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Abstract. Federated learning (FL) has obtained tremendous progress in
providing collaborative training solutions for distributed data silos with
privacy guarantees. However, few existing works explore a more realistic
scenario where the clients hold multiple data modalities. In this paper, we
aim to solve a novel challenge in multi-modal federated learning (MFL)
– modality missing – the clients may lose part of the modalities in their
local data sets. To tackle the problems, we propose a novel multi-modal
federated learning method, Federated Multi-modal contrastiVe train-
ing with Pre-trained completion (FedMVP), which integrates the large-
scale pre-trained models to enhance the federated training. In the pro-
posed FedMVP framework, each client deploys a large-scale pre-trained
model with frozen parameters for modality completion and representa-
tion knowledge transfer, enabling efficient and robust local training. On
the server side, we utilize generated data to uniformly measure the rep-
resentation similarity among the uploaded client models and construct a
graph perspective to aggregate them according to their importance in the
system. We demonstrate that the model achieves superior performance
over two real-world image-text classification datasets and is robust to
the performance degradation caused by missing modality.

Keywords: Federated Learning · Multi-modal Learning

1 Introduction

Federated learning (FL) has emerged as a promising paradigm for training
machine learning models on decentralized data [1,23,35–38]. In many realistic
scenarios, the multi-modal data are collected among distributed data silos and
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stored in a privacy-sensitive manner, such as the examination and diagnostic
records of patients in different hospitals and the multimedia data generated on
mobile devices. However, most existing federated learning works focus on sin-
gle modality scenarios (e.g., image or text) with limited capacity for data with
heterogeneous formats and properties. Regarding the fast development of multi-
media technology and distributed systems, developing a robust and efficient FL
framework for multi-modal machine learning tasks is significant.

To date, several early attempts for multimodal federated learning (MFL) [2]
have been proposed [3,6,18,42,44–46,48]. Some of these approaches [3,44,45]
consider scenarios where the federated system contains both uni-modal and
multi-modal clients. However, most of these works assume that all modalities
are available to all clients, which is a strong assumption that may not hold in
real-world situations. For example, content posted on social media often com-
bines images and text, but users may also publish posts containing only images
or text. This modality missing problem poses a substantial challenge as it can
severely impact the model’s learning ability and performance.

In this paper, we aim to address this general and realistic problem of modal-
ity missing, where clients share the same modality combinations, but some
multi-modal instances lack part of the modality data. For example, a client
holds 1000 image-text pairs, while 200 of them only have image data, and 300
instances have only text data. A few existing works [20,22] focus on the modality
incompleteness problem. However, they either only consider text missing in the
vision-language learning task or deal with sensor signals that are similar in for-
mat. We believe that an advanced MFL framework should be robust to modality
incomplete training data and maintain satisfactory performance.

To resolve those challenges, we proposed a multi-modal federated learn-
ing framework, namely Federated Multi-modal contrastiVe training with Pre-
trained completion (FedMVP), which uses frozen pre-trained models as the
teachers to support the learnable multi-modal joint encoder module for effi-
cient multi-modal representation learning and to generate informative synthetic
data. To enhance the model resilience to the performance degradation caused by
modality missing, we utilize the cross-modal generation ability of the recently
proposed pre-trained models [14,15,27] to complete the missing modalities. To
further improve the representation learning performance, we proposed an effi-
cient knowledge-transferring method to transfer the representation knowledge
from the pre-trained large models to our multi-modal joint learning module.
This knowledge-transferring method can alleviate the conflict between the mas-
sive data and computing costs requirements for training and fine-tuning of pre-
trained large models and the limited resources of federated learning clients.
The proposed framework is competent in integrating various pre-trained mod-
els with affordable communication costs. As shown in Table 1, compared to the
most costly baseline FedViLT, the FedMVP reduces the communication cost by
26.7× and computation FLOPS by 15.5×. The pre-trained foundation models
will play as the frozen data encoders to transform the original data into high-
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quality representations, which play an important role in the contrastive-manner
training process for the multi-modal joint encoder module.

Table 1. Comparison between FedMVP and baselines in terms of #FLOPS (Floating
Point Operations Per Second) and #transmitted parameters per round.

Method #FLOPS #Parameters

FedViT [8] 22.6G 86.4M

FedBERT [7] 38.1G 110.1M

FedCLIP [27] 60.7G 197.2M

FedViLT [21] 55.9G 298.6M

MMFed [42] 1.4G 4.49M

FedMVP 3.6G 11.2M

We summarize our contributions as follows: (1) We proposed a novel MFL
framework that integrates pre-trained large-scale models to conduct efficient
multi-modal representation learning and is robust to the modality missing chal-
lenge. Our proposed method shows superior performance on two multi-modal
classification benchmarks under both IID and non-IID settings. (2) To efficiently
transfer the learnable representation knowledge from the pre-trained model to
the multi-modal joint module under the resource-limited scenario, we proposed
a Multi-modal Contrastive Matching (MCM) loss and a Representation Aligned
Margin (RAM) loss, which effectively improve the model performance with severe
modality missing up to 80%. (3) Instead of aggregating the models based on the
data distribution or the model architecture, we propose a novel aggregation
algorithm for the MFL server aggregation based on the representation abilities
among the client models.

2 Related Work

Multi-modal Federated Learning (MFL). MFL is still in its early stages
of development. Some of the most existing works [18,42,48] focus on exploring
task-specific approaches with complete modalities. In [42], the authors propose a
multi-modal federated learning framework for multi-modal activity recognition
with a local co-attention module to fuse multi-modal features. [5] gives a detailed
analysis of the convergence problem of MFL with late fusion methods under
the Non-IID setting. [3,44,45] adapt modality-wise encoders to tackle the MFL
system with both uni-modal and multi-modal clients. However, few of them
explore the scenario where multi-modal data are incomplete, which may cause
significant performance degradation.

Modality Missing in Multi-modal Learning. As a widely existing challenge
in the realistic scenario, handling modality missing has drawn the attention of the
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multi-modal learning community. Some early works [25,30,39] build their meth-
ods based on conditional VAE to capture the multi-modal distribution for the
cross-modal generation. [33] as one of the recent works utilizes cross-modal fusion
to improve the model robustness for modality missing in testing. [29] proposes a
contrastive framework for learning both paired and unpaired data. In [22], the
authors leverage Bayesian meta-learning to reconstruct pseudo text input from
image input to resolve the missing modality issue. Instead of training a genera-
tive model from scratch, we utilize the large-scaled pre-trained model [14,15] and
prompt augmentation to achieve effective cross-modal generation for completing
the missing data pairs.

Vision-language Pre-training. Represented by CLIP [27] and ALIGN [12],
the large-scale Vision and Language Pre-training (VLP) models have demon-
strated their surprising performance in many downstream vision-language learn-
ing tasks [10] and strong adaptability to new scenarios. A few works have
taken the first steps towards incorporating federated learning with pre-training
techniques. In [32], the authors propose a splitting learning-based frame-
work for training large-scale models like BERT in federated learning systems.
PromptFL [9] allows the clients to train shared soft prompts collaboratively
using CLIP [27] to provide strong adaptation capability to distributed users
tasks. [4,19,40,41] are trying to explore the efficient methods for lightweight
and fast adaptation of pre-trained models. [31] proposes FedPCL to transfer
shared knowledge among the clients based on prototype contrastive learning. In
this work, instead of fine-tuning the large-scale pre-trained models or splitting
the model into multiple modules, we conduct effective knowledge transferring to
enhance the representation learning performance of a lightweight local module.

Multi-modal Contrastive Learning. Contrastive learning is widely used
in the self-supervised learning field, where the learned representations will be
assigned to positive and negative samples based on the class belongings. As for
its application in multi-modal learning [16,17,47], instead of using spatial or
temporal transforming to a single instance, the positive pairs are defined as the
samples with the same ID or time window. In [47], the authors propose CrossCLR
to improve the quality of learned joint embedding from multi-modal data with
a novel contrastive loss, which utilizes both inter-modality and intra-modality
alignment. [26] extends the multi-modal contrastive learning to efficiently align
the cross-modal representations. Inspired by the predecessors, we adopt a multi-
modal contrastive loss to improve the quality of the learned multi-modal joint
representations based on the modality-specific representation encoded by the
frozen pre-trained models.

3 Methodology

To explore multi-modal data in federated systems, we propose FedMVP for
MFL with the robustness of modality missing during training. As illustrated in
Fig. 1, the proposed FedMVP contains four main modules for effective MFL,
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Fig. 1. The overview of the proposed FedMVP framework.

including Modality Completion Module, Multi-modal Joint Learning Module,
Knowledge Transferring via Contrastive Training, CKA-based Aggregation.

3.1 Problem Formulation

Multi-modal Federated Learning. In an MFL system, there exist N clients
aiming to collaboratively train a global model wG for multi-modal representation
learning. For client n, its local data set Dn = {(Xi, yi)}|Dn|

i=1 contains |Dn| image-
text pairs denoted as Xi = {xI

i , x
T
i }, i.e., the i-th image data xI

i and text data
xT

i . yi is the corresponding label. A data instance is denoted as Xi = {xI
i }

or Xi = {xT
i } if modality missing happens. Each local model wn performs on

the local task Fn(·;wn) : Rn → R
d and collaborates with other clients for the

global task FG(·;wG) : RdG → R
d. Formally, the global objective of MFL for the

image-text classification problem is defined as

min LG(FG(·;wG)) = min
N∑

n=1

γnLn(Fn(Dn;wn)) (1)

where γn is the aggregation weights, and Ln is the local loss function.

3.2 Local Data Preprocessing

A pre-trained foundation model is deployed on both the server side and client
side, which consists of an image encoder f I

E(·) and a text encoder fT
E (·) for

representation extraction, an image decoder f I
D(·) and a text decoder fT

D(·) for
the cross-modal generation. Notably, all the parameters of the pre-trained models
are frozen and will not be transmitted between the server and clients. We will
explain the pre-trained model we used below, as well as the details of the local
training process.

Modality Completion Module. To solve the performance drop problem
caused by modality missing, the modality completion module utilizes the cross-
modal generation ability of the pre-trained model to complete the missing
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Fig. 2. Examples of the generated “snapdragon” images.

Fig. 3. Examples of the generated “yellowthroat” images.

part of multi-modal data. We use DALLE2 [28] for text-to-image generation,
and BLIP2 [14] for image-to-text generation. Inspired by [27], we use designed
prompts to improve the generation quality of the modality completion module.

Prompt Augmented Text-to-Image Generation. Given an image-text pair Xi with
only text data xT

i , the modality completion module could generate an image
from a text prompt. To avoid the semantic ambiguities caused by synonyms and
polysemy in the text data and label name. Instead of directly using text data
xT

i as the input, we adopt a coarse-to-fine prompt to augment the generation.
The prompt template is “A photo of {fine-grained label}, a kind of {class label},
{text description}”, which helps the pre-trained models to better understand
the characteristics of the generation target and improve the semantic correlation
between the text prompt and generated image. Figures 2 and 3 show examples
with different inputs to generate the classes “snapdragon” and “yellow throat”
on the Oxford Flower and CUB-200 datasets, where our designed prompt gives
high-quality fake images that are close to the original ones.

Accordingly, we obtain the image generation prompt based on the original
text data, and the process is denoted as pT (xT

i ). The augmented prompt pT (xT
i )

will firstly be decomposed by text encoder fT
E (·), then passed to image decoder

f I
D for generating the synthetic image x̂I

i , i.e.x̂I
i = f I

D(fT
E (pT (xT

i ))).

Prompt Augmented Image-to-text Generation. For the image-to-text generation,
considering the original text data contains detailed descriptions of the image
pair, the direct image captioning result may not be able to cover the fine-grained
text details. Therefore, we adapt both the visual question answering (VQA) and
image captioning functions of the pre-trained model to generate text pairs x̂T

i
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for the image input. Specifically, with a given image input xI
i , the modality com-

pletion module first performs the VQA task over three serial question prompts
to get fine-grained descriptions of the image. For instance, given prompt input
“What is the color of the petals?” for a flower image with the pink pedal, the
response answer could be “Pink”. After obtaining the answers to the three ques-
tion prompts, we combine them with the image captioning outcome as the final
synthetic text, e.g., “A photo of {flower}, with {pink} petals and {white} pis-
tils,{there is a pink flower with a yellow center in the middle of the picture}”.
We show examples of image-to-text generation in Table 2.

To better understand the model design and avoid notation confusion, we use
completed image-text pair Xi = {xI

i , x
T
i } in the following sections to illustrate

how data is processed in FedMVP.

Table 2. Image-to-text completion examples from CUB-200 and Oxford Flower.

Modality-specific Representations. The foundation models are believed to have
extraordinary representation extraction ability since they are trained with mil-
lions of data instances. Thus, we obtain the image-specific embedding and text-
specific embedding via the pre-trained encoders. Specifically, we use the pre-
trained Vision Transformer(ViT) [8] with the patch size of 16 × 16 as the
image-specific encoder to generate high-quality embedding from image input.
The image-specific embedding XI is encoded via the pre-trained image encoder
f I

E(·) and then mapping to the multi-modal latent space via a shared projec-
tion head fshared(·), i.e., XI = fshared(f I

E(xI)) ∈ R
dlatent . Similarly, we get

the text-specific embedding XT from the pre-trained BERT model [7], where
XT = fshared(fT

E (xT )) ∈ R
dlatent .
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3.3 Local Training

Multi-modal Joint Learning Module. The multi-modal joint learning mod-
ule contains a joint encoder fJoint

E (·) designed to efficiently fuse the image-text
information into a complete view. It consists of a cross-modal fusion layer and
follows attention-based embedding layers.

Pre-processing. Given an image-text pair {xI ,xT } as input, we use a non-
overlapped patch embedding layer and the pre-trained text encoder fT

E (·) to
get the patch sequence Icom and text embedding Tcom, both belongs to the
common dimension dcom.

Cross-Modal Fusion. After the positional embedding operation, both the image
and text embeddings are fed into the cross-modal fusion layer, which contains a
vision-to-language attention module and a language-to-vision attention module.
Both modules are based on the cross-modal attention [33], which can effectively
fuse the representation between the two input modality embeddings. We take
the image-to-text embedding XI→T to show the cross-modal attention:

XI→T = CMI→T (Icom,Tcom) = softmax(
WQI

IcomWT
KT

TT
com√

dcom

)WVT
. (2)

Similarly, we can get text-to-image embedding XT→I . The obtained XI→T

and XT→I will be concatenated together and projected to the latent space as
the final joint embedding via the shared projection head fshared(·) and a self-
attention layer as follows:

Xjoint = fshared(SelfAttention(XI→T ⊕ XT→I)). (3)

We now obtain the image-specific embedding XI , text-specific embedding
XT , and joint embedding Xjoint in the same latent space R

dlatent .

Knowledge Transferring from Pre-trained Model. The training data of
large-scale models in the pre-training stage is neither available nor affordable for
distributed silos to process, making the fine-tuning and traditional knowledge
distillation [11] of large-scale models impractical under the MFL scenario. In
order to transfer the rich representation knowledge from the pre-trained model,
we propose Multi-modal Contrastive Matching (MCM) Loss and Representation
Aligned Marginal (RAM) Loss to improve the representation learning perfor-
mance of the joint encoding module.

Multi-modal Contrastive Matching Loss. To obtain a high-quality joint represen-
tation, we utilize the idea of contrastive learning to closer the joint embedding
with its corresponding modality-specific embedding and distance it from the
embedding of the other categories in the latent space. Let sc(xi, xj) represent
the cosine similarity between two embedding, xi and xj , and τ ∈ (0, 1] be the
temperature hyperparameter. The corresponding scaled similarity is defined as:
sim(xi, xj) = exp( sc(xi,xj)

τ ).
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Given a batch of embedding B = {XT
i ,XI

i ,X
joint
i }|B|

i=1, the positive pair for
the contrastive learning is defined as the joint embedding with its corresponding
modality-specific embedding, i.e., (XT

i ,Xjoint
i ) and (XI

i ,X
joint
i ) . The other ways

of pairing will be treated as negative pairs, denoted as:

Ωm
i =

∑

i�=j

(sim(XM
i ,XM

j ) + sim(XM
i ,Xjoint

j ) + sim(Xjoint
i ,Xjoint

j )), (4)

where M ∈ {I, T} indicates the modality type. We define the multi-modal con-
trastive matching (MCM) loss of all data embedding as follows:

LMCM (B) = − 1
|B|

|B|∑

i=1

log

(
sim(XT

i ,Xjoint
i )

ΩT
i

+
sim(XI

i ,X
joint
i )

ΩI
i

)
. (5)

Representation Aligned Margin Loss. We propose the Representation Aligned
Margin (RAM) loss to further enrich the joint representation via pre-trained
knowledge to close the semantic gap between the joint embedding and the
modality-specific embeddings. We use the classification loss derived from the
embeddings to evaluate its representation quality. For the i-th data sample, the
supervised classification loss of one of its corresponding embeddings is denoted
as LM

sup(i) = CE(fc(XM
i ), yi).

Intuitively, embeddings with lower cross-entropy losses contain more infor-
mative features from the raw data. With an embedding batch B, the RAM
loss aligns joint embedding with image and text embedding separately, if the
modality-specific embedding has better representation. Thus, the RAM loss is
defined as:

LRAM (B) =
1

|B|
|B|∑

i=1

(
LI

RAM (i) + LT
RAM (i)

)
, (6)

LM
RAM (I) =

{
‖Xjoint

i − XM
i ‖2, if LM

sup(i) < Ljoint
sup (i)

0, otherwise
, (7)

where XM
i and Xjoint

i are all derived from the i-th sample in the batch, and |B|
is the batch size. The L2 norm is denoted by ‖·‖2.
Classification Loss. A two-layer linear classifier fC(·) will serve as the classifier
using only joint embedding as input. The supervised classification loss Lsup of
client n can be obtained:

Lsup(B) =
1

|B|
|B|∑

i=1

CE
(
fC

(
Xjoint

i ;ωn

)
, yi

)
, (8)

where fC(·) denotes the classifier model of client n, CE(·) is the cross-entropy
loss function, and yi is the corresponding label of i-th joint embedding Xjoint

i .

Total Loss. The final local training loss of client k in FedMVP is:

Llocal(Dk) = Lsup(Dk) + LMCM (Dk) + LRAM (Dk), (9)
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At each communication round, each client will upload the parameters of the
multi-modal joint learning module and classifier to the server for further global
aggregation.

Fig. 4. CKA-based Server Aggregation

3.4 Server Aggregation

Previous works tend to aggregate based on the modality type held by the
clients [3,43], share public dataset [44], or model structure [45], which may lead
to data privacy leakage and lacking uniformity. To better enhance the represen-
tational ability of the global model, we propose a server aggregation method
based on the similarity of model output representations.

At the beginning of the aggregation phase, the server-side pre-trained model
will automatically generate m synthetic data pairs Xm, where the data amount
m is equal to the number of classes of the dataset. Given an uploaded client
model, its output representations with generated data are defined as:

Xω = [Fω(X1), . . . , Fω(Xm)]T ∈ R
m×dout . (10)

To measure the similarity of the model representations among the clients,
we utilize the centered kernel alignment (CKA) metric [13] based on the output
representations from upload models, which is defined as follows:

sij(ωi, ωj) =
Cov(Xωi

,Xωj
)

√
Cov(Xωi

,Xωi
)Cov(Xωj

,Xωj
)
, (11)

where Cov(X,Y ) = (m − 1)2tr(XXT HmY Y T Hm), Hm is the centering matrix,
tr(·) denotes the matrix trace, m represents the number of input represents.

With the calculated representation similarity scores, the server constructs a
representation similarity graph to illustrate the relationship among clients, as
shown in Fig. 4. The importance of each client in the representation similarity
graph is determined by the sum of its similarity score with all the other clients.

γt
i = softmax([s1, . . . , si, . . . , sK ]), (12)
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where K is the number of clients who participate in the t-th aggregation, si =∑K−1
j=1 sij is the collection of the graph importance of all K clients. Finally, the

global model is weighted and aggregated based on the clients’ graph importance
γt

i as follows:

wt
G =

K∑

i=1

γt
iw

t
i . (13)

4 Experiments

4.1 Experiment Setting

Datasets. We evaluate the proposed FedMVP on two multi-modal fine-
grained categorization datasets, The Caltech-UCSD Birds-200-2011 (CUB-200)
dataset [34] and Oxford Flower [24]. Both contain paired image-text data, and
each image has 10 related descriptive text. CUB-200 has 200 bird classes with
10610 training image-text instances and 1178 for testing. Oxford Flower has 102
flower classes, a training size of 7370, and a testing size of 819.

Table 3. Evaluating the impact of incomplete modality on CUB-200 and Oxford Flower
datasets under IID setting. β indicates the missing ratio of the training set.

Methods CUB-200 Oxford Flower

β = 0.3 β = 0.5 β = 0.8 β = 0.3 β = 0.5 β = 0.8

FedViT 74.71% 67.12% 60.33% 92.15% 84.52% 76.64%

FedBERT 66.76% 58.98% 52.54% 74.23% 70.72% 67.81%

FedCLIP 75.73% 69.68% 63.41% 91.12% 86.32% 78.55%

FedViLT 76.29% 70.28% 64.11% 92.67% 88.31% 81.52%

MMFed 63.15% 57.48% 51.60% 72.91% 69.43% 64.05%

FedMVP(Ours) 77.89%74.46%70.31%93.19%91.28%89.32%

Data Distribution Setting. For Independent Identically Distribution
(IID) setting, we equally distribute the training data to 10 clients with random
selection. Each client will hold the same quantity of local data with a balanced
category distribution. To simulate the non-IID scenario in federated systems,
we divide the training data set into C shards according to the data set cate-
gories, i.e., 200 shards for CUB-200-2011 dataset and 102 shards for the Oxford
Flower dataset. With fixed 10 clients, the data shards are randomly and equally
distributed to clients.

Modality Missing Setting. We set β ∈ [0, 1] as the missing ratio. For example,
given a constant β = 0.3, 30% randomly selected image-text pairs will lose either
image or text data in equal chances. We select β = 0.3, 0.5, 0.8 to conduct our
experiments, and the number of missing images and texts is the same.
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Training Setting. With fixed 10 clients, the total communication round is
200. In each communication round, the clients will perform 10 epochs for local
training with their own local datasets and the server will randomly select 70% of
clients for aggregation. We choose AdamW as the optimization function with a
scheduler-controlled learning rate 2e − 5. We adopt the warm-up scheduler and
cosine annealing scheduler for the training process as well.

Baselines. Since the existing approaches for addressing modality missing in
multi-modal federated learning are relatively limited, we choose FedViT, Fed-
BERT as the uni-modal baseline and FedCLIP, FedViLT, MMFed as the
multi-modal baseline. FedViT [8], FedBERT [7], FedCLIP [27] and FedViLT [21]
are using large-scale foundation models pre-trained with millions of data as the
local models. These large models are fine-tuned on the local data and upload all
the parameters to the server for aggregation. MMFed [42] is a federated multi-
modal learning method without leveraging foundation models. FedViLT [21] is
designed specifically for modality missing. Please refer to Appendix for details
of the implementation.

Table 4. Evaluating the impact of incomplete modality on CUB-200 and Oxford Flower
datasets under the non-IID setting. β indicates the missing ratio of the training set.

Methods CUB-200 Oxford Flower

β = 0.3 β = 0.5 β = 0.8 β = 0.3 β = 0.5 β = 0.8

FedViT 67.05% 61.17% 50.39% 86.25% 78.30% 70.03%

FedBERT 59.31% 51.14% 43.67% 68.43% 62.01% 57.16%

FedCLIP 67.63% 61.72% 56.78% 85.01% 80.13% 72.91%

FedViLT 69.19% 65.26% 58.34% 86.96% 81.63% 73.32%

MMFed 57.55% 51.12% 42.14% 65.90% 59.26% 52.79%

FedMVP(Ours) 72.62%69.73%66.44%88.54%84.78%82.47%

Table 5. Evaluating the robustness of the methods over different test sets. image only
and text only indicate the test set only contains either image or text. All the methods
are trained over train set WITHOUT modality missing.

Methods CUB-200 Oxford Flower

image only text only complete image only text only complete

FedCLIP 56.47% 47.30% 79.73% 64.11% 53.59% 94.12%

FedViLT 64.55% 52.08% 82.29% 76.71% 60.91% 96.67%

MMFed 7.94% 13.07% 65.28% 26.37% 40.90% 74.89%

FedMVP(Ours) 70.39% 64.44% 80.79% 80.82% 73.50% 94.27%
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4.2 Empirical Results

Results of the IID Setting. Table 3 shows the superior performance of Fed-
MVP across different missing ratios under the IID setting on both CUB-200 and
Oxford Flower datasets. Observably, all models exhibit a decline in accuracy
with an increase in the missing ratio (β). FedMVP outperforms baseline methods
consistently and demonstrates exceptional resilience to performance degradation
due to missing modalities. For instance, on the CUB-200 dataset, FedMVP’s
accuracy margin over the next best-performing model, FedViLT, widens from
about 1.6% at β = 0.3 to 6.2% at β = 0.8. A similar trend is observed on the
Oxford Flower dataset, with the margin increasing from 0.52% to 7.8%. The
rate of performance degradation of FedMVP is notably slower than the other
models. Specifically, as β increases from 0.3 to 0.8, the accuracy of FedMVP
drops by merely 7.58% and 3.87% on the CUB-200 and Oxford Flower datasets,
respectively. In contrast, FedViT witnesses larger drops of 14.38% and 15.51%.

Results of the Non-IID Setting. The non-IID experimental results, presented
in Table 4, all methods experience a significant decrease in accuracy compared to
the IID setting, including FedMVP. The proposed FedMVP consistently outper-
forms the other methods across the settings. FedMVP has minimal performance
degradation caused by non-IID compared to the baseline methods, with no more
than 5% drop on CUB-200 and no more than 7% on Oxford Flower. Despite the
increasing missing ratio from β = 0.3 to β = 0.8, FedMVP maintains a substan-
tial lead in accuracy on both datasets. For instance, even with β = 0.8, Fed-
MVP achieves an accuracy of 66.44% and 82.47% on the CUB-200 and Oxford
Flower datasets, respectively, confirming its robustness to modality incomplete-
ness under non-IID settings. Notably, the performance margin between FedMVP
and baseline is further widened compared to the IID setting. For instance, on the
Oxford Flower dataset, as β = 0.8, the accuracy of FedMVP is 29.68% higher
than MMFed compared to 25.27% under IID.

Results of Single-modality Testing. Shown in Table 5, all methods experi-
ence significant performance drops when tested with only one modality (image
or text). FedMVP shows the best resilience, achieving the highest accuracy in
both image-only and text-only scenarios across datasets. FedViLT [21] performs
best with complete data since it has 26.7× more parameters than FedMVP
and is pre-trained over millions of pre-training data. It holds second place in
single-modality tests. FedCLIP’s performance is limited by local dataset size
but benefits from separate ViT and BERT encodings. MMFed suffers the most
due to its co-attention mechanism and performs better in text-only testing due
to its integrated BERT. In summary, FedMVP demonstrates robustness in both
training and testing under missing modalities.

Ablation Study. The results in Table 6 show that all the modules in the Fed-
MVP model significantly contribute to its performance. Experimental results
show that MCM loss and RAM loss can effectively improve the quality of the
representation generated by the multi-modal joint encoder and enhance the final
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performance of the model by transferring pre-trained knowledge through repre-
sentation learning. The modality completion module can supplement the data
by providing additional training information using the transferable knowledge of
the pre-trained model. Furthermore, the experimental results suggest that CKA
similarity can effectively measure the importance of the representation learned
by each client’s local model and can improve aggregation performance compared
to traditional average aggregation.

Table 6. Ablation study on both CUB-200 and Oxford Flower datasets with β = 0.3
under non-IID setting; wo/MCM denoting MCM Loss excluded; wo/RAM excludes
RAM loss; wo/Completion refers to training without modality completion module;
wo/CKA indicates server aggregation as FedAvg.

Model CUB-200 Oxford Flower

FedMVP 72.62% 88.54%

-wo/MCM 66.87% 81.44%

-wo/RAM 68.25% 83.60%

-wo/Completion 67.49% 81.87%

-wo/CKA 70.11% 85.01%

5 Conclusion

In conclusion, we proposed the FedMVP framework to tackle modality missing,
a widely existing real-world challenge, where part of the multi-modal data is
incomplete and unaligned. Our framework utilizes large-scale pre-trained mod-
els with frozen parameters for modality completion and representation knowl-
edge transfer at each client. It provides a solution for integrating large-scale pre-
trained models to empower the federated system with robustness towards modal-
ity incompleteness. The experiments on the real-world image-text pair bench-
mark demonstrated the effectiveness of our proposed method. The proposed
FedMVP framework shows great potential in addressing the missing modality
and unified representation learning challenges of multi-modal federated learning.
We hope this work can provide inspiration for future research in this field.
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