
GraphRPM: Risk Pattern Mining
on Industrial Large Attributed Graphs

Sheng Tian1, Xintan Zeng1, Yifei Hu2, Baokun Wang1(B), Yongchao Liu1(B),
Yue Jin1, Changhua Meng1, Chuntao Hong3, Tianyi Zhang2,

and Weiqiang Wang1

1 Ant Group, Hangzhou, China
{tiansheng.ts,xintan.zxt,yike.wbk,yongchao.ly,jinyue.jy,

changhua.mch,weiqiang.wwq}@antgroup.com
2 Ant Group, Shanghai, China

{liuxu.hyf,zty113091}@antgroup.com
3 Ant Group, Beijing, China
chuntao.hct@antgroup.com

Abstract. Graph-based patterns are extensively employed and favored
by practitioners within industrial companies due to their capacity to
represent the behavioral attributes and topological relationships among
users, thereby offering enhanced interpretability in comparison to black-
box models commonly utilized for classification and recognition tasks.
For instance, within the scenario of transaction risk management, a graph
pattern that is characteristic of a particular risk category can be read-
ily employed to discern transactions fraught with risk, delineate net-
works of criminal activity, or investigate the methodologies employed
by fraudsters. Nonetheless, graph data in industrial settings is often
characterized by its massive scale, encompassing data sets with millions
or even billions of nodes, making the manual extraction of graph pat-
terns not only labor-intensive but also necessitating specialized knowl-
edge in particular domains of risk. Moreover, existing methodologies
for mining graph patterns encounter significant obstacles when tasked
with analyzing large-scale attributed graphs. In this work, we introduce
GraphRPM, an industry-purpose parallel and distributed risk pattern
mining framework on large attributed graphs. The framework incorpo-
rates a novel edge-involved graph isomorphism network (EGIN) along-
side optimized operations for parallel graph computation, which collec-
tively contribute to a considerable reduction in computational complex-
ity and resource expenditure. Moreover, the intelligent filtration of effica-
cious risky graph patterns is facilitated by the proposed evaluation met-
rics. Comprehensive experimental evaluations conducted on real-world
datasets of varying sizes substantiate the capability of GraphRPM to
adeptly address the challenges inherent in mining patterns from large-
scale industrial attributed graphs, thereby underscoring its substantial
value for industrial deployment.
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1 Introduction

Fig. 1. Example risk patterns. Risk pattern A describes the behavior of fraudsters
who defraud funds from multiple victim users and quickly transfer them to different
downstream bank cards. Risk pattern B describes that the fraudster collects the vic-
tim’s funds multiple times in the name of investment through a shop, giving rewards
in the early stage but no longer paying in the later stage. Precision and recall metrics
are the evaluation criteria for measuring risk patterns in the industry.

Graph pattern mining constitutes a pivotal task within the ambit of mining and
machine learning, with profound applications extending to various industrial
and business domains such as social network analysis [13], financial fraud detec-
tion [2,10], and computational bioinformatics [21]. Taking the financial trans-
action scenario as an example, fraudsters would try to cheat normal users and
make illegal money transfers. The distinctive behavioral patterns of these fraud-
sters, termed ‘risk patterns’, are critical for the detection of fraudulent activity
and the prevention of financial fraud, as exemplified in Fig. 1. Compared to
black-box neural network models used for identifying fraudsters [12], industry
experts express a preference for summarizing these risk patterns, as they provide
more granular insight into the conduct of fraudulent entities, thereby facilitat-
ing a more explainable approach to fraud detection. Nonetheless, the manual
delineation or construction of these patterns by experts is a labor-intensive
process that demands considerable domain-specific knowledge. Consequently,
the automation of risk graph pattern mining is an avenue warranting explo-
ration. GRAMI [3] presents a method for frequent subgraph mining by leverag-
ing a novel canonical labeling technique to efficiently discover patterns within
a single large graph. Bliss [8] introduces an optimized tool for canonical label-
ing, specifically designed to handle the challenges posed by large and sparse
graph structures, enhancing the performance of graph mining tasks. T-FSM [20]



GraphRPM: Risk Pattern Mining on Industrial Large Attributed Graphs 135

outlines a task-based framework that enables massively parallel processing for
frequent subgraph pattern mining, addressing the scalability issues associated
with big graph data. Despite this interest, extant automated graph pattern min-
ing algorithms [3,8,14,20] are impeded by two principal limitations:

1. Challenges in processing attributed graphs. In numerous real-world
applications, simplistic representations of graph topology fall short of accu-
rately depicting risk scenarios. There is a necessity to leverage high-
dimensional attributes associated with nodes or edges for a nuanced char-
acterization of entities, which is beyond the capabilities of methods that are
restricted to or can only process one-dimensional attributes.

2. Deficiencies in scalability. Graph data within industrial environments is
characteristically voluminous, spanning millions or even billions of nodes.
Existing methodologies lack the integration of computational optimization
strategies that are critical for the effective and efficient management of data at
such an industrial scale. This shortfall in capability significantly undermines
the suitability of these methods for application in industrial tasks, which
necessitate robust data manipulation and analytical capacity to handle the
sheer volume and complexity of the data involved.

In this paper, we address the problem of Risk Patterns Mining on large
transaction attributed graphs (GraphRPM). Although our research is primarily
focused on financial fraud detection, the versatility of the proposed framework
allows for its extension to a multitude of industrial applications, including but
not limited to analysis within social network contexts. The challenge of manag-
ing and processing large-scale attributed graphs in industrial settings is a non-
trivial hurdle, particularly in the realm of data mining. The primary objective of
this study is to establish a robust and efficacious methodological framework capa-
ble of discerning distinct graph patterns as discriminative entities, enabling the
differentiation of various graphical structures and the identification of fraud risk
patterns.

GraphRPM introduces a pioneering Edge-Involved Graph Isomorphism Net-
work (EGIN) that addresses the challenge of fuzzy matching in attributed
graph patterns, striking a balance between computational complexity and accu-
racy. Furthermore, this study implements a two-stage mining strategy coupled
with a parallel distributed processing framework to diminish computational
redundancy and enhance efficiency. Additionally, we present a Pattern Risk
Score as an evaluative measure for identifying salient risk patterns. Comprehen-
sive evaluations across diverse real-world datasets, varying in size, corroborate
GraphRPM’s proficiency in resolving pattern mining issues within expansive
industrial attributed graphs. Our research represents a significant advancement
in the application of data mining and machine learning to industrial and business
analytics. We contribute to the field in two pivotal ways.

1. We meticulously conceptualize and address the hitherto underexplored issue
of discerning risk patterns on large-scale attributed graphs.
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Fig. 2. An overview of the GraphRPM framework, which consists of subgraph enu-
meration, two-stage mining, and risk pattern assessment. The Edge-Involved Graph
Isomorphism Network (EGIN) based pattern representation mapping is used to iden-
tify graph patterns with attributes.

2. We introduce an all-encompassing analytical framework that not only incor-
porates the cutting-edge EGIN algorithm but also integrates a scalable dis-
tributed computation system, thereby enhancing computational efficacy. To
our knowledge, this is the first proposition of an approximation algorithm
based on graph neural networks for risk pattern mining on large transaction-
attributed graphs.

2 Problem Formulation

The large transaction-attributed graph can be represented as G = (V, E), where
V = {v1, v2, ...vN} is the set of nodes indicating the user, and E denotes the
set of transaction events. Typically, let eij ∈ E be an interaction or a link that
happens from source node vi to target node vj , associated with edge feature
fe and node feature fv, respectively. fv (and fe) is defined as a feature vector
xv ∈ R

dv (and xe ∈ R
de), where dv (and de) is the dimension size. Note that fv

and fe often have different dimension sizes in practice.
The risk graph pattern is defined as P = (g, u), consisting of a subgraph

g = (Vg, Eg) and the starting node u of the pattern. For any node vi ∈ V,
the node vi hits the pattern P if fvi

= fu and g ∈ Gvi
, where Gvi

is the k-hop
subgraphs of the node vi. For a given node vi, its k-hop subgraph compirses all
of the nodes that can be reached from node vi by traversing at most k edges,
including the starting node vi by default unless otherwise specified, and all of
the edges that connect the nodes within this defined k-hop neighborhood.

We employ the support metric, which is traditionally used in frequent pat-
tern mining [5,15,16,19] to denote the prevalence of particular patterns within
a dataset. Different from the objectives of frequent pattern mining, our research
is focused on the extraction of risk patterns characterized by high support in
anomalous instances juxtaposed with low support in normal instances. The
goal of our research is to leverage these discriminative patterns to differenti-
ate between normal and abnormal instances within extensive attributed graphs.
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3 Methods

Figure 2 illustrates the overall workflow of GraphRPM, including potential sub-
graph enumeration, two-stage pattern mining, and pattern risk assessment,
where the EGIN based pattern representation mapping technique is used to
identify graph patterns. Owing to the extensive scale of industrial attributed
graphs, it necessitates decomposition into smaller ego-graphs to enable the enu-
meration of potential sub-graph patterns. This is followed by the extraction
of graph pattern results through a two-staged pattern mining approach that
leverages node and edge attributes within the EGIN network. Ultimately, risk
patterns that demonstrate significant distinctiveness are identified and selected
via a thorough risk assessment process.

3.1 Potential Subgraph Enumeration

To obtain the risk graph pattern, we first need to enumerate the potential sub-
graph of patterns around each starting node. However, industrial attributed
graphs tend to be too large to be processed directly in memory, so we pre-extract
the k-hop ego-graph of each node and then enumerate the potential subgraphs
within the ego-graph. While the node magnitude is still large, to further improve
efficiency, GraphRPM performs enumeration utilizing our distributed in-memory
graph intelligent computing system [11], which can handle both graph comput-
ing and graph learning tasks and accommodate multiple programming paradigms
including the widely recognized vertex-centric programming model [4,9,22].

Fig. 3. An example of graph partitioning, where the nodes are color-coded to indicate
their roles. The nodes colored in red serve as the starting nodes, while the nodes
colored in blue represent the neighboring nodes of the starting nodes within their
respective ego-graphs. To elaborate, v1 and v4 act as the starting nodes. v1’s ego-graph
encompasses its neighbor nodes v2 and v3, while v4’s ego-graph includes nodes v5, v6,
and v7 as its neighbors. All the aforementioned nodes are designated as master nodes.
In addition, nodes colored in gray signify the mirror nodes, which are replicas of the
master nodes and carry the same IDs. For instance, the gray node marked v3 within
worker 1 functions as a mirror for the master node v3 located in worker 2. (Color figure
online)

Each worker holds a partition of the input data and runs on multiple threads.
As shown in Fig. 3, we illustrate the process of distributing data using a simple
graph partitioning algorithm. Initially, all nodes are evenly distributed across the
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Fig. 4. An example of expansion. (1) Left: an intermediate subgraph of edge set {e1,3}
generated during the first iteration of expansion from the node v1 is transmitted to
v3. (2) Middle: in the second iteration of expansion, v3 will be activated and adds its
edges e3,1 and e3,2 to this subgraph, respectively, thus producing two new intermediate
subgraphs of edge sets {e1,3, e3,1} and {e1,3, e3,2}. (3) Right: in this case, the two
subgraphs will be further transmitted to v3’s neighbor nodes v1 and v2.

workers, referred to as master nodes. For each edge, our method assigns it to
the partition where its source node is a master node. If the target node of these
edges does not reside within the same partition, they are created as mirror
nodes (represented by grey dots in the figure) within that partition, functioning
as replicas of their corresponding master nodes.

Upon completion of the graph partitioning, the system proceeds to exe-
cute the subgraph enumeration algorithm. We use a breadth-first-search (BFS)
strategy to fully utilize the parallel computation. The enumeration begins from
around each starting node, generating a series of subgraphs containing only a
single edge, which are then transmitted to their respective neighboring nodes. As
shown in Fig. 4, an intermediate subgraph of edge set {e1,3} generated during the
first iteration of expansion from starting node v1 is transmitted to its neighbor
node v3. In the subsequent iteration of expansion, node 3 will be activated and
adds its edges e3,1 and e3,2 to this subgraph, respectively, thus producing two
new intermediate subgraphs of edge sets {e1,3, e3,1} and {e1,3, e3,2}. In this case,
the two subgraphs will be further transmitted to the two neighbor nodes v1 and
v2 of v3. After each iteration, neighboring nodes will be activated and traverse
their edges, attempting to add them into the subgraph. Enumeration stops when
either the size of the subgraph reaches a threshold or there are no more active
nodes. Obviously, BFS suffers from memory issues due to the maintenance of
enormous intermediate data, we introduce several optimization methods as fol-
lows.

Coordination-Free Redundant Subgraph Removal. Two different work-
ers may reach the same subgraph due to different edge-induced orders, causing
the subgraph to be enumerated and represented twice. To solve this problem,
we develop a coordination-free technique to avoid redundant computation and
minimize communication costs. This method enforces restrictions on the order
of edge IDs by sorting to form the representation of each subgraph and then
applies a hashing technique to the representation by each worker independently
to decide which worker should compute the subgraph.
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Leveraging the example provided in Fig. 5, we shall elaborate the workings
of our coordination-free approach. As displayed in the left panel of the figure,
two distinct workers can independently arrive at the same subgraph: worker 1
begins its traversal from the intermediate subgraph of edge set {e2,1, e3,2} and
incorporates edge e1,3, while worker 2 starts from another intermediate sub-
graph of edge set {e2,1, e3,1} and adds edge e3,2. To reconcile these overlapping
efforts, we preemptively assign a unique ID to each edge. This labeling method
enables every worker to derive a streamlined representation of their respective
subgraph by arranging the edge IDs in ascending order. Consequently, any iden-
tical subgraphs encountered will share the same representative string. Utilizing
this uniform representation, workers can then compute a hash value and per-
forms modulus operations on the representation of the subgraph, using the total
number of edges within the subgraph as the divisor. This process is employed to
pinpoint a particular edge within the subgraph. The identified edge then serves
as the criterion to decide which worker is assigned the task of processing that
subgraph, leading to the relinquishment of the task by all other workers, without
the need for inter-work coordination.

Topological Attribute Separation Structure for Multi-subgraph Opti-
mization. Since the system runs entirely in memory, and subgraph enumeration
often requires huge space to maintain intermediate data, we develop a series of
techniques to minimize memory consumption. Considering that multiple sub-
graphs will share the same node or edge, we propose a topological attribute
separation structure to minimize communication and memory usage. Further,
for a subgraph that has reached the maximum size, we output it immediately
to relieve memory constraints, since it does not need to be expanded and prop-
agated any longer. To conclude each iteration, we clear the useless subgraphs of
each worker to prevent repeated propagation. Note that our method is able to
support multi-edges between two nodes as well as multi-attributes on nodes and
edges, which are not supported by most existing graph pattern mining methods.

3.2 Two-Staged Pattern Mining

Pattern Representation Mapping. After obtaining potential subgraphs
around each starting node, we need to perform an isomorphism test on a subset
of all the structures to obtain the final candidate graph pattern. Nevertheless,
exact matching based on graph isomorphism is computationally prohibitive for
application to large-scale graph datasets.

To circumvent this issue, we employ the Graph Isomorphism Network
(GIN) [18], whose efficacy has been equated with the Weisfeiler-Lehman (WL)
isomorphism test [17], as an approximate matching technique to diminish compu-
tational demands. It should be noted, however, that GIN encounters limitations
when addressing the graph isomorphism problem [1], specifically in scenarios
involving nodes with high-dimensional attributes or edges that bear attributes.
As shown in Fig. 6, unique graph schema may be erroneously mapped to an
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Fig. 5. An example of coordination-free technique. (1) Left: two different workers reach
the same subgraph. One starts from edges {e2,1, e3,2} by adding e1,3, the other starts
from edge {e2,1, e3,1} by adding e3,2. (2) Right: we assign an ID attribute to each edge
in advance, allowing each subgraph to obtain a simplistic representation based on the
ascending order of edge IDs. Identical subgraphs will have the same representation.
Each worker calculates a hash value and performs modulus operations on the repre-
sentation of the subgraph, using the total number of edges within the subgraph as the
divisor, in order to identify a specific edge within the subgraph. This particular edge
is used to decide which worker will process the subgraph with all other works giving
up the task, leading to coordination-free distributed redundant subgraph removal.

identical representation space when utilizing GIN, thereby rendering the iso-
morphism test for graphs unfeasible. Consequently, we introduce a novel archi-
tecture referred to as the Edge-Involved Graph Isomorphism Network (EGIN),
designed to project the representations of the enumerated subgraphs into a
high-dimensional representation space, specifically tailored for graph isomor-
phism tasks with high-dimensional attributes. Firstly, we integrate the edge
information, including features and directions, into the GIN’s message-passing
mechanism.

h(k)
i = MLP (k)

n ((1 + ε(k))h(k−1)
i +

∑

vj∈N (vi)

MLP0(h
(k−1)
j ||fk−1

eij )) (1)

where h(k)
i is the intermediate representations of node vi in the k-th layer and

vj ∈ N (vi) denotes the set of first-order neighboring nodes of the node vi.
MLP (·) denotes the multi-layer perceptron network, ‘||’ is the concatenation
operator and ε(k) is a constant. The edge embedding of fkeij is calculated as

fkeij = MLP (k)
e (fk−1

eij ||h(k−1)
i + h(k−1)

j ) (2)

Secondly, we can obtain the subgraph embedding zg of the subgraph g with
the K-th aggregation layer as follows.

zg = READOUT (h(K)
i |vi ∈ Vg) (3)

Simply using sum as READOUT is not able to distinguish the differences of high-
dimensional attributed nodes, as shown in Fig. 6. In this regard, we also introduce
the aggregation operations of max, min, and squeeze, where squeeze refers to
squeezing the features of multi-dimensional nodes into one-dimensional feature
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Fig. 6. Examples of graph isomorphism test. GIN fails to handle the graph isomorphism
test between the above graph instances. Functions labeled in blue can differentiate
the graph 1 and the graph 2. Using the left figure as an example, when performing
neighborhood aggregation for the red node, the sum and squeeze aggregators both
generate an identical neighborhood embedding vector (4, 4) from the two blue nodes,
which does not allow for differentiation between graphs 1 and 2. In contrast, the max

aggregator yields a neighborhood embedding vector of (2, 2) for graph 1 and (4, 4)
for graph 2. Similarly, the min aggregator produces embedding vectors of (2, 2) for
graph 1 and (0, 0) for graph 2. Clearly, both the max and min aggregators are capable
of discerning the differences between the two graphs. For the scenarios depicted in
the middle and right figures, a comparable analytical approach can be applied. (Color
figure online)

vector by employing a summation function. Finally, the subgraph embeddings
produced by each of the four operators are concatenated to construct a composite
representation for the current subgraph pattern.

The final merging of subgraph representations yields the representations of
all candidate graph patterns that exist, and the set of nodes contained in each
graph pattern can be computed by comparing whether the graph pattern’s rep-
resentation is the same as the representation of a subgraph under the node. The
parameters of the EGIN network do not necessarily need training and can be
initialized by ensuring the linear transformations in MLPs meet the injection
property. This way, we can get identical representations for the same graph pat-
terns and roughly get different representations for different graph patterns.

Through the method delineated above, we can obtain a collection of subgraph
representations corresponding to all potential graph patterns, wherein represen-
tations of identical subgraphs should be precisely equivalent. Consequently, by
comparing the representation of a graph pattern with the representations of sub-
graphs beneath individual nodes, the node set that each graph pattern encom-
passes can be computed. In our proposed methodology, it is essential for the
parameters of the EGIN to exhibit a one-to-one (injective) mapping property.
This property guarantees that identical graph patterns are mapped to congruent
representations, whereas disparate graph patterns are mapped to distinguishable
representations.
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Grounded in the principles of the universal approximation theorem [6,7],
the utilization of an MLP within the framework of the EGIN is employed to
ensure the injective mapping of graph representations. The EGIN model consti-
tutes an augmentation of the GIN model, which has been previously established
as possessing an equivalent level of discriminative capacity as the Weissfeiler-
Lehman (WL) test for graph isomorphism with respect to homogeneous graphs.
Given that EGIN integrates edge features into the original GIN structure while
preserving the MLP’s injective nature, it is posited that EGIN retains the dis-
criminative prowess of its predecessor, thereby enabling the identification of dis-
tinctive graph patterns. Refer to [18] for a similar analysis.

Two-Staged Mining. In terms of pattern representation mapping, the high-
dimensional feature spaces associated with nodes and edges result in the mag-
nitude of the final graph pattern being exponentially contingent upon the
dimensionality of these features. In practice, graph patterns typically exhibit a
long-tailed distribution, where numerous low-support patterns contribute to an
inflated computational workload, leading to significant memory redundancy and
inefficiency.

To ameliorate these computational concerns, we propose a two-stage pattern
mining scheme, where only the features of nodes are used in the first stage
for the pattern representation mapping task, and then the low-support graph
patterns are pruned (according to the principle of anti-monotonicity, the support
of graph patterns obtained by expanding the attributes on the edges of the low-
support graph patterns will be even lower). Subsequently, in the mining’s second
stage, we perform the graph representation mapping task again based on the
subgraphs hit by the top p% of supported patterns (by default p is set to 10 to
realize an empirically good trade-off between efficacy and efficiency), where the
features on the edges are introduced for pattern merging, resulting in the final
set of risky candidate patterns. Implementing this tiered framework dramatically
streamlines the computational process, reducing the original complexity from
O(N × E) to a more manageable O(N + E).

In practical implementations, the prevalence of anomalous nodes is typically
much lower than that of normal nodes within the majority of graphs. There-
fore, it is operationally efficient to first mine for risk patterns P on anomalous
nodes, and then to calculate the support of these patterns on normal nodes.
This strategy not only prevents redundant computations over a large set of nor-
mal nodes but also provides a measure of support for risk patterns across both
anomalous and normal samples, which is essential for the subsequent assessment
of risk patterns.

3.3 Pattern Risk Assessment

In the context of financial security, it is imperative for risk management systems
to effectively differentiate between normal and anomalous entities within the
trading network. To accomplish this, the system should identify risk graph pat-
terns that are prevalent among anomalous nodes (indicative of potential risk) but
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are notably absent or rare among normal nodes. This requirement deviates from
the aims of traditional frequent graph pattern mining, which generally seeks to
find patterns that occur commonly across the entire graph without particular
focus on anomaly detection. To quantify the efficacy of such discriminative pat-
terns, we introduce a novel evaluation metric termed the Pattern Risk Score
(Rs), specifically tailored for financial risk analysis tasks. This metric aids in the
assessment of a pattern’s reliability and relevance in identifying financial risks.

For a given pattern Pi, suppose there exists a set of nodes with associated
binary labels yvi

∈ Y in the historical data, where each label signifies the node’s
status as either normal (yvi

= 0) or abnormal (yvi
= 1). We first calculate the

support counts sPi
y=1 and sPi

y=0, representing the support of Pi among abnormal
and normal nodes, respectively.

Subsequently, we compute the precision of the pattern (pre(Pi)) as the ratio
of its support among abnormal nodes to its total support across both normal
and abnormal nodes, formalized as:

pre(Pi) =
sPi
y=1

sPi
y=1 + sPi

y=0

(4)

The recall of the pattern (re(Pi)) is measured as the proportion of abnormal
nodes that support the pattern relative to the total number of abnormal nodes,
expressed as:

re(Pi) =
sPi
y=1∑
yi=1 yi

(5)

To synthesize precision and recall, reflecting a pattern’s overall effectiveness,
we calculate the Pattern Risk Score Rs(Pi) analogously to the F1 score:

Rs(Pi) =
2 × pre(Pi) × re(Pi)

pre(Pi) + re(Pi)
, (6)

where Rs(Pi) balances the trade-off between precision and recall. A higher Rs

signifies a more reliable pattern in distinguishing financial risks. The pattern risk
score quantifies the reliability of graph patterns as indicators of financial risk. By
prioritizing graph patterns with high Rs scores, financial institutions can focus
on scrutinizing transactions or nodes that are most likely associated with fraud-
ulent activities, ensuring proactive risk mitigation and regulatory compliance. It
essentially translates the abstract concept of network anomalies into actionable
intelligence that can safeguard financial operations.

4 Experiments

In this paper, we validate the effectiveness of our proposed methodology by con-
ducting experiments on three industrial datasets of varying magnitudes. Specif-
ically, the datasets consist of a financial transaction network derived from the
industrial platform, wherein the associated labels demarcate the users as either
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Table 1. Statistics of datasets.

Industrial dataset1 (M1) Industrial dataset2 (M2) Industrial dataset3 (M3)

#Nodes 7,743 26,776 54,411,161

#Edges 10,743 468,263 130,862,451

#Node features 5 10 21

#Edge features 2 6 5

#Anomalies 203 1,101 28,165

Pos. label meaning fraudster fraudster fraudster

legitimate or fraudulent. For all evaluated tasks and datasets, the graph data
were organized in accordance with the chronological sequence of transactions.
Subsequently, a uniform temporal division was applied across all datasets: the
initial 70% of the time-ordered data was allocated for the mining of risk pat-
terns, and the concluding 30% was reserved for testing purposes. The statistics
for the three datasets are summarized in Table 1. It should be noted that our
choice of risk patterns is based on a thorough analysis of historical data, and
we’ve used data from different time periods to prevent overfitting. Herein, we
would like to emphasize that we can not provide additional details regarding
the datasets and the specific features of nodes and edges, and are unable to
open-source our code, due to confidentiality constraints. Disclosing these infor-
mation could potentially compromise the integrity of our risk control system.

First, we validate the operational efficiency of our proposed method com-
pared to the Exact-matching method, the Bliss [8] method, the GIN [18] method,
w/o-GraphRPM (GraphRPM without enumeration optimization and two-stage
mining optimization), and w/t-GraphRPM (GraphRPM without two-stage min-
ing). The Exact-matching method is achieved by recursively comparing the con-
nection and attributes of each node and edge in two subgraphs. The Exact-
matching method, the Bliss method, and the GIN method are based on the
results of subgraph enumeration optimization to do subgraph matching to verify
the efficiency of EGIN. The experiments were run on a 32-node cluster with
two 8-core Intel Xeon 8269CY CPUs and 16GB of DDR4 RAM per node for
a fair comparison. The runtime of each method on different scale datasets is
shown in Fig. 7. Through the experiments, we find that the Exact-matching
method is the least efficient and encounters the out-of-memory (OOM) error
on middle-scale and large-scale datasets. The running time of our method is
in the same order of magnitude as Bliss and GIN, but both of the latter can
only use one-dimensional feature labels on nodes, which makes them unable
to be applied to industrial attributed graphs. Furthermore, comparing w/o-
GraphRPM and w/t-GraphRPM demonstrates that by using the subgraph enu-
meration optimization scheme and the two-stage mining framework, the run-
ning time of GraphRPM is reduced by 3× and 2× on the large-scale dataset,
respectively. Overall, GraphRPM enables the efficient implementation of pattern
mining on industrial-attributed graphs.

Table 2 shows the performance of the different methods for the identifica-
tion task on the industrial graphs, where τ specifies the number of header risk
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Fig. 7. Overheads of different methods in terms of running time for different scale
datasets

Table 2. Abnormal node identification task results, where the reported metric is the
pattern risk score, precision (%), and recall (%)

τ Methods M1 M2 M3

Rs pre/recall Rs pre/recall Rs pre/recall

1 EXPERT 0.515 97.1%/35.0% 0.165 95.3%/9.1% 0.126 91.4%/6.7%

Exact-matching 0.596 84.6%/46.1% – – – –

Bliss 0.547 55.3%/54.2% 0.266 21.8%/34.2% 0.166 10.8%/36.1%

GIN 0.523 51.6%/53.1% 0.325 37.5%/28.7% 0.202 16.9%/25.2%

GraphRPM 0.596 84.6%/46.0% 0.377 81.3%/24.56% 0.307 77.4%/19.1%

10 EXPERT 0.773 95.7%/65.0% 0.405 90.3%/26.1% – –

Exact-matching 0.809 80.4%/81.4% – – – –

Bliss 0.536 39.3% /84.5% 0.297 19.2%/66.1% 0.145 8.5%/49.2%

GIN 0.670 59.1%/77.4% 0.369 26.4%/61.3% 0.219 14.9%/42.1%

GraphRPM 0.804 79.4%/81.6% 0.528 74.1%/41.1% 0.465 68.3%/35.3%

100 EXPERT – – – – – –

Exact-matching 0.716 58.9%/91.3% – – – –

Bliss 0.475 31.7%/94.8% 0.228 13.3%/82.1% 0.061 3.1%/72.1%

GIN 0.603 44.6%/93.2% 0.297 18.9%/68.9% 0.178 10.2%/66.1%

GraphRPM 0.706 58.0%/90.2% 0.621 65.9%/58.8% 0.560 59.7%/52.8%
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patterns selected based on the pattern risk score. EXPERT refers to manually con-
structed risk patterns by experts, which cannot produce a large number of risk
patterns due to high labor costs. Among them, expert patterns tend to have high
accuracy rates, which are finely constructed from expert experiences. However,
due to the high efforts, it is difficult to expand and apply to various businesses.
GraphRPM significantly outperforms the Bliss and GIN methods that use only
one-dimensional features, especially on the largest dataset M3, where the risk
score performance improves by 0.49 and 0.38, respectively, when using 100 pat-
terns. Moreover, compared to the Exact-matching method, our method per-
forms similarly on small-scale datasets but can operate on large-scale attributed
graphs.

Fig. 8. The deployment process of GraphRPM within the context of financial transac-
tion scenarios

Fig. 9. An example of a graph pattern corresponding to domain-specific languages

5 Deployment

In this section, we will elucidate the deployment process of GraphRPM within
the context of financial transaction scenarios. As illustrated in Fig. 8, the deploy-
ment is segmented into three distinct modules: Risk Pattern Mining based on
historical data, Online Transaction Risk Control based on identified risk pat-
terns, and Business Case Analysis also based on identified risk patterns.
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Risk Pattern Mining Module. This module operates by employing the
GraphRPM method to mine patterns from historical transaction data. Subse-
quent to pattern risk assessment, the top risk patterns are selected for utilization
in downstream tasks. These patterns are derived through an analysis of historical
data, focusing on identifying key structures that have been associated with risky
behavior in past transactions. Furthermore, considering the timeliness required
for risk control, we update these patterns on a daily basis.

Online Transaction Risk Control Module. The selected risk patterns can be
applied to online risk control. We encode these patterns into a domain-specific
language (DSL) and deploy them to an industrial risk control platform. For
example, Fig. 9 demonstrates a snippet of DSL that describes a triangular struc-
ture. Every ongoing transaction is then scrutinized in real-time against these risk
patterns. If a current transaction fully matches a risk pattern within its adjacent
graph data, certain control measures can be enforced to restrict the completion
of the transaction; otherwise, the transaction is permitted to proceed.

Business Case Analysis Module. Utilizing risk patterns for retrospective
analysis, key graph structures can be extracted from past fraud cases. This assists
business analysts in dissecting the tactics used by fraudulent operators, thereby
enhancing the efficiency of the analytical process. By applying identified risk
patterns to past cases, we can gain insights into the modus operandi of fraudsters
and potentially anticipate future fraudulent schemes.

A critical discussion point is the adversarial nature of transactional risks.
Once fraudulent actors can no longer exploit identified patterns due to enhanced
risk control, they may devise new methods or channels to perpetrate fraud,
circumventing current risk control patterns. Therefore, it is essential to perform
periodic updates to the risk pattern. Regularly applying the Risk Pattern Mining
Module to new data samples is necessary to unearth a new set of effective risk
patterns for ongoing risk control measures.

6 Conclusion

Pattern mining on large-scale attributed graphs is always a major challenge
in the field of data mining and machine learning. In this study, we introduce
GraphRPM, an innovative framework that integrates a subgraph isomorphism
algorithm powered by graph neural networks with an architecture optimized for
computational efficiency. GraphRPM is designed to find and evaluate risk graph
patterns automatically on large attributed graphs, helping to detect clusters of
risky behaviors while reducing manual inspection costs, and has been deployed in
production for more than one year in a diversity of business scenarios. Through
comprehensive experimentation on three diverse datasets of varying sizes, we
establish that GraphRPM efficaciously addresses the challenges of pattern min-
ing in large-scale attributed graphs prevalent in industrial contexts, underscoring
its substantial value for industrial applications.
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