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Abstract. Ephemeral Group Recommendation (EGR) refers to recom-
mending items for a temporarily existing group, where the ephemeral
group has little or no historical interactions with items while each group
member has his/her own interaction history. We note that EGR not only
faces the challenge of extremely sparse or nonexistent group-item interac-
tions and also has its own special needs. EGR needs to seek the common
preferences of the members instead of maximizing the personalized needs
of individuals. In particular, group preferences may not necessarily be
related to the timeliness and intensity of the member’s individual behav-
ior and preferences. Following this line of thought, we propose an EGR
model named HL4EGR. Specifically, we adopt hypergraphs to model
complex relationships among users, items, and groups, during which we
weaken the timeliness and intensity of user behavior and preferences and
augment training data by discovering implicit and explicit group-group
similarities. Moreover, we design a cross-hypergraph contrastive learning
strategy to align embeddings for the same group in different hypergraphs,
which enables group preferences to reflect the common preferences of
group members comprehensively. We conduct extensive experiments on
three real-world datasets, and the experimental results show that our
model HL4EGR outperforms state-of-the-art models.

Keywords: Recommender Systems · Group Recommendation ·
Hypergraph Neural Networks · Contrastive Learning

1 Introduction

In recent years, recommender systems have been offering personalized item rec-
ommendations on online services. With the increasing social activities of users,
providing group recommendations on online services is poised to become a new
and viable pathway to attract users and boost user engagement continuously.

The group recommendation is to recommend items of common interests (such
as dining restaurants, travel destinations, and gathering venues) for a group of
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Fig. 1. Case study. The icon denotes the type of restaurant. The sequence of icons in
a rectangle denotes the interaction history of the person on the left side.

members, often taking group preferences as a guideline [9,10,13,19]. Depending
on the way a group is established, group recommendation can be divided into
two categories: persistent group recommendation (PGR) and ephemeral group
recommendation (EGR). The former is for a group with fixed members having
long-term and extensive interactions between the group and items. The latter
is for a temporarily formed group without fixed members, where the group has
little or no historical interactions with items, making it impossible to directly
learn from those interactions. We focus on EGR in this paper.

We note that the group recommendation, either PGR or EGR, should adhere
to the norm of seeking common ground, which facilitates the smooth progress of
collective activities. Specifically, the group recommendation models are supposed
to treat the common preferences of all the members as the group preferences,
and seek factors behind the consensus among group members. In particular, the
model should treat the historical and current preferences of a group member
equally, without weakening the role of the group member’s historical preferences
over time. This stems from real-life experience: if a member’s historical prefer-
ences are the same as the current preferences of the other members in a group,
even if the member’s current preferences have deviated from his/her historical
preferences, the member may still reach a compromise with the other members,
accepting the item that is consistent with his/her historical preferences. More-
over, the model are expected to treat the strong preferences of one member and
the weak preferences of another member equally, and should not be misled by
the strong preferences exhibited by one or a few members.

Taking a real ephemeral group from the Yelp dataset as an example. As
depicted in Fig. 1, the group consists of three persons. The person on the top
has wide-ranging interests, where steak is his early preference. The person on the
middle left has interest in steak and hamburger, and the person on the middle
right has interest in steak only. Finally, this group actually visits a steakhouse, a
restaurant that is acceptable to all three of them. Unfortunately, existing EGR
models fail to obtain the correct result. For the case in the Fig. 1, GroupIM [14]
and CubeRec [6] recommend a burger shop and a dessert shop, respectively. It
seems that these two models are influenced by the strong personal preferences
of two group members. S2-HHGR [20] and HyperGroup [8] recommend a noodle
shop and a pizza shop, respectively. These two models seem to ignore historical
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preferences of members and be influenced by the user with wide-ranging pref-
erences. In addition, two PGR models, i.e., AGREE [4] and ConsRec [16], also
give incorrect results.

To realize “seeking common ground” in group recommendations and figure
out a feasible solution to the inherent problem in EGR, that is, group-item
interactions are extremely sparse or nonexistent, we propose a multi-hypergraph
model named HL4EGR (Hypergraph Learning for Ephemeral Group Recom-
mendation). The model employs hypergraphs to capture the relationship among
users, items, and groups, and adopts a two-stage framework consisting of pre-
training and fine-tuning. During the pre-training, we choose the hypergraph to
model user-item interactions, where a hyperedge connects all the items that
a user interacts with, thus equally treating historical interactions and current
interactions. The item embeddings obtained by the pre-training are subsequently
clustered to identify user preferences. At the stage of fine-tuning, we construct
three hypergraphs to model user-group affiliations and two types of group-group
similarities, respectively. Here, two types of similarities are given from two dif-
ferent perspectives, one explicit from the perspective of items interacted with by
the members and another implicit from the perspective of common preferences of
members. Both of them emphasize the commonality of member behavior or mem-
ber preferences, and weaken the intensity of member behavior or preferences.
Further, we maximize the agreement between contrastive views of groups by
cross-hypergraph contrastive learning. Finally, we aggregate these group embed-
dings to generate group preferences and then perform the prediction for groups.
For the case in Fig. 1, our model recommends a steakhouse that is in line with
the ground truth. Our contributions are summarized as follows.

• We construct four hypergraphs and learn the complex relationships among
users, items, and groups through hypergraph convolutions. Particularly, by
means of hypergraphs, we weaken the timeliness and intensity of user behav-
ior and preferences and captures their common preferences effectively, thus
satisfying the intrinsic requirement of group recommendation.

• We highlight that identifying and leveraging similarities between groups pro-
vides a practicable way to cope with the absence of group-item interactions.
Moreover, we take group self-discrimination as the self-supervised task, which
offers auxiliary supervision signals via two views of a group w.r.t. explicit and
implicit group-group similarities for reinforcing group representation learning.

• We conduct extensive experiments on three public datasets. The experimen-
tal results show that HL4EGR consistently outperforms the state-of-the-art
models, showing relative gains of 8.92%-15.93% on Recall@50 and 13.37%-
18.88% on NDCG@50, respectively.

2 Related Work

Early group recommendation adopts collaborative filtering to obtain the mem-
ber’s scores on items and then aggregates their scores to get group preferences by
some hand-crafted heuristic rules. Customary aggregation methods include the
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least misery [1], the average [3], and the maximum satisfaction strategy [2]. How-
ever, these predefined aggregation strategies lack the flexibility to achieve opti-
mal performance in group recommendation. Subsequent work on group recom-
mendation shifts towards how to efficiently aggregate the preference representa-
tions of all group members to the group preference. For example, multiple group
recommendation models such as AGREE [4], SoAGREE [5] and MoSAN [15]
propose different attention-based aggregation methods.

With the development of graph neural networks, the tripartite graph [12] has
been employed to model users, items, and groups relationships and then learn
group representations. Furthermore, hypergraphs are found to be more suitable
for modeling groups because hyperedges in the hypergraph can connect two or
more nodes and represent a more general topological relationship. Some models
[8,10,16,20] apply the hypergraph to model groups and then employ Hypergraph
Neural Networks (HNNs) [17] to generate group representations. For example,
ConsRec [16] models users and items as nodes, groups as hyperedges, and learns
group representations through HNNs. In addition, CubeRec [6] adaptively gen-
erates a hypercube representation for each group. However, these models do not
discover the essence of user preferences playing a role in group recommendation
scenarios. They do not treat strong and weak preferences equally, nor do they
give equal weight to historical and current preferences.

Recently, the research on group recommendation [6,14,20] has attempted
to incorporate self-supervised learning to alleviate the data sparsity problem.
For example, for enhancing the user and group representations, GroupIM [14]
proposes maximizing mutual information between members within a group and
the group. S2-HHGR [20] designs a double-scale node dropout strategy and per-
forms node self-discrimination on different user representations. However, exist-
ing methods mainly focus on finding self-supervision signals in user-group rela-
tionships without considering group-group relationships. Besides, some studies
rely on introducing additional information to improve the performance of group
recommendations. For example, KGAG [7] introduces knowledge graphs into
group recommendation. SIGR [18] and HyperGroup [8] introduce social relation-
ships among users to learn group preferences influenced by social relationships.

Compared to existing work, our model employs multiple hypergraphs to
model different relationships among users, items, and groups from multiple per-
spectives, using the prior about the role of user preferences for group recommen-
dations as an inductive bias of the model. Moreover, our model captures self-
supervision signals from the similarities between groups, and then learn more
comprehensive group representations.

3 Methodology

3.1 Model Overview

Let U , V and G denote the user set, item set, and ephemeral group set, respec-
tively. An ephemeral group gk ∈ G consists of |gk| users, i.e., gk = {ugk

i }|gk|
i=1,
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Fig. 2. Architecture of our HL4EGR.

where ugk
i ∈ U . There are two types of observed interactions among users, items,

and ephemeral groups, i.e., user-item interactions denoted as X ∈ R
|U|×|V|, and

group-item interactions represented as Y ∈ R
|G|×|V|, where the element ykj of

the matrix Y is equal to 1 if the group gk has historical interactions with the
item vj , otherwise ykj = 0.

Given an ephemeral group gk, our task is to predict the item that the group
gk is most likely to be satisfied with.

For this task, we propose a multi-hypergraph model HL4EGR, whose archi-
tecture is shown in Fig. 2. We build four hypergraphs to model the user-item
interactions, the user-group affiliations, and the explicit and implicit group-group
similarities.

As shown in Fig. 2, the training of HL4EGR is divided into two stages, i.e.,
pre-training and fine-tuning.

In the first stage, we construct the user-item hypergraph HUV and perform
the convolution operation on HUV , thus obtaining the user embeddings U and
item embeddings V. U is utilized for initializing the group embeddings used
in the second stage and V is applied to characterize the user preferences by
clustering.

In the second stage of training, i.e., fine-tuning, except for constructing
the user-group hypergraph HUG, we also construct two group-group hyper-
graphs HV and HP , portraying explicit and implicit similarities between groups,
respectively. Then we perform the hypergraph convolution operations to obtain
group embeddings. Furthermore, we adopt a cross-hypergraph contrastive learn-
ing strategy to align embeddings of the same group from both explicit and
implicit perspectives, thus obtaining more comprehensive group preferences that
are devoted to group recommendation.
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3.2 Hypergraph Construction

User-Item Hypergraph . We define the user-item hypergraph as HUV =
(V, EUV ), where a node of HUV is an item in V, a hyperedge eUV

i ∈ EUV ,
i ∈ [1, |U|] connects all the items that user ui interacts with, and |EUV | = |U|.
As shown in Fig. 2, user u1 has historical interactions with item v1 and item
v2, thus we connect {v1, v2} with a hyperedge. Such hyperedges eliminate tem-
poral differentiations of interactions, treating historical interactions and current
interactions equally.

User-Group Hypergraph . We define the user-group hypergraph as HUG =
(U , EUG), where a node of HUG is a user in U , a hyperedge eUG

k ∈ EUG, k ∈
[1, |G|] connects all the users in group gk, and |EUG| = |G|. As shown in Fig. 2,
we connect the group member {u1, u2} of the group g1 with a hyperedge, which
reflects the user-group affiliation.

Group-Group Hypergraphs . For alleviating the data sparsity issue, we con-
struct two group-group hypergraphs, i.e., HV = (G, EV ) and HP = (G, EP ).

In hypergraph HV , G is taken as the node set, and a hyperedge eVk ∈ EV ,
k ∈ [1, |G|] connects all such groups, provided that a member of that group and
a member of group gk interact with the same item. In other words, hypergraph
HV contains the explicit similarities between groups.

Complementary to HV , hypergraph HP implies the implicit similarities
between groups, i.e., the preference similarities between groups. The group pref-
erence is essentially a collection of member preferences. Specifically, with the
consideration of the interference of noisy behavior, we regard the items that all
users have interacted with as the starting point to model the user’s preferences,
instead of capturing the user’s preferences from a user’s behavior. We perform
K-means clustering on the item embeddings V obtained by the pre-training on
the hypergraph HUV and generate c clustering centers. Next, for each user,
given an item that this user has interacted with, if the distance between the
item embedding and the center of the category the item belongs to is less than
μ, this center is considered to be a preference of this user. Subsequently, the
preferences of group members are merged to form a set of group preferences.
Then, we build a hyperedge ePk ∈ EP , k ∈ [1, |G|] to connect the groups that has
common preferences with group gk.

When building the group-group hypergraphs, we treat all the hyperedges
equally (i.e., hyperedges with same weights), thus flattening the intensity of a
user’s individual behavior and preferences. This enables HL4EGR to more fairly
learn the common preferences of users within the group, reducing the impact of
the intensity of a user’s personal behavior and preferences on the group-group
similarity.
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3.3 Hypergraph Convolution

In HL4EGR, we design a HyperGraph Convolutional Network (HGCN) to learn
representations of nodes and hyperedges in a hypergraph. Without loss of gener-
ality, we formalize four hypergraphs uniformly as H = (N , E), where N denotes
the node set and E denotes the hyperedge set. The learning process of the l-th
layer of HGCN is as follows.

Firstly, we aggregate representations of all nodes connected by hyperedge ek
as follows.

m(l)
k = AGG(n(l−1)

i |ni ∈ ek) (1)

where ek ∈ E denotes the k-th hyperedge, n(0)
i is the initial embedding of node

ni ∈ N , n(l−1)
i is the embedding of the node ni in the (l − 1)-th layer, AGG(·)

denotes an aggregation function, realized as an average pooling function.
Then, we concatenate node aggregation representation m(l)

k and hyperedge
representation e(l−1)

k to update the hyperedge representation as follows.

e(l)k = CONCAT(m(l)
k , e(l−1)

k )WH (2)

where e(0)k is the initial embedding of hyperedge ek, e
(l)
k denotes the embedding

of the hyperedge ek in the l-th layer. WH ∈ R
2d×d is a learnable matrix.

Moreover, node representations can be updated as follows.

n(l)
i = AGG(e(l)k |ek ∈ Ei) (3)

where Ei represents the set of hyperedges connected to the node ni.
Finally, we can obtain the embedding ni of the node ni, and the embedding

ek of the hyperedge ek as follows.

ni =
L∑

l=1

n(l)
i , ek =

L∑

l=1

e(l)k (4)

where L is the number of convolutional layers.
During pre-training, we first randomly initialize the representations of nodes

and hyperedges in HUV and feed them into an HGCN. Then, we iterate and
optimize the HGCN by the cross entropy loss (LU in Fig. 2). After pre-training,
we obtain user embeddings U ∈ R

|U|×d and item embeddings V ∈ R
|V|×d.

During fine-tuning, we first aggregate user embeddings U to generate group
embeddings GU ∈ R

|G|×d. In detail, taking the group gk as an example, we lever-
age an attention mechanism to aggregate embeddings of users in the group gk,
thereby obtaining the initial group representation gU

k = GU (k, :). This process
can be formalized as follows.

gU
k =

∑

ui∈gk

αiui (5)

αi =
exp(tanh(uiWAGG + b))∑

ui′ ∈gk
exp(tanh(ui′WAGG + b))

(6)
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where ui = U(i, :) denotes the embedding of the user ui obtained by pre-training,
αi is the attention weight w.r.t. the user ui. WAGG ∈ R

d is a learnable vector
and b is a bias.

Next, we use GU to initialize hyperedges of HUG, HV and HP , and nodes
of HV and HP , and use user embeddings U obtained by the pre-training to
initialize node representations on the hypergraph HUG, and then feed them into
corresponding HGCNs.

Finally, by performing the calculations over these three HGCNs, we obtain
representations of hyperedges in three hypergraphs, denoted as GUG, GV , and
GP , respectively. Given group gk, its embeddings from three hypergraphs are
gUG
k = GUG(k, :), gV

k = GV (k, :), and gP
k = GP (k, :), respectively.

3.4 Cross-Hypergraph Contrastive Learning

To learn more comprehensive group preferences, we design a contrastive learn-
ing strategy on two group-group hypergraphs, i.e., the hypergraph HV reflecting
explicit similarities and the hypergraph HP implying implicit similarities, align-
ing two embeddings of the same group in HV and HP . Concretely, we regard
the representations w.r.t. the same group in two hypergraphs HV and HP as
positive sample pairs. The representations w.r.t. different groups in the same
batch in two hypergraphs HV and HP are considered as negative sample pairs.
We take InfoNCE loss as the contrastive learning loss as follows.

LCL = −
∑

gk∈G
log

exp(sim(gV
k ,gP

k )/τ)
exp(sim(gV

k ,gP
k )/τ) + NV + NP

(7)

NV =
∑

gk′∈G−
k

exp(sim(gV
k′ ,gP

k )/τ), NP =
∑

gk′∈G−
k

exp(sim(gV
k ,gP

k′)/τ) (8)

where gV
k and gP

k form a pair of positive samples, corresponding to the represen-
tations of the group gk in the hypergraph HV and HP , respectively. G−

k is the
set of negative samples w.r.t. the group gk, which is composed of other groups
(i.e., k′ �= k) within the same batch. sim(·) function is adopted for calculating
the similarity of a pair of vectors, which refers to the cosine similarity in this
paper. τ is the temperature parameter.

3.5 Model Optimization

During pre-training, we predict the interaction probabilities x̂i ∈ R|V| of user ui

on the item set V as follows.

x̂i = softmax(uiWUV ) (9)

where ui = U(i, :)obtained from hypergraph HUV , WUV ∈ R
d×|V| is a learnable

matrix.
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Then we calculated the cross entropy loss LU as follows.

LU = − 1
|U|

|U|∑

i=1

|V|∑

j=1

xij log x̂ij (10)

where x̂ij refers to the interaction probability of the user ui w.r.t. the item vj .
xij is the ground truth of user-item interaction.

During fine-tuning, given group representations from different hypergraphs,
we adopt an adaptive aggregation strategy to fuse different group embeddings,
i.e., gU

k obtained from Eq. 5, gUG
k in the hypergraph HUG, and gV

k in the hyper-
graph HV , to generate the group preference gk for the group gk as follows.

gk = αgU
k + βgUG

k + γgV
k (11)

where α = σ(gU
k W

U ), β = σ(gUG
k WUG), and γ = σ(gV

k W
V ). WU , WUG, and

WV ∈ R
d are learnable matrices. σ is the sigmoid activation function.

We predict the interaction probabilities ŷk ∈ R
|V| of the group gk on the

item set V as follows.
ŷk = softmax(gkWGV ) (12)

where WGV ∈ R
d×|V| is a learnable matrix.

Then, we adopt the cross entropy loss as the main loss, calculated as follows.

LG = − 1
|G|

|G|∑

k=1

|V|∑

j=1

ykj log ŷkj (13)

where ŷkj refers to the interaction probability of the group gk w.r.t. the item vj .
ykj is the ground truth.

We adopt a multi-task strategy to jointly optimize the main group recom-
mendation task and the auxiliary contrastive learning task as follows.

L = LG + λLCL (14)

where λ is a hyperparameter.

3.6 Complexity Analysis

Space Complexity. In HL4EGR, the learnable parameters are mainly from
embeddings of users, items, and groups. In addition, as for hypergraph convo-
lutions, since we have four hypergraphs in two stages, each with L layers, the
number of parameters is 4L × 2d2. The number of parameters for two predic-
tion layers in two stages is 2|V|d. Thus, the space complexity of HL4EGR is
O(Ld2 + |U|d + |V|d + |G|d).
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Time Complexity. The computation amount of HL4EGR is mainly concen-
trated on the hypergraph convolutions. Let |H| be the number of nonzero ele-
ments in the adjacency matrix of hypergraph H. The time complexity of each
hypergraph convolution computation is O(L× (2|H|d+2|E|d2)), where |E| is the
number of hyperedges. For hypergraphs HUV , HUG, HV , and HP , the numbers
of hyperedges are |U|, |G|, |G|, and |G|, respectively. The total time complexity
of HL4EGR is O(Ld2|G| + Ld2|U| + Ld(|HUV | + |HUG| + |HV | + |HP |)).

Table 1. Statistics of datasets.

4 Experiments

4.1 Experimental Settings

Datasets. We conduct experiments on three public datasets.

• Weeplaces. It records users’ check-ins in location-based social networks. We
extract check-ins from points of interest (POIs) in all major cities in the U.S.
We follow the same operations as in GroupIM [14] for constructing user-POI
interactions and group-POI interactions.

• Yelp. It records users’ check-ins in local businesses (e.g., restaurants). We use
the dataset published in [18], which includes users’ check-ins on businesses
located in Los Angeles, as well as groups’ check-in information.

• Douban. It is also published in [18], recording the information of users orga-
nizing and participating in social activities. We filter out users and items with
fewer than 10 interactions.

Table 1 lists the statistics of the three datasets. As shown in Table 1, the
average of group-item interactions is less than 3, which manifests that we conduct
experiments on ephemeral groups. We randomly split all the groups of each
dataset into training, validation, and test sets with a ratio of 7:1:2. We ensure
that each group can only appear in one of the three sets.

Baselines. We compare HL4EGR to the following baselines:

• Two PGR models: AGREE1, which is a classical PGR model using an atten-
tion mechanism for member aggregation [4]. ConsRec2, the state-of-the-art

1 https://github.com/LianHaiMiao/Attentive-Group-Recommendation.
2 https://github.com/FDUDSDE/WWW2023ConsRec.

https://github.com/LianHaiMiao/Attentive-Group-Recommendation
https://github.com/FDUDSDE/WWW2023ConsRec
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model for PGR, which proposes an HNN to learn member-level aggregation
and captures the group consensus on three views [16].

• Four EGR models: GroupIM3, which maximizes user-group mutual infor-
mation for group recommendation [14]. HyperGroup4, which models groups
as hyperedges to learn group representations [8]. S2-HHGR5, which uses a
hierarchical hypergraph and a node dropout strategy on the hypergraph to
learn group preferences [20]. CubeRec6, the state-of-the-art model for EGR,
which utilizes the geometric expressiveness of hypercubes and hypercube
intersection-based self-supervision to obtain the group representations [6].

Table 2. Overall performance. The values in bold and underlined are the best and
second best results in each row.

Implementation Details. We implement our model in PyTorch. In our model,
the number of hypergraph convolutional layers L is set to 2 and temperature
τ is set to 1. We tune the weight of contrastive learning loss λ, the number of
clustering centers c, the threshold of distance to any clustering center μ for every
dataset, finally setting λ to 0.3, μ to 0.2 for all datasets, c to 64 for Weeplaces,
128 for Yelp and Douban. We optimize the model via the Adam optimizer with
3 https://github.com/CrowdDynamicsLab/GroupIM.
4 https://github.com/FDUDSDE/WWW2023GroupRecBaselines.
5 https://github.com/0411tony/HHGR.
6 https://github.com/jinglong0407/CubeRec.

https://github.com/CrowdDynamicsLab/GroupIM
https://github.com/FDUDSDE/WWW2023GroupRecBaselines
https://github.com/0411tony/HHGR
https://github.com/jinglong0407/CubeRec
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the learning rate 0.001. The implementation code has been released7. For the
sake of fairness, we set the size of all embeddings d to 64, the batch size to
256 in all the experiments. For all baselines, the hyperparameters are set to
values corresponding to best performance reported in their respective papers.
Experiments are conducted on NVIDIA RTX3090 GPU with 24G memory.

Metrics. To evaluate the performance of recommending items to groups, we
adopt two metrics, i.e., Recall@K and NDCG@K (R@K and N@K for short),
where Recall focuses on whether the group actually chooses the recommended
item, NDCG focuses on the ranking of the recommended items and K is set to
either 20 or 50.

Fig. 3. Group recommendation performance on groups of different sizes.

4.2 Performance Comparison

Overall Performance. Table 2 lists the experimental results of our proposed
model and compared models on the three datasets. From Table 2, we have the
following observations.

• The PGR models are far inferior to the EGR models in all metrics. This
is because PGR models depend on group-item interactions to learn group
preferences; however, these interactions become extremely sparse or nonex-
istent in the context of ephemeral groups, ultimately leading to a decline in
performance.

• Hypergraph-based models, i.e., ConsRec, HyperGroup, S2-HHGR, and
HL4EGR outperform the traditional attention-based model, i.e., AGREE,
which demonstrates that the hypergraph structure excels in modeling user-
group affiliations.

• Three EGR models equipped with self-supervised learning, i.e., GroupIM,
CubeRec, and HL4EGR, outperform other models. This might be attributed
to the fact that these EGR models can discover and utilize additional super-
vision signals, thus improving the quality of group embeddings. This shows
the advantages of self-supervised learning in EGR.

7 https://github.com/ZhaoRui-7/HL4EGR.

https://github.com/ZhaoRui-7/HL4EGR
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• Our HL4EGR outperforms all baselines on three datasets. Taking Recall@20
as an example, compared to the best baseline on each of the three datasets,
HL4EGR shows improvements of 14.56% - 23.48%, averaging at 17.87%.

Performance on Groups of Different Sizes. We split the test set into five
subsets by the range of the number of group members, i.e., 2-3, 4-5, 6-7, 8-9,
and >=10 members. We choose GroupIM and CubeRec for comparison because
they are the top-2 best baselines, and we conduct experiments on Weeplaces and
Yelp datasets.

As shown in Fig. 3, HL4EGR outperforms GroupIM and CubeRec in almost
all cases, except on groups of 10 or more members in Weeplaces, where all three
models have the same Recall values (reaching the maximum value of 1). In par-
ticular, HL4EGR outperforms the other two models for the case of groups of
2-3 members, indicating that HL4EGR is more suitable for real-life group rec-
ommendations, where the size of groups shows the long-tail distribution. Mean-
while, compared to other two models, HL4EGR has more significant performance
gains for groups of 10 or more members in Yelp. The reason behind might be
that HL4EGR can correct group representations by treating all behavior and
preferences of all members indiscriminately in terms of timeliness and intensity,
thus capturing common preferences of groups more accurately, while the number
of group members increases.

Table 3. Ablation study.

4.3 Ablation Study

Effect of Multiple Hypergraphs. We design four variants to observe the
effect of four hypergraphs in HL4EGR on the performance. Variant A deletes
the HGCN on HUV but also performs the pre-training, taking randomly ini-
tialized user and item embeddings as input and cross entropy loss, i.e., LU as
the optimization goal. Variant B removes the HGCN on HP , which triggers a
cascading removal of the contrastive learning module, since HP is treated as a
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source of self-supervision signals. Variant C removes the HGCN on HV , which
leads to the removal of contrastive learning module as well as the reduction of
one source of the group preference. Variant D eliminates the HGCN on HUG.

The experimental results on Weeplaces and Yelp are listed in Table 3(a).
Compared to HL4EGR, all variants show different degrees of performance degra-
dation, illustrating that each hypergraph is effective. Variant A shows the notable
performance degradation, indicating that hypergraph HUV is the underpinning
of the whole model. The direct reason behind this is that the user and item
embeddings derived from HUV are subsequently used for the construction and
learning of other hypergraphs, which imposes a great positive impact on per-
formance. The performance decrease of variant B shows the effect of alleviating
data sparsity and adjusting group embeddings via contrastive learning. Variant
C has a significant decline in performance, while compared to variant D, which
shows that group-group relationships play a more important role than inherent
memberships of groups in group recommendation.

Effect of Pre-Training. To observe the impact of pre-training, we construct
two extra variants of HL4EGR, namely variants E and F. Variant E removes
the pre-training, thus collapsing into the scaled-down version of only containing
HUG and HV and taking randomly initialized user embeddings as the input of
fine-tuning. Variant F substitutes SASRec [11] for the HGCN on HUV .

The performance of variants E and F is shown in the top half of Table 3(b).
Variant E without pre-training shows the worst performance, indicating that the
pre-training is indispensable.

Fig. 4. Sensitivity analysis of hyperparameters λ, c and μ on Weeplaces dataset.

Variant F was originally anticipated to exhibit high performance because
SASRec adopts a self-attentive mechanism that learns both long-term and short-
term dependencies and produces high-quality user and item embeddings. How-
ever, experimental results show that variant F does not surpass the original
HL4EGR. This observation reveals that the self-attention mechanism, which is
good at capturing temporal dependencies embedded in sequences, does little to
help eliciting the group preferences. Presumably the reason for this would be
that group preferences are time-insensitive.
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Effect of Hyperedge Weights. As mentioned in Sect. 3.2, when constructing
group-group similarity hypergraphs in HL4EGR, the weights on the hyperedges
are assigned to the same value, aiming to weaken the effect of the intensity
of individual member behavior and preferences. To observe how weight values
affect performance, we modify HV and HP by setting weights to the number
of items interacted with by both members of two groups and the number of
common preferences of two groups, respectively, and construct three variants of
HL4EGR. Variant G introduces weights on HV and HP . Variant H introduces
weights only on HV while variant I does so only on HP .

The experimental results are shown in the bottom half of Table 3(b). It can
be seen that variants G, H and I have lower performance than HL4EGR. In par-
ticular, variant G has a significant performance degradation, which shows that
simultaneously emphasizing the intensities of member behavior and preferences
has a significant negative effect on group recommendation.

4.4 Hyperparameter Sensitivity Analysis

Impact of Contrastive Loss Weight λ. Figure 4(a) shows the results on
Weeplaces dataset. This shows that appropriate contrastive learning loss can
effectively normalize the group representations.

Impact of Number of Clustering Centers c. Figure 4(b) shows the results.
HL4EGR achieves best performance on Weeplaces when c = 64. From Fig. 4(b),
we believe that when c is very small, the model is unable to distinguish a user’s
different preferences, leading to false similarity when modeling group-group sim-
ilarity. When c is too large, the model tends to identify the same preference
of a user as multiple preferences, which fails to weaken the intensity of user’s
individual preference.

Impact of Distance Threshold μ. Figure 4(c) shows the results. HL4EGR
achieves best performance when μ = 0.2. We think that when μ is very small,
items that indicate user preferences are filtered out; when μ becomes large, more
items including noisy items are retained. Both cause performance reduction.

5 Conclusion

Ephemeral group recommendation is a challenging recommendation task, not
only because group-item interactions are not enough to learn group preferences
directly, but also because there are essential differences between group recom-
mendation and personalized recommendation. This paper proposes a model
HL4EGR that models the user-item interactions, user-group affiliations, and
group-group similarities into multiple hypergraphs, reflecting the essence of the
group recommendation. Meanwhile, HL4EGR also designs a contrastive learning
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strategy on the hypergraphs, which enables HL4EGR to learn more comprehen-
sive group preferences. The results of experiments on public datasets show that
HL4EGR substantially improves the accuracy of ephemeral group recommenda-
tion results.
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