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Abstract. In the expanding realm of sensor-based applications, the
reliance on time-series data has surged, posing challenges in explaining
the decisions of complex black-box time-series models. Existing Explain-
able Artificial Intelligence (XAI) approaches such as SBXAI, MCXAI and
TS-MULE offer insights into these models but face limitations in gener-
ating multiple explanations, exploring time-series-specific characteristics,
optimizing found cognitive blocks, and setting appropriate hyperparam-
eters. Addressing these challenges, we introduce an EXplainable artifi-
cial intelligence method targeting Time-series model based on Evolution-
ary Algorithm (ExTea). ExTea conceptualizes explanations as evolving
individuals and employs an innovative pyramidal structure for optimiz-
ing potential explanations, categorized into newborn, tested, and elite
stages. This approach incorporates time-series characteristics into the
fitness function of individual evaluation, thereby enhancing the overall
explanatory power. Extensive experiments on six benchmark datasets
with four target models demonstrate that the performance of ExTea sig-
nificantly exceeds the state-of-the-art time-series XAI algorithms, SBXAI
and MCXAI.

Keywords: explainable artificial intelligence · time-series ·
evolutionary algorithm · Baldwin effect

1 Introduction

The increasing prevalence of sensor-based applications across various domains,
such as daily life [1,2] and industrial production [4,6], has amplified the reliance
on time-series data. However, the inherent multimodal nature of time-series
data [3] often leads to the creation of intricate and opaque models that present
trust challenges in practical applications. Recently, several Explainable Artificial
Intelligence (XAI) methods for time-series black-box models have been proposed.
For instance, SBXAI [14] sheds light on how sequential structures in different
cognitive blocks influence decision-making processes, utilizing a Directed Acyclic
Graph (DAG). Here, the cognitive block refers to the crucial data segments for
model decisions. In a similar vein, MCXAI [13] investigates relationships among
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various cognitive blocks using the Monte Carlo tree structure. Another approach,
TS-MULE [15], adapts LIME [17] to time-series data, employing multiple dis-
tinct segmentation strategies. While these methods make strides in elucidating
black-box time-series models, they are not without limitations.

One major challenge is the generation of multiple explanations for a single
input. State-of-the-art models often involve an ensemble decision mechanism [8],
indicating that identical inputs can be governed by multiple underlying rules.
These rules are typically manifested through internal model mechanisms, such
as the ensemble approach in a random forest model and the dropout mechanism
in a neural network [5]. Prevailing XAI methods, which focus on feature impor-
tance and Pertinent Negative counterfactual [18], tend to combine all rules into
a singular explanation, leading to potential confusion and inaccuracy. Moreover,
most Pertinent Positive counterfactual-based methods [18], which are yet to
be tested on time-series data, offer only one optimal explanation, disregarding
the range of possible decision rules. Secondly, certain time-series characteris-
tics, like frequency information or sequential interference, are not adequately
explored. Thirdly, the optimization of cognitive blocks in MCXAI and SBXAI
is under strong constraint, which can impede the discovery of high-quality cog-
nitive blocks. Furthermore, setting hyperparameters in current methodologies,
such as the number of segments in SBXAI, remains a formidable challenge.

In summary, we encounter a counterfactual-based XAI task pursuing mul-
tiple, distinct, and optimized explanations under a multi-objective (pertaining
to different time-series characteristics) constraint. We posit that evolutionary
algorithms [23] are well-suited to tackle these challenges. Consequently, we pro-
pose ExTea, an EXplainable artificial intelligence method targeting time-series
model based on Evolutionary Algorithm (ExTea). In ExTea, each individual rep-
resents a potential explanation and is endowed with a self-optimization function.
Our method diverges from traditional evolutionary algorithms by employing a
pyramidal structure for the individual pool, segmented into layers for newborn,
tested, and elite individuals. This structure facilitates differentiated optimization
across layers and is tailored to multi-objective tasks with clear rejection criteria.
Additionally, we integrate explanatory factors into the fitness function, thereby
enhancing the explanatory power of selected individuals.

The key contributions of this paper are twofold: (i) the introduction of ExTea,
a model-agnostic XAI algorithm for time-series, which advances the search for
high-quality cognitive blocks and further investigates the time-series-specific
characteristics of these blocks; (ii) extensive validation of ExTea’s effectiveness
through experiments conducted on six benchmark datasets using four target
models.

2 Related Work

In the realm of time-series analysis, model-agnostic explanation methods
can be broadly classified into three types based on their foundational units
of explanation: time-point-based, subsequence-based, and instance-based (or
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feature-based) explanations. Each type has distinct approaches and limitations:
SoundLime [19] generates new samples by introducing minor perturbations to
the original audio data. The importance of each time point is assessed based
on the model’s predictions for these altered samples. Tsinsight [20] employs an
auto-encoder trained on the training dataset and explains the input with the
reconstructed data. Salience cam [21] generates a salience map based on the
gradients of the model’s output with respect to the input data and uses it as
an explanation for the decision. While these approach effectively determines the
significance of individual time points, it falls short in exploring time-related fea-
tures in the input, such as frequency and trend. These features often require an
analysis that integrates data across multiple time points.

TS-MULE [15] assesses the importance of each cognitive block by construct-
ing local linear models. The generation of cognitive blocks from the sequences
is done using different methods including Symbolic Aggregate approXimation
(SAX). In SAX-VSM [22], time-series data is segmented using SAX with overlap-
ping windows, and a bag-of-words model is trained based on these segments. The
input is explained with the generated ’word’. Both MCXAI [13] and SBXAI [14]
provide insights into the relationships between cognitive blocks, with MCXAI
focusing on spatial relationships through a tree structure and SBXAI on tempo-
ral relationships via a DAG. However, these methods do not sufficiently explore
the temporal features of the data. Additionally, the explanations they offer may
merge multiple rules, which complicates understanding.

Instance-based methods extract features using statistical techniques. The
explanation of these methods largely depends on the interpretability of the fea-
tures themselves. This necessitates that the model must rely exclusively on inter-
pretable features for decision-making. However, the process of feature extraction
inherently leads to a loss of information, which can significantly limit the model’s
performance.

In summary, while each of these model-agnostic explanation methods offers
valuable insights in the context of time-series analysis, they also have inherent
limitations. Time points-based methods may neglect broader temporal patterns,
subsequence-based methods might not fully capture temporal dynamics, and
instance-based methods could suffer from information loss due to feature extrac-
tion.

3 Method

3.1 Problem Definition and Individual Coding

Given a block-box model B and an input o = [o1, · · · , ol], where l is the length
of the input signal, the objective of local model-agnostic time-series explanation
method is to identify a set of masks Mo = [m1, · · · ,mi, · · · ] with mi ∈ M and
M = 〈0, 1〉l. These masks should highlight the most critical data points that
influence the model prediction. The identified mask set Mo must satisfy the
following conditions:
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Fig. 1. The pipeline of the proposed ExTea algorithm.

– Prediction Consistency:

∀m∈Mo , B(m(o)) = B(o), (1)

where function m(o) involves assigning 0 to all data in the input o, except
at positions marked with 1 by the mask m. The function B(·) yields the
prediction of the black-box model.

– Non-subset relation:

∀mi,mj∈Mo, i �=j , mi � mj ..

We define mi ⊆ mj if and only if mi ∧ mj = mi. This criterion ensures that
no mask in Mo is completely encompassed by another, thus guaranteeing
unique contributions from each individual mask.

– Minimalism:

�m∈M\Mo [B(m(o)) = B(o) and ∃mi∈Mo m ⊆ mi] . (2)

This condition ensures the identified masks are the simplest possible.

As mentioned in Sect. 2, time point-based explanation methods fail to capture
the nuanced character of time-series data. To this end, in ExTea, instead of using
a boolean array, we represent the mask as a list with 2n numerical values, where
n is the number of blocks in the mask where all values are set to 1. The list
should satisfy the following criteria: (i) Each number must be a unique integer,
and its value should be less than the length l of the input sequence. (ii) The
numbers must be sorted in ascending order. Each adjacent pair {2i, 2i + 1} in
the list denotes the i-th block in the mask.
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Since a numerical list and a mask can be converted to each other, for sim-
plicity we denote the list also by m. In ExTea, each individual is represented
with m and, m(o) signifies the cognitive blocks that explain the model decision
for input o. In this way, we force the explanation to be formed of subsequences.
This approach facilitates the optimization and exploration of individuals.

For data with multiple channels, signals from different channels are concate-
nated to form a single-dimensional signal. In this scenario, the length l corre-
sponds to the length of this concatenated signal, simplifying the representation
and analysis of multi-dimensional data.

3.2 Population Generation

The proposed algorithm involves a hierarchical structure with three distinct
layers for managing the population pool: L1, L2, and L3. Each layer serves a
specific purpose in the selection and evolution of individuals, ensuring an efficient
and structured progression of candidates through the system. Layer L3 forms the
gateway for all newly created individuals, acting as the initial staging ground
for new candidates. Individuals from L3 are promoted to L2 upon satisfying the
explicit rejection condition, detailed in Eq. 1 (Prediction Consistency). This layer
acts as a filter, ensuring only candidates that meet basic criteria advance further.
The transition from L2 to the elite layer L1 is competition-based. This layer is
reserved for the most promising solutions, fostering a focused development of
superior candidates.

The generation of new individuals within this system is initiated through a
random sampling process. This process begins with the generation of a random
number, dictating the number of blocks in the individual. Subsequently, a set of
unique random integers, double the number of blocks, is selected from the range
[0, l]. These values are then organized in ascending order to form a numerical
list, representing an individual.

We replenish individuals in layer L3 in accordance with its capacity s3. This
ensures a consistent influx of new candidates into the system, maintaining the
diversity and dynamism of the population pool.

3.3 Fitness Function Design

ExTea, adapted to the hierarchical structure of the individual pool, divides the
selection process of the general evolutionary algorithm into two distinct pro-
cesses: selection and competition. Each process targets different layers within
the system and uses specific criteria for evaluating individuals.

Selection Process. This process is dedicated to individuals in Layer L3. The
fitness function for selection is defined as follows:

fsel = 1{B(m(o))=B(o)} × 2 − 1,

where 1 denotes the indicator function, B the black-box model, o the target
of analysis, and m the mask of the individual. Only those individuals, which
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masked information (cognitive blocks) holds the same prediction as the original
data are selected to Layer L2 for further optimization. Individuals failing this
process pose evaluation challenges due to relative performance ambiguity and
are therefore immediately eliminated, not advancing to subsequent processes.

Competition Process. The competition process in ExTea is designed for individ-
uals in L2 and L1. It aims to select superior individuals for promotion to L1,
demoting those in L1 that fail to meet the competition standards. Evaluation in
this process is based on two main criteria:

Cognitive Block Length: The algorithm hypothesizes an inverse correlation
between an individual’s importance and the length of its cognitive blocks. Shorter
blocks imply higher significance and facilitate easier comprehension.

Purity of Influencing Factors: The ideal individual should be influenced by
as few factors as possible, enhancing the purity of its explanation. We investigate
the impact of various elements like time dependence, location, and frequency
information on the model’s decision-making process. A purer, less influenced
explanation is deemed superior for clarity and understanding.

In ExTea, several explorations based on basic time-series characteristics are
conducted, each evaluated separately:

Sequential Relationship: This exploration assesses the impact of the sequen-
tial relationship between cognitive blocks on the model’s decision-making by
altering block positions and observing changes in model predictions. The scoring
function f1 is defined as the proportion of block pairs influencing the decision:

f1 =
2

n(n − 1)

∑

i,j∈{0,...,n}
i�=j

1{B(cji (m(o))) �=B(o)},

where n is the number of cognitive blocks and cji (o) denotes the swapping oper-
ation of the i-th and j-th blocks.

Low-Frequency Information: The importance of low-frequency information
in cognitive blocks is evaluated by applying a Butterworth high-pass filter to
isolate the low-frequency information in the cognitive blocks. The scoring func-
tion f2 of this exploration is defined as whether the cognitive blocks after the
filtering retain the original prediction:

f2 = 1{B(bh(m(o))) �=B(o)},

where bh(·) represents the Butterworth high-pass filtering operation.
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High-Frequency Information: Similarly, a Butterworth low-pass filter is used
to assess the role of high-frequency information, with the scoring function f3
formulated as:

f3 = 1{B(bl(m(o)))) �=B(o)},

where bl(·) signifies the Butterworth low-pass filtering operation.

Numerical Trends: By mirroring values within cognitive blocks, we evaluate
the influence of numerical trends on model decisions. The scoring function f4 of
this exploration is defined as:

f4 =
1
n

∑

i∈{0,...,n}
1{B(vi(m(o))) �=B(o)},

where function vi(·) indicates mirroring the data in the i-th cognitive block and
n signifies the total number of cognitive blocks.

Blocks Relative Position: We explore the effect of changing block positions
on the model prediction through shifting each block forward and backward sep-
arately. The scoring function f5 of this exploration is defined as:

f5 =
1
2n

∑

j∈{−d,d}
i∈{0,...,n}

1{B(sji (o,m)) �=B(o)},

where n is the number of segments in the individual, d is a variable that signifies
the distance to the neighbor blocks or border of the time-series, and the function
sji (·) means shift the i-th block with j distance.

Block Position: We explore the effect of changing all the positions of cognitive
blocks synchronously both forward and backward until any of the block reaching
the series boundary. If the prediction holds, we set the score f6 to zero, otherwise
one.

Decision Intervals: We examine the extent of numerical adjustment permissi-
ble at each point in the cognitive block without altering the model’s prediction
with the Reinforce method as described in [24]. Due to the high time consump-
tion, this exploration is only executed before the algorithm returns the final
results.

To achieve the desired level of explanation purity, ExTea calculates the mean
of the first six exploration scores. The smaller the mean, the fewer the fac-
tors affecting the explanation and the clearer and more concise the correspond-
ing explanation. Moreover, ExTea gives preference to explanations with smaller
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block sizes aligning with the assumption that simpler explanations are often more
effective. The competition score fcomp, is formulated to reflect these priorities:

fcomp = −
[∑

m

|m| + λ × f1 + f2 + f3 + f4 + f5 + f6
6

]
, (3)

where λ denotes the balance weight, the function sum(m) calculates the sum of
the mask m and the function len(m) returns the length of the mask.

During each generation, individuals in Layers L1 and L2 undergo evaluation
using Eq. 3. The top-scoring individuals, up to the capacity s1 of Layer L1, are
then promoted to this layer. This strategy ensures that only the most refined
and suitable candidates ascend to the elite layer, maintaining a high standard
of quality within the population pool.

It is important to note that after the competition process, a thorough vali-
dation of minimalism 2 in the L1 layer is executed, removing those duplicated
individuals. This procedure guarantees the diversity of individuals in L1, ensur-
ing a distinct representation within that level.

3.4 Growth

The growth stage, targeting individuals at layers L1 and L2, sequentially fol-
lows the Selection process and precedes the Competition process in each genera-
tional cycle. This stage addresses the challenge that randomly generated individ-
uals often harbor superfluous information in their cognitive blocks. The primary
objective of the growth is to refine these individuals, ensuring maximal succinct-
ness. This is achieved by systematically eliminating non-essential information,
thereby narrowing down each cognitive block in the individual. It is imperative
to recognize that pinpointing the minimal requisite set of explanations within
the original dataset constitutes an NP-hard problem. Restricting the optimiza-
tion to the boundaries of cognitive blocks, the search space remains vast. For
an individual with n blocks, each of length h, the total number of potential
reductions can be approximately quantified as 2nh2. Given the time-intensive
nature of exhaustively exploring these possibilities we introduced the growth
function to streamline this process. It traverses the mask sequentially, and when
the boundary of a block is recognized, the growth kernel size u values on the
boundary are set to 0 according to a given growth probability α, thus shrinking
the corresponding block. The growth kernel size u signifies the unit to narrow the
blocks, and growth rate α signifies the possibility. After the growth, the reduced
mask is validated using black-box B. If the prediction remains consistent, the
alteration is retained; otherwise, it is revoked. In each generation, this process
is repeated predefined times.

3.5 Crossover and Mutation

ExTea implements a two-layer crossover mechanism, comprising inner-layer and
inter-layer crossovers. Initially, all individuals in the L1 layer undergo pair-
ing among themselves (inner-layer crossover). Subsequently, L1 individuals are
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paired with those in the L2 layer, facilitating the inter-layer crossover. It is impor-
tant to note that not every pair experiences the crossover process; it occurs with
a probability dictated by the crossover ratio β. This crossover process employs
the half-swap strategy, a prevalent technique in evolutionary algorithms. This
strategy involves the exchange of half of the genetic material between two indi-
viduals, thereby inducing diversity within the population.

Individuals in the L1 layer undergo the mutation process, characterized by a
mutation ratio γ in ExTea. This process is notable for its distinctive approach
of splitting original cognitive blocks. This splitting plays a crucial role because
the growth stage, by its inherent design, only removes irrelevant information at
the boundary of each block. As a result, when superfluous information is embed-
ded centrally within a block, the growth process alone proves inadequate for its
extraction. To overcome this limitation, we integrate the concept of block split-
ting, a new form of mutation. This method facilitates the removal of superfluous
information from any section of the block, increasing the algorithm’s capacity
to optimize individuals effectively.

3.6 Explanation

In this subsection, we present a demonstrative example of the ExTea algorithm.
This demonstration aims to address two primary questions: (i) What insights
can be gleaned from proposed method (ii) How might these insights be applied?

Fig. 2. An example of the ExTea explanation.

Figure 2 illustrates an exemplary ExTea explanation applied to the UWaveG-
estureLibraryX Dataset [12]. The target black-box model is a random forest
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model with default parameter settings from the scikit-learn package [16]. The
explanation includes two images and two textual descriptions. From Fig. 2a,
the following insights are discerned: (i) Cognitive Blocks Influencing Decision-
Making: The areas highlighted in red denote the cognitive blocks that signifi-
cantly influence model decisions. (ii) Impact of Cognitive Blocks’ Relative Posi-
tion: The cyan regions surrounding the cognitive blocks represent their per-
missible movement range. Movement within these zones does not modify the
model’s decisions. Importantly, this analysis evaluates each cognitive block inde-
pendently, resulting in a unique cyan area for each element. (iii) Permissible
Variability within Cognitive Blocks: Within each cognitive block, the blue line
depicts the original data value, and the surrounding orange zone indicates the
allowable fluctuation range.

Figure 2b explores the effect of interchanging these cognitive blocks on the
decision-making process. Each node represents a cognitive block. The number in
the node indicates the position from left to right of the cognitive block in Fig. 2a.
An edge connecting two cognitive blocks implies that swapping their positions
does not alter the model’s predictions. Conversely, a cross symbol above an edge
indicates that reordering these blocks impacts the decision outcome.

In instances where visual representation of exploratory findings is impracti-
cal, we adopt a rule-based methodology to produce descriptive text, as exem-
plified in Fig. 2c. This technique integrates static text (black) with dynamic
text (red) within the text panel, with the dynamic component varying in response
to the exploration result. Additionally, this approach reinforces findings that are
initially presented visually in images, thereby augmenting user understanding.
ExTea encompasses seven distinct exploratory analyses, each aligned with a
specific rule. Furthermore, based on the exploratory outcomes, we offer recom-
mendations for improving model performance in Fig. 2d. These suggestions are
triggered when the exploration results meet specific requirements. Specific rules
and code are available on https://github.com/HuangYiran/extea.

The original signal data depicted in Fig. 2a are captured by the accelerome-
ter during a clockwise circle drawing. According to the cognitive blocks found,
ExTea explains this action as an increase in acceleration in the positive direc-
tion, followed by a decrease in the negative direction, closely mirroring human
cognition. Remarkably, inverting the sequence order of the acceleration informa-
tion alters the categorization from clockwise to counterclockwise circle drawing,
underscoring the significance of sequential order in cognitive processing, as cor-
roborated by the visualized results.

Contrary to our intuitive understanding, however, the model’s decision-
making is influenced by variations in the acceleration trend. This discrepancy
may stem from the homogeneity in acceleration changes in the collected data.
Ideally, frequent acceleration variations during circle drawing should not alter the
model’s inference. To address this, Data Augmentation (DA) can be employed to
create samples with diverse acceleration patterns, thereby enhancing the model’s
resilience to such variations.
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Furthermore, the analysis indicates that minor positional shifts between cog-
nitive blocks can also unexpectedly influence model predictions, contradicting
conventional knowledge. This challenge can also be mitigated through the strate-
gic use of DA, further refining the accuracy and robustness of the model.

4 Experiment

To conduct a thorough assessment of our proposed methodology, we structured
three comprehensive experiments aimed at addressing the pivotal questions: (i)
Fidelity of the Explanation to the Original Model: This aspect evaluates the
extent to which the explanations produced by our approach are representative
of the intrinsic mechanisms of the original model. (ii) Role of Algorithm Com-
ponents: This investigates the specific contributions of different components of
the proposed algorithm to its overall effectiveness. (iii) The influence of the
algorithm parameters.

4.1 Experiment Setup

Table 1. Summary of the datasets used in the experiments.

Dataset Type Train size Test size Sequence length Number classes

EthanolLevel Spectro 504 500 1751 4

ECG5000 ECG 500 4500 140 5

ElectricDevices Device 8926 7711 96 7

InsectWingBeatSound Audio 25000 25000 256 10

EOGVerticalSignal EOG 362 362 1250 12

UWaveGestureLibraryX HAR 896 3582 315 8

Benchmark Dataset. We meticulously chose six datasets from varied domains
to showcase the adaptability and broad applicability of our proposed method:
(i) Ethanol Level Dataset [7]: Originating from the Scotch Whisky Research
Institute, this dataset is instrumental in the non-invasive detection of counter-
feit spirits. (ii) ECG5000 Dataset [9]: As a segment of the BIDMC Conges-
tive Heart Failure Database, this dataset presents Elektrokardiographie (ECG)
recordings from a 48-year-old patient diagnosed with severe congestive heart
failure. (iii) ElectricDevices Dataset: This dataset chronicles the electricity con-
sumption patterns of 251 households. Data was recorded bi-minutely over a one-
month period, with each sequence encapsulating a full day’s electricity usage.
(iv) InsectWingBeatSound Dataset [10]: Comprising sound recordings from 5,000
individual insects, this dataset is unique in its acoustic approach. Each recording
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is tagged with the corresponding insect species, captured via specialized sensors.
(v) EOGVerticalSignal Dataset [11]: Utilizing the BlueGain biomedical ampli-
fier, this dataset collects Electrooculography (EOG) signals, which measure the
potential difference between electrodes situated near the eye. It features signals
from 12 participants, each representing 12 different Japanese katakana charac-
ters through eye movements. (vi) UWaveGestureLibraryX Dataset [12]: Designed
for Human Activity Recognition (HAR) tasks, this dataset aggregates eight dis-
tinct gesture patterns from eight users, compiled over a month. A comprehensive
summary of these datasets is provided in Table 1.

Target Models. To rigorously evaluate our proposed methodology, experi-
ments were conducted using four distinct models, encompassing both transparent
(‘white-box’) and opaque (‘black-box’) methodologies. This diverse model selec-
tion was instrumental in assessing the robustness and adaptability of our app-
roach across various computational frameworks. The models employed include:
(i) interpretable ‘white-box’ models such as Decision Tree (DT) and Support
Vector Machine (SVM); and (ii) ‘black-box’ models, namely Random Forest
(RF) and Neural Network (NN).

Benchmark Algorithms. To evaluate the effectiveness, we conducted a com-
parative analysis with two state-of-the-art (SOTA) XAI methods: MCXAI [13]
and SBXAI [14] and one popular XAI methods: LIME [17].

Experiments Design. Three distinct experiments were designed. The first
aims to establish the fidelity of our proposed method to the target model, mea-
suring the precision and efficiency of various XAI methods in identifying critical
features relied upon by the target model for predictions. This experiment com-
prises three stages: (i) Model Training: For each dataset, the target models are
trained using the training set. (ii) Sampling and Interpretation: 100 samples
are randomly selected from the test set. Each sample is explained using the XAI
method to determine the importance of each data point. (iii) Reconstruction and
Validation: A blank sample is generated and incrementally populated with data
points from the original sample, prioritized by their determined importance. The
objective is to mirror the target model’s prediction with minimal data points.
The efficacy of an XAI method is thus judged by the fewest data points required
for accurate decision replication, indicating a higher interpretative fidelity.

The second experiment, an ablation study, investigates the impact and effec-
tiveness of the growth function in our proposed method. It contrasts the per-
formance of the method with and without the growth function, monitoring the
most proficient individual identified in each generation.

The last experiment was designed to investigate the effect of the algorithm’s
parameters by comparing the performance of the algorithm under different
parameter settings. The experiment also provides guidelines for the algorithm
usage.
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Parameter Setting. In the first two experiments and the base group in the
third experiment, the number of blocks n is set to 5, the growth kernel size u is
set to 2. The growth rate is set to 0.5. In each generation, the growth process
is repeated 5 times. All the ratios α, β, γ are set to 0.1. The balance parameter
λ is set to 0.1. Layer size s1 is set to 3, s2 is set to 10 and s3 is set to 50. The
initial population size was the same as that of L3, i.e., 50. The maximal number
of generation is set to 20.

4.2 Evaluation

The results of the first experiment are summarized in Table 2. The values
therein represent the ratio of the number of data points required for accurate
model prediction to the total sequence length. A lower ratio is indicative of

Table 2. Ratio of information needed to support the model decision, the smaller the
better. The bold numbers denote the smallest ratio in the corresponding groups.

Dataset Target Model LIME MCXAI SBXAI Proposed

EthanoLevel DT 0.26 0.02 0.27 0.02

SVC 0.49 0.02 0.49 0.02

RF 0.21 0.04 0.40 0.03

NN 0.44 0.04 0.22 0.04

ECG5000 DT 0.23 0.06 0.23 0.01

SVC 0.25 0.03 0.21 0.01

RF 0.26 0.05 0.27 0.03

NN 0.41 0.06 0.39 0.05

ElectricDevices DT 0.54 0.11 0.24 0.10

SVC 0.39 0.10 0.39 0.08

RF 0.50 0.27 0.29 0.14

NN 0.51 0.13 0.45 0.13

InsectWingBeatSound DT 0.50 0.06 0.51 0.02

SVC 0.40 0.05 0.44 0.02

RF 0.49 0.23 0.58 0.03

NN 0.38 0.13 0.34 0.02

EOGVerticalSignal DT 0.54 0.05 0.44 0.02

SVC 0.39 0.05 0.65 0.01

RF 0.50 0.06 0.45 0.05

NN 0.51 0.04 0.57 0.06

UWaveGestureLibraryX DT 0.43 0.06 0.46 0.05

SVC 0.51 0.15 0.54 0.18

RF 0.49 0.19 0.54 0.12

NN 0.55 0.13 0.45 0.10
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a more efficient identification of crucial data points. The results demonstrate
that our proposed method significantly surpasses other methods across various
datasets and models. This superiority not only attests to the efficacy of our
method but also suggests that it yields interpretations closely aligned with the
model’s inner workings, effectively acting as a localized surrogate for the original
model’s explanations.

Fig. 3. Comparison of ExTea performance with and without growth processes. The
x-axis represents the number of generation (epoch) and the y-axis indicates the ratio
between the final cognitive block length and the input sequence length.

The result of the first experiment is to be expected, given its more flexi-
ble approach in identifying cognitive blocks. MCXAI is limited by its use of a
splitting method to optimize cognitive blocks, while SBXAI’s optimization is
indirect, relying on simulating the original model. LIME is potential for optimal
results due to its focus on data points. However, its relatively simplistic local
modeling approach may struggle with complex time-series data, which could be
the reason for its under-performance.

Figure 3 delineates the influence of the growth process on experimental results
across varied datasets, using the Random-Forest model as the target black-box
model. The inclusion of the growth process distinctly enhances both the con-
vergence speed and quality. The ExTea algorithm, with the growth process,
converges more rapidly and effectively than its counterpart without it. Notably,
ExTea converges by the 3rd generation in three datasets, the 7th generation in
two, and the 11th in one, indicating dataset-specific generational requirements,
with most converging within ten generations. The results of ExTea in the first
generation are on par with those of SBXAI and LIME.
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Figure 4 illustrates the impact of different parameter settings on algorithm
performance. Numerical values next to the straight lines indicate the range of
parameter values explored during the experiments, while the violin plots are
generated based on the number of times each parameter value achieved the
best performance. Our observations reveal that larger quantities of generations
and L1 sizes tend to yield better outcomes. Specifically, the former offers more
opportunities for optimization, whereas the latter retains a greater number of
high-quality individuals within each generation. Conversely, smaller kernel sizes
are preferable, as they provide higher optimization granularity. However, increas-
ing the number of generations and L1 size, along with decreasing the kernel size,
results in longer algorithm runtime. The specific settings should be adjusted
based on the application context. Notably, a higher optimization per round is
not always beneficial, which may be attributed to its propensity to eliminate
individuals that perform well initially but falter in later stages. This aspect war-
rants further investigation. The choice of the ratio largely depends on the specific
dataset, but best performance generally ranges between 0.2 and 0.3.

Fig. 4. Comparison of ExTea performance with different parameter setting. The line
next to the violin describes the value range of the corresponding parameter. The violin
describes the kernel density estimate of achieving the best result.

The execution time of the ExTea algorithm is influenced by several fac-
tors, including algorithmic parameters, data sample shape, the complexity of
the target black-box model and hardware specifications. For instance, using the
ECG5000 dataset and the Random-Forest model, the average duration for one
generation, in the absence of parallelization, is roughly five seconds. In con-
trast, MCXAI’s execution time is heavily influenced by whether it delves into
the structural relationships among cognitive blocks post-identification. Without
this additional step, MCXAI achieves results in an average time of five seconds.
SBXAI, meanwhile, requires about 0.5 s to evaluate a single candidate subgroup
and approximately 26 s for 50 evaluations to generate explanations, which can
be attributed to the intensive parameter settings of the Bayesian optimization’s
objective function, particularly its default high number of cross-validations.
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5 Conclusion

This paper introduces a novel, model-agnostic algorithm, ExTea, designed for
elucidating time-series black-box models. ExTea innovatively employs an evolu-
tionary algorithm, conceptualizing explanations as evolving individuals within
a growth-oriented optimization process. Central to this method is a bespoke
fitness function, tailored to the nuances of time-series data, which directs the
algorithm’s search space navigation. A distinctive feature of ExTea is its hier-
archical pool of individuals, a structure that stratifies individuals across differ-
ent layers, fostering more efficient model exploration. The algorithm addresses
several challenges in the realm of time-series model explanation. These include
decomposing complex, hybrid interpretations, ensuring adaptability to varied
time-series characteristics, navigating temporal domain features, and managing
intricate parameter configurations.

By tackling these challenges, ExTea advances the field of time-series model
explanation. The empirical experiments on six datasets from different domains
demonstrate that, ExTea offers a more effective and efficient framework for
understanding the predictions of time-series black-box models, which is par-
ticularly valuable in domains where explainability and transparency are crucial.
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