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Abstract. Tropical cyclone (TC) intensity estimation from satellite
images is the very first and critical step of making TC forecasts, whose
SOTA performance is achieved by methods built upon CNN based regres-
sion models. Unlike discriminative models trained for specific tasks, gen-
erative models on the other hand learns to comprehend data in a more
sophisticated way through generation. In this paper, we explore the
potential of using generative models to further improve the regression
task of TC intensity estimation, distinguished from precedents that aim
at classification tasks. Our proposed method ConDiff-RTTA optimizes a
TC regression model during test time, by back-propagating the loss of a
diffusion model conditioned on the regression outputs. More importantly,
by enhancing the diffusion model’s training process with our proposed
contrastive loss, the diffusion model is more likely to align diffusion losses
with prediction errors of the regression model. This enhancement leads to
a better understanding of incorrect conditions which facilitates the adap-
tation of the regression model. We evaluate our proposed method on a
benchmark dataset TCIR, where TCs of the latest two years are used
as testing cases. Experimental results show that our proposed method
ConDiff-RTTA improves the regression model in overall performance,
especially on high intensity tropical cyclones. Our code is publicly aval-
able at https://github.com/maxmaxcu/ConDiff-RTTA/.

Keywords: Tropical cyclone · Intensity estimation · Diffusion
Models · Test-time adaptation · Regression · Contrastive learning

1 Introduction

Tropical cyclones (TC) are among the most catastrophic weather events that can
cause injuries and deaths as well as huge economic losses. Tropical cyclone moni-
toring and forecasting are among the most concerned missions for meteorologists
and weather service centers worldwide. The very first and critical step of making
TC forecasts is intensity estimation, which is defined as the maximum sustained
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surface wind speed near the TC center (measured in knot, 1 kt ≈ 0.51 ms−1).
Since tropical cyclones usually occur on the open ocean, satellite images are
mostly used for estimating the intensity. Traditional methods, such as Dvorak [8],
DAV [22], and ADT [21] are based on cloud patterns recognized from satellite
images. Recently, many efforts have been made in developing Neural Network
(NN) based models [1–3,6,10,24,29,31] for the task of TC intensity estimation,
which has become a promising direction to achieve more accurate estimations.
All of these models are discriminative models that are inspired by the ability of
automatically learning useful features from satellite images with various network
architectures, data pre-processing methods or physics guided feature extractions.
Backbone models of these works are often CNN based regression models, which
predict numerical TC intensities directly.

Alternative to discriminative models, generative models are trained on a
harder task, forcing them to learn a deeper and more sophisticated compre-
hension of the data so as to synthesize new samples, thereby improving their
potential for discriminative tasks especially under limited data [11,20]. Inspired
by the recent advancements of diffusion models that show promising ability in
synthesizing high quality images following class or text conditions [7,12–14,26–
28], there emerge a number of studies [4,5,17,18,23] that aim to unleash the
potential of diffusion models on discriminative tasks. Among them, Diffusion-
TTA [23] uses a pre-trained conditional diffusion model to tune an image clas-
sifier during test time and observes improvements on accuracy over the original
classifier. The two models are attached in a way that, the classifier output serves
as the condition to the diffusion model, such that the classifier can be adapted
by back-propagating the diffusion loss.

It is natural to utilize diffusion models in a similar way on regression tasks to
achieve improved TC intensity estimations. Unlike classification tasks, where the
predicted attributes are categorical, regression tasks predict ordinal and numer-
ical attributes, and face additional challenges. To successfully tune a regressor
in a gradient descent manner, it should hold that given a biased prediction, the
gradient of the diffusion loss on the condition points to the direction toward the
ground truth, considering the ordinal nature of attributes to be regressed on.
Existing studies like Diffusion-TTA focus on classification tasks and have not
yet inspected into this problem. Furthermore, the level of diffusion loss should
be connected to the degree in which the condition is biased, so as to encour-
age the expected gradient. However conditional diffusion models are typically
trained with only correct conditions, lacking penalties for the incorrect ones let
alone such “distance awareness”, which could result in sub-optimal results.

In this paper, we propose a method driven by a contrastive learning enhanced
diffusion model that meets the aforementioned challenges and can better resolve
the tropical cyclone intensity estimation task. The main contributions of this
paper are the following:

1. We propose a test-time adaptation method Diff-RTTA to improve perfor-
mances of regression models utilizing diffusion models, and observe favorable
loss characteristics that lead adaptations towards more accurate predictions.
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2. We propose the ConDiff-RTTA method to enhance the diffusion model with
contrastive learning such that it is aware of the distance between true and
false conditions, which further optimizes the model to be more aligned with
the regression task.

3. We conduct experiments on a benchmark dataset of TC intensity estimation
and observe performance gains with our method, especially on high intensity
tropical cyclones.

The rest of this paper is organized as follows. We first give a brief overview of
related work in Sect. 2. Then, we introduce the preliminary knowledge on both
diffusion models and test-time adaptation with diffusion models, and propose our
constractive learning enhanced diffusion models in Sect. 3. Experimental results
of our proposed method on TC benchmark dataset TCIR are shown in Sect. 4.
Finally, we make concluding remarks in Sect. 5.

2 Related Work

Neural Network Models for TC Intensity Estimation. Neural network
based models for the TC intensity estimation problems fall into two categories in
terms of their outputs, i.e., classification models and regression models. Classifi-
cation models, e.g. [10,24], output TC categories or TC intensity ranges instead
of the numerical intensity value, whose performance is inferior to that of regres-
sion models [1–3,6,29,31] in terms of estimation accuracy in RMSE or MAE. For
regression models, recent works mostly focus on physics guided methods, through
using extra data or features as inputs [2,31,32], or designing loss functions with
TC knowledge [29,31]. Some works also focus on the network design [1,2], sug-
gesting that the neural network should not be too deep and need to exclude
dropout layers.

Diffusion Generative Models for Discriminative Tasks. There have been
continuing attempts in aiming to unleash the potential of generative models on
discriminative tasks, dated back to early studies [11,20,25]. With recent advance-
ments in diffusion models, a number of works [4,5,17] face this challenge by
sharing the idea that, a mildly noised image should be denoised by a diffusion
model with the best effect when given the correct condition. In this light, they
transform either class-conditional or text-to-image diffusion models to image
classifiers by enumerating through classes and converting their corresponding
diffusion losses to class probabilities. Diffusion models can also be seen as teacher
models to optimize dedicated discriminative student models. DreamTeacher [18]
distills knowledge from generative models pre-trained on large datasets onto a
discriminative backbone, which is later trained on small downstream datasets.
Diffusion-TTA [23] back-propagates the diffusion loss to a classifier, allowing
test-time adaptation to improve the classification accuracy of the discriminative
model. Our work is more similar to the latter than the former as we target at
TC intensity estimation, an area where data are limited due to the fact that
satellite images of TCs are only available since past few decades and have to be
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fully used by both generative and discriminative models, not allowing for an up-
and down-stream split.

Contrastive Learning to Capture Data Divergence. By contrasting posi-
tive samples with negative ones, contrastive learning serve as a powerful tool to
capture various forms of divergence in the data. Such divergence could be data
mismatching, label differences, or even the precise distances between values. For
instance, SupCon [15] projects data to positions in the embedding space accord-
ing to their class labels, and Rank-N-Contrast [30] further extends the idea to
continuous label values, making embeddings repel each other in a degree of their
label distances. CoDi [16] aims to generate tabular data entries which consist
of both continuous and discrete parts by two co-evolving diffusion models, and
penalizes mismatching between the two parts by utilizing contrastive learning.
Inspired by these works, we use contrastive learning to make our diffusion model
not only able to capture image-condition mismatching, but also be “distance
aware” of correct and biased conditions.

3 Methodology

3.1 Preliminaries

Diffusion Models. For an image x sampled from the real data distribution
x ∼ q(x), a diffusion model learns to approximate the data distribution by
gradually adding noise to x in the diffusion process and predict the noise in
the reverse process. Conditional diffusion models further learns the distribution
q(x|c), where c is the condition input corresponding to the image x. The diffusion
process, where a sequence of noise are added to the original input image x (now
denoted as x0) generating a noised image sequence x1, x2, ..., xT , is formally
defined [12] as:

q(x1:T |x0) :=
T∏

t=1

q(xt|xt−1),

q(xt|xt−1) := N(xt;
√

1 − βtxt−1, βtI),

(1)

where β1, ...βT , is a variance schedule that controls the level of the noise. We
can further sample xt from x0 using

xt =
√

ᾱtx0 +
√

1 − ᾱtε, ε ∼ N (0, I), (2)

where αt := 1 − βt and ᾱt :=
∏t

s=1 αs

A diffusion denoising network εφ(xt, t) learns to predict the noise with noisy
image xt and the noise level t as inputs. For conditional diffusion models that
takes c as an input condition during the reverse process, the diffusion loss for
training is defined as:

Ldiff(φ;D) =
1

|D|
∑

(xi,ci)∈D
‖ εφ(

√
ᾱtx

i +
√

1 − ᾱtε, c
i, t) − ε ‖2 (3)
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where D = {(xi, ci)}N
i=1 is a training batch of N images with their corresponding

conditions (labels).
Note that for the sake of simplicity, the above formulations are from

DDPM [12], an origin of diffusion models. In our work we follow the framework
of EDM [14] which includes altered design choices that boost the generative
ability.

Test-Time Adaptation with Diffusion Models. Test-time adaptation refers
to a procedure in which a pre-trained model is adapted on unlabeled test
data [19]. Without labels, what is helpful to the adapted model can be another
model that contains better knowledge about the test data. Diffusion-TTA [23]
tackles this by using a pre-trained diffusion model, and tune an image classifier
in an iterative manner. First, the classifier does inference on an image to provide
an initial guess of class probabilities, from which a class condition is synthe-
sized as weighted mixing of class embeddings. Then, a noise batch of different
strengths is added onto the image, as inputs into the diffusion model along with
the synthesized condition to compute the conditional diffusion loss. Last, loss
gradients are back-propagated to the classifier, updating it to produce new class
probabilities for the next iteration. After a specified number of iterations, the
classifier is optimized on the image sample to produce a more accurate classifi-
cation result with the help of the diffusion model, yielding better performance
on the test set.

3.2 Conditional Diffusion Model for a Regression Task

Existing works that use diffusion models in discriminative tasks are limited to
using categorical conditions such as one-hot class labels or text embedding during
the training and inference of diffusion models. This raises a direct question that
whether regression tasks can benefit from conditional diffusion models as well.
In our TC intensity estimation task, the intensity is a numerical number with its
range from 10 kt to 180 kt. Given the continuous nature of labels in regression
tasks, it is infeasible to build a generative regressor by enumerating through
labels as conditions and infer the target from corresponding conditional diffusion
losses as in [4,17]. Therefore we build our method on top of Diffusion-TTA which
is gradient based.

Towards this goal, we migrate Diffusion-TTA to TC intensity estimation in
a simple yet effective fashion. We follow the process of Diffusion-TTA and make
modifications to take the TC intensity value as the condition, instead of class
text embedding as in Diffusion-TTA. First we train a conditional diffusion model
on an open dataset of TCs (will be described in Sect. 4.1), where the intensity
condition is passed through a linear layer, projected to an embedding vector and
taken by the diffusion model. Then we take a CNN-based TC intensity regression
model [31] and conduct TTA on it in an instance-wise manner. We denote this
method as Diff-RTTA, whose overall architecture and pseudo code are shown
in Fig. 1 and Algorithm 1, respectively.

We see improvements on Diff-RTTA over the regression model (reported in
Sect. 4.4), but in this phase of study what we mainly want to inspect is the reason
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Fig. 1. Overall Architecture for Test-time Adaptation

Algorithm 1 Test-time Adaptation
Require: Test image x, regression model weights θ, diffusion model weights φ, adap-

tation steps N
1: for s ∈ [1, N ] do
2: Do inference on regression model to get prediction ĉ ← fθ(x)
3: Project ĉ to embedding eĉ by the linear layer
4: Sample noise strength batch t following settings of Diffusion-TTA
5: Sample noise batch ε ∼ N (0, I)
6: repeat x to build batch x
7: Compute Ldiff =‖ εφ(x + t � ε, eĉ, t) − ε ‖2

8: Take gradient descent step on ∇θLdiff to update θ
9: end for

10: return fθ(x)

why a diffusion model can indeed benefit regression tasks. To demonstrate it, for
every TC image we enumerate the intensity condition as an integer from 10 kt to
180 kt, and collect diffusion losses over the enumeration. It is expected that the
diffusion loss should be minimal at the correct intensity of the TC image. Figure 2
shows the loss enumerations on test set for TCs of CAT1-CAT5 categories (well
be defined in Sect. 4.1) and the entire set. It can be observed that the loss curves
tend to be U-shaped with the valley near the correct condition (denoted by c).
With the U-shaped loss curves, it is made possible that a biased proposed value
of intensity could be optimized towards the ground truth intensity by steps of
gradient descent, whereas enumeration on possible conditions is far more costly
for continuous values.
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Fig. 2. Diffusion loss enumerations over conditions by Diff-RTTA: For each TC image,
diffusion losses are calculated on each condition enumerated from range [c-40,c+40],
where c is the true condition of the corresponding TC image. The average of diffusion
losses on each condition offset value of all TC images from CAT1 to CAT5 categories
and from the entire test set are shown in (a) and (b), respectively.

3.3 Contrastive Learning Enhanced Diffusion Model

Observations on Diff-RTTA indicate that, by following the vanilla training proce-
dure, a diffusion model conditioned on numerical values can exhibit our expected
characteristic: the loss enumeration curve is U-shaped around the true condition.
In other words, the diffusion model denoises noisy images the best around the
true condition, and behaves worse when the proposed condition is farther away.
Nevertheless, we suppose this favorable characteristic can be even strengthened,
since the vanilla training way of the conditional diffusion model assumes the con-
ditions are always correct, thus paying no attention on the relation between true
and false conditions and their distances. It is reasonable because such knowledge
can hardly be of use for pure generation, but it comes to importance in the con-
text of our study. We expect that explicitly relating diffusion loss to condition
distances can point the gradient more to the correct direction, and reduce the
bias between the loss minimum point and correct condition.

Similar ideas can be seen in contrastive learning literature such as [30]. This
motivates us to explore supervised contrastive learning for the enhancement.
Contrastive learning works by contrasting similar samples (positive samples)
with dissimilar ones (negative samples). In the TC estimation scenario, for a TC
image x with its true condition c, a positive-negative pair is defined as:

Positive : [aug(x), cpos],
Negative : [aug(x), cneg],

(4)

where aug(·) is a data augmentation function, cpos := c and cneg is a false condi-
tion not equal to cpos. Concerning the ordinal nature of our conditions and the
local gradient we pursue, we sample the negative condition in a neighborhood of
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the positive, which also serves as a harder negative compared to some arbitrar-
ily positioned one. There are also common observations that regression models
tend to exhibit larger estimation errors on TCs of high intensities [1,2,29,31,32],
therefore we enlarge the sampling neighborhood for high intensities to cover the
potential error bar with negative samples. The sampling strategy is defined as

cneg = cpos + rand(−(log cpos)2, (log cpos)2), (5)

where rand(a, b) draws a random number from a uniform distribution on the
interval (a, b).

With the defined positive-negative pair, we propose a contrastive loss term
in the form of a triplet loss, which is formally defined as

Lcon = max (Ldiffpos − Ldiffneg + Margin(cpos, cneg), 0), (6)

where Ldiffpos is the diffusion loss for the positive sample and Ldiffneg is the dif-
fusion loss for the negative sample. In the standard triplet loss, margin is defined
as a constant to keep the positive away from the negative in a certain degree.
Here, we propose margin as a distance aware function so that it adjusts the
margin between positive and negative losses according to the distance between
the corresponding conditions. With a larger distance, the negative loss should
exceed the positive loss to a greater extent. The Margin function is defined as

Margin(cpos, cneg) = log (1 + D(cpos, cneg)) ∗ Ldiffpos, (7)

where D(cpos, cneg) is the distance between true and false conditions, and Ldiffpos

here only provides the value without contributing a gradient. We choose the
current form to let the margin shrink when cneg gets close to cpos. The margin is
also proportional to Ldiffpos because the loss scale differs through conditions and
the margin should be adjusted in a relative manner. With this distance aware
margin, the diffusion model learns to increase the diffusion loss under a false
condition adaptive to the condition distance and the loss scale.

We propose the following contrastive learning enhanced diffusion loss for
continuous training on the previously trained diffusion model,

LConDiff = Ldiff + λLcon (8)

where λ is the weight for the contrastive loss, which is a hyper parameter. The
training procedure is modified from the standard procedure of training a con-
ditional diffusion model, where in each iteration the batch is doubled to con-
struct the negative half whose conditions are sampled according to Eq. 5, and
the doubled batch is fed into the model to update it via LConDiff. The contrastive
learning enhanced diffusion model is then used in the TTA stage. We denote this
improved method as ConDiff-RTTA.

The pipeline for the contrastive enhanced diffusion model training phase is
shown in Fig. 3. The overall pseudo code for training is shown in Algorithm 2.
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Fig. 3. Overall Architecture for Constructive Enhanced Diffusion Model Training

Algorithm 2 Training of Contrastive Learning Enhanced Diffusion Model
Require: training set Dtrain, diffusion model weights φ
1: while not converged do
2: Sample training image-intensity batch (x0, cpos) ∼ Dtrain

3: Sample noise strength batch t following settings of EDM
4: Sample noise batch ε ∼ N (0, I)
5: xt ← x0 + t � ε
6: Synthesize false conditions cneg according to Eq. 5
7: Compute LConDiff according to Eq. 8
8: Take gradient descent step on ∇φLConDiff to update φ
9: end while

4 Experiments

4.1 Dataset

We use a publicly available benchmark dataset, the Tropical Cyclone Dataset
for Image Intensity Regression (TCIR)1 [1]. TCIR contains TCs in the North
Eastern Pacific, the North Western Pacific, and the Atlantic Ocean. The satel-
lite observations in TCIR are derived from two open datasets, GridSat and
CMORPH. The best track intensities (IBTrACS) are derived from the Joint
Typhoon Warning Center (JTWC) and the Atlantic Hurricane Database (HUR-
DAT2).

As shown in Table 1, we classify TCs according to the Saffir-Simpson Hur-
ricane Wind Scale, which consists of 7 classes, with higher classes representing
higher maximum sustained winds. We use a total of 36566 image frames from
TCs in 2003-2013 as training data, 3245 from TCs in 2014 as validation data,
1 Available at https://www.csie.ntu.edu.tw/∼htlin/program/TCIR/.

https://www.csie.ntu.edu.tw/~htlin/program/TCIR/
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and 7570 frames from TCs in 2015-2016 as testing data. Each frame has 201×201
pixels and a total of 4 channels per pixel, i.e., infrared (IR), water vapor (WV),
visible channel (VIS), and passive microwave rain-rate (PMW). In our exper-
iments, we use the IR channel, and normalize it to have zero mean and unit
standard deviation, and resize it to 65 × 65 pixels as the input.

Table 1. Number of Frames in TCIR from [1]

Category Training Validation Testing

TD (33≤kt) 13766 1154 2353

TS (34∼63 kt) 13850 1194 3048

CAT1 (64∼82 kt) 3793 388 787

CAT2 (83∼95 kt) 1909 178 490

CAT3 (96∼112 kt) 1381 129 418

CAT4 (113∼136 kt) 1558 147 394

CAT5 (≥137 kt) 309 55 80

Total 36566 3245 7570

4.2 Models and Metrics

Regression Model. To achieve SOTA performance on TC intensity estima-
tion, it is needed to include physics-guided features in the regression network,
and conduct special post-processing such as sliding windows and rotation ensem-
bles [1,2,29,31,32]. These techniques are along different dimensions compared to
our method, and will require a lot of extra efforts and computational resources.
Therefore we set our goal to explore the ability of diffusion models on improv-
ing the intensity estimation performance of CNN based backbone models. We
use ResNet-18 [9] as the backbone for feature extraction and train it on the
TCIR training set with L2 loss. This regression model achieves comparable per-
formance to backbone models in [1,31] on the TCIR validation set and test set.
We refer to this model as Regression or Reg Model in the experiments.

Diffusion Models. For diffusion models, we use the implementation framework
of EDM [14] and the U-Net backbone model from [28]. Diff-RTTA: This is a
diffusion model trained with our modification for the regression task as discussed
in Sect. 3.2. The trained diffusion model is then used to adapt the Reg Model
during test time. ConDiff-RTTA: We fine-tune the above diffusion model with
our proposed LConDiff loss. Same as in Diff-RTTA, Ldiff is used during TTA
stage.

Evaluation Metrics. We report the TC intensity estimation accuracy of various
models in terms of Root Mean Square Error (RMSE) and Mean Absolute Error
(MAE).
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4.3 Implementation Details

Models are trained on 8 RTX 4090 GPUs. We train a total of 21M TC images
randomly sampled from the training dataset with batch size 256 for the Diff-
RTTA and continue to train 3M TC images with batch size 128 for the ConDiff-
RTTA, with the rest of training settings following the default of EDM. For
test-time adaptation, the noise batch size is 200 with 10 adaptation steps and
Adam optimizer is used with a learning rate of 5 × 10−5.

4.4 Overall Performance

Diff-RTTA as Regression Model. To get a better understanding on using
diffusion model alone as a regression model, we test the performance of Diff-
RTTA model without using the pre-trained Reg Model but instead with 50 kt
as the initial conditional inputs for all the test TC images. 50 kt is the mean
value of the TC intensities from training set and has an overall RMSE of 30.39
on the entire test set. The performance of using 50 kt as initial conditions with
Diff-RTTA is shown in Table 2 labelled as Diff-RTTA (50). Even with the initial
condition of 50 kt, the overall RMSE of Diff-RTTA improves to 14.83, showing
its ability as a regression model. In Fig. 4, Diff-RTTA (50) results for each TC
image are ordered by the true conditions (from IBTrACS) from left to right. We
can see that the predicted intensities are spread along the true conditions, which
indicates the important fact that the correct adaptation directions are likely to
be found using the diffusion loss as the feedback.

Fig. 4. Diff-RTTA (50) results for each TC image

Comparisons to Baselines. The performances of Reg Model, Diff-RTTA and
ConDiff-RTTA are shown in Table 2. Diff-RTTA shows an improvement of 0.33
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on RMSE over Reg Model, from 11.22 to 10.89. ConDiff-RTTA further improves
the overall performance to 10.76. Although ConDiff-RTTA achieves mildly better
results over Diff-RTTA in overall performance, a detailed inspection reveals that
improvements on each TC category are made differently, as shown in Fig. 5.
ConDiff-RTTA shows more significant improvements over Diff-RTTA as the TC
intensity becomes higher, roughly between 0.6 to 1.0 compared to Reg Model on
CAT1-5, in which the most destructive TCs reside. We attribute this observation
to the stronger contrastive effect on high intensities due to larger contrastive
margins and wider negative sampling windows, which we design deliberately to
enhance the regression model’s performance on strong TCs.

Table 2. RMSE and MAE results on TCIR test set

TD TS CAT1-5 Overall

Method RMSEMAE RMSEMAE RMSEMAE RMSEMAE

Regression 6.76 4.95 9.89 7.70 15.76 12.16 11.22 8.17

Diff-RTTA (50) 9.25 6.91 12.49 9.28 21.21 17.12 14.83 10.84

Diff-RTTA 6.49 4.69 9.62 7.49 15.31 11.89 10.89 7.93

ConDiff-RTTA 6.66 4.80 9.58 7.43 14.97 11.57 10.76 7.85

Fig. 5. Improvements on different categories over baseline Reg Model

4.5 Diffusion Loss Analysis

We show the training curves of Ldiffpos and Ldiffneg in Fig. 6 (a). Ldiffpos, the
diffusion loss given true conditions, remains at a low level while Ldiffneg, the



430 Z. Zhou et al.

diffusion loss given false conditions, increases significantly during training. Dif-
fusion loss enumerations of the diffusion model trained in Diff-RTTA and that
trained in ConDiff-RTTA are shown in Fig. 6 (b) and (c), on CAT1 to CAT5
TCs and the entire test set respectively. We can see that on both figures, the
enumeration curves (yellow) with ConDiff-RTTA are sharper than the curves
(blue) with Diff-RTTA. The valley of the curve with ConDiff-RTTA also shifts
more towards the center (true condition c) compared to Diff-RTTA. These fig-
ures comply with our intention to still learn p(x|c) as well as impose stronger
constraints on false condition scenarios.

Fig. 6. (a) Training loss curves and diffusion loss enumerations over conditions on (b)
CAT1-CAT5 and (c) the entire test set

4.6 Parameter Study

A parameter study is conducted using validation set on the hyper parameter
λ, which is the weight of our proposed contrastive loss. Figure 7 (a) shows the
overall improvements over baseline Reg Model with different λ values of 0.1,
0.5, 1.0, 2.0. It shows that the overall performance improves even with a small λ
value. λ = 0.5 is selected according to our parameter study for reporting ConDiff-
RTTA results. We also perform another parameter study w.r.t. the number of
adaptation steps during test-time adaptation and the results are shown in Fig. 7
(b). It shows that by extending the adaptation steps, the overall RMSE keeps
decreasing. As more adaptation steps lead to more running time, we stop the
adaptation step at 10.

4.7 Case Study

We select from our test set the Super Typhoon Meranti, one of the most dis-
astrous typhoons of this century for our case study. Meranti impacted South
Eastern Asia and Southern China areas in September 2016, causing numerous
deaths and injuries along with massive economic loss. It was recognized as a
CAT5 typhoon during its peak times.
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Fig. 7. Parameter study on (a) Hyper Parameter λ and (b) Adaptation Steps

Figure 8 shows the best track intensities (from IBTrACS) and model intensity
estimations of Meranti throughout its lifetime. The regression model underesti-
mates the peak intensities, which is likely due to the rareness of violent typhoons
in the nature and therefore in the TCIR dataset. As a comparison, Our proposed
method ConDiff-RTTA revises the estimations upward such that they are closer
to IBTrACS values. This case demonstrates that with the assist of our con-
trastive learning enhanced diffusion model, over-fitting in the regression model
can be mitigated, resulting in a more accurate discriminative estimation on rare
data.

Fig. 8. The intensities of Super Typhoon Meranti over its lifetime
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5 Conclusion

In this paper, we propose a new method ConDiff-RTTA to improve TC intensity
estimation performance. We find that TC regression network can be optimized
during test time by a diffusion model conditioned on ordinal intensity numbers
instead of categorical labels as in previous works. Furthermore, we enhance the
diffusion model by training in a contrastive learning approach in order to improve
the alignment between diffusion losses and prediction errors of the regression
model. Experimental results show that the diffusion model pre-trained from
TC satellite images improves TC estimation performance, and ConDiff-RTTA
achieves further overall performance gains, especially significant on high intensity
TCs.
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