
A Crystal Knowledge-Enhanced
Pre-training Framework for Crystal

Property Estimation

Haomin Yu1, Yanru Song2, Jilin Hu2, Chenjuan Guo2, Bin Yang2(B),
and Christian S. Jensen1

1 Aalborg University, Aalborg, Denmark
{haominyu,csj}@cs.aau.dk

2 East China Normal University, Shanghai, China
songyanru@stu.ecnu.edu.cn, {jlhu,cjguo,byang}@dase.ecnu.edu.cn

Abstract. The design of new crystalline materials, or simply crystals,
with desired properties relies on the ability to estimate the properties
of crystals based on their structure. To advance the ability of machine
learning (ML) to enable property estimation, we address two key limita-
tions. First, creating labeled data for training entails time-consuming
laboratory experiments and physical simulations, yielding a shortage
of such data. To reduce the need for labeled training data, we pro-
pose a pre-training framework that adopts a mutually exclusive mask
strategy, enabling models to discern underlying patterns. Second, crys-
tal structures obey physical principles. To exploit the principle of peri-
odic invariance, we propose multi-graph attention (MGA) and crystal
knowledge-enhanced (CKE) modules. The MGA module considers dif-
ferent types of multi-graph edges to capture complex structural patterns.
The CKE module incorporates periodic attribute learning and atom-
type contrastive learning by explicitly introducing crystal knowledge to
enhance crystal representation learning. We integrate these modules in a
CRystal knOwledge-enhanced Pre-training (CROP) framework. Exper-
iments on eight different datasets show that CROP is capable of promis-
ing estimation performance and can outperform strong baselines.
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1 Introduction

A crystalline material, or simply crystal, is a solid material with a highly reg-
ular internal structure, where atoms, molecules, and ions are arranged in a
specific pattern in a unit cell. This pattern is then repeated to form a crys-
tal lattice [30], as exemplified in Fig. 1. Traditional approaches to developing
new crystals are driven by manual experiments that are often costly and time-
consuming [29]. Next, calculations based on density functional theory (DFT)
have emerged as valuable means of determining the properties of crystals [7].
However, despite the success of high-throughput DFT calculations, their high
computational costs limit their utility for estimating crystal properties. Most
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recently, machine learning (ML) methods [24] have emerged that use predomi-
nantly neural networks (GNNs) to model crystals as graphs and then mine graph-
structured dependencies, thereby achieving competitive crystal property estima-
tion accuracy. However, crystal property estimation remains challenging due to
two key limitations. (1) Limited labeled crystal data. Although ML methods are
promising for crystal property estimation, they require large amounts of labeled
crystal data for model training. However, property labeling of crystals requires
laboratory experiments or physical simulations that are labor-intensive and time-
consuming. Thus, only limited labeled data is available. (2) Underutilized crystal
principles. Crystal structures obey several principles [30,33], e.g., E(3) invariance
and periodic invariance (see Sect. 3), which are foundational concepts in mate-
rials science. When building ML methods for crystal property estimation, it is
important to exploit such principles. Yet, most existing methods focus on E(3)
invariance and ignore periodic invariance, limiting their ability to estimate crys-
tal properties.

Fig. 1. Illustration of crystal
structure: (a) periodic lattice,
(b) a unit cell, and (c) an infi-
nite periodic structure.

To address these challenges, we propose
a CRystal knOwledge-enhanced Pre-training
(CROP) framework for crystal property estima-
tion. First, to reduce the need for labeled crystal
data, we leverage large amounts of unlabeled crys-
tal data using self-supervised learning (SSL) that
employs mutually exclusive masking that provides
two mutually exclusive views for achieving a pre-
training framework. The pre-training framework
uses not only an autoencoder that emphasizes
reconstruction and feature preservation but also
the Barlow Twins approach [36], which encour-
ages the learning of discriminative features. This
combination can provide a more comprehensive understanding of underlying
crystal structures. Second, to better exploit crystal principles, we design a multi-
graph attention (MGA) module and a crystal knowledge enhanced (CKE) mod-
ule. The former builds a novel multi-graph attention network to capture complex
crystal structure patterns by exploiting periodic invariance. According to the
periodic invariance of crystals, we customize the attention mechanism for pro-
cessing different types of multi-graph edges, i.e., inter-unit edges that connect
atoms within the same unit and intra-unit edges that connect atoms across units.
For example, the edges in Fig. 1 that connect atoms within the target unit are
inter-unit edges, and the remaining ones are intra-unit edges. Next, the CKE
module incorporates intrinsic attributes related to crystal periodic invariance,
e.g., discrete direction, unit cell position, and edge distance, to enable a better
representation to be learned during the self-supervised pre-training.

The paper makes four main contributions: (1) It proposes a novel masking
strategy that exploits two mutually exclusive views for effective self-supervised
pre-training, reducing the need for labeled data. (2) It proposes a multi-graph
attention (MGA) module that exploits periodic invariances in crystal structures
to process different types of multi-graph edges, enhancing the expressiveness of
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learned representations and capturing complex structural patterns. (3) It pro-
poses a crystal knowledge-enhanced (CKE) module that exploits periodic invari-
ants in crystal structures to support periodic attribute learning and atom-type
contrastive learning. (4) It reports experiments on eight crystal datasets, pro-
viding insights into CROP’s design properties and evidence of its effectiveness.

2 Related Work

Material Property Estimation. There has been a substantial increase in
studies that leverage ML techniques, specifically graph neural networks (GNN),
for estimating molecular properties. GNN-based proposals use either 2D [6,27] or
3D [2,3,25,31] molecular graphs. Since crystal properties depend heavily on their
3D structures, we focus on 3D molecular graphs. Most such proposals do not
explicitly consider the periodical repeating patterns in crystal structures. As one
exception, Matformer [33] introduces a graph construction method that intro-
duces edges connecting the same atoms in neighboring units according to periodic
invariance. However, Matformer does not consider the complex impacts of dif-
ferent atoms in neighboring units. We go further and design a novel multi-graph
attention network, where edges capture relationships among different atoms and
further distinguish different types of multi-graph edges, i.e., inter-unit edges and
intra-unit edges. Second, we enable self-supervised model training using mutu-
ally exclusive mask views, reducing the need for labeled data.

Self-supervised Learning. Self-supervised learning (SSL) is becoming popu-
lar [1,16,17,21]. SSL techniques can be divided into contrastive and generative
SSL. Contrastive SSL aims to learn meaningful representations by maximizing
the similarity between pairs of augmented samples [34,35]. As a specific type
of contrastive SSL, the Barlow Twins [36] approach aims to learn valuable data
representations without requiring negative samples. Magar et al. [22] propose
Crystal Twins, using Barlow Twins to make graph latent embeddings of aug-
mented instances from the same crystal system similar. However, while this app-
roach encourages learning discriminative features, it may inadvertently neglect
explicit structure patterns. Generative SSL focuses on reconstructing original
input information [21]. Motivated by the success of masking techniques [8], recent
studies, such as Hou et al. [14], have integrated masking into SSL frameworks,
focusing on feature reconstruction using an autoencoder. Unlike the previous
studies, we propose a masking strategy that combines both contrastive (Barlow
Twins) and generative (autoencoder) SSL, leveraging a novel masking approach.

3 Preliminaries

Crystal Representation. A crystal structure can be modeled using three
vectors C = (A,X,L) [30]. It is represented by repeated translations of a unit cell
(A,X) according to the a lattice matrix L, as illustrated in Fig. 1. The periodic
lattice matrix L = [l1, l2, l3] ∈ R

3×3 is used to capture how a unit cell repeats
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itself in three dimensions. Specifically, we represent a unit cell that includes N
atoms as A = [a1,a2, · · · ,aN ] ∈ R

N×Q, where ai is a one-hot encoded feature
vector of its atom type (i.e., a chemical element), where Q is the count of all
chemical elements. Then, X = [x1,x2, · · · ,xN ] ∈ R

N×3 denotes the coordinates
of each atom, where atom position xi ∈ R

3 is represented by 3D Cartesian
coordinates. For example, the unit cell of the crystal Hf2Si2Te2 comprises 6
atoms: two of each chemical element—Hf, Si, and Te. For this crystal, the one-
hot encoded feature vector is A = [a1,a2, · · · ,a6] ∈ R

6×Q. The atom coordinates
for Hf2Si2Te2 are represented by the matrix X. Thus, X = [x1,x2, · · · ,x6] falls
within R

6×3. The lattice matrix for Hf2Si2Te2 is L = [l1, l2, l3] ∈ R
3×3 and is

given by:

⎡
⎣

3.66730534 0.0 0.0
0.0 3.66730534 0.0
0.0 0.0 27.311209

⎤
⎦.

Given a crystal C, its infinite periodic structure can be represented by uti-
lizing a periodic lattice to repeat the unit cell in the 3D space as follows.

A′ = {a′
i|a′

i = ai, 1 ≤ i ≤ N} (1)

X′ = {x′
i|x′

i = xi + k1l1 + k2l2 + k3l3, 1 ≤ i ≤ N, k1, k2, k3 ∈ Z}, (2)

where integers k1, k2, and k3 serve as translation vectors, enabling the unit cell
to be replicated in three dimensions by means of the periodic lattice L.

Crystal Principles. Crystal structures satisfy fundamental chemical princi-
ples [30,31,33], including translation, rotation, and reflection invariance, as well
as periodic invariance. Translation Invariance states that a crystal structure
remains unchanged when translating the atom coordinate matrix by an arbitrary
vector. Rotation Invariance states that a crystal structure remains unchanged
when rotating the coordinate matrix and lattice matrix simultaneously. Reflec-
tion Invariance states that crystals remain unchanged when mirrored across
a plane. The combination of translation, rotation, and reflection invariance is
termed E(3) invariance. Periodic Invariance refers to the repeating nature of a
crystal’s structure. For example, the crystal structure in Fig. 1 (c) is the repeat-
ing structure of the crystal unit in Fig. 1 (b) according to regular intervals.

Fig. 2. The crystal knowledge-enhanced pre-training framework.
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4 Methodology

4.1 Framework Overview

We propose a crystal knowledge-enhanced pre-training framework that uses
mutually exclusive masked views for learning crystal representations—see Fig. 2.

The encoding phase involves two components: a lattice encoder and a struc-
ture encoder. The lattice encoder LattENC encodes the lattice matrix L into a
lattice representation hL ∈ R

dl that emphasizes the periodic information. The
lattice matrix L does not follow E(3) invariance, so we pass it to the Niggli
Algorithm [12], which can establish a set of conditions that determine a unique
choice of basis vectors for a lattice. The structure encoder encodes the crystal
C into a structure representation hS = [h1

S ,h2
S , ...,hN

S ] ∈ N × R
ds . To capture

complex and subtle structural patterns, the structure encoder encompasses a
multi-graph attention (MGA) module. The structure representation hS is then
masked randomly to produce gS and gS under two mutually exclusive views.

During the decoding phase, the encoded representations are fed to different
decoders. The lattice representation hL is fed to the lattice decoder LattDEC,
which yields a reconstructed lattice representation pL. The representations gS

and gS , created under mutually exclusive views, are processed by the coordinate
decoder CoordDEC, resulting in pC and p̄C . Concurrently, the representations gS

and gS are also passed to the atom decoder AtomDEC, generating reconstructed
representations pA and p̄A. The atom decoder AtomDEC and coordinate decoder
CoordDEC are Graph Isomorphism Networks (GIN) [32] that capture the rela-
tionships and dependencies between different atoms and substructures.

Next, the decoding process includes the crystal reconstruction part and the
crystal knowledge enhanced (CKE) module. The crystal reconstruction part
reconstructs based on two inputs, i.e., (pL,pC ,pA) and (pL, p̄C , p̄A), as shown
by the red and blue reconstructed crystal (i.e., C′ and C̄′) in Fig. 2. The
CKE module leverages crystal knowledge to enhance the crystal reconstruction.
Inspired by periodic invariance, it consists of periodic attribute learning and
atom-type contrastive learning to exploit periodic invariance and improve recon-
struction.

4.2 Reconstruction Under Mutually Exclusive Masked Views

Inspired by the successful masked language modeling technique used in
BERT [8], we introduce masking techniques into our pre-training framework.
The relationships among atoms in crystals are analogous to contextual relation-
ships among words. To avoid favoring certain patterns and obtain more diverse
representations, we design a masking strategy with two mutually exclusive views.

Mutually Exclusive Masking. The masking purposefully corrupts the rep-
resentation hS to enforce the model to learn representations that consider sur-
rounding atoms and their relationships, rather than learning individual atom
representations. We first define mutually exclusive masks. We consider a full
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Fig. 3. The reconstruction procedure with view M (atoms 1 and 3 are masked).

feature set with N indices, i.e., {1, ..., N}. If a mask randomly selects some of
the indices M with a uniform distribution then the mask processing replaces
the values with these indices by [MASK]. Another mask replaces the values of
the complementary set of indices, denoted as M ={1,..., N}\M. We refer to M
and M which are disjoint sets of indices, as mutually exclusive masks.

For the structure representation hS = [h1
S ,h2

S , ...,hN
S ], we randomly select a

subset of atoms M and replace their subset of features with [MASK] ∈ R
ds

token. Each atom’s feature vector remains unchanged if the atom is not in M;
otherwise, it is replaced by the [MASK] token. This creates a new representation,
gS , consisting of both original and masked features, as shown in Fig. 3. We use a
subset of M to mask hS to get gS and its mutually exclusive subset M to mask
hS to get gS . This masking process is critical as it forces the model to learn rep-
resentations based on the structural relationships between two complementary
sets of atoms rather than solely depending on each atom’s features.

Crystal Reconstruction. After passing the masked representations to the
decoder, we use a pre-training framework without labeled data to reconstruct
crystal C as C′ and C̄′. Instead of reconstructing the crystal directly, we focus
on reconstructing the three core components, A, X, and L, by optimizing the
reconstruction loss LREC . We only calculate the loss related to the masked
values, as shown in Fig. 3. The effectiveness of only reconstructing masked values
has been demonstrated in the MAE model [13]. The reconstruction loss is the
sum of three sub-losses, i.e., LREC = Latom + Lcoord + Llattice. (1) Atom types
A are reconstructed by minimizing the Latom loss between the ground truth
atom types ai and aj and reconstructed atom types a′

i and ā′
j . (2) Directly

predicting a crystal’s absolute coordinates X cannot follow the E(3) invariance
of crystals. The properties of crystals do not relate to their absolute coordinates
but rather to the structural relationships among their atoms. Hence, rather than
directly reconstructing the absolute coordinates, we reconstruct the distance
between atom coordinate xi and the center coordinate x̃, which is calculated as
the average of the atom coordinates of all atoms in a crystal in the unit cell, as
shown in Fig. 3. Then, we calculate the Lcoord loss based on the target distances
(i.e., d(xi, x̃) and d(xj , x̃)) and reconstructed distances (i.e., d′

i and d̄′
j). (3) We

optimize the lattice reconstruction process through an Llattice loss between the
estimated lattice L̂ and the real lattice L.
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Fig. 4. Multi-graph construction for a crystal with 3 atoms.

4.3 Multi-graph Attention Module

We employ a multi-graph attention module to capture complex structural pat-
terns adaptively. We start by detailing the multi-graph construction [31].

Multi-graph Construction. A crystal material can be represented as a multi-
graph G = (A,E) when learning the crystal structure. A = [a1,a2, · · · ,aN ] ∈
R

N×Q is the set of atom nodes in the crystal (see Sect. 3). E = {eij,(k1,k2,k3)|i, j ∈
{1, ..., N}, k1, k2, k3 ∈ Z} is the set of edges representing relevant atom pairs in
the crystal. An edge eij,(k1,k2,k3) denotes a directed edge from node i in the
original unit cell to node j in the cell translated by k1l1 + k2l2 + k3l3, where
l1, l2, and l3 are the lattice vectors of the crystal. To construct edges for relevant
atom pairs while observing periodic invariance, the k-nearest neighbor (kNN)
approach with cutoff distances rcut is often used. We ensure that the multi-
graph follows the periodic invariance by constructing edges between atom nodes
i and j that satisfy dij ≤ rcut, where dij = ‖xi − xj + k1l1 + k2l2 + k3l3‖2,|| · ||2 denotes Euclidean distance and k1, k2, k3 ∈ Z. As shown in Fig. 4 (a),
taking the green atom in the target unit as an example, edges are constructed
to other atoms that are within the cutoff distance rcut. The (k1, k2, k3) values
on the edges show the translation operation according to the lattice matrix. For
example, (0,0,0) indicates that the edge connection resides within the same unit
cell, while (0,1,0) signifies a connection to a neighboring unit cell via translation
along the lattice vector l2. However, the relationships among atoms in a crystal
are intricate, especially for atoms spanning units. Therefore, we have tailored a
multi-graph attention module guided by multi-graph edge types.

Multi-graph Attention Mechanism. The unit cell of a crystal is defined as
the smallest repeating unit that shows the full symmetry of its structure. Thus,
the goal of our reconstruction task is to reconstruct the unit cell. An atom within
the target unit cell should have a different impact on our reconstruction target
than should an atom outside the target cell. Thus, we customize a multi-graph
attention module employing both intra-unit and inter-unit attention mechanisms
to learn the crystal structure effectively.

To describe our method, we first define an indicator function Ui,j that cap-
tures whether atoms i and j are in the same unit cell. When atoms i and j



238 H. Yu et al.

satisfy (k1, k2, k3) = (0, 0, 0), they are connected by an intra-unit edge. Oth-
erwise, they are connected by an inter-unit edge. For ease of illustration, we
consider a 2D space by setting k3 = 0 and only repeat the unit cell along the l1
and l2 directions. Figure 4 (a) shows the multi-graph construction for the green
atom, including outgoing multi-edges labeled with (k1, k2, k3). When an edge
connects two atoms in the same unit (i.e., Ui,j = 1), it is an intra-unit edge.
Otherwise, it is an inter-unit edge.

We can now introduce the proposed multi-graph attention mechanism. To
capture complex and subtle structural patterns adaptively, we transform the
one-hot atom node feature ai into an embedding feature bi and then perform
self-attention on the embedding feature as the strategy of the graph attention
network [28], which is a shared attention mechanism. The shared linear trans-
formation, parameterized by a weight matrix W, is applied to the initial feature
vector of each atom node bi.

bi = Emb(ai), rij = fa(Wbi,Wbj), (3)

where fa is a single-layer feed-forward neural network and Emb(·) denotes a one-
hot atom embedding function. To further determine the influence of different
types of multi-graph edges, we separate the multi-graph into a graph with intra-
unit edges and a graph with inter-unit edges, as shown in Fig. 4 (b). Then, we
calculate the correlation coefficients between the graph edges in the two graphs.

Aintra
ij = exp(Φ(rij))∑

k∈Ni

Ui,j exp(Φ(rik))
, Ainter

ij = exp(Φ(rij))∑

k∈Ni

(1−Ui,j) exp(Φ(rik)) (4)

Here, Aintra
ij is an intra-unit edge correlation coefficient that is normalized

by the softmax function, and Ainter
ij is an inter-unit edge correlation coefficient.

These coefficients indicate the importance of a neighbor node j to a target node
i. Next, Φ(·) is the LeakyReLU activation function, and Ni represents the neigh-
bor node set of node i. Then, we perform attention on the atom nodes and
calculate the reweighted atom node b̂i as follows.

b̂i =
∑
j∈Ni

UijA
intra
ij bj ⊕

∑
j∈Ni

(1 − Uij)Ainter
ij bj , (5)

where ⊕ denotes concatenation followed by fully connected layers.

Message Updating. We employ DimeNet++ [11], an E(3) invariant graph
neural network, to capture atom interactions within the crystal. It uses spher-
ical functions for angles and radial functions for distances between atoms.
DimeNet++ refines atom representations B̂ =

[
b̂1, b̂2, · · · , b̂N

]
through

its network structure, capturing comprehensive crystal interactions hs =
DimeNet++(B̂,X,L).

4.4 Crystal Knowledge Enhanced Module

To enable the use of crystal knowledge for crystal reconstruction, we design a
crystal knowledge-enhanced module, encompassing periodic attribute learning
and atom-type contrastive learning.
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Fig. 5. The periodic attribute learning module. The white square is the target unit,
and the green atom in the target unit is the target atom. (a) Illustration of discrete
directions for the target atom to other atoms in neighbor units. (b) Illustration of
whether the target atom and its neighbor atoms are in the same unit cell. (c) Illustration
of the distances between the target atom and its neighbor atoms. (Color figure online)

Periodic Attribute Learning. We customize a periodic attribute learning
module for the self-supervised learning framework. This module predicts three
types of attributes, introducing learning constraints that facilitate more robust
representation learning. We use the atom representation, i.e., pA and p̄A, as
the node feature for the graph covered in Sect. 4.3. For each edge, we concate-
nate the i-th node of crystal C with the representations of its neighboring atom
nodes and obtain pij

A = [pi
A||pj

A] and p̄ij

A = [p̄i
A||p̄j

A]. These representations (i.e.,
pij

A and p̄ij

A) are then fed to three types of attribute learners, which are multi-
layer perceptrons [10], for predicting three periodic-specific attributes: discrete
direction, unit cell position, and distance between nodes.

More specifically, given a node with a coordinate xi and its neighbor xj

can be represented as xj = x′
j + k1l1 + k2l2 + k3l3. The crystal attributes

between edges xi and xj are detailed as follows. (1) Discrete Direction. We
determine the directions between each atom and its corresponding neighboring
atoms. We streamline the process by discretizing directions into the 27 distinct
directions in 3D space. If atom pairs are in the same unit (i.e., k1, k2, k3 = 0), we
regard this situation as the same direction. Thus, directions can be discretized
by the arrangement and combination of k1, k2, k3 after the modulo operation,
i.e., k1

|k1| ,
k2

|k2| ,
k3

|k3| ⊆ {1, 0,−1}. To better illustrate this concept, we show it in 2D
space, where there are only 9 directions—see Fig. 5 (a). We use the Ldir loss to
optimize the discrete direction estimation task. (2) Unit Cell Position. The unit
cell position attribute is used to determine whether two connected atoms belong
to the same unit cell. As shown in Fig. 5 (b), if both atoms are in the same unit
cell, they have an inter-unit edge, i.e., k1, k2, k3 = 0. Otherwise, the atom pairs
have intra-unit connections, i.e., {(k1, k2, k3) ∈ Z

3 | (k1, k2, k3) �= (0, 0, 0)}. The
unit cell position estimation is a binary classification task optimized using the
Lpos loss. (3) Edge Length. As shown in Fig. 5 (c), we predict the edge length
between connected atoms by calculating the distance between atoms xi and
xj . The edge length prediction is a regression problem, which is optimized by
using the Ldis loss. The prediction process still employs a distance learner, i.e.,
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a multilayer perceptron [10], taking atom-type representations pA and p̄A as
input and outputting the edge length.

Atom-Type Contrastive Learning. The type of an atom is important when
estimating crystal properties because the properties of atoms determine how they
interact with one another in a crystal lattice [20]. Different atom types have dis-
tinct electron configurations and bonding characteristics, which can influence
a crystal’s properties markedly. Therefore, in addition to reconstructing the
masked representations of crystal material, we introduce constraints for atom
types. The Barlow Twins approach is a specific type of contrastive learning
that can learn useful representations of data while reducing redundancy between
input vectors. We use this approach to further constrain atom-type representa-
tion learning. Our objective is to learn informative and complementary repre-
sentations by designing mutually exclusive masks.

We introduce the Barlow Twins loss LBT [36] to measure the relationship
between pA and p̄A, i.e., LBT = BT (pA, p̄A), where BT (·) is the Barlow Twins
loss. Although pA and p̄A are derived from mutually exclusive views, they
gather ample information from neighbor nodes after the decoder’s reconstruc-
tion, resulting in reconstructed vectors that should be similar. To further ensure
the reliability of this reconstructed information, the Barlow Twins loss mea-
sures the cross-correlation matrix between pA and p̄A and makes it as close
to the identity matrix as possible. It can make these two vectors similar while
minimizing the redundancy between their components.

In summary, we exploit crystal knowledge to enhance the representation
reconstruction by optimizing the LCKE loss, which is the sum of the periodic
attribute learning losses Ldir, Lpos, and Ldis and the contrastive loss LBT . We
refrain from introducing loss tradeoff weights for the LCKE loss since their impact
on subsequent downstream datasets is negligible within a certain range.

4.5 Optimization Objectives

We optimize CROP by minimizing the total loss Ltotal, which consists of the
reconstruction loss LRES and the crystal knowledge-enhanced loss LCKE .

Ltotal = α × LRES + (1 − α) × LCKE , (6)

where hyperparameter α enables balancing the two losses. As α increases, the
model places higher emphasis on the core objective of the reconstruction task
over the contributions from the enhanced module.

5 Experiments

5.1 Dataset Description

To pre-train the framework, we use a subset [4] of the Open Materials Database
(OQMD) [19,23]. The OQMD offers a substantial amount of unlabeled data
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that is sufficient for pre-training. The subset was obtained by using JARVIS
tools [4], an open-access software package for atomistic data-driven materials
computation. To obtain a high-quality subset, we eliminated materials with
extreme formation energy, above 4.0 or below -5.0. We also eliminated one crys-
tal structure that could not be loaded. The resulting subset contains 817,139
material structures. Each structure is saved as a CIF file and contains an atom
type, atom coordinates, and lattice features. To evaluate the performance of the
pre-training framework, we subject it to rigorous testing on eight challenging
downstream datasets, i.e., JDFT2D [5], Dielectric [15], Mp Shear [2], Mp bulk
[2], and KVRH [15], Jarvis gap [3], Jarvis ehull [3] and Mp gap [2]. We primarily
use small and medium size datasets to assess model effectiveness. Next, we use
larger datasets, e.g., Javis ehull and Mp gap, to assess robustness.

5.2 CROP Configurations

The experiments are conducted on a device with NVIDIA TITAN RTX 24GB
GPU, and the CROP framework is implemented with Pytorch. The code will
be made publicly available upon acceptance. To compare the performance of
different configurations of CROP, we use the mean absolute error (MAE) of
property estimations. The learning rate used for training is set to 1e-5. The
random seed is set to 123. The model parameters are optimized using Adam
optimizer [18]. We optimize CROP over 15 epochs, selecting parameters that
achieve the lowest loss to ensure maximum model efficacy.

In the fine-tuning stage, we employ the lattice encoder LattENC and struc-
ture encoder to obtain hL and hS within CROP, which allows for the sharing of
weights obtained from the CROP pre-training with eight downstream datasets.
Following this, both max-pooling and mean-pooling operations are applied to
the vector hS . The resulting features, along with hL, are then concatenated
to form a comprehensive feature vector. This vector is input into a specifically
designed target head, comprising four fully connected linear layers, which is cru-
cial for crystal property estimation and which is distinct from the CROP pre-
training framework. When training models in the fine-tuning stage for the eight
downstream datasets, we use two learning rates for optimal performance. For the
datasets aggregated from MatBench Suite [9], including JDFT2D, Dielectric, and
KVRH datasets, we use the AdamW optimizer with a learning rate of 0.001 for
training models that comprise the lattice and structure encoders, effectively tun-
ing their parameters for optimal performance. For the target head, which lacks
pre-training parameters from the pre-training model, we use the higher learning
rate of 0.005 to effectively train this component. For other datasets, we use a
learning rate of 0.01 with the OneCycleLR scheduling strategy.

5.3 Experimental Results

To evaluate the effectiveness of CROP, we compare with both supervised and
self-supervised baselines, including SchNet [25], MEGNet [2], ALIGNN [3], Mat-
former [33], InfoGraph [26], and Crystal Twins [22]. InfoGraph and Crystal
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Table 1. Comparison between CROP and baselines in terms of test MAE.

Dataset Size Small Medium Large

Dataset JDFT2D Dielectric Mp Shear Mp bulk KVRH Jarvis gap Jarvis ehull Mp gap

# Crystals 636 4,764 5,449 5,450 10,987 18,171 55,370 69,239

SchNet 42.6637 0.3277 0.099 0.066 0.0590 0.43 0.140 0.345

CGCNN 49.2440 0.5988 0.077 0.047 0.0712 0.41 0.170 0.292

MEGNet 54.1719 0.3391 0.099 0.060 0.0668 0.34 0.084 0.307

ALIGNN 43.4244 0.3449 0.078 0.051 0.0568 0.31 0.076 0.218

Matformer 47.6964 0.6817 0.073 0.043 0.0620 0.30 0.064 0.211

InfoGraph 48.5135 0.4684 0.075 0.046 0.0674 0.38 0.128 0.284

Crystal Twins 44.3536 0.4276 0.082 0.050 0.0665 0.39 0.140 0.291

CROP 37.7532 0.3172 0.068 0.037 0.0553 0.25 0.062 0.207

Relative Improvement 11.51% 3.20% 6.85% 13.95% 2.64% 16.67% 3.13% 1.90%

Inference Time 0.45 s 0.49 s 0.71s 0.70 s 0.87 s 1.23 s 2.68 s 3.02 s

Twins are self-supervised methods, while the others are supervised. In our exper-
iments, we also pre-train the Crystal Twins and InfoGraph models using data
from the OQMD dataset.

Table 2. The inference time cost

Models Mp bulk Jarvis gap Mp gap

InfoGraph 1.85 s 2.13 s 3.53 s

Crystal Twins 0.55 s 0.65 s 0.91 s

CROP 0.70 s 1.23 s 3.02 s

Table 1 reports the experimental
findings for CROP and the base-
lines on the eight datasets. The deci-
mal precision reported follows previous
works [9,33]. To quantify CROP’s per-
formance, we report relative improve-
ment over the best baseline approach. The best and the second-best results
are in bold and underlined, respectively. Furthermore, Table 2 compares infer-
ence times with self-supervised baselines. We observe the following: (1) CROP
achieves the best accuracy compared to both supervised and self-supervised base-
lines. The results show that CROP is effective on small and medium datasets,
achieving an increase of at least 2.64% and up to 16.67%. This aligns with our
initial intention, which was to address the issue of limited labeled data. For large
datasets, simply utilizing their data can lead the model to converge effectively;
hence, the benefit of introducing our pre-trained model is not significant. Overall,
the results offer evidence of the effectiveness of CROP on datasets with limited
labels. (2) CROP outperforms self-supervised baselines, including InfoGraph
and Crystal Twins, which do not fully leverage the E(3) and periodic invari-
ances of crystals. Fully considering the E(3) invariance and period invariance
of the crystal is effective at improving performance. Next, considering inference
times, the findings in Table 2 show that while CROP does not exhibit the fastest
inference speed, it achieved very good inference speeds. Considering both per-
formance and speed, CROP emerges as the best choice.
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Fig. 6. Ablation studies on (a) Jarvis gap, (b) Mp bulk and (c) Mp gap Datasets.

Fig. 7. Effects of Pre-training (a) Mp bulk, (b) Jarvis gap and (c) Mp gap Datasets.

5.4 Ablation Studies

To explore the effectiveness of each component of CROP, we compare different
variants of CROP. (1) CROP-MGA: CROP without the multi-graph attention
mechanism. (2) CROP-CKE: CROP without the crystal knowledge-enhanced
module. (3) CROP-VIEW: A CROP variant that uses only one masked view
rather than mutually exclusive masked views. To emphasize the performance
differences more distinctly, we retain one additional decimal place in the results
of the ablation experiments. We employ three dataset types: small, medium, and
large, i.e., Mp bulk, Jarvis gap, and Mp gap, respectively. The findings on the
top side of Fig. 6 cause the following observations: First, our attention mecha-
nism and mutually exclusive views are crucial for improving performance. With-
out these components, performance drops across the downstream tasks. Second,
removing the CKE module yields a significant performance drop on the Mp bulk
and Jarvis gap datasets. However, the performance change is not substantial for
the large dataset Mp gap.

To understand better the role of CKE, we consider two additional CROP
variants: (1) CROP-Con omits the atom-type contrastive learning in CKE. (2)
CROP-PAL omits the periodic attribute learning component in the CKE. The
findings reported on the bottom side of Fig. 6 cause the following observations:
First, on the medium and small datasets, i.e., Mp bulk and Jarvis gap, CROP
achieves superior performance. This indicates that both atom-type contrastive
learning and periodic attribute learning contribute to model performance. Sec-
ond, for the large dataset Mp gap, the introduction of periodic attribute learn-
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ing in CKE has minimal impact. In contrast, the introduction of atom-type
contrastive learning significantly affects model performance. This highlights the
importance of interacting with features under mutually exclusive views through
atom-type contrastive learning.

Overall, these findings validate the effectiveness of CROP, particularly in
enhancing performance for downstream tasks with limited data, addressing the
challenges caused by limited labeled data.

Fig. 8. Effects of α (a) Mp bulk, (b) Jarvis gap and (c) Mp gap Datasets.

5.5 Parameter Sensitivity Analysis

Here, we consider the impact of varying training dataset proportions and hyper-
parameter settings. (1) we use different training data proportions in the down-
stream datasets to validate the advantages of the pre-trained model. Specifi-
cally, we use 10%, 30%, 50%, 70%, 90%, and 100% of the training samples in
the training process, as shown in Fig. 7. When the training data proportion
exceeds 50%, our method outperforms most of the baseline approaches, under-
scoring the efficacy of CROP. Moreover, we further compare the performance
of training downstream tasks with our pre-training framework versus without a
pre-training framework. These findings show that using the pre-trained model
improves performance over not using it, especially with limited labeled data.
(2) we vary the loss tradeoff coefficient α over {0.1, 0.3, 0.5, 0.7, 1, 2}. This
coefficient controls the importance assigned to the crystal reconstruction and
the crystal knowledge enhancement module. As shown in Fig. 8, as α increases,
the performance of the model first increases and then decreases. As α increases,
the model gets less guidance from the crystal knowledge-enhanced module. On
Mp bulk and Jarvis gap, α = 0.5 is optimal. On Mp gap, α = 0.3 is best. This
justifies the choice of α = 0.5 for all datasets.

6 Conclusion

We propose a crystal knowledge-enhanced pre-training framework called CROP
that is capable of exploiting mutually exclusive masked views for learning crystal
representations with self-supervision. CROP is designed to tackle the challenge
of limited labeled data while being able to exploit better the physical prin-
ciples that crystals obey. The masking strategy enables the learning of atom



Crystal Knowledge-Enhanced Pre-training Framework 245

representations under two mutually exclusive views that consider surrounding
atoms and their relationships, rather than learning individual atom represen-
tations. CROP’s multi-graph attention module can enhance the expressiveness
of learned representations by leveraging the knowledge of periodic invariants.
CROP’s crystal knowledge-enhanced module introduces crystal principles explic-
itly. An experimental study offers evidence that CROP improves crystal property
estimation over strong baselines.
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