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Abstract. Recent mobile applications (i.e., apps) have been exten-
sively implanted with paid advertisements that promote other mobile
apps, including malware that raises alarming concerns in cybersecurity.
Excavating the app promotion patterns in the app-promoting ecosys-
tem allows for early interceptions of malware installment, and hence has
gained more attention in recent research. However, related data in the
app-promoting ecosystem such as app developers and categories is often
scarce, especially when the data is collected from a single data source.
The scarce data is insufficient in training effective deep and complex
models for app promotion pattern mining, and targeting the data scarcity
problem is therefore the key to advancing research in app promotion pat-
tern mining. Therefore, we aim to complete data in the app-promoting
ecosystem to pave the way for app-promoting pattern mining. We present
SymPrompt, a language model-based framework that leverages the sym-
bolic prompts to complete the missing data in the app-promoting ecosys-
tem. The symbolic prompts are tokens that provide extra contextual
information that assists the model in completing the missing data. We
devise two sets of symbolic prompts containing contextual information
from the perspectives of data structure and data semantics to assist the
model prediction. Through extensive experiments, we demonstrate Sym-
Prompt’s effectiveness in completing the missing in the app-promoting
ecosystem. Code: https://github.com/zyouyang/SymPrompt

1 Introduction

Mobile applications (i.e., apps) are extensively implanted with paid advertise-
ments (i.e., ads) as a means of product promotion. It has been reported that over
57% of all apps in Google Play contain ad libraries, and this percentage reaches
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Fig. 1. App promotion chain examples in the app-promoting ecosystem.

up to two-thirds within popular apps [24]. Among these ads, the app-promotion
ads are widely used by Android app developers to promote other mobile apps.
These app-promotion ads play a crucial role in helping users discover new apps,
demonstrated by the research showing that 33% of users discover new apps
through ads in other apps [19]. However, concerns arise regarding the trustful-
ness of the apps promoted through these ads, given the competitive nature of
the industry and the potential for web technology with risks of invading personal
privacy [13,18].

To prevent users from being promoted to malicious apps, researchers start
to mine promoting patterns in the app-promoting ecosystem in order to provide
early interventions for suspicious app installments. Some of the previous stud-
ies focus on analyzing the behaviors of ad libraries within the app promotion
ecosystem [8,12], and some others analyze app promotion behaviors based solely
on ways the apps are presented (web view or image view) [6,11]. These studies
either primarily examine the behaviors of ad libraries, or analyze app promotion
behaviors based solely on the app representations (web views or image views).
Therefore, they pay too little attention to app propagation in terms of how
massive individuals exploit the app promotion ecosystem and possess limited
abilities to capture the interaction patterns with other apps in the promotion
network. For instance, Fig. 1(a) demonstrates an app promotion chain where a
popular benign app “Passport Photo Maker” promotes a greyware app “Photo
Editor”, which in turn promotes malware “Flood-It!”, a strategy game capable
of scanning the local network and stealing sensitive phone information. Pro-
motion chains among apps, as exampled above, hence cannot be detected and
exploited by previous studies for app promoting behavior analysis.

Furthermore, prior studies lack a comprehensive understanding of the app-
promoting ecosystem, which involves multiple heterogeneous actors beyond apps,
such as app markets, security vendors, and developers. These actors collectively
contribute to the promotion of specific apps. For example, Fig. 1(b) provides a
promotion chain path that could explain why an online messaging app, “Polish
English Translation”, promotes “CallApp”. The underlying behaviors indicate
that “Polish English Translation” shares the same developer as another trans-
lation app “Thai Chinese Translation”, which has been observed to promote
“CallApp”. Hence, a more holistic approach that learns the intrinsic connections
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among these various entities is necessary to deeply understand the complexi-
ties of the app-promoting ecosystem, as well as its implications for society and
online commerce. Such an in-depth understanding of the app-promoting ecosys-
tem has the potential for various positive extensions, such as improving trust in
app recommender systems and detecting malicious apps.

A natural way to holistically exploit the complex connections among the
heterogeneous actors is to model the collected app-promoting data as a hetero-
geneous graph, and directly analyze the graph for app promotion pattern min-
ing. Current graph representation learning [7,9,14,26,33,36,37] have shown their
effectiveness in various domains such as recommender systems [16], node/graph
classification [5,17,22,32], knowledge engineering [10,20,27,28,34], and graph
completion [15,29]. They are designed to capture high-order connectivity rela-
tionships between multiple entities. However, a huge obstacle blocking the
exploitation of the app-promoting data with heterogeneous actors is the data
scarcity problem. Around 15% of our collected app-promoting data in Google
Play contains missing entries such as app developers and app categories. Als0,
data scarcity is one of the major challenges in training deep and complex graph
learning models with exceptional performance, including graph learning meth-
ods [35]. Therefore, targeting the data scarcity problem is the key to advancing
studies in app promotion pattern mining.

To address the above limitations, we first model the app-promoting data as
a relational heterogeneous graph and center around the graph completion task.
Specifically, each heterogeneous actor (e.g., an app developer, a visited URL) is
abstracted to an entity in the graph, and each interaction between the actors
(e.g., a developer develops an app, an app belongs to a category) is abstracted
to a relation in the graph. Then, we center around the heterogeneous graph
completion task, where given the observed graph and a query containing an
entity and a relation type (e.g., a query contains the entity developer1, and
the relation type developer-develop-app), we aim to predict un-observed true
positive entities that answer the query (e.g., the apps that are developed by the
developer in the query).

Nevertheless, learning to complete a graph collected from the wild in our
focused app promotion network is non-trivial. Existing methods for graph com-
pletion are either too simplistic for modeling the highly complex networks with
scarce relations and entities [1,21,30], or heavily rely on rich semantic infor-
mation to train a heavy model with massive parameters [15,25,31], which con-
tradicts the data scarcity issue in app-promoting data collected from the wild.
To target the limitations of existing techniques, we propose a framework that
leverages a pre-trained language model (e.g., BERT) to model the complex rela-
tion, and incorporate two different symbolic prompts to compensate for the lack
of semantic information closely related to the query. We first derived symbolic
prompts from existing embedding-based methods like DistMult [30] to provide
contextual information from the geometrical embeddings, and then generate the
other set of symbolic prompts based on the correlation between the queried rela-
tion and metapaths. The two sets of symbolic prompts are concatenated with the
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query tokens to construct the input tokens to our framework. Our contributions
are:

– We propose a novel framework that addresses the challenge of modeling com-
plex connectivity patterns in the app promotion graph by leveraging the pre-
trained language model. Our approach additionally incorporates two sets of
symbolic prompts for further learning guidance.

– We collect a real-world dataset in the app promotion ecosystem, and demon-
strate the effectiveness of our approach through extensive experiments. The
results show that our approach outperforms existing techniques in terms of
both accuracy and generalities.

– We provide a deeper understanding of the app promotion ecosystem, its com-
plexities, and its implications for societal trust. Our work sheds light on the
potential applications of heterogeneous graph completion methods and pre-
trained language models in detecting malicious app promotions.

2 Background and Related Work

2.1 Definitions

Definition 1 (Heterogeneous Graph). A heterogeneous graph (HG) G =
(V, E ,X ) consists of a entity set V, an relation set E, and the optional entity
and relation features: X = (XV ,XE). The types of entities and relations are
mapped through the type mapping functions φ : V → A and ψ : E → R, where
A and R denotes the entity and relation type set respectively. Each relation is
directional, and is represented as a triple (h, r, t) ∈ E where h, t ∈ V, r ∈ R. For
a heterogeneous graph, there exists the constrain |A| + |R| > 2.

Definition 2 (Metapath). In a heterogeneous graph, a metapath is a prede-
fined sequence of entity types and relation types that capture the semantic rela-
tionships between entities. Formally, a metapath P is denoted as e1

r1−→ e2
r2−→

...eL
rL−→ eL+1, where ri ∈ R, ei ∈ A, r = r1 · r2 · ... · rL is the composite relation

between entity type e1 and eL+1, and L is the length of the metapath.

Definition 3 (Heterogeneous Graph Completion). For a query (h, r)
where h ∈ V and r ∈ R, the heterogeneous graph completion (HGC) task refers
to discovering answers T ⊂ V, such that for all t ∈ T , (h, r, t) ∈ E in reality.

Table 1. Numbers and types for entities.

Ent. Type Signature VT Engine Category Developer URL

Ent. # 185 65 36 3139 18870

Ent. Type Manifest Benign Greyware Malware Total

Ent. # 10269 3961 1143 363 38031
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2.2 Collected App Promotion Dataset

To exploit the complex relational patterns in the app promotion ecosystem, we
collect data from Google Play and construct the app promotion heterogeneous
graph (APHG) for the completion task.

Entities. The APHG encapsulates various entities derived from the following
attributes: application, developer, application category, manifest, VirusTotal
Engine, digital signature, and URL. Given the unique promotional behaviors
demonstrated by benign, grey, and malicious apps, we further classify the appli-
cation entity into three discrete classes - benign, grey, and malicious, and extend
the aggregated count of entity types to nine. We provide the statistics of the
entities in the APHG in Table 1. In total, there are nine types of entities.

Fig. 2. The schema of the APHG

Relations. The relations of inter-
ests are demonstrated in Fig. 2. In
total, we consider twenty-nine classes
of relations by further categorizing
the applications into benign, grey-
ware, and malware. Note that all the
relations are directional. Despite the
potential to gather additional infor-
mation, neither the entities nor the
relations are associated with any
features. Therefore, our APHG is
denoted as G = (V, E). We provide
detailed descriptions of the relations
in the supplementary materials.

2.3 APHG Completion Task

The APHG completion task refers to answering a query that contains an entity
type and a relation type based on the observed APHG. For example, for a
query q = (developer1, developer-develop-app), the model is expected to
output the possible apps that developer1 develops. We additionally note that
the queried relations only associate with one of the constructed directional
relations, excluding the reverse relations. For example, we query (developer1,
developer-develop-app), rather than (app1, app-developed-developer).

2.4 Related Work

Embedding-Based Methods. Knowledge graph embedding (KGE) methods
employ geometric operations in the vector space to capture the underlying
semantics of the graph, such as translation [1], bilinear transformation [30],
rotation [21]. Other methods design embeddings from different perspectives. For
instance, CompLEX [23] leverages compositionality to model the complex rela-
tionships between entities. ConvE [3] utilizes multi-layer convolutional networks
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Fig. 3. Overall framework: the metapath-based and embedding-based symbolic
prompts are pre-computed, and are concatenated with the queried entity and rela-
tion to construct the symbolic inputs.

on the 2D grid abstracted from the knowledge graph to encode local dependen-
cies. Although conceptually straightforward, these methods encode each entity
and relation’s embedded information through a simple vector. The inherent sim-
plicity of embedding-based methods can present challenges in scenarios involving
complex reasoning and scarcity of information.

Transformer-Based Methods. Taking account of the relatively weak expres-
sion power of the embedding-based methods, several recent works utilize trans-
formers for additional enhanced contextual information encoding. Some works
take the triple as the input and perform tasks such as triple classification and link
prediction. For example, KG-BERT [31] treats triples as textual sequences to
inject semantic information and exploits pre-trained BERT to learn context-
aware embeddings. PKGC [15] leverages the entity’s semantic information and
converts them into natural prompt sentences to address the closed-world assump-
tion (CWA) and incoherent issue. However, the above methods require the scor-
ing of all possible triples in inference, therefore introducing some unnecessary cal-
culation overheads. On the other hand, some other works are designed to directly
output the candidate entities. For example, StAR [25] designs a structure-aware
and structure-augmented framework for efficient KGC inference. HittER [2]
extracts context neighbors for the source entity and introduces the additional
masked entity prediction task for balanced contextualization. GenKGC [29]
introduces relation-aware demonstration and entity-ware hierarchical decoding
for better representation learning. Despite the progress made so far, we notice
some implementation gaps in applying the above methods to a knowledge graph
and a heterogenous graph: First, entities in a knowledge graph naturally entitle
semantic information, while this is not always true for a heterogeneous graph;
Second, the above methods left out the entity/node type information provided
in a heterogeneous graph, therefore leaving considerable space for performance
improvement. In contrast, our model is designed to not only straightly output
the candidate entities, which eliminates the calculation overhead but also fully
utilize the entity and relation type information for better prompting.
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3 SYMPROMPT

Our SymPrompt approach leverages the pre-trained BERT [4] as a language
model to process the tokenized inputs. The reasons are tri-folded: (i) BERT
reduces the computational overhead by directly outputing the probability dis-
tribution over the entities, where the corresponding probabilities represent the
ranking scores. In comparison, geometrical-based KGE methods require further
similarity calculation to obtain the ranking scores; (ii) The bidirectional atten-
tion learning mechanism in BERT allows for complex input sequence processing,
which is essential in aligning the query tokens with the symbolic prompt tokens
to the completion task; (iii) BERT accepts flexible length of the input tokens,
which include the query tokens and the symbolic prompt tokens. It supports var-
ious numbers of symbolic prompts. This feature further enhances the practical
applicability of our framework. Subsequently, the encoded tokens are aggregated
and decoded by a two-layer MLP to output the final result. The overall frame-
work is depicted in Fig. 3. The input tokens are composed of three parts, as
demonstrated in Fig. 3: (i) the query tokens, including the queried entity and
relation token; (ii) the symbolic prompts generated based on embedding-based
methods, such as DistMult; (iii) the symbolic prompts generated based on the
correlation between the metapaths and the queried relation. In the following
content, we provide details regarding these symbolic prompts.

3.1 Embedding-Based Symbolic Prompts

Prior embedding-based models have demonstrated remarkable performance on
various benchmark datasets. These models possess inherent simplicity that ren-
ders them proficient tokenizers, effectively mapping entity and relation tokens to
a shared semantic space. In this paper, we select DistMult [30] as the pre-trained
embedding-based method to tokenize the entities and relations. Note that this
is a designer’s choice and can be substituted with any other methods that fit
our framework. Let n be the size of the embedding-based symbolic prompts,
which are defined as the top-n predicted entities by the pre-trained embedding-
based methods according to the predicted scores. For example, when considering
the query (app1, app-access-URL), the embedding-based symbolic prompts are
represented as Se = [url1, url2, ..., urln], where Se includes the top-n URLs
predicted by DistMult that may be accessed by app1.

3.2 Metapath-Based Symbolic Prompts

Previous embedding-based methods rely on geometric operations to model rela-
tions among entities, resulting in symbolic prompts that share similarities from a
geometric perspective. Meanwhile, semantic relational information among enti-
ties can also be extracted from the metapaths of the HG. Therefore, we addi-
tionally provide the model with metapath-based symbolic prompts from the
semantic perspective, based on the assumption that relations are semantically
correlated with metapaths to different extents. We first introduce the measure of
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the semantic correlation between a metapath and a relation and then illustrate
how to utilize the correlation to create the metapath-based symbolic prompts.

Relation-Metapath Correlation. We first define the functions src(·) and
dst(·) as the source and destination entity type mapping functions for a relation
r respectively. We make the following definitions:

Definition 4 (r-valid Metapath). A metapath p = e1
r1−→ e2

r2−→ ...eL
rL−→

eL+1 is r-valid if and only if src(r) = e1 and dst(r) = eL+1.

Definition 5 (p-Hit). For a triple (h, r, t), where r is the relation, h and t are
the source and destination entity respectively, we say the triple is p-Hit if and
only if there exists at least one path from h to t such that this path is an instance
of the metapath p.

Definition 6 (p-Hit Ratio). For a p-Hit triple (h, r, t), the corresponding p-hit
ratio is defined as the ratio of t among all the entities reached by following the
metapath p starting from entity h; if t cannot be reached, the p-hit ratio is zero.

Definition 7 (r-p Ratio). For a relation r, a r-valid metapth p, and triples
Er = {(h, r, t) ∈ E}, the corresponding r-p ratio is defined as the averaged p-Hit
Ratio in Er.

Example. For simplicity, we abbreviate relation benign-access-URL as access,
developer-develop-app as develop, and developer-use-URL as use. For rela-
tion r = access, one of the metapaths p = benign

develop←−−−−− developer use−−→ URL
is an r-valid metapath. For the triple (benign1, access, url1), if there exists
a path “benign1

develop←−−−−− developer1
use−−→ url1”, then we say the triple is p-Hit.

Furthermore, if starting from benign1 and following p reaches to a set of nodes
T p
h where url1 ∈ T p

h , and T r
h ∈ T p

h represent the entities that are connected with
benign1 with relation r, then the p-Hit Ratio is 1/|(T p

h \ T r
h | + 1). Since the r-p

Ratio is defined as the probability of finding the answer t by following metapath
p starting from the entity h, we utilize it as the correlation indicator and select
top-k metapaths that are most correlated with relation r, denoted as Pr.

Entity Candidate Refining. Even if metapaths in Pr are selected based
on the correlation with the relation, the reachable entities may still contain
noise regarding the queried relation, especially when the path passes a high-
degree entity, which results in a significant size of the entity candidates with
little and even noisy information. To further refine the entity candidate set,
we first categorize the metapaths p ∈ Pr as one leading to either a large or small
size of candidates. For those who lead to small-sized candidates, we union the
candidates, and for large-sized candidates, we intersect them. The rationale is
as follows: if a relation is weakly related to a metapath, then the candidate size
is large and we rely on the intersect operation to filter out the noise; if some
relations are broadly related to more than one metapath, then the candidate size
is small and the union operation gathers all the possible candidates. To further
reduce the size of the entity candidates, we lastly utilize an embedding-based
method to select the top-n entities among the candidates as the final refined
metapath-based symbolic prompts.
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3.3 Combined Input Tokens

The final input of a query (h, r) is defined as the concatenation of the embedding-
based symbolic prompt tokens, the metapath-based symbolic prompts tokens,
as well as the query tokens. Prior to the language model, we randomly permute
the input tokens. This step is essential in forcing the language model to learn
the intrinsic connection between the query and the answer, rather than con-
sulting the positional information as the shortcut. We validate the necessity of
this step in the following experiments. Subsequently, we utilize an embedding-
based method as the tokenizer (rather than the BERT’s original tokenizer) to
project the tokens into the embedding space for encoding. Finally, we adopt the
binary cross entropy loss to train the language model for the HGC task.

4 Experiment

4.1 Setup

For baseline models, we carefully select DistMult [30], ComplEX [23], ConvE [3],
HittER [2], and LTE [38] as the baselines, for they can be easily adapted to our
HGC task. We evaluate the models with two key metrics, mean reciprocal rank
(MRR) and Hits@K, where MRR provides an absolute measure of ranking per-
formance via the average reciprocal rank of the correct candidates for each test
example, and Hits@K measures the proportion of test examples for which the cor-
rect candidate is ranked within the top-K predicted candidates. Higher values of
MRR and Hits@K indicate better performance in accurately ranking the correct
candidates for the graph completion task. We select a pre-trained DistMult [30]
as the tokenizer to tokenize the entity and relation tokens and utilize a pre-
trained ComplEX [23] to refine the symbolic prompts as described in Sect. 3.2.
Note that the above choices are a matter of preference, and can be substituted
with other embedding-based methods such as TransE [1].

4.2 Performance on App Promotion HGC

The performance comparison with the baselines is shown in Table 2 (based on the
three types of input token components, i.e., the query tokens, the embedding-
based and the metapath-based symbolic prompt tokens as well as the adop-
tion of token random permutation/shuffle, we consider five settings under our
framework, as shown in Table 3). The results in Table 2 demonstrate that our
model outperforms the other baselines by a significant margin. This is because
while our model utilizes DistMult as the tokenizer to project the tokens in the
embedding space, it does not merely rely on the simple multiplication operation
as in DistMult for query answering; instead, the attention mechanism in the
deep layers of the language model captures the complex interaction between the
query and the symbolic prompt tokens. We also observe that as the value of
K in Hit@K increases, the performance gap between our model and the base-
lines gradually diminishes. This phenomenon could be explained by the two-step
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Table 2. Performance comparison with the baseline models on the app promotion
dataset. Best results are bolded, and runner-ups are underlined.

Model Hit@1 Hit@3 Hit@5 Hit@10 MRR

DisMult [30] .6040 .7280 .7550 .8350 .6840

ComplEX [23] .6680 .7780 .8180 .8650 .7370

ConvE [3] .6400 .7460 .7950 .8490 .7110

HittER [2] .5505 .6758 .7227 .7862 .6312

ConvE-LTE [38] .6350 .7444 .7918 .8506 .6602

Distmult-LTE [38] .6381 .7651 .8083 .8677 .7174

Base .7246 .7610 .7729 .7895 .7481

Emb.-based Only .7786 .8272 .8447 .8672 .8096

Mtp.-based Only .4567 .4740 .4843 .5082 .4795

Ours w/o. Rand. Perm. .7383 .7817 .7940 .8118 .7653

Ours .8393 .8710 .8802 .8922 .8587

inference process followed by our model: (i) the model processes the symbolic
prompts and attempts to identify the answers out of the input tokens. If the cor-
rect answer exists within the symbolic prompts, the model confidently outputs it
with a high probability, leading to higher hit ratios with a small K. This answer
identification step is relatively straightforward; (ii) if the answer is not included
in the symbolic prompts, the model instead attempts to generate the answer
token. We term the second step the answer generation step, as it requires the
model to deduce the interactive patterns among the input tokens wrt the query,
and is, therefore, more challenging compared with the first one. The two-step
inference process reveals that our model excels at both answer identification and
generation. Additionally, the Hit@1 in all settings but the Mtp. Only is signifi-
cantly improved upon DistMult, suggesting our framework’s effective combina-
tion of the answer identification and generation steps for query answering. The
downgrade Hit@1 in Mtp. Only results from the tilted focus to the more challeng-
ing answer generation step, for the massive noise in the symbolic prompts. We
detailedly analyze the two-step inference process in Sect. 4.3.
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Fig. 4. Results of all component-differed variant models. The model variants in the
first row randomly permute the input tokens, and the ones in the second row do not.
The input tokens are constructed as indicated by the legend.

4.3 Component Analysis

Table 3. Detailed settings of model vari-
ants in Table 2. Emb., Mtp., and Query repre-
sent embedding-based prompt tokens, metapath-
based prompt tokens only, and query tokens
respectively. Shuffle represents the random per-
mutation layer

Variant Emb. Mtp. Query Shuffle

Base ✗ ✗ ✓ ✓

Emb.-based Only ✓ ✗ ✓ ✓

Mtp.-based Only ✗ ✓ ✓ ✓

Ours w/o Rand. Perm. ✓ ✓ ✓ ✗

Ours (SymPrompt) ✓ ✓ ✓ ✓

We analyze the effectiveness of
each component in our frame-
work to confirm the necessity
of constructing our model as
designed and provide support-
ive evidence for the two-step
inference process conducted by
our model. Additionally, we add
another model variant named
Random-Prompt, where the sym-
bolic prompts are replaced with
randomly sampled entity tokens.
The input component settings of
the model variants are shown in
Table 4.

Performance Comparison. We combine the adoption of the random per-
mutation layer and the components of the input tokens to expand the model
variants, and compare the performance with the best baseline in Fig. 4:
For the Base model which shares the same input tokens and embedding space
with DistMult, it relies on the language model (BERT) and the two-layer
MLP decoder for query answering, substituting the simple matrix multiplica-
tion employed in DistMult. This substitution, while allowing the model to yield
better Hit@1 performance than the baselines, fails to achieve consistent improve-
ment across all evaluation metrics. This is because it is challenging to enforce a
complex language model encoder and a decoder to fill the role of the multipli-
cation operation. Therefore, we detour the functionality of our model from the
replication of matrix multiplication to mining the complex interactive patterns
between the query tokens and the symbolic prompt tokens.
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Table 4. The token components discussed
in Sect. 4.3. Emb. represent embedding-based
prompt tokens, Mtp. represents metapath-
based prompt tokens, Query represents query
tokens, and Rand. represents random prompt
tokens

Variant Emb. Mtp. Query Rand.

Base ✗ ✗ ✓ ✗

Emb.-based Only ✓ ✗ ✓ ✗

Mtp.-based Only ✗ ✓ ✓ ✗

Rand. Prompt ✗ ✗ ✓ ✓

SymPrompt (ours) ✓ ✓ ✓ ✗

For the Rand. Prompt model, the
addition of randomly generated
symbolic prompts completely col-
lapses the model, regardless of the
employment of random permuta-
tion. This is because the model
is overwhelmed with the mas-
sive noise brought by the random
tokens, and cannot identify the
query tokens for the downstream
task. It suggests that the symbolic
prompt tokens should be crafted
with very limited noise to avoid
model collapse.
The Embedding-based Only variant yields superior performance when combined
with the random permutation layer, especially for hit ratios with small K’s. This
suggests that the embedding-based symbolic prompts are effective in providing
both possible candidates and additional information regarding the query. The
inferior performance when not adopting the random permutation layer results
from the positional shortcut taken by the model, which weakens the model’s
ability in answer generation.
The Metapath-based Only model underperforms the Base model due to the
massive noise introduced in the prompts. Although the Embedding-based Only
model also accepts extra symbolic prompt tokens as the input, these prompt
tokens are geometrically similar in the embedding space and therefore introduce
less noise when providing information related to the query. However, the noises
in the metapath-based symbolic prompts introduced by following the correlated
metapaths are intractable, which inevitably results in inferior performance.
Our model outperforms all other variants under the two settings, suggesting
the necessity of combining the two sets of symbolic prompts. Furthermore, we
discover that as K increases, the gap between our variants and the baselines
decreases, and decreases faster under the w/o Rand. Perm. setting. The decre-
ment is observed because as K increases, our model relies more on the more
challenging answer generation step to improve the metrics, while the baselines
consistently generate the answers (i.e., conducting the answer generation step)
through their designed geometrical operations. In addition, the random permu-
tation layer mingles the input tokens together, forcing our model to focus on the
intrinsic connection between the input tokens rather than the one hooked by the
token positions. This deprivation of position shortcut enhances our model’s abil-
ity to generate more possible answers, therefore resulting in slower performance
gap decrement as K increases, compared with the baselines.

Training Dynamics Comparison. We analyze the training dynamics of the
Embedding-based Only model, Metapath-based Only model, and our model under
two settings (i.e., adopt random permutation and not), and show the train-
ing dynamics in Fig. 5. We observe that models converge slower under w/
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Fig. 5. The training dynamics of models with full symbolic prompt tokens (ours),
metapath-based symbolic prompts only, and embedding-based symbolic prompts only.

Rand.Perm. than those under w/o Rand.Perm. This is because models with
consistently positioned input tokens tend to opt for the shortcut solution like
memorizing positions, rather than learning the intrinsic relations between the
tokens. Identifying the shortcut token’s positions, compared with generating the
answer based on the learned interactive patterns, is less challenging, leading to
faster model convergence. The phenomenon aligns with the two-step inference
process, where the model first tackles an easy task by attempting to identify
existing answers in the symbolic prompt tokens and then engages in the more
complex task of generating answers. Additionally, we notice that the performance
gaps in Hit@K for different K’s are larger under w/ Rand. Perm., indicating
better generality for the HGC task. Our model neither saturates as quickly as
Metapath-based Only due to less noise introduced in the symbolic prompt, nor
takes excessively long to achieve performance improvement like Embedding-based
Only, which relies heavily on accessible shortcuts that hinder generality.

4.4 Random Permutation on Model Learning

To analyze how random permutation effects model learning, we showcase the
normalized attention scores heatmaps in Fig. 6 under the following three condi-
tions: (a) train and test the model under w/o. Rand. Perm..; (b) train the model
w/o. Rand. Perm., but test it under w/ Rand. Perm.; (c) train and test the model
under w/ Rand. Perm. (our model). The correct answer entity ranks 1, 133, and
1 under the three conditions respectively. Under condition (a), we see the model
consistently pays heavy attention to the 1st and 21st tokens. This is because we
set the number of embedding-based and metapath-based symbolic prompts as
20, and the two positions correspond to the most probable answers. Without
random permutation, the model easily identifies the position shortcut and pays
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Fig. 6. The attention heatmaps in the layers of the model under three settings.

less attention to the query tokens (indexed by the red and blue dotted lines).
Under condition (b), the model fails to assign a high rank to the correct answer
(133): the model rigidly assigns heavy attention to the 1st and 21st tokens when
they are no longer the most probable answers due to random permutation. The
model trained and tested under w/ Rand. Perm. as we designed, on the other
hand, assigns much more attention to the input sequence. Under condition (c),
our model learns to dynamically assign attention to the potential answers (red
and purple line intersections in Layer 1, Head 1), the source entity token (red
vertical dotted line in Layer 2, Head 2), and any other important information
it deems important (tokens indexed by 7, 31, etc.). The comparison showcases
that random permutation stimulates the model to learn the interactive patterns
between the input tokens, increasing its power in generalized query answering.

5 Conclusion

In this work, we focus on completing the missing data in the context of app
promotion to combat the information scarcity problem and propose a language
model-based approach named SymPrompt that leverages symbolic prompts to
provide valuable hints to answer the query. This research advances the under-
standing of app promotion networks, and we direct future works toward explain-
able information completion in the context of the app promotion ecosystem.
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