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Abstract. Medical Visual Question Answering (Med-VQA) is a task
that answers a natural language question with a medical image. Exist-
ing VQA techniques can be directly applied to solving the task. How-
ever, they often suffer from (i) the data insufficient problem, which
makes it difficult to train the state of the arts (SOTAs) for domain-
specific tasks, and (ii) the reproducibility problem, that existing mod-
els have not been thoroughly evaluated in a unified experimental setup.
To address the issues, we develop a Benchmark Evaluation SysTem for
Medical Visual Question Answering, denoted by BESTMVQA. Given
clinical data, our system provides a useful tool for users to automatically
build Med-VQA datasets. Users can conveniently select a wide spec-
trum of models from our library to perform a comprehensive evaluation
study. With simple configurations, our system can automatically train
and evaluate the selected models over a benchmark dataset, and reports
the comprehensive results for users to develop new techniques or perform
medical practice. Limitations of existing work are overcome (i) by the
data generation tool, which automatically constructs new datasets from
unstructured clinical data, and (ii) by evaluating SOTAs on benchmark
datasets in a unified experimental setup. The demonstration video of our
system can be found at https://youtu.be/QkEeFlu1x4A, and the source
code is shared on https://github.com/emmali808/BESTMVQA.

Keywords: Medical Visual Question Answering · Benchmark
Evaluation System · Comprehensive Experimental Study

1 Introduction

Medical visual question answering is a challenging task in healthcare industry,
which answers a natural language question with a medical image. Figure 1 shows
an example of the Med-VQA data. It may aid doctors in interpreting medical
images for diagnoses with responses to close-ended questions, or help patients
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Fig. 1. An example of Med-VQA Fig. 2. Publications on Med-VQA
since 2016

with urgent needs get timely feedback on open-ended questions [13]. It is a
challenging problem which processes multi-modal information. Different from
general VQA, Med-VQA requires substantial prior domain-specific knowledge to
thoroughly understand the contents and semantics of medical visual questions.

Many exiting techniques contribute to solving this task (e.g., [9]). However,
they generally suffer from the data insufficient problem. They need to be trained
on well-annotated large datasets, to learn enough domain-specific knowledge for
understanding medical visual questions. Several works focus on constructing
Med-VQA datasets [2,11,12,15,17]. However, these datasets seem to be a drop
in the bucket. Other works employ data augmentation method to tackle the
problem. VQAMix [9] has focused on generating Med-VQA training samples.
However, it may incur noisy samples that affect the performance of models.
Current work have adopted transfer learning to pre-train a visual encoder on
external medical image-text pairs to capture suitable visual representations for
subsequent cross-modal reasoning [6,9,13]. They achieve success by performing
pre-training using large-scale data unannotated data. However, they have not
been thoroughly evaluated in benchmark settings.

To address the problems, we develop BESTMVQA, which is a benchmark
evaluation system for Med-VQA. We first provide a data generation tool for
users to automatically construct new datasets from self-collected clinical data.
We implement a wide spectrum of SOTA models for Med-VQA in a model
library. Accordingly, users can conveniently select a benchmark dataset and any
model in model library for medical practice. Our system can automatically train
the models and evaluate them over the selected dataset, and present a final com-
prehensive report to users. With our system, researchers can comprehensively
study SOTA models and their applicability in Med-VQA. The impact of our con-
tributions also can be inferred from Fig. 2, which shows the significant increase
in Med-VQA publications since 2016. We provide a unified evaluation system
for users to (i) reveal the applicability of SOTA models to benchmark datasets,
(ii) conduct a comprehensive study of the available alternatives to develop new
Med-VQA techniques, and (iii) perform various medical practice.
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2 Research Scope and Task Description

The research scope is tailored to two types of readers: (i) Researchers who require
Med-VQA techniques to perform downstream tasks; (ii) Contributors in the
research community of Med-VQA who need to thoroughly evaluate the SOTAs.

Medical visual question answering is a domain-specific task that inputs a
medical image and a related question, outputting an answer in natural language.
It requires extensive domain knowledge, adding complexity beyond general VQA
tasks. The lack of well-annotated large-scale datasets makes it hard to learn
enough medical knowledge. To address the challenge, current work typically
pre-train a visual encoder on large unlabeled medical image-text pairs.

In Fig. 3, Med-VQA models consist of four main components: vision encoder,
text encoder, feature fusion, and answer prediction, which together process the
image and question inputs to predict answers.
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Fig. 3. The architecture of mainstream Med-VQA models

3 Related Work

Med-VQA is a challenging task that combines natural language processing and
computer vision. Early work employing traditional machine learning algorithms
suffers from poor performance due to significant differences between visual and
textual features [26]. Inspired by the success of deep learning in information
systems, deep learning models for Med-VQA are reported to have performance
gains over traditional models [23]. They can be classified into four categories:
joint embedding, encoder-decoder, attention-based, and large language models
(LLMs). Table 1 shows the statistics of SOTAs we reproduced.

The joint embedding models combine visual and textual embeddings into
a final representation. We implement some representative models such as
MEVF [19] and CR [32]. MEVF uses MAML [7] and CDAE [18] to initialize



438 X. Hong et al.

Table 1. The statistics of considered models, including the parameter size (Params),
the training time (Training Time), supporting pre-training or not (Support PT), sup-
porting fine-tuning or not (Support FT) and model category (Model Category). The
left value of Training Time represents the smallest training time over all datasets, while
the right value is the largest one.

Baseline Params Training Time Support PT Support FT Model Category

MEVF [19] 15M 0.03 h–0.3 h × � Joint Embedding

CR [32] 38M 0.04 h–0.4 h × � Joint Embedding

MMQ [4] 20M 0.5 h–3.0 h � � Joint Embedding

VQAMix [9] 19M 0.6 h–6.0 h × � Joint Embedding

CMSA [8] 88M 1.0 h–4.2 h × � Attention-Based

MMBERT [14] 117M 1.7 h–13.3 h � � Attention-Based

PTUnifier [3] 350M 3.0 h–13.0 h � � Attention-Based

METER [5] 320M 2.5 h–18.0 h � � Attention-Based

TCL [29] 580M 1.3 h–8.3 h × � Encoder-Decoder

MiniGPT-4 [34] 14110M - × × LLMs

LLaVA-Med [16] 6743M - × × LLMs

the model weights for visual feature extraction, while CR proposes question-
conditioned reasoning and task-conditioned reasoning modules for textual fea-
ture extraction.

For encoder-decoder models, visual and textual features are extracted sepa-
rately by encoders, and fused in a feature fusion layer. The decoder generates
the answer based on the fused features. NLM [21], TCL [29], and MedVInT [33]
are such representative models.

The third category employs attention mechanisms to capture representative
visual and textual features. MMBERT [14] employ Transformer-style architec-
ture to extract visual and textual features. CMSA [8] introduce a cross-modal
self-attention module to selectively capture the long-range contextual relevance
for more effective fusion of visual and textual features. MedFuseNet [22] excels in
open-ended visual question answering on recent public datasets through a BERT-
based multi-modal representation, coupled with an LSTM decoder. We have
implemented four representative models, including MMBERT [14], CMSA [8],
PTUnifier [3] and METER [5].

Recently, motivated by the achievements of ChatGPT [27] and GPT-4 [1],
alongside the efficacious deployment of open-source, instruction-tuned large
language models (LLMs) within the general domain, a myriad of biomedical-
oriented LLM chatbots have emerged. Notable among these are ChatDoctor [31],
Med-Alpaca [10], PMC-LLaMA [25], DoctorGLM [28], and Huatuo [24]. LLMs
are trained on large amounts of textual data that can help interpret complex
and detailed information in medical images. Our model library also provides
two recent models for generating the linguistic representation of the question
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in Med-VQA: MiniGPT-4 [34] has multi-modal abilities by properly aligning
visual features with advanced LLMs, and LLaVA-Med [16] performs multi-modal
instruction-tuning by leveraging large-scale biomedical data.

Fig. 4. System architecture of our BESTMVQA

4 System Overview

In Fig. 4, our BESTMVQA system has three components: data preparation,
model library, and model practice. The data preparation component is developed
based on a semi-automatic data generation tool. Users first upload self-collected
clinical data. Then, medical images and relevant texts are extracted for medical
concept discovery. We provide a human-in-the-loop framework to analyze and
annotate medical concepts. To facilitate the effort, we first auto-label the medical
concepts by employing the BioLinkBERT-BiLSTM-CRF [30]. Then, profession-
als can conveniently verify the medical concepts. After that, medical images,
medical concepts and diagnosis texts are fed into a pre-trained language model
for generating high-quality QA pairs. We employ a large-scale medical multi-
modal corpus to pre-train and fine-tune an effective model, which can be easily
incorporated into existing neural models for generating medical VQA pairs. our
system provides a model library, to avoid duplication of efforts on implement-
ing SOTAs for experimental evaluation. A wide spectrum of SOTAs have been
implemented. The detailed statistics of the models can be seen in Sect. 3. Based
our library, users can conveniently select a benchmark dataset and any number of
SOTAs from our model library. Then, our system automatically performs exten-
sive experiments to evaluate SOTAs over the benchmark dataset, and presents
the final report to the user. From our report, the user can comprehensively
study SOTAs and their applicability to Med-VQA. Users can also download the
experimental reports and the source codes for further practice.
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5 Empirical Study

Users can use our BESTMVQA system to systematically evaluate SOTAs on
benchmark datasets for Med-VQA. To comprehensively evaluate the effectiveness
of the models, we employ the metric of accuracy for open-ended, closed-ended,
and overall questions. Five datasets are provided for users for model practice to
investigate the applicability of models to diverse application scenarios.

Table 2. The statistics of datasets. NI, NQ and NA represent the number of images,
questions and answers, respectively. MeanQL and MeanAL represent the length of
questions and answers, respectively.

Dataset NI NQ MeanQL MeanAL NA

VQA-RAD [15] 314 3515 6.49 1.61 557

MedVQA-2019 [2] 4200 15292 6.88 2.12 1749

SLAKE-EN [17] 642 7033 8.03 1.4 234

PathVQA [11] 4289 32795 6.33 1.79 4946

OVQA [12] 2000 19020 8.73 3.32 1065

5.1 Considered Models

We emphasize the utilization of “out-of-the-box” models, defining a model as
“usable out of the box” if it meets the following criteria: (i) publicly avail-
able executable source code, (ii) well-defined default hyperparameters, (iii) no
mandatory hyperparameter optimization, and (iv) absence of requirements for
language model retraining and vocabulary adaptation. To ensure consistent eval-
uation and practical applicability, all models are expected to generate predictions
in a standard format. Adhering to the criteria is essential for models that can
help guarantee aligning with the concept of “out of the box”.

Models are identified and classified as shown in Table 1, containing (i) those
specifically tailored for Med-VQA, and (ii) the application of general VQA mod-
els to the medical domain.

5.2 Experimental Setup

Datasets. All models are evaluated using the following five datasets:
OVQA [12] has 2,001 images and 19,020 QA pairs, with each image linked

to multiple QA pairs.
VQA-RAD [15] includes 314 images and 3,515 questions answered by clin-

ical doctors, with 10 question types across the head, chest and abdomen.
SLAKE [17] is a bilingual dataset annotated by experienced doctors, which

is represented as SLAKE-EN in English.
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Table 3. Default values for Batch Size, Learning Rate, and Epoch for each model

Baseline Batch Size Learning Rate Epoch

MEVF+SAN 16 1.00E-03 20

MEVF+BAN 8 1.00E-03 20

CR 64 1.00E-03 40

MMQ 64 1.00E-03 60

VQAMix+SAN 8 1.00E-03 80

VQAMix+BAN 8 1.00E-03 80

CMSA 32 1.00E-03 60

MMBERT 16 1.00E-03 80

PTUnifier 8 1.00E-05 50

METER 32 1.00E-05 25

TCL 4 2.00E-05 20

Fig. 5. Distribution of question types per dataset

MedVQA-2019 [2] is a radiology dataset from the ImageClef challenge,
which includes 642 images with over 7,000 QA pairs.

PathVQA [11] consists of 32,795 pairs generated from pathological images.
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Datasets were chosen for their diversity in sample sizes (Table 2). For VQA-
RAD and SLAKE, we have reorganized the datasets in a 70%-15%-15% ratio due
to the lack of validation sets. As for the other datasets, We use the proportion
of the corresponding data splits. The detailed statistics for data splits are shown
in Table 4. The distribution of question types is illustrated in Fig. 5.

Table 4. The statistics of data splits. NI represents the number of images. MaxQL,
MinQL and MeanQL represent the max, min and mean length of questions, respec-
tively; NCF and NOF represent the number of close-ended and open-ended questions,
respectively. MedVQA-2019 is not divided into open-ended and closed-ended questions.

Dataset Sample NI MaxQL MinQL MeanQL Vocabulary NCF NOF

VQA-RAD (train) 2451 314 21 3 6.43 1114 1443 1008

VQA-RAD (valid) 613 258 19 3 6.42 625 380 233

VQA-RAD (test) 451 203 22 3 6.89 538 272 179

Total 3515 314 22 3 6.49 1288 2095 1420

MedVQA-2019 (train) 12792 3200 11 4 6.88 98 - -

MedVQA-2019 (valid) 2000 500 11 4 6.86 94 - -

MedVQA-2019 (test) 500 500 11 4 6.86 93 - -

Total 15292 4200 11 4 6.88 98 - -

SLAKE-EN (train) 4777 546 21 4 7.98 301 1905 2872

SLAKE-EN (valid) 1195 484 18 4 8.12 265 460 735

SLAKE-EN (test) 1061 96 21 4 8.11 265 416 645

Total 7033 642 21 4 8.03 306 2781 4252

PathVQA (train) 19755 2599 37 2 6.35 4161 9868 9887

PathVQA (valid) 6279 832 37 2 6.24 2537 3156 3123

PathVQA (test) 6761 858 42 2 6.33 2608 3409 3352

Total 32795 4289 42 2 6.33 5095 16433 16362

OVQA (train) 15216 2000 95 4 8.63 958 8037 7179

OVQA (valid) 1902 1235 62 4 9.04 613 830 1072

OVQA (test) 1902 1234 67 4 9.26 533 832 1070

Total 19020 2000 95 4 8.73 1005 9699 9321

Implementation Details. For pre-training, we use a large-scale publicly avail-
able dataset called by ROCO [20]. It contains image-text pairs collected from
PubMed (https://pubmed.ncbi.nlm.nih.gov/). We selected 87,952 non compos-
ite radiographic images with relevant captions. For fine-tuning, we follow the
training, validation, and testing data splits according to Table 4. Five bench-
mark Med-VQA datasets were used to train and evaluate SOTAs. Questions are
divided into closed-ended and open-ended. Closed-ended questions are usually
answered with “yes/no” or other limited options. Open-ended questions have

https://pubmed.ncbi.nlm.nih.gov/
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Table 5. Experimental results for discriminative models on the test set of VQA-RAD,
SLAKE-EN, PathVQA, and OVQA datasets, including the Accuracy (ACC) of three
indicators: Closed-ended, Open-ended, and Overall.

Dataset Baseline Closed-ended (ACC) Open-ended (ACC) Overall (ACC)

VQA-RAD MEVF+SAN 75.4 40.2 61.4

MEVF+BAN 78.3 52.5 68.1

CR 77.2 57.6 69.4

MMQ 75.7 56.9 68.2

VQAMix+SAN 79.4 57 70.5

VQAMix+BAN 80.9 57.5 71.6

CMSA 78.5 63.7 72.5

MMBERT 74.3 46.9 63.4

PTUnifier 86.4 68.2 79.2

METER 78.3 57 69.8

TCL 73.5 56.4 66.7

SLAKE-EN MEVF+SAN 78.4 75.3 76.5

MEVF+BAN 81 75.7 77.8

CR 76.9 78.4 77.5

MMQ 78.4 76.7 77.4

VQAMix+SAN 77.9 77.7 77.8

VQAMix+BAN 83.2 78.1 80.1

CMSA 68.3 49.1 56.6

MMBERT 43.3 1.9 18.1

PTUnifier 89.4 81.6 84.6

METER 87.3 79.2 82.4

TCL 87.5 78.4 82

PathVQA MEVF+SAN 83.4 13.1 48.5

MEVF+BAN 83.8 16.4 50.3

CR 84.9 15.9 50.5

MMQ 83.2 14.3 48.9

VQAMix+SAN 83.9 9.6 46.9

VQAMix+BAN 84.3 12.7 48.6

CMSA 83.7 16.1 50.2

MMBERT 83.2 13 48.1

PTUnifier 85.5 10.1 48.1

METER 89.9 29.8 60

TCL 88.1 36.9 62.7

OVQA MEVF+SAN 74.2 52.3 61.9

MEVF+BAN 76.6 50.5 61.9

CR 76.6 36.9 54.3

MMQ 79 53.2 64.5

VQAMix+SAN 77.6 59.1 67.2

VQAMix+BAN 79.3 57 66.8

CMSA 79.7 45.6 60.5

MMBERT 80.5 48.7 62.6

PTUnifier 84.9 60.5 71.3

METER 82.1 51.7 65.1

TCL 82.6 60.4 70.1

no restrictive structure and can have multiple correct answers. All models are
trained on dual graphics NVIDIA RTX V100 GPU. We use the AdamW opti-
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Table 6. Experimental results for discriminative models on the test set of MedVQA-
2019. Due to the fact that the MedVQA-2019 is not strictly divided into open-ended
and closed-ended question types, the table only contains the values of Overall Accuracy

Dataset Baseline Overall(ACC)

MedVQA-2019 MEVF+SAN 50

MEVF+BAN 47.4

CR 46.8

MMQ 50

VQAMix+SAN 47.2

VQAMix+BAN 49

CMSA 47.4

MMBERT 51.2

PTUnifier 60.3

METER 73.9

TCL 63

Table 7. Experimental results for generative models on the test set of VQA-RAD,
SLAKE-EN, PathVQA, OVQA and MedVQA-2019 datasets, including the Accuracy
(ACC) of Closed-ended and the Recall, METEOR of Open-ended.

Dataset Baseline Closed-ended (ACC) Open-ended

RecallMETEOR

VQA-RAD MiniGPT-4 56.2 32.2 0.043

LLaVA-Med 58.8 32.1 0.238

SLAKE-EN MiniGPT-4 53.2 36.8 0.038

LLaVA-Med 53.6 40.7 0.308

PathVQA MiniGPT-4 53.4 12 0.018

LLaVA-Med 57.9 11.8 0.026

OVQA MiniGPT-4 53.1 33.4 0.066

LLaVA-Med 66.8 39.1 0.237

MedVQA-2019 MiniGPT-4 - 23.2 0.019

LLaVA-Med - 25 0.055

mizer with the same preheating steps. See Table 3 for detailed parameter settings
of models.

5.3 Evaluation Metrics

To quantitatively measure the performance of models, we use the accuracy as
an evaluation metric, and compute it for closed-ended and open-ended questions
for discriminative models, as they can be defined as a classification task. Let Pi
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and Li respectively denote the prediction and ground-truth label of sample i in
the test set, and T represents the test set. The accuracy is calculated as follows:

accuracy =
1
|T |

∑

i∈T

l(Pi = Li) (1)

where l equals 1 only if Pi = Li, otherwise 0.
For generative models such as MiniGPT-4 and LLaVA-Med, we report the

accuracy for closed-ended questions as we leverage prompts to guide the model
in answering these questions under a specified candidate set. For open-ended
questions, we adopt recall to evaluate the ratio that ground-truth tokens appear
in the generated sequences and METEOR to assess the word order consistency
between generated answer and ground-truth. The recall can be formalized as:

recall =
TP

TP + FN
(2)

where TP is the number of ground-truth tokens that correctly predicted and
FN stands for the number of ground-truth tokens that didn’t appear in the
predicted answer.

5.4 Results

Tables 5, 7 and 6 show the accuracy achieved by all the considered models.
(i) In closed-ended questions, discriminative models (Table 5), are more

applicable to Med-VQA, compared with LLMs (Table 7). This is because the
generative models focus on simulating and generating data that requires broader
language understanding and visual information processing capabilities. For sim-
ple closed-ended questions, they may suffer from the over-generation problem.

(ii) Among discriminative models, the PTUnifier which is pre-trained in the
medical domain performs the best on VQA-RAD, SLAKE-EN and OVQA, but
not so well on PathVQA and MedVQA-2019. As for the pre-trained models in
general domain, TCL and METER achieve better performance on PathVQA
and MedVQA-2019. The possible reason is that PathVQA is collected from a
wide range of sources, including textbooks and literature, while MedVQA-2019
is artificially generated and cannot represent formal clinical data. PTUnifier
adopts a visual language pre-training framework and unifies the fused encoder
and dual encoder, thereby excelling on multi-modal tasks.

(iii) For generative models, MiniGPT-4 performs worst in terms of both the
accuracy and the word order of generating answer on every dataset. Although
utilizing massive amounts of data for training, it is still unable to effectively mine
the domain-specific knowledge to answer a medical question, then over-generate
lots of irrelevant text, and finally resulting in poor performance. In addition, the
usage of inappropriate prompts may further degrade the model performance.

(iv) The performance of lightweight models such as MEVF, CR, MMQ, and
CMSA is significantly inferior to complex models like PTUnifier, TCL, and
METER. This is because models like PTUnifier have more parameters and adopt
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a deeper neural network structure, which is beneficial for learning the alignment
between images and texts.

Fig. 6. Model performance varies with batch size and learning rate

5.5 Detailed Analysis

Figure 6 shows that the values of hyperparameters are determined based on the
values set with the best performance on the validation dataset. The results of
each model are obtained by changing the Batch Size (BZ) and Learning Rate
(LR). Due to limited computing power, we only show parts of the results: (i)
The results of MiniGPT-4 and LLaVA-Med are eliminated as they cannot be
fine-tuned; (ii) We show part of results for PTUnifier in Fig. 6(a), as it requires
more computing power for larger values of BZ; (iii) Similarly, we show part of
results for PTUnifier, TCL, and METER with larger number of parameters in
Fig. 6(b), as the value range of LR is not comparable to that of other models.

In Fig. 6(a), the performance of each model gradually increases when the
BZ values increase, and then decrease after reaching a saddle point, due to the
gradient calculation. However, when BZ is set to a large value, some models
converge to local stationary points, such as METER and VQAMix-SAN. In
Fig. 6(b), (i) with the increase of LR values, the performance of MMBERT
shows a significant decline, and (ii) the performance of MEVF, CR, and CMSA
first increase and then decrease with the increase of LR values.



BESTMVQA: A Benchmark Evaluation System for Med-VQA 447

Fig. 7. The Accuracy of different question types for discriminative models in OVQA

Fig. 8. The performance of different question types for LLMs in OVQA

Figures 7 and 8 show the results on various question types for discriminative
and generative models over the OVQA dataset, respectively. In Fig. 7, we can
derive that:(i) All discriminative models perform well on the Modality type of
questions because MRI or CT image features are obvious, enabling the image
encoder to effectively extract image features. (ii) All models have unsatisfactory
performance on the Attribute Other type of questions, as descriptive questions
are not suitable for label classification tasks. (iii) PTUnifier and VQAMix per-
form well on most types of questions. PTUnifier introduces visual and textual
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prompts for feature representation and improves the diversity of the prompts by
constructing prompt pools, which enable different types of questions to select
the appropriate prompts and enhance the image-text alignment in the fusion
encoder. VQAMix incorporates a conditional label combination strategy for data
augmentation, allowing for extracting more comprehensive image features.

In Fig. 8, LLaVA-Med performs better than MiniGPT-4 on almost all types of
questions, as it contains extensive domain-specific knowledge by pre-training and
instruction tuning based on a large-scale biomedical dataset. Especially, LLaVA-
Med greatly outperforms MiniGPT-4 on the Plane type of open-ended questions,
as these specialized questions require models to fully capture the medical image
features and exert domain knowledge to generate answers.

5.6 Qualitative Analysis

We provide a qualitative comparison of all models. Two examples from the
OVQA dataset in Fig. 9 show that early discriminative models such as MEVF,
CR, MMBERT, CMSA, and VQAMix, fail to answer Med-VQA questions, com-
pared to the latest discriminative models such as TCL, METER, and PTUnifier.
In Fig. 9, the Red Cross indicates that the prediction is wrong, and the green
check indicates that the prediction is correct. The given question is to consult
the abnormal position of orthopedic images. We observed that traditional mod-
els such as MEVF predict wrong abnormal positions. While TCL, and other

Fig. 9. Two testing examples selected from OVQA
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advanced models can locate the abnormality to the correct position. This also
indicates that the advanced VQA deep learning models with large parameters
can not only correctly understand the image content, but also capture the region
of interest related to the question, leading to predicting the correct answer.

6 Conclusion

Deep learning models for Med-VQA face unique challenges, necessitating urgent
comprehensive empirical studies on SOTAs to advance techniques and medi-
cal practice. To address this, we implemented a benchmark evaluation system
that compares user-selected models and reports detailed experimental results.
Additionally, users can download datasets, reports, and source codes for further
exploration. Our system provides a unified platform to facilitate diverse medical
practices.
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