)
is finitely generated and projective over Q̂FI(R), we are assured of a reasonable
transfer of information between PR and HFI(PR) (e.g., see Theorem 8.5 and Corol-
lary 8.6).

Since many well-known types of Banach algebras are semiprime (e.g., C∗-
algebras), all our results for semiprime rings are applicable. Finitely generated
modules over a Banach algebra are considered in [52]. Kaplansky [57] defined AW ∗-
modules over a C∗-algebra and used them to answer several questions concerning
automorphisms and derivations on certain types of C∗-algebras. Furthermore work
using these modules appeared in [7]. Moreover, from [32, p. 352], every algebraically
finitely generated C∗-module M is projective, hence HFI(M) exists. Since every
C∗-algebra A is both semiprime and nonsingular, Q̂FI(A) always exists by Theorem
4.18. Also in [27], we characterized all C∗-algebras with only finitely many minimal
prime ideals and showed that for such A, Q̂FI(A) is also a C∗-algebra. Thus our
results should yield fruitful applications to projective modules over C∗-algebras,
as well as many other algebras of Functional Analysis. We shall discuss some of
these applications to C∗-algebras in the next section in more detail.

Definition 8.1. ([28, Definition 1]) We fix an injective hull E(MR) of MR and a
maximal right ring of quotients Q(R) of R. Let M be a class of right R-modules
and MR a right R-module. We call, when it exists, a module HM(MR) the absolute
M hull of MR if HM(MR) is the smallest essential extension of MR in E(MR) that
belongs to M.

We first obtain the existence of the absolute FI-extending hull for every
finitely generated projective module over a semiprime ring. Also this module hull
is explicitly described.

Theorem 8.2. ([28, Theorem 6]) Every finitely generated projective module PR

over a semiprime ring R has the absolute FI-extending hull HFI(PR). Explic-
itly, HFI(PR) ∼= e(⊕nQ̂FI(R)R) where P ∼= e(⊕nRR), for some n and e = e2 ∈
End(⊕nRR).

Corollary 8.3. ([28, Corollary 7]) Assume that R is a semiprime right Goldie
ring. Then every projective right R-module PR has the absolute FI-extending hull.
Moreover, if P ∼= e(⊕ΛRR) with e = e2 ∈ EndR(⊕ΛRR), then HFI(PR) ∼=
e(⊕ΛQ̂FI(R)R).

The FI-extending hull of a module, in general, is distinct from the injec-
tive hull of the module or its extending hull (if it exists). From Corollary 8.3,
HFI(⊕ΛZZ) = ⊕ΛZZ, where Z is the ring of integers. However in E(⊕ΛZZ) =
⊕ΛQZ, where Λ is infinite and Q is the field of rational numbers, there is not
even a minimal extending essential extension of ⊕ΛZZ. Our next result gives an
alternative description of HFI(PR) different from Theorem 8.2.
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Proposition 8.4. ([28, Proposition 8]) Assume that PR is a finitely generated projec-
tive module over a semiprime ring R. Then HFI(PR) ∼= P ⊗R Q̂FI(R) as Q̂FI(R)-
modules. Hence HFI(PR) is also a finitely generated projective Q̂FI(R)-module.

From Osofsky [68], there is a prime ring R with J(R) = 0 such that E(RR) is a
non-rational extension of RR. So Q(R)R is not injective, thus End(E(RR)) �∼= Q(R)
as rings by [61, p. 95, Proposition 3]. Hence Q(End(RR)) �∼= End(E(RR)) (see
also [25, Proposition 2.6]). However, a special case of our next result shows that
Q̂FI(R) ∼= End(HFI(RR)) for a semiprime ring R.

Theorem 8.5. ([28, Theorem 12]) Assume that R is a semiprime ring and PR is a
finitely generated projective module. Then:

(i) Q̂FI(End(PR)) ∼= End(HFI(PR)) as rings.
(ii) Rad(HFI(PR)Q̂FI(R)) ∩ P = Rad(PR), where Rad(−) is the Jacobson radical

of a module.

When PR is a progenerator, we have the following.

Corollary 8.6. ([28, Corollary 13]) Let R be a semiprime ring.

(i) If PR is a progenerator of the category Mod-R, then HFI(PR)Q̂FI(R) is a

progenerator of the category Mod-Q̂FI(R).
(ii) If R and S are Morita equivalent, then Q̂FI(R) and Q̂FI(S) are Morita equiv-

alent.

Recall from [76] that a module MR is a quasi-Baer module if for any NR �
MR, there exists h = h2 ∈ Λ = End(MR) such that �Λ(N) = Λh, where �Λ(N) =
{λ ∈ Λ | λN = 0}. It is clear that RR is a quasi-Baer module if and only if
R is a quasi-Baer ring. Also it is shown in [76] that MR is quasi-Baer if and
only if for any I � Λ there exists g = g2 ∈ Λ such that rM (I) = gM , where
rM (I) = {m ∈ M | Im = 0}. Moreover, if MR is quasi-Baer, then End(MR) is a
quasi-Baer ring [76, Theorem 4.1]. Close connections between quasi-Baer modules
and FI-extending modules are investigated in [76].

In the next result, we obtain another close connection between FI-extending
modules and quasi-Baer modules. It also generalizes some of the equivalences in
[18, Theorem 4.7].

Theorem 8.7. ([28, Theorem 14]) Assume that PR is a finitely generated projective
module over a semiprime ring R. Then the following are equivalent.

(i) PR is FI-extending.
(ii) PR is quasi-Baer.
(iii) End(PR) is a quasi-Baer ring.
(iv) End(PR) is a right FI-extending ring.
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9. Applications to rings with involution

In this section, C∗-algebras are assumed to be nonunital unless indicated otherwise.
Recall from [11] and [58] that a ring with an involution ∗ is called a Baer ∗-ring if
the right annihilator of every nonempty subset is generated by a projection (i.e.,
an idempotent which is invariant under ∗) as a right ideal. (Recall that an ideal I
of a ring R with an involution ∗ is called self-adjoint if I∗ = I.) This condition is
naturally motivated in the study of Functional Analysis. For example, every von
Neumann algebra is a Baer ∗-algebra. With an eye toward returning to the roots
of the theory of Baer and Baer ∗-rings (i.e., Functional Analysis), in this section
we apply some of our previous results to rings with an involution.

In the first part of this section, we indicate that a ring R with a certain
(i.e., semiproper) involution has a quasi-Baer ∗-ring absolute to Q(R) right ring
hull. For a reduced ring this hull coincides with a Baer ∗-ring absolute right ring
hull. The section culminates with applications to C∗-algebras. We show that a
unital C∗-algebra is boundedly centrally closed if and only if it is quasi-Baer.
The existence of the boundedly centrally closed hull of a C∗-algebra A (i.e., the
smallest boundedly centrally closed intermediate C∗-algebra between A and its
local multiplier algebra Mloc(A)) is established. Moreover, it is shown that for
an intermediate C∗-algebra B between A and Mloc(A), B is boundedly centrally
closed if and only if BB(Q(A)) = B. All of the definitions, examples, and results
of this section appear in [27].

Definition 9.1. Let R be a ring with an involution ∗.
(i) R is a quasi-Baer ∗-ring if the right annihilator of every ideal is generated

by a projection as a right ideal ([16 or 20]).
(ii) We say that ∗ is semiproper if xRx∗ = 0 implies x = 0.

As in the case for a Baer ∗-ring, the involution can be used to show that the
definition of a quasi-Baer ∗-ring is left-right symmetric. If ∗ is a proper involution
(i.e., xx∗ = 0 implies x = 0 [20, p. 10]), then it is semiproper. Thus all C∗-algebras
have a semiproper involution since they have a proper one [11, p. 11]. There is a
semiproper involution on a prime ring which is not proper [20, p. 4266]. If R is
a (quasi-) Baer ∗-ring, then ∗ is a (semi-) proper involution [11, p. 13] and [16,
Proposition 3.4]. Part (ii) of the next lemma is known, but we include it for the
readers’ convenience.

Lemma 9.2.

(i) Let ∗ be a semiproper involution on a ring R. Then R is semiprime and
every central idempotent is a projection. If R is reduced, then ∗ is a proper
involution.

(ii) If ∗ is a proper involution on a ring R, then R is right and left nonsingular.

Since many rings from Functional Analysis have a (semi-) proper involution
(e.g., C∗-algebras), Lemma 9.2 and Theorem 4.18 guarantee that such rings have
quasi-Baer right ring hulls.
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Proposition 9.3. Let R be a ∗-ring (resp., reduced ∗-ring). Then the following are
equivalent.

(i) R is a quasi-Baer ∗-ring (resp., Baer ∗-ring).
(ii) R is a quasi-Baer ring (resp., Baer ring) in which ∗ is a semiproper (resp.,

proper) involution.
(iii) R is a semiprime quasi-Baer ring and every central idempotent is a projec-

tion.

Thereby the center of a quasi-Baer ∗-ring is a Baer ∗-ring.
Note that Baer ∗-rings are quasi-Baer ∗-rings. But the converse does not hold

as follows.

Example 9.4.

(i) ([16, Example 2.2]) Let R = Mat2(C[x]). Then R is a Baer ring. We can
extend the conjugation on C to that on C[x]. Let ∗ denote the conjugate
transpose involution on R. Then ∗ is a proper involution. The right annihi-

lator rR

[(
x 2
0 0

)]
cannot be generated by a projection as a right ideal. So

R is not a Baer ∗-ring; but, by Proposition 9.3, R is a quasi-Baer ∗-ring.
(ii) Let − be the conjugation on C. If G is a polycyclic-by-finite group and ∗ is

the involution on the group algebra C[G] defined by (
∑

agg)∗ =
∑

agg
−1,

then the involution ∗ is proper. From [16, Corollary 1.9], C[G] ∈ qB. So C[G]
is a quasi-Baer ∗-ring by Proposition 9.3. But in general C[G] is not a Baer
∗-ring. In fact, let G = D∞ × C∞, where D∞ is the infinite dihedral group
and C∞ is the infinite cyclic group. Then the group G is polycyclic-by-finite.
By [16, Example 1.10] C[G] is not a Baer ∗-ring.

There is a quasi-Baer ring R with an involution such that R has only finitely
many minimal prime ideals, but not all minimal prime ideals are self-adjoint. For
example, let F be a field and R = F ⊕ F , where ∗ is the exchange involution.
Then R is a Baer ring with only finitely many minimal prime ideals which are not
self-adjoint.

Proposition 9.5. Let R be a semiprime ∗-ring with only finitely many minimal
prime ideals. Then Q̂qB(R) is a quasi-Baer ∗-ring if and only if every minimal
prime ideal of R is self-adjoint.

Proposition 9.6. Let R be a ∗-ring and T a right essential overring of R.
(i) If ∗ extends to T and ∗ is semiproper on R, then ∗ is semiproper on T .
(ii) If ∗ extends to T , then ∗ is proper on R if and only if ∗ is proper on T .

Theorem 9.7. Let R be a ring (resp., reduced ring) with a semiproper involution ∗
and T be a right ring of quotients of R. If ∗ extends to T , then the following are
equivalent.

(i) T is a quasi-Baer ∗-ring (resp., Baer ∗-ring).
(ii) Q̂qB(R) is a subring of T .
(iii) B(Q(R)) ⊆ T .
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Thus Qs(R) is a quasi-Baer ∗-ring. Also Q̂qB(R) is the quasi-Baer ∗-ring
absolute to Q(R) right ring hull of R. If R is reduced, then Q̂qB(R) is the Baer
∗-ring absolute right ring hull of R.

In the remainder of this section, we focus on C∗-algebras. Recall that for a
C∗-algebra A, the algebra of all double centralizers on A is called its multiplier
algebra, M(A), which coincides with the maximal unitization of A in the category
of C∗-algebras. It is an important tool in the classification of C∗-algebras and in
the study of K-theory and Hilbert C∗-modules.

For a C∗-algebra A, recall that A1 = {a + λ1Q(A) | a ∈ A and λ ∈ C}. Then
A1 = {a + λ1M(A) | a ∈ A and λ ∈ C} because 1Q(A) = 1M(A). Note that M(A)
and A1 are C∗-algebras. For X ⊆ A, X denotes the norm closure of X in A.

Let A be a C∗-algebra. Then the set Ice of all norm closed essential ideals of
A forms a filter directed downwards by inclusion. The ring Qb(A) denotes the alge-
braic direct limit of {M(I)}I∈Ice , where M(I) denotes the C∗-algebra multipliers
of I; and Qb(A) is called the bounded symmetric algebra of quotients of A in [5,
p. 57, Definition 2.23]. The norm closure, Mloc(A), of Qb(A) (i.e., the C∗-algebra
direct limit Mloc(A) of {M(I)}I∈Ice) is called the local multiplier algebra of A [5,
p. 65, Definition 2.3.1]. The local multiplier algebra Mloc(A) was first used by El-
liott in [45] and Pedersen in [69] to show the innerness of certain ∗-automorphisms
and derivations. Its structure has been extensively studied in [5]. Since A is a norm
closed essential ideal of A1, Mloc(A) = Mloc(A1) by [5, p. 66, Proposition 2.3.6].
Also note that Qb(A) = Qb(A1). See [5], [45], and [70] for more details on Mloc(A)
and Qb(A).

Lemma 9.8. Let A be a C∗-algebra. Then we have the following.
(i) B(Mloc(A)) = B(Q(A)) = B(Qs(A)) = B(Qb(A)).
(ii) Cen(Mloc(A)) is the norm closure of the linear span of B(Q(A)).

When A is a unital C∗-algebra, Theorem 4.18, Lemma 9.2, and Theorem 9.7
yield that AB(Q(A)) = Q̂qB(A) = QqB(A) exists and is the quasi-Baer ∗-ring
absolute right ring hull of A. Thus it is of interest to consider unital C∗-algebras
which are quasi-Baer ∗-rings.

Recall from [11] that a C∗-algebra is called an AW ∗-algebra if it is a Baer
∗-ring. In analogy, we say that a unital C∗-algebra A is a quasi-AW ∗-algebra if
it is a quasi-Baer ∗-ring. Thus by Proposition 9.3, a unital C∗-algebra A is a
quasi-AW ∗-algebra if A ∈ qB.

The next lemma shows that Qb(A) is a quasi-Baer ∗-algebra for any C∗-
algebra A.

Lemma 9.9. Let A be a C∗-algebra. Then we have the following.
(i) QqB(A1) is a ∗-subalgebra of Qb(A).
(ii) Qb(A) is a quasi-Baer ∗-algebra.

By Lemma 9.9, if A is a unital C∗-algebra, then QqB(A) is a ∗-subalgebra of
Mloc(A).
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Definition 9.10. ([5, p. 73, Definition 3.2.1]) For a C∗-algebra A, the C∗-subalgebra
ACen(Qb(A)) (the norm closure of ACen(Qb(A)) in Mloc(A)) of Mloc(A) is called
the bounded central closure of A. If A = ACen(Qb(A)), then A is said to be
boundedly centrally closed.

A boundedly centrally closed C∗-algebra and the bounded central closure of
a C∗-algebra are the C∗-algebra analogues of a centrally closed subring and the
central closure of a semiprime ring, respectively. These have been used to obtain a
complete description of all centralizing additive mappings on C∗-algebras [3] and
for investigating the central Haagerup tensor product of multiplier algebras [4].
Boundedly centrally closed algebras are important for studying local multiplier
algebras and have been treated extensively in [5].

It is shown in [5, pp. 75–76, Theorem 3.2.8 and Corollary 3.2.9] that Mloc(A)
and ACen(Qb(A)) are boundedly centrally closed. Every AW ∗-algebra and every
prime C∗-algebra are boundedly centrally closed [5, pp. 76–77, Example 3.3.1].
Moreover, A is boundedly centrally closed if and only if M(A) is so [5, p. 74,
Proposition 3.2.3]. However, there exists A which is boundedly centrally closed,
but A1 is not so [5, p. 80, Remarks 3.3.10]. Hence it is of interest to investigate
the boundedly centrally closed intermediate C∗-algebras between A and Mloc(A).

Definition 9.11. Let A be a C∗-algebra. The smallest boundedly centrally closed
C∗-subalgebra of Mloc(A) containing A is called the boundedly centrally closed hull
of A.

The following lemma shows that a unital C∗-algebra A is boundedly centrally
closed if and only if A ∈ qB. It is shown that the boundedly centrally closed hull
of A is QqB(A). Moreover, this lemma is a unital C∗-algebra analogue of Theorem
4.18(ii). It generalizes [5, pp. 72–73, Lemma 3.1.3 and Remark 3.1.4].

Lemma 9.12. Let A be a unital C∗-algebra. Then:
(i) A is boundedly centrally closed if and only if A ∈ qB (i.e., a quasi-AW ∗-

algebra).
(ii) QqB(A) = ACen(Qb(A)).
(iii) QqB(A) is the boundedly centrally closed hull of A.
(iv) Let B be an intermediate C∗-algebra between A and Mloc(A). Then B is

boundedly centrally closed if and only if B(Q(A)) ⊆ B.

From Proposition 9.3 and Lemma 9.12(i), the center of a quasi-AW ∗-algebra
(i.e., a unital boundedly centrally closed C∗-algebra by Lemma 9.12(i)) is an AW ∗-
algebra. The next example shows that the class of quasi-AW ∗-algebras encom-
passes more variety than its subclass of AW ∗-algebras.

Example 9.13.

(i) ([11, p. 15, Example 1]) There is a quasi-AW ∗-algebra which is not an AW ∗-
algebra. Let A be the set of all compact operators on an infinite-dimensional
Hilbert space over C. Then the heart of A1 is the set of bounded linear op-
erators with finite-dimensional range space. So A1 is subdirectly irreducible.
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Since A1 is semiprime, A1 is prime and so A1 ∈ qB. Hence A1 is a quasi-
AW ∗-algebra. But as shown in [11, p. 15, Example 1], A1 is not a Baer ∗-ring,
thus A1 is not an AW ∗-algebra.

(ii) Every unital prime C∗-algebra is a quasi-AW ∗-algebra. There are prime finite
Rickart unital C∗-algebras (hence quasi-AW ∗-algebras) which are not AW ∗-
algebras [51].

(iii) From [11, p. 43, Corollary], C is the only prime projectionless unital AW ∗-
algebra. Various unital prime projectionless C∗-algebras (hence quasi-AW ∗-
algebras) are provided in [40, pp. 124–129 and 205–214].

Our next example provides a nonunital C∗-algebra A such that both A and
Mloc(A) are boundedly centrally closed, but A1 is not so.

Example 9.14. Let A be the C∗-direct sum of ℵ0 copies of C. Then Mloc(A) is
the C∗-direct product of ℵ0 copies of C. So both A and Mloc(A) are boundedly
centrally closed, but A1 is not so.

Thus Example 9.14 motivates one to seek a characterization of the boundedly
centrally closed (not necessarily unital) intermediate C∗-algebras between A and
Mloc(A). Our next result provides such a characterization in terms of B(Q(A))
and shows the existence of the boundedly centrally closed hull of a C∗-algebra A.

Theorem 9.15. Let A be a C∗-algebra and B an intermediate C∗-algebra between
A and Mloc(A). Then:

(i) B(Q(A)) ⊆ Cen(Qb(B1B(Q(A)))) = Cen(Qb(B)) ⊆ Cen(Mloc(A)).
(ii) BB(Q(A)) = B Cen(Qb(B)).
(iii) B is boundedly centrally closed if and only if B = BB(Q(A)).
(iv) AB(Q(A)) is the boundedly centrally closed hull of A.

Assume that A is a C∗-algebra and B is an intermediate C∗-algebra between
A and Mloc(A). Then M(B) may not be contained in Mloc(A). However, the
next corollary characterizes M(B) to be boundedly centrally closed via B(Q(A)).
Moreover, parts (i) and (ii) are of interest in their own rights.

Corollary 9.16. Let A be a C∗-algebra and B an intermediate C∗-algebra between
A and Mloc(A). Then:

(i) B(Q(B)) = B(Q(A)).
(ii) Cen(Mloc(B)) = Cen(Mloc(A)).
(iii) M(B)Cen(Qb(M(B))) = M(B)B(Q(A)).
(iv) M(B) is boundedly centrally closed if and only if B(Q(A)) ⊆ M(B).

Surprisingly, the next result shows that under a mild finiteness condition,
QqB(A1) is norm closed.

Corollary 9.17. Let A be a C∗-algebra and n a positive integer. Then the following
are equivalent.

(i) A has exactly n minimal prime ideals.
(ii) QqB(A1) is a direct sum of n prime C∗-algebras.
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(iii) The extended centroid of A is Cn.
(iv) Mloc(A) is a direct sum of n prime C∗-algebras.
(v) Cen(Mloc(A)) = Cn.
(vi) Some boundedly centrally closed intermediate C∗-algebra between A and

Mloc(A) is a direct sum of n prime C∗-algebras.
(vii) Every boundedly centrally closed intermediate C∗-algebra between A and

Mloc(A) is a direct sum of n prime C∗-algebras.

Open questions and problems

(i) Determine which classes of rings are closed with respect to right essential
overrings. In particular, is the class of right extending rings closed with re-
spect to right essential overrings?

(ii) If a ring R is semiprime, then is RB(Q(R)) = QFI(R)?
Note that in [76, Example 4.2], there is an example of a module MR such

that End(MR) is a quasi-Baer ring, but MR is not quasi-Baer. In [28], we have
shown that for M = FI, if R is a semiprime ring then HFI(RR) = Q̂FI(R). This
motivates:
(iii) For a given class M of modules, determine necessary and/or sufficient condi-

tions on R such that HM(RR) = Q̂M(R).
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1. Introduction and preliminaries

It is known that the rewriting system for groups, monoids and semigroups is a
special case of Gröbner bases theory for noncommutative polynomial algebras.
Thus our aim in this paper is to reveal this well-known fact on a specific application,
namely, affine Weyl groups of type Ãn (n ≥ 2). So this work can also be thought as
a transition study between combinatorial group theory (more specify “theoretical
computer science”) and ring theory over an interesting infinite group.

A good introduction to string-rewriting systems and noncommutative Gröb-
ner bases theory are presented by [2] and [17], respectively. An important sub-
subject in above both system and base theory (under a different name), called
critical pair, can be obtained by two completion methods, namely, Knuth-Bendix
and Buchberger’s algorithms. The connection between these two algorithms have
been pointed out in the commutative case (see, for instance, [4, 14]). In particular
it is well known that Buchberger algorithm (in the commutative case) may be
applied to presentations of abelian groups to obtain complete rewriting systems.
Besides that, in the literaure, since there are no enough work passing through
from rewriting systems to noncommutative Gröbner (Gröbner-Shirshov) bases or
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vice versa except the work in [9], in this paper, we consider the transition from
the system to bases for the affine Weyl group of type Ãn (n ≥ 2) and prove the
following result.

Theorem 1.1 (Main Theorem). The affine Weyl group of type Ãn (n ≥ 2) has a
complete rewriting system.

Affine Weyl groups Ãn (n ≥ 2), B̃m (m ≥ 3), C̃l (l ≥ 2), D̃k (k ≥ 4),
as family of infinite crystallagraphic Coxeter groups, play an important role in
various fields of mathematics, such as Kac-Moody algebras, algebraic groups and
their representation theory, combinatorial and geometric group theory, etc. The re-
duced elements of this special infinite groups are indexing the basis elements of the
integral cohomology algebras of infinite-dimensional flag varieties associated Kac-
Moody type Lie groups. By Composition Diamond Lemma, the reduced elements
of the group are obtained using elements of Gröbner-Shirshov basis of the group.
Although it will be just considered the affine Weyl group of type Ãn in this paper,
the remaining groups can also be thought in the same direction of this work for a
future project. Briefly, the affine Weyl group Ãn is an irreducible Coxeter group
whose Coxeter graph is a polygon with n vertices and a presentation for Ãn is

〈y1, y2, . . . , yn+1 ; y2
i = 1 (1 ≤ i ≤ n + 1),

yiyi+1yi = yi+1yiyi+1 (1 ≤ i ≤ n),
yiyj = yjyi (1 ≤ i < j − 1 < n + 1 and (i, j) �= (1, n + 1)),
y1yn+1y1 = yn+1y1yn+1〉, (1.1)

where n ≥ 2 (see [12] for more details).
We should note that, by [1], the affine Weyl group Ãn is a split extension

of (n) copies of Z by the symmetric group Sn+1 of degree n + 1. In other words
Ãn is a finite extension of a free abelian group, and so the fact that these groups
have a finite complete rewriting system follows immediately from the proof that
the class of groups with complete rewriting systems is closed under finite exten-
sion (see for example [7]). Moreover the fact that the corresponding ideal of the
free associative monoid has a finite noncommutative Gröbner basis is also then
immediate. Although these results are already seem in the literature, there is new
information in this paper, namely that the complete rewriting system for Ãn with
respect to the Coxeter generators and the degree-lex ordering is finite, and indeed
we list the rewriting rules in Theorem 3.2 (below). Since Coxeter groups in gen-
eral do not have finite complete rewriting systems for the Coxeter generators and
the degree-lex ordering, this rewriting system (or, equivalently, Gröbner basis) has
taken our interest.
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2. Proof of Theorem 1.1

In this section, before we proceed the proof of the main result, let us first recall
some fundamental material that needed in the proof. We note that the reader is
referred to [2, 15] for a detailed survey on (complete) rewriting sytems.

Let X be a set and let X∗ be the free monoid consists of all words obtained
by the elements of X . A (string) rewriting system on X∗ is a subset R ⊆ X∗×X∗

and an element (u, v) ∈ R, also written u → v, is called a rule of R. The idea for
a rewriting system is an algorithm for substituting the right-hand side of a rule
whenever the left-hand side appears in a word. In general, for a given rewriting
system R, we write x → y for x, y ∈ X∗ if x = uv1w, y = uv2w and (v1, v2) ∈ R.
Also we write x →∗ y if x = y or x → x1 → x2 → · · · → y for some finite chain
of reductions. Furthermore an element x ∈ X∗ is called irreducible with respect
to R if there is no possible rewriting (or reduction) x → y; otherwise x is called
reducible. The rewriting system R is called

• Noetherian if there is no infinite chain of rewritings x → x1 → x2 → · · · for
any word x ∈ X∗,

• Confluent if whenever x →∗ y1 and x →∗ y2, there is a z ∈ S∗ such that
y1 →∗ z and y2 →∗ z,

• Complete if R is both Noetherian and confluent.

A rewriting system is finite if both X and R are finite sets. Furthermore a critical
pair of a rewriting system R is a pair of overlapping rules if one of the following
forms

(i) (r1r2, s), (r2r3, t)∈ R with r2 �= 1,
(ii) (r1r2r3, s), (r2, t)∈ R,

is satisfied. Also a critical pair is resolved in R if there is a word z such that
sr3 →∗ z and r1t→∗ z in the first case or s →∗ z and r1tr3 →∗ z in the second. A
Noetherian rewriting system is complete if and only if every critical pair is resolved
([15]). The following lemma is also important to get Noetherian condition.

Lemma 2.1 ([10]). A rewriting system R on X is Noetherian if and only if there
exists a reduction ordering on X∗ which is compatible with R.

Knuth and Bendix have developed an algorithm for creating a complete
rewriting system R′ which is equivalent to R, so that any word over X has an
(unique) irreducible form with respect to R′. By considering overlaps of left-hand
sides of rules, this algorithm basicly proceeds forming new rules when two re-
ductions of an overlap word result in two distinct reduced forms. The complete
rewriting system for Coxeter groups was first constructed in [6] performing the
Knuth-Bendix procedure on these groups with a length-lexicographic ordering on
words. We note that similar material has also been studied in [8].

Now let us focus on the proof.
Since there is no quite effective algorithm that calculates Gröbner-Shirshov

bases for infinite groups, we need to strict ourselves on some countable cases. So,
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for n = 4, let us first consider the affine Weyl group Ãn. Clearly, we have the
presentation

〈y1, y2, y3, y4, y5 ; y2
i = 1 (1 ≤ i ≤ 5), y1y2y1 = y2y1y2, y2y3y2 = y3y2y3,

y3y4y3 = y4y3y4, y4y5y4 = y5y4y5, y1y5y1 = y5y1y5,

y1y3 = y3y1, y1y4 = y4y1, y2y4 = y4y2,

y2y5 = y5y2, y3y5 = y5y3〉
for the group Ã4, as in (1.1). It is well known that defining relations for a group are
actually rewriting rules for this group. In the light of this fact, the set of rewriting
rules (i.e., the rewriting system) for Ã4 is

{y2
i = 1(1 ≤ i ≤ 5), y1y2y1 = y2y1y2, y2y3y2 = y3y2y3,

y3y4y3 = y4y3y4, y4y5y4 = y5y4y5, y1y5y1 = y5y1y5, y1y3 = y3y1

y1y4 = y4y1, y2y4 = y4y2, y2y5 = y5y2, y3y5 = y5y3}, (2.1)

where the ordering is DegLex related to y1 > y2 > y3 > y4 > y5. (The ordering
DegLex can also be called as LengthLex and ShortLex by some studies.) In fact,
for any words w1, w2 ∈ X∗, this ordering can be summarized as

w1 < w2 if
• either deg(w1) < deg(w2),
• or in the case that the degrees (lengths) are equal

� if the ith position is the first, working from left to right, in which w1

and w2 differ, then the ith letter of w1 is less than that of w2 in the
ordering given to the alphabet.

The first step that need to check is the existence of Noetherian property for a
given rewriting system. On account of the reduction ordering y1 > y2 > y3 > y4 >

y5, by Lemma 2.1, it is easy to see that the rewriting system for Ã4 is Noetherian.
In addition, to show having confluent property of Ã4, we need to consider all
overlap words in the set (2.1) and check whether these are resolved. In fact several
software packages (for instance, GAP) can be used to compute whether an overlap
word has a unique irreducible word or not, and then whether the system for Ã4

is confluent. (A manual computation without computer can be obtained from the
third author.) Therefore we have the following result.

Corollary 2.2. The affine Weyl group Ã4 has a complete rewriting system.

The above procedure for the case n = 4 can be thought as one of the begining
induction steps. Therefore we can adapt this proof to any n ≥ 2. Hence these all
progresses complete the proof of Theorem 1.1, as required.

The existence of a complete rewriting system for a group, monoid or semi-
group is very useful. In fact by using this system, we can also investigate the
existence of some other algebraic material. The word problem for groups can be
given an example of this. It was first introduced by M. Dehn in 1911’s and basically
says that “for given any words U and V that taken from generators of given group,
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does there exist an algorithm determining whether U = V or not?”. We actually
know that if the word problem for a group is solvable, then this group admits a
complete rewriting system with finitely many rules. Thus the following result is
immediate.

Corollary 2.3. The affine Weyl group of type Ãn (n ≥ 2) has solvable word problem.

An elegant proof for the above corollary was firstly given by Tits [16].

3. Gröbner-Shirshov basis of Ãn

In this section we compare Gröbner-Shirshov bases and rewriting systems of the
affine Weyl group Ãn. We first recall that noncommutative Gröbner bases are also
named as Gröbner-Shirshov bases in the literature (see, for example, [17]).

Let X be a linearly ordered set, k be a field and k 〈X〉 be the free associative
algebra over X and k. On the set X∗ of words, we impose a well-order ≤ that
is compatible with the concatenations of words. This order is called total. For
example, the ordering DegLex is actually total. Now let f ∈ k 〈X〉 be a polynomial
with leading word (the maximal term by the ordering) f . We say that f is monic
if f occurs in f with coefficient 1. Thus for some monic polynomials f and g, the
Gröbner-Shirshov basis can be formulated as follows:

I) Let w be a word such that w = fb = ag with deg(f) + deg(g) > deg(w).
Then the polynomial (f, g)w is called the intersection composition of f and
g with respect to w if (f, g)w = fb− ag.

II) Let w = f = agb. Then the polynomial (f, g)w = f−agb is called the inclusion
composition of f and g with respect to w. In this case, the transformation
f �→ (f, g)w = f − agb is called the elimination of the leading word (ELW) of
g in f .

III) Let R ⊂ k 〈X〉. A composition (f, g)w is called trivial relative to R (and w)
if

(f, g)w =
∑

αiaitibi,

where αi ∈ k, ti ∈ R, ai, bi ∈ X∗ and aitibi < w. We usually write it as
(f, g)w = 0 mod (R, w). In particular, if (f, g)w is zero by ELW of polyno-
mials from R, then (f, g)w is trivial relative to R. We assume that f1 ≡ f2

mod (R, w) if f1 − f2 ≡ 0 mod (R, w), for some polynomials f1 and f2.

A subset R of k 〈X〉, as defined in above, is called Gröbner-Shirshov bases if
any composition of polynomials from R is trivial relative to R. We note that the
algebra with generators X and the defining relations R, notationally 〈X ; R〉, will
be mean the factor-algebra of k 〈X〉 by the ideal generated by R. We also note
that the following lemma which is important to determine Gröbner-Shirshov basis
and was given by Bokut ([5]).
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Lemma 3.1 (Composition-Diamond Lemma). Let S = 〈X ; R〉. The set of defining
relations R is a Gröbner-Shirshov bases if and only if the set

{u ∈ X∗|u �= afb, for any f ∈ R}
of R-reduced words consists of a linear basis of S.

If a subset R of k 〈X〉 is not a Gröbner-Shirshov basis, then one can add
to R all nontrivial compositions of poynomials or R, and continue this process
many times in order to have a Gröbner-Shirshov bases that contains R. This
procedure is called the Buchberger-Shirshov algorithm ([3]). We note that, in the
paper [9], the author showed that the Knuth-Bendix completion algorithm for
given rewriting system R corresponds step-by-step to the Buchberger-Shirshov
algorithm for finding a Gröbner bases for the ideal generated by the set F =
{l− r : (l, r) ∈ R}. Using Buchberger-Shirshov algorithm, Özel and Yilmaz have
recently calculated the Gröbner-Shirshov bases of the affine Weyl group Ãn ([13]).

Let Ãn be affine Weyl group generated by r0, r1, r2, . . . , rn with defining
relations

r2
i = 1, (i = 0, . . . , n),

rirj = rjri, (i = 0, . . . , n− 2, j = 2, . . . , n, j − i > 1),

riri+1ri = ri+1riri+1, (i = 0, . . . , n− 1)
and

r0rnr0 = rnr0rn.

Let us define the words

rij =

⎧⎨⎩ riri−1 · · · rj ; i > j
ri ; i = j
riri+1 · · · rj ; i < j

and r̂ij = riri−1ri+1ri · · · rj+1rj , where j ≥ i− 1.

Theorem 3.2 (G-S Basis of Ãn). If we identify a relation u = v with polynomial
representation u− v, then a Gröbner-Shirshov basis for Ãn with respect to Deglex
ordering r0 > r1 > · · · > rn consists of initial relations together with the following
polynomials
(1) rijri − ri+1rij , where j > i, i = 0, . . . , n− 2, j = i + 2, . . . , n,
(2) r0rnrj − rjr0rn, where j = 2, . . . , n− 2,
(3) r0rnrn−1rn − rn−1r0rnrn−1,
(4) r0rnrn−1rn−2rn−1 − rn−2r0rnrn−1rn−2,
(5) r0rnjr0 − rnr0rnj, where j = 2, . . . , n− 1,
(6) r0rnj r̂1krk+1 − rnr0rnj r̂1k, where j = 2, . . . , n− 1, k = 0, . . . , n− 1,
(7) r0rnjr1r0rnkr1 − rnr0rnjr1r0rnk, where j = 2, . . . , n− 1, k = j + 1, . . . , n,
(8) r0rnjr1r0r2k r̂2lrl+1 − rnr0rnjr1r0rnk r̂2p,

where j = 2, . . . , n− 1, k = j + 1, . . . , n, p = 3, . . . , n− 1,
(9) r0rnr̂1krk+1 − rnr0rnr̂1k, where k = 0, . . . , n− 1,
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(10) r0jrnr0rn − r1r0jrnr0, where j = 2, . . . , n− 2,
(11) r0jrnrn−1r0rnrn−1 − r1r0jrnr0rn−1rn, where j = 2, . . . , n− 2,
(12) r0jrnrn−1rn−2r0rnrn−1rn−2 − r1rojrnr0rn−1rnrn−2rn−1,

where j = 2, . . . , n− 2.

In the previous section, by considering all overlap words in the set (2.1), we
mentioned that one can do critical pair analysis for Ã4, or basically, the degree-lex
rewriting system for Ã4 can be checked by several software packages such as GAP.
Now by assuming these computations have been done and considering the above
theorem, we obtain the following result:

Corollary 3.3. The elements of Ã4 in each type given in the above theorem are:
(1) r0r1r2r0 − r1r0r1r2,

r0r1r2r3r0 − r1r0r1r2r3,
r1r2r3r1 − r2r1r2r3,
r1r2r3r4r1 − r2r1r2r3r4,
r2r3r4r2 − r3r2r3r4,

(2) r0r4r2 − r2r0r4,

(3) r0r4r3r4 − r3r0r4r3,

(4) r0r4r3r2r3 − r2r0r4r3r2,

(5) r0r4r3r0 − r4r0r4r3,
r0r4r3r2r0 − r4r0r4r3r2,

(6) r0r4r3r1r0r1 − r4r0r4r3r1r0,
r0r4r3r1r0r2r1r2 − r4r0r4r3r1r0r2r1,
r0r4r3r1r0r2r1r3r2r3 − r4r0r4r3r1r0r2r1r3r2,
r0r4r3r1r0r2r1r3r2r4r3r4 − r4r0r4r3r1r0r2r1r3r2r4r3,
r0r4r3r2r1r0r1 − r4r0r4r3r2r1r0,
r0r4r3r2r1r0r2r1r2 − r4r0r4r3r2r1r0r2r1,
r0r4r3r2r1r0r2r1r3r2r3 − r4r0r4r3r2r1r0r2r1r3r2,
r0r4r3r2r1r0r2r1r3r2r4r3r4 − r4r0r4r3r2r1r0r2r1r3r2r4r3,

(7) r0r4r3r1r0r4r1 − r4r0r4r3r1r0r4,
r0r4r3r2r1r0r4r1 − r4r0r4r3r2r1r0r4,
r0r4r3r2r1r0r4r3r1 − r4r0r4r3r2r1r0r4r3,

(8) r0r4r3r1r0r4r2r1r2 − r4r0r4r3r1r0r4r2r1,
r0r4r3r1r0r4r2r1r3r2r3 − r4r0r4r3r1r0r4r2r1r3r2,
r0r4r3r1r0r4r2r1r3r2r4r3r4 − r4r0r4r3r1r0r4r2r1r3r2r4r3,
r0r4r3r2r1r0r4r2r1r2 − r4r0r4r3r2r1r0r4r2r1,
r0r4r3r2r1r0r4r2r1r3r2r3 − r4r0r4r3r2r1r0r4r2r1r3r2,
r0r4r3r2r1r0r4r2r1r3r2r4r3r4 − r4r0r4r3r2r1r0r4r2r1r3r2r3r4,
r0r4r3r2r1r0r4r3r2r1r2 − r4r0r4r3r2r1r0r4r3r2r1,
r0r4r3r2r1r0r4r3r2r1r3r2r3 − r4r0r4r3r2r1r0r4r3r2r1r3r2,
r0r4r3r2r1r0r4r3r2r1r3r2r4r3r4 − r4r0r4r3r2r1r0r4r3r2r1r3r2r4r3,
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(9) r0r4r1r0r1 − r4r0r4r1r0,
r0r4r1r0r2r1r2 − r4r0r4r1r0r2r1,
r0r4r1r0r2r1r3r2r3 − r4r0r4r1r0r2r1r3r2,
r0r4r1r0r2r1r3r2r4r3r4 − r4r0r4r1r0r2r1r3r2r4r3,

(10) r0r1r4r0r4 − r1r0r1r4r0,
r0r1r2r4r0r4 − r1r0r1r2r4r0,
r0r1r2r3r4r0r4 − r1r0r1r2r3r4r0,

(11) r0r1r4r3r0r4r3 − r1r0r1r4r0r3r4,
r0r1r2r4r3r0r4r3 − r1r0r1r2r4r0r3r4,
r0r1r2r3r4r3r0r4r3 − r1r0r1r2r3r4r0r3r4,

(12) r0r1r4r3r2r0r4r3r2 − r1r0r1r4r0r3r4r2r3,
r0r1r2r4r3r2r0r4r3r2 − r1r0r1r2r4r0r3r4r − 2r3,
r0r1r2r3r4r3r2r0r4r3r2 − r1r0r1r2r3r4r0r3r4r2r3.

By Theorems 1.1, 3.2 and identifications ri ↔ yi+1 (0 ≤ i ≤ 4), if we compare
the rewriting system and the Gröbner-Shirshov basis for Ã4, then we see that
elements in the set (2.1) and elements in Corollary 3.3 coincide with each other.
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A Classification of a Certain Class of
Completely Primary Finite Rings

Chiteng’a John Chikunji

Abstract. We consider the isomorphism problem of a class of completely pri-
mary finite rings R such that if J is the Jacobson radical of R, then J 3 = (0)
and J 2 �= (0), in the general case, not necessarily the case in which the
maximal Galois subrings lie in the center. We further obtain the number of
non-isomorphic classes in some special case of these rings.

Mathematics Subject Classification (2000). Primary 16P10; Secondary 13H99.

Keywords. Completely primary finite rings, unital modules, galois rings.

1. Introduction

A ring R is completely primary if the subset J of all its zero-divisors forms an ideal.
These rings have been studied extensively by, among others, Raghavendran [5].

In this paper, we seek an explicit description of the isomorphism classes of
a completely primary finite ring R of characteristic p, with Jacobson radical J
such that J 3 = (0), J 2 �= (0), the annihilator of J contains the ideal J 2 and
R/J ∼= GF (pr), the finite field of pr elements, for any prime p and any positive
integer r. We leave the cases when the characteristic of R is p2 or p3 for future
consideration. These rings were studied by the author who gave their constructions
for all characteristics, and for details of the general background, the reader is
referred to [2] and [3]. In this paper, these rings are given in terms of the basis
of their additive groups and the multiplication tables of basis elements. We freely
use the definitions and notations introduced in [2], [3] and [5].

The author would like to thank Prof. E.M. Lungu and Prof. D. Theo for inspiring him into this
profession.
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2. A construction of rings of characteristic p

Let F be the Galois field GF (pr). Given three positive integers s, t and λ such that
1 ≤ t ≤ s2, λ ≥ 1, fix s, t, λ-dimensional F-spaces U, V, W , respectively. Since
F is commutative we can think of them as both left and right vector spaces. Let
(ak

ij) ∈ Ms×s(F) (k = 1, . . . , t) be t linearly independent matrices, {σ1, . . . , σs},
{θ1, . . . , θt} and {η1, . . . , ηλ} be sets of automorphisms of F (with possible
repetitions), and let {σi} and {θk} satisfy the additional condition that if ak

ij �= 0,
for any k with 1 ≤ k ≤ t, then θk = σiσj .

On the additive group R = F⊕ U ⊕ V ⊕W ; we select bases {ui}, {vk} and
{wm} for U , V , and W , respectively, and we define multiplication by the following
relations:

uiuj =
t∑

k=1

ak
ijvk,

uivk = vkui = vkvl = uiwm = wmui = vkwm = wmvk = wmwn = 0,

uiα = ασiui, vkα = αθkvk, wmα = αηmwm (2.1)
(1 ≤ i, j ≤ s; 1 ≤ k, l ≤ t; 1 ≤ m, n ≤ λ) ;

where α, ak
ij ∈ F.

By the above relations, R is a completely primary finite ring of characteristic
p with Jacobson radical J = U⊕V ⊕W , ann(J ) = V ⊕W , J 2 = V and J 3 = (0)
(see [2] and /or [3]).

Theorem 2.1. Let R be a ring. Then R is a cube radical zero completely primary
finite ring of characteristic p if and only if R is isomorphic to one of the rings
given by the above relations.

Proof. See Theorem 4.1 in [2]. �

3. The isomorphism problem

Let R be a ring of Theorem 2.1 with the linearly independent matrices Ak =
(ak

ij) ∈Ms(F) (k = 1, . . . , t) and the automorphisms {σi}, {θk} and {ηm}. Since
θk = σiσj if ak

ij �= 0, then up to isomorphism, R is given by t linearly independent
matrices Ak = (ak

ij) of size s× s, and the automorphisms {σi} and {ηm}.
Let A = {Ak : k = 1, . . . , t}, and denote the ring R by R(A, σi, ηm). We

call Ak the structural matrices of the ring R(A, σi, ηm). We also recall that if
|R(A, σi, ηm)| = pnr, the integers p, n, r, s, t, λ are invariants of R(A, σi, ηm).

We take this opportunity to introduce the symbols Mσ to denote (σ(aij))
and Mσj to denote (σ1(ai1), σ2(ai2), . . . , σt(ait)), for some automorphisms σj ,
not necessarily distinct, if M = (aij).

Let R(A, σi, ηm) and R′(D, σ′i, η′m) be rings of Theorem 2.1 of the same
characteristic p and with the same invariants p, n, r, s, t, λ. Also, let us assume
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that they are constructed from a common coefficient subring F with associated
automorphisms σi, ηm and σ′i, η′m, respectively.

3.1. Preliminary results

To determine the isomorphism classes, we first show that the Galois subfield F =
GF (pr) is invariant under any isomorphism φ : R(A, σi, ηm) −→ R′(D, σ′i, η′m).
Then we compute the image of the rest of the generators, by a fixed isomorphism.
Let U , V and W be the F-vector spaces generated by {u1, . . . , us}, {v1, . . . , vt}
and {w1, . . . , wλ}, respectively. By (2.1), the set {u1, . . . , us} is an F-basis of
the vector space J / ann(J ) ∼= U , the set {uiuj : 1 ≤ i, j ≤ s} generates the vector
space V ∼= J 2 over F and the set {w1, . . . , wλ} is a basis for the F-vector space
ann(J )/J 2 ∼= W .

Lemma 3.1. Let φ : R(A, σi, ηm) −→ R′(D, σ′i, η′m) be an isomorphism. Then
φ(F) is a maximal subfield of R′(D, σ′i, η′m) which is equal to F.

Proof. It is obvious that φ(F) is a maximal subfield of R′(D, σ′i, η′m) so that there
exists an invertible element x ∈ R′(D, σ′i, η′m) such that xφ(F)x−1 = F.

Now, consider the map ψ : R(A, σi, ηm) −→ R′(D, σ′i, η′m) given by r �−→
xφ(r)x−1. Then, clearly ψ is an isomorphism from R(A, σi, ηm) to R′(D, σ′i, η′m)
which sends F to itself. �

Let R be the ring given by the multiplication in (2.1) with respect to the
linearly independent matrices Ak = (ak

ij) ∈ Ms×s(F) (k = 1, . . . , t) and associated
automorphisms {σi}, {θk} and {ηm}. Then

R = F⊕
s∑

i=1

Fui ⊕
t∑

k=1

Fvk ⊕
λ∑

m=1

Fwm;

and uiro = rσi
o ui, vkro = rθk

o vk, wmro = rηm
o wm, for every ro ∈ F.

From now on, we simplify our notation by denoting the rings R(A, σi, ηm)
and R′(D, σ′i, η′m) by R and R′, respectively.

Proposition 3.2. Let φ : R −→ R′ be an isomorphism. Then for each i = 1, . . . , s;
each k = 1, . . . , t; and each m = 1, . . . , λ;

φ(ui) =
∑

σj=σi

ajiu
′
j +

∑
θk=σi

bkiv
′
k +

∑
ηm=σi

cmiw
′
m;

φ(wm) =
∑

θl=ηm

dlmv′l +
∑

ηn=ηm

enmw′n;

and
φ(vμ) =

∑
θν=θμ

fνμv′ν ,

where aji, bki, cmi, dlm, enm, fνμ ∈ F. In particular, if bki �= 0 and cmi �= 0,
then σi = idF, and if dlm �= 0, then θl = ηm.
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Proof. Since

ui ∈ J = ⊕
s∑

j=1

Fuj ⊕
t∑

k=1

Fvk ⊕
λ∑

m=1

Fwm, for all i = 1, . . . , s;

wm ∈ ann(J ) = ⊕
t∑

l=1

Fvl ⊕
λ∑

n=1

Fwn, for all m = 1, . . . , λ;

and

vk ∈ J 2 = ⊕
t∑

μ=1

Fvμ, for all k = 1, . . . , t;

we can write

φ(ui) =
∑

ajiu
′
j +

∑
bkiv

′
k +

∑
cmiw

′
m;

φ(wm) =
∑

dlmv′l +
∑

enmw′n;

and
φ(vμ) =

∑
fνμv′ν ,

where aji, bki, cmi, dlm, enm, fνμ ∈ F. Now, let ro ∈ F such that uiro = rσi
o ui,

wmro = rηm
o wm, and vkro = rθk

o vk. Then

φ(uiro) = φ(rσi
o ui) = φ(rσi

o )φ(ui) = φ(rσi
o )[
∑

ajiu
′
j +

∑
bkiv

′
k +

∑
cmiw

′
m].

On the other hand,

φ(uiro) = φ(ui)φ(ro) = [
∑

ajiu
′
j +

∑
bkiv

′
k +

∑
cmiw

′
m]φ(ro)

=
∑

aji[φ(ro)]σj u′j +
∑

bki[φ(ro)]θkv′k

+
∑

cmi[φ(ro)]ηmw′m.

Similarly

φ(rηm
o )[

∑
dlmv′l +

∑
enmw′n] =

∑
dlm[φ(ro]θlv′l +

∑
enm[φ(ro]ηnw′n

and
φ(rθμ

o )[
∑

fνμv′ν ] =
∑

fνμ[φ(ro)]θν v′ν .

From these equalities, we deduce that if σj �= σi then aji = 0; if ηm �= ηn

then enm = 0; and if θν �= θμ then fνμ = 0. In particular, if bki �= 0 and cmi �= 0
then σi = idF, since θk = σiσj if ak

ij �= 0 and ann(J ) ⊇ J 2; and if dlm �= 0, then
θl = ηm. �
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4. The main result

We now state and prove the main result of this paper.

Proposition 4.1. Let R and R′ be rings of Theorem 2.1 with the same invariants
p, n, r, s, t, λ. Also, let us assume that they are constructed from a common
coefficient subfield F with associated automorphisms {σi}, {ηm} and {σ′i}, {η′m},
respectively. Then R ∼= R′, if and only if {σi} = {σ′i} (for every i = 1, . . . , s),
{ηm} = {η′m} (for every m = 1, . . . , λ), and there exist σ ∈ Aut(F), B = (βkρ) ∈
GL(t, F) and C ∈ GL(s, F) such that CT DρC

σi =
∑t

k=1 βkρAσ
k .

Proof. Suppose there is an isomorphism ψ : R −→ R′. Then, as in Lemma 3.1,
ψ(F) is a maximal subfield of R′ so that there exists an invertible element x ∈ R′

such that xψ(F)x−1 = F.
Now, consider the map φ : R −→ R′ given by r �−→ xψ(r)x−1. Then, clearly

φ is an isomorphism from R to R′ which sends F to itself. Also,

φ(
∑

i

αiui) =
∑

j

∑
i

φ(αi)ajiu
′
j +

∑
k

∑
i

φ(αi)bkiv
′
k

+
∑
m

∑
i

φ(αi)cmiw
′
m;

φ(
∑
m

βmwm) =
∑

l

∑
m

φ(βm)dlmv′l +
∑

n

∑
m

φ(βm)enmw′n;

and
φ(
∑

μ

γμvμ) =
∑

ν

∑
μ

φ(γμ)fνμv′ν .

Therefore,

φ(
∑

i

αiui) · φ(
∑

i

βiui) = (
∑

j

∑
i

φ(αi)ajiu
′
j +

∑
k

∑
i

φ(αi)bkiv
′
k

+
∑
m

∑
i

φ(αi)cmiw
′
m) · (

∑
j

∑
i

φ(βi)ajiu
′
j

+
∑

k

∑
i

φ(βi)bkiv
′
k +

∑
m

∑
i

φ(βi)cmiw
′
m)

=
∑

ρ

s∑
ν,μ=1

s∑
i,j=1

φ(αi)aνi[φ(βj)aμj ]σ
′
ν (a′)ρ

νμv′ρ.

On the other hand,

φ

(
(
∑

i

αiui) · (
∑

i

βiui)

)
= φ(

∑
k

s∑
i,j=1

αi[βj ]σiak
ijvk)

=
∑

ρ

t∑
k=1

s∑
i,j=1

φ(αi[βj ]σi)βρkφ(ak
ij)v

′
ρ.
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It follows that
s∑

ν,μ=1

s∑
i,j=1

φ(αi)aνi[φ(βj)aμj ]σ
′
ν (a′)ρ

νμ =
t∑

k=1

s∑
i,j=1

φ(αi[βj ]σi)βρkφ(ak
ij).

Now, the restriction φ|F, of φ to F, is an automorphism σ of F; and therefore,
φ(ak

ij) = σ(ak
ij) and σ′i = σi, and η′m = ηm, for every m = 1, . . . , λ (by Proposition

3.2 if the coefficient of v′i in the transformation of wm under φ is non-zero). Hence,
the above equation now implies that CT DρC

θ =
∑t

k=1 βkρAσ
k , with C = (αμj),

and σi = θ, for every i = 1, . . . , s; η′m = ηm, for every m = 1, . . . , λ; and σ′i = σi,
for every i = 1, . . . , s, as required.

Conversely, suppose that the associated automorphisms {σi} = {σ′i} and
{ηm} = {η′m}, respectively, for every i = 1, . . . , s and m = 1, . . . , λ, and there
exist σ ∈ Aut(F), B = (βkρ) ∈ GL(t, F) and C ∈ GL(s, F) with CT DρC

θ =∑t
k=1 βkρAσ

k . Consider the map φ : R → R′ defined by

φ(αo +
∑

i

αiui +
∑
m

βmwm +
∑

μ

γμvμ)

= ασ
o +

∑
j

∑
i

ασ
i ajiu

′
j +

∑
k

∑
i

ασ
i bkiv

′
k +

∑
m

∑
i

ασ
i cmiw

′
m

+
∑

l

∑
m

βσ
mdlmv′l +

∑
n

∑
m

βσ
menmw′m +

∑
ν

∑
μ

γσ
μfνμv′ν .

Then, it is easy to verify that φ is an isomorphism from the ring R to the
ring R′ of Theorem 2.1. �

Thus, the set {θ, σ, ηm ∈ Aut(F), B = (βkρ) ∈ GL(t, F), C ∈ GL(s, F)}
determines all the isomorphisms classes of the rings of Theorem 2.1.

4.1. A special case

We obtain the number of non-isomorphic classes of rings of Theorem 2.1 in the
special case when the invariants t = s2, λ ≥ 1 and when σi = θ, for some fixed
automorphism θ.

Let R be a ring of Theorem 2.1 with the invariants p, n, r, s, t, λ, where t =
s2 and λ ≥ 1. Let σi = θ, ηm (m = 1, . . . , λ) be the associated automorphisms of
R with respect to a fixed maximal Galois subfield F. We know that the matrices Ak

are linearly independent over F. So, let A denote the subspace of Ms(F) generated
by the matrices Ak over F. Now, the number of elements in the F-space Ms(F)
is qs2

, where q = pr is the order of F, and the number of different bases for the
s2-dimensional subspaces of the F-space Ms(F) is

(qs2 − 1)(qs2 − q) . . . (qs2 − qs2−1).

Of course, if we write the elements of a basis in a different order, we get another
basis; and this means that the different bases fall into equivalence classes of s2!
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bases each, under the action of permuting the elements. As is well known, it follows
that

(qs2 − 1)(qs2 − q) . . . (qs2 − qs2−1)
s2!

is an integer, being the number of equivalence classes, that is, the number of
unordered bases for the F-space Ms(F).

We recall from [3, Remark 5.10] that if A is the set of all t-tuples (A1, . . . , At)
of s× s matrices over F, the group GLs(F) acts on A by “congruence”:

(A1, . . . , At) · C = (CT A1C
θ, CT A2C

θ, . . . , CT AtC
θ)

and on the left via

B ·(A1, . . . , At) = (β11A
σ
1 +β12A

σ
2 +· · ·+β1tA

σ
t , · · · , βt1A

σ
1 +βt2A

σ
2 +· · ·+βttA

σ
t ),

where B = (βkρ). Thus, these two actions are permutable and define a (left) action
of G = GLs(F)×GLt(F) on A:

(C, B) · (A1, . . . , At) = B · (Aσ
1 , . . . , Aσ

t ) · (C−1)θ,

for some fixed automorphisms σ and θ. However, since t = s2, obviously, A =
Ms(F).

Now, if R′ is another ring of the same type with the same invariants as R,
and associated automorphisms σ′j = θ′ and η′m over F, and structural matrices Dl,
let D denote the subspace of Ms(F) generated by the matrices Dl over F. Then,
as before, it follows easily that D = Ms(F).

But A = D = Ms(F). Moreover, the action of any automorphism σ on the
matrices in A gives another set of linearly independent matrices.

Thus, up to isomorphism, the rings R and R′ are determined by the auto-
morphisms σi = θ, ηm and σ′j = θ′, η′m, respectively.

Next, the number of ways we can select {η1, . . . , ηλ} (ηm not necessarily
distinct) from Aut(F) is the number of solutions of the equation

x1 + x2 + · · · + xr = λ

in non-negative integers x1, . . . , xr ∈ {0, 1, . . . , λ}. This number is well known
to be (

r + λ− 1
λ

)
;

where r = |Aut(F)|.
Proposition 4.2. The number of mutually non-isomorphic rings of Theorem 2.1
with the same invariants p, n, r, s, t, λ such that t = s2, λ ≥ 1 and when σi = θ,
for some fixed automorphism θ, is equal to

r ×
(

r + λ− 1
λ

)
;

where r = |Aut(F)|.
Proof. Follows easily from the above discussion. �
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Higman Ideals and Verlinde-type Formulas
for Hopf Algebras

Miriam Cohen and Sara Westreich

Abstract. We offer a comprehensive discussion on Verlinde-type formulas for
Hopf algebras H over an algebraically closed field of characteristic 0. Some
of the results are new and some are known, but are reproved from the point
of view of symmetric algebras and the associated Higman (trace) map. We
give an explicit form for the central Casimir element of C(H), which is also
known to be χad, the character of the adjoint map on H . We then discuss the
following variations of the Verlinde formula: (i) Fusion rules for irreducible
characters of semisimple Hopf algebras whose character algebras C(H) are
commutative. (ii) Structure constants for what we call here conjugacy sums
associated to conjugacy classes for these Hopf algebras. (iii) Equality up to
rational scalar multiples between the fusion rules of irreducible characters and
the structure constants for semisimple factorizable Hopf algebras. (iv) Pro-
jective fusion rules for the multiplication of irreducible and indecomposable
projective characters for non-semisimple factorizable Hopf algebras.

Mathematics Subject Classification (2000). Primary 16W30, 17W35.

Keywords. Hopf algebras, symmetric algebras, factorizable ribbon Hopf alge-
bras, conjugacy sums and classes, characters, projective center, fusion rules,
Verlinde formula.

Introduction

The representation and character theory of semisimple Hopf algebras over an al-
gebraically closed field of characteristic zero has been developed since the 70s, in
many cases analogously to the classical theory of finite groups. In this paper we
prove new results and also offer a comprehensive discussion of some known re-
sults which are reproved using the point of view of symmetric algebras and the
associated Higman (trace) map. Symmetric algebras are abundant. Finite group
algebras over any field, finite-dimensional semisimple algebras, and more generally
Calabi-Yau algebras and Iwahori-Hecke algebras are all examples.
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We use the theory of symmetric algebras to prove theorems which we call
Verlinde-type formulas. These formulas can be viewed as instances of table algebras
(see [1] for a comprehensive survey). The Verlinde formula for semisimple fusion
algebras (or categorically for modular tensor categories), can be formulated as
‘The matrix S diagonalizes the fusion rules.’ It was proved graphically by various
authors. In [4] we used the so-called quantum Fourier transform to prove it in an
algebraic setting. In this paper we extend this formula to semisimple Hopf algebras
whose character (representation) algebra is commutative in two ways analyzing
both the “fusion rules” and the “structure constants” adequately adapted from
group theory. We extend these to twistings of Hopf algebras.

Our best results are when H is also factorizable, for then we show that the
fusion rules and the structure constants are equal up to rational scalar multiples.

Much less is known about representations and characters of general finite-
dimensional Hopf algebras. While the building blocks in the representation theory
of finite-dimensional semisimple algebras are the irreducible modules, in the non-
semisimple case, a major role is also played by indecomposable projective modules.
Here we give a brief summary of a Verlinde-type formula for factorizable Ribbon
Hopf algebras proved in [5].

The paper is organized as follows. In Section 1 we study symmetric algebras
A and their associated Higman (trace) map τ given by

τ(a) =
∑

aiabi

where {ai, bi} are dual bases with respect to the symmetric bilinear form on A. Of
special importance are the central Casimir elements τ(1) =

∑
aibi. We investigate

some interrelations connecting the image under the map τ of primitive idempotents
and central primitive idempotents of A. We use these in Section 2 where we focus
on the character algebras of semisimple Hopf algebras H over an algebraically
closed field of characteristic 0. In this situation both H and its character algebra
C(H) are symmetric algebras. We use the primitive idempotents of C(H) and the
class equation adapted to our situation we give an explicit form of the central
Casimir element of C(H), which is also known to be χad, the character of the
adjoint map on H .

Let {χi} be a complete set of irreducible characters for H . Let {Ei} be
a complete set of central primitive idempotents for C(H) and let {ei} be the
corresponding set of primitive idempotents such that eiEi = ei for all i. We have:

Theorem 2.2. Let H be a semisimple Hopf algebra over an algebraically closed field
k. Then

χad =
n∑

j=1

χjs(χj) =
d∑

i=1

niEi

where ni = dim(C(H)ei) dim(H∗)
dim(H∗ei)

∈ Z for all i.
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In Section 3 we assume in addition that C(H) is commutative. We note that
in this case H is necessarily quasitriangular, hence we are in the situation described
by Witherspoon [28] (see Remark 3.10). Some of our results appear there, but our
approach is different.

We first show a Verlinde type formula for the fusion rules Mi = (mi
jk), where

χiχj =
∑

k mi
jkχk.

Theorem 3.1. Let H be a semisimple Hopf algebra over an algebraically closed field
of characteristic zero. Assume C(H) is commutative. Let A = (αij) be the change
of basis matrix from the full set of primitive idempotents {Ej}1≤j≤n to the full set
of irreducible characters {χi}1≤i≤n. Then

(i) A diagonalizes the fusion rules. That is, for each i, Di = A−1MiA.

(ii) χiEj = αijEj and thus {Ej} is a basis of eigenvectors for l(χi) for all i.

(iii) All αij are algebraic integers.

(iv) Let A−1 = (βjk). Then βjk = n−1
j αk∗j.

(v) The integers mi
js satisfy

mi
js =

∑
k

αikαjkαs∗k

nk
.

For semisimple Hopf algebras, C(H) and the center of H, Z(H), are dual
vector spaces. The set of central primitive idempotents of H, {Fi}, can be obtained
up to a scalar multiple as a dual basis to {χi} by taking Λ ↼ s(χi) where Λ is an
integral for H . In the same spirit class sums and conjugacy classes can be obtained
from the central primitive idempotents of C(H). Namely:

Definition 3.3. Let H be a semisimple Hopf algebra with an integral Λ so that
ε(Λ) = 1. Let Ei be a central primitive idempotent of C(H). Define the i-th class
sum Ci by:

Ci = dEi ⇀ Λ

where d = dim(H). Define the Conjugacy class Ci by:

Ci = H∗Ei ⇀ Λ = The right coideal of H generated by Ci.

Like in groups we show in Corollary 3.5 that Ci is stable under the adjoint
action by cocommutative elements of H .

Using this approach we prove in Proposition 3.7 a generalization of Little-
wood’s formula for groups and compute the structure constants of the multiplica-
tion of class sums in the spirit of the general Verlinde formula, now taking place
in the center of H .

Let D̂i = d
ni

diag{α1i

d1
, α2i

d2
, . . . , αni

dn
}. Let M̂i ∈ Matn(k) be the matrix of l(Ci)

with respect to the basis {Cj}. Let Â = (α̂ij) be the change of basis matrix from
{Ci} to {Fj}. We prove:
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Theorem 3.8. Let H be a semisimple Hopf algebra over an algebraically closed
field of characteristic zero. Assume C(H) is a commutative algebra. Let {Ei} be
a full set of primitive idempotents of C(H) and let {Fi} be a full set of primitive
idempotents in Z(H). Let Ci = dEi ⇀ Λ. Then:

(i) Â diagonalizes the structure constants. That is, for each i,

D̂i = Â−1M̂iÂ.

(ii) CiFj = α̂ijFj and thus {Fj} is a basis of eigenvectors for l(Ci) for all i.
(iii) Let Â−1 = (β̂kt). Then β̂kt = dk

d αk∗t.
(iv) CiCj =

∑
t ci

jtCt where ci
jt satisfies

ci
jt =

d

ninj

∑
k

αkiαkjαk∗t

dk
.

We end this section by showing

Corollary 3.12. Let H be as in Theorem 3.1. Then class sums and all the structure
constants are invariant under dual Hopf cocycles J .

In Section 4 we specialize to semisimple factorizable Hopf algebras. Using the
Drinfeld map we get the sharpest connection:

Theorem 4.3. Let (H, R) be a factorizable semisimple Hopf algebra. Let χi, Cj, di,
αij , ct

ij, mi
jt be as in Theorem 3.1 and Theorem 3.8. Then the structure constants

ci
jt are given by:

ci
jt =

didj

dt
mi

jt.

If we omit the semisimplicity assumption and assume that H is only a sym-
metric algebra we no longer consider the whole Z(H), but the Higman ideal,
sometimes called the projective center since it is isomorphic via a translated
Fourier transform to I(H) ⊂ C(H). The reason for the second name is that
I(H) is spanned over k by the set of all characters of finitely generated projective
H-modules. We explain the setup and repeat our Verlinde-type formula for this
situation:

Let (H,R, v) be a factorizable ribbon Hopf algebra, let u =
∑

(SR2)R1, and
G = u−1v. Set for all p ∈ H∗, fQ(p) =

∑〈
p, R2r1

〉
R1r2 and f̂Q(p) = fQ(p ↼

G). Define also for a ∈ H, Ψ̂(a) = λ ↼ S−1(aG). Let {Vi} be a full set of
non-isomorphic irreducible left A-modules of corresponding dimensions di, and let
{fi} be the corresponding orthogonal primitive idempotents. Let C be the Cartan
matrix of H of rank r and let Cr be the invertible r × r minor of C. We show:

Theorem 4.4. Let (H,R, v) be a factorizable ribbon Hopf algebra over an alge-
braically closed field of characteristic 0. Let sij =

〈
f̂Q(χi), s(χj)

〉
and let Q =

(qkl) =
〈
fl, Ψ̂f̂Q(pfk

)
〉
. Then F = Q−1Cr diagonalizes the “projective fusion

rules” Ni. That is, for all 1 ≤ i ≤ n,
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(i) F−1NiF = Diag{d−1
1 si1, . . . , d

−1
r sir}.

(ii) Eigenvectors for Lf̂Q(χi)
are

∑
Λ1GS(fj)S(Λ2), with corresponding eigenval-

ues d−1
j sij.

(iii) {d−1
j sij} are algebraic integers.

Throughout the base field k is assumed to be algebraically closed of charac-
teristic zero.

For each finite-dimensional left A-module V denote its structure map A →
Endk(V ) by ρV . Then the character χV of V is defined by

χV (a) = Trace(ρV (a)).

Note that χV (1) = dimk(V ). We denote by χA the character of the left (right)
regular representation. That is V = A and the representation is given by ρ(a) =
l(a) = left multiplication by a.

1. Frobenius and symmetric algebras

Our basic reference for symmetric algebras will be the paper of Broue [2] who gives
a comprehensive presentation of this subject. In what follows we integrate some
of the crucial ingredients in the study of symmetric or Frobenius algebras to give
a self contained exposition and some new results.

Throughout this paper we regard A∗A (AA∗) as a right (left) A-module via
the transpose of multiplication on A as follows:

〈p ↼ a, b〉 = 〈p, ab〉 〈a ⇀ p, b〉 = 〈p, ba〉
where a, b ∈ A, p ∈ A∗.

Definition 1.1 (e.g., [8, p. 197]). An n-dimensional algebra A is a Frobenius algebra
if AA

∼= A∗A as right A-modules. Equivalently, AA ∼=A A∗ as left A-modules. Denote
the A-module isomorphism by φ. The following are equivalent:

(i) There exists an associative bilinear form β : A ⊗ A → k which is non-
degenerate. The form β is given by β(a, b) = 〈φ(a), b〉.

(ii) There exists t ∈ A∗ so that the map φ given by φ(a) = (t ↼ a) is a right
A-modules isomorphism. Equivalently, a �→ (a ⇀ t) is a left A-modules
isomorphism. t is defined by t = φ(1) and A∗ is a free A-module with a basis
t. Conversely, given t, then the A-module map φ is determined by φ(1) = t.

(iii) There exist t ∈ A∗, ai, bi ∈ A, i = 1, . . . , n, such that for all x ∈ A,

x =
∑

ai 〈t, bix〉 (1)

We say that {ai, bi} form dual bases for the form β. In this case {t ↼ bi, ai} are
standard dual bases of A∗ and A. Equivalently,

x =
∑

〈t, xai〉 bi

and thus {ai ⇀ t, bi} are dual bases of A∗ and A respectively.
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The following is well known:

Example 1.2. Any finite-dimensional Hopf algebra H is a Frobenius algebra as
follows: Let Λ be a left integral in H , then t = λ, where λ is a right integral in H∗

so that 〈λ, Λ〉 = 1. The dual bases with respect to t are {S(Λ2), Λ1}.
For any finite-dimensional vector space V, V ∗⊗V ∼= Endk(V ) via (p⊗v)(v′) =

v 〈p, v′〉 for all v, v′ ∈ V, p ∈ V ∗. In the opposite direction, f ∈ Endk(V ) corre-
sponds to

∑
i v∗i ⊗ f(vi) for dual bases of V ∗ and V . Recall Tr(p⊗ v) = 〈p, v〉.

As a result of the above there is a general trace formula for Frobenius algebras.
This generalizes Radford trace formula for Hopf algebras.

Lemma 1.3. Let (A, t) be a Frobenius algebra with dual bases {ai, bi}, and let
f ∈ Endk(A), then

Tr(f) =
∑

〈t, f(bi)ai〉 =
∑

〈t, bif(ai)〉 .

Proof. As in Def. 1.1.(iii), let {ai ⇀ t, bi} be dual bases of A∗ and A resp. Express

f =
∑

b∗i ⊗ f(bi) =
∑

(ai ⇀ t)⊗ f(bi).

Then Tr(f) =
∑ 〈(ai ⇀ t), f(bi)〉 =

∑ 〈t, f(bi)ai〉. The second equality fol-
lows if one takes {t ↼ bi, ai} as dual bases of A∗ and A resp. �

Remark 1.4. For a Frobenius algebra (A, t), A ⊗ A ∼= Endk(A) by a ⊗ b �→ (a ⇀
t) ⊗ b ∈ A∗ ⊗ A. It follows that for any dual bases {ai, bi} the element

∑
ai ⊗ bi

is mapped to IdA by (1). Thus
∑

ai ⊗ bi is independent of the dual bases. It is
called the Casimir element of (A, t).

The following lemma appears as a remark in [25], it follows from Remark 1.4.

Lemma 1.5. Let (A, t) be a Frobenius algebra with dual bases {ai, bi}, then in A⊗A
we have the identity ∑

xai ⊗ bi =
∑

ai ⊗ bix

for all x ∈ A.

Let (A, t) be as above, define the Higman (trace) map τ : A → A by

τ(a) =
∑

aiabi (2)

for all a ∈ A.

Lemma 1.6. Let (A, t) be a Frobenius algebra with dual bases {ai, bi} and let τ be
the map given in (2). Then τ(a) ∈ Z(A) for all a ∈ A.

Proof. For all a, x ∈ A we have by Lemma 1.5∑
xai ⊗ a⊗ bi =

∑
ai ⊗ a⊗ bix.

Multiplying yields
∑

xaiabi =
∑

aiabix, hence the result follows. �
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In particular the element

τ(1) =
∑

aibi

is called the central Casimir element of (A, t).

For each a ∈ A denote by r(a), l(a) right and left multiplication by a. Define
pa ∈ A∗ by

〈pa, b〉 := Tr(l(b) ◦ r(a)) (3)
for all b ∈ A.

Remark 1.7.

(i) For a fixed non-idempotent a, the correspondence b �→ l(b) ◦ r(a) : A → A
is not multiplicative, while for an idempotent e it is. In this case, ρ(b) =
l(b) ◦ r(e) is a representation of A. In fact, ρ is the representation given by
left multiplication on Ae. Thus pe = χAe.

(ii) Since 〈χe, 1〉 = dim(Ae) for any idempotenet e, it follows that if char(k) = 0
then pe �= 0. This is not necessarily true for positive characteristic. It may
very well happen that pa = 0 for all a ∈ A (see, e.g., [5, Ex.1.4].

Definition 1.8. Let (A, t) be a Frobenius algebra. If

〈t, ab〉 = 〈t, ba〉
for all a, b ∈ A, then t is called a central form and (A, t) is called a symmetric
algebra.

The following are basic examples of symmetric algebras over any field k.

Example 1.9.

1. The group algebra kG, where k is a field and G is a finite group is a motivating
example for both Hopf algebras and symmetric algebras. The set {g}g∈G

is a (standard) k-basis for kG, and as is well known, its k-dual is also a
Hopf algebra with a dual basis {πg}g∈G, where πg is the projection into the
g-component. The symmetric form is defined by π1, the projection onto k1.
Dual bases for this form are {g, g−1}g∈G and the central Casimir element
is |G| · 1.

2. The simple algebra Mn(k). The central form is the usual trace of a matrix
and dual bases are {eij, eji} where eij are the matrix units. The central
Casimir element is nI. Similarly, any finite-dimensional semisimple algebra
is a symmetric algebra [11].

3. Any finite-dimensional unimodular Hopf algebra so that S2 is an inner auto-
morphism [22].

When (A, t) is a symmetric algebra then the isomorphism φ is a left and
right A-module map and the form β is symmetric. We then have

∑
ai 〈t, bix〉 =∑

ai 〈t, xbi〉. Hence if {ai, bi} are dual bases, so are {bi, ai}. Remark 1.4 implies
the following:
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Corollary 1.10. Let (A, t) be a symmetric algebra, then∑
ai ⊗ bi =

∑
bi ⊗ ai.

The following appears in a different context in [2].

Proposition 1.11. Let (A, t) be a symmetric algebra with dual bases {ai, bi}, then
for all a ∈ A,

t ↼ τ(a) = pa.

Proof. For all b ∈ A, we have by Lemma 1.3:

〈pa, b〉 = Tr(l(b) ◦ r(a)) =
∑

〈t, bbiaai〉 .
By Corollary 1.10∑

〈t, bbiaai〉 = 〈t, baiabi〉 =
∑

〈t, bτ(a)〉 = 〈t ↼ τ(a), b〉 ,
where the last equality follows since t is a central form. This concludes the proof
of the proposition. �

As a corollary we have:

Corollary 1.12. Let (A, t) be as in Proposition 1.11, then:
(i) For all a ∈ A,

τ(a) =
∑

i

〈pa, ai〉 bi.

(ii) Let e be an idempotent, then

τ(e) =
∑

i

〈χAe, ai〉 bi.

Moreover,
dim(Ae) = 〈t, τ(e)〉 .

Proof. (i) This follows from (1) and Lemma.1.3, for

τ(a) =
∑

〈t, τ(a)ai〉 bi =
∑

〈pa, ai〉 bi.

(ii) The first part follows from (i) since pe = χAe. The second part follows
since by Proposition 1.11

〈t, τ(e)〉 = 〈pe, 1〉 = 〈χAe, 1〉 = dim(Ae). �

In what follows we investigate some interrelations between traces of idempo-
tents.

Proposition 1.13. Let (A, t) be a symmetric algebra with dual bases {ai, bi} over a
field of characteristic zero. Let e be a primitive idempotent of A and let E be the
unique central primitive idempotent so that Ee = e. Then

(i) τ(e) = αE, α �= 0 and τ(E) = τ(1)E.

When A is semisimple, then
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(ii) τ(E) = dim(Ae)τ(e),

(iii) 〈pe, τ(e)〉 =
〈pe, τ(1)〉
dim(Ae)

,

(iv) α =
〈pe, τ(e)〉
dim(Ae)

=
〈pe, τ(1)〉
dim(Ae)2

.

Proof. (i) Since τ(e) is central in A and E is central primitive it follows that
τ(e) = τ(e)E = αE. Moreover, τ(e) �= 0 by Corollary 1.12(ii). Hence α �= 0.

(ii) If Ae ∼= Ae′ then pe = χAe = χAe′ = pe′ , hence by Proposition 1.11 τ(e) =
τ(e′). Now, when A is semisimple then E =

∑m
i=1 ei so that Aei

∼= Aej for all
1 ≤ i, j ≤ m, hence τ(E) =

∑m
i=1 τ(ei), and m = dim(Ae)).

(iii) By definition of pe and since Ee = e we have pe ↼ E = pe. By (ii), τ(e) =
dim(Ae)−1τ(1)E. Thus

〈pe, τ(e)〉 = dim(Ae)−1 〈pe, τ(1)E〉 = dim(Ae)−1 〈pe, τ(1)〉 .

(iv) Applying pe to both sides of (i) yields

〈pe, τ(e)〉 = α 〈pe, E〉 = α 〈pe, 1〉 = α dim(Ae).

The result follows now by using (iii). �

Remark 1.14. Kilmoyer’s result (see [8, (9.17)]) about split semisimple algebras A
over a field of characteristic zero is a special case of 1.11–1.13. Let Vj

∼= Aej be
an irreducible A-module with corresponding character χj . The right-hand side of
1.12(ii) is

∑
i 〈χj , ai〉 bi which is denoted there by dj is τ(ej) in our terms.

2. Character algebras of semisimple Hopf algebras

The study of Hopf algebras as Frobenius algebras and sometimes symmetric alge-
bras has appeared for example in works of Oberst-Schneider [22], Schneider [25],
Lorenz [20], Kadison-Stolin [17] and Cohen-Westreich [4, 5]. A survey on the rep-
resentation theory of semisimple Hopf algebras from this point of view appears in
Montgomery’s survey [21].

Let H be a Hopf algebra over an algebraically closed field k of characteristic
zero, with an integral Λ so that ε(Λ) = 1. For Hopf algebras H we use Sweedler’s
notation Δ(h) =

∑
h1⊗h2 for h ∈ H . Let S and s denote the antipodes of H and

H∗ respectively.
If H is semisimple then H ∼=

∏n
i=1 Mdi(k). Let Fi be the primitive central

idempotent of H such that HFi
∼= Mdi(k). Let Vi be the corresponding irreducible

left H-module, ρi the irreducible representation H �→ End(Vi) ∼= HFi and let χi be
the corresponding character. Then dimVi = di with d1 = 1. Let Λ = F1, χ1 = ε.
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Recall [18] that

λ = χH =
∑

diχi.

is an integral for H∗ satisfying 〈λ, Λ〉 = 1. Since H is a Hopf algebra, V ⊗W is a
left H-module for any left H-modules V and W via

h · (v ⊗ w) =
∑

h1 · v ⊗ h2 · w

for all v ∈ V, w ∈ W, h ∈ H . Since the product in H∗ is a convolution product, it
follows that the character of V ⊗W satisfies

χ
V ⊗W

= χ
V
χ

W
.

Let RZ(H) =
∑n

i=1 Zχi be its characters ring. Larson [18] extended the
orthogonality of characters from groups to semisimple Hopf algebras. That is

〈Λ, χis(χj)〉 = δij . (4)

This implies in particular that RZ(H) is a finite free Z-module. Let C(H) be the
algebra of all cocommutative elements of H∗. It is known that C(H) = R(H) =
k ⊗Z RZ(H). Moreover, by Kac-Zhu [10, 29], C(H) is a semisimple algebra.

Since 〈χj , Fih〉 = δij 〈χi, h〉 for all h ∈ H , we have in particular, 〈χj , Fi〉 =
δijdi. Hence{

χi,
Fj

dj

}
are dual bases for C(H) and Z(H) respectively. (5)

Now, (4) can be rewritten as 〈χi, Λ ↼ s(χj)〉 = δij , hence (5) implies by the
uniqueness of the dual basis, that for all j,

Λ ↼ s(χj) =
Fj

dj
. (6)

Define a form on C(H) by:

β(p, q) = 〈Λ, pq〉
where p, q ∈ C(H). That is, the element t corresponding to the symmetric form
β is given by t = Λ̂ ∈ (C(H))∗, where

〈
Λ̂, p

〉
= 〈Λ, p〉 for all p ∈ C(H). By

the orthogonality of characters this form is non-degenerate and it is obviously
associative. Since Λ is cocommutative it follows that β is symmetric with dual
bases {χi, s(χi)}. That is, its Casimir element is given by:

Casimir element =
n∑

i=1

χi ⊗ s(χi). (7)

Denote by τC the Higman map corresponding to (C(H), Λ). In the following The-
orem 2.2 we shall explicitly compute the corresponding central Casimir element.

In [20] Lorenz gave a short proof of the class equation [10, 29]. In what follows
we basically use his arguments.



Higman Ideals and Verlinde-type Formulas 101

Let E be a central primitive idempotent in C(H) and let e be a primitive
idempotent in C(H) so that eE = e. Assume dim(C(H)e) = m, m a positive
integer. By [18], χH∗ = dim(H∗)Λ. Hence we have:

dim(H∗E) = 〈χH∗ , E〉 = dim(H∗) 〈Λ, E〉 . (8)

Ring theory considerations imply also

m =
dim(C(H)E)
dim(C(H)e)

=
dim(H∗E)
dim(H∗e)

. (9)

The second equality follows since H∗ ∼= H∗ ⊗C(H) C(H), hence H∗e ∼=
H∗ ⊗C(H) C(H)e and H∗E ∼= H∗ ⊗C(H) C(H)E ∼= H∗ ⊗C(H) (C(H)e)m.

In what follows we explicitly compute α of Corollary 1.12.

Proposition 2.1. Let H be a semisimple Hopf algebra and let C(H) be the algebra
of cocommutative elements in H∗. Let e ∈ C(H) be a primitive idempotent and let
E ∈ C(H) be a central primitive idempotent so that Ee = e. Then τC(e) = αE and
τC(E) = mαE where α = dim(H∗)

dim(H∗e) is a positive integer and m = dim(C(H)e).

Proof. We first show that τC(e) is integral over Z. Since RZ(H) is free over Z it
follows that any character χ satisfies a monic polynomial over Z and hence so does
its image under the representation ρC(H)e and all its eigenvalues as well. It follows
that 〈pe, χ〉 = trace(ρC(H)e(χ)) ∈ A where A is the ring of algebraic integers. By
Corollary 1.12.1 applied to e ∈ C(H),

τC(e) =
∑

〈pe, χi〉 s(χi) ∈ A⊗Z RZ(H)

is integral over Z.
By Corollary 1.12.3, if p(τC(e)) = 0 where p(x) ∈ Z[x] with leading coeffi-

cient 1, then p(τC(e)) = p(α)E = 0. It follows that α is an algebraic integer. By
Proposition 1.13(i) and Corollary 1.12.(ii) with t = Λ̂,

〈Λ, E〉 = α−1 〈Λ, τC(e)〉 = mα−1.

Substituting it in (8) yields

dim(H∗E) = dim(H∗)mα−1.

Hence

α =
m dim(H∗)
dim(H∗E)

=
dim(H∗)
dim(H∗e)

∈ Q. (10)

The last equality follows from (9). Since α is an algebraic integer we have
α ∈ Z. �

Proposition 2.1 enables us to compute the central Casimir element τC(1)
for C(H). Let {χj}1≤j≤n be a complete set of irreducible characters for H . Let
{Ei}1≤i≤d be a complete set of central primitive idempotents for C(H) and let
{ei} be a corresponding set of primitive idempotents such that eiEi = ei for all i.
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Theorem 2.2. Let H be a semisimple Hopf algebra over an algebraically closed field
k of characteristic 0. Then

χad =
n∑

j=1

χjs(χj) =
d∑

i=1

niEi

where ni = dim(C(H)ei) dim(H∗)
dim(H∗ei)

∈ Z for all i.

Proof. C(H) is a symmetric algebra with a Casimir element given in (7), hence
τC(1) =

∑
χis(χi). By Corollary 1.12.3, each Ei satisfies τC(1)Ei = τC(Ei) =

βiEi, where βi = dim(C(H)ei)αi and αi = dim(H∗)
dim(H∗ei)

by (10). Since τC(1) =∑
i τC(1)Ei, the result follows. �

Remark 2.3.

1. When H = (kG)∗ then C(H) = kG and the characters are the group el-
ements. In this case all the coefficients ni equal dim H , which agrees with
Example 1.9.1.

2. When H = kG then C(H) is commutative, and thus

ni =
dim(H∗)

dim(H∗Ei)
.

Moreover, this fact is true for all H as in Theorem 2.2, whenever C(H) is
commutative. This case will be considered in the next section.

3. C(H) is a commutative algebra

Assume C(H) is a commutative algebra. It is well known [14], that if H is a
quasitriangular Hopf algebra then C(H) is a commutative algebra. But when H is
semisimple and char(k) = 0 then the converse is also true. This is a consequence
of the following Tanaka-Krein-type theorem (see, e.g., [15]):

Theorem. Let (A, m, 1) be a finite-dimensional algebra and let Rep(A) be the cat-
egory of left A-modules. Then there exists a bijection between rigid braided tensor
structures on Rep(A) and quasitriangular Hopf algebra structures on (A, m, 1).

Now, when H is semisimple over k of characteristic zero then there exists
a bijection V �→ χV between objects of Rep(A) and the set of characters on H .
Assuming C(H) is commutative implies that χV⊗W = χW⊗V , hence V ⊗W ∼=
W⊗V , thus Rep(H) is braided and by the theorem above, H is quasitriangular. We
are thus in the situation described by Witherspoon in [28]. Some of the following
results appear also there, but our approach is different.

As a semisimple commutative algebra, C(H) is a direct sum of fields. Thus
it has two set of bases: {χ1, . . . χn}, the set of irreducible characters for H and
{E1 . . . En}, the complete set of primitive idempotents of C(H). Set

ni =
dim(H∗)

dim(H∗Ei)
=

1
〈Ei, Λ〉

(11)
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The second equality follows from (8). By Proposition 2.1, we have that ni

are integers for all i.
Recall l(χi) is left multiplication of C(H) by χi. Then for all i, j,

l(χi)(χj) = χiχj =
∑

s

mi
jsχs (12)

where mi
js ∈ N. These are the so-called “fusion rules”. The change of basis matrix

is given by A = (αij), where

χi =
∑

j

αijEj . (13)

We denote by i∗, j∗ the indexes relating S(χi), s(Ej) respectively. Applying
s to both sides of (13) yields

αij = αi∗j∗ .

Since {Ei} are orthogonal idempotents, (13) implies

χiEj = αijEj (14)

and so Ej is an eigenvector for l(χi). The corresponding eigenvalue is αij .

Let Mi ∈ Matn(Z) be the matrix of l(χi) with respect to the basis {χj},
that is, (Mi)js = mi

js as in (12). Let Di = diag{αi1, αi2, . . . , αin}. We are ready
to prove a general Verlinde formula for the fusion rules:

Theorem 3.1. Let H be a semisimple Hopf algebra over an algebraically closed field
of characteristic zero. Assume C(H) is commutative. Let A = (αij) be the change
of basis matrix from the full set of primitive idempotents {Ej}1≤j≤n to the full set
of irreducible characters {χi}1≤i≤n. Then

(i) A diagonalizes the fusion rules. That is, for each i, Di = A−1MiA.
(ii) χiEj = αijEj and thus {Ej} is a basis of eigenvectors for l(χi) for all i.
(iii) All αij are algebraic integers.
(iv) Let A−1 = (βjk). Then βjk = n−1

j αk∗j.
(v) The integers mi

js satisfy

mi
js =

∑
k

αikαjkαs∗k

nk

Proof. (i) and (ii) follow from (13).

(iii) Since l(χi) with respect to the basis {χj} has integral coefficients, and since
αij are all eigenvalues, it follows that αij are all algebraic integers.

(iv) Since {χi,
Fk

dk
} form dual bases, we have

Ej =
∑

k

〈
Ej ,

Fk

dk

〉
χk.
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Hence,

βjk =
〈

Ej ,
Fk

dk

〉
= 〈Ej , Λ ↼ s(χk)〉 (by (6))

= 〈s(χk)Ej , Λ〉
= αk∗j 〈Ej , Λ〉 (by (14))

= αk∗jn
−1
j (by (11))

Thus we obtain

βjk =
〈

Ej ,
Fk

dk

〉
= n−1

j αk∗j . (15)

(v) By (i) Mi = ADiA−1. Hence the result follows from (iv). �
Remark 3.2. In [7, Theorem 2.3] it was proved that if A is a separable semisimple
n-dimensional commutative algebra over a field k, then one can choose a matrix
Y so that Y diagonalizes simultaneously all l(b), b ∈ A, and the entries of Y
consist of the various eigenvalues. The matrix does not necessarily satisfy (iii)–(v)
of Theorem 3.1.

We wish to relate the Verlinde formula for the fusion rules to the structure
constants of the product of conjugacy classes in groups. In what follows we define
an analogue of the class sums for Hopf algebras, it reduces to the usual definition
when applied to finite group. To see this let H = kG, G a finite group. Then
Λ = 1

|G|
∑

g∈G g and |G| = dim(H) = d. Moreover, Ei =
∑

g∈Ci πg. The conjugacy
classes and the class sums for G are defined respectively by:

Ci = {g−1xig, g ∈ G} and Ci =
∑
g∈Ci

g.

Thus kCi is the left coideal (in fact the subcoalgebra) of kG generated by the central
element Ci. We have Ci = dEi ⇀ Λ, and |Ci| = dim(EiH

∗). This motivates the
following definition:

Definition 3.3. Let H be a semisimple Hopf algebra with an integral Λ so that
ε(Λ) = 1. Let {Ei} be the full set of central primitive idempotents of C(H).
Define the i-th class sum Ci by:

Ci = dEi ⇀ Λ (16)

where d = dim(H). Define the Conjugacy class Ci by:

Ci = H∗Ei ⇀ Λ = The left coideal of H generated by Ci.

In what follows we prove a general fact which when restricted to groups is
natural.

Proposition 3.4. Let H be a finite-dimensional Hopf algebra so that S2 = Id. Let z
be a central element and let I be the right coideal generated by z. Then h ·ad I ⊂ I
for all cocommutative elements h of H.
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Proof. Let h ∈ H be a cocommutative element and let p ∈ H∗. Then:

h ·ad (p ⇀ z)

=
∑

h1(p ⇀ z)Sh2

=
∑

h1 (p1 ⇀ (z(Sp2 ⇀ Sh2)))

=
∑

p2 ⇀
(
(s−1(p1) ⇀ h1)z(s(p3) ⇀ Sh2)

)
=
∑

p2 ⇀ (
〈
s−1(p1), h2

〉
〈s(p3), Sh3〉h1zSh4

=
∑〈

s−1(p1), h1

〉
〈p3, h2〉 p2 ⇀ z (since z ∈ Z(H) and h is cocommutative)

=
∑

〈s(p1)p3, h〉 p2 ⇀ z

which is an element of H∗ ⇀ z = I. �

As a corollary we obtain a generalization of the following obvious fact in
groups:

Corollary 3.5. The conjugacy classes Ci are stable under the adjoint action by
cocommutative elements of H.

In what follows we discuss various bases for C(H) and Z(H). Note that:

ni

d
〈Ci, Ej〉 =

nj

d
〈dEi ⇀ Λ, Ej〉 = δijnj 〈Λ, Ej〉

by (11)
= δij .

Hence {
Ei,

ni

d
Ci

}
are dual bases for C(H) and Z(H) respectively. (17)

We wish to compute now change of basis matrix from {Ci} to {Fj} in Z(H).
Observe that the following two bases of C(H), B1 = {χi} and B2 = {Ei} have
a change of basis matrix A = (αij) given in (13), and that their duals are B∗1 =
{ 1

di
Fi} and B∗2 = {ni

d Ci} by (5) and (17) respectively. Hence the change of basis
matrix from B∗2 to B∗1 is At. That is:

ni

d
Ci =

∑
j

αji
1
dj

Fj .

Equivalently,

Ci =
d

ni

∑
j

αji
1
dj

Fj . (18)

Taking the inverse of At we obtain by (15)

Fk =
dk

d

∑
t

αk∗tCt. (19)
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Recall, when H is a semisimple Hopf algebra over an algebraically closed field
of characteristic 0 then (H, λ) is a symmetric algebra with a Casimir element∑

Λ1 ⊗ SΛ2

Denote by τH the Higman map corresponding to the above Casimir element.
Note that the central Casimir element is τH(1) = ε(Λ) = 1. We show the following.

Proposition 3.6.

(i) Let x ∈ H, then 〈p, x〉 = 〈p, τH(x)〉 for all p ∈ C(H), and τH(x) = 0 if and
only if 〈p, x〉 = 0 for all p ∈ C(H).

(ii) If x ∈ Ci then for all k, 〈Ek, x〉 = δikε(x). Hence

〈χk, x〉 = αkiε(x) and 〈χk, Ci〉 =
d

ni
αki.

(iii) If x ∈ Ci then

τH(x) =
ni

d
〈Ei, x〉Ci.

Thus ε(x) = 0 if and only if τH(x) = 0.

Proof. (i) For all p ∈ C(H), 〈p, τH(x)〉 = 〈p, Λ1xS(Λ2)〉 = 〈p, x〉. It follows that if
τH(x) = τH(y) then 〈p, x〉 = 〈p, y〉. Conversely, 〈p, x〉 = 0 implies 〈p, τH(x)〉 = 0
for all p ∈ C(H). Since τH(x) ∈ Z(H) which is dual to C(H), it follows that
τH(x) = 0.
(ii) By definition, each x ∈ Ci satisfies x = pEi ⇀ Λ for some p ∈ H∗. We have
then 〈Ej , x〉 = 〈Ej , pEi ⇀ Λ〉 which since Λ is cocommutative equals δij 〈pEi, Λ〉 =
δijε(x). The second part follows now from (11), the definition of Ci and (13).
(iii) By (17), τH(x) =

∑
j 〈Ej , τH(x)〉 nj

d Cj . Since Ej ∈ C(H) and xi ∈ Ci, this
equals by (i) to

∑
j 〈Ej , x〉 nj

d Cj = ni

d 〈Ei, x〉Ci. The last part is a direct conse-
quence of the results above. �

We use Proposition 3.6 to prove a generalization of Littlewood’s formula for
groups [8, p. 225]:

χi(g−1
j ) = |CG(gj)|

∑
x∈Cj

αx

where gj ∈ Cj , fi =
∑

x∈G αxx is a primitive idempotent of kG corresponding to
χi. Observe that

∑
x∈Cj

αx = 〈Ej , fi〉 and |CG(gj)| = nj.

Proposition 3.7. Let H, Ej , χi, Cj , Cj, Fi, nj be as above. Let fi be a primitive idem-
potent of H so that fiFi = Fi. Then for all x ∈ Cj,

〈s(χi), x〉 = ε(x)nj 〈Ej , fi〉 .

Proof. By (18), 〈χi, Cj〉 = d
nj

αij . Hence by Proposition 3.6,

〈s(χi), x〉 = 〈s(χi), τH(x)〉 =
nj

d
〈Ej , x〉 〈s(χi), Cj〉 = ε(x)αi∗j .
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On the other hand, by Proposition 1.13(ii), using τH(1) = 1, we have τH(fi) =
1
di

Fi. By (15) we have 〈Ej , Fi〉 = di

nj
αi∗j for all j. Thus

ε(x)nj 〈Ej , fi〉 = ε(x)nj 〈Ej , τ(fi)〉 = ε(x)
nj

di
〈Ej , Fi〉 = ε(x)αi∗j . �

We can compute now the structure constants of the product defined on the
Ci’s in the spirit of the general Verlinde formula. Since {Ci} is a k-basis for Z(H)
we have:

CiCj =
∑

t

ci
jtCt (20)

Let D̂i = d
ni

diag{α1i

d1
, α2i

d2
, . . . , αni

dn
}. Let M̂i ∈ Matn(k) be the matrix of l(Ci)

with respect to the basis {Cj}, that is, (M̂i)jt = ci
jt as in (20). Let Â = (α̂ij) be

the change of basis matrix from {Ci} to {Fj}. Then by (18), α̂ij = d
nidj

αji, where
αij are as in (13).

Theorem 3.8. Let H be a semisimple Hopf algebra over an algebraically closed
field of characteristic zero. Assume C(H) is a commutative algebra. Let {Ei} be
a full set of primitive idempotents of C(H) and let {Fi} be a full set of primitive
idempotents in Z(H). Let Ci = dEi ⇀ Λ. Then:

(i) Â diagonalizes the structure constants. That is, for each i,

D̂i = Â−1M̂iÂ.

(ii) CiFj = α̂ijFj and thus {Fj} is a basis of eigenvectors for l(Ci) for all i.
(iii) Let Â−1 = (β̂kt). Then β̂kt = dk

d αk∗t.
(iv) CiCj =

∑
t ci

jtCt where ci
jt satisfies

ci
jt =

d

ninj

∑
k

αkiαkjαk∗t

dk
.

Proof. Items (i), (ii) and (iii) follow from (18) and (19). (iv) follows since ci
jt = M̂i

jt

and M̂i = ÂD̂iÂ−1 by (i). The result follows now from (iii). �

In the following example we show that when H = kG, G a finite group, then
the formula in Theorem 3.8(iv) is just the formula for the structure constants
recovered from the character table.

Example 3.9. Let H = kG, G a finite group. Since |Ci| = dim(H∗Ei), we have
ni = |G|

|Ci| = |CG(gi)|, where gi is an element of Ci.
For a group G, its character table (see [8, p. 213])is the matrix (ξj

i ) whose rows
are indexed by the irreducible characters and columns by the conjugacy classes.
It takes the form ξj

i = χj(gi). Now, by Proposition 3.6(ii) and since ε(gi) = 1, we
have

ξj
i = χj(gi) = αji.
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Thus (20) gives the known formula for the structure constants for groups
(see, e.g., [23, p. 45]). That is:

ci
jt =

|Ci||Cj |
|G|

∑
k

ξk
i ξk

j ξk
t∗

dk
.

Remark 3.10. The approach taken in [28], is to use throughout μi, irreducible
characters on the representation ring of H . Class sums ςi are defined there as well.
By using our approach,

μi = Λ ↼ niEi

Thus μi = ni

d Ci and so

ςi =
d

ni
μi = Ci

Moreover, the coefficients μi(Vj) appearing in the character table in [28], in
our setup turn out to be:

μi(Vj) = αji =
〈ni

d
Ci, χj

〉
=

ni

dj
〈Ei, Fj∗〉

The concept Conjugacy classes for Hopf algebras is not defined there.

Our next assertion is that the structure constants are invariants under twist-
ing in the sense of Drinfeld [13]. A dual Hopf 2-cocycle (=twist) for H is an
invertible element J ∈ H ⊗H which satisfies:

(Δ⊗ Id)(J)(J ⊗ 1) = (Id⊗Δ)(J)(1 ⊗ J)

(ε⊗ Id)(J) = (Id⊗ε)(J) = 1.

Given a twist J , one can define a new Hopf algebra structure HJ on the
algebra (H, m, 1). The new comultiplication and the antipode are given by:

ΔJ(a) = J−1Δ(a)J SJ(a) = QS(a)Q−1

for every a ∈ H , where Q = m ◦ (S ⊗ Id)(J). When H is finite dimensional then
J ∈ H ⊗H ∼= (H∗ ⊗H∗)∗ can be considered as a linear form σ : H∗ ⊗H∗ → k.

Thus we have the following [12]:
A linear form σ : H ⊗ H → k is called a Hopf 2-cocycle for H if it has an

inverse σ−1 under the convolution product ∗ in Homk(H ⊗H, k), and satisfies the
cocycle condition:∑

σ(a1, b1)σ(a2b2, c) =
∑

σ(b1, c1)σ(a, b2c2) (21)

σ(a, 1) = ε(a) = σ(1, a)
for all a, b, c ∈ H . Given a Hopf 2-cocycle σ for H , one can construct a new
Hopf algebra structure Hσ on the coalgebra (H, Δ, ε). The new multiplication is
given by

a ·σ b =
∑

σ(a1, b1)a2b2σ
−1(a3, b3)

for all a, b ∈ H . We have
(HJ )∗ = (H∗)σ.
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It is known that when H is finite dimensional then the tensor category of
left (right) H-modules is equivalent to that of left (right) HJ -modules. Hence
their algebras of characters are the same. We show it in the next lemma for all
cocommutative elements of H∗,

Lemma 3.11. Let H be a finite-dimensional Hopf algebra. Then:
(i) C(H) = C(HJ ) as algebras.
(ii) If H is also semisimple then λ is an integral in (H∗)σ, and for all p ∈

C(H), Λ ↼ p = ΛJ ↼ p, where ΛJ denotes the integral Λ with the new
comultiplication.

Proof. (i) If p and q are cocommutative then p ·σ q =
∑

σ(p1, q1)p2q2σ
−1(p3, q3) =∑

σ(p2, q2)p3q3σ
−1(p1, q1) = pq.

(ii) λ is an integral since λ = χH which was not changed as the multiplication
in H was not changed. The last part follows from the dual basis property (which
appears in [24] for the case of Hopf algebras). It states that Λ ↼ (λ ↼ a) = S−1(a)
for all a ∈ H . But ΛJ ↼ (λ ↼ a) = (SJ)−1(a) as well. Since S(a) = SJ(a) for all
a ∈ Z(H), and since λ ↼ Z(H) = C(H), the result follows. �

We can show now

Corollary 3.12. Let H be as in Theorem 3.1. Then class sums and all the structure
constants are invariant under dual Hopf cocycles J .

Proof. Lemma 3.11 implies that {χi} and {Ei} are the same sets for H∗ and
(H∗)σ. It follows that the coefficients αij in (13) and the fusion coefficients ms

jt in
Theorem 3.1(v) are invariants. So are the values ni = 1

〈Ei,Λ〉 by (11). We have also

dim(H∗Ei) = dim(H∗ ·σ Ei) =
d

〈Ei, Λ〉
.

Part (iii) of the lemma above implies now that the set {Ci} as defined in (16),
and thus the structure constants ci

jt as defined in (20), are all invariants. �

4. Factorizable Hopf algebras

Theorem 3.1 and Theorem 3.8 are especially interesting when applied to semisimple
factorizable Hopf algebras [14]. In fact, we show that in this case, the fusion rules
and the structure constants are equal up to rational scalar multiples.

Let (H, R) be a quasitriangular Hopf algebra. Set Q = RτR =
∑

R2r1⊗R1r2.
The maps fQ and its dual f∗Q are given by:

fQ(p) =
∑〈

p, R2r1
〉
R1r2 f∗Q(p) =

∑〈
p, R1r2

〉
R2r1

for p ∈ H∗. H is factorizable if the map fQ is a k-isomorphism between H∗

and H . When H is also semisimple, then by [14] fQ, f∗Q : C(H) → Z(H) are
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algebra isomorphisms. This was extended in [6, 26]) showing that f∗Q satisfies
f∗Q(px) = f∗Q(p)f∗Q(x) for p ∈ H∗, x ∈ C(H). Set

sij = 〈fQ(χi), χj〉 .
It is known that sij = sji. We need the following:

Lemma 4.1. Let (H, R) be a factorizable semisimple Hopf algebra. Then fQ = f∗Q
and SfQ = fQs when restricted to C(H).

Proof. For all x, y ∈ C(H) we have,

〈fQ(x), y〉 =
∑〈

x, R2r1
〉 〈

R1r2, y
〉

=
∑〈

x, R1r2
〉 〈

R2r1, y
〉

=
〈
f∗Q(x), y

〉
.

Since fQ(x), f∗Q(x) ∈ Z(H) and since Z(H) and C(H) are dual vector spaces,
fQ = f∗Q on C(H). The rest follows from [3, Pr. 2.4]. �

Number the central idempotents of C(H) as

Ei = f−1
Q (Fi).

Observe that Lemma 4.1 implies that also Ei∗ = f−1
Q (Fi∗). We have (see [4]):

χi =
∑

j

sij

dj
Ej .

By (13), αij = sij

dj
. Hence

djαij = diαji = sij (22)
Moreover, since Ei ∈ C(H), we have f∗Q(H∗Ei) = f∗Q(H∗)f∗Q(Ei) = HFi, it follows
that

dim(H∗Ei) = dim(HFi) = d2
i .

Hence

ni =
dim(H∗)

dim(H∗Ei)
=

d

d2
i

. (23)

We have:

Corollary 4.2. The Verlinde formula for the fusion rules for factorizable semisimple
Hopf algebras as given in [4] in the following form

mi
jt =

1
d

∑
k

stksiksjk∗

dk

coincides with the Verlinde formula for the fusion rules as given in Theorem 3.1(v).
This follows by substituting (22) and (23) in the formula above.

Most importantly, we have

Theorem 4.3. Let (H, R) be a factorizable semisimple Hopf algebra. Let χi, Cj, di,
αij , ct

ij, mi
jt be as in Theorem 3.1 and Theorem 3.8. Then the structure constants

ci
jt are given by:

ci
jt =

didj

dt
mi

jt.
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Proof. Observe first that since fQ|C(H) is an algebra map, we have

fQ(χi) =
∑

j

αijFj
by (22)

=
∑

j

di

dj
αjiFj

by (23)
=

d

dini

∑
j

1
dj

αjiFj
by (18)

=
1
di

Ci.

Hence applying the fQ to (12) yields the desired result. �

A variation of the Verlinde formula for characters of non-semisimple fac-
torizable ribbon Hopf algebra was given in [5]. We give here a brief summary
of the results there. Let H be a finite-dimensional symmetric Hopf algebra over
an algebraically closed field k of characteristic 0. Let {V1, . . . , Vn} be a full set
of non-isomorphic irreducible left H-modules and {f1, . . . , fn} the corresponding
orthogonal primitive idempotents. Let Pi = Hfi be the associated projective in-
decomposable left H-module. The Cartan matrix of H is the n × n matrix C
with

cij = dim fiHfj.

Let pa be as in (3), set

I(H) = {pa|a ∈ H}.
It is known that I(H) contains all characters χP of finitely generated pro-

jective H-modules P , and I(H) is spanned over k by the set {pe}, e a primitive
idempotent of H . When char(k) = 0 then dim I(H) equals the rank of the Cartan
matrix associated with H .

Since H is symmetric then by [22], the integral Λ is 2-sided. Let λ a right
integral for H∗ so that 〈λ, Λ〉 = 1. In this case we have by [4, Theorem 2.4] that
I(H) is an s-stable ideal of C(H).

A quasitriangular Hopf algebra (H,R, v) is ribbon if there exists a central
element v so that S(v) = v, v2 = uS(u), where u =

∑
(SR2)R1, and Δ(v) =

(v ⊗ v)Q−1. Set G = u−1v, then G is a group-like element of H inducing S−2. In
this case H is a symmetric algebra with a symmetrizing form t = λ ↼ G−1 and a
Casimir element ∑

ai ⊗ bi =
∑

Λ1G⊗ S(Λ2).

Hence
τH(a) =

∑
Λ1GaS(Λ2).

Define Ψ̂ : H → H∗ by:

Ψ̂(a) = t ↼ S−1(a).

Then we have,
Ψ̂(Z) = C(H) and Ψ̂(τH(H)) = I(H).

Recall that fQ : OS2 → Z is an algebra map, where OS2 = {p ∈ H∗ | 〈p, ab〉 =〈
p, (S2b)a

〉
for all a, b ∈ H [14]. The translated fQ, f̂Q is given for all p ∈ H∗ by:

f̂Q(p) = fQ(p ↼ G).
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Then f̂Q : C(H)→ Z(H) is an algebra map and

f̂Q(I(H)) = τH(H).

Assume the rank of the Cartan matrix associated with H is r. Set

B = {f̂Q(pfj )}r
j=1 C = {Ψ̂−1(pfj )}r

j=1. (24)

Then B and C are two bases of τH(H). Let F = (fij)1≤i,j≤r be the change of bases
matrix from B to C. Thus for all 1 ≤ j ≤ r,

f̂Q(pfj ) =
r∑

l=1

fljΨ̂−1(pfl
). (25)

For any projective H-module P, Vi ⊗ P is also a projective and χVi⊗P =
χiχP . Recall [8, Pr. 16.7] that characters of projective module are linear integer
combinations of the characters of the indecomposable projective modules. Hence

χipfj =
r∑

l=1

N i
ljpfl

(26)

where {N i
lj} are all non-negative integers, which we call the “projective fusion

rules” for projective indecomposable modules. Since f̂Q when restricted to C(H)
is an algebra isomorphism, we have f̂Q(χi)f̂Q(pfj ) =

∑r
l=1 N i

lj f̂Q(pfl
). That is,

Lf̂Q(χi)
: τH(H) → τH(H), the linear operator defined by left multiplication by

f̂Q(χi), satisfies

Lf̂Q(χi)
(f̂Q(pfj )) =

r∑
l=1

N i
lj f̂Q(pfl

). (27)

Thus the matrix of LfQ(χ̂i) with respect to the basis B is given by:

Ni = (N i
lj).

For 1 ≤ i, j ≤ n, 1 ≤ k, l ≤ r, set

sij :=
〈
f̂Q(χi), s(χj)

〉
qkl =

〈
fl, Ψ̂f̂Q(pfk

)
〉

. (28)

We show in [4, Theorem 3.14]

Theorem 4.4. Let (H,R, v) be a factorizable ribbon Hopf algebra over an alge-
braically closed field of characteristic 0 with a Cartan matrix of rank r and invert-
ible r × r minor Cr. Let Q = (qkl) and sij be given in (28). Then F = Q−1Cr

diagonalizes the “projective fusion rules” Ni. That is, for all 1 ≤ i ≤ n,
(i) F−1NiF = Diag{d−1

1 si1, . . . , d
−1
r sir} where dj = dim(Vj), Vj an irreducible

representation of H.
(ii) Eigenvectors for Lf̂Q(χi)

are
∑

Λ1GS(fj)S(Λ2), with corresponding eigenval-

ues d−1
j sij.

(iii) {d−1
j sij} are algebraic integers.
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Abstract. A ring is right weakly regular (r.w.r.) if every right ideal of the ring
is idempotent. Such rings are also called fully right idempotent. This paper
gives a survey of the theory of r.w.r. rings and some closely allied topics, from
its origins in the early 1950’s up to the present state-of-the-art. The paper
contains sections on: equivalent conditions, examples and constructions, and
related conditions.
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1. Introduction

A ring is right weakly regular (r.w.r.) if every right ideal of the ring is idempotent.
(Here “ring” means an associative, not necessarily commutative ring which may
or may not have unity. Also, R will always denote a nonzero ring.) Similarly
one defines left weakly regular (l.w.r.) rings. The study of such rings, in various
equivalent formulations and using several variants in terminology, goes back at
least to 1950, when Brown and McCoy introduced the equivalent formulation:
x ∈ x〈x〉 for each x ∈ R, [9]. (Here 〈x〉 is the two-sided ideal generated by x ∈ R.)
They called such rings “weakly regular rings”. Ramamurthi [31] introduced the
terminology “right weakly regular”, and it has been used by several others, [6, 10,
22]. The terminology “fully right idempotent” has been frequently used, e.g., [17,
29], as has the variant “right fully idempotent”, e.g., [1, 3]. Since 1950 numerous
papers on the subject, or closely related to it, have appeared, and the pace of
investigation has picked up in the past two decades. Exemplary of this increased
interest is that a section of a recent monograph on generalizations of regular rings
is devoted to the topic, [34, Section 20]. The point of view of generalizations
of regular rings is one motivation for the study of r.w.r. rings, and a source of
examples, for all regular rings are both r.w.r. and l.w.r., as are all biregular rings
(rings for which every principal ideal is generated by a central idempotent). Simple
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rings with unity are also always r.w.r. and l.w.r. Further examples and methods
of construction of r.w.r. rings will be given in Section 3.

The purpose of this paper is to give a survey of the theory of right weakly
regular rings, and closely allied topics, in its present state-of-art. We hope this
will serve as an aid to those already working on the subject and a helpful guide to
those who wish to enter this field of investigation. Such readers will also find the
survey article by Birkenmeier, [5], of complementary interest.

One attribute of the development of the theory of r.w.r. rings is that many
of the same results have been discovered and rediscovered independently. This
can lead to some confusion, which is aided and abetted by the fact that different
terminology is also often used. Here we try to clarify some of this developmental
tangle.

Note that for each r.w.r. result there is an obvious l.w.r. dual result, and
conversely.

2. Equivalent conditions to r.w.r.

In this section we give numerous equivalent conditions to a ring being r.w.r. This
falls naturally into two parts: equivalent conditions in the category of rings and
equivalent conditions in the category of rings with unity. Many of the latter type
are in terms of modules.

Here we use the notation R(R) for the multiplicative semigroup of all right
ideals of R and 〈x〉r for the right ideal of R generated by x ∈ R.

Most of the equivalences in the first proposition here were given in [31], where
the terminology “right weakly regular” was introduced. Proofs can be found in [22]
or [31].

Proposition 2.1. The following are equivalent:

(i) R is r.w.r.;
(ii) if b ∈ R, then b ∈ (bR)2;
(iii) if A, B ∈ R(R) with A ⊆ B, then AB = A;
(iv) every principal right ideal of R is idempotent;
(v) if b ∈ R, then b ∈ (bR)n for some n ≥ 2;
(vi) if b ∈ R, then b ∈ b〈b〉;
(vii) every homomorphic image of R is r.w.r.;
(viii) every ideal of R is r.w.r.

The equivalence of (i) and (ii) above is very useful in developing the theory
of r.w.r. rings, as is the property that: R r.w.r. implies 〈x〉r = xR. Each of these
have been rediscovered several times, e.g., see [22, 31] and

For rings with unity numerous other equivalent conditions to r.w.r. have been
noted. These are of two general types: ideal oriented and module oriented. The
next result gives a sample of the former type.
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Proposition 2.2. Let R be a ring with unity, Then the following are equivalent:

(i) R is r.w.r.;
(ii) if B is a right ideal of R and A is an ideal of R, then B ∩A = BA;
(iii) if B and C are right ideals of R, then B ∩ (RC) = BC;
(iv) every ideal I of R has the property that x ∈ xI for each x ∈ I.

The equivalence of (i) through (iv) is stated in [31]. Proofs of these, and
further equivalences for rings with unity, are given in [34, p. 171].

Hansen established connections between r.w.r. rings and prime and semiprime
ideals, [20]. Recall that a right ideal B of a ring R is said to be prime (semiprime)
if xRy ⊆ B, (xRx ⊆ B), implies x ∈ B or y ∈ B (x ∈ B), [20], [26, p. 365].

Proposition 2.3 ([20, Lemma 21]). The following are equivalent:

(i) R is r.w.r.;
(ii) every right ideal of R is semiprime;
(iii) every right ideal of R is the intersection of prime right ideals of R.

Hansen called a ring satisfying these three equivalent conditions a “weakly
regular ring”. Dauns used condition (ii) in the above as his defining condition for
a weakly regular ring, [13, Definition 2.7].

The next equivalence was announced by Armendariz in 2007, [2].

Proposition 2.4. Let R have unity. Then R is r.w.r. if and only if all three of the
conditions hold:

(i) every ideal of R is idempotent;
(ii) R/P is r.w.r. for every prime ideal P of R;
(iii) if T is a right ideal of R and A and B are ideals of R, then (T +A)∩(T +B) =

T + (A ∩B).

Recently Laszlo Fuchs has made some interesting connections between r.w.r.
rings and the relative divisor and the torsion-free ideal conditions, as shown in the
next result.

Proposition 2.5 ([18]). Let R be a ring with unity. Then the following are equiva-
lent:

(i) R is r.w.r.;
(ii) If L is a left ideal of R and I an ideal of R with L ⊆ I, then xL = (xI) ∩ L

for each x ∈ R;
(iii) if I is an ideal of R and a ∈ I, x ∈ R with xa = 0, then a ∈ r(x) · I.
(Note: for any nonempty set X we use r(X) = {a ∈ R | Xa = 0}.)

In the above, condition (ii) is equivalent to every ideal of R satisfies the
(left) relative divisible condition, and condition (iii) is equivalent to every ideal
of R is torsion-free. These two conditions are usually given in module theoretic,
homological equivalent formulations, e.g., see [14].
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Several module related equivalent conditions to a ring being r.w.r. were noted
by Fisher, [17]. There he used the terminology right (left) fully idempotent instead
of right (left) weakly regular, and he gave the results in the “left” setting.

Proposition 2.6 ([17, Theorem 8]). Let R be a ring with unity. Then the following
are equivalent:

(i) R is r.w.r.;
(ii) for each ideal I of R, R/I is a flat right R-module;
(iii) for each ideal I of R, every injective right R/I-module is injective as a canon-

ical R-module.

In the above proposition, and hereafter, in the setting of rings with unity, all
modules are unital.

In [36] and [24] r.w.r. rings which are algebras (over fields) with unity are
considered, and are called “weakly regular algebras”. Various module-homological
conditions are given to an algebra being weakly regular in this sense. The next
proposition is representative of these results.

Proposition 2.7. Let A be a unital algebra over a field. Then the following are
equivalent:

(i) A is a r.w.r. ring;
(ii) every right A-module M is semiflat, i.e., for each right ideal B of A the

sequence 0 →M ⊗A B →M ⊗A A is left exact.

Equivalent conditions to R being r.w.r. also arise from viewing the property
in terms of the semigroup R(R).

Proposition 2.8 ([21, 22]). The following are equivalent:
(i) R is r.w.r.;
(ii) R(R) is a left normal band (i.e., A2 = A and ABC = ACB for each A, B, C ∈

R(R));
(iii) R(R) is von Neumann regular.

3. Examples and constructions

Examples of an abstract structure serve to not only motivate the study of the
structure but to illustrate both the possible scope and limitations of the theory.
The examples and constructions in this section are given with those goals in mind.

As noted in the introduction, all regular rings and all biregular rings are both
r.w.r. and l.w.r., as are all simple rings with unity. A generalization of the latter
was proved by Andruskiewicz and Puczylowski, [1, Corollary 1], and is given next.

Proposition 3.1. Let R be a simple ring with R2 �= 0. Then R is r.w.r. (l.w.r.) if
and only if, for each r ∈ R, r ∈ rR (respectively, r ∈ Rr). Consequently, every
simple ring with unity is both r.w.r. and l.w.r.
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Corollary 3.2 ([1, Corollary 2]). Let R be a simple von Neumannn regular ring,
and let L be a proper, nonzero left ideal of R. Then L/r(L) is a simple ring which
is r.w.r.

Complementing these two results nicely, Andruskiewicz and Puczylowski gave
the following classes of examples of rings which are r.w.r. but not l.w.r.

Example 3.3. Let A be a simple ring with unity which is von Neumann regular,
but is not left Artinian, and let L be a maximal left ideal of A. Then the ring

R =
[
L A
L A

]
is r.w.r. and not l.w.r. Such a ring R does not have unity. However,

if A is also an F -algebra over a finite prime field F , then R is also an F -algebra
and R can be embedded as an ideal in an F -algebra R∗, where R∗ has unity and
R∗/R ∼= F . Consequently R∗ is r.w.r., but not l.w.r. See [1, p. 156] for details.

Armendariz has given a process that provides a wide class of examples of
rings with unity that are r.w.r. and not l.w.r., via the following result.

Proposition 3.4 ([2]). Let R be a simple regular ring with unity which is not Ar-
tinian. If A is a left ideal of R such that r(A) = 0 and A �= R, then A is a simple
ring which is r.w.r., but not l.w.r.

Further examples of r.w.r. rings can be obtained by applying various ring
constructions to r.w.r. rings, as the next several propositions illustrate.

Proposition 3.5. Let R be a r.w.r. ring with unity. Then each of the following is
r.w.r.:

(i) Mn(R), the full n× n matrix ring over R, for each n;
(ii) the group ring R[G] where G is a locally finite group and the order of each

element in G is a unit in R;
(iii) RM , the central localization over a maximal ideal M of the ring Z(R), the

center of R;
(iv) EndR(M), where M is a finitely generated right R-module;
(v) eRe, for every non-zero idempotent e of R.

Vanaja stated (i) in an abstract, [35], but never published a proof. Proofs
of (i), (iv), and (v) are given in [34, pp. 171–173]. Fisher established (ii) in [17],
albeit using l.w.r. Part (iii) was given by Armendariz, Fisher, and Steinberg in [3,
Proposition 2].

Ramamurthi stated that every r.w.r. ring can be embedded as an ideal in a
r.w.r. ring with unity, [31]. He did not give a proof but remarked that it could be
proved by adopting ideas of Fuchs and Halperin in [19]. Feigelstock took a closely
related approach and gave a proof of the embedding result in [16, Corollary 2.3].
With this one can extend Proposition 3.5 (i) to r.w.r. rings not necessarily having
unity.

Example 3.6. Let T1 ⊂ T2 ⊂ · · ·Tn ⊂ Tn+1 ⊂ · · · be a strictly ascending chain of
r.w.r. rings, and let T = ∪∞n=1Tn. Lift the operations on the Tn to T to obtain a
ring. Observe that this ring T will be r.w.r.
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Let Mω(R) be the ring of all matrices over R with countably infinite many
rows and columns and which are row and column finite, and let Tn be the subring
of this ring which consists of a block isomorphic to Mn(R) in the upper left corner
and zeroes elsewhere. Then using the construction described above, T is a r.w.r.
ring composed of infinite matrices which are row and column finite.

Certain substructures of a r.w.r. ring are r.w.r. rings, as the next result, due
to Ramamurthi, [31], shows.

Proposition 3.7. If R is r.w.r., then every ideal of R is a r.w.r. ring and the center
of R, Z(R), is a regular ring.

The next result gives some ways to build r.w.r. rings from given ones.

Proposition 3.8 ([22]). Let Λ be a nonempty index set and let Rλ be a r.w.r. ring
for each λ ∈ Λ. Then:

(i) Σλ ⊕Rλ, λ ∈ Λ, is r.w.r.;
(ii) ΠλRλ, λ ∈ Λ, is r.w.r.

Observe that in 3.8(ii) if Sα is the set of all (· · · rλ, · · · ) such that rλ �= 0 for
at most ℵα of the subscripts λ, where α is a fixed ordinal, then Sα is an ideal of
ΠλRλ and hence Sα is a r.w.r. ring.

The class W of all r.w.r. rings is a hereditary Amitsur-Kurosh radical class.
Ramamurthi [31] noted this is implicit in an example given by Brown and McCoy
in their pre-Amitsur-Kurosh development of a general theory of radicals, [9, p. 308].
Detailed treatment yielding thatW is a hereditary Amitsur-Kurosh radical class is
given in [33, p. 83, p. 197] and in [1]. Thus the sum of all the ideals of R which are
all r.w.r. rings, i.e., the sum of all the r.w.r. ideals of R, is a r.w.r. ideal,W(R), and
W(R/W(R)) = 0. Ramamurthi [31] showed that the Jacobson radical of a r.w.r.
ring must be zero. Much earlier Blair had shown that the intersection of any r.w.r.
ideal of a ring R and the Jacobson radical, J(R), is zero, [8]. So J(R)∩W(R) = 0.

4. Related conditions

The relationships between r.w.r. rings and various other well-known classes of rings
have received considerable attention. Some of these other classes are: regular rings,
V -rings, fully idempotent rings, and weakly π-regular rings.

We give some exemplary results of this nature. Throughout this section all
rings have unity.

Proposition 4.1. Let R be r.w.r. If any one of the following holds, then R is regular:
(i) R is left self-injective, [17, p. 107];
(ii) all the prime factors of R are regular, [34, p. 173];
(iii) every essential maximal right ideal is two-sided, [23, Lemma 2.4];
(iv) every maximal right ideal is two-sided, [37, Theorem 2.7].

Recall that R is a right V -ring if every simple right R-module is injective.
(See [15, p. 56].) Every right V -ring is r.w.r., [17, Corollary 7].
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Proposition 4.2 ([17, Theorem 14]). The following are equivalent:
(i) R is a right V -ring;
(ii) R is r.w.r. and each right primitive factor ring of R is a right V -ring.

Also immediate from [17, p. 107] is that a r.w.r. ring has zero left singular
ideal.

Recall that a ring R is right weakly π-regular (r.w.π.r) if for each b ∈ R
there exists n such that bnR = (bnR)2. (For basic results on r.w.π.r. rings, see [34,
Section 20].) Observe that r.w.r. implies r.w.π.r., but not conversely. However, for
reduced rings much stronger results are known.

Proposition 4.3 ([6, Theorem 8, Corollary 11], [10, Theorem 6]). Let R be reduced.
Then the following are equivalent:

(i) R is r.w.π.r;
(ii) R is r.w.r.;
(iii) R is biregular;
(iv) every prime ideal of R is maximal;
(v) every prime factor ring is a simple domain;
(vi) R is a right p.p. ring (every principal right ideal of R is a projective R-module)

and RbR = R for each nonzero b ∈ R.

Thus a r.w.r. reduced ring is l.w.r. The term “weakly regular” has become
the standard term used for rings which are both r.w.r. and l.w.r. Camillo and Xiao
give further properties of reduced weakly regular rings in [10]; also see [34, Section
20]. More on r.w.π.r. rings is given in [6], [7], and [34, Section 20].

Rings (with or without unity) for which every ideal is idempotent were first
studied in depth by Courter, [11], who called them “fully idempotent rings”. Of
course, every r.w.r. ring is fully idempotent, but not conversely. Courter gave
a large and varied list of equivalent conditions to fully idempotent, as well as
developing an extensive theory for this class of rings, [11, 12]. Fully idempotent
rings have been studied from various views and venues, e.g., see [29, 30, 32].

Weak regularity for semigroup rings has been investigated by Fang Li, [27],
and by Kuzhokov, [25]. The latter showed that if S is any semigroup and F a field,
then there exists a semigroup T , with T ⊆ S, such that the semigroup ring F [T ] is
both r.w.r. and l.w.r. Fang Li gave conditions for a semigroup ring to be l.w.r., in
particular for inverse semigroups. He also gave conditions for Munn matrix rings
to be l.w.r.

Weak regularity has been generalized to modules by Mabuchi, [28], and to
topological weakly regular in the setting of topological rings by Arnautov, [4].
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Abstract. Various substructures of HomR(A, M) and their relationships are
surveyed.
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1. Introduction

We present here some typical examples of substructures of Hom. Anybody inter-
ested in more results, proofs, and details is referred to the book entitled “Regularity
and Substructures of Hom” by myself and Adolf Mader that just appeared (Spring
2009) in the Birkhäuser Verlag series “Frontiers in Mathematics”.

The symbol L ⊆∗ M means that the module L is large (or essential) in M ,
L ⊆◦ M means that the L is small (or negligible) in M . All other notations in this
note are standard.

2. Regular homomorphisms and the total

First I will explain why I got interested in substructures of Hom. There was a
mathematical reason. For a ring R with 1 ∈ R let Mod-R denote the category of
all unitary right R-modules. For two of these, A and M , we set H := HomR(A, M),
S := End(MR), and T := End(AR). Then H is an S-T -bimodule. Homomorphisms
f ∈ HomR(A, M) act on the left side on A.

Lemma 2.1. The following are equivalent for f ∈ HomR(A, M).
1. There exists g ∈ HomR(M, A) such that e := gf = e2 �= 0.
2. There exists h ∈ HomR(M, A) such that d := fh = d2 �= 0.
3. There exists k ∈ HomR(M, A) such that kfk = k �= 0.
4. There exist 0 �= A0 ⊆⊕ A and M0 ⊆⊕ M , and such that

A0 " x �→ f(x) ∈M0 is an isomorphism.
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Definition 2.2. If the conditions of Lemma 2.1 are satisfied, then f is called partially
invertible. The total of A to M is defined to be

Tot(A, M) := {f ∈ HomR(A, M) | f is not partially invertible.}.
When I had defined the total I realized that it has two interesting properties.

First, it contains all the classical substructures of Hom, of which we give two
examples. Furthermore, it has intersection 0 with all regular substructures.

3. Singular and cosingular submodules

Definition 3.1. The singular submodule of SHT is by definition the S-T -submodule

Δ(A, M) := {f ∈ HomR(A, M) | Ker(f) ⊆∗ A}.
The cosingular submodule of H is the S-T -submodule

∇(A, M) := {f ∈ HomR(A, M) | Im(f) ⊆◦ M},

We prove here only that Δ(A, M) ⊆ Tot(A, M).

Proof. To see this, assume to the contrary that f ∈ Δ(A, M) is partially invertible.
Then there exists g ∈ HomR(M, A) such that

e := gf = e2 �= 0.

Since Ker(f) ⊆ Ker(e), the idempotent e must also have a large kernel. Since the
kernel of e is (1− e)T and is a direct summand of T , it must equal T , eT must be
0 which implies that e = 0, a contradiction. �

4. The radicals for HomR(A, M)

Several radicals can be defined for H := HomR(A, M): the radical of SH as S-
module, and similarly the radical of HT as a T -module, and finally the most
important radical for which there are two equivalent definitions:

Rad(HomR(A, M)) = Rad(A, M)
= {f ∈ H | f HomR(M, A) ⊆ Rad(S)}
= {f ∈ H | HomR(M, A)f ⊆ Rad(T )}.

We verify the equality
{f ∈ H | f HomR(M, A) ⊆ Rad(S)} = {f ∈ H | HomR(M, A)f ⊆ Rad(T )}

Proof. (1) Let ∅ �= A ⊆ R with AR = A. It is well known that A ⊆ Rad(R) if and
only if for all a ∈ A, 1− a is an invertible element in R.

(2) Let f ∈ Hom(A, M) and g ∈ Hom(M, A). If 1S − fg is invertible in S,
then it is easy to check that

(1T − gf)−1 = 1T + g(1S − fg)−1f.
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Similarly, if 1T − gf is invertible in T , then

(1S − fg)−1 = 1S + f(1T − gf)−1g.

(3) Suppose that f ∈ HomR(A, M) and for every g ∈ HomR(M, A), fg ∈
Rad(S). Let g ∈ HomR(M, A), s ∈ S, and t ∈ T . Then also tgs ∈ HomR(M, A),
and we have ftgs ∈ Rad(S). Hence the right ideal ftgS is contained in Rad(S).
By (1) it follows that 1S − ftgs is invertible in S. By (2) 1T − tgsf is invertible
in T . Then, by (1) again Tgsf is a left ideal contained in Rad(T ). Therefore
f ∈ {f ∈ H | ∀ g ∈ HomR(M, A), gf ∈ Rad(T )}. The reverse containment follows
in a similar fashion. �

We will show next that Rad(A, M) ⊆ Tot(A, M).

Proof. Indirect. Assume that f ∈ Rad(A, M), but f /∈ Tot(A, M), so that f is
partially invertible. Then there exists g ∈ HomR(M, A) such that

e := fg = e2 �= 0.

By definition of Rad(S) we have e = fg ∈ Rad(S). It follows from fgS = eS ⊆◦ SS

and
S = eS ⊕ (1− e)S

that (1− e)S = S and eS = 0, and we arrive at the contradiction that e = 0. �

5. Regular substructures of Hom

Let f ∈ HomR(A, M). Then f is regular if there exists g ∈ HomR(M, A) such
that fgf = f . If so, g is a quasi-inverse of f . The following characterization of
regularity is well known.

Proposition 5.1. f ∈ HomR(A, M) is regular if and only if Ker(f) ⊆⊕ A and
Im(f) ⊆⊕ M .

There exists a largest regular S-T -submodule of H = HomR(A, M), denoted
by Reg(A, M). Here “largest” means that any other regular S-T -submodule of H
is contained in Reg(A, M).

Theorem 5.2. Reg(A, M) := {f ∈ HomR(A, M) | SfT is regular} is the largest
regular S-T -submodule of HomR(A, M).

We now show that Reg(A, M) and Tot(A, M) are opposite substructures.

Proposition 5.3.
Reg(A, M) ∩ Tot(A, M) = 0.

Proof. This follows because every nonzero regular homomorphism is partially in-
vertible. �

Regular maps produce projective summands.

Theorem 5.4. Let 0 �= f ∈ HomR(A, M) be regular. Then the following statements
hold.
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1. Sf is a nonzero S-projective direct summand of S HomR(A, M) that is iso-
morphic to a cyclic left ideal of S that is a direct summand of S.

2. fT is a nonzero T -projective direct summand of HomR(A, M)T that is iso-
morphic to a cyclic right ideal of T that is a direct summand of T .

There are interesting results on the structure of Reg(A, M).

Theorem 5.5. Every finitely or countably generated S-submodule of Reg(A, M) is
a direct sum of cyclic S-projective submodules that are isomorphic to left ideals
of S that are direct summands of S.

Every finitely generated S-submodule L of Reg(A, M) is S-projective and a
direct summand of S HomR(A, M).

The analogous results hold for Reg(A, M) as a right T -module.

6. Historical remarks about the total

The first time I defined the total was in 1982 in the lecture notes “Moduln mit LE-
Zerlegung und Harada-Moduln” [1]. Subsequently the total was studied in several
papers, for which I give here some examples:

– Partiell invertierbare Homomorphismen und das Total, Algebraberichte
Nr. 60, Verlag R. Fischer, München (1988)

– The Total in the Category of Modules, General Algebra, Elsevier Science
Publishers B.V. (North Holland), (1990)

– The Total of Modules and Rings (mit W. Schneider) Algebraberichte Nr. 69,
Verlag R. Fischer, München (1992)

All these papers are mentioned in the bibliograhpy of the two books [2] and [3]
which contain more details about the total and related topics.
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Abstract. Keskin and Tribak (2005) studied the structure of weak lifting
modules with small radicals over commutative noetherian (local) rings. They
proved that a module M is weak lifting if and only if M is a direct sum of local
modules of some special type. Such modules were further studied by Tribak
(2007). In this note we study weak lifting modules M with small radical over
arbitrary rings. We prove that M is an irredundant sum M =

∑
i∈I Mi where

each Mi is local and
∑

i∈F Mi is a summand of M for every finite subset F of
I . Moreover

∑
i∈F Mi = ⊕i∈F Ki with Ki local. In particular a finitely gen-

erated weak lifting module is a direct sum of local modules. This generalizes
the analogous result for finitely generated lifting modules.
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1. Definitions, notations and preliminaries

R will denote an associative ring with unity and M will denote a unital right
R-module. By a summand of M , we mean a direct summand (with the notation
≤d). The notation X $ Y will mean that X is small in Y , that is X + Z �= Y for
any proper submodule Z of Y . Let A ≤ M . A submodule C ≤ M is a complement
of A if C is maximal such that A ∩ C = 0. Dually, S ≤ M is called a supplement
of A if S is minimal such that A + S = M . We note that S is a supplement of A
in M if and only if M = A + S and A ∩ S $ S. A submodule P ≤ M is a pseudo
supplement of A if M = A + P and A ∩ P $ M . Complements exist by Zorn’s
Lemma; in fact if A ∩ B = 0, for B ≤ M , then B is contained in a complement
of A. By contrast, (pseudo) supplements need not exist, in general. M is called
(pseudo) supplemented if every submodule of M has a (pseudo) supplement. M is
called amply supplemented if B contains a supplement of A whenever M = A+B.
We call a module M near supplemented if M is pseudo supplemented and every
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maximal submodule has a supplement. (The terminology for supplementation is
not followed consistently in the literature, cf. [2], [5] and [9].)

M is called a CS-module (or extending) if every complement submodule is a
summand. M is called an SS-module if every supplement submodule is a summand.
An SS-module is called lifting (weak lifting) if M is amply supplemented (supple-
mented). A module M is called discrete if it is lifting and satisfies the following
condition:
(D2) Any submodule N of M with M/N ∼= K ≤d M , is a summand of M .
The Jacobson radical of M , denoted by Rad M is the intersection of all maximal
submodules of M . If M has no maximal submodules, then we set Rad M = M . It
is known that Rad M is the sum of all small submodules of M . Thus an arbitrary
sum of small submodules of M is small in M if and only if RadM $M . A module
H is called hollow if every proper submodule of H is small. A hollow module H
with Rad H �= H is such that H = xR for every x �∈ Rad H . Such a module H is
called a local module.

Lemma 1.1. Let A be a proper nonsmall submodule of M . If A has a pseudo
supplement B such that B �≤ Rad M , then A is contained in a maximal submodule
of M .

Proof. We have M = A + B and A ∩ B $ M . Clearly B is a proper submodule
of M . There exists a maximal submodule N of M such that B �≤ N . Hence
M = N + B, and so N ∩ B is maximal in B. Also A ∩ B ≤ RadM , and hence
A ∩B ≤ N . Write K = A + (N ∩B). Since M/K ∼= B/(N ∩B), K is a maximal
submodule of M . �
Corollary 1.2. Assume M has small radical. If a proper submodule A of M has a
pseudo supplement, then A is contained in a maximal submodule.

Proof. If A is small in M , then A ≤ RadM , hence A is contained in every maximal
submodule of M . So assume A is not small in M . Let B be a pseudo supplement
of A. It is clear that B is not small in M and so B �≤ Rad M . The result now
follows by Lemma 1.1. �

A module M is called coatomic if every proper submodule is contained in a
maximal submodule; clearly M has small radical.

Corollary 1.3. A pseudo supplemented module M with small radical is coatomic.

The proof of the following theorem is straightforward. We include a short
proof for the reader’s convenience (cf. [2, 17.2]).

Theorem 1.4. Let M be a module with small radical. The following are equivalent:
(1) M is pseudo supplemented;
(2) M/ RadM is semisimple;
(3) M is an irredundant sum of modules Mi such that Mi ∩ Rad M is maximal

in Mi;
(4) M is a sum of modules Mi such that Mi ∩ Rad M is maximal in Mi.
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Proof. (1)⇒(2): Let X = A/ Rad M ≤ M/ RadM . There exists B ≤M such that
M = A + B and A ∩ B $ M . It follows that A ∩ B ≤ Rad M . Then clearly
M/ RadM = X ⊕ Y where Y = (B + RadM)/ RadM . (Here there is no need for
Rad M to be small.)
(2)⇒(1): Let A ≤ M . There exists B ≤ M such that

M/ RadM = (A + RadM)/ RadM ⊕ (B + RadM)/ RadM.

Then M = A + B + RadM = A + B and A ∩B ≤ RadM ; hence A ∩B $M .
(2)⇒(3): M/ RadM = ⊕i∈IXi, with Xi simple. For each Xi there exists Mi ≤
M such that Xi = (Mi + RadM)/ RadM ∼= Mi/(Mi ∩ Rad M). It follows that
M =

∑
i∈I Mi + RadM =

∑
i∈I Mi. The irredundancy of the sum follows from

the direct sum of the Xi.
(3)⇒(4): Trivial.
(4)⇒(2): M =

∑
i∈I Mi =

∑
i∈I Mi + RadM =

∑
i∈I(Mi + RadM). So

M/ RadM =
∑

i∈I
(Mi + RadM)/ RadM =

∑
i∈I

((Mi + RadM)/ RadM)

where each (Mi + RadM)/ RadM is isomorphic to Mi/(Mi ∩ Rad M). �
Lemma 1.5. A summand of an SS-module is SS.

Proof. Use Lemma 1.7 of [6]. �
Lemma 1.6. A finite sum of supplemented modules is supplemented.

Proof. [6] Corollary 1.14. �

2. Main results

A weak lifting module M is a direct sum M = M1 ⊕M2 where RadM1 $ M1

and RadM2 = M2 (cf. [5], page 96). So it is natural to study weak lifting modules
with small radical. The study of radical weak lifting modules seems to be much
more difficult.

Lemma 2.1. If L is a supplement of a maximal submodule N of M , then L is local.

Proof. We have M = N + L with N ∩L $ L. Also N ∩L is maximal in L. Hence
L is local with N ∩ L as its radical. �
Theorem 2.2. Let M be a module with small radical. Then M is near supplemented
if and only if M is an irredundant sum of local modules.

Proof. ‘If’: Let M =
∑

i∈I Mi be an irredundant sum with Mi local. As Rad Mi ≤
Mi ∩ RadM , we get Rad Mi = Mi ∩Rad M . Then M is pseudo supplemented by
Theorem 1.4. Let N be a maximal submodule of M . Clearly Mi �≤ N for some
i ∈ I. It follows that Mi is a supplement of N .
‘Only if’: Let K(M) denote the sum of all submodules of M that are supplements
of maximal submodules. Assume that K(M) �= M . As M is coatomic by Corollary
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1.3, K(M) is contained in a maximal submodule N of M . Let L be a supplement
of N . Then L ≤ K(M) ≤ N , a contradiction. Hence M = K(M). It follows now by
Lemma 2.1 that M =

∑
i∈I Mi with Mi local. As Mi is a supplement submodule,

Rad Mi = Mi ∩ RadM . Then the sum is irredundant by Theorem 1.4. �

Corollary 2.3. A supplemented module with small radical is an irredundant sum
of local modules.

Corollary 2.4. The following are equivalent for a finitely generated module M :

(1) M is near supplemented.
(2) M is a finite irredundant sum of local modules.
(3) M is a finite sum of local modules.
(4) M is supplemented.

Proof. Follows by Theorem 2.2 and Lemma 1.6. �

We note that a direct sum of hollow modules need not be supplemented; for
example the Z-module Q/Z is a direct sum of hollow modules (see p. 211, [2]).
However Q/Z is equal to its own radical. We do not know whether a module with
small radical which is a (direct) sum of local modules is supplemented!

Lemma 2.5. Let H be a nonsmall hollow submodule of a module M . Then:

(1) H is a supplement submodule in M ;
(2) If H �≤ RadM , then H is local.

Proof. (1) is obvious.

(2) There exists a maximal submodule N of M such that H �≤ N . Then clearly H
is a supplement of N . Hence H is local by Lemma 2.1. �

Lemma 2.6. Let N = A + H where A is a summand and H is a hollow submodule
of an SS-module M . Then N = A ⊕K with K hollow. Further if K is not small
in M , then N is a summand of M .

Proof. Write M = A ⊕ B and K = N ∩ B. Then N = A ⊕K. Now K ∼= N/A =
(A + H)/A ∼= H/(A ∩H). Hence K is hollow. If K is not small in M , then K is
a supplement submodule in M by Lemma 2.5. Hence K is a summand of M , and
consequently N is a summand of M . �

The following result is, in some sense, a generalization of ([2], 22.18).

Theorem 2.7. Let M be a near supplemented SS-module with small radical. Then:

(1) M is an irredundant sum M =
∑

i∈I Mi where each Mi is local;
(2)

∑
i∈F Mi is a summand of M and weak lifting for every finite subset F ⊆ I,

and
∑

i∈F Mi = ⊕i∈F Ki with Ki local.

Proof. (1) follows by Theorem 2.2.
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(2) Clearly none of the Mi is small in M and so Mi is a supplement submodule
in M by Lemma 2.5. Hence Mi is a summand of M . Let F be a finite subset of I.
The irredundancy of the sum M =

∑
i∈I Mi and Lemma 2.6 imply that

∑
i∈F Mi

is a summand of M and
∑

i∈F Mi = ⊕i∈F Ki with Ki local. By Lemmas 1.5 and
1.6,

∑
i∈F Mi is weak lifting. �

Let A and B be two modules. A is said to be B-co-jective if any supplement of
B in M = A⊕B is a summand of M (cf. [6]). A is said to be B-dual-ojective if, for
any epimorphism π : B −→ X and any homomorphism ϕ : A −→ X , there exist
decompositions A = A1 ⊕ A2 and B = B1 ⊕ B2 together with a homomorphism
ϕ1 : A1 −→ B1 and an epimorphism ϕ2 : B2 −→ A2 such that πϕ1 = ϕ |A1 and
ϕϕ2 = π |B2 . A module M is said to have the exchange property if for any index set
I, whenever M⊕N = ⊕i∈IAi for modules N and Ai, then M⊕N = M⊕(⊕i∈IBi)
for submodules Bi ≤ Ai. A decomposition M = ⊕i∈IMi is exchangeable if for any
N ≤d M , we have M = ⊕i∈IM

′
i ⊕N with M ′

i ≤ Mi.
The following corollary is an extension of a result of Keskin and Lomp ([4]).

Corollary 2.8. A finitely generated weak lifting module is a finite direct sum of
local modules, which are mutually co-jective in pairs.

Proof. The result follows by Theorem 2.7 and [6, Theorem 2.4]. �

Let M = ⊕n
i=1Mi where Mi is local and Mj- co-jective for i �= j. Does this

imply that M is weak lifting? This is indeed true for n = 2, by [6, Theorem 2.4].
It is also interesting to investigate the structure of the Mi’s without assuming
conditions on the ring!

Vasconcelos proved that, over a commutative ring R, any finitely generated
R-module M is Hopfian, that is, every surjective endomorphism of M is an iso-
morphism (cf. [8]). Therefore by [5, Lemma 5.1], over a commutative ring, any
local module is discrete. Using this observation, Corollary 2.8 can be improved for
modules over commutative rings.

Proposition 2.9. Let M be a finitely generated weak lifting module over a commu-
tative ring. Then:
(1) M is lifting.
(2) M has the exchange property.
(3) M = ⊕n

i=1Mi where each Mi is local and Mj-dual-ojective for i �= j.

Proof. (1) M is amply supplemented by Zöschinger’s results (see also [3, Lemma
3.2]).
(2) By Corollary 2.8, M has a decomposition M = ⊕n

i=1Mi with each Mi local.
By the above remark, each Mi is discrete. It then follows by [5, Corollary 5.5]
that Mi has local endomorphism ring. Hence M has the exchange property by [1,
Corollary 12.7] and [5, Theorem 2.25].
(3) Consequently, the decomposition M = ⊕n

i=1Mi is exchangeable. Then (3)
follows by [6, Proposition 3.5] �



134 D. Keskin Tütüncü and S.H. Mohamed
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FP -injective Complexes
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Abstract. A complex Q is said to be FP -injective if, for any monomorphism
ψ : A → B of complexes with A finitely generated and B finitely generated
free and any morphism ϕ : A → Q of complexes, there exists γ : B → Q such
that γψ = ϕ. It is proven that Q is an FP -injective complex if and only if
every Qi is FP -injective and Hom.(G, Q) is exact for every finitely presented
complex G.

Mathematics Subject Classification (2000). Primary 16E05; Secondary 16D50.

Keywords. FP -injective complex, FP -injective module, preenvelope.

1. Introduction

The homological theory of complexes of modules has been studied by many authors
such as Avramov, Enochs, Foxby, Garćıa Rozas, Goddard, Jenda, Oyonarte and
Xu (see [1, 5, 6, 7, 8, 10]). Projective, injective and flat complexes play important
roles in the studies of the category of complexes. In this paper, we introduce
the concept of FP -injective complexes and study some properties of FP -injective
complexes. We prove that Q is an FP -injective complex if and only if every Qi is
FP -injective and Hom.(G, Q) is exact for every finitely presented complex G. For
a left coherent ring R, it is shown that a bounded below left R-module complex Q
is FP -injective if and only if Q is an exact complex of left FP -injective modules.

We next recall some known notions and facts needed in the sequel.
Let R be a ring. An R-module complex

· · · → C−1 δ−1

→ C0 δ0

→ C1 δ1

→ · · ·
will be denoted by C. Z(C) and B(C) stand for the subcomplexes of cycles and
boundaries of C respectively, and we let the homology group H(C) = Z(C)/B(C).

This research was partially supported by NSFC (No. 10771096), NSF of Jiangsu Province of
China (No. BK2008365), Jiangsu 333 Project, and Jiangsu Qinglan Project, Science Research

Fund of Nanjing Institute of Technology. The authors would like to thank the referee for the
helpful comments and suggestions.
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Given a complex C and an integer m, C[m] denotes the complex such that
C[m]n = Cm+n and whose boundary operators are (−1)mδm+n.

A complex C is called bounded above when Ci = 0 for i sufficiently large,
bounded below when C−i = 0 for i sufficiently large and, bounded when it is both
bounded above and below.

According to [8], C is called a finitely generated complex if C is bounded
and every Ci is a finitely generated R-module. C is said to be a finitely presented
complex if C is bounded and every Ci is a finitely presented R-module.

C is called a projective (respectively, injective, flat) complex if C is an exact
complex and every ker δi is a projective (respectively, injective, flat) module.

If f : C → D is a morphism of complexes, the mapping cone of f , denoted by
M(f), is a complex such that M(f)n = Dn ⊕Cn+1 and with boundary operators
such that (x, y) ∈ Dn⊕Cn+1 is mapped to (δn(x) + f(x),−δn+1(y)). It is easy to
check that there is an exact sequence 0 → D →M(f)→ C[1]→ 0 of complexes.

Let C and D be complexes. Following [8, p. 32–33], Hom(C, D) means the
abelian group of morphisms from C to D, Exti(C, D) for i ≥ 0 stands for the
groups we get from the right derived functor of Hom, and Hom.(C, D) denotes the
complex of abelian groups with Hom.(C, D)n = Πt∈ZHom(Ct, Dt+n) and (δnf)t =
δt+n
D f t − (−1)nf t+1δt

C for f ∈ Πt∈ZHom(Ct, Dt+n). It is clear that the abelian
group Hom(C, D) is a subgroup of Hom.(C, D)0.

Given an R-module M , we will denote by M the complex

· · · → 0→ 0 →M
id→M → 0 → 0 · · ·

with M in the −1th and 0th positions and 0 in the other positions. Also we mean
by M the complex

· · · → 0 → 0→M → 0 → 0 · · ·
with M in the 0th place and 0 in the other places.

A left R-module M is said to be FP -injective (or absolutely pure) [11, 12]
if Ext1(N, M) = 0 for all finitely presented left R-modules N . R is called a left
coherent ring if every finitely generated left ideal of R is finitely presented.

Throughout this paper, R is an associative ring with identity and all modules
are unitary. We write R-Mod for the category of all left R-modules and C the cat-
egory of all complexes of left R-modules. For unexplained concepts and notations,
we refer the reader to [4, 8, 9, 13].

2. FP -injective complexes

We begin with the following definition.

Definition 2.1. Q is called an FP -injective complex if given any monomorphism
A

ψ→ B of complexes and any morphism A
ϕ→ Q of complexes, where A is finitely
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generated and B is finitely generated free, the diagram

Q

A

ϕ
��������� ψ �� B

γ

��

can be completed by a morphism γ : B → Q of complexes commutatively.

Remark 2.2.
(1) It can be proven in a standard way that the class of FP -injective complexes

is closed under direct products and direct summands. Moreover we claim that
the class of FP -injective complexes is closed under direct sums. In fact. Let
{Qi : i ∈ I} be a set of FP -injective complexes, A

ψ→ B any monomorphism
of complexes and A

ϕ→ ⊕i∈IQi any morphism of complexes, where A is finitely
generated and B is finitely generated free. Since im(ϕ) is finitely generated,
im(ϕ) embeds in ⊕i∈JQi for some finite set J ⊆ I. So ϕ factors through
⊕i∈JQi, i.e., there are α : A → ⊕i∈JQi and λ : ⊕i∈JQi → ⊕i∈IQi such that
ϕ = λα. Since ⊕i∈JQi is FP -injective, there exists β : B → ⊕i∈JQi such
that α = βψ. Thus ϕ = (λβ)ψ, and so ⊕i∈IQi is an FP -injective complex.

(2) If Q is an FP -injective complex, then Q[i] is also an FP -injective complex
for any i ∈ Z.

(3) Note that Hom(A, Q) ∼= Hom(A0, Q) in the obvious fashion, so if Q is an
FP -injective module, then Q is an FP -injective complex.

(4) Recall that C is called a split complex [13] if there are maps sn : Cn+1 → Cn

such that δn = δnsnδn for all n ∈ Z. If Q is a split exact complex of FP -
injective modules, then Q is a direct sum of complexes of the form Ai[n] with
each Ai FP -injective modules. So Q is an FP -injective complex.

Theorem 2.3. The following are equivalent for a complex Q:
1. Q is an FP -injective complex.
2. Ext1(G, Q) = 0 for every finitely presented complex G.
3. Every Qi is FP -injective and Hom.(G, Q) is exact for every finitely presented

complex G.
4. For any short exact sequence of complexes 0 → Q → E → L → 0 and any

finitely presented complex G, the sequence Hom(G, E) → Hom(G, L) → 0 is
exact.

Proof. (1)⇒ (2) For a finitely presented complex G, there exists an exact sequence
of complexes 0 → K → P → G → 0 with P finitely generated free and K finitely
generated. So we get the induced exact sequence

Hom(P, Q) → Hom(K, Q)→ Ext1(G, Q)→ Ext1(P, Q) = 0.

Since the sequence Hom(P, Q) → Hom(K, Q)→ 0 is exact by (1), Ext1(G, Q) = 0.
(2)⇒ (1) is clear.
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(2) ⇒ (3) Let 0 → Qi → H → G → 0 be any exact sequence of modules with G
finitely presented. Then we get the following pushout diagram:

...

��

...

��

...

��
0 �� Qi−1

��

id �� Qi−1 ��

��

0

��

�� 0

0 �� Qi

��

�� H

��

�� G

id

��

�� 0

0 �� Qi+1

��

�� L ��

��

G ��

��

0

0 �� Qi+2

��

id �� Qi+2 ��

��

0

��

�� 0

...
...

...

Since G[−i− 1] is a finitely presented complex, the above short exact sequence of
complexes is split by (2). Thus the exact sequence 0 → Qi → H → G→ 0 is split,
and so Qi is FP -injective.

For a finitely presented complex G, the short exact sequence of complexes

0 → Q[i]→M(f)→ G[1]→ 0

is split for any i ∈ Z and any map f : G → Q[i]. So f is homotopic to 0 by [8,
Lemma 2.3.2]. It is easy to check that Hom.(G, Q) is exact.

(3) ⇒ (2) Let 0 → Q → H → G → 0 be any exact sequence of complexes with
G finitely presented. Since every Qi is FP -injective, the exact sequence is split at
the module level. So the exact sequence is isomorphic to

0→ Q →M(f)→ G→ 0,

where f : G[−1]→ Q is a map of complexes. Because Hom.(G[−1], Q) is exact, f
is homotopic to 0. Hence 0 → Q → M(f) → G → 0 is a split exact sequence of
complexes by [8, Lemma 2.3.2]. Thus Ext1(G, Q) = 0.

(2)⇒ (4) is obvious.

(4)⇒ (2) There exists an exact sequence of complexes 0 → Q → E → L→ 0 with
E injective. For any finitely presented complex G, we have the exact sequence

Hom(G, E)→ Hom(G, L) → Ext1(G, Q)→ Ext1(G, E) = 0.
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By (4), the sequence
Hom(G, E) → Hom(G, L) → 0

is exact, and so Ext1(G, Q) = 0. �
Corollary 2.4. Every FP -injective complex is exact.

Proof. Let Q be an FP -injective complex. Since R[n] is finitely presented for any
n ∈ Z, Ext1(R[n], Q) = 0 by Theorem 2.3. So

H−n+1(Q) ∼= Ext1[R[n], Q) = 0.

Thus Q is an exact complex. �
Corollary 2.5. The following are equivalent for a complex F :

1. F is a flat complex.
2. F+ is an injective complex, where F+ ≡ · · · → (F i)+ → (F i−1)+ → · · · and

(−)+ = HomZ(−, Q/Z).
3. F+ is a split FP -injective complex.

Proof. (1) ⇔ (2) follows from [8, Theorem 4.1.3].
(2) ⇒ (3) is trivial. (3) ⇒ (1) holds by Corollary 2.4. �
Proposition 2.6. If Q is an exact complex and every ker(δi) is FP -injective, then
Ext1(G, Q) = 0 for every finitely presented exact complex G.

Proof. Let 0 → Q → H → G → 0 be any exact sequence in C with G a finitely
presented exact complex. Thus the exact sequence is split at the module level.
So the exact sequence is isomorphic to 0 → Q → M(f) → G → 0, where f :
G[−1]→ Q is a map of complexes. By hypothesis, f is homotopic to 0. Therefore
0 → Q→M(f)→ G → 0 is split by [8, Lemma 2.3.2], and so Ext1(G, Q) = 0. �
Theorem 2.7. If R is a left coherent ring, then a bounded below complex Q ∈ C is
FP -injective if and only if Q is an exact complex of FP -injective left R-modules.

Proof. “⇒” follows from Theorem 2.3 and Corollary 2.4.
“⇐” We may assume that

Q = · · · → 0 → Q0 → Q1 → · · · .

Then there is a short exact sequence of complexes

0 → Q → E
g→ L → 0

such that
E = · · · → 0→ E0 ω0

→ E1 → · · ·
is injective and

L = · · · → 0 → L0 δ0

→ L1 → · · ·
is exact. Since R is a left coherent ring and every Qi is FP -injective, every Li is
FP -injective and so every Ki = ker(Li → Li+1) is FP -injective by [12, Lemma
3.1].
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Let

G = · · · → 0 → G0 d0

→ G1 d1

→ · · · dn−1

→ Gn → 0 → · · ·
be any finitely presented complex and α : G → L any map. We will construct
β : G→ E such that gβ = α.

For j > n, we define βj = 0.
For j = n, since δnαn = 0, there exists ϕn : Gn → Kn such that λnϕn = αn,

where λn : Kn → Ln is the inclusion. Since Kn−1 is FP -injective, we get the pure
exact sequence

0→ Kn−1 → Ln−1 → Kn → 0.

So there exists γn−1 : Gn → Ln−1 such that πn−1γn−1 = ϕn, where πn−1 :
Ln−1 → Kn is the canonical map. But the short exact sequence

0 → Qn−1 → En−1 → Ln−1 → 0

is also pure, and hence there exists θn−1 : Gn → En−1 such that gn−1θn−1 =
γn−1. Define βn : Gn → En as βn = ωn−1θn−1. Then gnβn = gnωn−1θn−1 =
δn−1gn−1θn−1 = δn−1γn−1 = λnπn−1γn−1 = λnϕn = αn and ωnβn = 0.

For j = n − 1, we have δn−1αn−1 = αndn−1 and δn−1γn−1 = αn. So
δn−1(αn−1 − γn−1dn−1) = 0. Thus there exists ϕn−1 : Gn−1 → Kn−1 such that
λn−1ϕn−1 = αn−1 − γn−1dn−1, where λn−1 : Kn−1 → Ln−1 is the inclusion.
Hence there exists γn−2 : Gn−1 → Ln−2 such that πn−2γn−2 = ϕn−1, where
πn−2 : Ln−2 → Kn−1 is the canonical map. So we get a map θn−2 : Gn−1 → En−2

such that gn−2θn−2 = γn−2. Define βn−1 : Gn−1 → En−1 as βn−1 = ωn−2θn−2 +
θn−1dn−1. Then gn−1βn−1 = gn−1ωn−2θn−2 + gn−1θn−1dn−1 = δn−2gn−2θn−2 +
γn−1dn−1 = λn−1πn−2γn−2+γn−1dn−1 = λn−1ϕn−1+γn−1dn−1 = αn−1. We also
have ωn−1βn−1 = ωn−1θn−1dn−1 = βndn−1.

By induction, we can construct βj for j < n− 1 and so have β : G→ E such
that gβ = α, which implies that the sequence

Hom(G, E) → Hom(G, L) → 0

is exact. Thus Ext1(G, Q) = 0, and so Q is FP -injective by Theorem 2.3. �

It is well known that R is a left Noetherian ring if and only if every FP -
injective left R-module is injective. By Theorem 2.7, we have

Corollary 2.8. The following are equivalent for a ring R:

1. R is a left Noetherian ring.
2. Every bounded below FP -injective complex is injective.

Corollary 2.9. The following are equivalent for a ring R:

1. R is a left coherent ring.
2. A bounded below complex F ∈ C is FP -injective if and only if F+ is flat.
3. For any short exact sequence 0 → A → B → C → 0 in C with A and B

FP -injective, C is FP -injective.
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Proof. (1) ⇔ (2) Note that R being left coherent is equivalent to the condition
that a left R-module F is FP -injective if and only if F+ is flat (see [2, Theorem
1]). So (1)⇔ (2) follows from Theorem 2.7.
(1)⇔ (3) is easy by [14, 35.9] and Theorem 2.3. �

Let F be a class of objects in an abelian category A and X an object in A.
Following [3], we say that a morphism φ : X → F is an F-preenvelope if F ∈ F and
the map Hom(φ, F ′) : Hom(F, F ′) → Hom(X, F ′) is surjective for each F ′ ∈ F .
An F -preenvelope φ : X → F is said to be an F-envelope if every endomorphism
g : F → F such that gφ = φ is an isomorphism. F -envelopes may not exist in
general, but if they exist, they are unique up to isomorphism.

Proposition 2.10. The following are true:
1. Every complex has an FP -injective preenvelope.
2. If α : Q → F is an FP -injective preenvelope in C, then αn : Qn → Fn is an

FP -injective preenvelope in R-Mod for every n ∈ Z.
3. If α : M → N is an FP -injective preenvelope in R-Mod, then the induced

map α : M [n]→ N [n] is an FP -injective preenvelope in C for any n ∈ Z.

Proof. (1) follows from [4, Theorem 7.4.1] and Theorem 2.3.
(2) Let N be an FP -injective left R-module and β : Qn → N any homomorphism.
Then we get an induced map of complexes γ : Q → N [−n]. Since N [−n] is an
FP -injective complex, there exists ϕ : F → N [−n] such that ϕα = γ. Thus
ϕnαn = γn = β. So αn : Qn → Fn is an FP -injective preenvelope in R-Mod.
(3) is straightforward. �

Remark 2.11. Though every complex has an FP -injective preenvelope, FP -in-
jective envelopes may not exist in general. In fact, let M be an R-module with no
FP -injective envelopes, and let the map M → E be an FP -injective preenvelope
of M (such a module M exists by [9, Theorem 4.1.6 and Corollary 6.3.19]), then
we easily see that M → E is an FP -injective preenvelope. So an FP -injective
envelope of M , if it exists, will be a direct summand of E, say I. But then M → I
will be an FP -injective envelope of M , which is a contradiction.
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A Generalization of Homological Dimensions
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Abstract. The main aim of this paper is to determine how far a module is
from tilting or cotilting. With this in mind, we introduce T n

m-injective mod-
ules and T n

m-projective modules for any non-negative integers m, n and any
Wakamatsu tilting module T , and then give some of their characterizations.
In particular, for a tilting module T which satisfies an F.S. condition such that
AddT is closed under submodules, we show that if M

N
belongs to Prod T , then

submodules of T are T 0
m-projective.
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1. Introduction

We know that modules with smaller projective (resp. injective) dimension are
nearer to projective (resp. injective) modules than the others are, and so they have
similar properties in some cases. In this paper, we will investigate modules that
have properties similar to a tilting (resp. cotilting) module T. For this aim, we shall
introduce some homological dimensions and generalized functors Extn

R and TorR
n .

Throughout this paper, R will be an associative ring with non-zero identity,
all R-modules are unitary R-modules. We also assume that T is a Wakamatsu
tilting module, in the sense of [[1], Proposition 2.1]. We denote by M(R) the
category of R-modules, by Add T (ProdT ) the class of modules isomorphic to
direct summands of direct sum (product) of copies of T , by Presn T the set of all
M ∈M(R) such that there exists an exact sequence

Tn → Tn−1 → · · · → T1 → M → 0,

with Ti ∈ Add T . Pres∞ T is defined in the obvious way. In Section 2, we will
introduce some homological dimensions and study their properties. In Section 3,
we introduce the classes of T n

m-injective and T n
m-projective modules and then char-

acterize them, in particular when n = 0.
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2. T -projective dimension

In this section, we shall give some definitions and propositions which will be used
in the proof of the main results. If T is a Wakamatsu tilting module, then for any
M ∈ Gen T (resp. M ∈ CogenT ), the T -projective (resp. T -injective) dimension
of M is defined to be the least non-negative integer n such that there exists a long
exact sequence

δn δ2 δ1 δ0
0 → Tn → · · · → T1 → T0 → M → 0,

(resp.
δ0 δ1 δ2

0 → M → T 0 → T 1 → · · · → T n → 0)

with Ti ∈ Add T (resp. T i ∈ ProdT ) for any 0 ≤ i ≤ n. If M ∈ Gen T , then

TorT
n (M, B) =

Ker(δn ⊗ 1B)
Im(δn+1 ⊗ 1B)

,

where
δ2 δ1 δ0· · · → T2 → T1 → T0 → M → 0,

is a left AddT -resolution of M , and if M ∈ CogenT , then

ExtnT (C, M) =
kerδn

∗
Im δn−1

∗
,

where
δ0 δ1 δ2

0 → M → T 0 → T 1 → T 2 → · · · ,
is a right ProdT -resolution of M .

We show that T.p.dim(M) ≤ n (resp. T.i.dim(M) ≤ n) if and only if
Exti

T (M,−) = 0 (Exti
T (−, M) = 0) for all i > n.

Proposition 2.1. If M is a generated (resp. cogenerated) module by a Wakamatsu
tilting (resp. cotilting) module T , then M has a left Add T -resolution (resp. right
ProdT -coresolution).

Proof. Since T is tilting, it is a 1-star module by [1, Theorem 4.3], and hence
Gen(T )=Pres∞T and M ∈Pres∞T . This shows that, at least M has a left Add(T )-
resolution. Now, it is seen that M ∈CogenT has a right ProdT -resolution. �

The next definition gives a relative version of the derived functors Ext and Tor.

Definition 2.2. Let T be a Wakamatsu tilting module.

i) For any M ∈ Gen T , we define

TorT
n (M, B) :=

Ker(δn ⊗ 1B)
Im(δn+1 ⊗ 1B)

, where δ2 δ1 δ0· · · → T1 → T0 → M → 0

is a left AddT -resolution of M that we chose once for all.
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ii) Extn
T (C, M) := Ker δn

∗
Im δn−1

∗
, where

δ0 δ1 δ2

0 → M → T 0 → T 1 → · · ·

is a right ProdT -resolution of M that we chose once for all.

One can easily check that the definition of TorT
n (M, B) and ExtnT (C, M) are

independent of the choice of Add T -resolutions and ProdT -coresolutions.

Definition 2.3. Let T be a Wakamatsu tilting module.

i) If M is a module generated by T , then we say that M is of T -projective
dimension n (abbreviatedly T.p.dim(M) = n) if, n is the least non-negative
integer such that there exists a long exact sequence

0→ Tn → Tn−1 → · · · → T1 → T0 →M → 0

with Ti ∈ Add T for each i ≥ 0.
ii) If M is cogenerated by T , then we say that M is of T -injective dimension n

(abbreviatedly T.i.dim(M) = n) if n is the least non-negative integer such
that there exists a long exact sequence 0→M → T 0 → T 1 → · · · → T n → 0
with T i ∈ ProdT for each i ≥ 0.

Remark 2.4. Let T be a Wakamatsu tilting module. For any M ∈ Gen T , the
following statements are equivalent:

1) T.p.dim(M) ≤ n.
2) For any AddT -resolution 0 → Tn−1 → Tn−2 → · · · → T1 → T0 → M → 0,

Ker(Tn−1 → Tn−2) belongs to Add T .
3) Exti

T (M, B) = 0 for any i > n and B ∈M(R).

Proposition 2.5. Consider the Add T -resolution

δ2 δ1 δ0· · · → T2 → T1 → T0 → M → 0

and define Ki = Ker(δi) for i ≥ 0. Then,

i) TorT
n+1(M, B) ∼= TorT

n (K0, B) ∼= · · · ∼= TorT
1 (Kn−1, B).

ii) Extn+1
T (M, B) ∼= Extn

T (K0, B) ∼= · · · ∼= Ext1T (Kn−1, B).

Proof. i) It is clear that · · · → T2 → T1 → K0 → 0 is an AddT -resolution of K0.
Define Sn−1 = Tn and Δn−1 = δn for each n ≥ 1. The AddT -resolution now reads
· · ·S2 → S1 → S0 → K0 → 0 by definition

TorT
n (K0, B) ∼= Ker(Δn ⊗ 1B)

Im(Δn−1 ⊗ 1B)
=

Ker(δn+1 ⊗ 1B)
Im(δn ⊗ 1B)

= TorT
n+1(M, B).

ii) This can be proven in a similar manner. �
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3. T n
m-injective modules and T n

m-projective modules

As explaind in the preceding section, if M is T -injective(resp. T -projective), then
Ext1T (P, M) = 0 (resp. Ext1T (M, P ) = 0) for any P ∈ Gen T (resp. P ∈ CogenT )
where T is a Wakamatsu tilting module.

Definition 3.1. Let T be a Wakamatsu tilting module and suppose that m and n
are fixed non-negative integers.

i) M ∈ CogenT is called T n
m-injective module if Extn+1

T (P, M) = 0 for any
P ∈ Presm(T ).

ii) M ∈ Gen T is called T n
m-projective if Ext1T (M, N) = 0 for any T n

m-injective
module N .

Proposition 3.2.
i) Every T n

s -injective module is T n
m-injective for every s ≤ m.

ii) Every T n
m-projective R-module is T n

s -projective for every s ≤ m.
iii) If M ∈ Presm T , then M is T 0

m-projective.
iv) If M is an epimorphic image of a module belonging to Add T and

Extk+1
T (M, N) = 0, for any T 0

1 -injective R-module N and any k,
0 ≤ k ≤ m− 1, then M ∈ Presm T .

Proof. This is a direct consequence of the definitions. �

Theorem 3.3. Let 0 → A→ B → C → 0 be a short exact sequence.
(1) If A is T n

m-injective and B is T n
m+1-injective, then C is T n

m+1-injective.
(2) If C is T n

m+1-projective and B is T n
m-projective, then A is T n

m-projective.

Proof. (1) Let M ∈ Presm+1 T . Then there exists an exact sequence 0 → K →
T0 →M → 0 in which T0 ∈ Add T . Thus, K ∈ Presm T by definition. Now, we get
an induced exact sequence 0=Extn+1

T (K,A)→Extn+2
T (M,A)→Extn+2

T (T0,A)=0
and hence Extn+2

T (M, A) = 0. On the other hand we have the exact sequence 0 =
Extn+1

T (M, B) → Extn+1
T (M, C) → Extn+2

T (M, A) = 0 and so, Extn+1
T (M, C) = 0.

Therefore C is T n
m+1-injective.

(2) Let N be any T n
m-injective module. We have the induced exact sequence

0 = Ext1T (B, N) → Ext1T (A, N) → Ext2T (C, N) → · · · . Consider the short ex-
act sequence 0 → N → T 0 → T 0

N → 0 ( N → T 0 can be a ProdT -preenvelope).
The module T 0

N is T n
m+1-injective by (1). Thus Ext2T (C, N) ∼= Ext1T (C, T 0

N ) = 0,
because C is T n

m+1-projective by hypothesis and we get Ext1T (A, N) = 0. �

Let · · · → Tr → Tr−1 → · · · → T1 → T0 → N → 0 be an AddT -resolution
for N . We define Kr = Ker(Tr → Tr−1) and call it rthT -syzygy of N . Also we
denote the class of T n

m-injective (resp. T n
m-projective) modules by Im,n(T ) (resp.

Pm,n(T )).

Lemma 3.4. Let T be a tilting module. If Add T is closed under submodules, then
Presm T is closed under syzygies.
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Proof. Let N ∈ Presm T . Then by Proposition 2.1 and this fact that

Presm T ⊆ Gen T,

there exists an Add T -resolution

· · · → Tm → Tm−1 → · · · → T1 → T0 → N → 0.

For n, n ≤ m, let Kn be nthT -syzygy of N . Clearly K1 ∈ Presm−1 T , thus Kn as
an (n − 1)thT -syzygy of K1 belongs to Presm T and hence by induction on m we
get Kn ∈ Presm T . �

The following definition gives a generalization of the pure submodules.

Definition 3.5. Let M be an R-module. A submodule N of M is called (n, T )-pure
submodule if Ext1T (B, N) = 0 for any B ∈ Presn T .

Lemma 3.6. If T is a tilting module and M ∈ Gen T , then the following statements
are equivalent:
(1) M is T 0

m-injective.
(2) There exists an exact sequence 0 → M → B → C → 0, where M is an

(n, T )-pure submodule of B, and B is T 0
m-injective.

Definition 3.7. We say that an R-module T satisfies F.S. condition if any R-module
can be written as

⊔n
i=1

T
si

which Si’ s are submodules of T and n a positive integer.

Theorem 3.8 (Main Theorem). Let T be a tilting module, Add T is closed under
submodules, and T satisfies F.S. condition, then the following are equivalent:
(1) If M ∈ ProdT and N is an (m, T )-pure submodule of M , then the quotient

module M
N belongs to ProdT .

(2) Every submodule of T 0
m-projective module is T 0

m-projective.
(3) Every submodule of T is T 0

m-projective.

Proof. (1) ⇒ (2) Let N be a submodule of T 0
m-projective module M , then for

any T 0
m-projective module L, we get the exact sequence 0 → Ext1T (M, L) →

Ext1T (N, L)→ Ext2T (M
N , L). Note that L is an (n, T )-pure submodule of its ProdT -

envelope E(L), by definition, it follows that E(L)
L ∈ ProdT by (1) and T.i.dim(L) ≤

1. Thus, Ext2T (M
N , L) = 0.

(2) ⇒ (3) Since T , itself belongs to Add T , thus it is T 0
m-projective. Therefore (3)

is a special case of (2).
(3) ⇒ (1) Let N be an (m, T )-pure submodule of M and M ∈ ProdT , then N is
T 0

m-injective by Lemma 3.6. For any module Q, since T satisfies F.S. condition,
we have Q ∼=

∐n
i=1

T
Si

in which Si is a submodule of T , for any 1 ≤ i ≤ n. We
know that Ext1T (Q, M

N ) ∼=
∏n

i=1 Ext1T ( T
Si

, M
N ). But the exactness of 0 → N →

M → M
N → induces to the exactness of 0 = Ext1T ( T

Si
, M) → Ext1T (T

S , M
N ) →

Ext1T (T
S , N). On the other hand, the exact sequence 0 → Si → T → T

Si
→ 0 gives

rise to exact sequence 0 = Ext1T (Si, N) → Ext1T ( T
Si

, N) → Ext2T (T, N) = 0. Thus,
Ext1T ( T

Si
, M

N ) = 0 which implies that Ext1T (Q, M
N ) = 0 that is M

N ∈ ProdT . �
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Additive Rank Functions and Chain Conditions

Patrick F. Smith

Abstract. Let R be a ring with identity and let mod-R denote the category of
finitely generated unitary right R-modules. By an additive rank function on
mod-R we mean a mapping ρ from mod-R to the set N of non-negative integers
such that, for every exact sequence 0 → L → M → H → 0 in mod-R, we have
ρ(M) = ρ(L) + ρ(H). In this note we exhibit a relationship between additive
rank functions on mod-R and ascending chain conditions of a certain type.
Specifically, we prove that if R is a right Noetherian ring, ρ is an additive rank
function on mod-R and a right R-module M = Πi∈IMi is a direct product
of finitely generated submodules Mi (i ∈ I) such that ρ(L) �= 0 for every
non-zero submodule L of Mi for each i ∈ I then M satisfies the ascending
chain condition on n-generated submodules for every positive integer n. In
particular this implies that, for a right Noetherian ring R which is an order in
a right Artinian ring, every torsionless right R-module satisfies the ascending
chain condition on n-generated submodules for every positive integer n. It is
also proved that if R is a right Noetherian ring which satisfies the descending
chain condition on right annihilators then every torsionless right R-module M
such that every countably generated submodule is contained in a direct sum
of finitely generated submodules of M satisfies the ascending chain condition
on n-generated submodules for every positive integer n.

Mathematics Subject Classification (2000). 16P40,16P20, 16P70.

Keywords. Noetherian, Artinian, additive rank function, torsionless, fully
bounded, prime ideal.

1. Subrings of Artinian rings

All rings are associative with identity and all modules are unital modules. Any un-
explained terms can be found in [29]. A recurring theme in the theory of Noetherian
rings is the consideration of when a right Noetherian ring can be embedded in a
right Artinian ring. The first result that immediately springs to mind is Goldie’s
Theorem.



150 P.F. Smith

Theorem 1.1 (See [17, 18]). A semiprime right Noetherian ring is a right order in
a right Artinian ring.

Of course, Goldie’s Theorem immediately implies that a semiprime right
Noetherian ring embeds in a (right and left) Artinian ring. Now let R be any ring.
An element c of R is called regular provided rc �= 0 and cr �= 0 for every non-zero
element r in R. Given any ideal A of R, we denote by C (A) the set of elements c
in R such that c + A is a regular ring of the factor ring R/A. The next theorem
we would like to mention is Small’s Theorem.

Theorem 1.2 (See [34, Theorems 2.10, 2.11 and 2.12]). Let R be a right Noetherian
ring with maximal nilpotent ideal N . Then R is a right order in a right Artinian
ring if and only if C (0) = C (N).

In the same paper Small proves the following result.

Theorem 1.3 (See [34, Theorem 3.13]). Let R be a ring which is a finitely gener-
ated module over a Noetherian central subring S. Then R can be embedded in an
Artinian ring.

In particular, Theorem 1.3 shows that every commutative Noetherian ring S
can be embedded in an Artinian ring. This is true for the following reason. The
zero ideal 0 = Q1∩· · ·∩Qn is a finite intersection of primary ideals Qi (1 ≤ i ≤ n),
for some positive integer n, and Theorem 1.2 can be used to show that the ring
S/Qi is an order in an Artinian ring for each 1 ≤ i ≤ n.

Let R be any ring. By a right annihilator we mean a right ideal rR(X)
consisting of all elements r in R such that xr = 0 for all x in X , for some non-
empty subset X of R. Now suppose that R is a subring of a right Artinian ring S.
Let X be any non-empty subset of R. Then it is immediate that rR(X) = R∩rS(X)
and it follows that R satisfies the ascending and descending chain conditions on
right annihilators. This fact is needed in the next example.

Example 1.4 (See [35]). There exists a right Noetherian ring that cannot be em-
bedded in a right Artinian ring.

Proof. Let S be a simple right Noetherian ring which is an algebra over a field K
but which is not right Artinian and let E be a proper essential right ideal of S.
Let M denote the left K-, right S-bimodule S/E and let R denote the ring[

K M
0 S

]
consisting of all “matrices” of the form[

k m
0 s

]
where k ∈ K, m ∈ M and s ∈ S. Then R is a right Noetherian ring but R does
not satisfy the descending chain on right annihilators because if it did then the
singular right S-module M would be unfaithful, a contradiction. Thus, by the
above remarks, the ring R cannot be embedded in a right Artinian ring. �
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This example of Small led several authors to consider when a right Noether-
ian ring can be embedded in a right Artinian ring. In 1973 Blair [6] generalized
Theorem 1.3 by proving that a right Noetherian ring which is integral over its
centre can be embedded in a right Artinian ring. In the following year Gordon [23]
showed that every two-sided fully bounded Noetherian ring can be embedded in an
Artinian ring. (Recall that a ring R is called right fully bounded provided for every
prime ideal P of R every essential right ideal of the ring R/P contains a non-zero
two-sided ideal of R/P .) The methodology was basically that as outlined for the
case of commutative Noetherian rings, namely show that the zero ideal is a finite
intersection of ideals with corresponding factor rings embeddable in right Artinian
rings. In 1985 A.H. Schofield [33] investigated homomorphisms from a ring R to
simple Artinian rings and showed that such homomorphisms were closely related
to the existence of what he called Sylvester module rank functions which we briefly
discuss next.

Let R be any ring. For any positive integer n, N(1/n) will denote the additive
semigroup consisting of all rational numbers of the form m/n for some non-negative
integer m. A Sylvester module rank function for R, according to Schofield [33], is
a mapping λ from the category of finitely presented right R-modules to N(1/n),
for some positive integer n, such that

(i) λ(RR) = 1,
(ii) λ(M1 ⊕M2) = λ(M1) + λ(M2), and
(iii) λ(H) ≤ λ(M) ≤ λ(L) + λ(H),

for all finitely presented right R-modules M1, M2, M , H and L such that the
sequence L → M → H → 0 is exact. Moreover, λ is called exact if λ(M) =
λ(L) + λ(H) for all exact sequences

0→ L →M → H → 0

of finitely presented right R-modules. For any positive integer k, Mk(R) will denote
the ring of k × k matrices with entries in R. Schofield [33, Theorem 7.12] proved
the following theorem.

Theorem 1.5. Let R be an algebra over a field K. Then any Sylvester rank function
λ for R arises from a homomorphism f : R → Mn(D), for some positive integer
n and division ring D, in such a way that the kernel of f consists of all elements
a in R such that λ(R/aR) = 1. Moreover, in this case λ is exact if and only if
Mn(D) is a flat left R-module.

Conversely, a homomorphism f : R → Mn(D) gives rise to a Sylvester rank
function λf defined as follows: given any finitely presented right R-module X if
the finitely generated right Mn(D)-module X

⊗
R Mn(D) has composition length s

then set λf (X) = s/n.

Moreover, Schofield [33, Theorem 7.13] proved that every right Artinian ring
which is an algebra over a field can be embedded in a simple Artinian ring. Using
Schofield’s work, Blair and Small proved the following theorem.
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Theorem 1.6 (See [7, Theorem 1]). Let R be a right Noetherian algebra over a
field K and let N denote the maximal nilpotent ideal of R. Let A denote the set of
elements a in R such that for each r ∈ R there exists c ∈ C (N) such that arc = 0.
Then A is an ideal of R and the ring R/A embeds in a simple Artinian ring. In
particular, if A = 0 then R embeds in a simple Artinian ring.

Dean and Stafford [12] proved that if R = U(g) is the universal enveloping
algebra of the Lie algebra g = sl(2,C) then there exists an ideal I of R such that the
ring R/I is a Noetherian ring of (Rentschler-Gabriel) Krull dimension 1 but R/I
cannot be embedded in a right Artinian ring. Note that, being left Noetherian,
R/I satisfies the descending chain condition on right annihilators, unlike Small’s
example above. Dean [11] showed that the Lie algebra sl(2,C) can be replaced by
any finite-dimensional complex semisimple Lie algebra.

Finally, in this section note that Krause [28, p. 336] points out that a right
Noetherian algebra R over a field K embeds in a simple Artinian ring S such that
the left S-module R is flat if and only if for each 0 �= a ∈ R there exists r ∈ R such
that arc �= 0 for all c ∈ C (N), where N is again the maximal nilpotent ideal of
R, i.e., A = 0 in the notation of Theorem 1.6. In [28] Krause gives some sufficient
conditions for a right Noetherian ring to be embeddable in a right Artinian ring.
Goldie and Krause [21, Corollary 8] generalize Theorem 1.6 to right Noetherian
rings (which are not algebras over a field) with the ideal A = 0 and with an
incomparability condition on prime ideals.

2. Additive rank functions

Let R be a ring with identity and let mod-R denote the category of finitely gen-
erated right R-modules. Following [26], by an additive rank function on mod-R
we mean a rule ρ which assigns to every finitely generated right R-module X a
non-negative integer ρ(X) such that ρ(Y ) = ρ(X) + ρ(Z) for all exact sequences

0 → X → Y → Z → 0

in mod-R. In particular, this gives that ρ(0) = 0, ρ(X) = ρ(X ′) for all finitely
generated isomorphic R-modules X and X ′, and ρ(X1 ⊕ X2) = ρ(X1) + ρ(X2)
for all finitely generated R-modules X1 and X2. This notion finds its origins in
rank functions for von Neumann regular rings (see [22, Chapter 16]) and Sylvester
module rank functions in Schofield’s work discussed above. Clearly if R is a right
Noetherian ring then every exact Sylvester module rank function is an additive
rank function on mod-R. Now suppose that R is any ring. There is a trivial additive
rank function ρz on mod-R defined by ρz(X) = 0 for all finitely generated right
R-modules X . Note that an additive rank function ρ satisfies ρ = ρz if and only
if ρ(RR) = 0. Let ρ be any additive rank function such that ρ(RR) �= 0. For each
finitely presented right R-module X define λ(X) = ρ(X)/ρ(RR). Then it is clear
that λ is an exact Sylvester module rank function for R.
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Additive rank functions appear in many places in the literature. The most
basic example comes from the theory of right Artinian rings. If R is a right Artinian
ring then let ρ0(X) denote the composition length of any finitely generated right
R-module X . It is well known that ρ0 is an additive rank function on mod-R. This
example has been generalized by Krause [26]. Let R be a non-zero right Noetherian
ring. Then there exists an ordinal α ≥ 0 such that R has right Krull dimension
α. For the definition and basic properties of Krull dimension see [29, Chapter 6].
For any right R-module M which has Krull dimension, let k(M) denote the Krull
dimension of M . Let X be any finitely generated right R-module. Then X has
Krull dimension and k(X) ≤ α. If k(X) �= α then set ρα(X) = 0. Now suppose
that k(X) = α. Construct a chain of submodules X = X0 ⊇ X1 ⊇ X2 ⊇ · · ·
such that for all integers i ≥ 1, Xi is a maximal submodule of Xi−1 such that
k(Xi−1/Xi) = α. Because k(X) = α there exists a least positive integer n such
that k(Xn) < α and in this case we set ρα(X) = n. Note that n is independent of
the choice of the submodules Xi (1 ≤ i ≤ n) (see [26] for details). The next result
is [26, Proposition 4.2].

Proposition 2.1. Let R be a right Noetherian ring with right Krull dimension α.
Then ρα is an additive rank function on mod-R.

Let R be any ring and let M be any right R-module. A submodule K of M
is called closed provided K has no proper essential extension in M . Recall that
the singular submodule Z(M) of a module M is the submodule consisting of all
elements m in M such that mE = 0 for some essential right ideal E of R. Then
the second singular submodule Z2(M) of M is the submodule containing Z(M)
such that Z2(M)/Z(M) = Z(M/Z(M)). Note that Z2(M) is a closed submodule
of M . The module M is called singular if M = Z(M) and is called nonsingular if
Z(M) = 0. If R is a right nonsingular ring, i.e., RR is nonsingular, then Z(M) =
Z2(M) for every R-module M by [37, Chapter VI Proposition 6.7]. The module
M has finite uniform dimension if M does not contain an infinite direct sum of
non-zero submodules and in this case the uniform dimension of M will be denoted
by u(M). Recall that a non-zero module M has uniform dimension n, for some
positive integer n, provided that M contains a direct sum L1⊕· · ·⊕Ln of non-zero
submodules Li (1 ≤ i ≤ n) but no direct sum of n + 1 non-zero submodules. Note
that u(M) is an invariant of M . For the basic properties of uniform dimension
see [29, Section 2.2]. Although it is clear that every submodule of a module M
with finite uniform dimension also has finite uniform dimension, homomorphic
images of M need not have finite uniform dimension. If K is a closed submodule
of a module M and M has finite uniform dimension then M/K has finite uniform
dimension and

u(M) = u(K) + u(M/K)

(see, for example, [13, 5.10]).
Now let R denote a right Noetherian ring. In this case every finitely generated

right R-module is Noetherian and hence has finite uniform dimension. For any
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finitely generated right R-module X define ρg(X) = u(X) − u(Z(X)). The next
result is due to Goldie (see [19, Lemma 4.1 and remarks on p. 273]).

Proposition 2.2. Let R be a right Noetherian ring. Then
(i) ρg is an additive rank function on mod-R.
(ii) For each finitely generated R-module X,

ρg(X) = u(X)− u(Z2(X)) = u(X/Z2(X)).

Given any finitely generated right R-module X over a right Noetherian ring,
note that ρg(X) = 0 if and only if u(X) = u(Z(X)) and this occurs if and only if
Z(X) is an essential submodule of X or, in other words, if and only if X = Z2(X).
In [19, p. 274], Goldie remarks that the rank of a finitely generated module X
given by ρg(X) has a number of disadvantages and he introduces a notion which
later came to be known as ‘reduced rank’ and which we shall denote by ρr.

Let R be a right Noetherian ring and let X be a finitely generated right
R-module. Let N denote the prime radical of R so that Nk = 0 for some positive
integer k. Consider the chain

X = XN0 ⊇ XN1 ⊇ · · · ⊇ XNk = 0

of submodules XN i (0 ≤ i ≤ k) of X . In [9, Chapter 2] the rank of X , which we
shall denote by ρr(X), is defined by

ρr(X) =
k∑

i=1

ρg(XN i−1/XN i).

Note that in [29, Section 4.1], ρr(X) is called the reduced rank of X . Further note
that, for each 1 ≤ i ≤ k, Yi = XN i−1/XN i is a finitely generated module over
the semiprime right Noetherian ring R/N and, because R/N is right nonsingular,
we have

ρr(X) =
k∑

i=1

u(Yi/Z(Yi))

by the above remarks. Moreover, as Goldie points out in [19, p. 274], if

X = X0 ⊇ X1 ⊇ · · · ⊇ Xm = 0

is any finite chain of submodules Xi of X such that Xi−1N ⊆ Xi (1 ≤ i ≤ m) then

ρr(X) =
m∑

i=1

ρg(Xi−1/Xi).

Proposition 2.3. Let R be a right Noetherian ring. Then
(i) ρr is an additive rank function on mod-R.
(ii) ρr(M) = 0 if and only if for each m ∈ M there exists c ∈ C (N) such that

mc = 0.

Proof. See [9, Theorem 2.2]. �
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Again let R be a right Noetherian ring and let ρ be any additive rank function
on mod-R. Following [20, Proposition 1.1] we let Fρ denote the collection of right
ideals A of R such that ρ(R/A) = 0. Goldie [20, Proposition 1.1] shows that Fρ is
a Gabriel filter of right ideals. For a good discussion of Gabriel filters see [37]. Let
M be a right R-module. Given any submodule L of M the set L̄ of all elements
m in M such that mF ⊆ L for some F in Fρ is a submodule of M containing L
and L is called Fρ-closed provided L = L̄. Goldie [20, Proposition 1.1] proves that
R satisfies the descending chain condition on Fρ-closed right ideals. Moreover, in
this case Krause [27, Proposition 1.4] proves that every finitely generated right
R-module X satisfies the descending chain condition on Fρ-closed submodules.
Conversely, let G be any Gabriel filter of right ideals of a right Noetherian ring
R such that R satisfies the descending chain condition on G-closed right ideals.
For any finitely generated R-module X , define ρG(X) to be the maximal length of
a chain of G-closed submodules of X . Then Krause [27, Theorem 3.1] proves the
following result.

Proposition 2.4. Let G be any Gabriel filter of right ideals of a right Noetherian
ring R such that R satisfies the descending chain condition on G-closed right ideals.
Then ρG is an additive rank function on mod-R.

Krause also proves that if ρ is any additive rank function on mod-R, for a
right Noetherian ring R, then, for any finitely generated R-module X , ρr(X) = 0
implies that ρ(X) = 0 (see [26, Lemma 1.3]).

Let R be any ring and let F be a Gabriel filter of right ideals. It is well known
that we can associate with F an hereditary torsion theory τF such that the τF-
torsion modules are precisely the right R-modules M such that for each m in M
there exist F ∈ F such that mF = 0. In particular, if ρ is any additive rank function
then the collection of all modules M such that ρ(mR) = 0 for all m ∈ M forms
a torsion class for an hereditary torsion theory. In particular, this means that, for
any R-module L, the set tρ(L) of all elements x in L such that ρ(xR) = 0 forms
a submodule of L. We shall call an R-module T ρ-torsion provided T = tρ(T ).
Moreover, we call an R-module F ρ-torsion-free if tρ(F ) = 0. Now note that if R
is a right Noetherian ring then a finitely generated right R-module M is ρr-torsion
if and only if M is ρ-torsion for every additive rank function ρ on mod-R, by [26,
Lemma 1.3]. This means that tρr (L) ⊆ tρ(L) for every right R-module L. Note
further that if the right R-module M is nonsingular then M is ρg-torsion-free and
hence ρr-torsion-free.

There is a relationship between reduced rank and the embedding of a right
Noetherian ring in a right Artinian ring. Let R be a right Noetherian ring. Given
a ∈ R, ρr(aR) = 0 if and only if for each r ∈ R there exists c ∈ C (N) such that
arc = 0, where as usual N denotes the maximal nilpotent ideal of R. Thus in
Theorem 1.6, the ideal A is precisely tρr (RR). Thus Theorem 1.6 can be restated:
if R is a right Noetherian algebra over a field K such that the right R-module R
is ρr-torsion-free then the ring R embeds in a simple Artinian ring. In the next
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section we shall be interested in rings R such that the module RR is ρ-torsion-free
for some additive rank function ρ on mod-R.

3. Chain conditions

Let R be a ring and let M be an R-module. Given a positive integer n, the mod-
ule M satisfies n-acc provided every ascending chain of n-generated submodules
terminates. Moreover, the module M satisfies pan-acc in case M satisfies n-acc
for every positive integer n. The ring R is said to satisfy right n-acc, for a given
positive integer n, provided the right R-module R satisfies n-acc. Similarly, the
ring R satisfies right pan-acc if RR satisfies pan-acc. These chain conditions are
discussed in many places (see, for example, [1]–[5], [8], [10], [14]–[15], [24]–[25],
[30]–[32] and [36]).

Consider first Abelian groups. A torsion Z-module A satisfies pan-acc if and
only if A satisfies 1-acc and this occurs if and only if A is reduced (i.e., A has
no non-zero divisible submodules) and there exists only a finite number of primes
p such that pa = 0 for some non-zero element a in A (see [5, Theorem 3]). In
contrast, for every positive integer n, Fuchs [16, p. 125] gives an example of a
torsion-free Z-module Bn which satisfies n-acc but not (n+1)-acc. Note that every
free Z-module satisfies pan-acc (see [5, Theorem 1 Corollary 1]). However there
exists a right Noetherian ring R and a free right R-module F such that F does
not satisfy 1-acc, as the following example of Renault [31, Proposition 3.4] shows.

Example 3.1. Let S be a simple right Noetherian ring which is an algebra over a
field K but which is not Artinian and let U be a simple right S-module. Let R
denote the ring [

K U
0 S

]
Then a free right R-module F satisfies 1-acc if and only if F is finitely generated.

The reason why Example 3.1 works is that the right R-module U (n) is cyclic
for every positive integer n. We do not have an example of a right Noetherian ring
R and a free right R-module F such that F satisfies 1-acc but not 2-acc. Note
that in Example 3.1 if the ring S is, in addition, left Noetherian then every free
left R-module satisfies pan-acc by [4, Corollary 3.13]. In the same paper Renault
[31, Théorème 3.2] proved the following theorem.

Theorem 3.2. Let R be a right Noetherian ring such that for every prime ideal P
with P = rR(X) for some non-empty subset X of R there exists a finite subset Y
of X such that P = rR(Y ). Then every free right R-module satisfies pan-acc.

In particular, as Renault [31, Corollaire 3.3] points out, if R is a right Noe-
therian ring which is either left Noetherian or right fully bounded then every free
right R-module satisfies pan-acc. Moreover, if R is a right Noetherian ring which
satisfies the descending chain condition on right annihilators then R satisfies the
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hypotheses of Theorem 3.2. Thus, by the above remarks we have the following
result.

Corollary 3.3. Let R be a right Noetherian ring which can be embedded in a right
Artinian ring. Then every free right R-module satisfies pan-acc.

Let R be any ring. A right R-module M is called torsionless provided, for
each non-zero element m in M , there exists a homomorphism ϕm : M → R such
that ϕm(m) �= 0, equivalently, the module M embeds in a direct product (RR)I

of copies of the R-module RR, for some index set I. Compare the next result with
Theorem 3.2.

Theorem 3.4 (See [36, Theorem 16]). Let S and R be rings and let M be a left S-,
right R-bimodule such that M is Noetherian both as a left S-module and as a right
R-module. Then the right R-module M I satisfies pan-acc, for every index set I.

Note that, in particular, Theorem 3.4 shows that if R is a (two-sided) Noe-
therian ring then every torsionless right R-module satisfies pan-acc. This result was
proved first in the case of commutative rings by Frohn [15, Theorem 3.3]. There
are other situations where torsionless modules satisfy pan-acc and we examine one
of these next. First we have an easy lemma.

Lemma 3.5. Let R be a right Noetherian ring and let ρ be any additive rank function
on mod-R. Let M be an R-module, let n be a positive integer and let L1 ⊆ L2 ⊆
· · · be any ascending chain of n-generated submodules of M . Then there exists a
positive integer k such that ρ(Li/Lk) = 0 for all i ≥ k.

Proof. For all i ≥ 1 there exists an epimorphism from the free R-module (RR)(n)

to Li and hence ρ(Li) ≤ nρ(RR). But, by the properties of ρ, ρ(L1) ≤ ρ(L2) ≤ · · · .
Thus there exists a positive integer k such that ρ(Lk) = ρ(Lk+1) = · · · and hence
ρ(Li+1/Li) = 0 for all i ≥ k. The result follows. �
Lemma 3.6. Let R be a right Noetherian ring and let ρ be any additive rank function
on mod-R. Let an R-module M = Πi∈IMi be a direct product of ρ-torsion-free R-
modules Mi (i ∈ I). Then for each finitely generated submodule N of M there
exists a finite subset F of I such that N ∩ (Πi∈I�F Mi) = 0.

Proof. We shall prove the result by induction on the non-negative integer ρ(N).
Note that the module M is ρ-torsion-free by [37, Chapter VI Proposition 2.2]. If
ρ(N) = 0 then N = 0 and the result is clear. Suppose that ρ(N) �= 0 so that
N �= 0. There exists j ∈ I such that N � Πi∈I�{j}Mi. Let L = Πi∈I�{j}Mi. Then

N/(N ∩ L) ∼= (N + L)/L ≤M/L ∼= Mj

and N/(N ∩ L) �= 0 so that ρ(N/(N ∩ L)) �= 0. It follows that

ρ(N ∩ L) = ρ(N)− ρ(N/(N ∩ L)) < ρ(N).

By induction there exists a finite subset G of I � {j} such that

N ∩ L ∩ (Πi∈I�GMi) = 0.

Let F = G ∪ {j}. Then N ∩ (Πi∈I�F Mi) = 0, as required. �
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Renault [31, Corollaire 2.3] (see also [5, Theorem 8]) proved that if R is
a right Noetherian right nonsingular ring then every free right R-module satisfies
pan-acc. Sanchez Campos and Smith [32, Corollary 4.3] (see also [2, Theorem 1.5])
proved that if a ring R is right Noetherian, n is a positive integer and Mi (i ∈ I)
is any collection of nonsingular right R-modules each satisfying n-acc then the
direct product Πi∈IMi satisfies n-acc. Because every nonsingular R-module is ρg-
torsion-free, these results are all special cases of the following theorem.

Theorem 3.7. Let R be a right Noetherian ring and let ρ be any additive rank
function on mod-R. Let n be any positive integer. Then a direct product Πi∈IMi of
ρ-torsion-free right R-modules Mi (i ∈ I) satisfies n-acc if and only if Mi satisfies
n-acc for each i ∈ I.

Proof. The necessity is clear. Conversely suppose that Mi satisfies n-acc for each
i ∈ I. Let M = Πi∈IMi and let L1 ⊆ L2 ⊆ · · · be any ascending chain of n-
generated submodules of M . By Lemma 3.5 there exists a positive integer k such
that ρ(Lk) = ρ(Lk+1) = · · · . Next by Lemma 3.6 there exists a finite subset F of
I such that

Lk ∩ (Πi∈I�F Mi) = 0.

Let P = Πi∈F Mi and let Q = ΠI∈I�F Mi so that M = P ⊕ Q. Note that if
L = ∪i≥1Li then L ∩ Q = 0. To see why this is the case, suppose that t is an
integer with t ≥ k. Let x ∈ Lt ∩Q. With the above notation there exists a right
ideal A ∈ Fρ such that xA ⊆ Lk. Then xA ⊆ Lk∩Q = 0 and hence x = 0, because
M is ρ-torsion-free. It follows that Lt ∩ Q = 0. We have proved that L ∩Q = 0.
If π : M → P is the canonical projection then π|L is a monomorphism. Moreover,
π(L1) ⊆ π(L2) ⊆ · · · is an ascending chain of n-generated submodules of the
module P . By [32, Theorem 4.2], P satisfies n-acc. Thus there exists a positive
integer s such that π(Ls) = π(Ls+1) = · · · and hence Ls = Ls+1 = · · · . It follows
that M satisfies n-acc. �

Corollary 3.8. Let R be a right Noetherian ring and let ρ be any additive rank
function on mod-R. Then every direct product of finitely generated ρ-torsion-free
right R-modules satisfies pan-acc.

Proof. By Theorem 3.7. �

Corollary 3.9. Let R be a right Noetherian ring and let ρ be any additive rank
function on mod-R such that the right R-module R is ρ-torsion-free. Then every
torsionless right R-module satisfies pan-acc.

Proof. By Corollary 3.8. �

Let R be any non-zero right Noetherian ring. Suppose that R has right Krull
dimension α for some ordinal α ≥ 0. The right R-module R is ρα-torsion-free
provided k(A) = α for every non-zero right ideal A of R. Thus if R is a right Noe-
therian ring with right Krull dimension α such that k(A) = α for every non-zero
right ideal A then every torsionless right R-module satisfies pan-acc by Corollary
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3.9. A non-zero R-module M is called α-critical if k(M) = α and k(M/N) < α for
every non-zero submodule N of M . It is well known that if M is α-critical then
k(N) = α for every non-zero submodule N of M (see [29, Lemma 6.2.11]) and
hence M is ρα-torsion-free. Another consequence of Theorem 3.7 is the following
result.

Theorem 3.10. Let R be a non-zero right Noetherian ring with right Krull dimen-
sion α for some ordinal α ≥ 0 and let n be any positive integer. Then a direct
product Πi∈IMi of α-critical R-modules Mi (i ∈ I) satisfies n-acc if and only if
the module Mi satisfies n-acc for every i ∈ I.

Proof. By Theorem 3.7. �

Let R be a right Noetherian algebra over a field K such that the module RR is
ρ-torsion-free for some additive rank function ρ on mod-R. By the remarks at the
end of Section 2, RR is ρr-torsion-free and, by Theorem 1.6, R can be embedded
in a simple Artinian ring. This brings us to the following result.

Theorem 3.11. Let R be a right Noetherian algebra over a field K such that R can
be embedded in a simple Artinian ring S in such a way that the left R-module S
is flat. Then every torsionless right R-module satisfies pan-acc.

Proof. By Theorem 1.5 the right R-module R is ρr-torsion-free and Corollary 3.9
gives the result. �

Theorem 3.12. Let R be a right Noetherian ring which is a right order in a right
Artinian ring. Then every torsionless R-module satisfies pan-acc.

Proof. By Theorem 1.2, RR is ρr-torsion-free. Now apply Corollary 3.9. �

4. Modules with the direct sum condition

Let R be a ring. An R-module M will be said to satisfy the direct sum condition
provided every countably generated submodule is contained in a direct sum of
finitely generated submodules of M . Clearly every free module and every semisim-
ple module satisfies the direct sum condition. More generally, every direct sum of
finitely generated R-modules satisfies the direct sum condition. Note also that if
Mi is an R-module satisfying the direct sum condition, for all i in some index set I,
then the R-module

⊕
i∈I Mi also satisfies the direct sum condition (see [36, p. 74]).

Moreover, if R and S are rings and M a left S-, right R-bimodule such that SM is
Noetherian and MR is finitely generated then the right R-module M I satisfies the
direct sum condition for every index set I (see [36, Theorem 5]). Theorem 3.4 is
a consequence of this fact. Let Z denote the ring of integers and let M denote the
direct product ZI for any infinite index set I. Then the Z-module M satisfies the
direct sum condition but M is not a direct sum of finitely generated submodules
(see [36, Example 6]). The next result generalizes [36, Theorem 8].
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Theorem 4.1. Let R be a right Noetherian ring and let M be a right R-module that
satisfies the direct sum condition. Then the following statements are equivalent for
a positive integer n.

(i) M satisfies n-acc.
(ii) tρ(M) satisfies n-acc for any additive rank function ρ on mod-R.
(iii) tρr (M) satisfies n-acc.

Proof. (i) ⇒ (ii) Clear.
(ii) ⇒ (iii) By [26, Lemma 1.3] tρr (M) ⊆ tρ(M) for every additive rank function
ρ on mod-R.
(iii)⇒ (i) Suppose that tρr (M) satisfies n-acc. Let L1 ⊆ L2 ⊆ · · · be any ascending
chain of n-generated submodules of M . Let L =

⋃
i≥1 Li. By Lemma 3.5, there

exists a positive integer k such that ρr(Li/Lk) = 0 for all i ≥ k. By hypothesis,
there exists a submodule H of M such that L ⊆ H , H = H1

⊕
H2 for some

submodules H1 and H2, H1 is finitely generated and Lk ⊆ H1. Let π : H →
H2 denote the canonical projection. Let x ∈ L. There exists t ≥ k such that
x ∈ Lt. Now ρr(Lt/Lk) = 0 so that xA ⊆ Lk for some A in Fρr . This implies
that π(x)A = 0 and hence π(x) ∈ tρr (M). It follows that π(L) ⊆ tρr (M). Thus
π(L1) ⊆ π(L2) ⊆ · · · is an ascending chain of n-generated submodules of tρr (M).
There exists a positive integer s such that π(Ls) = π(Ls+1) = · · · . But H1 is
Noetherian and hence, without loss of generality, Ls

⋂
H1 = Ls+1

⋂
H1 = · · · . It

follows that Ls = Ls+1 = · · · , as required. �

Let R be any ring and let M be a right R-module. For any non-empty subset
X of M we set annR(X) to be the set of elements r in R such that xr = 0 for
all x ∈ X . We next aim to generalize Theorem 3.2 to modules which satisfy the
direct sum condition. Note that the Z-module ⊕p(Z/Zp), where the direct sum is
taken over all primes p in Z, satisfies the direct sum condition but does not satisfy
1-acc (see, for example, [32, Lemma 2.3]). First we prove a lemma.

Lemma 4.2. Let R be a right Noetherian ring and let M be a right R-module which
satisfies the direct sum condition but not pan-acc. Let P be an ideal of R maximal
in the collection of all ideals A of R such that there exist a positive integer n and
a properly ascending chain L1 ⊂ L2 ⊂ · · · of n-generated submodules Li (i ≥ 1) of
M with A = annR(∪i≥1Li). Then P is a prime ideal of R.

Proof. Suppose that s is a positive integer and N1 ⊂ N2 ⊂ · · · a properly ascending
chain of s-generated submodules Ni (i ≥ 1) of M such that P = annR(∪i≥1Ni).
Suppose that P is not a prime ideal of R. Then there exist ideals B and C, each
properly containing P , such that BC ⊆ P . Suppose that the right ideal B can be
generated by t elements, for some positive integer t. Then N1B ⊆ N2B ⊆ · · · is an
ascending chain of (st)-generated submodules of M such that (∪i≥1(NiB))C = 0.
By the choice of P , there exists a positive integer k such that NkB = Nk+1B = · · · .
Let N = ∪i≥1Ni. Note that N is a countably generated submodule of M so that,
by hypothesis, N is contained in a direct sum of finitely generated submodules of
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M . It follows that there exist submodules M1 and M2 of M such that M1∩M2 = 0,
N ⊆ M1 ⊕M2, Nk ⊆ M1 and M1 is finitely generated. Let π : M1 ⊕M2 → M2

denote the canonical projection. Observe that π(Nk) ⊆ π(Nk+1) ⊆ · · · is an
ascending chain of s-generated submodules of M such that for all i ≥ k

π(Ni)B = π(NiB) = π(NkB) ⊆ π(Nk) = 0.

By the choice of P , there exists an integer h ≥ k such that π(Nh) = π(Nh+1) = · · · .
Since the kernel of π is M1, which is a Noetherian module, it follows that there
exists an integer g ≥ h such that Ng = Ng+1 = · · · , a contradiction. Thus P is a
prime ideal of R. �

Theorem 4.3. Let R be a right Noetherian ring and let M be a right R-module
which satisfies the direct sum condition such that for every prime ideal P of R with
P = annR(X), for some non-empty subset X of M , there exists a finite subset Y
of X such that P = annR(Y ). Then the right R-module M satisfies pan-acc.

Proof. Suppose not. Choose P to be the ideal in Lemma 4.2 and adopt the notation
of the proof of Lemma 4.2. Again N = ∪i≥1Ni. Note that N is a right (R/P )-
module. Let ρ denote the additive rank functor ρg on the category mod-(R/P ) of
finitely generated right (R/P )-modules. For each positive integer i ≥ 1, ρ(Ni) ≤
sρ(R/P ). Thus there exists a positive integer q such that ρ(Nq) = ρ(Nq+1) = · · · .
The countably generated submodule N of M is again contained in a direct sum
of finitely generated submodules of M . Thus there exist submodules V1 and V2 of
M such that V1 ∩ V2 = 0, N ⊆ V1 ⊕ V2, Nq ⊆ V1 and V1 is finitely generated.
Let π : V1 ⊕ V2 → V2 denote the canonical projection. As in the proof of Lemma
4.2, we can suppose without loss of generality that π(Nq) ⊂ π(Nq+1) ⊂ · · · is a
properly ascending chain of submodules of M . Note that π(Ni)P = π(NiP ) = 0
for all i ≥ 1, so that, by the choice of P ,

P = annR(∪i≥qπ(Ni)) = annR(π(N)).

By hypothesis, P = annR(Y ), for some finite subset Y of π(N). For each y ∈ Y
there exists x ∈ N such that y = π(x). Because of the choice of q, ρ((xR +
Nq)/Nq) = 0, i.e., (xR + Nq)/Nq is a singular right (R/P )-module. In particular
this means that xcy ∈ Nq for some cy ∈ C (P ) and hence ycy = π(x)cy = π(xcy) ∈
π(Nq) = 0. Thus for each y ∈ Y there exists cy ∈ C (P ) such that ycy = 0. Because
Y is a finite set, there exists c ∈ C (P ) such that yc = 0 for all y in Y . But this
implies that c ∈ P , a contradiction. The result follows. �

Using Theorem 4.3 we can now prove a result which generalizes Theorem 3.2.

Corollary 4.4. Let R be a right Noetherian ring such that for every prime ideal P
with P = rR(X) for some non-empty subset X of R there exists a finite subset Y
of X such that P = rR(Y ). Then every torsionless right R-module which satisfies
the direct sum condition also satisfies pan-acc.
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Proof. Let M be any torsionless right R-module. Without loss of generality M
is a submodule of Πi∈IRi, where Ri = R for each i ∈ I, for some index set I.
For each i ∈ I, let πi : M → Ri denote the canonical projection. Let P be a
prime ideal of R such that P = annR(X) for some non-empty subset X of M . Let
U = {πi(x) : x ∈ X, i ∈ I}. Note that, for any x ∈ X , r ∈ R,

xr = 0 if and only if πi(x)r = 0 for all i ∈ I.

Thus U is a non-empty subset of R such that P = rR(U). By hypothesis, there
exists a finite subset V of U such that P = rR(V ). For each v ∈ V there exists an
element xv ∈ X such that v = πi(xv) for some i ∈ I. Let Y = {xv : v ∈ V }. Then
Y is a finite subset of X such that

P = annR(X) ⊆ annR(Y ) ⊆ rR(V ) = P.

Thus P = annR(Y ). The result now follows by Theorem 4.3. �
In particular, Corollary 4.4 shows that (as stated in the Abstract) if R is

a right Noetherian ring which satisfies the descending chain condition on right
annihilators then every torsionless right R-module which satisfies the direct sum
condition also satisfies pan-acc. Corollary 4.4 can be applied in other situations.
For example, we have the following result. Recall that a ring R is a right FBN ring
if it is right fully bounded and right Noetherian.

Corollary 4.5. Let R be a right FBN ring. Then every torsionless right R-module
which satisfies the direct sum condition also satisfies pan-acc.

Proof. By Corollary 4.4. �
Let R be a right Noetherian ring. We do not have an example of a torsionless

right R-module which satisfies pan-acc but which does not satisfy the direct sum
condition.
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Lia Vaš and Charalampos Papachristou

Abstract. We extend some recent results on the differentiability of torsion
theories. In particular, we generalize the concept of (α, β)-derivation to (α, β)-
higher derivation and demonstrate that a filter of a hereditary torsion theory
that is invariant for α and β is (α, β)-higher derivation invariant. As a conse-
quence, any higher derivation can be extended from a module to its module
of quotients. Then, we show that any higher derivation extended to a module
of quotients extends also to a module of quotients with respect to a larger
torsion theory in such a way that these extensions agree. We also demonstrate
these results hold for symmetric filters as well. We finish the paper with an-
swers to two questions posed in [L. Vaš, Extending higher derivations to rings
and modules of quotients, International Journal of Algebra, 2 (15) (2008),
711–731]. In particular, we present an example of a non-hereditary torsion
theory that is not differential.
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1. Preliminaries and summary of results

Recall that a derivation on a ring R is an additive mapping δ : R → R such that
δ(rs) = δ(r)s + rδ(s) for all r, s ∈ R. An additive mapping d : M → M on a
right R-module M is a δ-derivation if d(xr) = d(x)r + xδ(r) for all x ∈ M and
r ∈ R. If α and β are ring automorphisms, the derivation concept generalizes to
(α, β)-derivation by requiring that δ(rs) = δ(r)α(s) + β(r)δ(s) for all r, s ∈ R.

A torsion theory for R is a pair τ = (T ,F) of classes of R-modules such
that T and F are maximal classes having the property that HomR(T, F ) = 0, for
all T ∈ T and F ∈ F . The modules in T are torsion modules and the modules
in F are torsion-free modules. For a torsion theory τ = (T ,F), T (M) denotes
the largest torsion submodule of a right R-module M and F(M) denotes the
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quotient M/T (M). τ = (T ,F) is hereditary if T is closed under taking submodules
(equivalently F is closed under formation of injective envelopes). If T (R) = 0, τ
is said to be faithful.

If M is a right R-module with submodule N and m ∈ M , denote {r ∈
R | mr ∈ N} by (m : N). Then (m : 0) is the annihilator ann(m). A Gabriel filter
F on a ring R is a nonempty collection of right ideals such that

1. If I ∈ F and r ∈ R, then (r : I) ∈ F.
2. If I ∈ F and J is a right ideal with (r : J) ∈ F for all r ∈ I, then J ∈ F.

If τ = (T ,F) is a hereditary torsion theory, the collection of right ideals
{I | R/I ∈ T } is a Gabriel filter. Conversely, if F is a Gabriel filter, then the class
of modules {M | ann(m) ∈ F for every m ∈ M} is a torsion class of a hereditary
torsion theory.

If δ is any additive map on a ring R, a Gabriel filter F is said to be δ-
invariant if for every I ∈ F there is J ∈ F such that δ(J) ⊆ I. If F is δ-invariant
for all derivations δ, it is said to be a differential filter. The hereditary torsion
theory determined by F is said to be differential in this case. By Lemma 1.5 from
[1], F is δ-invariant iff d(T (M)) ⊆ T (M) for every right R-module M and every
δ-derivation d on M . In [7], it is shown that Lambek, Goldie and any perfect
hereditary torsion theories are differential. Lomp and van den Berg extend these
results in [4] by showing that every Gabriel filter that is α and β-invariant is also
δ-invariant for any (α, β)-derivation δ (Theorem 2, [4]). As a direct consequence,
every hereditary torsion theory is differential (Corollary 3, [4]). This answers a
question from [7].

If τ is a hereditary torsion theory with Gabriel filter F and M is a right
R-module, the module of quotients MF of M is defined as the largest submodule
N of the injective envelope E(M/T (M)) of M/T (M) such that N/(M/T (M)) is
torsion module (i.e., the closure of M/T (M) in E(M/T (M))). The R-module RF

has a ring structure and MF has a structure of a right RF-module (see exposition
on pages 195–197 in [6]). The ring RF is called the right ring of quotients with
respect to the torsion theory τ .

Consider the map qM : M → MF obtained by composing the projection
M → M/T (M) with the injection M/T (M) → MF. This defines a left exact
functor q from the category of right R-modules to the category of right RF-modules
(see [6] pages 197–199).

In Theorem on page 277 and Corollary 1 on page 279 of [3], Golan has shown
that if F is differential, then any δ-derivation d on any module M extends to a
derivation on the module of quotients MF such that dqM = qMd. Bland proved
that such extension is unique and that the converse is also true (Propositions 2.1
and 2.3 in [1]). Thus a filter F is differential iff every derivation on any module M
extends uniquely to a derivation on the module of quotients MF.

The paper is organized as follows. In Section 2, we generalize the concept of
(α, β)-derivation to (α, β)-higher derivation (Definition 2.1). In Section 3, we show
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that every filter F that is α and β-invariant is also Δ-invariant for any (α, β)-
higher derivation Δ (Proposition 3.1). As a consequence, we obtain that every
Gabriel filter is higher differential (Corollary 3.2) and that every higher derivation
on a module extends to its module of quotients (Corollary 3.3). In Section 4, we
show that the assumptions for some results from [8] and [9] can be relaxed and that
these results hold for every two filters F1 and F2 such that F1 ⊆ F2 (Corollary 4.1).
In Section 5, we show that the results from previous sections hold for symmetric
filters as well (Corollary 5.1). Lastly, in Section 6, we present an example of a
torsion theory that is not differential (Example 6) thus answering a question from
[8]. Using result from Section 3, we also show that there cannot exist a hereditary
torsion theory that is differential but not higher differential.

2. (α, β)-higher derivations

Recall that a higher derivation (HD) on R is an indexed family {δn}n∈ω of additive
maps δn such that δ0 is the identity mapping on R and

δn(rs) =
n∑

i=0

δi(r)δn−i(s)

for all n. For example, if δ is a derivation, the family { δn

n! } is a higher derivation.
Let α and β be ring automorphisms. Throughout this, and most of the next

section, we assume that R is a ring in which n1R is invertible for every positive
integer n. In case that α and β are both identities, we can drop this additional
assumption on R. We generalize the concept of an (α, β)-derivation to higher
derivations as follows.

Definition 2.1. An (α, β)-higher derivation ((α, β)-HD) on R is an indexed family
Δ = {δn}n∈ω of additive maps δn such that δ0 is the identity mapping on R and

δn(rs) = δn(r)αn(s) +
n∑

i=1

i!(n− i)!
n!

∑
k0+···+ki=n−i

δk0

i∏
j=1

βδkj (r) αk0

i∏
j=1

δ1α
kj (s)

where any composition of the form δj
1δ

k
1 in the second product is substituted by

δj+k. Also, in case that β is the identity, δjδk in the first product is substituted
by δj+k.

For n = 1 this formula yields the familiar δ1(rs) = δ1(r)α(s) + β(r)δ1(s).
For n = 2 we obtain that δ2(rs) = δ2(r)α2(s) + 1

2βδ1(r)δ1α(s) + 1
2δ1β(r)αδ1(s) +

β2(r)δ2(s).
Note that the elements of the form (n1R)−1 are in the center of R for any

positive integer n since elements of the form n1R are in the center of R. So, the
coefficients i!(n−i)!

n! commute with all ring elements.
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If α is an identity, we obtain

δn(rs) = δn(r)s +
n∑

i=1

i!(n− i)!
n!

∑
k0+···+ki=n−i

δk0

i∏
j=1

βδkj (r) δi(s)

If β is an identity, we obtain

δn(rs) = δn(r)αn(s) +
n∑

i=1

i!(n− i)!
n!

∑
k0+···+ki=n−i

δn−i(r) αk0

i∏
j=1

δ1α
kj (s)

In particular, if both α and β are identities, we obtain

δn(rs) = δn(r)s +
n∑

i=1

i!(n− i)!
n!

∑
k0+···+ki=n−i

δn−i(r) δi(s)

= δn(r)s +
n∑

i=1

i!(n− i)!
n!

δn−i(r) δi(s)
∑

k0+···+ki=n−i

1R

= δn(r)s +
n∑

i=1

i!(n− i)!
n!

δn−i(r) δi(s)
n!

i!(n− i)!

= δn(r)s +
n∑

i=1

i!(n− i)!
n!

n!
i!(n− i)!

δn−i(r) δi(s) =
n∑

i=0

δn−i(r)δi(s).

The last formula in the chain above is exactly the one that defines a higher deriva-
tion.

3. Higher differentiation invariance

If Δ = {δn} is an (α, β)-HD, a Gabriel filter F is Δ-invariant if for every I ∈ F and
every n, there is J ∈ F such that δi(J) ⊆ I for all i ≤ n (equivalently, for every
I ∈ F and every n, there is J ∈ F such that δn(J) ⊆ I). If a filter F is Δ-invariant
for every (α, β)-HD Δ, F is said to be higher differential (HD). The hereditary
torsion theory determined by F is said to be higher differential in this case.

Proposition 3.1. Let Δ be a higher (α, β)-derivation. Then any Gabriel filter F
that is α and β-invariant is Δ-invariant.

Proof. Let I ∈ F. We shall use induction to show that for every n, there is J ∈ F
such that δn(J) ⊆ I.

For n = 0 the claim trivially holds for J = I. Assume that the claim holds
for all i < n. By induction hypothesis for I there are right ideals Ji ∈ F with∑

k0+···+ki=n−i δk0

∏i
j=1 βδkj (Ji) ⊆ I for all 0 < i ≤ n. Note that for i = n,∑

k0+···+ki=n−i δk0

∏i
j=1 βδkj is βn. Since F is β-invariant, there is Jn ∈ F such

that βn(Jn) ⊆ I.
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Take J0 = I, and let Jα be a right ideal in F with αn(Jα) ⊆ I. Let K =⋂
i≤n Ji ∩ Jα. Then K is in F and K ⊆ I. Define J = {r ∈ K|δn(r) ∈ I}. Then J

is a right ideal of R, J ⊆ K ⊆ I and δn(J) ⊆ I. Also,∑
k0+···+ki=n−i

δk0

i∏
j=1

βδkj (J) ⊆
∑

k0+···+ki=n−i

δk0

i∏
j=1

βδkj (Ji) ⊆ I

for all 0 < i ≤ n. In order to prove that J is in F, it is sufficient to show that (r :
J) ∈ F for all r ∈ K. To show that, we shall show that (α−nδn(r) : K) ⊆ (r : J).
Since K ∈ F, (α−nδn(r) : K) ∈ F, and so this will be sufficient for (r : J) ∈ F.

Let s ∈ (α−nδn(r) : K). Then δn(r)αn(s) ∈ αn(K) ⊆ αn(Jα) ⊆ I. The terms∑
k0+···+ki=n−i δk0

∏i
j=1 βδkj (r) are in I for every i = 1, . . . , n by construction.

Since fractions i!(n−i)!
n! are in the center of R, we obtain that every term on the

right side of the formula below is in I as well.

δn(rs) = δn(r)αn(s) +
n∑

i=1

i!(n− i)!
n!

∑
k0+···+ki=n−i

δk0

i∏
j=1

βδkj (r) αk0

i∏
j=1

δ1α
kj (s).

Thus δn(rs) ∈ I. Since rs ∈ K, we have that rs is in J . So s ∈ (r : J). �

For the remainder of the paper, we drop the condition that the integer mul-
tiples of 1R are invertible and we work with a most general unital ring. Recall
that if α and β are identities, the formula in Definition 2.1 becomes δn(rs) =∑n

i=0 δn−i(r)δi(s). So, the assumption on the invertibility of the integer multiples
of 1R is no longer needed. Note that the proof of Proposition 3.1 still holds in this
case as well. Thus, as a direct corollary of Proposition 3.1, we obtain the following.

Corollary 3.2. Any Gabriel filter is higher derivation invariant (i.e., every torsion
theory is higher differential).

Let Δ = {δn}n∈ω be a higher derivation on R. If {dn}n∈ω is an indexed family
of additive maps on a right R-module M such that d0 is the identity mapping on
M and dn(mr) =

∑n
i=0 di(m)δn−i(r) for all n, we say that {dn} is higher Δ-

derivation (Δ-HD for short) on M . If D is such that every dn extends to the
module of quotients MF of a Gabriel filter F such that dnqM = qMdn for all n,
then we say that D extends to a Δ-HD on MF.

Corollary 3.3. Let τ be a hereditary torsion theory with filter F and Δ be a HD
on R. Every Δ-HD D on any module M extends uniquely to the module of quo-
tients MF.

Proof. Bland showed that a Gabriel filter is a HD filter iff for every R-module M ,
every HD {dn} on M , di(T (M)) ⊆ T (M) for all i ≤ n for all n (Lemma 3.5 in [2]).
Bland also showed that τ is higher differential iff every Δ-HD D on any module M
extends uniquely to a Δ-HD on MF (Proposition 4.2, [2]). Since every hereditary
torsion theory is higher differential by Corollary 3.2, the result follows. �
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4. Extending derivation to different modules of quotients

Let F1 and F2 be two filters such that F1 ⊆ F2. Let M be a right R-module, qi

the natural maps M →MFi for i = 1, 2, and q12 the map MF1 →MF2 induced by
inclusion F1 ⊆ F2. In this case, q12q1 = q2. Let d be a δ-derivation on M . If the
diagram below commutes, we say that the extensions of d on MF1 and MF2 agree.

MF1

d � MF1

�
�
�
�
�

q1

�

�
�
�
�
�

q1

�

M
d � M

�
�
�
�
�

q2

�

�
�
�
�
�

q2

�
MF2

q12

� d � MF2

q12

�

Let d be a derivation on M that extends to MF1 . Conditions under which d
can be extended to MF2 so that the extension agree were studied in [9].

By Corollary 3 from [4], any derivation d on M extends to both MF1 and
MF2 . By Proposition 2 from [9], the two extensions agree then. This implies that,
for any module M , the extensions of a δ-derivation d to MF1 and MF2 agree.
In particular, the extension of d on module of quotients with respect Lambek or
Goldie torsion theory agree with the extension of d with respect to any other
hereditary and faithful torsion theory.

In [8], the concept of agreeing extensions is generalized to higher derivations.
Let F1 and F2 be two filters such that F1 ⊆ F2, Δ a HD on R, M be a right
R-module, and {dn} a Δ-HD defined on M . If {dn} extends to MF1 and MF2 in
such a way that the following diagram commutes for every n, then we say that the
extensions of {dn} on MF1 and MF2 agree.

MF1

dn � MF1

�
�
�
�
�

q1

�

�
�
�
�
�

q1

�

M
dn � M

�
�
�
�
�

q2

�

�
�
�
�
�

q2

�
MF2

q12

� dn � MF2

q12

�
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Corollary 4.1. If F1 and F2 are two filters such that F1 ⊆ F2, and Δ a HD on
R, then for any module M the extension of a Δ-HD D to MF1 agrees with the
extension of D to MF2 . In particular, the extension of D on module of quotients
with respect Lambek or Goldie torsion theory agree with the extension of D with
respect to any other hereditary and faithful torsion theory.

Proof. By Proposition 3 from [8], if a Δ-HD D extends to MF1 and MF2 , then the
extensions agree. By Corollary 3.3, D always extends to both MF1 and MF2 and
so the result follows. �

5. Symmetric modules of quotients

In [9], the concept of invariant filters is extended to symmetric filters as well. A
symmetric filter lFr induced by a left filter Fl and a right filter Fr can be defined
so that the hereditary torsion theory lτr on R-bimodules that correspond to lFr

has the torsion class equal to the intersection of torsion classes of τl and τr :

lTr = Tl ∩ Tr.

In [5], the symmetric module of quotients Fl
MFr of M with respect to lFr is

defined to be

Fl
MFr = lim−→

K∈lFr

Hom(K,
M

lTr(M)
)

where the homomorphisms in the formula are R ⊗ Rop homomorphisms (equiva-
lently R-bimodule homomorphisms). We shorten the notation Fl

MFr to lMr. Just
as in the right-sided case, there is a left exact functor qM mapping M to the sym-
metric module of quotients lMr such that ker qM is the torsion module lTr(M).

Every derivation δ on R determines a derivation on R⊗Z Rop given by δ(r⊗
s) = δ(r) ⊗ s + r ⊗ δ(s). Similarly, every HD Δ on R determines a HD Δ on
R⊗Z Rop given by

δn(r ⊗ s) =
n∑

i=0

δi(r) ⊗ δn−i(s).

If M is an R-bimodule, and δ a derivation on R, we say that an additive map
d : M →M is a δ-derivation if

d(xr) = d(x)r + xδ(r) and d(rx) = δ(r)x + rd(x)

for all x ∈ M and r ∈ R. Note that d is a δ-derivation on M considered as a
right R⊗Z Rop-module. Conversely, every δ-derivation of a right R⊗Z Rop-module
determines a δ-derivation of the corresponding bimodule. Thus, every derivation
δ on R is a δ-derivation on R considered as a right R⊗Z Rop-module. Conversely,
every derivation δ on R ⊗Z Rop is a δ-derivation of R ⊗Z Rop considered as an
R-bimodule.
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This generalizes to higher derivations as well. If M is an R-bimodule, and Δ
a HD on R, we say that an indexed family of additive maps {dn} defined on M is
a Δ-HD if d0 is an identity,

dn(xr) =
n∑

i=0

δi(x)δn−i(r) and dn(rx) =
n∑

i=0

δi(r)δn−i(x)

for all x ∈ M and r ∈ R. It is straightforward to check that {dn} is a Δ-HD on
M considered as a right R ⊗Z Rop-module. Conversely, every Δ-HD on a right
R ⊗Z Rop-module M determines a Δ-HD on M considered as an R-bimodule.
Specifically, every HD Δ on R is a Δ-HD on R considered as a right R ⊗Z Rop-
module. Conversely, every HD Δ on R⊗Z Rop is a Δ-HD on R⊗Z Rop considered
as an R-bimodule.

A symmetric filter lFr induced by a left Gabriel filter Fl and a right Gabriel
filter Fr is said to be δ-invariant if for every I ∈ lFr, there is J ∈ lFr such that
δ(J) ⊆ I. If we consider the right R ⊗Z Rop-ideals I and J as R-bimodules, the
condition δ(J) ⊆ I is equivalent with δ(J) ⊆ I by the above observations. This
definition generalizes to higher derivations on a straightforward way just as in
one-sided case.

We say that lFr is a differential filter if it is δ-invariant for all derivations δ.
The hereditary torsion theory determined by lFr is said to be differential in this
case. Similarly, a HD symmetric filter is defined.

The following proposition proves Corollaries 3.2, 3.3 and 4.1 for symmetric
filters.

Corollary 5.1.

1. Any symmetric Gabriel filter is higher derivation invariant (i.e., every sym-
metric torsion theory is higher differential).

2. Let lτr be a symmetric hereditary torsion theory with filter lFr and Δ be a
HD on R. Every Δ-HD D on any module M extends uniquely to the module
of quotients lMr.

3. If lF
1
r and lF

2
r are two symmetric filters such that lF

1
r ⊆ lF

2
r, and Δ is a HD

on R, then for any bimodule M , the extensions of any Δ-HD D to lM
1
r and

lM
2
r agree.

Proof. 1. By Proposition 3 of [9], if Fl and Fr are differential, then lFr is also
differential. By Corollary 3 of [4], Fl and Fr are always differential and so we
obtain that every symmetric filter is differential as well. In [8], the results on
symmetric filters from [9] are generalized to higher derivations. In particular, it is
shown that if Fl and Fr are HD, that the symmetric filter lFr is HD as well (see
Proposition 4 of [8]). This, together with Corollary 3.2, gives us part 1.
2. Part iii) of Proposition 4 in [8] states that part 2 holds provided that the filter
lFr is HD. However, any filter is HD by part 1, so the result follows.
3. Proposition 5 in [8] states that part 3 holds provided that lF

1
r and lF

2
r are HD.

Since these conditions are always fulfilled by part 1, the result follows. �
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6. Torsion theory that is not differential

Gabriel filter, right ring and modules of quotients and related concepts are defined
just for a torsion theory that is hereditary. Thus, if we want to generalize the
concept of differential torsion theory to torsion theories that are not necessarily
hereditary, we cannot use the second and third of the following three equivalent
conditions for differentiability of a hereditary torsion theory.

1. For every derivation δ, and every right R-module M with a δ-derivation d,
d(TM) ⊆ TM ;

2. Gabriel filter F is δ-invariant (i.e., for every I ∈ F there is J ∈ F with
δ(J) ⊆ I) for every derivation δ;

3. For every derivation δ, every δ-derivation on any module uniquely extends to
the module of quotients.

Note that just the first condition is meaningful even if a torsion theory is not
hereditary. So, let us introduce the following definition.

Definition 6.1. Let τ be a (not necessarily hereditary) torsion theory. Then τ is
differential if d(TM) ⊆ TM for any ring derivation δ and any right R-module M
with a δ-derivation d.

The following example shows that not every torsion theory is differential.

Example. Let R = Z[x] and I = (x). Consider the module R/I ∼= Z. Consider the
class of right R-modules T = {M | ker(M →M ⊗R Z) = M}. Note that this class
is closed under quotients, extensions and direct sums, so it defines a torsion class
of a torsion theory τ . In this torsion theory TM = ker(M → M ⊗R Z) for every
module M .

Note that ker(R → R ⊗R Z) = I so T R = I. ker(I → I ⊗R Z) = I2. This
shows that I2 = T I �= I∩T R = I, so the torsion theory is not hereditary. Note also
that if Z were flat as a left R-module, then this torsion theory would necessarily
have been hereditary.

Now let us consider the map δ : R → R given by δ = d
dx , i.e.,

δ(anxn + an−1x
n−1 + · · ·+ a1x + a0) = nanxn−1 + (n− 1)an−1x

n−2 + · · ·+ a1.

It is easy to see that this is a derivation on R. As δ(x) = 1, we have that x ∈ T R
and δ(x) /∈ T R. �

This answers the first of the three questions from section 6 of [8]: there is a
non-hereditary and non-differential torsion theory.

The second question from [8] is asking if an extension of a derivation to mod-
ule of quotients with respect to larger torsion theory can be restricted to extension
of a derivation with respect to a smaller torsion theory. The affirmative answer
emerged with Corollary 3 of [4] and Proposition 2 of [9]. Namely, by Corollary 3
of [4], every torsion theory is differential. By Proposition 2 of [9], this implies that
all extensions of derivations to module of quotients agree. Moreover, by results of
this paper, this result holds for higher derivations as well.
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Finally, the third question from [8] is asking if there is a differential hereditary
torsion theory that is not higher differential. By Corollary 3.2 any hereditary
torsion theory is higher differential so the answer to this question is “no”.
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Abstract. We consider the structure of the partially ordered set of prime ideals
in a Noetherian ring. The main focus is Noetherian two-dimensional integral
domains that are rings of polynomials or power series.
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0. Introduction

The authors have been captivated by the partially ordered set of prime ideals for
about four decades. Their initial motivation was interest in Kaplansky’s question,
phrased about 1950: “What partially ordered sets occur as the set of prime ideals
of a Noetherian ring, ordered under inclusion?” This has turned out to be an
extremely difficult question, perhaps a hopeless one.

Various mathematicians have studied Kaplansky’s question and related ques-
tions. In 1971, M. Hochster [12] characterized the topological spaces X such that
X ∼= Spec(R) for some commutative ring R, where Spec(R) is considered as a
topological space with the Zariski topology. In this topology, the sets of the form
V(I) := {P ∈ Spec(R) | P ⊇ I}, where I is an ideal of R, are the closed sets. Of
course the topology determines the partial ordering, since P ⊆ Q if and only if
Q ∈ {P}.

In 1973, W.J. Lewis showed that every finite partially ordered set is the prime
spectrum of a commutative ring R, and, in 1976, Lewis and J. Ohm found necessary
and sufficient conditions for a partially ordered set to be the prime spectrum of a
Bézout domain [19, 20]. In [42], S. Wiegand showed that for every rooted tree U ,
there is a Bézout domain R having prime spectrum order-isomorphic to U and such
that each localization Rm of R at a maximal ideal m of R is a maximal valuation
domain. (A rooted tree is a finite poset U , with unique minimal element, such that
for each x ∈ U the elements below x form a chain.) The construction in [42] was
motivated by another problem of Kaplansky: Characterize the commutative rings

The authors thank the University of Nebraska for its support of our research projects.
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for which every finitely generated module is a direct sum of cyclic modules. The
solution, which makes heavy use of the prime spectrum, is in [40].

In general, the topology carries more information than the partial ordering.
For example, one can build a non-Noetherian domain R with non-zero Jacobson
radical J (R), but whose spectrum is order-isomorphic to Spec(Z). The partial
ordering does not reveal the fact that the radical is non-zero, but the topology
does: For this domain R, the set of maximal elements of Spec(R) is closed, whereas
in Spec(Z) it is not. On the other hand, if a ring is Noetherian, the partial order
determines the topology. To see this, we recall that for every ideal I of a Noetherian
ring R there are only finitely many prime ideals minimal with respect to containing
I; if P1, . . . , Pn are those primes, then V(I) =

⋃n
i=1 V(Pi) =

⋃n
i=1 {Pi}. Therefore

the closed subsets of Spec(R) are exactly the finite unions of the sets {P}, as P
ranges over Spec(R).
We establish some notation and terminology for posets (partially ordered sets).

Notation 0.1. The height of an element u in a poset U is ht(u) := sup{n |
there is a chain x0 < x1 < · · · < xn = u in U}. The dimension of U is dim(U) =
sup{ht(u) | u ∈ U}. For a subset S of U , min(S) denotes the set of minimal
elements of S, and max(S) its set of maximal elements. For u ∈ U , we define

u↑ := {v | u ≤ v} and u↓ := {v | v ≤ u}.
The exactly less than set for a subset S ⊆ U is Le(S) := {v ∈ U | v↑ − {v} = S}.
For elements u, v ∈ U , their minimal upper bound set is the set mub(u, v) :=
min(u↑ ∩ v↑) and their maximal lower bound set is Mlb(u, v) := max(u↓ ∩ v↓).

We say v covers u (or v is a cover of u) and write “u << v” provided u < v and
there are no elements of U strictly between u and v. A chain u0 < u1 < · · · < un

is saturated provided ui+1 covers ui for each i.

To return to Kaplansky’s problem, we begin by listing some well-known prop-
erties of a partially ordered set U if U is order-isomorphic to Spec(R), for R a
Noetherian ring:

Proposition 0.2. Let R be a Noetherian commutative ring and let U be a poset
order-isomorphic to Spec(R) for some Noetherian ring R. Then
(1) U has only finitely many minimal elements,
(2) U satisfies the ascending chain condition.
(3) Every element of U has finite height; in particular, U satisfies the descending

chain condition.
(4) mub(u, v) is finite, for every pair of elements u, v ∈ U .
(5) If u < v < w, then there exist infinitely many vi with u < vi < w.

Proof. Items (1) and (2) are clear, and (3) comes from the Krull Height Theorem
[24, Theorem 13.5], which says that in a Noetherian ring a prime ideal minimal
over an n-generated ideal has height at most n. For (4), let P and Q be prime
ideals of R, and note that mub(P, Q) is the set of minimal prime ideals of the ideal
P + Q. To prove (5), suppose we have a chain P < V < Q of prime ideals in a



Prime Ideals 177

Noetherian ring R, but that there are only finitely many prime ideals V1, . . . , Vn

between P and Q. By localizing at Q and passing to RQ/PRQ, we may assume
that R is a local domain of dimension at least two, with only finitely many non-zero
prime ideals Vi properly contained in the maximal ideal Q. By “prime avoidance”
[2, Lemma 1.2.2], there is an element r ∈ Q − (V1 ∪ · · · ∪ Vn). But then Q is a
minimal prime of the principal ideal (r), and Krull’s Principal Ideal Theorem (the
case n = 1 of the Krull Height Theorem) says that ht(Q) ≤ 1, a contradiction. �

In 1976 [39], the present authors characterized those partially ordered sets
that are order-isomorphic to the j-spectrum of some countable Noetherian ring.
(The j-spectrum is the set of primes that are intersections of maximal ideals.) A
poset U arises in this way if and only if
(1) U is countable and has only finitely many minimal elements,
(2) U has the ascending chain condition,
(3) every element of U has finite height,
(4) mub(u, v) is finite for each u, v ∈ U , and
(5) min(u↑ − {u}) is infinite for each non-maximal element u ∈ U .

An equivalent way of stating the theorem is: A topological space X is homeomor-
phic to the maximal ideal space of some countable Noetherian ring if and only if
(1) X has only countably many closed sets,
(2) X is T1 and Noetherian, and
(3) for every x ∈ X there is a bound on the lengths of chains of closed irreducible

sets containing x.
It is still unknown whether or not the theorem is true if all occurrences of “count-
able” are removed.

1. Bad behavior

Recall that a Noetherian ring R is catenary provided, for every pair of primes
P and Q, with P ⊂ Q, all saturated chains of primes between P and Q have
the same length. Every ring finitely generated as an algebra over a field, or over
Z, is catenary. More generally, excellent rings are, by definition, catenary, and
the class of excellent rings is closed under the usual operations of passage to
homomorphic images, localizations, and finitely generated algebras, cf. [24, p. 260].
Since fields, complete rings (e.g., rings of formal power series over a field), and the
ring of integers are all excellent, the rings one encounters in nature are all catenary.
Perhaps the first indicator of the rich pathology that can occur in a Noetherian ring
was Nagata’s example [29] of a Noetherian ring that is not catenary. Every two-
dimensional integral domain is catenary, and so Nagata’s example is a Noetherian
local domain of dimension three; it has saturated chains of length two and length
three between (0) and the maximal ideal. Later, in 1979, R. Heitmann [11] showed
that every finite poset admits a saturated (i.e., cover-preserving) embedding into
Spec(R) for some Noetherian ring R.
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The catenary condition has a connection with the representation theory of
local rings. As Hochster observed in 1972 [13], the existence of a maximal Cohen-
Macaulay module (a finitely generated module with depth equal to dim(R)) and
with support equal to Spec(R) forces R to be universally catenary, that is, every
finitely generated R-algebra is catenary. In particular, an integral domain with
a maximal Cohen-Macaulay module must be universally catenary. G. Leuschke
and R. Wiegand used this connection in [18] to manufacture a two-dimensional
domain R with no maximal Cohen-Macaulay modules but whose completion R̂
has infinite Cohen-Macaulay type. (This gave a negative answer to a conjecture
of Schreyer [34] on ascent of finite Cohen-Macaulay type to the completion.) For
other connections between prime ideal structure and representation theory we refer
the reader to the survey paper [41] by the present authors.

In Nagata’s example, the catenary condition fails because a height-one prime
has a cover that has height three. A theorem of McAdam [25] guarantees that such
behavior cannot be too widespread:

Theorem 1.1 ([25]). Let P be a prime of height n in a Noetherian ring. Then all
but finitely many covers of P have height n + 1.

In response to a question raised by Hochster in 1974 [14], Heitmann [10]
and S. McAdam [26] showed independently that there exists a two-dimensional
Noetherian domain R with maximal ideals P and Q of height two such that P ∩Q
contains no height-one prime ideal. Later, in 1983, S. Wiegand [43] combined
Heitmann’s procedure with a method for producing non-catenary rings due to
A.M. de Souza-Doering and I. Lequain [3], to prove the following:

Theorem 1.2 ([43, Theorem 1]). Let F be an arbitrary finite poset. There exist
a Noetherian ring R and a saturated embedding ϕ : U → Spec(R) such that ϕ
preserves minimal upper bounds sets and maximal lower bound sets. In detail, for
u, v ∈ U , we have

(i) u < v if and only if ϕ(u) < ϕ(v);
(ii) v covers u if and only if ϕ(v) covers ϕ(u);
(iii) ϕ(mub(u, v)) = mub(ϕ(u), ϕ(v)); and
(iv) ϕ(Mlb(u, v)) = Mlb(ϕ(u), ϕ(v)).

Using this theorem, one can characterize the spectra of two-dimensional semi-
local Noetherian domains:

Corollary 1.3 ([43, Theorem 2]). Let U be a countable poset of dimension two.
Assume that U has a unique minimal element and max(U) is finite. Then U ∼=
Spec(R) for some Noetherian domain R if and only if Le(u) is infinite for each
element u with ht(u) = 2.

Conjecture 1.4. Let U be a two-dimensional poset in which both min(U) and
max(U) are finite. Then U ∼= Spec(R) for some Noetherian ring R if and only if
(1) Le(u) is infinite for each element u with ht(u) = 2, and
(2) mub(u, v) is finite for all u, v ∈ min(U).
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2. Affine domains of dimension two

We begin with an example that illustrates the effect of the ground field on delicate
properties of the prime spectrum.

Example 2.1. Let k be an algebraically closed field, let R = k[X, Y ], let P =
(X3 − Y 2), and let m be a maximal ideal containing P . There exists a height-one
prime ideal Q such that P ↑ ∩Q↑ = {m} if and only if either

(i) m = (X, Y ), or
(ii) char(k) �= 0.

A geometric interpretation is helpful. Let C be the cuspidal curve y2 = x3, and
let p ∈ C −{(0, 0)}. Then there is an irreducible plane curve D with D ∩C = {p}
(set-theoretically) if and only k has non-zero characteristic.

Proof. The curve C is parametrized by

x = t2, y = t3 (t ∈ k).

Since m ⊃ P , the point corresponding to m (via the Nullstellensatz) is on C, and
we can write m = (X − a2, Y − a3), where a ∈ k.

Suppose (i) and (ii) fail, that is, char(k) = 0 and a �= 0. Suppose there is a
height-one prime ideal Q such that P ↑ ∩Q↑ = {m}. Let g be a monic irreducible
polynomial generating Q, and note that g(t2, t3) = 0 if and only if t = a. With
h(T ) = g(T 2, T 3), we see that a is the only root of h. Since k is algebraically
closed, h(T ) = (T − a)n for some positive integer n. But then h(T ) has a non-zero
linear term, contradicting the fact that h(T ) ∈ k[T 2, T 3].

For the converse, we note that if m = (X, Y ), then (X)↑ ∩P ↑ = V(X, Y 2) =
{m}. Now assume that char(k) = p > 0 and that m �= (X, Y ), that is, a �= 0.
Write p = 2r + 3s with r, s ≥ 0, and let g = XrY s − ap. Then g is irreducible
(linear, if p = 2 or 3). Since g(T 2, T 3) = (T − a)p, (a2, a3) is the only point on C
where g vanishes. Thus P ↑ ∩ (g)↑ = {m}. �

There is a slightly fancier way to verify the assertions in the example. Notice
that there exists a height-one prime Q = (g) of R with P ↑ ∩ Q↑ = {m} if and
only if m := m/P is the radical of a principal ideal of R/P . The following lemma,
from W. Krauter’s 1981 Ph.D. dissertation [16] (cf. also [36, Lemma 3] and [31])
explains what’s going on:

Lemma 2.2. Let R be a one-dimensional Noetherian ring such that Rred has only
finitely many singular maximal ideals. Then Pic(R) is a torsion group if and only
if every maximal ideal of R is the radical of a principal ideal.

Proof. Since nilpotents have no effect on either of the two conditions, we may as-
sume that R is reduced. Suppose Pic(R) is torsion, and let m be a maximal ideal
of R (possibly of height zero). Choose an element f ∈m and outside every singu-
lar maximal ideal (except possibly m) and outside every minimal prime (except
possibly m). Write (f) = I∩I1∩· · ·∩It, an intersection of primary ideals with dis-
tinct radicals, and with

√
I = m. Then (f) = IJ , where J = I1 . . . It. Each prime
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containing J is non-singular and of height one, so J is invertible (check locally).
Then Jn = (g) for some n ≥ 1, and Ing = (fn). Since g is a non-zerodivisor, it
follows that In is principal.

Conversely, assume every maximal ideal is the radical of a principal ideal, and
let I be an invertible ideal. Then I is isomorphic to an invertible ideal J outside
the union of the singular maximal ideals, [28, Lemma 4.3]. Let m1, . . . ,ms be the
maximal ideals containing J . The rings Rmi are discrete valuation rings, and we
let Jmi = mei

i Rmi . By checking locally, we see that J = me1
1 . . .mes

s . Now let
mi =

√
(xi), and write xiRmi = mfi

i Rmi . Checking locally again, we have (xi) =
mfi

i . Now let gi = f1 . . . f̂i . . . fs, and check that Jf1...fs = (xe1g1
1 . . . xesgs

s ). �

We now state the axioms that characterize the posets U that are order-
isomorphic to Spec(R) for an affine domain R over a field k that is algebraic over
a finite field:

Axioms 2.3.

(P0) U is countable.
(P1) U has a unique minimal element.
(P2) U has dimension two.
(P3) For each element x of height one, x↑ is infinite.
(P4) For each two distinct elements x, y of height one, x↑ ∩ y↑ is finite.
(P5) Given a finite set S of height-one elements and a finite set T of height-two

elements, there is a height-one element w such that

(1) w < t for each t ∈ T ; and
(2) if x ∈ U, s ∈ S and w < x > s, then x ∈ T .

Axioms (P0)–(P4) are obviously satisfied for any two-dimensional domain
that is finitely generated as an algebra over a countable Noetherian Hilbert ring. (A
Hilbert ring is a ring in which each prime ideal is an intersection of maximal ideals,
and any finitely generated algebra over a Hilbert ring is again a Hilbert ring.) It
is Axiom (P5) that makes a difference. In the special case where S := {s} and
T = {t} with s < t, (P5) provides a height-one element w such that s↑∩w↑ = {t}.
Thus Example 2.1 shows that Spec(k[X, Y ]) has no such element if char(k) = 0.
In fact, much more is true:

Theorem 2.4. Let k be a field, and let R be a two-dimensional affine domain over
k. If Spec(R) satisfies (P5), then k is an algebraic extension of a finite field.

Proof. Suppose first that R = k[X, Y ]. Let P = (X3 +XY −Y 2), the kernel of the
map R� S := k[T (T − 1), T 2(T − 1)] taking X to T (T − 1) and Y to T 2(T − 1).
Let m be an arbitrary maximal ideal containing P . Since Spec(R) satisfies (P5),
there is a height-one prime Q such that P ↑ ∩ Q↑ = {m}. Writing Q = (f), we
see that m/P is the radical of the principal ideal (f + P ). This shows that every
maximal ideal of R/P is the radical of a principal ideal. By Lemma 2.2, Pic(R/P )
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is torsion. We can easily compute Pic(R/P ) = Pic(S) from the Mayer-Vietoris
sequence [27] associated to the conductor square for S:

S↪→ k[T ]⏐⏐2 ⏐⏐2
k↪→ k[T ]

T (T−1)

(2.4.1)

By [27], Pic(S) ∼= G/H , where G = ( k[T ]
T (T−1) )

×
, the group of units of k[T ]

T (T−1) , and
H is the join of the images of the horizontal and vertical maps on groups of units.
Since G = k× × k× and H is the diagonal embedding of k× in G, we see that
Pic(S) ∼= k×. Thus k× is a torsion group. Therefore char(k) = p > 0 (else 2 has
infinite order in k×), and every non-zero element is algebraic over the prime field.
This shows that k is an algebraic extension of a finite field.

In the general case, we use the Noether Normalization Lemma to express R
as an integral extension of a subring T ∼= k[X, Y ] and apply the next lemma, with
A = A′ = T and A′′ = R. �

Lemma 2.5 ([37, Lemma 3]). Let A′ ⊆ A ⊆ A′′ be integral extensions of Noetherian
domains of dimension two, and assume that A′ is integrally closed. If Spec(A′′)
satisfies (P5) of (2.3), so does Spec(A).

Proof. Let S be a finite set of height-one prime ideals of A and T a finite set of max-
imal ideals of A. Let T ′′ be the finite set of prime ideals, necessarily maximal, lying
over primes in T , and let S′′ = {Q′′ ∈ Spec(A′′) | Q′′ ∩A′ = Q ∩A′ for some Q ∈
S}. Let P ′′ be a height-one prime ideal of A′′ satisfying (1) and (2) of (P5) for the
sets S′′ and T ′′ (cf. Axioms 2.3). We claim that P := P ′′ ∩A satisfies (1) and (2)
for the sets S and T . For (1), let m ∈ T , and choose any m′′ ∈ Spec(A′′) lying
over m. Then m′′ ∈ T ′′, so P ′′ ⊂ m′′; hence P ⊂ m. As for (2), suppose P ⊂M
and Q ⊂ M, where M ∈ Spec(A) and Q ∈ S. We must show that M ∈ T . By
“going up”, there is a prime M′′ of A′′ such that P ′′ ⊂ M′′ and M′′ ∩ A = M.
Now apply “going down” to the extension A′ ⊆ A′′ to get a prime Q′′ such that
M′′ ⊃ Q′′ and Q′′ ∩A′ = Q ∩A′. Since Q′′ ∈ S′′, (P5)(2) (for the prime P ′′ and
the sets S′′ and T ′′) implies that M′′ ∈ T ′′, whence M = M′′ ∩A ∈ T . �

As we shall see, the converse of Theorem 2.4 is true, though the proof is
more difficult. At this point, it is not even clear that there exist posets satisfying
Axioms 2.3. (Try building one from scratch; it’s not easy!) The next theorem
shows that there is at most one such poset. Before stating the theorem, we define
an operation A �→ A# on subsets of a poset X satisfying Axioms 2.3. Given a
subset A of X , let A# be obtained by adjoining to A the unique minimal element
of X and the sets x↑∩y↑, where x and y range over distinct height-one elements in
A. (Clarification: Here and in the sequel “height” always refers to height in X, not
the relative height in A.) Clearly A## = A#. Moreover Axiom (P4) guarantees
that A# is finite if A is finite.
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Theorem 2.6 ([36, Theorem 1]). Let U and V be posets satisfying Axioms 2.3.
Given finite subsets A and B of U and V , respectively, every height-preserving
isomorphism from A# onto B# can be extended to an isomorphism from U onto
V . (In particular, U and V are isomorphic: take A = B = ∅.)
Proof. We may assume that A = A# and B = B#. It suffices to prove the follow-
ing: For each height-preserving isomorphism θ : A

∼=→ B and each x ∈ U − A, θ
extends to a height-preserving isomorphism θ′ from A′ := (A ∪ {x})# onto some
set B′ = (B′)# ⊂ Y . For then, by symmetry, we can extend the domain of (θ′)−1

so that it includes an arbitrary y ∈ V −B′. Since U and V are countable, we will
get the desired extension of θ by iterating this back-and-forth stepwise procedure.
We refer the reader to the proof of [36, Theorem 1] for the details, which are
elementary and boring. �

The proof of the converse of Theorem 2.4 has two main ingredients. The first
is a variant of the finiteness theorem for the class number of an algebraic number
field. We refer the reader to [37] for the technical shenanigans that reduce the
following theorem to the classical result on the class number:

Theorem 2.7. Let R be a finitely generated Z-algebra of dimension one. Then
Pic(R) is finite. �
Corollary 2.8. Let R be a one-dimensional Noetherian ring that is finitely generated
as an algebra over Z or over a field k that is an algebraic extension of a finite field.
Then every maximal ideal of R is the radical of a principal ideal.

Proof. By Lemma 2.2 it is enough to prove that Pic(R) is torsion. In view of
Theorem 2.7, it will suffice to show that Pic(R) is torsion when R is a finitely
generated k-algebra and k is algebraic over a finite field.

Write R = k[X1, . . . , Xm]/(f1, . . . , fn), and choose a finite field F such that
each fj is in F[X1, . . . , Xm]. For each intermediate field F between F and k, let
RF = F [X1, . . . , Xm]/(f1, . . . , fm). Then Pic(R) = Pic(lim

→
RF ) = lim

→
(Pic(RF )).

Since each Pic(RF ) is finite by Theorem 2.7, Pic(R) is torsion. �
The second main ingredient is the following Bertini-type theorem:

Theorem 2.9 ([36, Lemma 4]). Let k be an algebraically closed field, let A =
k[x1, . . . , xn] be a two-dimensional affine domain over k, and let (f, g) be an A-
regular sequence. Then there is a non-empty Zariski-open subset U of An+1(k) such
that

√
(f + (α +

∑n
i=1 βixi)g) is a prime ideal whenever (α, β1, . . . , βn) ∈ U . �

Here is the main result of this section.

Theorem 2.10 ([37, Theorem 2]). Let k be a field, and let R be a two-dimensional
affine domain over k. These are equivalent:
(1) Spec(R) satisfies (P5).
(2) Spec(R) is order-isomorphic to Spec(Z[X ])
(3) k is an algebraic extension of a finite field.
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Proof. In view of Theorem 2.4 and Theorem 2.6, it will suffice to show that Spec(R)
satisfies (P5) whenever R = Z[X ] or R is an affine domain over a field k that is
algebraic over a finite field. Let S and T := {m1, . . . ,mt} be the finite sets of
primes we are given in Axiom (P5). We may harmlessly assume that T �= ∅ and,
by enlarging S if necessary, that each mj contains some prime in S. Put I =

⋂
S,

and choose, by Corollary 2.8, fj ∈mj such that mj =
√

I + (fj). Put f = f1 · · · ft

and J =
⋂

T ; then
√

I + (f) = J . We seek a height-one prime ideal P such that√
I + P = J .

Suppose first that k is the algebraic closure of a finite field and that R is a
two-dimensional Cohen-Macaulay domain, finitely generated as a k-algebra. Since
I + (f) has height two, there is an element g ∈ I such that (f, g) is A-regular. By
Theorem 2.9 there is an element λ ∈ A such that P :=

√
(f + λg) is a prime ideal.

Then
√

I + P = J , and so P satisfies (1) and (2) of (P5).
Suppose, now, that k is an algebraic extension of a finite field and that R is a

two-dimensional affine domain over k. By the Noether Normalization Lemma [24,
§33, Lemma 2] there are elements ξ, η ∈ A, algebraically independent over k, such
that A is an integral extension of A′ := k[ξ, η]. Let k̄ be the algebraic closure of k,
and let B = (A ⊗k k̄)/Q, where the prime ideal Q is chosen so that dim(B) = 2.
Finally, let A′′ be the integral closure of B. Then A′′ satisfies Serre’s condition (S2)
[24, Theorem 23.8] and hence is Cohen-Macaulay. By what we have just shown,
Spec(A′′) satisfies (P5), and now Lemma 2.5 shows that A satisfies (P5) as well.

Finally, we suppose that R = Z[X ]. We seek a height-one prime ideal P of
Z[X ] such that J =

√
I + P . Since I + (f) has height two, there is a polynomial

g ∈ I such that f and g are relatively prime. Then, for each j ≥ 1 the polynomial
fk + Y g is irreducible in Z[X, Y ], and hence irreducible in Q[X, Y ] (cf., e.g., [15,
Exercise 2, p. 102]). Since Bertini’s Theorem is not available, we use a version of
Hilbert’s Irreducibility Theorem, as formulated in Chapter VIII of [17]. Combining
Corollary 3 of [17, §2, p. 148] with the corollary in [17, §3, p. 152], we find that
there are infinitely many prime integers p for which each of the t + 1 polynomials
f j + pg, 1 ≤ j ≤ t + 1, is irreducible in Q[X ]. Choose such a prime p with the
additional property that pZ �= mj ∩ Z for 1 ≤ j ≤ t. For each j ≤ t + 1, let cj be
the greatest common divisor of the coefficients of f j + pg; then hj := 1

cj
(f j + pg)

is irreducible in Z[X ].
We claim that there exists j ≤ t + 1 such that hj ∈ J = m1 ∩ · · · ∩mt. For

suppose not; then there exist i, j, �, with 1 ≤ i < j ≤ t + 1 and 1 ≤ � ≤ t such
that hi /∈ m� and hj /∈ m�. Let m� ∩ Z = qZ. Since cihi and cjhj are both in
J ⊆m�, we see that the prime q is a common divisor of both ci and cj . Therefore
q | (cihi− cjhj). Now cihi− cjhj = f i− f j = f i(1− f j−i). Since q and f j−i are in
m�, it follows that q | f . But also pg = cihi − f i is a multiple of q, and our choice
of p now forces q | g. This contradicts the assumption that f and g are relatively
prime, and the claim is proved.

To complete the proof, we choose j as in the claim and put P = hjZ[X ]. Then
P ⊂ J , and f j = −pg + hjcj ∈ I + P . It follows that J =

√
I + P as desired. �
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Actually, Theorem 1 of [37] says a bit more:

Theorem 2.11. [37, Theorem1] Let D be an order in an algebraic number field.
Then Spec(D[X ]) satisfies (P5) and therefore is order-isomorphic to Spec(Z[X ]).

We have put in quite a bit of detail in this chapter in order to reawaken
interest in the following conjecture from [37]:

Conjecture 2.12. Let R be a two-dimensional domain finitely generated as a Z-
algebra. Then Spec(R) satisfies (P5) and hence is order-isomorphic to Spec(Z[X ]).

It is easy to see that if Spec(R) satisfies (P5) so does Spec(R[ 1
f ]) for each

non-zero f ∈ R. Thus Spec(D[X, 1
f ]) is order-isomorphic to Spec(Z[X ]) whenever

D is an order in an algebraic number field. A stronger result is proved in [33]:

Theorem 2.13. [33, Main Theorem 1.2] Let D be an order in an algebraic number
field, let X an indeterminate, let g1, . . . , gn be nonzero elements of the quotient
field of D[X ], and let R = D[X, g1, . . . , gn]. Then Spec(R) is order-isomorphic to
Spec(Z[X ]).

(The somewhat simpler case where D = Z is worked out in [22].)

Suppose k is a field that is not algebraic over a finite field. By Theorem 2.10,
Spec(k[X, Y ]) is not isomorphic to Spec(Z[X ]). Still, one can ask whether or not all
two-dimensional affine domains over k have order-isomorphic spectra. The answer,
in general, is “No”:

Example 2.14. [37, Corollary 7] Let k be an algebraically closed field with infinite
transcendence degree over Q, and let V be the surface in A3(k) defined by the
equation X4 + Y 4 + Z4 + 1 = 0. Then not every point of V is the set-theoretic
intersection of two curves on V . Therefore, in the two-dimensional affine domain
R = k[X, Y, Z]/(X4 + Y 4 + Z4 + 1), there is a maximal ideal m such that, for
each pair P, Q of height-one prime ideals, {m} �= P ↑ ∩Q↑. On the other hand, in
k[X, Y ] every maximal ideal is of the form (X − a, Y − b), and {(X − a, Y − b)} =
(X − a)↑ ∩ (Y − b)↑. Thus Spec(R) and Spec(k[X, Y ] are not order-isomorphic.

We know very little about the order-isomorphism classes of two-dimensional
affine domains over k if k is not algebraic over a finite field. The following questions
indicate the depths of our ignorance:

Questions 2.15. (1) Let k be an algebraic extension of Q, and let R be a two-
dimensional affine domain over k. Is Spec(R) order-isomorphic to Spec(k[X, Y ])?
(2) At the other extreme, if R and S are two-dimensional affine domains over k and
Spec(R) and Spec(S) are order-isomorphic, are R and S necessarily isomorphic as
k-algebras? (3) Let � be another algebraic extension of Q. If Spec(k[X, Y ]) and
Spec(�[X, Y ]) are order-isomorphic, must k and � be isomorphic fields?
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3. Polynomial rings over semilocal one-dimensional domains

Naively one might suppose, since Spec(Q[X ]) is order-isomorphic to Spec(Z), that
also Spec(Q[X, Y ]) is order-isomorphic to Spec(Z[Y ]). The surprising negation
of that conclusion, as discussed in the previous section, as well as the mystery
surrounding Spec(Q[X, Y ]), led W. Heinzer and S. Wiegand to investigate spectra
for “simpler” two-dimensional polynomial rings. What if you started with a one-
dimensional ring with spectrum even simpler than Spec(Z)? Would the spectrum
of the ring of polynomials be easier to fathom?

In particular Heinzer and S. Wiegand considered the question: What partially
ordered sets arise as Spec(R[X ]) for R a one-dimensional semilocal Noetherian do-
main? Just as Z[X ] played a special role in Section 2, the rings Z(p1)∪···∪(pn)[X ]
play a special role in the current section. (Here p1, . . . , pn are distinct prime inte-
gers, and Z(p1)∪···∪(pn) consists of rational numbers whose denominators are prime
to each pi.) Their investigation led to the following theorem:

Theorem 3.1. [9] Let R be a countable Noetherian one-dimensional domain with
exactly n maximal ideals. Then there exist exactly two possibilities for Spec(R[X ]):

1. If R is not Henselian, then Spec(R[X ]) ∼= Spec(Z(p1)∪···∪(pn)[X ]), for distinct
prime integers p1, . . . , pn.

2. If R is Henselian, then n = 1 and Spec(R[X ]) ∼= Spec(H [X ]), where H is
the Henselization of Z(2).

Examples of each are shown in Figures 3.2.1 and 3.3.1 below.

Example 3.2. The spectrum of Z(2)[X ] (where Z(2) consists of rationals with odd
denominators) is crudely drawn in Figure 3.2.1 below.

(2, X) (2, X + 1) (2, X2 + X + 1) ∞

∞(A) (2) ∞(B)

(0)

Figure 3.2.1. Spec(Z(2)[X ])

Diagram Notes: The “infinity box” symbol ∞ indicates that infinitely many

points are in that spot. The relations between the prime ideals in ∞(B) and the
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top primes are too complicated to draw accurately. Each of the primes in ∞(B)
is contained in just finitely many maximal ideals. For example, the two irreducible
polynomials X and X2 + X + 2 each generate height-one prime ideals in ∞(B) ;
(X) is contained in (2, X) only, but (X2 + X + 2) is contained in both (2, X) and
(2, X+1). The special height-one prime ideal (2) is in all of the height-two maximal
primes. The box ∞(A) represents the infinitely many height-one maximal ideals.
Each height-two prime contains infinitely many height-one primes.

When n = 1, what distinguishes Spec(Z(2)[X ]) from Spec(H [X ]) is the fol-
lowing: In Spec(Z(2)[X ]), infinitely many height-one primes are contained in more
than one maximal ideal. However, in Spec(H [X ]), m[X ] is the only height-one
prime contained in more than one maximal ideal (and it is contained in infinitely
many).

Example 3.3. Although similar to the first picture, the illustration in Figure 3.3.1.
of Spec(H [X ]), for H a countable Noetherian Henselian discrete rank-one valuation
domain with maximal ideal m, is cleaner:

∞ m[X ] ∞ ∞ · · ·

• • • · · ·

(0)

Figure 3.3.1. Spec(H [X ])

Remarks 3.4. (1) Loosely speaking, Henselian rings are rings for which the conclu-
sion of Hensel’s Lemma holds. Complete local rings, e.g., power series rings over a
field, are Henselian. (These will come up again in the next section.) Forming the
Henselization of a local ring is less drastic than going to the completion. For ex-
ample, the Henselization of a countable local ring is countable, whereas complete
local rings of positive dimension are always uncountable. The precise definition of
“Henselian” and the construction of the Henselization are given in [30, Section 33].

(2) In [35] C. Shah gave complete sets of invariants for Spec(R[X ]) for an
arbitrary Noetherian semilocal domain R. If R is Henselian, with maximal ideal
P , the two invariants are r := |R| and k := |(R/P )[X ]|. If R is not Henselian, with
maximal ideals P1, . . . , Pn, the invariants are r := |R|, n (the number of maximal
ideals of R), and k1, . . . , kn, where ki := |(R/Pi)[X ]|. Shah gave examples to show
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that some combinations of invariants actually occur. There are some restrictions:
Clearly ki ≤ r for each r. Also, r ≤ kℵ0

i for each i, by Lemma 4.2 below.
As pointed out by Kearnes and Oman [23], Shah assumed, incorrectly, that

aℵ0 = a for each cardinal a ≥ 2ℵ0 . In the proof of Theorem 3.1 of [8], Heinzer,
Rotthaus and S. Wiegand refer to [35]; the arguments in Section 4 of this paper
show that the statement of [8, Theorem 3.1] is correct.

(3) There are axioms similar to Axioms 2.3 that characterize the posets
Spec(H [X ]) and Spec(Z(p1)∪···∪(pn)[X ]) of Theorem 3.1 up to order-isomorphism.
Of course (P3) is missing, and axioms analogous to (P5) distinguish the two cases
(see Remark 3.5).

Remark 3.5. To state the distinguishing property between the two possibilities in
Theorem 3.1 precisely, we use the “exactly less than” notation introduced in (0.1):
In Spec(R[X ]), when R as above is not Henselian, we have:
(P5′) Le(T ) is infinite for every finite set T of height-two maximal ideals.
If H is Henselian, however, we have:
(P5H) Let T be a set of height-two maximal ideals. If |T | ≥ 2, then Le(T ) = ∅;

if |T | = 1, then Le(T ) is infinite.

Remarks 3.6 (Other Related Spectra).

• Let R be a one-dimensional local Noetherian ring and let g, f be elements
of R[X ] that either generate the unit ideal or form a regular sequence. W.
Heinzer, D. Lantz and S. Wiegand characterized j-Spec(R[X ][ g

f ]), and showed
its relationship to the polynomials f and g. In some cases (for example, when
R is a discrete valuation ring such as Z(2), or when R is Henselian), they
were able to characterize Spec(R[X ][ g

f ]). Knowing j-Spec(R[X ][ g
f ]) is not

sufficient, however, to characterize Spec(R[X ][ g
f ]) in general [5], [6], [7].

• In [38], R. Wiegand and W. Krauter found axioms that characterize the
projective plane P2(k) over the algebraic closure k of a finite field. The axioms
are the same, regardless of the characteristic. A surprising consequence of
the characterization is that a non-empty proper open subset U of P2(k) is
homeomorphic either to P2(k) − {point} (the complement of a single point)
or to A2(k).

The projective line over Z has been studied too, in [1], [5], [21]. The poset
structure is considerably more complex than that of the projective plane over
the algebraic closure of a finite field. It is currently being investigated by S.
Wiegand and her (current and former) students E. Celikbas and C. Eubanks-
Turner.

4. Two-dimensional power series rings

As part of an extensive project using power series rings to construct examples of
rings with various properties, W. Heinzer, C. Rotthaus and S. Wiegand described
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the prime spectra of rings of the form R[[Y ]], for R a one-dimensional Noetherian
domain and Y an indeterminate [8]. They completely characterized Spec(R[[Y ]])
in the case where R is a countable domain. They did not, however, work through
the cardinality arguments needed for the uncountable case. We review their results
here and incidentally fill in the cardinality gap to obtain a characterization for the
uncountable case as well.

First observe that, given variables X and Y , one can form “mixed polyno-
mial/power series rings” over a field k in two ways – the second is of infinite
transcendence degree over the first:

(1) k[[Y ]][X ] and (2) k[X ][[Y ]].

Since k[[Y ]] is a Henselian ring, Spec(k[[Y ]][X ]) is characterized in Theorem 3.1(2)
of the previous section (actually this is Shah’s extension from Remark 3.2(2),
cf. [35]).

The interesting fact is that Spec(k[X ][[Y ]]) is pretty similar to Spec(k[[Y ]][X ])
– it just lacks the height-one maximals. Then Spec(k[X ][[Y ]]) in turn is an exam-
ple of Spec(R[[Y ]]), for R a general one-dimensional Noetherian domain. As we
show in Theorem 4.3, the only variations in the partially ordered sets that occur as
Spec(R[[Y ]]) for different one-dimensional Noetherian domains R of a given cardi-
nality are the numbers of height-two maximal ideals of R[[Y ]]. This number is the
same as the number of maximal ideals of R (of k[X ] for that example), because
each maximal ideal of R[[Y ]] has the form (m, Y )R[[Y ]] where m is a maximal ideal
of R, by [30, Theorem 15.1]. In particular, Spec R[[Y ]] has the following picture,
by Theorem 4.3 below:

(Y ) κ κ κ · · ·

• • • · · ·

(#{ bullets} = α)

(0)

Spec(R[[Y ]])

In the diagram α is the cardinality of the set of maximal ideals of R. The
boxed cardinals κ (one for each maximal ideal of R) indicate that there are κ prime
ideals in these positions; that is, |Le((m, Y ))| = κ. The upshot of the cardinality
addition to the result of [8], which is now included in Theorem 4.3, is that κ =
|R[[Y ]]| and that |Le((m, Y ))| = |Le((m′, Y ))|, for every pair m,m′ of maximal
ideals of R.



Prime Ideals 189

We first use a remark from [8].

Remark 4.1 ([8]). Suppose that T is a commutative ring of cardinality δ, that m
is a maximal ideal of T and that γ is the cardinality of T/m. Then

(1) The cardinality of T [[Y ]] is δℵ0 , because the elements of T [[Y ]] are in
one-to-one correspondence with ℵ0-tuples having entries in T . If T is Noetherian,
then T [[Y ]] is Noetherian, and so every prime ideal of T [[Y ]] is finitely generated.
Since the cardinality of the set of finite subsets of T [[Y ]] is δℵ0 , it follows that
T [[Y ]] has in all at most δℵ0 prime ideals if T is Noetherian.

(2) If T is Noetherian, there are at least γℵ0 distinct height-one prime ideals
of T [[Y ]] contained in (m, Y )T [[Y ]]. To see this, following the argument of [8],
choose a subset C = {ci | i ∈ I} of T so that {ci + m | i ∈ I} is a complete set
of distinct coset representatives for T/m. Then |C| = γ, and, for ci, cj ∈ C with
ci �= cj , we have ci − cj /∈m. Choose a ∈m, a �= 0. Consider the set

G := {a +
∑
n∈N

dnY n | dn ∈ C for each n ∈ N}.

Each of the elements of G is in (m, Y )T [[Y ]] \ Y T [[Y ]] and hence each element of
G is contained in a height-one prime belonging to Le((m, Y )). Moreover, |G| =
|Cℵ0 | = γℵ0 .

Let P ∈ Le((m, Y )). Suppose that two distinct elements of G are both in P ,
say f = a+

∑
n∈N dnY n and g = a+

∑
n∈N enY n are in P , where each dn, en ∈ C.

Then we have

f − g =
∑
n∈N

dnY n −
∑
n∈N

enY n =
∑
n∈N

(dn − en)Y n ∈ P.

Let t be the smallest power of Y so that dt �= et. Then (f − g)/Y t ∈ P , since P is
prime and Y /∈ P . However, the constant term dt − et is not in m, contradicting
the fact that P ⊆ (m, Y )T [[Y ]]. Thus there must be at least |C|ℵ0 = γℵ0 distinct
height-one primes contained in Le((m, Y )T [[Y ]]), that is,

|Le((m, Y )T [[Y ]])| ≥ γℵ0 .

(3) Putting parts (1) and (2) together, we see that, for each maximal ideal
m of T , γℵ0 ≤ |Le((m, Y )T [[Y ]])| ≤ δℵ0 , if T is Noetherian.

Lemma 4.2. Let R be a Noetherian domain, Y an indeterminate and I a proper
ideal of R. Let δ = |R| and γ = |R/I|. Then δ ≤ γℵ0 , and |R[[Y ]]| = δℵ0 = γℵ0 .

Proof. The first equality holds by Remark 4.1, and of course δℵ0 ≥ γℵ0 . For the
reverse inequality, we note that the Krull Intersection Theorem [24, Theorem 8.10
(ii)] implies that

⋂
n≥1 In = 0. Therefore there is a monomorphism

R ↪→
∏
n≥1

R/In. (4.2.1)

Now R/In has a finite filtration with factors Ir−1/Ir for each r with 1 ≤ r ≤ n.
Since Ir−1/Ir is a finitely generated (R/I)-module, |Ir−1/Ir| ≤ γℵ0 . Therefore
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|R/In| ≤ (γℵ0)n = γℵ0 , for each n. Thus (4.2.1) implies δ ≤ (γℵ0)ℵ0 = γ(ℵ2
0) = γℵ0 .

Finally, δℵ0 ≤ (γℵ0)ℵ0 = γℵ0 , and so δℵ0 = γℵ0 . �
Theorem 4.3. Suppose that R is a one-dimensional Noetherian domain with car-
dinality δ := |R|, and that the cardinality of the set of maximal ideals of R is α
(α can be finite). Let U = Spec R[[Y ]], where Y is an indeterminate over R. Then
the poset U is characterized by the following axioms:
(1) |U | = δℵ0 .
(2) U has a unique minimal element, namely (0).
(3) dim(U) = 2 and |{ height-two elements of U }| = α.
(4) There exists a unique height-one element uY ∈ U (namely uY = (Y )) such

that u is contained in every height-two element of U .
(5) Every height-one element of U except for uY is in exactly one height-two

element.
(6) For every height-two element t ∈ U , |Le(t)| = |R[[Y ]]| = δℵ0 . If t1, t2 ∈ U

are distinct height-two elements, then the element uY from (4) is the unique
height-one element less than both.

(7) There are no height-one maximal elements in U . Every maximal element has
height two. (This property, implicit in (5), is stated for emphasis.)

Proof. Most of the proof is done in [8]. It remains to check the statement |Le(t)| =
|R[[Y ]]| = δℵ0 in item (6). This is immediate from Remark 4.1 and Lemma 4.2. �
Remarks 4.4. C. Eubanks-Turner, M. Luckas, and S. Saydam (former Ph.D. stu-
dents of S. Wiegand) have characterized Spec(R[[X ]][g/f ]), for R a one-dimensional
Noetherian domain with infinitely many maximal ideals and g, f a generalized
R[[X ]]-sequence, in their recent work [4]. They specify various possibilities for the
j-spectrum that depend upon f and g.

For example the diagram in Figure 4.4.1 shows the partially ordered set j-

Spec(B), for B := Z[[X ]][
g

f
], f = 11880 +

∞∑
i=1

X i and g = 9900 +
∞∑

i=1

X i:

Notes 4.5. [8, Remarks 3.6, Corollary 3.7] It is evident from Theorem 4.3 that

Spec(Z[[Y ]]) ∼= Spec(Q[X ][[Y ]]) ∼= Spec((Z/2Z)[X ][[Y ]]) �∼= Spec(R[X ][[Y ]]).

(The last has uncountably many maximal ideals.) As Theorem 2.10 indicates,

Spec(Z[Y ]) ∼= Spec((Z/2Z)[X ][Y ]) �∼= Spec(Q[X ][Y ]).

Thus the situation for power series rings is different from the polynomial case.
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ℵ0 ℵ0 ℵ0 (X, 5, Y )B ℵ0 (X, 11, 6Y − 5)B ℵ0

c (X, 2)B (X, 3)B (X, 5)B (X, 11)B (X, 6Y − 5)B

(0)

Figure 4.4.1: Spec(Z[[x]][ 9900+
∑∞

i=1 Xi∑∞
i=1 11880+Xi ])
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Başer, Muhittin, Kocatepe University, Afyonkarahisar, Turkey
mbaser@aku.edu.tr

Birkenmeier, Gary F., University of Louisiana at Lafayette, USA
gfb1127@louisiana.edu



196 Participants
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akoc@iku.edu.tr
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Taşdemir, Funda, Bozok University, Yozgat, Turkey
cetinfunda@yahoo.com
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