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Abstract. Personalised discount codes provide a powerful mecha-
nism for managing customer relationships and operational spend in e-
commerce. Bandits are well suited for this product area, given the partial
information nature of the problem, as well as the need for adaptation to
the changing business environment. Here, we introduce DISCO, an end-
to-end contextual bandit framework for personalised discount code allo-
cation at ASOS.com. DISCO adapts the traditional Thompson Sampling
algorithm by integrating it within an integer program, thereby allowing
for operational cost control. Because bandit learning is often worse with
high dimensional actions, we focused on building low dimensional action
and context representations that were nonetheless capable of good accu-
racy, including in extrapolation. Additionally, we sought to build a model
that preserved the traditional relationship between price and sales, in
which customers increasing their purchasing in response to lower prices
(“negative price elasticity”). These aims were achieved by using radial
basis functions to represent the continuous (i.e. infinite armed) action
space, in combination with context embeddings extracted from a neural
network. These feature representations were used within a Thompson
Sampling framework to facilitate exploration, and further integrated with
an integer program to allocate discount codes across ASOS’s customer
base. These modelling decisions result in a reward model that (a) enables
pooled learning across similar actions, (b) is highly accurate, including
in extrapolation, and (c) preserves the expected negative price elasticity.
Through offline analysis, we also show that DISCO is able to effectively
enact exploration and improves its performance over time, despite being
subject to the global constraint. Finally, we subjected DISCO to a rigor-
ous online A/B test, and find that it achieves a significant improvement
of >1% in average basket value, relative to the legacy systems.
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1 Introduction

The ability to tailor discounts to different customers is a major source of competi-
tive efficiency for retailers. Scrutiny of each customer’s preferences and behaviour
can help businesses algorithmically target their policies for increased customer
loyalty and engagement. While beneficial, personalised discounting can bring a
set of technical challenges that need to be carefully addressed to ensure long-term
effectiveness and control over operational spend.

Price and discount optimization systems face a fundamental problem of par-
tial information [8,14,27]: outcome information is observed only for the specific
pricing decisions that have been enacted in the past, and the absence of counter-
factual outcomes in the historical dataset can undermine the ability of standard
supervised learning methods to accurately predict demand in response to differ-
ent policy changes. This is similar to the decision making problem as formulated
within the bandit framework: learning takes place under partial information
(rather than full supervision), and attempts by practitioners to develop new
policies can produce action sets that overlap poorly with historical data and
are thus difficult to train and evaluate offline [13]. Although some businesses
address partial information situations by explicitly collecting randomised data
in a one-off exercise (i.e. instead of relying on biased observational data; e.g.
[6,17]), the ever-changing nature of the business environment can swiftly render
these datasets obsolete. Within machine learning, contextual bandit meth-
ods offer a principled and effective way of tackling the technical challenges of
partial information [11,13,23]. The key strength of the bandit framework lies in
its ability to express uncertainty and enact strategic exploration of regions of
the state-action space where uncertainty is high. Contextual bandits are used
to make algorithmic interventions in a variety of online settings, such as news
and product recommendation [12,16–18]. Compared to greedy approaches that
maximise reward within each instance, bandits have been shown to collect a
more diverse set of data [7], and active learning has been shown to outperform
greedy approaches in various settings over time.

In the contextual bandit framework, features are used to predict rewards asso-
ciated with different actions in various contexts, and these predicted rewards are
then converted into actions via bandit algorithms like Thompson Sampling or
UCB. A major challenge in building bandit systems lies in building the model’s
representations: such action and context representations must be sufficiently rich
in order to accurately predict rewards, but the performance of bandit algorithms
is also known to degrade as the dimensionality of the action set increases [20,28].
While effective solutions have been devised for discrete, low-dimensional action
spaces, efficiently implementing bandits with continuous action spaces remains
an area of active research (e.g. [10,15,22,28]). As a result, practitioners dealing
with continuous action space often resort to discretizing (e.g. [9]), which leads to
a high dimensional action sets and detracts from the model’s ability to pool its
learning across actions that are closely related to each other (e.g. neighbouring
points on a continuous action space). Because pricing problems naturally involve
a continuous action set, our focus here is on developing an action representation
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scheme that (a) preserves information about the adjacency of different actions,
(b) combines low dimensionality with the high degree of expressive complex-
ity that is necessary for accurate predictions [19]. Additionally, we adapt the
standard contextual bandits approach by embedding it within an optimization
framework that allows for a high degree of operational control over the overall
system’s budgetary spend. Bandits algorithms are known to effectively manage
the explore-exploit trade-off in the unconstrained case where the learner is able
to sample actions freely based on the agent’s subjective uncertainty; adding fur-
ther constraints to systems’s behaviour by constraining the kinds of choices it
can make has the potential to degrade the system’s ability to learn over time.
However, we show here that our bandit system is able to perform well even with
the addition of these specific operational constraints, without which such systems
would not be useable at all in many practical situations. Lastly, we aimed to con-
struct a model that preserves the conventional inverse relationship between price
and consumer demand, known as negative price elasticity. This characteristic is a
fundamental assumption of models within this problem domain, and is a crucial
indicator of model validity: pricing models that lack such negative price elastic-
ity often suffer from lack of interpretability and poor generalizability, and, in our
direct experience, such models tend to be incorrect when used within algorith-
mic decision making systems. Pricing practitioners across various industries have
made significant efforts to develop models that exhibit this specific behaviour,
such as employing specialized modelling structures [18,27], custom loss functions
[21,26], or econometric/causal inference techniques [3,4,8]). The complexity of
these endeavours underscores both the importance as well as the difficulty of
negative price elasticity within this and many other problem domains.

In this paper, we introduce DISCO, a contextual bandit framework for allo-
cating personalised discount codes at ASOS.com (Fig. 1). We focus on providing
practical solutions to key technical challenges, and outline a novel and effec-
tive way of (a) constructing performant bandit representations for continuous
actions (b) integrating bandit methods with global constraints, in order to com-
bine active learning with operational control. Specifically, we (i) encode our
action space with radial basis functions, (ii) combine these representations with
context embeddings generated from a neural network, (iii) use Thompson sam-
pling to enact exploration, and (iv) embed our active learning model within a
constrained integer program that allows the business to control the overall dis-
tribution of allocated discounts. The proposed action scheme maintains a low-
dimensional representation to support more efficient bandit learning and allows
our predictive model to achieve a high accuracy by enabling a high degree of
expressive complexity. We show that this approach (i) supports shared learn-
ing between similar actions, (ii) maintains good predictive accuracy even when
models encounter new actions (i.e. extrapolation), and (iii) produces demand
curves that exhibit the expected negative price elasticity. We use simulations to
demonstrate the superiority of active learning over greedy approaches over time,
and also demonstrate that the addition of the integer program constraint incurs
only a limited negative effect on the system’s ability to enact active learning
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Fig. 1. Overview of DISCO. DISCO uses low dimensional context embeddings (from
a neural network) alongside radial basis functions that represent a continuous action
space with low cardinality. These action representations enable pooled learning across
similar actions. Features are used within a Bayesian log-linear regression to predict
basket-level revenue (the reward signal). Constrained integer programming is then used
to allocate discounts with operational control.

(relative to the more conventional unconstrained case). Finally, we validate our
framework by subjecting it to a rigorous online test, where it outperforms legacy
approaches to differentiated and undifferentiated discount code policies by >1%.

2 Problem Formulation

We aim to allocate different ”% off” discount codes across customers, to optimise
downstream goals (e.g. maximise revenue). We refer to the expected full price
basket value Ft,i,a of a given customer i with discount a in the t-th campaign:

E [Ft,i,a | Xt,i, At,i = a] = g (Xt,i, a) (1)

where Xt,i is contextual information, At,i is the discount ”% off” given to the
customer i in campaign t (note: At,i = 0.2 indicates a ”20% off” discount code),
and g(.) refers to a mapping function between (Xt,i , At,i) and Ft,i,a. All discount
codes are single-use, with specific expiry times (e.g. 1–31 days; we ignore expiry
time in this paper). Full price basket values refer to the total currency value of
checked-out baskets before discounts are applied. Contextual bandits operate in
rounds t = 1, 2...T , and aim to actively balance the explore-exploit trade-off over
time. Within each round, the learner is presented with a batch of customers and
their contexts Xt,i, and allocates a discount depth at,i ∈ At = {a1, a2, · · · , aKt

}
for each customer. The learner then observes a batch of rewards (in this case,
Fi,a∀i ∈ I), and uses them to update model g(.) for future inference.

Our decision to model full price (vs discounted) basket values was based
on the initial observation of monotonicity between discounts and full price bas-
ket values (Fig. 3 (left)): customers responded to deeper discounts by increasing
the full price value of purchases, without necessarily leading to an increase in
discounted basket value (which is computed Ft,i,a ∗ (1 − At,i)). We also refer
to ”markdown cost”, Ct,i,a = Ft,i,a ∗ At,i, which measures the cost of applying
discounts of a given level, and is commonly used in retail to constrain promo-
tional activity [14,24,25]. A campaign’s total cost is computed by aggregating
markdown costs across all engaged customers.
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3 Disco Architecture

The contextual bandit formulation requires us to first build feature representa-
tions, ψ : X ×A → R

d, to encode the actions and contexts. DISCO (Fig. 1) begins
by transforming the continuous action set into a low-dimensional representation
using radial basis functions. Then, a neural net is employed to extract customer
embeddings, which serve as contextual representations. These action/context
features are combined with a Bayesian log-linear regression model to predict
customer-level full price basket values as a function of discount depth. Lastly,
an integer program is used to allocate discount depths across customers, subject
to constraints specified by operational teams, and using likely customer-level
rewards (generated via Thompson sampling) as an input.

3.1 Action Feature Representation

The natural action space consists of a continuous scale of discount depths.
Although depth can be straightforwardly encoded as a continuous variable, this
implies a linear relationship between depths and outcomes (due to the use of a lin-
ear model), with extensive feature engineering and functional form assumptions
required to specify more realistic relationships. To overcome these limitations,
we sought an alternative action encoding scheme, ψ2 ∈ R

d2 , that would be capa-
ble of generating low dimensional representations of the action space (similar to
embeddings; [20]). We prioritized low dimensionality in order to preserve the effi-
ciency of bandit learning, which degrades as the cardinality of the action space
increases [11]. We also avoided one-hot encoding (discretization) as it does not
allow for information sharing, and increases the odds of limited support under
offline evaluation [20]. Instead, we use radial basis functions (RBFs) to encode
the action-space. These functions measure the similarity between the selected
basis locations and any given discount, and have the functional form:

ψ2,z (a |μz, αz) = exp

(
− (a − μz)

2

2αz

)
(2)

with ψ2 = {ψ2,z (a |μz, αz)}d2
z=1 ∈ R

d2 .
We configured RBFs based on their ability to (a) support good predictive

accuracy (measured by weighted absolute percentage error; WAPE), (b) capture
the monotonicity between depth and full price basket values (Fig. 3 (left); see
Sect. 1 for background). Figure 2 (left) shows the full action space as represented
using 3 radial basis functions at [0.25, 0.50, 0.75], as well as the number of times
each action was perceived by the algorithm for a fixed context when played 1K
times at [0.40, 0.60, 0.80] (middle). This illustrates a major strength of the RBF
encoding scheme: it allows the model to gain information about actions that are
similar to those previously encountered, in order to generate future predictions.
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Fig. 2. Action encoding mechanism. The left figure illustrates a 3-dim encoding of each
discount depth from 0.0 to 1.0 using the RBF transformation with three basis locations
(0.25, 0.5, 0.75). This encoding mechanism leads to information sharing as measured
by the effective number of times the algorithm has selected each action for a fixed
context, depicted in the middle figure. The right figure demonstrates the uncertainty
(standard deviation; SD) in the reward model adapts to increasing exposure to different
regions of the action space, including regions that are unrepresented in the training
data (extrapolation/interpolation; shaded in pink). Each line shows the uncertainty
over 1K randomly selected customers, where the model is trained on different volumes
of data. As the volume of data increases, the model retains greater uncertainty for
the previously unseen extrapolation range a < 0.6. Meanwhile, its confidence still
incrementally increases due to the RBF’s information sharing. (Color figure online)

3.2 Context Feature Representation

Although e-commerce businesses have access to many customer signals (e.g.
historical spend, site interaction), directly adding them as features can harm
the efficiency of learning due to the curse of dimensionality [11]. To overcome
this, we used a deep neural network (DNN) to predict the log full price basket
value for each customer, and extracted lower dimensional representations from
the penultimate layer for use in the downstream reward model (Fig. 1). The
DNN effectively serves as a function for representation learning ψ1 : X → R

d1 ,
producing an abstract representation of its inputs.

The DNN was trained on 5M customers who were active in a three-month
period, using each customer’s historical data over the preceding one year (includ-
ing non-discounted purchases). N = 76 features were fed into the model, including
customer’s purchase history (e.g. total/average spend), return history, discount
code usage (e.g. average depth of used codes), and site interaction data (e.g.
add-to-bag). The DNN consisted of four layers of sizes [64, 16, 6, 1]. The penulti-
mate layer played a crucial role by extracting a 6-dimensional contextual embed-
ding, effectively capturing the intricacies of the customer’s purchasing patterns
(performance was similar if dimensionality +/– 2) (Fig. 1). DNN training was
via mini-batch stochastic gradient descent, using the Adam optimizer (learning
rate=0.001) and dropout regularization to reduce overfitting.

This feature representation X → R
d1 is a mapping of contextual features X

and does not encompass the action space. It is worth noting that the extensive
purchase data necessary for training the DNN can be obtained through normal
operations, without requiring the retailer to run new discount campaigns.
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3.3 Reward Prediction: Bayesian Log-Linear Regression

After extracting context representations ψ1 and action representations ψ2, we
build the final feature set for customer i with discount a by taking all possible
pairwise products between ψ1 and ψ2:

ψ (Xt,i, a) = {ψ1 (Xt,i) , ψ2 (a) , ψ1 (Xt,i) × ψ2 (a)} ∈ R
d (3)

where d = d1 + d2 + d1d2 and × denotes the Cartesian product between the two
sets of feature mappings. Doing this gives us a rich class of policies where the
optimal discount depth is dependent on the customer embedding vector. Using
this feature set, we modelled log full price basket values as:

E [ln (Ft,i,a) |Xt,i = x , At,i = a] = 〈θ , ψ (x, a)〉 (4)

We trained a Bayesian log-linear model using customer purchase data from peri-
ods that overlapped with discount code campaigns. Data from two campaigns
were used for model training, with future campaigns used for testing. Training
data was restricted to active customers who had made ≥ 1 purchase in the pre-
vious one year, and contained campaigns where the allocation of discount code
to different customers had a large random component (see [5] for an alternative
methodology when using highly skewed historical datasets). The contextual fea-
ture embeddings were derived by applying the trained DNN to customer data
from the week before the target campaign.

Reward Sampling. We chose a linear reward model to enable Thompson
Sampling (TS) [2], which balances the explore/exploit trade-off by maintaining
a posterior distribution over the parameter vector, θ. The posterior distribution
quantifies the model’s uncertainty, and TS samples a pseudo-reward F̃t,i,a for
each action a ∈ At. Exploration is driven by uncertainty: as more information is
acquired, the posterior distribution becomes more defined, leading to a reduced
exploration. To facilitate computation of the inverse, we use the closed-form
posterior with Gaussian priors over coefficients of the linear model [2]:

θ̂t ∼ N (
μ = V̄ −1

t Bt , σ2 = β2
t V̄

−1
t

)
(5)

where,

V̄t = V0 +
t∑

s=1

I∑
i=1

ψ(Xs,i, As,i)ψ(Xs,i, As,i)T

= V̄t−1 +
I∑

i=1

ψ (Xt,i, At,i) ψ (Xt,i, At,i)
T

(6)
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with V −1
0 (typically the identity matrix) being the prior precision matrix, βt

being the exploration hyperparameter, and

Bt =
t∑

s=1

I∑
i=1

ψ(Xs,i, As,i) ln(Fs,i,a)

= Bt−1 +
I∑

i=1

ψ(Xt,i, At,i) ln(Ft,i,a)

(7)

Thus, we can efficiently maintain the posterior distribution using the Wood-
bury matrix identity, which requires O(d2) operations and O(d2 + d) space (an
improvement over MCMC). For each customer, we sample F̃t,i,a for all a ∈ At

from the posterior and apply the exponent to return appropriate units. This sam-
pling strategy prevents the learner from consistently selecting the greedy action,
and ensures sufficient exploration in each round. Each batch of F̃t,i,a∀a ∈ At in
round t is then fed to the downstream constrained integer program, for decision
making.

3.4 Optimisation of Discount Code Allocation

Adhering to the traditional application of Thompson Sampling involves selecting
the action that yields the highest reward per customer. However, this would
ignore important business constraints, such as the markdown budget, or the need
to control the range of experiences offered to customers. This latter concern is
common in customer-facing retail contexts, where businesses need to manage
their brand and customer relationships by taking a holistic view. To allow for
such holistic control, we formulate discount code allocation as an integer program
that takes the target discount depth distribution in as an input constraint from
the operational team.

For a discount campaign t with the discount depths At and F̃i,a for each
customer-action combination, discounts were allocated via the following integer
program:

Maximise
I∑

i=1

∑
a∈At

(w · R̃i,a − C̃i,a) · si,a · ea

subject to: si,a ∈ {0, 1} ∀(i, a) ∈ {1, 2, · · · , I} × At∑
a∈At

si,a ≤ 1 ∀i ∈ {1, 2, · · · I}
I∑

i=1

si,a ≤ Na ∀a ∈ At

(8)

where R̃i,a is the expected revenue for customer i offered discount a (calcu-
lated Rt,i,a = Ft,i,a ∗ (1 − At,i)), C̃i,a is the expected markdown cost (calculated
Ct,i,a = Ft,i,a ∗At,i), w is an importance weight used by operators to control the
priority of revenue-maximisation (vs cost minimization) goals in the campaign,
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Fig. 3. Negative price elasticity. The left figure shows the observed relationship between
discounting and full-price basket values, which is in line with the conventional assump-
tion of price elasticity. Monotonicity is expected and observed only when looking at
full-price basket values, not discounted ones. The middle figure demonstrates different
action encoding mechanisms and their effects. An RBF encoding scheme with K = 3
centroids and α = 20 demonstrates the desired near-monotonic relationship between
the actions and their corresponding effects. On the right figure, the chosen action
encoding scheme (K = 3, α = 20) produced the expected monotonicity as used in the
overall Bayesian log-linear reward model, both overall (blue; CIs indicate 95% CI of
the mean) as well as for 3 randomly selected customers. (Color figure online)

si,a is a binary variable indicating whether a customer i is offered the discount
depth a, Na is the number of users allocated to a ∈ At, and ea is the engagement
rate of discount depth a (proportion of customers who completed purchases with
the allocated code, out of the number of customers who received it; historical
averages were used to compute ea). The distribution of Na is specified by stake-
holders for each a ∈ At in every round to control the overall distribution of
discount depths. Note that Eq. 8 allows one to tactically adjust the relative pri-
ority of maximising revenue versus reducing cost, by changing the w parameter
for each campaign. Additionally, although DISCO allows operators to specify
the distribution over different depths, Eq. 8 can be easily adapted to incorporate
the budget as an additional constraint, providing further flexibility.

4 Experiments

To assess the performance of DISCO, we performed offline analyses focusing on
different aspects of the algorithm. For commercial sensitivity, all discount
depths, revenue, basket value numbers, and % increase in basket val-
ues reported have been rescaled to arbitrary units.

4.1 Information Sharing and Price Elasticity with RBF Encoding

Accuracy and Negative Price Elasticity. Figure 3 (left) shows the relation-
ship between discount depth and full price basket values, as observed in our own
dataset (as well as in line with conventional assumptions around negative price
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elasticity) (see Sect. 1). As mentioned in Sect. 2, we focused our modelling on pre-
serving the expected monotonicity and price elasticity with respect to discount
depths and full price basket values. To configure the RBFs in the reward predic-
tion model, we evaluated several different encoding schemes for the continuous
action space, focusing on predictive accuracy, monotonicity (negative price elas-
ticity), and low dimensionality. The various action encoding schemes considered
provided similar performance in terms of accuracy (all WAPEs = 0.140 at 3d.p.
precision, Spearman’s ρ=0.475 at 3d.p. precision). Figure 3 (middle) displays
the different RBF and alternative encoding schemes considered and illustrates
the uneven ability of different options to preserve the monotonicity (negative
price elasticity) between actions and their corresponding effects. The first line
represents continuous encoding, where actions are represented on a continuous
scale. However, this encoding method is inadequate in capturing the inherent
non-linear relationship between actions and effects. The second line represents
Euclidean encoding, which measures the Euclidean distance between actions and
a reference point. The next six lines depict the RBF encoding with varying num-
bers of centroids and α values. Notably, the red line and three blue lines using
RBF encoding exhibit a desirable trend, closely approximating monotonicity
between actions and their corresponding effects. Based on these observations,
we employed RBFs with three centroids and α = 20 in our model. Although the
seven-centroid options also exhibited monotonicity, the three-centroid configu-
ration was preferable due to the lower dimensionality of the final feature set in
the reward prediction model.

Figure 3 (right) shows the expected negative price elasticity in the model’s
predictions for 1K randomly selected customers, as well as for three randomly-
selected individual customers. While price elasticity can vary significantly both
across customers as well as across discount depths within individual customers,
the reward model was well able to preserve the assumption of price elasticity
both in the general case as well as across the vast majority of state-action space
(¿90%).

Uncertainty. The use of RBFs enabled information sharing and efficient non-
linear learning, resulting in highly accurate predictions, including for action val-
ues that had not been observed in the historical data (see Sect. 4.2). We were also
interested in how model uncertainty was attenuated as the model was exposed
to more data. Figure 2 (middle) compares uncertainty expressed by the Bayesian
log-linear model (as measured by standard deviation, SD; calculated by sampling
predicted basket value 1K times) for 1K randomly selected customers, where the
models were trained on different amounts of historical data. It is worth noting
that all batches of training data exclusively consisted of depths greater than 0.6
(a > 0.6). Consequently, the uncertainty estimates shown in Fig. 2 (middle) for
depths lower than 0.6 (a < 0.6) reflect the model’s uncertainty in extrapola-
tion. Despite this extrapolation, the model maintained a high level of predictive
accuracy, aided by the RBFs (see Sect. 4.2). Additionally, we observed that the
reward prediction model appropriately attenuated its confidence as it gained
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exposure and displayed increased uncertainty for depths it had not encountered
in the training data (i.e. a < 0.6, compared to a > 0.6). This relatively higher
uncertainty in extrapolation is both anticipated and advantageous, given the
model’s lack of exposure to the a < 0.6 range. More broadly, the model trained
with larger datasets exhibits reduced uncertainty in its predictions, as expected.

4.2 Reward Prediction Model

Contextual Representation with DNN. The DNN was evaluated on cus-
tomer purchases in one calendar month after the training period. We con-
trast DNN performance against three other popular regression models: Least
Square Regression (LR), Light GBM (LGBM), and Random Forest (RF). DNN
(WAPE = 0.153, Spearman Correlation ρ = 0.409) demonstrated similar accu-
racy in predicting full price basket values compared to RF (WAPE = 0.153,
ρ = 0.409) and LGBM (WAPE = 0.154, ρ = 0.410) while outperforming LR
(WAPE = 0.160, ρ = 0.346) significantly. Despite the comparable accuracy of the
RF and LGBM models, the DNN is more suitable for the primary objective of
generating context embeddings for downstream systems.

Reward Prediction Model (Bayesian Log-Linear Regression). The final
reward prediction model (Bayesian log-linear regression) was trained solely on
two random campaigns, and showed high accuracy when tested on a new unseen
campaign of a similar type (WAPE = 0.139, Spearman’s ρ = 0.438). We were
also interested in the model’s performance when applied to a completely dif-
ferent type of campaign that differed in customer approach (email vs on-site),
code redemption time (single use with a month-long redemption window, as
opposed to the typical 1–2 days), as well as in the discount depths that were
offered. This effectively tested the model’s ability to generalize, both in terms of
its ability to capture a customer’s consistent behaviour across different touch-
points, as well as to new actions: this new campaign specifically consisted of
depths that were shallower than the depths observed in the training data, and
therefore required the model to extrapolate (rather than interpolate) beyond the
actions that it had previously observed in the training data. Despite these differ-
ences, the model maintained its good performance (WAPE = 0.134, Spearman’s
ρ = 0.461). This indicates that our models successfully captured the under-
lying relationship between depth and subsequent purchases, enabling accurate
generalisation and extrapolation (albeit with higher uncertainty; see Sect. 4.1).
Overall, DISCO’s model is able to (1) identify and rank big and small spenders
correctly (as indicated by a Spearman rank correlation) and (2) predict customer
revenue accurately across different types of discount campaigns with previously
unseen depths.

4.3 Active Learning with Global Constraints

DISCO differs from traditional active learning in that actions are subjected to
global constraints, which is a very common requirement of practical applications.
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Fig. 4. Evaluation of bandit algorithms. Performance of different constrained agents
under warm- (left) and cold-start (middle) scenarios. TS-IP demonstrates the strongest
long-term performance, while UCB-IP’s long term performance is notably hampered.
The right figure compares TS-IP to a TS-ULCC benchmark (“Unconstrained Learner,
Constrained Consumer”; warm start). In this benchmark, “exploitative” actions are IP-
constrained, but separate “explorative” actions are taken to update the model without
consuming rewards. The consumed rewards reported earlier come from IP-constrained
actions, using a predictive model enhanced by unconstrained-action updates over time.
Benchmarking against TS-ULCC quantifies how much TS-IP’s long-term performance
is affected by the inability to choose actions across the full action space (due to the IP
constraint), while considering practical action constraints related to harvested rewards
in each round. Although TS-IP’s long-term performance is slightly degraded compared
to ULCC’s idealized benchmark, the degradation is minimal (0.234%) and does not
significantly escalate over 100 rounds of learning. This indicates that the IP constraint
does not have an unacceptably harmful effect on DISCO’s active learning capabilities.

In our experiments, we sought to assess how bandit algorithms would perform
when subject to such constraints. Additionally, we were interested in evaluating
the extent to which our bandit algorithm’s learning ability might be degraded
by the constraining of choice that stemmed from the integer program. Because
initial analysis with theoretical environments indicated that results were highly
sensitive to the configuration of the agent’s environment, we quickly re-focused
our efforts towards studying algorithms under realistic distributions of consumer
behaviour, by using real data from a genuine campaign. We adopted a standard
process for producing unbiased offline, off-policy estimates of algorithm perfor-
mance [12]: using a genuine campaign in which discounts were randomly assigned
across customers, we (a) re-sampled customers to create a dataset in which dis-
counts were uniformly distributed (in addition to being randomly assigned), (b)
used rejection sampling to estimate rewards that each different algorithm would
be expected to achieve under the action-constrained situation (see [12] for detail).

In addition to evaluating a constrained variant of the Thompson Sampling
(TS-IP) algorithm, we also evaluated constrained versions of other popular algo-
rithms including Upper Confidence Bound (UCB-IP) [1], ε-Greedy (E-
Greedy-IP), a Greedy baseline (Greedy-IP), and a Random baseline. All algo-
rithms (except for Random) were constrained by the integer program (Eq. 8),
using realistic parameters obtained from a recent campaign. To assess perfor-
mance, we looked at average basket value (ABV), which considers discounted
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value and reflects the revenue received by the company. The model was updated
in sequential batches of 5K customers, and the results of the offline simula-
tions were based on the average of 100 iterations of the Monte Carlo process for
each algorithm. In the cold-start scenario, the algorithms had no prior informa-
tion about customer behaviour. In the warm-start scenario, the algorithms were
trained using a separate dataset from an earlier campaign.

Figure 4 shows the efficacy of each algorithm under both warm-start (left)
and cold-start (middle) scenarios, with all results scaled relative to the random
policy (with the average of the random policy set to 1). In both scenarios, TS-IP
demonstrated successful learning and improvement of ABV over time. TS-IP
also outperformed greedy policies in both scenarios, although this required sev-
eral learning batches to achieve in cold start. While the Greedy and ε-Greedy
approaches initially showed good performance (relative to Random) after an ini-
tial warm start, both of these algorithms declined in performance over time, likely
due to the biased datasets collected by the Greedy-IP, which ultimately skewed
model’s performance. This clearly demonstrates the advantages of using active
learning approaches over greedy ones, even though the latter may exhibit initial
benefits. Interestingly, the trajectory of TS-IP indicated consistent improvement
over the course of 100 batches in both the cold- and warm-start scenarios. In
contrast, UCB-IP performance declined over time, indicating that UCB’s explo-
ration capabilities were more severely impacted by the global IP constraint.

We were also interested in how TS-IP’s ability to actively learn might be
hampered relative to unconstrained Thompson Sampling. While it would not
have been meaningful to directly compare TS-IP to vanilla, unconstrained TS
(because TS would be able to offer deeper discounts that would naturally lead
to greater full price basket values), we sought to compare TS-IP to a different
agent whose predictive model was updated by unconstrained TS actions (and
knowledge of the subsequent rewards), but who then chose actions that were
subject to the usual IP constraints. This algorithm, while artificial in that an
agent would never be able to take different sets of actions in order to separately
explore (learn) vs exploit, does give us a useful comparison point in which reward
harvesting (exploit) is constrained, while active learning (exploration and model
updating) is not. This comparison allows us to quantify the extent to which
the benefits of active learning are degraded, as a result of TS-IP’s constraints.
Although the IP reflects genuine business considerations that cannot be entirely
ignored, such benchmarking remains a useful exercise, as it can be used to assess
the benefits of reconfiguring the constraints (e.g. by changing Na∀A in Eq. 8),
or by re-formulating the constraints entirely) in order to better manage the
explore-exploit trade-off. It is also more meaningful to compare TS-IP to this
proposed agent rather than pure unconstrained TS, since the latter’s uncon-
strained actions would always produce greater rewards by dint of its ability to
take more aggressive actions - even in static, full information contexts for which
no active learning needs to ever occur.

To create this benchmark, we designed an algorithm that was able to make
and learn from unconstrained actions, but whose consumptive rewards came
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from actions that conformed to the constraints (“Unconstrained Learner, Con-
strained Consumer”, ULCC). This algorithm consists of two components: (a)
a “Learner” who takes unconstrained actions, and observes subsequent rewards
that are only used to update the predictive model (b) a “Consumer”, who takes
actions that are subject to constraint, but with the ability to use the predic-
tive model that has been iteratively updated by the Learner. Importantly, the
rewards harvested by this algorithm are related to the (constrained) actions
taken by the Consumer, reflecting a realistic relationship between the business
constraints and the subsequent reward within each batch (even when there is
perfect knowledge). Figure 4 (right) shows the performance of TS-IP, relative
to this idealized TS-ULCC algorithm comparison (warm start). Although TS-
ULCC outperforms TS-IP as expected, the extent of the difference is very small:
the overall drop in reward across 100 batches is 0.234%, comparing TS-IP’s ABV
to TS-ULCC (ttest comparing rewards across TS-IP vs TS-ULCC, p<0.001).
Additionally, this degradation did not appear to grow dramatically over time:
ttests comparing rewards in the first vs last 50 batches of the simulation did
not find a significant difference in the size of the reward degradation comparing
TS-IP to TS-ULCC (p¿0.05). Although in theory one might seek to capitalize
on all performance improvements that are possible, such a small performance
degradation (<1%) is in practice a small price to pay for the benefits of oper-
ational control that are provided by the IP constraint, without which such a
system would not be useable at all.

We have here introduced a method for benchmarking constrained bandit algo-
rithms against their unconstrained versions, in order to evaluate a constraint’s
negative impact on active learning over time. These results demonstrate the abil-
ity of TS-IP to learn with reasonably good efficiency over an extended period of
time, and we adopted this learning algorithm within DISCO. These results also
highlight the importance of active learning (compared to greedy approaches) in
achieving effective discount allocation over the long-term horizon, and highlight
the superiority of TS over UCB bandit algorithms specifically in situations where
global constraints apply.

5 Online A/B Test

Finally, we tested the efficacy of the system by conducting a large-scale online
A/B test during a discount code campaign at ASOS.com. In the campaign, all
eligible customers were randomly assigned to the Test or the Control group, with
the Test group’s discounts determined by DISCO, and the Control group’s dis-
counts allocated randomly across customers but with the same cost control con-
figuration (i.e. Na values in Eq. 8). The Control group experienced an operational
approach that is used in existing campaigns, that reduces campaign costs (rel-
ative to undifferentiated campaigns where all customers get the same discount)
by controlling the distribution of discounts (Na∀A), but without further opti-
mization. Due to commercial sensitivity, we omit reporting of group averages and
other aspects of customer behaviour, and instead focus on relative improvements:
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DISCO outperformed the Control in generating revenue by +1.12% (p<0.001),
and generated more reward by +1.23% (p<0.01; reward=revenue-cost as shown
in Eq. 8). Additionally, DISCO’s models maintained similar predictive accuracy
in the online test as seen during offline evaluation (WAPE = 0.133, Spearman’s
ρ = 0.446), which indicates the veracity of the offline evaluation methods as well
as of the models themselves. We note additionally that the extent of improve-
ment shown here is roughly in line with what one might expect when observing
the (warm start) offline simulations in Fig. 4 (left).

We are also able to measure DISCO’s performance relative to (more
commonly-used) undifferentiated discount campaigns in which all customers
receive the same discount. Unconfounded measurement here is possible because
customers experiencing this undifferentiated discount value effectively constitute
a (randomly assigned, and thus unconfounded) subset of customers within the
control condition alone. In this comparison, we find that DISCO outperforms
the legacy undifferentiated discounts in both revenue (+3.56%, p<0.001) as well
as reward (+4.10%, p<0.001). These results illustrate the importance of per-
sonalising discounts in optimizing operations, and demonstrate the efficacy of
DISCO as a method for doing so.

6 Concluding Discussion

Here, we outline a novel end-to-end contextual bandit framework for personalised
discount code allocation in e-commerce. Unlike traditional supervised learning
methods, DISCO addresses the challenges posed by partial information and data
sparsity, by employing an action encoding scheme that enables shared learning
across similar actions, and using Thompson sampling to manage the inherent
trade-off between exploration and exploitation. We demonstrate the ability of
our framework to support both high predictive accuracy in extrapolation (via
information sharing), as well the expected monotonicity between discount depths
and subsequent purchasing (negative price elasticity). Additionally, we embed
our predictive model within a constrained integer program, which affords us a
high degree of operational control, and demonstrate that the overall algorithm
is still able to efficiently learn and improve over time.

The methods employed here outline an efficient and performant framework
for employing active learning techniques within a practical setting, and can be
used in many product areas to take algorithmic actions that balance exploration
and exploitation. DISCO exhibits high data efficiency by leveraging Bayesian
log-linear regression: despite the high variance in customer behaviour, this app-
roach requires information from only two previous discount campaigns to yield
accurate predictions, and the framework is able to generate performant context
representations from customer data that is easily obtained through standard
business operations. The proposed bandit framework can potentially be applied
to a variety of personalisation problems, such as product recommendations or
targeting in customer relationship management (CRM). For example, in product
recommendations, the framework could be used to dynamically suggest items to
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users based on their previous interactions and preferences. By training customer
and item embeddings based on their context and interactions, these embeddings
can be used in a Bayesian log-linear regression (similar to Eq. 6) to facilitate
exploration. Similarly, in CRM, the framework could help in identifying the best
time and channel to reach out to customers, tailoring messages to their specific
needs and past behavior. The constant time complexity ensures scalability to
millions of customers or users, making it an attractive solution for large-scale
applications. Given these promising applications, we save these ideas for future
research.
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