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Abstract. This study introduces a novel machine learning-based
methodology for automated detection and tracking of sperm cells within
microscopic video recordings, aiming to elucidate the dynamics and
motion patterns of individual sperm cells as well as sperm cell bun-
dles. At first, the method identifies sperm cells across successive frames
within a video sequence, facilitating the reconstruction of each cell’s
trajectory over time. Subsequently, we introduce a classification algo-
rithm that distinguishes between solitary sperm cells, clusters of adja-
cent cells, and cohesive sperm cell bundles, addressing a gap in existing
methodologies. Finally, we employ three conventional metrics for veloc-
ity assessment: Straight Line Velocity (VSL) and Average Path Velocity
(VAP) and Curvilinear velocity (VCL), to quantify the movement speed
of both individual sperm cells and bundles. The approach represents
a significant advancement in the automated analysis of sperm motility
and aggregation phenomena, providing a robust tool for researchers to
study sperm behavior with enhanced accuracy and efficiency. The inte-
gration of machine learning techniques in sperm cell detection and track-
ing offers promising insights into reproductive biology and fertility stud-
ies. https://gitlab.fit.cvut.cz/horenjak/sperm cell tracking app https://
apps.datalab.fit.cvut.cz/sperm tracking/

Keywords: Sperm Cell Tracking · Motion Dynamics · Bundle
Formation · Bundle Detection · Kalman Filter

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-70381-2 2.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
A. Bifet et al. (Eds.): ECML PKDD 2024, LNAI 14950, pp. 19–32, 2024.
https://doi.org/10.1007/978-3-031-70381-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-70381-2_2&domain=pdf
http://orcid.org/0000-0001-7522-033X
http://orcid.org/0000-0003-0617-088X
http://orcid.org/0000-0002-2426-433X
http://orcid.org/0000-0002-7194-1874
http://orcid.org/0000-0002-3765-867X
https://gitlab.fit.cvut.cz/horenjak/sperm_cell_tracking_app
https://apps.datalab.fit.cvut.cz/sperm_tracking/
https://apps.datalab.fit.cvut.cz/sperm_tracking/
https://doi.org/10.1007/978-3-031-70381-2_2
https://doi.org/10.1007/978-3-031-70381-2_2


20 J. Horenin et al.

1 Introduction

Advanced machine learning techniques in the era of data abundance offer numer-
ous advantages across various fields. However, for almost any sort of efficient
decision-making process or predictive analysis, the quality of data remains cru-
cial. Due to its peculiar characteristics and complexity, biological data, includ-
ing microscopic images and recorded videos, stand apart from data encountered
in daily life like images of common objects, text, or music. Particularly, video
recordings of motile sperm cells is a good example to expose biological data
complexity. Due to the nature of video recording with a microscope, the data
often appear to be noisy, containing artifacts and/or blurred objects. Certain
attributes of the video, that are of interest to biologists are not labeled, there-
fore for many tasks, a straightforward approach such as supervised learning can’t
be applied. On the other hand, labeling of these data is extremely demanding,
as it requires domain expert knowledge and some of the events that need to
be labeled are extremely rare. Even though, numerous computer-assisted sperm
analysis (CASA) systems have been developed [1,6,18], there are still under-
explored fields where machine learning (ML) can bring unquestionable benefits.

One such field is an automated exploration and detection of sperm bundles
[24,28,30]. Sperm bundle formation can be observed in various animals ranging
from bovines [25] to ants [14], echidnas and others [5,24,25], and often associated
with higher sperm motility [8,25,30] and higher reproduction rate [24]. There-
fore, detecting and quantifying sperm bundles and their formation gives a direct
insight into the quality of explored material, which is extremely important in
various fields such as assisted reproductive technologies [24] including artificial
insemination and in-vitro fertilization.

Additionally, it was reported that sperm cells were used as blueprints [15]
or templates [16] for microrobots that can be used for in-vivo targeted therapy.
In this case, understanding the motion of living cells can serve as an inspiration
for the microrobot design [17]. Moreover, understanding sperm cell motion and
bundle formation refers to the collective behavior of these microorganisms. By
observing and analyzing the collective behaviors of cells, it is possible to glean
significant statistical data that can inform and refine our understanding of the
biosphere at the microscopic level, as from the collective behavior emerges the
concept of swarm intelligence. Unraveling these intricacies could shed light on the
decentralized, self-organized systems that can lead to the emergence of complex
behavior from simple individual entities.

Therefore, in the present article, we focused on detecting, classifying, and
evaluating motile sperm cells and sperm bundles. As a result, we present a novel
CASA tool that is designed to detect, track, and classify parameters from the
above-mentioned microorganisms. The system is currently being developed and
tested using bovine sperm samples but is designed in a way that allows for simple
expenditure for other types of sperm samples.
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2 Background

2.1 Computer-Assisted Sperm Analysis Systems

The analysis of sperm motility is pivotal in assessing male fertility and under-
standing reproductive behaviors [4,9]. It aids in diagnosing male infertility, guid-
ing clinical decisions in assisted reproductive technologies [21], and evaluating
the effects of environmental and lifestyle factors on sperm health. The motility
of sperm cells is indicative of their viability and fertilizing potential, making it
a fundamental parameter in both clinical and research settings.

CASA systems have revolutionized the study and clinical assessment of sperm
motility. These systems utilize advanced imaging and computational algorithms
to automate the process of tracking and analyzing sperm movement. CASA tech-
nologies provide objective, repeatable, and high-throughput analysis, overcoming
the limitations of manual microscopy methods. Prominent systems include the
Hamilton-Thorne analyzer [22], Sperm Class Analyzer (SCA) [7], and Microp-
tic’s SCA system [26], among others. These systems vary in their imaging tech-
niques, analysis algorithms, and the range of motility parameters they measure.

CASA systems employ a combination of video microscopy and digital image
processing to capture and analyze sperm movement. The core steps involve:

– Capturing capture sequences of video frames by a high-resolution camera,
documenting sperm movement over time.

– Identifying sperm cells within the video frames, often using thresholding and
morphology-based techniques.

– Tracking sperm cells across frames, employing methods such as particle track-
ing or optical flow to calculate their trajectories.

– Analyzing trajectories to compute various motility parameters, including but
not limited to average path velocity (VAP), straight-line velocity (VSL), and
curvilinear velocity (VCL), as shown in Fig. 1.

Fig. 1. Sperm Velocity Parameters (VCL, VAP, VSL)

CASA systems have provided invaluable tools for the detailed analysis of
sperm motility, contributing to advances in reproductive medicine and biologi-
cal research. Despite their benefits, ongoing development is necessary to address
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existing limitations, enhance detection algorithms, and ensure consistency across
different platforms. Therefore machine learning has a vast potential to bring an
additional value of intelligence into the CASA systems by improving analysis
accuracy and developing models that more closely mimic the natural environ-
ment of sperm migration.

3 Methodology

The methodology employed in this study is structured into several sequential
steps, each designed to address distinct aspects of sperm cell analysis through
video recordings. This systematic approach enables analysis from detection to
classification and quantitative assessment. Below, we outline the key components
of the methodology:

– Sperm Cell Detection: Initial analysis focuses on isolating live sperm cells from
the background. This process involves employing contour detection techniques
to accurately identify and delineate individual sperm cells, subsequently sur-
rounding each identified cell with a bounding box for further analysis.

– Path Reconstruction: The trajectory of each sperm cell throughout the video
sequence is reconstructed by examining the overlap of bounding boxes across
consecutive frames. In instances where direct measurements are unavailable
or measurements are noisy, the Kalman filter is applied to estimate the sperm
cell’s position, ensuring continuous tracking.

– Bounding Box Classification: Upon successful detection and tracking, each
bounding box is subjected to classification using a residual neural network.
This classification categorizes the contents of each box into one of four distinct
groups: a single sperm cell, a bundle of cells, a group of nearby cells, or other
entities.

– Velocity Calculation: With the paths of individual sperm cells established,
we proceed to calculate key motility parameters such as the Straight-Line
Velocity (VSL), the Average Path Velocity (VAP) and Curvilinear velocity
(VCL). These calculations are performed using the reconstructed paths and
are essential for assessing the straightness and linearity of the cells’ path.

– Final Analysis: The culmination of this research involves an evaluation of the
collected data, applying a set of predefined rules to assess and interpret the
behavior and characteristics of the sperm cells.

3.1 Sperm Cell Detection

The initial step of data preprocessing involves the elimination of all static back-
ground components through the application of background subtraction tech-
niques, with a focus on mean filtering that entails averaging all frames within
the video and subsequently subtracting this average value from each frame. Given
the brief duration of the videos and the stability of the environment, this method
proved to be effective. This technique is instrumental in removing static entities,
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predominantly non-viable sperm cells, and noise, thereby enhancing the visi-
bility and distinction of dynamic objects such as viable sperm cells and other
particulates in the fluid. For foundational insights into the approach, references
include [12] and [23]. An illustration of a frame prior to background removal is
presented in Fig. 2a.

In Fig. 2b, the subtracted background is illustrated. Following background
removal, the resulting image foreground is depicted in Fig. 2c. After the back-
ground subtraction, the image is converted to a binary format using a dynami-
cally determined threshold selected via Otsu’s method [20]. To further refine the
image and reduce noise, a series of erosion and dilation operations are applied, as
detailed in [10], with the results shown in Fig. 2d. Using the binary image, bound-
ing boxes are delineated around each distinct cluster of white pixels, ensuring
each box meets predefined minimum size criteria to exclude background inter-
ference. Concurrently, the “center of mass” for each detected object is calculated
based on the binary image (Fig. 2d), and this data is used to refine the Kalman
filter’s movement predictions as discussed in Sect. 3.2. The bounding boxes are
then mapped back onto the original frame for visual evaluation, with the results
presented in Fig. 2e.

Fig. 2. Demonstration of a step-by-step process of sperm cell detection. (a) – A single
input frame in a recording and the starting point of detection. (b) – An image of
calculated background from the whole video that will be used to isolate the foreground.
(c) -Static component removed by mean filtering. (d) – Thresholded, image derived
from the frame after mean filtering. (e) – Final bounding boxes projected back to the
original image.
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3.2 Path Reconstruction

In the process of analyzing the trajectories of detected sperm cells within a video
sequence, an important step involves the temporal association of detected entities
across consecutive frames. This association task commences with the evaluation
of spatial overlaps among the bounding boxes enclosing detected objects. Specif-
ically, the overlap between bounding boxes is quantified, and a correspondence
is established when the overlap exceeds an 80% threshold. This criterion is pred-
icated on the assumption that a substantial overlap between bounding boxes in
successive frames likely indicates the persistence of the same sperm cell.

After the initial matching phase, attention is directed towards sperm cells
that could not be associated with counterparts in the preceding frame through
bounding box overlap. Such instances of unsuccessful matching may arise from
several scenarios, including the non-detection of the sperm cell in a previous
frame or the occurrence of collisions. Collisions, especially with stationary sperm
cells or extraneous objects, can result in an expansion of the bounding box. This
expansion, in turn, diminishes the likelihood of surpassing the overlap threshold,
thereby complicating the task of accurate sperm cell tracking.

This methodological approach underscores the complexities inherent in track-
ing the dynamic and often unpredictable movement of sperm cells through video
microscopy. The challenges posed by detection inconsistencies and the poten-
tial for collisions necessitate a nuanced strategy for maintaining continuity in
sperm cell trajectories across video frames.

The scenario where a sperm cell is not being identified in a sequential frame
can be attributed to one of three principal scenarios. Initially, the optimal sce-
nario is the introduction of a new sperm cell into the field of view, marking
its initial detection. Alternatively, the sperm cell’s visibility might have been
insufficient in the antecedent frame, rendering it undetectable due to the pro-
cesses of background subtraction or noise reduction. The final scenario entails
the convergence of trajectories from multiple sperm cells, culminating in their
placement within a singular bounding box. The current implementation of the
analysis algorithm specifies that each detected bounding box from a preceding
frame correlates uniquely with a single bounding box in the subsequent frame.
Such convergence events are notably frequent in video samples characterized by
a high density of sperm cells.

3.3 The Kalman Filter Implementation

To mitigate the challenges posed by these scenarios, particularly in maintain-
ing the continuity of sperm cell tracking, the application of a Kalman filter
is proposed. This filter functions by extrapolating the future position of each
sperm cell based on its previously observed location. In instances where direct
matching through bounding box overlap proves infeasible, the Kalman filter’s
predictive capability allows for alternative matching based on the spatial prox-
imity between the observed position of a sperm cell and the forecasted position
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from the preceding frame. This approach enhances the robustness of the track-
ing process, ensuring more accurate and continuous monitoring of sperm cell
movement across frames, even in densely populated video sequences.

The Kalman filter is a recursive algorithm utilized for the estimation and
prediction of the state of a linear dynamic system from a series of noisy mea-
surements. It enhances path prediction accuracy by filtering out the inherent
noise found in all measurements, which are invariably imperfect. The applica-
tion of the Kalman filter spans numerous fields due to its ability to optimally
estimate system states under the assumption of process and measurement noises
being Gaussian and white.

The dynamic system under consideration is represented by the state-space
model. State Equation:

xk = Fk−1xk−1 + Bk−1uk−1 + wk−1 (1)

Measurement Equation:
zk = Hkxk + vk (2)

where: xk is the state vector at time step k, Fk−1 is the state transition model,
Bk−1 is the control-input model, uk−1 is the control vector, wk−1 represents the
process noise, zk is the measurement vector, Hk is the measurement model, vk

denotes the measurement noise.
Both process noise wk and measurement noise vk are assumed to be Gaussian

with mean zero and covariance matrices Qk and Rk, respectively. The Kalman
filter operates in two main phases: the prediction phase and the update phase.

In the prediction phase, the filter predicts the current state and error covari-
ance based on the previous estimates.
Predicted state estimate:

x̂k|k−1 = Fk−1x̂k−1|k−1 + Bk−1uk−1 (3)

Predicted error covariance:

Pk|k−1 = Fk−1Pk−1|k−1FT
k−1 + Qk−1 (4)

In the update phase, upon receiving a new measurement, the filter updates
the state and error covariance estimates.
Kalman gain:

Kk = Pk|k−1HT
k (HkPk|k−1HT

k + Rk)−1 (5)

Updated state estimate:

x̂k|k = x̂k|k−1 + Kk(zk −Hkx̂k|k−1) (6)

Updated error covariance:

Pk|k = (I −KkHk)Pk|k−1 (7)

where I denotes the identity matrix of appropriate dimensions.
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In this work, we apply the Kalman filter using a constant velocity model for
motion in 2D space, where the position is predicted from the current position
and velocity. This model, which simplifies the system by treating acceleration
as noise, guides our estimations of the object’s trajectory. The Kalman filter,
provided with this model, refines these predictions by incorporating measure-
ments, thus enhancing the accuracy of future estimations.

3.4 Bounding Box Classification

To address bounding box classification, we employ machine learning techniques
to categorize the entities encapsulated within the bounding boxes detected in our
video recordings. Classification framework distinctly identifies four categories: a
single sperm cell Fig. 3a, a bundle of sperm cells Fig. 3b, a group of nearby cells
Fig. 3c, and others Fig. 3d. Visual examples of these categories are elucidated in
Fig. 3.

Fig. 3. Examples of each classified class

The primary objective of this identification process is to differentiate between
single sperm cells and sperm cell bundles. On the one hand to be able to com-
pare the motility capabilities of those two and on the other hand to help with
detecting bundle formation. A focal point of our analysis is to elucidate the
dynamical transitions that occur from single sperm cells to a group of cells, and
ultimately to a sperm cell bundle. The secondary reason for bounding box iden-
tification is to filter out irrelevant background constituents present in the fluid
medium that have not been filtered out during the sperm cell detection pro-
cess. The outcomes of our classification process are subsequently presented to
researchers, enabling them to efficiently discern the recordings of interest from
those that may be deemed non-essential to their investigative pursuits. To rec-
ognize individual classes, we used the ResNet18 architecture [11] pretrained on
the ImageNet dataset.

The classification process relies on the content within the bounding boxes.
These bounding boxes are extracted from the frames and fed into a ResNet
model. Given that ResNet requires input images to have uniform dimensions,
the bounding boxes are resized to 224× 224 pixels.
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To train the algorithm, a custom dataset was created from manually anno-
tated bounding boxes. In total, 10,568 bounding boxes were collected for training
and validation purposes. Figure 3 illustrates examples from all four categories.

The dataset exhibits a high degree of class imbalance. The most frequent
category is single sperm cells, whereas sperm cell bundles are comparatively
rare. To develop a robust model, random undersampling was employed to reduce
the prevalence of the majority class. Concurrently, the minority classes were
oversampled by duplicating images. To counterbalance the oversampling and
mitigate overfitting, all images were randomly cropped to introduce variability
among the duplicated samples.

3.5 Final Analysis

In the final analysis, we combined the results from previous steps to evaluate the
defined rules and calculate several metrics: VSL, VAP, VCL, path straightness
(STR), and path linearity (LIN), highlighting significant events in the recordings.

The defined rules specify the required percentage of classifications per frame
for an object to be classified into a particular category. For instance, to classify an
object as a bundle, 40% of the classifications must indicate it as such. Additional
rules detect patterns suggesting unusual behavior, such as the disappearance of
sperm cells within a frame or classification patterns indicating bundle formation.

The final part of the analysis involves calculating velocities, as depicted in
Fig. 1. Using this approach, we calculate VSL, VAP, and VCL. From these veloc-
ities, we derive STR, indicating the linearity of the average path, and LIN, indi-
cating the linearity of the curvilinear path [13,19].

4 Results

The detection accuracy has been tested over a random sample of videos, the
path recovery has been tested using four selected path scenarios, and the neural
network classification accuracy has been evaluated using a random test sample
of 59 videos.

First, we present the sperm cell detection accuracy. For detection accuracy,
a random subset of 13 videos was selected, and all moving sperm cells were
annotated for each frame. The expected number of detections for each sperm
cell was then compared to the number of times this sperm cell was detected
using our approach described in Sect. 3.1. The detection accuracy was 95.99%,
and all the missed detections were due to the noise filtration by size rule.

The efficacy of the path reconstruction methodology was evaluated through
the annotation of three distinct sperm cell trajectories, each exemplifying one
of the three predominant scenarios encountered in our analysis as illustrated in
Fig. 4. Path 1 delineates an ideal trajectory scenario, wherein the sperm cell is
consistently detected across all video frames. Path 2 outlines a scenario in which a
sperm cell’s path intersects with another, rendering its measurements temporar-
ily unattainable. During such instances, the sperm cell’s location is approximated
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using the Kalman filter, effectively demonstrating the filter’s capability to pre-
dict the trajectory amidst measurement loss. Path 3 describes the trajectory
of a sperm cell that amalgamates with another to form a bundle, leading to
a cessation of measurement (red ’x’) acquisition from the juncture of bundle
formation. This comprehensive evaluation underscores the robustness and ver-
satility of the proposed path reconstruction approach in accommodating various
complex motion patterns exhibited by sperm cells.

To assess the accuracy of the reconstructed sperm cell paths relative to their
actual trajectories, the Optimal Sub-Pattern Assignment (OSPA) metric was
employed. This metric quantitatively evaluates the discrepancy between the true
path of a sperm cell and its counterpart estimated through the application of the
Kalman filter and recorded measurements [3]. For a comprehensive analysis, our
findings were compared with accuracies derived from a prior study [27], which
examined and compared the effectiveness of four distinct algorithms in track-
ing sperm cell movements. This comparative evaluation, illustrated in Fig. 4,
facilitates a nuanced understanding of our methodology’s performance in the
context of existing tracking techniques.

We refined and calibrated this program using 366 videos of sperm cell sam-
ples, recorded under various scenarios and in differing qualities. Across all videos,
we identified 983 sperm cells, 455 bundles, and 312 groups of sperm cells. Addi-
tionally, 257 objects were classified as ’other’ and excluded from the analysis.
In 153 videos, the tracking system failed to follow some objects. Overall, 117
videos were flagged for potential bundle formation.

Fig. 4. Reconstruction of three different paths and their distance in µm from reality
using OSPA metric. Path 1 an ideal path where measurements are not lost at all of the
sperm cell 0 is shown in black (left). Path 2 a path of a sperm cell 5 (shown in yellow)
that collided with other sperm cells leading to loss of measurements for several frames
(middle). Path 3 a path of two sperm cells that formed a bundle (right). The red ‘x’
signals the point of bundle formation. (Color figure online)
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Fig. 5. Object classification confusion matrix

5 Conclusion

In this paper, we introduce a novel, multistep methodology employing machine
learning techniques to track sperm cells within video recordings. Our approach
demonstrates the capability to accurately identify and track individual sperm
cells, as well as to distinguish these single entities from conglomerations of sperm
cells, referred to here as “bundles.” Furthermore, this paper highlights our
method’s proficiency in recognizing significant events within the recordings,
including the instances of sperm cells coalescing into bundles. Additionally, our
system offers the functionality to exclude recordings deemed devoid of note-
worthy activity, thereby optimizing the efficiency of research efforts. Through
extensive experimentation and analysis, our results affirm the high precision
and reliability of our machine learning-based tracking solution in the context of
sperm cell observation.

Presented within the results section of this manuscript, our findings eluci-
date that the proposed methodology for individual sperm cell detection achieves
a detection accuracy of 95.99% for live sperm cells. This technique effectively
diminishes the interference caused by stationary background elements and non-
viable cells, thereby enhancing both accuracy and performance metrics. Utilizing
a combination of bounding box intersections and the application of the Kalman
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filter, our approach mitigates inaccuracies inherent in bounding box detection
methodologies. The empirical evidence demonstrates that, under optimal condi-
tions where measurement data remains unlost, the deviation between the path
identified by our system and a path annotated manually is quantified at a dis-
tance of 5378 units. This identified path forms the basis for subsequent esti-
mations of key motility parameters, namely the Straight Line Velocity (VSL),
Average Path Velocity (VAP) and curvilinear velocity (VCL), offering insights
into the dynamic behavior of sperm cells.

Concurrently with the process of path identification, our study also focuses
on determining the nature of the object enclosed within each bounding box.
For this purpose, we employ the ResNet architecture, a convolutional neural
network renowned for its efficacy in image recognition tasks. The implementa-
tion of ResNet in our methodology is underpinned by a foundation of manually
annotated data, ensuring the training phase is robust and tailored to the specific
nuances of our domain. The F1 scores for each category are as follows:

– Sperm: 0.940
– Other: 0.876
– Bundle: 0.828
– More: 0.729

The confusion matrix is depicted in Fig. 5. Even though from the confusion
matrix it can be seen that the model tends to confuse “bundle” with “sperm” in
single shots, sequential tracking works reasonably well to detect potential bundle
formation.

In the concluding phase of our analysis, the classification of objects on a
per-frame basis is aggregated to facilitate the classification of entire paths. This
aggregation process also involves the identification of pivotal points of transition
within the paths. The synthesized classifications and identified points of tran-
sition are meticulously highlighted for the researchers’ review. This strategic
delineation enables researchers to prioritize their focus on segments of interest
within the recordings and to discern which recordings may be extraneous to their
investigative pursuits, thereby streamlining the research process.

Regarding the enhancement of path identification capabilities, we assume
that transitioning to a non-linear modeling approach would more accurately
encapsulate the dynamics of sperm cell motion. In parallel, the adoption of the
Unscented Kalman Filter, or the exploration of more sophisticated methodolo-
gies such as the Joint Probabilistic Data Association Filter, which facilitates the
simultaneous tracking of multiple targets, could offer substantial improvements.
These proposed enhancements are predicated on existing literature and method-
ologies that have demonstrated efficacy in similar contexts [2,6,27,29].
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