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Abstract. Emergency vehicle accidents pose significant challenges to
operational efficiency and financial stability within emergency services,
impacting organizations and communities. These incidents result in sub-
stantial repair costs, prolonged vehicle downtime, and potential legal lia-
bilities, straining crucial public safety resources. Additionally, issues like
inflated repair costs, inefficient roadside assistance, and lengthy insurance
processes compound these challenges. The Smart Auto Assessment and
Roadside Technical Help Interface (SAARTHI) provides a comprehen-
sive end-to-end solution, integrating with emergency service protocols to
leverage computer vision technologies for damage assessment, consistent
repair cost estimation, immediate repair coordination, towing services,
and faster insurance processes. By addressing these issues, SAARTHI
enhances the efficiency and reliability of emergency response systems,
ensuring continuous service coverage and improved operational readiness.
This socially beneficial solution strengthens emergency services and pro-
motes community safety and well-being. SAARTHI demonstration and
source code are available at sites.google.com/view/saarthi-home.

Keywords: Emergency vehicles · Roadside Assistance · Convolutional
Neural Networks · Object detection · Instance Segmentation · Salient
object detection · End-to-end framework · Non-Maximum Suppression

1 Introduction

Emergency vehicle accidents, particularly those involving ambulances and fire
trucks, pose operational and financial challenges. Immediate consequences
include vehicle downtime, increased operational costs, and potential legal lia-
bilities. The total number of ambulance crashes, including minor “fender ben-
ders,” has been estimated at 6,500 per year [1]. Fire truck crashes occur at a
rate of approximately 30,000 per year, having potentially dire consequences for
the vehicle occupants and the community if the fire truck was traveling to pro-
vide emergency service [2]. Each year, there are approximately 300 fatalities in
the U.S. that occur during police pursuits [3]. These crashes often occur at high
speeds, at night, and on local roads. The economic impact of vehicle crashes is
substantial, with the government paying an estimated $35 billion annually [4].
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These accidents lead to issues such as inflated repair costs, delays in vehicle
recovery due to inefficient roadside assistance, and prolonged insurance processes
that extend vehicle downtime. These challenges strain emergency services finan-
cially and impede their ability to provide timely and effective responses.

In this paper, we introduce the Smart Auto Assessment and Roadside Tech-
nical Help Interface (SAARTHI), an end-to-end framework that addresses these
challenges. SAARTHI leverages advanced artificial intelligence (AI) technologies,
including object detection, instance segmentation, and salient object detection,
to improve the way emergency vehicle damages are assessed and repairs are
managed. This platform assesses damage from user-uploaded images, classifies
the damages into six categories-dent, scratch, crack, lamp broken, glass shatter,
and tire flat, and further distinguishes them as major and minor damages, also
providing immediate repair cost estimates. While current processes for dealing
with emergency vehicle damages are generally functional, SAARTHI aims to
enhance existing protocols by offering rapid damage assessment tools, support-
ing decision-making for fleet managers and maintenance departments.

One of the issues in emergency vehicle operations is the variability and incon-
sistency in repair estimates for similar damages. There are inflated repair costs
due to the lack of standardized pricing. For example, two similar ambulance
accidents might result in vastly different repair quotes from different service
providers, causing potential overpayment. Implementing a standardized repair
cost estimation system can aid government agencies in planning their budgets
for upcoming years by reducing overpayment for repairs.

Another challenge is the efficiency of roadside assistance, which is crucial
for keeping emergency vehicles operational. Delays in returning a fire truck to
service after an accident can leave the fire department short of essential resources,
impacting their ability to respond effectively to emergencies.

To address these issues, we introduce SAARTHI, a comprehensive framework
that manages the entire lifecycle of an emergency vehicle from accident to return
to service. This end-to-end AI-powered framework can be directly implemented
to expedite vehicle damage management. Key features of SAARTHI include:

– Real-time damage assessment. We implemented Resnet-based [5] mask-
RCNN [6] model utilizing MMDetection [7], and U-net to perform real-time
damage assessments from user-uploaded images.

– Detailed reporting and documentation. The system generates detailed reports
and documentation of the damage, including images, statistical graphs, esti-
mated repair costs, and other critical details.

– Repair cost estimation. By integrating Non-Maximum Suppression [8,9] and
considering the base prices of different types of damages along with their
impact factors, we provide accurate repair cost estimations.

– Immediate assistance via chatbot. SAARTHI includes a chatbot feature that
provides immediate assistance to users.

The rest of the paper is structured as follows: Sect. 2 covers related work.
Section 3 presents our approach and algorithms for damage detection and repair
cost estimation. Section 4 details the SAARTHI framework. Section 5 provides
experimental results, and Sect. 6 concludes the paper.
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2 Background

Advanced AI technologies, such as object detection [10] and instance segmen-
tation [11], offer robust solutions for assessing vehicle damage [12]. There is
abundant research that has utilized Convolutional Neural Networks (CNNs) for
detecting damages in vehicles [13,14]. CNNs have shown great promise in accu-
rately identifying various types of vehicle damage. However, one of the significant
challenges in this field has been the accurate detection of overlapping damages.
Overlapping damages complicate the task of isolating individual damages, mak-
ing it difficult to provide precise repair cost estimates.

In the SAARTHI framework, after implementing the initial damage assess-
ment using object detection and instance segmentation, we apply the Non-
Maximum Suppression (NMS) technique [15] to eliminate the overlapping detec-
tion of damages. NMS is crucial for refining the results of damage detection by
ensuring that only the most significant damages are considered. By focusing
on the most significant damage, we can more accurately identify the estimated
repair cost. Detecting vehicle damage, particularly with irregular shapes and
flexible boundaries, poses significant challenges. Scratches and cracks often have
similar contours and colors, leading to misclassification [16]. To address this,
we use Salient Object Detection (SOD) methods, which refine boundaries and
segment objects with irregular shapes. SOD locates all salient objects without
classifying them, ensuring accurate assessment of dents, scratches, and cracks by
focusing on the location and extent of the damage.

3 Methodology

3.1 Damage Detection And Segmentation For Emergency Vehicle

The aim of car damage assessment is to accurately detect, classify, and contour
damages on vehicles, aligning with the objectives of instance segmentation and
object detection. We implement a Mask R-CNN [6] model with a ResNet-50 [5]
backbone using the MMDetection [7,17] toolbox (Fig. 1). The model is initially
pre-trained on the COCO dataset [18] and fine-tuned on the CarDD dataset [12],
which consists of approximately 4000 images, manually annotated with bounding
boxes and masks to improve the performance on vehicles assessments.

Fig. 1. Network architecture of the Mask R-CNN model with a ResNet-50 backbone,
used for damage detection and segmentation in emergency vehicles
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To enhance the training process, we implement a custom hook that dynam-
ically modifies the data augmentation pipeline, incorporating steps to increase
model robustness. Images are loaded with their annotations (bounding boxes
and masks), randomly resized with scales from 0.1 to 2.0. Then randomly
cropped, flipped to handle orientation variations, and padded to 640× 640 pix-
els. This augmentation strategy introduces diverse transformations, improving
the model’s generalization.

3.2 Non-Maximum Suppression for Bounding Box Filtering

To refine our object detection results and prepare data for repair cost estimation,
we apply the Non-Maximum Suppression (NMS) [8,9] algorithm. NMS reduces
the number of overlapping bounding boxes by retaining only the most relevant
ones, ensuring each detected object is represented by a single bounding box, thus
enhancing the accuracy of subsequent cost estimation.

The NMS algorithm computes the Intersection over Union (IoU) between
bounding boxes to measure overlap. It selects the box with the highest confi-
dence score and suppresses all other boxes with an IoU greater than a specified
threshold. This process is repeated until only the most significant bounding boxes
remain (Algorithm 1). Figure 2 shows the NMS results on a sample input.

Algorithm 1 Non-Maximum Suppression (NMS)
1: function NonMaximumSuppression(boxes, scores, IoUThreshold)
2: boxes ← {b1, . . . , bN} � List of detection boxes
3: scores ← {s1, . . . , sN} � Corresponding detection scores
4: � IoUThreshold: Maximum allowable overlap between bounding boxes
5: idxs ← np.argsort(scores)[::-1]
6: selected idxs ← []
7: while idxs.size > 0 do
8: current idx ← idxs[0]
9: selected idxs.append(current idx)
10: if idxs.size == 1 then
11: break
12: end if
13: rest idxs ← idxs[1:]
14: rest boxes ← boxes[rest idxs]
15: ious ← [ComputeIoU(boxes[current idx], rest boxes[i]) for i in range(len(rest idxs))]
16: idxs ← rest idxs[ious < IoUThreshold]
17: end while
18: return selected idxs
19: end function

For bounding boxes boxA and boxB defined by corners (x1, y1, x2, y2):
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– Area of Intersection is the overlapping area between two bounding boxes
– Area of Union is the total area covered by the two bounding boxes.

Fig. 2. Non-Maximum Suppression (NMS) results applied on a police vehicle

3.3 Estimating Repair Cost Using Detected Damages

To estimate repair costs for car damages, we employ an algorithm that pro-
cesses detected bounding boxes, labels, and confidence scores. The methodology
involves two primary steps: NMS (Sect. 3.2) and cost calculation.

NMS filters redundant bounding boxes to ensure each damage type is
uniquely represented. Subsequently, the repair cost is computed based on prede-
fined base costs for each damage type. This base cost is adjusted by a severity
factor, which is derived from the area of the bounding box, the associated confi-
dence score, and a normalization factor to adjust severity. The final repair cost
is the sum of these adjusted costs. Repair cost is calculated by:

Cost = Base Cost ×
(

1 +
(Area × Score)

Normalization Factor

)
(2)

This approach ensures precise and reflective repair cost estimation based on
the severity of detected damages, facilitating accurate repair assessments.

3.4 Salient Object Detection For Emergency Vehicle Damages

Salient Object Detection (SOD) enhances the detection of car damages by refin-
ing the boundaries of irregular and slender shapes. SOD focuses on locating all
salient objects in an image, highlighting the most noticeable and severe areas of
damage, and reducing noise by filtering out less relevant parts. This is useful in
complex scenes where it is more important to identify key areas of damage than
to classify them.

We apply a modified U-Net [19] model to refine the boundaries of detected
damages. Using the CarDD [20] dataset, images are resized to 256 × 256 pixels
and augmented with random resizing and flipping. The U-Net model was trained
on an NVIDIA Tesla T4 GPU with a batch size of 32 for 250 epochs, using an
Adam optimizer with a learning rate of 0.001 and weight decay of 1e-5. The loss
function is Binary Cross-Entropy with Logits Loss (BCEWithLogitsLoss).
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4 SAARTHI Framework

The SAARTHI framework (Fig. 3) integrates advanced AI techniques for vehicle
damage assessment and repair coordination, streamlining the process from acci-
dent to repair completion. In this context, “users” refers to emergency vehicle
drivers or fleet managers, depending on the organization’s protocol.

Fig. 3. SAARTHI Workflow. Please refer to Sects. 4.1–4.6 for more details

4.1 User Registration and Login

Users register on the SAARTHI platform. Once logged in, they can view their
damage assessment history and past help requests on a personalized dashboard.
Here they can also start a new assessment by uploading an image of the vehicle.

4.2 Image Upload and AI Operations

Users can upload an image of their damaged emergency vehicle along with
optional details such as the car model and year. This image serves as the input
for AI model operations, which include the following steps:

1. Instance Segmentation and Object Detection (Sect. 3.1): The uploaded
image undergoes instance segmentation and object detection to identify and
classify different types of damage on the vehicle, including dent, scratch,
crack, lamp broken, glass shatter, and tire flat.
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2. Non-Maximum Suppression (NMS) (Sect. 3.2): NMS is applied to elimi-
nate redundant bounding boxes, ensuring each type of damage is represented
only once.

3. Cost Estimation (Sect. 3.3): The system estimates the repair cost based on
the identified damages, using predefined base costs adjusted by the area and
confidence score of each detected damage.
The assessment allows users to view the original image, the damage-detected

image, the image after applying NMS, and the result of SOD. The assessment
report includes statistical graphs, providing a comprehensive understanding of
the damages. The report also includes a table of estimated repair costs with
labels for individual damages added in the total estimated repair cost.

4.3 Request Handling and Agent Coordination

Users can initiate a chatbot conversation for further assistance. Developed using
JavaScript and the BotUI library [21], the chatbot offers options such as creating
and downloading a PDF of the assessment report and connecting with the nearest
SAARTHI agent based on the users location. Users can request a tow or on-the-
spot repairs. The system uses integrated Google Maps API [22] to fetch the users
location and create a request on the SAARTHI agent dashboard.

4.4 SAARTHI Agent

SAARTHI agents are emergency vehicle repair experts who have their own
accounts on the SAARTHI portal. They are available 24/7 to provide assistance
at any time of the day. Agents are registered on the portal by an administra-
tor after verifying their identity and credentials. During registration, the agents
details including shop location (latitude and longitude), city, phone number and
personal informations are collected. Each agent is assigned a unique ID to facil-
itate tracking and coordination.

4.5 Nearest Agent Selection

When a user requests assistance, the system identifies the nearest available agent
based on distance as follows:

1. Calculate Distance: Distance is calculated by Haversine formula [23,24]:

d = 2r · arctan 2
(√

a,
√

1 − a
)

(3)

where a = sin2
(

Δφ
2

)
+ cos(φ1) · cos(φ2) · sin2

(
Δλ
2

)
and Δφ and Δλ are the

differences in latitude and longitude, and r is the Earth’s radius.
2. Sort Agents: Agents are sorted based on their distance from the user. The

closest agent is contacted first.
3. Handle Availability: If an agent rejects the request or is at full capacity,

the system moves to the next closest agent.
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4.6 Report

Once the repair is completed, the user is notified and the detailed cost break-
down, including repair costs and service charges, is presented for review and then
added to the monthly report of the user’s organization.

5 Results

5.1 Object Detection and Instance Segmentation

For this research we used CarDD dataset [20]. Models were trained using an
NVIDIA Tesla T4 GPU with a batch size of 4 for 10 epochs. The learning rate
was set to 8e-05, using the Adam optimizer with a weight decay of 0.05. The
loss functions included RPN classification loss, RPN bounding box regression
loss, main classification loss (Cross-Entropy Loss), main bounding box regres-
sion loss (L1 Loss), and mask prediction loss (Mask Loss). The total loss, which
is the sum of these individual losses, provided a comprehensive measure of the
model’s performance across different stages of object detection and segmenta-
tion. Figure 4 presents key metrics evaluating the model’s performance per batch
during training, with a batch size of 4.

Fig. 4. Training Phase Result Metrics. Accuracy (Fig. 4a) shows a consistent upward
trend, indicating improving model performance. The loss (Fig. 4b) declines steadily,
reflecting increasingly accurate predictions and convergence. Bounding Box Mean Aver-
age Precision (bbox mAP) (Fig. 4c) indicates improving object detection performance,
with steady increases in precision and recall. Segmentation Mean Average Precision
(seg. mAP) (Fig. 4d) shows consistent improvement in identifying and segmenting
objects

Testing Phase. For the testing phase of the SAARTHI framework we evaluated
the model’s performance using Mean Average Precision (mAP) and Intersection
over Union (IoU) metrics. mAP measures the average precision across differ-
ent classes, indicating better model accuracy with higher values. IoU measures
the overlap between predicted and ground truth bounding boxes, with specific
thresholds (e.g., 0.5, 0.75) determining correct predictions.
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The overall bounding box mAP (bbox mAP) was 0.538 (Table 1), with high
precision at IoU thresholds of 0.5 and 0.75. The model showed good accuracy for
large, medium, and small objects. For segmentation masks (seg. mAP), the over-
all mAP was 0.519 (Table 2), also demonstrating high precision at IoU thresholds
of 0.5 and 0.75, and good performance across different object sizes. Figures 6
and 8 illustrate the model’s performance with examples of original images and
damage detection outputs. These results indicate that the model performs well,
particularly for larger objects and at an IoU threshold of 0.5. Figure 5 represents
results of damage detection and segmentation for an input image.

Table 1. bbox mAP

mAP Value
Overall 0.538
IoU 0.5 0.746
IoU 0.75 0.560
mAP Large 0.537
mAP Medium 0.309
mAP Small 0.314

Table 2. seg. mAP

mAP Value
Overall 0.519
IoU 0.5 0.716
IoU 0.75 0.525
mAP Large 0.545
mAP Medium 0.236
mAP Small 0.171 Fig. 5. Results

5.2 Salient Object Detection

Table 3 summarizes the model’s performance for salient object detection during
testing. The average loss of 0.5826 indicates a good match between predicted
and actual values. The model achieves an accuracy of 0.8645, reflecting a high
proportion of correct predictions. Precision and recall, both at 0.87, suggest the
model effectively identifies true positives with balanced accuracy. The F1-score
of 0.87 confirms the overall robust performance of the model in detecting salient
objects. Figure 6 represents training phase results (loss, accuracy) and predicted
segmentation mask for an input image.

Fig. 6. SOD Training phase result 6a 6b and sample input image results 6c 6d
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Table 3. Salient Object Detection results metrics (Testing Phase)

Average Loss Accuracy Precision Recall F1-score

0.5826 0.8645 0.87 0.87 0.87

5.3 SAARTHI User Interface

Figure 7 represents a few snippets of the end-to-end SAARTHI user interface. For
more details, demo and code, please refer to sites.google.com/view/saarthi-home

Fig. 7. SAARTHI User Interface

6 Conclusion

The SAARTHI framework effectively addresses the challenges of emergency vehi-
cle accidents by utilizing advanced AI technologies for damage assessment, stan-
dardized repair cost estimations, and expedited vehicle recovery. This framework
reduces downtime and enhances operational readiness through real-time assess-
ment, detailed reporting, and chatbot assistance. While the focus is on external
damages visible in images, future work will integrate telematics data and sensor
readings for a holistic approach, including internal damages.

Integrating SAARTHI with IoT technologies for real-time monitoring and
predictive maintenance will further improve emergency vehicle readiness and
efficiency.
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