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Abstract. Generating synthetic text addresses the challenge of data
availability in privacy-sensitive domains such as healthcare. This study
explores the applicability of synthetic data in real-world medical set-
tings. We introduce MedSyn, a novel medical text generation frame-
work that integrates large language models with a Medical Knowledge
Graph (MKG). We use MKG to sample prior medical information for the
prompt and generate synthetic clinical notes with GPT-4 and fine-tuned
LLaMA models. We assess the benefit of synthetic data through appli-
cation in the ICD code prediction task. Our research indicates that syn-
thetic data can increase the classification accuracy of vital and challeng-
ing codes by up to 17.8% compared to settings without synthetic data.
Furthermore, to provide new data for further research in the healthcare
domain, we present the largest open-source synthetic dataset of clini-
cal notes for the Russian language, comprising over 41k samples cover-
ing 219 ICD-10 codes.

Keywords: Synthetic data · Clinical note generation · ICD code
prediction

1 Introduction

While extensive open medical datasets are available in English, like the MIMIC
family of databases [18,19] or the CPRD primary care database [14], their
scope in comprehensively covering various medical areas is limited. The availabil-
ity of textual medical data in non-English languages is even more constrained.
Patient privacy and ethical considerations are major limiting factors to the pub-
lic availability of such data. The latter remains a significant problem; the lack of
textual medical resources substantially deters research, testing, and deployment
of innovative Natural Language Processing (NLP) methods for national health-
care systems. Synthetic data generation addresses the issue of data scarcity in
medical research.
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Besides, the population’s diseases have a long-tail distribution, with rare dis-
eases representing only a tiny fraction of cases in a dataset [24]. Such data imbal-
ance problem directly affects the ML model’s performance on the downstream
tasks [31,38]. Since 2020, our clinical decision support system has been deployed
in medical clinics in one of the regions. Insufficient text data on rare cases deters
further system scaling, while synthetic (on-demand) medical note generation is
the only solution.

Fig. 1. Examples of real clinical notes from RuMedPrime dataset [35] (translated to
English).

Nowadays, all patient information is stored in Electronic Health Records
(EHRs), which contain a structured collection of medical events related to a
patient and textual modality attributes: doctor’s clinical notes about symptoms
and complaints, anamnesis, medication prescriptions, etc. Actual text from clin-
ical notes is a complex object with typos, specialized terms, abbreviations, and
contractions. Examples of such notes are shown in Fig. 1. That is why some
early synthetic generation approaches (e.g. [10]) did not allow dealing with raw
clinical text and tried to approximate EHRs only in terms of fixed categorical
vectors and a limited set of factors, such as diagnosis and procedure codes or
medication names. Including text fragments in synthetic EHRs has been chal-
lenging for a long time. Instead of generating medical text from scratch, some
proposed frameworks heavily depend on real EHRs [8,28], where a new health
record is created by data imputation for some critical parts in the original one.
However, such an approach limits the variability of results and leaves the risk of
private data leakage.

The latest breakthroughs in developing Large Language Models (LLMs) open
a new era in generating realistic, coherent, and diverse texts across various
domains. Models like GPT-3 [7], LLaMA [37], and their successors have shown
remarkable capabilities in text generation for general and medical texts [4]. How-
ever, even such powerful models still have some flaws [27]. First of all, they
tend to make content errors and hallucinate [3], which is unacceptable in such
a delicate area as medicine. Therefore, even LLM-based synthetic generation
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frameworks still need external guidance and internal validation mechanisms to
produce medically accurate and relevant texts.

Exploiting Medical Knowledge Graphs (MKGs) [12] and ontologies [1] is a
way to mitigate the problem. Again, such resources are abundant for English but
modestly available for less-represented languages like Russian. In this paper, we
focus on developing a clinical note text generation framework combining LLMs
capabilities with MKG in case studies for the Russian language.

Our key contributions can be summarized as follows:

1. We propose an open-source framework called MedSyn1 for synthetic clini-
cal note generation. The framework features a novel method that integrates
disease-specific symptoms from an MKG and incorporates real data examples
into the LLM generation pipeline to enhance the accuracy and diversity of
generated data.

2. We introduce the first dataset2 with synthetic clinical notes for the Russian
language, which contains more than 41k clinical notes spanning over 219 ICD-
10 (International Classification of Diseases) codes.

3. We provide results of experiments on synthetic data generation with the
MedSyn framework, including comparisons between GPT-4 and open-sourced
LLaMA-7b. It is shown that an open-sourced model fine-tuned on a specific
dataset can perform on par with or surpass GPT-4’s performance.

2 Related Work

2.1 Medical Knowledge Graphs

While a variety of MKGs exist in English [6,9,11,40], few or none are available in
other languages. There are different possibilities for MGK applications; for exam-
ple, a line of work utilizes graph embeddings for various medical tasks like recom-
mendation systems [13], NLI [33], and diagnosis prediction [43]. BioLORD [29]
uses concepts and relationships from the knowledge graph as part of the LLM
pre-training. Another approach for MKG utilization involves enriching the gener-
ation process with information extracted from these graphs. This strategy can be
viewed as a specialized application of the retrieval-augmented generation frame-
work [21], demonstrating the potential to produce more specific, diverse, and
factually accurate language. However, applying such techniques in the medical
domain is still an area that has not been extensively explored.

2.2 LLMs in Medical Domain

LLMs are increasingly utilized in the medical domain; they are primarily imple-
mented for English [23,34,39] and Chinese [42,45], evaluated for medical QA
tasks, and used as medical chatbots. There is also a research direction that

1 https://github.com/milteam/MedSyn.
2 https://huggingface.co/datasets/Glebkaa/MedSyn-synthetic.

https://github.com/milteam/MedSyn
https://huggingface.co/datasets/Glebkaa/MedSyn-synthetic
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focuses on synthetic data generation. [26] trained the GPT-3 model from scratch
using clinical and general English texts, then produced 20B of medical texts uti-
lizing this model and introduced a smaller version of the model on synthetic
data only. The resulting model outperforms ClinicalBERT [17] and the same
model trained on actual data on MedNLI [30] and emrQA [25] benchmarks. The
authors of [22] generated clinical texts and manually annotated them for the
Named Entity Recognition (NER) task. The evaluation shows that the com-
bination of original and synthetic corpora achieved better performance than
using only the initial corpus. In [36], the authors improve performance on NER
and relation extraction tasks with synthetic data, showing that increasing the
number of synthetic sentences can improve model performance up to a certain
point, beyond which the improvement becomes marginal. In a recent study [15],
researchers explored the feasibility of using synthetic text as a training corpus
for clinical NER in French. The findings suggest that synthetic clinical notes can
be used to train NER models, although applications for other tasks remain to
be explored.

The true potential of synthetic data in the medical field remains under active
exploration [32,36]. However, typical problems related to LLMs, like halluci-
nations, pose substantial challenges in such a critical field. Ensuring factual
accuracy and addressing inconsistencies in medical models remain valuable con-
cerns [41]. In our research, we strive to bridge the gap in controllable medical data
generation, primarily focusing on the Russian language, which is heavily under-
represented in linguistic medical resources.

Fig. 2. The clinical notes generation pipeline implemented in MedSyn framework. Rel-
evant symptoms from MKG and clinical note examples corresponding to the ICD code
are compiled into a prompt and used as input for LLM inference.

3 Method

The overall pipeline for clinical note generation is illustrated in Fig. 2. To gen-
erate a clinical note for a target ICD code, data relevant to the MKG (Sect. 3.1)
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and real examples are first sampled and combined into a prompt for LLM infer-
ence. We utilized GPT-4 and a fine-tuned LLaMA-7b for the LLMs (Russian
Sect. 3.3). For fine-tuning LLaMA-7b, we constructed an instruction-following
dataset (Russian Sect. 3.2). To generate a dataset of clinical notes for our exper-
iments, we developed a specific generation task (Russian Sect. 3.4) with already
prepared prompts.

3.1 Medical Knowledge Graph

As mentioned in Sect. 2.1, Russian-language equivalents of MKG are scarce. For
our research, we used the WikiMed database as a foundation to develop the
Russian MKG.

Table 1. MKG statistics. Di-Dr stands for disease-drug relation, Di-S for disease-
symptom relation.

Nodes Edges

Disease Drug Symptom Di-Dr Di-S

# 2,747 2,968 2,554 1,997 2,554

The constructed MKG includes the following nodes: diseases (identified by
ICD-10 codes), drugs, and symptoms. While diseases and drugs have predefined
relations in this database, symptoms and their relations are not specified. The
database includes clinical manifestations, which contain potential symptoms in a
narrative format. To extract these symptoms, we utilized ChatGPT [2], prompt-
ing it to identify symptoms from the given text of clinical manifestations. For
example, the clinical manifestation of tuberculosis, ‘One of the common man-
ifestations of spinal tuberculosis is the formation of cold abscesses on the neck
and increased skin temperature’, should lead to the extraction of symptoms [cold
abscesses on the neck, increased skin temperature]. The extracted data were man-
ually verified by comparing them with the initial text to ensure that only symp-
toms were included, and no irrelevant information or noise was extracted.

Finally extracted symptoms were then incorporated into the MKG. Its sta-
tistical details are presented in Table 1.

3.2 Instruction-Following Dataset

We collected a dataset of 152k Russian language samples focused on instruction-
following for supervised fine-tuning3. These samples were derived from various
medical benchmarks, databases, and the constructed MKG. Utilizing the MKG,
we created questions that require multiple levels of reasoning, ranging from sim-
ple 1-hop to complex 3-hop distances. For example, a 1-hop reasoning question
3 https://huggingface.co/datasets/Glebkaa/MedSyn-ift.

https://huggingface.co/datasets/Glebkaa/MedSyn-ift
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Fig. 3. Examples of k-hop reasoning question on MKG. Di - Disease, Dr - Drug, S -
Symptoms.

like ‘Provide symptoms for a disease’ directly connects diseases to symptoms
(Di-S). A 2-hop question, such as ’Write down medications that can be taken
for these symptoms’, involves linking symptoms to diseases and then to drugs
(S-Di-Dr). A more complex 3-hop reasoning question, like ‘List medications that
can be taken for a disease if it is mistaken for another disease with similar symp-
toms’, maps diseases to symptoms, then to another disease, and finally to drugs
(Di-S-Di-Dr), as shown in Fig. 3. We avoid more than three hops reasoning sce-
narios as, by our estimate, it produces too vague and error-prone samples. For the
clinical notes, we employed two types of tasks: continuation, which extends an
existing note from a random point, and generation, where a note is created from
prior data like symptoms. We generated at least five different rephrasings for
each to ensure instruction diversity.

Fig. 4. The structure of the instruction-following dataset. Leaves represent data sources
and the percentage of data relative to the parent category.

In addition to real medical data, we also incorporate synthetic data from
ChatGPT. Considering that real clinical notes often have many typos and stylis-
tic variations, which may affect model performance, we suggest that adding syn-
thetic notes could improve the model’s text generation and be a regularization
method. To create this synthetic data, we prompted ChatGPT to generate clini-
cal notes based on patient symptoms, age, and gender. For part of the data, style
references with real samples were additionally provided. We also incorporate a
medical dataset focused on typo correction to make the model more robust to
typos. The structure of the dataset is represented in Fig. 4.
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3.3 Fine-Tuning

Unlike the English language, to our knowledge, there aren’t any open-source
generative LLMs tailored for the medical domain in Russian. Thus, we employ
GPT-4 [2] for data generation to establish a strong baseline.

Our work uses a model based on the LLaMA 2 family [37]. It is a collection
of open generative language models with a parameter range from 7 to 70 billion.
We fine-tuned the model with 7 billion parameters using a learning rate 2e−5

and a cosine learning rate scheduler to fine-tune the model. We utilized a global
batch size of 256 and trained the model for three epochs.

To enhance the efficiency and accelerate the training of our model, we
employed Low-Rank Adaptation (LoRA) [16]. This method involves freezing
the model’s weights and injecting trainable rank decomposition matrices into
each layer of the Transformer architecture.

The pre-training data for LLaMa-7b consists of 90% English-language data
and only 0.13% Russian-language data. Therefore, to fine-tune our model, we
decided to use the pre-trained checkpoint from Saiga 24 that is fine-tuned on
Russian language instructions and dialogues generated by GPT-4.

3.4 Generation Task

We prepared a generation task to generate synthetic clinical notes with real data
examples and symptoms spanning 105 ICD-10 category codes, as presented in
the RuMedTop3 dataset [5]. We sample symptoms previously extracted from
Russian MKG (Sect. 3.1) according to the approach outlined in Sect. 3.5.

We aim to achieve a uniform distribution of ICD codes for the generation
task, but the lack of data requires inevitable trade-offs. Given the limited set of
examples (1,283 samples), and to ensure that the sampling procedure represents
the diversity of examples and symptoms, we have adopted a specific approach to
determine the frequency of each ICD-10 category code C and computes its weight
based on the following rule:

w(C) = J3
(
NC

symp

) · J3
(
NC

exmp

)
, (1)

where J3 denotes the triple application of the function J(x) = log(1+x), NC
exmp

refers to the number of examples corresponding to a given category code C,
and NC

symp represents the number of all unique symptoms within that category.
The logarithmic scale used in Eq. 1 is implemented to achieve a more uniform
distribution of codes.

An exception to this weighting procedure is the category Z00, defined as
encounter for the general exam without complaint, suspect, or reported diagnosis.
As this category does not hold particular interest for downstream tasks, we
set the number of generations for this category code to 10, thereby not factoring
its weight into the overall distribution. We obtained the final generation task
by sampling clinical notes and symptoms for this distribution, containing 2,503
4 https://huggingface.co/IlyaGusev/saiga2 7b lora.

https://huggingface.co/IlyaGusev/saiga2_7b_lora
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entries. Each entry consists of an ICD-10 code, an example of a real clinical note,
and a subset of symptoms.

For the baseline, we generate samples that do not utilize data from MKG in
their prompts. The baseline prompt is similar to the original one but contains
only the disease name instead of incorporating disease prior information from
MKG and a clinical note example. Generated and real clinical notes contain no
ICD codes in the text to avoid data leaks.

3.5 Symptoms Sampling

The actual distribution of symptoms in clinical settings is complex. For example,
certain symptoms may not coexist or be specific to a particular age or gender.
In this study, however, we assume that symptoms are independently and identi-
cally distributed. Consequently, we select multiple symptoms for a disease with-
out considering their inter-relationships. We randomly sample several symptoms
from the MKG (Sect. 3.1) related to a disease, with the count ranging from 1 to
5, which is also chosen randomly.

3.6 Synthetic Dataset

We have released a dataset of 41,185 synthetic clinical notes in Russian, gener-
ated using GPT and fine-tuned LLaMA models spanning 219 ICD-10 codes. The
dataset includes all generated samples, regardless of quality, to facilitate various
data selection methods. More detailed statistics and descriptions of the data
fields are provided in the project dataset repository.5 According to the provided
licenses, all confidential information was anonymized, and researchers can safely
use these datasets.

4 Experiments

4.1 Datasets and Tasks

In this research, we utilized the RuMedPrime dataset [35], containing 7,625
anonymized entries from outpatient visits to the Siberian State Medical Univer-
sity hospital. This dataset, unique as the only open-source collection of clinical
notes in Russian annotated with ICD-10 codes, comprises each patient’s clin-
ical note, symptoms, and corresponding ICD code. Based on this dataset the
RuMedTop3 task was created, focusing on the ICD code prediction from a free-
text clinical note. Given such a task, it is possible to implement an AI service
that supports doctors with a second opinion on the diagnosis search.

Our study adopted the same dataset split as RuMedTop3, using 4,690 records
for training, 848 for validation, and 822 for testing while incorporating full clin-
ical notes alongside symptoms. Like RuMedTop3, we employ the second ICD-10
classification code hierarchy level. We also evaluated the results on the original
RuMedTop3 dataset.
5 https://huggingface.co/datasets/Glebkaa/MedSyn-synthetic.

https://huggingface.co/datasets/Glebkaa/MedSyn-synthetic
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4.2 Models

We conducted experiments using both feature-based linear models and trans-
former models. For the linear model, we employed logistic regression based on
term frequency-inverse document frequency (TF-IDF) features. For the trans-
former models, we run experiments with RuBERT [20] and RuBioRoBERTa [44]
and report the average results from three runs.

4.3 Evaluation

ICD code prediction is a multi-class classification task. To evaluate it, we utilize
the hit@k score (k ∈ [1, 3, 5]), defined as follows:

hit@k =
1
N

N∑

i=1

hit(ŷ, topki ), (2)

where N is the number of samples and hit(ŷ, topki ) is 1 if ground truth ICD code
ŷ is on a ranked list of k predicted codes topk and 0 otherwise.

4.4 Results

Prompt Following. We use the BERT-score [46] to measure the similarity of
synthetic data to the examples and to the provided symptoms (Fig. 5).

Fig. 5. BERT-scores for example and symptoms usage.

As can be seen from the higher scores, the GPT-4 model follows instructions
more precisely, produces results that are more similar to the example, and makes
greater use of the provided symptoms.

While high similarity to the example is desirable, complete replication is
unfavorable. To evaluate replication, we calculate the ratio of example N-grams
usage, defined as the ratio of unique common N-grams between the generated
sample and the example, divided by the number of unique N-grams in the exam-
ple (Fig. 6). For most samples, the N-grams usage ratio is less than 1, suggesting
that the examples are far from complete replication in the answer.



224 G. Kumichev et al.

Fig. 6. Ratio of N-gram usage.

Fig. 7. The prediction results using only synthetic training data (codes K81 and I11).
Contour bars represent the baseline prompt, which does not utilize MKG and consists
solely of the task and the disease name.

Generating Data Out of the Training Set. One of the most exciting yet
practically challenging scenarios involves generating data scarcely present in
the original training set or generation of clinically valuable data. We selected
two vital ICD codes for the experiment, K81 and I11. The first is cholecystitis,
which affects about 20% of the adult population. The second code denotes a
type of heart disease, one of the most common causes of death.

We transferred all real data samples to the test set, making evaluating the
experiments with real data in the training set impossible. However, we prioritize
a diverse test set in this experiment as it could mitigate the potential poor perfor-
mance of unrepresented synthetic samples in downstream tasks. We replaced the
real data in the training set with 30 synthetic samples for both models and added
59 samples for LLaMA-7b to assess the impact of scaling the number of samples
(Fig. 7).

Although models trained with such synthetic data still have zero scores in the
hit@1 metric, they show promising results in less restricted metrics like hit@5,
demonstrating the potential for further improvement in real data absence sce-
narios. Thus, synthetic data with specific refinements could increasingly become
a viable alternative for training models in data-scarce environments.

Synthetic Upsampling. Another application for synthetic data is data upsam-
pling. In this experiment, we used the same synthetic data as in the previous
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section (Sect. 4.4) and added it to the training set. The results indicate that
models can benefit from such synthetic data. For instance, the accuracy of K81
code prediction improves by 17.8% for the RuBioRoBERTa model (Fig. 8). To
assess the overall accuracy across all ICD codes, we also evaluate both the base-
line and the full prompts (Table 2).

Fig. 8. Results of prediction with upsampled training set for codes K81 and I11. The
legend represents the data source/number of real samples/number of synthetic samples.

Table 2. Scores across all codes with upsampled training set for codes K81 and I11.

Model Data hit@1 hit@3 hit@5

Linear Real 56.9 80.4 87.5

LLaMA-7b-baseline 57.1 80.0 93.9

LLaMA-7b 57.2 79.9 93.7

RuBioRoBERTa Real 52.7 75.8 84.3

LLaMA-7b-baseline 55.8 75.1 82.8

LLaMA-7b 56.8 77.7 86.2

For a more detailed analysis, we focused on two codes that were frequently
mistaken for each other more than any other pair. This decision was based on
the confusion matrix, which measures how often each pair of codes is confused.
The analysis revealed that the codes most often confused are M54 and G54.

We selected synthetic data for those codes generated via the same genera-
tion task described in Sect. 3.4 for the GPT-4 and LLaMA-7b models. For the
LLaMA, we repeated the generation several times to evaluate the effect of data
scaling. Here, we only report on the linear model to depict simultaneous changes
for codes not averaged across several models. The experimental results are pre-
sented in Table 3. While data generated by GPT-4 provides improvements for
both codes simultaneously, data generated by LLaMA still offers improvement
for one of the codes without a drop for the other.
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Table 3. Results of upsampling for the most pairwise misclassified codes. Prediction
by the linear model. #R/S represents the number of real and synthetic samples in the
training set. ↑ represents growth of both codes simultaneously, ↗ - growth for one code
without drop for another.

Code Data # Real/Synthetic hit@1 hit@3 hit@5

G54 Real 232/0 57.9 97.4 100

GPT-4 232/14 60.5 ↑ 97.4 100

LLaMA-7b 232/14 57.9 97.4 100

LLaMA-7b 232/72 60.5 ↗ 97.4 100

M54 Real 560/0 85.1 98.9 100

GPT-4 560/35 87.4 ↑ 98.9 100

LLaMA-7b 560/35 86.2 ↗ 98.9 100

LLaMA-7b 560/175 85.1 98.9 100

RuMedTop3 Upsampling. Although the generated clinical notes contain
more information than the data in the RuMedTop3 task, which focuses on symp-
toms, using the generated data to upsample this dataset is still feasible, as they
share the same set of ICD codes. We report results with generated data upsam-
pling in Table 4, showing that all models benefit from the synthetic data.

Table 4. Results of upsampling on RuMedTop3 dataset (the real data size is 4,690
samples, and the size of the synthetic dataset is 2,503 samples).

Model Data hit@1 hit@3 hit@5

Linear Real 49.8 72.7 87.8

GPT-4 50.8 74.8 90.0

LLaMA-7b 50.2 73.6 89.5

RuBERT Real 46.5 70.4 79.3

GPT-4 47.2 71.9 81.3

LLaMA-7b 45.0 70.7 81.4

RuBioRoBERTa Real 47.4 70.8 79.5

GPT-4 47.3 71.7 80.4

LLaMA-7b 46.1 70.4 79.6

4.5 Human Assessment

We performed the human evaluation in a side-by-side scenario to qualitatively
assess the synthetic clinical texts. First, we randomly sampled 105 cases from real
clinical notes examples according to the general ICD code distribution and paired
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them with synthetic ones. Second, in each pair, we selected random sentences
(with a median number of words of 8) to facilitate labeling and make a fair
comparison detached from the notes structure. Such text pairs were presented
to a medical intern with the only question – Which text is generated, 1 or 2?
The assessor was correct in 58.09% (61 cases). Given that the random guessing
is 50%, we can conclude that our synthetic texts have acceptable quality. In
further research, we plan to evaluate the MedSyn framework in more elaborate
human assessment scenarios.

5 Discussion

We used the generated datasets during all evaluations without applying filtra-
tion or sample selection techniques. Consequently, these datasets likely contain
corrupted samples with minor factual errors or in some kind irrelevant to the
provided prompt.

To estimate the validity of the samples, we predict their label using mod-
els trained on real data. We calculate the ratio of valid samples whose ground
truth label appears in the top 5 predictions of at least 2 of five RuBERT mod-
els, each trained with different seeds. We found that 51% of LLaMA-7b samples
and 64% of GPT-4 pass this criterion. However, this is only a coarse criterion
as it may lead to false negatives, where a correct synthetic sample falls out-
side the training distribution and is consistently misclassified. Additionally, a
sample might contain relevant information that leads to accurate predictions
while still having some corruption. This observation also suggests that GPT-4
generated data might include fewer inaccurate samples, contributing to better
performance. Possible sample corruption could lead to gaps in the authenticity
and applicability of the generated content in specific clinical scenarios, highlight-
ing the need for advanced filtration algorithms to refine the data quality. Future
enhancements to the MKG, including a broader range of medical information,
will likely improve the robustness and diversity of generated synthetic data.

While synthetic data is not directly tied to real patients, its use in clinical
settings can still pose ethical questions regarding its applicability and acceptabil-
ity. Key concerns include: 1) Ensuring that the data accurately reflects diverse
patient populations without introducing biases; 2) Protecting against poten-
tial indirect privacy violations; 3) Assessing how its use might impact clinical
decision-making. Additionally, it is essential to be transparent about how syn-
thetic data is made and used and ensure its use follows informed consent rules
in medical settings.

6 Conclusion

The proposed MedSyn framework suggests promising results in generating syn-
thetic clinical notes. Human evaluation shows the high quality of generated texts,
which are indistinguishable from real medical notes. In numerical experiments,
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using additional synthetic notes leads to a 17.8% increase in ICD-code classi-
fication accuracy for vital and challenging classes compared to using only real
data. Additionally, models trained on generated data reveal substantial quality
even when used as the only training source, beating a solid baseline and help-
ing to improve scores on the RuMedTop3 task. From a practical point of view,
we plan to exploit the developed framework for rare disease note generation.
Such synthetic data will allow us to substantially increase the number of disease
classes in our clinical decision support system from tens to hundreds of ICD
codes, giving the doctor a reliable second opinion even in rare scenarios.

The framework’s design allows easy integration with diverse MKGs, promis-
ing even more robust and varied data generation. To foster continued innovation
in this field, we have made our trained model, part of the training dataset, and
the synthetic dataset publicly available. These resources pave the way for fur-
ther research in the medical field, especially in tasks where data is scarce. For
instance, they potentially serve as datasets for medical NER tagging or in ICD
coding tasks, where models trained on such data could provide valuable auto-
mated suggestions to humans. While synthetic data may contain inconsistencies
or flaws, it is still precious in low-resource languages (like Russian) or low-data
areas (like healthcare).
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15. Hiebel, N., Ferret, O., Fort, K., Névéol, A.: Can synthetic text help clinical named
entity recognition? a study of electronic health records in French. In: Proceedings of
the 17th Conference of the European Chapter of the Association for Computational
Linguistics (EACL), pp. 2320–2338. ACL, Dubrovnik, Croatia (May 2023)

16. Hu, E.J., et al.: Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685 (2021)

17. Huang, K., Altosaar, J., Ranganath, R.: ClinicalBERT: Modeling clinical notes
and predicting hospital readmission. arXiv preprint arXiv:1904.05342 (2019)

18. Johnson, A.E., et al.: MIMIC-IV, a freely accessible electronic health record
dataset. Sci. Data 10(1), 1 (2023)

19. Johnson, A.E., et al.: MIMIC-III, a freely accessible critical care database. Sci.
Data 3(1), 1–9 (2016)

20. Kuratov, Y., Arkhipov, M.: Adaptation of deep bidirectional multilingual trans-
formers for Russian language. arXiv preprint arXiv:1905.07213 (2019)

21. Lewis, P., et al.: Retrieval-augmented generation for knowledge-intensive NLP
tasks: Adv. Neural. Inf. Process. Syst. 33, 9459–9474 (2020)

22. Li, J., et al.: Are synthetic clinical notes useful for real natural language processing
tasks: A case study on clinical entity recognition. J. Am. Med. Inform. Associat.
28 (2021). https://doi.org/10.1093/jamia/ocab112

23. Luo, R., et al.: BioGPT: generative pre-trained transformer for biomedical text
generation and mining. Briefings Bioinform. 23(6) (2022)

24. Nguyen, T.T., et al.: Mimic-iv-icd: a new benchmark for extreme multilabel clas-
sification. arXiv preprint arXiv:2304.13998 (2023)

25. Pampari, A., Raghavan, P., Liang, J., Peng, J.: emrQA: a large corpus for question
answering on electronic medical records. In: Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing, pp. 2357–2368 (2018)

26. Peng, C., et al.: A study of generative large language model for medical research
and healthcare. NPJ Digital Med. 6(1), 210 (2023)

27. Ray, P.P.: ChatGPT: a comprehensive review on background, applications, key
challenges, bias, ethics, limitations and future scope. Internet of Things Cyber-
Phys. Syst. (2023)

28. Reiter, J.P., Drechsler, J.: Releasing multiply-imputed synthetic data generated in
two stages to protect confidentiality. Statistica Sinica, 405–421 (2010)

29. Remy, F., Demuynck, K., Demeester, T.: BioLORD-2023: Semantic textual rep-
resentations fusing llm and clinical knowledge graph insights. arXiv preprint
arXiv:2311.16075 (2023)

30. Romanov, A., Shivade, C.: Lessons from natural language inference in the clinical
domain. In: Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing, pp. 1586–1596 (2018)
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