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Abstract. Building deep neural network models for clinical prediction
tasks is an increasingly active area of research. While existing approaches
show promising performance, the learned patient representations from
deep neural networks are often task-specific and not generalizable across
multiple clinical prediction tasks. In this paper, we propose a novel neural
network architecture leveraging the graph contrastive learning paradigm
to learn patient representations that are applicable to a wide range of
clinical prediction tasks. In particular, our approach consists of three
well-designed modules for learning graph-based patient representations,
alongside a pretraining mechanism that exploits self-supervised informa-
tion in generated patient graphs. These modules collaboratively integrate
patient graph structure learning, refinement, and contrastive learning,
enhanced by masked graph modeling as a pretraining mechanism to opti-
mize learning outcomes. Empirical results show that the proposed app-
roach outperforms baselines in both self-supervised and supervised learn-
ing scenarios, offering robust, effective, and more generalizable patient
representations in healthcare applications.
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1 Introduction

The use of deep learning techniques for analyzing Electronic Health Records
(EHRs) has received considerable attention in recent years. An EHR, the digi-
tized version of a patient’s medical history, includes clinical data such as patient
demographics, vital signs, lab test results, medications, and more. Deep learning
often does not make pre-defined assumptions and can discover common charac-
teristics among individual patients in large amounts of EHR data, which can be
used to support healthcare providers in a wide range of clinical decision-making
tasks, such as diagnosis, assessments of disease severity, and treatment choices
for patient disease management. Successful applications have ranged from dis-
ease diagnosis and prediction [16,25] to evaluating the risk of decompensation
or mortality [13]. These studies often employ Recurrent Neural Network [4] or,
more recently, Transformers [19] as the backbone models that can learn valu-
able patient representations from EHR data – a process, often known as patient
representation learning. While these approaches have demonstrated promising
performance, the learned patient representations are often task-specific; thus,
they have to be retrained for new tasks. Accordingly, a fundamental research
question is how to learn effective and robust patient representations that are
generalizable to multiple, if not all, medical tasks – aligning with the concept of
learning foundation models.

Self-supervised pretraining has emerged as a promising strategy to tackle such
a question challenge and learn versatile patient representations. This approach
can capture different patterns and features in the input data without relying on
human-annotated labels, enabling the learning of generalized and transferable
representations applicable to a variety of downstream tasks [6]. In this study,
we adopt the graph contrastive learning paradigm based on self-supervised pre-
training of graph neural networks. Multiple graph views of the input data are
created via data augmentation techniques, and graph representations are then
generated using contrastive learning [23,29,30]. Recently, the graph contrastive
learning paradigm has gained attention for its effectiveness in representation
learning, especially in areas where network graphs are readily available, such as
in social recommendation systems [24] and molecular property prediction [26].

However, the application of the graph contrastive learning paradigm in EHR
data presents unique challenges. Typical EHRs, characterized by sequential
records for each patient (longitudinal), do not naturally conform to a graphical
structure. While existing studies have proposed to adapt graph neural networks
to EHR data, we argue that these approaches fall short of pretraining on EHR
data due to the fact that their proposed graph structures, along with the graph
neural networks, are optimized in the context of label-dependent downstream
tasks.

In this paper, we introduce a novel neural network architecture that incor-
porates graph analysis techniques into the graph contrastive learning paradigm.
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Patient graph structure learning and refinement are achieved with node-level
clustering by assuming homophily. Additionally, we integrate attention mech-
anisms to enhance the model’s focus on only relevant parts of the graph. To
generate robust patient representations, we use contrastive learning, aiming to
maximize the mutual information between different views of the graph.

The idea of node-level clustering involves grouping the set of nodes into clus-
ters based on similarity, where nodes in the same cluster are likely to be similar,
and those in different clusters are dissimilar [10]. The homophily assumption sug-
gests that connected nodes in a graph tend to share similar attributes or labels
[21]. We thus utilize the outcomes of clustering as pseudo labels and apply the
homophily assumption as a constraint for adjusting the graph structure. Accord-
ingly, in refining the patient graph structure (as illustrated in Fig. 1 and detailed
below), edges are added between nodes when they share the same pseudo label
and removed if they contradict the homophily assumption (i.e., those with dis-
similar pseudo labels).

We enhance the graph view for contrastive learning by introducing a simple
yet effective structure augmentation technique. Specifically, we incorporate a ran-
dom walk strategy into our structure augmentation techniques, which replaces
the traditional neighborhood concept in a graph with path-based neighborhoods
(i.e., sequences of edges identified within the graph). For contrastive learning,
we define the positive and negative samples based on the augmented and main
graph views. Positives are derived from an anchor, its counterparts (nodes cor-
respond to the anchor) in different graph views, the neighbors of the anchor,
and the node connected to the anchor (having the same pseudo label as the
anchor), are treated as positives. Conversely, negatives comprise non-neighbors
of the anchor, nodes whose pseudo labels differ from the anchor’s, and all the
remaining nodes (except for the anchor’s counterparts) in different views are
treated as negatives. This framework facilitates the formation of positive and
negative pairs, which is essential for the contrastive learning process.

We use masked graph modeling as a pretext task to facilitate self-supervised
pretraining for graph neural networks, encouraging the model to derive gen-
eralized and transferable representations from unannotated graph data. This
is achieved by intentionally masking parts of the graph and then challenging
the model to predict these masked elements. Specifically, our approach is built
upon path-wise masking, which is enabled by the random walk strategy pre-
viously mentioned. Unlike the more common edge-wise masking, which typi-
cally involves removing, adding, or modifying edges within the input graphs.
Path-based masking focuses on sequences of edges connecting adjacent nodes,
thus offering a unique approach to altering the graph’s structure compared with
edge-wise masking. The implications of path-based masking are significant: it
forces the model to find more clues over longer sequences of connections, thereby
encouraging it to consider broader dependencies within the graph. This require-
ment not only makes the self-supervised pretraining task more challenging but
also imbues the process with deeper learning potential. This approach is com-
pelled to identify more complex patterns and relationships, enhancing its ability
to generate robust and comprehensive representations.
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The core contributions of this work are as follows:

– We have integrated graph analysis techniques into graph contrastive learning
to enhance the learning of patient representations from longitudinal EHRs.

– We proposed a novel neural network architecture, which consists of three
well-designed modules for patient representation learning that collaboratively
integrate patient graph structure learning, refining, and contrastive learning
together to optimize learning outcomes.

– We designed a simple yet effective pretraining mechanism, which consists
of masked graph modeling and graph contrastive learning, to achieve the
optimized learning outcomes.

– We empirically demonstrated that the proposed approach outperforms base-
lines in both self-supervised and supervised learning experiments.

2 Related Work

In recent years, various deep learning models have been proposed for clinical
risk prediction using EHR data, where representative models include convolu-
tional neural networks [12], recurrent neural networks [13], and attention-based
neural networks [14]. In addition to these neural network architectures, graph
neural networks (GNNs) have gained popularity due to their ability to handle
high-dimensional, graph-structured data. Prominent GNN approaches include
graph convolutional network [11], graph attention network [20], and graph con-
volutional transformer [5], and studies have investigated GNNs on EHR data
[15,17,27]. These studies derive graph structures from EHRs and feed them into
GNNs to generate patient representations for downstream tasks. Most of them
have focused on supervised learning settings for clinical prediction tasks, such
as mortality, readmission, and diagnosis prediction.

It is worth noting that a recent study by Cai et al. [1] incorporated hyper-
graph contrastive learning into EHR data representation learning. The research
presented in this study differs from that observed in Cai et al. [1] in the follow-
ing aspects: (i) their study focused on identifying and evaluating the medical
code-code relationship, the patient-patient relationship, and the patient-code
relationship. Our research made efforts to the improvement of methodologies for
representing EHR data in the form of a graphical structure. (ii) Their network
architecture is built upon hypergraphs, which can be treated as predefined, as
nodes are connected via hyperedges specified by medical codes. Our proposed
network architecture consists of three well-designed modules for graph-based
patient representation learning and a pretraining mechanism for exploiting self-
supervised information in generated patient graphs. Accordingly, our approach
is tailored to the self-supervised learning settings and focuses on achieving opti-
mized self-supervised learning outcomes using non-predefined graph data.
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3 Method

3.1 Basic Notations and Problem Definitions

In the EHR dataset, each patient’s data is a sequence of time-ordered records.
The records of the i-th patient are X(i) = [x(i)

1 , · · · , x
(i)
t , · · · , x

(i)
Ti
], where x

(i)
t =

[x(i)
t,1, · · · , x

(i)
t,Nx

] is the t-th record, Ti is the total number of records for the i-th
patient, and Nx is the number of features of each record. The basic demographic
of a patient is C(i) ∈ R

dC . Given a patient’s records and demographics, the
patient deterioration prediction task is to predict a binary vector y ∈ {0, 1}
that represents the patient’s health status; the hospital stay prediction task
is to predict a binary vector y ∈ {0, 1} that represents whether the patient’s
ICU/eICU stay is within 3 and 7 days.

3.2 Architecture Overview

Figure 1 displays an overview of the proposed network architecture.

Patient Graph Structure Learning. Let G = {V, E} be a graph with
patients as nodes and the similarities between patients as edges, where V =
{v1, v2, · · · , vm} and E are the node set and edge set and m is the total number
of nodes. The objective of patient graph structure learning using EHR data is to
learn an adjacency matrix A ∈ [0, 1]m×m, where Aij ∈ [0, 1] represents whether
there exists an edge between vi and vj .

Given the record of patients X, we conduct Gated Recurrent Units over the
timestamps and generate an intermediate representation X̄ as well as concate-
nate X̄ with C to generate X̂ as:

X̄1, X̄2, · · · , X̄T = GRU(X1,X2, · · · ,XT ),
X̂ = (X̄T ⊕ C),

(1)

where X̂ is the new representation generated after concatenation. Subsequently,
the similarity matrix Ã can be calculated using a multi-head attention layer as:

Ã = MultiHeadAtt(X̂)
= [head1(X̂) ⊕ head2(X̂) ⊕ · · · ⊕ headn(X̂)] · W o,

(2)

where headn is the n-th attention head that calculates the similarities between
nodes. In particular, we embed X̂ into a lower-dimensional space using linear
transformation as:

qn, kn = W q
n · x,W k

n · k. (3)

Each headn has its own projection matrix:

headn(X̂) = SoftMax(
qn · k�

n√
dk

), (4)
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Fig. 1. The proposed network architecture.
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where dk is the dimension of kn. A note of caution is due here since a learnable
threshold ξ is also incorporated into the similarity matrix Ã, where values lower
than ξ are filtered out as:

A =

{
1, Ã ≥ ξ

0, Ã < ξ
. (5)

Patient Graph Structure Refining. Through the processes above, we have
been able to obtain the adjacency matrix A. The objective of patient graph
structure refining is to refine A into a well-established A∗ ∈ [0, 1]m×m.

Now, we group the set of nodes V into the number of K clusters. These
clusters are separate, and nodes with similar patterns are grouped together. We
calculate the similarity between the node embedding X̂i and the k-th cluster
center μk by a Student’s t-distribution as:

qik =
(1 + ||X̂i − μk||2)−1∑K

u=1(1 + ||X̂i − μu||2)−1
, (6)

where qik is a soft clustering distribution of each node. To obtain the soft clus-
tering distribution of all nodes Q, the k-means clustering is carried out once on
the node embedding X̂ along with the generation of the initial cluster centers μ.
The clustering distribution is optimized in a self-training way [22] as:

LKL = KL(P ||Q) =
∑

i

∑
k

piklog
pik

qik
, (7)

where pik = q2
ik/

∑
i qik∑

u(q
2
iu/

∑
i qiu)

is the auxiliary target distribution.
Next we treat the clustering results as pseudo labels and adopt the homophily

assumption as a constraint. Accordingly, edges between nodes are kept, added, or
removed. Edges are added between nodes when they share the same pseudo label,
and removed from the existing edge set if against the homophily assumption.
Specifically, we measure the pseudo labels using the soft clustering distribution
Q as ỹi = argmax

k
qik. We calculate the node similarity between all pairs of nodes

using X̂ as Z = X̂i · X̂�
j , where Z is the node similarity matrix. Accordingly,

the edge sets can be refined as:

εk
add = {(vi, vj)|Rank(Zij) ≤ γadd · |ε| · mk

m
, (vi, vj) /∈ ε, ỹi = ỹj = k}, εadd =

K⋃

k

εk
add,

εdel = {(vi, vj)|Rank(Zij) ≥ (1 − γdel) · |ε|, (vi, vj) ∈ ε, ỹi �= ỹj},

(8)
where mk is the number of nodes in the k-th cluster; ε is the existing edge set
of the present structure; γadd and γdel are the add and delete ratio; Rank(Zij)
is the descending similarity ranking of node pair vi and vj ; εadd and εdel are
the edge sets obtained after refining. The adjacency matrices of ε, εadd, and εdel

are denoted by A, Aεadd
, and Aεdel

. Accordingly, the adjacency matrix A can be
further formalized as: A∗ = A − Aεdel

+ Aεadd
.
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Contrastive Learning. Since the backbone of the graph contrastive learning
paradigm is contrastive learning, building multiple augmentation graph views to
construct positive and negative sample pairs for contrast is necessary. The exist-
ing data augmentation technique on graphs is extensive and focuses particularly
on structure augmentation [28]. In response, we establish a simple yet effective
structure augmentation technique that uses paths that are sequences of edges
found in the graph. Accordingly, the detailed process can be formalized as:

εdrop ∼ RandomWalk(Vwalk, lwalk), (9)

where Vwalk ⊆ V is a set of root nodes sampled from a patient graph G that
follows a Bernoulli distribution, i.e., Vwalk ∼ Bernoulli(r), where 0 < r < 1
is the sampling ratio, and lwalk is the length. Through the processes above,
we have been able to obtain the augmentation graph view with the adjacency
matrix Aaug = A∗CAεdrop

, where Aεdrop
is the adjacency matrix of εdrop. Given

A∗ and Aaug, two graph views can be constructed as V iewMain and V iewAug.
Contrastive learning aims to maximize their mutual information. In particular,
the anchor, its counterparts (nodes correspond to the anchor) in V iewAug, the
neighbors of the anchor, and the node in V iewMain having the same pseudo
label as the anchor, are positives. The non-neighbors of the anchor, the nodes
with pseudo labels differ from that of the anchor, and the remaining nodes
(except for the anchor’s counterparts) in V iewAug are negatives. These allow the
formation of positive and negative pairs for contrastive learning. Subsequently,
given X̂, GNN-based encoder [11] fG is utilized to generate node representations
for V iewMain and V iewAug as:

EMain = fG(X̂, A∗),
EAug = fG(X̂, AAug),

(10)

where EMain and EAug ∈ R
dE are node representations for V iewMain and

V iewAug, respectively. dE is the dimension. A∗ and Aaug are adjacency matrices.
We then employ an feed-forward network (FFN) layer to translate EMain and
EAug into a new latent space as:

SMain = FFN(EMain),
SAug = FFN(EAug),

(11)

where SMain and SAug ∈ R
dS are node representations for V iewMain and

V iewAug after projection. dS is the projection dimension. Last, we select Si
Main

as the anchor, the contrastive loss between V iewMain and V iewAug as:

LCL = −∑m
i=1

1
|N i

Main|+Nỹi
+1

log
exp(ϕ(Si

Main,Si
Aug)/τ)+

∑
j∈Ni

Main
exp(ϕ(Si

Main,Sj
Main)/τ)

∑m
j=1 1[j �=i]exp(ϕ(Si

Main,Sj
Main)/τ)

,

+

∑m

j=1,j /∈Nj
Main

1[ỹi=ỹj ]exp(ϕ(Si
Main,Sj

Main))

∑m
j=1 exp(ϕ(Si

Main,Sj
Aug)/τ)

(12)
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where N i
Main is a set of neighbors of vi in V iewMain. |N i

Main| is the number of
neighbors of vi in V iewMain. Nỹi

is the number of samples with the same pseudo
label in each batch. τ is a temperature parameter. ϕ(·) is the inner product.

Self-supervised and Supervised Learning Settings. Through the processes
above, we have built the network architecture. Since the proposed network runs
as a unit and has multiple learning objectives, we design a hybrid loss that
solves the problem of tracking objectives, the combination of LKL and LCL as
LHybrid = α1 ·LCL +α2 ·LKL, where α1 and α2 are two scaling parameters that
makes the trade-off between LCL and LKL. Moreover, the downstream prediction
tasks are three binary classification tasks. Accordingly, the cross entropy (CE)
is employed as the objective function between the target label y and predicted
label ŷ as LCE = − 1

m

∑m
i=1(y

�
i · log(ŷi) + (1 − yi)� · log(1 − ŷi)), where ŷ =

SoftMax(Wy · EMain + by).
Masked graph modeling is used to mask sequences of edges and reconstruct

the masked parts using visible graph structures. It is built upon the encoder-
decoder architecture and the use of AAug as an object. The encoder is fG, a
graph neural-network-based encoder, and EAug in Eq. (10) is the encoded node
representation. The two decoders used for the adjacency matrix and node degree
make them as close as possible to the adjacency matrix and node degree in AAug

as:
Â = fDAM

(EAug) = Sigmoid(EAug · E�
Aug),

fDND
(EAug) = FFN(EAug),

(13)

where fDAM
and fDND

are the two decoders used for the adjacency matrix and
node degree. We apply cross entropy and mean squared error to fDAM

andfDND
:

LDAM
= − 1

m

∑m
i=1(A

∗
i · Âi + (1 − A∗

i ) · log(1 − Âi)),
LDND

= ||fDND
(EAug) − degAug||2F ,

LMGM = β1 · LDAM
+ β2 · LDND

,
(14)

where degAug is the node degree in AAug. || · ||F is the Frobenius norm. LMGM is
the sum of LDAM

and LDND
, where β1 and β2 are two scaling parameters that

makes the trade-off between them.
For the self-supervised learning setting, the objective function is LSSL =

λ1 · LMGM + (1− λ1) · LHybrid, where λ1 is a scaling parameter that makes the
trade-off between LMGM and LHybrid. For the supervised learning setting, the
objective function is LSL = λ2 · LCE + (1 − λ2) · LHybrid, where λ2 is a scaling
parameter that makes the trade-off between LCE and LHybrid.

4 Experiments

4.1 Datasets, Tasks, Evaluation Metrics

All approaches are evaluated on two well-established EHR databases, MIMIC-
III and eICU. We follow the settings presented in previous research [7,18] to
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select available variables for physiologic deterioration and length of stay (LOS)
predictions, and their missing values are filled with the empirical mean values
[2]. The selected variables are vital signs (up to 17 and 16, respectively) and
demographics (age, gender, ethnicity). The prediction window for physiologic
deterioration prediction was defined as the first 48 h after admission [7] and for
LOS prediction was defined as 3 and 7 days after admission [8]. The AUROC,
AUPRC, F1, and Min(Se, P+) are employed to compare the prediction results.
In self-supervised learning settings, all approaches (see below) are evaluated on
the linear evaluation protocol [3]. Accordingly, logistic regression models were
implemented using the patient representation generated from approaches in self-
supervised learning settings.

4.2 Comparison Approaches

Under the supervised learning setting, we compare our approach with Trans-
former [19], GRU-D [2], GCT [5], SimCLR [3], GraphCL [23], GRACE [29],
and ConCAD [9]. Under the self-supervised learning setting, we compare our
approach with logistic regression (LR), SimCLR, and GRACE. Transformer is
an attention-based neural network; GRU-D is a well-known early study often
cited in research on EHR data, and its network architecture is built upon Gated
Recurrent Unit; GCT pioneered a Graph Convolutional Transformer to learn
the graphical structure of EHR data; SimCLR and ConCAD are contrastive
learning-based approaches; GraphCL and GRACE are graph contrastive learn-
ing based approaches. SimCLR, GraphCL, and GRACE can be implemented
in self-supervised learning settings. Note that GraphCL focuses on providing
data augmentation techniques on graphs but has difficulty convergent in self-
supervised learning settings. A possible explanation of our findings is that the
input data needed to be richer for GraphCL. We provide four variants of our app-
roach as follows: Ourα: we treat only the anchor and its counterparts in different
graph views as positives; Ourβ : we omit the node connected to the anchor, which
tests the efficacy of node-level clustering on patient graphs; Ourγ : we omit the
neighbors of the anchor; Ourδ: we use edge-based masking instead of path-based
masking. The source code of our approach, data construction, imple-
mentation details, and analysis of hyperparameters are presented in
the Github repository1.

5 Results and Discussion

As can be seen from the Tables 1 and 2, our approach reported significantly
more AUROC, AUPRC, F1, and Min(Se, P+) scores than the other baselines.
For instance, the best baseline for ICU deterioration prediction is achieved by
GraphCL with an AUROC of 0.7801, an AUPRC of 0.3738, and a Min(Se, P+)
of 0.3979. In contrast, our approach reaches an AUROC of 0.7986, an AUPRC of

1 https://github.com/LZlab01/GCL-EHR.

https://github.com/LZlab01/GCL-EHR
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Table 1. Supervised learning results on the MIMIC-III dataset.

ICU Deterioration AUROC AUPRC F1 Score Min(Se, P+)

Transformer [19] 0.7104(0.0073) 0.2739(0.0118) 0.2858(0.0162) 0.2955(0.0069)
GRU-D [2] 0.7609(0.0229) 0.3319(0.0352) 0.3335(0.0664) 0.3736(0.0308)
GCT [5] 0.7375(0.0266) 0.2603(0.0290) 0.3389(0.0302) 0.3207(0.0378)
SimCLR [3] 0.7638(0.0301) 0.3522(0.0466) 0.3569(0.0386) 0.3871(0.0456)
GraphCL [23] 0.7801(0.0189) 0.3738(0.0337) 0.3619(0.0278) 0.3979(0.0239)
GRACE [29] 0.7129(0.0558) 0.2598(0.0523) 0.3740(0.0154) 0.3133(0.0625)
ConCAD [9] 0.7688(0.0252) 0.3499(0.0387) 0.3678(0.0323) 0.3908(0.0450)
Ourα 0.7401(0.0383) 0.3074(0.0469) 0.3557(0.0246) 0.3663(0.0454)
Ourβ 0.7604(0.0269) 0.3273(0.0374) 0.3589(0.0297) 0.3813(0.0349)
Ourγ 0.7747(0.0532) 0.3710(0.0498) 0.3746(0.0185) 0.3921(0.0313)
Ourδ 0.7823(0.0254) 0.3925(0.0316) 0.3705(0.0142) 0.3957(0.0229)
Our 0.7986(0.0188) 0.4014(0.0368) 0.3827(0.0189) 0.4064(0.0244)
ICU LOS (3 days) AUROC AUPRC F1 Score Min(Se, P+)
Transformer [19] 0.6735(0.0032) 0.5202(0.0056) 0.5099(0.0263) 0.5153(0.0066)
GRU-D [2] 0.6903(0.0683) 0.5403(0.0556) 0.5358(0.0571) 0.5289(0.0530)
GCT [5] 0.6841(0.0233) 0.5159(0.0190) 0.5732(0.0259) 0.5197(0.0225)
SimCLR [3] 0.6920(0.0446) 0.5252(0.0326) 0.5897(0.0465) 0.5253(0.0342)
GraphCL [23] 0.6670(0.0665) 0.5142(0.0471) 0.6058(0.0230) 0.5027(0.0476)
GRACE [29] 0.6378(0.0636) 0.4841(0.0420) 0.5836(0.0243) 0.4779(0.0462)
ConCAD [9] 0.6998(0.0407) 0.5297(0.0344) 0.5992(0.0289) 0.5336(0.0333)
Ourα 0.6553(0.0507) 0.4946(0.0356) 0.5373(0.0337) 0.4782(0.0393)
Ourβ 0.6802(0.0439) 0.5251(0.0335) 0.5794(0.0414) 0.4901(0.0332)
Ourγ 0.7190(0.0546) 0.5342(0.0464) 0.5855(0.0524) 0.5163(0.0526)
Ourδ 0.7207(0.0455) 0.5393(0.0328) 0.5876(0.0310) 0.5228(0.0346)
Our 0.7329(0.0331) 0.5531(0.0213) 0.6094(0.0270) 0.5456(0.0352)
ICU LOS (7 days) AUROC AUPRC F1 Score Min(Se, P+)
Transformer [19] 0.6988(0.0038) 0.8784(0.0021) 0.6893(0.0558) 0.8430(0.0016)
GRU-D [2] 0.7236(0.0326) 0.8765(0.0126) 0.6931(0.0623) 0.8485(0.0139)
GCT [5] 0.7288(0.0092) 0.8862(0.0037) 0.7837(0.0352) 0.8468(0.0051)
SimCLR [3] 0.7434(0.0235) 0.8922(0.0120) 0.8018(0.0205) 0.8570(0.0072)
GraphCL [23] 0.6870(0.0559) 0.8690(0.0225) 0.8141(0.0279) 0.8372(0.0203)
GRACE [29] 0.6684(0.0656) 0.8635(0.0260) 0.8143(0.0166) 0.8296(0.0207)
ConCAD [9] 0.7354(0.0208) 0.8920(0.0072) 0.8047(0.0206) 0.8553(0.0103)
Ourα 0.7178(0.0385) 0.8462(0.0191) 0.7997(0.0189) 0.8318(0.0115)
Ourβ 0.7420(0.0522) 0.8619(0.0237) 0.8061(0.0331) 0.8456(0.0194)
Ourγ 0.7550(0.0557) 0.8731(0.0235) 0.8162(0.0347) 0.8522(0.0169)
Ourδ 0.7574(0.0615) 0.8865(0.0389) 0.8150(0.0586) 0.8473(0.0223)
Our 0.7626(0.0285) 0.8962(0.0198) 0.8397(0.0282) 0.8652(0.0146)
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Table 2. Supervised learning results on the eICU dataset.

eICU Deterioration AUROC AUPRC F1 Score Min(Se, P+)

Transformer [19] 0.7315(0.0033) 0.2788(0.0172) 0.3367(0.0159) 0.3074(0.0061)
GRU-D [2] 0.7583(0.0160) 0.2974(0.0169) 0.3404(0.0133) 0.3251(0.0190)
GCT [5] 0.7515(0.0103) 0.2718(0.0169) 0.3428(0.0121) 0.3247(0.0222)
SimCLR [3] 0.7601(0.0084) 0.2954(0.0146) 0.3581(0.0202) 0.3268(0.0139)
GraphCL [23] 0.7581(0.0239) 0.2869(0.0327) 0.3557(0.0298) 0.3204(0.0346)
GRACE [29] 0.7232(0.0851) 0.2704(0.0569) 0.3346(0.0208) 0.3176(0.0750)
ConCAD [9] 0.7592(0.0075) 0.2944(0.0151) 0.3606(0.0079) 0.3217(0.0171)
Ourα 0.7311(0.0389) 0.2606(0.0285) 0.3235(0.0181) 0.2813(0.0324)
Ourβ 0.7432(0.0215) 0.2713(0.0166) 0.3378(0.0163) 0.2809(0.0190)
Ourγ 0.7592(0.0156) 0.2839(0.0162) 0.3549(0.0226) 0.2978(0.0168)
Ourδ 0.7638(0.0255) 0.2953(0.0210) 0.3533(0.0169) 0.3129(0.0217)
Our 0.7751(0.0172) 0.3006(0.0172) 0.3662(0.0175) 0.3311(0.0264)
eICU LOS (3 days) AUROC AUPRC F1 Score Min(Se, P+)
Transformer [19] 0.8036(0.0013) 0.9265(0.0010) 0.7717(0.0226) 0.8598(0.0012)
GRU-D [2] 0.8166(0.0078) 0.9313(0.0034) 0.7808(0.0257) 0.8567(0.0023)
GCT [5] 0.7587(0.0139) 0.9008(0.0082) 0.7394(0.0235) 0.8388(0.0057)
SimCLR [3] 0.8131(0.0046) 0.9282(0.0021) 0.7969(0.0206) 0.8532(0.0026)
GraphCL [23] 0.8085(0.0115) 0.9246(0.0073) 0.8154(0.0354) 0.8563(0.0029)
GRACE [29] 0.7813(0.0457) 0.9137(0.0218) 0.8118(0.0254) 0.8456(0.0158)
ConCAD [9] 0.8195(0.0051) 0.9336(0.0023) 0.7917(0.0175) 0.8594(0.0015)
Ourα 0.7707(0.0324) 0.9088(0.0128) 0.8247(0.0152) 0.8401(0.0135)
Ourβ 0.7861(0.0407) 0.9150(0.0195) 0.8035(0.0235) 0.8473(0.0138)
Ourγ 0.7943(0.0278) 0.9179(0.0151) 0.8241(0.0153) 0.8495(0.0099)
Ourδ 0.8022(0.0389) 0.9239(0.0185) 0.8232(0.0150) 0.8368(0.0169)
Our 0.8295(0.0193) 0.9381(0.0168) 0.8315(0.0159) 0.8616(0.0126)
eICU LOS (7 days) AUROC AUPRC F1 Score Min(Se, P+)
Transformer [19] 0.8097(0.0034) 0.9828(0.0004) 0.8018(0.0221) 0.9451(0.0005)
GRU-D [2] 0.8206(0.0128) 0.9830(0.0016) 0.8250(0.0457) 0.9503(0.0013)
GCT [5] 0.7943(0.0182) 0.9793(0.0019) 0.8241(0.0321) 0.9469(0.0054)
SimCLR [3] 0.8229(0.0068) 0.9824(0.0008) 0.8553(0.0211) 0.9498(0.0011)
GraphCL [23] 0.8194(0.0065) 0.9819(0.0008) 0.8689(0.0364) 0.9502(0.0014)
GRACE [29] 0.8078(0.0340) 0.9801(0.0045) 0.8656(0.0132) 0.9495(0.0032)
ConCAD [9] 0.8230(0.0045) 0.9827(0.0006) 0.8479(0.0279) 0.9516(0.0009)
Ourα 0.7779(0.0158) 0.9761(0.0026) 0.8665(0.0241) 0.9455(0.0021)
Ourβ 0.7831(0.0224) 0.9772(0.0029) 0.8601(0.0276) 0.9458(0.0027)
Ourγ 0.7909(0.0577) 0.9767(0.0077) 0.8628(0.0253) 0.9446(0.0041)
Ourδ 0.8033(0.0332) 0.9805(0.0036) 0.8705(0.0188) 0.9472(0.0043)
Our 0.8335(0.0230) 0.9836(0.0029) 0.8901(0.0272) 0.9529(0.0026)
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Table 3. Self-supervised learning results on MIMIC-III and eICU datasets.

ICU Deterioration AUROC AUPRC F1 Score Min(Se, P+)

LR 0.5323(0.0778) 0.1218(0.0324) 0.2178(0.0350) 0.1613(0.0446)
SimCLR [3] 0.5891(0.0337) 0.1513(0.0387) 0.2314(0.0230) 0.2102(0.0457)
GRACE [29] 0.5355(0.0629) 0.1273(0.0261) 0.2282(0.0288) 0.1796(0.0323)
Our 0.6079(0.0741) 0.1687(0.0309) 0.2495(0.0266) 0.2219(0.0360)
ICU LOS (3 days) AUROC AUPRC F1 Score Min(Se, P+)
LR 0.5473(0.0361) 0.4115(0.0279) 0.4958(0.0464) 0.4096(0.0253)
SimCLR [3] 0.5572(0.0474) 0.4140(0.0382) 0.5163(0.0751) 0.4210(0.0364)
GRACE [29] 0.5528(0.0345) 0.4053(0.0247) 0.5001(0.0299) 0.4038(0.0226)
Our 0.5763(0.0317) 0.4219(0.0256) 0.5325(0.0683) 0.4392(0.0239)
ICU LOS (7 days) AUROC AUPRC F1 Score Min(Se, P+)
LR 0.5516(0.0497) 0.8097(0.0237) 0.7088(0.0395) 0.7860(0.0109)
SimCLR [3] 0.5718(0.0569) 0.8137(0.0293) 0.7102(0.0681) 0.7997(0.0153)
GRACE [29] 0.5552(0.0310) 0.8068(0.0150) 0.7146(0.0401) 0.7893(0.0070)
Our 0.5901(0.0335) 0.8227(0.0144) 0.7330(0.0527) 0.8035(0.0105)
eICU Deterioration AUROC AUPRC F1 Score Min(Se, P+)
LR 0.5434(0.0815) 0.1416(0.0265) 0.2715(0.0437) 0.1644(0.0283)
SimCLR [3] 0.6015(0.0351) 0.1647(0.0161) 0.2352(0.0589) 0.1859(0.0278)
GRACE [29] 0.5878(0.0677) 0.1662(0.0339) 0.2667(0.0244) 0.1923(0.0424)
Our 0.6262(0.0325) 0.1762(0.0140) 0.2822(0.0367) 0.2016(0.0258)
eICU LOS (3 days) AUROC AUPRC F1 Score Min(Se, P+)
LR 0.5047(0.0909) 0.7523(0.0839) 0.8036(0.0215) 0.7859(0.0281)
SimCLR [3] 0.5894(0.0519) 0.8097(0.0265) 0.8097(0.0233) 0.7816(0.0236)
GRACE [29] 0.5501(0.0507) 0.7949(0.0211) 0.7451(0.0383) 0.7757(0.0167)
Our 0.6138(0.0414) 0.8121(0.0235) 0.8335(0.0476) 0.7924(0.0146)
eICU LOS (7 days) AUROC AUROC F1 Score Min(Se, P+)
LR 0.5274(0.0893) 0.9313(0.0285) 0.8195(0.0340) 0.9369(0.0041)
SimCLR [3] 0.6687(0.0077) 0.9515(0.0024) 0.8189(0.0208) 0.9383(0.0011)
GRACE [29] 0.6025(0.0320) 0.9446(0.0039) 0.7912(0.0572) 0.9341(0.0020)
Our 0.6790(0.0568) 0.9569(0.0107) 0.8237(0.0629) 0.9425(0.0023)

0.4014, and a Min(Se, P+) of 0.4064. In the present report, our approach achieves
absolute improvement in AUROC and AUPRC scores. Data from Table 1 can be
compared with the data in Table 2, which shows there is a significant difference in
performance between the baselines. In particular, it is difficult to argue the best
baseline from the data in Table 2. A possible explanation for these results may
be that the performance of deep learning models largely depends on the size and
quality of input data (e.g., noises). Additionally, the possible interference/impact
of hyperparameters on deep learning models cannot be ruled out.
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The results obtained from the self-supervised models are set out in Table 3.
Our approach reported significantly more AUROC, AUPRC, F1, and Min(Se,
P+) scores than the other baselines, but its performance is lower than that of
models in supervised learning settings. The reason for this is clear: the perfor-
mance of LR (used as the basis model) is not very encouraging. Nevertheless, all
baselines and our approach in self-supervised learning settings can outperform
LR trained with annotated data. Together, these results indicate the effectiveness
and superiority of our approach in self-supervised learning settings.

Besides, our approach outperforms all variants (i.e., Ourα ∼ Ourδ). The
results of this ablation experiment indicate the effectiveness and robustness of
our proposed modules in model decisions.

6 Conclusions and Future Works

This paper presents a novel neural network architecture that introduces graph
analysis techniques into the graph contrastive learning paradigm. The intuition
behind our approach is to incorporate graph contrastive learning paradigm in
patient representation learning using EHR data. Our approach consists of three
well-designed modules for learning graph-based patient representations, along-
side a pretraining mechanism that exploits self-supervised information in gener-
ated patient graphs. These modules collaboratively integrate patient graph struc-
ture learning, refinement, and contrastive learning, enhanced by masked graph
modeling as a pretraining mechanism to optimize learning outcomes. Extensive
experimental results demonstrate that our approach consistently outperforms
existing approaches in both self-supervised and supervised learning scenarios.
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