
Solving a Real-World Optimization
Problem Using Proximal Policy

Optimization with Curriculum Learning
and Reward Engineering

Abhijeet Pendyala(B), Asma Atamna, and Tobias Glasmachers

Ruhr-University Bochum, Bochum, Germany
{abhijeet.pendyala,asma.atamna,tobias.glasmachers}@ini.rub.de

Abstract. We present a proximal policy optimization agent trained
through curriculum learning (CL) principles and meticulous reward engi-
neering to optimize a real-world high-throughput waste sorting facility.
Our work addresses the challenge of effectively balancing the compet-
ing objectives of operational safety, volume optimization, and minimiz-
ing resource usage. A vanilla agent trained from scratch on these mul-
tiple criteria fails to solve the problem due to its inherent complexities.
This problem is particularly difficult due to the environment’s extremely
delayed rewards with long time horizons and class (or action) imbalance,
with important actions being infrequent in the optimal policy. This forces
the agent to anticipate long-term action consequences and prioritize
rare but rewarding behaviours, creating a non-trivial reinforcement learn-
ing task. Our five-stage CL approach tackles these challenges by grad-
ually increasing the complexity of the environmental dynamics during
policy transfer while simultaneously refining the reward mechanism. This
iterative and adaptable process enables the agent to learn a desired opti-
mal policy. Results demonstrate that our approach significantly improves
inference-time safety, achieving near-zero safety violations in addition to
enhancing waste sorting plant efficiency.

Keywords: Deep reinforcement learning · Real-world task ·
Curriculum learning · Sustainable waste management

1 Introduction

This work introduces a novel reinforcement learning approach to address the crit-
ical need for optimization within waste sorting facilities, addressing an uncharted
area of research. EU directives emphasize the need for responsible and sustain-
able recycling of packaging waste. This has led to waste sorting facilities invest-
ing in sophisticated infrastructure and automated sorting technologies. Tradi-
tional data-driven methods are emerging as key tools within the digitalization of
these high-throughput facilities for optimal control. Sorting facilities are designed

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
A. Bifet et al. (Eds.): ECML PKDD 2024, LNAI 14950, pp. 150–165, 2024.
https://doi.org/10.1007/978-3-031-70381-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-70381-2_10&domain=pdf
https://doi.org/10.1007/978-3-031-70381-2_10


Tackling Real-World Reinforcement Learning Deployment 151

specifically for different use cases, such as the types of materials to be separated
and the scale and the throughput requirements of the plant. They must remain
robust to ever-changing material streams, and they should ideally be capable of
adapting to changes of the input composition, and even to future design modifi-
cations such as changes in layout or modifying sorting machinery. Additionally,
ensuring operational safety while optimizing sorting efficiency remains a key
challenge.

The final stage of a waste sorting facility, namely the management of contain-
ers filling up with sorted material before being processed into a final product,
is readily available as a real-world industrial benchmark RL environment called
ContainerGym [1].

This research introduces a curriculum learning approach for training a Prox-
imal Policy Optimization (PPO) algorithm for the container management prob-
lem. The approach breaks down the complex learning process into manageable
stages, aiming to optimize sorting efficiency and resource utilization within oper-
ational constraints.

The motivation behind our approach was that the RL problem at hand is
non-trivial. We found that a vanilla baseline like a PPO agent trained from
scratch on all the three criteria detailed in Sect. 3 fails to learn a useful con-
trol policy. Analysis of training data revealed that the majority of the training
episodes terminated prematurely due to violation of safety constraints (volume
limit exceeded). Consequently, the agent cannot collect sufficient samples of opti-
mal state-action pairs, trapping them in a sub-optimal solution. Therefore there
was a need for a more powerful method. We demonstrate that a nuanced cur-
riculum approach can solve the problem.

2 Related Work

Curriculum learning in the context of RL is a training paradigm where an agent
encounters a sequence of tasks carefully designed to accelerate learning. Design-
ing a curriculum allows ML engineers and domain experts to incorporate expe-
rience and domain knowledge into the training process. The curriculum might
involve modifying reward functions, altering environment dynamics, or chang-
ing state or action spaces. By strategically guiding the agent’s experiences, CL
has the potential to promote faster convergence, better generalization, and more
efficient learning [2]. Beyond reinforcement learning, CL has been proven to pro-
vide a versatile framework with a broad range of applications. In supervised
learning, CL has enhanced model performance through the strategic sequenc-
ing of training examples [3]. The gaming industry has employed CL to create
progressively challenging levels, boosting agent performance [4]. Robotics has
benefited from CL, as complex tasks could be decomposed into simpler steps,
accelerating robotic skill acquisition [5]. Finally, CL has been used in safe rein-
forcement learning by gradually exposing the agent to higher-risk scenarios [6].
For a comprehensive overview of CL methods, see the survey papers [2,7].

Our proposed curriculum approach falls within the category of predefined
curriculum learning [7]. We adopt a Curriculum Through Intermediate Goals



152 A. Pendyala et al.

strategy [8], decomposing a complex goal state into a sequence of simpler inter-
mediate goals. While many existing approaches concentrate on modifying single
aspects of the learning process, such as state distributions [9], reward func-
tions [5], or goal generation [10], we differentiate our method by strategically
modifying multiple facets. We manipulate the underlying Markov Decision Pro-
cesses (MDPs) of our intermediate tasks, carefully tuning environment dynam-
ics, reward mechanisms, and learning time horizons. This multifaceted approach,
combined with our focus on a real-world problem, sets our approach apart from
existing methods.

We aim to achieve three key benefits through our curriculum approach:
optimization, improved sampling (as alluded to in [11]), and safety. Optimiza-
tion benefit arises as a curriculum guides an agent towards solutions more effi-
ciently than direct minimization of a non-convex target objective with multiple
criteria. Statistically, careful sample allocation within a curriculum can boost
performance by facilitating knowledge transfer among tasks, potentially reduc-
ing training data needs. For safety, as [12] note, a curriculum allows the reuse of
safe policies from simpler tasks, ensuring safety in intermediate stages while the
agent progressively develops proficiency for complex environments.

3 Real Environment and Problem Description

We consider the task of managing containers in a plastic sorting facility. The
containers collect pre-sorted material. After accumulating enough material of a
certain type, the container is emptied onto a conveyor belt and the material is
moved to one of two processing units (PU-1 and PU-2). The setup is illustrated
in Fig. 1. Containers are continuously filled with material, with each container
prescribed to a unique material. The material extraction from the container
is always done until it is completely emptied. The difficulty of the task arises
from two constraints. First of all, each container has its own unique optimal
emptying volume depending on the material type. Emptying the container ear-
lier is possible, but it results in a sub-optimal product and a waste of energy.
Emptying later is subject to similar costs, however, processing larger chunks of
material is generally beneficial as it saves energy and processing time. The sec-
ond constraint is that processing the material takes time, and containers can be
emptied only if a PU is free.

If a container is emptied too far away from its optimal (at higher and or
lower value), the deviation in volume that cannot be transformed into a prod-
uct is again redirected to the corresponding container via an energy-intensive
auxiliary process. On the other hand, if a container is emptied prematurely and
too frequently, the PUs are engaged too frequently causing higher energy usage
and also a bottleneck in resource allocation. In other words, the control task
is to reduce the cumulative deviation from the ideal volume for each container
while managing resources (PUs) efficiently.

A critical safety constraint that needs to be respected is that a container is
never allowed to overshoot the physical limit of its maximum bearing volume



Tackling Real-World Reinforcement Learning Deployment 153

Fig. 1. Layout sketch of a facility with 11 containers and 2 PUs, connected with con-
veyor belts. The containers are filled from above, with their current fill states indicated
by the shaded areas.

(40 units). This incurs a high recovery cost including human intervention to stop
and restart the facility, and should be avoided at all costs. Therefore, emptying
containers close to the physical limit is a risky approach. Other system con-
straints are that certain containers can only be emptied into PU-1 and others
only into PU-2. PU-1 takes in material via only one conveyor belt while PU-2
takes in material via two conveyor belts.

The quality of an emptying decision is a balance between three criteria:

– Volume criteria: minimize the cumulative deviation from the ideal emptying
volume for each container.

– Energy criteria: optimize the energy usage or utilization costs of PUs.
– Safety criteria: adhere to the safety and system constraints.

Multiple aspects make this problem challenging:

– Stochastic material flow rate. The material flow rate into the containers is
unique for each container, as it depends on the type of material, its density, the
time of the day, seasonality, and other factors. In addition, the sensor readings
determining volume estimates are very noisy. Incorporating this phenomenon,
the flow rates are modelled as a stochastic process. This makes approaching
the problem with standard planning approaches quite difficult.

– Delayed rewards. Certain containers have very slow filling rates, taking up
to 5 h or 300 simulation timesteps of 60 s each to reach their respective ideal
volumes and receive a positive reward associated with the correct emptying
action, as well as about 300 preceding ‘idle’ actions.

– PU constraint. The limited availability of the PUs implies that always
waiting for containers to fill up to their ideal emptying volume is risky: if
too many containers are close to their respective ideal volumes and no PU
is available at that time, then a safety constraint is violated and a physical
overflow occurs. Therefore, an optimal policy needs to take fill states and fill
rates of all containers into account, and possibly empty some containers early
or later.



154 A. Pendyala et al.

– Class imbalance. Emptying decisions can be taken at any time, but the
emptying actions close to the ideal volume for each container are rather infre-
quent, compared to the filling times to reach the respective ideal volumes. In
addition, the rate at which containers should be emptied varies between con-
tainers. There is a class imbalance between the successful emptying actions
(and corresponding rewards) and the do-nothing actions making the distri-
butions of actions highly asymmetric, with important actions being relatively
rare.

4 Reinforcement Learning Problem Formulation

In this section, the container management problem referenced in Sect. 3 is recast
within the framework of a Markov Decision Process (MDP), with a corresponding
digital twin designed in Python using gymnasium.

4.1 State Space

The system’s state at a timestep t (st), encompasses several key components.
These include container volumes {vi,t}ni=1 bounded by predefined minimum and
maximum volumes to maintain operational constraints. {pj,t}2j=1 captures the
normalized (by timestep) time until each of the two processing units becomes
available, ensuring that the system can anticipate and plan for processing avail-
ability. {bk,t}nk=1 is a binary representation indicating which containers are cur-
rently being emptied, providing immediate insight into the immediate container
status, rewards from the previous timestep {rl,t−1}nl=1, used to integrate feed-
back from past decisions, and the ideal volumes {pvm}nm=1 for each container
guiding the agent towards maintaining optimal material levels. The indices i,
j, k, l, and m denote the container or PU identifiers. This representation is
expressed as follows:

st = ({vi,t}ni=1, {pj,t}2j=1, {bk,t}nk=1, {rl,t−1}nl=1, {pvm}nm=1) (1)

This formulation ensures an adequate reflection of the system’s dynamics, incor-
porating both the containers’ status and the operational state of PUs, thereby
facilitating the decision-making process.

4.2 Action Space

At any given time t, the agent has two primary choices: (i) to refrain from emp-
tying any container, effectively taking no action and letting the volume increase,
or (ii) to empty a specific container and process its contents. The do-nothing
action is denoted by 0, while the action of emptying a container and processing
its content is denoted by the index i of the container. Thus, the action at falls
within the set {0, 1, . . . , n}, where n represents the total number of containers.
Depending on the availability of the PUs the action taken is either successful or
unsuccessful for emptying and is reflected through the volumes, status of PUs
and time features in the state, and the reward received.



Tackling Real-World Reinforcement Learning Deployment 155

4.3 Environment Dynamics

In this section, the dynamics of the volume of material in the containers, the PU
model, as well as the state update are discussed.

Container Filling Rates. In addressing the variability of container fill rates
due to the inconsistent nature of plastic material inflow, which ranges from solid
lumps to irregular flows, leading to uneven accumulations within containers, a
stochastic model is employed. This model accounts for the erratic yet on average
linear increase in volume over time through a random walk mechanism with
drift. Specifically, the volume update for container i at time t + 1 is modeled as:

vi,t+1 = max(0, αi + vi,t + εi,t), (2)

where αi represents the average volume increase rate, and εi,t is a normally dis-
tributed random variable representing measurement noise. This approach cap-
tures real-world fluctuations in fill rates while simplifying the model to facilitate
analysis and simulation. Upon the action of emptying a container, its volume is
instantaneously reduced to zero in the subsequent timestep. This simplification
contrasts with the gradual volume reduction observed in actual scenarios but
aligns with our dataset’s indication that the emptying process completes within
the duration of a single timestep, set at 60 s in this study. This modelling choice
effectively bridges the gap between the discrete-time model used for simulation
and the continuous nature of the emptying process observed in operational envi-
ronments.

Processing Unit Dynamics. The transformation time by a Processing Unit
(PU) for material volume v in a container depends linearly on the producible
products from v, expressed as �v/bij�. This is detailed by the function gij in
Eq. (3), incorporating bij for product size, βij as the PU’s activation time, and
λij for time per product. Here, i refers to the container index, and j to the
specific PU index, indicating that the parameters are specific to each container-
PU combination. If PUs are occupied, containers awaiting processing continue
to accumulate material, highlighting the system’s operational constraints and
the need for efficient PU management.

gij(v) = βij + λij�v/bij� . (3)

5 Reward Tuning

In addressing the complexities of dynamic decision-making environments, the
formulation of reward functions is a critical component. This section presents
the case for Gaussian-based reward mechanisms, chosen for their smoothness
and ability to accommodate the infrequent nature of container-emptying actions
and the uncertainties within state space parameters. Gaussian rewards, charac-
terized by their resilience to noise, ease of interpretation, and smooth gradient



156 A. Pendyala et al.

provision, are selected to mitigate the effects of measurement inaccuracies and
focus on the aggregate effects of the underlying phenomenon. The strategies
are presented in three distinct subsections: Simple Gaussian Reward, Custom
Reward, and Precision Reward.

5.1 Simple Gaussian Reward

The reward r(st, at, PUstatus) is calculated based on the action taken, the current
volume of a container, the volume at the next time step, and whether a PU is
free to empty the container implicitly contained in st. A Gaussian distribution
centred around the ideal volume for emptying a given container with parameters
defining the peak volume (p), peak height (a), and peak width (w) was used. The
complete reward function r(st, at, PUstatus) is summarized in Algorithm 1. It
fosters emptying containers at or close to their optimal volumes, where the width
(standard deviation) w controls the required precision encoded by the reward.
A wider peak enables fast initial learning, while a narrow peak focuses on fine-
tuning.

Algorithm 1: Gaussian Reward Function for Emptying Decision
input : Action at, Current volume vt, PU availability PU status, penalty rpen,

ideal volume vi, Height of the peak h, Width of the peak w
output: Reward rt between rpen and 1

if at > 0 then
if vt = 0 or not PU status then

rt ← rpen

else

rt ← (h − rpen) · exp
(
− (vt−vi)

2

2w2

)
+ rpen

In principle, this reward encodes everything the agent needs to know about
the problem at hand.

5.2 Custom Reward

Here the custom reward function built on the Gaussian reward is introduced to
navigate the complexities of dynamic resource allocation and operational optimi-
sation. This reward is a sum of action rewards plus bonuses, positional rewards,
and episode termination rewards to enhance the learning efficiency of the agent.

Action Reward, which is nothing but the Simple Gaussian Reward Func-
tion, described earlier is used to quantify the efficacy of an action at a timestep
based on the container’s proximity to an ideal volume. It applies only to (sup-
posedly rare) emptying actions. The conditional nature of this reward ensures
that meaningful actions–those contributing to the actual emptying behaviour



Tackling Real-World Reinforcement Learning Deployment 157

of the agent–are incentivized, while actions that do not align with constraints
are penalized.

Positional Reward is used to encourage the system towards an ideal opera-
tional state across all containers, not just the one being acted upon. It’s designed
to address the challenge of slow filling rates across the containers, which leads to
sparse action rewards within the operational timeframe. For example, there are
containers for which it takes up to 300 timesteps of 60 s (or five hours) to reach
the ideal emptying volume. These rewards need to be propagated back through
a long history of zero-actions that contributed to emptying at the right moment.
By assigning a reward to each container based on its volume relative to an ideal
operational state, and importantly, doing so irrespective of the agent’s actions
at every time step, the reward signal ensures a constant nudge towards optimal
efficiency across all containers.

The positional reward for a given container not acted upon at time step t,
rpositional,j , is calculated as follows:

rpositional,j =

⎧
⎨

⎩

1 −
∣
∣
∣
(vi−vj,t)

vi

∣
∣
∣
0.5

, if vj,t ≤ vi,

−0.1, otherwise.
(4)

The cumulative positional reward for all containers is calculated as

rpositional =
n∑

j=1

rpositional,j (5)

where n is the total number of containers.
Episode Termination Reward is a critical component designed to ensure

the agent learns to avoid prematurely ending an episode by reaching an unsafe
state. It aims at discouraging the agent from allowing any container to exceed
its physical limit of 40 volume units, a crucial safety consideration.

The episode termination reward, rtermination, is defined as follows:

rtermination =

{
0.2, reward for not ending the episode prematurely,

−30, if any container’s volume exceeds the safety limit of 40.

(6)

5.3 Precision Reward

While the Gaussian reward in principle encodes the full goal of emptying at
the optimal volume, its smooth and rather flat top can make fine-tuning dif-
ficult. Therefore, we introduce an additional incentive for the agent to empty
at the ideal volume by rewarding within a narrowly defined optimal range and
penalizing deviations:



158 A. Pendyala et al.

Algorithm 2: New Reward Style for Encouraging Ideal Volume
input : Current volume vt of a container, Ideal volume vi
output: Reward rt

if −0.5 + vi < vt < 0.5 + vi then
rt ← 1.0

else
rt ← −0.1

6 Methodology

In the section, a scaffold approach to developing reinforcement learning agents is
presented. This methodology, encompassing five phases, progressively introduces
increased complexity, systematically enhancing agent competency. By employing
a phased curriculum learning strategy, the agent’s evolution is carefully curated,
ensuring a gradual ascension to operational adeptness. In the following section,
we go through each phase, starting from its goals, and explaining the measures
for reaching these goals.

Phase 1: Foundational Training. The goal of this phase is to learn a first
non-trivial policy for a simplified version of the task. In particular, the agent
must learn to perform the zero-action most of the time, while executing rare but
critical emptying actions when a container volume comes close to the optimal
volume. In this initial phase, the random walk for filling containers is disabled,
resulting in a deterministic and easily predictable environment. Furthermore,
there are as many PUs as containers. That’s a very unrealistic setting that
in effect removes all dependencies between containers reaching peak volume at
the same time. Here, the Custom Reward is implemented. Actions are taken
every 30 s, and episodes are as short as 25 time steps. The initial states are
designed such that there are at least 8–11 emptying actions that lead to positive
rewards and the rest being do-nothing actions. This helps the initial agent in
dealing with the class imbalance problem alluded to in Sect. 3.

Phase 2: Refinement. In this stage, the Precision Reward is added for a bud-
get of 1 million timesteps. All other settings are retained from the first phase. The
introduction of Precision Reward aims to refine the agent’s accuracy in actions,
within a deterministic setting, enhancing the precision in decision-making.

Phase 3: Penalizing Greedy Actions. This training stage aims at altering
the policy so that it becomes more energy efficient. This is achieved by slightly
penalizing all emptying actions. The reasoning is that PUs are a scarce resource,
and emptying a container twice instead of once blocks the PU for an unnec-
essarily long time, and it also uses more energy than processing more of the
same material in one go. This adjustment is intended to augment the agent’s
greedy nature to accumulate more episodic rewards by prematurely emptying
a container too many times as opposed to optimizing for the least number of
emptying actions per episode along with precise emptying actions.



Tackling Real-World Reinforcement Learning Deployment 159

Phase 4: Inject Real-World Complexity. Now that the basic behaviour is as
intended, the agent is ready to be exposed to the true complexity of the environ-
ment. The budget for this phase is 0.5 million timesteps. Timesteps are extended
to 60 s, and the episodes are up to 600 timesteps long. In addition, the stochastic
filling rates and resource constraints are introduced. This results in significant
changes in the environment dynamics (noisy dynamics, failing emptying actions
if all PUs are busy), which must be accounted for with corresponding changes
in the value function estimator. To achieve this, the policy network is frozen and
only the value network is trained as both of these are distinct neural nets not
sharing network parameters [13]. This phase is tailored to tune the agent’s value
network to the unpredictable and constrained operational dynamics.

Phase 5: Fine-Tuning with Reduced KL Constraint. This phase concludes
the curriculum, mirroring Phase 4’s operational parameters but reinstating the
Precision Reward. Gradually unfreezing the policy with a low KL constraint
(limiting the Kullback Leibler divergence between action distributions) allows
controlled exploration around the learned policy within the complex environment
introduced in Phase 4.

To address operational constraints and edge cases effectively, action mask-
ing was incorporated after the curriculum learning phases for inference on the
test environment. This adaptation ensures alignment with the plant’s structural
and operational limitations, where the disposition of containers relative to Pro-
cessing Units (PUs) is dictated by the proximity to conveyor belts. Given this
configuration, only specific containers can be targeted for emptying based on
their accessibility to certain PUs. Additionally, dynamic reduction of the action
space is facilitated through action masking [14], particularly when all PUs are
engaged, enhancing decision-making efficiency.

Table 1. Summary of curriculum learning phases and their parameters

Phases Budget
(Mill.Ts)

TimeSteps
(Ts)

Ep-len
(Ts)

Reward Fill. rates Resource
Constraint
(PUs)

Phase-1 1.5 30 25 Custom Deterministic No

Phase-2 1 30 25 Precision Deterministic No

Phase-3 1 30 25 Precision with
penalty for
positive actions

Deterministic No

Phase-4 0.5 60 600 Policy frozen and
Precision

Stochastic Yes

Phase-5 0.5 60 600 Precision Stochastic Yes



160 A. Pendyala et al.

7 Experimental Evaluation

The goal of this section is to empirically verify the effectiveness of the proposed
approach. We aim to achieve this by answering two research questions.

Research question 1: Is the curriculum approach effective? To this end, we com-
pare the PPO-Curriculum learning (PPO-CL) agent trained in five phases for
all three criteria agents with our first baseline. This is a naive PPO agent (PPO-
volume criteria), optimized only for one of the three criteria, i.e., optimal emp-
tying volumes encoded by training with a Simple Gaussian reward.

Research Question 2: Does the proposed approach offer a real-world benefit?
For this, we compare PPO-CL with our second baseline, which is a meticulously
hand-crafted analytical agent labelled as a Optimal Analytic agent. This agent
is close to the semi-automated decision policy currently deployed at the waste
sorting facility. It is optimal in the sense that it empties containers at their
precise target volumes if possible, and that it performs emergency emptying at a
volume of 37 (out of 40) to avoid overflow. However, it does not take interactions
of containers competing for PUs into account.

With respect to metrics, cumulative reward values are not necessarily the
most relevant performance measure. Therefore we investigate different aspects
like safety, energy-saving behavior and timing precision separately, in order to
arrive at conclusions that are meaningful not only from an RL perspective but
also from an application point of view.

In the spirit of open and reproducible research, we make our source code
available via an anonymous repository.1 The repository contains a script for
reproducing all results presented in this section.

7.1 Experimental Setup

The PPO-CL (five phases) and PPO-volume criteria agents undergo training
within environments with eleven containers and two PUs. These are character-
ized by a 60-second time-step and a 600-episode length, with default settings
maintained for other hyperparameters. To evaluate stability, fifteen independent
training runs are conducted with distinct random seeds for each agent. Our sec-
ond baseline, the Optimal Analytic agent operates with a fixed logic. Hence it is
designed, not trained. Its main criterion for emptying decisions is the evaluation
of the proximity of each container’s volume to its ideal state. It also prioritizes
actions based on operational conditions such as PU availability and the plant’s
physical layout (e.g., container alignment with conveyor belts). To ensure a fair
comparison, we test the PPO-CL agent and both baselines on the same test
environment.

7.2 Results

In this section, we present the empirical results. Figure 2 shows a single rollout
with the best policy produced by both PPO agents. Our visualization tracks
1 https://gitlab.com/anonymousppocl1/ppo paper.git.

https://gitlab.com/anonymousppocl1/ppo_paper.git


Tackling Real-World Reinforcement Learning Deployment 161

container volumes, actions, and PU utilization over time, offering a more nuanced
analysis than reward values alone. The volume chart shows different containers
being emptied at around their respective ideal volumes and the frequency of
peaks in the time chart for PUs gives a sense of how they compete for the
resources. The key insight here is that although the PPO-volume criteria agent
seems to show reasonable behaviour, its emptying decisions are not properly
timed, as is evident from the large reward fluctuations. In contrast, the PPO-CL
agent consistently achieves close-to-optimal rewards.

Emptying Decision Quality. Here we compare all three agents for the quality
of emptying decisions. For the trained PPO agents, these metrics represent the
best out of 15 independent training runs. Table 2 shows the average inference
volume deviation (deviation between actual and ideal container volume) across
all containers. The first baseline, the PPO-volume criteria agent, performs poorly
with the highest deviation. The PPO-CL agent and the analytical agent achieve
much smaller deviations, while the former does better than the latter.

Safety and Energy Savings. Table 2 also shows the total number of emptying
actions. Both baseline agents take the same number of emptying actions, while
PPO-CL gets along with fewer actions, consequently emptying containers at
higher volumes. This behavior results in better resource utilization, in terms of
PU occupation time, and also in terms of energy.

Figure 3 further highlights the PPO-CL agent’s strengths in energy effi-
ciency and safety compliance. On the left, we see significant energy conservation:
the PPO-CL agent utilizes the PU 12% less than the Optimal Analytic Agent
and 24% less than the PPO-volume criteria agent. The right graph underscores
the PPO-volume criteria agent’s alarming safety violations: 27.11% of its actions
exceed the critical volume limit of 40. This highlights the risks of training an
RL agent from scratch in complex environments with safety constraints. In con-
trast, the Optimal Analytic agent exhibits zero violations due to its hard-coded
limit of 37, acting as a safety benchmark but lacking adaptability. The PPO-CL
agent, however, achieves a remarkable 1.7% violation rate.

Overall, the PPO-CL agent demonstrates a superior balance. The results
suggest that phased learning strategies offer distinct advantages in complex,
multi-criteria decision-making environments, particularly in industrial settings
where precision, adaptability, and efficiency are crucial.

7.3 Discussion

To gain deeper insights into the PPO-CL agent’s safety, energy efficiency, and
volume management, we further analyze the results from the previous section.

The PPO-CL agent’s safety adherence, a critical outcome highlighted by the
results, likely stems from two key curriculum design elements: the enforcement
of safety constraints and the early emphasis on safe exploration. Short episode
lengths in initial phases (25 timesteps, as seen in Table 1) encouraged exploration



162 A. Pendyala et al.

Fig. 2. A single rollout (best agent out of 15) of the PPO-CL (left) and PPO-volume
criteria on a test environment with 11 containers. Displayed are the volumes, emptying
actions, rewards, and time to process by PU-1 and PU-2.

Table 2. Performance metrics for both RL agents (best seed out of 15) and analytic
agent for 15 rollouts on the same test environment: emptying actions and average
inference volume deviation

Agent Emptying Actions Avg. Inf Vol Deviation (± Std Dev)

PPO-volume criteria 62 15.16 ± 10.80

Optimal Analytic Agent 62 4.47 ± 2.61

PPO-CL 56 3.55 ± 2.33

within safe state spaces. Furthermore, the reward structure in Phase 3, which
penalizes actions even with positive outcomes, directly incentivizes conservative
decision-making, contributing to the agent’s reduced PU utilization and energy
savings. This flexibility in balancing competing objectives makes our framework
particularly suitable for complex industrial settings where safety is of utmost
importance.

To analyze the emptying decision quality of the PPO-CL agent against
our two baselines, we examine the empirical cumulative distribution functions
(ECDFs) in Fig. 4. ECDFs plot the probability, based on observed data from
agent actions, that a container is emptied at or below a given volume. Here,
steeper curves signify greater consistency in emptying volumes at which a con-
tainer is emptied across different instances. Our first baseline, the PPO-volume
criteria agent, exhibits higher variance in its ECDF, particularly for slower-filling
containers (e.g., C1-40, C1-60, C2-10, C2-20). This points to the difficulty of



Tackling Real-World Reinforcement Learning Deployment 163

Fig. 3. Comparison of key performance metrics across different agents, collected over
15 rollouts of the best policy for both PPO agents. The left figure presents the average
total PU utilization across agents. The right figure details the percentage of safety
violations

Fig. 4. ECDFs of emptying volumes of all 11 containers collected over 15 rollouts of
the best policy for PPO-Volume criteria, PPO-CL, and Optimal analytic agent on
a test environment. Average fill rates are indicated in volume units per second. The
derivatives of the curves are the PDFs of emptying volumes. Therefore, a steep incline
indicates that the corresponding volume is frequent in the corresponding density.

learning effective policies when rewards are delayed due to extended fill times, an
issue hindering from-scratch training as discussed in Sect. 5.2. In contrast, our
second baseline, the Optimal Analytic agent, employs a deterministic logic that
leads to frequent preemptive emptying. While this ensures no safety violations, it
results in inefficient energy usage.



164 A. Pendyala et al.

The PPO-CL agent’s ECDFs demonstrate remarkable consistency across all
containers, regardless of fill rate. This highlights its ability to manage delayed
rewards effectively, leading to optimal energy usage with fewer emptying actions
per episode - a key advantage emphasized by our results. Crucially, unlike the
PPO-volume criteria agent, the PPO-CL agent consistently avoids reaching the
critical volume threshold of 40 (evident from all slow-filling containers), demon-
strating its strong safety compliance.

8 Conclusion

In this work, a curriculum learning approach was introduced, designed to pro-
gressively enhance the complexity of the environment for training a Proximal
Policy Optimization (PPO) agent to navigate the intricacies of real-world indus-
trial operations. Our model not only achieves a harmonious balance among
competing operational goals like volume management, energy conservation, and
adherence to stringent safety protocols, but it also paves the way for the broader
application of such strategies in advanced, adaptive, multi-criteria decision-
making environments. We believe that with some (industrial) domain expertise
available, designing a curriculum is an attractive alternative to using excessive
computing for solving hard problems, e.g., by training more complex networks
or by applying multi-agent approaches.

We view our achievement as a solid basis for future endeavours. Although
our agent performs well in most cases, we have not yet pushed its ability to
avoid unsafe behaviour to the maximum. This amounts to avoiding future colli-
sions of PU usage requests, which may occur if too many containers reach their
ideal volume at the same time. That situation should be counteracted by emp-
tying some containers earlier than usual. The problem is pressing since PUs are
expensive units, so facilities are often designed with the smallest possible num-
ber of PUs. Designing a systematic solution to this problem will be subject to
future research. It may involve forms of (stochastic) real-time planning, as well
as further curriculum steps specifically targeted at the collision problem.

For practitioners in the realm of real-world reinforcement learning, we offer
two take-home messages. First, it has proven invaluable to evaluate agent per-
formance beyond mere cumulative rewards, using ECDF plots, diverse metrics,
and statistical tools. Second, particularly in environments of high complexity,
adopting a curriculum-based training approach can help with the learning of
meaningful policies, surmounting the limitations faced by vanilla agents.

References

1. Pendyala, A., Dettmer, J., Glasmachers, T., Aamna, T.: ContainerGym: a real-
world reinforcement learning benchmark for resource allocation. In: Machine Learn-
ing, Optimization, and Data Science, pp. 78–92. Springer (2024). https://doi.org/
10.1007/978-3-031-53969-5 7

https://doi.org/10.1007/978-3-031-53969-5_7
https://doi.org/10.1007/978-3-031-53969-5_7


Tackling Real-World Reinforcement Learning Deployment 165

2. Narvekar, S., Peng, B., Leonetti, M., Sinapov, J., Taylor, M.E., Stone, P.: Cur-
riculum learning for reinforcement learning domains: a framework and survey. J.
Mach. Learn. Res. 21(1), 7382–7431 (2020)

3. Weinshall, D., Cohen, G., Amir, D.: Curriculum Learning by Transfer Learning:
Theory and Experiments with Deep Networks. arXiv preprint arXiv:1802.03796
(2018)

4. Justesen, N., Bontrager, P., Togelius, J., Risi, S.: Automated curriculum learning
for deep reinforcement learning. In: Conference on Computational Intelligence and
Games (CIG) (2018)

5. Riedmiller, M., et al.: Learning by Playing - Solving Sparse Reward Tasks from
Scratch. arXiv preprint arXiv:1802.10567 (2018)

6. Garćıa, J., Fernández, F.: A comprehensive survey on safe reinforcement learning.
J. Mach. Learn. Res. 16, 1437–1480 (2015)

7. Wang, X., Chen, Y., Zhu, W.: A survey on curriculum learning. IEEE Trans.
Pattern Anal. Mach. Intell. 44(9), 4555–4576 (2022)

8. Gupta, K., Mukherjee, D., Najjaran, H.: Extending the capabilities of reinforce-
ment learning through curriculum: a review of methods and applications. SN Com-
put. Sci. 3(1), 28 (2021)

9. Florensa, C., Held, D., Wulfmeier, M., Zhang, M., Abbeel, P.: Reverse curricu-
lum generation for reinforcement learning. In: 1st Conference on Robot Learning
(CoRL) (2017)

10. Racanière, S., Lampinen, A.K., Santoro, A., Reichert, D.P., Firoiu, V., Lillicrap,
T.P.: Imagination augmented agents for deep reinforcement learning. In: Advances
in Neural Information Processing Systems 32 (NeurIPS 2019) (2019)

11. Xu, Z., Tewari, A.: On the statistical benefits of curriculum learning. In: Chaud-
huri, K., (eds.) Proceedings of the 39th International Conference on Machine Learn-
ing, vol. 162, Proceedings of Machine Learning Research, PMLR, pp. 24663–24682
(2022)

12. Pollack, T., Van Kampen, E.-J.: Safe Curriculum Learning for Optimal Flight
Control of Unmanned Aerial Vehicles with Uncertain System Dynamics. In: AIAA
Scitech 2020 Forum. AIAA SciTech Forum, American Institute of Aeronautics and
Astronautics (2020)

13. Wang, X., et al.: SCC: an efficient deep reinforcement learning agent mastering the
game of StarCraft II. arXiv preprint arXiv:2012.13169, December 2020

14. Huang, S., Ontañón, S.: A closer look at invalid action masking in policy gradient
algorithms. arXiv preprint arXiv:2006.14171, June 2020

http://arxiv.org/abs/1802.03796
http://arxiv.org/abs/1802.10567
http://arxiv.org/abs/2012.13169
http://arxiv.org/abs/2006.14171

	Solving a Real-World Optimization Problem Using Proximal Policy Optimization with Curriculum Learning and Reward Engineering
	1 Introduction
	2 Related Work
	3 Real Environment and Problem Description
	4 Reinforcement Learning Problem Formulation
	4.1 State Space
	4.2 Action Space
	4.3 Environment Dynamics

	5 Reward Tuning
	5.1 Simple Gaussian Reward
	5.2 Custom Reward
	5.3 Precision Reward

	6 Methodology
	7 Experimental Evaluation
	7.1 Experimental Setup
	7.2 Results
	7.3 Discussion

	8 Conclusion
	References


