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Building operations account for 30% of global final energy consumption!, with
HVAC systems typically accounting for 40% of total building energy consump-
tion2. Occupant comfort level satisfaction relies heavily on the effective func-
tioning of heating, ventilation, and air conditioning (HVAC) systems. Incorrect
implementation, however, may result in excessive energy consumption, escalating
costs, and reduced occupant satisfaction. Traditional building controls primarily
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Abstract. This paper explores the application of imitation learning (IL)
and reinforcement learning (RL) in HVAC control. IL learns to perform
tasks by imitating a demonstrator, utilising a dataset of demonstrations.
However, the performance of IL is highly dependent on the quality of
the expert demonstration data. On the other hand, RL can adapt con-
trol policies based on different objectives, but for larger problems, it
can be sample inefficient, requiring significant time and resources for
training. To overcome the limitations of both RL and IL, we propose
a combined methodology where IL is used for pre-training and RL for
fine-tuning. We introduce a fine-tuning methodology to HVAC control
inspired by a robot navigation task. Using the 5-Zone residential build-
ing environment provided by Sinergym, we collect state-action pairs from
interactions with the environment using a rule-based policy to create a
dataset of expert demonstrations. Our experiments show that this com-
bined methodology improves the efficiency and performance of the RL
agent by 1% to 11.35% compared to existing literature. This study con-
tributes to the ongoing discourse on how imitation learning can enhance
the performance of reinforcement learning in building control systems.
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rely on rules and heuristics derived from expert experience. These rule-based
controllers (RBCs) usually rely on pre-determined set points, which may not be
optimal as they are not customised to the building specifics and local weather
conditions. Recently, there has been an increase in solutions that leverage smart
thermostats, replacing manual control configurations. New methodologies and
algorithms like model predictive control (MPC) [1] and reinforcement learn-
ing (RL) [15] can adapt their control policies based on different objectives or
cost functions. However, both systems have certain drawbacks. MPC systems
find it challenging to deal with non-linearity in building dynamics caused by
the complex nature of building systems, long-horizon predictions for accurately
forecasting building system behaviour over extended periods, uncertainties in
occupancy patterns and external factors like weather conditions. On the other
hand, the limitation of RL lies in its sample inefficiency, requiring a significant
investment in time and training resources to reach a desirable level of perfor-
mance. In this work, we intend to address the challenges RL faces in HVAC
control. More specifically, we aim to see whether an imitation learning approach
can enhance the training speed and overall performance of the algorithm.

Imitation learning (IL) involves learning to perform a task by observing and
imitating the behaviour of a demonstrator. Instead of relying on explicit pro-
gramming seen in MPC or reward signals used in RL, this method utilises a
dataset of demonstrations that consist of input-output pairs representing actions
taken in different states by the demonstrator. These demonstrations are usually
collected from interactions between humans or expert systems with the envi-
ronment. IL has, thus, seen applications in domains like autonomous vehicle
driving [12], robotics [18], navigation tasks [19], etc. However, a drawback of IL
is that the performance of the trained agent is highly dependent on the quality of
the expert demonstration data. If the expert demonstrations are sub-optimal or
incomplete, the learned policy may inherit these limitations and fail to generalise
well in novel situations. Thus, we propose utilising IL and RL as pre-training
and fine-tuning methodologies, respectively. Policies obtained from pre-training
with IL will provide a foundation for RL fine-tuning, making optimisation easier
than learning from scratch.

In this study, we ask the question - how can imitation learning help improve
the performance of reinforcement learning in the application of building control
systems? Imitation learning techniques, specifically behavioural cloning (BC),
have been used in HVAC control before [7]. However, after pre-training with
BC, we obtain a trained actor and an untrained critic for RL fine-tuning. Hav-
ing such a combination interact during fine-tuning can lead to a drop in per-
formance. Thus, we introduce a fine-tuning methodology to HVAC control that
was inspired by a robot navigation task [19]. For our experiments, we use the
5-Zone residential building environment® provided by Sinergym [10]. To create a
dataset of expert demonstrations, we utilise a rule-based policy and collect the
state-action pairs from interactions with the environment. Figure 1 illustrates an
overview of our training methodology. Our experiments show that the combined

3 https://ugr-sail.github.io/sinergym /compilation /main /pages /buildings.htm1#zone.
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Fig. 1. Overview of the pre-training and fine-tuning process.

methodology improves the efficiency and performance of the RL agent by 1% to
11.35% when compared to prior work [7], naive fine-tuning and training from
scratch.

2 Previous Work

Reinforcement learning (RL) is gaining traction as a valuable method for Heat-
ing, Ventilation, and Air Conditioning (HVAC) systems due to its ability to learn
optimal control policies for improving the management of complex and dynamic
environments, such as buildings.

Previous research in HVAC systems has often utilised tabular methods in
RL [2,14,24]. However, progress in the fields of deep learning and RL, has led to
methods that blend both, using deep neural networks to improve reinforcement
learning (DRL) algorithms. With the help of the Deep Q-Networks (DQN) algo-
rithm, Wei et al. [23] were able to reduce costs by 20% to 70% when compared
to scheduling methods. Similarly, when using DQN to control space heating and
domestic hot water temperature, Lissa et al. [15] saw up to 16% energy savings.
Arroyo et al. [1] combine model predictive control (MPC) with reinforcement
learning (RL) to create RL-MPC, which aims to find the best policy while meet-
ing all constraints. They show that RL-MPC outperforms basic RL in constraint
satisfaction but can achieve similar results to pure MPC with a state estimator
and optimiser. Further analysis of deep learning algorithms has been conducted
by Biemann et al. [4], where they evaluated different model-free RL algorithms
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for continuous HVAC control. However, due to the considerable time and data
required for RL to learn effective policies, researchers have incorporated transfer
learning techniques to address this challenge. Transfer learning involves taking
an established or trained policy from the source domain and adapting it to a
target domain by leveraging past knowledge. In the context of building control
systems, Lissa et al. [16] transfer HVAC agents with different spatial and geo-
graphical characteristics using tabular Q-learning, reporting that with transfer
learning, temperature comfort violations were brought down to only 3% of the
day, compared to 7% to 36% without transfer learning. Extending this work
into a deep learning setup, Kadamala et al. [11] show that their heterogeneous
transfer learning methodology adapts to buildings that differ in climate and/or
characteristics, showcasing improvements from 1% to 4% compared to agents
trained from scratch. Chen et al. [5] created Gnu-RL, incorporating a differen-
tiable MPC. Initially pre-trained with imitation learning on historical data, it
refines its policy using the PPO algorithm. Their research demonstrated a 6.6%
energy reduction in simulations and a 16.7% decrease in cooling demand in a
real-world conference room over three weeks, surpassing the existing controller
while effectively managing temperature settings. Liu et al. [17] integrate RL
with a rule-based control policy by adding a behavioural cloning loss (Eq.3.1)
to the policy update step to penalise the policy that differs too much from the
behavioural policy. The proposed approach demonstrates significant performance
improvements in building HVAC control tasks, notably where rule-based control
methods are prevalent and robust. Coraci et al. [6] performed online transfer
learning (OTL) with the help of imitation learning. Here, the pre-trained agent
is transferred to the target controller, but it does not operate during the imita-
tion learning phase; instead, the memory buffer of the OTL agent is initialized
with transitions from the rule-based controller. This proved to be effective for
enhancing the OTL agent during the initial days of development.

In our work, we perform imitation learning for pre-training, after which we
fine-tune the agent with PPO. Similar work has been done by Dey et al. [7],
where they generated a large dataset with roughly four years’ worth of artificial
states and discrete action data from a rule-based controller. They pre-train using
imitation learning on this data and then fine-tune with PPO. However, in our
work, we take inspiration from Ramrakhya et al. [19]. We perform behavioural
cloning as a pre-training strategy and adopt the fine-tune methodology proposed
via the critic learning and interactive learning phases, showing that the combined
strategy can outperform naive fine-tuning while only requiring a single year’s
worth of data for pre-training.

3 Methodology

3.1 Behavioural Cloning from Demonstrations

Behavioural cloning (BC) uses supervised learning to learn a policy 7 from
a dataset of state-action pairs ¢ € D. It attempts to minimise the difference
between the learned policy and expert demonstrations with respect to a defined
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metric or cost function L. Thus, the optimisation problem for BC can be defined

' # = arg min ) 3 Lm(a), 7 (2)) (1)

CeD ze¢

where 7* is the approximated policy and 7*(z) is the expert action at state x.

Historical data is required to pre-train an agent using BC. For this, we gen-
erated an artificial dataset using the actions from the RBC defined in Sect. 4.3.
A dataset amounting to a single year’s worth of data was generated. Using this
data, we then train the actor using BC. Here, the state consists of observation
data from the environment consisting of building and weather information, and
actions consist of the setpoint values set by the RBC (see Table 2). In our work,
we implement the negative log-likelihood loss function given in Eq. 2

M=

L(0) = (log m(ax|s:) + AH (mp)) (2)

1
N
t
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where 7p(a¢|s:) is the predicted probability of action a; given state sy, H(mp)
is the entropy of the policy distribution 7y and A is the weight given to the
entropy term for regularisation. A is set to 0.001 based on the Imitation library
[8]. We perform an 80% - 20% split of the training and testing data to evaluate
the performance of the trained actor. For testing, we use mean absolute error
(MAE) to measure the absolute difference between predicted and actual setpoint
temperatures. Table 1 summarises the training and testing losses for the three
environments. Each environment was simulated thrice with different seeds.

Table 1. Training and Testing Losses.

Environment|Training Loss Testing Loss

Hot —0.519 £ 0.002(8.624e-5 + 5.36e-5
Mixed —0.52 £ 0.003 [1.065e—4 £ 6.31e-5
Cool -0.519 £ 0.003/8.325e-5 £ 3.72e-5

However, BC has a few disadvantages. Firstly, the performance of the policy
learnt heavily depends on the quality of samples provided by the expert dataset.
Additionally, as the expert policy 7* determines the distribution of the sampled
states z, the learnt policy 7 will perform poorly on unseen states. Thus, BC often
learns a policy that generalises poorly. This work uses BC only as pre-training
to provide good neural network weight initialisation. The pre-trained agent is
then fine-tuned with RL, which helps mitigate BC issues and makes the agent
more robust and generalisable.
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3.2 Reinforcement Learning Fine-Tuning

Reinforcement learning (RL) involves a set of states (S) and control actions
(A), where the system dynamics are defined by a probabilistic transition model,
denoted as p(si11 = §'|sy = s,a; = a), representing the likelihood of tran-
sitioning from state s to state s’ by taking action a at time t. Additionally,
RL incorporates a reward function r, = R(s,a;) that provides a reward 7, at
timestep ¢t. The goal of an RL agent is to learn a policy 7 that maximizes its
cumulative reward.

Our work uses the Proximal Policy Optimisation (PPO) algorithm for fine-
tuning with RL [20]. PPO is a policy gradient algorithm that optimises a param-
eterised policy using the gradients of the expected return with gradient ascent.
It effectively mitigates performance collapse by introducing a clipped surrogate
objective function to control policy updates within a specified range, simplify-
ing the optimization process compared to other more complex algorithms. The
objective function of the PPO algorithm is defined as:

LOHMP(9) = By [min(ry(0), Ay, clip(r4(0),1 — €, 1 + €)A,)] (3)

mo (at|st)
Too1q (@t:5t)
function. PPO is implemented using the Actor-Critic model [13] where the actor
has to maximise L*P(#) and an entropy bonus given as S, while the critic has
to minimise the value function error term L}Y¥(#). Hence, the overall objective
function to be maximised can be defined as:

where, r¢(0) is the probability ratio r4(0) = and A; is the advantage

LEHIPHVEES(9) — RILEMP(0) — 1 L) T (0) + c2S[mg)(s¢)] (4)

where, ¢y, ¢y are coefficients and L}YF(6) is the squared-error loss between the
estimated value function and the target value given as (Vp(s;) — V;/*"9)2.

To perform fine-tuning with PPO, we initialise the actor with the policy
weights that were trained with the help of Behavioural Cloning. However, the
critic is initialised with random weights. As a result, we would end up with
a trained actor and an untrained critic. Thus, inspired by the methodology
described by [19], we first train the critic during RL. To do this, we divide
the RL training into two phases. Figure 2 describes the learning rate schedules
for the best-performing agent.

Critic Learning Phase. During this phase, we collect interactions from the
environment using the trained actor to train the critic. In this phase, the actor
can be completely frozen (as described in [19]); however, from experiments, we
find that gradually increasing the actor learning rate from 0.0 at the start to
1.5 x 1075 at the 700,000th timestep provides the best results. During this time,
the critic is initialised with a relatively high learning rate, which is decayed as
training progresses. In our experiments, we find that initialising the critic with a
learning rate of 1.0 x 1073 gave the best results. We maintain this high learning
rate for the first 150,000 timesteps.
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Fig. 2. Actor and Critic learning rate schedules during fine-tuning.

Interactive Learning Phase. After the actor and critic learning rates com-
pletely warm up and decay, they are stabilised for the remainder of the training
process. We can keep the learning rates during this phase at the same or at
different stabilisation values. Through our experiments, we find that keeping the
actor and critic learning rates stable at different values yields the best results.
For the actor, we stabilise the learning rate at 1.5x 10~?, which remains constant
from the 700,000th timestep until the end of training. For the critic, we gradu-
ally decay the learning rate from 1.0 x 1073 to 3.0 x 10~* until the 650,000th
timestep, which remains constant until completion.

4 Experimental Setup

4.1 Environment

Our experiments are simulated on the 5ZoneAutoDXVAV environment provided
by the Python library known as Sinergym [10]* (v3.1.7). The 5ZoneAutoDXVAV
is a single-storey building divided into one indoor and four outdoor zones®. The
state space and action space for the environment are given in Table 2. We sim-
ulate three different weather conditions in our experiments using EnergyPlus.
The hot weather data is from Davis-Monthan AFB, Arizona, USA; the mixed
weather data is from New York City, New York, USA, and the cool weather
data is from Port Angeles, Washington, USA. All environments are initialised
with stochasticity in weather. This stochasticity is introduced with the Ornstein-
Uhlenbeck [3] process where o, u and 7 are 1.0, 0.0 and 0.001, respectively. Each
simulated episode spans over a duration of one year. Within each episode, 35,040
intervals exist, lasting fifteen minutes each.

* https://ugr-sail.github.io/sinergym /compilation /main /index.html.
5 https://ugr-sail.github.io/sinergym /compilation /main /pages /buildings.html#zone.
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Table 2. Environment Summary.

Variable Names Number

State Space |Site outdoor air dry bulb temperature, site outdoor air 19
relative humidity, site wind speed, site wind direction, site
diffuse solar radiation rate per area, site direct solar radiation
rate per area, zone thermostat heating setpoint temperature,
zone thermostat cooling setpoint temperature, zone air
temperature, zone thermal comfort mean radiant
temperature, zone air relative humidity, zone thermal comfort
clothing value, zone thermal comfort Fanger model PPD,
zone people occupant count, people air temperature, facility
total HVAC electricity demand rate, hour, day and month

Action Space/Heating setpoint and Cooling setpoint 2

4.2 Rewards

The goal of the Deep RL agent is to reduce energy usage while maintaining a
comfortable temperature range. This is achieved through an objective function
that combines the weighted sum of energy consumption and thermal discomfort,
which are normalised. Equation 5 describes the reward function.

R=—-wxApx P, —(1—w)x A xexp(|T; — Tupper| + [Tt — Tiower|)  (5)

where, P; is the power consumption and 73 is the current indoor temperature.
w represents the weight assigned to power consumption and thus (1 — w) is the
weight assigned to comfort. Ap and Ap are scaling constants for power con-
sumption and comfort penalties, respectively. Typper and Tjoyer define the upper
and lower limits of the comfort temperature range. Discomfort is determined
by calculating the absolute difference between the current temperature and the
comfort range. If the temperature falls within the comfort range, the discomfort
value is zero. Along with rewards, we also analyse two other Key Performance
Indicators (KPIs):

— Comfort Violation Time (%): Percentage of time that the temperature has
been beyond the bounds of the user comfort temperature ranges.
— Mean Power: Average power consumption per step in the episode.

4.3 Training Setup

In our work, we implement Behavioural Cloning with the help of the Imitation
library [8] and the PPO algorithm with the help of CleanRL [9]. Table 3 repre-
sents the default hyperparameters for the PPO algorithm included in CleanRL.
Following CleanRL, the actor and the critic networks are built using separate
neural networks. Thus, there are no shared weights. The neural network architec-
ture for both the actor and the critic consists of a single hidden layer of size 64.
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Table 3. PPO Hyperparameters.

Hyperparameter Name Value
Total Timesteps 1,000,000
Learning Rate 3.0e-4
Number of Steps per Policy Rollout 2048
Anneal Learning Rate True
Gamma 0.99
General Advantage Estimation 0.95
Minibatch Size 32
Update Epochs 10
Advantage Normalisation True
Surrogate Clipping Coefficient 0.2
Clip loss for Value Function True
Entropy Coefficient 0.0
Value Function Coefficient 0.5
Maximum Norm for Gradient Clipping|0.5

The layer initialisation included in CleanRL was skipped. The Tanh activation
function is used after every layer except the output layer. The performance of
the learned agents is compared to the Rule-Based Controllers (RBC) provided
by Sinergym®. The rules for the RBC are defined in Algorithm 1. During the

Algorithm 1 Rule for RB Controller for 5Zone

summer_setpoint « (22.5,26.0)
winter_setpoint « (20.0,23.5)
summer_range — (1 June, 30 September)
for each step in environment do
if current_date is in summer_range then
curr_setpoint <+ summer_setpoint
else

curr_setpoint < winter_setpoint
end if
end for

training process, we periodically evaluate the performance of the agents in the
same environment but with a different seed. We evaluate its performance for
the entire year, i.e. one episode. For testing, we follow a similar procedure to the
evaluation, where we test the agent in the same environment but with a different
seed and monitor its performance for a total of five years, i.e. five episodes. Our

5 https://github.com /ugr-sail /sinergym /blob /main /sinergym /utils/controllers.py.
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implementation source code can be accessed at GitHub - https://github.com/
kad99kev/HVACIRL.

5 Results

In our experiments, we compare the proposed methodology with different agents.
The RBC or controller agent is the rule-based controller defined in Sect. 4.3 (see
Algorithm 1). The imitation agent is the behavioural cloning agent without
fine-tuning. We compare this agent to highlight the performance of the pre-
trained agent before we fine-tune it with RL. The scratch agent is an RL agent
trained without any pre-training. It is trained with the default hyperparameters
and training methodology of PPO (see Table3). The default agent is a pre-
trained agent that is fine-tuned naively. For this agent, we follow the same RL
training methodology as the scratch agent; however, the weights of the actor
are initialised with BC. Thus, fine-tuning is naive, where a pre-trained actor
and an untrained critic interact with each other. Finally, we include the agent
described in [7] (called previous), where the authors utilised a learning rate for
the policy network that was one-hundredth of the learning rate of the baseline
RL learning strategy for the initial ten episodes and one-tenth for subsequent
training episodes. We include these agents to show how naive fine-tuning can
affect the performance of an agent and, thus, the need for a different fine-tuning
methodology. In the following sections, we refer to the agent trained using our
proposed methodology as the proposed agent.

5.1 Performance Analysis

In this section, we compare the training, evaluation and testing performance of
the different agents. Figure 3a shows that within 400,000 timesteps, our pro-
posed agent begins outperforming all other RL agents. When we compare the
performance on evaluation, Fig. 3b, shows that our proposed agent learns faster
than the default agent. Additionally, our proposed agent consistently and sig-
nificantly outperforms the scratch agent. This implies that pre-training the
agent helps it generalise better. However, Fig.3b also suggests that the fine-
tuning methodology plays an important role. Naively fine-tuning a pre-trained
agent with default learning rates can lead to poor policies being learnt, as it
is evident that the default agent cannot outperform the scratch agent. Along
with this, our proposed agent also outperforms the previous agent.

When comparing the rewards and KPIs (see Table4) of the fine-tuned RL
agents with an agent trained solely on the imitation learning dataset and the
RBC, our proposed agent achieves the highest reward across all three weather
environments during testing. In the 5-Zone hot weather environment, the pro-
posed agent outperforms the previous agent by 2.83%, the default agent by
9.17% and the scratch agent by 5.04% while significantly outperforming the
controller agent by 21.87%. While it may not be the best at saving power, the
proposed agent has the least number of comfort violations among all agents.
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Fig. 3. Learning curves of the different agents during training and evaluation on hot,
mixed and cool weather.

Table 4. Rewards and KPIs average performance summary during testing.

Environment [Agent Rewards (higher better) Power Consumption (lower better) Comfort Violations (%) (lower better)
5-Zone Hot |Controller|-1.230 5939.19 41.82
Imitation -2.936 5623.01 50.80
Scratch | -1.012 6834.64 31.23
Default | -1.058 6614.23 33.48
Previous |-0.989 6942.00 30.47
Proposed |-0.961 6836.64 28.81
5-Zone Mixed Controller|-0.619 5725.47 45.45
Imitation ~1.793 5991.53 48.29
Scratch | -0.538 7259.21 25.73
Default  -0.550 7131.13 28.06
Previous |-0.501 7027.80 23.48
Proposed |-0.496 6917.05 22.72
5-Zone Cool |Controller|-0.455 3751.00 29.24
Imitation —1.385 4033.08 43.42
Scratch | -0.429 5548.59 20.56
Default  |-0.458 5260.54 22.34
Previous |-0.424 5314.49 20.09
Proposed —0.406 5021.88 19.07

As the table shows, the imitation and controller agents are the best at sav-
ing power; however, they have the highest percentage of comfort violations.
The proposed agent, however, can balance this by not overly spending power
yet significantly reducing comfort violations. Similar behaviour is observed in
the 5-Zone mixed weather environment as well. The proposed agent demon-
strates significant enhancements in overall rewards, with improvements of 1.00%,
9.82%, 7.81%, and 19.87% compared to previous, default, scratch, and con-
troller agents, respectively. Again, we observe that the imitation and con-
troller agents are the best at saving power but are the poorest at maintaining
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comfort. The proposed agent stands out for its efficient power utilisation and
minimal comfort violations among all RL agents evaluated. Likewise, the pro-
posed agent performs best in the 5-Zone cool weather environment. Compared
to previous, default, scratch and controller agents, it sees a 4.25%, 11.35%,
5.36% and 10.77% improvement in the overall rewards, respectively. Here, the
performance of the default agent is comparable to the controller agent. The
proposed agent achieves a 5.51% decrease in power consumption compared to
the previous agent, resulting in a 1.02% reduction in comfort violations. Sim-
ilar to the mixed weather environment, the proposed agent performs best in
both power consumption and comfort violations when compared to the other RL
agents.

5.2 Policy Analysis

This section compares the policies adopted by the different agents in our exper-
iments. We analyse their heating and cooling setpoint temperatures and their
effect on the indoor temperature. Hourly observed temperatures show the aver-
age temperatures at each hour throughout the year, while monthly observed
temperatures show the average temperature for each month.

From Fig. 4, we can see that the proposed agent and the previous agent
follow similar policies; however, the proposed agent maintains a slightly higher
cooling and heating setpoint on average. The imitation agent follows the RBC
policy very closely. In all three environments, we observe that the scratch
agent drastically changes its setpoint temperatures as the outdoor temperature
becomes warmer during the day. We can also see that the RL agents consistently
maintain indoor temperatures within the average hourly user comfort zone, while
the imitation and controller agents periodically violate comfort.

When comparing the monthly setpoint temperatures, from Fig.5, we see
that the imitation agent fails to adapt its setpoint temperatures during summer
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Fig. 4. Setpoint, indoor and outdoor temperatures summarised by the hour.
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Fig. 5. Setpoint, indoor and outdoor temperatures summarised by the month.

when the temperatures increase. The graphs highlight how RL agents adapt their
policies as user comfort and season change. We can see that the cooling setpoints
are higher in hot weather, which decreases as we move to mixed weather, with it
being the lowest in cool weather. The heating setpoints are relatively the same
for hot and mixed weather but are slightly lower for cool weather. All agents
struggle to maintain comfort in hot weather; however, the proposed agent does
the best to maintain indoor temperatures. For other weather conditions, the
RL agents are better able to maintain comfortable indoor temperatures. The
RL agents are much better at keeping indoor temperatures closer to the user’s
comfort zone than the controller agent, which does well for mixed and cool
weather. The imitation agent, however, does poorly throughout. This proves
the need for RL fine-tuning, as the RL agents are able to adapt their setpoint
temperatures well to maintain indoor comfort.

6 Conclusion and Future Work

Imitation learning helps provide a foundation for the RL agent during training.
However, naively training the trained actor and untrained critic together can lead
to worse policies being learnt than training from scratch. Thus, to avoid this, we
can either freeze the actor or initialise it with a very low learning rate while the
critic learns from interactions with the environment. From our experiments, we
see that following this methodology results in agents outperforming not only the
RBC but also naively fine-tuned agents and agents trained from scratch across
all three weather environments. We also build upon prior work, showing that a
better learning rate tuning strategy is able to outperform their agent.

The policies learnt by the proposed agent can better maintain indoor tem-
peratures within the user’s comfort bounds than all other agents. While this
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comes at the expense of more power, the least power-consuming agents are RBC
and imitation. These two agents are the worst at respecting the user’s comfort
zone. Thus, the proposed agent is efficient at striking a balance between power
consumption and user comfort.

For future work, a hyperparameter study could be conducted to analyse
the effect of different hyperparameters on this approach. Additionally, historical
data could be utilised to train an autoencoder, thus reducing the dimensionality
of the observation space for effective representation learning. Finally, a multi-
objective approach to this method can be considered. By separating the energy
and comfort variables, further analysis can be conducted on different policies
learnt to prioritise comfort and/or energy.
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