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Abstract. Session-based recommendation (SBR) aims to capture user
intents based on a set of anonymous sessions for recommending the next
item. Recent works in SBR often employ graph neural networks (GNNs)
to model the transition patterns between items and have made impressive
progress. However, the performance is still limited by data sparsity and
complex dependency in sessions. Recently, self-supervised learning (SSL)
has been applied in recommender systems because of its good ability to
mine ground-truth samples from raw data, and great potential in relaxing
data sparsity. We note that both sessions and individual items contain
implicit user intents, and there is consistency between intents. There-
fore, the SSL can be applied to construct self-supervised signals based
on the implicit user intents to further alleviate the data sparsity prob-
lem in SBR, and thus improve the performance. In this paper, we pro-
pose a novel model called Intent Enhanced Self-Supervised Hypergraph
Learning for session-based recommendation (ISHGL) to improve the per-
formance. We first model the session sequence data as a global hyper-
graph to capture complex high-order relationships in sessions. Then,
we devise a new contrastive method for self-supervised learning with-
out additional data augmentation and complex positive/negative sample
constructions. Extensive experiments on three datasets demonstrate the
superiority of our model over the state-of-the-art methods.

Keywords: Recommender systems · Session-based recommendation ·
Self-supervised learning · Graph neural networks

1 Introduction

Recommender systems have been widely applied in various scenarios to alleviate
information overload, such as e-commerce websites, mobile stream media, and so
forth [25]. Due to user privacy concerns, recommender systems are often unable
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to identify each user and track their long-term interests [28]. Session-based rec-
ommendation focuses on modeling user intents based on short anonymous behav-
ior sequences to predict the next item, which has attracted wide attention due
to its highly practical value.

Fig. 1. An example of intent consistency between sessions and target items.

Early efforts in the SBR mainly employed K Nearest Neighbor [15] based
approaches to identify similar items to the current session or Markov Chain [14]
based approaches to capture sequential signals between adjacent items. The per-
formance of these traditional methods is limited by their own modeling capabili-
ties and data sparsity issues. Afterward, recurrent neural networks (RNNs) were
introduced into SBR by considering their abilities to model sequential signals.
RNN-based methods [5,6,8] model session data as unidirectional sequences in a
strictly-ordered way. Nevertheless, the models that rely overwhelmingly on strict
order to model session data may lead to the problem of overfitting [23]. Recently,
graph neural networks (GNNs) have sparked widespread discussions, and various
GNN-based methods [19,22] have also been employed to enhance SBR systems
due to their ability to model complex transition relationships between items
[10]. In GNN-based methods, adjacent items in a session sequence are mod-
eled as pairwise relations, which can alleviate the temporal dependence between
items. Since simple graphs are not good at modeling non-pairwise relationships
between nodes [1], GNN-based methods can not model high-order relationships
in session sequences well. Moreover, in SBR, the sessions usually are very short
(6–7 items in one session), GNN-based methods have to use the short-term inter-
action data to refine the representations of items and sessions for SBR, which
still suffer from the problem of data sparsity and fail to obtain accurate user
intents.

Self-supervised learning (SSL) is an emerging learning paradigm that is able
to mine ground-truth samples from raw data and shows good ability to alleviate
data sparsity issues. Thus, some works have explored SSL in recommender sys-
tems to alleviate data sparsity. For instance, SGL [21] utilizes graph structure
augmentation to create contrastive views for SSL. CL4SRes [24] introduces three
data augmentation strategies for sequence-level contrastive learning. To create
self-supervised signals from the raw interaction graph/sequence, these methods
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require additional data augmentation such as node dropout [27], where they
randomly extract part of the nodes from the session sequence. Due to the fact
that the sessions in SBR usually are very short, randomly extracting part of the
nodes will break the connectivity of items in the sessions, limiting the perfor-
mance of SSL. In order to avoid this limitation, in SBR, S2-DHCN [23] proposes
to introduce a line graph to generate self-supervised signals for SSL. However,
in this method, it needs to introduce additional graph channels and graph con-
volution operations to construct positive/negative samples for the generation of
self-supervised signals, which is complex and inefficient. Therefore, it is necessary
to further improve self-supervised learning in session-based recommendations.

We note that, for one session, there is consistency of the intents between
the session and its target item. For example, as shown in Fig. 1, Session 1 with
(“Apple”, “Watermelon”, “Grapes”) reveals the intent of buying fruits and the
target item is a coconut which is consistent with the intent. Likewise, Session
2 and its target item reveal the consistent intent to buy peripheral equipment.
In contrast, the intents of different sessions are usually different from each other
(inconsistency). For example, in Fig. 1, the intent of Session 1 is inconsistent
with the intent of the target item in Session 2. The consistency and inconsis-
tency between intents facilitate the creation of self-supervised signals. By this
observation, we can use consistency to construct positive samples and inconsis-
tency to construct negative samples without additional data augmentation and
complex positive/negative sample constructions.

Based on the discussions mentioned above, we creatively propose Intent
Enhanced Self-supervised Hypergraph Learning for session-based recommenda-
tion (ISHGL). Specifically, first, to capture complex high-order relationships
between items, we model session data as a global hypergraph and construct
a hypergraph convolutional neural network for information propagation. In this
global graph, each hyperedge denotes a session and all items are connected, which
can relax strict order dependence. Then, to overcome the data sparsity issue, we
explore self-supervised learning via a new contrastive method that creates self-
supervised signals between intents without extra data augmentation and complex
positive/negative sample constructions. By the proposed self-supervised learning
method, we can maximize the mutual information between session intents and
target item intents, and thus, optimize session and item representations. Finally,
we unify the self-supervised task and the recommendation task under a learning
framework. The performance of the recommendation task is boosted by jointly
optimizing the two tasks.

Overall, the main contributions of this paper are summarized as follows:

– We innovatively propose to create self-supervised signals between session
intents and item intents to optimize the representations of sessions and items.
In this way, we do not need additional data augmentation and complex pos-
itive/negative sample constructions.

– We propose an intent-enhanced self-supervised learning in hypergraph neural
networks, termed ISHGL, for the session-based recommendation. ISHGL can
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model complex and high-order relationships among sessions and items for
effective session-based recommendation.

– Extensive experiments are conducted on three datasets, demonstrating that
our approach is superior compared with the state-of-the-art models.

2 Related Work

In this section, we first review the related methods for session-based recommen-
dation. Then, we introduce the self-supervised learning methods in session-based
recommendation.

2.1 Traditional Methods

Early studies in SBR primarily rely on nearest neighbors [15]. Some of them
employ cosine similarity to calculate similarity scores, but these methods ignore
the transition patterns between items. Then, numerous sequential methods have
been proposed to utilize chronological order to model the users’ intents. For
instance, FPMC [14] utilizes Markov Chains (MC) and personalized matrix fac-
torization to capture sequential patterns and long-term preferences of users for
predicting the next action. Nevertheless, Markov Chain-based methods usually
focus on the transition of adjacent items, which have difficulty in capturing more
complex and high-order sequential relationships.

2.2 Deep Learning-Based Methods

With the boom of deep learning, recurrent neural networks (RNNs) have been
widely employed in session-based recommendations for modeling sequential rela-
tionships between items. For instance, Hidasi et al. propose GRU4Rec [5], a
model that employs Gate Recurrent Units (GRUs) to model the entire session
for the next-item recommendation. Li et al. [6] propose a hybrid encoder with
GRUs and an attention mechanism to model the user’s main intent in the current
session. Liu et al. [8] propose STAMP to capture both short-term and long-term
interests with multilayer perceptrons (MLPs) networks and attention mecha-
nisms. Besides RNN-based methods, convolutional neural networks (CNNs) are
another commonly used deep learning-based method in SBR to model sequential
information. For example, Caser [16] regards the representations of items within
the sequences as latent matrices and utilizes CNNs to model users’ general pref-
erences and sequential patterns. Despite achieving remarkable success through
various deep learning-based approaches, these methods rely heavily on sequen-
tial relationships between adjacent items to generate representations of sessions
and items, which ignore information between non-adjacent items.

Due to the advantages of graph neural networks (GNNs) in modeling complex
transition relationships between nodes, they have been widely adopted in SBR in
recent years. For instance, Wu et al. [22] propose SR-GNN, which first constructs
historical session sequences as directed graphs and uses a gated graph neural
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network (GGNN) to capture intricate item transition information. Based on
this work, Xu et al. [25] introduce a graph contextualized self-attention model
(GC-SAN), which leverages GNNs to capture local dependencies and employs a
self-attention mechanism for long-range dependencies. Qiu et al. [13] investigate
the inherent order of session sequences and develop FGNN to exploit users’ latent
intents. To alleviate the problem of lossy session encoding, Chen et al. [3] propose
edge-order preserving aggregation and shortcut graph attention to get a lossless
encoding of sessions. GCE-GNN [19] proposes a unified model that exploits the
session-level item embeddings within the current session and the global-level item
embeddings over all sessions, and integrates both item embeddings to generate
the final session embedding. To capture information from items without direct
connections and deal with the overfitting problems of GNN-based approaches,
Pan et al. [11] propose a star graph neural network and apply a highway network.

However, the above-mentioned GNN-based methods face challenges in cap-
turing high-order relationships between items to generate more accurate repre-
sentations. Recently, some works have extended GNN to hypergraph to enhance
item representations in recommender systems. Wang et al. [18] propose SHARE
that constructs a hypergraph for each session with a sliding window and uses
a hypergraph attention network (HGAT) to distinguish the importance of dif-
ferent intents. Xia et al. [23] propose a dual-channel hypergraph convolutional
network with a self-supervised task to enhance hypergraph modeling. Li et al.
[7] propose HIDE that constructs a hypergraph for each session and disentan-
gles the intents under each item click at micro and macro levels. Our work is
based on hypergraph neural networks, considering their advantages in modeling
high-order relationships.

2.3 Self-supervised Learning

Self-supervised learning has received considerable attention in recent years as
a learning paradigm that reduces the dependence on manual labels and can
enable training on large amounts of unlabeled data. Initially, SSL was used in the
domains of computer vision and natural language processing, where it augments
the raw data by employing techniques such as image rotation/clipping and sen-
tence masking [27]. Recently, SSL has also been applied to graph-structured data.
DGI [17] maximizes the mutual information between pairs of local patches and
global graphs to learn node representations. GraphCL [26] designs four types of
graph data augmentations to obtain correlated views for invariant representation
learning. ASP [2] effectively preserves both attribute and structure information
from the input graph and learns node representations by performing contrastive
learning across different graph views.

Inspired by the success of SSL in other tasks, some works have applied SSL to
sequential recommendation tasks. S3-Rec [29] utilizes the intrinsic data correla-
tion to extract self-supervision signals and enhances the data representations via
pre-training methods. S2-DHCN proposes a dual channel hypergraph convolu-
tional network and integrates a self-supervised task to enhance the performance
of SBR [23]. Although this method has achieved satisfactory results, it suffers
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from complex positive/negative sample constructions. Specifically, it addition-
ally introduces a line graph channel and utilize two encoders to generate self-
supervised signals, which is inefficient, especially in big-scale data.

3 Preliminaries

3.1 Problem Statement

In session-based recommendation, the set of sessions is represented as S =
{s1, s2, ..., sM} and V = {v1, v2, ..., vN} denotes all items in the dataset, where
M and N are the number of sessions and items respectively. Each session is
represented as a sequence si = {vi,1, vi,2, ..., vi,m} ordered by timestamps, where
vi,k ∈ V (1 ≤ k ≤ m) denotes an interacted item of an anonymous user within the
session si and m represents the length of the session. Given session si, the task
of session-based recommendation is to recommend the next most likely clicked
item vi,m+1. In fact, the recommender system generates the probability distri-
bution of all candidate items. The items with top-K largest probability scores
are recommended.

3.2 Hypergraph

In many real applications, the data structure could go beyond pairwise con-
nections and even far more complicated [7]. To model this type of relationship,
hypergraphs introduce the hyperedges which can connect more than two nodes.
Formally, a hypergraph is defined as G = (V, E), which includes a node set V
containing N unique nodes and a hyperedge set E containing M hyperedges.
Each hyperedge e ∈ E connects at least two nodes which is assigned a weight
Wee, and all the weights formulate a diagonal matrix W ∈ R

M×M . The hyper-
graph G can be represented by an association matrix H ∈ R

N×M , with entries
defined as:

Hie =

{
0, if vi /∈ e

1, if vi ∈ e
. (1)

For every node and hyperedge, their degree Dvv and Bee are defined as Dvv =∑M
e=1 WeeHve and Bee =

∑N
v=1 Hve. Also, both D and B are diagonal matrices.

4 Methodology

In this section, we mainly present the details of the model. We first construct
a hypergraph based on session sequences. Then, we obtain item representations
via hypergraph convolutional neural networks. After getting the item represen-
tations, we utilize the attention mechanism to obtain session representation and
generate user intent for recommendation. Finally, we construct of SSL task and
optimize the ISHGL model via joint learning. The overview of ISHGL is shown
in Fig. 2.
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Fig. 2. Overview of ISHGL.

4.1 Hypergraph Construction

In order to capture the high-order relations among sessions, we employ an undi-
rected hypergraph G = (V, E) to model sessions, in which each hyperedge denotes
a session and connects any number of nodes. Formally, we denote each hyper-
edge as [vs,1, vs,2, ..., vs,m] ∈ E . For a more detailed description, Fig. 2 has shown
the process of constructing a global hypergraph from sessions. First, the original
sessions s1, s2, s3, s4 are transformed into four hyperedges e1, e2, e3, e4. Then, the
items within each session are connected in pairs regardless of sequential order.
The size of hypergraph is determined by the number of sessions and items in the
datasets.

4.2 Hypergraph Convolutional Neural Network

Based on the construction of the hypergraph, we apply the hypergraph convolu-
tional neural network (HGCN) layer to obtain complex high-order relationships
between items in all sessions. Hypergraph convolution is an extension of tra-
ditional graph convolution that utilizes the hyperedges as a transition during
information propagation. The whole information transfer process can be divided
into two stages, the first stage is information aggregation from nodes to hyper-
edges and the second stage is information aggregation from hyperedges to nodes.
The main challenge of defining a convolutional network on a hypergraph is how
to propagate the representations of neighbor nodes. Referring to previous works
[1,4,20], we define hypergraph convolution as follows:

x
(l+1)
t =

N∑
i=1

M∑
e=1

HteHieWeex
(l)
i , (2)
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where x
(l+1)
t represents the embedding of the t-th node at the (l + 1)-th layer

and Wee is configured as 1 for each e. After row normalization, we get the matrix
form of Eq. (2) as follows:

X(l+1) = D−1HWB−1HTX(l), (3)

where D and B are the degree matrices of the node and hyperedge in a hyper-
graph. H represents the incidence matrix of the hypergraph and W denotes the
weight matrix of hyperedges. X(l) denotes the representations of the whole item
set at l-th layer. The hypergraph convolution can be viewed as a two-stage node-
hyperedge-node information transfer process, which can better extract node fea-
tures based on the hypergraph structure. Specifically, HTX(l) represents the
aggregation process of features from nodes to hyperedges. After getting hyper-
edge features, the updated node features are obtained by multiplying matrix H
to aggregate the related hyperedge features. For the given initial item embed-
dings X(0), each layer can generate the representations of X(i) from hypergraph
convolutional layers 0 to L. We average the representations of all layers to get
the item representations:

Xh =
1

L + 1

L∑
l=0

X(l), (4)

where Xh denotes the final global-level item representations.

4.3 Session Representation Learning

After getting the item representations, we aggregate them to obtain the session
embedding. The session embedding denotes the current intent of the anonymous
user, and there exists consistency between the current intent and the next item.
In the session sequence, each item carries positional information and the items
clicked later are more representative of the user intents [19]. We adopt reversed
position information for session representation learning. The position embedding
matrix is represented as P = [p1, p2, ..., pm], where pi ∈ R

d denotes the vector
of position and m represents the length of the session sequence. For item vi in
a given session s, we integrate item embedding hi with position information p
through the following formula:

x∗
i = tanh (W1 (hi‖pm−i+1) + b) , (5)

where ‖ represents the concatenation operation. W1 and b denote learnable
parameters, respectively.

To better extract the user’s current intent, we further consider the different
priorities of items within the session sequence. To get the representation of the
current session, we average the embeddings of items within the session sequence:

s∗ =
1
m

m∑
i=1

hi, (6)
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where s∗ is the embedding of session s. Then, we employ a soft-attention mech-
anism to compute the weight coefficient for each item. The formula is as follows:

αi = qTσ(W2s
∗ + W3x

∗
i + b2), (7)

where σ(·) represents sigmoid function. q ∈ R
d is the learnable attention param-

eter which is used to learn the item weight αi. {W2,W3} ∈ R
d×d and b2 are

learnable parameters. Then, the user’s general intent embedding Uh is calcu-
lated as follows:

Uh =
m∑
i=1

αihi. (8)

4.4 Recommendation Generation

Based on the learned user’s intent Uh, the score ẑi for each candidate item is
calculated by doing the inner product:

ẑi = UT
h hi. (9)

After that, we apply a softmax function to compute the probabilities of each
item being the next one in the session:

ŷi = softmax(ẑi). (10)

We adopt cross-entropy as the optimization objective to learn the parameters
and the loss function is:

Lce = −
N∑
i=1

yi log (ŷi) + (1 − yi) log (1 − ŷi) , (11)

where yi represents the one-hot encoding vector of the ground truth.

4.5 Enhancing SBR with Self-supervised Learning Task

Although hypergraph learning captures more high-order relationships compared
to traditional graph learning, session-based recommendation tends to suffer
from the issue of data sparsity which leads to sub-optimal item representations.
Inspired by the successful practices of self-supervised learning on traditional
graphs, we innovatively propose a new contrastive learning approach to enhance
session-based recommendation.

By observing session data, we notice that different session sequences usually
reflect various user intents and each individual item also contains user intents.
For a given session si = [vi,1, vi,2, ..., vi,m], the intent of this session is represented
as U i

h and the intent reflected in next item vi,m+1 is represented as ui ∈ Xh. The
next item vi,m+1 is also called target item. We note that there is consistency
between the current session intent and the user interest reflected in the next
item. By maximizing the mutual information between the session intent and the
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item intent through contrastive learning, the recommendation model can obtain
more accurate item representations for better recommendation performance.

For each mini-batch including n sessions and n next items in training, there is
a bi-directional mapping between them. Specifically, each session or item embed-
ding represents user intent and a pair of intents (U i

h, ui) belonging to the same
session can be labeled as the ground truth of each other for self-supervised
learning. We label other items as the negative samples U−. For pairs of intents
from different sessions, we label them as negative sample pairs. We build self-
supervised signals in this way without complex data augmentation operations.
To maximize the mutual information between the intent pairs, we follow noise-
contrastive estimation with a standard binary cross-entropy loss between positive
samples and negative samples [9] as our learning objective:

Lssl = −
M∑
i=1

(
log σ

(
sim

(
U i
h, ui

))
+ log σ

(
1 − sim

(
U i
h, u−)))

, (12)

where u− ∈ U− represents the negative sample and sim(·, ·) represents a simi-
larity metric function to measure the similarity between each representation. We
use dot product as sim(·, ·) to simplify the calculation.

4.6 Model Optimization

Finally, the recommendation task and the self-supervised task are unified into a
primary & auxiliary learning framework, where the former is the primary task
and the latter is the auxiliary task. The joint learning objective is as follows:

Lloss = Lce + βLssl, (13)

where β represents a hyperparameter to control the magnitude of the self-
supervised task.

5 Experiments

In this section, we mainly describe the experimental settings, including datasets,
baselines, evaluation metrics and detailed analysis of experimental results. We
are committed to finding answers to the following questions:

– Q1: How dose the performance of ISHGL compare to state-of-the-art (SOTA)
session-based recommendation approaches?

– Q2: How do different components in the ISHGL affect the performance?
– Q3: Is the proposed model ISHGL sensitive to hyperparameters? How do

different hyperparameter settings affect the model’s performance?
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5.1 Experimental Setup

Datasets and Preprocessing. We evaluate the proposed model on three real-
world datasets: Tmall1, Diginetica2 and Last.FM3, which are commonly used in
session-based recommendation research. The statistics of the used datasets are
presented in Table 1.

Following the previous works [13,22], we filter out sessions whose length
is 1 and filter out the items that appear less than 5 times. We set the
most recent data (e.g., last week) as test data and the remaining data as
training data. Furthermore, we adopt a sequence splitting method to gen-
erate sequence ([v1], v2), ([v1, v2], v3), ..., ([v1, v2, v3, ..., vm−1], vm) for session
S = {v1, v2, v3, ..., vm−1, vm}. The target items is a set of the labels of the
sessions.

Table 1. Statistics of datasets.

Datasets Tmall Diginetica Last.FM

#clicks 818,479 982,291 3,835,706

#train sessions 351,268 719,470 2,837,644

#test sessions 25,898 60,858 672,519

#items 40,782 43097 38,615

#average length 6.69 5.12 9.16

Baselines. To investigate the performance of the proposed model, we choose
the competitive methods as baselines for comparison:

– Item-KNN [15] recommends items which are similar to the previous items
in the ongoing session by computing cosine similarity between two items.

– FPMC [14] is a Markov-chain based hybrid model for the next-basket rec-
ommendation.

– GRU4Rec [5] is an RNN-based model which employs Gate Recurrent Units
(GRU) to capture sequential information and utilizes a session-parallel mini-
batch training strategy.

– NARM [6] is also an RNN-based model which combines Gate Recurrent
Units (GRU) and an attention mechanism to model user’s sequential behavior
and extract user’s main intent in the current session.

– STAMP [8] is a short-term attention/memory priority model that can simul-
taneously capture both the users’ long-term interests in general and their
short-term attention.

1 https://tianchi.aliyun.com/dataset/42.
2 https://competitions.codalab.org/competitions/11161.
3 http://mtg.upf.edu/static/datasets/last.fm/lastfm-dataset-1K.tar.gz.

https://tianchi.aliyun.com/dataset/42
https://competitions.codalab.org/competitions/11161
http://mtg.upf.edu/static/datasets/last.fm/lastfm-dataset-1K.tar.gz
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– SR-GNN [22] constructs each session sequence as a directed session graph
and employs gated graph neural networks to capture complex transition pat-
terns between items.

– FGNN [13] proposes a multiple weighted graph attention layer (WGAT) to
propagate the information between items and a Readout function to generate
graph level representation for item recommendation.

– GC-SAN [25] employs both graph neural network and self-attention mecha-
nism to extract local contextual information of sequences and capture global
dependencies between distant items.

– SHARE [18] proposes to model the session sequence as a hypergraph with
sliding windows and employs a hypergraph attention network to extract user
intent from various contextual windows.

– S2-DHCN [23] proposes a dual channel hypergraph convolutional network
to capture beyond pairwise relations and integrate a self-supervised task to
improve hypergraph modeling.

– HIDE [7] models the possible interest transitions from distinct perspectives
and disentangles the intents in micro and macro manners.

Evaluation Metrics. Following the previous works [7,16], we evaluate the
performance of the proposed model adopting the metrics of P@K (Precision)
and M@K (Mean Reciprocal Rank) where K is 10 or 20.

Implementation Details. Following the previous works [12,22], we fix both
embedding dimension and batch size at 100 for all models. Additionally, We
adopt the Adam optimizer with an initial learning rate of 0.001, which decreases
by a rate of 0.1 for every 3 epochs. To alleviate the overfitting problem, we
set the L2 regularization to 10−5 and apply an early terminating strategy. All
parameters of these models are initialized using Gaussian distribution with a
mean of 0 and a standard deviation of 0.1 and the initial item embeddings X(0)

are also randomly initialized. For the GNN-based models, we search for the
optimal number of layers within {1, 2, 3, 4, 5}. The coefficient for the strength
of SSL is chosen from {0.001, 0.005, 0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.5, 1}.
Furthermore, for all baselines, we use their reported optimal parameter settings
to achieve a fair comparison. The implementation of our proposed model is
available at https://github.com/YanYanYanYuYao/ISHGL.

5.2 Overall Performance (Q1)

In this section, we compare the proposed model ISHGL with the state-of-the-
art baselines to demonstrate its performance. The experimental results of all
methods are shown in Table 2. We have the following observations.

First, traditional methods underperform all deep learning-based methods
except GRU4Rec, proving the limitation of traditional methods in capturing
complex session information. This indicates that it’s insufficient to make rec-
ommendations only based on co-occurrence or a simple first-order transition

https://github.com/YanYanYanYuYao/ISHGL
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Table 2. Experimental results (%) on the three datasets

Models Tmall Diginetica Last.FM

P@10 M@10 P@20 M@20 P@10 M@10 P@20 M@20 P@10 M@10 P@20 M@20

Item-KNN 6.65 3.11 9.15 3.31 25.07 10.77 35.75 11.57 11.89 4.42 15.27 4.79

FPMC 13.10 7.12 16.06 7.32 15.43 6.20 26.53 6.95 8.53 3.56 12.91 3.85

GRU4Rec 9.47 5.78 10.93 5.89 17.93 7.33 29.45 8.33 12.85 5.18 14.94 5.57

NARM 19.17 10.42 23.30 10.70 35.44 15.13 49.70 16.17 14.64 6.39 18.07 6.73

STAMP 22.63 13.12 26.47 13.36 33.98 14.26 45.64 14.32 13.97 6.26 17.23 6.68

SR-GNN 23.41 13.45 27.57 13.72 36.86 15.52 50.73 17.59 15.53 6.74 19.74 7.18

FGNN 20.67 10.07 25.24 10.39 37.72 15.59 50.58 16.84 14.86 6.51 18.95 6.94

GC-SAN 21.32 12.43 25.38 12.72 37.86 16.89 50.84 17.79 16.25 7.49 22.65 8.42

SHARE 25.14 14.13 30.46 14.57 39.52 17.12 52.73 18.05 15.57 6.68 19.87 7.01

S2-DHCN 28.64 16.06 34.43 16.47 39.53 17.17 52.76 18.09 18.12 8.06 24.84 8.52

HIDE 30.43 16.76 36.36 17.20 39.69 17.18 53.01 18.11 18.65 8.11 25.15 8.56

ISHGL 31.11 17.82 37.01 18.32 40.34 17.63 53.61 18.55 19.37 8.68 26.42 9.14

Improv.(%) 2.23 6.32 1.79 6.51 1.63 2.60 1.13 2.54 3.86 7.02 5.05 6.78
∗ The best results are highlighted in bold face and the underline means the second-best results. Improve.

means improvement over the state-of-art methods

matrix. Deep learning-based methods achieve better performance. Compared
with GRU4Rec, both NARM and STAMP not only leverage sequential infor-
mation but also use the attention mechanism to capture long-term preferences.
In addition, we find that GNN-based models are better than previous meth-
ods, which demonstrates that modeling session sequences as graphs can better
capture the transition relationships between items. Specifically, the hypergraph-
based methods (i.e., SHARE, S2-DHCN and HIDE) exhibit better performance
than simple graph-based methods (i.e., SR-GNN, FGNN, and GC-SAN). This
demonstrates that capturing high-order relationships through hypergraph neural
networks is beneficial for the session-based recommendation task.

Second, our model ISHGL outperforms all baselines. Compared with tradi-
tional methods and RNN-based methods, the proposed method has achieved
better performance because our model can utilize graph-structured data to
capture more accurate user intent. In addition, our proposed method obtains
more competitive results compared with other self-supervised learning methods.
Although S2-DHCN and our proposed method both have hypergraph architec-
ture, the proposed method of constructing SSL enhances the performance of our
method. Specifically, we create self-supervised signals between session intents
and target item intents without additional data augmentation and complex pos-
itive/negative sample constructions, while S2-DHCN additionally introduces line
graph channel and two encoders for SSL, which may obtain sub-optimal signals.

5.3 Ablation Study (Q2)

In this section, we conduct ablation study to investigate the contribution of each
component in our model. We define the following three variants:

– ISHGL-H: This variant removes all hypergraph layers and only retains the
attention mechanism to capture local context information.
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– ISHGL-AT: This variant replaces the attention mechanism with averaging
item representations to explore the effect of the soft-attention mechanism.

– ISHGL-SSL: This variant removes the self-supervised signal to investigate the
impact of the proposed new self-supervised learning task.

Fig. 3. Comparison of ablation experimental results.

From Fig. 3, we observe the contribution of each component on three datasets.
In general, our proposed model ISHGL shows the best performance, which indi-
cates that hypergraph neural networks combined with a new self-supervised task
can obtain significant performance gains. When removing the self-supervised
learning and hypergraph layers respectively, the recommendation performance
decreases on three datasets. It is noticeable that the performance drops most
significantly when removing hypergraph layers in Last.FM , which shows that
global context in long sessions is more beneficial to capture user intents. In
addition, the soft-attention mechanism plays an important role in short sessions
because it aims to distinguish the importance of different items in a session.

5.4 Hyperparameters Analysis (Q3)

We explore how the key hyperparameters, such as the number of hypergraph
layers L and the hyperparameters β, influence the performance of ISHGL.

Fig. 4. The impact of different hypergraph convolution layers.
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Effect of the Number of Hypergraph Layers. We report the results in
Fig. 4 by ranging L within {1, 2, 3, 4, 5}. We can find that for both Diginetica and
Last.FM datasets, the performance improves as the number of layers increases,
and the best performance is achieved in a two-layer setting. Multi-layer hyper-
graph convolutions are able to mine more effective information in these two
datasets. As the number of layers continues to increase, the performance grad-
ually decreases. For Tmall dataset, one layer is the best and the performance
decreases with the increasing number of layers. The possible reasons for the per-
formance decrease are that integrating more extra information would disguise
the true intent of the current session and too many hypergraph layers make the
model over-smoothing.

Fig. 5. The impact of the magnitude of the SSL task.

Effect of the Hyperparameter β. We report the performance in Fig. 5 with
a set of representative β values in {0.001, 0.005, 0.01, 0.02, 0.03, 0.04, 0.05, 0.1,
0.5, 1} to control the magnitude of the SSL task. From the results, we find that
the recommendation task gets a performance boost when the self-supervised task
is added into training. For all the datasets, with the rise of β, the recommenda-
tion performance increases first and then decreases. We think that this change
in performance is owing to the gradient conflicts between the recommendation
task and the self-supervised task. In addition, for Tmall dataset, we note that
two evaluation metrics (P@20 and M@20) do not achieve optimal performance
at the same β and a balance needs to be made in choosing the value of β. For
Diginetica and Last.FM datasets, all evaluation metrics show similar variation
trends.

6 Conclusion

In this paper, we propose a novel model ISHGL for session-based recommenda-
tion. In order to capture high-order interactive information of items, our work
transforms all sessions into a hypergraph and uses hypergraph convolutional neu-
ral networks to propagate information. To alleviate the data sparsity problem,
we explore self-supervised learning between session intents and item intents.
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Then, we combine the recommendation task with the self-supervised learning
task under a unified learning framework. In the experiments, our model outper-
forms the state-of-the-art methods, demonstrating the superiority of our model.
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