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Abstract. Product development is the process of creating and bring-
ing a new or improved product to market. Formulation trials consti-
tute a crucial stage in product development, often involving the explo-
ration of numerous variables and product properties. Traditional meth-
ods of formulation trials involve time-consuming experimentation, trial
and error, and iterative processes. In recent years, machine learning
(ML) has emerged as a promising avenue to streamline this complex
journey by enhancing efficiency, innovation, and customization. One of
the paramount challenges in ML for product development is the models’
lack of interpretability and explainability. This challenge poses signifi-
cant limitations in gaining user trust, meeting regulatory requirements,
and understanding the rationale behind ML-driven decisions. Moreover,
formulation trials involve the exploration of relationships and similari-
ties among previous preparations; however, data related to formulation
are typically stored in tables and not in a network-like manner. To cope
with the above challenges, we propose a general methodology for fast
product development leveraging graph ML models, explainability tech-
niques, and powerful data visualization tools. Starting from tabular for-
mulation trials, our model simultaneously learns a latent graph between
items and a downstream task, i.e. predicting consumer-appealing prop-
erties of a formulation. Subsequently, explainability techniques based
on graphs, perturbation, and sensitivity analysis effectively support the
R&D department in identifying new recipes for reaching a desired prop-
erty. We evaluate our model on two datasets derived from a case study
based on food design plus a standard benchmark from the healthcare
domain. Results show the effectiveness of our model in predicting the
outcome of new formulations. Thanks to our solution, the company has
drastically reduced the labor-intensive experiments in real laboratories
and the waste of materials.
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1 Introduction

Product development refers to the systematic process of designing, creating, and
introducing new or improved products into the market. A fundamental step of
this process is represented by the formulation trials, in which the research and
development (R&D) department of industrial companies experiments with vari-
ous ingredients, proportions, physical properties, and other factors to determine
the optimal combination that meets the desired specifications and performance
criteria. Conventional approaches to formulation trials typically utilize labor-
intensive experimentation, trial and error, and iterative procedures, which can
take several weeks to meet a desired formulation.

Over the past few years, machine learning (ML) has emerged as a promising
solution for simplifying this process and enhancing efficiency, innovation, and
customization. A main challenge in ML for product development is the mod-
els’ lack of interpretability and explainability. This limitation poses significant
burdens in gaining user trust, fulfilling regulatory standards, and understand-
ing the logic behind ML-driven decisions. Moreover, formulation trials involve
the exploration of relationships and similarities among previous preparations or
solutions; but, data related to these formulations are typically stored in tables
without explicit relationships between trials.

To cope with the above challenges, we propose a general methodology for fast
product development leveraging graph machine learning models, explainability
techniques, and powerful data visualization tools. Starting from tabular formula-
tion trials, our model simultaneously learns a latent graph between items and a
downstream task, i.e. predicting consumer-appealing properties of a formulation.
This choice enables the model to explore latent correlations among formulations
and feature values and allows transferable knowledge between similar product
lines or iterative design processes. As a further step, explainability techniques
based on graphs, perturbation, and sensitivity analysis effectively support the
R&D department in their formulation process. Specifically, global-level explana-
tions - related to the overall predictions of the model - allow them to identify
the most influential characteristics for obtaining a certain property, while graph
and single-level explanations - related to the prediction of single formulations -
effectively support the users in identifying new recipes, the impact of changes
in existing recipes, and the restocking of ingredients. The current solution is in
the deployment phase and is offered to industrial companies through customized
web applications.

As case study, we present the application of the above solution in the context
of food design; presenting two real-world datasets collected in collaboration with
a renowned company in the sector. In this scenario, industrial researchers are
interested in finding recipes that satisfy specific sensorial properties of the prod-
uct over time, given the composition of its ingredients and its physical properties.
We model the problem of predicting sensorial properties as a multi-regression
task. We evaluate our model on the two datasets, exhibiting the effectiveness
of our solution compared to common tabular, graph, and structure learning
approaches. Moreover, an ablation study highlights that the graph machine
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learning approach plays a crucial role in obtaining the best performance against
the baselines. Finally, we also evaluate our method on a standard benchmark
dataset for structure learning in the healthcare domain, showing an increase in
performance compared to state-of-the-art models.

From the client side, our solutions are positively impacting different business
and production metrics: the company is expected to reduce the labor-intensive
experiments from 150 tests before approval to 30, the waste of materials dropped
up to 30%, and the time to market has passed from seven to two months. We
believe our work highlights a promising avenue for graph machine learning on
general formulation trials in product development.

2 Background

In this section, we briefly provide background on graph neural networks. Then,
we describe related works on the use of graph neural networks for product devel-
opment and graph structure learning for tabular data, highlighting some works
that provide also explainability techniques for the task.

Graph Neural Networks. Graph Neural Networks (GNNs) [18] are neu-
ral networks specifically designed to handle graph-structured data. Thanks to
their ability to propagate and aggregate information across nodes and edges
within a graph, they excel at capturing relationships and dependencies in graph-
structured information to generate a vector-based representation for nodes, lever-
aging also node and/or edge-level attributes. This versatility has led to their
application in diverse domains such as social network analysis [3], recommenda-
tion systems [7], or bioinformatics [5]. Modern GNNs rely on the 1-hop message-
passing framework [6] for processing graph data. Specifically, given a graph
G = (V,E), the representation of a node v ∈ V at the l-layer of a GNN is
obtained as a combination of the representation of the node v at layer l − 1 and
aggregation of the representation of the nodes in the 1-hop neighborhood of v,
where layer zero is represented by the initial node features. Different kinds of
aggregation and combination functions can be considered to build different GNN
layers.

GNNs for Product Development. Recently, Graph Neural Networks have
been successfully applied in product development. In particular, GNNs are used
for product design of items that can be naturally represented as graphs, mean-
ingfully processed as 3D data, or whose interactions with other elements are
explicitly defined. For instance, Bian et al. [1] formulate the material selection
problem as a binary node-level classification task over the assembly of Computer-
aided design (CAD) projects, modeled as a graph of material components, and
leverage GNNs to obtain representation for materials. CAD models can be also
represented as 3D structures, e.g. using Point Clouds [12], whose representation
can be learned using GNNs [22]. In the context of drug design, the interaction
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between co-prescribed drugs and drug-target protein can be leveraged by GNNs
for drug repurposing and identification of side effects [5]. In the last few years,
GNNs were also employed for scaling deep learning for materials discovery and
improving the modeling of material properties given their molecular structure
or composition [17]. Although all these methods have shown successful appli-
cations of GNNs in product development, most of them assume a fixed graph
structure between elements or explicit interactions between products. But, in
most cases, formulation trials in product development are typically stored as
tables and their complex relationships (e.g. recipe similarities, sharing knowl-
edge between experiments) are not explicitly modeled. Moreover, in the context
of food design, where industrial researchers are interested in consumer-appealing
taste properties, the use of 3D data structures would not be as meaningful as in
the context of manufacturer design.

Graph Learning for Tabular Data. In recent years, the community has
underlined a critical gap in deep learning for tabular data: the lack of represen-
tation of latent correlations among data instances and feature values [14]. GNNs,
due to their ability to model relationships between diverse elements of tabular
data, have attracted considerable interest and have been applied across vari-
ous steps of tabular data processing [14]. In particular, graph structure learning
methods [24] aim to jointly learn an optimized latent graph structure among ele-
ments and an element-level downstream task. Among these approaches, only a
few provide also explanations for the obtained results. For instance, Verdone et
al. [21] utilizes GNNExplainer [23] for providing explainable spatio-temporal
predictions for multi-site photovoltaic energy production. In the healthcare
domain, Kazi et al. [9] provides an attention-based mechanism for interpretable
Alzhaimer’s disease predictions, while Li et al. [15] utilizes interpretable fea-
ture learning for Parkinson’s disease diagnosis. To the best of our knowledge, no
explainable graph machine-learning techniques have been applied in the context
of product development and food design.

3 Dataset and Case-Study

We present a case study in the context of product development for the food
industry introducing two real-world datasets collected in collaboration with a
renowned company in the sector, Perfetti Van Melle (PVM). In particular, the
PVM Lainate Labs is the entity in charge of running the analysis and trials nec-
essary to create new recipes and formulations for their products. Given formula-
tions of previously tested products and their corresponding consumer-appealing
properties, the primary goal of our solution is to speed up product develop-
ment by predicting the property values of new formulations. This allows R&D
departments and labs to fast discover new potential formulations for a desired
property. The next subsections will detail the case study and datasets used to
test our solution.
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Case-Study. Product development in the food industry involves traditionally
several steps, which can be summarized as follows: (i) Product Design: defin-
ing in detail the consumer-appealing characteristics of the new product, based
on several factors such as customer feedback, new ingredients availability, new
strategies, and other market needs; (ii) Recipe formulation: creating the recipe
to meet the desired design. This step is based mostly on experience matured over
the years by the members of the research and development (R&D) department;
(iii) Laboratory Analysis : measuring the physical properties of the product uti-
lizing highly specialized technical equipment (e.g. rheometers) and monitoring
the various aspects of the product through dashboards; (iv) Process iteration:
at the end of the described steps, the overall quality of the product is eval-
uated. If the metrics are not aligned with the desired properties, the whole
process is repeated iteratively. This process can take several weeks to obtain
a desired recipe formulation. The goal of our solution is to allow the company
to abandon an iteration-based process in favor of a data-driven approach, in
which AI techniques can suggest a new product design, given the past trials and
the desired consumer-appealing characteristics. Specifically, a machine learn-
ing model is trained to predict the properties of new formulations. Afterwards,
explainability and advanced data analysis techniques are leveraged to support
the R&D department in designing new recipes.

Dataset. We collected two datasets derived from the formulation trials tested
by the R&D department of PVM. Each formulation trial is described by the
following groups of features: (i) Raw materials: the ingredients of the recipe.
They are values between zero and one, each value represents the percentage of
a certain ingredient in the recipe. As a consequence, the sum of these features
for each row must be one. Some recipes require specific ingredients, while others
may not utilize all of them; (ii) Physical properties: features derived from the
laboratory analysis (e.g. using rheometers). An example of physical property is
the viscosity of the product; (iii) Sensorial properties: the consumer-appealing
properties to predict. They are obtained thanks to a panel of several people who
taste the recipe and measure a particular sensation multiple times over a defined
time interval. In this work, we focus on trials for “malleability” and “toughness”
sensorial properties. Hence, overall, we obtained two datasets, each of them con-
sisting of one hundred formulation trials described by forty raw materials and
twenty-three physical properties. More information about the dataset and its
preprocessing can be found in the supplementary material.

4 Methodology

In this section, we describe the proposed methodology for predicting the outcome
of new formulation trials for specific desired product properties, which allows
fast product development for industrial labs. The methodology leverages the
characteristics of previously tested formulations and an inferred underlying graph
structure that captures the similarities between previous laboratory trials.
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Figure 1 shows the pipeline of our solution. Starting from the characteristics
of previously tested products, modeled as tabular data, the Differentiable Graph
Module (DGM)-based model [8] simultaneously learns, in an end-to-end fashion,
the downstream task, i.e. the properties of a product, and an optimal underlying
latent graph. The Explainer shows the most important product characteristics
for a certain expected property and the most important nodes, i.e. previously
tested recipes, for reaching the desired characteristic. The Explorer allows the
R&D department to visualize the obtained graph for investigating new possible
trials. Finally, the Simulation module leverages the DGM module at inference
time to simulate the outcome of new formulation trials before getting in real
laboratories.

The current solution is in the deployment phase and is offered to industrial
companies through customized web applications. The next subsections describe
the pipeline modules and the main features of the web application in detail.

Fig. 1. Pipeline of our methodology for explainable prediction outcome of formulation
trials.

4.1 DGM-Based Model

We model formulation trials as a X ∈ R
N×d matrix, where N is the number of

formulations and d is the number of features (raw materials and physical prop-
erties). Each row of X has an associated vector y ∈ R

z of consumer-appealing
characteristics, where z is the number of considered characteristics. In our sce-
nario, y represents a sensorial property with z = 8 sampled values over time.

We model the problem of predicting the outcomes of a formulation as a multi-
regression task on the function F : Rd �→ R

z that maps formulations to their
consumer-appealing properties. Hence, the objective of the DGM-based model
is to solve a multi-regression task and learn an optimal underlying latent graph
for solving the task.

Initially, the model takes the input feature matrix X ∈ R
N×d and gener-

ates a graph G as its output. The process involves transforming input features
X ∈ R

N×d into auxiliary features X̂ = fΘ (X) ∈ R
N×d̂ using a parametric func-

tion fΘ . Then, the auxiliary features X̂ are utilized for graph construction. In
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particular, the auxiliary features are used to construct a matrix P ∈ R
N×N ,

where each element pij represents the probability of an edge between formu-
lations i and j. Afterward, the probability matrix is leveraged to construct the
adjacency matrix A of the graph G. The edge probabilities are defined as follows:

pij(X;Θ, t) = e−tΔ(x̂i,x̂j)
2
= e−tΔ(fΘ (xi),fΘ (xj))

2
, (1)

Here, t is a learnable parameter, and Δ(·, ·) represents the Euclidean distance
between two nodes in the graph embedding space.

Once the probability matrix P(X;Θ, t) is obtained, a graph G is derived by
constructing a sparse k-degree graph using the k-NN rule, as detailed in [8],
obtaining the unweighted adjacency matrix A(X;Θ, t).

Given the adjacency matrix A, the second component of the model takes
in input A and the initial features X(0), yielding a new set of features X(1) =
gΦ (X(0)) as output, where gΦ represents a graph neural network function on X
and A. In our model, gΦ is a one-layer GCN [11].

The final node features X(1) is then given as input to an MLP to obtain the
final node predictions ỹi = MLP(X(1)).

The entire DGM-based model is optimized in an end-to-end fashion con-
structing a compound loss function that provides incentives for edges involved
in accurate predictions while imposing penalties for edges with large prediction
errors [8]:

L(yi, ỹi) =
∑

i∈V
j:(i,j)∈E

δ(yi, ỹi) log pij (2)

where V is the set of nodes, E is the set of obtained edges, yi and ỹi the
correct and predicted values for node i, pij is the probability score for edge (i, j),
and δ(yi, ỹi) is a reward function:

δ(yi, ỹi) =
z∑

m=1

|yi(m) − ỹi(m)| (3)

where z is the number of regression task, and the notation yi(m) indicates the
correct value for the product i on property m.

4.2 Explainer Model

The Explainer takes the trained DGM-based model and its prediction(s), and
it returns an explanation in the form of a small subgraph of the input graph
together with a rank of the node features most influential for the prediction(s).
Specifically, we adopt the GNNExplainer [23] method as it is the most well-
known and consolidated explainability technique for graph neural networks.

GNNExplainer specifies an explanation as a rich subgraph of the entire graph
the GNN was trained on, such that the subgraph maximizes the mutual infor-
mation with GNN’s prediction(s). This is achieved by formulating a mean field
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variational approximation and learning a real-valued graph mask that selects the
important subgraph of the GNN’s computation graph. Simultaneously, GNNEx-
plainer also learns a feature mask that masks out unimportant node features.

In our application scenario, it is important to provide both local, i.e. related
to single nodes, and global-level explanations. Global-level explanations are use-
ful for identifying qualitatively the most important characteristics for obtaining
a desired product property. Hence, we provide global-level explanations by com-
puting global feature importance scores that can be obtained by simply averaging
the feature mask learned by GNNExplainer. Alternatively, global feature impor-
tance scores can be provided by computing the permutation importance [2] on
node features.

On the other hand, local-level explanations are useful for identifying potential
starting recipes - nodes - for new formulation trials to test in our platform or
real labs, as well as product characteristics - features - that impact the value
of the target property. While potential starting recipes can be identified by
analyzing the subgraphs learned by GNNExplainer, the feature mask provided
by the model can only highlight the subset of the most influential features and
it is not able to quantify the impact of the features on the value of the target
property. Hence, we compute the local feature importance of the feature i for
the node v as the percentage change in the target property of v in response to
a 5% change in the value of i. The percentage of change is chosen following the
R&D department’s recommendations.

4.3 Explore and Simulate Product Development

We visualize the results of the trained machine learning models and test them
on new data in a web application. Specifically, once the user has imported tab-
ular data representing the history of its laboratory trials, the application allows
them to explore the learned graph representation, obtain local and global-level
node explanations, and initiate simulations to predict outcomes of new prod-
ucts. Based on the results of the simulations, users can decide which products to
test in real laboratories, and eventually approve their trials to add them as new
training instances, updating the trained models in an online learning fashion.
The next two paragraphs will detail the Explorer and Simulation modules.

Explorer. The Explorer is the data visualization module that allows users to
visualize the complex relationships among their recipes, and the most influential
characteristics/previous trials, to determine good starting points for potential
new recipes. Figure 2 shows the graphical interface of the Explorer component.
The graph constructed through the DGM-based model is displayed as an inter-
active graph on which users can interact to zoom in on details, select nodes,
and view explanations and ancillary information. The interactive graph is built
using the Cytoscape.js framework [4] and displayed using the Cola layout1. The
platform offers filtered views for large graphs to ensure that users are directly
1 https://marvl.infotech.monash.edu/webcola/, March 2024.

https://marvl.infotech.monash.edu/webcola/
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presented with the most interesting nodes. Specifically, the application utilizes
the PageRank scores [13] to prioritize and suggest the subgraph around the
most important nodes first. Below the interactive graph, a horizontal bar chart
displays the global feature importance, which identifies the variables that most
significantly impact the predictions across the entire network. Users can select a
target node u to see its features, view its local explanations, and obtain the sub-
graph of the top N nodes starting from u using a dept- or a breadth-first search.
The graphical interface for the Explainer is very similar to the Explorer, with
the interactive graph representing the subgraph for a node-level explanation,
and the bar chart showing its local feature importance.

Fig. 2. Example of the GUI for the Explorer component in the web application. The
graph constructed through the DGM-based model is displayed as an interactive graph.
Nodes are colored based on the predicted “toughness” value, the darker the higher.
Below the interactive graph, a horizontal bar chart displays the global feature impor-
tance for predicting the “toughness”.

Simulation. Users can initiate simulations for predicting product outcomes for
specific properties from trained machine learning models. First, they can select
an existing formulation, chosen with the Explorer component, to use as a good
basis for a new trial and edit it to create a new recipe. Subsequently, they can
run a simulation to obtain the predicted outcome and the relative explanation of
the new formulation. Based on the results, users can now edit the recipe multiple
times to quickly investigate slight changes in their formulation. At the end of
this process, users have the option to save the simulation as a new node within
the system. This way, the new node will be part of the training set and the
model parameters will be updated. Figure 3 shows an example of the simulation
interface for the product property “malleability”.
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Fig. 3. Example of the GUI for simulations. On the left side, the user can insert and
edit a new formulation. On the right side, it can visualize the newly obtained graph
and the predicted values for the desired property. The newly inserted formulation is
represented by the node circled in light blue. (Color figure online)

5 Experiments

In this section, we compare our DGM-based model against five common base-
lines for structure learning tasks. Subsequently, we provide insights into the
explanation generated on our two datasets. Finally, we validate our method on
a benchmark dataset for structure learning.

Experimental Setting. We developed the DGM-based models and the
Explainer using PyTorch Geometric (PyG)2. We evaluated the DGM-based
model over the multi-regression task. We used the mean absolute error (MAE)
and the root mean squared error (RMSE) to evaluate the prediction perfor-
mance. We split the datasets into training, validation, and test sets adopting a
60/20/20 split. Consistently, we apply identical dataset divisions and training
procedures across all the experiments. In all our experiments, we use the Adam
[10] optimizer on the L1 loss on the training set. Hyperparameters are tuned
by optimizing the loss function on the validation set, and the model parameters
are randomly initialized. More information can be found in the supplementary
material.

Baselines. We compare our model against five different baselines. Specifically,
following previous works on structure learning [8,9], we choose an MLP that
processes the tabular data as is, GCN [11] and GAT [20] using the k-NN graph
construction on tabular data, and DGCNN [22], where the graph is dynamically
constructed using nearest neighbors in the feature space and learned end-to-end
with the supervised task. In addition, we consider a GraphTransformer [19] (GT)
baseline, where the graph structure is learned using an attention mechanism over
the complete graph. For a fair comparison, we use nearest neighbors with k = 7
for all the experiments and we adopt the same embedding dimension for all the
models.
2 https://www.pyg.org/, June 2024.

https://www.pyg.org/
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Results. We report the RMSE and MAE for “malleability” and “toughness”
property prediction in Table 1. For each model, we ran experiments with five
different random seeds, reporting the average result and standard deviation
for each method. Our model shows better prediction performance and lower
variation compared to all the other baselines. Moreover, the GraphTransformer
reaches the second-best performance, highlighting that it is a strong baseline to
consider in structure learning evaluation. Overall, the results show that models
able to learn a latent graph structure perform better than models with a fixed
k-NN graph topology. Finally, it is worth noting that an MLP, which does not
take into account relationships among items, reaches comparable performances
with structure learning models; however, it exhibits large variations in its results.

Table 1. Results for “malleability” and “toughness” prediction on test set using RMSE
and MAE. The lower, the better. For each model, we ran experiments with five different
random seeds, reporting the average result and standard deviation for each method.

Method Malleability Toughness
RMSE MAE RMSE MAE

MLP 23.40± 18.30 21.60± 18.90 28.90± 16.20 23.80± 17.80

GCN 67.60± 03.30 66.50± 03.30 70.70± 03.00 69.30± 03.20

GAT 60.50± 09.20 59.10± 09.40 62.70± 09.40 60.80± 09.50

GT 22.30± 07.30 20.10± 07.00 27.50± 03.40 24.80± 03.40

DGCNN 30.60± 04.70 28.90± 04.90 32.60± 05.10 30.80± 05.40

Our model 14.22 ± 00.43 10.54 ± 00.46 12.48 ± 00.73 09.15 ± 00.29

Feature and Subgraph Importance. We report the top ten globally impor-
tant features for the property “malleability” and “toughness” in Fig. 4. Feature
names are anonymized for trade secret protection. We use two different colors
for raw materials and physical features. Results show that “toughness” is more
influenced by the choice of ingredients while “malleability” is heavily affected by
the physical properties of the final product. As an example, given the node with
the highest PageRank score, we report its local explanations in Fig. 5. Nodes are
colored based on their “toughness”: the darker, the higher. Results allow the R&D
department to identify new recipes and do the restock of raw materials. In fact,
the local feature importance allows the users to understand which recipe changes
have an impact on the outcome of the product, while the subgraph gives an idea
of the effect of recipe changes by exploring the relationships and comparing the
formulations. It is worth noting that local-level explanations are impacting the
production process of the products since the company has reduced up to 30%
the waste of material.
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Fig. 4. Global feature importance for the “malleability” (4a) and “toughness” (4b)
properties. Features are anonymized for trade secret protection. Raw material and
physical properties are colored in cyan and dark blue, respectively. “toughness” is more
influenced by the choice of ingredients, while “malleability” is heavily affected by the
physical properties of the final product. (Color figure online)

Fig. 5. Local explanations for the “toughness” property of a target node. (a) The top
ten locally important features for the node (anonymized for trade secret protection).
(b) The important subgraph for its “toughness” prediction. The target node is circled
in dark blue. Nodes are colored based on their “toughness”: the darker, the higher. The
local-level explanations reduce up to 30% the waste of material of the company. (Color
figure online)

Ablation Study. We conducted an ablation study of our model by removing
the following components: the preprocessing MLP layers, the structure learning
(SL) module, and the GNN layer. We report the prediction performances for the
property “toughness” in Table 2a. Results show that the graph machine learning
approach - the use of structure learning and GNN layers - plays a crucial role
in obtaining the best performance against the baselines. Moreover, the use of
an MLP to preprocess the features is beneficial in improving the performance of
the model and reducing its variability.
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Table 2. (2a) Ablation study of our model considering the performance on the test set
for the “toughness” property. (2b) Impact of the GNN architecture for the “toughness”
property. L is the number of layers.

(a)
Method RMSE
Our model 12.48 ± 00.73
Model w/o MLP 14.10 ± 03.05
Model w/o SL 28.07 ± 01.91
Model w/o GNN 28.90± 16.20

(b)
Method RMSE
GAT (L=1) 13.04 ± 0.65
GCN (L=1) 12.48 ± 0.73
GCN (L=2) 12.01 ± 0.36
GCN (L=3) 12.30 ± 0.29

Choice of GNN Architecture. As described in Sect. 4, our model employs
only one GCN layer to process the graph constructed by DGM. In this way, we
leverage the relationships between formulations learned by the model avoiding
aggregating features of too dissimilar recipes. To show the effectiveness of our
choice, we compare the result of our model using one GAT layer and two or three
GNN layers in Table 2b. Results show that there is no substantial gain in using
more than one GCN layer and that an attention mechanism is not beneficial for
the downstream task.

Model Validation. Besides our application scenario, to facilitate transparency
and increase trust, we validate our model on a standard benchmark dataset for
structure learning tasks in the field of healthcare and brain imaging. Specifically,
we utilize the TadPole dataset [16], which contains multimodal data related to
564 patients. The task is the classification of the patients into three classes:
“Normal Control”, “Alzhaimer’s disease” and “Mild cognitive impairment”, which
represent their clinical status. Each patient is represented by a 354-dimensional
representation derived from imaging (MRI, fMRI, PET) and non-imaging (demo-
graphics and genotypes) features. We follow the experimental setting used in
Kazi et al. (IA-GCN) [9] and we compare our model with the same baselines
as, to the best of our knowledge, it represents the most updated and recent
benchmark evaluation on the TadPole dataset. We report the results of our
experiments in Table 3. Note that cDGM stands for continuous DGM, which
is a model that utilizes a graph construction technique that leads to a dense
network, as described in [8], and it is different from the strategy used by our
solution. The results show that our model reaches the best performance against
the state-of-the-art models for the task.
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Table 3. Performance of our DGM-based model compared with the results presented
in IA-GCN on the Tadpole dataset. Results of the baselines were taken from [9]. LC
stands for Linear Classifier. cDGM stands for continuous DGM.

Method Accuracy AUC F1

LC 70.22 ± 06.32 80.26 ± 04.81 68.73 ± 06.70
GCN 81.00 ± 06.40 74.70 ± 04.32 78.4 ± 06.77
GAT 81.86 ± 05.80 91.76 ± 03.71 80.90 ± 05.80
DGCNN 84.59 ± 04.33 83.56 ± 04.11 82.87 ± 04.27
cDGM 92.92 ± 02.50 97.16 ± 01.32 91.4 ± 03.32
IA-GCN 96.08 ± 02.49 98.6 ± 01.93 94.77 ± 04.05
Our model 97.18 ± 00.72 99.02 ± 00.62 96.40 ± 00.62

6 Conclusion

In this work, we propose a data-driven approach for fast product development,
allowing companies to avoid an intensive trial-and-error iterative process for
creating a new or improved product. Starting from tabular formulations of past
experiments conducted by a research and development department, a machine-
learning model is trained to predict the desired properties of unseen formulations.
Specifically, we utilized a graph machine learning model that can simultaneously
learn the prediction task and an underlying latent graph to explore similarities
and complex relationships between the experiments. Subsequently, explainability
techniques based on graphs, perturbation, and sensitivity analysis effectively
support R&D in identifying new recipes for reaching a desired property. The
constructed graph, the property predictions, their explanations, and the model
at inference time are offered to the R&D department through data exploration,
visualization, and editing modules in a web application. We presented a case
study in the context of food design where industrial researchers are interested in
finding recipes that satisfy specific sensorial properties of the product over time.
We show the effectiveness of our model on two datasets derived from the case
study, achieving the best performance compared to other tabular, graph, and
structure learning approaches. Explainability techniques allow users to identify
the most influential characteristics for obtaining a certain property, discover new
recipes to test in real laboratories and do the restock of raw materials. Thanks to
our solutions, the company is expected to reduce the labor-intensive experiments
from 150 tests before approval to 30, the waste of materials dropped up to 30%,
and the time to market has passed from seven to two months.

In future works, we plan to apply our methodology to additional case studies
in several application scenarios that exhibit huge collections of past trials such
as drug design or insurance stipulation.
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