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Preface

The 2024 edition of the European Conference on Machine Learning and Principles and
Practice ofKnowledgeDiscovery inDatabases (ECMLPKDD2024)was held inVilnius,
Lithuania, from September 9 to 13, 2024.

The annual ECML PKDD conference acts as a world-wide platform showcasing the
latest advancements in machine learning and knowledge discovery in databases. Held
jointly since 2001, ECMLPKDD has established itself as the leading EuropeanMachine
Learning and Data Mining conference. It offers researchers and practitioners an unpar-
alleled opportunity to exchange knowledge and ideas about the latest technical advance-
ments in these disciplines. Moreover, the conference appreciates the synergy between
foundational advances and groundbreaking data science and hence strongly welcomes
contributions about howMachine Learning and Data Mining is being employed to solve
real-world challenges.

The conference continues to evolve reflecting evolving technological developments
and societal needs. For example, in theResearchTrack this year there has been an increase
in submissions on generative AI, especially LLMs, and various aspects of responsible
AI.

We received 826 submissions for the Research Track and 224 for the Applied Data
Science Track. The Research track accepted 202 papers (out of 826, 24.5%) and the
Applied Data Science Track accepted 56 (out of 224, 24.5%). In addition, 31 papers
from the Journal Track (accepted out of 65 submissions) and 14 Demo Track papers
(accepted out of 30 submissions).

The papers presented over the three main conference days were organized into five
distinct tracks:

Research Track: This track featured research and methodology papers spanning all
branches within Machine Learning, Knowledge Discovery, and Data Mining.
Applied Data Science Track: Papers in this track focused on novel applications
of machine learning, data mining, and knowledge discovery to address real-world
challenges, aiming to bridge the gap between theory and practical implementation.
Journal Track: This track included papers that had been published in special issues of
the journals Machine Learning and Data Mining and Knowledge Discovery.
Demo Track: Short papers in this track introduced new prototypes or fully operational
systems that leveragedata science techniques, demonstrated throughworkingprototypes.
Nectar Track: Concise presentations of recent scientific advances published in related
conferences or journals. It aimed to disseminate important research findings to a broader
audience within the ECML PKDD community.

The conference featured five keynote talks on diverse topics, reflecting emerging
needs like benchmarking and resource-awareness, as well as theoretical understanding
and industrial needs.
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– Gintarė Karolina Džiugaitė (Google DeepMind): The Dynamics of Memorization and
Unlearning.

– Moritz Hardt (Max Planck Institute for Intelligent Systems): The Emerging Science
of Benchmarks.

– Mounia Lalmas-Roelleke (Spotify): Enhancing User Experience with AI-Powered
Search and Recommendations at Spotify.

– Patrick Lucey (Stats Perform): How to Utilize (and Generate) Player Tracking Data
in Sport.

– KatharinaMorik (TUDortmundUniversity):Resource-Aware Machine Learning — a
User-Oriented Approach.

The ECML PKDD 2024 Organizing Committee supported Diversity and Inclusion
by awarding some grants that enable early career researchers to attend the conference,
present their research activities, and become part of the ECML PKDD community. We
provided a total of 3 scholarships ofe1000 to individuals that come from the developing
countries and/or communitieswhich are underrepresented in science and technology.The
scholarships could be used for travel and accommodation. In addition 3 grants covering
all of the registration fees were awarded to individuals who belong to underrepresented
communities, based on gender and role/position, to attend the conference and present
their research activities. The Diversity and Inclusion action also included the Women
Networking event andDiversity and InclusionPanel discussion. TheWomenNetworking
event aimed to create a safe and inclusive space for networking and reflecting on the
experience of women in science. The event included a structured brainstorm/reflection
on the role and experience of women in science and technology, which will be published
in the conference newsletter. The Diversity and Inclusion Panel aimed to reach a wider
audience and encourage the discussion on the need for diversity in tech, and challenges
and solutions in achieving it.

We want to thank the authors, workshop and tutorial organizers, and participants
whose scientific contributions make this such an exciting event. Moreover, putting
together an outstanding conference program would also not be possible without the
dedication and (substantial) time investments of the area chairs, program committee,
and organizing committee. The event would not run smoothly without the many vol-
unteers and sessions chairs. Finally, we want to extend a special thanks to all the local
organizers – they dealt with all the little details that are needed to make the conference
a memorable event.

Wewant to extend our heartfelt gratitude to ourwonderful sponsors for their generous
financial support. We also want to thank Springer for their continuous support and
Microsoft for allowing us to use their CMT software for conference management and
providing help throughout. We very much appreciate the advice and guidance provided
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by the ECML PKDD Steering Committee over the past two years. Finally, we thank the
organizing institution, the Artificial Intelligence Association of Lithuania.

September 2024 Albert Bifet
Tomas Krilavičius

Eirini Ntoutsi
Indrė Žliobaitė

Jesse Davis
Meelis Kull

Ioanna Miliou
Slawomir Nowaczyk
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Justina Mandravickaitė Vytautas Magnus University, Lithuania
Silviu Maniu Université Grenoble Alpes, France
Naresh Manwani International Institute of Information Technology,

Hyderabad, India
Alexandru Mara Ghent University, Belgium
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Pavel Stefanovič Vilnius Tech, Lithuania
Julian Stier University of Passau, Germany
Giovanni Stilo Università of L’Aquila, Italy
Michiel Stock Ghent University, Belgium
Luca Stradiotti KU Leuven, Belgium
Lukas Struppek Technical University of Darmstadt, Germany
Maximilian Stubbemann University of Hildesheim, Germany
Nikolaos Stylianou Information Technologies Institute, Greece
Jinyan Su University of Electronic Science and Technology

of China, China
Peijie Sun Tsinghua University, China
Weiwei Sun Shandong University, China
Swati Swati Universität der Bundeswehr München, Germany
Panagiotis Symeonidis University of the Aegean, Greece
Maryam Tabar University of Texas at San Antonio, USA
Shazia Tabassum INESC TEC, Portugal
Andrea Tagarelli DIMES - UNICAL, Italy
Martin Takac Mohamed bin Zayed University of Artificial

Intelligence, UAE
Acar Tamersoy NortonLifeLock Research Group, USA
Chang Wei Tan Monash University, Australia
Xing Tang Tencent, China
Enzo Tartaglione Télécom Paris - Institut Polytechnique de Paris,

France
Romain Tavenard Univ. Rennes, LETG/IRISA, France
Gustaf Tegnér KTH Royal Institute of Technology, Lithuania



xxxii Organization

Paweł Teisseyre Warsaw University of Technology, Poland
Alexandre Termier Université Rennes, France
Stefano Teso University of Trento, Italy
Surendrabikram Thapa Virginia Tech, USA
Martin Theobald University of Luxembourg, Luxembourg
Maximilian Thiessen TU Wien, Austria
Steffen Thoma FZI Research Center for Information Technology,

Germany
Matteo Tiezzi University of Siena, Italy
Matteo Tiezzi SAILab, DIISM, University of Siena, Italy
Gabriele Tolomei Sapienza University of Rome, Italy
Paulina Tomaszewska Warsaw University of Technology, Poland
Dinh Tran King Fahd University of Petroleum & Minerals,

Saudi Arabia
Isaac Triguero Nottingham University, UK
Andre Tättar University of Tartu, Estonia
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The Dynamics of Memorization and Unlearning

Gintarė Karolina Džiugaitė

Google DeepMind

Abstract. Deep learning models exhibit a complex interplay between
memorization and generalization. This talk will begin by exploring the
ubiquitous nature ofmemorization, drawingonpriorworkon “data diets”,
example difficulty, pruning, and other empirical evidence. But is memo-
rization essential for generalization?Our recent theoretical work suggests
that eliminating it entirely may not be feasible. Instead, I will discuss
strategies to mitigate unwanted memorization by focusing on better data
curation and efficient unlearning mechanisms. Additionally, I will exam-
ine the potential of pruning techniques to selectively remove memorized
examples and explore their impact on factual recall versus in-context
learning.

Biography: Gintarė is a senior research scientist at Google DeepMind, based in Toronto,
an adjunct professor in the McGill University School of Computer Science, and an
associate industry member of Mila, the Quebec AI Institute. Prior to joining Google,
Gintarė led the Trustworthy AI program at Element AI/ServiceNow, and obtained her
Ph.D. in machine learning from the University of Cambridge, under the supervision of
Zoubin Ghahramani. Gintarė was recognized as a Rising Star in Machine Learning by
the University of Maryland program in 2019. Her research combines theoretical and
empirical approaches to understanding deep learning, with a focus on generalization,
memorization, unlearning, and network compression.



The Emerging Science of Benchmarks

Moritz Hardt

Max Planck Institute for Intelligent Systems

Abstract. Benchmarks have played a central role in the progress of
machine learning research since the 1980s. Although there’s much
researchers have done with them, we still know little about how and why
benchmarks work. In this talk, I will trace the rudiments of an emerging
science of benchmarks through selected empirical and theoretical obser-
vations. Looking back at the ImageNet era, I’ll discuss what we learned
about the validity of model rankings and the role of label errors. Looking
ahead, I’ll talk about new challenges to benchmarking and evaluation in
the era of large language models. The results we’ll encounter challenge
conventional wisdom and underscore the benefits of developing a science
of benchmarks.

Biography: Hardt is a director at the Max Planck Institute for Intelligent Systems,
Tübingen. Previously, he was Associate Professor for Electrical Engineering and Com-
puter Sciences at the University of California, Berkeley. His research contributes to
the scientific foundations of machine learning and algorithmic decision making with a
focus on social questions. He co-authored Fairness and Machine Learning: Limitations
and Opportunities (MIT Press) and Patterns, Predictions, and Actions: Foundations of
Machine Learning (Princeton University Press).



Enhancing User Experience with AI-Powered Search
and Recommendations at Spotify

Mounia Lalmas-Roelleke

Spotify

Abstract. This talk will explore the pivotal role of search and recom-
mendation systems in enhancing the Spotify user experience. These sys-
tems serve as the gateway to Spotify’s vast audio catalog, helping users
navigate millions of music tracks, podcasts, and audiobooks. Effective
search functionality allows users to quickly find specific content, whether
it is a favorite song, a trending podcast, or an informative audiobook,
while also satisfying broader search needs. Meanwhile, recommenda-
tion systems suggest new and relevant content that users might not have
thought to search for, while ensuring their current needs for familiar con-
tent are met. This encourages exploration and discovery of new artists,
genres, and shows, enriching the overall listening experience and keeping
users engaged with the platform. Achieving this dual objective of preci-
sion and discovery requires sophisticated technology. It involves a deep
understanding of representation learning, where both content and user
preferences are accurately modeled. Advanced AI techniques, including
machine learning and generative AI, play a crucial role in this process.
These technologies enable the creation of highly personalized recom-
mendations by understanding complex user behaviors and preferences.
Generative AI, for instance, allows us to create personalized playlists,
thereby enhancing the user experience with innovative features. This pre-
sentation is based on the collective research and publications of numerous
contributors at Spotify.

Biography: Mounia is a Senior Director of Research at Spotify and the Head of Tech
Research in Personalization, where she leads an interdisciplinary team of research sci-
entists. She also holds an honorary professorship at University College London and
serves as a Distinguished Research Fellow at the University of Amsterdam. Previously,
Mounia was a Director of Research at Yahoo, overseeing a team focused on adver-
tising quality and collaborating on user engagement projects related to news, search,
and user-generated content. Before her tenure at Yahoo, Mounia held a Microsoft
Research/RAEng Research Chair at the School of Computing Science, University of
Glasgow, and before that was a Professor of Information Retrieval at the Department
of Computer Science at Queen Mary, University of London. She is a prominent figure
in the research community, regularly serving as a senior program committee member at
major conferences such as WSDM, KDD, WWW, and SIGIR. She was also a program
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co-chair for SIGIR 2015,WWW2018,WSDM2020, andCIKM2023.Mounia is widely
recognized for her contributions as a speaker and author, with over 250 published papers
and appearances on platforms like ACM ByteCast and the AI Business Podcasts series.
She was nominated for the VentureBeat Women in AI Awards for Research in both 2022
and 2023.



How to Utilize (and Generate) Player Tracking Data
in Sport

Patrick Lucey

Stats Perform

Abstract. Even though player tracking data in sports has been around
for 25 years, it still poses as one of the most interesting and challeng-
ing datasets in machine learning due to its fine-grained, multi-agent,
team-based, and adversarial nature. Despite these challenges, it is also
extremely valuable as it is (relatively) low-dimensional, interpretable,
and interactive, allowing us to measure performance and answer ques-
tions we couldn’t objectively address before. In this talk, I will first give
a brief history of tracking data in sports, then highlight the challenges
associated with utilizing it. I will then show that by obtaining a permuta-
tion invariant representation, we can not only measure aspects of sports
that couldn’t be done before, but also interact with and simulate plays
akin to a video game via our “visual search” and “ghosting” technol-
ogy. Finally, I will show how we can use both tracking and event data
to create a multimodal foundation model, which enables us to generate
player tracking data at scale and achieve our goal of “digitizing every
game of professional sport.” Throughout the talk, I will utilize examples
from top-tier basketball, soccer, and tennis.

Biography: Patrick Lucey is currently the Chief Scientist at sports data giant Stats Per-
form, leading the AI team with the goal of maximizing the value of the company’s
extensive sports data. He has studied and worked in the fields of machine learning and
computer vision for the past 20 years, holding research positions at Disney Research and
the Robotics Institute at Carnegie Mellon University, as well as spending time at IBM’s
T.J. Watson Research Center while pursuing his Ph.D. Patrick originally hails fromAus-
tralia, where he received his BEng(EE) from the University of Southern Queensland and
his doctorate from Queensland University of Technology, which focused on multimodal
speech modeling. He has authored more than 100 peer-reviewed papers and has been
a co-author on papers in the MIT Sloan Sports Analytics Conference Best Research
Paper Track for 11 of the last 13 years, winning best paper in 2016 and runner-up in
2017 and 2018. Additionally, he has won best paper awards at INTERSPEECH and
WACV international conferences. His main research interests are in artificial intelli-
gence and interactive machine learning in sporting domains, as well as AI education.
He has recently piloted a course on “AI in Sport,” which aims to give students intuition
behind AI methods using the interactive and visual nature of sports data.

Website: www.patricklucey.com

https://patricklucey.com/index.html


Resource-Aware Machine Learning—A User-Oriented
Approach

Katharina Morik

TU Dortmund University

Abstract. Machine Learning (ML) has become integrated into several
processes, ranging from medicine, manufacturing, logistics, smart cities,
sales, recommendations and advertisements to entertainment and many
more business and private processes. The applications together consume
a considerable amount of energy and emit CO2.ML research investigates
how tomakemodels smaller and faster through pruning and quantization.
Also the use of more energy-efficient hardware is an encouraging field.
Research on ML under resource constraints is an active field propos-
ing novel algorithms and scenarios. The aim is that for each application
a variety of implementations is offered from which customers and the
different types of users may choose the most thrifty one. This, in turn,
would push tech providers to focus on the production of economical
systems. However, if the customers, users, stakeholders do not know
which of the models offers the best tradeoff between performance and
energy-efficiency, they cannot select the most frugal one. Hence, testing
implementations of learning and inference needs to be developed. They
should be easy to use, produce visualizations that are mass-tailored for
specific user groups. Automatized testing is difficult due to the diversity
of models, computing architectures, training and evaluation data, and the
fast rate of changes. The talk will illustrate work on resource-aware ML
and advocate to paymore attention to the role of users in the development
of scenarios, models, and tests.

Biography: Katharina Morik received her doctorate from the University of Hamburg in
1981 and her habilitation from the TU Berlin in 1988. In 1991, she established the chair
of Artificial Intelligence at the TU Dortmund. She retired in 2023. She is a pioneer of
bringing machine learning and computing architectures together so that machine learn-
ing models may be executed or even trained on resource restricted devices. In 2011,
she acquired the Collaborative Research Center CRC 876 “Providing Information by
Resource-Constrained Data Analysis” consisting of 12 projects and a graduate school.
After the longest possible funding period of 12 years, the CRC ended with the publi-
cation of 3 books on Resource-Constrained Machine Learning (De Gruyter). She has
participated in numerous European research projects and has been the coordinator of
one. Shewas a foundingmember and ProgramChair of the conference series IEEE Inter-
national Conference on DataMining (ICDM) and is a member of the steering committee
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of ECML PKDD. She is a co-founder of the Lamarr Institute for Machine Learning and
Artificial Intelligence. Prof. Morik is a member of the Academy of Technical Sciences
and of the North Rhine-Westphalian Academy of Sciences and Arts. She was made a
Fellow of the German Society of Computer Science GI e.V. in 2019.
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VulEXplaineR: XAI for Vulnerability
Detection on Assembly Code

Samaneh Mahdavifar1(B), Mohd Saqib1, Benjamin C. M. Fung1,
Philippe Charland2, and Andrew Walenstein3

1 Data Mining and Security Lab, McGill University, Montreal H3A 1X1, Canada
samaneh.mahdavifar@affiliate.mcgill.ca, mohd.saqib@mail.mcgill.ca,

ben.fung@mcgill.ca
2 Defence Research and Development Canada, Ottawa, Canada

philippe.charland@drdc-rddc.gc.ca
3 BlackBerry Limited, Waterloo, Canada
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Abstract. Software vulnerabilities have posed significant threats to on-
premise as well as cloud servers and applications. So far, numerous stud-
ies have focused on identifying and addressing software vulnerabilities at
the binary level. Traditional approaches often involve highly complicated
static and dynamic analysis techniques. Current intelligent methods are
not explainable to reverse engineers, making them incapable of validat-
ing the detected vulnerabilities. In this paper, we propose VulEXplaineR,
an XAI method for vulnerability detection based on assembly code. It
employs BERT for block embedding, augmented with TFIDF of blocks
and operand types information, to provide an effective vulnerability
detection/explanation framework. VulEXplaineR takes a trained GCNN
and its predictions and returns an explanation in the form of a small
subgraph of the input graph. It is based on PGExplainer, a perturbation-
based global explanation model for GNNs. We augment edge distribution
with the edge feature in the form of intra-function jumps between blocks
or inter-function calls between functions. The experimental results on
the NDSS2018 and Juliet Test datasets demonstrate that VulEXplaineR
outperforms the current state-of-the-art baselines in vulnerability detec-
tion. Unlike other baseline models, VulEXplaineR provides a high level
of explainability as a complementary aid to a reverse engineer, for a
more accurate function analysis. We measure fidelity to demonstrate
how much two predictions from the extracted subgraph and the orig-
inal graph match. Furthermore, we conduct a case study to show that
VulEXplaineR not only identifies functions and basic blocks that cause
the vulnerability, but also highlights interdependencies between those
functions and blocks.
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Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-70378-2_1.

c© Crown 2024
A. Bifet et al. (Eds.): ECML PKDD 2024, LNAI 14949, pp. 3–20, 2024.
https://doi.org/10.1007/978-3-031-70378-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-70378-2_1&domain=pdf
https://doi.org/10.1007/978-3-031-70378-2_1
https://doi.org/10.1007/978-3-031-70378-2_1


4 S. Mahdavifar et al.

1 Introduction

A software vulnerability refers to a weakness in system design, implementation,
or operational management that, if exploited, can result in various attacks or
system crashes. Software vulnerabilities are released through the CVE database.
When it comes to vulnerability detection methods, traditional approaches, such
as reverse engineering, are manually intensive and time-consuming, making
them impractical for mitigating zero-day vulnerabilities. Using deep learning
and machine learning, we can automate the process of identifying software vul-
nerabilities and streamlining the process. However, adding intelligence to vul-
nerability detection has never been an effortless task. There exists a multitude of
challenges on the route of designing an efficient effective detector that is capable
of identifying zero-day vulnerabilities. The existing methods do not explain why
a binary is vulnerable. To date, several Artificial Intelligence (AI)-based binary
vulnerability detection methods have been proposed at both the source code and
binary level [9,17]. However, they are not fully explainable to reverse engineers. If
they rarely exist, the explanations are low-level and not abstract enough. Thus,
reverse engineers cannot benefit from the transparency these methods provide
to dissect the observable factors and characteristics of the assembly code. If we
can add a human-friendly explanation of the learning representations and the
input assembly code, we would enhance the trustworthiness and reliability of
the vulnerability detection method we provide. One of the most straightforward
explanation approaches is to highlight those parts of the input file that have led
to our decision. In this case, the reverse engineer does not need to review all parts
of the code instruction by instruction to find vulnerable functions. He can only
focus on those parts of the code we have identified by our explainable model.
As a result, it increases accuracy and saves time, energy, and resources. From
the detection perspective, there have been some attempts to use Graph Neural
Networks (GNNs) for training on vulnerability datasets [5,10]. However, exist-
ing graph-based detection methods do not consider edge types in the underlying
Control Flow Graph (CFG) and treat all jumps and calls equally. This assump-
tion prevents the GNN from modeling the edge distributions correctly and fails
to detect unknown vulnerabilities. We believe that knowing whether an edge rep-
resents a jump between two blocks in a function or a call between two functions
in a CFG has an impact on identifying some specific vulnerabilities.

The primary objective of this research is to create and implement an eXplain-
able AI (XAI) model to detect binary vulnerabilities. The key aims are twofold:
(1) providing evidence and predictions for reverse engineers and (2) identify-
ing vulnerable behaviors rather than solely focusing on features. To achieve
this, we introduce VulEXplaineR, a framework designed to identify vulnera-
bilities by analyzing assembly code. The initial step involves extracting CFG
from the assembly code, followed by using BERT for block embedding, enriched
with TFIDF incorporating block information and operand types. This integrated
approach aims to establish an effective and scalable framework for vulnerability
detection and explanation. Furthermore, we offer explainability through a sub-
graph of Graph Convolutional Neural Networks (GCNNs), ensuring a high level
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of comprehension for reverse engineers and an accurate representation of the rela-
tionships and interdependencies between blocks. Graph visualization provides a
high level of explainability and is very much understandable to humans. Also, it
provides an intermediary means for rule explanation. The main contributions of
this paper are as follows:

– To the best of our knowledge, this is the first work that provides explainability
for vulnerability detection in terms of subgraph of the CFG based on a graph
explanation model called PGExplainer. This is also the first work to use
block jumps and function calls as the edge distribution for the GCNN, unlike
previous methods that treat all jumps and calls equally. The edge distribution
provides information about how these connections are distributed throughout
the graph.

– We use operand type frequency and TFIDF that provide a lightweight fea-
ture vector for detecting and explaining vulnerability. TFIDF and operand
types alone demonstrate promising results on datasets with less sophisticated
vulnerabilities, such as the Juliet Test Suite.

– We augment operand type frequency and TFIDF with BERT for block embed-
ding. Experimental results show that VulExplaineR provides almost the same
classification performance as the best performing baseline model, while pro-
viding a high level of explainability.

– We evaluate explainability in terms of fidelity, provide a case study to analyze
the extracted graph explanation, and validate it using expert knowledge.

The remainder of the paper is organized as follows: we review related work in
Sect. 2. The VulExplaineR design is described in Sect. 3. Section 4 provides the
experimental results. Finally, Sect. 5 concludes the paper.

2 Related Work

2.1 Vulnerability Detection

Researchers employ machine learning and deep learning techniques to detect
vulnerabilities, utilizing source or binary code analysis. In source code-based
vulnerability detection, researchers analyze the software code and extract rel-
evant features. For example, Li et al. [12] propose converting the source code
into a numeric vector using representation learning, with the aim of reducing
false negatives. Harer et al. [7] apply machine learning to detect vulnerabilities
in C and C++ programs. In contrast, Cao et al. [3] utilize deep learning with
Bidirectional GNN (BGNN) to capture syntax and semantic information for vul-
nerability detection. Another study by Garcia et al. [6] employs representation
learning, specifically principal component analysis, to generate informative rep-
resentations for the C source code. Similarly, in the case of Java code, Pang et
al. [16], and Hovsepyan et al. [8] represent the code using n-grams and synthetic
features, before applying a Support Vector Machine (SVM) for vulnerability
detection. Russell et al. [17] explore the use of CNNs and Recurrent Neural Net-
works (RNNs) on real-world C/C++ code datasets. Although these approaches
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achieve good evaluation metrics, they heavily rely on access to source code,
which is only sometimes available. Therefore, researchers have begun to explore
alternative approaches based on binary-level vulnerability detection. Binary-level
vulnerability detection has gained popularity in research, due to its advantage of
using a standard representation for programs across different programming lan-
guages. Scholars have hypothesized that assembly code shares similarities with
natural language processing by focusing on the assembly code obtained through
disassembly. For example, Dahl et al. [4] employed representation learning on
assembly code and utilized RNNs to detect vulnerabilities. Similarly, Lee et
al. [9] used CNNs to process binary code by converting instructions into vectors.

While these approaches have shown promising results, they can only some-
times capture the semantic relationships among code blocks. Researchers have
shifted towards graph-based detection methods to address this limitation, aiming
for greater accuracy and precision. For example, Diwan et al. [5] employed rep-
resentation learning using RoBERTa [13] to encode code blocks into vectors and
applied message-passing neural networks to process the entire CFG. Previously,
Diwan et al. [5] also explored graph-based techniques at the source code level,
as demonstrated in [20]. The research conducted by Diwan et al. [5] achieved
high accuracy, but one of the challenges of binary-level detection is the difficulty
in interpreting the results. Reverse engineers still need help understanding the
underlying reasons for the detected vulnerabilities. Furthermore, deep learning
algorithms such as GNNs, RNNs, or CNNs are often perceived as black boxes,
further complicating the task for reverse engineers. XAI techniques have been
considered as potential solutions to explain why black-box models classify soft-
ware as vulnerable.

2.2 XAI for Vulnerability Detection

Integrating XAI techniques into vulnerability detection has been a relatively
understudied area within the existing literature. Most available XAI algorithms
have been predominantly developed and tailored for real-world data domains,
such as text and images. However, the unique characteristics of vulnerability data
require modifications and adaptations of these XAI algorithms to suit this spe-
cific domain. To address this gap, researchers have proposed custom algorithms
specifically designed to explain source code-level vulnerabilities. For example,
Zou et al. [21] introduced a heuristic searching-based tree generation approach
to explain vulnerability detection outcomes. Similarly, Li et al. [11] presented
a detailed interpretation framework incorporating subgraphs from the Program
Dependency Graph (PDG) containing critical statements related to the identi-
fied vulnerabilities. Notably, Li et al. [10] made a significant contribution by pio-
neering the exploration of binary-level vulnerability detection and explanation.
However, their approach relied on attention-based graph classification, which
may need to possess the sensitivity for local-level explainability in vulnerability
detection. In contrast, our proposed algorithm overcomes this limitation by lever-
aging power gradient analysis and providing individual explanations tailored to
vulnerability detection scenarios.
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3 Methodology

Explainability is defined as the capacity to convey information clearly to a human
audience. It is argued that efficient explanations should be discerning, requiring
the choice of ‘one or two causalities’ from a potentially vast array of causes [15].

3.1 Method of Communication for Vulnerability Detection

In the literature, there are different ways of organizing how an explanation is
communicated to an audience, out of which the three following methods could
be tailored to the area of vulnerability detection.

– Input feature explanation could be based on the whole instruction or tokens
(Fig. 1). Although it is highly adaptable to different problems, it is limited
to providing abstract explanations and controlling the flow of the program.

– Rule explanations attempt to explain the model by a simple set of rules. Rules
offer the highest level of abstract explanation and are powerful at approximat-
ing non-linear decision boundaries. Although they are a local approximation-
based explanation method, they can be generalized to the entire dataset and
provide global explanations. However, they are complex when applied directly
to the assembly code and have high time complexity.

– Graph visualization matches the nature of the graphs of assembly code from
two perspectives: (1) the structure and semantic information of the assembly
code and (2) the relationships and dependencies between blocks. From the
visual interpretation viewpoint, graphs are more human understandable and
are an intermediary for rule explanation.

Fig. 1. Input feature explanation

3.2 Graph Explanation

GNNs have been noticeably employed for representation learning in applica-
tions [19] that involve graph-structured data, such as social network data and
genomic data. The main idea of learning a representation of graph-structured
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data is to use a message-passing scheme to enable each node in the graph to
capture the feature vector of the neighbor nodes. This way, the GNN can cap-
ture both the node features and the topology of the graph. GNNs could be used
for node classification, link prediction, graph classification, and graph genera-
tion. However, GNNS, like other deep neural networks, suffer from not being
explainable to humans, because of their black-box nature. In terms of their
application to cybersecurity, the lack of explainability hinders security experts
to comprehend how complex decisions are made, leading to decreased levels of
trust and reliability in the system. A few attempts have been made in the lit-
erature to explain graph predictions based on important subgraphs and sets of
features. GNNExplainer [18] is the first general model-agnostic-based approach
for explaining GNNs. GNNExplainer explains in terms of a compact subgraph
and a small subset of node features that are essential for predicting a specific
instance, i.e., a node or a graph in a GNN. However, since GNNExplainer focuses
on providing local explainability for a single instance individually, this makes it
difficult for the explanations to be generalized to other nodes. Therefore, this
approach would not be suitable for comprehending the trained model globally
and because of looking at each instance independently, this may generate sub-
optimal generalized explanations.

3.3 VulEXplaineR

PGExplainer [14] parametrizes the generation process for explanations that
explain multiple instances collectively with a global view of the GNN model.
Therefore, it benefits from a higher generalization power. The PGExplainer
model enables the inference of explanations for unexplained nodes in an inductive
setting, without requiring the retraining of the explanation model. PGExplainer
extracts Gs as the explanatory graph, which is the underlying subgraph that
makes important contributions to the predictions of a GNN. We have adopted
PGExplainer as the base model and exploited the concept of edge distribution
to take into account the type of edge in the CFG. For the sake of simplicity,
we assume that Gs follows a Gilbert random graph model. In this model, the
selection of edges from the original input graph G0 is treated as conditionally
independent of each other. Let V denotes the node set and E ∈ V × V be the
edge set of Graph G. eij ∈ V × V represents the binary variable that indicates
whether the edge is selected, with eij = 1 if the edge (i, j) is selected and 0
otherwise. Further, assume e′

ij is the binary variable representing whether the
edge is an inter-function call, with e′

ij = 1 if the edge (i, j) is an inter-function
call, and 0 if it is an intra-function call (between blocks). Given G be the random
graph variable, based on the above assumptions, the probability of a graph G is
factorized as follows:

P (G) = Π(i,j)∈EP (eij).P (e′
ij) (1)

Probabilities P (eij) and P (e′
ij) could be modeled as Bernoulli distributions,

where eij ∼ Bern(θij) and e′
ij ∼ Bern(θ′

ij). P (eij) = θij and P (e′
ij) = θ′

ij
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indicate the probability that edge (i, j) exists in G and is an inter-function call,
respectively. The objective function in the PGExplainer algorithm is described
as follows [14]:

min
Gs

H(Y0|G = Gs) = min
Gs

EGs [H(Y0|G = Gs)] ≈ min
Θ

EGs∼q(Θ) [H(Y0|G = Gs)] , (2)

where q(Θ) is the distribution of the explanatory graph parameterized by θ
and θ′. We apply a relaxation technique to the discrete variable Gs where edge
weights, initially binary, are relaxed to continuous variables in the range (0, 1).
A reparameterization method is then employed to optimize the objective func-
tion efficiently using gradient-based methods. The approach involves using a
deterministic function with parameters Ω, temperature τ , and an independent
random variable ε to approximate the sampling process Gs ∼ q(θ). Therefore,
Gs is approximated by Ĝs = fΩ(G0, τ, ε) and the weight êij ∈ (0, 1) of edge (i, j)
in Ĝs is calculated by:

êij = σ((logε − log(1 − ε) + ωij)/τ), ε ∼ Uniform(0, 1), (3)

where σ(.) is the Sigmoid function, and ωij ∈ R is the parameter. Thus, with
the reparametrization technique, the objective equation in Eq. 2 becomes:

min
Ω

Eε∼Uniform(0,1)H(Y0|G = Gs). (4)

Figure 2 depicts the explanation process. It takes an input graph G0 to compute
Ω which serves as the latent variable in edge distributions, essentially represent-
ing explanations. To extract the explanatory subgraph, the latent variables are
employed to select the highest-rank edges. Then a random graph Ĝs is drawn
from the edge distributions and fed to the trained GNN to obtain the prediction
Ŷs. Finally, the parameters in the explanation network are optimized by min-
imizing the cross-entropy between the original prediction Y0 and the updated
prediction Ŷs [14].

Fig. 2. Extracting explanation graph

Edge distribution is often used to describe how features are propagated
between nodes through the edges of the graph. The edge distribution can define
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how neighboring nodes influence each other during message passing in a GNN.
The distribution may determine how much weight or importance is assigned to
the information coming from each neighbor. For example, a uniform edge distri-
bution may imply that each neighbor contributes equally to the node’s updated
representation, while a learned distribution may assign different weights to differ-
ent neighbors based on the model’s learning. In a CFG, the probability distribu-
tion of the edges is very important to capture meaningful dependencies between
blocks in the graph and therefore, detect zero-day vulnerabilities. To augment
the edge distribution in a CFG, we concatenate the edge type as an entry in
the edge embedding from which latent variables are computed. Edge types are
either intra-function calls between blocks, indicated as zero, or inter-function
calls between functions, indicated as one in the edge embedding. Figure 3 shows
the overview of the VulEXplaineR framework to predict and explain vulnerabil-
ity in terms of a subgraph of a GCNN that represents a CFG. First, the input
binary files are disassembled into assembly code blocks using a disassembler.
Then, we extract the CFG of the program that represents the graphical rep-
resentation of its different execution paths. Each node in a CFG stands for a
basic block and an edge of the graph connects these basic blocks that shows the
flow of the program execution. We generate the CFG of the entire assembly file
by connecting the functions through the basic blocks of each function that call
one another. Using this representation, we can discover risky program execution
paths of a file.

Fig. 3. A model overview of the VulEXplaineR framework

After that, we need to create the embeddings for the nodes (blocks) and
the edges (connectivity between blocks) [5] of the CFG and arrange them in
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a structure to serve as an input to a GCNN. The node embeddings consist of
several components, including the TFIDF value, the BERT embedding, and the
frequency of operand types in a basic block. All of these feature vectors are con-
catenated and serve as block embedding in each node. The edge feature would
be the call type (intra-function or inter-function) which is incorporated into the
edge embedding for the explanation part. The GCNN employs a message-passing
mechanism to generate an enhanced binary file representation of the input graph
and then predicts whether the input file is vulnerable or not. In a GCNN, each
node which represents a block receives information from its neighbors and accu-
mulates the vectors to create a block embedding.

Finally, the node embeddings and the edge embeddings are used to create
the edge distributions and create an explanatory subgraph. Using the edge dis-
tribution, we can determine the weight of the information coming from each
neighbor. To compute the TFIDF value of each block, we assume each block is a
word and employ TFIDF on the whole binary file. Using this approach, we can
capture the semantic relationship between the blocks, and similar blocks would
have a TFIDF value at a proximity. BERT embedding is applied to the instruc-
tions in a block and then an average is taken between the embeddings of the
instructions. Using pre-trained BERT methods, we can ensure to preserve the
semantics between different tokens in assembly instructions so that similar basic
blocks have embeddings close to each other. For the operand types, we calculate
the frequency of each distinct operand type and create a bag-of-words type of
feature vector. There exist seven operand types: (0) No Operand, (1) General
Register (al, ax, es, ds...) (reg), (2) Direct Memory Reference (DATA) (addr),
(3) Memory Ref [Base Reg + Index Reg] (phrase), (4) Memory Reg [Base Reg
+ Index Reg + Displacement] (phrase + addr), (5) Immediate Value (value),
(6) Immediate Far Address (CODE) (addr), and (7) Immediate Near Address
(CODE) (addr).

4 Experimental Results

4.1 Dataset

The NDSS18 dataset originated from the National Institute of Standards and
Technology (NIST) and the Software Assurance Reference Dataset (SARD)
project. It includes a total of 32,281 binary files, which can be categorized into
Windows and Linux platforms and are associated with two specific Common
Weakness Enumerations (CWEs), CWE-119 and CWE-399. Notably, the dataset
is well balanced in terms of vulnerability labels both the Windows and Linux
platforms. CWE-399 is related to a specific type of software vulnerability, known
as “Resource Management Error” and CWE-119 is related to improper restriction
of operations within the bounds of a memory buffer. The Juliet Test Suite is the
second dataset we use that contains 118 distinct CWEs. This synthetic dataset
comprises a total of 83,624 binary files, with an equal distribution of labels
between vulnerable and non-vulnerable files. We analyzed our model on CWE-
121 and CWE-190 from the Juliet Test Suite and on CWE-119 from the NDSS18
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dataset as benchmarks. CWE-121 (Stack-based Buffer Overflow) is related to sit-
uations where excessive data is written to a stack buffer, potentially leading to a
buffer overflow. Moreover, CWE-190 (Integer Overflow or Wraparound) involves
errors in the calculation of integer values, leading to overflow or wraparound. A
graph structure proves to be more appropriate for identifying and understanding
these vulnerabilities, due to multiple functions. Table 1 shows the distribution of
both datasets in terms of vulnerable and non-vulnerable samples. To normalize
the assembly instructions, the following steps have been done on the instructions
in each block: (1) removing the heading memory address, (2) replacing constants
with ‘const’, e.g., ‘0Bh’ is replaced with the word ‘const’, and (3) replacing effec-
tive addresses with ‘addr’, e.g., [ebp + V ar_C] is replaced with the word ‘addr’.
Skipping the instruction normalization step would result in generating a huge
list of distinct vocabularies for the language modeling task and not allowing the
BERT algorithm to extract well-represented block embeddings.

Table 1. Dataset distributions

Dataset # Vulnerable samples # Non-vulnerable samples

NDSS18 8978 8999
Juliet Test Suite 7060 7060

4.2 Experimental Setup

The experiments were performed on an AMD Ryzen Threadripper PRO 3975WX
32-Core 3.50GHz with 512 GB RAM running Windows Server 2022. VulEX-
plaineR was implemented using Python and Pytorch. We used the PGEx-
plainer Github code repository to implement VulEXplaineR and revised the
code1 for pre-processing of the binary files (instruction normalization, creating
block embedding, generating CFGs, generating node embedding), adding edge
distributions, and computing fidelity metrics. To disassemble the binary files,
we used IDA Pro version 8.2.230124. For implementing BERT models, ‘bert-
mini’ from Hugging Face was employed, which is one of the smaller Pytorch
pre-trained BERT variants. The graph convolutional layers were implemented
using the GCNConv library from ‘torch_geometric.nn’.

To evaluate the performance of our model, we split our dataset into training
(80%), validation (10%), and testing (10%). The vulnerability detection task is
a binary classification that classifies binary files as vulnerable (positive) or non-
vulnerable (negative). We add explainability on top of the classification model
by generating subgraphs of the initial graph. We use accuracy, recall, precision,
and F1 score as evaluation metrics to calculate the classification performance. To
assess explainability, we compute the classification performance of the generated

1 https://github.com/Sam-Mah/VulExplainer.

https://github.com/Sam-Mah/VulExplainer
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subgraphs. Also, we use the fidelity metric to show the ratio of test examples
that both GCNN and VulEXplaineR can agree on for the classification result.

Hyperparameter Fine-Tuning. We used cross-entropy loss for the loss func-
tion and Adam as the optimization algorithm for GCNN. We managed to fine-
tune the learning rate in different ranges of [0.1, 0.01, 0.001, 0.0001]. More fine-
tuning was conducted for the batch size [64, 100, 150, 200] and the number of
epochs [200, 400, 600, 1000]. We chose the best setting that resulted in the best
accuracy in the validation set. Thus, 0.001, 100, and 600 were selected as the best
settings for the learning rate, batch size, and number of epochs, respectively. We
needed to fine-tune the architecture of the GCNN including the convolutional
layers. The best model consists of three stacked GCN layers followed by a linear
layer. Max and Mean pooling is then used between the GCN outputs and the
linear layers.

Models to Compare. We compare two variants of our model with two dif-
ferent combinations of node features with GCNN as the base GNN for both
variants, VulEXplaineRFS1 and VulEXplaineRFS2. The first group of node fea-
tures (FS1) includes BERT embedding, operand types, and TFIDF Value, while
the second group (FS2) comprises operand types and TFIDF Value. The base-
line models are VulGCNNFS1 which is a vulnerability detector using a GCNN
and employs BERT embedding, operand types, and TFIDF Value as the node
features, VulTFIDFRF that uses Random Forest (RF) as a classifier and TFIDF
embeddings of all blocks as the feature vector, VDGraph2Vec [5] with GCNN,
VulANalyzeR [10], and i2v-TCNN [5] which uses Instruction2Vec [9] for embed-
ding the assembly instructions and TextCNN for classifying the samples into
benign and vulnerable.

4.3 Results

In Tables 2 and 3, we compare both variants of VulEXplaineR with the base-
line algorithms VulGCNNFS1, VulTFIDFRF , VDGraph2Vec, i2v-TCNN, and
VulANalyzeR on the NDSS18 and Juliet Test datasets, respectively. For the
baseline algorithms, namely VDGraph2Vec, i2v-TCNN, and VulANalyzeR, we
chose the setting with the best results in the papers. Both variants of VulEX-
plaineR are the only models that provide full explainability for the vulnerability
detection task. VulANalyzeR provides a local-level explanation at the instruction
level, while VulEXplaineR provides a global-level explanation, which preserves
the local fidelity. As shown in Table 2, VulEXplaineRFS1 achieves an accuracy of
96.02% and precision 97.31%, 0.54% higher accuracy and 1.66% higher precision
acquired from the best performing baseline algorithm, i.e., VDGraph2Vec. As
for other measures such as recall and F1, there is a negligible difference of ≈
0.2% and 0.4%. Considering the fact that VDGraph2Vec does not provide any
level of explainability, we can conclude that VulEXplaineR is highly efficient
in terms of all measures. Similarly, in Table 3, VulEXplaineR provides nearly
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the same performance of the best performing baseline model, VDGraph2Vec,
which lacks explainability. Overall, the results are representative of the fact that
VulEXplaineR is capable of reproducing the accuracy of the GNNs from which
it was derived.

Table 2. Performance results on the NDSS18 dataset

Models Accuracy Recall Precision F1

VulEXplaineRFS1 96.02 96.02 97.31 95.51
VulEXplaineRFS2 78.75 78.75 79.67 78.35
VulGCNNFS1 93.02 93.02 95.81 92.99
VulTFIDFRF 70.59 70.59 70.59 70.46
VDGraph2Vec 95.48 96.21 95.65 95.92
i2v-TCNN 81.41 82.50 83.72 83.11
VulANalyzeR 89.53 94.18 85.36 90.10

Table 3. Performance results on the Juliet Test dataset

Models Accuracy Recall Precision F1

VulEXplaineRFS1 99.80 99.80 99.81 99.80
VulEXplaineRFS2 94.79 96.65 93.40 95.00
VulGCNNFS1 98.55 98.55 98.56 98.55
VulTFIDFRF 87.47 87.47 88.25 87.42
VDGraph2Vec 100 100 100 100
i2v-TCNN 92.81 93.1 93.59 93.31
VulANalyzeR 99.68 100 99.38 99.69

4.4 Graph Explanation

In this section, we present the results of two sets of experiments, namely qual-
itative and quantitative, to evaluate the quality of the graph explanations. In
quantitative evaluations, we calculate the fidelity of the subgraphs to show how
much it mimics the behaviour of the original graph it is extracted from. The
qualitative evaluation is the ground truth analysis of the extracted subgraph
with respect to the expert knowledge. In this task, a reverse engineer thoroughly
examines the subgraph associated with the Buffer Overflow Vulnerability (CWE
121) to validate the extracted subgraph and assess its level of representation,
compared to the original graph from which it is derived.
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Fidelity Analysis. Fidelity refers to the degree to which the predictions of the
extracted subgraphs align with the actual GNN. The higher the fidelity metric,
the more faithful the extracted subgraph is to the original graph. Fidelity (F)
values range between zero and one, based on Eq. 5:

F = cnt/len(Op) , (5)

where cnt is the number of the times (Op − Mp) vector is zero. Op are the
prediction vectors based on the original graph and Mp are the prediction vectors
based on the current explanation, on the test dataset. The fidelity values of
VulEXplaineRFS1 and VulEXplaineRFS2 on the NDSS18 dataset and the Juliet
Test Suite are depicted in Table 4. The results show that the extracted subgraph
and the underlying GNN highly agree with the predictions they make, except
for the scenario with the lightweight feature set FS2 (operand type frequency
and TFIDF) on the NDSS18 dataset that contains non-synthetic vulnerabilities.

Table 4. Fidelity of VulEXplaineR

Dataset V ulEXplaineRFS1 V ulEXplaineRFS2

NDSS18 0.95 0.80
Juliet Test Suite 0.99 0.99

Ground Truth Analysis of Buffer Overflow Vulnerabilities. Buffer over-
flow vulnerabilities are a common type of security weakness in software programs
that can be exploited by attackers to execute their own code or overwrite crit-
ical data. In this paper, we focus specifically on buffer overflow vulnerabilities
caused by improper bounds checking, weak input validation, and lack of stack
protection. In addition to detecting whether a program is vulnerable to buffer
overflow attacks, we provide explainability by extracting a subgraph from the
CFG and offering justifications for vulnerability. We also link each vulnerability
to the CWE list, which is a community-developed list of software and hardware
weaknesses.

Summary of Extracted Subgraph. VulEXplaineR extracted a subgraph of the
main CFG of a vulnerable binary, as shown in Fig. 42. In these explanations,
bold black edges indicate top-k edges ranked by their importance weights, where
k is set to 50 by hyper-parameter fine tuning. The disassembled code consists of
several blocks of instructions, each labeled with an address in memory. There are
function call names in the code blocks that indicate the vulnerability. We have
removed these debug symbols before conducting experiments. The first block
at memory address 4096 checks if a certain value is null and calls a function if
2 Details about the subgraph and the code are provided in the supplementary data.
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Fig. 4. Extracted explanations as a subgraph indicated by bold black edges calculated
as top-k edges. Each node of the graph is a block represented as function id: block
name. (Color figure online)

it is not. The next several blocks starting at memory address 4128 and ending
at memory address 4496 seem to be setting up some constants. The block at
memory address 4512 appears to be the main function, which initializes some
values and calls other functions. The blocks at memory addresses 4560 and 4608
appear to be functions that manipulate the data in the BSS section of the pro-
gram. The block at memory address 4672 appears to be a function that calls
other functions to clean up the program. The block at memory address 4736
appears to be a function that registers some clones. Providing a justification
or ground truth for a subgraph extracted from a model is challenging in the
absence of complete code details. To determine the actual occurrences and func-
tions that can serve as a backdoor for an attacker, it may be necessary to execute
the code in a sandbox environment with the aid of an executable file. However,
this approach is not always feasible. An alternative approach involves a manual
reading of the extracted code to identify vulnerabilities. Using this method, we
establish a ground truth for the explainability extracted from the model. A list
of vulnerable functions along with their vulnerable basic blocks is described as
follows:

4827: loc_12DB
[‘endbr64 ’, ‘push rbp’, ‘mov rbp rsp’, ‘sub rsp const’, ‘mov addr edi’, ‘mov addr rsi’,

‘mov edi const’, ‘call _time’, ‘mov edi eax’, ‘call _srand ’, ‘lea rdi acallingbad ’,
‘call printline ’, ‘mov eax const’, ‘call

cwe121_stack_based_buffer_overflow__cwe805_struct_declare_loop_54_bad’, ‘lea rdi
afinishedbad ’, ‘call printline ’, ‘mov eax const ’, ‘leave’, ‘retn’]

This function block has instructions that push values onto the stack ‘push rbp’,
‘sub rsp const’, ‘mov addr edi’, ‘mov addr rsi’, ‘lea rdi acalli-
ngbad’, ‘call printline’, ‘mov eax const’ and call other functions that
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could write to the stack without checking the size of the buffer, such as
‘printline’. This leaves the program vulnerable to a stack-based buffer over-
flow attack. The function cwe121_stack_based_buffer_overflow__cwe805_
struct_declare_loop_54_bad describes a weakness related to stack-based
buffer overflows (CWE121), where a buffer overflow can occur if an attacker
can cause more data to be written to a buffer than it can hold [2]. In this sce-
nario, the weakness is caused by a loop that reads input into a structure, with
no validation to ensure that the input does not exceed the size of the structure’s
buffer. This can lead to the overwriting of adjacent memory areas and cause
unexpected behavior or crashes [2].
4935: loc_1347
[‘endbr64’, ‘push rbp’, ‘mov rbp rsp’, ‘sub rsp const’, ‘mov addr rdi’, ‘mov rax addr’,

‘mov rdi rax’, ‘call
cwe121_stack_based_buffer_overflow__cwe805_struct_declare_loop_54d_badsink’, ‘nop’,
‘leave’, ‘retn’]

4904: loc_1328
[‘endbr64’, ‘push rbp’, ‘mov rbp rsp’, ‘sub rsp const’, ‘mov addr rdi’, ‘mov rax addr’,

‘mov rdi rax’, ‘call
cwe121_stack_based_buffer_overflow__cwe805_struct_declare_loop_54c_badsink’, ‘nop’,
‘leave’, ‘retn’]

4966: loc_1366
[‘endbr64’, ‘push rbp’, ‘mov rbp rsp’, ‘sub rsp const’, ‘mov addr rdi’, ‘mov rax addr’,

‘mov rdi rax’, ‘call
cwe121_stack_based_buffer_overflow__cwe805_struct_declare_loop_54e_badsink’, ‘nop’,
‘leave’, ‘retn’]

The above function blocks have instructions that push values onto the stack
‘push rbp’, ‘mov rbp rsp’, ‘sub rsp const’, ‘mov addr rdi’ and call
cwe121_stack_based_buffer_overflow__cwe805_struct_declare_loop_
54c_bad which could potentially write to the stack without checking the
size of the buffer (CWE-805). This leaves the program vulnerable to a
stack-based buffer overflow attack. The function cwe121_stack_based_
buffer_overflow__cwe805_struct_declare_loop_54c_badsink describes a
similar scenario where a bad sink is present, causing the same vulnerability
(CWE-805) [1]. A sink is any place in a program where data is received from
an untrusted source, and a bad sink is one that does not properly validate or
sanitize the incoming data, allowing attackers to inject malicious input [1].
4096: loc_1000
[‘endbr64’, ‘sub rsp const’, ‘mov rax cs:__gmon_start___ptr ’, ‘test rax rax’, ‘jz

loc_1016 ’]

The above function has an instruction that jumps to __gmon_start___ptr,
which could potentially be modified to point to an attacker-controlled address.
If this happens, an attacker could execute arbitrary code by crafting a specially-
crafted object file that causes the program to jump to the attacker-controlled
address.
4672: loc_125B
[‘mov rdi cs:__dso_handle ’, ‘call __cxa_finalize ’]
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This function has an instruction that calls __cxa_finalize, passing in a value
from __dso_handle. If attackers can overwrite the value of __dso_handle, they
could execute arbitrary code by crafting a specially-crafted shared library that
causes the program to execute the attacker’s code when __cxa_finalize is
called.

4512: loc_11A0
[‘endbr64 ’, ‘xor ebp ebp’, ‘mov r9 rdx’, ‘pop rsi’, ‘mov rdx rsp’, ‘and rsp const’, ‘

push rax’, ‘push rsp’, ‘lea r8 __libc_csu_fini ’, ‘lea rcx __libc_csu_init ’, ‘lea
rdi main’, ‘call cs:__libc_start_main_ptr ’, ‘hlt’]

The above function has instructions that push values onto the stack push rsp,
lea r8 __libc_csu_fini, lea rcx __libc_csu_init, lea rdi main and
call other functions that could write to the stack without checking the size of
the buffer, such as printf, scanf, and wprintf. This leaves the program vulnerable
to a stack-based buffer overflow attack.

Mainly, two functions cwe121_stack_based_buffer_overflow__cwe805_
struct_declare_loop_54_bad and cwe121_stack_based_buffer_over-
flow__cwe805_struct_declare_loop_54c_badsink both belong to CWE
lists [1,2] and describe similar weaknesses related to stack-based buffer over-
flows caused by inadequate input validation, with one involving a loop and the
other involving a bad sink. To mitigate such vulnerabilities, it is essential to
validate all user input to ensure that it does not exceed the size of the buffer
and that it is correctly sanitized to remove any potentially harmful content.

5 Conclusion

In this paper, we propose VulEXplaineR, an XAI method for vulnerability
detection in assembly code. Utilizing BERT and TFIDF, it offers an efficient
framework to represent relationships between blocks and functions. Inspired by
PGExplainer, VulEXplaineR produces explanations in the form of subgraphs of
GCNNs, incorporating edge embeddings for enhanced accuracy. Experimental
results on the NDSS2018 and Juliet Test datasets show that VulEXplaineR out-
performs state-of-the-art baselines, providing high explainability that matches
the graph nature of the assembly code and is valuable for reverse engineers.
Qualitative and quantitative evaluations, including fidelity metrics, demonstrate
the method’s effectiveness. A case study highlights VulEXplaineR’s ability to
identify vulnerabilities and dependencies within the extracted subgraph. One of
the directions of future work is to design motifs as the ground truth to conduct
a quantitative evaluation of the extracted subgraph in the form of binary edge
classification. Those edges that fall inside the motifs are positive edges, and those
that fall outside the motifs are negative edges. Another line of research would be
to model the underlying GNN as a directed graph. A directed graph imposes an
ordering on a pair of nodes that is useful, as it further describes the relationship
between the nodes.
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Abstract. Techniques for knowledge graph (KGs) enrichment have
been increasingly crucial for commercial applications that rely on evolv-
ing product catalogues. However, because of the huge search space of
potential enrichment, predictions from KG completion (KGC) methods
suffer from low precision, making them unreliable for real-world cata-
logues. Moreover, candidate facts for enrichment have varied relevance
to users. While making correct predictions for incomplete triplets in KGs
has been the main focus of KGC method, the relevance of when to apply
such predictions has been neglected. Motivated by the product search use
case, we address the angle of generating relevant completion for a cata-
logue using user search behaviour and the users property association with
a product. In this paper, we present our intuition for identifying enrich-
able data points and use general-purpose KGs to show-case the perfor-
mance benefits. In particular, we extract entity-predicate pairs from user
queries, which are more likely to be correct and relevant, and use these
pairs to guide the prediction of KGC methods. We assess our method
on two popular encyclopedia KGs, DBPedia and YAGO 4. Our results
from both automatic and human evaluations show that query guidance
can significantly improve the correctness and relevance of prediction.

1 Introduction

Knowledge graphs (KGs) have become increasingly prevalent in commercial
applications to provide accessible and structured representation of knowledge.
For example, shopping websites like Amazon often use KGs to represent product
catalogs [6], where product properties and taxonomies are captured in structures
similar to the Resource Description Framework (RDF). For instance, “the color
of blouse A is red” would be represented as the subject entity “blouse A” con-
necting with the object entity “red” via the predicate “color.” These properties
can then be used to offer users recommendations and navigation options during
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Fig. 1. An example of using query logs to guide prediction. In this example, we can
make prediction on the entity “Marie Curie” using one of the predicates from “birth-
place”, “head quarter”, and “associated band”. Because the query selects the birthplace
of Marie Curie, we make predictions from this entity-predicate pair.

product search (e.g., recommended categories and filtering widgets on the top
and the left side of the Amazon product search page).

Despite the wide usage of KGs in industry, the dynamic nature of commer-
cial applications leads to many practical problems. For example, sellers may
frequently introduce new products without providing the necessary attributes or
new markets might require different attributions than previous launched mar-
kets, impeding the maintenance of these KGs. One approach to remedy this issue
is to automatically infer missing information. In KG management, this approach
is known as KG completion (KGC), in which missing information refers to miss-
ing triplets. Different types of KGC methods have been proposed [30], including
methods based on mining rules [7,8,14,15], embeddings [2,17,23,25], and neural
networks [5,20,21]. Among these approaches, KG embedding (KGE) methods
have shown good scalability and effectiveness [4,26].

Limitations in KGC: Despite the significant advances, all of the aforementioned
methods suffer from two major issues when predicting missing triplets. First,
there is a huge space of possible triplets when considering all possible combina-
tions of entities and predicates. Formally, there are |E|×|P|×|E| possible triplets
just by recombination of existing entities and properties, where |E| and |P| are
respectively the number of entities and predicates in the KG. This huge search
space makes missing triplet prediction on large-scale KGs usually show low pre-
cision [19]. Second, KGC methods mostly focus on ensuring the correctness of
their predictions, by adopting maximum likelihood estimation style objectives.
However, in real-world scenarios, different triplets are usually of different levels
of relevance to users. With relevance, we refer to the appropriateness and impor-
tance of a triplet to describe the real-world. For example, although a blouse could
have both a size and a manufacturing date, knowing its size is more useful for
general users than knowing its manufacturing date. Therefore, it is also impor-
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tant to take into account which triples are more likely to be used, i.e., are more
relevant for enrichment. One strategy to mitigate both issues at the same time is
to provide guidance during the prediction process. For example, when already a
correct and user-relevant pair of entity-predicates (e.g. blouse-color) are given,
one can significantly reduce the search space (i.e., from |E| × |P| × |E| to |E|).

In online retail systems, it is common to rely on behavioral signals from users
to improve their experience. For instance, we can use users’ clicks and purchases
to infer their preferences towards various products. Regarding the prediction of
missing triplets, the vast amount of user queries from the product search engine
can be mined to extract preferences for product attributes. For the blouse exam-
ple, we can compare the frequency of queries for “<color> blouse” against those
for “blouse released on <date>”. This data can help make grounded decisions
about the relevance and correctness of possible triplets.

Contributions: In this paper, we propose to guide the missing triplet prediction
process using user query log signals that express user interests to improve the
correctness and relevance of the predicted triplets. Because commercial KGs and
query logs are usually confidential (e.g., Amazon product catalogue), we show
the suitability of our approach on public general-purpose KGs using their cor-
responding SPARQL query logs instead. User SPARQL queries usually search
for information on general-purpose KGs that are relevant to the user and con-
sidered correct [1]. Thus, they exhibit information on how entities should relate
to each other and what properties they should display. Figure 1 shows a real
example from YAGO 4 [18], illustrating that the existence of queries can help as
a heuristic to evaluate the correctness and relevance of properties: for the entity
“Marie Curie”, users often query for her “birthplace”, instead of for her “head-
quarter” (incorrect) or for her “associated band” (taxonomically correct but less
relevant for the specific entity “Marie Curie”, because Marie Curie is famous for
her scientific rather than musical contributions). Although we experiment with
general-purpose KGs and query logs in this paper, our approach can be easily
adapted to commercial KGs. Concretely, we make three contributions:

– We propose a simple and efficient method for guiding missing triplet pre-
diction using user queries. We first develop a baseline without user guidance
that relies on rejection sampling methods. We then present our query guidance
approach for RDF-based KGs (Sect. 3). Our query guidance method can com-
plement any KGC method that make predictions from entity-predicate pairs,
which covers most popular KGC methods, including rule-based, KGE, and
neural network methods. Our approach can also work with any RDF-based
KGs, which covers most general encyclopedia KGs and product catalogues.

– We empirically illustrate the benefits of incorporating query guidance. Specif-
ically, we compare our query-guidance method to three baselines: our own
baseline that employs rejection sampling without guidance, as well as ver-
sions that incorporate two alternative types of guidance, namely KG meta-
data and KGE scores. This comparison is carried out on two popular general-
purpose KGs: DBPedia [11] and YAGO 4 [18], using the popular RotatE
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KGE model [23]. Our results from both automatic and human evaluation
show that query guidance effectively benefits missing triplet prediction, by
selecting entity-predicate pairs that are at least two times more likely to be
correct, compared to our baseline without guidance (Table 2).

– We build and open-source a dataset consisting of 1600 entity-predicate pairs
that are annotated with correctness and relevance scores (Sect. 4)1.

2 Background and Related Work

In this section, we describe the relevant studies of KGs, KGE models, and rule-
based KGC approaches. We also introduce RotatE, which is the KGE model
used in this paper. We further include the notation system used in this paper.

Knowledge Graphs. KGs are structural representations of human knowledge in
the form of triplets G = {(h, r, t)}, where h, r and t are respectively the subject
entity, predicate, and object entity [30]. For example, “Marie Curie was born in
Warsaw” will be represented as (“Marie Curie”, “born in”, “Warsaw”). Different
types of KGs exist, including encyclopedia KGs (e.g., DBPedia [11] and YAGO
4 [18]), domain-specific KGs (e.g., Drugbank [28] and semantic scholar [13]), and
task-specific KGs (e.g., Amazon product graph [6]).

Knowledge Graph Embeddings and RotatE. Various KGE models are proposed
in previous studies, including translation models [2,12,23], tensor decomposition
models [10,25] and deep learning models [9,27]. These KGE models usually
encode entities and predicates in KGs as dense vectors (i.e., embeddings), which
can be used as prior knowledge for downstream tasks [22,24,31], or to predict
missing triplets in KGs [2,5].

In this paper, we focus on RotatE [23] KGE model. For each triplet (h, r, t),
RotatE measures the distance between h and t in the space of r with dr(h, t) =
‖h◦r−t‖, where h, r and t are the embedding vectors of h, r and t, and ◦ is the
element-wise product. Similar to other KGE models, RotatE adopts a margin
loss with negative sampling (to facilitate convergence), to minimize the distance
within existing triplets,

L = − log σ (sr(h, t)) −
n∑

i=1

1
k

log σ (−sr (h′
i, t

′
i)) , (1)

where h′
i and t′

i are the randomly-sampled negative samples, n and k are the
number and weights of the negative samples respectively, and sr(h, t) = γ −
dr(h, t) is the margin-based score function with a margin γ. One useful attrbute
of this objective function is that sr(h, t) is proportional to log p(h, t|r), which is
illustrated in [16] and [29].

1 Publicly available at https://github.com/LUH-DBS/KGEnrichment.

https://github.com/LUH-DBS/KGEnrichment
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Rule-Based Knowledge Graph Completion. Besides KGE models, rule-based
approaches are also popular in KGC, which usually mine compositional rules
from statistical cues. For example, knowing that a person was born and raised
in Amsterdam, while also having the knowledge that the official language of
Amsterdam is Dutch, one can infer that likely this person speaks Dutch. Both
top-down, which begins from general rule prototypes and specified with data,
e.g., AMIE [7,8], and bottom-up, which begins from specific triplets and gener-
alize to rules, e.g. AnyBURL [14,15], are commonly used. Compared with KGE
models, rule-based models are more interpretable but less scalable, making them
hard to apply to large-scale product catalogues.

3 Query-Guided Triplet Prediction

The goal of guided triplet prediction is to increase the utility and accuracy of
KGC by focusing on triplets that are of interest to users and avoiding the gen-
eration of potentially irrelevant triplets. We first introduce a rejection-sampling-
based baseline method for predicting missing triplets from KGE models. After-
wards, we propose a simple yet effective method for guiding the prediction of
missing triplets with user query logs to obtain triplets of better correctness and
relevance. In our experiments (Sect. 4), we apply our query guidance method
on the baseline method and compare the prediction quality with and without
guidance.

3.1 Prediction from KGE Using Rejection Sampling (RS)

Rejection sampling is a technique for drawing samples from a complex dis-
tribution, whose unnormalized probability can be expressed as a calculable
score z · p(x), where p(x) is the probability of a sample x, and z is a (mostly
unknown) normalization factor. This method involves using a proposal distribu-
tion, denoted as q(x), which is easy to sample from (e.g., a uniform distribution).
Each sample drawn from q(x) is then accepted with a probability

p(accept) = z · p(x)/k · q(x), (2)

where k is a constant chosen such that p(accept) ≤ 1 for all x. This choice
ensures that p(accept) is well-defined.

Given a trained KGE model, because the embedding scores it assigns to
triplets are proportional to the probabilities (i.e. sr(h, t) ∝ log p(h, t|r), [16,29]),
one can predict missing triplets by sampling from the distribution of KGE
scores. However, this sampling is not trivial due to that sr(h, t) is not nor-
malized. One direct fix is to sample entities and predicates uniformly, and filter
out triplets with low sr(h, t) by a pre-defined threshold (i.e., regarding triplets
with high KGE scores as correct ones). However, this threshold can be difficult
to determine, because the specific relationship between score and triplet quality
is unclear.
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As mentioned before, rejection sampling can be used to sample from complex
distributions, as long as unnormalized probabilities are easy to compute, mak-
ing it a good fit for sampling from KGE models. Specifically, we can take two
steps to predict new triplets by rejection sampling. First, according the marginal
distribution of predicates in the original KG, we sample a predicate r. Second,
for this sampled predicate, we sample candidate entities subject h and object t
from a uniform proposal distribution. We then accept the triplet (h, r, t) with
probability p(accept) = esr(h,t)/eγ , where γ is the margin from the loss function
of RotatE (c.f. Sect. 2). The rationales are that, 1) because sr(h, t) is propor-
tional to log p(h, t|r), esr(h,t) is an estimation of the unnormalized probability
z ·p(h, t|r), and 2) since sr(h, t) ≤ γ, eγ can be seen as an unnormalized proposal
uniform distribution whose value is greater or equal to esr(h,t) everywhere.2

3.2 Guided Prediction with Queries (QG)

Many KGs or catalogues are targets of exploratory search. Queries for
exploratory search often reflect users’ association with an entity, e.g., a prod-
uct and its attributes. While a single user might not always hint at the correct
signals, frequent appearances of certain queries are likely to mirror common
expectations of the user base. Our intuition is to collect such queries and use
them to identify gaps in the underlying dataset.

In this paper, we describe our methodology by referring to SPARQL lan-
guage, which is a popular language for querying RDF data [3]. We make this
choice because of the prevalent usage of SPARQL in querying general-purpose
KGs, including the ones that we experimented with in this study.

SPARQL supports various functionalities, including SELECT (existing
triplets), CONSTRUCT (new triplets), ASK (if a triplet exists), and DESCRIBE (an
entity). Among them, SELECT queries are similar to actual queries appear in
product search. SELECT queries usually consist of combinations of predicates
and entities, where one connecting entity is missing as is queried for. For
example, the query looking for the birthplace of Marie Curie, SELECT ?place
WHERE{MarieCurie BirthPlace ?place}, would already include Marie Curie
as the subject of the triplet and birthplace as its predicate. Based on our intu-
ition, the existence of a query as such suggests that “Marie Curie” should have
the attribute “birthplace”, which is relevant to users. Similarly, product search
users usually query for products of certain attributes, e.g., red blouse. This query
suggests that all product items from the catalogue of type “blouse”, should
have a relevant attribute “color”, knowing that red is a type of “color” (from
named entity recognizers). Note that here we adopt pragmatic definitions for
“correctness” and“relevance”: queries show users’ interests, and interests imply
correctness and relevance (we will validate this heuristic in Sect. 4.3). Moreover,
we observe that, for both KGs we use in this paper, more than 95% of the

2 In practice, we can sample a large number of entities pairs and predicates simulta-
neously, and iterate until we accept the specified amount of triplets.
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SPARQL queries in the query logs are SELECT queries. We therefore
focus on using SELECT queries as guidance.

Specifically, based on our RS baseline, we perform three steps to predict new
triplets with the guidance of SELECT queries. First, given a SELECT query, we
extract all entity-predicate pairs from this query. Second, from a uniform pro-
posal entity distribution, we sample the second entity for each entity-predicate
pair Here, we focus on sampling the objects, because they are more relevant to
the downstream use case of inferring product attributes. Third, we accept these
sampled triplets based on their scores computed by the trained KGE model,
following Eq. 2. Query guidance therefore help to reduce the prediction space
from |E| × |P| × |E| to |E|, which enhances prediction correctness and relevance,
because they are within the scope of users’ interests.

Comparison with Selecting Top-k Queries. Another approach of incorporating
user query information is to select the top-k most frequent queries and make
direct predictions from them. In contrast to this approach, our sampling-based
approach additionally considers knowledge from the base KGC method, which is
a representation of training KG information. Our approach can be extended for
improved performance by considering additional aggregation or filtering of user
queries. However, to illustrate our core idea, the effectiveness of user queries, we
keep the simplest setting and leave further investigations to future work.

4 Evaluation and Results

In this section, we evaluate to what extent the guidance of user queries can help
with missing triplet prediction. From the results of both automatic (Sect. 4.2)
and human (Sect. 4.3) evaluations, we observe that query guidance can dramat-
ically boost both the correctness and the relevance of the predicted triplets.
Moreover, to better ground the impact of query guidance, we compare query
guidance against two alternative types of guidance, namely KG metadata (i.e.
taxonomy of entities and predicate types) and embedding scores from the KGE
model (Sect. 4.4). We observe that, although these two types of guidance can
both improve prediction quality, they are outperformed by query guidance.

4.1 Experimental Setup

We perform all our experiments using Amazon SageMaker, with a g5.16xlarge
instance. We use Python 3.7, PyTorch 1.13, DGL 0.4.3, and DGLKE 0.1.2. We
use RotatE [23] as the KGC model for prediction. It took around three GPU days
(A10 Tensor Core GPU with 24 GB vRAM) to perform hyper-parameter opti-
mization of the embedding models (20 times of random search on the validation
set), and four GPU hours to produce all predictions (including the baselines).

KGs and Query Logs. We use two popular general-purpose RDF KGs for our
experiments: DBPedia [11] English Wikipedia InfoBox 2020.07,3 and the YAGO
3 https://databus.dbpedia.org/dbpedia/mappings/mappingbased-objects/2020.07.

01.

https://databus.dbpedia.org/dbpedia/mappings/mappingbased-objects/2020.07.01
https://databus.dbpedia.org/dbpedia/mappings/mappingbased-objects/2020.07.01
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4 [18] English Wikipedia 2020.02.4 Moreover, we use DBPedia SPARQL Query
Logs from March 20215 and YAGO SPARQL Query Logs from 20226, which
were the latest ones available at the time of experiments, and we removed the
queries for entities and predicates that does not exist yet by 2020.

Table 1. Automatic evaluation results. #Hit Triples refers to the number of over-
lapping triplets between predictions and test sets, and Pair Precision is the precision
score of the predicted entity-predicate pairs on test sets: we observe that query guid-
ance (QG) drastically improve the quality of missing triplet prediction, compared with
the rejection sampling baseline (RS).

DBPedia900K YAGO5M

#Hit Triplets Pair Precision #Hit Triplets Pair Precision

RS 3 0.0106 0 0.0214

QG 743 0.3467 21 0.1610

Pre-processing of KGs and Query logs. We sanitize the KGs by removing entities
containing only URLs and numbers, or are lists of other entities (e.g. list of all
players of a soccer team). Beyond conventional pre-processing, we remove all the
triplets in which both the predicate and at least one entity do not occur in the
query logs, because these triplets are less relevant to our study. For example, for
the triplet (“Marie Curie”, “birthplace”, “Warsaw”), if neither “birthplace” nor
at least one of “Marie Curie” and “Warsaw” appear in the query logs, we will
remove this triplet. As a result, we obtain 1.35 million triplets, 881649 entities,
and 83 predicates from DBPedia, and 12.92 million triples, 4.82 million entities,
and 124 predicates from YAGO, and will mention them as DBPedia900K and
YAGO5M in the remainder of this paper. We then randomly split the KGs into
train (70%), dev (10%) and test (20%) sets.

As mentioned before, most queries in the logs are SELECT queries (> 95%
for both KGs). For example, the SELECT query in Fig. 1 aims to select the
triplets that contain the entity-predicate pair (“Marie Curie”, “birthplace”).
Following the method described in Sect. 3.2, we extract all entity-predicate pairs
from these queries and use them as guidance. Similar to the pre-processing of
KGs, we only keep the pairs of which both the entity and the predicate exist
in the processed KGs. As a result, we obtain 11960 entity-predicate pairs for
DBPedia900K,7 and 4.84 million entity-predicate pairs for YAGO5M.

4 https://yago-knowledge.org/data/yago4/en/2020-02-24/.
5 https://devhub.openlinksw.com/pub/Support/44aa7c1b-bd61-4d61-8fef-

4075094f62ed/.
6 https://yago-knowledge.org/assets/log 20221206 CoQlevVOXUyh.gz.
7 Wikipedia InfoBox is only a small fraction of the whole DBPedia KG, so most items

from the query log is not querying the part of KG that we use.

https://yago-knowledge.org/data/yago4/en/2020-02-24/
https://devhub.openlinksw.com/pub/Support/44aa7c1b-bd61-4d61-8fef-4075094f62ed/
https://devhub.openlinksw.com/pub/Support/44aa7c1b-bd61-4d61-8fef-4075094f62ed/
https://yago-knowledge.org/assets/log_20221206_CoQlevVOXUyh.gz
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Comparisons. We primarily show the benefits of query guidance (QG) by com-
paring it with the rejection sampling (RS) baseline. We also compare our app-
roach with two alternative types of guidance, namely KG metadata and embed-
ding score, to better ground the impact of query guidance (details in Sect. 4.4).
For each method, we predict 10 million triplets that are not in the train or dev
set.

4.2 Automatic Evaluation

We first assess the benefits of adopting query guidance by automatic evaluation.
Specifically, we compute the precision of predictions on the test sets, and compare
the results for QG against those for the RS baseline. We exclude recall scores
because the same amount of different triplets are predicted for each method
(i.e. recall is fully dependent of precision). In particular, we first evaluate the
predicted full triplets. Afterwards, we discuss the limitations of evaluating full
triplets, and include a different setup to evaluate the precision of entity-predicate
pairs extracted from these predicted triplets.

Automatic Evaluation of Triplets. To evaluate the prediction of full triplets,
we assess the numbers of overlapping triplets (#Hit Triplets), i.e., triplets that
appear in both predictions and test sets. We refrain from using the traditional
precision score, because of two reasons. First, because we predict the same num-
ber of triplets for each method, the proportions between the number of overlap-
ping triplets is the same as the precision scores. Second, as mentioned before,
the search space of predictions, especially for the RS baseline, is huge (e.g., over
60 trillions for DBPedia900K). This undesirable attribute can lead to very small
precision ratios. Considering our relatively small test sets that represent a closed
world, such numbers might be misleading, for being more vulnerable to noises.

We show the results in the #Hit Triplets columns in Table 1, and make
two observations. First, query guidance drastically increases the number of hit
triplets, i.e., from 3 to 743 on DBPedia900K and from 0 to 21 on YAGO5M.
The most likely reason for such huge improvements is the vast reduction of the
search space size, from |E| × |P| × |E| to |E|, where |E| and |P| are respectively
the number of entities and predicates in KG: concretely, the search spaces of
possible triplets decrease for 6.77 million and 597.68 million times for DBPe-
dia900K and YAGO5M. We note that the larger numbers of overlapping triplets
on DBPedia900K, compared with YAGO5M, the larger KG, may originate from
the same reason: the search space of YAGO5M is approximately 137 times larger
than DBPedia900K. Second, both methods have rather low numbers of overlap-
ping triplets (at most hundreds compared to 10 million predicted triplets). This
observation is consistent with our intuition that KGE models usually cannot
make accurate predictions on large KGs, highlighting the importance of using
query guidance.

Automatic Evaluation of Entity-Predicate Pairs. The evaluation of full triplets
has two major limitations. First, the quality of predicted full triplets of QG
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Table 2. Human evaluation results. Correct and relevant columns show the precision
scores of predicted entity-predicate pairs regarding correctness and relevance. R/C
shows the percentage of relevant triplets in all correct triplets. We observe that 1) con-
sistent with automatic evaluation, query guidance greatly improves prediction quality
over the RS baseline; 2) guidance of both KG metadata (KM) and embedding score
from KGE models (ES) are beneficial, but outperformed by query guidance; and 3)
query guidance can also improve the relevant ratio among correct triplets.

DBPedia900K YAGO5M

Correct Relevant R/C Correct Relevant R/C

RS 0.345 0.220 63.8% 0.305 0.225 73.8%

QG 0.950 0.895 94.2% 0.990 0.850 85.9%

ES 0.425 0.355 83.5% 0.345 0.235 68.1%

KM 0.750 0.685 91.3% 0.920 0.760 82.6%

depends on two factors: the quality of entity-predicate pairs from user queries,
and the performance of the KGE model in predicting the second entities. It is
thus difficult to isolate the benefits of using entity-predicate pairs as guidance.
Second, as observed in the previous experiment, the numbers of overlapping full
triplets between predictions and test set can be very low for large-scale KGs,
which makes such comparisons vulnerable to noises. For example, our KGE
model produces 0 and 21 overlapping triplets on YAGO5M using RS and QG
respectively: it is difficult to understand to which extent QG actually improves
the prediction accuracy, because such proportions can be susceptible to ran-
domness. Moreover, predicting entity-predicate pairs themselves is meaningful
for improving user experience of product search as well: shopping websites can
notify vendors which missing product attributes are relevant to users, so that
such information can be manually added, which can then be used for search
navigation and recommendation.

To accommodate the previous considerations, we focus on comparing the
entity-predicate pairs extracted directly from user queries against the ones
extracted from the predicted triplets of other methods. Specifically, we extract
all entity-predicate pairs from the predictions of each method, and calculate the
precision scores on the test sets, i.e., the percentage of entity-predicate pairs that
consist of at least one triplet from the test sets. We show the results in the Pair
Precision columns in Table 1. Consistent with our observation on the full triplets,
the guidance of user queries significantly boosts the prediction accuracy, by at
least ∼ 8 times. Besides, we observe that the gap between QG and RS is smaller
compared with the results from the evaluation of full triplets. This observation
implies that KGE models predict the second entities more accurately based on
entity-predicates extracted from user queries, compared with based on the ones
that are randomly sampled. In other words, QG not only offers more correct and
relevant entity-predicate pairs, but also helps KGE models predict better.
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4.3 Human Evaluation

Automatic evaluation has the drawback of closed-world assumption: because
KGs are not complete, the triplets in the test sets are only a small fraction of all
possible (missing) triplets. In other words, entity-predicate pairs that are absent
from the test set can still be correct and relevant. To address this issue, we also
conduct a human evaluation of entity-predicate pairs. In particular, for each
method on each KG, we randomly select 200 entity-predicate pairs, manually
annotate their correctness and relevance, and compute the precision scores.

We use the following general guidelines for annotation: 1) In correct entity-
predicate pairs, the entities should be able to logically possess the attribute or
relationship described by the predicate. An incorrect counterexample is (“saw
rock” - “birthplace”), because saw rock, which is a rock in South Atlantic Ocean,
is an inanimate object; and inanimate objects cannot have attributes like “birth-
place”. 2) In relevant entity-predicate pairs, the predicates should provide per-
tinent information about the entity in the context of the knowledge domain that
the entities belong to. In other words, annotators should evaluate whether an
average user querying the KG would find the predicate’s information beneficial
or essential to their query purpose. For example (“Starsailor” - “band mem-
ber”) is a relevant entity-predicate pair, because “Starsailor” is a rock band,
and users would likely want to know the members of a band they’re looking
up. In contrast, (“William Bayliss” - “associated band”) should be annotated as
correct but irrelevant, because although “William Bayliss”, as a person, can asso-
ciate with a band, he is known for his physiology contributions, not his musical
affiliations.

We show our human evaluation results in Table 2 (the rows for RS and QG).
Besides the precision scores of predicted entity-predicate pairs regarding both
correctness and relevance, we also include the percentage of pairs that are anno-
tated as relevant in all pairs that are annotated as correct (R/C). We make two
observations. First, consistent from our observations in automatic evaluations,
we observe that query guidance can improve both correctness and relevance of
the predictions by a large margin (i.e. from < 0.35 to ≥ 0.95 for correctness, and
< 0.25 to ≥ 0.85 for relevance). Notably, besides the absolute numbers of cor-
rect and relevant entity-predicate pairs, QG also achieves better R/C, indicating
that query guidance is beneficial for the relevance of predictions, beyond merely
enhancing the fraction of correct predictions. Second, compared with the pre-
cision scores from our automatic evaluation (Table 1), we observe much higher
values in human evaluation. We believe that this result validates our previous
analyses on the closed-world issue of automatic evaluation: because KGs are not
complete and many correct and relevant predicted entity-predicate pairs are not
included in the test set, precision scores from automatic evaluation are actually
lower estimations than reality.

4.4 Comparison with Other Types of Guidance

Beside user queries, there exist other types of information that can help identify
helpful entity-predicate pairs to guide the missing triplets prediction. To better
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Table 3. Automatic evaluation of KG metadata compatible and incompatible entity-
predicate pairs. #Pairs refers to the number of overlapping pairs between predictions
and test sets, and Precision is their precision scores: KG metadata guidance can help
prediction, because compatible groups show higher precision than incompatible groups.

DBPedia900K YAGO5M

#Pairs Pair Precision #Pairs Pair Precision

Incompatible 3553456 0.0078 8216555 0.0209

Compatible 424526 0.0337 139554 0.0488

ground the impact of query guidance, we compare our approach to two alterna-
tive types of guiding information, namely KG metadata (KM) and embedding
score (ES). Consistent with our previous experiments, we assess them using both
automatic and human evaluations. Our results show that, although both types
of guidance can improve prediction correctness and relevance, they are outper-
formed by QG, highlighting the relative advantage of using query guidance.

KG Metadata Guidance (KM ). Both KGs used in this paper provide metadata
used to construct them. Concretely, they retain the type of each entity, and the
domain and range of each predicate, i.e., which types of entities that the predicate
can accept as its subject and object. The combination of these two types of
metadata can help filter out incompatible entity-predicate pairs. For example,
knowing the metadata that the predicate “largest city” can only accept the entity
type “place” as subject can help us filter out the pair (“Marie Curie”, “largest
city”), because “Marie Curie” is of type “person” not “place”. We therefore
divide entity-predicate pairs extracted from the predicted triplets of the RS
baseline into (KG metadata) compatible and incompatible groups, and then
compute the precision score of each group on the test sets.

It is worth noting that, likewise the incompleteness of the KGs themselves as
we have discussed, KG metadata can also be incomplete. In this case, “incom-
patible” entity-predicate pairs can still be correct or relevant. For example, for a
entity-predicate pair (“Germany”, “largest city”), if we only know “Germany” is
a “country”, and we do not have the metadata that “country” is always “place”,
we will categorize this pair as incompatible.

Embedding Score Guidance (ES). We also investigate whether embedding scores
computed by KGE models (i.e. s in Eq. 1) can help us select correct and relevant
entity-predicate pairs. Different from KM, which directly divide entity-predicate
pairs into two separate groups (i.e., compatible and incompatible), embedding
scores are continuous values. For clearer evaluation, we divide all entity-predicate
pairs predicted by the RS baseline into 50 bins, based on the highest embedding
score from the triplets that include each pair. For instance, if an entity-predicate
pair appears in 10 different predicted triplets, we use the triplet with the highest
score to determine the bin for that pair. Similar to KM, we then compute the
precision score of each group on the test sets.
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Usage of KM and ES. In contrast to the query guidance approach, neither KM
nor ES directly offer entity-predicate pairs for KGE models to make predictions
on. Instead, they provide guidance in a post-hoc way, by either judging whether
a predicted entity-predicate pair is compatible with KG metadata (KM), or
assigning this pair a continuous embedding score (i.e. s in Eq. 1), whose quantity
indicates how likely this pair is correct (ES). Therefore, we apply them on the
10 million triplets predicted by the RS baseline as filters to select more possible
triplets and entity-predicate pairs.

Fig. 2. Automatic evaluation of embedding score guidance. Y-axis is the precision score
of each group, and X-axis shows the indices of the groups sorted by embedding scores,
in which the larger is the group index the lower is the embedding score: embedding
score guidance can help missing triplet prediction, but worse than query guidance.

Automatic Evaluation. We show the automatic evaluation results for KM in
Table 3, where #Pairs and Pair Precision are the number of predicted entity-
predicate pairs in this group (KG metadata compatible and incompatible) and
their corresponding precision scores. We also show the automatic evaluation
results for ES in Fig. 2, where x-axis is the group index, and larger group index
indicates lower embedding score, which indicates lower quality (recall that we
divide all predicted entity-predicate pairs into 50 bins based on their embedding
scores); and y-axis is the precision score of this group.

We make three observations. First, the guidance of both KG metadata and
embedding score can help prediction. This observation is supported by that 1) in
Table 3, the precision scores of the compatible groups are > 2 times higher than
those of the incompatible groups; and 2) in Fig. 2, groups with higher embedding
scores (i.e. smaller group indices) are of higher precision scores. Second, user
queries still provide better guidance than both KG metedata and embedding
scores, shown by that both 1) the precision scores of the compatible groups in
Table 3 and 2) the group of the highest embedding score in Fig. 2 (i.e. leftmost)
are outperformed by QG (i.e. Pair Precision in Table 1). Third, we observe that
only a small portion of the predicted entity-predicate pairs are compatible with



34 Y. Du et al.

KG metadata. Considering that KM works in a post-hoc way (i.e., it filters out
incompatible ones after predictions are made), this result suggests the relatively
low efficiency of KM compared with QG. The same concern applies to ES if we
solely rely on the a few groups with the highest embedding scores.

Human Evaluation. We also conduct a human evaluation study to further com-
pare the impact of these two types of guidance against query guidance. Consis-
tent with Sect. 4.3, for each KG, we randomly select 200 entity-predicate pairs
from both the compatible group in KM and the group of the highest embedding
score in ES, and annotate their correctness and relevance.

Table 2 shows the results. We make similar observations as for the automatic
evaluation: while the guidance through both KG metadata and embedding score
achieve improvements over baseline, they are outperformed by QG.

5 Conclusions and Limitations

To improve the precision and relevance of KGC methods, we propose a user-
driven approach based on explorative query logs. Our approach conceptually
works for any type of query language where entities and properties can be
defined. This includes explicit definition as RDF constructs in SPARQL, or
implicitly through natural language queries “make-up for dark skin tone”. The
latter is particularly interesting for catching up with user-defined trends regard-
ing product attributions. Because commercial KGs and queries are usually con-
fidential, we perform our experiments with two popular general-purpose KGs,
DBPedia and YAGO 4, and their SPARQL user queries. Specifically, we extract
entity-predicate pairs from SELECT queries, and make predictions from KGE
models from them, for they are likely to be correct and relevant to users. Our
results from both automatic and human evaluations show that query guidance
can significantly improve the correctness and relevance of predicted facts.

Our approach and its adaptation for open KGs opens up further avenues
for the combined usage of KGs and query logs. In particular, future work can
explore further aggregation and filtering of queries, and harvest more sophisti-
cated structures from complex queries that suggest missing facts.
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Abstract. Task offloading, crucial for balancing computational loads
across devices in networks such as the Internet of Things, poses signif-
icant optimization challenges, including minimizing latency and energy
usage under strict communication and storage constraints. While tra-
ditional optimization falls short in scalability; and heuristic approaches
lack in achieving optimal outcomes, Reinforcement Learning (RL) offers
a promising avenue by enabling the learning of optimal offloading strate-
gies through iterative interactions. However, the efficacy of RL hinges
on access to rich datasets and custom-tailored, realistic training environ-
ments. To address this, we introduce PeersimGym, an open-source, cus-
tomizable simulation environment tailored for developing and optimizing
task offloading strategies within computational networks. PeersimGym
supports a wide range of network topologies and computational con-
straints and integrates a PettingZoo-based interface for RL agent deploy-
ment in both solo and multi-agent setups. Furthermore, we demonstrate
the utility of the environment through experiments with Deep Reinforce-
ment Learning agents, showcasing the potential of RL-based approaches
to significantly enhance offloading strategies in distributed computing
settings. PeersimGym thus bridges the gap between theoretical RL mod-
els and their practical applications, paving the way for advancements in
efficient task offloading methodologies.

Keywords: Task Offloading · Load Balancing · Peer-to-Peer
Communication · Environment Simulator · Reinforcement Learning

1 Introduction

The proliferation of large networks of devices, such as the Internet of Things
(IoT), has led to an exponential increase in data generation, requiring signif-
icant computational resources for processing. Traditionally, Cloud Computing
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provided the backbone for such computational demands. However, its limitations
in latency and network traffic have become apparent with the growth of device
networks [12]. Edge Computing emerged as a paradigm shift, extending the
Cloud to bring processing capabilities closer to data sources, mitigating latency
and traffic issues. In this evolving landscape, task offloading—the distribution of
computational tasks across network participants—has gained prominence, par-
ticularly within the Fog and Multi-access Edge Computing (MEC) paradigms.
Both paradigms aim to decentralize computing power, bringing it closer to end-
users and alleviating the constraints of traditional Cloud Computing [15,28].
Despite distinctions between MEC and Fog computing, this paper treats them
interchangeably, focusing on their shared goal of minimizing device-to-cloud dis-
tances [29]. Addressing the challenges of task offloading in such distributed envi-
ronments involves balancing numerous factors, including task latency, energy
consumption, and task completion reliability [31]. Conventional optimization
methods often struggle to efficiently manage these complex systems. Multi-Agent
Reinforcement Learning (MARL) offers promise in optimizing resource alloca-
tion and scheduling to maximize system efficiency or meet specific performance
metrics [9,30]. In the task offloading problem, a reinforcement learning (RL)
agent can serve as a decision maker to learn the optimal task-resource alloca-
tion strategy by interacting with the environment (i.e., the task and available
resources). However, it is impractical to train agents in the real world. There-
fore, a standardized, customizable, efficient, and user-friendly simulation tool is
essential.

Contributions. Our contributions focus on advancing the field of MARL and
Edge computing through the introduction of the PeersimGym environment and
comprehensive experimental analysis. The PeersimGym Environment is a
highly adaptable simulation platform tailored for the development, training, and
evaluation of MARL strategies for task offloading challenges in Edge Comput-
ing systems. This environment, built on the synergy between an edge system
simulator built with Peersim P2P simulator [14] and the PettingZoo API [23],
allows detailed configuration of network topologies, node characteristics, and
task parameters, facilitating a wide range of experimental setups. An exper-
imental analysis demonstrates the capability of the PeersimGym to train
effective MARL solutions, exemplified by the performance of a Double Deep
Q Network and Advantage Actor Critic algorithm. Our analysis compares the
performance of DRL agents to several non-RL algorithms across various network
configurations and task offloading scenarios, highlighting the advantages of RL
approaches in optimizing Edge Computing networks. The source code for Peer-
simGym, along with usage documentation and testing resources, is made avail-
able in the Simulator repository1, and the Agent repository2, fostering further
research and community engagement in advancing Edge Computing solutions.

1 https://github.com/FredericoMetelo/peersim-environment.
2 https://github.com/FredericoMetelo/TaskOffloadingAgentLibrary.

https://github.com/FredericoMetelo/peersim-environment
https://github.com/FredericoMetelo/TaskOffloadingAgentLibrary
https://github.com/FredericoMetelo/peersim-environment
https://github.com/FredericoMetelo/TaskOffloadingAgentLibrary
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Fig. 1. Simulation Pipeline Overview. Left: PettingZoo API integration, facilitat-
ing agent-simulation interaction via Python and RESTful requests for practical task
offloading optimization. Right: network topology with worker nodes and connections,
enabling task generation and state sharing for RL agent training.

2 Background and Related Work

Task offloading addresses the redistribution of computationally intensive tasks
from resource-limited devices to more capable ones to enhance system per-
formance. This process requires strategic decision-making regarding the what,
where, how, and when aspects of offloading tasks. Literature on task offloading
distinguishes vertical offloading to higher-tier systems [19], horizontal offload-
ing among peers [2,31], and hybrid approaches that blend both directions [3].
The choice of offloading destinations varies significantly, considering idle nodes,
those with shorter task queues [2], proximity constraints [27,29], or unrestricted
selection accounting for potential offloading failure consequences [3]. Failures in
offloading can arise from latency constraints [4], node capacity limitations [27],
energy shortages, or other [18]. Task modeling further diversifies the field, encom-
passing homogeneous versus heterogeneous tasks [10], divisible versus indivisible
tasks [12], and dependent versus independent tasks [6]. Common objectives for
task offloading include minimizing computation and transmission latency [29],
reducing energy consumption [7], and avoiding task failures [2,12]. Other con-
siderations such as task utility [8], queue wait times, and CPU utilization [29]
are less frequent. Our simulator, PeersimGym, is designed to accommodate this
broad spectrum of offloading strategies, task models, and objectives. It offers the
flexibility to configure various aspects of the simulation environment, enabling
the exploration of a wide range of scenarios and contributing to a more nuanced
understanding of task offloading dynamics in distributed computing networks.

Reinforcement Learning (RL) for Task Offloading. RL is a powerful
and dominant approach for solving the task offloading problem, as it can find
an optimal solution with excellent efficiency, given a well-defined environment
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and correct reward shaping. RL has been applied to various Fog and MEC set-
tings, considering single agent methods [27], as well as multi-agent with a set of
independent learners [4] or in federated cooperation [25]. Each category assumes
different observability and sharing among nodes. Models can be fully or partially
observable [3], with local or global optimization objectives in a multi-agent case.
Learning agents range from tabular methods [2], and multi-armed bandits [31],
to complex deep Q networks [25] or actor-critic agents [3].

Our contribution addresses a gap in the existing literature by introducing a
training environment for agents, facilitating uniform comparisons across different
solutions. Given the diverse nature of these solutions, our simulation tool offers
a high level of customizability to accommodate the diverse requirements. Specif-
ically, we provide a simulation platform tailored for training both centralized
and decentralized reinforcement learning algorithms, targeting task offloading in
edge systems. The proposed simulator includes a PettingZoo [23] environment
to interface the simulation as an integral component that allows a user to design
and train an arbitrary RL agent(s) over a selected environment.

Comparative Advantages of PeersimGym Over Existing Simulators
and Environments. Available simulators for edge-like networks [11,22] are
not prepared out of the box for RL training and do not provide a high level of
flexibility for different protocols and topologies. There are also environments for
RL that allow for training task offloading RL agents [5,21]; however, the solution
of [5] requires implementing the routing mechanism for multi-agent reinforce-
ment learning, and of [21] is built on the engine from [5], and focuses only on a
single task vertical offloading scenario. PeersimGym addresses these limitations
by enabling the user to configure multiple task offloading scenarios, namely that
of horizontal task offloading in the P2P setting for Load Balancing. Furthermore,
PeersimGym uses PettingZoo, a version of OpenAI gym [23] focused on MARL,
and it provides an API better adapted for the task [23] than OpenAI gym and
its successor Gymnasium [26]. To the best of our knowledge, PeersimGym is
the only environment for RL developed with MARL task offloading and high
configurability and modality as its central focus.

3 Enhancing Task Offloading with MARL

To address the complexity of Task Offloading in highly complex edge environ-
ments, researchers leverage RL and its subset, DRL, and by exploring the dis-
tributed nature of these systems MARL emerges as promising solution. As a
tool to develop MARL algorithms, PeersimGym incorporates a Python-based
environment tailored for developing, training, and deploying RL models for task
offloading, aligned with the PettingZoo framework. With the set of experiments
in this paper, we showcase how our simulator can enable further RL and DRL
contributions to this field in Sect. 5. Certain Nodes within the network act as RL
agents. These agents have the capability to observe the state (albeit partially)
and make informed decisions regarding whether to process tasks locally or offload
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Fig. 2. General and problem-specific RL state action overview.

them. This decision-making process is influenced by the need to balance between
local processing, the risk of queue overflow, and the costs associated with task
offloading, including potential overload of other nodes.

The Role of Reinforcement Learning Agents. The interaction cycle of an
RL agent with its environment is structured around a continuous loop where, at
each timestep t = 1, ..., T , the agent observes the system state st, executes an
action at based on this observation, and receives feedback in the form of a reward
rt. This feedback reflects the effectiveness of the action, taking into account both
its immediate impact and its influence on future states. Through this iterative
process, the agent refines its policy—a set of rules determining its actions in
various states—to maximize cumulative rewards, thereby aligning with the goal
of optimizing task offloading decisions (Fig. 2).

Deep Reinforcement Learning for Task Offloading. Deep Q Networks
(DQN) [27] and their variants, such as Double Deep Q Networks (DDQN) [13]
and Actor-Critic methods, like the Advantage Actor-Critic (A2C) [3], are promi-
nent DRL approaches applied to task offloading. These methodologies have been
shown to stabilize training and enhance learning efficacy through sophisticated
neural network architectures that approximate optimal action-selection policies.
In PeersimGym, the flexibility of our RL environment supports the integration
of various DRL models. For illustrative purposes, we focus on implementations
of DDQN and A2C, reflecting their proven effectiveness in recent literature [3,4].
This choice underscores the potential of DRL to address the complexities asso-
ciated with task offloading in Edge Computing, as shown in Sect. 5.

Framework and Model Dynamics. Task offloading decisions within our
simulated environment are modeled as a Markov Game (MG), accommodating
the multi-agent aspect of Edge Computing networks. This formulation extends
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the Markov Decision Process (MDP) framework to scenarios involving multi-
ple decision-makers, thereby capturing the interactive and competitive nature
of task offloading. Single-agent RL is modeled as an MDP, with a sequence of
states such that the Markov Property holds, i.e., the next state st+1 depends
exclusively on the current state st and the performed action at. When including
multiple agents, most MDP convergence properties do not hold, hence, we for-
mulate our problem as an MG [17]. In our setting, in a network of N nodes, an
MG is represented as a tuple 〈n,S,A, P,R, γ〉, where n is the number of agents
(nodes with a controller protocol), S is the state space, A is the action space, P
is an (unknown) transition probability function, R is the reward function, and γ
is a reward discount factor. Next, we introduce these constructs in more detail.

State Space. The state space in our environment is designed to be highly
customizable, enabling the modeling of various Edge Computing scenarios. At
time step t, each node will broadcast its local state to each of its neighbors
and receive their local states to build a local state representation before decid-
ing on the action. The state space is represented by a tuple S = (I,K,Qt,F ,
L, {B1, ...,Bn}, {P1, ...,Pn}), with elements

– I = {1, ..., n}, array with the IDs of all the nodes in the network;
– K = {κ1, ..., κn}, layer/tier for each node;
– Qt = {Qt

1, ..., Q
t
n}, queue size for each node in the network, at time step t;

– Qmax
i = {Qmax

1 , ..., Qmax
n }, maximum capacity for each node’s queue;

– Nn, IDs of the nodes in node n’s neighborhood;
– F = {N1

φφ1, ..., N
n
φ φn}, processing power for each node;

– L = {l1, ..., ln}, position for each node in the network;
– Bi = {Bi,1, ..., Bi,n}, channels’ bandwidth for node wi to all its neighbors;
– Pi, the transmission power of node wi’s antenna.

The size of the state vector will define the input size of a DRL agent (Fig. 2
(b)); hence, in this version of the simulator, the state dimension needs to stay
consistent throughout iterations.

Action Space. The action space is similarly designed to reflect the decision-
making process regarding task offloading, with actions representing the choice
of offloading destinations. This setup facilitates the exploration of strategies
that balance local processing advantages against the costs and implications of
offloading. The action space, A, corresponds to the output layer of a DRL agent
(see Fig. 2). The action at ∈ {1, ..., N} represents the index of the destination
node, which might be one of the neighboring workers or the observed node itself,
in case it decides to process the task locally. We use at interchangeably to denote
both the index of the destination node and the act of sending a task to that node,
as long as clarity is maintained within the context.
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Reward Function. The reward function is a critical component guiding the
learning process of the RL agent. It is constructed to reward actions that enhance
utility—such as task completions—while penalizing undesirable outcomes like
excessive delays or system overloads. This balance encourages the development
of nuanced offloading policies that consider various operational constraints and
performance metrics. By incorporating reward shaping [16], we further refine the
learning process, enabling agents to navigate the complex decision space of task
offloading more effectively. This approach not only facilitates faster convergence
to optimal policies but also allows for a more nuanced understanding of the trade-
offs inherent in Edge Computing task management. The reward shaping term
can be defined as F (st, at, st+1) = Ξ(st+1)−Ξ(st), where Ξ(st) is a user-defined
potential function over a state, st such that the reward becomes R′ = R + F .

In this paper, we adopt a reward function as defined in [2], i.e., a reward
function for agent wi, Ri, is structured to maximize the utility, Ui(st, at), and
minimize the total delay, Di(st, at), and the overloading cost, Oi(st, at). In par-
ticular, the reward for the action at in state st, received by an agent wi by
offloading (or not) task τk, is given by

Ri(st, at) = ru − (Di(st, at) + χOOi(st, at)), (1)

where ru is a utility reward and represents the gain over completed tasks, and
χO is overloading cost weight. Each term of the reward function is explained in
detail below. First we introduce an indicator function, Ii(at), such that Ii(at) = 1
iff at = i, meaning the task is meant to be processed in node wi, otherwise
Ii(at) = 0. The reward function for an agent in the context of task offloading is
composed of two primary components: the delay function and the cost of over-
loading. Each incorporates specific parameters and equations that encapsulate
the complexities of decision-making in edge-computing environments. The delay
function denoted as Di(st, at), is a comprehensive measure that accounts for
three distinct temporal aspects associated with task offloading, namely

Di(st, at) = χwait
D Twait

i,at
(τk) + χcomm

D T comm
i,at

(αout
k ) + χexc

D T exc
i,at

(τk), (2)

Here, χwait
D , χcomm

D , and χexc
D serve as hyperparameters, adjusting the weight

of each time-related component within the overall delay function. The waiting
time Twait

i,at
(τk) reflects the duration a task τk spends in the queue, either at the

originating node wi or at an offloading target wj , and is given by

Twait
i,at

(τk) =
Qt

i

N i
φφi

+
∑

j �=i

Qj

N j
φφj

Ij(at), (3)

where Qt
i is the queue size at time t, N i

φ and φi represent the number of pro-
cessors and their frequency at node wi, respectively. To quantify the transmis-
sion efficiency, specifically the rate at which bits are communicated per second,
we invoke the Shannon-Hartley theorem [1]. Accordingly, the communication
latency for transmitting αout

k bits between nodes wi and wat
is given by

T comm
i,at

(αout
k ) =

αout
k

Bi,at
log(1 + 10

Pi+Gi,at
−ω0

10 )
, (4)
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where Bi,at
is the bandwidth of the communication channel between nodes wi

and wat
, Pi denotes the transmission power of the source node wi, Gi,at

is the
channel gain, and ω0 represents the noise power in the communication chan-
nel. This formulation underpins our model for evaluating the communication
overhead associated with task offloading in Edge networks. Pi, Gi,at

and ω0 are
measured in dB. The execution cost difference T exc

i,at
(τk) between local and target

node processing is quantified as

T exc
i,at

(τk) =
ρkξk

Nat

φ φat

− ρkξk

N i
φφi

, (5)

indicating the variation in processing time due to differences in node capabili-
ties. The cost of overloading, Oi(st, at), emphasizes the potential system strain
caused by task offloading, expressed as Oi(st, at) = − log(pat

t )/3. The probabil-
ity of overloading pat

t and the expected queue state Q′
at

are critical in assessing
the impact of offloading decisions on the target node’s workload, calculated as
pat

t = max
(
0,

Qmax
at

−Qat

Qmax
at

)
, and Q′

at
= min(max(0, Qat

− φat
) + 1, Qmax

at
), where

Qmax
at

is the maximum queue capacity of the offloading target, and φat
is its

processing rate. These equations collectively frame the decision-making land-
scape for RL agents, highlighting the intricate balance between task processing
efficiency, communication overheads, and system resilience against overloading.

4 PeersimGym

PeersimGym introduces a novel framework for simulating and training task-
offloading MARL algorithms in Edge networks. We leverage the versatile Java-
based PeerSim P2P simulator [14] and extend it to model edge systems. Addi-
tionally, PeersimGym incorporates a Python API compatible with the Petting-
Zoo framework [26], offering an intuitive structure for developing RL for task
offloading. This section delineates the two primary components of our tool: a
simulator for custom system network creation and a Python environment for
constructing and training RL models, grounded in PettingZoo principles (Fig. 1).

4.1 System Modeling

PeersimGym allows a high level of customization in crafting edge systems,
enabling customization of components and their attributes. We introduce models
for nodes, tasks, and communication, which collectively define the communica-
tion dynamics of the simulation.

Node Model. The simulation framework models a network comprising client
devices C, akin to IoT sensors, which generate and dispatch data for processing.
This data is handled by worker nodes, which can either process tasks locally or
offload them to other nodes with available resources. Worker nodes W possess
distinct characteristics, including:
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– Task queue, Qi, a data structure that allows at most Qmax
i received tasks to

be stored and await to be processed in a first-in-first-out fashion. Any tasks
received above the capacity of the node will be dropped.

– Number of processors, N i
φ, of frequency, φi. The node can process N i

φφi

instructions per time step.
– Transmission power, Pi, that affects the wireless communication delays.
– Location of the node, li, which also affects the communication delay and

other proximity-based mechanisms.

Worker nodes W are categorized into tiers, reflecting a hierarchy similar to the
fog computing model. This tiered structure, alongside the optional integration
of Cloud servers, facilitates the modeling of various network architectures from
P2P to hierarchical n-tier systems (Fig. 1). Nodes containing an RL agent can
offload tasks to their neighbors, managing offloading decisions and maintaining
state information of adjacent nodes.

Task Model. The workload originates from processing tasks τi, denoted as
tuples representing computational demands. These tasks, generated by clients,
include attributes such as instruction count, input/output data sizes, CPU cycle
cost per instruction, and processing deadlines. Specifically, a task is represented
as τi = 〈i, ρi, α

in
i , αout

i , ξi, δi〉, where i is a unique identifier of the task; ρi is the
number of instructions to be processed; αin

i is the total data size of the input;
αout

i is the data size of the output/results; ξi is the cost in CPU cycles per
instruction; δi is the deadline of the task, i.e., the maximum allowed latency for
returning the results. Task arrival follows a Poisson distribution, and if capacity
is exceeded, tasks are dropped (Fig. 1).

Communication Model. Task offloading and reception are simulated under
the assumption of a generic wireless communication model, as this is the most
common in the literature. Utilizing the Shannon-Hartley theorem [1], we cal-
culate the bits transmitted per second, incorporating factors such as channel
bandwidth, channel gain, and transmission power (see Eq. 4).

In the context of task generation and reception, nodes equipped with a con-
troller protocol play a pivotal role in determining whether to process tasks locally
or offload them. This decision-making process is facilitated through the exchange
of local state information via one-hop broadcasts. Communication within the
network, particularly the offloading interactions among nodes, is predicated on
wireless transmission.

4.2 Implementation Details

PeersimEnv. PeersimGym integrates the Peersim simulator and the Petting-
Zoo environment (PZ env), facilitating the configuration and execution of sim-
ulations through REST requests. This integration is enabled by encapsulating
the Peersim simulation within a Spring Boot REST server, providing endpoints
for action posting and state retrieval, adhering to PettingZoo standards (Fig. 1).
A full list of the available configurations can be found in the code repository.
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Simulator. At its core, PeersimGym employs the Peersim simulation tool, sup-
porting both event-driven and cycle-driven engines. The simulation models a net-
work as a collection of nodes running various protocols, including client, worker,
controller, and a customized Simulation Manager protocol. This Simulation Man-
ager periodically pauses the simulation to process actions and resume, maintain-
ing a cyclical operation that aligns with the specified behaviors of worker, client,
and controller protocols. Through extensive configurability and a focus on cus-
tomization, PeersimGym presents a powerful tool for simulating Edge network
environments and training RL models for task offloading, allowing for more
sophisticated and realistic simulations in Edge Computing research.

Enhanced Simulation Protocols and Event Handling. In the simulation
environment of our system, each node adheres to specific protocols designed to
mimic the behavior of Edge Computing networks accurately. These protocols,
namely the worker, client, and controller protocols, are essential for the dynamic
interaction between nodes, ensuring the efficient processing and distribution of
tasks. Below, we outline the refined functionalities of these protocols.

– Worker protocol: Central to our simulation, the worker protocol governs
the processing mechanics of tasks within the network. Upon receiving a task,
the worker updates a task-specific instruction counter to track its progress.
Completion of a task triggers the protocol to return the result to the orig-
inating client. This return path may involve multiple hops, particularly for
tasks that have been offloaded across several nodes. Should the queue of the
worker deplete, it transitions into an idle state, awaiting new tasks.

– Client protocol: The client protocol is responsible for task distribution
within the network. It employs a Poisson process to determine the allocation
of tasks to neighbors, with eligibility for task receipt specified in the system
configuration. This probabilistic approach ensures a realistic simulation of
task dissemination behavior observed in Edge Computing scenarios.

– Controller protocol: This protocol is coupled with a worker protocol, and
monitors the worker’s state. Upon detecting a state alteration, the controller
initiates a one-hop broadcast to disseminate the updated state information
to neighboring nodes. Maintaining an updated network state and facilitat-
ing informed decision-making for task offloading. It also acts as the bridge
between the simulation and the RL agents, passing the offload instructions
to the worker, virtually representing the agents, we shall refer to the offload
decisions as if they are made by the Controller.

Event Handling Mechanisms. To enhance the fidelity of our simulation, we
implement a realistic event-handling system. This system allows each protocol
to respond to specific events that reflect real-world interactions within an Edge
Computing environment. These events include the following:

– Worker Protocol Events: Engages in routines for handling offloaded tasks
from other nodes, new tasks directly from clients, and results of concluded
tasks. If space permits, tasks are added to the queue for processing; otherwise,
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they are dropped. Completed tasks are either directed back to the origin client
or offloaded to closer workers for final delivery.

– Client Protocol Event: Manages the completion of tasks, focusing on reg-
istering relevant metrics upon the conclusion of tasks sent to workers.

– Controller Protocol Event: Handles the Neighbour State update event,
ensuring the node updates its information regarding the state of neighboring
nodes as necessary.

In the case of the controller protocol, the offloading event is different from
the other events. The instructions are received through a REST request from
the simulator and are passed by a special class evoking a method directly on
each of the controllers which will take the actions immediately

Therefore, by implementing Java classes extending the AbstractWorker,
AbstractClient, and AbstractController provided, the user can change the behav-
ior of the elements in the simulation. Furthermore, each of the simulations can
be configured based on configuration files. We allow an in-depth configuration of
most aspects of the simulation, which include the network topology, the manip-
ulation of what nodes support the controller functions, most properties of the
tasks, and the configuration of all protocols. We have also developed a config-
uration helper tool to simplify the creation of the configuration files. The doc-
umentation for all the possible configurations can be found in the environment
repository.

The main focus of the introduced simulator is on being highly customizable,
which includes implementing new protocols that make use of the highly innate
modality of the Peersim Tool and the extensions we put in place to manage the
simulation of Edge Networks. To tailor the simulation to the required scenario,
it is possible to define different protocols for the clients, controllers, and workers,
that extend their abstract implementations. Furthermore, different actions and
information available to each node can be defined, and the communication model
and neighborhood definition can also be customized. We provide multiple base
classes that allow doing out-of-the-box, binary task offloading, where clients gen-
erate indivisible tasks and controllers make decisions on where to offload the full
tasks; or batch binary task offloading, where clients generate indivisible tasks
but controllers decide for each of the tasks arrived in the time after the last
offloading decision where they should be processed. More information on what
each one does, how to load different modes, and how to create other implemen-
tations can be found on the simulator repository. In this paper, we focus on the
binary task offloading implementations.

Simulation Data. PeersimGym provides a set of resources for collecting data
from the simulation that help with the development process of agents and to
provide insights on the behaviors of different agents. We provide log features and
a helper class for collecting different metrics from the simulation. Furthermore,
we implemented a straightforward visual rendering using Pygame to provide an
easy-to-view and understand human-readable execution.
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4.3 Reducing the Reality Gap

The optimal training and evaluation of an RL agent for task offloading hinge
on utilizing simulation datasets derived from real-world edge systems. Yet, the
complexity and diversity inherent to such systems, compounded by the scarcity of
standardized reference architectures, benchmarks, and deployment data, present
formidable challenges to conducting realistic evaluations of algorithms within
actual edge environments [20]. This section delineates our approach to mitigating
these challenges by leveraging tools that integrate with PeersimGym to generate
plausible topologies [20] and workloads [24], thereby simulating environments
that more closely mirror reality.

Trace-Generator tool. We employ the trace-generation tool to synthesize
workloads based on real-world cluster traces from Alibaba Cloud [24], produc-
ing datasets that mirror actual computational demands. This tool generates
workloads comprising multiple jobs, each depicted as a Directed Acyclic Graph
(DAG) of tasks, where each task may include several instances requiring specific
memory and CPU resources. While the ubiquity of DAGs in real-world appli-
cations is undeniable, the current iteration of our simulator does not support
them. Consequently, we interpret the jobs within the trace-generator dataset as
necessitating the peak CPU and memory resources identified across all tasks
within a job. We calculate task instructions by factoring in the CPU frequency,
the requested cores, and task duration. The maximum memory usage across all
tasks within a job is considered equivalent to the data size in our simulation.

To incorporate the trace-generated data into PeersimGym, we develop a
Python script (Utils/DatasetGen.py) processing the dataset and outputs a JSON
file. This file is then utilized by the AlibabaTraceClient, a client implementation
within our simulator, which samples tasks based on the synthesized dataset.

Topology Generator. The Ether tool [20] enables the generation of realistic
infrastructure configurations, drawing from various Edge Computing scenarios.
Our focus is on the Urban Sensing Scenario, inspired by the Array of Things
project, which emphasizes data collection in smart cities. This scenario features
clusters equipped with sensor nodes, each powered by Single Board Computers
(SBCs) and connected to base stations comprising servers and GPU-equipped
machines. These nodes process tasks locally or offload them to more capable
nodes, simulating a realistic Edge Computing environment.

We augmented the Ether project to facilitate the generation of a topology
and the assignment of coordinates to nodes. This setup ensures communication
compatibility among nodes within the generated network, allowing for seamless
integration with PeersimGym through a helper script that imports the topology
data, thereby enhancing the realism of the simulator and applicability to real-
world Edge Computing scenarios.
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5 Experimental Results and Analysis

In this section, we evaluate PeersimGym by addressing two pivotal research
questions (RQs) that underscore the adaptability and scalability of the MARL
solution under varying network conditions:

RQ1 How does the MARL solution adapt its behavior to a fixed network topol-
ogy and varying task arrival rates?

RQ2 How does the MARL solution adapt its behavior to a fixed task arrival
rate with an increasing number of nodes and agents?

5.1 Experimental Setup

The experiments are grounded in four distinct network topologies generated
using Ether, each featuring an incremental number of Array of Things (AoT)
clusters. These scenarios leverage the realistic topology and workload generation
methodologies detailed in Sect. 4.3. Each AoT cluster, predominantly composed
of Single Board Computers (SBCs), includes pairs of SBCs and a base station
equipped with an Intel NUC and two GPU units, alongside a remote, more
potent server. The simulation parameters for all scenarios can be found in the
Agent Repository. The topologies vary in cluster numbers, spanning one to four
clusters, and correspondingly in node counts, from 12 to 31. The controller pro-
tocol is present in varying quantities (8 to 22 nodes across different topologies).
Despite uniform CPU frequencies, the computational power varies with the core
count, with the remote server having the highest capacity. The communication

Fig. 3. Evolution of the different metrics with variable λ (top) and variable cluster
number (bottom), averaging 100 episodes.
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Table 1. Parameter values in the experimental setup.

.............. Simulation time, T 1000 s

Task arrival rate, λ 0.17

Task input size, αin
i 150 Mbytes

Task output size, αout
i 150 Mbytes

Task instructions, ρi 8e7

CPI, ξi 1

Deadline, δi 100 s

Bandwidth, Bi,j 2 MHz

Transmission power, Pi 20 dbm

Nodes per tier (10, 10, 10)

Processor frequencies φi (4, 2, 8)e7 MHz

Numbers of cores N i
φ (1, 1, 2)

Buffer capacities, Qmax
i (20, 10, 100)

Task utility, ru 2

Weight waiting, χwait
D 20

Weight excecution, χexc
D 20

Weight comm, χcomm
D 20

Weight overload, χO 150

capabilities and bandwidths are homogeneous across all nodes. Task generation
at each SBC node follows a Poisson(λ) distribution, over a simulation episode
of 1000 time steps. Each agent makes an offloading decision in each time step,
through 300 training and 100 inference episodes. See Table 1 for exact values.3

To answer the RQs, we test the performance of the DDQN and A2C agents
and a set of baseline approaches: 1.) Local Processing – never offload tasks. 2.)
Random Offloading – select the target node randomly. 3.) Least Queue – select
the neighbor with the shortest task queue at the time as a target.

Metrics. To show that our simulation can be used effectively to train RL agents
in a MARL fashion, we select three commonly used metrics in the field to test
the agent: 1.) the number of times a node is overloaded, 2.) the average task
completion time for the tasks, and 3.) the number of dropped tasks.

5.2 Results Analysis

RQ1: We examine the behaviors of different agents when faced with different
workloads by varying the parameter λ that governs the task arrival rate of each
SBC node. In Fig. 3 (top), we observe that, with increasing λ, the nodes run out
of available resources quickly. The almost linear increase in dropped tasks and
overloaded nodes could indicate that the nodes are already working at capacity
even for λ ≈ 0.1. The reduction in response time observed in the Least Queue and
Random approaches could be explained by more tasks being processed locally,
due to the influx of tasks arriving surpassing the number of tasks offloaded
keeping the node always full. In terms of task dropping and node overloading,
the DDQN constantly achieves as reasonable rates as the best baselines. At the
same time, it gives significantly better response time, with a large margin of
difference, and apparently not affected by the task arrival rate. Behavior of A2C
follows closely that of DDQN.

3 We provide the in-depth configurations for the environment in the agent repository.
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RQ2: Effects of increasing the number of nodes are shown in Fig. 3 (bottom).
We test four network topologies of the AoT scenario and observe that the number
of dropped tasks increases almost linearly with the increase in the number of
nodes – note that the sharp break at the end is due to the 3-cluster topology
having nearly the same number of nodes as the 4-cluster topology. This can
indicate that the network is exhausting its resources for all of the topologies. The
number of dropped tasks increases because the number of nodes, and therefore
the total amount of tasks generated, increases. The response times also observe
a slight increase due to the more powerful server that is shared across all the
clusters filling up, and therefore, the tasks spend more time waiting in its queue,
reducing the concurrency that was available when fewer nodes could access the
server. The number of overloaded nodes also increases for the Least Queue, A2C,
and DDQN, since the shared server is overloading more often. The number of
overloads for the Local Processing remains stable and is lower than the other
approaches because it never incurs the cost of overloading the base station or
the server. Still, in turn, the number of dropped tasks is also higher. RL solutions
again show clear superiority in terms of response times compared to baselines,
while not sacrificing other metrics.

6 Conclusion and Future Work

We introduced PeersimGym, a highly customizable environment for the devel-
opment and evaluation of MARL-based solutions to the task offloading prob-
lem in Edge Computing systems. PeersimGym integrates a MARL environ-
ment, compatible with the PettingZoo framework, facilitating agent interaction
within a Python-based setting, and a simulation platform constructed atop Peer-
sim, a Java tool for simulating Peer-to-Peer (P2P) networks. Our framework
encompasses a suite of protocols for controllers, workers, and networking lay-
ers, offering the flexibility to modify system behaviors through configuration
changes. The demonstrated efficacy of PeersimGym across various network set-
tings highlights its potential as a training ground for MARL strategies in edge
environments. To foster further research and collaboration within the commu-
nity, we have made the source code for both the simulation environment and
the agent development toolkit publicly available. Our documentation, includ-
ing comprehensive wikis, provides detailed guidance on utilizing PeersimGym,
encouraging researchers to explore and benchmark their own RL algorithms
using our tool. This initiative aims to accelerate advancements in the domain
and contribute to the broader efforts of the research community in optimizing
Edge Computing systems.

Future Enhancements. Future enhancements for PeersimGym will focus on
dynamic Edge Computing features: (1) Node and System Mobility, adding
mobile node and service models with replicas for uninterrupted service; (2) Task
Diversity, introducing a wider range of tasks tailored to specific hardware capa-
bilities; (3) Data Locality Sensitivity, implementing prioritization based on data
proximity to streamline offloading; and (4) Federated Reinforcement Learning,

https://github.com/FredericoMetelo/peersim-environment
https://github.com/FredericoMetelo/TaskOffloadingAgentLibrary
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adopting collaborative training methods across nodes to optimize learning and
parameter sharing.

Broader Impact. The versatility of PeersimGym spans beyond Edge Com-
puting into fields like smart grids and satellite communications, where it can
optimize energy management and enhance connectivity, respectively. Its adapt-
ability to various P2P scenarios demonstrates the potential for broad technolog-
ical impacts, though some domain-specific modifications may be required.
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Abstract. Semantic relevance calculation is vital for e-commerce search
engines, as it ensures that the items selected closely align with customer
intent. Inadequate attention to this aspect can detrimentally affect user
experience and engagement. Traditional text-matching techniques are
prevalent but often fail to capture the nuances of search intent accurately,
so neural networks now have become a preferred solution to processing
such complex text matching. Existing methods predominantly employ
representation-based architectures, which strike a balance between high
traffic capacity and low latency. However, they exhibit significant short-
comings in generalization and robustness when compared to interaction-
based architectures. In this work, we introduce a robust interaction-
based modeling paradigm to address these shortcomings. It encompasses
1) a dynamic length representation scheme for expedited inference, 2)
a professional terms recognition method to identify subjects and core
attributes from complex sentence structures, and 3) a contrastive adver-
sarial training protocol to bolster the model’s robustness and match-
ing capabilities. Extensive offline evaluations demonstrate the superior
robustness and effectiveness of our approach, and online A/B testing
confirms its ability to improve relevance in the same exposure position,
resulting in more clicks and conversions. To the best of our knowledge,
this method is the first interaction-based approach for large e-commerce
search relevance calculation. Notably, we have deployed it for the entire
search traffic on alibaba.com, the largest B2B e-commerce platform in
the world.

Keywords: E-commerce search · Semantic relevance ·
Interaction-based

1 Introduction

In online e-commerce platforms, the search engine’s effectiveness hinges on two
core capabilities: identifying users’ explicit demands through queries and mining
purchasing preferences from historical click logs. A comprehensive search solution

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-70378-2_4.
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requires not only a ranking module that enhances click-through and conversion
rates but also a relevance module that validates the appropriateness of displayed
items. Semantic Relevance Calculation (SRC), a fundamental component of e-
commerce platforms, discerns core keywords within short queries against long
item descriptions to accurately score and rank pertinent items [3,4,12]. Prioritiz-
ing co-click conversion modeling without considering users’ intent and matching
relevance can erode user attention and, consequently, engagement and conversion
rates over time.

Semantic relevance calculation can be classified as a domain-specific text
matching task, markedly distinct from general tasks such as MS MARCO [23]
and STS [2], which measure semantic similarity in standard language contexts,
or semantic question answering (matching) [1,6,18], which concentrate on the
primary themes of queries and documents. SRC for online e-commerce search
faces distinct challenges:

1) Query Intent and Keyword Clarity. SRC must distinguish concise user queries
that often carry vague meanings and match them with the most matching
items. A query like’new apple discount’ could ambiguously refer to a pro-
motion on fresh produce, a reduced price on Apple electronics, or a cloth-
ing brand’s latest offer. Moreover, product descriptions are frequently stuffed
with extraneous keywords to gain more exposure, such as a dress described
as “elegant evening gown summer crystal luxury sequin red cocktail party”,
which dilutes the significance of essential keywords and muddles the search
accuracy.

2) Latency vs. Precision Trade-off. As e-commerce platforms strive for efficiency,
the shift from traditional keyword-based search algorithms to advanced
neural-based models marks a significant progression [30,42,43]. These mod-
els are divided into two types: representation-based and interaction-based.
The former models, leveraging siamese network architectures, encode queries
and items into compact embeddings efficiently, making them suitable for
high-traffic online searches according to their computational speed. However,
their oversimplification often leads to poorer relevance predictions. In con-
trast, interaction-based models excel in capturing subtle semantic relation-
ships, offering finer distinction and accuracy, but the intensive computations
limit their practical application in real-time scenarios with stringent latency
requirements.

3) Enhancing Robustness and Generalization. The diverse linguistic expressions
arising from cultural differences complicate the accuracy of SRC models, such
as various terms for the same discounts of “50% off sale”, “half price promo-
tion”, and “discounted by half”. Meanwhile, to reduce computational overhead,
both representation- and interaction-based methods often use techniques like
pruning or distillation [10,15,37] to simplify models for efficient real-time pro-
cessing. However, these condensed models, while effective on familiar data,
struggle with unfamiliar pairs, revealing limitations in robustness and gener-
alization. An efficient solution is to expand the training data diversity, but
manual annotation is resource-intensive with limited scope, and noisy histor-
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ical data dilute their effectiveness. These further weaken models’ generaliza-
tion ability.

In summary, while conventional interaction-based models (BERT) can
achieve state-of-the-art performances on real query-item search logs, its com-
putational intensity remains a barrier to its direct implementation in online
search engines, despite efforts to mitigate this through distillation and pruning.
Consequently, the less computationally demanding representation-based models
are often the default choice. To address this challenge, in this paper we introduce
a robust interaction-based method for relevance modeling. It encompasses three
key innovations. The first is a dynamic-length representation scheme. It can intel-
ligently scale input token size to match the varying lengths of queries and item
descriptions, thereby optimizing computational resources. The second is an effi-
cient professional terms recognition strategy. It enhances the model’s vocabulary
with industry-specific phrases and employs Named Entity Recognition (NER)
to highlight subjects and core attributes, so as to reinforce the representation of
professional terminology. Finally, to counteract the performance limitations of
shallow models, we devised a contrastive adversarial training (CAT) mechanism.
It can bolster the model’s generalization and robustness by simultaneously opti-
mizing the embedding representations of both inputs and outputs. Impressively,
this optimized model, with just 3 layers, outperforms traditional 12-layer BERT
base models in efficiency and effectiveness.

We conducted comprehensive offline evaluations using annotated query-item
pairs derived from online search logs, and the results showcased significant per-
formance enhancements, affirming the efficacy and robustness of our proposed
method. Online A/B tests also demonstrated that it can improve the matching
relevance of query-item in the same exposure position, and attract more clicks
and conversions. To the best of our knowledge, it is the first interaction-based
relevance calculation work for a large-scale e-commerce search engine, accommo-
dating the daily needs of tens of millions of users and serving billions of retrieval
page views. Moreover, this method has been successfully deployed for the entire
search traffic on alibaba.com, the world’s largest B2B e-commerce platform, and
has yielded substantial improvements in conversion rates across the board.

2 Related Work

Semantic relevance computation is essentially a text matching task that ben-
efits from various techniques. These range from traditional methods like TF-
IDF and BM25 [20,30] to machine learning approaches such as DSSM [13],
LSTMs [26,27,35], and CNNs [3,28,31]. These models have limitations in bridg-
ing the vocabulary gap and accurately identifying key terms. With the rapid
development of BERT-based models enhancing performance across NLP tasks
[5,9,16,19,33,34], some advanced implementations like Sentence-BERT, BERT-
flow, and SimCSE [7,17,29,32] have emerged as the preferred methods for com-
plex text processing. However, these architectures still struggle with capturing
the subtleties of search intent and are generally resource-intensive. Consequently,
tailored strategies are necessary to overcome these specific challenges.
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A common paradigm utilizes a softmax function on the final [CLS] token
or average pooling outputs which are then scaled to a range between 0 and
1 to represent the likelihood of relevance [4,24]. Nogueira et al. implemented
a multi-stage BERT-based architecture for ranking, incorporating innovative
point-wise and pair-wise classification strategies [25]. Wu et al. introduced a
multi-task learning framework aimed at minimizing the query-item vocabulary
gap while optimizing multiple objectives [41]. Jiang et al. developed a data-
driven relevance prediction framework by distilling knowledge from BERT and its
sophisticated teacher models [14]. Garakani et al. utilized a cross-encoder BERT
model for query-item relevance prediction, further applying it to re-ranking and
the optimization of search quality [8]. While these methodologies surpass the
accuracy of representation-based models, the vast traffic volume and the strin-
gent latency requirements of live search environments present significant deploy-
ment challenges. To address this, ReprBERT [43] proposes a unique solution
that distills the interaction-based capabilities of BERT into a more streamlined
representation-based model, employing dual interactive strategies to refine latent
semantic interactions. This results in superior performance relative to conven-
tional representation-based models. Moreover, the very recent Interactor [44]
can capture fine-grained phrase-level information with a flexible contextualized
interaction paradigm, and adopts a novel partial attention scheme to reduce the
computational cost while maintaining the effectiveness. Nonetheless, their rep-
resentational ability does not match that of fully interactive methods, and the
SRC performance cannot quite reach the benchmark set by the latter.

3 Methodology

We use ei-SRC to indicate the proposed e-commerce interaction-based seman-
tic relevance calculation method for brevity, and decompose its methodology
into three components. Firstly, we outline two interaction strategies designed to
minimize online computational overhead. Subsequently, we describe techniques
developed to enhance the model’s proficiency in handling domain-specific ter-
minology. Lastly, we propose a novel training mechanism aimed at fortifying
the model’s representational capacity and accuracy in relevance matching. The
comprehensive architecture of the ei-SRC method is depicted in Fig. 1.

3.1 Dynamic-Length Representation Scheme

The primary distinctions between representation- and interaction-based method-
ologies in SRC are rooted in their respective processing of queries and the associ-
ated computational frameworks. Representation-based techniques typically con-
vert a query into a fixed-dimension vector. By pre-computing item embeddings
offline and employing scoring functions like dot-product or cosine similarity
online, these methods significantly streamline computational overheads, with
the most resource-intensive step being the preliminary query processing. Con-
versely, interaction-based methods exhibit a higher sensitivity to query length.



Interaction-Based Relevance Modeling for Online e-Commerce Search 59

Fig. 1. The overview of the ei-SRC, the proposed e-commerce interaction-based
semantic relevance calculation method. For brevity, the dynamic-length representation
scheme is not illustrated, which will be displayed separately.

They operate by processing the query in real-time, which involves grammatical
normalization and tokenization to generate a sequence of tokens. These tokens
are then merged with pre-processed item description tokens, culminating in an
interactive and dynamic computation sequence. Ultimately, a non-linear classi-
fier is utilized to determine the relevance score, providing a detailed assessment
of the relationship between the query and the item [24].

To address the varied requirements of industrial search applications and
simultaneously evaluate thousands of item candidates per query, interaction-
based methods typically pre-define a fixed token length for both queries and
item descriptions. This standardization ensures uniform input sizes and consis-
tent computational time across all pairings. However, this token length is often
set longer to account for the occasional lengthy query or item description, lead-
ing to sub-optimal computational resource use for processing shorter texts. Such
inefficiency impedes the real-world deployment of interaction-based methods in
an online search platform.

Prior to introducing our optimization strategy, it is essential to explore the
factors influencing the computational load of interaction-based models. The
BERT framework is known for its multi-layered structure, where each layer
principally consists of two core modules: the multi-head attention (MHA) and
feed-forward neural network (FFN) sub-layers. Here we indicate n as the batch
size during training or the number of item candidates during online inference,
l as the total length of the input token sequence, and d as the dimension of
the embeddings. The number of attention heads is represented by m, and the
attention head is set as a, such that d = ma.

The time complexity of multi-head attention sub-layers is:

TMHA = O(n ∗ l2 ∗ m2 ∗ a) = O(n ∗ l2 ∗ d ∗ m). (1)
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The time complexity of FFN sub-layers is:

TFFN = O(n ∗ l ∗ k ∗ m). (2)

Fig. 2. The overview of dynamic-length representation scheme, where each square is a
token. The number shown on it simulates the sum of various types of embeddings.

As model distilling or pruning could minimize k, n, and d, we can see that
TMHA is proportional to the square of l, and TFFN have a linear correlation
with l. If l can be decreased, the total time consumption will be largely reduced.

Here we design a dynamic-length representation scheme to address this prob-
lem. Considering that the descriptions of queries and items are shorter than the
settings for most cases, we can shorten the tokens’ length by batch-dropping
zero padding columns. To describe it precisely, we indicate lq as the query token
length set in advance, and li as the length of title tokens, then l = lq + li. As
shown in Fig. 2, we calculate the max non-zero token length of queries (l′q) and
items titles (l′t) in batch, and cut the full zero padding columns. The size of new
input series is l′ = l′q + l′i, and time complexity TMHA is reduced to the original
(l′/l)2 times.

Table 1. Improvements in computational performance for each strategic combination
employed within the ei-SRC.

Method GPU utilization reaction latency AUC

DRS −34.61% −36.26% +0.4%
\+Cache −48.08% −40.66% –
\+Vocab.−53.84% −46.15% +1.5%
\+CAT. −51.25% −44.83% +6.3%

Furthermore, we also pre-compute the tokens in advance for queries that the
user mostly entered, the relevance scores for high-frequency query-item pairs,
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and then store them in the online cache to reduce the computation cost. The
proportion of pre-computed pairs varies with the actual search. For example, we
can use the top 20% data in the past six months and implement daily updates.

Table 2. Top 20 words mostly used in alibaba.com, they would be split into many
sub-tokens with the original WPE.

rohs waterproof 100% oem pvc

fokison smd cnc acrylic polyester
osc bluetooth capacitors 12v scooter
mink diy wifi diode hoodie

Table 3. Average sub-tokens numbers calculation for query-items pairs with original
WPE and extended vocabulary.

Types original word original WPE extended vocab.

each word 1.00 1.37 1.22
each title 15.61 21.46 19.06
each pairs 26.41 41.62 36.55

In the real online A/B tests on alibaba.com, this method significantly reduced
the computational cost and reaction latency without attenuation of the accuracy.
Model architecture and implementation configurations will be detailed in the
experimental section. Now we only list the comparison of calculations consump-
tion in Table 1, where “DRS” indicates “Dynamic-length Representation Scheme”,
and “Cache” means the pre-computed results stored in the online cache. As for
the computational performance, we use the GPU utilization, and reaction latency
as the metrics.

We can see that DRS can significantly reduce GPU utilization and response
latency. Thanks to the reduction of interference caused by all zero padding
columns, semantic representation and matching of query-item pairs have been
enhanced, with a 0.4% increase in AUC. In addition, offline pre-computation
and online caching of query tokens and relevance scores for high-frequency pairs
can significantly reduce the overhead of those repeated searches. Finally, these
two methods combined contribute to the reduction of GPU utilization by 48%,
and response latency by 40%, thereby easing the final resource consumption.

3.2 Professional Terms Recognition Strategy

A notable feature of the tokenization tools WPE [5] and BPE [19] is that they
do not cause OOV (Out Of Vocabulary) problems. BERT-based models can
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effectively combine the split tokens of a single word to express the semantic
information well if they have trained on large corpora containing that word
multiple times. However, in the e-commerce domain, queries and titles often
contain specialized terms that are infrequently found in general corpora. This
disparity can result in a misinterpretation of their intended meanings due to
standard tokenization methods. For example, the term ‘bluetooth’ is typically
segmented into “blue” and “##tooth”, and a lack of adequate training can lead
to errors in matching. Consequently, substituting ‘bluetooth’ with variants like
‘blue tooth’ or even ‘black tooth’ in queries and titles might not significantly
alter the calculated relevance score in matching, thereby illustrating a potential
pitfall in accurately capturing the essence of e-commerce vocabulary.

To address this problem, here we propose an efficient professional terms recog-
nition strategy. It contains two steps: First is the vocabulary extension. We cal-
culated the frequency of each word contained in queries and item descriptions on
alibaba.com in the past 12months, selecting the top 20,000 words which will be
split into many sub-tokens with the former tokenization, and added them into
the original WPE vocabulary of BERT. Then the model would be continued
pre-trained with the new vocabulary.

The top 20 words are listed in Table 2, we can see that extended words are
obviously related to the e-commerce field. Moreover, we calculated the average
number of sub-tokens for query-item pairs with these two vocabularies separately.
As depicted in Table 3, the overall number of each pair is reduced from 41 to 36,
and it achieves a computational saving of nearly 22.81% with Equation (1). For
real online testings, we also find it can reduce the GPU utilization and response
latency significantly, and further improve the metric AUC by nearly 1.5%, as
shown in Table 1. That is, it can not only ease the inference burden but also
contribute to the enhancement of representations for specific terms.

Additionally, we implement NER [38,39] to recognize the object and core
keywords. We use the numbers 1-5 to mark “material”, “function”, “usage”, “spec-
ification”, “style”, and “core” keywords in query-item pairs, and generate the cor-
responding NER embeddings, which combine the token\segmentation\position
embeddings to from the new input embeddings.

3.3 Contrastive Adversarial Training Mechanism

In order to reduce the time-consuming of online relevance inference, pruning
or distillation is often adopted to get the shallow-layer models, resulting in the
degradation of the model’s generalizations to untrained pairs. A useful tip is
training these models with a large range of effective data. However, highly reliable
annotated pairs are costly and have low coverage, and the data sampling from
user behaviors is more noisy because of many unintentional clicks. These all limit
the online application of interaction-based methods.

To tackle this problem, here we propose one novel contrastive adversarial
training (CAT) mechanism. It aims to improve the robustness of both input and
output representations simultaneously and make better discrimination on the
hard samples.
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The CAT method is detailed as follows. We present query-item pair as <
qi, pi > (combined as the input xi) and the relevance label as yi ∈ {0, 1}. θ
denotes the parameters of the corresponding model, and the basic objective for
the SRC model is to minimize the negative log-likelihood loss function as:

LBCE = − 1
N

n∑

i=1

log p(yi|xi, θ)). (3)

For the first step, we adopt adversarial training [22,47] to reduce the model’s
sensitivity to perturbed input embeddings, and then improve robustness to var-
ious original examples. Specifically, we first calculate a small adversarial pertur-
bation radv based on the back-propagated gradient value:

ri
adv = −εg/ ‖g‖2 where g = ∇xi log p(yi|xi, θ), (4)

where ε is the coefficient weight to control the size of perturbation, then add
it to the original input x to form one new perturbed embedding x + radv, and
finally design a new function to fit the relevance label:

LATE = − 1
N

n∑

i=1

log p(yi|xi + ri
adv, θ). (5)

.
On the other hand, aiming to enhance the output representation, we try to

minimize the difference between two output distributions from the same model
with different dropouts. This strategy is adopted for two reasons: one is to elim-
inate the nonnegligible inconsistency between training and inference caused by
the randomness introduced by dropout [11,40], and the other is to enhance
the output representation. In detail, we randomly discard some non-substantial
words filtered out by NER, to construct a new query-item pair with substantially
the same semantics for each inference. Then the bidirectional KL divergence of
their output passing through the same model should be kept minimal.

However, the simple combination of these two methods would cause four
inferences, leading to a significant increase in computational cost. Considering
the first inference of adversarial training only to be conducted for the radv gen-
eration without any parameter updating, here we design one optimized scheme.
That is, we retain the back-propagation of LBCE , and then minimize the bidi-
rectional KL divergence of output distributions between x and xadv as:

LADV =
1
2N

n∑

i=1

(DKL(p(yi|xi, θ)||p(yi|xi + ri
adv, θ))

+ DKL(p(yi|xi + ri
adv, θ)||p(yi|xi, θ))).

(6)

.
So all the computations only need two inferences, and the total loss is:

Ltotal = α1 · LBCE + α2 · LATE + α3 · LADV (7)
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where α1, α2 and α3 are the weighting parameters.
Moreover, in order to remind the model to emphasize the hard mining exam-

ples, we replace the original softmax function with heated-up softmax [46]:

p(mi|xi,θ) =
exp(α ∗ zi)

exp(α ∗ z0) + exp(α ∗ z1)
, (8)

where zi is the output logit of xi, m is the binary category with mi ∈ 0, 1, and
α denotes the temperature parameter.

We start the training process with a large α, to concentrate on hard samples.
Then we gradually reduce α to shift the model’s attention to boundary samples,
and eventually, we set a minimal value for fine-tuning the easy pairs. As depicted
in Fig. 1, α adjusts the distribution of the last layer output and enables the model
to focus on more hard mining samples as the training goes on.

As a side note, prior work [21] proposed a similar contrastive representa-
tion adversarial learning for text classification. However, it only cares about the
input representation by minimizing the difference of outputs with increasing ε
in Equation (4), but our CAT mechanism is designed to regularize the model
by optimizing both input and output representations. The offline experiments
below show that it can improve not only the robustness to examples with key-
word repetition and stacking but also enhance the generalization for query-items
matching of multiple industries.

4 Experiments

In this section, we conduct comprehensive evaluations on manually annotated
query-item pairs offline and rigorous A/B online testings online to verify the
feasibility of the proposed methods.

Dataset. We extracted the highly reliable user-clicked pairs from the online
search logs of alibaba.com over the past year to facilitate the continue pre-
training. The selection of pairs was subject to two constraints: 1) Each query
had to comprise a minimum of two words, including at least one core keyword,
to filter out queries with ambiguous semantics such as ‘dress’ or ‘sports shoes,’
which often reflect unclear user search intents and result in a scattered range
of clicked items. 2) Pairs exhibiting deeper click behaviors were re-sampled to a
certain number, predicated on the basic cognition that query reflects the user’s
intent and their clicks signify varying degrees of interest in different products. For
alibaba.com, the cross-border B2B platform, user click behaviors are categorized
into five escalating levels: page-click ≤ add-to-cart ≤ contact-supplier ≤ order
≤ pay. Based on multiple experimental tests, here we set the re-sampled number
for each level as (1,1,2,3,5). In total, 80 million query-item pairs were collected,
with 70 million designated for continuing pre-training, and the remaining 10
million high-frequency ones were reserved for subsequent fine-tuning.
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Additionally, we further gathered a dataset of 250,000 query-item pairs and
marked them as relevant or irrelevant via manual annotation. The relevance judg-
ments were based on three criteria: the subject, the presence of core keywords,
and units of measurement such as minimum order quantity, delivery time, and
size specifications. A pair was marked as relevant only if it satisfied all three con-
ditions. Each pair was assessed by three individuals to mitigate subjective bias.
To further ensure accuracy, an expert specializing in search business reviewed
the collective judgments. Subsequently, 150,000 annotated pairs were utilized for
additional fine-tuning, while the remaining 100,000 served as the evaluation set.

Baselines. For comprehensive evaluations, we utilize the widely-employed mod-
els BERT, RoBERTa, StructBERT [36], and the very recent domain-specific
models ReprBERT [43], as well as Interactor [44]. All were pre-trained on the
same dataset as base models. Subsequently, we distilled BERT into smaller vari-
ants (L3-H128-A4), denoted as BERTmini. Additionally, we trained a Sentence-
BERT (SBERT) [29] and its distilled counterpart (SBERTmini) to compare the
efficacy of representation-based models. All models were initially fine-tuned on
10 million online query-item pairs and subsequently on annotated datasets.

Implementation Details. During pre-training phase, the learning rate and
batch size were configured to 5e-4 and 32 respectively. For fine-tuning, we
adjusted the learning rate to 2e-5, increased the batch size to 1024, and set the
weighting parameters α1,2,3 as (0.5, 0.5, 0.01). The maximum token lengths were
established at 16 for queries and 36 for item descriptions, while the actual input
token lengths varied according to the dynamic-length representation scheme. All
models were fine-tuned within 3 epochs with early-stopping. We employed the
batch negative sampling strategy for the initial stage on 10 million user-clicked
pairs. All experiments were conducted using Tensorflow 1.12 for both online and
offline evaluations, with the implementations available for reproducibility.

4.1 Offline Evaluation

For evaluating SRC as a binary classification task, we utilized AUC,
Micro/Macro F1 scores, and Spearman’s and Pearson’s correlation coefficients
as evaluated metrics. As depicted in Table 4, comparative results for base models
(Xbase with 12 layers) and the scaled-down mini models (Xmini with 3 layers)
are presented for both representation-based and interaction-based approaches. It
was observed that, at comparable parameter scales, representation-based models
lagged in performance, exhibiting an approximate 3.5% decrease in AUC when
compared to interaction-based models. Furthermore, the Xbase models outper-
formed their Xmini counterparts, reflecting a more robust interaction and repre-
sentational capacity in larger models. Nonetheless, the computational intensity
of Xbase models imposes limitations for their practical deployment.

Notably, despite the parity in parameter magnitude, ei-SRC surpasses the
performance of two mini models SBERTmini and BERTmini, with improve-
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ments of 10.37% and 6.27% respectively. Moreover, ei-SRC demonstrates supe-
rior performance across all metrics, even when compared to larger representation-
based model SBERTbase and interaction-based models BERT, RoBERTa, Struct-
BERT, and recent domain-specific model ReprBERT, as well as Interactor.
Remarkably, the 3-layer configuration of our model attains better results than
the conventional 12-layer models on real-world search query-item pair evalua-
tions. These findings not only underscore the efficacy of the methods proposed
but also highlight the model’s robustness and its ability to generalize across a
diverse range of industrial applications.

To validate the efficacy of proposed strategies, we carried out supplementary
ablation studies. These included assessments of computational performance, as
summarized in Table 1, and comparisons of evaluated metrics, as detailed in
Table 5. We observed a marked decrease in computational cost with the incre-
mental application of dynamic-length representation (DRS), which led to a
reduction of 34.61%. The introduction of the online cache strategy contributed
to a further reduction of 48.08%, while the expansion of the vocabulary (Vocab.)
yielded a decrease of 53.84% in computational overhead. On the other hand, the
incorporation of contrastive adversarial training (CAT) resulted in increased pro-
cessing time due to its requirement for dual inferences. Nevertheless, CAT signif-
icantly enhanced the performance across all metrics: AUC increased by 5.85%,
F1 scores by 22.72%/7.79%, Spearmanr by 9.21%, and Pearsonr by 35.74%.

Table 4. Comparison results of representation and interaction-based methods on man-
ual annotated data

Strategy AUC F1 Spearmanr Pearsonr

SBERTm 0.8184 0.61/0.71 0.5515 0.3934
SBERTb 0.8554 0.60/0.76 0.6061 0.4751
BERTm 0.8500 0.65/0.77 0.6147 0.5079
BERTb 0.8907 0.72/0.78 0.6742 0.6360
ReprBERTb 0.8923 0.73/0.80 0.6804 0.6389
Interactorb 0.8926 0.73/0.81 0.6810 0.6387
RoBERTab 0.8964 0.78/0.82 0.6865 0.6926
StructBERTb 0.9011 0.78/0.81 0.6947 0.7096
ei-SRC (3L) 0.9033 0.81/0.83 0.6984 0.7181

Table 5. Ablation experiment results of increment strategies

Method AUC F1 Spearmanr Pearsonr

BERTm 0.8500 0.65/0.77 0.6147 0.5079
\+DRS 0.8533 0.66/0.77 0.6395 0.5290
\+AT 0.8852 0.75/0.80 0.6720 0.6404
\+CAT 0.9033 0.81/0.83 0.6984 0.7181



Interaction-Based Relevance Modeling for Online e-Commerce Search 67

As illustrated in Table 5, the three strategies collectively improved the model’s
matching results to different degrees. In conclusion, the combined application
of these methods can conserve nearly half of the computational resources while
substantially enhancing the model’s relevance-matching capabilities.

4.2 Online Experiments

We implemented the ei-SRC model within the online search engine of
alibaba.com, the largest B2B e-commerce platform in the world, which serves
tens of millions of users generating billions of page-views (PVs) daily. The SRC
module is integrated into the final stage of the search ranking process. Initially,
it evaluates all candidate items-typically between 3,000 to 5,000-and filters out
those with low correlation scores to ensure that no more than 2,000 items are
selected for ranking. Subsequently, for each query-item pair, the SRC score is
combined with the ranking model’s scores and other factors to determine the
final rank, so that one pair with higher SRC score would be listed in more for-
ward exposure position.

Table 6. Online A/B testing results, where P-value means the statistical significance

Strategy CTR CVR PAY P-value

\+DRS +0.93% +1.09% +0.76% 0.018
\+AT +0.68% +1.37% +1.66% 0.023
\+CAT +1.54% +1.02% +1.87% 0.004

Table 7. Manual evaluation results for online relevance, all testing pairs are extracted
in the same exposure position

Strategy Good Fair Bad

\+DRS +0.91%−0.93% −3.61%
\+AT +4.01%−21.67%−3.13%
\+CAT +4.77%−3.87% −8.93%

In detail, the initial online model was a variant of sBERTmini, and we sequen-
tially conducted three A/B testings: BERTmini with Dynamic-length Repre-
sentation Scheme (\+DRS), followed by the inclusion of Adversarial Train-
ing (\+AT), and finally, the incorporation of Contrastive Adversarial Train-
ing (\+CAT). We assessed the impact of each strategy on click through rate
(CTR), average conversion rate (CVR), and average earnings rate (PAY) by
comparing performance metrics before and after each implementation. Notably,
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the improvements reported are incremental relative to the preceding iteration
model rather than the original BERTmini, and the statistical significance (P-
value) of all results was below 0.05. As indicated in Table 6, there were substan-
tial increases in CTR, CVR, and PAY after the application of each strategy,
with the CAT strategy demonstrating particularly notable enhancements: CTR
improved by 1.54%, CVR by 1.02%, and PAY by 1.87%.

Furthermore, to ascertain the actual impact on online search relevance, we
conducted additional manual evaluations. Following each update, we randomly
selected queries and extracted 2000 query-item pairs from identical exposure
positions, ensuring all other variables remained constant. We engaged experts to
rate each pair as ‘Good’ (both subject and core keywords match), ‘Fair’ (only
subject matches), or ‘Bad’ (subjects differ). The outcomes of these assessments
are presented in Table 7. The results indicate that each implemented strategy
incrementally improved semantic relevance, with the incorporation of CAT yield-
ing the most significant enhancement. In conclusion, our proposed method was
demonstrated to substantially improve the user search experience, leading to
increased clicks and conversions, and ultimately boosting the industry revenue.

Additional evaluation results, annotated datasets, and codes for dynamic-
length representation scheme and contrastive adversarial training mechanism
will be publicly accessible to facilitate further research. We intend to expand
our investigation into the integration of the ei-SRC framework within ranking
models and its application to recommendation systems and P4P advertising.

5 Conclusion

In this study, we introduced a robust interaction-based method for modeling
semantic relevance in online e-commerce search engines. This method incor-
porates a dynamic length representation scheme, a professional terms recogni-
tion strategy, and a contrastive adversarial training scheme to improve relevance
matching. Extensive experiments on offline annotated query-item pairs and rig-
orous online A/B tests have verified its effectiveness for enhancing the search
experience and boosting the industry revenue. Significantly, this approach has
been stably operational on www.alibaba.com, handling its full search traffic for
over 12months, undergoing several iterative improvements.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Antoniou, C., Bassiliades, N.: A survey on semantic question answering systems.
Knowl. Eng. Rev. 37, e2 (2022)

2. Cer, D., Diab, M., Agirre, E., Lopez-Gazpio, I., Specia, L.: Semantic textual
similarity-multilingual and cross-lingual focused evaluation. In: Proceedings of the
2017 SEMVAL International Workshop on Semantic Evaluation. (2017)

www.alibaba.com


Interaction-Based Relevance Modeling for Online e-Commerce Search 69

3. Chen, Y.: Convolutional neural network for sentence classification. Master’s thesis,
University of Waterloo (2015)

4. Chen, Z., Chen, W., Xu, J., Liu, Z., Zhang, W.: Beyond semantics: learning a
behavior augmented relevance model with self-supervised learning. In: Proceed-
ings of the 32nd ACM International Conference on Information and Knowledge
Management (2023)

5. Devlin, J.: BERT: pre-training of deep bidirectional transformers for language
understanding. arXiv preprint arXiv:1810.04805 (2018)

6. Dhakal, A., Poudel, A., Pandey, S., Gaire, S., Baral, H.P.: Exploring deep learning
in semantic question matching. In: 2018 IEEE 3rd International Conference on
Computing, Communication and Security (ICCCS), pp. 86–91. IEEE (2018)

7. Gao, T., Yao, X., Chen, D.: SimCSE: simple contrastive learning of sentence embed-
dings. arXiv preprint arXiv:2104.08821 (2021)

8. Garakani, A.B., et al: Improving relevance quality in product search using high-
precision query-product semantic similarity. In: Proceedings of The Fifth Workshop
on e-Commerce and NLP (ECNLP 5), pp. 44–48 (2022)

9. He, P., Liu, X., Gao, J., Chen, W.: DeBERTa: decoding-enhanced BERT with
disentangled attention. arXiv preprint arXiv:2006.03654 (2020)

10. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531 (2015)

11. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.:
Improving neural networks by preventing co-adaptation of feature detectors. arXiv
preprint arXiv:1207.0580 (2012)

12. Hu, W., Dang, A., Tan, Y.: A survey of state-of-the-art short text matching algo-
rithms. In: Tan, Y., Shi, Y. (eds.) DMBD 2019. CCIS, vol. 1071, pp. 211–219.
Springer, Singapore (2019). https://doi.org/10.1007/978-981-32-9563-6_22

13. Huang, P.S., He, X., Gao, J., Deng, L., Acero, A., Heck, L.: Learning deep struc-
tured semantic models for web search using clickthrough data. In: Proceedings of
the 22nd ACM international conference on Information & Knowledge Management,
pp. 2333–2338 (2013)

14. Jiang, Y., et al.: BERT2DNN: BERT distillation with massive unlabeled data for
online e-commerce search. In: 2020 IEEE International Conference on Data Mining
(ICDM), pp. 212–221. IEEE (2020)

15. Jiao, X., et al: TinyBERT: distilling BERT for natural language understanding.
arXiv preprint arXiv:1909.10351 (2019)

16. Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., Soricut, R.: ALBERT: a
lite BERT for self-supervised learning of language representations. arXiv preprint
arXiv:1909.11942 (2019)

17. Li, B., Zhou, H., He, J., Wang, M., Yang, Y., Li, L.: On the sentence embeddings
from pre-trained language models. arXiv preprint arXiv:2011.05864 (2020)

18. Liu, X., et al.: LCQMC: a large-scale Chinese question matching corpus. In: Pro-
ceedings of the 27th International Conference on Computational Linguistics, pp.
1952–1962 (2018)

19. Liu, Y., et al.: RoBERTa: a robustly optimized BERT pretraining approach. arXiv
preprint arXiv:1907.11692 (2019)

20. Manning, C.D.: An Introduction to Information Retrieval. Cambridge University
Press (2009)

21. Miao, D., et al.: Simple contrastive representation adversarial learning for NLP
tasks. arXiv preprint arXiv:2111.13301 (2021)

22. Miyato, T., Dai, A.M., Goodfellow, I.: Adversarial training methods for semi-
supervised text classification. arXiv preprint arXiv:1605.07725 (2016)

http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/2104.08821
http://arxiv.org/abs/2006.03654
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1207.0580
https://doi.org/10.1007/978-981-32-9563-6_22
http://arxiv.org/abs/1909.10351
http://arxiv.org/abs/1909.11942
http://arxiv.org/abs/2011.05864
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/2111.13301
http://arxiv.org/abs/1605.07725


70 B. Chen et al.

23. Nguyen, T., et al.: Ms marco: a human generated machine reading comprehension
dataset. Choice 2640, 660 (2016)

24. Nogueira, R., Cho, K.: Passage re-ranking with BERT. arXiv preprint
arXiv:1901.04085 (2019)

25. Nogueira, R., Yang, W., Cho, K., Lin, J.: Multi-stage document ranking with
BERT. arXiv preprint arXiv:1910.14424 (2019)

26. Palangi, H., et al.: Semantic modelling with long-short-term memory for informa-
tion retrieval. arXiv preprint arXiv:1412.6629 (2014)

27. Palangi, H., et al.: Deep sentence embedding using long short-term memory net-
works: analysis and application to information retrieval. IEEE/ACM Trans. Audio
Speech Lang. Process. 24(4), 694–707 (2016)

28. Pang, L., Lan, Y., Guo, J., Xu, J., Wan, S., Cheng, X.: Text matching as image
recognition. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol.
30 (2016)

29. Reimers, N., Gurevych, I.: Sentence-BERT: sentence embeddings using siamese
BERT-networks. arXiv preprint arXiv:1908.10084 (2019)

30. Robertson, S.E., Walker, S., Jones, S., Hancock-Beaulieu, M.M., Gatford, M.:
Okapi at trec-3. Nist Special Publication Sp 109, 109 (1995)

31. Shen, Y., He, X., Gao, J., Deng, L., Mesnil, G.: A latent semantic model with
convolutional-pooling structure for information retrieval. In: Proceedings of the
23rd ACM International Conference on Conference on Information and Knowledge
Management, pp. 101–110 (2014)

32. Su, J., Cao, J., Liu, W., Ou, Y.: Whitening sentence representations for better
semantics and faster retrieval. arXiv preprint arXiv:2103.15316 (2021)

33. Sun, Y., et al.: Ernie 3.0: large-scale knowledge enhanced pre-training for language
understanding and generation. arXiv preprint arXiv:2107.02137 (2021)

34. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems, vol. 30 (2017)

35. Wan, S., Lan, Y., Xu, J., Guo, J., Pang, L., Cheng, X.: Match-SRNN: modeling the
recursive matching structure with spatial RNN. arXiv preprint arXiv:1604.04378
(2016)

36. Wang, W., et al.: StructBERT: incorporating language structures into pre-training
for deep language understanding. arXiv preprint arXiv:1908.04577 (2019)

37. Wang, W., Wei, F., Dong, L., Bao, H., Yang, N., Zhou, M.: MiniLM: deep self-
attention distillation for task-agnostic compression of pre-trained transformers.
Adv. Neural. Inf. Process. Syst. 33, 5776–5788 (2020)

38. Wang, X., Jiang, Y., Bach, N., Wang, T., Huang, F., Tu, K.: Structure-
level knowledge distillation for multilingual sequence labeling. arXiv preprint
arXiv:2004.03846 (2020)

39. Wang, X., et al.: Automated concatenation of embeddings for structured predic-
tion. arXiv preprint arXiv:2010.05006 (2020)

40. Wu, L., et al.: R-drop: regularized dropout for neural networks. Adv. Neural. Inf.
Process. Syst. 34, 10890–10905 (2021)

41. Wu, X., Magnani, A., Chaidaroon, S., Puthenputhussery, A., Liao, C., Fang, Y.:
A multi-task learning framework for product ranking with BERT. In: Proceedings
of the ACM Web Conference 2022, pp. 493–501 (2022)

42. Xiao, R., et al.: Weakly supervised co-training of query rewriting andsemantic
matching for e-commerce. In: Proceedings of the Twelfth ACM International Con-
ference on Web Search and Data Mining, pp. 402–410 (2019)

http://arxiv.org/abs/1901.04085
http://arxiv.org/abs/1910.14424
http://arxiv.org/abs/1412.6629
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/2103.15316
http://arxiv.org/abs/2107.02137
http://arxiv.org/abs/1604.04378
http://arxiv.org/abs/1908.04577
http://arxiv.org/abs/2004.03846
http://arxiv.org/abs/2010.05006


Interaction-Based Relevance Modeling for Online e-Commerce Search 71

43. Yao, S., Tan, J., Chen, X., Zhang, J., Zeng, X., Yang, K.: ReprBERT: distilling
BERT to an efficient representation-based relevance model for e-commerce. In:
Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, pp. 4363–4371 (2022)

44. Ye, W., et al.: Fast semantic matching via flexible contextualized interaction. In:
Proceedings of the Fifteenth ACM International Conference on Web Search and
Data Mining, pp. 1275–1283 (2022)

45. Zeng, A., et al.: GLM-130B: an open bilingual pre-trained model. arXiv preprint
arXiv:2210.02414 (2022)

46. Zhang, X., Yu, F.X., Karaman, S., Zhang, W., Chang, S.F.: Heated-up softmax
embedding. arXiv preprint arXiv:1809.04157 (2018)

47. Zhu, C., Cheng, Y., Gan, Z., Sun, S., Goldstein, T., Liu, J.: FreeLB:
enhanced adversarial training for natural language understanding. arXiv preprint
arXiv:1909.11764 (2019)

http://arxiv.org/abs/2210.02414
http://arxiv.org/abs/1809.04157
http://arxiv.org/abs/1909.11764


Learning Optimal Linear Precoding
for Cell-Free Massive MIMO with GNN

Benjamin Parlier1, Lou Salaün2(B), and Hong Yang3

1 Université Paris-Saclay, Centrale-Supélec, 91190 Gif-sur-Yvette, France
2 Nokia Bell Labs, 91300 Massy, France

lou.salaun@nokia-bell-labs.com
3 Nokia Bell Labs, Murray Hill, NJ 07974, USA

Abstract. We develop a graph neural network (GNN) to compute,
within a time budget of 1 to 2 milliseconds required by practical systems,
the optimal linear precoder (OLP) maximizing the minimal downlink
user data rate for a Cell-Free Massive MIMO system – a key 6G wireless
technology. The state-of-the-art method is a bisection search on second
order cone programming feasibility test (B-SOCP) which is a magni-
tude too slow for practical systems. Our approach relies on representing
OLP as a node-level prediction task on a graph. We construct a graph
that accurately captures the interdependence relation between access
points (APs) and user equipments (UEs), and the permutation equivari-
ance of the Max-Min problem. Our neural network, named OLP-GNN,
is trained on data obtained by B-SOCP. We tailor the OLP-GNN size,
together with several artful data preprocessing and postprocessing meth-
ods to meet the runtime requirement. We show by extensive simulations
that it achieves near optimal spectral efficiency in a range of scenarios
with different number of APs and UEs, and for both line-of-sight and
non-line-of-sight radio propagation environments.

Keywords: Graph neural network · optimal linear precoding ·
cell-free massive MIMO · max-min SINR

1 Introduction

We employ a graph neural network (GNN) to solve an important problem
relating to a key 6G wireless technology – Cell-Free Massive MIMO (CFm-
MIMO). The concept of CFmMIMO was first introduced in [23] and further
analyzed in [11,12]. “MIMO” refers to “Multiple Input Multiple Output” that
takes advantage of spatial multiplexing to serve multiple users simultaneously,
thereby greatly increases the spectral efficiency in terms of bits per second per
Hertz. “Massive” refers to the hundreds of service antennas in the systems. “Cell-
Free”, in contrast to cellular, refers to a wireless network where a large number
of access points (APs) are distributed in a geographic area to jointly serve a col-
lection of users simultaneously. CFmMIMO relies on a well-designed precoder to
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beamform ultrahigh data rate to users. We construct a GNN to compute, within
a time budget of 1 to 2 milliseconds, the optimal linear precoder (OLP) that
maximizes the minimal (Max-Min) downlink user data rate for a CFmMIMO.

Motivations for Max-Min, OLP and time budget are summarized in the fol-
lowing. Max-Min is highly desirable because all wireless systems aim to achieve
the highest data rate possible for all users. A key advantage of CFmMIMO is all
the users in the system have statistically identical large scale fading profiles. This
contrasts with the traditional cellular system in which large scale fading profiles
are uneven for users near the base stations and users at the cell edge. Conceptu-
ally, achieving equal throughputs for all users is natural for CFmMIMO. OLP is
the optimal precoder among all linear precoders. Furthermore, it is effectively the
optimal precoder for massive MIMO. By virtue of the law of large numbers, many
service antennas effectively orthogonalize the communication channels, thereby
making linear precoding substantially optimal [9]. Millisecond scale time budget
is critical for real world applications. For typical mobility applications in urban
and suburban scenarios [24], a new precoder must be calculated every 1 to 2
milliseconds to adapt to fast changing wireless communication channels.

To the best of our knowledge, this work is the first attempt in searching for
a practically feasible means of computing OLP for CFmMIMO. In this paper,
we model OLP as a node-level prediction task on a graph. We represent the
wireless communication channel between each AP and user equipment (UE) as
a graph node and encode its channel coefficient as a node feature. We define two
types of edges: an edge of type-UE connects two nodes (i.e., channels) that are
interfering, while a type-AP edge indicates that they share the same transmitter.

Our model, named OLP-GNN, takes as input the aforementioned graph and
outputs a precoding matrix which is trained to approximate the optimal linear
precoder. It is based on the graph transformer architecture [18]. To satisfy the
stringent runtime requirement, our GNN model has to be small: 6 hidden layers
and about 22.4k trainable parameters. Given this, we design problem-specific
data preprocessing and postprocessing methods to improve OLP-GNN’s accu-
racy. The preprocessing step consists in converting the complex-valued channel
coefficients into 4 real-valued components which are then used as input of OLP-
GNN. The GNN then predicts 6 features for each node that are combined to
obtain a complex-valued precoding matrix in the postprocessing. These features
have physical and mathematical interpretations, e.g., signal strength, interfer-
ence power and power budget constraint. The postprocessing step also ensures
that each AP’s power budget constraint is satisfied.

We show via simulations that our solution can compute substantially optimal
precoders within the time budget of 1 to 2 milliseconds for up to 96 APs and 18
UEs. We compare the spectral efficiency of OLP-GNN to two practical precoders,
Maximum Ratio Transmission (MR) and Zero Forcing (ZF), highlighting the
performance gain achieved by making OLP computable in real-time. We also
show that a single trained model generalizes well to various system sizes and
scenarios, including line-of-sight (LoS), non-line-of-sight (NLoS), urban and rural
radio propagation environments.
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2 Related Work

CFmMIMO Precoder Designs: There are many papers on CFmMIMO pre-
coder designs. Unlike OLP, all variants of MR (also known as conjugate beam-
forming) [8,15,25] and ZF [5,7,11] are sub-optimal. In this paper, we will include
MR and ZF as baselines. The scalable CFmMIMO framework is introduced in [2]
which requires all processing tasks to have finite complexity as the number of
UEs increases. In such a framework, the computations have to be distributed.
This is not the case of our approach. Indeed, OLP-GNN is computed in a cen-
tralized manner with full knowledge of all channels. [3] proposed a combination
of MR and ZF, with most APs doing decentralized MR to minimize the front-
haul burden. [5] developed JointCFNet, a convolutional neural network for joint
user association and power control with local partial protective ZF. [10] consid-
ered the uplink counterpart of OLP, i.e., the calculation of uplink joint optimal
beamforming and power control for CFmMIMO.

Graphs Neural Networks for CFmMIMO: GNNs have been applied to
the following optimization problems in CFmMIMO. Reference [15] studied the
downlink power control assuming MR precoding, while [17] solved the uplink
pilot power control. The authors of [7] tackled the joint downlink and uplink
power control in a full-duplex system assuming ZF precoding. SINRnet is pro-
posed in [13] to maximize the downlink energy efficiency with MR precoding
in an unsupervised manner. [14] optimizes the AP selection. The graph struc-
tures in [4,13,15] are similar to ours where nodes encode channels. However,
their node features represent average channel amplitudes (real-valued), while we
use instantaneous channel coefficients (complex-valued). The interference graph
in [4] can be seen as a special case of our graph where each AP serves exactly
one UE, and only UE-type edges are considered. Other papers follow a different
but common graph construction for wireless systems where each node is either
an AP or a UE [7,14,17].

3 System Model and Notation

3.1 Notation

We write vectors with bold font lowercase letters, e.g., v, and matrices with
bold font capital letters, e.g., A. Superscripts T and ∗ denote respectively the
transpose and complex conjugate transpose of a matrix. Thus, T∗ and ∗T denote
the un-transposed conjugate. All vectors are assumed to be column vectors. For
v ∈ C

K , diag(v) ∈ C
K×K denotes the diagonal matrix with v as diagonal values.

For A ∈ C
K×K , diag(A) ∈ C

K denotes the diagonal matrix whose diagonal is
the diagonal of matrix A. ‖ · ‖2 and ‖ · ‖∞ denote the 2-norm and infinity norm
respectively. For A ∈ C

M×K , ām denotes the m-th row of A. For two matrices A
and B of compatible sizes, [A,B] denotes their concatenation along the second
dimension. IK is the K-dimensional identity matrix. R+ denotes the set of all
real positive numbers. Let x ∈ C be a complex number, we denote its magnitude
(absolute value) by |x| and its phase by phase(x). We define [K] = {1, · · · ,K}.
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3.2 Cell-Free Massive MIMO

We consider a CFmMIMO system where M APs transmit simultaneously to K
UEs in the downlink. A fundamental assumption of massive MIMO is that M
is greater than K [9]. The channel between any AP m ∈ [M ] and UE k ∈ [K]
is characterized by a complex channel coefficient gm,k ∈ C. The matrix of all
channel coefficients is called channel matrix and is denoted by G ∈ C

M×K . We
have

G =

⎛
⎜⎝

g1,1 · · · g1,K

...
...

...
gM,1 · · · gM,K

⎞
⎟⎠ =

(
g1 · · · gK

)
=

⎛
⎜⎝
ḡT
1
...

ḡT
M

⎞
⎟⎠ ,

where gk ∈ C
M is the channel vector between the k-th UE and all M APs, and

ḡm ∈ C
K the channel vector between the m-th AP and all K UEs. The APs are

connected to a central controller that collects the channel state information (CSI)
which gives us G. The computations and neural network inferences presented in
this paper are performed on this central controller, then the results are sent to
each AP.

Let x ∈ C
K be the signal received by the K users. It can be modelled as:

x = GT (
√

ρds) +w, (1)

where ρd is the downlink signal to noise ratio (SNR) for each AP, s ∈ C
M is the

power normalized precoded signal to be transmitted by the M APs and w ∈ C
K

is a circularly-symmetric Gaussian noise vector. The APs are subject to a power
constraint set to

‖E(s∗T � s)‖∞ ≤ 1, (2)

with E the expectation and � the element wise multiplication.

3.3 Precoding Matrix and Downlink SINR Calculation

We denote by q ∈ C
K the users’ message-bearing symbols to be transmitted.

We assume, as in [22], that q has zero mean, unit variance and that the symbols
are uncorrelated between users such that the following holds

E(qq∗) = IK . (3)

As highlighted in Eq. (1), the signal to be transmitted by the APs is s ∈ C
M .

Therefore q must be converted from the user data symbols space C
K to the

precoded signals space C
M . This is done with a linear precoding matrix Δ as

follows

s = Δq, where Δ =

⎛
⎜⎝

δ1,1 · · · δ1,K

...
...

...
δM,1 · · · δM,K

⎞
⎟⎠ ∈ C

M×K . (4)

The assumption on q in Eq. (3) combined with Eqs. (2) and (4) imposes the
following power constraints on Δ

∀m ∈ [M ], ‖δ̄m‖2 ≤ 1, (5)
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where δ̄m = (δm,1, · · · , δm,K)T ∈ C
K .

From Eqs. (1) and (4) we get x =
√

ρdGT Δq+w, which allows us to express
the signal received at the k-th user as

xk =
√

ρdgT
k Δq+ wk =

√
ρdgT

k δkqk +
√

ρd

∑
l �=k

gT
k δlql + wk,

where δk = (δ1,k, · · · , δM,k)T ∈ C
M . We know from Eq. (3) that a signal emitted

for a specific user k is uncorrelated with interfering signals intended for other
users. Similarly, white additive noise is uncorrelated with both intended and
interfering signals. Since the intended signal, interfering signals and noise are
mutually uncorrelated, we can calculate their contribution to power separately.
Hence, the power of the signal xk received by the k-th user can be written as
E(x∗

kxk) = ρd|gT
k δk|2 + ρd

∑
l �=k |gT

k δl|2 + 1, with the following terms:

– Signal power (SP): ρd|gT
k δk|2 is the power of the signal intended for user k.

– Interference power (IP): ρd

∑
l �=k |gT

k δl|2.
– Noise power (NP) is equal to 1.

The signal to interference plus noise ratio (SINR) of a user k is defined as the
ratio between its intended signal power and the interference power plus noise
power. Thus, the SINR of user k can be calculated as

SINRk =
SP

IP + NP
=

ρd|gT
k δk|2

1 + ρd

∑
l �=k |gT

k δl|2 . (6)

Equation (6) can be expressed otherwise by introducing the following matrix
A ∈ C

K×K which combines both effects of precoding and channel propagation.

A =

⎛
⎜⎝

a1,1 · · · a1,K

...
...

...
aK,1 · · · aK,K

⎞
⎟⎠ = GT Δ. (7)

Equation (6) then becomes

SINRk =
ρd|ak,k|2

1 + ρd

∑
l �=k |ak,l|2 . (8)

3.4 Optimal Linear Precoding

We define the optimal linear precoding, denoted by ΔOLP , as the solution to
the following max-min SINR problem.

max
Δ

min
k

SINRk,

subject to ‖δ̄m‖2 ≤ 1, ∀m.
(P)

The objective of this problem is to maximize the minimum SINR among all UEs
while satisfying the power constraint (5). Note that the objective is a function of
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Δ as shown in (4) and (6). We will explain in the following paragraphs how the
optimal ΔOLP can be obtained by a combination of bisection search and second
order cone programming (SOCP) feasibility search.

We first focus on the following feasibility subproblem. Given a threshold value
tSINR, it consists in checking whether there exists a feasible solution such that
mink SINRk ≥ tSINR. This inequality can be expanded with Eq. (8) as

∀k ∈ [K],
ρd|ak,k|2

1 + ρd

∑
l �=k |ak,l|2 ≥ tSINR,

which is equivalent to

|ak,k|2 ≥ tSINR

⎛
⎝ 1

ρd
+

∑
l �=k

|ak,l|2
⎞
⎠ . (9)

By introducing the following matrix Ã =
[
A − diag(a1,1, · · · , aK,K); 1√

ρd
1K×1

]

in C
K×(K+1), inequality (9) can be simplified as

∀k ∈ [K], |ak,k| ≥ √
tSINR‖ãk‖2, (10)

where ãk = (ãk,1, · · · , ãk,K+1) ∈ C
K+1. We note that the left term in Eq. (10) is

convex due to the absolute value | · |. It has to be concave to match a standard
form of SOCP constraint. To this end, we will restrict the set of possible values
for ak,k.

We derive from Eq. (7) that Δ can be written as a function of A ∈ C
K×K

and an arbitrary matrix U ∈ C
M×K such that

Δ = G†A+ PGTU, (11)

where G† = GT∗ (
GTGT∗)−1 is the Moore-Penrose pseudo-inverse of GT , and

PGT = IM − G†GT is the orthogonal projection onto the null space of GT .
We can see that the right multiplication of Δ by a matrix diag(eiθ1 , · · · , eiθK )

does not change its 2-norm, thus leaving the right hand side of (10) unchanged.
Besides, if (A,U) satisfies inequality (10) and the power constraint (5), then so
does

(
Adiag(eiθ1 , · · · , eiθK ),Udiag(eiθ1 , · · · , eiθK )

)
. Therefore, if we multiply A

and U by diag(eiθ1 , · · · , eiθK ) = diag(−phase(A)), we can restrict our search
to positive real values of ak,k, for all k, instead of complex values. With this
assumption, the max-min problem (P) can be reformulated as:

max
Δ

tSINR,

subject to ak,k ≥ √
tSINR‖ãk‖2, ∀k,

ak,k ∈ R
+, ∀k,

‖δ̄m‖2 ≤ 1, ∀m.

(P ′)

The constraints of P ′ are written in a standard form suitable for SOCP. Hence,
for any value of tSINR, SOCP can be applied to check the feasibility of the
constraints. A bisection search can be used on top of SOCP to find the maximum
value of tSINR. We will refer to this method as B-SOCP throughout the paper.
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3.5 Zero Forcing and Maximum Ratio Precoding

Other linear precoding schemes are often considered, which are by definition
sub-optimal compared to OLP but less costly to solve. In this paper, we will
compare our solution to two precoding schemes, namely Zero Forcing (ZF) and
Maximum Ratio Transmission (MR). ZF minimizes the interference while MR
maximizes the signal. The optimal is a trade-off between these two extremes. The
ZF precoder has a closed-form expression which can be computed by matrix mul-
tiplications and inversions [11]. For MR, the max-min objective can be achieved
by solving a B-SOCP problem similar to P ′ [12].

It is known that for some regimes (e.g., high signal-to-noise, large number of
APs), ZF outperforms MR whereas for other regimes it is the opposite. This can
be seen in Sect. 5 for example, where MR achieves higher spectral efficiency than
ZF in Fig. 3d and ZF beats MR in Fig. 3c. In all scenarios, OLP significantly
outperforms both MR and ZF. However, the computational complexity of B-
SOCP makes it unsuitable for real world systems with millisecond-scale runtime
requirements. This shows the importance of developing an approximation of OLP
with several order of magnitudes faster runtimes.

4 Graph Neural Network

In this section, we describe our solution, named OLP-GNN, to tackle the max-
min SINR problem (P). OLP-GNN is trained with OLP data obtained by run-
ning B-SOCP in a simulated environment. The objective is to approximate the
performance of OLP with a low and practical computational complexity.

4.1 Graph Representation

The input and output of our max-min problem (P) are respectively the channel
matrix G and the precoding matrix ΔOLP . One can see that for any permutation
applied to the rows and/or columns of G, the same permutation is applied to
the optimal solution ΔOLP . Thus the problem is independent from the row and
column indexing. This property is called permutation equivariance and GNNs
are known to satisfy this property, which make them suitable for our problem.

To train a GNN the input channel matrix G and output precoding matrix
ΔOLP must be represented as graphs. We define a directed graph as (V,E) where
V is the set of nodes and E the set of directed edges. We define a node as a pair
(m, k) ∈ [M ]× [K], thus V has M ×K nodes. We also define π, a bijection from
the set of pairs (m, k) to the set of nodes V = [MK], that associates to each
(m, k) pair a node index i ∈ V , such that π(m, k) = i.

In our problem when two UEs share the same AP, i.e., they are in the same
row of ΔOLP , they mutually influence each other through the power constraint
of Eq. (5). Similarly, when two APs serve the same UE k, i.e., they are on
the same column of ΔOLP , they both have an impact on the calculation of
SINRk in Eq. (6). To encode these properties in our graph, we consider two
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types of edges. We set an edge between i, j ∈ V if and only if they share a
common AP or a common UE. We denote this edge by e = (i, j) and its type
by type(e) ∈ {AP,UE} depending on whether i and j share a common AP
or UE. The graph does not have self loop, i.e., ∀i ∈ V, (i, i) /∈ E. This formally
translates to for all m,m′ ∈ [M ], m 	= m′, and for all k, k′ ∈ [K], k 	= k′, we have:

Fig. 1. Neighbors and outgoing edges
of a typical node π(m, k) = i ∈ V

i. (π(m, k), π(m, k′)) ∈ E is of type AP,
ii. (π(m, k), π(m′, k)) ∈ E is of type UE.

The heterogeneous nature of E allows a
GNN to process differently the informa-
tion on a node and its neighbors based on
their edge type. Thus, for each node i ∈ V ,
we define two disjoint sets of neighbors
depending on their edge type: NAP (i) =
{j ∈ V | (i, j) ∈ E and type((i, j)) =
AP} and NUE(i) = {j ∈ V | (i, j) ∈
E and type((i, j)) = UE}. Figure 1 illus-
trates the neighbors of a typical node. We
note that for each node i ∈ V , NAP (i) has K − 1 elements and NUE(i) has
M − 1 elements, for a total of M + K − 2 neighbors. In other words, each node
has M + K − 2 outgoing edges, and the same number of incoming edges. Since
the graph contains MK nodes, the total number of edges is MK(M + K − 2).

4.2 Data Preprocessing and Postprocessing

In this subsection, we consider a typical node i ∈ V corresponding to the channel
between AP m and UE k, i.e., π(m, k) = i. At each iteration t of the GNN, node
i is associated with a tensor hi(t), called node feature. hi(0) is its input feature
and hi(T ) is its output feature, where T is the number of iterations/layers.
We assume that all tensors in OLP-GNN are real-valued. Since the input and
target data are complex matrices, we decompose them into their magnitude and
phase components. Another possibility is to decompose them into their real and
imaginary parts. However, we found magnitude-phase representation to be more
fitting, probably due to its much smaller ranges.

We see from Eq. (11) that the precoding matrix depends directly on G†.
During the development of OLP-GNN, we observed that learning the pseudo-
inverse G† gave an unsatisfactory accuracy and a poor generalization to dif-
ferent number of APs and UEs. Indeed, the performance drops by 5 − 20% on
the validation datasets without G† in the input of our T = 6 layers model.
Thus, we decided to compute G† beforehand using fast numerical methods and
include it in OLP-GNN’s input. Therefore, hi(0) contains 4 elements which
are the magnitudes and phases of gm,k and g†

m,k = (G†)m,k, i.e., hi(0) =(
|gm,k|, phase(gm,k), |g†

m,k|, phase(g†
m,k)

)
.
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We split the target precoding matrix ΔOLP in three components G†diag(A),
G†(A−diag(A)), PGTU. Therefore the output and target feature tensor contains
the following 6 terms: magnitude and phase of (G†diag(A))m,k, magnitude and
phase of (G†(A − diag(A))m,k, magnitude and phase of (PGTU)m,k. This split
is motivated by the distinct physical meanings of these terms. The diagonal
elements (ak,k)k∈[K] of A represent user k’s useful signal. The non-diagonal
elements (al,k)k �=l correspond to the interfering signals intended for user k but
received by another user l. In this sense, A fully characterizes the SINR. On the
other hand, PGTU only influences the power constraint without changing the
SINRs.

For OLP-GNN to extract useful information from the features, they must be
of the same order of magnitude. The absolute values of the input, output and
target features range over several orders of magnitude. Therefore, we apply a
log2 transformation to all absolute values (magnitude terms). As an example, we
typically have 10−15 ≤ |gm,k| ≤ 10−5, hence log2(|gm,k|) belongs to [−50,−16].
We do not apply a log2 transformation to the phase terms as they are already
in a small range between 0 and 2π. All the features are then normalized to have
zero mean and unitary variance.

Let y1, y2, y3 be the OLP-GNN predictions of the aforementioned three
terms: G†diag(A), G†(A−diag(A)), PGTU. They are obtained by de-processing
the output tensors hi(T ) for all nodes i ∈ V . We apply the following postpro-
cessing to impose some desired properties on the output

⎧⎪⎨
⎪⎩

y′
1 = G†real(diag(GTy1)),

y′
2 = G†(GTy2 − diag(GTy2)),

Δ = y′
1 + y′

2 + y3.

As we have IK = GTG†, the postprocessing on y′
1 ensures that GTy′

1 is a real
diagonal matrix. The postprocessing on y′

2 enforces that the diagonal elements
of GTy′

2 are equal to zero. Once this is applied on the output features, we further
impose the power constraint (5) by applying the following projection

∀m ∈ [M ], if ‖δ̄m‖2 ≥ 1 then δ̄m ← δ̄m

‖δ̄m‖2
.

Δ obtained by the sum of components y′
1, y′

2, y3, and after the above projection
is applied is the predicted precoding matrix of OLP-GNN.

4.3 Structure of the Neural Network

Let L be the linear operator. For the sake of clarity, the linear layers in this
section will be written with different subscripts and superscripts, e.g., L1

AP,t,
L4

UE,t. This is done to indicate that they are applied on different edge types (AP
or UE), at different iterations t ∈ {0, . . . , T} and they do not share any trainable
parameter.
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Fig. 2. Structure of OLP-GNN. ‘H’ refers to the hidden attention layer, and ‘L’ is the
final linear layer. The number between each layer represents the node feature size.

For each node i ∈ V , its feature hi is updated based on itself and its direct
neighbors at the previous step. Thus, hi(t + 1) is a function of hi(t) and hj(t),
∀j ∈ NAP (i) ∪ NUE(i), updated according to the following rule

hi(t + 1) = Norm (ReLU(fAP,t(i) + fUE,t(i))) , (12)

where Norm denotes the layer normalization and ReLU the rectified linear unit
activation function. For i, j ∈ V , • ∈ {AP,UE} and t ∈ {0, . . . , T − 1}, function
f•,t implements the graph transformer of [18] with a single attention head. It is
defined as

f•,t(i) = L1
•,t(hi(t)) +

∑
j∈N•(i)

α•,t(i, j) × L2
•,t(hj(t)). (13)

The attention coefficient α•,t(i, j) is equal to 〈L3
•,t(hi(t)),L4

•,t(hj(t))〉 divided by∑
u∈N•(i)〈L3

•,t(hi(t)),L4
•,t(hu(t))〉, where 〈x, y〉 = exp

(
xT y√

d

)
is the exponential

scalar product [20] and d the size of tensors x and y.
In this context, the attention is an efficient mechanism to select which neigh-

bors have the most impact on improving the node’s OLP prediction task accord-
ing to their channels. It is important to note that a permutation of the nodes
indices does not change the output value due to the summation used as an
aggregator in Eq. (13). As a consequence, the update rule (12) satisfies the per-
mutation equivariance property of our problem.

Figure 2 shows the structure of our solution. OLP-GNN has T = 6 hidden
attention layers implementing the update rule (12). We choose this value since
increasing the number of layers to 7 does not improve the average performance
by more than 1% while increasing the runtime by 5 − 15%. The final iteration
is a simple linear layer. OLP-GNN has a total of 22.4 k trainable parameters.

4.4 Training and Loss Function

For training OLP-GNN, we generate data from two environments: free space
60GHz LoS and urban 2GHz NLoS. Each environment is simulated with the
following number of APs and UEs placed randomly in a circular area of 500m
radius: (M,K) = (32, 6), (32, 9), (64, 9), (64, 18). For each channel matrix G,
we compute the corresponding target ΔOLP using B-SOCP. Each of the above 8
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datasets has 10k samples, for which 9k are used for training, 500 for validation
and 500 for testing. In summary, there is a total of 72 k training samples. Details
about the simulation settings can be found in the next section. Moreover, addi-
tional test datasets will be introduced there to evaluate the generalizability of
OLP-GNN.

We consider the mean square error loss of the per-user SINR to train our
model, i.e.,

∑K
k=1(SINR∗

k − SINRk)2/K, where SINR∗
k is the target SINR value

and SINRk is the SINR value predicted by OLP-GNN for user k. The SINRs
used in the loss are expressed in dB. We use the Adam optimizer [6] for the
training with a learning rate of 7 × 10−4, a batch size of 16, and 1000 epochs.

5 Numerical Results

In this section, we describe in detail the simulation used to generate training,
validation and test data for OLP-GNN. We then analyze our solution in terms
of spectral efficiency, computational complexity and runtime. We also compare
OLP-GNN to the classical MR and ZF precodings, as well as the target OLP.

5.1 Simulation Parameters and Performance Metrics

We simulate three CFmMIMO environments, namely 60GHz LoS, urban 2GHz
NLoS and rural 450MHz NLoS. The LoS model is identical to the one in [22]
for 60GHz carrier frequency. The NLoS environments are modeled following the
ITU-R [16] recommendations. Specifically, we consider the urban macro and rural
macro NLoS radio propagation models with respectively 2GHz and 450MHz
carrier frequencies. We deliberately choose different carrier frequencies to show
the generalizability of our solution. We consider a bandwidth of 20MHz for all
three environments.

For each environment we define 24 scenarios with different number of APs
(M = 24 . . . 96) and UEs (K = 4 . . . 36) as summarized in Table 1. The APs
and UEs are randomly positioned inside a circular area of radius 500m (4 km
for the rural environment). As explained in Sect. 4.4, four LoS datasets and four
urban NLoS datasets are used for training with 9k training samples each. The
rest of the LoS and urban NLoS scenarios each has 500 validation samples for
hyperparameter tuning and 500 test samples. Finally, the rural NLoS scenarios
are dedicated exclusively for testing with 500 samples each.

In contrast to [11,15,25] which only consider large-scale fading to optimize
the power control, precoding is done at a much shorter time scale which requires
to account for fast fading. Indeed, the channel coefficient gm,k is equal to the
large-scale fading between the m-th AP and k-th UE multiplied by a fast fading
term ζm,k. Here, we assume the fast fading to be i.i.d. Rayleigh distributed, i.e.,
ζm,k = (x1 + x2i) /

√
2, where x1 and x2 are independent standard normal ran-

dom variables and i denotes the imaginary unit. The magnitude of the complex
random variable ζm,k follows Rayleigh distribution.
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Table 1. OLP-GNN performance and runtimes.

Graph size Spectral efficiency loss compared to the optimal (%) Runtime (ms)
M K LoS Urban NLoS Rural NLoS average std

median 95%-likely median 95%-likely median 95%-likely (×10−3)

24 4 0.92 1.26 0.83 1.87 0.79 2.99 0.94 7.25

24 5 0.74 1.07 0.72 1.46 1.22 3.40 0.94 7.10

24 6 0.71 1.34 0.74 3.49 1.31 2.77 0.95 7.75

24 9 0.86 1.96 1.20 5.59 2.67 7.76 0.95 8.18

32 4 1.33 1.65 0.32 0.16 0.29 −0.05 0.95 7.82

32 6 0.50 0.69 0.27 0.72 0.76 0.75 0.96 7.85

32 8 0.50 0.80 0.44 0.62 0.74 1.10 0.96 7.86

32 9 0.64 0.65 0.55 1.21 0.06 2.69 0.96 7.84

32 12 0.55 0.88 0.65 1.18 1.18 4.99 0.96 7.55

32 16 1.17 3.37 0.35 4.06 2.21 11.57 0.97 8.29

48 8 0.62 0.76 0.24 0.64 0.09 0.33 0.99 7.59

48 12 0.56 0.69 0.56 0.72 0.47 1.07 1.02 8.70

48 16 0.61 0.69 0.48 0.09 0.12 1.43 1.06 7.65

48 24 1.31 2.94 0.07 2.25 0.40 2.56 1.24 8.08

64 6 0.94 1.28 0.59 0.64 0.46 0.46 0.99 7.87

64 9 0.47 0.83 0.29 0.90 0.44 0.04 1.04 6.99

64 12 0.56 0.78 0.51 0.71 0.29 0.15 1.09 7.73

64 18 0.58 0.69 0.54 0.50 0.24 0.32 1.28 8.09

64 24 0.44 0.59 0.37 0.63 −0.18 −0.92 1.41 7.96

64 32 1.70 3.50 −0.06 1.73 −0.49 0.82 1.55 8.54

96 9 0.79 1.19 0.46 0.42 0.37 0.47 1.19 7.45

96 18 0.69 0.68 0.48 0.55 0.41 0.66 1.59 8.33

96 27 0.72 0.92 0.57 1.04 0.26 −0.04 2.02 8.64

96 36 1.30 2.52 0.41 0.95 0.05 −0.13 2.53 9.67

We define the spectral efficiency (SE) in bit/s/Hz of user k as SE =
log2(1 + SINRk). We introduce two metrics based on SE to study the perfor-
mance of OLP-GNN, the performance loss at median and the 95%-likely SE loss.
The performance loss at median refers to the relative difference in spectral effi-
ciency between our solution and OLP taken at the median of their cumulative
distribution functions (CDF). The 95%-likely performance metric is the relative
loss at the 5-th percentile, thus indicating the coverage quality for 95% of users.

The performances of our solution in terms of spectral efficiency, runtime and
complexity will be compared to the optimal B-SOCP solution which defines the
upper bound for spectral efficiency but achieved in a time consuming manner.

The simulations and algorithms are implemented in Python 3 and can
be found at https://github.com/Nokia-Bell-Labs/olp-gnn. The optimal linear

https://github.com/Nokia-Bell-Labs/olp-gnn
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precoding matrix is obtained by solving problem P ′ using the MOSEK solver [1]
for SOCP combined with a bisection search as explained in Sect. 3.4. The bisec-
tion search terminates when precision ε = 0.01 is reached for all SINRs. The
OLP-GNN is implemented in PyTorch 2 and is compiled with PyTorch’s default
backend TorchInductor for runtime measurements.

5.2 Spectral Efficiency

To highlight the generalizability of OLP-GNN, we test it on a rural NLoS envi-
ronment. This is in contrast to the LoS and urban NLoS environments seen
during training. The rural channel distribution differs from the training datasets
due to the different radio propagation models, cell sizes and carrier frequen-
cies employed. The results are summarized in Table 1. Note that, the median
or 95%-likely SE loss written in the table can be negative since the precoder
produced by OLP-GNN may give higher SE to some users at the expense of
other users. In this case, the max-min objective is not reached and OLP-GNN
necessarily under-performs at other parts of the CDF. For example, in the rural
NLoS scenario with 64 APs and 24 UEs, OLP-GNN achieves negative median
and 5-th percentile losses. Nevertheless, it is 0.20% away from optimal at the 1st
percentile of the CDF (not shown on the table).

Figure 3 shows the spectral efficiency of MR, ZF, OLP and OLP-GNN on
four different scenarios. We first present the performance on scenarios with 96
APs and 36 UEs. These scenarios are relevant to evaluate the generalization of
our solution since their graphs are bigger than the ones used for training, which
have at most 64 APs and 18 UEs. For the LoS environment in Fig. 3a, OLP-GNN
approximates the optimal with 1.30% loss at median and a 95%-likely SE loss
of 2.52%. Moreover, it outperforms MR and ZF precodings by respectively 63%
and 17% at median. We obtain similar results for the urban NLoS and rural
NLoS scenarios in Fig. 3b and 3c. In both cases, OLP-GNN has less than 0.5%
loss at median and 1% loss at the 5-th percentile. It significantly outperforms
the baseline ZF by 32% in the urban scenario and by 40% in the rural scenario.

In Table 1, we observe 95%-likely SE losses of at most 4% for LoS datasets,
6% for urban NLoS and 12% for rural NLoS scenarios. Due to generalization
error, the bottom 5-th percentile is degraded in rural NLoS scenarios compared
to their urban NLoS and LoS counterparts. Nonetheless, the median performance
loss remains lower than 3% in all environments. Furthermore, even in the worst
case scenario shown in Fig. 3d, our solution improves both median SE and 95%-
likely SE over MR by around 50%. It also outperforms ZF by respectively 78%
and 162%, at median and 5-th percentile respectively.

In NLoS scenarios with 24 or 32 APs, we see the performance degrading
when the number of users K increases. This is partly due to the difficulty of
approximating matrix A when the problem has lesser degrees of freedom and
the UEs suffer greater interference. In this case, the diagonal elements of A vary
considerably, with some values being a magnitude of order higher than the others.
Thus, the model trained in this study is best suited for “massive MIMO” systems
where there are sufficiently more transmitting antennas M than receivers K.
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Fig. 3. Cumulative distribution functions of the downlink SE for MR, ZF, OLP and
OLP-GNN for different environments and graph sizes.

Fig. 4. Number of FLOPs versus the number of edges for B-SOCP and OLP-GNN.
Each point represents one rural NLoS scenario.
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5.3 Computational Complexity and Runtime

The asymptotic time complexity of OLP-GNN is O(MK(M + K)). This can
be derived by noting that the update rule (13) aggregates neighboring features
with a complexity proportional to the number of edges. The SOCP solver in
MOSEK is based on primal-dual interior point method which has asymptotic
complexity O

(
n3.5 log(ξ−1)

)
[21], where n = M +K in our problem and ξ is the

duality gap at termination. By applying bisection search on top of SOCP with
a precision ε, we deduce that B-SOCP runs in O

(
(M + K)3.5 log(ξ−1) log(ε−1)

)
.

In comparison, OLP-GNN has lower asymptotic complexity and does not have
an iteration-complexity depending on a precision hyperparameter, ξ or ε.

In practice, we evaluate the complexity of our algorithms with the number
of floating point operations (FLOPs). The FLOPs of our solution and the B-
SOCP method are given in Fig. 4. These FLOPs are obtained with PyPAPI (a
tool to access low-level hardware performance counters) on an Intel Core i9-
10980XE CPU. We see that B-SOCP requires respectively 5.7 × 102, 4.0 × 103

and 1.2 × 104 times more FLOPs than OLP-GNN for (M,K) = (32, 9), (64, 18)
and (96, 27). As a consequence, OLP-GNN is several order of magnitude faster
than B-SOCP.

We also measure the runtimes of OLP-GNN on a NVIDIA RTX A4000 GPU.
Each dataset is repeated 10 times to obtain the runtime statistics in Table 1.
These runtimes take into account preprocessing (0.31 − 0.43ms), OLP-GNN
inference and postprocessing (0.17 − 0.18ms). For 24 and 32 APs, and up to
16 UEs, the average runtimes are under 1ms. In the larger scenarios with up
to 96 APs and 18 UEs, the runtimes are under 2ms. In all cases, the standard
deviations (std) are lower than 0.01ms, which indicates that these runtimes are
consistently within the 1 to 2 millisecond requirement stated in the introduction.
This shows that OLP-GNN is implementable in practice with some limitations
on the system size. Moreover, dedicated hardware and code optimization could
further reduce the runtimes.

6 Conclusions

In this paper, we apply a graph neural network to the downlink max-min precod-
ing problem in CFmMIMO. Our solution, named OLP-GNN, approximates the
optimal linear precoder with several orders of magnitude faster runtimes than
the state-of-the-art, making it feasible for real deployment for the first time.
Indeed, the runtimes remain under 1ms for up to 32 APs and 16 UEs, and under
2ms for up to 96 APs and 18 UEs.

The characteristics of communication channels between transmitters and
receivers can vary greatly. We evaluate our trained model on both LoS/NLoS
and urban/rural use-cases, demonstrating its generalizability to different envi-
ronments and system sizes. Simulations show that the median spectral efficiencies
achieved by OLP-GNN are less than 3% away from optimal on all scenarios.

Reducing further the time complexity of our solution would enable its execu-
tion on less powerful and costly hardware. In the current work, OLP-GNN takes
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as input G† which must be computed beforehand. Computing such a pseudo-
inverse using classical numerical methods causes some overhead on the prepro-
cessing time. It is therefore desirable to develop an end-to-end GNN without the
above overheads. We note that one way to speed up the inference time may be
to apply GNN-specific quantization methods [19].
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Abstract. Ephemeral Group Recommendation (EGR) refers to recom-
mending items for a temporarily existing group, where the ephemeral
group has little or no historical interactions with items while each group
member has his/her own interaction history. We note that EGR not only
faces the challenge of extremely sparse or nonexistent group-item interac-
tions and also has its own special needs. EGR needs to seek the common
preferences of the members instead of maximizing the personalized needs
of individuals. In particular, group preferences may not necessarily be
related to the timeliness and intensity of the member’s individual behav-
ior and preferences. Following this line of thought, we propose an EGR
model named HL4EGR. Specifically, we adopt hypergraphs to model
complex relationships among users, items, and groups, during which we
weaken the timeliness and intensity of user behavior and preferences and
augment training data by discovering implicit and explicit group-group
similarities. Moreover, we design a cross-hypergraph contrastive learning
strategy to align embeddings for the same group in different hypergraphs,
which enables group preferences to reflect the common preferences of
group members comprehensively. We conduct extensive experiments on
three real-world datasets, and the experimental results show that our
model HL4EGR outperforms state-of-the-art models.

Keywords: Recommender Systems · Group Recommendation ·
Hypergraph Neural Networks · Contrastive Learning

1 Introduction

In recent years, recommender systems have been offering personalized item rec-
ommendations on online services. With the increasing social activities of users,
providing group recommendations on online services is poised to become a new
and viable pathway to attract users and boost user engagement continuously.

The group recommendation is to recommend items of common interests (such
as dining restaurants, travel destinations, and gathering venues) for a group of
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
A. Bifet et al. (Eds.): ECML PKDD 2024, LNAI 14949, pp. 89–105, 2024.
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Fig. 1. Case study. The icon denotes the type of restaurant. The sequence of icons in
a rectangle denotes the interaction history of the person on the left side.

members, often taking group preferences as a guideline [9,10,13,19]. Depending
on the way a group is established, group recommendation can be divided into
two categories: persistent group recommendation (PGR) and ephemeral group
recommendation (EGR). The former is for a group with fixed members having
long-term and extensive interactions between the group and items. The latter
is for a temporarily formed group without fixed members, where the group has
little or no historical interactions with items, making it impossible to directly
learn from those interactions. We focus on EGR in this paper.

We note that the group recommendation, either PGR or EGR, should adhere
to the norm of seeking common ground, which facilitates the smooth progress of
collective activities. Specifically, the group recommendation models are supposed
to treat the common preferences of all the members as the group preferences,
and seek factors behind the consensus among group members. In particular, the
model should treat the historical and current preferences of a group member
equally, without weakening the role of the group member’s historical preferences
over time. This stems from real-life experience: if a member’s historical prefer-
ences are the same as the current preferences of the other members in a group,
even if the member’s current preferences have deviated from his/her historical
preferences, the member may still reach a compromise with the other members,
accepting the item that is consistent with his/her historical preferences. More-
over, the model are expected to treat the strong preferences of one member and
the weak preferences of another member equally, and should not be misled by
the strong preferences exhibited by one or a few members.

Taking a real ephemeral group from the Yelp dataset as an example. As
depicted in Fig. 1, the group consists of three persons. The person on the top
has wide-ranging interests, where steak is his early preference. The person on the
middle left has interest in steak and hamburger, and the person on the middle
right has interest in steak only. Finally, this group actually visits a steakhouse, a
restaurant that is acceptable to all three of them. Unfortunately, existing EGR
models fail to obtain the correct result. For the case in the Fig. 1, GroupIM [14]
and CubeRec [6] recommend a burger shop and a dessert shop, respectively. It
seems that these two models are influenced by the strong personal preferences
of two group members. S2-HHGR [20] and HyperGroup [8] recommend a noodle
shop and a pizza shop, respectively. These two models seem to ignore historical
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preferences of members and be influenced by the user with wide-ranging pref-
erences. In addition, two PGR models, i.e., AGREE [4] and ConsRec [16], also
give incorrect results.

To realize “seeking common ground” in group recommendations and figure
out a feasible solution to the inherent problem in EGR, that is, group-item
interactions are extremely sparse or nonexistent, we propose a multi-hypergraph
model named HL4EGR (Hypergraph Learning for Ephemeral Group Recom-
mendation). The model employs hypergraphs to capture the relationship among
users, items, and groups, and adopts a two-stage framework consisting of pre-
training and fine-tuning. During the pre-training, we choose the hypergraph to
model user-item interactions, where a hyperedge connects all the items that
a user interacts with, thus equally treating historical interactions and current
interactions. The item embeddings obtained by the pre-training are subsequently
clustered to identify user preferences. At the stage of fine-tuning, we construct
three hypergraphs to model user-group affiliations and two types of group-group
similarities, respectively. Here, two types of similarities are given from two dif-
ferent perspectives, one explicit from the perspective of items interacted with by
the members and another implicit from the perspective of common preferences of
members. Both of them emphasize the commonality of member behavior or mem-
ber preferences, and weaken the intensity of member behavior or preferences.
Further, we maximize the agreement between contrastive views of groups by
cross-hypergraph contrastive learning. Finally, we aggregate these group embed-
dings to generate group preferences and then perform the prediction for groups.
For the case in Fig. 1, our model recommends a steakhouse that is in line with
the ground truth. Our contributions are summarized as follows.

• We construct four hypergraphs and learn the complex relationships among
users, items, and groups through hypergraph convolutions. Particularly, by
means of hypergraphs, we weaken the timeliness and intensity of user behav-
ior and preferences and captures their common preferences effectively, thus
satisfying the intrinsic requirement of group recommendation.

• We highlight that identifying and leveraging similarities between groups pro-
vides a practicable way to cope with the absence of group-item interactions.
Moreover, we take group self-discrimination as the self-supervised task, which
offers auxiliary supervision signals via two views of a group w.r.t. explicit and
implicit group-group similarities for reinforcing group representation learning.

• We conduct extensive experiments on three public datasets. The experimen-
tal results show that HL4EGR consistently outperforms the state-of-the-art
models, showing relative gains of 8.92%-15.93% on Recall@50 and 13.37%-
18.88% on NDCG@50, respectively.

2 Related Work

Early group recommendation adopts collaborative filtering to obtain the mem-
ber’s scores on items and then aggregates their scores to get group preferences by
some hand-crafted heuristic rules. Customary aggregation methods include the
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least misery [1], the average [3], and the maximum satisfaction strategy [2]. How-
ever, these predefined aggregation strategies lack the flexibility to achieve opti-
mal performance in group recommendation. Subsequent work on group recom-
mendation shifts towards how to efficiently aggregate the preference representa-
tions of all group members to the group preference. For example, multiple group
recommendation models such as AGREE [4], SoAGREE [5] and MoSAN [15]
propose different attention-based aggregation methods.

With the development of graph neural networks, the tripartite graph [12] has
been employed to model users, items, and groups relationships and then learn
group representations. Furthermore, hypergraphs are found to be more suitable
for modeling groups because hyperedges in the hypergraph can connect two or
more nodes and represent a more general topological relationship. Some models
[8,10,16,20] apply the hypergraph to model groups and then employ Hypergraph
Neural Networks (HNNs) [17] to generate group representations. For example,
ConsRec [16] models users and items as nodes, groups as hyperedges, and learns
group representations through HNNs. In addition, CubeRec [6] adaptively gen-
erates a hypercube representation for each group. However, these models do not
discover the essence of user preferences playing a role in group recommendation
scenarios. They do not treat strong and weak preferences equally, nor do they
give equal weight to historical and current preferences.

Recently, the research on group recommendation [6,14,20] has attempted
to incorporate self-supervised learning to alleviate the data sparsity problem.
For example, for enhancing the user and group representations, GroupIM [14]
proposes maximizing mutual information between members within a group and
the group. S2-HHGR [20] designs a double-scale node dropout strategy and per-
forms node self-discrimination on different user representations. However, exist-
ing methods mainly focus on finding self-supervision signals in user-group rela-
tionships without considering group-group relationships. Besides, some studies
rely on introducing additional information to improve the performance of group
recommendations. For example, KGAG [7] introduces knowledge graphs into
group recommendation. SIGR [18] and HyperGroup [8] introduce social relation-
ships among users to learn group preferences influenced by social relationships.

Compared to existing work, our model employs multiple hypergraphs to
model different relationships among users, items, and groups from multiple per-
spectives, using the prior about the role of user preferences for group recommen-
dations as an inductive bias of the model. Moreover, our model captures self-
supervision signals from the similarities between groups, and then learn more
comprehensive group representations.

3 Methodology

3.1 Model Overview

Let U , V and G denote the user set, item set, and ephemeral group set, respec-
tively. An ephemeral group gk ∈ G consists of |gk| users, i.e., gk = {ugk

i }|gk|
i=1,
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Fig. 2. Architecture of our HL4EGR.

where ugk
i ∈ U . There are two types of observed interactions among users, items,

and ephemeral groups, i.e., user-item interactions denoted as X ∈ R
|U|×|V|, and

group-item interactions represented as Y ∈ R
|G|×|V|, where the element ykj of

the matrix Y is equal to 1 if the group gk has historical interactions with the
item vj , otherwise ykj = 0.

Given an ephemeral group gk, our task is to predict the item that the group
gk is most likely to be satisfied with.

For this task, we propose a multi-hypergraph model HL4EGR, whose archi-
tecture is shown in Fig. 2. We build four hypergraphs to model the user-item
interactions, the user-group affiliations, and the explicit and implicit group-group
similarities.

As shown in Fig. 2, the training of HL4EGR is divided into two stages, i.e.,
pre-training and fine-tuning.

In the first stage, we construct the user-item hypergraph HUV and perform
the convolution operation on HUV , thus obtaining the user embeddings U and
item embeddings V. U is utilized for initializing the group embeddings used
in the second stage and V is applied to characterize the user preferences by
clustering.

In the second stage of training, i.e., fine-tuning, except for constructing
the user-group hypergraph HUG, we also construct two group-group hyper-
graphs HV and HP , portraying explicit and implicit similarities between groups,
respectively. Then we perform the hypergraph convolution operations to obtain
group embeddings. Furthermore, we adopt a cross-hypergraph contrastive learn-
ing strategy to align embeddings of the same group from both explicit and
implicit perspectives, thus obtaining more comprehensive group preferences that
are devoted to group recommendation.



94 R. Zhao et al.

3.2 Hypergraph Construction

User-Item Hypergraph . We define the user-item hypergraph as HUV =
(V, EUV ), where a node of HUV is an item in V, a hyperedge eUV

i ∈ EUV ,
i ∈ [1, |U|] connects all the items that user ui interacts with, and |EUV | = |U|.
As shown in Fig. 2, user u1 has historical interactions with item v1 and item
v2, thus we connect {v1, v2} with a hyperedge. Such hyperedges eliminate tem-
poral differentiations of interactions, treating historical interactions and current
interactions equally.

User-Group Hypergraph . We define the user-group hypergraph as HUG =
(U , EUG), where a node of HUG is a user in U , a hyperedge eUG

k ∈ EUG, k ∈
[1, |G|] connects all the users in group gk, and |EUG| = |G|. As shown in Fig. 2,
we connect the group member {u1, u2} of the group g1 with a hyperedge, which
reflects the user-group affiliation.

Group-Group Hypergraphs . For alleviating the data sparsity issue, we con-
struct two group-group hypergraphs, i.e., HV = (G, EV ) and HP = (G, EP ).

In hypergraph HV , G is taken as the node set, and a hyperedge eVk ∈ EV ,
k ∈ [1, |G|] connects all such groups, provided that a member of that group and
a member of group gk interact with the same item. In other words, hypergraph
HV contains the explicit similarities between groups.

Complementary to HV , hypergraph HP implies the implicit similarities
between groups, i.e., the preference similarities between groups. The group pref-
erence is essentially a collection of member preferences. Specifically, with the
consideration of the interference of noisy behavior, we regard the items that all
users have interacted with as the starting point to model the user’s preferences,
instead of capturing the user’s preferences from a user’s behavior. We perform
K-means clustering on the item embeddings V obtained by the pre-training on
the hypergraph HUV and generate c clustering centers. Next, for each user,
given an item that this user has interacted with, if the distance between the
item embedding and the center of the category the item belongs to is less than
μ, this center is considered to be a preference of this user. Subsequently, the
preferences of group members are merged to form a set of group preferences.
Then, we build a hyperedge ePk ∈ EP , k ∈ [1, |G|] to connect the groups that has
common preferences with group gk.

When building the group-group hypergraphs, we treat all the hyperedges
equally (i.e., hyperedges with same weights), thus flattening the intensity of a
user’s individual behavior and preferences. This enables HL4EGR to more fairly
learn the common preferences of users within the group, reducing the impact of
the intensity of a user’s personal behavior and preferences on the group-group
similarity.
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3.3 Hypergraph Convolution

In HL4EGR, we design a HyperGraph Convolutional Network (HGCN) to learn
representations of nodes and hyperedges in a hypergraph. Without loss of gener-
ality, we formalize four hypergraphs uniformly as H = (N , E), where N denotes
the node set and E denotes the hyperedge set. The learning process of the l-th
layer of HGCN is as follows.

Firstly, we aggregate representations of all nodes connected by hyperedge ek
as follows.

m(l)
k = AGG(n(l−1)

i |ni ∈ ek) (1)

where ek ∈ E denotes the k-th hyperedge, n(0)
i is the initial embedding of node

ni ∈ N , n(l−1)
i is the embedding of the node ni in the (l − 1)-th layer, AGG(·)

denotes an aggregation function, realized as an average pooling function.
Then, we concatenate node aggregation representation m(l)

k and hyperedge
representation e(l−1)

k to update the hyperedge representation as follows.

e(l)k = CONCAT(m(l)
k , e(l−1)

k )WH (2)

where e(0)k is the initial embedding of hyperedge ek, e
(l)
k denotes the embedding

of the hyperedge ek in the l-th layer. WH ∈ R
2d×d is a learnable matrix.

Moreover, node representations can be updated as follows.

n(l)
i = AGG(e(l)k |ek ∈ Ei) (3)

where Ei represents the set of hyperedges connected to the node ni.
Finally, we can obtain the embedding ni of the node ni, and the embedding

ek of the hyperedge ek as follows.

ni =
L∑

l=1

n(l)
i , ek =

L∑

l=1

e(l)k (4)

where L is the number of convolutional layers.
During pre-training, we first randomly initialize the representations of nodes

and hyperedges in HUV and feed them into an HGCN. Then, we iterate and
optimize the HGCN by the cross entropy loss (LU in Fig. 2). After pre-training,
we obtain user embeddings U ∈ R

|U|×d and item embeddings V ∈ R
|V|×d.

During fine-tuning, we first aggregate user embeddings U to generate group
embeddings GU ∈ R

|G|×d. In detail, taking the group gk as an example, we lever-
age an attention mechanism to aggregate embeddings of users in the group gk,
thereby obtaining the initial group representation gU

k = GU (k, :). This process
can be formalized as follows.

gU
k =

∑

ui∈gk

αiui (5)

αi =
exp(tanh(uiWAGG + b))∑

ui′ ∈gk
exp(tanh(ui′WAGG + b))

(6)
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where ui = U(i, :) denotes the embedding of the user ui obtained by pre-training,
αi is the attention weight w.r.t. the user ui. WAGG ∈ R

d is a learnable vector
and b is a bias.

Next, we use GU to initialize hyperedges of HUG, HV and HP , and nodes
of HV and HP , and use user embeddings U obtained by the pre-training to
initialize node representations on the hypergraph HUG, and then feed them into
corresponding HGCNs.

Finally, by performing the calculations over these three HGCNs, we obtain
representations of hyperedges in three hypergraphs, denoted as GUG, GV , and
GP , respectively. Given group gk, its embeddings from three hypergraphs are
gUG
k = GUG(k, :), gV

k = GV (k, :), and gP
k = GP (k, :), respectively.

3.4 Cross-Hypergraph Contrastive Learning

To learn more comprehensive group preferences, we design a contrastive learn-
ing strategy on two group-group hypergraphs, i.e., the hypergraph HV reflecting
explicit similarities and the hypergraph HP implying implicit similarities, align-
ing two embeddings of the same group in HV and HP . Concretely, we regard
the representations w.r.t. the same group in two hypergraphs HV and HP as
positive sample pairs. The representations w.r.t. different groups in the same
batch in two hypergraphs HV and HP are considered as negative sample pairs.
We take InfoNCE loss as the contrastive learning loss as follows.

LCL = −
∑

gk∈G
log

exp(sim(gV
k ,gP

k )/τ)
exp(sim(gV

k ,gP
k )/τ) + NV + NP

(7)

NV =
∑

gk′∈G−
k

exp(sim(gV
k′ ,gP

k )/τ), NP =
∑

gk′∈G−
k

exp(sim(gV
k ,gP

k′)/τ) (8)

where gV
k and gP

k form a pair of positive samples, corresponding to the represen-
tations of the group gk in the hypergraph HV and HP , respectively. G−

k is the
set of negative samples w.r.t. the group gk, which is composed of other groups
(i.e., k′ �= k) within the same batch. sim(·) function is adopted for calculating
the similarity of a pair of vectors, which refers to the cosine similarity in this
paper. τ is the temperature parameter.

3.5 Model Optimization

During pre-training, we predict the interaction probabilities x̂i ∈ R|V| of user ui

on the item set V as follows.

x̂i = softmax(uiWUV ) (9)

where ui = U(i, :)obtained from hypergraph HUV , WUV ∈ R
d×|V| is a learnable

matrix.
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Then we calculated the cross entropy loss LU as follows.

LU = − 1
|U|

|U|∑

i=1

|V|∑

j=1

xij log x̂ij (10)

where x̂ij refers to the interaction probability of the user ui w.r.t. the item vj .
xij is the ground truth of user-item interaction.

During fine-tuning, given group representations from different hypergraphs,
we adopt an adaptive aggregation strategy to fuse different group embeddings,
i.e., gU

k obtained from Eq. 5, gUG
k in the hypergraph HUG, and gV

k in the hyper-
graph HV , to generate the group preference gk for the group gk as follows.

gk = αgU
k + βgUG

k + γgV
k (11)

where α = σ(gU
k W

U ), β = σ(gUG
k WUG), and γ = σ(gV

k W
V ). WU , WUG, and

WV ∈ R
d are learnable matrices. σ is the sigmoid activation function.

We predict the interaction probabilities ŷk ∈ R
|V| of the group gk on the

item set V as follows.
ŷk = softmax(gkWGV ) (12)

where WGV ∈ R
d×|V| is a learnable matrix.

Then, we adopt the cross entropy loss as the main loss, calculated as follows.

LG = − 1
|G|

|G|∑

k=1

|V|∑

j=1

ykj log ŷkj (13)

where ŷkj refers to the interaction probability of the group gk w.r.t. the item vj .
ykj is the ground truth.

We adopt a multi-task strategy to jointly optimize the main group recom-
mendation task and the auxiliary contrastive learning task as follows.

L = LG + λLCL (14)

where λ is a hyperparameter.

3.6 Complexity Analysis

Space Complexity. In HL4EGR, the learnable parameters are mainly from
embeddings of users, items, and groups. In addition, as for hypergraph convo-
lutions, since we have four hypergraphs in two stages, each with L layers, the
number of parameters is 4L × 2d2. The number of parameters for two predic-
tion layers in two stages is 2|V|d. Thus, the space complexity of HL4EGR is
O(Ld2 + |U|d + |V|d + |G|d).
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Time Complexity. The computation amount of HL4EGR is mainly concen-
trated on the hypergraph convolutions. Let |H| be the number of nonzero ele-
ments in the adjacency matrix of hypergraph H. The time complexity of each
hypergraph convolution computation is O(L× (2|H|d+2|E|d2)), where |E| is the
number of hyperedges. For hypergraphs HUV , HUG, HV , and HP , the numbers
of hyperedges are |U|, |G|, |G|, and |G|, respectively. The total time complexity
of HL4EGR is O(Ld2|G| + Ld2|U| + Ld(|HUV | + |HUG| + |HV | + |HP |)).

Table 1. Statistics of datasets.

4 Experiments

4.1 Experimental Settings

Datasets. We conduct experiments on three public datasets.

• Weeplaces. It records users’ check-ins in location-based social networks. We
extract check-ins from points of interest (POIs) in all major cities in the U.S.
We follow the same operations as in GroupIM [14] for constructing user-POI
interactions and group-POI interactions.

• Yelp. It records users’ check-ins in local businesses (e.g., restaurants). We use
the dataset published in [18], which includes users’ check-ins on businesses
located in Los Angeles, as well as groups’ check-in information.

• Douban. It is also published in [18], recording the information of users orga-
nizing and participating in social activities. We filter out users and items with
fewer than 10 interactions.

Table 1 lists the statistics of the three datasets. As shown in Table 1, the
average of group-item interactions is less than 3, which manifests that we conduct
experiments on ephemeral groups. We randomly split all the groups of each
dataset into training, validation, and test sets with a ratio of 7:1:2. We ensure
that each group can only appear in one of the three sets.

Baselines. We compare HL4EGR to the following baselines:

• Two PGR models: AGREE1, which is a classical PGR model using an atten-
tion mechanism for member aggregation [4]. ConsRec2, the state-of-the-art

1 https://github.com/LianHaiMiao/Attentive-Group-Recommendation.
2 https://github.com/FDUDSDE/WWW2023ConsRec.

https://github.com/LianHaiMiao/Attentive-Group-Recommendation
https://github.com/FDUDSDE/WWW2023ConsRec
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model for PGR, which proposes an HNN to learn member-level aggregation
and captures the group consensus on three views [16].

• Four EGR models: GroupIM3, which maximizes user-group mutual infor-
mation for group recommendation [14]. HyperGroup4, which models groups
as hyperedges to learn group representations [8]. S2-HHGR5, which uses a
hierarchical hypergraph and a node dropout strategy on the hypergraph to
learn group preferences [20]. CubeRec6, the state-of-the-art model for EGR,
which utilizes the geometric expressiveness of hypercubes and hypercube
intersection-based self-supervision to obtain the group representations [6].

Table 2. Overall performance. The values in bold and underlined are the best and
second best results in each row.

Implementation Details. We implement our model in PyTorch. In our model,
the number of hypergraph convolutional layers L is set to 2 and temperature
τ is set to 1. We tune the weight of contrastive learning loss λ, the number of
clustering centers c, the threshold of distance to any clustering center μ for every
dataset, finally setting λ to 0.3, μ to 0.2 for all datasets, c to 64 for Weeplaces,
128 for Yelp and Douban. We optimize the model via the Adam optimizer with
3 https://github.com/CrowdDynamicsLab/GroupIM.
4 https://github.com/FDUDSDE/WWW2023GroupRecBaselines.
5 https://github.com/0411tony/HHGR.
6 https://github.com/jinglong0407/CubeRec.

https://github.com/CrowdDynamicsLab/GroupIM
https://github.com/FDUDSDE/WWW2023GroupRecBaselines
https://github.com/0411tony/HHGR
https://github.com/jinglong0407/CubeRec
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the learning rate 0.001. The implementation code has been released7. For the
sake of fairness, we set the size of all embeddings d to 64, the batch size to
256 in all the experiments. For all baselines, the hyperparameters are set to
values corresponding to best performance reported in their respective papers.
Experiments are conducted on NVIDIA RTX3090 GPU with 24G memory.

Metrics. To evaluate the performance of recommending items to groups, we
adopt two metrics, i.e., Recall@K and NDCG@K (R@K and N@K for short),
where Recall focuses on whether the group actually chooses the recommended
item, NDCG focuses on the ranking of the recommended items and K is set to
either 20 or 50.

Fig. 3. Group recommendation performance on groups of different sizes.

4.2 Performance Comparison

Overall Performance. Table 2 lists the experimental results of our proposed
model and compared models on the three datasets. From Table 2, we have the
following observations.

• The PGR models are far inferior to the EGR models in all metrics. This
is because PGR models depend on group-item interactions to learn group
preferences; however, these interactions become extremely sparse or nonex-
istent in the context of ephemeral groups, ultimately leading to a decline in
performance.

• Hypergraph-based models, i.e., ConsRec, HyperGroup, S2-HHGR, and
HL4EGR outperform the traditional attention-based model, i.e., AGREE,
which demonstrates that the hypergraph structure excels in modeling user-
group affiliations.

• Three EGR models equipped with self-supervised learning, i.e., GroupIM,
CubeRec, and HL4EGR, outperform other models. This might be attributed
to the fact that these EGR models can discover and utilize additional super-
vision signals, thus improving the quality of group embeddings. This shows
the advantages of self-supervised learning in EGR.

7 https://github.com/ZhaoRui-7/HL4EGR.

https://github.com/ZhaoRui-7/HL4EGR
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• Our HL4EGR outperforms all baselines on three datasets. Taking Recall@20
as an example, compared to the best baseline on each of the three datasets,
HL4EGR shows improvements of 14.56% - 23.48%, averaging at 17.87%.

Performance on Groups of Different Sizes. We split the test set into five
subsets by the range of the number of group members, i.e., 2-3, 4-5, 6-7, 8-9,
and >=10 members. We choose GroupIM and CubeRec for comparison because
they are the top-2 best baselines, and we conduct experiments on Weeplaces and
Yelp datasets.

As shown in Fig. 3, HL4EGR outperforms GroupIM and CubeRec in almost
all cases, except on groups of 10 or more members in Weeplaces, where all three
models have the same Recall values (reaching the maximum value of 1). In par-
ticular, HL4EGR outperforms the other two models for the case of groups of
2-3 members, indicating that HL4EGR is more suitable for real-life group rec-
ommendations, where the size of groups shows the long-tail distribution. Mean-
while, compared to other two models, HL4EGR has more significant performance
gains for groups of 10 or more members in Yelp. The reason behind might be
that HL4EGR can correct group representations by treating all behavior and
preferences of all members indiscriminately in terms of timeliness and intensity,
thus capturing common preferences of groups more accurately, while the number
of group members increases.

Table 3. Ablation study.

4.3 Ablation Study

Effect of Multiple Hypergraphs. We design four variants to observe the
effect of four hypergraphs in HL4EGR on the performance. Variant A deletes
the HGCN on HUV but also performs the pre-training, taking randomly ini-
tialized user and item embeddings as input and cross entropy loss, i.e., LU as
the optimization goal. Variant B removes the HGCN on HP , which triggers a
cascading removal of the contrastive learning module, since HP is treated as a
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source of self-supervision signals. Variant C removes the HGCN on HV , which
leads to the removal of contrastive learning module as well as the reduction of
one source of the group preference. Variant D eliminates the HGCN on HUG.

The experimental results on Weeplaces and Yelp are listed in Table 3(a).
Compared to HL4EGR, all variants show different degrees of performance degra-
dation, illustrating that each hypergraph is effective. Variant A shows the notable
performance degradation, indicating that hypergraph HUV is the underpinning
of the whole model. The direct reason behind this is that the user and item
embeddings derived from HUV are subsequently used for the construction and
learning of other hypergraphs, which imposes a great positive impact on per-
formance. The performance decrease of variant B shows the effect of alleviating
data sparsity and adjusting group embeddings via contrastive learning. Variant
C has a significant decline in performance, while compared to variant D, which
shows that group-group relationships play a more important role than inherent
memberships of groups in group recommendation.

Effect of Pre-Training. To observe the impact of pre-training, we construct
two extra variants of HL4EGR, namely variants E and F. Variant E removes
the pre-training, thus collapsing into the scaled-down version of only containing
HUG and HV and taking randomly initialized user embeddings as the input of
fine-tuning. Variant F substitutes SASRec [11] for the HGCN on HUV .

The performance of variants E and F is shown in the top half of Table 3(b).
Variant E without pre-training shows the worst performance, indicating that the
pre-training is indispensable.

Fig. 4. Sensitivity analysis of hyperparameters λ, c and μ on Weeplaces dataset.

Variant F was originally anticipated to exhibit high performance because
SASRec adopts a self-attentive mechanism that learns both long-term and short-
term dependencies and produces high-quality user and item embeddings. How-
ever, experimental results show that variant F does not surpass the original
HL4EGR. This observation reveals that the self-attention mechanism, which is
good at capturing temporal dependencies embedded in sequences, does little to
help eliciting the group preferences. Presumably the reason for this would be
that group preferences are time-insensitive.
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Effect of Hyperedge Weights. As mentioned in Sect. 3.2, when constructing
group-group similarity hypergraphs in HL4EGR, the weights on the hyperedges
are assigned to the same value, aiming to weaken the effect of the intensity
of individual member behavior and preferences. To observe how weight values
affect performance, we modify HV and HP by setting weights to the number
of items interacted with by both members of two groups and the number of
common preferences of two groups, respectively, and construct three variants of
HL4EGR. Variant G introduces weights on HV and HP . Variant H introduces
weights only on HV while variant I does so only on HP .

The experimental results are shown in the bottom half of Table 3(b). It can
be seen that variants G, H and I have lower performance than HL4EGR. In par-
ticular, variant G has a significant performance degradation, which shows that
simultaneously emphasizing the intensities of member behavior and preferences
has a significant negative effect on group recommendation.

4.4 Hyperparameter Sensitivity Analysis

Impact of Contrastive Loss Weight λ. Figure 4(a) shows the results on
Weeplaces dataset. This shows that appropriate contrastive learning loss can
effectively normalize the group representations.

Impact of Number of Clustering Centers c. Figure 4(b) shows the results.
HL4EGR achieves best performance on Weeplaces when c = 64. From Fig. 4(b),
we believe that when c is very small, the model is unable to distinguish a user’s
different preferences, leading to false similarity when modeling group-group sim-
ilarity. When c is too large, the model tends to identify the same preference
of a user as multiple preferences, which fails to weaken the intensity of user’s
individual preference.

Impact of Distance Threshold μ. Figure 4(c) shows the results. HL4EGR
achieves best performance when μ = 0.2. We think that when μ is very small,
items that indicate user preferences are filtered out; when μ becomes large, more
items including noisy items are retained. Both cause performance reduction.

5 Conclusion

Ephemeral group recommendation is a challenging recommendation task, not
only because group-item interactions are not enough to learn group preferences
directly, but also because there are essential differences between group recom-
mendation and personalized recommendation. This paper proposes a model
HL4EGR that models the user-item interactions, user-group affiliations, and
group-group similarities into multiple hypergraphs, reflecting the essence of the
group recommendation. Meanwhile, HL4EGR also designs a contrastive learning
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strategy on the hypergraphs, which enables HL4EGR to learn more comprehen-
sive group preferences. The results of experiments on public datasets show that
HL4EGR substantially improves the accuracy of ephemeral group recommenda-
tion results.
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Abstract. Spoofing involves gaining illegal profits through the strate-
gic deployment of a series of deceptive orders to mislead the actions of
other traders. This dishonest practice poses a significant threat to the
robustness and sustainability of real-world financial markets. Recently,
more and more fraudsters have organized like an enterprise with a higher
level of concealment, making it very challenging to detect in practice.
Existing efforts primarily focus on identifying individual spoofing behav-
ior or specific spoofing orders, ignoring organized spoofing transactions
in the form of groups. Therefore, in this paper, we propose GPEGNN,
a novel Group Perceptual-Enhanced Graph Neural Network approach,
aimed at detecting organized spoofing transactions. In particular, we first
construct the user’s trading behavior into transaction graphs. Then, we
devise local context learning layers to represent the node-level features by
a multi-layer graph attention network, and the edge-level features by the
self-attention and multilayer perceptron network. Concurrently, we incor-
porate a global context learning module to learn group-level features by
community-centric encoder. These local and global features are jointly
optimized within the detection network and trained in an end-to-end
framework. Our proposed approach is evaluated by real-world applica-
tion scenarios in a commodity futures exchange. The experimental results
demonstrate the superiority of our proposed approach, showcasing its
ability to identify more instances of spoofing trades with relatively high
precision compared with state-of-the-art baselines. Our approach thereby
bridges the gap between spoofing detection industrial practice and graph
learning theory, which we believe could conduct a positive impact on the
health of the financial trading ecosystem.

Keywords: spoofing detection · graph attention network · group-level
features · community-centric encoder

1 Introduction

Spoofing transaction [18], in the context of financial markets, refers to a deceptive
trading behavior where traders engage in manipulative activities to create a false
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Fig. 1. A typical example of the challenging group-based spoofing problem.

or misleading impression in the market. The purpose of spoofing transaction is
to influence the prices of financial instruments, such as stocks, bonds or futures,
thereby enhance profits [2]. As a significant form of market manipulation, spoof-
ing not only inflicts extensive economic losses to the financial system, triggering
instability in the financial market, but also seriously disrupts the normal order
of the financial market. Thus, spoofing is strictly forbidden by all major financial
markets around the world [17]. For example, in 2020, the Commodity Futures
Trading Commission (CFTC) ordered JPMorgan to pay record $920 million for
spoofing and manipulation1.

Various jurisdictions [16,26] have implemented regulations to detect spoofing
behaviors from statistical rules [15] to machine learning methods [10]. With the
rapid evolution of high-frequency trading techniques [20], spoofing have become
so deceptive that they cannot be detected by classical machine learning models,
which treat each trading behavior as an isolated event. Recently, graph neural
networks (GNNs) have been leveraged for financial fraud detection and achieved
remarkable success [5,23], as GNNs model historical inter-connected trading
behavior in a graph-based perspective, which could better mine the grouped
conspiracy patterns. For example, RTG-Trans [13] constructs the trading graph
by treating transactions as nodes and their relation as edges, and then utilizes
graph convolution to learn latent representations for spoofing detection. GTAN
[25] leverages the graph attention mechanism on the temporal transaction graphs
and achieves superior performance in fraud detection.

However, existing graph neural network approaches mostly learn the node
and edge features by aggregation-based operation [27], which face significant
challenges in the real-world spoofing detection problem because they could only
represent the local context of a suspicious transaction. While an increasing num-

1 https://www.cftc.gov/PressRoom/PressReleases/8260-20.

https://www.cftc.gov/PressRoom/PressReleases/8260-20


108 L. Kang et al.

ber of traders are organized like enterprises to conduct conspiracy spoofing to
make illegal profits from well-behaved participants, especially innocent small-
and medium-sized investors. Figure 1 illustrates a typical example of group-based
spoofing transaction, showing how to push up the stock price through organized
fake orders and then sell real orders to make profits. First, multiple collaborative
traders submit a large number of buy orders at a price higher than the current
market price, gradually pushing up the price of the target asset. Then the mas-
ter trader submits a real sell order at the desired price. After the real order is
completed, the collaborative trader immediately cancels the previous buy orders.
The market price will gradually return to the previous price level. Through the
spoofing transaction, the master trader sells the asset at a higher price and
makes an excess gain. The characteristic of group-based spoofing transaction is
that multiple traders collude with each other and present an imperceptible and
disguised trend. Each trader’s behavior appears to be normal when monitored
individually, so detecting group-based transaction is very challenging. In con-
trast, a wider global context in the group perception of the transaction graph
could significantly benefit the model to better capture organized patterns, which
is also proved by pioneer researchers [6]. But we still face significant challenges
on how to adaptively incorporate both the local and global context in organized
spoofing transaction detection given the cunning nature of conspiracy traders
who can swiftly update spoofing patterns.

Therefore, in this paper, we propose a novel Group Perceptual-Enhanced
GNN approach, named GPEGNN, for spoofing transaction detection. In par-
ticular, we first construct the raw trading data into transaction graphs. Then,
we devise a multi-layer graph attention, self-attention, and multilayer percep-
tron network that represents the topological and attribute information to model
the local context of the nodes and edges in the graph. Next, we design group
enhancement layers to accommodate nodes with similar transaction character-
istics and aggregate them into groups to learn the global context of organized
behavior patterns. These local and global features are jointly optimized within
the detection network. The experimental results strongly demonstrates the supe-
rior performance of our methods compared with state-of-the-art baselines. In a
nutshell, the main contributions of this paper include:

– To the best of our knowledge, this is the first graph neural network approach
that addresses the spoofing detection problem by jointly learning from the
local nodes/edges features and the global grouped graph features.

– We devise group enhancement layers to locate nodes with similar patterns and
aggregate them into groups to learn the global context of organized behavior
patterns, and a neural network to model the local entity features. They are
jointly optimized in an end-to-end framework to better detect the constantly
updated spoofing patterns.

– We evaluated the proposed approach on a real-world spoofing detection sce-
narios. The state-of-the-art performance of the evaluation highlights the
potential of our method to provide valuable and constructive evidence to
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financial regulators by effectively bridging the gap between spoofing detec-
tion industrial practice and graph learning theory.

2 Related Works

2.1 Spoofing Detection

Spoofing poses a critical and real-world threat to the stability and integrity
of the financial market and has attracted widespread attention. Early research
mainly used statistics-based methods [3], trying to identify potential spoofing
by analyzing the statistical characteristics of transaction behavior. Subsequently,
machine learning and deep learning techniques [4] have been utilized for detecting
spoofing behavior, such as recurrent neural networks [1], attention-based neural
network [23]. Recently, graph neural networks have demonstrated exceptional
performance in modeling inter-connected behavior and achieved notable success
across various domains [6], which is also applied in financial fraud detection. For
example, RTG-Trans [13] employs a deep graph learning-based transformer to
capture relationship features and temporal features for spoofing detection jointly.
Although existing graph neural network-based methods for spoofing detection
improve performance, they still face significant challenges in spoofing transaction
detection because most GNN-based methods learn features with adjacent nodes’
local context information which will inevitably lead to suboptimal performance
in extracting the conspiracy spoofing patterns without a global group feature of
the transaction graphs. In this paper, we propose a group perceptual-enhanced
GNN-based approach that could jointly learn the local and global context of
transaction graph in an end-to-end framework and could subsequently benefit
to address the spoofing detection problem.

2.2 Graph Learning in Finance

With the rapid advancement of artificial intelligence technology, graph-based
machine learning has garnered significant attention [23]. This technology has
been widely applied in fields such as image processing, natural language pro-
cessing and knowledge graphs, proving highly effective and reliable in finance as
well [8,21]. For example, SemiGNN [23] introduces an innovative semi-supervised
attention map neural network, leveraging both labeled and unlabeled data for
fraud detection. This method enhances fraud detection models by incorporating
a semi-supervised learning framework to utilize the rich information in unlabeled
data. Wang et al. [22] proposes an adaptive heterogeneous multi-view graph
learning method to address the small sample problem in credit risk prediction
for small and medium-sized enterprises. To enhance GNN-based fraud detectors
against fraudsters’ feature and relationship camouflage, Dou et al. [6] intro-
duces a label-aware similarity measure and a similarity-aware neighbor selector
using reinforcement learning. For the sequence-based fraud detection problem,
Gadbench [19] presents a graph abnormal detection framework to model user
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behavior sequences, enhancing performance and providing interpretable predic-
tion results. Although existing spoofing detection methods perform well, they do
not fully explore the relationships between transactions. Therefore, we introduce
a novel approach which enables simultaneous learning of both local and global
contexts within transaction graphs in an end-to-end framework.

Fig. 2. The model architecture of the proposed Group Perceptual-Enhanced Graph
Neural Network (GPEGNN). We first construct the transaction graph from the raw
trading data. Then, we devise a multi-layer attention module to learn the node-level
local context representation, and an attentional feature learning module to learn the
edge-level local context representation. Next, we propose a community-centric encoder
to capture the group-enhanced global context features. These local and global features
are jointly optimized and trained in an end-to-end framework.

3 The Proposed Method

3.1 Model Architecture Overview

In this section, we introduce the architecture of our proposed model in detail.
As illustrated in Fig. 2, our GPEGNN primarily comprises four components:
transaction graph construction, node and edge representation learning, group-
enhanced representation layer, and prediction network layer. We devise multi-
layer graph learning and attention feature learning module for node-level and
edge-level local representation learning. In particular, we convert raw trad-
ing records into transaction graphs, generate node features from edge features
through graph representation learning, then learn node representations using
graph attention layers, and finally put them into a fully connected layer to gen-
erate node classification results. In the group-enhanced representation layer, we
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generate new graph aggregation process and train neural networks to achieve
group-level global features. Given that spoofing usually occurs in gangs, we use
a group aggregation strategy to merge the nodes that are inferred as spoofing by
the encoder into groups, then obtain aggregated group user transaction graph,
and finally fed it into the community-centric encoder to learn the group repre-
sentation. The prediction network adopts a comprehensive optimization strategy
to optimize the local and global representations by integrating node classification
loss, transaction classification loss, and group detection loss.

3.2 Transaction Graph Construction

Given the transaction data of all users, we first construct the transaction
graph G = (V,E), where V = {v1, v2, · · · , vn} represents transaction nodes,
E = {e1, e2, · · · , em} represents the relations between transaction nodes, n is
the number of transactions, and m is the number of sequences between two
transactions. If two transactions share the same trader with time period t1 or
two transactions are placed within time period t2 (t1 > t2), we create an edge
between two nodes. Because there must be lots of transaction placing and trans-
action cancellation operations in the process of spoofing, and these operations
all occur in a short period, we connect these transactions in a short period in
the order of transaction placement. We use the order attributes, transaction
attributes, and order book features of the transaction to represent node vi, and
D is the dimension of node features. For any transaction vi, if it is associated
with spoofing, the node is considered a negative sample; otherwise, it is a positive
sample. We denote the adjacency matrix of the graph as A = (aij)n∗n, where
aij equals 1 if node i and node j are connected, and 0 otherwise.

3.3 Node and Edge Representation Learning

After the transaction graph is constructed, we need to characterize the nodes and
edges in the graph. To fully utilize the relationship information within the graph
network, we utilize deep graph representation learning techniques to construct
the attribute matrix X for nodes and the attribute vector Embedvi

for individ-
ual nodes. Specifically, X captures comprehensive node features, while Embedvi

encodes specific attributes for each node. These are elaborated as follows:

Embedvi
=

1
|Mi|

∑

j∈Mi

Embedej

ŷi =
1

|Mi|
∑

j∈Mi

yj

(1)

where Mi denotes the index of the edge connected to node vi, Embedej represents
the feature vector of the edge, yj is the true label of the j-th transaction, and ŷj
is the predicted label of a potential spoofing transaction in the model training.
During this process, the node vi’s attribute vector is aggregated based on its
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connected edges, consolidating relevant information from its neighboring nodes.
The label assigned to the node vi signifies whether it is involved in spoofing
activities.

To learn the representations of the nodes in the transaction graph, we use
the graph attention layer (GAT) to encode the graph network in the Multi-layer
Graph Learning. We construct a two-layer GAT with the following formula:

e
(l)
ij = a(W (l)h

(l−1)
i ,W (l)h

(l−1)
j )

α
(l)
ij =

exp(e(l)ij ))
∑

k∈Ni
exp(e(l)ik )

h
(l)
i = σ(

∑
j∈Ni

α
(l)
ij W (l)h

(l−1)
j )

X(l) = α(l−1)(α(l−2)X(l−1)H(l−2))H(l−1)

(2)

where W (l) is the weight matrix of the l-th layer, h
(l)
i represents the node i’s

representation in the l-th layer, Ni is the set of neighboring nodes of i, a and σ
are the attention function and the LeakyReLU activation function. α(l) is the l-th
GAT layer’s attention matrix, X(l) is the l-th GAT layer’s input node attribute
matrix, and H(l) are the parameters to be learned. After the l layers of the graph
neural network, we obtain X(l), which represents the node classification results
and the probability of node spoofing. We then use a multi-layer perceptron
(MLP) network as a classifier, which can be represented as:

X(l+1) = sigmoid(MLP (X(l))) (3)

where MLP is a one-layer fully connected network followed by the sigmoid
activation function. X(l+1) represents the binary classification outcomes for all
nodes, indicating the likelihood of a node engaging in spoofing transactions.
Based on X(l+1), nodes are classified into two categories, and cross-entropy is
used to compute the node classification loss:

Lnode =
1
n

n∑

i=1

ȳi log (p̄i) + (1− ȳi) log (1− p̄i) (4)

where p̄i represents the node vi’s predicted label, ȳi represents the node vi’s
actual label.

Once the transaction graphs are constructed, we procee to learn the repre-
sentation of edges. When there exists an edge ek connecting nodes vi and vj ,
we merge the representations Embedvi

, Embedvj
, and Embedek to refresh ek’s

representation with the following procedure:

Embede′
k
= [Embedvi

||Embedvj
||Embedek ] (5)

We then feed the updated representation into a one-layer MLP and self-attention
layer to infer the edge-level features in the Attentional Feature Learning. Finally,
the edge loss is defined as:
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Ledge =
1
m

m∑

k=1

yk log (pk) + (1− yk) log (1− pk) (6)

where pk and yk represent the prediction and ground-truth label of the k-th edge
(if one of the connected nodes of edge ek is labeled as a spoofing transaction, we
market the k-th edge as a spoofing relation), respectively.

3.4 Group-Enhanced Representation Layer

In the real-world financial markets, spoofing transactions are normally organized
in groups, which can be better captured in group-level global feature learning
in transaction graphs. We model the grouped behavior in a graph aggregating
process. In particular, for two connected nodes vi and vj , if one of which is a
transaction canceled after buying/selling and the other is a completed transac-
tion, we label the edge of these two nodes as a suspicious spoofing edge. Then,
we aggregate the connected sub-graphs into a grouped super node by these sus-
picious spoofing edges. Subsequently, we obtain a new aggregated transaction
graph, denoted as G′ = (V ′, E′). Recall that if two transactions share the same
trader with time period t1 or two transactions are placed within time period t2
(t1 > t2), we create an edge between two nodes. By controlling the t1 and t2,
the transaction relations are well modeled by a graph so that the transaction
graphs could support both the local context (in a graph G) and global context
(in aggregated G′) feature learning.

Given an aggregated graph G′, let V ′ = {v′
1, v

′
2, · · · , v′

n′} denote the node
group, where each v′

i can be either an aggregated hyper-vertex or a standalone
vertex not affiliated with any group. Here, n′ signifies the total number of aggre-
gated hyper-vertex. We utilize M ′ to encode the relationships between the aggre-
gated gangs and individual participators. The M ′

i encompasses all indices of ver-
tices within community v′

i. To learn the vertices feature value of X ′ of G′, we
aggregate node features within each group by performing element-wise summa-
tion. Specifically, the feature of the group v′

i is defined as the average of embedded
features of nodes within v′

i, represented as 1

|M ′
i|

∑
j∈M ′

i
Embedvj

, and X ′ com-

prises the learned features of n′ aggregated vertices. Subsequently, X ′ and G′

are fed into the community-centered encoder, comprising two GAT layers and a
single-layer MLP. Analogous to the Multi-layer Graph Learning approach, X ′(2)

undergoes processing through the GAT layers to yield X ′(3) via the one-layer
MLP.

Afterward, we then employ the group-level loss function for the spoofing
detection task, which is denoted as Lgroup. The loss function aimed at refining
the learning of group representations. Differing from Lnode for node classification
and Ledge for edge classification, Lgroup is specifically designed to improve the
identification of organized spoofing within transactions, and its formulation is
outlined as follows:

Lgroup =
1
n′

n′∑

i=1

ŷilog(p̂i) + (1− ŷi)log(1− p̂i) (7)
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where ŷi is the true value of aggregated vertex v̂i, p̂i is the model prediction result
of group v̂i, ŷi is 1 if group v̂i is a hyper vertex (aggregated nodes), otherwise
ŷi is 0. We then train the model via joint optimization, the loss function Lgroup
aims to effectively detect organized spoofing transactions.

3.5 Prediction Network Layer

Finally, we combine the loss Lnode, the loss Ledge and the grouped representation
loss Lgroup into get the model’s final loss Lmodel:

Lmodel = λ1Lnode + λ2Ledge + λ3Lgroup (8)

where λ1, λ2 and λ3 are hyper parameters which subject to
∑3

i=1 λi = 1 and
are determined by cross validation. By combining Lnode, Ledge, and Lgroup, the
detection network can more effectively detect organized spoofing. During model
training, we optimize using the standard stochastic gradient descent (SGD) algo-
rithm and employ the Adam optimizer for parameter learning.

4 Experiments

4.1 Datasets

We collect a real-world dataset from a commodity exchange, comprising 50,000
trading record slices from January 2018 to December 2023. We use 80% of the
data for training and 20% for testing. This dataset includes order data, order
book data, and transaction data, with a total of 38 feature dimensions. Order
data captures traders’ intentions to execute, buy, sell or cancel orders for specific
assets at particular prices. Transaction data shows the successful matching of
buy and sell orders, and the order book data is the uncompleted buy and sell
orders in the queue, including their price and quantity. The details of the node
features and edge features are shown in Table 1. Since spoofing detection is a
binary classification task, we evaluate model performance using Recall, F1 score,
Accuracy, Precision, and Area Under the Curve (AUC).

4.2 Baseline Models

To compare, we utilize both widely-used industry-level approaches and the latest
graph learning methods to assess the effectiveness of our proposed method. The
industry-level methods and graph learning baselines are outlined below:

– Logistic Regression (LR) [7]: a linear model that makes predictions by mod-
eling the relationship between input features and categories as probabilities.

– Random Forest (RF) [29]: an ensemble learning algorithm composed of mul-
tiple decision trees that improve the prediction performance of a single tree
through voting or averaging.
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Table 1. The details of the feature description.

Feature Description

Node

User ID, buy flag, sell flag, buying time, selling time,
buying order ID, selling order ID, transaction completed flag,
transaction price/volume/amount, open price, current price,

current position, current buying/selling volume,
Opening to the current highest/lowest/average price,

Up/Down limit price, best buying/Selling price, best buying/Selling volume

Edge

User ID of node 1 and node 2,
Transaction completed flag of node 1 and node 2,

Order placing time of node 1 and node 2,
Order canceling time of node 1 and node 2,

Time interval between placing and canceling of node 1 and node 2,
Order placing time interval between node 1 and node 2,

Order cancellation time interval between node 1 and node 2,
Whether the connected users are the same user

– Adaboost [12]: an ensemble learning technique that iteratively trains a
sequence of weak classifiers and assigns weights to their predictions.

– Gradient Boosting Decision Tree (GBDT) [28]: an ensemble learning algo-
rithm that iteratively trains a decision tree model and each iteration attempts
to correct the residuals of the previous model.

– Hybrid Multi-layer perceptron (HMLP) [9]: a neural network that integrates
diverse neuron types to enhance model representation and performance.

– GCN [24]: a graph convolutional network designed specifically for handling
graph-structured data, spreading information among nodes via convolution
operations to accomplish tasks like node classification and link prediction.

– GraphSAGE [8]: a graph neural network that can perform representation
learning on nodes by sampling and aggregating local neighborhood features
of nodes.

– GAT [21]: a graph neural network that dynamically learns the relation-
ship weights between nodes by introducing an attention mechanism, thereby
achieving node-level representation learning and task prediction.

– EigenGCN [14]: a graph convolutional network that uses the pooling oper-
ator to design the pooling layer, and combines it with the traditional GCN
convolution layer to build a graph neural network framework for graph clas-
sification.

– RetaGNN [11]: a pioneering graph neural network built on relational temporal
attention, capable of classification and prediction devoid of reliance on content
and auxiliary data.
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4.3 Experimental Parameter Settings

We implement our model in PyTorch framework with an NVIDIA Tesla V100-
32GB GPU. During model training, we set the parameter C to 0.4 for LR.
For RF, Adaboost, and GBDT, we adjust the parameter n_estimators to 150,
100, and 100, respectively. In the HMLP model, we configure two layers with
hidden layer dimensions set to 40 and 20. For all graph-based models, we set
the time window t1 to 30 s and t2 to 3 s. The number of layers l is set to 2, each
containing 30 hidden layer units and the ReLU activation function, while the
activation function of the last layer is sigmoid. In our proposed GPEGNN, the
learning rate is set to 0.001, the batch size to 64, and λ1, λ2, and λ3 to 0.3,
0.3, and 0.4, respectively. The parameters of all comparative baseline models are
chosen via cross-validation, and some hyperparameters of the neural network
models determined empirically.

Table 2. The spoofing detection performance comparison with all baselines.

Method F1-Score Accuracy Precision Recall AUC

LR 0.5209 0.7656 0.5680 0.4810 0.6746
RF 0.4630 0.8203 0.4440 0.4837 0.6841
Adaboost 0.5187 0.7382 0.4645 0.4513 0.6787
GBDT 0.5205 0.8038 0.7105 0.4106 0.6760
HMLP 0.5459 0.8282 0.8231 0.4084 0.6893
GCN 0.5542 0.8311 0.8226 0.4178 0.7184
GraphSAGE 0.5715 0.8337 0.8104 0.4414 0.7754
GAT 0.5744 0.8348 0.8145 0.4436 0.7438
EigenGCN 0.5719 0.8352 0.8239 0.4379 0.7465
RateGNN 0.5685 0.8345 0.8241 0.4340 0.8101
GPEGNN 0.6088 0.8459 0.8408 0.4772 0.8449

4.4 Spoofing Detection Experiment

We evaluated the performance of different models in the spoofing detection
task, and the detail experimental results are shown in Table 2. The table clearly
shows that our proposed model GPEGNN outperforms all baselines, including
both the state-of-the-art graph-based models and the traditional industry-level
models. For both the AUC and F1 results, our results improve over the sec-
ond best model (RateGNN) by more than 3%. Among all baseline models, the
industry-level conventional machine learning methods (LR, RF, Adaboost, and
GBDT) could not achieve satisfactory results. This is because the conspiracy
spoofing behavior patterns are too complicated for a traditional machine learn-
ing model to address, which also strongly demonstrates the motivation of our
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proposed model that employs a graph learning model to better extract orga-
nized features. As we can see, graph-based models (GCN, GraphSAGE, GAT,
EigenGCN, RetaGNN, and GPEGNN) are significantly better than other meth-
ods because graph learning can extract information about relationships between
trading orders, and these learned relationship information could contribute to
better spoofing detection. Among all baselines, GPEGNN is the best model even
compared with the state-of-the-art graph-based models because our model not
only learns the node-level and edge-level local relationships between orders, but
also designs a community-centered encoder for global context learning on the
transaction graph to better extract the organized criminal activities. The result
of spoofing detection experiments strongly demonstrates the effectiveness of our
proposed method.

Fig. 3. The results of parameter sensitivity experiments. We vary the number of graph
learning layers from 1 to 5 and the result results suggest that two layers of graph feature
learning achieves the best performance.

4.5 Parameter Sensitivity Experiment

To deeply analyze the stability of our model across different parameter settings,
we study the impact of the number of GCN layers in the hyperparameters of
the proposed model (GPEGNN) on the overall performance. We set the number
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of layers in the model to 1, 2, 3, 4, and 5, and then compare the experimental
results of AUC, Accuracy, F1-Score, and Precision. The details are reported in
Fig. 3(a), 3(b), 3(c) and 3(d), respectively. As we can see, when the number of
layers is 2, the model shows the best performance, indicating that a moderate
number of layers can achieve a good balance between the complexity and repre-
sentation capabilities of the model. On the contrary, when the number of layers
is 1, the model does not learn enough relationship information between features,
resulting in performance degradation. When the number of layers increases to 5,
the deepening hierarchical structure may lead to overfitting or gradient vanish-
ing, thus gradually diminishing the effectiveness. The increase in network depth
results in excessive parameters, making it prone to overfitting. Additionally, gra-
dient vanishing makes it difficult for the network to learn meaningful features,
impacting both the model’s generalization ability and training effectiveness.

Fig. 4. The ablation study experimental results. We divide the model into three mod-
ules, I (Node-level local context Representations), II (Edge-level local context Repre-
sentations), and III (Group-level global context Representations). The result demon-
strates the effectiveness of our proposed model in joint learning both the local and
global context representations.
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4.6 Ablation Study

To verify whether each module of the model is effective, we also performed abla-
tion experiments. According to the functional design and purpose of each module
in the model, We divide the model into three modules, I (Node-level local context
Representations), II (Edge-level local context Representations), and III (Group-
level global context Representations). Then we make different combinations of
the three modules to generate different models, evaluate the effect of each mod-
ule by observing the performance of different models. The experimental results
are shown in Fig. 4(a) to 4(d). In the figure, model(I) means that only module
I is used, I+II means that both module I and module II are used, and I+II+III
means that all modules are utilized, which is also the proposed GPEGNN. These
figures vividly demonstrates the repercussions of removing individual modules
from the model, showcasing varying degrees of performance degradation. This
emphasizes the pivotal role played by each module in bolstering spoof detection
capabilities. Notably, module III exhibits a more substantial impact compared
to module II, with module II exerting a greater influence than module I. Such a
hierarchical effect underscores the critical importance of integrating group-level
global context representations into the realm of spoofing detection. The overall
performance of our approach and ablation study illustrate the effectiveness of
our proposed method. This validation further solidifies the efficacy and robust-
ness of our proposed methodology, affirming its capability to effectively discern
and combat fraudulent activities within complex transactional networks.

Fig. 5. The case studies of spoofing transactions in the real-world industry level appli-
cation scenarios. The green, blue, and red nodes are observed as normal, suspicious
candidates and spoofing transactions, respectively. (Color figure online)
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4.7 Case Study in Industry-Level Application Scenarios

In this section, we conduct case studies when our proposed model is deployed
in the industry-level application scenarios of a commodity exchange. Firstly,
we convert the futures trading records into trading graphs, where each node
represents a transaction, and the edges between nodes represent the relations
of transactions, as shown in Fig. 5. The green nodes represent the most normal
transactions, the blue nodes represent suspicious candidate transactions that
are quickly canceled after placing a transaction, the red nodes represent any
spoofing transactions, and the black edges represent the relations between any
two transactions. Spoofing traders usually use different trading accounts to place
a large number of transactions in a short time and then quickly cancel the
transactions. For example, after the completion of transaction a in the picture, a
large number of transactions and quick cancellations of transactions are carried
out in a short time (b). During the transaction cancellation period, this causes
the price to rise and fall instantly. At this time, the spoofing transaction c in the
figure is performed to obtain profits. As depicted in Fig. 5, all these transactions
are associated with a group. Utilizing the model proposed in this paper enhances
the detection of such group spoofing instances, validating the effectiveness of our
approach in detecting organized spoofing.

5 Conclusion

To tackle the challenging and real-world spoofing problem in the financial mar-
ket, we proposed a novel group perceptual-enhanced deep graph learning app-
roach for spoofing detection for better extracting swiftly updated conspiracy
patterns. In particular, we devise a multi-layer graph attention and self-attention
for local context learning, and a community-centric encoder for global context
learning on the transaction graphs, which are jointly optimized in the detection
network. The proposed method is deployed and evaluated industry-level applica-
tion scenarios in a commodity exchange. The outcome demonstrates GPEGNN’s
superiority over existing state-of-the-art baselines. Additionally, the enhanced
performance of our proposed method exposes the vulnerabilities of organized
spoofing traders, contributing to the robustness of the financial trading ecosys-
tem.
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Abstract. In recent times, Deep Neural Networks (DNNs) have been
effectively used to tackle various tasks such as emotion recognition,
activity detection, disease prediction, and surface classification. How-
ever, a major challenge in developing models for these tasks requires
a large amount of labeled data for accurate predictions. The manual
annotation process for a large dataset is expensive, time-consuming,
and error-prone. Thus, we present SSLAM (Self-supervised Learning-
based Annotation Method) framework to tackle this challenge. SSLAM
is a self-supervised deep learning framework designed to generate labels
while minimizing the overhead associated with tabular data annotation.
SSLAM learns valuable representations from unlabeled data that are
applied to the downstream task of label generation by utilizing two pre-
text tasks with a novel log − cosh loss function. SSLAM outperforms
supervised learning and Value Imputation and Mask Estimation (VIME)
baselines on two datasets - Continuously Annotated Signals of Emotion
(CASE) and wheelchair dataset. The wheelchair dataset is our novel
unique surface classification dataset collected using wheelchairs show-
casing our framework’s effectiveness in real-world scenarios. All these
results reinforce that SSLAM significantly reduces the labeling overhead,
especially when there is a vast amount of unlabeled data compared to
labeled data. The code for this paper can be viewed at the following link:
https://github.com/Alfiya-M-H-Shaikh/SSLAM.git
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1 Introduction

Recently, Deep Neural Networks (DNN) have been found effective in differ-
ent domains including healthcare, activity recognition, surface classification,
and human behavior understanding (e.g., emotion recognition, elderly moni-
toring) [7,15,22]. These systems collect data from the physiological signals and
IMU (Inertial Measurement Unit) sensor and then employ a DNN model for
the intended task. However, a major challenge in achieving optimal performance
by utilizing DNN models is the requirement for a substantial volume of labeled
data as the manual annotation process is fatigue-inducing, error-prone, and time-
consuming [1,9,12]. At present time, we are surrounded by a large number of
pervasive devices (e.g., smartphones, smartwatches, IoT devices) that generate
a lot of data; a majority of which remains unlabeled. Consequently, despite the
abundance of data, we are unable to fully leverage the potential of this extensive
dataset due to the substantial overhead involved in annotation. Hence, the devel-
opment of efficient strategies for annotating large volumes of data is essential.

In this paper, we aim to address the problem of automatic annotation of a
large volume of continuous sensor data streams for socially relevant problems
such as detecting wheelchair-accessible path characteristics from the built envi-
ronment using smartphone-embedded motion sensors. Wheelchair users while
undertaking their daily activities, will move through various built surfaces, such
as concrete sidewalks, asphalt, granite tiles, cobblestones, etc. in the outdoor
environment and carpet, linoleum, mosaic, etc. in the indoor environment. We
captured the vibration generated by different surfaces through the accelerometer
and gyroscope sensors in the user’s smartphone and then used a specialized AI
framework to classify the surfaces based on their characteristic vibration pat-
terns. The data collection process for this unique dataset has been extensively
documented in our previous work [25]. Often sidewalks are not accessible by
wheelchair users depicted in Fig. 1 due to obstacles such as broken/uneven sur-
faces, steep slopes, high-pile slippery cobblestones (with deep gaps in between)
as well as sidewalks with no access ramps. E.g., cobblestones are recognized as
grossly inaccessible while concrete sidewalks are considered accessible. However,
this problem is a challenging one given the numerous different types of surfaces
available in different countries as well as the different types of wheelchairs used
by the people. Several wheelchair-related parameters (such as manual or power,
tire material, weight, number of wheels, height from the ground at which the
smartphone is attached, etc.) are responsible for producing different vibration
data streams for the same surface type. Moreover, the user’s body weight, height,
and disability type can also impact the nature of vibration. Overall, it is non-
trivial to manually annotate the different types of data collected in this project
across 6 different countries on 3 different continents from 48 different surfaces
using 50 wheelchair users on 6 different manual and power wheelchairs.
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Fig. 1. Non-accessible sidewalks; surface classification required

Various annotation strategies are proposed in the existing literature. First,
self-report or expert-driven techniques are utilized wherein the signal frag-
ments are annotated by an (or a group of) experts [23], and distinct unification
approaches (e.g., majority voting [13]) are applied to come up with a single rat-
ing (or label). For example, the dataset named CASE (Continuously Annotated
Signals of Emotion) [19] involved participants who used a joystick to provide
continuous annotations of their emotions, specifically valence and arousal, based
on the Circumplex Model of emotion [16]. These approaches demand significant
user effort and are not easily adaptable to larger scales. The second approach to
annotate the signal used an auxiliary modality from a given modality [3]. In this
paper, signals from an IMU sensor are annotated automatically, leveraging the
availability of acoustic data. However, the dependency on another modality is
the major drawback of these approaches. The third approach uses a human-in-
the-loop annotation strategy that includes the concept of Active Learning. For
example, in [9,18], a human annotator is included in the loop who recognizes a
group of seed samples (with available annotations) to train a base model, which
gives outcome for all the remaining unlabeled instances. Next, the outcome from
the model is considered depending on the model’s confidence, or the human
expert is conferred for the annotation. The key challenges include seed instance
identification, involvement of human experts, and lack of clarity (by the human
expert) in understanding the problem encountered by the learner [9,18].

However, we can design an intelligent annotation approach leveraging the
apriori knowledge from the domain experts and the intrinsic properties of the
dataset clusters to reduce human engagement significantly. Thus, we propose
the Self-SLAM (SSLAM) annotation framework to label datasets with minimal
expert intervention. The framework constitutes a self-supervised algorithm that
employs two pretext tasks developed using a contrastive sampling method [24].
We employ pretext tasks to train the encoder in a self-supervised manner, opti-
mize the resultant representations using a parameterized activation function,
and then apply a label-noise resilient log-cosh loss function for reconstruction.
Though this function is similar in structure to the standard loss functions like
Mean Squared Error (MSE) and Mean Absolute Error (MAE), it has a desirable
analytical property called Lipschitzness that helps to deal with the label noise.
This makes the proposed framework robust, and essential to ensure label quality.
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The performance of SSLAM was evaluated for two different use cases: (a)
emotion annotation and (b) surface classification. First, we evaluated label gen-
eration performance to annotate emotion continually on publicly available con-
tinuous emotion CASE [19] dataset. The dataset consists of continuous valence-
arousal annotations of emotional and physiological responses measured through
multiple sensors. SSLAM provides more accurate valence and arousal predictions
than a supervised approach leveraging unlabeled data and minimal labeled sam-
ples. It outperforms another self-supervised learning framework (VIME) [24] on
the same number of labeled and unlabeled data by 20.8% and 17.7% (for valence
and arousal, respectively).

We evaluated SSLAM on a subset of our surface vibration dataset collected
from wheelchair users. This dataset includes manual wheelchair-induced vibra-
tion data from 47 participants across 15 distinct indoor and outdoor surfaces in
the USA and China. In this dataset, SSLAM outperforms a supervised learner
and VIME by 4.25% and 7.9%, respectively, with the same amount of labeled
and unlabeled data. In summary, our paper demonstrates that SSLAM outper-
forms classical machine learning algorithms such as Logistic Regression, Multi-
layer Perceptron (MLP), and XGBoost, and a self-supervised learning algorithm
(VIME). In summary, our paper’s key contributions are:

– We proposed a self-supervised framework SSLAM to significantly reduce
annotation overhead and demonstrate improvements over the existing base-
lines using a parameterized Elliot activation function and a new loss function.

– We collected and shared a novel and unique wheelchair-induced surface
vibration dataset that enriches the available resources and facilitates further
research.

– We present a new reconstruction loss called log−cosh in the SSLAM encoder
setup, provide an explanation of its suitability as a viable alternative to MSE
loss, and highlight its implications of being robust to label noise and outliers
and its relevance to the SSLAM framework.

– We provide empirical evidence on both wheelchair and publicly available
CASE datasets to demonstrate that the proposed method is applicable for
different use cases such as surface classification and continuous emotion anno-
tation respectively.

2 Dataset Description

2.1 Wheelchair

As described in Sect. 1, the wheelchair dataset is a collection of surface-induced
vibration data caused by the movement of manual wheelchairs in both built and
natural environments. Data is collected using an Android smartphone attached
tightly to the handrest of a collapsible manual wheelchair. When participants
self-propelled the wheelchair across various surfaces, the accelerometer and gyro-
scope sensors capture the vibration at a sampling rate of 100Hz. We collected
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Fig. 2. Surfaces used for data collection: in the USA: (a) Rough brick road with
gap, (b) Concrete sidewalk, (c) Brick road without gap, (d) Red paver block sidewalk,
(e) Asphalt surface 1, (f) Asphalt surface 2, (g) Carpet, (h) Linoleum, (i) Ceramic
tiles, (j) Up & down curbs in China:, (k) Sidewalk with red paver blocks, (l) sidewalk
with concrete paver blocks, (m) Outdoor paving tiles, (n) Embedded stone texture, (o)
Striped concrete texture (Color figure online)

data from 16 different surfaces in the USA and China as depicted in Fig. 2. Our
data collection involved 42 participants and 2 wheelchairs in the USA and 5 par-
ticipants and 1 wheelchair in China. The manual wheelchairs used in the USA
and China for data collection are presented in Fig. 3.1.

The final clean dataset includes 22 time-domain features representing vibra-
tional and gyroscopic data. Overall, we have collected 27,000 data points that
can be used for further analyses of surface classification. This dataset includes
15 surface types/classes, of which, 3 classes have a relatively less number of data
points as displayed in Fig. 3.2, making the classification task challenging. Also,
since the dataset is manually annotated, there is a possibility that the dataset
contains some amount of label noise.

2.2 CASE

The Continuously Annotated Signals of Emotion (CASE) [19] dataset contains
continuous emotion annotations provided by the participants while watching
various videos. This dataset also includes participant’s recorded physiological
reactions to the videos. These physiological measurements were synchronized
and sampled at 1000Hz from Electrocardiograph (ECG), Blood Volume Pulse
(BVP), Galvanic Skin Response (GSR), Respiration (RSP), Skin Temperature
(SKT), and Electromyography (EMG) sensors. This dataset is based on the 2D
circumplex model of emotion that depicts different valence and arousal levels
on the coordinate X-axis and Y-axis respectively. The participants used a novel
Joystick-based Emotion Reporting Interface (JERI) on this 2D plane to report
annotations sampled at 20Hz. The participants included 15 males and 15 females
aged between 22 and 37 from different cultural backgrounds.
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Fig. 3. (1) Chairs (a) and (b) were used in the USA, and (c) in China. Green dots
indicate where the smartphone was attached. (2) Wheelchair dataset class distribution.
(Color figure online)

Fig. 4. CASE dataset distribution based on classes 1 and 2, representing low and high
levels of (a) arousal and (b) valence respectively.

Our final dataset consists of 8 real-valued features corresponding to the phys-
iological reactions of the participants and has two classes valence and arousal
with low (≤ 5) and high (> 5) levels. Also, we have converted the raw annotation
scores to low and high valence and arousal values such that they map to one of
the four quadrants of the circumplex plane [16]. Though the dataset contains
outliers as shown in Fig. 4, we demonstrate our method to be robust to label
noise and outliers.

3 SSLAM: Self-supervised Label Generation Framework

Our proposed framework incorporates a novel activation function and loss func-
tion as an improvement over the current state-of-the-art self-supervised frame-
work for tabular data (VIME) [24]. We employ two pretext tasks that are, fea-
ture vector estimation and mask vector estimation to train an encoder in a
self-supervised manner as shown in Fig. 5. These tasks employ two predictors
using the input vector’s encoder representations. The task of the first predictor
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model is to recover the original input feature vector from its corrupted variant
produced using a mask vector. The task of the second predictor is to predict the
mask vector. The pretext tasks are solved using the below models,
(i) Mask vector estimator, sm : Z → [0, 1]d, takes the encoder embedding z as
input and predicts a mask vector m̂.
(ii) Feature vector estimator, sr : Z → X , takes the encoder embedding z as
input and predicts x̂ for the input feature vector x.

Mask vector estimation task uses a mask vector generator to produce a
binary mask vector m = [m1, . . . , md]

� ∈ {0, 1}d where mi is randomly sam-
pled from a Bernoulli distribution with a probability pmask. The pretext gen-
erator gm : X × {0, 1}d → X utilizes a mask vector m and samples x from
the large unlabeled dataset Du as input, and generates a corrupted sample x̃.
The corrupted feature is given by, x̃ = gm(x,m) = m � x + (1 − m) � x
where the j-th feature of x is sampled from the empirical distribution p̂Xj

=
1

Nu

∑Nl+Nu

i=Nl+1 δ (xj = xi,j). The pretext generator gm is also a stochastic function
whose randomness comes from x. Together this randomness makes reconstruct-
ing x from x̃ a difficult task for the neural networks. The following optimiza-
tion problem, mine,sm,sr

Ex∼pX ,m∼pm,x̃∼gm(x,m)

[
lm(m, m̂)+ α · lr(x, x̂)

]
where

m̂ = (sm ◦ e) (x̃) and x̂ = (sr ◦ e) (x̃), is used to train the encoder e and the
pretext predictive models.

lm(m, m̂) = − 1
d

[∑d
j=1 mj log

[
(sm ◦ e)j (x̃)

]
+ (1 − mj

)
log

[
1 − (sm ◦ e)j (x̃)

]

is the first loss function which is the sum of the binary cross-entropy losses for each
dimension of the mask vector. The second loss function lr is the proposed novel
log − cosh reconstruction loss, lr(x, x̂) = 1

d

[∑d
j=1 logcosh

(
xj − (sr ◦ e)j (x̃)

)]
.

We propose a parameterized version of the Elliot activation function to be used
in the hidden layers of the encoder to yield a better representation, which is com-

puted as follows: f
(
ωin

j , βj , xi, λ
)

= k1 +
k2·(ωin

j ·xi+βj)·λ
1+|(ωin

j ·xi+βj)·λ| where λ is the slope of

the function and k1 and k2 are the parameters learned through back-propagation
during the training of this network.

The encoder here is a neural network that maps the input data to a fixed-
length vector representation. The multilayer neural network used by SSLAM
encoder framework has one hidden layer with a novel activation function. The
difficulty of the pretext tasks can easily be controlled through the multiple hyper-
parameters of the framework such as the probability pmask can be tuned to
adjust the proportion of the corrupted features. The hyper-parameter α is also
tuned to weigh the loss from the two pretext tasks. VIME [24] has proposed
the optimal values for these parameters using cross-validation. Due to the way
the encoder has been trained, the representations z contain information about
imputing corrupt features and identifying the corrupted features. This informa-
tive representation of the input data, reduces model complexity to minimize the
losses in comparison to the raw input feature data, resulting in more accurate
predictions.
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Fig. 5. (a) Block diagram illustrating the SSLAM framework. (b) Generating labels
employing a trained encoder and predictor network.

The availability of labeled and unlabeled data is the primary consideration
for our proposed framework. We elaborate on the explanation of our frame-
work using the CASE dataset. The CASE dataset has 1.5 million instances of
annotated emotion data for valence and arousal classes. Significant expenses are
associated with annotating these data points, which we aim to reduce using our
label-generation framework. A large proportion of unlabeled data is required for
our method, thus, for our study, we split our dataset in the ratio of 1:9 labeled
and unlabeled data points. The SSLAM framework utilizes these data in the
following way: the encoder takes unlabeled data as input and converts it into
informative homogeneous representations. It is then trained to minimize the
cross-entropy and reconstruction loss functions associated with the mask and
feature vector estimation tasks respectively. To adequately recover the input
features x, we require the encoder to output latent representation z. To achieve
this, the correlation between the input features of x needs to be captured. This is
exactly what the encoder does. sm can utilize the inconsistencies between feature
values to identify the masked features, while sr can learn from the correlated
non-masked features to attribute the masked features. The encoder, therefore,
learns that if a particular feature has a different correlation from the others, it
may be masked and corrupted.

This information is useful for the next downstream task of transforming the
remaining labeled data points into better homogeneous and informative repre-
sentations. These transformed representations are then fed into the predictive
model, to better predict the class labels of the input test data. We, thus apply
this framework to our split of unlabeled and labeled data to generate new labeled
data points. These artificially generated labels can be added back to the original
labeled set and the process can be iterated to produce more annotated data.

To summarise, our data goes through the following steps in the framework:

– Acquire labeled and unlabeled data points where the proportion of unlabeled
data points is considerably larger.
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– The encoder is fed with unlabeled data points to learn better representations
of the data by solving two pretext tasks.

– Post training, the encoder is fed with labeled data to generate a homogeneous
and informative representation for further downstream classification tasks.

– The encoder representations train a predictive model using the labeled data.
– The learned representations are then utilized to predict new class labels on

test data.
– This newly generated labeled data can be mixed with the original labeled

dataset and the process can be iterated over to produce more labels.

3.1 Log-Cosh Loss in SSLAM Framework

Mathematical Framework: We now justify the proposal of Loss, L(x) =
log(cosh(x)) in an encoder setup. Using log − cosh as the reconstruction loss
in the encoder setup is supported by additional analytical properties, such as
convexity, smoothness, robustness to outliers, etc. Let L(x) be the loss function
with x being the input to the loss function. Then for the symmetric version of
the loss function, L(x) = log(cosh(x)).
MAE and MSE as Siblings: The expression for the loss function is as fol-
lows: E(x, y) =

∑m
i=1 log(cosh(yj − wT xj)) for training examples (xj ,yj) for

j = 1 to m, where yj is the actual value of the jth training example from
the dataset. Using Taylor Series approximation it can be shown that E(x, y) =∑m

i=1 log(cosh(yj −wT xj)) is mathematically equivalent to Mean Absolute Error
(MAE) and Mean Squared Error (MSE) respectively for large x away from 0 or
for small x nearer to 0. Since, MSE is the preferred reconstruction loss in VIME,
we show the impact of the proposed loss function in comparison to the current
SoTA, VIME. Since, we know that MAE is 1- Lipschitz [11]. For large x, our loss
function behaves like MAE, thus we can argue that like MAE, log−cosh is robust
to outliers. Our loss function therefore inherits identical robustness to label noise
as MAE. For small x, log − cosh(x) inherits properties of MSE. Consequently,
our proposed log − cosh combines the smoothness of MSE and the robustness of
MAE, making itself highly suitable for machine learning applications such as the
self-supervised approach proposed here. This establishes log − cosh as a suitable
alternative for MSE ((similar to VIME) in the encoder setup of the SSLAM
framework.
How did the Loss Function Come About? The preceding discussion estab-
lishes the log − cosh function and explains its effectiveness in various contexts.
However, it does not necessarily prove its relevance as a reconstruction loss in the
encoder setup. The primary objective of deep learning is to gain knowledge about
the manifold structure present in the data (i.e. natural high dimensional data
that converges to a non-linear low dimensional manifold). It also involves under-
standing the probability distribution associated with the manifold. An encoder
learns low dimensional data and represents data as a parametric manifold i.e. a
piece-wise linear map from latent to the ambient space.
Logcosh(x) in VAE - A Distributional Insight: We define the encoder and
decoder as:
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– Encoder ϕ :χ → � maps Σ to its latent representation D = ϕ(Σ) homeomor-
phically.

– Decoder ψ: � → ϕ maps z to reconstruction x̃ = ψ(z) = ψ ◦ ϕ(x)

ϕ ◦ ψ = argminϕ,ψ

∫
χ

L(x, ψ ◦ ϕ(x)) dx, where χ is the ambient space, � is the
latent space, L is the loss function and Σ is a topological space Σ ⊂ ⋃

α Uα.
We constructed distributions using pseudo-hyperbolic Gaussian, resulting in the
reconstruction loss for Variational AutoEncoders (VAEs), defined as logcosh(x),
serving as our loss function.

Pseudo-Hyperbolic Gaussian: The strategy to generate the pseudo-
hyperbolic Gaussian ((Wrapped gaussian distribution G(μ,Σ) on hyperbolic
space H)) is as follows:

– Sample a v from normal distribution N(0,Σ) defined over Rn.
– Interpret v as an element of TμHn ⊂ Rn+1 by rewriting v as v=[0,v].
– Parallel transport vector v to u ∈ TμHn ⊂ Rn+1 along the geodesic from μ0

to μ.
– Map u to Hn using exp(u) = cosh(||u||L) + sinh(||u||L) u

||u||L

Reconstruction Loss is thus −Eqz|x log(pθ(x|z)). Replacing pθ(x|z) with pdf
of Hyperbolic secant distribution: = −log( 12sech(πx

2 )) = log(2cosh(πx
2 )) =

log(cosh(y)) where y = πx
2 . Since the metric at the tangent space coincides

with the Euclidean metric, several distributions can be produced by applying
the construction strategy such as logcosh(x).

4 Evaluation

4.1 Experimental Configuration

To evaluate the performance of SSLAM, we test it on two tabular datasets from
the domain of affective computing: CASE and wheelchair. For all our experi-
ments, we randomly divide our dataset into an - (a) 85-15% and (b) 80-20%
train-test split. Later, we split our training data into 10-90% labeled and unla-
beled data. We evaluate our proposed model against four baseline models, three
of which were used as baselines in VIME. SSLAM is different from a classical
supervised classification problem and therefore most of the SOTA baselines don’t
apply to the setting proposed here. The first baseline model is a simple MLP
trained using only labeled data in a supervised manner. Our second baseline is
a simple logistic regression model. XGBoost, a tree-based classification method
is our third baseline. Our final baseline is a self-supervised model VIME [24]
with state-of-the-art performance results for classification tasks in the tabular
domain. The self-supervised models are pre-trained on the unlabeled data and
used along with the labeled data for classification tasks.

We have used the same encoder architecture in SSLAM as in VIME as
depicted in Table 1. Based on the experiments conducted in VIME we have
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Table 1. Architecture details of SSLAM

Module Layer Details Layer Dimensions

Input - 8 × 1
Encoder [dense] × 1 + Parameterized

Elliot
(8,8)

Feature vector
estimator

[dense] × 1 + Linear (8,8)

Mask vector
estimator

[dense] × 1 + Sigmoid (8,8)

Predictor [dense] × 1 + ReLu
[dense] × 4 + ReLu
[dense] × 1 + Sigmoid

(8,100)
(100,100)
(100,2)

Output - 2

tuned the model parameters pmask and α to 0.3 and 2 respectively. The acti-
vation function corresponding to the feature vector estimation is set to linear
activation function whereas the layer corresponding to mask estimation has a
sigmoid activation function. The reconstruction loss and mask estimation loss are
the novel log − cosh and binary cross-entropy losses respectively. The encoder
is trained using an RMSprop optimizer with a learning rate of 0.001 on both
loss functions. Our baseline Multilayer Perceptron (MLP) and feedforward neu-
ral network (FNN) used in the predictor network has five hidden layers each
with hidden dimension 100. These hidden layers are set to have a ReLU acti-
vation function while the output layer has a Softmax activation function. Both
are trained using an Adam optimizer with a learning rate of 0.001 on the cate-
gorical cross-entropy loss function. The supervised feedforward neural model is
fine-tuned with early stopping (patience 50), and we allocate 10% of the training
data as the validation split. All models are trained with a batch size of 128. We
train the feedforward neural predictor network for 100 epochs and the encoder
for 10 epochs. To enhance our model’s performance, we utilized a parameterized
Elliot activation function in the encoder.
Fine-Tuning Hyperparameters: We have performed several experiments
with varying the hyperparameters of the predictor FNN on both datasets. First,
we conducted experiments to vary the dimensions of the hidden layers in the
FNN to 100 and noted its performance for the classification tasks as shown in
Appendix A.1. We found that for both datasets used in this study 100 neurons
in the hidden layer is the best choice. To avoid incurring high computational
costs, we do not exceed this number.

Next, for each dataset, we experiment with the number of hidden layers in
FNN. Figure in Appendix A.1 and Table 2 indicate that 5 is the optimal choice
for both CASE and wheelchair datasets. Again, we restrict our experiments to
5 layers. Ultimately, this study aims to illustrate the comparative performance
of the proposed model over the baselines on both datasets, which is achieved by
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Table 2. Performance comparison for different number of layers for each of the datasets

Datasets Number of Hidden Layers
1 2 3 4 5

CASE: Valence 77.2329 82.1172 86.0457 87.554590.0178
CASE: Arousal 76.8658 82.1246 85.4126 87.226689.7985
Wheelchair 61.6047 64.7465 65.8745 66.167971.6529

Fig. 6. Comparison of Accuracy of predictions of (a)Valence and (b)Arousal across
different sizes of labeled CASE dataset made by SSLAM and other baselines.

our experimental setup. We have executed each of the models 5 times utilizing
different random train/validation/test splits and seeds and the average of these
results has been reported. As with previous studies on tabular data, we use
accuracy as our evaluation metric in all experiments.

4.2 Results: CASE Dataset

In this section, we will be discussing the results of the SSLAM on the CASE
dataset, and we will also be comparing its performance with the baselines that
we had defined earlier. The classification results of Valence and Arousal accuracy
on 85-15% train-test split are indicated in Table 3. The MLP baseline produces
81.3% accuracy for Valence, which is better than logistic regression, XGBoost
and VIME. But, our proposed framework vastly outperforms these baselines, pro-
ducing an accuracy of 90.01%. Also, SSLAM outperforms all of these baselines
including VIME for Arousal by generating an accuracy of 89.79%. We obtain
similar results on the 80-20% split as displayed in Table 3 with SSLAM outper-
forming all baselines on both Valence (89.49%) and Arousal (88.84%). In Fig. 6,
we compare the performance of (valence and arousal prediction accuracy) of a
supervised MLP, VIME and SSLAM against the increasing number of labeled
data points (x-axis). The proposed approach (SSLAM) outperforms both the
baselines, i.e. the supervised MLP and the self-supervised VIME on the CASE
dataset.
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Table 3. Comparison of Accuracy for predicting Valence and Arousal on CASE dataset
using the 85-15% and 80-20% splits

Model Type Accuracy using 85-15% split Accuracy using 80-20% split
Valence Arousal Valence Arousal

MLP 0.8130 ± 0.0040 0.7993 ± 0.0013 0.8034 ± 0.0021 0.7911 ± 0.0057
Logistic Regression 0.6901 ± 0.0012 0.6806 ± 0.0010 0.6877 ± 0.0028 0.6899 ± 0.0025
XGBoost 0.7330 ± 0.0009 0.7339 ± 0.0022 0.8467 ± 0.0041 0.7343 ± 0.0015
VIME 0.6917 ± 0.0051 0.7213 ± 0.0042 0.7197 ± 0.0027 0.7093 ± 0.0027
SSLAM 0.9001 ± 0.0024 0.8979 ± 0.0045 0.8949 ± 0.0046 0.8884 ± 0.0073

Table 4. Comparison of Accuracy for predicting Valence and Arousal on Wheelchair
dataset using the 85-15% and 80-20% splits

Model Type 85-15% split 80-20% split
Accuracy F1 score Accuracy F1 score

MLP 0.6740 ± 0.0211 0.6704 ± 0.0054 0.6347 ± 0.0294 0.6309 ± 0.0231
Logistic Regression 0.4463 ± 0.0020 0.4063 ± 0.0012 0.4307 ± 0.0054 0.4237 ± 0.0073
XGBoost 0.6305 ± 0.0089 0.6304 ± 0.0029 0.6216 ± 0.0019 0.6193 ± 0.0147
VIME 0.6366 ± 0.0393 0.6065 ± 0.0381 0.6283 ± 0.0317 0.6267 ± 0.0318
SSLAM 0.7165 ± 0.0054 0.7120 ± 0.0067 0.7074 ± 0.0059 0.7040 ± 0.0093

4.3 Results on Wheelchair Dataset

We have used the same experimental setup for the Wheelchair dataset analysis as
for the CASE dataset. The comparison outcomes of our model with the baselines
on the wheelchair data for the 85-15% and 80-20% splits are presented in Table 4.
We observe that the SSLAM model outperforms all other baselines for both train-
test splits. SSLAM achieves an accuracy of 71.65% on the 85-15% split, while on
the 80-20% split, it achieves an accuracy of 70.74%. The wheelchair dataset has
unbalanced classes; thus, we also report the weighted F1 score. From the above
two tables, it is clear that the F1 score represents a similar trend where SSLAM
outperforms the other two baselines.

In the case of the wheelchair dataset, all the models have performed poorly
due to the limited size of the dataset. For all our models we use the same amount
of labeled and unlabeled data. Results from the CASE dataset demonstrate that
as we increase the number of unlabeled samples, the encoder’s representations
improve thus resulting in optimal classification accuracy. The wheelchair dataset
is relatively small in size, which means that the number of unlabeled samples
(≤ 100,000) is not enough to help the encoder generalize well and learn good
representations of the inputs. As a result, the performance of the models is
not significantly improved. Additionally, the dataset’s class imbalance problem
further hinders the model’s performance.
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5 Discussion

We demonstrated that the SSLAM framework outperformed other baselines on
both datasets. Our proposed methodology is best suited when dealing with large
amounts of unlabeled data where annotating the data is tedious and expensive.
This is often the case in real-world scenarios such as annotating surface-induced
vibration data for wheelchair users and emotional data from physiological sen-
sors. Thus, SSLAM can efficiently be employed to generate meaningful repre-
sentations from the unlabeled samples and to generate labels reducing large
annotation overhead.
The Role of log − cosh in SSLAM: is evident from the performance of the
framework in comparison to the standard MSE in the encoder set-up. The use
of log − cosh delivers significant improvements across both datasets - CASE and
Wheelchair. The largest increase in performance has been observed in the CASE
dataset. This dataset has an outlier problem and log − cosh being robust to
outliers overcomes this considerably.

6 Relevant Literature

We discuss our research literature in three parts: continuous emotion annotation
techniques and their drawbacks, limited data annotation emotion recognition
methods, and the effectiveness of different self-supervised approaches on tabular
data.
Continuous Emotion Annotation: In the existing literature, the most widely
adopted approach of emotion annotation using self-report is the post-interaction
or post-stimuli one, where the participants after watching the video provide
emotion self-reports based on a standard scale (e.g., Self-assessment Manikin
(SAM) [2]). However, in the post-stimuli approach capturing intra-video sub-
tle nuances and time-aligning all the emotions is challenging. To address these
issues, researchers use continuous emotion annotation strategies, where partici-
pants continuously provide emotion annotations as they watch the videos using
a mouse, a joystick or another similar device [5,8,28]. Similarly, the CASE [19]
dataset involved participants who used a joystick to provide continuous annota-
tions of their emotions, specifically valence and arousal, based on the Circumplex
Model of emotion [16]. Yet, the challenges with these approaches are the follow-
ing - (a) for emotion annotations they require the users to utilize an auxiliary
device, (b) due to the continuous nature of emotion annotation and video con-
sumption in parallel, the cognitive load increases and the viewing experience
degrades.
Recognizing Emotions with Limited Data: Numerous studies in affective
computing have attempted to tackle the issue of the restricted availability of
labeled data. Chen et al. (2021) [4] proposed a CNN method to tackle the prob-
lem of limited samples and imbalanced datasets for emotion recognition on the
DEAP dataset through a data augmentation algorithm called the Borderline-
SMOTE. They achieved a performance of 97.47% and 97.76% on valence and
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arousal prediction tasks. Zhang et al. (2022) [29] address the issue of data scarcity
in EEG data by proposing a data augmentation method called generative adver-
sarial network-based self-supervised data augmentation (GANSER) to perform
emotion recognition. Their model synthesizes simulated EEG signals that do
not skew from the underlying data distribution, which helps to perform well
on emotion classification tasks. SigRep [6] produces performances for arousal
(76.3%) and valence (74.1%) accuracy through a contrastive learning-based self-
supervised technique using the data obtained from wearable devices. Tianyi et
al. (2020) [27] propose a correlation-based emotion recognition algorithm (Cor-
rNet) that employs an autoencoder to perform automatic feature extraction of
signals generated by wearables. The model proposed by Tang et al. (2017) [21] for
valence and arousal emotion classification on SEED and DEAP datasets used a
denoising autoencoder. Subramanian et al. (2018) [20] learn features from elec-
trocardiogram (ECG) data using a Naive Bayes classifier and Support Vector
Machine (SVM). Sarkar et al. (2022) [17] propose a self-supervised multi-task
CNN framework to learn ECG representations using pretext tasks.
Self-supervised Learning on Tabular Data: Some recent approaches pro-
pose using self-supervised learning techniques that utilize existing unlabeled
data to discover broad feature representations specific to the data. In computer
vision [10,26] and language modeling tasks [14], these approaches have proven
to be fairly successful due to the underlying spatial, syntactic or semantic struc-
ture of the image or language data. Regardless, these approaches are not very
effective for tabular data and sparse literature exists on handling tabular data
using these methods. Recent studies focus on solving pretext tasks. Yoon et al.
[24] proposed a self-supervised framework called Value Imputation and Mask
Estimation (VIME) which employs two pretext tasks to train an encoder. The
pretext generator is fed a random binary mask and unlabeled tabular data sam-
ples. This setup results in unlabeled samples that are corrupted by the mask.
Given the corrupted heterogeneous inputs to the encoder, it is trained to gener-
ate informative homogeneous representations. In this architecture, the encoder
representation of the data is fed into the mask and feature estimators, which
predict both the binary mask and the original uncorrupted input. These learned
transformed representations are further provided to the predictive model to per-
form the main downstream task.

7 Conclusion and Future Works

We presented a framework SSLAM for self-supervised label generation for anno-
tation overhead reduction. The framework trains an encoder in a self-supervised
manner by implementing two pretext tasks using a contrastive sampling method.
The structure of VIME inspires our approach, but we distinguish ourselves by
employing a novel loss function (log − cosh) compared to the denoising auto-
encoder loss used in VIME in the pre-training phase. Also, in the pre-training
phase, we employ the parameterized Elliot activation function in the encoder to
generate better representations to ensure more accurate predictions. Since we
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present our model as an improvement over the VIME, we have employed the
same baselines used in VIME. Also, we are comparing against VIME because
it is the state-of-the-art method. The other SOTA methods are applicable on
vision data (such as MixMatch and ReMixMatch). Therefore the efficacy of the
proposed method is best compared with VIME.

We evaluated the framework to determine its effectiveness in reducing the
continuous annotation overhead on two datasets: wheelchair and CASE. The
framework showed better results compared to the state-of-the-art self-supervised
approach and the supervised approach. We also observed that the framework
can generalize across different use cases, as demonstrated in a large-scale surface
classification dataset for wheelchair users. Additional experiments on KEmoCon,
MNIST and Fashion-MNIST datasets produce similar SOTA results. Along with
further theoretical considerations, we defer the additional details on the gener-
alizability of SSLAM to future work.

In summary, our SSLAM provides superior performance over existing base-
lines in label generation, particularly when more unlabeled data is available. We
attribute this improved performance to our novel reconstruction log − cosh loss
that is employed by the encoder. The study results demonstrate the approach’s
potential to reduce annotation overhead in scenarios with imbalanced labeled
and unlabeled data.
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Abstract. Sequential Recommendation (SR) models with auxiliary
tasks of contrastive learning have achieved remarkable progress in recent
years, which can effectively mine the self-supervised signals to mitigate
the data sparsity problem. However, current contrastive SR models over-
look the intricate correlations among different users, leading to the false
negative pair problem and adversely affecting recommendation perfor-
mance. Therefore, in this paper, we propose a multi-intent driven con-
trastive SR model MICRec. MICRec learns global intent prototypes from
the users by a moving-average updating strategy. Then, MICRec intro-
duces two multi-intent guided contrastive losses, including a sequence-
level contrastive loss and an intent-level contrastive loss, which both con-
tribute to mining the self-supervised information and building accurate
user embeddings. The former optimizes the negative sample set by elim-
inating the false negative sequence pairs with overlapping intents, and
the latter further stabilizes the latent structure by aligning the intents
excavated from the original and augmented sequences. Thus, with the
multi-intent guided contrastive learning strategy, our model can better
understand the correlations between users, leading to a more effective
and accurate representation structure in the latent space. MICRec not
only achieves superior performance, but also improves the robustness to
the interaction noise. The experimental results on three public bench-
mark datasets show that MICRec outperforms existing SR models in
terms of Recall and NDCG.

Keywords: Sequential Recommendation · Contrastive Learning ·
Implicit Multi-intent Modeling

1 Introduction

In today’s world, Sequential Recommendation (SR) models are extensively uti-
lized in various scenarios to offer personalized services. The SR models predict
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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Fig. 1. The left shows the historical interactions of two users. The middle depicts
the regular sequence-level contrastive learning, mistakenly pushing users with overlap-
ping intents apart in the latent space. The right illustrates the multi-intent guided
contrastive learning in our model, which applies intent-level contrastive learning and
eliminates the false negative pairs in sequence-level contrastive learning.

users’ next items of interest based on their historical interaction sequences. With
the advancement of deep learning, techniques such as RNN, CNN, and self-
attention mechanisms have been widely adopted in SR models [10,12,16,20],
which makes it possible to provide more accurate and personalized recommen-
dations.

However, in realistic scenarios, data sparsity and data noise problems seri-
ously affect the performance of SR models. To alleviate these problems, con-
trastive learning is introduced to mine self-supervised information and improve
robustness. Existing contrastive SR models typically employ either model-level
[19] or data-level [17,22] augmentation to construct two augmented views based
on the original sequences, where the model-level augmentation includes conduct-
ing dropout twice, adding Gaussian noise, etc., and the data-level augmentation
includes cropping, masking, reordering, and inserting items into the sequence,
etc.

Usually, contrastive learning is treated as an auxiliary task in contrastive SR
models. Most existing contrastive SR models [17,19,22] are based on sequence-
level contrastive losses, which often treat all the sequences within a minibatch
as negative samples except itself. By pushing away the negative sequence pairs,
contrastive learning improves the discrepancy of different sequence embeddings
and the overall uniformity of embeddings. However, sequence-level contrastive
learning can only learn the consistency between different augmented sequences
of the same user, ignoring the correlations among different users at the intent
level and simply pushing the sequence pairs of different users away in the latent
space. For example, in Fig. 1, users Alice and Bob have an overlapping intent
of purchasing digital accessories. However, sequence-level contrastive learning in
the middle figure may regard user Alice and user Bob as negative pairs and man-
age to reduce their similarity in the latent space, which raises the false negative
sample problem. The mistakenly pushing away harms the latent structure and
finally degrades the recommendation performance.

However, accurately modeling the relevance and difference between users
remains a challenge. On the one hand, the absence of supervision signals makes
it hard to extract the implicit user intents. On the other hand, the historical inter-
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actions of a user can be exceedingly intricate, potentially encompassing multiple
intents. As shown in Fig. 1, user Alice simultaneously shows two shopping intents:
clothes and digital accessories. Existing contrastive learning methods [5,15] are
typically single intent oriented, which cannot properly explore and exploit the
implicit correlations among users due to the multiplicity of user intents.

To address the above issues, we propose a multi-intent driven contrastive
model MICRec for the SR, which is trained based on global intent prototypes.
Specifically, MICRec maintains a set of moving-average-updated prototypes to
gather the information from their corresponding users. As shown in the right of
Fig. 1, with the implicit intents in hand, we design two strategies to build the
intent-level structure in the latent space. First, the false negative sequence pairs
whose prototypes overlap partially or fully are eliminated, mitigating the damage
of sequence-level contrastive learning to the accurate latent structure. Second,
we introduce a multi-intent contrastive loss to further enhance the alignment
between the user and his/her assigned multiple intent prototypes. Our contribu-
tions can be summarized as follows.

1. We propose a multi-intent driven contrastive SR model MICRec, which
designs a lightweight intent prototype identifying and updating strategy to
extract the representative intents in the latent space.

2. We introduce two multi-intent guided contrastive losses to accurately estab-
lish the intent-level consistency and discrepancy of users by eliminating false
negative sequence pairs and enhancing the correlation between users and the
intent prototypes.

3. We have conducted experiments on three publicly available datasets. The
experimental results show that our model outperforms existing SR models sig-
nificantly. Compared to the state-of-the-art competitors, our model improves
Recall and NDCG by an average of 12.5% and 6.5% on the three datasets,
respectively.

2 Related Work

2.1 Sequential Recommendation

Sequential Recommendation (SR) models learn user representations from their
historical interaction sequences, assuming that user preferences depend on his-
torical behaviors. Early SR models adopt Markov chains to capture transi-
tions between items. In recent years, SR models have shifted towards lever-
aging various deep neural networks to enhance sequence representation learning.
For instance, GRU4Rec [10] employs recurrent neural networks to capture the
sequential information of user interactions. SR-GNN [21] and GC-SAN [23] take
the items in each sequence as nodes, construct edges according to the interac-
tions, and then learn the sequence representations with graph neural networks.
Recently, attention-based SR models have achieved excellent recommendation
performance. For example, STAMP [16] extracts short-term interest from the last
item in a user’s interaction sequence and calculates long-term interest using an
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attention mechanism. SASRec [12] leverages transformer blocks as the sequence
encoder and further harness the potential of self-attention. BERT4Rec [20] uti-
lizes a bidirectional transformer architecture to integrate information from both
past and future interactions to enhance the understanding of user behaviors.

2.2 Contrastive Learning

Contrastive learning has achieved remarkable performance in both computer
vision and natural language processing [2–4,8,9]. It treats augmented instances
of the same instance as positive pairs, and augmented instances of different
instances as negative pairs. However, the less scrupulous contrastive learning
methods may result in the destruction of semantic structure. To avoid the col-
lapse of semantic structure, PCL [15] designs the ProtoNCE loss to build the
semantic structure discovered by clustering. Some other work focuses on identi-
fying false negative pairs to mitigate the damage to the semantic structure. For
example, SupCon [13] utilizes supervised labels directly to solve the false nega-
tive pairs problem, pulling together the samples belonging to the same class and
pushing the samples from different classes away. FNC [11] constructs a support
set to provide an alternative perspective to detect false negative pairs.

Recently, contrastive learning has been introduced into SR. CL4SRec [22]
constructs positive sequence pairs by masking, cropping and reordering. CoSeRec
[17] generates more informative sequences by introducing two augmentation
schemes based on item correlation. DuoRec [19] utilizes supervised information to
construct positive pairs, designing both data-level and model-level augmentation
techniques. PDMRec [24] proposes contrastive learning strategies that reduce the
interference from the positions of items. ICLRec [5] proposes a method that mod-
els implicit intents through clustering and assigns an intent to each sequence. It
maximizes the agreement between the sequence embedding and its correspond-
ing implicit intent prototype to exploit intent information. DSSRec [18] models
multiple intents in a latent space for each sequence. However, ICLRec is unable
to model multiple intents and the computation cost of clustering leads to poor
timeliness of its prototype updates. DSSRec customizes the intents for each
user and underlying correlations among different users are ignored. Compared
to existing work, our model focuses on modeling implicit intents shared by each
user and building the intent-level structure in latent space to achieve accurate
recommendations.

3 Problem Formulation

We denote the user set as U , the item set as V, and the embedding of item v ∈ V
as v ∈ R

d, where d is the dimension of the embedding. For each user u ∈ U ,
we sort the items that the user has interacted with by timestamp to obtain the
historical interaction sequence su = [vu

1 , vu
2 , ...vu

|su|]. Given the sequence su, our
goal is to build a model that predicts the next item vu

|su|+1 that the user u is
most likely to interact with. The problem is formulated as:

argmaxv∈VP (vu
|su|+1|su). (1)
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Fig. 2. The architecture of MICRec.

4 Our Model

4.1 Overview

The architecture of MICRec is shown in Fig. 2. Our model consists of the next
item prediction and multi-intent guided contrastive learning, i.e., intent-level
contrastive learning and sequence-level contrastive learning. The next item pre-
diction and multi-intent guided contrastive learning share the embedding layer
and the transformer blocks. During training, our model identifies and updates
the intent prototypes by the embeddings of the original sequences. After that,
the intent prototypes are utilized in intent-level contrastive losses to exploit self-
supervised intent information and build the intent-level structure. The identified
multiple intents are also used in the FNE module to eliminate false negative
sequence samples in sequence-level contrastive learning.

4.2 Sequence Encoding

The sequential encoder based on Transformer effectively mines user interests,
achieving excellent SR performance. The encoder extracts features by stacking
self-attention layers and feed-forward network layers.

Given the historical interaction sequence su = [vu
1 , vu

2 , ...vu
|su|] of user u, we

firstly transform it into a sequence of item embeddings, and add the correspond-
ing position embeddings, which are a set of learned vectors. After that, we obtain
the output of the embedding layer:
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Su =
[
vu
1 + p1,vu

2 + p2, . . . ,vu
|su| + p|su|

]
. (2)

Next, we use the multi-head self-attention block to capture correlations in
sequence:

S′
u = AttentionMH(Su) = concat(head1;head2, ...;headh)WO, (3)

headi = Attention(SuW
Q
i ,SuWK

i ,SuWV
i ) i = 1, 2, .., h, (4)

Attention(Q,K,V) = softmax(
QKT

√
d/h

)V, (5)

where h is the number of heads, WQ
i ,WK

i ,WV
i ∈ R

d× d
h , Wo ∈ R

d×d. Also, we
forbid the connection between Qi and Kj (j > i) in our model. Next, to enhance
the fitting ability, a nonlinear feed-forward network layer is added as follows:

Fu = FFN (S′
u) = ReLU

(
S′

uW
(1) + b(1)

)
W(2) + b(2), (6)

where W(1),W(2) ∈ R
d×d, b(1),b(2) ∈ R

d. After that, Fu is fed into the multi-
head self-attention layer of the next block. To alleviate the problem that deep
networks are difficult to converge, we use residual connections between different
layers and layer normalization to stabilize the training. Finally, we record the
output of the last block as Hu = [hu

1 ,hu
2 , ..,hu

|su|], where hu
i is the output of the

i-th time step of the encoder.
We take the output of the |su|-th time step hu

|su| as the sequence embedding.
Particularly, we employ a trick when calculating the score of user-item interac-
tions: normalizing the embedding and using a temperature hyper-parameter to
scale the interaction score. For user u ∈ U , his/her interaction score with item
vj ∈ V is predicted as follows:

ŷuj =
vj

Thu
|su|

||vj ||2||hu
|su|||2

· 1
τ

, (7)

where τ is the temperature hyper-parameter. The above equation can be seen as
scaling the cosine similarity between embeddings. We consider the next item vi

that the user u interacts with as the positive sample and the other items in the
item set as negative samples. The recommendation loss is constructed as follows:

LRec(u) = − log
exp(ŷui)∑

vj∈V exp(ŷuj)
. (8)

4.3 Intent Prototype Identifying and Updating

We propose a moving-average updating strategy to learn intent prototypes.
Specifically, we initialize a set of intent prototypes P, where each normalized
prototype pi ∈ R

d represents an implicit intent and |P| denotes the number of
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intent prototypes. We view the prototypes as intent centers in the latent prefer-
ence space and explore the correlation between users and the prototypes.

We believe that the longer interaction sequences may imply more intents.
Therefore, we assume that the number of intents implied by a sequence is pro-
portional to the length of the sequence, rather than fixing the number of intents
corresponding to each sequence. We calculate the number of intents correspond-
ing to each sequence by the following equation:

ku = min(� |su|
ρ

�), kmax), (9)

where ρ is used to adjust the number of intents implied in each sequence and kmax

limits the maximum number of intents in a single sequence. Next, we compute
the cosine similarity between the sequence embedding and the intent prototypes
by Eq. 10. Note that the intent prototype pi is a normalized vector, i.e.,

ŝui =
pi

Thu
|su|

||hu
|su|||2

. (10)

After that, we find the top ku intents with the highest similarity and obtain
the set of intents corresponding to the sequence Iu:

Iu = {j | ŝuj ∈ top({ŝui,pi ∈ P}, ku)}, (11)

where the top(·, k) function returns the largest k elements in the input set and
Iu represents the intents implied in the sequence su.

Learning the prototypes by clustering [5,15] may cause a huge computational
overhead. Therefore, we update the prototypes with a moving-average style as
follows:

pj = Normalized(βpj + (1 − β) · Normalized(hu
|su|)) if j ∈ Iu, (12)

where β is a hyper-parameter. The moving-average updating strategy of the
intent prototypes can incorporate the information of a single sequence into mul-
tiple intents. At the same time, the moving-average updating makes the process
of modeling intents more stable, less susceptible to individual noisy data, and
effectively reduces the computational overhead, which is capable of being applied
with each minibatch.

4.4 Multi-intent Guided Contrastive Learning

Sequence-Level Contrastive Learning. For each historical sequence su,
we randomly select two data augmentation methods to obtain positive pairs
s′

u = Aug1(su) and s′′
u = Aug2(su), where Aug∗(·) ∈ {mask, crop, reorder}. To

improve the effectiveness of contrastive learning, we follow the approach of pre-
vious work [5,17] and concatenate the normalized output at all time steps to
obtain the augmented sequence representation h′

u and h′′
u.
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Specifically, we calculate the similarity between the augmented sequence pairs
by sim(h′

u,h′′
u) = 1

τ ′ · h′
u

Th′′
u, where τ ′ is a temperature hyper-parameter. Next,

we apply the InfoNCE loss to construct contrastive loss as follows:

LInfoNCE (h′
u,h′′

u) = − log
esim(h′

u,h′′
u)

esim(h′
u,h′′

u) + Tneg
, (13)

Tneg =
∑

i∈H−
esim(h′

u,h′
i) +

∑
i∈H−

esim(h′
u,h′′

i ), (14)

where H− denotes the set of negative users, i.e., users in the minibatch excluding
u.
FNE Module. The augmented sequences of negative users may introduce false
negative pairs that are harmful to the latent structure. Considering that each
sequence has multiple implicit intents, whether the two sequences have overlap-
ping intents is taken as a criterion to identify the false negative sequence pairs
and improve the quality of the negative sample set. Given the user u, his/her
optimized negative user set is shown as follows:

Nu = {i | if Iu ∩ Ii = φ}. (15)

Then, we improve the sequence-level contrastive loss based on the optimized
set as follows:

LSeqCL (h′
u,h′′

u) = − log
esim(h′

u,h′′
u)

esim(h′
u,h′′

u) + T +
neg

, (16)

T +
neg =

∑
i∈(H−∩Nu)

esim(h′
u,h′

i) +
∑

i∈(H−∩Nu)

esim(h′
u,h′′

i ), (17)

where H− ∩Nu denotes the optimized negative user set in the minibatch, which
eliminates the false negative sequence pairs and alleviates the destruction of the
latent structure. The False Negative sample Elimination is denoted as the FNE
module.

Intent-Level Contrastive Learning. Intent-level contrastive learning is
employed to improve the coherence of intents conveyed by the augmented
sequences and the original sequences, exploiting the self-supervised information
of users at the intent level.

The intent set Iu is considered as the positive intents of the user u. The
augmented sequences usually keep similar intents to the original sequence. Based
on the above view, we construct the following contrastive loss to maximize the
consistency between the augmented sequence embeddings and the prototypes of
their positive intents:

L′
IntCL (h′

u, Iu) = − 1
|Iu|

∑
i∈Iu

log
esim(h′

u,pi)
∑

pj∈P esim(h′
u,pj)

, (18)
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L′′
IntCL (h′′

u, Iu) = − 1
|Iu|

∑
i∈Iu

log
esim(h′′

u,pi)
∑

pj∈P esim(h′′
u,pj)

. (19)

Note that the intent prototypes will be frozen from gradient descent, only
updated from the moving-average strategy mentioned in Sect. 4.3. Finally, we
obtain the overall intent-level contrastive loss for user u as follows:

LIntCL(u) = L′
IntCL (h′

u, Iu) + L′′
IntCL (h′′

u, Iu) . (20)

4.5 Overall Loss

We consider sequence-level contrastive learning and intent-level contrastive
learning as two auxiliary tasks and we train our model by optimizing the follow-
ing joint loss:

L =

{
LRec + λ · LInfoNCE, if epoch <= E

LRec + λ · (LSeqCL + LIntCL) else
(21)

where λ controls the intensity of the two auxiliary tasks, E is the hyper-
parameter controlling the number of warm-up epochs. At the early stage of
training, the prototypes are insufficient for providing guidance. Therefore, we
apply a two-stage training approach, starting with a warm-up stage by only
using LInfoNCE as the auxiliary loss. After warming up, the model has the basic
modeling capability and intent information. Then we use LSeqCL +LIntCL as the
auxiliary loss until convergence.

4.6 Discussion

Impact of Embedding Normalization. As shown in Eq. 7, MICRec applies
embedding normalization before calculating similarities in both the next item
prediction and the contrastive learning. Compared to dot product similarity, we
find that using the cosine similarity with normalized embeddings can achieve a
significant performance improvement in the experiments. This might be because
the normalized embeddings can alleviate popularity bias compared to directly
using embeddings of free-varying magnitude, which is also revealed in a recent
study [1]. Thus, we apply the method to our model.

Time Complexity. In the training phase, the main time consumption comes
from two parts, i.e., encoding sequences and identifying the intent prototypes.
The time complexity of encoding the original and augmented sequences is
O(3 · (Ld2 + L2d)), where L is the maximum length of the input sequence. The
time complexity of identifying the intents for a sequence is O(|P| log kmax). In
the prediction phase, the intent prototype is not involved, and we do not need
to compute the embedding of the augmented sequence, so the overall time com-
plexity reduces to O(Ld2 + L2d). Compared to the other contrastive SR models
like CL4SRec, MICRec does not increase the computational cost significantly.
Meanwhile, the move-average update strategy makes it more efficient than the
intent contrastive SR model ICLRec during the training phase.
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Table 1. Statistics of the datasets after preprocessing.

Dataset #Users #Items #Interactions Density

Beauty 22,363 12,101 198,502 0.07%

Toy and Games 19,412 11,924 167,597 0.07%

Sports and Outdoors 35,598 18,357 270,544 0.04%

5 Experiments

5.1 Experimental Setting

Datasets. Considering that the SR models are widely used in e-commerce sce-
narios, we choose 3 subcategories of the widely used Amazon dataset1 to conduct
experiments, including Beauty, Toy and Games, and Sports and Outdoors.

During the dataset preprocessing, users or items appearing less than 5 times
are removed. The statistics of the processed datasets are shown in Table 1. We
adopt the leave-one-out strategy to split the datasets. For an interaction sequence
su = [vu

1 , vu
2 ...vu

|su|], we leave the last interaction vu
|su| for testing and vu

|su|−1 for
validation. The remaining interactions [vu

1 , vu
2 ..vu

|su|−2] are used for training.

Evaluation Metrics. We follow the common evaluation metrics in the next
item prediction task, including Recall@K and NDCG@K (R@K and N@K for
short). In this paper, we present our findings for K values of 10, 20, and 50.
We use the ranking results on the whole set of item candidates to evaluate for
fairness [14].

Baselines. We choose the following models as competitors, including four reg-
ular SR models, i.e., GRU4Rec [10], STAMP [16], SASRec [12], BERT4Rec [20].
Additionally, we compare our model to two contrastive SR models, CL4SRec [22]
and DuoRec [19], along with two implicit-intent-based SR models, DSSRec [18]
and ICLRec [5].

Implementation Details. For the competitors, GRU4Rec, STAMP, SASRec,
BERT4Rec and CL4SRec are implemented based on an open-source framework
Recbole2. DuoRec3, DSSRec4 and ICLRec5 are implemented with their open-
source code. We set the dimension of embeddings to 64, batch size to 512 and
dropout to 0.25. The maximum sequence length is set to 100. Particularly, for
the model applying the self-attention mechanism, we set the attention head to 2,
1 http://jmcauley.ucsd.edu/data/amazon/index.html.
2 https://github.com/RUCAIBox/RecBole.
3 https://github.com/RuihongQiu/DuoRec.
4 https://github.com/abinashsinha330/DSSRec.
5 https://github.com/salesforce/ICLRec.

http://jmcauley.ucsd.edu/data/amazon/index.html
https://github.com/RUCAIBox/RecBole
https://github.com/RuihongQiu/DuoRec
https://github.com/abinashsinha330/DSSRec
https://github.com/salesforce/ICLRec
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and the number of layers to 2. The remaining hyper-parameters are configured
following the specifications outlined in their respective papers.

We implement our model in PyTorch. We initialize the parameters and intent
prototypes by a normal distribution in the range [−0.02, 0.02]. For the hyper-
parameters, we tune the weight of contrastive loss λ, the size of the intent pro-
totype set |P| and the number of warm-up epochs E in {0.01,0.05, 0.1,0.5}, {64,
128, 256, 512} and {0, 2, 4, 8}, respectively. ρ and kmax are set to 4 and 8.
The moving-average updating weight β is set to 0.99. The temperature hyper-
parameters τ and τ ′ are both set to 0.1.

We train the models with an early stopping strategy. That is, we stop training
if Recall@20 does not improve on the validation set for 10 epochs consecutively.
We train our model with three different random seeds, and report the mean
value of the results and the confidence interval with a 95% confidence level.

5.2 Performance Comparison

Table 2 gives the experimental results for the overall performance comparison.
From the results, we have the following observations. STAMP, which is based
on Short-Term Attention, has a better performance compared to the GRU4Rec
based on the recurrent neural network on most of the datasets. SASRec achieves
the best performance among all regular SR models, indicating the effectiveness
of the self-attention mechanism in sequence modeling. However, BERT4Rec per-
forms poorly on most of the datasets, potentially because the masked item pre-
diction training method is not suitable for the next item prediction task.

The contrastive SR model CL4SRec outperforms SASRec due to the effec-
tiveness of introducing sequence-level contrastive learning to mine self-supervised
information. DuoRec outperforms CL4SRec in most scenarios, suggesting that
combining supervised and unsupervised contrastive learning allows the model
to learn better representations. However, despite DSSRec and ICLRec modeling
implicit intents, their performance is inferior to that of CL4SRec and DuoRec.
This indicates that they have limitations in intent modeling. ICLRec focuses on
modeling a single intent for each user, while DSSRec does not incorporate the
implicit intents from global user correlations, resulting in a marginal performance
impairment.

Our model MICRec significantly outperforms other competitors in all metrics
on all datasets. For example, MICRec has 15.6% and 9.14% average improvement
over the second-best model in Recall and NDCG on the Sports dataset, respec-
tively. This is attributed to the multi-intent guided contrastive losses, which can
effectively exploit self-supervision signals at different levels while maintaining
the accurate latent structure.

5.3 Ablation Study

Table 3 shows the ablation experiment results of MICRec. Variants a, b and
c remove sequence-level contrastive learning, intent-level contrastive learning
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Table 2. Performance comparisons of different models. The best in each row is in bold,
and the second-best is underlined. The last column shows the relative improvements
compared to the best baseline results.

Table 3. Ablation Study of MICRec. (Recall@20)

Model Beauty Toys Sports

MICRec 0.1289 0.1342 0.0790

a) w/o LIntCL 0.1266 0.1334 0.0775

b) w/o LSeqCL 0.1250 0.1307 0.0768

c) w/o FNE 0.1266 0.1316 0.0782

d) w/o LIntCL and LSeqCL 0.1222 0.1297 0.0756

and FNE module from MICRec, respectively. Variant d removes the contrastive
learning at both levels.

It can be observed that variants a, b, and c all show a certain degree of perfor-
mance degradation compared to MICRec, indicating that both the multi-intent
guided contrastive losses and the FNE module contribute to the recommendation
performance, which is due to the fact that the contrastive losses effectively mine
the self-supervised information in the sequence-level and intent-level, and the
optimized negative sample set can alleviate the disruption caused by false nega-
tive sequence pairs. Variant d exhibits inferior performance compared to variants
a and b, suggesting that incorporating the multi-intent guided contrastive losses
can yield benefits for the performance.

5.4 Robustness Analysis

Robustness Against Interaction Sparsity. The preferences of users with few
interactions are more difficult to capture. Therefore, we divide users into four
groups according to the interaction frequency, and observe the recommendation
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Fig. 3. Performance on the user groups
with different interaction frequencies.
(Left: Beauty, Right: Toys)

Fig. 4. Performance comparison with
different added noise ratios. (Left:
Beauty, Right: Toys)

performance of SASRec, CL4SRec and MICRec. Figure 3 shows that the per-
formance of CL4SRec has a stable improvement compared to SASRec on the
user group with few interactions, which indicates that contrastive learning can
alleviate the data sparsity problem. MICRec demonstrates a notably superior
performance compared to SASRec and CL4SRec across all user groups in both
datasets. Particularly noteworthy is the greater improvement observed in user
groups with limited interactions, which indicates that multi-intent guided two-
level contrastive learning can sufficiently exploit the self-supervised information
to alleviate the interaction sparsity compared to the regular sequence-level con-
trastive loss.

Robustness Against Noise. To explore the performance of the MICRec model
in the noisy scenarios, we add 20% and 40% of random items to the train dataset,
respectively. From Fig. 4, we can find that CL4SRec outperforms SASRec in
noisy scenarios. This is because sequence-level contrastive learning brings better
uniformity for sequence embeddings, which may avoid the over-fitting of noisy
data. MICRec performs better than SASRec and CL4SRec, and the relative
improvement increases as the noise ratio increases. This reflects its excellent
robustness against noisy data, possibly attributed to the model’s capacity to
enrich the intent-level structure in the latent space, thus mitigating significant
perturbations and maintaining good recommendation performance even in a
noisy scenario.

5.5 Impact of Flase Negative Sample Elimination

Given the joint optimization of the next item prediction task and contrastive
learning task, false negative pairs could introduce conflicts and disrupt the accu-
rate latent structure during the optimization process. In this section, we investi-
gate the significant role of the FNE module in mitigating conflicts. Specifically,
all the variants only apply sequence-level contrastive learning as the auxiliary
task and the weights of contrastive learning are all set to 1. The difference is
that variant MICRecFNE(8) applies the FNE module after a warm-up stage with
the number of warm-up epochs set to 8, while variant MICRecFNE(64) does so
with the number set to 64.
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Fig. 5. The curve of recommendation loss LRec on train dataset and the evaluation
metric Recall@20 on validation dataset during training on Beauty dataset.

Fig. 6. Hyper-parameter sensitivity of λ, |P| and E. (Upper: Beauty, Lower: Toys)

Figure 5 shows the curve of next item prediction loss LRec and the metric
Recall@20 on the validation dataset during training 120 epochs on the Beauty
dataset. It can be observed that the decay rate of the LRec becomes larger
and the performance of MICRecFNE(8) and MICRecFNE(64) gradually exceeds
MICRecInfoNCE after applying the FNE module. This indicates that the FNE
can mitigate potential conflicts when jointly optimizing the recommendation loss
and sequence-level contrastive learning loss. It accelerates the convergence of the
recommendation task, aids in learning high-quality embeddings, and ultimately
improves the recommendation performance.

5.6 Hyper-parameter Sensitivity

We perform experiments on the Beauty and Toys datasets to explore the sen-
sitivity of the weight of contrastive loss λ, the size of intent prototype set |P|,
and the number of warm-up epochs E. We fix other hyper-parameters, and tune
λ, |P| and E within {0.01, 0.05, 0.1, 0.5}, {64, 128, 256, 512}, {0, 2, 4, 8},
respectively. From the results in Fig. 6, we can observe that MICRec demon-
strates peak performance on both datasets when the weight of the contrastive
loss λ is set to 0.1. Notably, both excessively large and small weights dimin-
ish the model’s performance. The model performs poorly when the value of |P|
is small. This could be attributed to the limited size of the intent prototype
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set, causing the model to overly emphasize coarse-grained intent information
while lacking detailed information. MICRec achieves optimal performance on
the datasets Beauty and Toys when the number of warm-up epochs E is set
to 4 and 8, respectively. This suggests that employing a warm-up stage assists
the model in establishing a foundational latent structure, thereby enhancing the
learning process.

6 Conclusion

In this paper, we propose a multi-intent driven contrastive SR model MICRec,
which is equipped with multi-intent guided two-level contrastive losses. Our
model learns implicit intent prototypes through a moving-average updating
strategy, utilizing implicit intents to eliminate false negative sequence pairs and
mine self-supervised information at the intent-level. Experiments on several pub-
licly available datasets show that our model outperforms existing SR models.
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Abstract. We introduce knowledge-aware transfer learning with a text-
to-text transfer transformer (KAT5) by leveraging a text-to-text transfer
transformer (T5) in the Wikipedia domain. In standard transfer learning
like T5, a model is first pre-trained on an unsupervised data task with a
language model objective before fine-tuning it on a downstream task. T5
explores several learning objectives, including masked language model
(MLM), random span, and deshuffling, where the model is limited to
exploring integrating knowledge during pre-training. Here, we push the
limits of this model by grafting knowledge like entity and co-reference
information by mapping Wikipedia and Wikidata during pre-training.
We align large-scale alignments between Wikipedia abstract and Wiki-
data triples to facilitate our pre-training KAT5 model. Our approach can
match or outperform task-specific models while using the same architec-
ture and hyper-parameters, in particular in entity and relation extraction
(CoNLL04, ADE, and NYT datasets), and language generation tasks,
including abstractive summarization (XSum, CNNDM), and machine
translation. Our code is publicly released on GitHub (https://github.
com/aistairc/kat5) under the Apache 2.0 License.

Keywords: Natural language processing · Transfer learning ·
Language model · Sequence-to-Sequence · Language understanding and
generation · Information extraction · Machine translation

1 Introduction

In this work, to better capture the awareness of knowledge in language model-
ing pre-training, we present a knowledge-aware text-to-text transfer transformer
that packs more information into the T5 model [26], which we call KAT5. Dur-
ing transfer learning a model is first pre-trained on a large-scale unsupervised
data task and the most successful approaches have been variants of masked lan-
guage models (MLMs), which are denoising autoencoders that are trained to
reconstruct text by masking out a random subset of the input sequence.
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Integrating knowledge like entity or coreference information during transfer
learning in NLP is not a common fashion as it needs to label a large-scale dataset.
Such large-scale label dataset is not available, therefore, it is common to pre-train
the entire model using data-rich unsupervised learning on unlabeled data. Our
baseline model, T5 investigates different objective tasks, including masked lan-
guage model (MLM), random span, and deshuffling, where the model is limited
to exploring integrating knowledge during pre-training. Here, we push the limits
of this model by grafting knowledge like entity and co-reference information by
mapping Wikipedia and Wikidata during pre-training.

We propose a novel knowledge-aware T5 (KAT5) sequence-to-sequence (S2S)
method with encoders and decoders that integrates entities and their corefer-
ences as knowledge during pre-training. The KAT5 model is based on existing
S2S architectures to allow parameter initialization from publicly available T5
checkpoints. We perform large-scale alignments between Wikipedia abstract and
Wikidata triples to facilitate our pre-training KAT5 model and further research
on integrating knowledge into large-scale pre-training. We show that initializa-
tion with knowledge-aware pre-training is effective for various downstream tasks.
We fine-tune and evaluate the KAT5 model in joint entity-relation extraction
(CoNLL04, ADE, and NYT dataset) and generation tasks - abstractive summa-
rization (XSum, CNNDM datasets), and machine translation (English to Ger-
man and English to Romanian datasets). We compare its performance with
several recent state-of-the-art models.

Our implementation of the KAT5 model is based on Huggingface transform-
ers. To the best of our knowledge, this is the first model to handle such a large-
scale knowledge alignment during pre-training.

2 Related Work

Pre-trained Language Models such as BERT [5], RoBERTa [19], T5 [28], GPT-
2 [27], XLNet [36], and XLM [4] are neural networks trained on large-scale
datasets that can be fine-tuned on task-specific data. These models have sig-
nificantly transformed the NLP landscape by showing remarkable success in
a wide range of NLP tasks. Here, we draw our little scratch by introducing
Knowledge-aware T5 (KAT5) to facilitate different NLP tasks.

Text-to-Text Transfer Transformer (T5) [28] - the basic idea underlying this
work is to treat every text processing problem as a “text-to-text” problem, i.e.
taking text as input and producing new text as output. The model achieves
state-of-the-art results on many benchmarks covering summarization, question
answering, text classification, and more. We adopt this approach as our direct
baseline by grafting knowledge like entity and coreference information during
pre-training by initializing our KAT5 with T5-base checkpoints.

Translation between Augmented Natural Languages (TANL) [23] - a frame-
work to solve several structure predictions in a unified way, with a common archi-
tecture and without the need for task-specific modules. The TANL framework is
applied to joint entity and relation extraction, named entity recognition, relation
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classification, semantic role labeling, coreference resolution, event extraction and
dialogue state tracking. In all cases the model achieve at least comparable results
to the current state-of-the-art, and it achieves new state-of-the-art (SOTA) per-
formance on joint entity and relation extraction (CoNLL04, ADE, NYT, and
ACE2005 datasets), relation classification (FewRel and TACRED), and seman-
tic role labeling (CoNLL-2005 and CoNLL-2012). This is our baseline approach
for joint entity and relation extraction tasks as the model initializes from the
T5-base model like our approach during pre-training.

REBEL [13] - a S2S model based on BART-large that performs end-to-end
relation extraction for more than 200 different relation types and show that
how relation extraction can be simplified by expressing triplets as a sequence of
text. We follow the same triplet linearization process of REBEL into our work.
REBEL is basically relation extraction-based task-specific model and has shown
SOTA performance in most of the relation extraction tasks. Though the model
is relation extraction-based and the model parameters are larger than us, here,
we compare our KAT5 over the joint relation-extraction tasks.

BART-NAR-BERT (BnB) [33] - a pre-trained non-autoregressive S2S model,
which employs BERT as the backbone for the encoder and decoder for natu-
ral language understanding and generation tasks. The model outperformed sev-
eral SOTA models in non-autoregressive benchmark and has shown comparable
performance in autoregressive models. Since the model follows a sequence-to-
sequence manner, we also compare our model over the generative tasks.

3 Model

3.1 Baseline

We consider the text-to-to transfer transformer – T5 [26] as a baseline encoder-
decoder architecture close to the original architecture of transformer [35]. In T5,
the input sequence of tokens is mapped to a sequence of embeddings, which is
then passed into the encoder. The encoder consists of a stack of “blocks,” each
comprising two subcomponents: a self-attention layer and a following small feed-
forward network. Unlike layer normalization [1], T5 uses a simplified version of
layer normalization where the activations are only rescaled and no additive bias is
applied. A residual skip connection [32] then adds input from each subcomponent
to its output. Dropout [34] is applied within the feed-forward network, on the skip
connection, on the attention weights, and at the input and output of the entire
stack. The decoder is similar in structure to the encoder, except that it includes
a standard attention mechanism after each self-attention layer that attends to
the output of the encoder. The self-attention mechanism in the decoder also uses
a form of auto-regressive or causal self-attention, which only allows the model to
attend to past outputs. The output of the final decoder block is fed into a dense
layer with a softmax output, whose weights are shared with the input embedding
matrix. All attention mechanisms in the Transformer are split into independent
“heads” whose outputs are concatenated before being further processed.
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Fig. 1. Pre-training tasks of KAT5

3.2 KAT5: Knowledge-Aware Text-to-Text Transfer Transformer

As an unsupervised objective during pre-training, a model needs an objec-
tive function that does not require labels but teaches the model generalizable
knowledge and will be useful to transfer that knowledge into downstream tasks.
Apart from casual language modeling objective for pre-training, recently denois-
ing a.k.a. masked language modeling (MLM) [5] shows better performance and
become a standard unsupervised learning objective in many natural language
processing (NLP) tasks. In the MLM objective, the model is trained to predict
missing or corrupted tokens by adding <MASK> in the input sequence. Inspired by
BERT’s MLM objective, T5 follows a random span masking objective to corrupt
15% of tokens in the input sequence where all consecutive spans of dropped-out
tokens are replaced by a single sentinel token, a.k.a. unique mask tokens. We
adopt the T5 masking strategies and design an objective that randomly sam-
ples and then drops out 15% of entity and coreference related spans in the input
sequence using 100 sentinel tokens. Each sentinel token represents a unique mask
token starting as < extra_id_0 >, < extra_id_1 >, . . ., < extra_id_99 >
for a given input sequence.

Figure 1 shows a knowledge-aware task of KAT5. In this figure, the bold
text in the input sequence represents entities where the pronoun He indicates
the coreference of Alain connes. During sentinel masking in KAT5, unique
mask tokens are used to corrupt the input text by replacing the entity and
coreference spans. Finally, the output sequence consists of the dropped-out entity
and coreference spans, delimited by the sentinel tokens used to replace them in
the input.

3.3 Pre-training Data Creation

Another key contribution of this paper is to automatically create data for pre-
training the KAT5 model. The pre-training data set is a crucial component of the
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Fig. 2. Knowledge-aware data example aligned from Wikidata

transfer learning pipeline. During pre-training, the model needs a large amount
of data that teaches the model generalizable knowledge. The T5 model used the
Colossal Clean Crawled Corpus (C4) dataset for pre-training by downloading
about 750 GB of text extracted from the Web. In contrast, our KAT5 model is
based on integrating knowledge like entity and co-reference information during
pre-training; therefore, it is a challenging task to integrate such knowledge in a
vast amount of unstructured text like C4 or the entire Wikipedia dump. One
possible way is to create such a knowledge-aware pre-training dataset by aligning
Wikipedia abstract and Wikipedia hyperlinks with Wikidata entities. We aligned
the Wikipedia abstract and Wikidata entities to pre-train the KAT5 model to
shed light on this challenging task. We are interested in measuring whether this
knowledge-aware dataset can enrich the downstream tasks by leveraging the
knowledge during pre-training.

We create the knowledge-aware pre-training dataset by adopting the T-REx
implementation1. In this implementation, we integrate entity or mention type
predictors using the spaCy2 model to predict all the span types of Wikipedia
links. We call T-RExM since an additional mention module is integrated into
the T-REx implementation.

T-RExM Details. We follow the T-REx implementation to integrate entity
types for creating our T-RExM dataset. T-RExM consists of 11 million triples
aligned with 3.09 million Wikipedia abstract which is two orders of magnitude
larger than the largest available alignments dataset and covers 2.5 times more
predicates. As a source of triples, we use the Wikidata truthy dump3 contain-
ing about 144M triples. Figure 2 shows the knowledge-aware data aligned from
Wikipedia. Based on the T-REx implementation, T-RExM follows a pipeline
manner, (1) T-REx Linker: it contains the components of Document Reader,
Entity Extraction, Coreference resolution, Date-time Linker, and Predicate
Linker and (2) T-REx Aligner: it includes AllEnt Aligner, NoSub Aligner, SPO

1 https://github.com/hadyelsahar/RE-NLG-Dataset.
2 https://spacy.io.
3 https://dumps.wikimedia.org/wikidatawiki/entities/latest-truthy.nt.bz2.

https://github.com/hadyelsahar/RE-NLG-Dataset
https://spacy.io
https://dumps.wikimedia.org/wikidatawiki/entities/latest-truthy.nt.bz2
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Aligner, and Soft Aligner. A simple description of main components (among the
components) are as follows (for more details we refer to the readers for T-REx
creation [7]):

– Document Reader: The T-RExM pipeline is fed with documents from the
DBpedia Abstract dataset [2], an open corpus of annotated Wikipedia texts.
An English section that contains 4.6M text documents is used. Document
Reader includes sentence and word tokenizers to extract the start and end
positions of sentences and words in documents.

– Entity Extraction: For each input document, it extracts named entities in
the text and links them to their uniform resource identifier (URI) with the
DBpedia Spotlight [21] entity linker.

– Coreference Resolution: Stanford CoreNLP co-reference resolution compo-
nent [20] is used to map a list of possible pronouns of each knowledge base
(KB) entity.

– Date and Time Extraction: Stanford temporal tagger Sutime [3] is used to
extract temporal expressions and their locations in the documents.

– Predicate Linking: A predicate linker links a sequence of words in a paragraph
to its equivalent KB predicate URI if it matches the predicate label or any of
its aliases in the KB.

– AllEnt Aligner: Every pair of entities in a sentence is considered in alignment
and mapped to their equivalent KB relations.

– SPO Aligner: The subject predicate and object (SPO) aligner aligns triples
when the subject and object of a triple are mentioned in a sentence.

During this pipeline manner, we integrate the mention type predictor module on
top of AllEnt Aligner to predict the entity type using spaCy model. Based on
spaCy model, we align eighteen different entity types4 and relation labels5 with
11M triples.

3.4 KAT5 Fine-Tuning

During KAT5 fine-tuning, Like T5, we treat every text processing problem as a
test-to-text problem, i.e. giving text as input to the KAT5 model and producing
new text as output. Figure 3 shows a fine-tuning approach of KAT5.

4 Experimental Settings

4.1 Datasets

Joint Entity-Relation Extraction Dataset. For joint entity and relation
extraction tasks, we evaluate our models on the following datasets.
4 ‘CARDINAL’, ‘DATE’, ‘EVENT’, ‘FAC’, ‘GPE’, ‘LANGUAGE’, ‘LAW’, ‘LOC’,

‘MONEY’, ‘NORP’, ‘ORDINAL’, ‘ORG’, ‘PERCENT’, ‘PERSON’, ‘PRODUCT’,
‘QUANTITY’, ‘TIME’, ‘WORK_OF_ART’.

5 Relations label are based on Wikidata properties (https://www.wikidata.org/wiki/
Special:ListProperties).

https://www.wikidata.org/wiki/Special:ListProperties
https://www.wikidata.org/wiki/Special:ListProperties
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Fig. 3. Fine-tuning KAT5

CONLL04. The CoNLL04 [29] dataset consists of sentences extracted from news
articles - with four entity types location, organization, person, and other,
and five relation types (work for, kill, organization based in, live in,
and located in. We use the 922/231/288 sentences in the train/validation/test
set based on the split by Gupta [11].

ADE. The ADE [12] dataset consists of 4,272 sentences extracted from medical
reports– with two drug and disease entity types and a single relation type
effect. This dataset has sentences with nested entities. We follow the same
settings as TANL [24], conduct a 10-fold cross-validation, and report the average
macro-F1 results across all ten splits.

NYT. The NYT dataset [38] is based on the New York Times corpus where
we use the preprocessed version of Yu [37]. It consists of three entity types
location, organization, person and 24 relation types (such as place of birth,
nationality, company etc.). It consists of 56,195/5,000/5,000 sentences in the
training/validation/test set.

Summarization Dataset. The XSum [22] and CNNDM datasets are used to
evaluate our models.

XSum. Abstractive text summarization aims to produce a short version of
a document while preserving its salient information content. We evaluate the
models based on the BBC extreme [22] (XSum) dataset. This is a news sum-
marization dataset containing 227K news articles and single-sentence summary
pairs. We load the XSum datasets from Huggingface6 The evaluation metric
is ROUGE [17], including ROUGE-1 (R-1), ROUGE-2 (R-2), and ROUGE-L
(R-L). We adopted the Google Research re-implementation of ROUGE7.

6 https://huggingface.co/datasets/EdinburghNLP/xsum.
7 https://github.com/google-research/google-research/tree/master/rouge.

https://huggingface.co/datasets/EdinburghNLP/xsum
https://github.com/google-research/google-research/tree/master/rouge
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CNNDM. The CNN/DailyMail (CNNDM) dataset is an English-language
dataset containing just over 300k unique news articles as written by journal-
ists at CNN and the Daily Mail. We load the CNNDM datasets from Hugging
Face datasets8 that supports both extractive and abstractive summarization.

Machine Translation Dataset. We evaluate our models using two popular
benchmark data sets from the WMT shared tasks on news translation - English
(EN) → German (DE) data from WMT 2014 and English→Romanian (RO) data
from WMT 2016. We load the WMT datasets from Hugging Face datasets9,10
and use them directly to train the models without filtering. We evaluate the
performance by computing BLEU [25].

4.2 Training

KAT5 Pre-training. To pre-train the KAT5 model, we initialize the model
with the T5-base checkpoint11 and continue pre-training using the knowledge-
aware span denoising objective of T5 on the training split of our dataset that
was explained in Sect. 3.3. We use a learning rate of 0.001, a linear warm-up of
5k steps, a gradient accumulation of 2 steps, and a maximum sequence length
of 512 tokens. The KAT5 model is trained on 1.3B tokens, where we employ a
batch size of 65,536 tokens with a maximum step of 200K steps. The original
T5 model was trained on 34B tokens over the C4 corpus, which was 26 times
larger than our additional pre-training dataset. The KAT5 model is optimized
end-to-end using an Adafactor optimizer with a corrupted knowledge-aware span
ratio of 15%.

KAT5 Fine-Tuning. During fine-tuning with KAT5 on downstream datasets,
we consider two learning settings - (1) Single-task learning: a single model on
a single dataset is learned initializing from KAT5 checkpoint. (2) Multi-task
learning: Since the model is based on our direct baseline T5 model, therefore, our
KAT5 model naturally allows us to train a single model on multiple datasets that
can cover many structured prediction tasks. In this setting, we add the dataset
name followed by the task separator: (for example, “xsum summarize:” for Xsum
dataset) as a prefix to each input sentence and only the summarization datasets
are evaluated. We fine-tune on top of KAT5 for a maximum of 10 epochs in all
our downstream tasks.

5 Results

In this section, we show that our Knowledge-aware T5 (KAT5) can effectively
solve the structure prediction tasks that match or exceed the previous state of the
8 https://huggingface.co/datasets/cnn_dailymail.
9 https://huggingface.co/datasets/wmt14.

10 https://huggingface.co/datasets/wmt16.
11 https://huggingface.co/google-t5/t5-base.

https://huggingface.co/datasets/cnn_dailymail
https://huggingface.co/datasets/wmt14
https://huggingface.co/datasets/wmt16
https://huggingface.co/google-t5/t5-base
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Table 1. Performance comparison on the CONLL04, ADE, and NYT datasets. Bold
and underlined denotes the best and second-best results within KAT5 and Baseline
Models.

Model Params CONLL04 ADE NYT

Entity Relation Entity Relation Entity Relation

SpERT [6] 110M 88.9 71.5 89.3 78.8 – –

MRC4ERE [39] 88.9 71.9 – – – –

REBEL [13] 460M – 71.2 – 81.7 – 91.8

REBELpretraining [13] 460M – 75.4 – 82.2 – 92.0

- Baseline Model-

TANL + Single-task [23] 220M 89.4 71.4 90.2 80.6 94.9 90.8

TANL + Multi-dataset [23] 220M 89.8 72.6 90.0 80.0 94.7 90.5

TANL + Multi-task [23] 220M 90.3 70.0 91.2 83.8 94.7 90.7

KAT5 + Single-task 220M 90.0 69.8 91.9 81.6 95.1 90.9

art on multiple datasets. All our experiments start from a pre-trained KAT5 and
to keep our model as simple as possible, hyper-parameters are the same across
all experiments. In all our experiments we compare our results in two folds: (1)
Baseline Model: T5 is the backbone of this model where we directly compare our
results and (2) other recent models are applied in the same downstream tasks.
To evaluate our model, we adopt TANL [23] evaluation script for joint entity-
relation extraction tasks and Hugging Face Transformers evaluation script for
summarization and translation tasks.

5.1 Performance on Joint Entity-Relation Extraction

We tackle the joint entity-relation as a generation task where the model output of
KAT5 is a triplet that is present in the input text. With the single-task setup in
Table 1, the KAT5 outperforms over the TANL which is our direct baseline since
TANL framework is initialized with T5 and used the same model parameters.
We obtain a +0.6/+1.7/+0.2 and -0.6/+1.0/+0.1 improvement using F1 score
in the CONLL4/ADE/NYT datasets for entity and relation extraction tasks
respectively. The performance of KAT5 is even better in some tasks in the multi-
dataset and multi-task settings. TANL, needs 200 epochs to achieve the stated
results in Table 1 where we fine-tune on top of KAT5 for 10 epochs.

In contrast to our baseline approaches, KAT5 shows a better performance
over the SpERT [6] and MRC4ERE [39], but shows a little drop in comparison
to the Rebel [13] which is a task specific relation extraction model.

Triple Generation Example. Table 2 shows randomly selected generated
examples from the ADE dataset. In this table, in the case of Reference 2 and
3 where both T5 and KAT5 models generated the output triple correctly. But
in Reference 1, T5 is generated relation type has effect and object (<obj>)
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Table 2. An example of ADE relation triples output comparing the baseline T5 model
output to our KAT5. � and �� indicates wrong and correct prediction respectively.

Reference: 1 <triplet> human teratogen <subj> cyclophosphamide <obj> has effect
T5: � <triplet> teratogen <subj> cyclophosphamide <obj> has effect
KAT5: �� <triplet> human teratogen <subj> cyclophosphamide <obj> has effect

Reference: 2 <triplet> Lethal anuria <subj> ifosfamide <obj> has effect
T5: �� <triplet> Lethal anuria <subj> ifosfamide <obj> has effect
KAT5: �� <triplet> Lethal anuria <subj> ifosfamide <obj> has effect

Reference: 3 <triplet> pulmonary toxicity <subj> Gemcitabine <obj> has effect
T5: �� <triplet> pulmonary toxicity <subj> Gemcitabine <obj> has effect
KAT5: �� <triplet> pulmonary toxicity <subj> Gemcitabine <obj> has effect

Table 3. Performance comparison on the XSum dataset. R-1/2/L stands for ROUGE-
1/2/L. Bold and underlined scores denote the best and second-best results.

Model Params XSum
R-1 R-2 R-L

Transformer [35] 30.7 10.8 24.5
iNAT [14] 27.0 6.9 22.4
NAT [9] 24.0 3.9 20.3
CMLM [8] 23.8 3.6 20.2
LevT [10] 24.8 4.2 20.9
ELMER-Hard [16] 34.5 9.8 26.1
ELMER-Soft [16] 38.3 14.2 29.9
BART [15] 38.8 16.2 30.6
BERT2BERT [30] 220M 37.5 15.2 30.1
BERT-NAR-BERT [33] 220M 32.7 11.6 27.8
BERT-NAR-BERT + additional pre-training [33] 220M 36.1 13.4 30.0
- Baseline Model-
T5 + fine-tuning + Single-task 220M 39.7 16.5 31.9
KAT5 + Single-task 220M 39.9 16.7 32.1
KAT5 + Multi-task 220M 40.2 17.0 32.2

mention cyclophosphamide correctly but failed to generate human teratogen
mention as subject (<sub>).

5.2 Performance on Summarization

In the multi-task settings of summarization tasks, we add the dataset name fol-
lowed by the task separator is used (for example, “xsum summarize:” for XSum
dataset and “summarize:” for CNNDM dataset) as a prefix to each input sen-
tence. Table 3 shows the abstractive performance comparison of KAT5 over the
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Table 4. Performance comparison on the CNN/DailyMail (CNNDM) dataset. Bold
and underlined scores denote the best and second-best results within KAT5 and Base-
line Models.

Model Params CNNDM
R-1 R-2 R-L

PTGEN [31] 36.44 15.66 33.42
PTGEN+COV [31] 39.53 17.28 36.38
BERTSUMABS [18] 41.72 19.39 38.76
BERTSUMEXTABS [18] 42.13 19.60 39.18
ROBERTASHARE [30] 40.31 18.91 37.62
BART [15] 44.16 21.28 40.90
- Baseline Model-
T5 [28] 220M – 19.24 –
T5 (Re-run) 220M 39.40 17.10 36.57
KAT5 + Single-task 220M 43.51 20.64 40.66
KAT5 + Multi-task 220M 43.44 20.28 40.56

XSum dataset. Both the single- and multi-task settings, the KAT5 outperforms
the baseline T5 model. In the original T5 implementation they exclude XSum
summarization task. Here, the reported score in Table 3 based on our run by
initializing the T5 model. The model also outperforms BART and the recent
non-autoregressive BERT-NAR-BERT model. Table 4 shows the performance
comparison of KAT5 over the CNNDM dataset. The model shows an improve-
ment over the baseline model but shows a little drop in comparison to the BART
model. In the multi-task settings, the performance of CNNDM dataset shows a
little drop where XSum dataset shows an improvement in comparison to the
single-task settings.

5.3 Performance on Machine Translation

Results of machine translation (MT) experiments are summarized in Table 5.
With the single-task setup in MT, the KAT5 model is trained on instruction-
based approach and outperforms the baseline T5 that obtains a +0.36/+3.01
improvement using BLEU score in the EN-DE/EN-RO WMT datasets respec-
tively. We also compare our model with the auto-regressive BERT2BERT S2S
model and achieve +2.21/+6.75 improvement. Besides, our model also shows an
improvement over the vanilla transformer in both EN-DE and EN-RO datasets.

In contrast, we also compare our model on the recent non-autoregressive
S2S model like BERT-NAR-BERT. The KAT5 model outperforms all formats
of the BERT-NAR-BERT model. Interestingly, our model even shows better
performance over the BERT-NAR-BERT initialized with multi-lingual BERT
(mBERT) and trained together with original and distilled data from WMT 2014



168 M. G. Sohrab and M. Miwa

Table 5. Machine translation experiment results in BLEU scores. Bold and underlined
scores denote the best and second-best results.

Model Params EN - DE EN - RO

Transformer [35] 27.30 21.53
BERT2BERT + mBERT [30] 220M 25.80 23.24
BERT-NAR-BERT + random [33] 220M 7.15 4.12
BERT-NAR-BERT + mBERT [33] 220M 6.81 5.92
BERT-NAR-BERT + mBERT + distilled [33] 220M 27.49 18.94
- Baseline Model-
T5 [28] 220M 27.65 26.98
KAT5 220M 28.01 29.99

(German) and WMT 2016 (Romanian). We obtain a +0.52/ +11.05 improve-
ment in the EN-DE/EN-RO WMT datasets respectively.

6 Discussion

We present Knowledge-aware T5 (KAT5), a novel, simple, and easy-to-
implement S2S model by leveraging T5 checkpoint during pre-training. We
demonstrate strong performances of joint entity-relation extraction in three
datasets (ADE, CONLL04, and NYT), XSum and CNNDM in summarization
tasks, and English (EN) → German (DE) and English→Romanian (RO) in
machine translation.

KAT5 is a budget training approach since it needs 10 epochs that can achieve
similar or somewhat better performance over the each CONLL04, NYT, and
ADE datasets where TANL set 200 epochs to achieve the reported score in
Table 1 for all the entity-relation extraction datasets. In contrast, the task-
specific relation extraction model like REBEL, where the model fine-tunes on
top of REBEL for a maximum of 30/42/25 epochs for CONLL04/NYT/ADE
datasets respectively.

Most SOTA models train the models for a longer time by setting early stop-
ping criteria, however, this can lead to long and expensive training times. Our
experiments show that training for fewer epochs may lead to a small decrease in
performance, but it brings the benefit of a more affordable training time. Besides,
it also shows that knowledge-aware pre-training is very effective to facilitate the
downstream tasks by transferring the pre-training knowledge into the fine-tuning
tasks.

7 Conclusion

This paper introduces an efficient Knowledge-aware T5 (KAT5) S2S method
with encoders and decoders that integrates entities and their coreferences as
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knowledge during pre-training. To introduce such knowledge-aware approach, we
perform large-scale alignments between Wikipedia abstract and Wikidata triples
to facilitate our pre-training KAT5 model by leveraging T5 model. Experiment
results show that the proposed model outperforms baselines in most of the joint
entity-relation, summarization, MT tasks. We have also shown its flexibility in
adapting to new domains, by training on just a few epochs. In the future, we plan
to extend our KAT5 model into a larger parameter model with more knowledge-
aware data by leveraging biomedical dataset along with general domain.

Limitations

During knowledge-aware pre-training, we consider using a document-level by
loading the T-RExM dataset aligning with Wikipedia abstract and Wikidata
triples. Usually the input length is longer and we set the maximum input
sequence length to 512 tokens. During pre-training, therefore, One may further
train the models for a longer period with a sentence-level corpus of Wikipedia
and Wikidata triples to achieve better context representations.

Another limitation is that, our KAT5 is trained on 1.3B tokens that consist
of around 11M triples during knowledge-aware pre-training. It is still a chal-
lenging task to align more knowledge during pre-training. One possible direction
is to align biomedical domain knowledge (like entity, relation, or co-reference)
along with general knowledge from Wikipedia, which can further facilitate the
pre-training strategy. Furthermore, hyper-parameter tuning on large language
models is computationally very costly, we choose 10 epochs for the fine-tuning
tasks without conducting a wide-level of empirical studies.

Acknowledgments. This paper is based on results obtained from a project
JPNP20006, commissioned by the New Energy and Industrial Technology Develop-
ment Organization (NEDO).

Ethics Statement. We use only publicly available datasets and relatively low com-
pute amounts while conducting our experiments to enable reproducibility. We do not
perform any studies on other humans or animals in this research.

References

1. Ba, J., Kiros, J.R., Hinton, G.E.: Layer normalization. ArXiv abs/1607.06450
(2016). https://api.semanticscholar.org/CorpusID:8236317

2. Brümmer, M., Dojchinovski, M., Hellmann, S.: DBpedia abstracts: a large-scale,
open, multilingual NLP training corpus. In: Calzolari, N., et al. (eds.) Proceed-
ings of the Tenth International Conference on Language Resources and Evaluation
(LREC 2016), Portorož, Slovenia, pp. 3339–3343, May 2016. https://aclanthology.
org/L16-1532

https://api.semanticscholar.org/CorpusID:8236317
https://aclanthology.org/L16-1532
https://aclanthology.org/L16-1532


170 M. G. Sohrab and M. Miwa

3. Chang, A.X., Manning, C.: SUTime: a library for recognizing and normalizing time
expressions. In: Calzolari, N., et al. (eds.) Proceedings of the Eighth International
Conference on Language Resources and Evaluation (LREC 2012), Istanbul, Turkey,
May 2012, pp. 3735–3740 (2012). http://www.lrec-conf.org/proceedings/lrec2012/
pdf/284_Paper.pdf

4. Conneau, A., Lample, G.: Cross-lingual language model pretraining. In: Advances
in Neural Information Processing Systems, vol. 32, pp. 7059–7069 (2019). https://
proceedings.neurips.cc/paper/2019/file/c04c19c2c2474dbf5f7ac4372c5b9af1-
Paper.pdf

5. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep
bidirectional transformers for language understanding. In: Burstein, J., Doran,
C., Solorio, T. (eds.) Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), Minneapolis, Minnesota, June 2019,
pp. 4171–4186. ACL (219). https://aclanthology.org/N19-1423

6. Eberts, M., Ulges, A.: Span-based joint entity and relation extraction with trans-
former pre-training. CoRR (2019). http://arxiv.org/abs/1909.07755

7. Elsahar, H., et al.: T-REx: a large scale alignment of natural language with knowl-
edge base triples. In: Calzolari, N., et al. (eds.) Proceedings of the Eleventh Interna-
tional Conference on Language Resources and Evaluation (LREC 2018). European
Language Resources Association (ELRA), Miyazaki, Japan, May 2018. https://
aclanthology.org/L18-1544

8. Ghazvininejad, M., Levy, O., Liu, Y., Zettlemoyer, L.: Mask-predict: parallel decod-
ing of conditional masked language models. In: Inui, K., Jiang, J., Ng, V., Wan, X.
(eds.) Proceedings of the 2019 Conference on Empirical Methods in Natural Lan-
guage Processing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pp. 6112–6121, Hong Kong, China, November 2019.
Association for Computational Linguistics (2019). https://aclanthology.org/D19-
1633

9. Gu, J., Bradbury, J., Xiong, C., Li, V.O., Socher, R.: Non-autoregressive neu-
ral machine translation. In: International Conference on Learning Representations
(2018). https://doi.org/10.48550/arXiv.1711.02281

10. Gu, J., Wang, C., Zhao, J.: Levenshtein transformer. In: Wallach, H.,
Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R. (eds.)
Advances in Neural Information Processing Systems, vol. 32. Curran Asso-
ciates, Inc. (2019). https://proceedings.neurips.cc/paper_files/paper/2019/file/
675f9820626f5bc0afb47b57890b466e-Paper.pdf

11. Gupta, P., Schütze, H., Andrassy, B.: Table filling multi-task recurrent neural net-
work for joint entity and relation extraction. In: Matsumoto, Y., Prasad, R. (eds.)
Proceedings of COLING 2016, the 26th International Conference on Computa-
tional Linguistics, pp. 2537–2547. https://aclanthology.org/C16-1239

12. Gurulingappa, H., Rajput, A.M., Roberts, A., Fluck, J., Hofmann-Apitius, M.,
Toldo, L.: Development of a benchmark corpus to support the automatic extrac-
tion of drug-related adverse effects from medical case reports. J. Biomed.
Inform. 45(5), 885–892 (2012). https://www.sciencedirect.com/science/article/
pii/S1532046412000615

http://www.lrec-conf.org/proceedings/lrec2012/pdf/284_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/284_Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/c04c19c2c2474dbf5f7ac4372c5b9af1-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/c04c19c2c2474dbf5f7ac4372c5b9af1-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/c04c19c2c2474dbf5f7ac4372c5b9af1-Paper.pdf
https://aclanthology.org/N19-1423
http://arxiv.org/abs/1909.07755
https://aclanthology.org/L18-1544
https://aclanthology.org/L18-1544
https://aclanthology.org/D19-1633
https://aclanthology.org/D19-1633
https://doi.org/10.48550/arXiv.1711.02281
https://proceedings.neurips.cc/paper_files/paper/2019/file/675f9820626f5bc0afb47b57890b466e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/675f9820626f5bc0afb47b57890b466e-Paper.pdf
https://aclanthology.org/C16-1239
https://www.sciencedirect.com/science/article/pii/S1532046412000615
https://www.sciencedirect.com/science/article/pii/S1532046412000615


KAT5: Knowledge-Aware T5 171

13. Huguet Cabot, P.L., Navigli, R.: REBEL: relation extraction by end-to-end lan-
guage generation. In: Moens, M.F., Huang, X., Specia, L., Yih, S.W.t. (eds.) Find-
ings of the Association for Computational Linguistics: EMNLP 2021, pp. 2370–
2381. ACL. https://aclanthology.org/2021.findings-emnlp.204

14. Lee, J., Mansimov, E., Cho, K.: Deterministic non-autoregressive neural sequence
modeling by iterative refinement. In: Riloff, E., Chiang, D., Hockenmaier, J., Tsujii,
J. (eds.) Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing, Brussels, Belgium, October–November 2018, pp. 1173–1182.
Association for Computational Linguistics (2018). https://aclanthology.org/D18-
1149

15. Lewis, M., et al.: BART: denoising sequence-to-sequence pre-training for natu-
ral language generation, translation, and comprehension. In: Jurafsky, D., Chai,
J., Schluter, N., Tetreault, J. (eds.) Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pp. 7871–7880. ACL, July 2020.
https://aclanthology.org/2020.acl-main.703

16. Li, J., Tang, T., Zhao, W.X., Nie, J.Y., Wen, J.R.: ELMER: a non-autoregressive
pre-trained language model for efficient and effective text generation. In: Proceed-
ings of the 2022 Conference on Empirical Methods in Natural Language Processing,
pp. 1044–1058, Abu Dhabi, United Arab Emirates, December 2022. Association for
Computational Linguistics (2022). https://aclanthology.org/2022.emnlp-main.68

17. Lin, C.Y.: ROUGE: a package for automatic evaluation of summaries. In: Text
Summarization Branches Out, Barcelona, Spain, July 2004, pp. 74–81. ACL (2004).
https://aclanthology.org/W04-1013

18. Liu, Y., Lapata, M.: Text summarization with pretrained encoders. In: Inui, K.,
Jiang, J., Ng, V., Wan, X. (eds.) Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Con-
ference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China,
November 2019, pp. 3730–3740. ACL (2019). https://aclanthology.org/D19-1387

19. Liu, Y., et al.: RoBERTa: a robustly optimized BERT pretraining approach. CoRR
abs/1907.11692 (2019). http://arxiv.org/abs/1907.11692

20. Manning, C., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S., McClosky, D.: The
Stanford CoreNLP natural language processing toolkit. In: Bontcheva, K., Zhu, J.
(eds.) Proceedings of 52nd Annual Meeting of the Association for Computational
Linguistics: System Demonstrations, Baltimore, Maryland, June 2014, pp. 55–60.
ACL (2014). https://aclanthology.org/P14-5010

21. Mendes, P.N., Jakob, M., García-Silva, A., Bizer, C.: DBpedia spotlight: shedding
light on the web of documents. In: Proceedings of the 7th International Conference
on Semantic Systems, I-Semantics 2011, New York, NY, USA, pp. 1–8. Association
for Computing Machinery (2011). https://doi.org/10.1145/2063518.2063519

22. Narayan, S., Cohen, S.B., Lapata, M.: Don’t give me the details, just the summary!
Topic-aware convolutional neural networks for extreme summarization. In: Riloff,
E., Chiang, D., Hockenmaier, J., Tsujii, J. (eds.) Proceedings of the 2018 Confer-
ence on Empirical Methods in Natural Language Processing, pp. 1797–1807. ACL,
Brussels, Belgium, Oct-Nov 2018 (2018). https://aclanthology.org/D18-1206

23. Paolini, G., et al.: Structured prediction as translation between augmented natural
languages. In: 9th International Conference on Learning Representations, ICLR
2021 (2021)

24. Paolini, G., et al.: Structured prediction as translation between augmented natural
languages. CoRR abs/2101.05779 (2021). https://arxiv.org/abs/2101.05779

https://aclanthology.org/2021.findings-emnlp.204
https://aclanthology.org/D18-1149
https://aclanthology.org/D18-1149
https://aclanthology.org/2020.acl-main.703
https://aclanthology.org/2022.emnlp-main.68
https://aclanthology.org/W04-1013
https://aclanthology.org/D19-1387
http://arxiv.org/abs/1907.11692
https://aclanthology.org/P14-5010
https://doi.org/10.1145/2063518.2063519
https://aclanthology.org/D18-1206
https://arxiv.org/abs/2101.05779


172 M. G. Sohrab and M. Miwa

25. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: BLEU: a method for automatic
evaluation of machine translation. In: Isabelle, P., Charniak, E., Lin, D. (eds.)
Proceedings of the 40th Annual Meeting of the Association for Computational
Linguistics, Philadelphia, Pennsylvania, USA, July 2002, pp. 311–318. ACL (2002).
https://aclanthology.org/P02-1040

26. Radford, A., Narasimhan, K., Salimans, T., Sutskever, I., et al.: Improving lan-
guage understanding by generative pre-training. OpenAI Blog (2018). https://s3-
us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/
language_understanding_paper.pdf

27. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I.: Lan-
guage models are unsupervised multitask learners. OpenAI blog 1(8), 9
(2019). https://d4mucfpksywv.cloudfront.net/better-language-models/language_
models_are_unsupervised_multitask_learners.pdf

28. Raffel, C., et al.: Exploring the limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res. 21(140), 1–67 (2020). http://jmlr.org/papers/
v21/20-074.html

29. Roth, D., Yih, W.t.: A linear programming formulation for global inference in
natural language tasks. In: Proceedings of the Eighth Conference on Computa-
tional Natural Language Learning (CoNLL 2004) at HLT-NAACL 2004, pp. 1–8,
Boston, Massachusetts, USA, May 6 - May 7 2004. Association for Computational
Linguistics (2004). https://aclanthology.org/W04-2401

30. Rothe, S., Narayan, S., Severyn, A.: Leveraging pre-trained checkpoints for
sequence generation tasks. Trans. Assoc. Comput. Linguist. 8, 264–280 (2020).
https://aclanthology.org/2020.tacl-1.18

31. See, A., Liu, P.J., Manning, C.D.: Get to the point: summarization with pointer-
generator networks. In: Barzilay, R., Kan, M.Y. (eds.) Proceedings of the 55th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 1073–1083, Vancouver, Canada, July 2017. Association for Computa-
tional Linguistics (2017). https://aclanthology.org/P17-1099

32. Shafiq, M., Gu, Z.: Deep residual learning for image recognition: a survey. Appl.
Sci. 12(18) (2022). https://www.mdpi.com/2076-3417/12/18/8972

33. Sohrab, M.G., Asada, M., Rikters, M., Miwa, M.: BERT-NAR-BERT: a non-
autoregressive pre-trained sequence-to-sequence model leveraging BERT check-
points. IEEE Access 12, 23–33 (2024). https://doi.org/10.1109/ACCESS.2023.
3346952

34. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15(56), 1929–1958 (2014). http://jmlr.org/papers/v15/srivastava14a.html

35. Vaswani, A., et al.: Attention is all you need. Adv. Neural Inf. Pro-
cess. Syst. 30 (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

36. Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R.R., Le, Q.V.: XLNet:
generalized autoregressive pretraining for language understanding. In: Advances in
Neural Information Processing Systems, vol. 32, pp. 5753–5763 (2019). https://dl.
acm.org/doi/pdf/10.5555/3454287.3454804

37. Yu, B., et al.: Joint extraction of entities and relations based on a novel decompo-
sition strategy. CoRR abs/1909.04273 (2019). http://arxiv.org/abs/1909.04273

https://aclanthology.org/P02-1040
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://aclanthology.org/W04-2401
https://aclanthology.org/2020.tacl-1.18
https://aclanthology.org/P17-1099
https://www.mdpi.com/2076-3417/12/18/8972
https://doi.org/10.1109/ACCESS.2023.3346952
https://doi.org/10.1109/ACCESS.2023.3346952
http://jmlr.org/papers/v15/srivastava14a.html
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://dl.acm.org/doi/pdf/10.5555/3454287.3454804
https://dl.acm.org/doi/pdf/10.5555/3454287.3454804
http://arxiv.org/abs/1909.04273


KAT5: Knowledge-Aware T5 173

38. Zeng, X., Zeng, D., He, S., Liu, K., Zhao, J.: Extracting relational facts by an
end-to-end neural model with copy mechanism. In: Gurevych, I., Miyao, Y. (eds.)
Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), Melbourne, Australia, July 2018, pp. 506–
514. ACL. https://aclanthology.org/P18-1047

39. Zhao, T., Yan, Z., Cao, Y., Li, Z.: Asking effective and diverse questions: a machine
reading comprehension based framework for joint entity-relation extraction. In:
Bessiere, C. (ed.) Proceedings of the Twenty-Ninth International Joint Conference
on Artificial Intelligence, pp. 3948–3954, IJCAI 2020 (2020). https://doi.org/10.
24963/ijcai.2020/546, main track

https://aclanthology.org/P18-1047
https://doi.org/10.24963/ijcai.2020/546
https://doi.org/10.24963/ijcai.2020/546


Asymmetric Graph-Based Deep
Reinforcement Learning for Portfolio

Optimization

Haoyu Sun1, Xin Liu1, Yuxuan Bian2, Peng Zhu1, Dawei Cheng1,4(B),
and Yuqi Liang3

1 Department of Computer Science, Tongji University, Shanghai, China
{the_shy,2051277,pengzhu,dcheng}@tongji.edu.cn

2 The Chinese University of Hong Kong, Hong Kong, China
3 Seek Data Group, Emoney Inc., Shanghai, China

roly.liang@seek-data.com
4 Shanghai Artificial Intelligence Laboratory, Shanghai, China

Abstract. In recent years, existing studies have sought to enhance the
effectiveness of portfolio optimization by modeling asset relations. How-
ever, employing conventional graph neural network methodologies for
effective aggregation and final representation learning of intricately com-
plex financial information within real-world markets proves challenging.
This necessitates the optimization of graph structures to enhance the
accuracy of parsing and leveraging financial information. In this paper,
we propose an asymmetric graph-based deep reinforcement learning for
portfolio optimization. Specifically, leveraging the excellent evaluative
capabilities of large language models, we decipher multi-dimensional
asymmetric relationships between stocks in multi-dimensional data, con-
structing asymmetric stock relationship graphs based on news and sec-
tors. We then design a multi-dimensional relationship attention mecha-
nism to jointly represent asymmetric graph information and employ deep
reinforcement learning for end-to-end portfolio optimization. Extensive
experiments on real datasets from China and the United States have
demonstrated the superiority of our method over existing state-of-the-
art methods. In the industrial observation conducted at a leading finan-
cial technology company, we validated the applicability of our method in
real-world market scenarios.

Keywords: Graph Neural Networks · Deep Reinforcement Learning ·
Portfolio Optimization

1 Introduction

Portfolio management involves the diversified management of assets through
the selection of multiple stocks based on the investor’s requirements, aiming
to achieve risk diversification and enhance returns [18]. This holds significant
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academic research value and finds extensive applications in the financial domain,
representing one of the focal points in the field of data science. Presently, existing
studies [11,16] have demonstrated that effectively modeling relations between
stocks can enhance the performance of portfolio optimization models.

Stocks and their associated enterprises exist within a complex market envi-
ronment, leading to a diversity of structural relationships among enterprises,
including investments, guarantees, and supply chains [17]. Accurately extracting
and effectively modeling complex relationships for application in portfolio opti-
mization poses significant challenges [20]. Previous research has explored various
approaches to modeling complex relations in the context of stocks. For example,
RAT [21] models stock relations using financial leverage, while DeepTrader [19]
proposes methods such as feature correlations, causal relations, and industry
relations for modeling stock relations. There is also research [6] employing large
language models for the analysis and modeling of stocks and markets.

However, these studies are confined to theoretically symmetric graph struc-
tures of stock relationships. In asymmetric graph structures, their applicability
diminishes due to weakened information propagation and aggregation, resulting
in suboptimal outcomes. In reality, financial relationships are not bidirectionally
symmetric but manifest unidirectional and asymmetric influences. For instance,
leading or large-scale enterprises often play a leading role in steering the over-
all development of their respective sectors. Similarly, in the stock market, the
broader market is significantly influenced by large-cap enterprises [3]. While some
studies [20,22] have considered moving beyond pre-defined symmetric relations,
they are predominantly confined to the use of a single information source, thus
lacking a comprehensive description of relationships between stocks.

As is well known, the utilization of multiple information sources enhances
the market’s perceptual capabilities [1,28]. However, constructing a multi-source
asymmetric relationship for portfolio optimization still poses significant difficul-
ties and challenges. This is because the incorporation of multiple information
sources also introduces more noise and redundant information, creating com-
plications for joint representation and subsequent portfolio optimization. While
Deep Reinforcement Learning (DRL) provides a foundational paradigm for direct
optimization learning, and there are studies [16,18,19,21] employing DRL for
portfolio optimization, maintaining the simplicity and high accuracy of informa-
tion in the graph structure is crucial. The intricate environment of real-world
financial markets further amplifies the adverse effects on model training caused
by suboptimal information extraction and representation, thereby impacting the
ultimate optimization of investment portfolios.

Therefore, we proposed a Asymmetric Graph-based Deep Reinforcement
Learning (AGDRL), which can be applied to optimize portfolio management
in the context of multi-dimensional data sources. We leverage the advanced
knowledge reasoning capabilities of large language models (LLM) to identify
and extract meaningful information from noisy multi-dimensional data sources.
Subsequently, we construct multi-dimensional asymmetric stock relation graphs,
employing joint graph learning of multi-dimensional information and temporal
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feature information. Within the framework of DRL, we directly optimize invest-
ment strategies to achieve superior investment outcomes, including increased
returns and reduced risks. In the evaluation conducted within industrial set-
tings, our approach showcased its applicability to real-world trading markets. In
conclusion, our contributions can be summarized as follows:

– We propose a novel method that leverages deep reinforcement learning to
learn from multi-dimensional asymmetric relationship graphs between stocks,
and applies it directly to portfolio optimization.

– We employ large language models to parse fundamental information of enter-
prises and financial news, thereby constructing multi-dimensional stock rela-
tion graphs. Subsequently, we devise a multi-dimensional relationship atten-
tion mechanism to learn the graph representation of asymmetric relations.
Finally, we employ deep reinforcement learning to accomplish portfolio opti-
mization, with the objective of enhancing returns and mitigating risk.

– Extensive experiments on two real-world datasets have conclusively demon-
strated the superior effectiveness of our method compared to state-of-the-art
baselines. Additionally, our work was evaluated in a leading financial service
provider of China, affirming the adaptability of our method to real market
scenarios.

2 Related Work

Exploring and modeling stock relationships represent effective strategies in
enhancing the optimization of investment portfolios [12,17]. Existing research
[4,11,23] has made many attempts in this field, such as THGNN [20], which
employs temporal heterogeneous graphs to characterize stock relationships, and
CGM [28], which introduces news sentiment to construct short- and long-term
stock relations. However, these methods often focus on predicting stock trends
before devising investment strategies, potentially leading to suboptimal results
[8]. The DRL based approaches demonstrate advantages in portfolio optimization
by enabling end-to-end optimization of investment strategies. Currently, there
are various related attempts [2,15], such as those based on news representa-
tion [25], dynamic programming [5], and exploration of other factors [10,24,27].
Although many DRL-based approaches [16,19,21] have the capability to directly
optimize investment strategies, such as AlphaStock [18] utilizing attention mech-
anisms to capture inter-stock relationships and end-to-end optimizing investment
returns, they assume symmetric relationships when modeling stock relations.
HIST [22] made changes, attempting to introduce hidden dynamic factors into
the predefined symmetric relationships. However, symmetric graph frameworks
fail to capture the unidirectional influence among stocks, leading to increased
interference in information aggregation for optimization. Our method is ded-
icated to effectively leveraging an asymmetric graph framework to learn the
unidirectional influence among stocks and applying it to portfolio optimization.
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Fig. 1. The overall architecture of the proposed AGDRL. Our method leverages asym-
metric graphs to aggregate multidimensional information and employs a deep reinforce-
ment learning framework for end-to-end optimization of investment strategies.

3 The Proposed Method

3.1 Problem Formulation

The objective of portfolio management is to maximize investor returns by observ-
ing the market, specifying appropriate investment strategies, and adjusting the
portfolio allocation accordingly. It is applicable to the Markov Decision Pro-
cess M = {S,A, P,R}, where S,A, P,R stand for market state, investment
action, portfolio rebalancing strategy, and investment reward function, respec-
tively. For time t, the agent decides on the investment portfolio action at ∈ A,
and then transitions the state to st+1 ∈ S based on the transition distribution
st+1 ∼ P (st+1 | st,at). Throughout the investment period, the agent engages in
a repeated interactive process to learn the optimal strategy π that maximizes
expected returns J = EP (τ)[

∑|τ |
t=1 γt−1rt], where τ stands for the interaction

trajectory and γ for the discounted factor.

3.2 Framework Overview

The proposed AGDRL is a deep reinforcement learning framework designed to
efficiently extract and jointly learn from multi-dimensional asymmetric graph
information, optimizing investment returns. The structural framework is illus-
trated in Fig. 1. The State section denotes the data processing procedure; our
model has three input sources, namely raw news, fundamental information of
enterprises, and time-series features of stocks. The Agent section represents the
main network structure for the entire model training and guides the update
of the State. The Action part signifies the process of portfolio generation. The
Environment interacts with the Agent and Action, optimizing the Agent based
on the feedback generated from the portfolio creation strategy.
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3.3 Construction of Asymmetric Graphs

The construction of the asymmetric graph consists of two components: the news-
based graph Gn = (V,En) and the sector-based graph Gs = (V,Es), both of
which are updated daily, where V represent stocks, En and Es represent rela-
tions between stocks based on news and sectors. Leveraging the capabilities of
large language models, we automate the parsing of news text and fundamental
information about companies. Specifically, we employ gpt-3.5 turbo and design a
set of prompts to analyze the relevance between stocks and textual information.

We retrieve relevant news data for the target dataset through the data inter-
face of FinGPT1 and extract pertinent fundamental information from the intro-
duction on the company’s homepage. The construction of Gn and Gs is sim-
ilar; here, we illustrate the construction of Gn as an example. For each piece
of news, the large language model is utilized to assess the degree of influence
r ∈ (0, 1) on stocks associated with it. For a given news event N , the influence
degree is used to calculate an asymmetric relationship: the impact degree of
stock x is denoted as dN

x , the impact degree of stock y is denoted as dN
y , and

the impact relationship IN
xy from stock x to y is computed as IN

xy = dN
x /dN

y . The
nodes V = {vt1 , vt2 , . . . , vT } and edges En = {et1

n , et2
n , . . . , eT

n} in the news graph
dynamically reflect the temporal changes of the asset relations. The weight of
the temporal edge et

n can be calculated as: ∀x, y ∈ vt, max
N∈N

lnw
t

IN
xy, where N

lnw
t

represents all the news from time t to t − lnw, and lnw represents the look-back
window length of news. If the weight is greater than 1, we set it to 1, as the
influence from other stocks cannot exceed the impact of a stock on itself.

3.4 Multi-dimensional Relation Representation

For the temporal features of stocks, we employ a Long Short-Term Memory with
History state Attention (LSTM-HA) to capture feature relationships within the
look-back window length of features lfw and represent them. It takes Xin ∈
R

N×din×T for N stocks with din features in T days as the initial input. Xin can
be represented as a sequence {X1, . . . ,Xk, . . . ,Xlfw}, representing the temporal
features. We start by employing a recurrent neural network, specifically LSTM,
to capture the temporal feature representation:

Ht
k = LSTM(Ht

k−1,X
k), k ∈ [1, lfw], (1)

where Ht
k ∈ R

N×dhid denotes the hidden state encoded by LSTM at step k
and dhid represents the dimension of the hidden layer. Subsequently, we utilize
a historical state attention mechanism to capture correlations across multiple
hidden layers, thereby enhancing the availability of information and mitigating
the loss of intermediate layer information:

1 https://github.com/AI4Finance-Foundation/FinGPT.

https://github.com/AI4Finance-Foundation/FinGPT
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et =tanh ([Ht
k,Ht

lfw
]W1 +XlfwW2)V T

e , (2)

αk =
exp (ek)

∑lfw
i=1 exp (et)

, Et =
lfw∑

k=1

αkHt
lfw

, (3)

where et is the score computed for the hidden layer Ht
k at time t, αk represents

the attention weight between hidden layers Ht
k and Ht

lfw
, W1 and W2 are both

the projection weights, Ve is the weight vector. Et ∈ R
N×dhid denotes the feature

representation of all stocks after applying the attention mechanism.
After completing the feature representation for a single stock, we designed

a Multi-Dimensional Attention Mechanism to aggregate multi-dimensional rela-
tional information of stocks. We first calculate the score αi

xt,yt for the edge
(xt, yt), representing the importance of the one-way edge from stock x to stock
y of attention head i at time t:

αi
xt,yt =

exp (LeakyRelu(aT
g,i[ext ‖ eyt ]))

∑
kt∈vt exp (LeakyRelu(aT

g,i[ekt ‖ eyt ]))
, (4)

where ext ∈ R
dhid represents the feature embedding of stock x in time t,

ag,i ∈ R
2dhid denotes the i-th head trainable graph attention weight vector

of the specific graph g ∈ {n, s}, n representing news and s representing sector.
The output Et

headi
g

∈ R
N×dhid of head i for the graph g can be represented as

follows:

Et
headi

g
=

∑

yt∈vt

σ(
∑

xt∈vt

αi
xt,ytextwg

xt,yt), (5)

where σ represents the activation function, wg
xt,yt represents the weight of the

edge (xt, yt) in the graph g. The information aggregation is formulated as follows:

Et
g = Concat (Et

head1
g
, . . . ,Et

head
nh
g

)Wg,o, (6)

Et
con = Concat (Et

n +Et,Et
s +Et) (7)

where Et
g means the representation aggregated from the non-symmetric relations

in graph g, Wg,o represents the attention output projection matrix, nh represents
the number of attention heads, and Et

con is the final representation aggregated
from the news graph Gn and the sector graph Gs.

3.5 Generator for Portfolio Optimization

We designed a portfolio generator that generates investment distributions based
on the final representations of stocks:

pt = WpEt
con + bp, (8)
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where pt ∈ R
N×1 represents the generated investment scores, Wp and bp are

both trainable parameters. Subsequently, we acquire the ultimate investment
portfolio, denoted as action, through a sampling process:

Dt =Multinomial(pt, Na), (9)

ai
t =

pi
t∑

k∈Dt

pk
t

, i = 1, 2, . . . , Na, (10)

where Na represents the number of stocks for investment. Following the trading
rules of qlib2, we purchase 10% of the total number of stocks. Dt represents
the stocks sampled based on probabilities, pi

t signifies the investment score for
stock i, and ai

t represents the investment proportion for stock i in time t. This
enhances the model’s exploration capabilities, thereby increasing the potential
for adopting diverse trading strategies. We then employ Actor-Critic reinforce-
ment learning framework to optimize the whole agent model.
Critic Training. Before sampling, the reward function Gt is calculated as:

Gt =
∑T

k=t γk−trk

max
τ∈[1,T ]

( max
λ∈[1,τ ]

(Rλ−Rτ

Rλ
))

(11)

where rt represents the portfolio reward of action at and Rτ means the cumu-
lative investment returns at moment τ . We define the reward function as the
calmar ratio instead of maximizing returns. The calmar ratio is a comprehensive
metric that balances both returns and risks, preventing the model from overly
pursuing returns at the expense of ignoring market risks. Then we perform sam-
pling for a designated number of iterations. The MSE objective function of the
critic for the sampled mini-batch τ̂ is defined as follows:

J(μ) =
1
|τ̂ |

|τ̂ |∑

t=1

(Critic(Xt), Gt)
2 (12)

And we use Adam to optimize the critic network parameters μ.

Actor Training. Firstly, we calculate the advantage function At of the original
trajectory τ as follows:

At = Gt − Critic(st), (13)

which is regarded as the excess reward of the current state st and action at.
Then we calculate the objective function Jθ

clip for specific sampled mini-batch τ̂
of the actor as follows:

rθold
t (θ) =

πθ(at|st)
πθold

(at|st)
, (14)

Jθ
clip =

∑

(s,a)∈τ̂

min(rθold
t (θ)At, clip(rθold

t (θ), 1 − ε, 1 + ε)At), (15)

2 https://github.com/microsoft/qlib.

https://github.com/microsoft/qlib
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Algorithm 1. AGDRL Training Algorithm
Input: Initial Actor parameters θ = θold, initial exploration Actor parameters π0

old,
initial Critic parameters μ, batch size L, re-sampling times M

1: for k = 0, 1, 2, . . . do
2: collect the interaction trajectory τ by running πk

old for T time-steps
3: Compute discounted cumulative rewards G1, . . . , GT

4: Compute advantage estimates A1, . . . , AT

5: for i = 1, 2, . . . , len(τ) ∗ M/L do
6: Sample the trajectory τ and gain mini-batchi

7: Compute the current portfolio probability distribution a1
t , . . . ,a

Na
t

8: Compute the divergence r
θold
t (θ) between the exploration actor and the target

optimized actor
9: Update Actor by optimizing the clip policy surrogate θ = argmax

θ

1
|L|J

θ
clip

10: Update Critic by optimizing argmax
μ

1
|L|J(μ)

11: end for
12: θold ← θ
13: end for

where the rθold
t (θ) means the divergence between the exploration actor πθold

[14] and the target optimized actor πθ, and the clip loss function Jθ
clip limits

the update range of the policy network into [1 − ε, 1 + ε], to avoid excessive
adjustments to the strategy and thus achieve a better model fit. Finally, we use
Adam optimizerto update the parameters of our proposed actor network. The
use of two objective functions facilitates the joint optimization of the agent,
resulting in faster convergence and enhanced training stability. The complete
AGDRL training algorithm is outlined in Aalgorithm 1.

4 Experiments

4.1 Experimental Setup

Datasets. Our dataset includes 30 constituents of the Shanghai Stock Exchange
(SSE50) from the A-share market in China and 80 constituents of the National
Association of Securities Dealers Automated Quotations (NDX100) from the
U.S. market. The training and validation sets for our experiments cover the
period from 2016 to 2020, while the test set spans from 2021 to 2022. We aim
to assess the long-term profitability and stability of the model.
Experiment Settings. The training process was run on a server with 32G
memory and single NVIDIA Tesla V100 GPU. The entire training process needs
about 8 h. We employ a daily trading strategy, where at the beginning of each
trading day, stocks are bought according to the investment strategy. At the
end of the trading day, stocks are sold, and the profit or loss from day t is
reinvested as purchasing capital for day t+1. In terms of parameters, we set the
input dimension din to 4, the embedding dimension dhid to 64, the number of
attention heads nh to 4, the size L of mini-batch to 128, the clipping ratio ε to
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0.25, the look-back window length of news lnw to 6, the look-back window length
of features lfw to 20 and the discounted factor γ to 0.99.
Baselines. We compare our method with the following baselines:

– Market represents the stock market index.
– BLSW [9] is a classical mean reversion strategy. It posits that stocks exhibiting

a prolonged downtrend in the past are more investment-worthy.
– CSM [13] is a classical momentum strategy. It posits that stocks showing a

sustained upward trend in the past are more investment-worthy.
– LSTM-A [7] is a method based on the LSTM model that utilizes self-attention.
– TRA [12] is a deep learning approach that classifies and predicts stocks based

on the study of their characteristics.
– CGM [28] CGM is a deep learning method that utilizes long-term and short-

term stock relationships for predicting stock trend.
– THGNN [20] is a deep learning method that constructs short-term heteroge-

neous graphs for stock prediction.
– FactorVAE [4] is a factor model based on prior-posterior learning approach

for stock prediction.
– CTTS [26] is a deep learning method based on CNN and Transformer for

long-term modeling of time series features.
– PPO [14] is a reinforcement learning method that uses constraints to ensure

the stability of policy updates, thereby improving training efficiency.
– Alphastock [18] is a deep reinforcement learning method that constructs rela-

tions of stocks based on attention mechanisms for portfolio management.
– DeepTrader [19] is a deep reinforcement learning model that models market

sentiment for controlling investment risk in portfolio management.
– DeepPocket [16] is a deep reinforcement learning model that utilizes graph

convolutional networks for portfolio optimization.

Evaluation Metrics. Our metrics include three fundamental metrics: Annu-
alized Rate of Return (ARR) represents the investment returns, Annualized
Volatility (AVol) measures the stability of returns over a year and Maximum
DrawDown (MDD) assesses the worst-case scenario that may occur. Addition-
ally, we have three composite metrics: Annualized Sharpe Ratio (ASR) describes
the additional risk-adjusted returns based on volatility, Calmar Ratio (CR) char-
acterizes the additional risk-adjusted returns based on the maximum drawdown,
and Information Ratio (IR) reflects the excess returns under additional risk.

4.2 Overall Results

The backtesting results of each method are summarized in Table 1. It is evi-
dent that AGDRL performs the best ARR, ASR, CR, and IR. The highest
ARR demonstrates that AGDRL exhibits superior profit-making capabilities.
The three composite metrics affirm that our method excels in balancing returns
and risks, aligning well with investor preferences. Although our method’s Avol
and MDD are not the best, they still outperform the majority of methods. More-
over, excessively minimizing risk when pursuing high returns is unrealistic. A
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Table 1. Overall performance of all methods on two datasets. The best performance
is highlighted in bold. The larger the values of ARR, ASR, CR, IR, the better the per-
formance. Conversely, smaller values for AVol and MDD indicate better performance.

Datasets SSE50 NDX100

ARR AVol MDD ASR CR IR ARR AVol MDD ASR CR IR

Market −0.15 0.20 −0.43 −0.77 −0.36 −0.74 −0.07 0.27 −0.36 −0.26 −0.19 −0.11

BLSW 0.26 0.28 −0.26 0.93 1.02 1.03 0.09 0.28 −0.24 0.33 0.38 0.47

CSM 0.09 0.40 −0.53 0.23 0.18 0.53 −0.13 0.29 −0.43 −0.44 −0.30 −0.30

LSTM-A 0.16 0.34 −0.42 0.46 0.37 0.60 0.06 0.28 −0.31 0.23 0.21 0.37

TRA 0.38 0.34 −0.34 1.10 1.11 1.11 0.13 0.30 −0.31 0.45 0.44 0.57

CGM 0.38 0.34 −0.32 1.11 1.17 1.11 0.06 0.26 −0.29 0.23 0.22 0.36

THGNN 0.37 0.31 −0.25 1.22 1.52 1.19 0.09 0.26 −0.24 0.33 0.36 0.45

FactorVAE 0.14 0.25 −0.17 0.58 0.82 0.67 0.11 0.30 −0.22 0.38 0.51 0.51

CTTS 0.28 0.27 −0.24 1.05 1.18 1.06 0.14 0.31 −0.31 0.45 0.45 0.58

PPO 0.09 0.34 −0.37 0.27 0.25 0.43 0.16 0.27 −0.25 0.58 0.61 0.67

AlphaStock 0.29 0.28 −0.17 1.06 1.74 1.07 0.17 0.25 −0.15 0.65 1.08 0.73

DeepPocket 0.14 0.19 −0.21 0.72 0.64 0.77 0.02 0.22 −0.27 0.08 0.07 0.19

DeepTrader 0.30 0.31 −0.34 0.96 0.89 0.97 0.11 0.32 −0.24 0.35 0.48 0.50

AGDRL 0.46 0.28 −0.22 1.64 2.10 1.49 0.25 0.24 −0.20 1.03 1.24 1.04

reasonable level of risk is more acceptable. We also recorded the return curves
on the test set, as shown in Fig. 2 and Fig. 3. It can be observed that models such
as AlphaStock and DeepPocket, which strictly control risk, adopt a conservative
investment strategy. While their methods avoids significant declines in returns,
the upside is also limited, resulting in a suboptimal balance between returns and
risks compared to AGDRL. Our method consistently outperforms the baselines
throughout the entire investment horizon, benefiting from the enhanced market
perception provided by multi-dimensional asymmetric graph information and
the excellent decision-making capabilities of reinforcement learning.

4.3 Ablation Study

We investigated the impact of adjusting the graph structure and training archi-
tecture of AGDRL on experiment results. The experiment results are recorded
in Table 2. AD-NG represents AGDRL without using graph structures, AD-SG
replaces the asymmetric graph structure with a symmetric one, AD-NS does not
use the sector graph, AD-NN does not use the news graph, AD-NC represents
using maximizing returns instead of the calmar ratio as the reward function,
and AD-DL replaces DRL with a DL training structure. From the results, it can
be observed that AGDRL produces suboptimal effects when certain structures
are missing or altered. This indicates the importance of the asymmetric struc-
ture, sector and news graph information, our objective function, and the DRL
framework. Particularly, optimizing the network with the objective of maximiz-
ing returns instead of the calmar ratio results in lower returns. This suggests that
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Fig. 2. The test return curves of primary baselines and AGDRL on SSE50.

Fig. 3. The test return curves of primary baselines and AGDRL on NDX100.

appropriately considering risks when specifying investment strategies may lead
to better investment returns compared to directly pursuing maximum profit.

4.4 Interpretability Analysis

To further investigate the advantages of asymmetric graph structures in relation
modeling, we recorded and visualized the attention weights for news and industry
graphs, both symmetric and asymmetric, on SSE50, as shown in Fig. 4. For clar-
ity, we did not record self-attention weights for nodes. Figure 4(a) and Fig. 4(b)
display the attention weights for symmetric and asymmetric news graphs, respec-
tively. It can be observed that attention weights in symmetric graph structures
are evenly distributed with few edges having high weights, whereas in asym-
metric graph structures, there is greater diversity in attention weight distribu-
tion, indicating the ability of asymmetric relations to allocate different weights
based on the importance of relationships. Figure 4(c) and Fig. 4(d) illustrate the
attention weights for symmetric and asymmetric industry graphs, respectively.
For stable industry structures, attention weights in symmetric graph structures
are generally symmetrically distributed, while asymmetric graphs exhibit many
asymmetric weights, suggesting the ability of asymmetric relations to distinguish
the impact of stocks within industries with higher accuracy.

4.5 Hyperparameter Sensitivity

We recorded the experimental curves using various hyperparameters on SSE50,
and the results are illustrated in Fig. 5. As shown in Fig. 5(a), it can be observed
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Table 2. Performance evaluation of ablated models on two datasets. The best perfor-
mance is highlighted in bold

Datasets Metric AD-NG AD-SG AD-NS AD-NN AD-NC AD-DL AGDRL

SSE50 ARR 0.18 0.31 0.35 0.38 0.37 0.39 0.46
AVol 0.28 0.29 0.28 0.28 0.28 0.28 0.28
MDD −0.38 −0.22 −0.24 −0.22 −0.31 −0.24 −0.22
ASR 0.69 1.08 1.24 1.33 1.35 1.38 1.64
CR 0.48 1.38 1.45 1.76 1.20 1.62 2.10
IR 0.77 1.09 1.21 1.28 1.29 1.31 1.49

NDX100 ARR 0.11 0.18 0.16 0.20 0.19 0.21 0.25
AVol 0.24 0.25 0.25 0.24 0.25 0.24 0.24
MDD −0.22 −0.22 −0.23 −0.20 −0.23 −0.20 −0.20
ASR 0.46 0.70 0.63 0.85 0.75 0.88 1.03
CR 0.50 0.80 0.73 1.02 0.85 1.06 1.24
IR 0.56 0.77 0.72 0.90 0.82 0.92 1.04

Fig. 4. Visualization of graph attention weights of for news and sector graphs on SSE50.

that both too few and too many days of news look-back window length lnw have
negative effects. Insufficient days of reviewing news lead to reduced available
information due to a smaller quantity of news, while an excessive number of days
results in decreased information quality due to the timeliness of news. Through
Fig. 5(b), it can be observed that the number of attention heads nh also has a
significant impact on the performance of AGDRL. When the number of heads is
too low, the attention mechanism captures insufficient diversity in relationships,
and when it is too high, redundant information is generated. Both scenarios can
lead to suboptimal experiment results.

5 System Observation

Our work was evaluated in an industrial setting for portfolio optimization across
the Chinese A-share market by a leading financial service provider of China.

Our model undergoes offline training every weekend, and the trained model
is then used for trading decisions during the week. The trading strategies gen-
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Fig. 5. Cumulative return performance of AGDRL in terms of the parameters.

Fig. 6. The industrial system architecture deployed by AGDRL for online trading.

erated by the model are evaluated based on real-time information from the
stock exchange. The system architecture is illustrated in the Fig. 6. The server’s
database system continually records and updates fundamental operational infor-
mation, financial news for companies. These are integrated before the start of
each trading day and processed through a relational parsing system to generate
multi-dimensional asymmetric relationships between stocks for model reference.
And stock feature data is also fed to the model after being processed by the
data processor. Subsequently, trading signals generated by AGDRL are first
monitored by the risk management system before being forwarded to the event
processing engine. This engine compares existing portfolio information to deter-
mine stocks for purchase or sale, which are then fed into the order management
system. The management system then calculates investment returns based on
information from the stock exchange.

We conducted a six-month observational assessment of the investment per-
formance of AGDRL and we documented the yield curves, as illustrated in Fig. 7.
The red curve represents the investment returns of AGDRL, the blue curve rep-
resents the market benchmark index, and the orange curve represents the excess
returns of AGDRL over the market. The consistently elevated excess returns
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Fig. 7. Observational Evaluation Results of AGDRL across the entire A-share market.

Fig. 8. Case analysis of asymmetric relations. The upper half represents the average
news relevance to three stocks during different periods, while the lower half represents
the stock price trends of the three stocks.

indicate that AGDRL’s investment yield outperforms the market. Even in situ-
ations of significant market losses, it manages to incur fewer losses compared to
the broader market and eventually achieves positive returns. This demonstrates
the applicability of AGDRL to real-world market scenarios.

And we performed case studies to analyze the investment advantages of asym-
metric graph structures. We selected three well-known stocks from the banking
sector as examples because the banking sector is relatively independent, less
influenced by other industries, and exhibits minimal variance in sector based
relations, which facilitates our analysis of news information. We recorded the
stock trends and mean news relevance of three stocks over three periods, as
shown in the Fig. 8. The selected news is related to all three stocks. It can be
observed that, in the first two periods, the news relevance of stocks varies greatly.
The trend of the least news-relevant stock largely mirrors the most news-relevant
one, while another stock is less impacted. In contrast, during the last interval,
where news relevance is relatively consistent across the three stocks, their trends
are predominantly determined by their individual characteristics. This indicates
that asymmetric structures can more accurately model relationships between
stocks, reflecting the degree of influence among them.
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6 Conclusion

In this paper, we propose a deep reinforcement learning framework based on
asymmetric graph information. It leverages the knowledge reasoning capabil-
ity of large language models to construct asymmetric relation graphs of stocks
from complex multi-dimensional information sources, and applies them to end-
to-end optimization of investment strategies. This approach, compared to pre-
vious symmetric graph methods, enhances the parsing effectiveness of complex
financial information and is more suitable for portfolio management tasks in
real-world financial scenarios. To our knowledge, this is the first work to apply
multi-dimensional asymmetric graph structures to portfolio optimization in real-
world markets. Extensive experiments have demonstrated the superiority of our
method over the state-of-the-art methods, and the industrial-level observation
indicates the applicability of our method to real-world trading systems.
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of China (Grant no. 2022YFB4501704), the National Natural Science Foundation of
China (Grant no. 62102287), and the Shanghai Science and Technology Innovation
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Abstract. Code summarization aims to automatically generate natu-
ral language descriptions for code snippets, which help people maintain
and understand code snippets. Existing code summarization methods
are mostly based on the encoder-decoder structure, where the encoder
learns latent features from a code snippet and the decoder generates
the corresponding summary based on the features. Such methods do not
leverage project-specific information and tend to generate general sum-
maries. However, in practice developers want the generated summaries to
be project-specific, i.e., being consistent with the existing summaries in
the same project on aspects such as sentence patterns and domain con-
cepts. In this work, we investigate project-specific code summarization.
We propose a two-stage method CSWPS, which can be seamlessly inte-
grated into any existing encoder-decoder summarization model. In the
first stage, CSWPS learns project-specific features from existing sum-
maries in each project using multi-task learning. In the second stage,
CSWPS samples from the project-specific features conditioned on the
input source code and project information, and extracts the features
most relevant to the input code. The features guide the decoder to
generate a project-specific summary for the input code. By incorporat-
ing CSWPS into existing code summarization models, we can always
improve their performance and achieve the new state-of-the-art. We also
empirically show that the summaries generated by incorporating CSWPS
are more project-specific, via feature visualization and human study.
A replication package for this work is available at https://github.com/
DaSESmartEdu/CSWPS.

Keywords: Source Code Summarization · Project-Specific · Latent
Representation Sampling · Neural Network · Deep Learning

1 Introduction

Recent years have witnessed growing research interest in automatic source code
summarization [1,9,11,19] due to its beneficial potential in software development
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and maintenance tasks. Generating natural and informative code summaries is
not trivial because the intricate syntax structures and the flexible identifier nam-
ing in programming languages make it difficult to understand program semantics.
In the past few years, various deep learning models have been developed to lever-
age structural and textual features in the code for generating meaningful and
succinct summaries, most of which employ an encoder-decoder structure. The
structural features are typically learned using the abstract syntax trees (ASTs)
of source code [3,10] and the textual features are learned from the code text
sequences [1,8]. Some studies also leverage a hybrid of structural and textual
features for better encoding [9,13,18,20].

Fig. 1. The t-SNE visualization of the latent representations of the summaries in the
PCS and CodeXGLUE dataset.

The models developed in the aforementioned studies are referred to as general
code summarization (GCS) models [21], as they are trained on code-summary
pairs from many software projects. From the practical point of view, recent
studies have pointed out that developers may prefer to have a tool that generates
code summaries with a consistent style and domain-specific concepts for each
specific project [2,21]. The corresponding task is referred to as project-specific
code summarization (PCS) [21]. For example, some projects prefer to use “return
true if” in the summaries rather than use “check whether”. Moreover, each project
has specific identifier naming, API/function calls and coding patterns, resulting
in domain-specific concepts in the summaries. We refer to such properties as
project-specific features. To empirically verify the existence of project-specific
features in the summaries, we train a feature encoder (see Sect. 3.1) to learn the
latent representations of the summaries in two publicly-available datasets of
code-summary pairs, namely, PCS [21] and CodeXGLUE [2], respectively. The
PCS dataset consists of 9 projects and the CodeXGLUE dataset consists of 47
projects. We use t-SNE to visualize the latent representations. Figure 1 shows
the results, where the summaries in the same project are colored the same. The
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results show clearly that for both datasets, the representations corresponding to
the summaries in the same project are much closer to each other in the latent
space, indicating that each project has certain project-specific features in its
code summaries.

Motivated by the observation, we propose to learn project-specific features
from existing summaries and use the features to guide the generation of new
summaries. In this way, the newly generated summaries are more likely to be
project-specific, i.e., having a style consistent with the existing summaries as
well as the domain-specific concepts of the corresponding project. The gener-
ated summaries are also expected to have higher quality because of the aware-
ness of project-specific information. To solve our task, we develop a two-stage
approach CSWPS for Code Summarization With Project-Specific features. In
the first stage, we devise a multi-task learning model to learn the latent project-
specific features of the summaries from different projects. In the second stage,
to generate the summary for a code snippet, we sample the latent features of
existing summaries in the corresponding project that are most relevant to the
code snippet and use the features to guide the generation of the summary. Note
that CSWPS is a general approach rather than a stand-alone model, which can
be seamlessly integrated into any existing code summarization model with an
encoder-decoder structure.

Our main contributions are listed as follows:

– We propose a two-stage approach CSWPS for project-specific code summa-
rization. Unlike previous studies [2,21] that focus on the low-resource sce-
nario where the number of summaries in a project is small, we try to produce
project-specific summaries by learning features from a bunch of existing sum-
maries.

– The proposed CSWPS can be seamlessly integrated into any code summariza-
tion model using an encoder-decoder structure. We conduct extensive exper-
iments to show that by incorporating CSWPS, we promote the performance
of existing models and achieve the new state-of-the-art.

– We empirically show that the summaries generated by CSWPS are more
project-specific. The visualization shows the latent representations of sum-
maries in the same project are more clustered after incorporating CSWPS.
The human study shows the summaries generated using CSWPS are more
consistent with existing summaries.

2 Related Work

Current code summarization tasks can be roughly divided into two categories:
general code summarization and project-specific code summarization. General
code summarization models aim to generate general summaries for many dif-
ferent projects, whereas project-specific models aim to generate consistent sum-
maries for each project.

For general code summarization, some studies consider code as plain text for
feature extraction. Lyer et al. [12] use LSTM with attention for code encoding
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and summarization. Wei et al. [19] explore the duality between code summariza-
tion and code generation. Ahmad et al. [1] use Transformer with relative posi-
tional encodings. Some studies transform source code into ASTs and graphs for
better encoding. Hu et al. [10] convert ASTs into specially formatted sequences
and feed them into an LSTM-based encoder. Wan et al. [17] devise two LSTM-
based encoders to encode both code and ASTs and use reinforcement learning
for summarization. LeClair et al. [13] use convolutional graph neural networks to
encode the AST nodes and edges. Tang et al. [15] employ tree-structured atten-
tion to encode ASTs. Wang et al. [18] use graph attention networks to encode
semantic graphs augmented from ASTs. Other approaches explore different ways
to extract semantic features from source code [3,5,7,8].

Recent studies focus on generating project-specific summaries. Bansal et
al. [4] use the context of existing source code as project-specific information.
Xie et al. [21] use meta-transfer learning to generate summaries for projects
with few historical code-summary pairs. Ahmed et al. [2] investigate few-shot
training with LLMs like Codex [6]. Our task is different from the above project-
specific code summarization tasks. First, we try to learn project-specific features
from existing summaries, whereas in [4] the authors learn from existing source
code. Second, we aim at the applications where a sufficient number of code-
summary pairs are available for the projects, whereas in [2,21] the authors aim
at the low-resource scenario.

3 The CSWPS Method

CSWPS is a two-stage approach that can be seamlessly integrated into any
existing code summarization model using an encoder-decoder structure. In the
first stage, CSWPS adopts multi-task learning to learn the latent representations
of the summaries in each project, which captures the project-specific features.
In the second stage, CSWPS samples for a code snippet a context feature from
the latent summary representations and use the context feature to guide the
generation of the corresponding summary. Note that CSWPS learns and samples
from the latent representations of the summaries in the training set. Figure 2
shows the overview of CSWPS, which is explained below.

3.1 Stage 1: Learning Latent Summary Representations

To extract the project-specific features entailed in the summaries, in the first
stage we train a Transformer encoder to learn the latent representations of the
summaries, with the goal of clustering together the representations in the same
project and separating the representations in different projects.

As shown in the left part of Fig. 2, we use si to denote the ith summary in
the training set, which has ls tokens. We use a Transformer encoder, referred to
as SummaryEncoder, to obtain the encoded summary Hi ∈ R

d×ls , where d is
the encoding size:

Hi = SummaryEncoder(si). (1)
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Fig. 2. The overview of CSWPS.

To obtain the latent representation of si, we impose a global attention pooling
layer on Hi, resulting in the representation ri ∈ R

d×1:

aij = Softmax(wattn × hij), (2)

r̃i =
∑

j

aijhij , (3)

ri = Wr × r̃i + b, (4)

where hij ∈ R
d×1 denotes the encoding of the jth token in si, wattn ∈ R

1×d,
Wr ∈ R

d×d and b ∈ R
d×1 are the learnable parameters. Then, we design two

objectives to learn the latent representation of ri.

Triplet Margin Loss. To obtain discriminative latent summary representations
for each project (i.e., latent project-specific features), we employ the Triplet Mar-
gin Loss function, which tries to minimize the distance between representations
in the same project and maximize the distance between representations in the
different projects. Specifically, for each ri, we pair it with two randomly selected
representations rj and rk, respectively, where ri and rj are in the same project
and rk is selected from a different project. We regard ri and rj as a positive
pair and regard ri and rk as a negative pair. To calculate the distance between
a representation pair, we employ cosine similarity as the metric. Therefore the
Triplet Margin Loss function can be formulated as follows:

distposi = 1 − CosineSim(ri, rj), (5)

distnegi = 1 − CosineSim(ri, rk), (6)

losstrii = Max(0, distposi − distnegi + m), (7)

where m is a hyperparameter denoting the margin. Note that one may use other
triplet or contrastive loss functions. We choose the Triplet Margin Loss function
because of its high computational efficiency.
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Classification Loss. Besides the above unsupervised learning task, we also
devise a supervised learning task which classifies the summaries based on the
project information. For each latent summary representation ri, we use the cor-
responding project id pi as the class label and obtain the classification loss using
the cross-entropy function:

lossclsi = − log
Exp(wi

c × ri)∑P
j=1 Exp(w

j
c × ri)

pi, (8)

where wi
c are the learnable parameters for label pi and P is the number of

different projects.
Finally, we combine the two types of losses and obtain the total loss for

learning the latent representation of the summary si:

lossi = α × losstrii + β × lossclsi , (9)

where α and β are the balancing weights of the two losses. After training,
SummaryEncoder is used for encoding the summaries in the second stage. Note
that if SummaryEncoder is trained using enough projects thereby extracting
project-specific features well, it does not need to be retrained every time a new
project is added.

3.2 Stage 2: Sampling Latent Summary Representations for Code
Summarization

In the second stage, CSWPS can employ any existing encoder-decoder summa-
rization model as backbone and use the project-specific features learned in the
first stage to guide the summary generation. Regardless of the specific struc-
ture used, we refer to the encoder as CSWPSEncoder and the decoder as
CSWPSDecoder. The key module connecting them is a module that samples
conditionally the latent summary representations based on the encoded source
code and project id.

CSWPSEncoder. As shown in the right part of Fig. 2, we first need to encode
the input source code for conditional sampling. In order to obtain more dis-
criminative encodings, we input a code snippet ci with its project id pi into
CSWPSEncoder and compute the fused encoding. According to encoding code
sequences or ASTs in the particular model, we devise two different encoding pro-
cedures. If the particular model encodes code sequences (e.g., Transformer), we
directly prepend pi to ci and input them into CSWPSEncoder:

Ei = CSWPSEncoder([pi; ci]), (10)

where Ei ∈ R
d×(lc+1) denotes the encodings, d is the encoding size and lc is the

number of sub-tokens in ci.
Some models adopt structure encoders. For example, Chen et al. [7] use a

graph encoder and Tang et al. [15] introduce the relationships between AST
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nodes into the attention computation. For such particular models, we are not
able to add pi into the tree or graph structure. Hence, we first encode ci and
pi separately and then concatenate the encodings. Specifically, the encoding of
pi is obtained by applying attentions on the encodings of ci, thereby making
pi and ci better interact with each other, which is naturally to be done if the
model encodes code sequences. Denote by Ec

i ∈ R
d×lc the encodings of ci and

ẽp
i ∈ R

d×1 the initial embedding of pi, the encoding ep
i of pi is obtained as

follows:

aij =
Exp(ẽp

i · ec
ij)∑lc

k=1 Exp(ẽ
p
i · ec

ik)
, (11)

êp
i =

∑

j

aije
c
ij , (12)

ep
i = Wp × [êp

i ⊕ ẽp
i ] + bp, (13)

where ec
ij is the jth encoding of Ec

i , Wp ∈ R
d×2d and bp ∈ R

d×1 are the learnable
parameters. Finally, we concatenate ep

i and Ec
i to obtain Ei

Sampling Latent Summary Representations. Our idea is to leverage the
project-specific features of existing summaries to guide the generation of project-
specific summaries for the source code in future. Since we obtain the latent
representations of existing summaries in the first stage, we can use them to guide
the summary generation. However, not every existing summary in a project is
relevant to the input code ci that a summary is generated for. As such, we need
to select the most relevant representations to avoid the noisy information. To this
end, we use the encoding ep

i output by CSWPSEncoder as the context vector
and sample the most relevant latent representations conditioned on ep

i . The
encoding ep

i can be used as the context vector since it encodes the information
of both pi and ci, thereby containing the global feature of the project and the
source code (See Eq. 10 and 11–13). The sampling process is computed as follows:

ûi = Wu × ep
i + bu, (14)

ui = Softmax(ûi), (15)

where ui ∈ R
npi

×1 denotes the probability distribution over existing summaries
in project pi, and npi

is the number of these summaries. Wu ∈ R
npi

×d and
bu ∈ R

npi
×1 are the learnable parameters.

According to the probability distribution ui, we obtain the top-k relevant
latent representations R = [rui

1
, rui

2
, . . . , rui

k
] with the highest probability. Then

we impose a mean pooling layer on R to obtain the context vector zi ∈ R
d×1

for generating the summary.

zi =
1
k

∑

r
ui
j
∈R

rui
j
. (16)

CSWPSDecoder. With the context vector zi, we can decode the source code
encodings Ec

i to generate the summary more specific to project pi. Specifically,
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we linearly transform zi to ẑi and add ẑi into the embedding of each word in
the summary si. The obtained embeddings are denoted as Xi ∈ R

d×ls , where ls
is the summary length. The process is computed as:

ẑi = Wz × zi + bz, (17)

Ẑi =
[ẑi; ẑi; . . . ; ẑi]︸ ︷︷ ︸

ls
, (18)

Xi = WordEmbed(si) +PosEmbed(si) + Ẑi, (19)

where Wz ∈ R
d×d and bz ∈ R

d×1 are learnable parameters. WordEmbed and
PosEmbed denote word embeddings and positional embeddings, respectively.

The decoder CSWPSDecoder takes Ec
i and the summary embeddings Xi

<t

before each time step t as input, and predict the summary token ŷi
t at time step

t:
ŷi
t = CSWPSDecoder(Xi

<t,E
c
i ). (20)

The Loss Function. We compute the negative log-likelihood of the generated
summary as the loss in the second stage. Denote by θ the learnable parameters
in the second stage, the loss function for the summary si is calculated as:

lossgeni = −
ls∑

t=1

P (ŷi
t = yi

t|pi, ci, ri, s
<t
i ,θ), (21)

where ls is the summary length and yi
t is the ground-truth summary token at

time t.
At inference time, for each code snippet ci in the testing set, we compute its

context vector ui and use it to sample the latent representations of summaries
in the training set, which guides the summary generation for ci.

4 Experiment Settings

4.1 Datasets

In order to learn project-specific features, we need the datasets with project
information for the code-summary pairs. To this end, we refer to the works of
Xie et al. [21] and Ahmed et al. [2] and use their datasets. Xie et al. construct
the PCS dataset that contains 9 famous open-source projects such as Spring-
Boot, ExoPlayer and Flink, which can be directly used for our task. On the
other hand, we follow [2] and select 47 projects from the CodeXGLUE [14] code
summarization benchmark, based on the criteria that each project has more
than 500 code-summary pairs. We refer to this dataset as CodeXGLUE. The
source code of both datasets is written in Java. The numbers of code-summary
pairs in PCS and CodeXGLUE are 32,667 and 51,890, respectively. The detailed
summary statistics of PCS and CodeXGLUE can be found in the supplementary
materials.
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To reduce the vocabulary size, we follow the approach in [1] and split the
original source code into sub-tokens. For each dataset, we randomly divide the
code-summary pairs in each project with proportion 6:2:2 and form the training,
validation and testing part, respectively. After combining all the projects, each
dataset has also such a proportion for the training, validation and testing set.

4.2 Hyperparameters in Our Model

In both stages, the embedding size, the dimension of the key and value, and the
dimension of the feedforward layer are set to 512, 64 and 2,048, respectively, in
the Transformer structure. In the first stage, the loss weights α and β are set to 1
and the margin m for the Triplet Margin Loss is set to 0.5. In the second stage,
the number of sampled latent project-specific features k is 20. The complete
settings can be found in the supplementary materials.

4.3 Evaluation Metrics

We adopt three commonly used metrics to evaluate the performance, namely,
BLEU, METEOR and ROUGE-L. The score for each metric is calculated as
the average of all generated summaries in the testing set. Higher scores indicate
better performance for all metrics. To prevent random results, we train the model
for 4 runs with random seeds and report the average results.

4.4 The Comparative Models

We select ten models developed in recent years for general code summarization.
The models are DeepCom [10], Dual Model [19], Hybrid-DeepCom [11], Ren-
cos [22], Transformer [1], GN-Transformer [7], SiT [20], AST-Trans [15], Gyp-
Sum [18] and SCRIPT [9]. Remember that our main model uses SCRIPT as the
backbone for the second stage.

In addition, we conduct experiments using MPCos [21] and few-shot train-
ing with LLMs [2], respectively. Although the two studies aim at the low-
resource scenario, we report their results since they both generate project-specific
summaries. MPCos trains a meta-transfer learning module to learn the initial
weights for prefix-tuning, which uses separate prefixes for each project to pro-
mote project-specific transfer learning. For few-shot training, Ahmed et al. [2]
design a prompting method and send the prompt to the Codex model [6].

5 Experimental Results

This section evaluates the effectiveness of CSWPS. Specifically, we aim to answer
the following four research questions:

– RQ1: How does our main model perform compared to state-of-the-art mod-
els?
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– RQ2: Can CSWPS improve the performance of existing code summarization
models?

– RQ3: How do different modules pertaining to project-specific features affect
the performance of code summarization?

– RQ4: Do the summaries generated using CSWPS preserve better the project-
specific features?

5.1 RQ1: Our Main Model Vs. SOTA Models

We compare our main model that employs SCRIPT [9] as backbone (SCRIPT-
+CSWPS) with the 12 models described in Sect. 4.4. For all the models except
MPCos and few-shot training with LLMs, we utilize the original implementations
released by the authors. The authors of MPCos provide the implementation only
for the meta-transfer learning module. We implement the code summarization
module and the prefix-tuning module according to the descriptions in [21]. For
the budget reason, we run two-shot training with CodeLLaMA-7B [16] instead
of Codex [6] as used in [2]. We choose CodeLLaMA-7B because it is reported to
perform better than Codex on many code-related tasks.

Table 1. Our main model compared to the state-of-the-art models. The improvements
are statistically significant, verified by a 2-tailed Student’s t-test; p-value < 0.05.

Models PCS CodeXGLUE
BLEU METEOR ROUGE-L BLEU METEOR ROUGE-L

DeepCom [10] 17.21 10.01 24.46 18.10 10.25 28.88
Dual [19] 33.61 23.55 47.04 27.51 18.05 42.78
Hybrid-DeepCom [11] 26.47 19.32 40.05 24.82 17.13 39.47
Rencos [22] 38.44 27.28 50.71 28.24 19.29 43.67
Transformer [1] 38.03 26.59 50.89 29.22 19.29 43.83
GN-Transformer [7] 37.33 26.27 50.23 29.27 18.99 44.47
SiT [20] 39.12 27.58 52.26 31.71 20.41 46.61
AST-Trans [15] 34.79 25.02 46.79 28.41 19.56 36.90
GypSum [18] 38.22 27.46 52.04 30.86 21.14 46.73
SCRIPT [9] 39.48 27.71 52.64 31.67 20.50 46.83
MPCos [21] 14.01 10.43 23.81 14.06 10.10 22.11
CodeLLaMA-7B [2] 19.24 16.43 35.66 18.28 14.50 31.00
SCRIPT+CSWPS 40.95 28.62 54.22 32.70 21.81 48.48

(↑1.47) (↑ 0.91) (↑ 1.58) (↑ 1.03) (↑ 1.31) (↑ 1.65)

The results are reported in Table 1. We observe that our main model SCRIPT
+CSWPS performs the best on all metrics for both datasets. Specifically, it
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improves the scores of SCRIPT (the previous SOTA) by more than 1 on all met-
rics except METEOR for PCS, which is also close to 1. The results of MPCos and
CodeLLaMA-7B are similar to that in [21] and [2], indicating that we correctly
re-implement their methods. However, MPCos and CodeLLaMA-7B do not per-
form as well as other models, which is not surprising because of their low-resource
settings. The results indicate that when there exist a sufficient number of histor-
ical summaries in a project, using CSWPS to learn the project-specific features
from the summaries to guide the generation of future summaries can yield much
better performance than meta-transfer learning or few-shot training with LLMs.

5.2 RQ2: Can CSWPS Improve Existing Models?

We implement CSWPS in 7 representative encode-decoder models for code sum-
marization, i.e., integrating the feature sampling module into their decoder,
respectively. To demonstrate the effect on different types of models, we choose
Transformer [1], which solely leverages code sequences (Text), DeepCom [10] and
AST-Trans [15], which solely leverage ASTs (AST), and Hybrid-DeepCom [11],
GN-Transformer [7], GypSum [18] and SCRIPT [9], which leverage both code
sequences and ASTs (Hybrid).

Table 2. The performance of the models after incorporating CSWPS. The improve-
ments are statistically significant, verified by a 2-tailed Student’s t-test; p-value <
0.05.

Models incorporating CSWPS PCS CodeXGLUE
BLEU METEOR ROUGE-L BLEU METEOR ROUGE-L

Text Transformer 38.64 27.18 51.46 30.46 20.14 45.56
(↑ 0.61) (↑ 0.59) (↑ 0.57) (↑ 1.24) (↑ 0.85) (↑ 1.73)

AST DeepCom 18.21 10.96 26.65 18.97 10.92 30.40
(↑ 1.00) (↑ 0.95) (↑ 2.19) (↑ 0.87) (↑ 0.67) (↑ 1.52)

AST-Trans 35.21 25.23 47.39 28.62 19.94 37.15
(↑ 0.42) (↑ 0.21) (↑ 0.60) (↑ 0.21) (↑ 0.38) (↑ 0.25)

Hybrid Hybrid-DeepCom 27.02 19.97 40.54 25.88 17.93 41.40
(↑ 0.55) (↑ 0.65) (↑ 0.49) (↑ 1.06) (↑ 0.80) (↑ 1.93)

GN-Transformer 38.28 26.80 51.29 29.89 19.55 45.49
(↑ 0.95) (↑ 0.53) (↑ 1.06) (↑ 0.62) (↑ 0.56) (↑ 1.02)

GypSum 39.11 28.09 53.10 31.57 21.53 47.54
(↑ 0.89) (↑ 0.63) (↑ 1.06) (↑ 0.71) (↑ 0.39) (↑ 0.81)

SCRIPT 40.95 28.62 54.22 32.70 21.81 48.48
(↑ 1.47) (↑ 0.91) (↑ 1.58) (↑ 1.03) (↑ 1.31) (↑ 1.65)

The results are reported in Table 2. The scores in the parentheses show the
improvements compared to the original model. We observe that by incorporat-
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ing CSWPS, all models are improved on all metrics for both datasets, indicat-
ing CSWPS can improve existing models using an encoder-decoder structure.
Although designed for GCS, incorporating the project-specific features makes
these models generate summaries more consistent with existing ones in each
project, thereby yielding improved summarization performance.

5.3 RQ3: The Effect of the Modules Pertaining to Project-Specific
Features

We remove or replace three important modules related to learning or incorpo-
rating project-specific features from our main model SCRIPT+CSWPS, respec-
tively, and show the summarization performance of the remaining model. First,
we remove the Triplet Margin Loss for extracting project-specific features from
existing summaries in the first stage, and only keep the Classification Loss. The
resulted model is referred to as SCRIPT+CSWPS (w/o Triplet). Second, we
remove the project id pi from the input of the encoder in the second stage, so
that the project-specific features are sampled only by the source code encod-
ing. The resulted model is referred to as SCRIPT+CSWPS (w/o Project Id).
Finally, we replace the conditional sampling of project-specific features by uni-
form sampling at random in the second stage. The resulted model is referred to
as SCRIPT+CSWPS (w/o Cond. Sampl.). The results are reported in Table 3.

Table 3. The performance after removing the modules pertaining to project-specific
features.

Models PCS CodeXGLUE
BLEU METEOR ROUGE-L BLEU METEOR ROUGE-L

SCRIPT+CSWPS (our model) 40.95 28.62 54.22 32.70 21.81 48.48
SCRIPT+CSWPS (w/o Triplet) 40.42 28.48 53.67 32.35 21.36 48.13
SCRIPT+CSWPS (w/o Project Id) 40.53 28.51 53.89 32.44 21.50 48.21
SCRIPT+CSWPS (w/o Cond. Samp.) 40.17 28.11 53.42 32.03 21.25 48.01
SCRIPT [9] 39.48 27.71 52.64 31.67 20.50 46.83

We observe that the performance drops if any of the three modules is removed
or replaced, indicating the effectiveness of these modules in learning or incorpo-
rating project-specific features for code summarization. Specifically, by replacing
the conditional sampling with uniform sampling at random, the summarization
performance drops the most. This shows the importance of using the features
most relevant to the code to guide the summary generation. On the other hand,
all three models perform better than the original SCRIPT model, indicating
the effectiveness of incorporating project-specific features, even if they are not
leveraged optimally.
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Fig. 3. The t-SNE visualization of the latent representations of the generated sum-
maries, before and after incorporating CSWPS.

5.4 RQ4: Are the Generated Summaries More Project-Specific?

We conduct two experiments. First, we use the summary encoder in the first
stage to encode the summaries generated by SCRIPT and SCRIPT+CSWPS on
the testing sets of both PCS and CodeXGLUE. Then, we use t-SNE to visualize
the distribution of the latent representations of the generated summaries. We
keep only the 10 largest projects in CodeXGLUE for better visualization. The
results are shown in Fig. 3, where the points with the same color correspond to
the summaries generated in the same project. We observe that for both datasets,
the outlier points that appear among or near the points of a different project
are much fewer after incorporating CSWPS, indicating that the model using
CSWPS can generate summaries preserving better the project-specific features.

In addition, we use K-meas to cluster the latent representations and employ
the Silhouette and S-Dbw scores to measure the clustering performance before
and after incorporating CSWPS. A higher Silhouette (a lower S-Dbw) score indi-
cates better performance. The results are shown in Table 4. We observe that the
both scores show the latent representations of the generated summaries are bet-
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Table 4. The performance of clustering the latent representations of the generated
summaries, before and after incorporating CSWPS.

Dataset Model Silhouette S_Dbw

PCS SCRIPT 0.45 0.31
SCRIPT+CSWPS0.50 0.23

CodeXGLUE SCRIPT 0.49 0.29
SCRIPT+CSWPS0.59 0.21

ter clustered after the model incorporates CSWPS, i.e., the generate summaries
preserve better the project-specific features.

Second, we conduct a human study to investigate whether the summaries
generated using CSWPS are more consistent with the existing summaries in
the same project. We randomly sample 50 summaries in each of the 5 largest
projects from both PCS’s and CodeXGLUE’s training sets, thereby obtaining
500 existing summaries in total. Then we randomly select 10 code snippets in
each of the 5 largest projects from both the testing sets, and use SCRIPT and
SCRIPT+CSWPS to generate the summaries, respectively, thereby obtaining
100 generated summaries in total. Then, we invite three master students in
computer science to evaluate how each generated summary is consistent with the
50 existing summaries in the same project. We particularly ask them to evaluate
on two aspects: sentence similarity and content relevance. Sentence similarity
measures how a generated summary conforms with the overall sentence pattern
of the 50 existing summaries in the same project (e.g., check whether vs. return
true if). Content relevance measures how the content of a generated summary is
relevant to the overall contents of the 50 existing summaries in the same project
(i.e., they describe related functions.). The evaluators are asked to score each
generated summary using the metrics on a scale of 0–3, where a higher score
indicates higher similarity or relevance. Then we calculate the average scores of
the two metrics.

Table 5. Consistency measures of model outputs. Statistical significance between the
two models is computed with a 2-tailed Student’s t-test; p-value < 0.05.

Model Sentence Similarity Content Relevance

SCRIPT 2.15 1.87
SCRIPT+CSWPS2.41 2.19

The results are reported in Table 5. We observe that SCRIPT+CSWPS
improves the scores of SCRIPT on both metrics, indicating that the human eval-
uators agree that the summaries generated using CSWPS are more consistent
with the existing summaries in the same project, i.e., the generated summaries
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are more project-specific. In addition, we observe that the scores of content rele-
vance are lower than those of sentence similarity. This is not surprising because
the code functions are usually more diverse than sentence patterns and it is less
likely to find an existing summary with the similar function to the generated
summary than with the similar sentence pattern.

Overall, the above experiments show that the summaries generated using
CSWPS preserve better the project-specific features.

6 Discussion and Conclusion

In this work, we learn project-specific features of existing summaries and sample
the features to guide the generation of new summaries. The task is particularly
useful for large projects, where the summarization model can learn project-
specific features from a bunch of existing summaries and then be used to generate
consistent summaries for source code developed in future. The model can be
deployed in a CI/CD pipeline to quickly generate project-specific summaries for
newly-committed code, thereby facilitating the development and maintenance
process for a large project.

One potential limitation is that the experimental datasets contain only the
projects written in Java. This is because we compare with many different code
summarization models to show the effectiveness of CSWPS, where only Java
code adapts to all these models in their official implementations. However, we
believe that the CSWPS works also for other common languages, since they have
similar grammar rules and very close AST structures.

Our experimental results have shown that by incorporating CSWPS into
existing models, we can not only achieve better summarization performance, but
also generate more preject-specific summaries. In future, we will try to devise
other methods for learning project-specific features and further promote the
performance.
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Abstract. The detection of abnormal or critical system states is essen-
tial in condition monitoring. While much attention is given to promptly
identifying anomalies, a retrospective analysis of these anomalies can
significantly enhance our comprehension of the underlying causes of
observed undesired behavior. This aspect becomes particularly critical
when the monitored system is deployed in a vital environment. In this
study, we delve into anomalies within the domain of Bio-Regenerative
Life Support Systems (BLSS) for space exploration. We analyze anoma-
lies found in telemetry data stemming from the EDEN ISS space green-
house in Antarctica, using MDI and DAMP, two glassbox methods for
anomaly detection based on density estimation and discord discovery
respectively. We employ time series clustering on anomaly detection
results to categorize various types of anomalies in both uni- and mul-
tivariate settings. We then assess the effectiveness of these methods in
identifying systematic anomalous behavior. Additionally, we illustrate
that the anomaly detection methods MDI and DAMP produce comple-
mentary results, as previously indicated by research.

Keywords: Unsupervised Anomaly Detection · Time Series ·
Multivariate · Controlled Environment Agriculture · Clustering

1 Introduction

Bio-regenerative Life Support Systems (BLSSs) are artificial ecosystems that
consist of multiple symbiotic relationships. BLSSs are crucial for sustaining long-
duration space missions by facilitating food production and managing essential
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material cycles for respiratory air, water, biomass, and waste. The EDEN NEXT
GEN Project, part of the EDEN roadmap at the German Aerospace Center
(DLR), aims to develop a fully integrated ground demonstrator of a BLSS com-
prising all subsystems, with the ultimate goal of realizing a flight-ready BLSS
within the next decade. This initiative builds upon insights from the EDEN ISS
project, which investigated controlled environment agriculture (CEA) technolo-
gies for space exploration. EDEN ISS, a near-closed-loop research greenhouse
deployed in Antarctica from 2017 to 2021, focused on crop production, including
lettuces, bell peppers, leafy greens, and various herbs. To ensure the safe and
stable operation of BLSSs, we explore methods to mitigate risks regarding sys-
tem health, particularly regarding food production and nourishment shortages
for isolated crews. Given the absence of clear definitions for unhealthy system
states and the unavailability of ground truth data, we investigate unsupervised
anomaly detection methods. Unsupervised anomaly detection targets deviations
or irregularities from expected or standard behavior in the absence of labelled
training data. Choosing the appropriate method from the plethora of available
options is challenging due to differing strengths in detecting certain types of
anomalies, as no universal method exists [10].

To address this challenge, we conducted a comparative analysis of six unsu-
pervised anomaly detection methods, differing in complexity in [16]. Three of
these methods are classical machine learning techniques, while the remaining
three are based on deep learning. The primary questions in this comparison have
been: (1) “Is it worthwhile to sacrifice the interpretability of classical methods
for potentially superior performance of deep learning methods?” and (2) “What
different types of anomalies are the methods capable of detecting?” The findings
underscored the efficacy of two classical methods, Maximally Divergent Intervals
(MDI) [4] and MERLIN [15], which not only performed best individually but
also complement each other in terms of the detected anomaly types.

Fig. 1. Overview of our approach to derive different types of anomalous behavior from
unlabelled time series. 1© MDI and DAMP are applied to time series data to obtain
anomalous sequences. 2© Features are extracted from sequences and 3© clustering is
applied to derive different anomaly types, marked by color.
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Building upon our findings in [16], we analyze telemetry data1 from the
EDEN ISS subsystems for the mission year 2020. Our objectives include dis-
covering anomalous behavior, differentiating different types of anomalies, and
identifying recurring anomalous behavior. Figure 1 outlines our approach. We
apply MDI and Discord Aware Matrix Profile (DAMP), another algorithm for
Discord Discovery similar to MERLIN, for anomaly detection, to obtain uni-
variate and multivariate anomalies and extract four sets of features from the
anomalous sequences. We finally apply K-Means and Hierachical Agglomerative
Clustering (HAC) to obtain clusters representing similar anomalous behavior.
Experimental validation addresses five research questions related to the comple-
mentarity of MDI and DAMP (RQ1), optimal feature selection (RQ2), superior
clustering algorithms (RQ3), types of isolated anomalies (RQ4), and identifica-
tion of recurring abnormal behavior (RQ5).

2 Related Work

While the field of anomaly detection has witnessed great interest and an enor-
mous number of publications in recent years, particularly in endeavors focusing
on timely anomaly detection. Scant attention has been directed towards the
critical task of categorizing and delineating various forms of anomalous behav-
ior. Sohn et al. (2023) discriminate anomalous images into clusters of coherent
anomaly types using bag-of-patch-embeddings representations and HAC with
Ward linkage [21]. In [16] we evaluated six anomaly detection methods with
varying complexity regarding their ability to detect certain shape-based anomaly
types in univariate time series data. We showed, that the density estimation-
based method Maximally Divergent Intervals (MDI) [4] and the Discord Dis-
covery method MERLIN [15] not only deliver the best individual results in this
study but yield complementary results in terms of the types of anomalies they
can detect. Tafazoli et al. (2023) recently proposed a combination of the Matrix
profile, which is the underlying technique behind discord discovery, with the
“Canonical Time-series Chracteristics” (Catch22) features, that we employ as one
of our methods for feature extraction [22]. Ruiz et al. (2021) experimentally com-
pared algorithms for time series classification, and found that “the real winner of
this experimental analysis is ROCKET [Author’s note: Random Convolutional
Kernel Transform]” [19] as it is the best ranked and by far the fasted classifier
in their study [19]. We use ROCKET as one method to derive features from
time series. Anomaly detection has also garnered interest in the CEA domain.
While the works [1,2,9] proposed various methods for anomaly detection in the
CEA and Smart Farming domain, other studies have explored anomaly detec-
tion’s utility in enhancing greenhouse control [6] or monitoring plant growth
[7,23]. However, there has been limited effort to extract potential systematic
behavior from anomaly detection results. This work aims to address this gap

1 The code to reproduce our results is available at https://gitlab.com/dlr-dw/
unraveling-anomalies-in-time/-/tree/v1.0.0.

https://gitlab.com/dlr-dw/unraveling-anomalies-in-time/-/tree/v1.0.0
https://gitlab.com/dlr-dw/unraveling-anomalies-in-time/-/tree/v1.0.0
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by contributing towards the derivation of systematic behaviors from anomaly
detection outcomes in the telemetry data of the EDEN ISS space greenhouse.

3 Methodology

In the following section we introduce our pipeline outlined in Fig. 1 to derive
different types of anomalous behavior from unlabeled time series. We start by
defining time series data and subsequences, followed by the introduction of the
methods for anomaly detection and feature extraction. Finally, we present the
measures we use to evaluate the quality of clustering results. While we evaluate
our approach purely based on our specific use case, its generic nature allows it
to be applied to different time series mining tasks.

Time series are sequential data that are naturally ordered by time. We define
a regular time series as an ordered set of observations made at equidistant inter-
vals based on [15]:

Definition 1. The regular time series T with length N ∈ N is defined as the
set of pairs T = {(tn,xn)|tn ≤ tn+1, 0 ≤ n ≤ N − 1, tn+1 − tn = c} with xn ∈
R

D being the data points having D behavioral attributes and tn ∈ N, n ≤ N the
equidistant timestamps the data refer to. For D = 1, T is called univariate, and
for D > 1, T is called multivariate.

As time series are usually not analyzed en bloc, we define a subsequence as
a contiguous subset of the time series:

Definition 2. The subsequence Sa,b ⊆ T of the times series T , with length
L = b − a + 1 > 0 is given by Sa,b := {(tn,xn)|0 ≤ a ≤ n ≤ b < N}. For multi-
variate time series T , S(i)

a,b with i ∈ N refers to the subsequence Sa,b in dimension
1 ≤ i ≤ D For brevity, we often omit the indices and refer to arbitrary subse-
quences as S.

3.1 Anomaly Detection

In the following, we understand anomalies as collective anomalies, i.e. special
subsequences S, that deviate notably from an underlying concept of normality.
We focus on collective anomalies as we are interested in prolonged environmental
issues that can significantly impact plant health and operational efficiency. We
selected MDI and DAMP as they yielded not only the best individual but also
complementary results in [16].

MDI [4] is a density-based method for offline anomaly detection in multi-
variate, spatiotemporal data. We focus on temporal data in this study, providing
definitions pertinent to this context. For comprehensive definitions, including
spatial attributes, refer to [4]. MDI identifies anomalous subsequences in a mul-
tivariate time series T by comparing the probability density pS of a subsequence
S ⊆ T to the density pΩ of the remaining part Ω(S) := T \ S. These dis-
tributions are modeled using Kernel Density Estimation or Multivariate Gaus-
sians. MDI quantifies the degree of deviation D(pS , pΩ) an unbiased variant of
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the Kullback-Leibler divergence. The most anomalous subsequence S̃ is identi-
fied by solving the optimization problem: S̃ := arg maxS⊆T D(pS , pΩ(S)). MDI
locates this most anomalous subsequence S̃ by scanning all subsequences S ⊆ T
with lengths between predefined parameters Lmin, Lmax ∈ N and estimating the
divergence D(pS , pΩ(S)), which serves as the anomaly score. The anomalous sub-
sequences are selected by ranking all subsequences based on their anomaly score
and applying Non-maximum suppression. To adapt to large-scale data, MDI
employs an interval proposal technique based on Hotelling’s T 2 method [13].
This technique selects interesting subsequences based on point-wise anomaly
scores rather than conducting full scans over the entire time series, motivated
by the rarity of anomalies in time series by definition [4]. We set Lmin and Lmax

to 144 (0.5 days) and 288 (1 day) empirically.
DAMP [11] is a method for both offline and “effectively online” anomaly

detection by discord discovery. The term “effectively online” was introduced by
[11] to classify algorithms that are not strictly online but where “the lag in
reporting a condition has little or no impact on the actionability of the reported
information” [11]. Given a subsequence Sa1,b1 and a matching subsequence Sa2,b2

with b1 − a1 = b2 − a2 = L, Sa1,b1 is a non-self match to Sa2,b2 with distance
da1,a2 if |a1−a2| ≥ L. dist(·, ·) denotes the z-normalized Euclidean distance. The
discord S̃ of a time series T is defined as the subsequence with the maximum
distance d(S̃,MS̃) from its nearest non-self match MS̃ . To ascertain the discord
of a time series, DAMP approximates the left matrix profile PL(T ), a vector
storing the z-normalized Euclidean distance between each subsequence of T and
its nearest non-self match occurring before that subsequence. DAMP comprises a
forward and a backward pass. In the backward pass, each subsequence is assessed
to determine if it constitutes the discord of the time series. Meanwhile, the
forward pass aids in pruning data points that do not qualify as discord based on
the best-so-far discord distance. We set L to 288 (1 day) empirically.

3.2 Feature Extraction

The objective of our analysis is to identify particular anomaly types specific to
the EDEN ISS telemetry dataset. Given the exploratory nature of this analysis,
we examine four distinct feature extraction methods, which we refer to below as
“feature sets” and elaborate on in this section.

Denoised Subsequences. As a first feature set, we utilize the raw subse-
quences identified as anomalous by MDI or DAMP. These subsequences vary in
length from 18 to 447 data points2 in the univariate and from 13 to 289 in the
multivariate case. To compare sequences of differing lengths, we employ Dynamic
Time Warping (DTW) [5]. To enhance comparability, we apply moving average
smoothing with a window size of five data points to eliminate high frequencies.
The window size has been set empirically. In subsequent discussions, we refer to
this feature set as Denoised.
2 We excluded anomalies with a length of fewer than five data points from our analysis.
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Handcrafted Feature-Vectors. For the second feature set, we derive a nine-
dimensional vector comprising simple statistical and shape-specific features. This
vector encompasses the first four moments, i.e. mean, variance, kurtosis, and
skewness, alongside the sequence length, the minimum and maximum values,
and the positions of the minimum and maximum within the sequence. Following
the computation of these feature vectors, we employ z-score normalization to
standardize the features to a zero mean and unit standard deviation. In the
following, we will refer to this feature set as Crafted.

Random Convolutional Kernel Transform (ROCKET). [8] generates fea-
tures from time series using a large number of random convolutional kernels.
Each kernel is applied to every subsequence, yielding two aggregate features:
maximum value (similar to global max pooling) and proportion of positive val-
ues (PPV) [8,19]. Pooling, akin to convolutional neural networks, reduces dimen-
sionality and achieves temporal or spatial invariance, while PPV captures kernel
correlation. ROCKET employs 10,000 kernels with lengths l ∈ {7, 9, 11} and
weights w ∈ R

l sampled from the standard normal distribution w ∼ N (0, I).
We apply Principal Component Analysis (PCA) to the z-normalized transfor-
mation outcome and use the first 10 components, also z-normalized, as final
features to mitigate dimensionality issues. We reduced the number of kernels to
1000, finding no significant alteration in results. We refer to this feature set as
Rocket.

Canonical Time Series Characteristics (catch22). [12] comprise 22 time
series features derived from an extensive search through 4,791 candidates and
147,000 diverse datasets. These features, tailored for time series data mining,
demonstrate strong classification performance and minimal redundancy [12].
They encompass various aspects such as distribution of values, temporal statis-
tics, autocorrelation (linear and non-linear), successive differences, and fluctua-
tion. We apply these features to each subsequence, resulting in a 22-dimensional
feature vector per sequence. Features with a normalized variance exceeding a
threshold (set empirically at 0.01) are selected and the chosen features are then
z-normalized. We will refer to this feature set as Catch22.

3.3 Time Series Clustering

Time series clustering involves partitioning a dataset D containing time series
T (1), . . . , T (|D|) into K disjoint subsets Ck, k = 2, . . . ,K, where each subset
contains similar time series. Similarity is measured using distance measures like
Euclidean Distance or Dynamic Time Warping (DTW) [5]. In this study, we
compare K-Means clustering [14] with Hierarchical Agglomerative Clustering
(HAC) to identify clusters of similar anomalous subsequences.

K-Means clustering [14] partitions a set of n observations into K clusters
by assigning each observation to the cluster with the nearest mean, minimizing
within-cluster variance. The centroids μk, k = 1, . . . , K serve as cluster proto-
types. However, vanilla K-Means may not yield optimal results as it randomly
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selects initial centroids, making it sensitive to seeding. To address this, [3] pro-
posed K-Means++, which selects centroids with probabilities proportional to
their contribution to the overall potential. K-Means++ is now a standard ini-
tialization strategy for K-Means clustering, including in our experiments.

HAC partitions a set of n observations into a hierarchical structure of clus-
ters. It begins by treating each data point as a separate cluster and then merges
the closest clusters iteratively. The choice of a linkage criterion, determining the
dissimilarity measure between clusters, is crucial. In our experiments, we adopt
the Unweighted Pair-Group Method of Centroids (UPGMC) linkage, which calcu-
lates the distance between clusters based on the distance between their centroids.
Other common linkage criteria include Single, Complete and Ward linkage, which
respectively use the minimum (Single) or maximum (Complete) distance between
points from different clusters as linkage criterion or minimize the within cluster
variance (Ward).

3.4 Quality Measures

The Silhouette Score (SSC) [18] is the standard measure for evaluating clus-
tering results and quantifies both cohesion and separation within clusters. It is
calculated by averaging over the Silhouette Coefficients SSCC for each cluster
C, defined as:

SSCC =
1

|C|
∑

S∈C

idist(S) − wdist(S)
max(wdist(S), idist(S)) . (1)

Here, wdist(S) represents the mean distance of object S ∈ C to all other ele-
ments within its own cluster C (within-cluster distance), while idist(S) denotes
the smallest mean distance to elements in another cluster (inter-cluster distance).
[18] SSC ranges from −1 to 1, where 1 indicates well-separated clusters, 0 sug-
gests overlapping clusters, and −1 implies misclassification of objects.

To evaluate the quality of clustering outcomes, we introduce the Synchro-
nized Anomaly Agreement Index (SAAI). Let

A = {S(i)
a,b|i, a, b ∈ N, i ≤ D, a < b, s(S(i)

a,b) > th} (2)

be the set of univariate anomalies in the time series T = {T (1), ..., T (D)} where
s(·) : {S|S ⊆ T } → [0, 1] denotes a anomaly score function, and th ∈ [0, 1]
represents the threshold for labeling a subsequence anomalous. Furthermore, let

AS = {(S(i)
ai,bi

,S(j)
aj ,bj)

|S(i)
ai,bi

,S(j)
aj ,bj

∈ A, i < j, iou([ai, bi], [aj , bj ]) > thiou} (3)

be the set of synchronized, i.e. temporally aligned, anomalies with iou([ai, bi],
[aj , bj ]) representing the time-interval Intersection over Union of two subse-
quences S(i)

ai,bi
and S(j)

aj ,bj
. The threshold parameter thiou ∈ [0, 1] determines the

degree of temporal alignment. Additionally, let

A∗
S ⊆ AS (4)
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denote the set of temporally aligned anomalies assigned to the same cluster,
where c(S(i)

ai,bi
) = c(S(j)

aj ,bj
), with c(S(i)

ai,bi
) indicating the cluster of subsequence

S(i)
ai,bi

. The SAAI of a clustering solution of univariate anomalous subsequences
in the set of time series T = {T (1), ..., T (D)} is defined as:

SAAI := λ
|A∗

S |
|AS | − (1 − λ)(

1
K

+
n11

K
) + (1 − λ) , λ ∈ [0, 1] . (5)

Here, the first term |A∗
S |

|AS | evaluates the ratio of temporally aligned anomalies in
the same cluster among all temporally aligned anomalies. The second term serves
as regularization, accounting for small cluster sizes ( 1

K ) and clusters containing
only a single anomaly (n11

K ), where n11 represents the number of single-element
clusters. The parameter λ allows adjusting the influence of the penalty term.
(1 − λ) is added to scale the value of SAAI to the interval [0, 1], enabling the
comparison of SAAI values with different weights λ. In our experiments detailed
in Sect. 4, we set λ = 0.5.

The rationale behind this measure is, although we lack knowledge of the
real anomaly clusters, we hypothesize that temporally aligned anomalies in sim-
ilar measurements - such as those from the same sensor types - should cluster
together, as they likely represent the same anomaly. Higher values indicate bet-
ter clustering solutions. In the supplementary materials A we provide examples
and further information to interpret SAAI.

The Gini-Index [20] is a metric for statistical dispersion or imbalance. Given
a set of discrete values X = x1, x2, . . . , xK , it is defined as:

G =

∑K
i=1

∑K
j=1 |xi − xj |

2n
∑K

i=1 xi

. (6)

The Gini-Index ranges from 0 to 1, with lower values indicating more equal
distribution and higher values suggesting greater inequality. We use the Gini-
Index to evaluate cluster size imbalance across various clusterings by applying
Eq. 6 to the cluster sizes x1 = |C1|, . . . , xK = |CK | of each solution.

4 Experimental Results

The experimental results were obtained by first applying MDI and DAMP in
the uni- and multivariate case. Data from one subsystem is represented by one
multivariate time series. We extract features from the detected anomalous subse-
quences and cluster them with number of clusters 2 ≤ K ≤ 20. All experiments
were run on an Intel Xeon Platinum 8260 CPU with 20GB of allocated memory
Table S1 in the supplemental materials lists the hyperparameter settings we used
for our experiments.

4.1 Dataset

The edeniss2020 dataset [17] comprises equidistant sensor readings from 97 vari-
ables derived from the four subsystems of the EDEN ISS greenhouse, namely
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Fig. 2. Amount of (a) univariate and (b) multivariate anomalies found by MDI and
DAMP. The highlighted area marks anomalies found by both algorithms.

the Atmosphere Management System (AMS), Nutrient Delivery System (NDS),
Illumination Control System (ICS) and Thermal Control System (TCS). Our
analysis focuses on data from the year 2020, representing EDEN ISS’s third
operational year. Table S2 in the supplemental materials C lists the measure-
ments per subsystem. The data is captured at a sampling rate of 1/300 Hz and
covers the range from 01/01/2020 – 12/30/2020. Every of the 97 univariate time
series has a length of 105120 data points. The readings from the AMS pertain
to air properties in the greenhouse and service section, while those from the
NDS relate to nutrient solution tanks and pressure measurements in the pipes
connecting tanks and growth trays. ICS temperature readings are taken above
each growth tray and beneath the corresponding LED lamps.

4.2 RQ1: Are the Results of MDI and DAMP Complementary?

In [16] we found, that density estimation- and discord discovery based methods,
specifically MDI and MERLIN, yield complementary results in anomaly detec-
tion. To validate this claim, we analyzed the anomalies in EDEN ISS teleme-
try data, found by MDI and DAMP. Our comparison focused on the number
and duration of detected anomalies. The results, depicted in Fig. 2, show that
DAMP accounts for the majority (77.9%) of the detections in the univariate case,
while 22.1% of the detected subsequences are found by MDI. Only 5.3% of the
sequences detected as anomalous are found by MDI and DAMP simultaneously.
Considering the length of the detected subsequences (i.e. the anomalous area),
only 7.8% of the subsequences detected as being anomalous are detected jointly.
In the multivariate scenario, DAMP identifies 52.8% and MDI 47.2% of the sub-
sequences, with 7.7% being detected by both. Even though we can not assume all
detections being true positives, these findings confirm the complementary nature
of MDI and DAMP, with DAMP finding slightly longer anomalies compared to
MDI. Hence, using both methods allows us finding a larger variety of anomalous
behavior instead of using just one (Fig. 2).

4.3 RQ2: Which Features Yield the Best Results?

To determine which features yield better results, we clustered anomalies for each
sensor type (univariate anomalies) or subsystem (multivariate anomalies) with
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Fig. 3. (a), (c) SAAI and SSC aggregated over all sensor types for the four different
feature extraction methods for (a) K-Means and (c) HAC for univariate anomalies. (b),
(d): SSC over all subsystems in the multivariate case.

varying cluster numbers K = 2 to K = 20. We then aggregated the sensor-
type or subsystem specific outcomes over the number of clusters K. We assessed
the quality based on the temporal alignment of clusters using SAAI (Eq. 5) for
univariate anomalies, and cluster separation and cohesion using SSC (Eq. 1) for
uni- and multivariate anomalies. The results are illustrated as box plots in Fig. 3.

Univariate Anomalies. Analyzing the SAAI distribution for the four feature
sets with K-Means clustering (Fig. 3a), Rocket features exhibit the highest
median SAAI of 0.69, followed by Crafted features with 0.63 and Catch22
with 0.61. Denoised subsequences yield a median SAAI of 0.58. With HAC,
Rocket features show the highest median SAAI of 0.67, followed by Catch22
with 0.6, Crafted with 0.54 and Denoised features with a median SAAI of
0.51. Denoised features display the highest variability in SAAI results, while
Rocket features demonstrate the lowest variability for both K-Means cluster-
ing and HAC. Regarding cluster separation and cohesion (right plots in Fig. 3),
Denoised features return the highest median SSC of 0.43 for K-Means and 0.51
for HAC, while Rocket features yield the lowest median SSC of 0.28 for K-
Means and 0.23 for HAC. Although the discrepancy between SAAI and SSC
results might initially seem contradictory, it can be better understood when
considering different cluster imbalances, as it will be discussed in Sect. 4.4. For
Denoised, Crafted, and Catch22 features, higher Silhouette scores are observed
for HAC compared to K-Means, indicating higher cluster imbalances. Since SSC
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Fig. 4. Gini-Index of cluster sizes for K-Means Clustering and HAC in (a) the univari-
ate and (b) the multivariate case. Lines represent mean values, while the opaque bands
span the second and third quartiles.

is the mean of Silhouette Coefficients and does not consider cluster sizes, higher
SSC values may result from many small but dense clusters and few large and
dispersed ones, compared to a more even distribution across clusters.

Multivariate Anomalies. Since SAAI is not defined in the multivariate case,
we evaluate SSC results, aggregated across all subsystems, which are presented
in Fig. 3b and 3d. For K-Means clustering, Rocket features exhibit the highest
median SSC value of 0.17, whereas for HAC, Denoised features demonstrate
the highest SSC, with a value of 0.24.

Based on these results we favor Rocket features as this feature set shows
superior in terms of SAAI when clustering univariate anomalies and the highest
median SSC in the multivariate case. For HAC the results are more inconclusive.

4.4 RQ3: Which Algorithm Yields Better Results?

To determine which algorithm yields superior results, we evaluate the imbalance
of cluster sizes generated by K-Means and HAC. Although we cannot assume a
uniform distribution of anomaly types within the EDEN ISS dataset, we prefer a
more even distribution across clusters to support the isolation of varied anoma-
lous behavior. Similar to Sect. 4.3, we cluster anomalies for each sensor type with
increasing cluster numbers K (ranging from K = 2 to K = 20) and aggregate
the sensor-type-specific results. Figure 4 depicts the Gini-Index for increasing K
by feature set and clustering algorithm. It is evident from the results, that K-
Means produces more evenly distributed clusters compared to HAC for all four
feature sets.

Univariate Anomalies. K-Means shows moderate imbalance, with average Gini
Indices up to 0.51 for Denoised features, while HAC yields higher Gini Indices,
averaging up to 0.77 for Rocket. In K-Means clustering, Rocket features gener-
ate the most balanced clusters, whereas Denoised features exhibit the highest
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Fig. 5. Anomaly types found in ICS temperatures with K-Means clustering for SAAI-
optimal K per feature set. Anomaly types consistent across different feature sets have
the same color. T/B: Denoised Crafted, Rocket, Catch22

imbalance. Conversely, for HAC, this observation is inverted. The trajectories of
the Gini-Index curves are largely similar within each algorithm. For K-Means
clustering, Gini Indices increase until K = 11, while for HAC, they peak around
K = 8 before slowly decreasing. This suggests that in HAC, large clusters are
not split but gradually dissolve as K increases. Rocket with K-Means clustering
follows a slightly different trajectory, slowly increasing until K = 20.

Multivariate Anomalies. In comparison to HAC, K-Means clustering shows more
balanced cluster sizes, consistent with the findings in the univariate case. De-
noised features have the highest average Gini Index of 0.56 for K-Means, while
for HAC, Rocket features exhibit the highest mean value of 0.72. The trajectories
of the Gini Index curves are largely similar for each algorithm, though for HAC,
there is a steeper decline from K = 8, especially noticeable when compared to
the univariate case.

The observation of K-Means producing more balanced cluster sizes, both in
univariate and multivariate scenarios, prompts us to focus on addressing the
remaining two research questions w.r.t. K-Means.

4.5 RQ4: What Anomaly Types can be Isolated?

To analyze, which anomaly types can be isolated from the clustering results, we
analyze the consensus between the SAAI-optimal clustering solutions for the
four different feature sets. Given the clustering result CA = {C1A , C2A , . . . , CKA

}
for a feature set A and CB = {C1B , C2B , . . . , CKB

} a feature set B, we calculate
the matrix of pairwise intersection over union MAB(i, j) = iou(CiA , CjB ) . The
values in MAB are normalized to the interval [0, 1]. We consider cluster i in
feature set A to isolate the same anomaly type as cluster j in feature set B, if
MAB(i, j) ≥ 0.5, i.e. if both clusters share at least 50% of their samples.
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Fig. 6. Anomaly types found in the multivariate AMS-SES measurements with K-
Means clustering for K = 10. T/B: Denoised, Crafted, Rocket, Catch22

Case Study 1: Univariate Anomalies in ICS. Figure 5 depicts the anomaly
clusters obtained from K-Means clustering with SAAI-optimal number of clus-
ters K3. The SAAI results for each feature set and 2 ≤ K ≤ 20 are shown in the
supplemental Figure S7. The ICS measurements consist of 38 time series, repre-
senting temperature readings below the LED lamps for each growth tray, with
1303 identified anomalies for this sensor type. Optimal results for Catch22 and
Denoised features were observed at K = 8 and K = 10, while for Crafted and
Rocket features, the highest SAAI values were obtained at K = 13 and K = 19.
Anomaly type candidates derived from the consensus criterion are highlighted
with colored background in Fig. 5. Table S3 in the supplemental materials D
provides shape descriptions for 10 isolated anomaly type candidates identified
in ICS temperature readings. The “peak (long)” (#1) anomalies are isolated
by Denoised, Crafted, and Rocket features. The remaining anomaly type can-
didates were isolated by two feature sets. Rocket and Crafted features yield
the most anomaly type candidates, reflecting their highest SAAI for the high-
est number of clusters. For candidate #7, we found no indication of anomalous
behavior, so we suspect that this cluster contains false positives results. To inves-
tigate whether a larger number of clusters alone aids in analysis, we analyzed the
isolated anomaly types at K = 19 for all feature sets. Annotated sequence cluster
plots are presented in the supplemental Figure S10. Rocket features isolate the
most, i.e. 8, distinct anomaly type candidates, followed by Crafted and Catch22
with 6, and Denoised with 4 distinct anomaly type candidates, indicating supe-
rior performance for Rocket in forming interpretable anomaly clusters despite
the increase in K. Crafted features however yielded more distinct clusters for
the SAAI-optimal value K = 13, underlining the efficacy of that measure.

Case Study 2: Multivariate Anomalies in AMS-SES. In the multivariate
case, we examine anomalies within each subsystem, here focusing on the AMS-
SES subsystem. As SAAI computation for multivariate anomalies is not feasible,
we fix K = 10 and use the consensus criterion to delineate anomaly type can-
didates from clustering results. Figure 6 displays the outcomes, with Crafted

3 High-Resolution versions of the images can be found in the supplemental materials D.



220 F. Rewicki et al.

Fig. 7. Recurring anomalies in the univariate ICS readings: (a) Near-flat or Flat Signal
(#3), (b) Anomalous Day Phase (#5) and in the AMS-SES measurements: (c) CO2

Peak (#1), (d) Temp. and CO2 Peak with RH Drop (#4).

features discerning the majority (i.e. 7) of anomaly type candidates, followed
by Denoised features with 6. Rocket features isolate 4 candidates and Catch22
only 2. The “CO2 Peak” anomaly (#1) exhibits the highest consensus, detected
by Denoised, Crafted, and Rocket features. All other anomaly type candidates
show a consensus of 2/4. Descriptions for isolated anomaly type candidates are
provided in Table S4 the supplemental materials D. While semantic interpreta-
tion remains elusive, we characterize them based on their shape. For instance,
anomaly types (#5, #8) in Fig. 6 denote various manifestations of “steep slope”
anomalies. Yet, descriptions for candidates (#0, #2, #3) were challenging, hint-
ing at potential false positive anomaly detection results. In summary, interpret-
ing multivariate anomalies is more challenging due to diverse sensor readings in
each subsystem’s multivariate time series.

4.6 RQ5: Can We Identify Recurring Abnormal Behavior?

To identify recurring abnormal behavior, we focus on anomaly types with mul-
tiple instances. In Fig. 7, we illustrate examples of these type candidates for the
univariate (7a, 7b) and multivariate case (7c, 7d). While the univariate “near flat
or flat signal” anomaly type (#3) shows nearly identical behavior across both
instances, the “anomalous day phase” type (#5) exhibits greater diversity. In the
initial instance, the warm-up phase involves a step increase followed by a rise in
daytime temperature, while in the third instance of the “anomalous day phase”
anomaly, a daytime drop occurs after achieving the target temperature.

Using the same methodology in the multivariate case for AMS-SES read-
ings as described in Sect. 4.5, we present two instances of recurring anomalous
behavior, namely anomaly types “CO2 peak” (#1) and “temperature and CO2

peak with relative humidity drop” (#4), in Fig. 7c and 7d. In both cases, the
anomaly is observable and shows similar behavior across the instances, but we
lack evidence to assert consistent underlying causes across instances. Labeling
these instances as the same anomaly type requires a more in-depth analysis of
the anomalies and their root causes, a task we leave for future research.



Unraveling Anomalies in Time 221

5 Conclusions and Outlook

In this study, we analyzed anomalies in telemetry data from the BLSS proto-
type, EDEN ISS, during the mission year 2020. Using anomaly detection methods
MDI and DAMP, we extracted four feature sets from identified anomalous sub-
sequences. Employing K-Means clustering and HAC, we aimed to isolate various
anomaly types. Our findings showed K-Means produced more uniform cluster
sizes compared to HAC, aligning with our goal of discerning diverse anomalous
behavior forms. We found Rocket and Crafted features outperformed Denoised
subsequences and Catch22 features in detecting univariate anomalies. However,
assessing multivariate anomalies quality solely using SSC proofed challenging.
Despite these challenges, our analysis identified various anomaly types, includ-
ing peaks, anomalous day/night patterns, drops, and delayed events, through
consensus among different feature sets. These insights are crucial for refining
our risk mitigation system for future BLSS iterations. We identified instances of
potentially recurring anomalous behavior in both uni- and multivariate contexts,
warranting further investigation. Additionally, we will further explore Catch22
features, promising informative insights into our problem domain.
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Abstract. Matching in two-sided markets such as ride-hailing has
recently received significant attention. However, existing studies on ride-
hailing mainly focus on optimising efficiency, and fairness issues in ride-
hailing have been neglected. Fairness issues in ride-hailing, including
significant earning differences between drivers and variance of passen-
ger waiting times among different locations, have potential impacts on
economic and ethical aspects. The recent studies that focus on fair-
ness in ride-hailing exploit traditional optimisation methods and the
Markov Decision Process to balance efficiency and fairness. However,
there are several issues in these existing studies, such as myopic short-
term decision-making from traditional optimisation and instability of
fairness in a comparably longer horizon from both traditional optimi-
sation and Markov Decision Process-based methods. To address these
issues, we propose a dynamic Markov Decision Process model to alleviate
fairness issues currently faced by ride-hailing, and seek a balance between
efficiency and fairness, with two distinct characteristics: (i) a prediction
module to predict the number of requests that will be raised in the future
from different locations to allow the proposed method to consider long-
term fairness based on the whole timeline instead of consider fairness
only based on historical and current data patterns; (ii) a customised
scalarisation function for multi-objective multi-agent Q Learning that
aims to balance efficiency and fairness. Extensive experiments on a pub-
licly available real-world dataset demonstrate that our proposed method
outperforms existing state-of-the-art methods.

Keywords: Applications · Fairness · Human-aware Planning and
Scheduling

1 Introduction

Ride-hailing systems have become increasingly prevalent as a mode of trans-
portation, with platforms, such as Uber, utilising artificial intelligence (AI) algo-
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rithms to match drivers to passengers efficiently [11]. However, while these algo-
rithms succeed in optimising earnings for drivers and reducing passenger waiting
time, they often result in inequities, such as wage disparities based on gender or
race [2]. As a result, there is a growing interest in the fair allocation of jobs to
drivers in ride-hailing systems.

A majority of the established research on creating equitable ride-hailing sys-
tems relies heavily on heuristic or linear programming approaches [6,7,12,18,22],
augmented by mechanisms that promote fairness. These traditional algorithms
have benefits such as simplicity in structure and reasonable execution times.
However, they fall short of guaranteeing non-myopic solutions that can make
far-sighted decisions. In addition, existing studies do not utilise longitudinal his-
torical data to identify future patterns for raised requests. These algorithms focus
on the immediate future, which lack the predictive capacity for future demand
trends and fail to consider historical discrepancies. Raman et al. proposed an
allocation system based on a Markov Decision Process (MDP) to balance effi-
ciency and fairness, which provides non-myopic allocation plans [14]. However,
the approach to addressing equity issues in the ride-hailing system only consid-
ers historical patterns for raised requests, without any consideration for future
conditions.

Figure 1 illustrates a potential scenario where an emphasis on short-term
equity results in a long-term inequitable allocation plan. For an allocation system
that considers short-term fairness, the system tries to improve fairness by only
considering the historical allocations. Thus, at the end of the second timestep,
the allocation system achieves fairness among the three drivers, as all the drivers
get the same utility, but the final allocation is comparably unfair due to the
upcoming requests from the third timestep. As for the allocation system con-
sidering long-term fairness, the allocation system is able to consider the future
requests patterns and improve fairness across the entire time duration to output
a fair allocation plan. Given the existence of multiple possible scenarios where
riders raising requests following different distribution, without considering future
patterns, long-term equity becomes increasingly unstable, thus underscoring the
necessity of a more comprehensive approach.

Importantly, in practical contexts, drivers in ride-hailing systems are gener-
ally more concerned with their weekly earnings, which can be viewed as long-
term earnings as opposed to daily earnings [4,21]. The challenge of maintaining
long-term fairness can be attributed to three key factors: i) Short Sight: opti-
misation algorithms without look-ahead time fall short in harnessing long-term
historical data and forecasting future patterns. The example shown in Fig. 1 illus-
trates the challenge. ii) Concept Drift: similar to concept drift in time-series
forecasting, existing methods that consider fairness presuppose that future ride
requests will adhere to previously observed patterns. However, this assumption
is fundamentally flawed as the patterns of ride requests fluctuate continuously
due to different factors, including weekday peak hours and public holidays. By
its nature, the ride-hailing system necessitates real-time assignments, rendering
it unfeasible to accumulate a sufficient volume of ride requests to explore dif-
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Fig. 1. The figure showcases the disparity in fairness concerns between short-term and
long-term allocations by displaying two allocation systems generating allocation plans
at each timestep. The arrows pointing to vehicles represents allocated requests with
different utility to different drivers, and the dollar signs next to drivers indicate the
total utility accumulated by the end of each timestep. In this example, the algorithm
that prioritizes short-term fairness manages to achieve absolute fairness by the end of
the second timestep, with no variance in utility among drivers. However, it becomes
unfair by the third timestep. On the other hand, the algorithm that focuses on long-
term fairness appears relatively unfair at the end of the second timestep but ultimately
achieves absolute fairness by the third timestep.

ferent patterns of raised requests before optimising assignments. iii) Disparity
between Utility and Fairness Increase across Time. Multiple fairness def-
initions have been proposed to evaluate fairness among drivers in ride-hailing
systems. An earlier study addressed this by attempting to maximise the mini-
mum utility amongst drivers, treating the problem as an instance of matching
issues [7]. Nonetheless, the focus of the study on improving fairness is mainly
on enhancing the utility for the driver with the lowest utility, thus presenting
a rather restricted view of fairness. The study did not consider fairness among
all drivers but to improve fairness for the driver with the lowest utility instead.
Another approach is to evaluate fairness among drivers based on the variance in
travel distance [14], which can be considered a comparably more global evalua-
tion of fairness. Research findings indicate a conflict between the optimisation of
utility and the promotion of fairness within these systems [6,7,12,14,18,19,22].
Therefore, the principal challenge of fairness in ride-hailing lies in reconciling
these two objectives. The objective function is normally defined to balance total
utility and fairness (e.g., utility + λfairness) [7,14,19]. Whilst we adopt the
concept of fairness defined based on variance, we want to highlight the challenge
in maintaining this balance over a long time horizon, as the variance inevitably
increases, which thus intensifies the preference for fairness. The question of bal-
ancing utility and fairness whilst preventing an escalation in the weight of fairness
over time remains unresolved.

Therefore, to effectively mitigate these issues, we propose a long-term fairness
approach for ride-hailing systems, one that leverages both historical data and
forecasts of future scenarios. We propose a Markov Decision Process (MDP)-
based method to deliver long-term fairness while balancing it with total util-
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ities for drivers. Our proposed model leverages a multi-objective multi-agent
Q-learning (MOMAQL) technique, allowing an allocation plan approach to non-
myopic solution that considers various possible data patterns to mitigate the
unfairness illustrated in Fig. 1. In the proposed MDP-based approach, we include
a time-series forecasting module which is used to predict future requests, enabling
the model to anticipate future patterns. In this case, assuming a driver gets the
lowest wage in a short-term time period, the driver can be compensated in the
subsequent time periods.

Our key contributions can be summarised as follows:

– We formally propose a concept of long-term fairness in ride-hailing systems to
promote equal earnings among drivers over a broader time horizon, aligning
more closely with their focus on weekly earnings.

– We present a novel MDP-based model with appropriate objective and scalar-
isation functions. This model aims to preserve utilities whilst minimising the
disparity in earnings among drivers.

– We introduce a predictive module that forecasts the volume of future ride
requests in different locations. This module is incorporated into the MDP-
based model to allow a look-ahead time for the MDP-based model and thus
help achieve long-term fairness in ride-hailing systems.

– We validate our proposed model through experiments using a real-world
dataset, demonstrating that it outperforms existing methods.

2 Related Work

The problem of matching ride requests and drivers has been conceptualised as
either a bipartite matching problem [24] or a Markov Decision Process (MDP)
[14,16,19]. These studies have demonstrated substantial improvements in effi-
ciency, enabling drivers to service more requests and increase their earnings.
However, recent literature has brought equity concerns [13]. From the perspective
of riders, Brown et al. underscored differential treatment of riders by ride-hailing
services, leading to an amplified trip cancellation rate for riders with darker skin
tones [1]. Similarly, on the driver side, a subset of ride-hailing drivers struggle
to earn a sustainable income due to systemic income disparities [2]. To counter-
act these disparities, some research studies have proposed the use of bipartite
matching with a min-max objective function aimed at maximising the minimum
utility, thereby promoting more balanced utilities among drivers [7]. Subsequent
research has demonstrated boundaries on the trade-off between efficiency and a
defined concept of fairness [9,12]. Upon the aforementioned works, investigations
have been carried out focusing on equalising utilities among drivers and riders
[5,18]. Additionally, Li et al.. proposed a novel method to augment the fairness
of ride-hailing demand functions [23]. Expanding on previous research pertaining
to ride-hailing [7], Raman et al.. formulated a versatile methodology that can be
adapted for ride-hailing matching to improve fairness through applying an MDP
[14]. While the work provides a non-myopic solution compared to the previously
mentioned studies, the study still focuses on promoting short-term fairness like
other studies without an estimation of patterns of future requests.
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3 Preliminaries

Studies revealed that there is a conflict between fairness and utility, and opti-
mising fairness without considering utility will cause all the drivers not to get
any assignment (no earnings for everyone is absolutely fair) [12,17,18]. Thus,
to consider fairness in ride-hailing, the target is to balance between utility and
fairness.

3.1 Problem Formulation

Assume there are n drivers v ∈ V who aim to pick up different orders sent by
riders, and all drivers and riders reside on a directed graph. The set of locations,
L, are represented as nodes in this directed graph which can be locations for
the n drivers or either pickup or drop-off locations for rider-raised requests. The
set of directed edges, E, where ei,j ∈ E, represents the travel distance between
locations li, lj ∈ L. In the real-world scenarios, it is normal that the travel
distance from a location (e.g. li) to another location (e.g., lj) is different from
travelling in the opposite direction. Thus, we define the real-world map as a
directed graph. We define the utility of a trip between the location li and lj
based on ei,j according to existing studies [14,20].

The rider requests, driver states and time length are formulated as follow:

– A rider request r ∈ R and r = (tr, sr, dr) where the request r is raised at
time tr from locations sr to dr; sr, dr ∈ L.

– The state of each of the n drivers at time t can be represented by the tuple
vt ∈ V t and vt = (cv,mt

v, gt
v, ot

v), where cv represents the capacity of the
vehicle that driver v is driving, mt

v is the number of riders in the vehicle
at time t, gt

v is the geographical location of v at time t (gt
v ∈ L) and gt

v is
dynamically changing based on t with gt

v = −1 if the driver is travelling on
an edge between two different nodes, ot

v(Rv) is the total utilities gained by
v from the requests that are assigned to v, represented by Rv, from starting
time t0 to t.

– The time length T = {{t0−δ, t0−δ+1, ..., t0−1}, t0, {t1, t2, ..., tn}} of the
problem is formulated in three parts: the time length {t0−δ, t0−δ+1, ..., t0−1}
when the historical orders are already completed or being processed, the time
step t0 when the current orders have been raised but not been assigned to
the drivers, and the time length {t1, t2, ..., tn} when the future orders will
need to be assigned to the drivers.

It is important to note the utility of each request r is calculated by
Geo(dr, sr)−Geo(sr, g

t
v) where Geo calculates the shortest geographical distance

between two points. The utility reflects the balance between profit, defined as
the distance from the start to end location for a request (sr to dr) and cost,
represented by the distance from the current location of the driver (gt

v) to the
start location of the request (sr). The utility calculation is performed at the
moment a request is assigned. We assume drivers opt for the shortest possible
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route, meaning the utility is consistent for requests with identical start and end
points. Upon assignment of a request r to a driver v, its utility is added to the
cumulative utility of the driver ot

v.

Requests Prediction. Assume a set of requests raised by different rid-
ers across the time length T is represented by RT = {{Rt0−δ

, Rt0−δ+1 ,
..., Rt0−1}, Rt0 , {Rt1 , Rt2 , ..., Rtn

}} where {Rt1 , Rt2 , ..., Rtn
} represents the

future orders that will be raised by different riders. Rtn
= {(stn

r , dtn
r )|s ∈ L, d ∈

L} represents orders that will be raised at node s ∈ L and end at node d ∈ L at
time tn. We aim to forecast the number of trips raised and ends at each node in
the graph.

3.2 Efficiency

This study defines overall efficiency as the total utility acquired across all the
drivers over a given timeframe. Given a set of requests r ∈ R, efficiency aims to
find an assignment M that assigns each request to exactly one driver v ∈ V to
maximise total utility shown as:

π(M) =
∑

v∈V

otn
v (M(v))

tn = max(T )
(1)

where M(v) represents the set of requests that are assigned to the driver v
according to the assignment M .

3.3 Long-Term Fairness

We define long-term fairness as the accumulated fairness that consider fairness
calculated from the historical, current, and future allocation plan which will be
the output from the proposed method using testing data. In this study, we use
1week as the time horizon with the first three-days records treated as historical
data, the fourth day treated as the current data, and the last three days treated as
the future data which will be considered as testing data for the proposed method.
The fairness is calculated as the accumulated fairness through the whole week as
drivers care more about weekly-based earnings instead of daily earnings in the
real-world. The fairness is defined as the variance of utilities among the n drivers
according to existing studies [14], where utilities for each driver is defined as the
total utilities through the whole week. Given a set of requests r ∈ R, long-term
fairness aims to find an assignment M that assign each request to exactly one
driver v ∈ V to minimise long-term fairness shown as:

F (M) = Var
(
otn

v (M(v))
)

tn = max(T )
(2)

where Var represents variance to calculate the variance of total utilities among
different drivers.
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3.4 Balance of Long-Term Fairness and Total Utility

To maintain a balance between long-term fairness and total utility, we formulate
the problem as an operation research question with the formula shown as:

maxM π(M) − λF (M) (3)

subject to
∑

v∈V,r∈R

Irv ≤ 1 (4)

where λ is the weight for fairness, and Irv is defined as an indicator function:

Irv =

{
1 if request r is assigned to vehicle v

0 else
(5)

4 Approach: Optimising Efficiency and Long-Term
Fairness for Ride-Hailing

In this section, we introduce a novel solution to both optimise the efficiency and
longer-term fairness for ride-hailing applications. The proposed model adopts a
multi-objective multi-agent Reinforcement Learning (MOMARL) algorithm to
develop the allocation system, driven by three core considerations:

– Real-World Dynamics and Initial Conditions: The varying initial loca-
tions of drivers in the real-world significantly influence their ability to serve
ride requests, affecting their behaviour and accumulated utility. MOMARL
allows different drivers learn different agent behaviours based on their starting
locations, thereby optimising total income while promoting fairness.

– Fairness and Equity Considerations: To address fairness, defined as the
equitable comparison of utility gained by drivers, our system employs a cen-
tral controller to acknowledge status of all agents. This ensures that allocation
decisions consider the collective situation of all drivers, promoting a fair distri-
bution of utility and opportunities across the network. The central controller
allows the proposed method dynamically adjusts to real-time conditions and
redistributes resources to maintain fairness and efficiency.

We designed the scalarisation function in MOMARL to balance utility and
fairness and to approach Pareto Optimal. Additionally, a time-series prediction
module is incorporated to provide future available actions in MOMARL to allow
the proposed method to consider future requests’ pattern. The prediction module
is implemented to adapt the dynamics of the requests raised by riders based on
time in an online manner.
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Fig. 2. Long-term Fairness for ride-hailing system. With time-series prediction, the
predicted requests is part of the action space of the MDP-based model to allow the
outputed allocation plan be based on the pattern of future requests.

4.1 Overview

The proposed model comprises a time-series prediction module, multi-objective
Reinforcement Learning, and a scalarisation function.

– Time-series forecasting (Sect. 4.2). To encourage longer-term fairness, we
utilise time-series forecasting in the proposed model to predict future requests
as part of the input for MOMAQL. The time-series forecasting module
exploits historical requests in different locations as input and the output is the
number of requests that will be raised in the future from different locations.

– Multi-objective multi-agent Reinforcement Learning (Sect. 4.3). In this study,
we exploit multi-objective multi-agent Q Learning (MOMAQL) to construct
the fundamental part of the proposed model as Reinforcement Learning has
been proven to be an efficient method to construct ride-hailing systems [8].
For each time step, the centralised controller assigns each request to an agent
(a driver v ∈ V ) if gt

v �= −1. Each objective function of MOMAQL focuses on
maximising the utilities for each driver, where the utility of each request is
calculated based on the geographical shortest distance. In this way, MOMAQL
here output an allocation plan target on maximising the total utilities among
different drivers.

– Scalarisation function (Sect. 4.4). In order to transform the multi-objective
problem into a standard single-objective problem, we then propose a scalari-
sation function. The scalarisation function not only aims to transfer the prob-
lem, but by maximising the value of the scalarisation function, it also seeks
for a balance between efficiency and fairness to approach Pareto Optimal.

The proposed model operates in four stages in each batch: predicting, evalu-
ating, assigning and learning. We first predict the number of future requests in
different locations. Then, each batch starts with an evaluation: when a request
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is raised by a rider, MOMAQL first finds the shortest path from the start loca-
tion (the location where the request is raised) to the end location (the required
destination), where the travel distance represents the utility of the request. For
the assigning stage, MOMAQL assigns the request to a driver based on the value
calculated by the scalarisation function, considering both efficiency and fairness.
Lastly. the proposed MOMAQL based model learns from the matching results
and utilises the scalarisation function to optimise both the efficiency and fairness
and approach Pareto Optimal.

4.2 Time-Series Forecasting

The request prediction module is defined based on time-series prediction for
which we utilise Multi-Layer Perceptron in this study (MLP) (Fig. 2). MLP
consists of an input layer of source nodes, one or more hidden layers, and an
output layer. As an existing study stated that a single hidden layer is sufficient to
approximate different continuous functions [3], we use a three-layer MLP in our
proposed method. We first utilise the pairs of locations (start and destination
locations from different requests) as features, then multiple measurements at
time t, (t − 1), ..., (t − n) are used to predict the requests that will happen in the
future (the 7 d that we use to test the model), where each time step is set as 1 h.
The structure of the request prediction module has number of neurons in the
hidden layer. By using the chosen dataset, we use the previous 1month of data
for training and output the number of requests that will happen based on each
pair of locations in the next 7 days.

4.3 Multi-objective Multi-agent Q Learning

To convert the ride-hailing assignment problem to a Markov Decision Process
(MDP), we define its foundational elements as follows:

– State: The states are derived from the various locations where drivers are
initially positioned and where ride requests originate and conclude. These
locations constitute a finite set of states, encapsulating both driver positions
and request locations at any given time point t.

– Action: Within the MDP framework, actions at each time point t where
t ∈ T = {{t0−δ, t0−δ+1, ..., t0−1}, t0, {t1, t2, ..., tn}}, represent the strate-
gic assignment of incoming ride requests to available drivers. The driver is
requested to drive from the current location to the start location of the
request to pick up the rider and drive to the destination. The proposed
method allows an agent (driver) to accept multiple requests concurrently.
The time series forecasting module is incorporated into the MDP framework
to predict available actions at t ∈ T , which enables the anticipation of future
requests and their strategic incorporation into current decision-making. This
forward-looking capability ensures that actions not only respond to immedi-
ate demands but also adapt to predicted future conditions. Additionally, the
model supports the option of no action at t, allowing periods where a driver
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Fig. 3. Multi-objective multi-agent Q Learning. By customising the action space and
scalarization function, we aim to encourage the balance between utility and fairness by
utilising multi-objective multi-agent Q learning. In action space, it includes historical,
current and predicted future requests to allow the proposed model trained based on the
pattern of future requests. For scalarisation function, it is designed aiming to balance
utility and fairness and maximise the objective.

may not receive any assignments, which provides a mechanism to prevent
overburdening drivers and ensuring a fair distribution of work.

– Reward: Once each agent (driver) takes action, the agent receives an instant
reward shown as:

rt
s,A(v) =

∑

a∈At
v

Geo(dt
a, st

a) − Geo(st
a, gt

v) (6)

where At
v represents the set of actions taken by the agent v at time t, st

a

represents the starting location of the assigned request, dt
a represents the

ending location of the assigned request, and gt
v represents the location of v

which means the state of the agent at time t.

The proposed model exploits centralised MOMAQL. For each time step, the
centralised controller queries the raised requests and assigns requests to different
agents that is currently located on a node. To simplify the problem, we set the
drivers always to accept requests without cancellation.

4.4 Scalarisation Function

One of the approaches for multi-objective problems relies on single-policy algo-
rithms [10] to learn Pareto Optimal solutions. Single-policy multi-objective Rein-
forcement Learning algorithms exploit scalarisation functions over the vector-
based reward functions, thereby reducing the multi-objective environment’s
dimensionality to a single, scalar dimension (Fig. 3). Maintaining a balance
between optimising utility and improving fairness over a long time horizon is
challenging as the two objectives increase at different speeds. Thus we define
the scalarisation function with a weight for fairness to adjust its range. The
scalarisation function is designed based on Eq. 3 as:
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Table 1. Long-term fairness performance compared with baselines on the dataset.

Methods Total Utility Fairness Normalised Fairness Min Mean Max

Greedy −1514736.24 1696.95 −0.0005 −75803.61−75736.81−75653.78
REASSIGN 76536.23 493637.57 0.18 2218.72 3826.81 4760.17
LAF 80606.49 107789.96 0.0814 3001.74 4030.3245 4491.26
Balance Ride-Pooling 85923.68 100254.73 0.074 3451.47 4296.18 4674.44
Proposed Method 95823.79 85194.48 0.061 4565.56 4791.19 5931.93

SR(M) =
∑

v∈V rs,A(v) − λωVar(rs,A(v))
rs,A(v) =

∑
t∈T rt

s,A(v) ,
(7)

where 0 ≤ λ ≤ 1 represents the weight for fairness among different drivers and
0 < ω ≤ 1 represents the scale to adjust fairness into the same range as utility.
By adjusting ω, the weight assigned to fairness is adjusted to avoid fairness
getting a larger weight due to the unavoidable increase of variance while the
time horizon gradually increases.

5 Experiments

Fig. 4. Performance of baselines and proposed model in terms of fairness based on
gradually increased time horizon

5.1 Datasets

We exploit New York City Taxi dataset1, a publicly available taxi trip dataset
collected in New York City, which contains essential information on all requests
1 https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page.

https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page
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executed by active taxis including the day and time when a request is raised,
the location where the request is raised, and the dropoff location it required.
Each request’s pickup and drop-off locations are recorded in longitude and lati-
tude coordinates. We extract all requests starting and ending within Manhattan,
happening on the dates ranging from 01/03/2016 to 01/04/2016. For simplicity,
the shortest travel time from a certain pickup to a certain drop-off location is
re-calculated as the mean travel time across the time period, and multiple loca-
tions are merged together as a node in constructed graph. This study assumes
that the driver will always choose the shortest path to complete a request.

5.2 Experimental Details

Baselines. We select three existing fair ride-hailing methods and Greedy with
the objective to balance efficiency and fairness as baselines:

– Greedy. We implement Greedy with the objective of balancing efficiency and
fairness according to Eq. 3.

– REASSIGN. REASSIGN exploits traditional optimisation with the objective
of balancing efficiency and fairness. To compare with our proposed method,
the fairness definition is modified in REASSIGN according to Eq. 2. In the
study, Lesmana et al. state that their proposed method can be applied with
various fairness definitions [7].

– LAF. The study conducted by Shi et al. exploits a Markov Decision Process as
a re-weighting module to refine the weight for each edge to promote fairness.
LAF then utilise Hungarian algorithm to optimise total utility and output
the final allocation plan. LAF is used as one of the baseline with the fairness
definition modified according to Eq. 2 [17].

– Balance Ride-Pooling2. The study conducted by Raman et al. exploits a
Markov Decision process to optimise the number of rider requests serviced
while maintaining fair earning among drivers. We use the method proposed
by Raman et al. as one of our baselines [14]. The fairness definition they used
in their study is similar to the fairness definition in our study. Hence, the
implementation remains unchanged.

Experimental Settings. We selected data before 26/03/2016 as the training
data and predicted the requests from 26/03/2016 to 01/04/2016. To reduce
the training time, we extracted peak 2-hour data ranging from 19/03/2016 to
01/04/2016 and for the request prediction output. We then use the first seven
days data and the extracted output from time-series forecasting to train our
proposed model and test the remaining data. During the training process, we
used a stratified sampling method with a sampling rate of 0.05 for the training
data. We set λ = 1 (a parameter shown in Eq. 7) to indicate no preference
on utility or fairness, ω = 0.6 (a parameter shown in Eq. 7) to scale utility
and fairness into the same range, γ = 0.9 as the value for discount factor for
2 The study has not provided a formal name.
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MOMAQL. All experiments are trained and tested on a Linux system (CPU:
Intel(R) Xeon(R) Gold 6240 CPU @2.60GHz, GPU: NVIDIA GeForce RTX
8000).

5.3 Results and Analysis

As the range of variance varies significantly based on the attained total utility, we
further utilise normalised fairness as another measurement to show experimen-
tal results. In this study, we define normalised fairness as normalised standard
deviation among the utilities for different drivers shown as:

F̂ (M) =
σ(U)

U
, (8)

where U represents vector records accumulated utility by each driver and U
represents the mean utility across all drivers.

Table 1 and Fig. 4 summarise the results of the proposed method compared
to the baselines on the real-world dataset. We further tested the performance of
each method by gradually increasing the prediction horizon to test the stability
of fairness in terms of the time horizon. All the experiments are conducted under
the same experimental settings.

Long-Term Fairness Performance Comparison. Under this setting, each
method attains an optimised allocation by using the whole seven days testing
data. For Table 1, we can observe that: (1) The two objectives, fairness and
efficiency, are contradicted to a certain level. For Greedy, with the optimised
allocation focusing more on fairness, the total utility can even reach negative,
which cannot be a solution in the real-world. In order to obtain a fair result,
Greedy tends to sacrifice the utility of all the other drivers to achieve a fair
result based on the driver with lowest utility instead of increasing the utility for
the driver. Essentially, all the drivers are allocated to the requests with the low-
est utility which leads to the final result with the negative value for efficiency.
(2) Comparing REASSIGN (based on traditional optimisation) with the Pro-
posed Method (based on Reinforcement Learning), we can see that the proposed
method perform better, which further supports the statement made by Shah et
al. [15] that traditional optimisation makes comparably more myopic decisions
compared to Reinforcement Learning. (3) Balance Ride-Pooling proposed by [14]
is also based on Reinforcement Learning, Compared with our proposed model,
the method does not consider the patterns of requests in the future, which indi-
cates the dependency of future patterns can improve the total utility for the
drivers. (4) The proposed method achieves more balanced results in terms of
efficiency and fairness compared to Greedy and outperforms other baselines.
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Table 2. Ablation study. Long-term fairness performance compared with the proposed
method excluding different modules on the selected dataset.

Methods Total Utility Fairness

Our Method 95823.79 85193.62
Our Method w/o Prediction 56873.21 153697.27
Our Method w/o Fairness 2194901.19 2677473902.27

Stability of Long-Term Fairness. We aim to compare existing methods with
our proposed model in terms of fairness with various time horizons. Figure 4
shows that: (1) With predicted future patterns, fairness is lower when the length
of the time horizon is 1 and gradually improves with increases in the time hori-
zon and approaches a stable value after the length of the time horizon is equal
to 4. This is our target as long-term fairness focuses on the stability and value
of fairness when the time horizon is longer, as drivers will care more about the
equity of profits in the long term compared to the short term. (2) Comparing
REASSIGN with Balance Ride-Pooling and the Proposed Method, it shows that
the output from Reinforcement Learning based methods are comparably more
stable when the length of the time horizon increases. (3) Compared with Bal-
ance Ride-Pooling, our proposed method includes the requests prediction, which
allows the proposed model output allocation plan with dependency on future
situations to achieve a more stable result for fairness.

5.4 Ablation Study

Table 2 and Fig. 5 show the ablation study to answer two following questions:
How well does the request prediction module balance total utility

and fairness? In this study, Table 2 shows the performance comparison of the
proposed method, proposed method without prediction, and proposed method
without fairness. The proposed method without fairness does not consider fair
earning among different drivers but leads to the highest total utility. By consid-
ering fairness, comparing the proposed method with the proposed method with-
out fairness, it shows the request prediction module not only encourages fairer
earning among different drivers but also increases the total utility. The Mean
Squared Error of the request prediction module is 94.69, and the reason for the
improvement on total utility and fairness is that the proposed method utilises
the predicted future requests in the training process, which further updates the
Q-Table based on future patterns of the requests.

How well does the request prediction module work on the stabil-
ity of fairness with gradually increasing time horizons? Figure 5 shows
the performance of the stability of fairness with gradually increasing time hori-
zons on the proposed method, proposed method without prediction, and pro-
posed method without fairness. For the proposed method without fairness, as
the method does not consider fairness in the allocation, the fairness is compa-
rably unstable with high unfairness. The earnings instability among different
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drivers can cause issues in the real world. Comparing the proposed method and
the proposed method without a prediction module, the proposed method with-
out the prediction module achieves fairer results when the length of the time
horizon is 1 and 2. As the length of the time horizon increases to 3 or more,
the fairness of the proposed method is better than the proposed method with-
out prediction and more stable. It shows the prediction module helps to achieve
fairer and more stable results in the long-term with sacrifice on the short-term,
and we argue that long-term fair earning is what the drivers desire in reality.

Fig. 5. Ablation study. Performance of the proposed model without different modules
in terms of fairness and gradually increased time horizon, where the time horizon is
increased by a number of days. For fairness, the larger value indicates the model is
unfairer.

6 Conclusion

In this paper, we formally proposed long-term fairness, which focuses on achiev-
ing stable and comparably higher fairness over comparably longer time hori-
zons. We argue that taxi drivers will care more about long-term earnings. To
achieve the target, we introduce a request prediction module before allocation to
allow look-ahead windows for the proposed allocation system and eliminate the
assumption that requests always follow the same pattern. We exploit the output
as part of the action space for the allocation model, which we designed using
Multi-objective Multi-agent Q Learning. The experiments on real-world data
demonstrated the effectiveness of our proposed method for maintaining overall
fairness in the comparably longer time horizon and enhancing the stability of
fairness when the time horizon gradually increases.
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Abstract. Efficient and accurate evaluation of Large Language Models
(LLMs) is essential for progress in the field of natural language pro-
cessing. To address this, our paper introduces Transitive Merge Sort
(TMS), a novel method that harnesses the advantages of merge sort’s
efficiency, stability and parallelizability for model ranking in LLMs eval-
uation. This approach applies a divide-and-conquer strategy for pairwise
comparisons, streamlining the evaluation process. Our experimental find-
ings reveal that TMS not only improves the accuracy of model rankings
when compared to methods like Elo rating and SuperCLUE (compared
with GPT-3.5) but also significantly reduces the need for annotation
resources by up to 70%. Additionally, we present an iterated version of
TMS that effectively handles scenarios where initial model rankings are
unknown.

Keywords: Merge sort · Pairwise comparison · Model evaluation

1 Introduction

Recently, the rapid advancement of large language models has led to their
widespread adoption in both academic and industry domains [2,14]. This
trend has underscored the need for objective evaluation [3,9] of their capa-
bilities, to assist users in identifying the model that best meets their specific
requirements. In light of this, the field has witnessed a significant growth in
research [6,7,12,17,19,20] focused on the evaluation of large language models.
Within the realm of evaluation, ranking systems are pivotal for ordering models
according to their performance, currently, there are mainly two types of ranking
methods used for evaluating LLMs:
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Fig. 1. Pairwise Comparison

– Single answer grading quantifies a model’s answer with a definitive score
ranging from 0 to 1. This quantification is accomplished either by comparing
whether the model’s answer matches golden label [6,7] or by leveraging a
strong LLM to assign a score to the answer [13,19]. Then we can average the
scores to rank the models.

– Pairwise comparison determines model’s relative performance by compar-
ing their answers, instead of directly scoring. Figure 1 demonstrate an example
of pairwise comparison. At the top of the figure is the question, with answers
from two anonymous models presented below. On the right, the comparison
results are shown along with an explanation of why one model’s answer is
worse than the other’s. This approach is suitable for the assessment of open-
ended questions, capturing the models’ ability from the perspective of users.
The comparison process can be conducted either through human annotation
or by the judgment of LLMs [17,19].

In this paper, we adopt the pairwise comparison for model ranking, and refer
to evaluation based on pairwise comparison as adversarial evaluation. Adver-
sarial evaluation determines the quality of models by comparing their answers,
which aligns more closely with the human experience of using models than single
answer grading. Despite its advantages, this approach encounters two significant
challenges:

– Selection of comparative models During each round of adversarial pro-
cess, we require a strategy for choosing pairs of models to compare that takes
into account the historical adversarial performance of the models.

– Quantification of comparison results Once acquiring comparison results,
we need to map the relative rankings to absolute values for a quantitative
evaluation of the models’ abilities.
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To best of our knowledge, there is limited research on this topic. Chatbot
arena [19] uses the Elo rating [5] system for model ranking, where models of
similar ability levels are matched against each other for competition. However,
due to the sensitivity of the Elo rating system [18] to the order of matches, the
ranking result is relatively unstable. Besides, SuperCLUE [17] ranks models by
directly comparing each one with a specified benchmark model (ChatGPT) and
calculating scores based on the point-scoring system. Although it reduces the
number of comparisons, it fails to accurately reflect the relative relationships
among the models.

To address the aforementioned challenges in adversarial evaluation, we pro-
pose Transitive Merge Sort (TMS) which applies the merge sort principle for
ranking models in LLMs evaluation. We employ the merge process of merge sort
to construct the model pairs for comparison and utilize historical comparison
records to further reduce the number of model comparisons. Overall, the main
contributions of this paper are as follows:

– We propose Transitive Merge Sort (TMS) ranking method for LLM evalua-
tion, which effectively reduces the number of model comparisons while main-
taining the accuracy of the ranking results.

– We conducted experiments to assess TMS’s performance in terms of com-
parison count, accuracy, and stability, confirming that it outperformed other
methods.

– We develop a LLMs evaluation platform that integrates features such as
dataset generation, adversarial evaluation, which allows for the efficient eval-
uation of LLMs.

2 Related Work

Single Answer Grading. Single answer grading assigns a score to a model
answer directly, which is widely used in open LLM leadboard [4,6,7]. For exam-
ple, in multiple-choice questions, the grading is based on comparing the model’s
answer with the standard answer to determine whether it is correct or not. Alter-
natively, similarity calculation methods such as ROUGE [10], BLEU [11], can
be used to measure the degree of similarity between the model’s answer and the
standard answer. Otherwise, like [13,19] explores LLMs as judges to evaluate
model’s ability.

Pairwise Comparison. For the evaluation of open-ended questions, the pair-
wise comparison method is commonly adopted. Chatbot Arena [19], for instance,
employs the Elo rating system to orchestrate and score matches between models,
subsequently ranking them based on their scores. The Elo process operates as
follows: initially, two closely matched models A and B, with respective scores
scoreA and scoreB are paired up, then compare the answers of these two models.

EA =
1

1 + 10(scoreB−scoreA)/400
(1)
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The formula (1) calculates the probability EA that model A will perform
better than model B.

score′
A/B = scoreA/B +K × (SA/B − EA/B) (2)

After the match, the scores for models A and B are updated in line with
the formula (2) and the match outcome. Here, SA/B denotes the result of the
match, with 1 indicating a victory, and 0 indicating a loss. The constant K,
which influences score adjustments, ranges between 10 and 40. Although the Elo
rating system provides an efficient method for calculating model scores based on
pairwise comparison, it can struggle with model score stabilization [18].

An alternative ranking method is based on point scoring where the winner of
a match receives 1 point, both models receive 0.5 points in the event of a draw,
and the loser gains no points. The cumulative points garnered by each model
are divided by the total number of matches to obtain the final score, which is
then used for ranking.

Round-robin tournament [15] is one implementation of point scoring, wherein
all models compete against each other across all samples, tallying scores to estab-
lish rankings. This method ensures accurate rankings but incurs high annotation
costs due to the amount of comparison.

3 Methodologies

Merge sort is a stable sorting algorithm that we incorporate into the evaluation
of LLMs to reduce the number of comparisons and ensure the accuracy of the
assessment. The advantages of merge sort are described as follows:

– Divide and conquer strategy. In pairwise model comparisons, we need to
select models for comparison based on a specific strategy. Merge sort breaks
down a large problem into smaller ones, allowing us to effectively organize
the adversarial process of model comparisons. We can first sort subsets of
models and then merge them, reducing the overall number of comparisons
and making it easier to choose pairs of models in each round of comparison.

– Stability. Merge sort guarantees that models with identical performance
receive the same ranking, which is crucial for ensuring consistency in results,
while the Elo rating is unstable. When mapping relative rankings of mod-
els to absolute values for quantitative evaluation, stability ensures that our
assessments are precise and reliable.

– Efficient. The time complexity of merge sort is O(n × logn), which means
that when performing numerous pairwise comparisons between models, the
required number of comparisons is relatively low, making it more efficient.

– Parallelization capability. Compared to the sequential Elo rating system,
merge sort is easily parallelizable because it divides the data into indepen-
dent subsequences for sorting. In model comparisons, this allows for multiple
pairwise comparisons to be conducted simultaneously, further speeding up
the sorting process.
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We propose the Transitive Merge Sort (TMS) rank method, which leverages
the benefits of the aforementioned merge sort technique for evaluating LLMs.
Building on the TMS, we have developed a platform for LLMs evaluation. Next,
we will introduce the architecture of the platform and explain how the TMS
works.

3.1 Evaluation Platform

Fig. 2. Adversarial Evaluation Platform

Figure 2 illustrates the evaluation platform, which includes three modules:
evaluation data generation, annotation standards, and adversarial evaluation.

– Evaluation data generation [16]. We utilize open-ended questions for eval-
uation, leveraging GPT-4 to revise questions from the C-Eval and CMMLU
datasets, followed by manual verification. Finally, we generate evaluation data
that spans four domains: humanities, social sciences, natural sciences, and
encyclopedic knowledge, which includes questions of varying difficulty levels
suitable for elementary, secondary, university, and professional exams.

– Annotation standards. Research [8,13] has shown that using GPT-4 for
adversarial evaluations can lead to systematic biases, with an annotation
accuracy around 80%, and even lower for more complicated questions. To
ensure the accuracy of the evaluation process, expert manual annotation was
adopted. To ensure high-quality annotations, we have developed a set of rig-
orous annotation guidelines, and the annotators were given detailed training
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and conducted trial annotations. Official annotations would only start after
the accuracy of trial annotations reached 95%. During the official annotation
process, a three-person voting method (with more than half in agreement)
was used for all evaluation samples.

– Adversarial evaluation. The TMS system will rank the specified models
across all evaluation samples.

Fig. 3. Base Merge Sort Main Process

3.2 Transitive Merge Sort

In this section, we delineate the process of the TMS in adversarial evaluation.
Generally, suppose we have N samples S = (s1, s2, · · · , sN ) and L models

M = (m1,m2, · · · ,mL), for each sample, a sequence of model pairs will be
constructed for comparison, based on a designated strategy. Subsequently, we
evaluate the answers from each model within the pairings, denoting the outcomes
as ‘left better’, ‘right better’, ‘tie good’ or ‘tie bad’.

We utilize the merge sort to construct the comparison pairs, Fig. 3 demon-
strates a merge sort process in detail. Firstly, we have a initial model rank
R = (mi1 ,mi2 , · · · ,miL), where i1, i2, · · · , iL is the shuffle of 1, 2, · · · , L. Then,
we group the initial model rank R according to the merge sort algorithm to
construct model pairs. The annotators will proceed to label these pairs, which
will be used to advance the next round of the merge sort process. The compar-
ison results are marked as Rel(mi,mj), which is one of the elements of the set
(>,<,=good,=bad), ‘>’ is left better, ‘<’ is right better, ‘=good’ denotes that
both answers are equally good, while ‘=bad’ indicates that they are equally bad.



246 C. Li et al.

Algorithm 1 Single Sample Base Merge Sort
Input: Initial model rank R;
Output: Sorted model rank Rfinal;
1: procedure MergeSort(R)
2: mid ← �length(R)/2�;
3: left = MergeSort(R[: mid]);
4: right = MergeSort(R[mid :]);
5: return Merge(left, right);
6: end procedure
7:
8: procedure Merge(left, right)
9: merged ← [ ], l ← 0, r ← 0;

10: repeat
11: Rel ← Annotate(leftl, rightr);
12: Add leftl or rightr to merged according to Rel;
13: Move the l or r by one according to the Rel;
14: until left or right move to end;
15: Append the rest models of left or right;
16: return merged;
17: end procedure

The algorithm described above is the Base Merge Sort (BMS). The whole BMS
algorithm is illustrate in Algorithm 1.

During the merge process of the BMS, we do not consider the transitivity of
sorting, which could be leveraged to further reduce the number of comparisons
required. Provide an example that illustrates the application of transitivity in
sorting, starting with an initial model rank R = (A,B,C,D), suppose we have
Rel(A,B) is ‘=good’ and Rel(C,D) is ‘>’, and in the merge process we get
Rel(A,C) is ‘>’, then according to the transitivity of sorting, we can infer that
Rel(A,D) and Rel(B,D) are both ‘>’. We refer to these method as Transi-
tive Merge Sort (TMS). The detail merge process of TMS is demonstrated in
Algorithm 2.

Data Noise in Annotation. During the TMS process, biases in annotators’
understanding of annotation standards may lead to occasional mislabeling in
the dataset, thereby generating noise in the annotation data. This situation
presents a challenge as it disrupts the transitivity between models, leading to
inconsistencies. For example, we have the model rank R = (A,B,C,D), and
the comparison results Rel(A,B) is ‘=good’, Rel(C,D) is ‘=good’. In the merge
process, if we find that Rel(A,C) is ‘=bad’, then using transitivity to determine
the order between model B and model C becomes uncertain. Annotation noise
occurs if and only if the same model is labeled as ‘=good’ or ‘=bad’ in different
annotation tasks, we use T to denote the group with noisy data:

T = {(mi, Rel(mi,mj),mj) | mi,mj ∈ M and Rel ∈ (=good,=bad)} (3)
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Algorithm 2 Merge process of Transitive Merge Sort
Input: Two ranked model list left and right;
Output: Merged model list merged;
1: procedure TransMerge(left, right)
2: merged ← [ ], l ← 0, r ← 0;
3: repeat
4: Rel ← Annotate(leftl, rightr);

// Consider the transitivity of =good | =bad

5: Find the first model leftl′ | rightr′ that weak than leftl | rightr;
6: if Rel == ‘>’ then
7: merged.append(left[l : l′]);
8: Update index l ← l′;
9: else if Rel == ‘<’ then

10: merged.append(right[r : r′]);
11: Update index r ← r′;
12: else
13: merged.append(left[l : l′]);
14: merged.append(right[r : r′]);
15: Update index l ← l′, r ← r′;
16: end if
17: until left or right move to end;
18: Append the rest models of left or right;
19: return merged
20: end procedure

To deal with this problem, we propose a consistency revision approach
which is based on half-majority voting mechanism. Suppose P=good

and P=bad

represent the proportions of ‘=good’ and ‘=bad’ in T respectively. We revise the
annotation results by adhering to the principle of the majority rule:

Rel(mi,mj) =

{
=good P=good

>= P=bad

=bad P=good
< P=bad

(4)

Model Scoring. We use point scoring to map model rankings into numerical
scores according to the comparison results. In each match, the score of model A
is represented as follow:

scoreA =

⎧⎪⎨
⎪⎩
scoreA + 1 Rel(A,B) is >

scoreA + 0.5 Rel(A,B) is =good

scoreA + 0 Rel(A,B) is =bad or <

(5)

From the Eq. 5, we know that model A’s score increments by one point when it
outperforms model B. In instances where model A and model B perform equally
well, model A’s score receives a 0.5 point boost. Conversely, when model A
performs equally poorly as model B or even worse, its score remains unchanged.
This logic also applies to model B.
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Algorithm 3 Iterated Transitive Merge Sort
Input: Samples S = {s1, s2, · · · , sN}, initial model rank R, batch size B;
Output: Final model rank Rfinal;
1: score ← [0, · · · , 0];
2: for id ← 1 to N do
3: scoreid = TransMergeSort(sid,R);
4: score = score+ scoreid;
5: if id % B == 0 then
6: Sorting score in descending order, obtain the new rank R′;
7: Update the rank R ← R′;
8: end if
9: end for

Since not all models have competed against each other, we determine the
ranking order between unmatched models directly based on the transitivity of
the ranking results. Specifically, for two models mi and mj where i < j that have
not competed against each other, we calculate Rel(mi,mj) using the following
formula:

Rel(mi,mj) =

{
> ∃k s.t. mi > mk > mj

=good|bad mi =good|bad mi+1 =good|bad · · · =good|bad mj

(6)

The overall score for each model is the sum of points accumulated across
all matchups. This scoring system allows us to create a ranking that considers
the different weights of model wins and ties. The annotation results for any
two models can be determined through either actual annotation or transitive
inference.

Stability Improvement. In the aforementioned text, it is mentioned that
specifying an initial model order is required at the beginning of the merge sort
process. We have discovered that altering the initial order of models can sig-
nificantly affect the ranking outcomes. This variation is primarily attributed to
inconsistencies in the annotation process, which are unavoidable. To tackle this
issue, we introduce the iterated Transitive Merge Sort (iter-TMS) method.

In the TMS algorithm, all samples are sorted using the same initial rank of
models. As the number of samples increases, the accuracy of the models’ ranking
becomes more precise. Therefore, the sorting results obtained can be utilized as
the new initial rank for the following ranking process. Assume we have a total
number of N samples, which are randomly shuffled and then evenly divided into
N/B batches based on a batch size of B. We update the TMS algorithm as
follows:

r1 = initial model rank

ri = TransMergeSort(ri−1,SN×(i−1)/B···N×i/B)
(7)

For each batch of samples, TMS is performed sequentially, with the sort-
ing results from the current iteration serving as the initial model rank for the
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next batch of merge sort. The whole algorithm of iter-TMS is demonstrated in
Algorithm 3.

4 Experiments

In this section, we conduct experiments specifically addressing the correct-
ness, efficiency, and stability of TMS, and compare our method with related
approaches to validate its effectiveness. Additionally, we perform experimental
analyses for dynamic scenarios such as the addition of new datasets.

Table 1. Datasets of adversarial evaluation

Category Sample Questions

Humanities Why did the government during the late Qing dynasty and
early Republic of China promote Western-style attire among
the military, police, and students?

Social Sciences Why is the principle of equivalent exchange considered to
be a principle of fairness?

Natural Sciences What is the relationship between the amplitude of sound
and its pitch?

Encyclopedic Knowledge What problems can arise from eating sprouted potatoes,
undercooked broad beans, and raw leeks?

Table 2. Models of adversarial evaluation

Models Developer Size Access

GPT-4-Turbo OpenAI undisclosed API
Skylark-Chat ByteDance undisclosed API
Wenxin-3.5 Baidu undisclosed API
Qwen-72B-Chat Alibaba 72B Weights
GPT-3.5-Turbo OpenAI undisclosed API
Baichuan2-13B-Chat Baichuan 13B Weights
Qwen-14B-Chat Alibaba 14B Weights
Internal-V1 Internal private API
Internal-V2 Internal private API
Internal-V3 Internal private API
Internal-V4 Internal private API
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4.1 Experiment Settings

Evaluation Datasets. In our research, we use C-Eval and CMMLU as our seed
datasets and utilize the rewriting capabilities of GPT-4 to generate 500 adversar-
ial evaluation samples points spanning four domains: humanities, social sciences,
natural sciences, and encyclopedic knowledge. Table 1 presents the datasets used
in this experiment.

Evaluation Models. We selected 7 external open-source models and 4 internal
anonymous models for a total of 11 models to undergo adversarial evaluation. For
the 500 samples, we formed pairs from the 11 models, using these model pairs as
the experimental data for this research. Among models, the 4 internal anonymous
models uniformly start with the prefix ‘Internal-’, and their rankings are not in
any particular order. Table 2 present the models used in this experiment.

Merge Sort Methods. In this paper, we employed merge sort techniques in
adversarial evaluation: BMS and TMS, where TMS method accounts for the
transitive relationships within the group during the merge process. In sorting
process, the selection of the initial model rank R is crucial. In our experiments,
we sorted models according to the size of the model parameters. In cases where
the parameter sizes were unknown, we roughly ordered the models based on
prior knowledge of their strengths. For the 11 models, we set 10 initial model
ranks for comparison between different methods, denoted as {R1, ...,R10}.

When faced with a large number of models to evaluate, or when evaluators
are reluctant to manually determine the initial rank of models, we can employ
the iter-TMS method to address these scenarios. In the stability improvement
section, we have verified the stability of the iter-BMS and iter-TMS methods
when the initial model rank is random.

Compared Methods. To the best of our knowledge, there is limited research
on ranking methods of LLMs evaluation to date. This paper primarily selects
the following three methods for comparison:

– Round-robin tournament involves conducting head-to-head comparisons
among all models across the entire set of samples, with the results of these
adversarial matchups accumulating points. This method yields the most accu-
rate ranking results and therefore serves as the benchmark for correctness
comparison with other methods. However, it also has the poorest perfor-
mance, with the number of adversarial comparisons amounting to N ∗ L2,
where L represents the number of models and N the number of samples.

– Elo Rating is utilized on the Chatbot Arena platform. During the compet-
itive process, the Elo system pairs models of similar strength to engage in
adversarial battles and updates their ratings based on the outcomes. Sim-
ilar to Chatbot Arena, we get a more stable model ranking by performing
bootstrap 1,000 times on 27,500 model pairs.
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– SuperCLUE selects a single model as the benchmark model and uses GPT-
4 as the rater to evaluate the quality of answers from the benchmark model
and other competing models. In our experiments, we designated GPT-3.5 as
the benchmark model. To ensure consistency in the evaluation, we replaced
GPT-4 with human annotators to compare the outcomes of the models.

Evaluation Metrics. In the context of adversarial evaluation, our primary
concern is with the models’ final rankings as well as the number of adversar-
ial matchups required. The former reflects the correctness of the results, while
the latter indicates the performance of the method. For the assessment of cor-
rectness, we use the Spearman’s Footrule Distance [1] assess the consistency of
rankings across all models and the Root Mean Squared Error (RMSE) to gauge
the score discrepancies for each model. It should be highlighted that our atten-
tion is centered on the ranking outcomes for all models, as opposed to merely
the ordering of the leading models.

Table 3. Comparison of methods based on metrics

Method Round-robin tournament (Baseline) Elo Rating SuperCLUE BMS TMS

Spearman’s Footrule 0 6.0 8.0 3.4±1.8 1.8±1.4

RMSE 0 / 0.115 0.055 0.049
#Matchups 27500 27500 5000 11249 7642

The Spearman’s Footrule Distance measures the discrepancy between two
rankings, the formula to calculate the Spearman’s Footrule Distance is as follows:

Dis =
L∑

i=1

|ri − r′
i| (8)

where Dis is the Spearman’s Footrule Distance, L is the number of models being
ranked, ri, r′

i are the rank of model i in the baseline ranking and the predicted
ranking.

The Root Mean Squared Error (RMSE) is used to quantify the differences
between scores calculated by various methods and is defined as follows:

RMSE =

√√√√ 1
L

L∑
i=1

(scorei − score′
i)2 (9)

where scorei and score′
i are the score of model i from baseline method and

another method.
For performance assessment, we directly count the number of comparisons

required by each method. This straightforward approach allows us to quantify
the efficiency of each method in terms of the computational resources and time
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needed to achieve the final model rankings. This metric is essential for under-
standing the practicality of the adversarial evaluation methods, particularly in
scenarios where resources may be constrained or when rapid evaluations are
necessary.

4.2 Experiment Results

Ranking Consistency. We use the model ranking and score calculated by
round-robin tournament as a baseline to compare the ranking and score dif-
ferences of four other methods. From Table 3, we can observe the differences
between the four methods with round-robin tournament.

For the Elo rating method, we calculate the Elo ratings using all 27,500
model pairs. It is worth noting that the ranking from the Elo rating method
shows a considerable deviation from the baseline. This can be attributed to the
Elo rating system’s particular sensitivity to the sequence of matches: altering
the order of games can result in different rankings. Additionally, the presence of
annotation errors can lead to significant score fluctuations for the models, which
in turn can cause considerable instability in the Elo-based rankings.

For the SuperCLUE method, we use GPT-3.5 as a benchmark for comparison
and collected data from 5,000 samples (10 models × 500 samples). Compared to
the baseline, this method exhibits the highest error, resulting in low accuracy of
the model rankings.

Fig. 4. Ranking results of increasing samples

In our experiments on BMS and TMS method, we use the 10 sets of initial
model ranks {R1, ...,R10} mentioned in the merge sort method. The Spearman’s
Footrule Distance and the RMSE are based on the average rankings and scores
from 10 experiments. From the result metrics, the TMS method exhibits a more
significant advantage. TMS method only uses 7,642 model pairs, which is about
27.8% of the baseline, with an average Spearman’s Footrule Distance of only 1.8



A Merge Sort Based Ranking System for the Evaluation of LLMs 253

Table 4. The Number of Annotations(The Proportion of Baseline)

Samples Method
BMS TMS

50 1132(41.2%) 775 (28.2%)
100 2271(41.3%) 1528(27.8%)
150 3431(41.6%) 2322(28.1%)
200 4558(41.4%) 3094(28.1%)
250 5701(41.5%) 3854(28.1%)
300 6799(41.2%) 4594(27.9%)
350 7897(41.0%) 5357(27.8%)
400 8998(40.9%) 6088(27.7%)
450 10142(41.0%) 6858(27.7%)
500 11249(40.9%) 7642(27.8%)

and a standard deviation of 1.4. In contrast, BMS method uses 11,249 model
pairs, about 40.9% of the baseline, with an average Spearman’s Footrule Dis-
tance of 3.4 and a standard deviation of 1.8. A primary reason for the improved
performance of TMS is its ability to revise some incorrectly labeled data, thus
reducing the proportion of mislabeled data. Overall, TMS performs better than
BMS in terms of efficiency and accuracy.

Dynamic Evaluation. In the practical evaluation, the datasets often grow
dynamically. In this section, we mainly investigate and compare the performance
of two methods, BMS and TMS, in the context of dynamically increasing sam-
ples.

Figure 4 displays the average data from the experiments {R1, ...,R10}. With
the dynamic growth of samples, both the BMS and TMS methods show a signifi-
cant decrease in Spearman’s Footrule Distance. When exceeding 400 samples, the
TMS method gradually gains an advantage, narrowing the Spearman’s Footrule
Distance to within 2 compared to the round-robin tournament. Moreover, from
the right diagram of Fig. 4, it can be seen that the RMSE of TMS is lower than
that of BMS, and it maintains a stable value as the number of samples increases.

Table 4 demonstrates the average number of annotations for BMS and TMS
along with their proportions relative to the round-robin tournament across ten
sets of experiments with initial model ranks from {R1, ...,R10}. The annotation
count for BMS approximates its time complexity N×O(L×logL), where N is the
number of samples and L is the number of models. As for TMS, incorporating
transitivity, results in a lower number of annotations. As sample sizes increase,
the BMS method’s annotation count constitutes approximately 41% of N ×L2,
compared to only 28% for the TMS method, indicating that TMS achieves a
more effective balance between efficiency and accuracy in ranking.
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Stability Improvement. In stability experiments, we conduct tests on iter-
BMS and iter-TMS methods across various batch sizes and perform 100 repeated
experiments for each batch size. In each experiment, the initial rank of the models
is randomly assigned. The results are summarized in Fig. 5. Analysis of the data
in the figure, we can infer that as the batch size increases, the stability of the
merge sort decreases progressively, reaching the maximum Spearman’s Footrule
Distance when the batch size is 512 (which corresponds to the original BMS
or TMS method). These experimental findings suggest that the iter-BMS and
iter-TMS can effectively enhance the stability of the sorting process when the
initial rankings of the models are given randomly.

Fig. 5. Iterated merge sort’s result with different batch size

5 Conclusion

In this paper, we study the ranking method in LLMs evaluation which aims
to reduce the annotation costs and obtain an approximately ranking of models
compared to the round-robin tournament. We propose the TMS method which
utilizes the merge process in merge sort to construct the model pairs to get the
relative order between them, meanwhile taking advantage of the transitivity of
compare results. This approach proves to be more stable and efficient than other
methods, such as Elo rating and SuperCLUE. The experiments show that when
the initial rank of models is reasonable, TMS achieves the closest sorting results
to round-robin tournament and requires only 27.8% model pairs of the round-
robin tournament. In situations where the initial rank of models is unknown,
the ranking result of merge sort vary significantly. To tackle this problem, we
propose the iter-TMS that updates the model ranking after each batch of samples
which improves the stability of the merge sort. When the initial model ranking is
random and using a smaller batch size (less than 64), the iter-BMS and iter-TMS
methods are capable of maintaining a high level of accuracy in ranking results.

Our method has demonstrated promising results in ranking LLMs, yet it
faces challenges in handling situations with subpar annotation quality, which
could significantly undermines the accuracy of rankings. In the future, we plan to
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explore this issue more thoroughly. Additionally, we will focus on examining our
approach’s scalability and developing strategies to adaptively adjust the batch
size within iter-TMS, aiming to increase the overall flexibility of our method.
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Abstract. This paper explores the application of imitation learning (IL)
and reinforcement learning (RL) in HVAC control. IL learns to perform
tasks by imitating a demonstrator, utilising a dataset of demonstrations.
However, the performance of IL is highly dependent on the quality of
the expert demonstration data. On the other hand, RL can adapt con-
trol policies based on different objectives, but for larger problems, it
can be sample inefficient, requiring significant time and resources for
training. To overcome the limitations of both RL and IL, we propose
a combined methodology where IL is used for pre-training and RL for
fine-tuning. We introduce a fine-tuning methodology to HVAC control
inspired by a robot navigation task. Using the 5-Zone residential build-
ing environment provided by Sinergym, we collect state-action pairs from
interactions with the environment using a rule-based policy to create a
dataset of expert demonstrations. Our experiments show that this com-
bined methodology improves the efficiency and performance of the RL
agent by 1% to 11.35% compared to existing literature. This study con-
tributes to the ongoing discourse on how imitation learning can enhance
the performance of reinforcement learning in building control systems.

Keywords: Imitation learning · Reinforcement learning · Continuous
HVAC control

1 Introduction

Building operations account for 30% of global final energy consumption1, with
HVAC systems typically accounting for 40% of total building energy consump-
tion2. Occupant comfort level satisfaction relies heavily on the effective func-
tioning of heating, ventilation, and air conditioning (HVAC) systems. Incorrect
implementation, however, may result in excessive energy consumption, escalating
costs, and reduced occupant satisfaction. Traditional building controls primarily

1 https://www.iea.org/energy-system/buildings.
2 https://www.environment.gov.au/system/files/energy/files/hvac-factsheet-energy-

breakdown.pdf.
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rely on rules and heuristics derived from expert experience. These rule-based
controllers (RBCs) usually rely on pre-determined set points, which may not be
optimal as they are not customised to the building specifics and local weather
conditions. Recently, there has been an increase in solutions that leverage smart
thermostats, replacing manual control configurations. New methodologies and
algorithms like model predictive control (MPC) [1] and reinforcement learn-
ing (RL) [15] can adapt their control policies based on different objectives or
cost functions. However, both systems have certain drawbacks. MPC systems
find it challenging to deal with non-linearity in building dynamics caused by
the complex nature of building systems, long-horizon predictions for accurately
forecasting building system behaviour over extended periods, uncertainties in
occupancy patterns and external factors like weather conditions. On the other
hand, the limitation of RL lies in its sample inefficiency, requiring a significant
investment in time and training resources to reach a desirable level of perfor-
mance. In this work, we intend to address the challenges RL faces in HVAC
control. More specifically, we aim to see whether an imitation learning approach
can enhance the training speed and overall performance of the algorithm.

Imitation learning (IL) involves learning to perform a task by observing and
imitating the behaviour of a demonstrator. Instead of relying on explicit pro-
gramming seen in MPC or reward signals used in RL, this method utilises a
dataset of demonstrations that consist of input-output pairs representing actions
taken in different states by the demonstrator. These demonstrations are usually
collected from interactions between humans or expert systems with the envi-
ronment. IL has, thus, seen applications in domains like autonomous vehicle
driving [12], robotics [18], navigation tasks [19], etc. However, a drawback of IL
is that the performance of the trained agent is highly dependent on the quality of
the expert demonstration data. If the expert demonstrations are sub-optimal or
incomplete, the learned policy may inherit these limitations and fail to generalise
well in novel situations. Thus, we propose utilising IL and RL as pre-training
and fine-tuning methodologies, respectively. Policies obtained from pre-training
with IL will provide a foundation for RL fine-tuning, making optimisation easier
than learning from scratch.

In this study, we ask the question - how can imitation learning help improve
the performance of reinforcement learning in the application of building control
systems? Imitation learning techniques, specifically behavioural cloning (BC),
have been used in HVAC control before [7]. However, after pre-training with
BC, we obtain a trained actor and an untrained critic for RL fine-tuning. Hav-
ing such a combination interact during fine-tuning can lead to a drop in per-
formance. Thus, we introduce a fine-tuning methodology to HVAC control that
was inspired by a robot navigation task [19]. For our experiments, we use the
5-Zone residential building environment3 provided by Sinergym [10]. To create a
dataset of expert demonstrations, we utilise a rule-based policy and collect the
state-action pairs from interactions with the environment. Figure 1 illustrates an
overview of our training methodology. Our experiments show that the combined

3 https://ugr-sail.github.io/sinergym/compilation/main/pages/buildings.html#zone.

https://ugr-sail.github.io/sinergym/compilation/main/pages/buildings.html#zone
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Fig. 1. Overview of the pre-training and fine-tuning process.

methodology improves the efficiency and performance of the RL agent by 1% to
11.35% when compared to prior work [7], naive fine-tuning and training from
scratch.

2 Previous Work

Reinforcement learning (RL) is gaining traction as a valuable method for Heat-
ing, Ventilation, and Air Conditioning (HVAC) systems due to its ability to learn
optimal control policies for improving the management of complex and dynamic
environments, such as buildings.

Previous research in HVAC systems has often utilised tabular methods in
RL [2,14,24]. However, progress in the fields of deep learning and RL, has led to
methods that blend both, using deep neural networks to improve reinforcement
learning (DRL) algorithms. With the help of the Deep Q-Networks (DQN) algo-
rithm, Wei et al. [23] were able to reduce costs by 20% to 70% when compared
to scheduling methods. Similarly, when using DQN to control space heating and
domestic hot water temperature, Lissa et al. [15] saw up to 16% energy savings.
Arroyo et al. [1] combine model predictive control (MPC) with reinforcement
learning (RL) to create RL-MPC, which aims to find the best policy while meet-
ing all constraints. They show that RL-MPC outperforms basic RL in constraint
satisfaction but can achieve similar results to pure MPC with a state estimator
and optimiser. Further analysis of deep learning algorithms has been conducted
by Biemann et al. [4], where they evaluated different model-free RL algorithms
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for continuous HVAC control. However, due to the considerable time and data
required for RL to learn effective policies, researchers have incorporated transfer
learning techniques to address this challenge. Transfer learning involves taking
an established or trained policy from the source domain and adapting it to a
target domain by leveraging past knowledge. In the context of building control
systems, Lissa et al. [16] transfer HVAC agents with different spatial and geo-
graphical characteristics using tabular Q-learning, reporting that with transfer
learning, temperature comfort violations were brought down to only 3% of the
day, compared to 7% to 36% without transfer learning. Extending this work
into a deep learning setup, Kadamala et al. [11] show that their heterogeneous
transfer learning methodology adapts to buildings that differ in climate and/or
characteristics, showcasing improvements from 1% to 4% compared to agents
trained from scratch. Chen et al. [5] created Gnu-RL, incorporating a differen-
tiable MPC. Initially pre-trained with imitation learning on historical data, it
refines its policy using the PPO algorithm. Their research demonstrated a 6.6%
energy reduction in simulations and a 16.7% decrease in cooling demand in a
real-world conference room over three weeks, surpassing the existing controller
while effectively managing temperature settings. Liu et al. [17] integrate RL
with a rule-based control policy by adding a behavioural cloning loss (Eq. 3.1)
to the policy update step to penalise the policy that differs too much from the
behavioural policy. The proposed approach demonstrates significant performance
improvements in building HVAC control tasks, notably where rule-based control
methods are prevalent and robust. Coraci et al. [6] performed online transfer
learning (OTL) with the help of imitation learning. Here, the pre-trained agent
is transferred to the target controller, but it does not operate during the imita-
tion learning phase; instead, the memory buffer of the OTL agent is initialized
with transitions from the rule-based controller. This proved to be effective for
enhancing the OTL agent during the initial days of development.

In our work, we perform imitation learning for pre-training, after which we
fine-tune the agent with PPO. Similar work has been done by Dey et al. [7],
where they generated a large dataset with roughly four years’ worth of artificial
states and discrete action data from a rule-based controller. They pre-train using
imitation learning on this data and then fine-tune with PPO. However, in our
work, we take inspiration from Ramrakhya et al. [19]. We perform behavioural
cloning as a pre-training strategy and adopt the fine-tune methodology proposed
via the critic learning and interactive learning phases, showing that the combined
strategy can outperform naive fine-tuning while only requiring a single year’s
worth of data for pre-training.

3 Methodology

3.1 Behavioural Cloning from Demonstrations

Behavioural cloning (BC) uses supervised learning to learn a policy π from
a dataset of state-action pairs ζ ∈ D. It attempts to minimise the difference
between the learned policy and expert demonstrations with respect to a defined
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metric or cost function L. Thus, the optimisation problem for BC can be defined
as:

π̂∗ = arg min
π

∑

ζ∈D

∑

x∈ζ

L(π(x), π∗(x)) (1)

where π̂∗ is the approximated policy and π∗(x) is the expert action at state x.
Historical data is required to pre-train an agent using BC. For this, we gen-

erated an artificial dataset using the actions from the RBC defined in Sect. 4.3.
A dataset amounting to a single year’s worth of data was generated. Using this
data, we then train the actor using BC. Here, the state consists of observation
data from the environment consisting of building and weather information, and
actions consist of the setpoint values set by the RBC (see Table 2). In our work,
we implement the negative log-likelihood loss function given in Eq. 2

L(θ) = − 1
N

N∑

t=1

(log πθ(at|st) + λH(πθ)) (2)

where πθ(at|st) is the predicted probability of action at given state st, H(πθ)
is the entropy of the policy distribution πθ and λ is the weight given to the
entropy term for regularisation. λ is set to 0.001 based on the Imitation library
[8]. We perform an 80% - 20% split of the training and testing data to evaluate
the performance of the trained actor. For testing, we use mean absolute error
(MAE) to measure the absolute difference between predicted and actual setpoint
temperatures. Table 1 summarises the training and testing losses for the three
environments. Each environment was simulated thrice with different seeds.

Table 1. Training and Testing Losses.

Environment Training Loss Testing Loss

Hot –0.519 ± 0.002 8.624e–5 ± 5.36e–5
Mixed –0.52 ± 0.003 1.065e–4 ± 6.31e–5
Cool –0.519 ± 0.003 8.325e–5 ± 3.72e–5

However, BC has a few disadvantages. Firstly, the performance of the policy
learnt heavily depends on the quality of samples provided by the expert dataset.
Additionally, as the expert policy π∗ determines the distribution of the sampled
states x, the learnt policy π will perform poorly on unseen states. Thus, BC often
learns a policy that generalises poorly. This work uses BC only as pre-training
to provide good neural network weight initialisation. The pre-trained agent is
then fine-tuned with RL, which helps mitigate BC issues and makes the agent
more robust and generalisable.
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3.2 Reinforcement Learning Fine-Tuning

Reinforcement learning (RL) involves a set of states (S) and control actions
(A), where the system dynamics are defined by a probabilistic transition model,
denoted as p(st+1 = s′|st = s, at = a), representing the likelihood of tran-
sitioning from state s to state s′ by taking action a at time t. Additionally,
RL incorporates a reward function rt = R(st, at) that provides a reward rt at
timestep t. The goal of an RL agent is to learn a policy π that maximizes its
cumulative reward.

Our work uses the Proximal Policy Optimisation (PPO) algorithm for fine-
tuning with RL [20]. PPO is a policy gradient algorithm that optimises a param-
eterised policy using the gradients of the expected return with gradient ascent.
It effectively mitigates performance collapse by introducing a clipped surrogate
objective function to control policy updates within a specified range, simplify-
ing the optimization process compared to other more complex algorithms. The
objective function of the PPO algorithm is defined as:

LCLIP(θ) = Êt[min(rt(θ), Ât, clip(rt(θ), 1 − ε, 1 + ε)Ât)] (3)

where, rt(θ) is the probability ratio rt(θ) =
πθ(at|st)

πθold (at,st)
and Ât is the advantage

function. PPO is implemented using the Actor-Critic model [13] where the actor
has to maximise LCLIP(θ) and an entropy bonus given as S, while the critic has
to minimise the value function error term LVF

t (θ). Hence, the overall objective
function to be maximised can be defined as:

LCLIP+VF+S
t (θ) = Ê[LCLIP

t (θ) − c1L
VF
t (θ) + c2S[πθ](st)] (4)

where, c1, c2 are coefficients and LVF
t (θ) is the squared-error loss between the

estimated value function and the target value given as (Vθ(st) − V targ
t )2.

To perform fine-tuning with PPO, we initialise the actor with the policy
weights that were trained with the help of Behavioural Cloning. However, the
critic is initialised with random weights. As a result, we would end up with
a trained actor and an untrained critic. Thus, inspired by the methodology
described by [19], we first train the critic during RL. To do this, we divide
the RL training into two phases. Figure 2 describes the learning rate schedules
for the best-performing agent.

Critic Learning Phase. During this phase, we collect interactions from the
environment using the trained actor to train the critic. In this phase, the actor
can be completely frozen (as described in [19]); however, from experiments, we
find that gradually increasing the actor learning rate from 0.0 at the start to
1.5×10−5 at the 700,000th timestep provides the best results. During this time,
the critic is initialised with a relatively high learning rate, which is decayed as
training progresses. In our experiments, we find that initialising the critic with a
learning rate of 1.0× 10−3 gave the best results. We maintain this high learning
rate for the first 150,000 timesteps.
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Fig. 2. Actor and Critic learning rate schedules during fine-tuning.

Interactive Learning Phase. After the actor and critic learning rates com-
pletely warm up and decay, they are stabilised for the remainder of the training
process. We can keep the learning rates during this phase at the same or at
different stabilisation values. Through our experiments, we find that keeping the
actor and critic learning rates stable at different values yields the best results.
For the actor, we stabilise the learning rate at 1.5×10−5, which remains constant
from the 700,000th timestep until the end of training. For the critic, we gradu-
ally decay the learning rate from 1.0 × 10−3 to 3.0 × 10−4 until the 650,000th
timestep, which remains constant until completion.

4 Experimental Setup

4.1 Environment

Our experiments are simulated on the 5ZoneAutoDXVAV environment provided
by the Python library known as Sinergym [10]4 (v3.1.7). The 5ZoneAutoDXVAV
is a single-storey building divided into one indoor and four outdoor zones5. The
state space and action space for the environment are given in Table 2. We sim-
ulate three different weather conditions in our experiments using EnergyPlus.
The hot weather data is from Davis-Monthan AFB, Arizona, USA; the mixed
weather data is from New York City, New York, USA, and the cool weather
data is from Port Angeles, Washington, USA. All environments are initialised
with stochasticity in weather. This stochasticity is introduced with the Ornstein-
Uhlenbeck [3] process where σ, μ and τ are 1.0, 0.0 and 0.001, respectively. Each
simulated episode spans over a duration of one year. Within each episode, 35,040
intervals exist, lasting fifteen minutes each.
4 https://ugr-sail.github.io/sinergym/compilation/main/index.html.
5 https://ugr-sail.github.io/sinergym/compilation/main/pages/buildings.html#zone.

https://ugr-sail.github.io/sinergym/compilation/main/index.html
https://ugr-sail.github.io/sinergym/compilation/main/pages/buildings.html#zone
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Table 2. Environment Summary.

Variable Names Number

State Space Site outdoor air dry bulb temperature, site outdoor air
relative humidity, site wind speed, site wind direction, site
diffuse solar radiation rate per area, site direct solar radiation
rate per area, zone thermostat heating setpoint temperature,
zone thermostat cooling setpoint temperature, zone air
temperature, zone thermal comfort mean radiant
temperature, zone air relative humidity, zone thermal comfort
clothing value, zone thermal comfort Fanger model PPD,
zone people occupant count, people air temperature, facility
total HVAC electricity demand rate, hour, day and month

19

Action Space Heating setpoint and Cooling setpoint 2

4.2 Rewards

The goal of the Deep RL agent is to reduce energy usage while maintaining a
comfortable temperature range. This is achieved through an objective function
that combines the weighted sum of energy consumption and thermal discomfort,
which are normalised. Equation 5 describes the reward function.

R = −ω × λP × Pt − (1 − ω) × λT × exp(|Tt − Tupper| + |Tt − Tlower|) (5)

where, Pt is the power consumption and Tt is the current indoor temperature.
ω represents the weight assigned to power consumption and thus (1 − ω) is the
weight assigned to comfort. λP and λT are scaling constants for power con-
sumption and comfort penalties, respectively. Tupper and Tlower define the upper
and lower limits of the comfort temperature range. Discomfort is determined
by calculating the absolute difference between the current temperature and the
comfort range. If the temperature falls within the comfort range, the discomfort
value is zero. Along with rewards, we also analyse two other Key Performance
Indicators (KPIs):

– Comfort Violation Time (%): Percentage of time that the temperature has
been beyond the bounds of the user comfort temperature ranges.

– Mean Power: Average power consumption per step in the episode.

4.3 Training Setup

In our work, we implement Behavioural Cloning with the help of the Imitation
library [8] and the PPO algorithm with the help of CleanRL [9]. Table 3 repre-
sents the default hyperparameters for the PPO algorithm included in CleanRL.
Following CleanRL, the actor and the critic networks are built using separate
neural networks. Thus, there are no shared weights. The neural network architec-
ture for both the actor and the critic consists of a single hidden layer of size 64.
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Table 3. PPO Hyperparameters.

Hyperparameter Name Value

Total Timesteps 1,000,000
Learning Rate 3.0e–4
Number of Steps per Policy Rollout 2048
Anneal Learning Rate True
Gamma 0.99
General Advantage Estimation 0.95
Minibatch Size 32
Update Epochs 10
Advantage Normalisation True
Surrogate Clipping Coefficient 0.2
Clip loss for Value Function True
Entropy Coefficient 0.0
Value Function Coefficient 0.5
Maximum Norm for Gradient Clipping 0.5

The layer initialisation included in CleanRL was skipped. The Tanh activation
function is used after every layer except the output layer. The performance of
the learned agents is compared to the Rule-Based Controllers (RBC) provided
by Sinergym6. The rules for the RBC are defined in Algorithm 1. During the

Algorithm 1 Rule for RB Controller for 5Zone
summer_setpoint ← (22.5, 26.0)
winter_setpoint ← (20.0, 23.5)
summer_range ← (1 June, 30 September)
for each step in environment do

if current_date is in summer_range then
curr_setpoint ← summer_setpoint

else
curr_setpoint ← winter_setpoint

end if
end for

training process, we periodically evaluate the performance of the agents in the
same environment but with a different seed. We evaluate its performance for
the entire year, i.e. one episode. For testing, we follow a similar procedure to the
evaluation, where we test the agent in the same environment but with a different
seed and monitor its performance for a total of five years, i.e. five episodes. Our

6 https://github.com/ugr-sail/sinergym/blob/main/sinergym/utils/controllers.py.

https://github.com/ugr-sail/sinergym/blob/main/sinergym/utils/controllers.py
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implementation source code can be accessed at GitHub - https://github.com/
kad99kev/HVACIRL.

5 Results

In our experiments, we compare the proposed methodology with different agents.
The RBC or controller agent is the rule-based controller defined in Sect. 4.3 (see
Algorithm 1). The imitation agent is the behavioural cloning agent without
fine-tuning. We compare this agent to highlight the performance of the pre-
trained agent before we fine-tune it with RL. The scratch agent is an RL agent
trained without any pre-training. It is trained with the default hyperparameters
and training methodology of PPO (see Table 3). The default agent is a pre-
trained agent that is fine-tuned naively. For this agent, we follow the same RL
training methodology as the scratch agent; however, the weights of the actor
are initialised with BC. Thus, fine-tuning is naive, where a pre-trained actor
and an untrained critic interact with each other. Finally, we include the agent
described in [7] (called previous), where the authors utilised a learning rate for
the policy network that was one-hundredth of the learning rate of the baseline
RL learning strategy for the initial ten episodes and one-tenth for subsequent
training episodes. We include these agents to show how naive fine-tuning can
affect the performance of an agent and, thus, the need for a different fine-tuning
methodology. In the following sections, we refer to the agent trained using our
proposed methodology as the proposed agent.

5.1 Performance Analysis

In this section, we compare the training, evaluation and testing performance of
the different agents. Figure 3a shows that within 400,000 timesteps, our pro-
posed agent begins outperforming all other RL agents. When we compare the
performance on evaluation, Fig. 3b, shows that our proposed agent learns faster
than the default agent. Additionally, our proposed agent consistently and sig-
nificantly outperforms the scratch agent. This implies that pre-training the
agent helps it generalise better. However, Fig. 3b also suggests that the fine-
tuning methodology plays an important role. Naively fine-tuning a pre-trained
agent with default learning rates can lead to poor policies being learnt, as it
is evident that the default agent cannot outperform the scratch agent. Along
with this, our proposed agent also outperforms the previous agent.

When comparing the rewards and KPIs (see Table 4) of the fine-tuned RL
agents with an agent trained solely on the imitation learning dataset and the
RBC, our proposed agent achieves the highest reward across all three weather
environments during testing. In the 5-Zone hot weather environment, the pro-
posed agent outperforms the previous agent by 2.83%, the default agent by
9.17% and the scratch agent by 5.04% while significantly outperforming the
controller agent by 21.87%. While it may not be the best at saving power, the
proposed agent has the least number of comfort violations among all agents.

https://github.com/kad99kev/HVACIRL
https://github.com/kad99kev/HVACIRL
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Fig. 3. Learning curves of the different agents during training and evaluation on hot,
mixed and cool weather.

Table 4. Rewards and KPIs average performance summary during testing.

Environment Agent Rewards (higher better) Power Consumption (lower better) Comfort Violations (%) (lower better)

5-Zone Hot Controller –1.230 5939.19 41.82
Imitation –2.936 5623.01 50.80
Scratch –1.012 6834.64 31.23
Default –1.058 6614.23 33.48
Previous –0.989 6942.00 30.47
Proposed –0.961 6836.64 28.81

5-Zone Mixed Controller –0.619 5725.47 45.45
Imitation –1.793 5991.53 48.29
Scratch –0.538 7259.21 25.73
Default –0.550 7131.13 28.06
Previous –0.501 7027.80 23.48
Proposed –0.496 6917.05 22.72

5-Zone Cool Controller –0.455 3751.00 29.24
Imitation –1.385 4033.08 43.42
Scratch –0.429 5548.59 20.56
Default –0.458 5260.54 22.34
Previous –0.424 5314.49 20.09
Proposed –0.406 5021.88 19.07

As the table shows, the imitation and controller agents are the best at sav-
ing power; however, they have the highest percentage of comfort violations.
The proposed agent, however, can balance this by not overly spending power
yet significantly reducing comfort violations. Similar behaviour is observed in
the 5-Zone mixed weather environment as well. The proposed agent demon-
strates significant enhancements in overall rewards, with improvements of 1.00%,
9.82%, 7.81%, and 19.87% compared to previous, default, scratch, and con-
troller agents, respectively. Again, we observe that the imitation and con-
troller agents are the best at saving power but are the poorest at maintaining
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comfort. The proposed agent stands out for its efficient power utilisation and
minimal comfort violations among all RL agents evaluated. Likewise, the pro-
posed agent performs best in the 5-Zone cool weather environment. Compared
to previous, default, scratch and controller agents, it sees a 4.25%, 11.35%,
5.36% and 10.77% improvement in the overall rewards, respectively. Here, the
performance of the default agent is comparable to the controller agent. The
proposed agent achieves a 5.51% decrease in power consumption compared to
the previous agent, resulting in a 1.02% reduction in comfort violations. Sim-
ilar to the mixed weather environment, the proposed agent performs best in
both power consumption and comfort violations when compared to the other RL
agents.

5.2 Policy Analysis

This section compares the policies adopted by the different agents in our exper-
iments. We analyse their heating and cooling setpoint temperatures and their
effect on the indoor temperature. Hourly observed temperatures show the aver-
age temperatures at each hour throughout the year, while monthly observed
temperatures show the average temperature for each month.

From Fig. 4, we can see that the proposed agent and the previous agent
follow similar policies; however, the proposed agent maintains a slightly higher
cooling and heating setpoint on average. The imitation agent follows the RBC
policy very closely. In all three environments, we observe that the scratch
agent drastically changes its setpoint temperatures as the outdoor temperature
becomes warmer during the day. We can also see that the RL agents consistently
maintain indoor temperatures within the average hourly user comfort zone, while
the imitation and controller agents periodically violate comfort.

When comparing the monthly setpoint temperatures, from Fig. 5, we see
that the imitation agent fails to adapt its setpoint temperatures during summer

Fig. 4. Setpoint, indoor and outdoor temperatures summarised by the hour.
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Fig. 5. Setpoint, indoor and outdoor temperatures summarised by the month.

when the temperatures increase. The graphs highlight how RL agents adapt their
policies as user comfort and season change. We can see that the cooling setpoints
are higher in hot weather, which decreases as we move to mixed weather, with it
being the lowest in cool weather. The heating setpoints are relatively the same
for hot and mixed weather but are slightly lower for cool weather. All agents
struggle to maintain comfort in hot weather; however, the proposed agent does
the best to maintain indoor temperatures. For other weather conditions, the
RL agents are better able to maintain comfortable indoor temperatures. The
RL agents are much better at keeping indoor temperatures closer to the user’s
comfort zone than the controller agent, which does well for mixed and cool
weather. The imitation agent, however, does poorly throughout. This proves
the need for RL fine-tuning, as the RL agents are able to adapt their setpoint
temperatures well to maintain indoor comfort.

6 Conclusion and Future Work

Imitation learning helps provide a foundation for the RL agent during training.
However, naively training the trained actor and untrained critic together can lead
to worse policies being learnt than training from scratch. Thus, to avoid this, we
can either freeze the actor or initialise it with a very low learning rate while the
critic learns from interactions with the environment. From our experiments, we
see that following this methodology results in agents outperforming not only the
RBC but also naively fine-tuned agents and agents trained from scratch across
all three weather environments. We also build upon prior work, showing that a
better learning rate tuning strategy is able to outperform their agent.

The policies learnt by the proposed agent can better maintain indoor tem-
peratures within the user’s comfort bounds than all other agents. While this
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comes at the expense of more power, the least power-consuming agents are RBC
and imitation. These two agents are the worst at respecting the user’s comfort
zone. Thus, the proposed agent is efficient at striking a balance between power
consumption and user comfort.

For future work, a hyperparameter study could be conducted to analyse
the effect of different hyperparameters on this approach. Additionally, historical
data could be utilised to train an autoencoder, thus reducing the dimensionality
of the observation space for effective representation learning. Finally, a multi-
objective approach to this method can be considered. By separating the energy
and comfort variables, further analysis can be conducted on different policies
learnt to prioritise comfort and/or energy.
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Abstract. As the primary tool for monitoring cardiac health, a stan-
dard 12-lead ECG device is specialized medical equipment that is chal-
lenging to integrate into daily life. Meanwhile, existing portable ECG
monitoring devices can only capture single-lead ECG, which is insuf-
ficient for health diagnosis. To address this issue, we propose a novel
shifted diffusion model algorithm that utilizes a single-lead ECG to gen-
erate a standard 12-lead ECG. Our algorithm uses the detected single-
lead ECG as the condition and employs the diffusion model to synthesize
corresponding other 11-lead ECG. The extra shift is utilized in the for-
ward process so that the model can learn better. Our approach has been
tested on three datasets, yielding promising results.

Keywords: 12-lead ECG synthesis · Diffusion models · Signal process

1 Introduction

Cardiovascular diseases pose the greatest threat to human life, and long-term
heart health monitoring is one of the primary ways to mitigate cardiovascular
disease risks [1,2]. Currently, the most important method for monitoring heart
health is the electrocardiograms (ECG) [3–5]. Depending on the number of leads
used, ECG exhibits various changes, and the 12-lead ECG is the most commonly
used in global healthcare centers [6,7]. The standard 12-lead ECG provides clini-
cal information about heartbeats from multiple fixed viewpoints, and healthcare
professionals assess the heart’s health status by observing the waveforms of the
12 leads collectively. However, collecting 12-lead ECG data beyond clinical envi-
ronments poses a formidable challenge [8]. Modern wearable devices can collect
ECG using fewer leads than the standard 12 leads [10,11], but the limited lead

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
A. Bifet et al. (Eds.): ECML PKDD 2024, LNAI 14949, pp. 271–286, 2024.
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Fig. 1. The comparison between our method and existing approaches. We aim to
employ an efficient and novel diffusion model framework to address the task of synthe-
sizing standard 12-lead ECG from single-lead ECG.

data can pose additional challenges for medical professionals and traditional
ECG analysis software interpretation [9].

To address this issue, some methods improve hardware design by placing
enhanced single-lead devices at different positions on the body to obtain 12-lead
ECG [12,13]. Their effectiveness heavily depends on the operator’s experience,
as inaccurate placement may introduce unwanted artifacts in the signal, leading
to potential misdiagnosis [14]. Other studies aim to synthesize standard 12-lead
ECG from collected 2 3 leads [15–17]. However, multiple electrodes still need to
be utilized to ensure prediction accuracy, hindering the practical application. In
recent years, some research has focused on the synthesis of 12-lead ECG from
single-lead ECG (for clarity, we’ll denote this task as ‘1–12 ECG synthesis’)
[18,19]. Due to limitations in model performance, these approaches can only
synthesize precise ECG segments of 1 to 2.5 s in duration. Employing concate-
nation to obtain usable ECG signals results in inconsistencies in the finer details
of the outcomes. In other words, viewing the 1–12 ECG synthesis task as condi-
tional generation tasks, it’s challenging for existing methods to learn the precise
conditional distribution of long 12-lead ECG segments (Fig. 1).

Inspired by the recent success of diffusion models in conditional generation
tasks, we have designed a novel time-frequency domain Shifted Diffusion model
for 1–12 ECG synthesis (SD-ECG). However, applying conventional diffusion
model frameworks yields unsatisfactory results. The sampling process of dif-
fusion models originates from random noises, leading to high diversity in the
outcomes, which conflicts with the requirements of the task. To address this
issue, in our proposed diffusion model, the forward process gradually maps the
target sequence to a prior distribution related to the single-lead ECG, rather
than the commonly used Gaussian distribution in traditional diffusion models.
Specifically, we introduce an observation-related shift in the forward process
during training and consider it as the starting point for the reverse process. We
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introduce this point to optimize the starting point and trajectory of the diffusion
process, facilitating the model to learn the accurate distribution of a complete
12-lead ECG. Furthermore, ECG signals exhibit frequency consistency across
different leads, and to leverage this, our method synthesizes 12-lead ECG in the
time-frequency domain.

Our contributions are as follows:

– Our method is the first to utilize diffusion models for the synthesis of 12-lead
ECG from single-lead ECG, providing a novel perspective for future related
research.

– We improve existing diffusion models for ECG synthesis tasks from two
angles, providing meaningful references for similar tasks.

– We conduct experiments on popular ECG datasets and provide a comprehen-
sive presentation and analysis of the results using four metrics. The experi-
mental results demonstrate that our approach achieves comparable or better
results compared to baselines.

2 Related Work

2.1 Synthesize ECG Using Diffusion Models

Diffusion models have surpassed GANs in image generation tasks [21]. Besides,
they have also achieved the best results on other tasks, including generation
and prediction of time series [22–24]. Recently, many studies have focused on
synthesizing ECG data with diffusion models. [25] embeds single-lead ECG into
a two-dimensional space and uses the Improved Denoising Diffusion Probabilis-
tic Model (Improved-DDPM) [26] to learn the distribution of data in the two-
dimensional space. [27] utilizes a diffusion model framework with Structured
State Space Models (S4 model) [28] as the main structure to generate different
leads of ECG. Similarly, [29] proposes a diffusion-based model coupled with a
state space augmented transformer, synthesizing 12-lead ECG. These methods
utilize diffusion models to generate standard 12-lead ECG from scratch, using the
generated ECGs to augment existing datasets while protecting patient privacy.
However, none of the existing approaches utilizes diffusion models for single-lead
to 12-lead synthesis. We are the first to apply the conditional diffusion model to
this task, achieving promising results.

2.2 Synthesis of 12-Lead ECG from Reduced Leads

Synthesizing standard 12-lead ECG from limited leads has attracted attention
since 2004. Initial studies focus on synthesizing the remaining leads using 2–3
leads. [15] establishes relationships between three leads (D1, D2, V2) and the
other six leads using MLP. Subsequent methods utilize similar network struc-
tures but with a change in lead requirements (leads I, II, V2) [16]. A model with
convolutional neural network (CNN) and long short-term memory units (LSTM)
is introduced for synthesizing two-lead to 12-lead ECG [17]. These methods do
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not fundamentally address the inconvenience caused by multi-lead ECG devices.
The generative adversarial network (GAN) was utilized for producing all 12 leads
of an ECG based on lead I [18]. The GAN architecture consists of a U-net as
the generator and a patch discriminator as the discriminator. Using an encoder-
decoder with CNN structure, ECG is synthesized from arbitrary lead perspec-
tives [19]. Nonetheless, their approaches fail to generate sufficiently complete
ECG signals, thereby constraining the practical application of these approaches.

3 Preliminary

3.1 Synthesis of 12-Lead ECG from Single-Lead ECG

Suppose we have an observed single-lead ECG signal X = {x1
1, x

1
2, · · · , x1

n},
where n is the ECG length and X0

i is the observation at time step i. The Y

is the target ECG leads {yi
1, y

i
2, · · · , yi

n} (d
′ ≤ d) , where the value range of

i is from 2 to 12. The task of synthesizing 12-leads ECG is to learn a density
pθ(Y |X) that best approximates p(Y |X), which can be written as:

min
pθ

D (pθ(Y |X)||p(Y |X)) , (1)

where θ denotes a parameters and D is some appropriate measure of distance
between distributions. Given observation X the target 12-leads ECG can be
obtained directly by sampling from pθ(Y |X).

3.2 Diffusion Models

A diffusion model progressively destructs data x0 by injecting noise, then learns
to reverse this process starting from xT for sample generation. The forward
process can be formulated as a Gaussian process with a Markovian structure:

q(xt|xt−1) := N (xt;
√

1 − βtxt−1, βtI),

q(xt|x0) := N (xt;
√

αtx0, (1 − αt)I),
(2)

where β1, . . . , βT denotes fixed variance schedule with αt := 1 − βt and αt :=∏t
s=1 αs. This forward process progressively injects noise into data until all struc-

tures are lost, which is well-approximated by N (0, I). The reverse diffusion pro-
cess learns a model pθ(xt−1|xt) that approximates the true posterior:

pθ(xt−1|xt) := N (xt−1;μθ(xt), Σθ(xt)), (3)

where μθ and Σθ are often computed by a UNet or a Transformer. Ho et al. [20]
improve the diffusion training process and optimize following objective:

L(x0) =
T∑

t=1

E
q(xt|x0)

||μθ(xt, t) − μ̂(xt,x0)||2, (4)

where μ̂(xt,x0) is the mean of the posterior q(xt−1|x0,xt) which is a closed
from Gaussian, and μθ(xt, t) is the predicted mean of pθ(xt−1 | xt) computed
by a neural network.
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Fig. 2. Overview of SD-ECG. As depicted in the upper half of the figure, we
transform the signal-lead ECG into the time-frequency domain using the Short-Time
Fourier Transform (STFT), concatenate them with shifted noise, and then input them
into the diffusion model for training. The lower half of the figure illustrates the diffusion
process within the latent space. During the training process, we calculate the observed
shifts and incorporate them into each step of the forward process.

4 Time-Frequency Shifted Diffusion for 12-Lead ECG
Synthesis

In this section, we elucidate our proposed SD-ECG in detail, which adapts
the temporal-spectral shifted diffusion model to synthesize 12-lead ECG as in
Fig. 2. In Sect. 4.1, we introduce the motivation of our approach. The Sect. 4.2
delves into the design of the shifted diffusion model, providing a comprehensive
overview of both the forward and reverse processes. Finally, we theoretically
derive the optimization objective and summarize the overall pipeline of the pro-
posed framework (Sect. 4.3).

4.1 Motivation

The diffusion model is currently the most advanced model for conditional gen-
erative tasks. Its multi-step interactions enable the model to iteratively interact
with conditions, resulting in more precise generation outcomes. Conventional
diffusion models involve constructing a Markov chain in the forward process,
gradually transforming observed data into a predefined prior distribution, typi-
cally a Gaussian distribution. Subsequently, the sampling process involves draw-
ing noise mappings from the prior distribution and feeding them into the reverse
path of the Markov chain. While this method excels in unconditional generation
tasks, it may not be optimal for conditional generation tasks. For the task of gen-
erating the remaining 11 leads in a 12-lead generation task, we aim for the prior
distribution of the generated leads to be at least correlated with the observed
single-lead signal, rather than a Gaussian distribution. In our proposed method,
we introduce condition-related shifts in the forward process to incrementally
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modify it, while preserving the noise sampled from the Gaussian distribution.
Through this approach, the model can learn a better prior distribution, optimiz-
ing the trajectory of the entire forward and reverse process and making learning
the accurate distribution of the 12 leads more feasible.

Additionally, in our approach, the diffusion model learns the distribution of
ECG in the time-frequency domain rather than the time domain. Considering
the strong periodicity, ECG in the time-frequency domain exhibits more obvious
features. Learning the distribution of ECG in the time-frequency domain may
yield better results.

4.2 Forward Process and Reverse Process

We will provide a detailed explanation of the process involved in constructing
such a Markov chain for 12-lead ECG synthesis. Let us consider the following
problem: given a single-lead ECG observation (In our experiment, it is I-lead)
zc, we generate the remaining target 11-lead ECG ztar with extra patient infor-
mation vs. vs serves as additional features for the ECG, and the computation
process takes place within Sect. 5.2. We define a shifting sequence {kt}T

t=1, which
exhibits a monotonically increasing trend with the timestep t and fulfills the
conditions k1 → 0 and kT → 1. Subsequently, the formulation of the transi-
tion distribution at timestep t is derived from this shifting sequence as outlined
below:

qφ(z
tar
t |ztar

t−1, z
c, vs) = N (ztar

t ; ztar
t−1 + αtsφ(z

c, vs), αtI) (5)

where [zc, ztar
0 ] = zq, αt = kt−kt−1 for t > 1 and I is the identity matrix. sφ(·) is

the shift network with trainable parameters φ, it takes the observed single-lead
ECG zc and side information vs as inputs and produces the shift with the same
dimension as ztar

0 . Then, we demonstrate that the marginal distribution at each
timestep t is amenable to analytical integration, specifically,

qφ(ztar
t |ztar

0 ,zc, vs) = N (ztar
t ;ztar

0 + ktsφ(zc, vs), ktI) (6)

To ensure a smooth transition between ztar
t and ztar

t−1, to the standard deviation,
denoted as ᾱt, is introduced. The rationale behind this lies in bounding the
expected distance between ztar

t and ztar
t−1 within ᾱt, given that the ECG data

falls within the range of [0, 1] after pre-processing.

max[(ztar
0 + ktŝ) − (ztar

0 + kt−1ŝ)] = max[αtŝ] < αt <
√

αt, (7)

where ŝ = sφ(zc, vs), max(·) represents the point-wise maximizing operation.
Besides the mean parameter, specifically ztar

0 + αtŝ, which contributes to the
marginal distribution described in 6. Moreover, the marginal distributions of
ztar
1 and ztar

T converge to δztar
0

(·) and N (·;zc, I), serving as approximations for
the target and observation distributions, respectively. Through the deliberate
construction of the Markov chain, it becomes feasible to address the synthesis
task by reverse sampling from it given the observed single-lead ECG zc.
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Following [20,30,31] the objective of the reverse process is to infer the pos-
terior distribution p(ztar|zc) through the subsequent expression:

p(ztar|zc) =
∫

p(ztar
T |zc)

T∏

t=1

pθ(ztar
t−1|ztar

t ,zc)dztar
1:T , (8)

where p(ztar
T |zc) ≈ N (ztar

T |zc, I), pθ(ztar
t−1|ztar

t ,zc) is the reverse transition ker-
nel from ztar

t to ztar
t−1 with a learnable parameter θ. Following most of the liter-

ature in the diffusion model, we adopt the assumption:

pθ(z
tar
t−1|ztar

t , zc) = N (ztar
t−1;μθ(z

tar
t , zc, t), Σθ(z

tar
t , zc, t)) (9)

Combining 5 and 6, the targeted distribution q(ztar
t−1|ztar

t ,ztar
0 ,zc) in 9 can be

rendered tractable and expressed in an explicit form given below:

q(ztar
t−1|ztar

t , ztar
0 , zc) = N (ztar

t−1|kt−1

kt
ztar

t +
αt

kt
ztar
0 ,

kt−1

kt
αtI) (10)

The detailed calculation of this derivation is presented in supplementary mate-
rial. Considering that the variance parameter is independent of ztar

t and zc, we
thus set Σθ(ztar

t ,zc, t) = kt−1
kt

αtI. Because ztar
t is known, the mean parameter

is parameterized as below:

μθ(ztar
t ,zc, t) =

kt−1

kt
ztar

t +
αt

kt
fθ(ztar

t ,zc, t) (11)

where fθ is a deep neural network with parameter θ.

4.3 Training and Sampling

We introduce the derivation of the final optimization objective for the training
SD-ECG. Following the standard diffusion process, the objective function of
SD-ECG can be written as:

Lθ,φ = Eqφ(z tar
1:T |z tar

0 ,z c)

[
DKL(qφ(z

tar
T |ztar

0 , zc)‖p(ztar
T |zc))

+
∑
t>1

DKL(qφ(z
tar
t−1|ztar

t , ztar
0 , zc)‖pθ(z

tar
t−1|ztar

t , zc))

− log pθ(z
tar
0 |ztar

1 , zc)

]
,

(12)

However, this training objective can be hard to stabilize [26]. Thus we sim-
plify the objective as follows:

Lθ,φ,t =
∣∣∣∣µθ(ztar

t ,zc, t) − αt

kt
ztar
0 − kt−1

kt
ztar

t

∣∣∣∣2
2
, (13)

With 11, the objective can be further simplified as:

min
θ

∑

t

wt||fθ(ztar
t ,zc, t) − ztar

0 ||22 (14)
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where wt = αt

2ktkt−1
. In practical experimentation, we observe empirically that

excluding the weight wt leads to a noticeable enhancement in performance, con-
sistent with the findings in [20].

Recall that the target ECG is generated in the time-frequency domain at
each step t. We provide the pseudo-code of the sampling process at the inference
stage in 1.

Algorithm 1. Sampling Algorithm of SD-ECG
Input: Observed single-lead ECG zc, sampling steps tT

1 , shifting sequence kt, the
learned shifter model sφ, the learned reverse model fθ.
Output: The forecasting ŝta.
Collecting side information vs,
Computing shift ŝ = sφ(z

c, vs)
Sample ẑta

T ∼ N (0, I)
Reverse process start point zta

T = ẑta
T + ŝ

for t = T, T − 1, · · · , 1 do
αt = kt − kt−1

Computing mean μt =
kt−1

kt
ztar

t + αt
kt

fθ(z
tar
t , zc, t)

Computing variance Σt =
kt−1

kt
αtI

Sampling ẑtar
t−1 ∼ N (ztar

t−1;μt, σt)
end for
Decoding ŝta = ISTFT(ẑtar

0 )

5 SD-ECG Architecture

In this section, as illustrated in Fig. 3, we provide the architecture of SD-ECG
in detail. It is worth noting that the shift network is jointly trained with the
main network. More experimental details are provided in Sect. 5.1.

5.1 Main Network

Building upon the preceding discussion in Sect. 4.2, the primary inputs to the
main network encompass the collected single-lead ECG and the generated tar-
gets. We adopt bidirectional transformer architecture following previous works
[22,32], given its established efficacy in learning distributions of sequence data.
Here, time embeddings and leads correlation serve as supplementary information
guiding the generation process. We use 128-dimensions time embedding following
previous studies [33]:

sembedding(sl) =
(
sin(sl/τ0/64), . . . , sin(sl/τ63/64), cos(sl/τ0/64), . . . , cos(sl/τ63/64)

)
(15)



SD-ECG 279

where τ = 10000. The leads correlation matrix is a learnable 128-dimensional
embedding representing the associations between different leads. Notably, con-
sidering the significance of lead correlations in the time-frequency domain for
the 12-lead ECG, we introduce additional cross-attention modules at each layer
to amplify the influence of lead correlations.

Fig. 3. Architecture of SD-ECG. The left part of the figure describes the structure
of the main network fθ. The model’s inputs include the observed values (collected
single-lead ECG), the targets (generated remaining leads), as well as side information.
The model comprises observed values and updated targets. The right part of the figure
describes the structure of the shift network sφ(·). The input of the shift network consists
of observed values and basic physiological information relevant to this ECG segment
and the output is the corresponding shift.

5.2 Shift Network

As for the shift network, the input consists of the observed single-lead ECG
and the output is the shift. Considering that ECG features often vary with
age and gender, and aiming to maximize the differentiation of the entire prior
shift, we further incorporate additional physiological information embeddings
(age represented numerically, gender represented by tokens 0,1 and 2). These
embeddings are expanded to the same dimensions as the inputs for computation.
The shift network runs only once at the beginning of the sampling process and
thus does not incur excessive time costs.

6 Experiments

6.1 Experimental Setup

Datasets and Baselines. We conduct experiments using the PTB-XL dataset
[34], MiT-BIH Arrhythmia Database [35], and the Tianchi ECG dataset1. The
1 https://tianchi.aliyun.com/competition/entrance/231754/information?lang=en-us.

https://tianchi.aliyun.com/competition/entrance/231754/information?lang=en-us


280 J. Liu et al.

PTB-XL dataset comprises 21837 clinical 12-lead ECGs from 18885 patients of
10-second length at a frequency of 500Hz, while the Tianchi dataset includes
31,779 12-lead ECG signals recorded at a frequency of 500Hz. The MIT-BIH
Arrhythmia Database contains 48 half-hour excerpts of two-channel ambula-
tory ECG recordings. The datasets were randomly partitioned into training and
testing sets, with probabilities of 0.7 and 0.3, respectively. We performed pre-
processing, including down-sampling to 125Hz, conversion to the time-frequency
domain, and linear scaling normalization to the range of 0 to 1. For baselines, we
choose existing single-lead to 12-lead ECG synthesis methods, including GAN
[18], Nef-Net [19], VAE-CNN [36] and E-LSTM [37].

Table 1. Performance comparisons on PTB-XL in terms of MSE and FD score. The
best is in bold.

GAN VAE-CNN E-LSTM Nef-Net SD-ECG (Ours)
MSE FD score MSE FD score MSE FD score MSE FD score MSE FD score

Lead II 0.0080 2.561 0.0102 3.183 0.0091 2.639 0.0062 2.159 0.0036 0.783
Lead III 0.0080 1.974 0.0085 2.312 0.0092 2.159 0.0076 2.031 0.0039 1.014
Lead aVR 0.0090 0.359 0.0097 2.010 0.0096 2.746 0.0073 1.455 0.0010 0.124
Lead aVL 0.0020 0.219 0.0081 1.081 0.0066 1.893 0.0041 1.573 0.0012 0.139
Lead aVF 0.0080 2.272 0.0121 2.481 0.0071 2.033 0.0056 1.936 0.0049 0.652
V1 0.0160 8.032 0.0337 13.125 0.0213 12.263 0.0178 8.396 0.0132 3.195
V2 0.0290 9.382 0.0379 13.312 0.0219 7.342 0.0189 5.621 0.0140 3.991
V3 0.0310 9.373 0.0512 14.111 0.0424 10.351 0.0397 7.215 0.0312 6.315
V4 0.0240 7.929 0.0531 12.081 0.0480 9.259 0.0320 6.216 0.0239 5.105
V5 0.0300 12.153 0.0537 11.315 0.0487 10.969 0.0323 9.216 0.0231 4.084
V6 0.0260 19.453 0.0591 14.180 0.0382 13.215 0.0319 10.001 0.0105 3.056
Average 0.0170 6.701 0.0306 8.108 0.0238 6.806 0.0184 5.074 0.0117 2.587

Implementation Details. For the preprocessing, we utilize the STFT with a win-
dow length of 16 points. We retain only the low-frequency components in the
time-frequency spectrum, which reduces computational costs without affecting
the results. For training the diffusion model, we utilized the Adam optimizer
with an initial learning rate of 10−3. In the training process of the shifted diffu-
sion, the batch size is 64, and training includes early stopping for a maximum
of 200 epochs. For the 10 s 12-lead ECG signal, the shape of the input is (64,
48, 313). The number of diffusion steps T is set to 100, and the linear variance
schedule starts from K0 = 0.001 to KT = 0.999. All experiments are conducted
on an Nvidia RTX 3090 GPU with 24 GB memory.
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Fig. 4. Case study. The comparison between the ECG synthesized by our method
and the corresponding ground truth. Our approach is capable of synthesizing accurate
12-lead ECG with sufficient length using single-lead ECG as input.

Metrics. We use Mean Square Error (MSE) and Fréchet Distance (FD) as met-
rics. MSE are calculated in the formula below, Ŷ represents the synthesized ECG,
and Y represents the ground truth ECG. MSE calculates the average squared
difference between predictions and true values:

MSE =
√

mean(|Ŷ − Y |) (16)

Following [38], the FD score between two ECGs is defined as the FD of their
corresponding continuous functions:

FD(Ŷ (t), Y (t)) = inf
Ŷ

max
t

‖Ŷ (t) − Y (t)‖, (17)

A smaller MSE or FD score implies better synthesis.
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Table 2. Classification performances (ROC-AUC) on the MIT-BIH dataset augmented
by synthesized data. In the experiment of SimDCGAN [40], the ECG is synthesized
from scratch. The best results are in bold.

Diseases GAN VAE-CNN E-LSTM SimDCGAN Nef-Net Ours

SVEB 0.758±0.05 0.697±0.02 0.795±0.07 0.724±0.05 0.782±0.05 0.802±0.09
VEB 0.987±0.03 0.953±0.00 0.981±0.01 0.980±0.01 0.983±0.00 0.981±0.02
FUSION 0.801±0.07 0.763±0.10 0.783±0.05 0.827±0.09 0.855±0.07 0.866±0.013

6.2 Experimental Results

Our model was trained and tested on the PTB-XL dataset and the results are
shown in Table 1. Our method outperforms existing time series diffusion models.
Compared to the baselines, our approach demonstrates superior performance in
10 out of 11 lead reconstruction tasks. Overall, our method significantly surpasses
the current state-of-the-art methods (Fig. 4).

Besides, we directly applied the trained model to the data from the Tianchi
and MIT-BIH datasets, achieving satisfactory results as well without any addi-
tional fine-tuning. As shown in Figure, the comparison on the Tianchi dataset
demonstrates that our method is capable of synthesizing realistic and accurate
long 12-lead ECG. This indicates that our model has learned the distribution of
the 12-lead ECG rather than merely replicating the content from the train set.

To assess the ability of SD-ECG to capture important information in the
single-lead ECG, we provide abnormal single-lead ECG from the MIT-BIH
dataset as input and observe the performance of synthesized 12-lead ECGs
under the classifier. If the synthesized leads can be classified as abnormal, we
consider that the generated segments contain important information from the
observation. The results are shown in Table 2, and the classifier is implemented
as [39]. As shown in the table, our model demonstrates superiority in two dis-
eases (SVEB(%2) and FUSION(%1.1)), indicating that SD-ECG is capable of
generating 12-lead ECGs with important information.

Table 3. Average MSEs by different variants of the conditioning network.

In TF domain With shift network With Patient InformationPTB-XLTianchi

0.147 0.0209
✓ 0.0.145 0.0207

✓ 0.0139 0.0199
✓ ✓ 0.0117 0.0146

✓ ✓ 0.0117 0.0146
✓ ✓ ✓ 0.0117 0.0146
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6.3 Model Analysis

Ablation Study. To evaluate the effectiveness of the mechanisms in our method,
we conduct a comprehensive assessment by comparing the full version of SD-
ECG with five variants on two datasets. The MSE for 11 leads is presented as the
result in Table 3. In the table, “in TF domain” denotes whether the model learns
the distribution in the time-frequency domain, and “Use patient information”
indicates whether real patient data is fed into the shift network. The symbol
✓ indicates the mechanism is utilized in the network, while a blank denotes its
absence. As observed, the shift mechanism significantly influences the model’s
performance, while the introduction of patient information has minimal impact
on performance improvement. This suggests that the model can be used while
preserving patient privacy without compromising performance.

Impact of Diffusion Steps. To mitigate the impact of uncertainty while retaining
informative temporal patterns, configuring the diffusion steps is crucial. Inad-
equately small diffusion steps may result in a process lacking meaningful out-
comes, while substantial steps may lead to uncontrolled diffusion. In this study,
we investigated the effect of the number of diffusion steps, denoted as T , on
Tianchi and PTB-XL. We varied T within the range of 50 to 500. As shown in
Fig. 5, the optimal value for T is approximately 100 for SD-ECG, and increasing
T beyond this value does not significantly improve the results.

Fig. 5. Comparisons of predictions with different T on two datasets.

7 Conclusion

In this paper, we propose SD-ECG, an innovative framework that represents
the first attempt to introduce the diffusion model into the task of synthesis of
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12-lead ECG from single-lead ECG. By incorporating additional shifts in the
forward process, our model is better equipped to learn the accurate distribution
of the spectrogram, enabling more precise predictions through the utilization of
frequency domain information. Comprehensive experiments conducted on three
real-world datasets demonstrate the outstanding performance of SD-ECG in
improving the quality of probabilistic predictions, underscoring its effectiveness.
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Abstract. Accurate prediction of drug-target interactions (DTIs) is
critical for drug design and optimization in pharmacology. Existing mod-
els face challenges such as data sparsity and lack of contextual infor-
mation, resulting in poor accuracy. Knowledge graphs (KGs) provide a
solution by representing relationships in biological data. However, cur-
rent KG-based DTI methods are limited to static graphs that require
time-consuming retraining when knowledge is updated. In this paper,
we propose SAGS-DynamicBio, an efficient dynamic embedding model
for biological data that integrates semantics and graph structure infor-
mation. We first generate KGs for the biological knowledge base, rep-
resenting drugs and targets as entities and interactions as relations.
Using KG embedding techniques, we convert each entity and relation
into a vector representation. To effectively handle dynamic data, we
introduce a semantic perception module based on the attention mech-
anism, which uses information from neighboring nodes to generate ini-
tial representation vectors for new data. Furthermore, we apply graph
structure-based representation learning to these initial vectors to satisfy
KG’s structural constraints and improve prediction accuracy. To evalu-
ate the effectiveness of our method, we conduct experiments comparing
SAGS-DynamicBio with existing KG-based DTI prediction models and
generic KGE models. The experimental results show that our method
significantly improves the embedding efficiency, reducing the embedding
time by 41.5% on average, while maintaining a high prediction accuracy,
which proves the effectiveness of our method. SAGS-DynamicBio is able
to efficiently adapt to the dynamic data updates without retraining the
whole graph, thus providing a promising solution for DTI prediction in
real-time scenarios.
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1 Introduction

Drug-Target Interactions (DTI) [1,2] plays a critical role in pharmacology and
healthcare. It involves the study of the potential effects that occur when two
or more drugs are administered simultaneously and helps identify previously
unknown interactions between drugs and protein targets in the human body.
Understanding and predicting DTIs is of paramount importance in ensuring
patient safety, optimizing drug therapy and avoiding adverse drug reactions.
With the increasing complexity of drug combinations and the ever-growing num-
ber of available drugs, accurate DTIs prediction has become a challenging task.

In recent years, Knowledge Graph Embedding (KGE) techniques have
emerged as a promising approach for predicting drug-target interactions
(DTIs) [3–6]. Knowledge graphs (KGs) [7] provide a structured representation
of drug interactions by capturing the relationships between drugs and their
associated properties. These relationships are modeled as (subject, predicate,
object) (SPO) triples, such as (aspirin, drug-target, COX-1 ). By exploiting these
graph structures, KGE enables the learning of low-dimensional representations
for drugs and their interactions. These learned embeddings serve as condensed
features for various downstream machine learning tasks, including node classi-
fication [8], clustering [9], link prediction [10], and visualization [11], providing
significant opportunities in the field of biomedical data science.

Previous studies on predicting DTIs using KGE techniques have proposed
different models. Typical models include TriModel [12], NeoDTI [13] and (EEG)-
DTI [14]. However, a major drawback of these models is their limited ability to
effectively handle dynamic graphs. In real-world scenarios, the DTI network is
constantly updated and changed due to the discovery of new drugs, new protein
targets, or evolving biological knowledge. As a result, the knowledge graph rep-
resenting the DTI network must be frequently updated to reflect these changes.
Current models require re-training each time the graph is updated, which can
be a time-consuming process, especially for large graphs.

To address this challenge, we propose a novel approach that efficiently man-
ages dynamic graphs. Our approach leverages semantic and structural aware-
ness derived from neighborhood information to improve the process of learn-
ing embeddings for new data. By incorporating these insights, our model can
effectively update the knowledge graph embeddings without requiring complete
re-training. This capability enables real-time updates and predictions, resulting
in significant savings in computational time and resources.

In our approach, we first construct a KG using the available drug target
knowledge base. We then use KGE techniques to address the task of identifying
drug-target associations as a link prediction problem. To generate semantic rep-
resentations for new data, we use the embeddings of neighboring nodes in the
KG. To prioritize the acquisition of valid information and prevent the incorpora-
tion of invalid data, we incorporate an attention mechanism. We then fine-tune
the resulting semantic representations to ensure compliance with the structural
constraints within the KG. These structural constraints are defined by KGEs
such as es � r ≈ et in RotatE [15] or es + r ≈ et in TransE [16], where es
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and et denote the source and target entity embedding, respectively, and r rep-
resents the relation embedding. It is expected that all triples in the KG follow
this structural form. The resulting embedding of the new data obtained at the
end serves a dual purpose: it captures semantic information while conforming to
the structural constraints within the KG. Our contribution can be summarized
as follows:

– We present the SAGS-DynamicBio embedding models, designed specifically
for dynamic biological data, which provide an efficient solution for integrating
semantic information from neighboring data and structural information from
KGs to meet the real-time needs of downstream tasks.

– We perform a thorough evaluation of our proposed model on four biologi-
cal benchmark datasets, providing a comprehensive assessment of its perfor-
mance. The experimental results demonstrate the embedding efficiency of the
model, which significantly outperforms existing approaches.

– We conduct experiments comparing our method with traditional KGE mod-
els to verify the generality and scalability of our method. The results demon-
strate the superior performance of our method in terms of both accuracy and
embedding time.

The rest of this paper is organized as follows: Sect. 2 provides an overview
of related work in the area of DTIs prediction and KGE. Section 3 describes
our proposed methodology in detail. Section 4 presents experimental results and
evaluations of our approach. Finally, Sect. 5 concludes the paper.

2 Related Work

This section provides a comprehensive summary of recent advances in DTIs
techniques using KGE. It includes KGE methods applicable to generic models
as well as models specifically designed for biological data.

2.1 Knowledge Graph Embedding

In the field of knowledge graph embedding (KGE) models, various approaches
have been developed, falling into three main categories: translation-based mod-
els, semantic matching models, and rotation-based models.

Translation-based models, such as TransE [16], consider relations as trans-
lations in vector space, aiming to bring head and tail entity vectors closer
together. While effective for simple relations, they struggle with complex rela-
tionships. TransH [17] addresses this limitation by projecting entity embeddings
onto relation-specific hyperplanes. TransD [18] takes a different approach by
using entity projection vectors instead of dense matrices, resulting in parameter
efficiency.

Semantic matching models focus on comparing the semantic similarity
between entities or relations in text and those in the knowledge graph.
RESCAL [19] utilizes a bilinear scoring function to solve a three-way rank-r



290 Y. Liu et al.

matrix factorization problem. DistMult [20] reduces the number of free param-
eters by enforcing the relation embedding matrix to be diagonal. ComplEx [21]
extends the bilinear product score to the complex vector space, enabling more
effective modeling of antisymmetric relations.

Rotation-based embedding models map entities and relations to a complex
vector space, enhancing representational capabilities. RotatE [15] is an example
of such a model, leveraging rotations in the complex plane. HAKE [22] takes a
unique approach by rewriting the rotation formula using polar coordinates and
separating the scoring function into phase and modulus components.

2.2 Knowledge Graph Embedding for DTIs

The integration of knowledge graphs and Drug-Target Interactions (DTIs) has
emerged as a promising approach for studying DTIs, offering new avenues for
exploring drug-target relationships and advancing drug discovery and develop-
ment.

Mohamed et al. [12] introduced the TriModel, a novel approach that lever-
ages embedded learning of DTI knowledge graphs. By considering structural
information in the knowledge graphs (KGs), this model overcomes previous lim-
itations and treats the problem as link prediction in KGs. This approach incor-
porates prior information about drugs and targets, enhancing the predictive
power of the model. DTiGEMS+ [23] improves drug-target interaction graphs
by incorporating drug-drug and target-target similarity graphs. By considering
the similarity between drugs and targets, this model enhances the understand-
ing of complex interactions and provides a more comprehensive view of DTIs.
The NeoDTI model [13] presents a novel nonlinear end-to-end learning app-
roach that integrates diverse information from heterogeneous graph data. By
leveraging the power of heterogeneous graphs, this model captures the complex
relationships between drugs and targets, enabling more accurate predictions and
a deeper understanding of DTIs. The EEG-DTI model [14] utilizes graph convo-
lutional networks to predict DTIs based on low-dimensional feature representa-
tions of drugs and targets within heterogeneous graphs. This approach effectively
captures the structural information of the graph and leverages it for accurate
prediction of DTIs. GraphDTA [24] employs graph neural networks to predict
drug-target affinities. By exploiting the expressive power of graph neural net-
works, this model captures the intricate relationships between drugs and targets,
enabling precise predictions of drug-target affinities. Zhao et al. [25] propose an
approach that utilizes graph convolutional networks (GCNs) to learn potential
representations. By leveraging the capabilities of GCNs, this model effectively
identifies potential drug-target interactions, facilitating the exploration of novel
drug-target pairs.

However, both generic knowledge graph embedding models and knowledge
graph embedding models tailored for biological databases are unable to handle
dynamic graphs. Each update requires the model to be retrained, resulting in a
time-consuming process that limits the ability to meet the real-time requirements
of downstream tasks.
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3 Methodology

In this section, we describe our proposed methods in detail. Formally, a KG
G is represented as a directed graph: G = {(es , r , et) , es , et ∈ E , r ∈ R}, where
E is the set of entities and R is the set of relations. Each directed link in the
knowledge graph l = (es , r , et ) ∈ G corresponds to a fact triple, e.g., (aspirin,
drug-target, COX-1 ). We use bold to denote embedding vectors, for example, es
represents the embedding representation of es .

3.1 Knowledge Graph Embedding

We construct a KG based on the biomedical knowledge base. Specifically, drugs
and targets that have interactions are connected by relationships or links within
the knowledge graph. On the other hand, drugs and targets that do not have
interactions are not directly connected.

To learn embeddings of the KG, we use existing KGE methods. We take
RotatE as an example. The training process is as follows.

Firstly, we map entities, including drugs and targets, and relations (whether
there is a connection or not) to a complex space. Relations are defined as rota-
tions from es to the et , allowing modeling of directional relationships. For each
triple l = (es , r , et ), RotatE uses a distance function to measure the compatibil-
ity between the entities and the relation, as follows:

dr (es, et) = ‖es ◦ r − es‖ (1)

where ◦ is the Hadamard product. We then utilize the self-adversarial training
negative sampling loss function to compute the scores of the triples in the KG:

p
(
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′
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where α is the sampling temperature, γ is a fixed margin, σ is sigmoid function,
(es ′

i , r , et
′
i) is the ith negative sample.

Based on the loss score, we use gradient updating to optimize the embedding
vector for a number of iterations. The goal is to minimize the loss score and
improve the quality of the embeddings.
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Fig. 1. The overivew of semantic-aware learning based on attention mechanism. First,
the KG is constructed. The KGE method is used to generate embedding for the con-
structed KG. Then, the association strength between entities is learned and the atten-
tion matrix is generated. When a new node is added, the neighborhood information is
merged by a convolution operation in the hidden layer. The strength of association with
each neighboring node is calculated using the obtained attention matrix and finally the
weighted sum is output.

3.2 Semantic-Aware Learning Based on Attention Mechanism

After applying the KGE method to obtain embedded representations of drugs,
targets, and relations in the KG, we use the information from neighboring nodes
to efficiently generate representations for new data. The close connection between
neighboring nodes and target nodes allows us to capture contextual information
and semantic features about the target nodes, which can represent the meaning
and role of the target nodes in the KG. Furthermore, considering that neighbor-
ing nodes make different contributions to the target node, with some being more
strongly associated while others have weaker relationships, we use the attention
mechanism to learn the degree of association between neighboring nodes and the
target node. Figure 1 illustrates the structure of our method.

Specifically, given an embedding of an entity ei, we calculate the weights in
relation to the other entities to get the weight vector αi. The calculation of αi

is as follows:
score (ej, ei) = uT ReLU (ej � ei) (4)

αi =
exp (score (ej, ei))∑n
i=1 exp (score (ej, ei))

(5)

where ej represents the vector representation of ej , ei represents the vector
representation of the entity ei, and i �= j. u represents the parameter vec-
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tor of the attention network, � represents the element-wise multiplication, and
score (ej, ei) represents the correlation between ej and ei .

After calculating the correlation between all entities, an attention matrix A
is obtained, where A(i, j) represents the correlation value between eiand ej .

Next, we employ Graph Convolutional Networks (GCN) to capture relevant
information from neighboring nodes and combine the weight information derived
from the attention model to generate an initial embedding representation of the
new node. This initial embedding representation contains contextual information
and semantic features provided by neighboring nodes. We define the directly con-
nected nodes of the new node en as (ei , ej ). The initial semantic representation
formula is as follows:

Semen = A(n, i) � ei +A(n, j) � ej (6)

where Semen denotes the initial embedded representation obtained, which is
defined as Semen since it contains only semantic information about the context.

3.3 Graph Structure-Aware Learning

The KG contains structural information, such as the requirement in TransE that
es + r ≈ et, in RotatE that es � r ≈ et, in TransR that ‖es + r − et‖22 ≈ 0.

Thus, in different embedding methods, entities and relations are linked in
different structures. We train the obtained vectors, which contain semantic infor-
mation, to satisfy the inherent structural constraints through an iterative embed-
ding training. During this process, the vectors are refined and adapted to capture
both the semantic and structural aspects of the KG. Additionally, we adopt the
neighbor 3-hop triples for embedding training. This choice allows us to avoid
retraining the entire graph and to exploit the maximally correlated data within
the neighbor 3-hop region. By fine-tuning the already available semantic infor-
mation, we ensure that our goal is achieved.

Specifically, using RotatE as an example, a semantic embedding of a new
node en denoted as Semen , which is directly connected to the entity ei via the
relation ri, and to the entity ej via the relation rj . The required structure is:

Semen � ri ≈ ei (7)

Semen � rj ≈ ej (8)

We iteratively train the embedding, using en as the central node, and include
all triples within 3 hops to satisfy the structural constraints.

3.4 Training for Joint Semantic-Aware and Graph Structure-Aware

The overall training process of our model is depicted in Fig. 2. Firstly, we con-
struct the KG based on the biological database and generate the embedded
representation of this graph using the existing KGE method. Then, an atten-
tion model is trained using the obtained embedding representation to capture
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important information. Next, the GCN is used to capture the information of
neighboring nodes and combined with the attention model to generate the ini-
tial representation vector (semantic representation) of the new node. Finally,
this initial representation vector is iteratively trained using a specific optimiza-
tion algorithm, such as gradient descent, to learn structural information until
the best result is obtained.

Fig. 2. The training process of our method. When a new node is added, we first obtain
the embedding learning with semantic information through semantic-aware learning
based on the attention mechanism. Then, we iteratively train this embedding rep-
resentation by incorporating the structural constraints of the graph through graph
structure-aware learning.

4 Experiments

4.1 Experiment Setup

We present a comprehensive performance analysis of our approach by compar-
ing its performance before and after integration on four benchmark datasets
specifically designed for the DTIs task. Additionally, we test the efficiency of our
method on standard KGE datasets. Finally, we perform ablation experiments to
analyze the impact of individual components in our approach. Our experiments
conduct on an Ubuntu 18.04.4 environment with 62GB of RAM and a 60G GPU.
The software versions used include Pytorch.

Datasets. We employ four benchmark datasets, each representing a different
class of target proteins, namely enzymes (Es), ion channels (ICs), G protein-
coupled receptors (GPCRs), and nuclear receptors (NRs). These datasets have
been curated and simulated using information extracted from publicly avail-
able databases, including KEGG BRITE [26], BRENDA [27], SuperTarget [28],
and DrugBank [29]. The use of these datasets allows us to evaluate the perfor-
mance and generalizability of our proposed model across different protein classes.
Table 1 summarizes the statistical information for the four datasets.

To ensure effective learning and dynamic updates, we divide the dataset
into two parts. Specifically, we allocated two thirds of the dataset for learning
embeddings, while reserving one third for dynamic updating.
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Table 1. Dataset description.

Datasets Nuclear Receptor GPCR Ion Channel Enzyme

Drugs 54 223 201 445
Targets 26 95 204 664
Interactions 90 635 1476 2926

Evaluation Protocols. We employ two widely recognized evaluation met-
rics for DTIs task: AUC (Area Under the Curve) and AUPR (Area Under the
Precision-Recall Curve). Both AUC and AUPR metrics range from 0 to 1, with
higher values indicating better model performance.

The AUC metric measures the area under the ROC (Receiver Operating
Characteristic) curve. The ROC curve plots the true positive rate (sensitivity)
against the false positive rate (1-specificity) at various classification thresholds.
A higher AUC value indicates better discrimination ability and a more accurate
model.

The AUPR metric calculates the area under the Precision-Recall curve. The
Precision-Recall curve plots the precision (positive predictive value) against the
recall (sensitivity) at various classification thresholds. A higher precision signifies
a lower false-positive rate, while a higher recall indicates a lower false-negative
rate.

Baselines. We evaluate and compare the performance of our proposed model
with several state-of-the-art KGE-based models specifically designed for DTIs
tasks.

TriModel [12] uses a triple scoring mechanism to learn entity and relation
embeddings, enabling accurate representation of drug-target interactions.

TBSelfNet-DTI [30] uses a self-attention mechanism to capture the impor-
tance of neighboring entities and relations, enabling a more comprehensive
understanding of the underlying biological context.

Zhongyu He’s [31] introduces a novel embedding method that uses graph
convolutional networks (GCNs) to capture both local and global dependencies
in knowledge graphs.

The experimental data for each baseline model are extracted from the original
papers, ensuring consistency and reproducibility in our evaluation.

Hyper-parameters Settings. We employ a grid search technique to iden-
tify the optimal hyperparameters, performing an average of 10 iterations. The
experiments are conducted on GPUs using the PyTorch. The optimal settings
for hyper-parameters are as follows:

Enzyme dataset: Batch_size - 128, Epoch - 90000, Dimension - 200, Number
of Attention Layers - 3 layers, Number of Nodes in the Hidden Layer of the
Attention Network - 128, Learning rate - 0.001, Number of Hops of Structure
Learning Nodes - 3 hops.
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Table 2. The accuracy results for the DTI task. The best results are shown in bold.

Model Enzyme Ion Channel
AUC AUPR AUC AUPR

TriModel [12] 0.952 0.780 0.940 0.760
TriModel (+SAGS-DynamicBio) 0.971 0.760 0.941 0.729
TBSelfNet-DTI [30] 0.9731 0.7496 0.9785 0.8387
TBSelfNet-DTI (+SAGS-DynamicBio)0.9740 0.7489 0.9870 0.8350
Zhongyu He. [31] 0.9670 0.810 0.9710 0.821
Zhongyu He. (+SAGS-DynamicBio) 0.9778 0.808 0.9778 0.809

Table 3. The accuracy results for the DTI task. The best results are shown in bold.

Model GPCR Nuclear Receptor
AUC AUPR AUC AUPR

TriModel [12] 0.920 0.810 0.900 0.870
TriModel (+SAGS-DynamicBio) 0.931 0.798 0.911 0.865
TBSelfNet-DTI [30] 0.9786 0.7804 0.9271 0.7697
TBSelfNet-DTI (+SAGS-DynamicBio)0.98620.7811 0.9308 0.7590
Zhongyu He. [31] 0.9567 0.742 0.9307 0.711
Zhongyu He. (+SAGS-DynamicBio) 0.9609 0.729 0.9398 0.712

Ion Channel dataset: Batch_size - 128, Epoch - 90000, Dimension - 300,
Number of Attention Layers - 3 layers, Number of Attention Network Hidden
Layer Nodes - 128, Learning rate - 0.001, Number of Hops of Structure Learning
Nodes - 3 hops.

GPCR dataset: Batch_size - 256, Epoch - 100000, Dimension - 500, Number
of Attention Layers - 3 layers, Number of Attention Network Hidden Layer Nodes
- 128, Learning rate - 0.001, Number of Attention Network Hidden Layer Nodes
- 256, learning rate - 0.001, Number of Hops of Structure Learning Nodes- 3
hops.

Nuclear Receptor dataset: Batch_size - 512, Epoch - 150000, Dimension -
1000, Number of Attention Layers - 3 layers, Number of Attention Network
Hidden Layer Nodes - 256, Learning rate - 0.001, Number of Hops of Structure
Learning Nodes- 3 hops.

4.2 Drug-Target Interactions Task

Accuracy. Table 2 and Table 3 present the results of the embedding quality eval-
uation. The results demonstrate that our dynamic embedding method achieves
comparable performance to the baseline model, as observed in the AUC. Specif-
ically, the models incorporating our approach show an average improvement of
0.0071, with a maximum improvement of 0.019. This improvement corresponds
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Table 4. The results of the embedding times for the DTIs task. The best results are
shown in bold.

Model Enzyme Ion Channel GPCR Nuclear Receptor

TriModel [12] >1.5h >4.5h >6.2h >7.2h
TriModel(+SAGS-DynamicBio) ≈51.2 min≈1.7h ≈4.2h ≈5.3h
TBSelfNet-DTI [30] >1.7h >4.7h >5.9h >8.5h
TBSelfNet-DTI(+SAGS-DynamicBio) ≈50.2 min≈1.7h ≈4.5h ≈5.7h
Zhongyu He. [31] >1.2h >3.5h >5.5h >8.5h
Zhongyu He.(+SAGS-DynamicBio) ≈46.2 min≈1.9h ≈4.7h ≈5.9h

Table 5. The results of link prediction task on FB15k and WN18.

Model FB15k WN18
MRR Hits@10 MRR Hits@10

TransE [16] 0.380 0.641 0.454 0.934
TransE + SAGS-DynamicBio 0.411 0.662 0.481 0.953
TransD [18] - 0.773 - 0.925
TransD + SAGS-DynamicBio 0.632 0.801 0.934 0.944
TransH [17] - 0.644 - 0.867
TransH + SAGS-DynamicBio 0.578 0.684 0.911 0.912
RotatE [15] 0.797 0.884 0.949 0.959
RotatE + SAGS-DynamicBio 0.823 0.899 0.961 0.971
ComplEx [21] 0.692 0.840 0.941 0.947
ComplEx + SAGS-DynamicBio 0.734 0.873 0.957 0.962
DistMult [20] 0.654 0.824 0.822 0.936
DistMult + SAGS-DynamicBio 0.684 0.856 0.845 0.951

to a 2% increase in accuracy, highlighting the improved classification ability of
our models. Here, a decrease in AUPR indicates a potential decrease in the
ability to accurately identify certain critical interactions, such as the differential
effects of certain drugs and targets. This suggests that the embedding approach
may weaken the ability to effectively differentiate such interactions. In future
work, we aim to enhance the ability to accurately differentiate between different
types of interactions related to the same target.

Embedding Time. The embedding time results are summarized in Table 4.
Our model outperforms other baseline models in terms of embedding efficiency
by eliminating the need to retrain the added data using the KGE approach.
This key feature significantly improves the embedding efficiency, as shown by an
average improvement of 41.5%.
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Based on the results presented, our model demonstrates significant improve-
ments in both the accuracy of DTIs classification and the efficiency of updating.
The results show an average improvement of 0.0071 in accuracy compared to
the baseline model, indicating the enhanced performance of our approach. Addi-
tionally, our model exhibits notable improvements in updating efficiency, as evi-
denced by embedding time. These findings collectively highlight the effectiveness
and efficiency of our model in addressing dynamic biological data.

Fig. 3. The results for embedding time for link prediction task on the FB15k and
WN18 datasets.

4.3 Link Prediction Task

To ensure the validity and generalizability of our approach, we utilize two widely
used standardized datasets, FB15k [16] and WN18 [16]. These datasets have
been specifically designed for KGE and are well-established benchmarks in the
field. By using these datasets, we mitigate potential errors arising from sparse
or unevenly distributed biological data.

To evaluate the performance of our approach, we compare its accuracy and
embedding time with a traditional KGE model on the link prediction task. The
goal of link prediction is to anticipate potential relationships or connections
between two entities based on existing graphical information. To measure perfor-
mance, we use two standard evaluation metrics: Mean Reciprocal Rank (MRR)
and Hits@10. MRR and Hits@10 both return values in the range [0, 1], with
higher values indicating better performance in predicting links.
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Table 6. The results of Ablation studies for link prediction task on FB15k.

Model MRR Hits@10 MRR Hits@10

TransE [16] 0.380 0.641 TransD [18] - 0.773
TransE + Sem-A 0.390 0.649 TransD + Sem-A 0.562 0.780
TransE + GraphS-A 0.401 0.654 TransD + GraphS-A 0.612 0.786
TransE + Ours 0.411 0.662 TransD + Ours 0.632 0.801
TransH [17] - 0.644 RotatE [15] 0.797 0.884
TransH + Sem-A 0.542 0.651 RotatE + Sem-A 0.801 0.890
TransH + GraphS-A 0.556 0.660 RotatE + GraphS-A 0.812 0.894
TransH + Ours 0.578 0.684 RotatE + Ours 0.823 0.899
ComplEx [21] 0.692 0.840 DistMult [20] 0.654 0.824
ComplEx + Sem-A 0.703 0.851 DistMult + Sem-A 0.660 0.831
ComplEx + GraphS-A 0.721 0.863 DistMult + GraphS-A 0.672 0.840
ComplEx + Ours 0.734 0.873 DistMult + Ours 0.684 0.856

Accuracy. The results of the prediction accuracy comparison are presented in
Table 5. Specifically, the MRR metric shows an average improvement of 0.03.
This improvement reflects the improved ability of our model to accurately rank
the most relevant predictions. Additionally, the Hits@10 metric shows an average
improvement of 0.02, indicating an increased accuracy in identifying the correct
predictions within the top 10 results. This improvement highlights the effective-
ness of our model in accurately identifying the most relevant predictions among
the top candidates.

Embedding Time. The embedding time results for each model on the FB15k
and WN18 datasets are depicted in Fig. 3. Notably, our dynamic embedding
model shows a significant time reduction of about 50% compared to other models.
Furthermore, as discussed in the previous section, our accuracy results demon-
strate that we have successfully reduced the update time while maintaining a
high level of accuracy. This performance characteristic is particularly well suited
to meet the real-time requirements of downstream tasks.

4.4 Ablation Studies

We evaluate and analyze the contribution of the semantic-aware and structural-
aware modules in our study. To test the effectiveness of these modules, we fuse
existing traditional KGE models and perform ablation studies. The results of
these studies are presented in Table 6 and Table 7, which illustrate the impact of
the semantic-aware (Sem-A) and graph structure-aware (GraphS-A) modules on
the quality of embeddings. Based on the results presented in the tables, it is clear
that both the semantic-aware and structure-aware modules play a crucial role in
improving the quality of embeddings. This finding highlights the importance of
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Table 7. The results of Ablation studies for link prediction task on WN18.

Model MRR Hits@10 MRR Hits@10

TransE [16] 0.454 0.934 TransD [18] - 0.925
TransE + Sem-A 0.464 0.944 TransD + Sem-A 0.918 0.929
TransE + GraphS-A 0.470 0.949 TransD + GraphS-A 0.924 0.934
TransE + Ours 0.481 0.953 TransD + Ours 0.934 0.944
TransH [17] - 0.867 RotatE [15] 0.949 0.959
TransH + Sem-A 0.893 0.872 RotatE + Sem-A 0.951 0.962
TransH + GraphS-A 0.901 0.892 RotatE + GraphS-A 0.957 0.969
TransH + Ours 0.911 0.912 RotatE + Ours 0.961 0.971
ComplEx [21] 0.941 0.947 DistMult [20] 0.822 0.936
ComplEx + Sem-A 0.949 0.951 DistMult + Sem-A 0.829 0.941
ComplEx + GraphS-A 0.952 0.958 DistMult + GraphS-A 0.832 0.949
ComplEx + Ours 0.957 0.962 DistMult + Ours 0.845 0.951

incorporating both semantic and structural learning aspects to achieve optimal
performance.

5 Conclusion

This paper presents a novel embedding model, SAGS-DynamicBio, specifically
designed for dynamic biomedical data. Our proposed model effectively utilizes
both semantic and structural information extracted from KGs to represent new
data. By incorporating semantic perception modules based on attention mech-
anisms, our SAGS-DynamicBio model captures the contextual information and
dependencies between entities and relations in the KGs. Our experimental results
validate the effectiveness of the proposed model. Future work can focus on incor-
porating spatial structure and exploring the applicability of our model in other
domains.
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Abstract. Product development is the process of creating and bring-
ing a new or improved product to market. Formulation trials consti-
tute a crucial stage in product development, often involving the explo-
ration of numerous variables and product properties. Traditional meth-
ods of formulation trials involve time-consuming experimentation, trial
and error, and iterative processes. In recent years, machine learning
(ML) has emerged as a promising avenue to streamline this complex
journey by enhancing efficiency, innovation, and customization. One of
the paramount challenges in ML for product development is the models’
lack of interpretability and explainability. This challenge poses signifi-
cant limitations in gaining user trust, meeting regulatory requirements,
and understanding the rationale behind ML-driven decisions. Moreover,
formulation trials involve the exploration of relationships and similari-
ties among previous preparations; however, data related to formulation
are typically stored in tables and not in a network-like manner. To cope
with the above challenges, we propose a general methodology for fast
product development leveraging graph ML models, explainability tech-
niques, and powerful data visualization tools. Starting from tabular for-
mulation trials, our model simultaneously learns a latent graph between
items and a downstream task, i.e. predicting consumer-appealing prop-
erties of a formulation. Subsequently, explainability techniques based
on graphs, perturbation, and sensitivity analysis effectively support the
R&D department in identifying new recipes for reaching a desired prop-
erty. We evaluate our model on two datasets derived from a case study
based on food design plus a standard benchmark from the healthcare
domain. Results show the effectiveness of our model in predicting the
outcome of new formulations. Thanks to our solution, the company has
drastically reduced the labor-intensive experiments in real laboratories
and the waste of materials.

Keywords: Product Development · Structure Learning · XAI for
tabular data

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-70378-2_19.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
A. Bifet et al. (Eds.): ECML PKDD 2024, LNAI 14949, pp. 303–318, 2024.
https://doi.org/10.1007/978-3-031-70378-2_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-70378-2_19&domain=pdf
http://orcid.org/0000-0002-4861-455X
http://orcid.org/0000-0001-9258-7416
http://orcid.org/0009-0008-6250-9650
http://orcid.org/0000-0002-4808-4106
https://doi.org/10.1007/978-3-031-70378-2_19
https://doi.org/10.1007/978-3-031-70378-2_19


304 M. Dileo et al.

1 Introduction

Product development refers to the systematic process of designing, creating, and
introducing new or improved products into the market. A fundamental step of
this process is represented by the formulation trials, in which the research and
development (R&D) department of industrial companies experiments with vari-
ous ingredients, proportions, physical properties, and other factors to determine
the optimal combination that meets the desired specifications and performance
criteria. Conventional approaches to formulation trials typically utilize labor-
intensive experimentation, trial and error, and iterative procedures, which can
take several weeks to meet a desired formulation.

Over the past few years, machine learning (ML) has emerged as a promising
solution for simplifying this process and enhancing efficiency, innovation, and
customization. A main challenge in ML for product development is the mod-
els’ lack of interpretability and explainability. This limitation poses significant
burdens in gaining user trust, fulfilling regulatory standards, and understand-
ing the logic behind ML-driven decisions. Moreover, formulation trials involve
the exploration of relationships and similarities among previous preparations or
solutions; but, data related to these formulations are typically stored in tables
without explicit relationships between trials.

To cope with the above challenges, we propose a general methodology for fast
product development leveraging graph machine learning models, explainability
techniques, and powerful data visualization tools. Starting from tabular formula-
tion trials, our model simultaneously learns a latent graph between items and a
downstream task, i.e. predicting consumer-appealing properties of a formulation.
This choice enables the model to explore latent correlations among formulations
and feature values and allows transferable knowledge between similar product
lines or iterative design processes. As a further step, explainability techniques
based on graphs, perturbation, and sensitivity analysis effectively support the
R&D department in their formulation process. Specifically, global-level explana-
tions - related to the overall predictions of the model - allow them to identify
the most influential characteristics for obtaining a certain property, while graph
and single-level explanations - related to the prediction of single formulations -
effectively support the users in identifying new recipes, the impact of changes
in existing recipes, and the restocking of ingredients. The current solution is in
the deployment phase and is offered to industrial companies through customized
web applications.

As case study, we present the application of the above solution in the context
of food design; presenting two real-world datasets collected in collaboration with
a renowned company in the sector. In this scenario, industrial researchers are
interested in finding recipes that satisfy specific sensorial properties of the prod-
uct over time, given the composition of its ingredients and its physical properties.
We model the problem of predicting sensorial properties as a multi-regression
task. We evaluate our model on the two datasets, exhibiting the effectiveness
of our solution compared to common tabular, graph, and structure learning
approaches. Moreover, an ablation study highlights that the graph machine
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learning approach plays a crucial role in obtaining the best performance against
the baselines. Finally, we also evaluate our method on a standard benchmark
dataset for structure learning in the healthcare domain, showing an increase in
performance compared to state-of-the-art models.

From the client side, our solutions are positively impacting different business
and production metrics: the company is expected to reduce the labor-intensive
experiments from 150 tests before approval to 30, the waste of materials dropped
up to 30%, and the time to market has passed from seven to two months. We
believe our work highlights a promising avenue for graph machine learning on
general formulation trials in product development.

2 Background

In this section, we briefly provide background on graph neural networks. Then,
we describe related works on the use of graph neural networks for product devel-
opment and graph structure learning for tabular data, highlighting some works
that provide also explainability techniques for the task.

Graph Neural Networks. Graph Neural Networks (GNNs) [18] are neu-
ral networks specifically designed to handle graph-structured data. Thanks to
their ability to propagate and aggregate information across nodes and edges
within a graph, they excel at capturing relationships and dependencies in graph-
structured information to generate a vector-based representation for nodes, lever-
aging also node and/or edge-level attributes. This versatility has led to their
application in diverse domains such as social network analysis [3], recommenda-
tion systems [7], or bioinformatics [5]. Modern GNNs rely on the 1-hop message-
passing framework [6] for processing graph data. Specifically, given a graph
G = (V,E), the representation of a node v ∈ V at the l-layer of a GNN is
obtained as a combination of the representation of the node v at layer l − 1 and
aggregation of the representation of the nodes in the 1-hop neighborhood of v,
where layer zero is represented by the initial node features. Different kinds of
aggregation and combination functions can be considered to build different GNN
layers.

GNNs for Product Development. Recently, Graph Neural Networks have
been successfully applied in product development. In particular, GNNs are used
for product design of items that can be naturally represented as graphs, mean-
ingfully processed as 3D data, or whose interactions with other elements are
explicitly defined. For instance, Bian et al. [1] formulate the material selection
problem as a binary node-level classification task over the assembly of Computer-
aided design (CAD) projects, modeled as a graph of material components, and
leverage GNNs to obtain representation for materials. CAD models can be also
represented as 3D structures, e.g. using Point Clouds [12], whose representation
can be learned using GNNs [22]. In the context of drug design, the interaction
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between co-prescribed drugs and drug-target protein can be leveraged by GNNs
for drug repurposing and identification of side effects [5]. In the last few years,
GNNs were also employed for scaling deep learning for materials discovery and
improving the modeling of material properties given their molecular structure
or composition [17]. Although all these methods have shown successful appli-
cations of GNNs in product development, most of them assume a fixed graph
structure between elements or explicit interactions between products. But, in
most cases, formulation trials in product development are typically stored as
tables and their complex relationships (e.g. recipe similarities, sharing knowl-
edge between experiments) are not explicitly modeled. Moreover, in the context
of food design, where industrial researchers are interested in consumer-appealing
taste properties, the use of 3D data structures would not be as meaningful as in
the context of manufacturer design.

Graph Learning for Tabular Data. In recent years, the community has
underlined a critical gap in deep learning for tabular data: the lack of represen-
tation of latent correlations among data instances and feature values [14]. GNNs,
due to their ability to model relationships between diverse elements of tabular
data, have attracted considerable interest and have been applied across vari-
ous steps of tabular data processing [14]. In particular, graph structure learning
methods [24] aim to jointly learn an optimized latent graph structure among ele-
ments and an element-level downstream task. Among these approaches, only a
few provide also explanations for the obtained results. For instance, Verdone et
al. [21] utilizes GNNExplainer [23] for providing explainable spatio-temporal
predictions for multi-site photovoltaic energy production. In the healthcare
domain, Kazi et al. [9] provides an attention-based mechanism for interpretable
Alzhaimer’s disease predictions, while Li et al. [15] utilizes interpretable fea-
ture learning for Parkinson’s disease diagnosis. To the best of our knowledge, no
explainable graph machine-learning techniques have been applied in the context
of product development and food design.

3 Dataset and Case-Study

We present a case study in the context of product development for the food
industry introducing two real-world datasets collected in collaboration with a
renowned company in the sector, Perfetti Van Melle (PVM). In particular, the
PVM Lainate Labs is the entity in charge of running the analysis and trials nec-
essary to create new recipes and formulations for their products. Given formula-
tions of previously tested products and their corresponding consumer-appealing
properties, the primary goal of our solution is to speed up product develop-
ment by predicting the property values of new formulations. This allows R&D
departments and labs to fast discover new potential formulations for a desired
property. The next subsections will detail the case study and datasets used to
test our solution.
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Case-Study. Product development in the food industry involves traditionally
several steps, which can be summarized as follows: (i) Product Design: defin-
ing in detail the consumer-appealing characteristics of the new product, based
on several factors such as customer feedback, new ingredients availability, new
strategies, and other market needs; (ii) Recipe formulation: creating the recipe
to meet the desired design. This step is based mostly on experience matured over
the years by the members of the research and development (R&D) department;
(iii) Laboratory Analysis : measuring the physical properties of the product uti-
lizing highly specialized technical equipment (e.g. rheometers) and monitoring
the various aspects of the product through dashboards; (iv) Process iteration:
at the end of the described steps, the overall quality of the product is eval-
uated. If the metrics are not aligned with the desired properties, the whole
process is repeated iteratively. This process can take several weeks to obtain
a desired recipe formulation. The goal of our solution is to allow the company
to abandon an iteration-based process in favor of a data-driven approach, in
which AI techniques can suggest a new product design, given the past trials and
the desired consumer-appealing characteristics. Specifically, a machine learn-
ing model is trained to predict the properties of new formulations. Afterwards,
explainability and advanced data analysis techniques are leveraged to support
the R&D department in designing new recipes.

Dataset. We collected two datasets derived from the formulation trials tested
by the R&D department of PVM. Each formulation trial is described by the
following groups of features: (i) Raw materials: the ingredients of the recipe.
They are values between zero and one, each value represents the percentage of
a certain ingredient in the recipe. As a consequence, the sum of these features
for each row must be one. Some recipes require specific ingredients, while others
may not utilize all of them; (ii) Physical properties: features derived from the
laboratory analysis (e.g. using rheometers). An example of physical property is
the viscosity of the product; (iii) Sensorial properties: the consumer-appealing
properties to predict. They are obtained thanks to a panel of several people who
taste the recipe and measure a particular sensation multiple times over a defined
time interval. In this work, we focus on trials for “malleability” and “toughness”
sensorial properties. Hence, overall, we obtained two datasets, each of them con-
sisting of one hundred formulation trials described by forty raw materials and
twenty-three physical properties. More information about the dataset and its
preprocessing can be found in the supplementary material.

4 Methodology

In this section, we describe the proposed methodology for predicting the outcome
of new formulation trials for specific desired product properties, which allows
fast product development for industrial labs. The methodology leverages the
characteristics of previously tested formulations and an inferred underlying graph
structure that captures the similarities between previous laboratory trials.
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Figure 1 shows the pipeline of our solution. Starting from the characteristics
of previously tested products, modeled as tabular data, the Differentiable Graph
Module (DGM)-based model [8] simultaneously learns, in an end-to-end fashion,
the downstream task, i.e. the properties of a product, and an optimal underlying
latent graph. The Explainer shows the most important product characteristics
for a certain expected property and the most important nodes, i.e. previously
tested recipes, for reaching the desired characteristic. The Explorer allows the
R&D department to visualize the obtained graph for investigating new possible
trials. Finally, the Simulation module leverages the DGM module at inference
time to simulate the outcome of new formulation trials before getting in real
laboratories.

The current solution is in the deployment phase and is offered to industrial
companies through customized web applications. The next subsections describe
the pipeline modules and the main features of the web application in detail.

Fig. 1. Pipeline of our methodology for explainable prediction outcome of formulation
trials.

4.1 DGM-Based Model

We model formulation trials as a X ∈ R
N×d matrix, where N is the number of

formulations and d is the number of features (raw materials and physical prop-
erties). Each row of X has an associated vector y ∈ R

z of consumer-appealing
characteristics, where z is the number of considered characteristics. In our sce-
nario, y represents a sensorial property with z = 8 sampled values over time.

We model the problem of predicting the outcomes of a formulation as a multi-
regression task on the function F : Rd �→ R

z that maps formulations to their
consumer-appealing properties. Hence, the objective of the DGM-based model
is to solve a multi-regression task and learn an optimal underlying latent graph
for solving the task.

Initially, the model takes the input feature matrix X ∈ R
N×d and gener-

ates a graph G as its output. The process involves transforming input features
X ∈ R

N×d into auxiliary features X̂ = fΘ (X) ∈ R
N×d̂ using a parametric func-

tion fΘ . Then, the auxiliary features X̂ are utilized for graph construction. In
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particular, the auxiliary features are used to construct a matrix P ∈ R
N×N ,

where each element pij represents the probability of an edge between formu-
lations i and j. Afterward, the probability matrix is leveraged to construct the
adjacency matrix A of the graph G. The edge probabilities are defined as follows:

pij(X;Θ, t) = e−tΔ(x̂i,x̂j)
2
= e−tΔ(fΘ (xi),fΘ (xj))

2
, (1)

Here, t is a learnable parameter, and Δ(·, ·) represents the Euclidean distance
between two nodes in the graph embedding space.

Once the probability matrix P(X;Θ, t) is obtained, a graph G is derived by
constructing a sparse k-degree graph using the k-NN rule, as detailed in [8],
obtaining the unweighted adjacency matrix A(X;Θ, t).

Given the adjacency matrix A, the second component of the model takes
in input A and the initial features X(0), yielding a new set of features X(1) =
gΦ (X(0)) as output, where gΦ represents a graph neural network function on X
and A. In our model, gΦ is a one-layer GCN [11].

The final node features X(1) is then given as input to an MLP to obtain the
final node predictions ỹi = MLP(X(1)).

The entire DGM-based model is optimized in an end-to-end fashion con-
structing a compound loss function that provides incentives for edges involved
in accurate predictions while imposing penalties for edges with large prediction
errors [8]:

L(yi, ỹi) =
∑

i∈V
j:(i,j)∈E

δ(yi, ỹi) log pij (2)

where V is the set of nodes, E is the set of obtained edges, yi and ỹi the
correct and predicted values for node i, pij is the probability score for edge (i, j),
and δ(yi, ỹi) is a reward function:

δ(yi, ỹi) =
z∑

m=1

|yi(m) − ỹi(m)| (3)

where z is the number of regression task, and the notation yi(m) indicates the
correct value for the product i on property m.

4.2 Explainer Model

The Explainer takes the trained DGM-based model and its prediction(s), and
it returns an explanation in the form of a small subgraph of the input graph
together with a rank of the node features most influential for the prediction(s).
Specifically, we adopt the GNNExplainer [23] method as it is the most well-
known and consolidated explainability technique for graph neural networks.

GNNExplainer specifies an explanation as a rich subgraph of the entire graph
the GNN was trained on, such that the subgraph maximizes the mutual infor-
mation with GNN’s prediction(s). This is achieved by formulating a mean field
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variational approximation and learning a real-valued graph mask that selects the
important subgraph of the GNN’s computation graph. Simultaneously, GNNEx-
plainer also learns a feature mask that masks out unimportant node features.

In our application scenario, it is important to provide both local, i.e. related
to single nodes, and global-level explanations. Global-level explanations are use-
ful for identifying qualitatively the most important characteristics for obtaining
a desired product property. Hence, we provide global-level explanations by com-
puting global feature importance scores that can be obtained by simply averaging
the feature mask learned by GNNExplainer. Alternatively, global feature impor-
tance scores can be provided by computing the permutation importance [2] on
node features.

On the other hand, local-level explanations are useful for identifying potential
starting recipes - nodes - for new formulation trials to test in our platform or
real labs, as well as product characteristics - features - that impact the value
of the target property. While potential starting recipes can be identified by
analyzing the subgraphs learned by GNNExplainer, the feature mask provided
by the model can only highlight the subset of the most influential features and
it is not able to quantify the impact of the features on the value of the target
property. Hence, we compute the local feature importance of the feature i for
the node v as the percentage change in the target property of v in response to
a 5% change in the value of i. The percentage of change is chosen following the
R&D department’s recommendations.

4.3 Explore and Simulate Product Development

We visualize the results of the trained machine learning models and test them
on new data in a web application. Specifically, once the user has imported tab-
ular data representing the history of its laboratory trials, the application allows
them to explore the learned graph representation, obtain local and global-level
node explanations, and initiate simulations to predict outcomes of new prod-
ucts. Based on the results of the simulations, users can decide which products to
test in real laboratories, and eventually approve their trials to add them as new
training instances, updating the trained models in an online learning fashion.
The next two paragraphs will detail the Explorer and Simulation modules.

Explorer. The Explorer is the data visualization module that allows users to
visualize the complex relationships among their recipes, and the most influential
characteristics/previous trials, to determine good starting points for potential
new recipes. Figure 2 shows the graphical interface of the Explorer component.
The graph constructed through the DGM-based model is displayed as an inter-
active graph on which users can interact to zoom in on details, select nodes,
and view explanations and ancillary information. The interactive graph is built
using the Cytoscape.js framework [4] and displayed using the Cola layout1. The
platform offers filtered views for large graphs to ensure that users are directly
1 https://marvl.infotech.monash.edu/webcola/, March 2024.

https://marvl.infotech.monash.edu/webcola/
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presented with the most interesting nodes. Specifically, the application utilizes
the PageRank scores [13] to prioritize and suggest the subgraph around the
most important nodes first. Below the interactive graph, a horizontal bar chart
displays the global feature importance, which identifies the variables that most
significantly impact the predictions across the entire network. Users can select a
target node u to see its features, view its local explanations, and obtain the sub-
graph of the top N nodes starting from u using a dept- or a breadth-first search.
The graphical interface for the Explainer is very similar to the Explorer, with
the interactive graph representing the subgraph for a node-level explanation,
and the bar chart showing its local feature importance.

Fig. 2. Example of the GUI for the Explorer component in the web application. The
graph constructed through the DGM-based model is displayed as an interactive graph.
Nodes are colored based on the predicted “toughness” value, the darker the higher.
Below the interactive graph, a horizontal bar chart displays the global feature impor-
tance for predicting the “toughness”.

Simulation. Users can initiate simulations for predicting product outcomes for
specific properties from trained machine learning models. First, they can select
an existing formulation, chosen with the Explorer component, to use as a good
basis for a new trial and edit it to create a new recipe. Subsequently, they can
run a simulation to obtain the predicted outcome and the relative explanation of
the new formulation. Based on the results, users can now edit the recipe multiple
times to quickly investigate slight changes in their formulation. At the end of
this process, users have the option to save the simulation as a new node within
the system. This way, the new node will be part of the training set and the
model parameters will be updated. Figure 3 shows an example of the simulation
interface for the product property “malleability”.
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Fig. 3. Example of the GUI for simulations. On the left side, the user can insert and
edit a new formulation. On the right side, it can visualize the newly obtained graph
and the predicted values for the desired property. The newly inserted formulation is
represented by the node circled in light blue. (Color figure online)

5 Experiments

In this section, we compare our DGM-based model against five common base-
lines for structure learning tasks. Subsequently, we provide insights into the
explanation generated on our two datasets. Finally, we validate our method on
a benchmark dataset for structure learning.

Experimental Setting. We developed the DGM-based models and the
Explainer using PyTorch Geometric (PyG)2. We evaluated the DGM-based
model over the multi-regression task. We used the mean absolute error (MAE)
and the root mean squared error (RMSE) to evaluate the prediction perfor-
mance. We split the datasets into training, validation, and test sets adopting a
60/20/20 split. Consistently, we apply identical dataset divisions and training
procedures across all the experiments. In all our experiments, we use the Adam
[10] optimizer on the L1 loss on the training set. Hyperparameters are tuned
by optimizing the loss function on the validation set, and the model parameters
are randomly initialized. More information can be found in the supplementary
material.

Baselines. We compare our model against five different baselines. Specifically,
following previous works on structure learning [8,9], we choose an MLP that
processes the tabular data as is, GCN [11] and GAT [20] using the k-NN graph
construction on tabular data, and DGCNN [22], where the graph is dynamically
constructed using nearest neighbors in the feature space and learned end-to-end
with the supervised task. In addition, we consider a GraphTransformer [19] (GT)
baseline, where the graph structure is learned using an attention mechanism over
the complete graph. For a fair comparison, we use nearest neighbors with k = 7
for all the experiments and we adopt the same embedding dimension for all the
models.
2 https://www.pyg.org/, June 2024.

https://www.pyg.org/
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Results. We report the RMSE and MAE for “malleability” and “toughness”
property prediction in Table 1. For each model, we ran experiments with five
different random seeds, reporting the average result and standard deviation
for each method. Our model shows better prediction performance and lower
variation compared to all the other baselines. Moreover, the GraphTransformer
reaches the second-best performance, highlighting that it is a strong baseline to
consider in structure learning evaluation. Overall, the results show that models
able to learn a latent graph structure perform better than models with a fixed
k-NN graph topology. Finally, it is worth noting that an MLP, which does not
take into account relationships among items, reaches comparable performances
with structure learning models; however, it exhibits large variations in its results.

Table 1. Results for “malleability” and “toughness” prediction on test set using RMSE
and MAE. The lower, the better. For each model, we ran experiments with five different
random seeds, reporting the average result and standard deviation for each method.

Method Malleability Toughness
RMSE MAE RMSE MAE

MLP 23.40± 18.30 21.60± 18.90 28.90± 16.20 23.80± 17.80

GCN 67.60± 03.30 66.50± 03.30 70.70± 03.00 69.30± 03.20

GAT 60.50± 09.20 59.10± 09.40 62.70± 09.40 60.80± 09.50

GT 22.30± 07.30 20.10± 07.00 27.50± 03.40 24.80± 03.40

DGCNN 30.60± 04.70 28.90± 04.90 32.60± 05.10 30.80± 05.40

Our model 14.22 ± 00.43 10.54 ± 00.46 12.48 ± 00.73 09.15 ± 00.29

Feature and Subgraph Importance. We report the top ten globally impor-
tant features for the property “malleability” and “toughness” in Fig. 4. Feature
names are anonymized for trade secret protection. We use two different colors
for raw materials and physical features. Results show that “toughness” is more
influenced by the choice of ingredients while “malleability” is heavily affected by
the physical properties of the final product. As an example, given the node with
the highest PageRank score, we report its local explanations in Fig. 5. Nodes are
colored based on their “toughness”: the darker, the higher. Results allow the R&D
department to identify new recipes and do the restock of raw materials. In fact,
the local feature importance allows the users to understand which recipe changes
have an impact on the outcome of the product, while the subgraph gives an idea
of the effect of recipe changes by exploring the relationships and comparing the
formulations. It is worth noting that local-level explanations are impacting the
production process of the products since the company has reduced up to 30%
the waste of material.
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Fig. 4. Global feature importance for the “malleability” (4a) and “toughness” (4b)
properties. Features are anonymized for trade secret protection. Raw material and
physical properties are colored in cyan and dark blue, respectively. “toughness” is more
influenced by the choice of ingredients, while “malleability” is heavily affected by the
physical properties of the final product. (Color figure online)

Fig. 5. Local explanations for the “toughness” property of a target node. (a) The top
ten locally important features for the node (anonymized for trade secret protection).
(b) The important subgraph for its “toughness” prediction. The target node is circled
in dark blue. Nodes are colored based on their “toughness”: the darker, the higher. The
local-level explanations reduce up to 30% the waste of material of the company. (Color
figure online)

Ablation Study. We conducted an ablation study of our model by removing
the following components: the preprocessing MLP layers, the structure learning
(SL) module, and the GNN layer. We report the prediction performances for the
property “toughness” in Table 2a. Results show that the graph machine learning
approach - the use of structure learning and GNN layers - plays a crucial role
in obtaining the best performance against the baselines. Moreover, the use of
an MLP to preprocess the features is beneficial in improving the performance of
the model and reducing its variability.
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Table 2. (2a) Ablation study of our model considering the performance on the test set
for the “toughness” property. (2b) Impact of the GNN architecture for the “toughness”
property. L is the number of layers.

(a)
Method RMSE
Our model 12.48 ± 00.73
Model w/o MLP 14.10 ± 03.05
Model w/o SL 28.07 ± 01.91
Model w/o GNN 28.90± 16.20

(b)
Method RMSE
GAT (L=1) 13.04 ± 0.65
GCN (L=1) 12.48 ± 0.73
GCN (L=2) 12.01 ± 0.36
GCN (L=3) 12.30 ± 0.29

Choice of GNN Architecture. As described in Sect. 4, our model employs
only one GCN layer to process the graph constructed by DGM. In this way, we
leverage the relationships between formulations learned by the model avoiding
aggregating features of too dissimilar recipes. To show the effectiveness of our
choice, we compare the result of our model using one GAT layer and two or three
GNN layers in Table 2b. Results show that there is no substantial gain in using
more than one GCN layer and that an attention mechanism is not beneficial for
the downstream task.

Model Validation. Besides our application scenario, to facilitate transparency
and increase trust, we validate our model on a standard benchmark dataset for
structure learning tasks in the field of healthcare and brain imaging. Specifically,
we utilize the TadPole dataset [16], which contains multimodal data related to
564 patients. The task is the classification of the patients into three classes:
“Normal Control”, “Alzhaimer’s disease” and “Mild cognitive impairment”, which
represent their clinical status. Each patient is represented by a 354-dimensional
representation derived from imaging (MRI, fMRI, PET) and non-imaging (demo-
graphics and genotypes) features. We follow the experimental setting used in
Kazi et al. (IA-GCN) [9] and we compare our model with the same baselines
as, to the best of our knowledge, it represents the most updated and recent
benchmark evaluation on the TadPole dataset. We report the results of our
experiments in Table 3. Note that cDGM stands for continuous DGM, which
is a model that utilizes a graph construction technique that leads to a dense
network, as described in [8], and it is different from the strategy used by our
solution. The results show that our model reaches the best performance against
the state-of-the-art models for the task.
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Table 3. Performance of our DGM-based model compared with the results presented
in IA-GCN on the Tadpole dataset. Results of the baselines were taken from [9]. LC
stands for Linear Classifier. cDGM stands for continuous DGM.

Method Accuracy AUC F1

LC 70.22 ± 06.32 80.26 ± 04.81 68.73 ± 06.70
GCN 81.00 ± 06.40 74.70 ± 04.32 78.4 ± 06.77
GAT 81.86 ± 05.80 91.76 ± 03.71 80.90 ± 05.80
DGCNN 84.59 ± 04.33 83.56 ± 04.11 82.87 ± 04.27
cDGM 92.92 ± 02.50 97.16 ± 01.32 91.4 ± 03.32
IA-GCN 96.08 ± 02.49 98.6 ± 01.93 94.77 ± 04.05
Our model 97.18 ± 00.72 99.02 ± 00.62 96.40 ± 00.62

6 Conclusion

In this work, we propose a data-driven approach for fast product development,
allowing companies to avoid an intensive trial-and-error iterative process for
creating a new or improved product. Starting from tabular formulations of past
experiments conducted by a research and development department, a machine-
learning model is trained to predict the desired properties of unseen formulations.
Specifically, we utilized a graph machine learning model that can simultaneously
learn the prediction task and an underlying latent graph to explore similarities
and complex relationships between the experiments. Subsequently, explainability
techniques based on graphs, perturbation, and sensitivity analysis effectively
support R&D in identifying new recipes for reaching a desired property. The
constructed graph, the property predictions, their explanations, and the model
at inference time are offered to the R&D department through data exploration,
visualization, and editing modules in a web application. We presented a case
study in the context of food design where industrial researchers are interested in
finding recipes that satisfy specific sensorial properties of the product over time.
We show the effectiveness of our model on two datasets derived from the case
study, achieving the best performance compared to other tabular, graph, and
structure learning approaches. Explainability techniques allow users to identify
the most influential characteristics for obtaining a certain property, discover new
recipes to test in real laboratories and do the restock of raw materials. Thanks to
our solutions, the company is expected to reduce the labor-intensive experiments
from 150 tests before approval to 30, the waste of materials dropped up to 30%,
and the time to market has passed from seven to two months.

In future works, we plan to apply our methodology to additional case studies
in several application scenarios that exhibit huge collections of past trials such
as drug design or insurance stipulation.
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Abstract. Hyperparameters (HPs) play a central role in the perfor-
mance of machine learning (ML) models, governing model structure, reg-
ularization, and convergence properties. Understanding the intricate rela-
tionship between HP configurations and model performance is essential
for ML practitioners, especially those with limited expertise, to develop
effective models that produce satisfactory results. This paper introduces
HyperParameter Explorer (HPExplorer), a semi-automated eXplainable
AI (XAI) method, to support ML practitioners to explore this relation-
ship. HPExplorer integrates an automated HP discovery algorithm with
an interactive visual exploration component. The HP discovery algo-
rithm identifies performance-consistent subspaces within the HP space,
where models perform similarly despite minor variations in HP config-
urations. The interactive visual exploration component enables users to
explore the discovered performance-consistent subspaces using an inter-
active 2-D projection called Star Coordinate. Users can also compare HP
configurations from different subspaces to explore their impact on model
performance. We developed HPExplorer in close collaboration with ML
practitioners, particularly geoscientists, using ML in their research. Ini-
tial feedback from scientists using HPExplorer in real-world scenarios
indicates that HPExploer enhances the transparency in configuring HPs
and increases the confidence of users in their decisions.

Keywords: Explainable Artificial Intelligence (XAI) · Hyperparameter
Space Exploration · Visual Analytics · Real-World Applications

1 Introduction

Explainable Artificial Intelligence (XAI) is increasingly essential in fostering
widespread acceptance and utilization of artificial intelligence (AI) systems in
our daily lives. A significant challenge in XAI is understanding how hyperpa-
rameter (HP) configurations affect machine learning (ML) model performance,
as HPs significantly specify the model’s architecture, regularization strategies,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
A. Bifet et al. (Eds.): ECML PKDD 2024, LNAI 14949, pp. 319–334, 2024.
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and convergence properties. However, understanding the relationship between
HP configurations and model performance can be challenging for humans due
to its complex, multivariate nature. Human cognition is typically effective at
understanding functional relationships with up to two variables. This cognitive
limitation poses a significant hurdle for users of ML models, particularly those
utilizing ML in their respective scenarios with limited ML expertise (referred to
as ML practitioners), hindering their ability to discern how specific choices of
HP configurations influence their model’s performance.

As a result, the ML research community has developed several automated
search techniques [1–3] to help users find appropriate HP configurations for their
models. Because users are reluctant to use methods they do not fully understand
there is a growing need for transparency in these techniques. Automated search
techniques provide only a few “good” results without explaining how different
HP configurations along the search path affect model performance. We developed
HPExplorer to address the challenge of ML practitioners in understanding the
relationship between HP configurations and model performance. HPExplorer
leverages the fundamental Visual Analytics (VA) concept of seamlessly inte-
grating an HP discovery algorithm with interactive visual exploration. The HP
discovery algorithm uncovers subspaces within the HP space where model per-
formance remains consistent despite minor variations in HP configurations. We
call these subspaces “performance-consistent subspaces.” The interactive visual
exploration component enables users to explore the performance-consistent sub-
spaces with HPExplorer. Combining the automated HP discovery algorithm with
interactive visual exploration provides a semi-automated exploration system for
ML practitioners to explore the relationship between HP configurations and
model performance. Our semi-automated exploration system draws inspiration
from Asimov’s Grand Tour concept [17], proposing a systematic traversal of
multidimensional data spaces to capture potentially interesting structures.

HPExplorer provides two main interactive visualization methods for explor-
ing the results of the HP discovery algorithm. The first visualization method,
Star Coordinate plot, provides a comprehensive overview of the discovered
performance-consistent subspaces. Star Coordinate offers an intuitive projec-
tion of the performance-consistent subspaces onto the 2D screen and aids users
in visually comparing the shapes and sizes of performance-consistent subspaces,
facilitating the identification of similarities and differences between them. Users
can interactively manipulate the projection of the performance-consistent sub-
spaces onto the 2D screen, fostering hypothesis generation and testing regarding
the relationship between HP configurations and model performance. The second
visualization method, Stacked Scatterplot, enables users to compare HP config-
urations from different performance-consistent subspaces and comprehend their
impact on model performance.

Throughout HPExplorer’s development, we prioritized user involvement. By
collaborating closely with ML practitioners and incorporating their feedback,
we translated their analytical needs into requirements that were subsequently
addressed in HPExplorer. We discuss the advantages and disadvantages of
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HPExplorer in three real-world scenarios based on initial feedback from users.
These include mortality prediction in climate change scenarios, analyzing carbon
concentration in soil, and flood prediction in natural hazard scenarios.

2 Related Work

We briefly discuss the current research in machine learning (ML), focusing on
areas related to HPExplorer, including hyperparameter optimization (HPO),
explainable AI (XAI), and Visual Analytics (VA).

2.1 HP Optimization in ML Research

Identifying the best hyperparameters (HPs) for machine learning (ML) models is
challenging, particularly for practitioners with limited ML expertise. Automated
search techniques, such as Grid Search, Bayesian Optimization, and Genetic
Algorithms, have become popular solutions. However, these methods often return
a “good” HP configuration without providing insights into how specific configu-
rations were selected. Additionally, the complexity of some methods can obscure
the HP search process, turning it into a black box for users.

Our approach differs by helping users to understand the impact of HP con-
figurations on model performance. By exploring the HP space with HPExplorer,
users can differentiate between HP configurations that yield “high,” “average,”
or “low” model performance. Thus, HPExplorer may serve as a valuable tool for
ML practitioners who want to assess and refine the results of automated search
techniques.

2.2 XAI Research

The field of Explainable AI (XAI) aims to elucidate the inner workings of AI
systems. While much XAI research focuses on explaining specific model decisions
or overall model behavior, there is a growing need to understand how HP con-
figurations affect model mechanisms and performance [5,6]. This need is driven
by users’ demands for transparency at this stage of the ML process [4]. An
emerging XAI topic relevant to our research is the explanation of decisions and
search paths in HPO algorithms. For example, the RX-BO [9] method employs a
rule-based approach to explain Bayesian Optimization (BO) decisions, automat-
ically generating distribution-aware rules to clarify the HPO process. In contrast,
XAI approaches like VisualHyperTuner [7] and VisEvol [8] actively involve users
in the HPO process through a human-in-the-loop approach. These systems use
visual analytics (VA) concepts and methods to enhance user understanding and
control over HPO algorithms. Additionally, methods like HyperTendril [6] and
XAutoML [10] integrate HPO explanations into AutoML pipelines using visual
techniques.

Many existing XAI methods focus on enhancing the transparency of decisions
and search paths in HPO algorithms. They provide local explanations of how HP
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configurations affect model performance along the HPO search path. However,
few address the broader challenge of explaining the global relationship between
HP configurations and model performance. Our innovative approach enables
users to explore performance-consistent subspaces within the HP space, offering
diverse visual perspectives of these subspaces. Our approach goes beyond merely
visualizing decisions made along a search path; it helps users understand the
broader landscape of HP configurations and their impact on model performance.

Another XAI approach to making HP selection more interpretable is to eval-
uate the importance of different HPs based on model performance. For example,
ANOVA-based methods [24] identify HPs with statistically significant effects,
while ablation studies [25] systematically remove components to assess their
impact on performance. Although ablation studies provide detailed insights,
they often overlook less significant HPs. HPExplorer uses ANOVA to gain initial
insights into HPs, guiding the exploration of HP configurations.

2.3 Visual Analytics Research

VA combines automated analysis methods (data mining) with interactive visu-
alizations, enabling humans to analyze complex data effectively (i.e., adopting
human-in-the-loop concept for data analysis scenarios [20]). Scientists increas-
ingly use VA concepts and methods in ML projects to understand, for instance,
the internal mechanics of deep learning models [28]. Many XAI methods focusing
on HPO [6–8] use VA concepts and methods to depict explanations about the
decisions and search paths of HPO algorithms to users.

Our research closely relates to the family of multidimensional projections
and multivariate visualization methods. To provide users with a concise visual
overview of performance-consistent subspaces in the HP space, we decided to use
a multidimensional projection with a radial 2-D layout. Multidimensional projec-
tions using radial layouts, such as Star Coordinate [11] or RadViz [12], arrange
the dimensions of high-dimensional data space around a circle and position data
points within the circle based on their values in each dimension. We specifically
decided to use Star Coordinate because it effectively represents the global distri-
bution of HPs across the HP space and supports users in identifying performance-
consistent subspaces. Users can interactively explore the performance-consistent
subspaces by manipulating the projection of the HP space on the 2D screen by
adjusting axes along the circular layout or hiding axes.

Another widely used VA technique in HPO-related research is the paral-
lel coordinate plot (PCP) [13]. PCP utilizes point-line duality to depict high-
dimensional data points [21] to users by representing each dimension as a vertical
axis and data points as lines traversing through these axes at their respective val-
ues in each dimension. PCP is commonly employed in HPO approaches to depict
the HP configurations traversed by HPO algorithms to users. The strength of
PCP lies in its ability to facilitate direct comparisons of HP configurations. How-
ever, for our specific purpose of comparing HP configurations based on model
performance, we decided to use a Stacked Scatterplot. In this visualization, the
x-axis represents the user’s performance metric, allowing for a clear separation
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of HP configurations based on their model performance. Unlike PCP, which does
not visually separate HPs leading to different model performances, the Stacked
Scatterplot offers a more intuitive comparison of HPs and their impact on model
performance.

3 Analytical Needs and Requirements for HPExplorer

We worked closely with ML practitioners to understand their challenges in
exploring the relationship between HP configurations and model performance.
We translated the abstract feedback from ML practitioners about their chal-
lenges into precise analytical requirements for the HPExplorer.

3.1 Analytical Needs of Users

We identified the following analytical needs of ML practitioners:

N1. Automated discovery of performance-consistent subspaces: ML
practitioners need an automated algorithm to discover performance-
consistent subspaces of the HP space. ML practitioners often emphasize the
importance of focusing on regions within the HP space where model perfor-
mance remains stable despite minor variations in HP configurations. Focusing
on performance-consistent subspaces provides valuable insights into which HP
configurations lead to desirable results.

N2. Exploration of performance-consistent subspaces through an inter-
active 2D projection of the HP space: ML practitioners expressed the
need to explore performance-consistent subspaces via an interactive 2D pro-
jection of the HP space. ML practitioners want to interactively manipulate
the projection of the HP space to explore performance-consistent subspaces
from different angles.

N3. Assessment and comparison of HP configurations and their impact
on model performance: ML practitioners emphasized the need to assess
and compare different HP configurations to understand their influence on
model performance and how variations in HP configurations affect model
performance.

N4. Exploration of the importance of individual HPs: ML practitioners
have expressed the need to explore the impact of individual HP configurations
on the model’s overall performance.

3.2 Requirements for HPExplorer

From the needs N1, N2, N3 and N4 of ML practitioners, we derived the following
requirements for HPExplorer:

R1. Semi-automated exploration of performance-consistent subspaces:
Manual exploration of performance-consistent subspaces within the HP space



324 Y. Grushetskaya et al.

is impractical for users. HPExplorer seamlessly integrate an automated dis-
covery algorithm (N1) with an interactive visual exploration component (N2)
to support the semi-automated exploration of performance-consistent sub-
spaces.

R2. Visual inclusion of inconsistent subspaces in the 2-D projection
of the HP space: Users emphasize the importance of providing a complete
overview of the HP space. HPExplorer includes performance-consistent and
inconsistent subspaces into the 2-D projection of the HP space (N2) to ensure
an informative and accurate visual exploration of the HP space.

R3. Enable comparison of individual HPs: HPExplorer should allow for an
in-depth comparison of HP configurations, focusing on exploring the influence
HP configurations on model performance and how variations in HP configu-
rations affect model performance (N3).

R4. Support exploration of importance scores and ensure transparency
of score calculation: Users want to explore the importance of HP config-
urations on overall model performance while understanding the algorithmic
calculation of the importance scores. HPExplorer visually explain the essen-
tial steps of the score calculation algorithm (N4).

4 HPExplorer

HPExplorer integrates two components, a HP discovery algorithm and an inter-
active visual exploration component, into a VA approach that fulfill requirements
R1 - R4. The HP discovery algorithm focuses on finding performance-consistent
subspaces within the HP space. This algorithm is complemented by an interactive
visual exploration component, which allows users to examine and comprehend
the results of automated discovery algorithm.

4.1 HP Discovery Algorithm

The HP discovery algorithm addresses R1 and traverses HP subspaces by ran-
domly selecting HP configurations, termed “anchors”, to test model performance.
These anchors pinpoint different HP subspaces and act as centers for further
exploration. Then, for each anchor, we examine neighboring HPs for perfor-
mance consistency. We use a simple, cost-effective random sampling method with
a user-configurable number of samples to ensure accessibility without extensive
computational resources. HPExplorer’s design allows the integration of alterna-
tive sampling methods. The developed algorithm involves the following compu-
tational steps:

Anchor Samples Generation. We begin by generating a set of HP config-
urations [θa

1 , θa
2 , ..., θa

n] that we call “anchor” samples. Each anchor θa
i is a point in

the user-defined HP space Θ. This process is conducted through Sobol sampling,
creating quasi-random sequences across a multidimensional space [18]. Distinct
from traditional random sampling, Sobol sequences, based on powers of two, pro-
gressively divide the unit interval into finer, uniform segments, thus achieving a
more evenly dispersed parameter space coverage [19].



HyperParameter Explorer 325

Subspace Sampling. For each Anchor sample θa
i , we define a subspace Rθa

i

within Θ using a distance threshold δ. Gower distance calculates dissimilarity
across data types by averaging normalized differences for numerical variables
and evaluating matches/mismatches for categorical variables, ranging from 0
(identical) to 1 (entirely different). A subspace Rθa

i
includes all points within the

user-defined distance threshold from the anchor θa
i . In each subspace Rθa

i
, Sobol

sampling generates neighbor samples [θa
i1

, θa
i2

, ..., θa
im
], representing different HP

configurations within the subspace of the anchor sample θa
i .

Performance Testing. We perform an evaluation (referred to as a Trial)
for all generated HP configurations θi, encompassing both anchors and neighbors
samples. Each Trial includes training the model Mi with the training dataset
Dtrain using Mi = Train(θi,Dtrain), then evaluating Mi on the test dataset Dtest
to obtain the performance score si through si = Eval(Mi,Dtest). Each Trial
outputs a tuple (si, θi), linking performance scores with HP configurations.

Subspace Consistency Evaluation. For each subspace, we compute the
mean difference in performance scores between the anchor θa

i and its neighbors
[θa

i1
, . . . , θa

im
] as μi = 1

n

∑
θa
ij

∣
∣
∣s(θa

i ) − s(θa
i
j
)
∣
∣
∣ , where s(θ) is the performance score

of θ. Each subspace Ra
θi

is classified based on a density threshold α. If μi ≤ α,
it is ’performance-consistent’; otherwise, it is ’non-performance-consistent’.

4.2 Interactive Visual Exploration Component

We use visualization and interaction methods from VA to address R1 - R4. The
interactive visual exploration component enables users to explore the outcomes
of the the HP discovery algorithm.

To address R1, HPExplorer utilizes the Star Coordinate plot to provide an
overview of the HP space and its performance-consistent subspaces (Fig. 1 Part
A). The Star Coordinate plot depicts the distribution of HP configurations gen-
erated by the HP exploration algorithm to users. Performance-consistent sub-
spaces are depicted as visual clusters of HP configurations within the plot (i.e.,
HP configurations from a common subspace are close to each other in the Star
Coordinate plot), enabling users to visually identify and explore these subspaces.

In response to the need for interactivity (R1), users can leverage the Star
Coordinate plot’s interactive axis management feature to explore performance-
consistent subspaces from various perspectives. This feature allows users to
manipulate the 2D projection by rearranging or removing axes from the 2-D
projection, aiding in better understanding the position of HP configurations in
the multidimensional HP space. Moreover, it enables users to focus their analysis
on key HPs or tailor the projection according to their analytical needs. Addi-
tionally, in adherence to R2, HP configurations from inconsistent subspaces -
characterized by a limited number of samples with significant performance devi-
ations from each other - are also depicted in the Star Coordinate plot to provide
users with a comprehensive 2-D visual representation of the HP space.

To address R4, HPExplorer utilizes a circular bar chart to depict the impor-
tance scores of individual HPs (refer to Fig. 1 Part B). Although comparing bar
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Fig. 1. Interactive Exploration Components in HPExplorer: A) Star Coordi-
nates Plot: This visualization offers a global view of the HP space. Star coordinates
depict HP configurations to users by projecting the HP space onto a 2D plane using
a star-shaped layout where the axes radiate outward from the center. In HP Explorer,
each axis is an HP, the points in the projection represent HP configurations, and the
color represents model performance. Dense point clouds (a, b) indicate performance-
consistent subspaces, while sparse points (c) highlight non-consistent subspaces. Circles
around the point clouds, added manually for demonstration purposes, emphasize these
subspaces. B) Radial Bar Chart: This chart displays the importance score and f-
statistic of each HP as bars around the center in clockwise direction.

heights in circular layouts poses a common challenge, the rationale for employing
a circular bar chart in our context is clear. The synchronization of the circular bar
chart axes with the Star Coordinates axes ensures a symmetrical and coherent
visual depiction of the HP space, enhancing the readability of the Star Coordi-
nate plot and the importance scores. Furthermore, the arrangement of HP axes
in descending order of importance score within the Star Coordinate plot offers a
logical starting point for interactive exploration of the HP space. This layout of
the two interactive visualization methods facilitates users’ understanding of the
relative significance of HPs and guides their exploration process. Additionally, we
provide detailed insights in calculating importance scores of HPs through numer-
ous small scatter plots. These scatter plots provide comprehensive information
about calculating the importance scores.

The utilization of a Stacked Scatterplot in HPExplorer supports users in
comparing HP configurations in detail, fulfilling the requirement R3 (Fig. 2).
The Stacked Scatterplot depicts the HP configurations along x-axis representing
the user’s performance metric. This comprehensive view provides insights into
the specific contribution of each HP configuration and their differences to other
HP configurations on model success or failure. Statistical annotations, includ-
ing maximum, mean values, and success ratios, increases the readability of the
Stacked Scatterplot.
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Fig. 2. Interactive Exploration Components in HPExplorer: Stacked Scat-
terplot This visualization facilitates the comparison of HP configurations and explores
their effect on model performance. Each HP configuration is represented as a point,
with the Y-axis indicating the HP value and the X-axis representing the model’s per-
formance with that HP configuration.

5 Real-World Applications of HPExplorer

This section aims to provide preliminary feedback from users to discuss the
advantages and limitations of HPExplorer rather than an exhaustive evaluation
of our approach.

We integrated HPExplorer into the research workflow of geoscientists to help
them find appropriate HP configurations for their ML models. The geoscientists
used HPExplorer to explore performance-consistent subspaces to decide on HP
configurations. The first scenario presents a detailed discussion of using HPEx-
plorer to predict mortality rates for climate change scenarios. The subsequent
two use cases, such as soil organic carbon prediction and flood prediction, pro-
vide concise summaries of HPExplorer’s utility and ML practitioners’ challenges
when using HPExplorer in these scenarios.

For the experiments described, we used default settings of 100 anchor samples
and 10 neighbour samples. For the majority of use cases, a single experiment
run sufficed. However, one scenario required a rerun with a reduced HP space.
Experiment run time varied based on configurations and model complexity, but
progress and model performance for HP configurations could be tracked in real-
time.

5.1 Use Case 1: Mortality Rate Prediction

In this use case an Echo State Network (ESN) was used for the prediction of
mortality rates in Germany under different climatic conditions. The ESN is a
method of reservoir computing that is capable of imitating complex dynamical
processes [29,30].

In this study, the ESN was used to train a connection between maps of
monthly maximum temperatures over Europe and mortality rates in Germany.
The training input data origin from climate storyline simulations. In those sim-
ulations, extreme weather events are simulated in different states of the climate
system, i.e. under different atmospheric forcing conditions [31]. For the network
training, temperature field outputs of simulations under current atmospheric
conditions are used. The target data are all-cause mortality data for all ages in
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Germany. After successful training, temperature field outputs of simulations with
future atmospheric conditions (i.e. 2K and 4K above pre-industrial level) are
used to make predictions of how mortality rates would develop in such warmer
worlds.

The researcher used HPExplorer to explore performance-consistent regions
within the HP space and identify appropriate HP configurations for the ESN
model. Initial analysis (Fig. 3, Panel B) showed treservoir size and leakage param-
eters significantly impact model performance, while other parameters had a
minor effect. The Star Coordinate plot (Fig. 3, Panel A) further revealed two
performance-consistent subspaces (labeled (a) and (b)) where specific HP com-
binations consistently yielded favorable results. Close analysis of these subspaces
highlighted numerous appropriate HP configurations for the ESN model.

Fig. 3. Exploring performance-consistent regions: The Radial Bar Chart (B)
on the right shows that the HPs “number of units” and “leakage” have the greatest
impact on model performance. The Star Coordinate plot (A) on the left reveals two
performance-consistent subspaces, labeled (a) and (b), where HP combinations consis-
tently yield low error values. (a) corresponds to HP configuration with considerable
extensive leakage and reservoir size values, while (b) corresponds to large leakage val-
ues, medium reservoir size values, and significant connectivity with the ESN.

To further investigate the relationships between the HPs and model perfor-
mance, the researcher conducted an in-depth analysis using Stacked Scatterplots,
as shown in Fig. 4. This visualization technique allowed the researcher to exam-
ine the variation in model performance (indicated by color and position along
the x-axis) for different values of different HPs along the y-axis. The Stacked
Scatterplot revealed that low leakage values yielded a mix of high and low error
values, while high leakage values predominantly resulted in low error values.
Conversely, when examining the spectral radius, the researcher observed a mix
of favorable and unfavorable outcomes across all its values, aligning with the low
significance of this HP in the circular bar chart on 3 (panel B).
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Fig. 4. Exploring performance-consistent regions: Researcher used stacked Scat-
terplot for examining the effects of leakage and spectral radius on model performance.
The upper plot shows a clear interaction between the two HPs: lower leakage increases
errors, whereas higher leakage enhances performance, emphasizing leakage’s significant
role. The lower plot indicates that spectral radius has little influence on errors, with
no apparent pattern across the whole interval of spectral radius, highlighting its small
impact on model performance.

Based on the researcher feedback, HPExplorer provided a structured and
less time-consuming approach for setting HPs than manual configuration and
testing. It facilitated targeted exploration of significant HPs to determine their
optimal ranges, setting non-essential HPs to default values. The exploration
results motivated the researchers to conduct more tests and study the impact
of the leakage HP for ESNs for gaining a deeper understanding of the impact of
HPs in this specific use case.

5.2 Use Case 2: Soil Organic Carbon Prediction

The scenario involved exploring HP configurations for Convolutional Neural Net-
work (CNN) models to predict soil organic carbon (SOC) levels using field spec-
tra data. SOC, a primary terrestrial carbon (C) component, plays a pivotal
role in mitigating climate change by absorbing and sequestering carbon dioxide
(CO2). The proliferation of soil spectral libraries (SSLs) at regional, continental,
and global scales presents a notable opportunity for SOC quantification through
spectral-based prediction models. With the expansion of extensive SSLs, there
is a growing need to employ ML models for spectral data processing.

HPExplorer showed that usage of an autoencoder for input dimensionality
reduction and optimizer selection significantly impact model performance. The
performance gap between models with and without autoencoders complicated
the analysis of other HPs, leading to a second experiment where all HP com-
binations was tested only with autoencoders. The exploration of the HP space
then highlighted the importance of the dropout rate, pinpointing the 0.1 to 0.5
interval as suitable for achieving optimal performance. In addition, HPExplorer
exploration revealed that incorporating a CNN layer and one or two Fully Con-
nected layers leads to superior results. These results are consistent with the
optimal architecture identified through previous manual searches and various
optimization methods.

Researcher feedback indicates that HPExplorer enabled a thorough explo-
ration of the relationship between HP configurations and model performance.
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This deeper understanding enabled the researchers to make informed decisions
based on empirical evidence. HPExplorer’s results were consistent with those
from manual search and optimization techniques. In addition, the researchers
appreciated HPExplorer’s structured approach and increased transparency com-
pared to manual selection and automated methods. The researcher also sug-
gested potential improvements. Introducing a dynamic filtering feature would
allow users to isolate results by specific HPs, such as “use autoencoder” or ker-
nel size range, without additional experimental runs. This improvement would
enrich HPExplorer’s functionality and save considerable time and computational
resources.

5.3 Use Case 3: Flood Detection

This use case for HPExplorer centers around examining flood prediction methods
by comparing point-based versus image-based ML models.

Due to the grave consequences of floods, scientists are working to anticipate
and mitigate hazards in flood-prone areas. The study focuses on the potential of
image-based models compared to point-based models, which, by integrating spa-
tial context, are hypothesized to offer enhanced predictive accuracy on unseen
data from diverse geographical regions. The methodology encompasses ten criti-
cal factors likely to influence flood occurrence, encompassing topographic, hydro-
logical, and geological dimensions. A dataset for this study was built based on
flood inventory, including 2500 documented flood locations and an equivalent
number of non-flooded locations.

The initial step in the research involved establishing a baseline for compari-
son. A CNN model was chosen to represent image-based models, compared with
point-based models and other image-based models. HP Explorer was instrumen-
tal in ensuring the CNN model operates within its optimal performance range.
Insights from HPExplorer underscored the critical role of kernel size, dropout
rates, and normalization types in model quality and stability. High dropout
rates compromise performance confidence while pooling layers, and the number
of filters has relatively minor impacts. Models with one or two CNN layers out-
perform those with three or more. Using HP Explorer enabled the researcher to
gain confidence that the selected HP configurations fall within an appropriate
performance range, establishing a reliable benchmark for subsequent analyses.

According to the researcher’s feedback, determining the appropriate num-
ber of subspaces for an experiment in HPExplorer can be challenging. Using
too few subspaces may not fully capture the complex relationship between HPs
and model performance, while using too many can prolong experimentation and
complicate visual exploration with Star Coordinate plots.

6 Discussion

User feedback emphasized the effectiveness of the Star Coordinate plot in iden-
tifying performance-consistent subspaces, which are depicted as distinct visual
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clusters in the 2D projection of the HP space. Users appreciated Star Coordi-
nates as a cornerstone of the interactive visual exploration component for pro-
viding an overview of HP configurations and guiding exploration priorities. The
detailed comparison facilitated by Stacked Scatterplots, including histograms,
aided users in specifying parameter values for individual HPs. Interactive fea-
tures like manipulating the projection and HP value filtering enhanced the explo-
ration process, offering users a tailored experience. While the Star Coordinate
plot provided informative overviews, it introduced visual ambiguities such as
other projection methods. The ambiguities challenged users to interpret HP val-
ues accurately. Despite this, users found that the plot correctly represented the
HP space on the 2D screen.

Some scenarios revealed limitations in HPExplorer’s ability to identify per-
formance-consistent subspaces, particularly with imbalanced or noisy datasets.
Users emphasized the need to fine-tune the HP algorithm’s parameters with
specific configurations, leading to high computational demands. Suggestions for
future research include developing a parameter-free HP discovery algorithm or
enhancing sampling strategies for improved initial results and computational
efficiency. The parameter-free discovery algorithm could enable users to directly
specify subspaces for sampling through the Star Coordinate plot. It also helps
users when performance-consistent subspaces are absent in the discovery result
because users frequently advocated for an interactive sampling directly in the
StarCoordinate plot.

While the Star Coordinate plot offers an informative overview of HP config-
urations and aids in exploring performance-consistent subspaces, it introduces
ambiguities in visual representation like other projection methods. The plot
arranges data points from minimum to maximum value in one half of the cir-
cle and from maximum to minimum value in the other half, creating ambiguity
in mapping and resulting in discontinuous ‘jumps’ in the 2D projection. This
ambiguity in the Star Coordinate’s mapping can challenging users in accurately
interpreting HP values from the plot. Also, subspaces far away in the HP space
are close to each other in the projection. The feedback from users indicates that
despite the ambiguity, the Star Coordinate plot always presents a consistent
visual representation of the HP space. The feedback also indicates that HPEx-
plorer needs to extend the current interaction capabilities to support users in
dealing with ambiguities, such as depicting the interval of HP values in the Star
Coordinate plot.

We also observed instances where our HPExploration algorithm failed to
identify performance-consistent subspaces, particularly with imbalanced, high-
variance, or noisy datasets. In such cases, users found it necessary to fine-tune
the algorithm’s parameters. User feedback underscores the significant impact
of these parameters, such as the number of epochs and anchor configurations,
on exploration effectiveness. However, specific configurations resulted in exten-
sive computational demands, prompting suggestions for future research direc-
tions. Users propose developing a parameter-free HPExploration algorithm to
better integrate with the interactive visual exploration component. Alterna-
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tively, enhancing the sampling strategy could yield improved initial results for
the interactive visualization and enhance computational efficiency. Additionally,
it is noteworthy that the relationship between HP configuration and model per-
formance does not have performance-consistent subspaces in some rare cases. In
such cases, users would like to sample the HP space interactively to ensure they
get all the essential information.

7 Conclusion

We developed HPExplorer in close collaboration with ML practitioners by trans-
lating the analytical needs of ML practitioners into requirements for HPEx-
plorer. We addressed these requirements with close feedback from ML prac-
titioners. We decided to discover performance-consistent subspaces through an
automated discovery algorithm and depict the discovered performance-consistent
subspaces using Star Coordinate projection. HPExplorer supports comparisons
of HP configuration using Stacked Scatterplots. The feedback from HPExplorer
users indicates that although the Star Coordinate plot provides a comprehensive
overview of HP space and assists in navigating performance-consistent subspaces,
interpreting it can be complex and requires further work on its interpretability
and interactive features. The Stacked Scatterplot emerged as particularly useful,
enabling straightforward comparisons of data point distributions and patterns
among various HP configurations.

We developed HPExplorer as part of the XAI platform ClarifAI, an open-
source project that develops XAI methods to make ML models more accessible
for scientists. Our collaboration with ML practitioners, particularly geoscientists,
underscores our commitment to developing user-friendly tools that address the
specific needs and challenges faced by ML practitioners in the real world. HPEx-
plorer is available on our public GitLab repository1, allowing the ML community
to access, use, and contribute to the project.

The initial user feedback indicates that the HPExplorer tool shows great
promise in combining automated analysis algorithms with interactive visual
exploration. This integration provides a transparent and intuitive process for
exploring the HP space, helping users make well-informed decisions about HP
configurations for their models. Insights from collaborating with geoscientists
underscore the value of VA concepts for XAI and highlight the need for our ongo-
ing development of interactive XAI methods. Addressing identified limitations
and enhancing XAI methods will be crucial, particularly in ensuring low-barrier
access to XAI for a broad audience. Our next research step will employ a rig-
orous methodology and systematic data analysis to evaluate users’ experiences
and interactions with HPExplorer.

Acknowledgments. We would like to express our gratitude to Daniel Eggert and
Peter Morstein for their assistance in implementing HPExplorer. Aviad Etzion helps
us in integrating HPExplorer into the real-world scenarios.

1 https://git.gfz-potsdam.de/xai/clarifai.
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Abstract. Building deep neural network models for clinical prediction
tasks is an increasingly active area of research. While existing approaches
show promising performance, the learned patient representations from
deep neural networks are often task-specific and not generalizable across
multiple clinical prediction tasks. In this paper, we propose a novel neural
network architecture leveraging the graph contrastive learning paradigm
to learn patient representations that are applicable to a wide range of
clinical prediction tasks. In particular, our approach consists of three
well-designed modules for learning graph-based patient representations,
alongside a pretraining mechanism that exploits self-supervised informa-
tion in generated patient graphs. These modules collaboratively integrate
patient graph structure learning, refinement, and contrastive learning,
enhanced by masked graph modeling as a pretraining mechanism to opti-
mize learning outcomes. Empirical results show that the proposed app-
roach outperforms baselines in both self-supervised and supervised learn-
ing scenarios, offering robust, effective, and more generalizable patient
representations in healthcare applications.
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1 Introduction

The use of deep learning techniques for analyzing Electronic Health Records
(EHRs) has received considerable attention in recent years. An EHR, the digi-
tized version of a patient’s medical history, includes clinical data such as patient
demographics, vital signs, lab test results, medications, and more. Deep learning
often does not make pre-defined assumptions and can discover common charac-
teristics among individual patients in large amounts of EHR data, which can be
used to support healthcare providers in a wide range of clinical decision-making
tasks, such as diagnosis, assessments of disease severity, and treatment choices
for patient disease management. Successful applications have ranged from dis-
ease diagnosis and prediction [16,25] to evaluating the risk of decompensation
or mortality [13]. These studies often employ Recurrent Neural Network [4] or,
more recently, Transformers [19] as the backbone models that can learn valu-
able patient representations from EHR data – a process, often known as patient
representation learning. While these approaches have demonstrated promising
performance, the learned patient representations are often task-specific; thus,
they have to be retrained for new tasks. Accordingly, a fundamental research
question is how to learn effective and robust patient representations that are
generalizable to multiple, if not all, medical tasks – aligning with the concept of
learning foundation models.

Self-supervised pretraining has emerged as a promising strategy to tackle such
a question challenge and learn versatile patient representations. This approach
can capture different patterns and features in the input data without relying on
human-annotated labels, enabling the learning of generalized and transferable
representations applicable to a variety of downstream tasks [6]. In this study,
we adopt the graph contrastive learning paradigm based on self-supervised pre-
training of graph neural networks. Multiple graph views of the input data are
created via data augmentation techniques, and graph representations are then
generated using contrastive learning [23,29,30]. Recently, the graph contrastive
learning paradigm has gained attention for its effectiveness in representation
learning, especially in areas where network graphs are readily available, such as
in social recommendation systems [24] and molecular property prediction [26].

However, the application of the graph contrastive learning paradigm in EHR
data presents unique challenges. Typical EHRs, characterized by sequential
records for each patient (longitudinal), do not naturally conform to a graphical
structure. While existing studies have proposed to adapt graph neural networks
to EHR data, we argue that these approaches fall short of pretraining on EHR
data due to the fact that their proposed graph structures, along with the graph
neural networks, are optimized in the context of label-dependent downstream
tasks.

In this paper, we introduce a novel neural network architecture that incor-
porates graph analysis techniques into the graph contrastive learning paradigm.
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Patient graph structure learning and refinement are achieved with node-level
clustering by assuming homophily. Additionally, we integrate attention mech-
anisms to enhance the model’s focus on only relevant parts of the graph. To
generate robust patient representations, we use contrastive learning, aiming to
maximize the mutual information between different views of the graph.

The idea of node-level clustering involves grouping the set of nodes into clus-
ters based on similarity, where nodes in the same cluster are likely to be similar,
and those in different clusters are dissimilar [10]. The homophily assumption sug-
gests that connected nodes in a graph tend to share similar attributes or labels
[21]. We thus utilize the outcomes of clustering as pseudo labels and apply the
homophily assumption as a constraint for adjusting the graph structure. Accord-
ingly, in refining the patient graph structure (as illustrated in Fig. 1 and detailed
below), edges are added between nodes when they share the same pseudo label
and removed if they contradict the homophily assumption (i.e., those with dis-
similar pseudo labels).

We enhance the graph view for contrastive learning by introducing a simple
yet effective structure augmentation technique. Specifically, we incorporate a ran-
dom walk strategy into our structure augmentation techniques, which replaces
the traditional neighborhood concept in a graph with path-based neighborhoods
(i.e., sequences of edges identified within the graph). For contrastive learning,
we define the positive and negative samples based on the augmented and main
graph views. Positives are derived from an anchor, its counterparts (nodes cor-
respond to the anchor) in different graph views, the neighbors of the anchor,
and the node connected to the anchor (having the same pseudo label as the
anchor), are treated as positives. Conversely, negatives comprise non-neighbors
of the anchor, nodes whose pseudo labels differ from the anchor’s, and all the
remaining nodes (except for the anchor’s counterparts) in different views are
treated as negatives. This framework facilitates the formation of positive and
negative pairs, which is essential for the contrastive learning process.

We use masked graph modeling as a pretext task to facilitate self-supervised
pretraining for graph neural networks, encouraging the model to derive gen-
eralized and transferable representations from unannotated graph data. This
is achieved by intentionally masking parts of the graph and then challenging
the model to predict these masked elements. Specifically, our approach is built
upon path-wise masking, which is enabled by the random walk strategy pre-
viously mentioned. Unlike the more common edge-wise masking, which typi-
cally involves removing, adding, or modifying edges within the input graphs.
Path-based masking focuses on sequences of edges connecting adjacent nodes,
thus offering a unique approach to altering the graph’s structure compared with
edge-wise masking. The implications of path-based masking are significant: it
forces the model to find more clues over longer sequences of connections, thereby
encouraging it to consider broader dependencies within the graph. This require-
ment not only makes the self-supervised pretraining task more challenging but
also imbues the process with deeper learning potential. This approach is com-
pelled to identify more complex patterns and relationships, enhancing its ability
to generate robust and comprehensive representations.
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The core contributions of this work are as follows:

– We have integrated graph analysis techniques into graph contrastive learning
to enhance the learning of patient representations from longitudinal EHRs.

– We proposed a novel neural network architecture, which consists of three
well-designed modules for patient representation learning that collaboratively
integrate patient graph structure learning, refining, and contrastive learning
together to optimize learning outcomes.

– We designed a simple yet effective pretraining mechanism, which consists
of masked graph modeling and graph contrastive learning, to achieve the
optimized learning outcomes.

– We empirically demonstrated that the proposed approach outperforms base-
lines in both self-supervised and supervised learning experiments.

2 Related Work

In recent years, various deep learning models have been proposed for clinical
risk prediction using EHR data, where representative models include convolu-
tional neural networks [12], recurrent neural networks [13], and attention-based
neural networks [14]. In addition to these neural network architectures, graph
neural networks (GNNs) have gained popularity due to their ability to handle
high-dimensional, graph-structured data. Prominent GNN approaches include
graph convolutional network [11], graph attention network [20], and graph con-
volutional transformer [5], and studies have investigated GNNs on EHR data
[15,17,27]. These studies derive graph structures from EHRs and feed them into
GNNs to generate patient representations for downstream tasks. Most of them
have focused on supervised learning settings for clinical prediction tasks, such
as mortality, readmission, and diagnosis prediction.

It is worth noting that a recent study by Cai et al. [1] incorporated hyper-
graph contrastive learning into EHR data representation learning. The research
presented in this study differs from that observed in Cai et al. [1] in the follow-
ing aspects: (i) their study focused on identifying and evaluating the medical
code-code relationship, the patient-patient relationship, and the patient-code
relationship. Our research made efforts to the improvement of methodologies for
representing EHR data in the form of a graphical structure. (ii) Their network
architecture is built upon hypergraphs, which can be treated as predefined, as
nodes are connected via hyperedges specified by medical codes. Our proposed
network architecture consists of three well-designed modules for graph-based
patient representation learning and a pretraining mechanism for exploiting self-
supervised information in generated patient graphs. Accordingly, our approach
is tailored to the self-supervised learning settings and focuses on achieving opti-
mized self-supervised learning outcomes using non-predefined graph data.
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3 Method

3.1 Basic Notations and Problem Definitions

In the EHR dataset, each patient’s data is a sequence of time-ordered records.
The records of the i-th patient are X(i) = [x(i)

1 , · · · , x
(i)
t , · · · , x

(i)
Ti
], where x

(i)
t =

[x(i)
t,1, · · · , x

(i)
t,Nx

] is the t-th record, Ti is the total number of records for the i-th
patient, and Nx is the number of features of each record. The basic demographic
of a patient is C(i) ∈ R

dC . Given a patient’s records and demographics, the
patient deterioration prediction task is to predict a binary vector y ∈ {0, 1}
that represents the patient’s health status; the hospital stay prediction task
is to predict a binary vector y ∈ {0, 1} that represents whether the patient’s
ICU/eICU stay is within 3 and 7 days.

3.2 Architecture Overview

Figure 1 displays an overview of the proposed network architecture.

Patient Graph Structure Learning. Let G = {V, E} be a graph with
patients as nodes and the similarities between patients as edges, where V =
{v1, v2, · · · , vm} and E are the node set and edge set and m is the total number
of nodes. The objective of patient graph structure learning using EHR data is to
learn an adjacency matrix A ∈ [0, 1]m×m, where Aij ∈ [0, 1] represents whether
there exists an edge between vi and vj .

Given the record of patients X, we conduct Gated Recurrent Units over the
timestamps and generate an intermediate representation X̄ as well as concate-
nate X̄ with C to generate X̂ as:

X̄1, X̄2, · · · , X̄T = GRU(X1,X2, · · · ,XT ),
X̂ = (X̄T ⊕ C),

(1)

where X̂ is the new representation generated after concatenation. Subsequently,
the similarity matrix Ã can be calculated using a multi-head attention layer as:

Ã = MultiHeadAtt(X̂)
= [head1(X̂) ⊕ head2(X̂) ⊕ · · · ⊕ headn(X̂)] · W o,

(2)

where headn is the n-th attention head that calculates the similarities between
nodes. In particular, we embed X̂ into a lower-dimensional space using linear
transformation as:

qn, kn = W q
n · x,W k

n · k. (3)

Each headn has its own projection matrix:

headn(X̂) = SoftMax(
qn · k�

n√
dk

), (4)
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Fig. 1. The proposed network architecture.
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where dk is the dimension of kn. A note of caution is due here since a learnable
threshold ξ is also incorporated into the similarity matrix Ã, where values lower
than ξ are filtered out as:

A =

{
1, Ã ≥ ξ

0, Ã < ξ
. (5)

Patient Graph Structure Refining. Through the processes above, we have
been able to obtain the adjacency matrix A. The objective of patient graph
structure refining is to refine A into a well-established A∗ ∈ [0, 1]m×m.

Now, we group the set of nodes V into the number of K clusters. These
clusters are separate, and nodes with similar patterns are grouped together. We
calculate the similarity between the node embedding X̂i and the k-th cluster
center μk by a Student’s t-distribution as:

qik =
(1 + ||X̂i − μk||2)−1∑K

u=1(1 + ||X̂i − μu||2)−1
, (6)

where qik is a soft clustering distribution of each node. To obtain the soft clus-
tering distribution of all nodes Q, the k-means clustering is carried out once on
the node embedding X̂ along with the generation of the initial cluster centers μ.
The clustering distribution is optimized in a self-training way [22] as:

LKL = KL(P ||Q) =
∑

i

∑
k

piklog
pik

qik
, (7)

where pik = q2
ik/

∑
i qik∑

u(q
2
iu/

∑
i qiu)

is the auxiliary target distribution.
Next we treat the clustering results as pseudo labels and adopt the homophily

assumption as a constraint. Accordingly, edges between nodes are kept, added, or
removed. Edges are added between nodes when they share the same pseudo label,
and removed from the existing edge set if against the homophily assumption.
Specifically, we measure the pseudo labels using the soft clustering distribution
Q as ỹi = argmax

k
qik. We calculate the node similarity between all pairs of nodes

using X̂ as Z = X̂i · X̂�
j , where Z is the node similarity matrix. Accordingly,

the edge sets can be refined as:

εk
add = {(vi, vj)|Rank(Zij) ≤ γadd · |ε| · mk

m
, (vi, vj) /∈ ε, ỹi = ỹj = k}, εadd =

K⋃

k

εk
add,

εdel = {(vi, vj)|Rank(Zij) ≥ (1 − γdel) · |ε|, (vi, vj) ∈ ε, ỹi �= ỹj},

(8)
where mk is the number of nodes in the k-th cluster; ε is the existing edge set
of the present structure; γadd and γdel are the add and delete ratio; Rank(Zij)
is the descending similarity ranking of node pair vi and vj ; εadd and εdel are
the edge sets obtained after refining. The adjacency matrices of ε, εadd, and εdel

are denoted by A, Aεadd
, and Aεdel

. Accordingly, the adjacency matrix A can be
further formalized as: A∗ = A − Aεdel

+ Aεadd
.
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Contrastive Learning. Since the backbone of the graph contrastive learning
paradigm is contrastive learning, building multiple augmentation graph views to
construct positive and negative sample pairs for contrast is necessary. The exist-
ing data augmentation technique on graphs is extensive and focuses particularly
on structure augmentation [28]. In response, we establish a simple yet effective
structure augmentation technique that uses paths that are sequences of edges
found in the graph. Accordingly, the detailed process can be formalized as:

εdrop ∼ RandomWalk(Vwalk, lwalk), (9)

where Vwalk ⊆ V is a set of root nodes sampled from a patient graph G that
follows a Bernoulli distribution, i.e., Vwalk ∼ Bernoulli(r), where 0 < r < 1
is the sampling ratio, and lwalk is the length. Through the processes above,
we have been able to obtain the augmentation graph view with the adjacency
matrix Aaug = A∗CAεdrop

, where Aεdrop
is the adjacency matrix of εdrop. Given

A∗ and Aaug, two graph views can be constructed as V iewMain and V iewAug.
Contrastive learning aims to maximize their mutual information. In particular,
the anchor, its counterparts (nodes correspond to the anchor) in V iewAug, the
neighbors of the anchor, and the node in V iewMain having the same pseudo
label as the anchor, are positives. The non-neighbors of the anchor, the nodes
with pseudo labels differ from that of the anchor, and the remaining nodes
(except for the anchor’s counterparts) in V iewAug are negatives. These allow the
formation of positive and negative pairs for contrastive learning. Subsequently,
given X̂, GNN-based encoder [11] fG is utilized to generate node representations
for V iewMain and V iewAug as:

EMain = fG(X̂, A∗),
EAug = fG(X̂, AAug),

(10)

where EMain and EAug ∈ R
dE are node representations for V iewMain and

V iewAug, respectively. dE is the dimension. A∗ and Aaug are adjacency matrices.
We then employ an feed-forward network (FFN) layer to translate EMain and
EAug into a new latent space as:

SMain = FFN(EMain),
SAug = FFN(EAug),

(11)

where SMain and SAug ∈ R
dS are node representations for V iewMain and

V iewAug after projection. dS is the projection dimension. Last, we select Si
Main

as the anchor, the contrastive loss between V iewMain and V iewAug as:

LCL = −∑m
i=1

1
|N i

Main|+Nỹi
+1

log
exp(ϕ(Si

Main,Si
Aug)/τ)+

∑
j∈Ni

Main
exp(ϕ(Si

Main,Sj
Main)/τ)

∑m
j=1 1[j �=i]exp(ϕ(Si

Main,Sj
Main)/τ)

,

+

∑m

j=1,j /∈Nj
Main

1[ỹi=ỹj ]exp(ϕ(Si
Main,Sj

Main))

∑m
j=1 exp(ϕ(Si

Main,Sj
Aug)/τ)

(12)
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where N i
Main is a set of neighbors of vi in V iewMain. |N i

Main| is the number of
neighbors of vi in V iewMain. Nỹi

is the number of samples with the same pseudo
label in each batch. τ is a temperature parameter. ϕ(·) is the inner product.

Self-supervised and Supervised Learning Settings. Through the processes
above, we have built the network architecture. Since the proposed network runs
as a unit and has multiple learning objectives, we design a hybrid loss that
solves the problem of tracking objectives, the combination of LKL and LCL as
LHybrid = α1 ·LCL +α2 ·LKL, where α1 and α2 are two scaling parameters that
makes the trade-off between LCL and LKL. Moreover, the downstream prediction
tasks are three binary classification tasks. Accordingly, the cross entropy (CE)
is employed as the objective function between the target label y and predicted
label ŷ as LCE = − 1

m

∑m
i=1(y

�
i · log(ŷi) + (1 − yi)� · log(1 − ŷi)), where ŷ =

SoftMax(Wy · EMain + by).
Masked graph modeling is used to mask sequences of edges and reconstruct

the masked parts using visible graph structures. It is built upon the encoder-
decoder architecture and the use of AAug as an object. The encoder is fG, a
graph neural-network-based encoder, and EAug in Eq. (10) is the encoded node
representation. The two decoders used for the adjacency matrix and node degree
make them as close as possible to the adjacency matrix and node degree in AAug

as:
Â = fDAM

(EAug) = Sigmoid(EAug · E�
Aug),

fDND
(EAug) = FFN(EAug),

(13)

where fDAM
and fDND

are the two decoders used for the adjacency matrix and
node degree. We apply cross entropy and mean squared error to fDAM

andfDND
:

LDAM
= − 1

m

∑m
i=1(A

∗
i · Âi + (1 − A∗

i ) · log(1 − Âi)),
LDND

= ||fDND
(EAug) − degAug||2F ,

LMGM = β1 · LDAM
+ β2 · LDND

,
(14)

where degAug is the node degree in AAug. || · ||F is the Frobenius norm. LMGM is
the sum of LDAM

and LDND
, where β1 and β2 are two scaling parameters that

makes the trade-off between them.
For the self-supervised learning setting, the objective function is LSSL =

λ1 · LMGM + (1− λ1) · LHybrid, where λ1 is a scaling parameter that makes the
trade-off between LMGM and LHybrid. For the supervised learning setting, the
objective function is LSL = λ2 · LCE + (1 − λ2) · LHybrid, where λ2 is a scaling
parameter that makes the trade-off between LCE and LHybrid.

4 Experiments

4.1 Datasets, Tasks, Evaluation Metrics

All approaches are evaluated on two well-established EHR databases, MIMIC-
III and eICU. We follow the settings presented in previous research [7,18] to



344 Z. Zhang et al.

select available variables for physiologic deterioration and length of stay (LOS)
predictions, and their missing values are filled with the empirical mean values
[2]. The selected variables are vital signs (up to 17 and 16, respectively) and
demographics (age, gender, ethnicity). The prediction window for physiologic
deterioration prediction was defined as the first 48 h after admission [7] and for
LOS prediction was defined as 3 and 7 days after admission [8]. The AUROC,
AUPRC, F1, and Min(Se, P+) are employed to compare the prediction results.
In self-supervised learning settings, all approaches (see below) are evaluated on
the linear evaluation protocol [3]. Accordingly, logistic regression models were
implemented using the patient representation generated from approaches in self-
supervised learning settings.

4.2 Comparison Approaches

Under the supervised learning setting, we compare our approach with Trans-
former [19], GRU-D [2], GCT [5], SimCLR [3], GraphCL [23], GRACE [29],
and ConCAD [9]. Under the self-supervised learning setting, we compare our
approach with logistic regression (LR), SimCLR, and GRACE. Transformer is
an attention-based neural network; GRU-D is a well-known early study often
cited in research on EHR data, and its network architecture is built upon Gated
Recurrent Unit; GCT pioneered a Graph Convolutional Transformer to learn
the graphical structure of EHR data; SimCLR and ConCAD are contrastive
learning-based approaches; GraphCL and GRACE are graph contrastive learn-
ing based approaches. SimCLR, GraphCL, and GRACE can be implemented
in self-supervised learning settings. Note that GraphCL focuses on providing
data augmentation techniques on graphs but has difficulty convergent in self-
supervised learning settings. A possible explanation of our findings is that the
input data needed to be richer for GraphCL. We provide four variants of our app-
roach as follows: Ourα: we treat only the anchor and its counterparts in different
graph views as positives; Ourβ : we omit the node connected to the anchor, which
tests the efficacy of node-level clustering on patient graphs; Ourγ : we omit the
neighbors of the anchor; Ourδ: we use edge-based masking instead of path-based
masking. The source code of our approach, data construction, imple-
mentation details, and analysis of hyperparameters are presented in
the Github repository1.

5 Results and Discussion

As can be seen from the Tables 1 and 2, our approach reported significantly
more AUROC, AUPRC, F1, and Min(Se, P+) scores than the other baselines.
For instance, the best baseline for ICU deterioration prediction is achieved by
GraphCL with an AUROC of 0.7801, an AUPRC of 0.3738, and a Min(Se, P+)
of 0.3979. In contrast, our approach reaches an AUROC of 0.7986, an AUPRC of

1 https://github.com/LZlab01/GCL-EHR.

https://github.com/LZlab01/GCL-EHR
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Table 1. Supervised learning results on the MIMIC-III dataset.

ICU Deterioration AUROC AUPRC F1 Score Min(Se, P+)

Transformer [19] 0.7104(0.0073) 0.2739(0.0118) 0.2858(0.0162) 0.2955(0.0069)
GRU-D [2] 0.7609(0.0229) 0.3319(0.0352) 0.3335(0.0664) 0.3736(0.0308)
GCT [5] 0.7375(0.0266) 0.2603(0.0290) 0.3389(0.0302) 0.3207(0.0378)
SimCLR [3] 0.7638(0.0301) 0.3522(0.0466) 0.3569(0.0386) 0.3871(0.0456)
GraphCL [23] 0.7801(0.0189) 0.3738(0.0337) 0.3619(0.0278) 0.3979(0.0239)
GRACE [29] 0.7129(0.0558) 0.2598(0.0523) 0.3740(0.0154) 0.3133(0.0625)
ConCAD [9] 0.7688(0.0252) 0.3499(0.0387) 0.3678(0.0323) 0.3908(0.0450)
Ourα 0.7401(0.0383) 0.3074(0.0469) 0.3557(0.0246) 0.3663(0.0454)
Ourβ 0.7604(0.0269) 0.3273(0.0374) 0.3589(0.0297) 0.3813(0.0349)
Ourγ 0.7747(0.0532) 0.3710(0.0498) 0.3746(0.0185) 0.3921(0.0313)
Ourδ 0.7823(0.0254) 0.3925(0.0316) 0.3705(0.0142) 0.3957(0.0229)
Our 0.7986(0.0188) 0.4014(0.0368) 0.3827(0.0189) 0.4064(0.0244)
ICU LOS (3 days) AUROC AUPRC F1 Score Min(Se, P+)
Transformer [19] 0.6735(0.0032) 0.5202(0.0056) 0.5099(0.0263) 0.5153(0.0066)
GRU-D [2] 0.6903(0.0683) 0.5403(0.0556) 0.5358(0.0571) 0.5289(0.0530)
GCT [5] 0.6841(0.0233) 0.5159(0.0190) 0.5732(0.0259) 0.5197(0.0225)
SimCLR [3] 0.6920(0.0446) 0.5252(0.0326) 0.5897(0.0465) 0.5253(0.0342)
GraphCL [23] 0.6670(0.0665) 0.5142(0.0471) 0.6058(0.0230) 0.5027(0.0476)
GRACE [29] 0.6378(0.0636) 0.4841(0.0420) 0.5836(0.0243) 0.4779(0.0462)
ConCAD [9] 0.6998(0.0407) 0.5297(0.0344) 0.5992(0.0289) 0.5336(0.0333)
Ourα 0.6553(0.0507) 0.4946(0.0356) 0.5373(0.0337) 0.4782(0.0393)
Ourβ 0.6802(0.0439) 0.5251(0.0335) 0.5794(0.0414) 0.4901(0.0332)
Ourγ 0.7190(0.0546) 0.5342(0.0464) 0.5855(0.0524) 0.5163(0.0526)
Ourδ 0.7207(0.0455) 0.5393(0.0328) 0.5876(0.0310) 0.5228(0.0346)
Our 0.7329(0.0331) 0.5531(0.0213) 0.6094(0.0270) 0.5456(0.0352)
ICU LOS (7 days) AUROC AUPRC F1 Score Min(Se, P+)
Transformer [19] 0.6988(0.0038) 0.8784(0.0021) 0.6893(0.0558) 0.8430(0.0016)
GRU-D [2] 0.7236(0.0326) 0.8765(0.0126) 0.6931(0.0623) 0.8485(0.0139)
GCT [5] 0.7288(0.0092) 0.8862(0.0037) 0.7837(0.0352) 0.8468(0.0051)
SimCLR [3] 0.7434(0.0235) 0.8922(0.0120) 0.8018(0.0205) 0.8570(0.0072)
GraphCL [23] 0.6870(0.0559) 0.8690(0.0225) 0.8141(0.0279) 0.8372(0.0203)
GRACE [29] 0.6684(0.0656) 0.8635(0.0260) 0.8143(0.0166) 0.8296(0.0207)
ConCAD [9] 0.7354(0.0208) 0.8920(0.0072) 0.8047(0.0206) 0.8553(0.0103)
Ourα 0.7178(0.0385) 0.8462(0.0191) 0.7997(0.0189) 0.8318(0.0115)
Ourβ 0.7420(0.0522) 0.8619(0.0237) 0.8061(0.0331) 0.8456(0.0194)
Ourγ 0.7550(0.0557) 0.8731(0.0235) 0.8162(0.0347) 0.8522(0.0169)
Ourδ 0.7574(0.0615) 0.8865(0.0389) 0.8150(0.0586) 0.8473(0.0223)
Our 0.7626(0.0285) 0.8962(0.0198) 0.8397(0.0282) 0.8652(0.0146)
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Table 2. Supervised learning results on the eICU dataset.

eICU Deterioration AUROC AUPRC F1 Score Min(Se, P+)

Transformer [19] 0.7315(0.0033) 0.2788(0.0172) 0.3367(0.0159) 0.3074(0.0061)
GRU-D [2] 0.7583(0.0160) 0.2974(0.0169) 0.3404(0.0133) 0.3251(0.0190)
GCT [5] 0.7515(0.0103) 0.2718(0.0169) 0.3428(0.0121) 0.3247(0.0222)
SimCLR [3] 0.7601(0.0084) 0.2954(0.0146) 0.3581(0.0202) 0.3268(0.0139)
GraphCL [23] 0.7581(0.0239) 0.2869(0.0327) 0.3557(0.0298) 0.3204(0.0346)
GRACE [29] 0.7232(0.0851) 0.2704(0.0569) 0.3346(0.0208) 0.3176(0.0750)
ConCAD [9] 0.7592(0.0075) 0.2944(0.0151) 0.3606(0.0079) 0.3217(0.0171)
Ourα 0.7311(0.0389) 0.2606(0.0285) 0.3235(0.0181) 0.2813(0.0324)
Ourβ 0.7432(0.0215) 0.2713(0.0166) 0.3378(0.0163) 0.2809(0.0190)
Ourγ 0.7592(0.0156) 0.2839(0.0162) 0.3549(0.0226) 0.2978(0.0168)
Ourδ 0.7638(0.0255) 0.2953(0.0210) 0.3533(0.0169) 0.3129(0.0217)
Our 0.7751(0.0172) 0.3006(0.0172) 0.3662(0.0175) 0.3311(0.0264)
eICU LOS (3 days) AUROC AUPRC F1 Score Min(Se, P+)
Transformer [19] 0.8036(0.0013) 0.9265(0.0010) 0.7717(0.0226) 0.8598(0.0012)
GRU-D [2] 0.8166(0.0078) 0.9313(0.0034) 0.7808(0.0257) 0.8567(0.0023)
GCT [5] 0.7587(0.0139) 0.9008(0.0082) 0.7394(0.0235) 0.8388(0.0057)
SimCLR [3] 0.8131(0.0046) 0.9282(0.0021) 0.7969(0.0206) 0.8532(0.0026)
GraphCL [23] 0.8085(0.0115) 0.9246(0.0073) 0.8154(0.0354) 0.8563(0.0029)
GRACE [29] 0.7813(0.0457) 0.9137(0.0218) 0.8118(0.0254) 0.8456(0.0158)
ConCAD [9] 0.8195(0.0051) 0.9336(0.0023) 0.7917(0.0175) 0.8594(0.0015)
Ourα 0.7707(0.0324) 0.9088(0.0128) 0.8247(0.0152) 0.8401(0.0135)
Ourβ 0.7861(0.0407) 0.9150(0.0195) 0.8035(0.0235) 0.8473(0.0138)
Ourγ 0.7943(0.0278) 0.9179(0.0151) 0.8241(0.0153) 0.8495(0.0099)
Ourδ 0.8022(0.0389) 0.9239(0.0185) 0.8232(0.0150) 0.8368(0.0169)
Our 0.8295(0.0193) 0.9381(0.0168) 0.8315(0.0159) 0.8616(0.0126)
eICU LOS (7 days) AUROC AUPRC F1 Score Min(Se, P+)
Transformer [19] 0.8097(0.0034) 0.9828(0.0004) 0.8018(0.0221) 0.9451(0.0005)
GRU-D [2] 0.8206(0.0128) 0.9830(0.0016) 0.8250(0.0457) 0.9503(0.0013)
GCT [5] 0.7943(0.0182) 0.9793(0.0019) 0.8241(0.0321) 0.9469(0.0054)
SimCLR [3] 0.8229(0.0068) 0.9824(0.0008) 0.8553(0.0211) 0.9498(0.0011)
GraphCL [23] 0.8194(0.0065) 0.9819(0.0008) 0.8689(0.0364) 0.9502(0.0014)
GRACE [29] 0.8078(0.0340) 0.9801(0.0045) 0.8656(0.0132) 0.9495(0.0032)
ConCAD [9] 0.8230(0.0045) 0.9827(0.0006) 0.8479(0.0279) 0.9516(0.0009)
Ourα 0.7779(0.0158) 0.9761(0.0026) 0.8665(0.0241) 0.9455(0.0021)
Ourβ 0.7831(0.0224) 0.9772(0.0029) 0.8601(0.0276) 0.9458(0.0027)
Ourγ 0.7909(0.0577) 0.9767(0.0077) 0.8628(0.0253) 0.9446(0.0041)
Ourδ 0.8033(0.0332) 0.9805(0.0036) 0.8705(0.0188) 0.9472(0.0043)
Our 0.8335(0.0230) 0.9836(0.0029) 0.8901(0.0272) 0.9529(0.0026)
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Table 3. Self-supervised learning results on MIMIC-III and eICU datasets.

ICU Deterioration AUROC AUPRC F1 Score Min(Se, P+)

LR 0.5323(0.0778) 0.1218(0.0324) 0.2178(0.0350) 0.1613(0.0446)
SimCLR [3] 0.5891(0.0337) 0.1513(0.0387) 0.2314(0.0230) 0.2102(0.0457)
GRACE [29] 0.5355(0.0629) 0.1273(0.0261) 0.2282(0.0288) 0.1796(0.0323)
Our 0.6079(0.0741) 0.1687(0.0309) 0.2495(0.0266) 0.2219(0.0360)
ICU LOS (3 days) AUROC AUPRC F1 Score Min(Se, P+)
LR 0.5473(0.0361) 0.4115(0.0279) 0.4958(0.0464) 0.4096(0.0253)
SimCLR [3] 0.5572(0.0474) 0.4140(0.0382) 0.5163(0.0751) 0.4210(0.0364)
GRACE [29] 0.5528(0.0345) 0.4053(0.0247) 0.5001(0.0299) 0.4038(0.0226)
Our 0.5763(0.0317) 0.4219(0.0256) 0.5325(0.0683) 0.4392(0.0239)
ICU LOS (7 days) AUROC AUPRC F1 Score Min(Se, P+)
LR 0.5516(0.0497) 0.8097(0.0237) 0.7088(0.0395) 0.7860(0.0109)
SimCLR [3] 0.5718(0.0569) 0.8137(0.0293) 0.7102(0.0681) 0.7997(0.0153)
GRACE [29] 0.5552(0.0310) 0.8068(0.0150) 0.7146(0.0401) 0.7893(0.0070)
Our 0.5901(0.0335) 0.8227(0.0144) 0.7330(0.0527) 0.8035(0.0105)
eICU Deterioration AUROC AUPRC F1 Score Min(Se, P+)
LR 0.5434(0.0815) 0.1416(0.0265) 0.2715(0.0437) 0.1644(0.0283)
SimCLR [3] 0.6015(0.0351) 0.1647(0.0161) 0.2352(0.0589) 0.1859(0.0278)
GRACE [29] 0.5878(0.0677) 0.1662(0.0339) 0.2667(0.0244) 0.1923(0.0424)
Our 0.6262(0.0325) 0.1762(0.0140) 0.2822(0.0367) 0.2016(0.0258)
eICU LOS (3 days) AUROC AUPRC F1 Score Min(Se, P+)
LR 0.5047(0.0909) 0.7523(0.0839) 0.8036(0.0215) 0.7859(0.0281)
SimCLR [3] 0.5894(0.0519) 0.8097(0.0265) 0.8097(0.0233) 0.7816(0.0236)
GRACE [29] 0.5501(0.0507) 0.7949(0.0211) 0.7451(0.0383) 0.7757(0.0167)
Our 0.6138(0.0414) 0.8121(0.0235) 0.8335(0.0476) 0.7924(0.0146)
eICU LOS (7 days) AUROC AUROC F1 Score Min(Se, P+)
LR 0.5274(0.0893) 0.9313(0.0285) 0.8195(0.0340) 0.9369(0.0041)
SimCLR [3] 0.6687(0.0077) 0.9515(0.0024) 0.8189(0.0208) 0.9383(0.0011)
GRACE [29] 0.6025(0.0320) 0.9446(0.0039) 0.7912(0.0572) 0.9341(0.0020)
Our 0.6790(0.0568) 0.9569(0.0107) 0.8237(0.0629) 0.9425(0.0023)

0.4014, and a Min(Se, P+) of 0.4064. In the present report, our approach achieves
absolute improvement in AUROC and AUPRC scores. Data from Table 1 can be
compared with the data in Table 2, which shows there is a significant difference in
performance between the baselines. In particular, it is difficult to argue the best
baseline from the data in Table 2. A possible explanation for these results may
be that the performance of deep learning models largely depends on the size and
quality of input data (e.g., noises). Additionally, the possible interference/impact
of hyperparameters on deep learning models cannot be ruled out.
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The results obtained from the self-supervised models are set out in Table 3.
Our approach reported significantly more AUROC, AUPRC, F1, and Min(Se,
P+) scores than the other baselines, but its performance is lower than that of
models in supervised learning settings. The reason for this is clear: the perfor-
mance of LR (used as the basis model) is not very encouraging. Nevertheless, all
baselines and our approach in self-supervised learning settings can outperform
LR trained with annotated data. Together, these results indicate the effectiveness
and superiority of our approach in self-supervised learning settings.

Besides, our approach outperforms all variants (i.e., Ourα ∼ Ourδ). The
results of this ablation experiment indicate the effectiveness and robustness of
our proposed modules in model decisions.

6 Conclusions and Future Works

This paper presents a novel neural network architecture that introduces graph
analysis techniques into the graph contrastive learning paradigm. The intuition
behind our approach is to incorporate graph contrastive learning paradigm in
patient representation learning using EHR data. Our approach consists of three
well-designed modules for learning graph-based patient representations, along-
side a pretraining mechanism that exploits self-supervised information in gener-
ated patient graphs. These modules collaboratively integrate patient graph struc-
ture learning, refinement, and contrastive learning, enhanced by masked graph
modeling as a pretraining mechanism to optimize learning outcomes. Extensive
experimental results demonstrate that our approach consistently outperforms
existing approaches in both self-supervised and supervised learning scenarios.
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Abstract. An A/B-Test is a method for evaluating online experiments
on target items and observing which A/B/C/... variations are better
through log reports and statistical analysis of the rewards earned by
each variation. Recent advancements in A/B-Tests through reinforce-
ment learning encompass dynamic allocation employing multiarmed ban-
dits (MAB). MABs provides A/B-Tests with fast identification of the
best variation (A or B) and helps limit the loss of the test i.e. the
cost of exploring low-reward variation. When partial information is avail-
able before assigning variations, dynamic allocation is extended to the
contextual multiarmed bandit problem (CMAB). Current state-of-the-
art approaches for empirically estimating the context-dependent reward
function for each variation demonstrate strong performance in limiting
test loss and personalized tests. However, few studies have addressed this
problem in the context of variable-sized time series. This paper presents
a new reinforcement learning methodology to handle A/B-Tests with
variable-sized time series as context information. We provide two new
methods that obtain a minimization of the cumulative regret with a
soft computational cost. This paper also provides numerical results on
real A/B-Test datasets, in addition to public data, to demonstrate an
improvement over traditional methods.

Keywords: A/B-Test · Multiarmed bandit · Time series

1 Introduction

In many domains, experimental evaluation is necessary for assessing the rel-
evance of modifications made to an existing entity according to one or more
objectives. For instance, an e-marketing team can look for the best modifica-
tion of a web page design to increase sales [6]. The original variant (A) and
its variations (B/C/. . . ) are compared in parallel in a real environment. This
leads to the exploration-exploitation dilemma which opposes the cost of learning
the best variation (exploration phase) and the benefit obtained by using it in
the future (exploitation phase). To tackle this dilemma, novel A/B-Test-based
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approaches have emerged especially for real-world problems [7,21] that involve
sequential decision-making, such as selecting a variation A/B/. . . The decision-
making here consists of assigning the items (patients, visitors, recommendations,
. . . ) to the different variations (A/B/. . . ) in order to evaluate the performance
of each one (survival rate, average basket, click rate . . . ). During this explo-
ration, it is assumed that the result, called reward, of each assignment, can be
observed after a fixed period, to evaluate the performance of each variation. At
the end of this exploration, the user can decide which variation should be imple-
mented (i.e., during production) based on their performance. In [11], the authors
highlighted conducting the A/B Testing in a sequential manner and without a
random stopping rule to determine the completion of the experiment using a
reinforcement learning policy (also known as a multiarmed bandit, MAB). The
MAB is often formulated as the following problem: given a set of bandit “arms”
(variation), each associated with a fixed but unknown reward probability dis-
tribution [12], an agent selects an arm to play at each iteration (when a visitor
comes to the webpage), and receives a random reward variable (click, purchase,
...), sampled according to the selected arm’s distribution, independently of the
previous actions. More formally, A is the space of actions (finite), X a set of
rewards, at each iteration t ∈ N

+, an agent select an arm at ∈ A and receive a
reward rt ∈ X where ξt is a noise centered (E[ξ] = 0) and further conditionally
sub-Gaussian such as:

rt = f(at)
︸ ︷︷ ︸

reward funct.

+ ξt
︸︷︷︸

noise

. (1)

Note that f is initially unknown and can be the average (stationary or not)
of the chosen arm reward at. If the agent chooses, at iteration t, a suboptimal
variation, it suffers simple regret equal to the difference between the reward from
the optimal variation a� and the reward from the chosen variation at at itera-
tion t. The goal of the agent is to minimize the cumulative sum of regret Rt at
t = T , i.e. the end of the A/B-Test: RT = Tμa� − ∑

a∈A Na(T ) × μa where
a� = argmaxa∈A μa (and μa� the average of best arm) and Na(T ) is the number
of plays of an arm a at the end T of the A/B-Tests. Thus, an efficient bandit
policy must have an average regret less than the average regret of a random policy
when T → ∞. A decrease in regret implies that the agent selects arms that max-
imize gains, leading to an increase in average gain (e.g., average CTR) by the end
of the test. Thus, one can study both regret (to minimize) and average gain (to
maximize), the choice depending on the ability to observe rewards across all vari-
ations. A particularly useful version of MAB is the contextual multiarmed bandit
(CMAB) [14], where at each iteration, before choosing an arm, the agent observes
a d-dimensional context feature vector ct ∈ R

d sampled from some unknown dis-
tribution. In that case the best arm is a� = argmaxa∈A〈θa, ct〉 with θ ∈ R

d as the
parameter of an arm. Then a reward becomes: rt = f(at, ct)+ ξt. The ct context
vector encapsulates essential features of an item, such as age, origin, and gen-
der, revealed before allocation choices. However, conventional CMAB approaches
encounter challenges when ct contains time series data. This inability to use time
series to describe an item makes it impossible to employ CMABs in the context
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of A/B-Testing related to e-commerce, where time series are commonly used
to describe website visitors. However, deploying suboptimal variations into pro-
duction without knowing a stopping criterion in advance significantly hinders
users from conducting A/B tests on their websites. A CMAB that utilizes time
series as context would allow both the consideration of the evolving nature of
website visitors and the encouragement of users to take risks to test variations.
We propose in this paper a new approach by the inclusion of temporal data in ct.
Our methodology performs time series clustering based on the evolving features
of visitors who have interacted with the original production page (Version A)
in the past before conducting the test. This new approach not only recognizes
the significance of time series but also introduces a nuanced preprocessing step,
departing from traditional methodologies. By incorporating time series data and
employing advanced clustering techniques, our method increases the average gain
at the end of A/B-Test (or decreases the regret). In addition, our innovative
approach improves A/B testing practices by facilitating a deeper understanding
of consumers behavior. Through the identification of distinct patterns in mar-
keting, our methodology insights into tailoring experiments to specific audience
segments. This contributes to a more nuanced interpretation of test. According
to the user’s needs, we propose two algorithms: DBA-Ctree-Ucb and DBA-
LinUCB, with significant improvements in terms of regret. Section 2 provides an
overview of the state-of-the-art in CMAB methods, both with and without pre-
segmentation. It also introduces the technique employed to address the temporal
aspect of CMABs, and Sect. 3 presents our two novel algorithms. Furthermore,
Sect. 4 presents the experimental results obtained from various datasets. Finally,
Sect. 5 concludes with a discussion.

2 State of the Art

2.1 Classical MAB Problem

The goal of the agent is to use knowledge from past observations to maximize
long-term rewards: at+1 = Ft(a1, r1, . . . , at, rt). To achieve this, the agent must
determine and select systematically the arm with the highest average reward
a� = argmaxa∈A μa as soon as possible, thus striking a balance between explo-
ration (testing different arms) and exploitation (selecting the arm with the high-
est expected reward). Rather than focusing on cumulative rewards, which have
no theoretical guarantee, theoretical analyses of bandit models focus on cumula-
tive regret [12]. Observing convergent cumulative regret implies that the agent
consistently makes the correct choices systematically after a time t ∈ [1;T ]. As
such, cumulative regret leads to theoretical bounds that are presented for many
bandit algorithms in the literature. An in-depth technical analysis of the classi-
cal MAB was given in [13], where policies assuming only one best arm regardless
of the item features (ct) asymptotically reach a regret of O(log T ). However, to
establish a theoretical bound on regret, it is essential to compare the perfor-
mance against a reference model, often referred to as an oracle, which can learn
from all the available data. Among the MABs classically used is Ucb algorithm
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[12] which, for each arm a ∈ A, constructs an adaptive upper confidence inter-

val on the mean: UCB(a, t) = μ̂a(t) + αucb

√

2 log(t)
Na(t)

with αucb ∈ R
∗
+ a positive

parameter and Na(t) is the number of selections of the arm a up to round t.
At t, the U.C.B algorithm chooses argmaxa∈A UCB(a, t). Other methods, such
as Ucb variants, Thompson Sampling, KL-UCB or EXP3 algorithms [20], can
be used as alternatives to Ucb. However, these algorithms have a regret bound
that is strongly dependent on the joint distribution of the arms. The learning
process takes longer when the means of the arms are close. One possible solution
to maximize this difference is to leverage the partial information available before
selecting an arm, which is defined as the context.

2.2 Contextual Multi Armed Bandit

In the CMAB problem, the agent receives partial information such as item fea-
tures, referred to as context, before making a decision at each iteration. More
formally, at each iteration t, the agent observes a particular item described by a
d-dimensional feature vector ct ∈ R

d. The agent chooses an arm at ∈ A to apply
to this item based on past contexts and rewards observed in previous iterations.
Like in classical MAB, the agent cannot observe rewards from arms other than
at. The context in the CMAB can be defined differently depending on how con-
texts are revealed and how assumptions are made about the reward function. In
our case, each different context ct is no longer a vector but a d time series of
maximal size m, represented by a matrix d×m. We distinguish the vector repre-
sentation ct from its matrix representation ct which results in rt = f(at, ct)+ ξt

where ct ∈ R
d×m. This problem of context dimension was first studied in The

Query-Ad-Algorithm [3]. The Query-Ad-Clustering algorithm achieves a regret
of O(T 1− 1

2+|C|+ε), where C is the set of possible contexts and an ε positive con-
stant. In the Query-Ad-Clustering algorithm, the reward estimates are accurate
as long as the context partitions are similar to each other. However, when the
context dimension is large, the regret bound becomes almost linear. This issue is
addressed in [16], where the arm rewards are assumed to depend on an unknown
subset of the context. It is demonstrated that the regret in this case depends only
on the number of relevant groups [8] and requires a learning prestep; however, no
details are given on how to achieve this group segmentation. Two approaches are
possible in AB testing to define these groups: learning them during preprocessing
(data collected before conducting the test) or online with contextual bandit.

Preprocessing Approaches. Preprocessing approaches assume the existence
of natural groups, each having a Gaussian reward distribution [16], which can
be determined online [15] or before the MAB allocation. The approach involves
learning a set of groups G and a mapping group function association g before the
A/B-Test. Let’s g : Rd → {0; 1}|G| with |G| ∈ N the number of possible groups.
When a new visitor described by ct is submitted to the agent, the function
g(ct) classifies it into one of these groups (g(ct) = g̃t with g̃t ∈ G) and then
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a non-contextual bandit strategy assigns it to an arm according to previous
rewards. So partitioning between several groups limits regret when divergence
is maximized. In [6] the authors propose the use of the Ctree-Ucb algorithm
to construct the association function g using a conditional inference tree [9] (see
Alg. 1 in Appendix) before applying several Ucb bandits. Their partitioning
involves collecting data from the original variation A and defining groups based
on past visitors’ features. Each of these groups has a reward distribution that
can be modeled by a Gaussian distribution. Group detection here is a type of
recursive partitioning method that involves the following basic steps:

– Step 1. Select the feature predictor that best separates different values of the
reward distribution with a statistical p-value. The p-value error was corrected
with a Bonferroni correction (a method to counter the problem of multiple
comparisons).

– Step 2. This variable is split, and the data are divided into two datasets.
– Repeat steps 1 and 2 recursively until no further splits can be made based on

predefined p-value rejection (according to the αCTREE risk).
– A tree-like group partitioning model g is produced (see Fig. 1).

To train the inference tree, Ctree-Ucb uses the data present before starting
the test (denoted as L, collected on variation A). While the set of data from
variation B is not observed, the authors in [6] show that in many cases of A/B-
Tests the groups observed on A are also observed in B. During the test, all
new items are matched to a predefined group (from the tree). Each group can
be supported by a noncontextual bandit. When a new item is presented to the
agent, it is automatically assigned to a group based on its features, and an arm
is assigned to it through the associated MAB, ensuring a satisfactory response
time (millisecond time scale). This allows for a lower cumulative regret than
other online learning methods, an interpretability due to the inference tree, and
does not slow down the user experience (<200 ms), since the group learning step
is performed only once and only non-contextual MABs are used afterwards. The
alternative approach to the preprocessing step is learning the context function
online, which is described in the following section.

Combinatory Function. Another possible approach is to learn the reward
context function without any information before the test. A popular framework
for contextual bandits is LinUCB proposed in [14], and variants [5] which assume
a linear combination between the context and the d-parameters of each arm.
LinUcb estimates the expected reward of each arm a as a linear regression of
the context vector ct, where θa ∈ R

d is the regression coefficient of an arm
reward function to be learned. We denote by αLinUcb the parameter for the
importance of exploration as αLinUcb = 1+

√

(log 2/δCI)/2 where 1− δCI is the
confidence interval. We assume that M is an invertible matrix; and denote by
M−1 ∈ R

d×d the updated weight, which can be interpreted as the covariance
of the coefficient θa. Hence, LinUcb considers the upper confidence bound as
θ̂a

T
ct+αLinUcb

√

c�
t M−1ct. The arm at selected is the one maximizing the upper
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Fig. 1. Example of a conditional inference tree generated from the original page (AB
Test dataset [6]) There are 5 groups with different CTR, determined by factors such
as the number of past visits on the site (visit.y), user agent, and browser name. A
separate UCB MAB will be employed for each identified group.

confidence bound: at = argmaxa∈A(θ�
a ct + αLinUcb

√

c�
t M−1ct). LinUcb gives

a regret in O(
√

Td). Modified versions of this algorithm, such as SupLinUcb
with kernel functions, are studied in [13] where the regret is O(

√
Td). When

d is very large, inverting the matrix M can become computationally expensive
and require a significant number of items. To handle nonlinear reward functions,
recent works such as kernelized stochastic bandits [24] or deep neural networks
[23], have considered the past selected arms and received rewards as training
samples. [22] computes a gradient-based upper confidence bound with respect to
the trained neural network strategy to select arms. However, when the context
is a large vector, the aforementioned approaches need to work on batch style
or become computationally expensive, which leads to a significant amount of
regret.

2.3 Large-Scale Context

The algorithms detailed in the previous section have strong restrictions on the
dimension of the context, where ct must be a vector of numerical non correlated
values. These restrictions limit the use of bandit algorithms when the features
to be considered are time series (ct ∈ R

d×m). One solution to this problem is
to flatten the time series of each temporal feature. One of the several problems
with this approach is that if the size of feature vectors is large, it introduces
significant variability in the bandit’s performance, leading to a large amount of
data to be collected. To address the problem of size context vectors, [4] pro-
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posed empirically building a LASSO-type statistical model and integrating it
into a bandit problem. However, this approach requires that the features be
independent of each other, which is not the case when the features come from
the same time series. In [18], the use of LSTM for handling time series data has
the drawback of requiring a large number of visitors and frequent model retrain-
ing. This results in significant computational costs associated with deep learning
methods and slows down the display of the test page, making it impractical
for e-commerce applications. Considering temporal features is a difficult task
without prior knowledge of the data. Additionally, we found no information in
literature about A/B-Testing contextual bandit algorithms that can adapt to
data of variable size. The following section presents our contribution to address
this issue.

3 Contribution

3.1 Illustrative Dataset

We detail our approach using the AB tasty dataset 1 (owned by AB TASTY c©).
AB Tasty Dataset 1 comes from an AB testing platform that compares two
versions of the same web page for an e-commerce site. The allocation of A or B
to a visitor is randomized with a static allocation. Each visitor is assigned to a
single variation until the end of the test (conducted over 15 days). If the visitor
has made a purchase from the test page, a reward of 1 is assigned; otherwise,
the value is 0. The data contains the history of visitor sessions generated before
arriving on the test page: for each visitor, ct includes the following information
from the visitor’s first visit day on the site until the day he/she arrives on the
tested page.

– presence_time_serie: series of binary values indicating for each day whether
the visitor visited the site or not.

– connexion_time_serie: series of hours of connections (when the visitor
arrived at the site).

– time_spend_time_serie: series of visitor’s session duration (milliseconds).

There are n = 5156 visitors, the shortest session is 2 days, and the longest session
is 14 days.

3.2 Two New Algorithms DBA-CTREE-UCB and DBA-LINUCB
for Handling Times Series for A/B-TESTS

Currently, there is no existing state-of-the-art method that effectively handles
an evolving item context. However, the data presented prior to the beginning
of the test could enable the transformation of this context, making it usable by
a traditional context bandit method. This preprocessing step has already been
employed in Ctree-Ucb [6] to create an item segmentation that maximizes the
difference between arm means and has demonstrated a significant decrease in
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cumulative regret. Our contribution proposes a model for replacing a visitor’s
time series with clusters and demonstrates how this improves dynamic allocation
compared to transforming series into averages. We introduce two novel exten-
sions, DBA-Ctree-Ucb and DBA-LinUCB, which complement the search for
context-dependent optimal variations with preprocessing utilizing DBA-DTW-
kmeans. As we said in the introduction, domains such as e-marketing, and the
recognition of evolving customer profiles are crucial for effectively targeting con-
sumers, personalizing offers, and improving the user experience in an A/B test.
Time series clustering can handle complex and multidimensional data, taking
into account various variables such as purchase history, online interactions, geo-
graphical data, etc. By utilizing this method, marketers obtain a holistic view
of consumer profiles and identify specific subgroups within the population. The
clustering parameters can be adjusted based on the study objectives, such as
the desired number of clusters or sensitivity to changes. To include time series
clustering in a dynamic allocation algorithm, we propose two algorithms: DBA-
Ctree-Ucb and DBA-LinUCB. These algorithms improves the Ctree-Ucb
and LinUcb algorithms, respectively, which do not handle temporal aspects.
It is important to note that the user is expected to obtain an original variation
(such as web page A) and the historical data (such as logs) of the items that have
undergone this original variation. These data, collected before their arrival on
the test page, form learning clusters required for the DBA-LinUCB and DBA-
Ctree-Ucb algorithms. Each temporal series in the known items is replaced as
a categorical feature: a cluster. The following section details our choice for time
series clustering.

Choice of Time Series Clustering. Since the context of a user is represented
by d time series, a solution could be to transform these series by d clusters. In our
case, we decided to use a partitioning approach based on the similarity between
items. Partitioning methods are computationally efficient and can handle large
A/B-Test datasets with ease. To implement such a method, we needed to set
a similarity measure. Indeed, in time series clustering methods, if one wants
to compare series with irregular sampling or of different sizes, particular atten-
tion must be given to the choice of similarity measure. There are many meth-
ods for measuring similarity between time series. The most well-known method
is Euclidean distance, which involves calculating the sum of the squared dis-
tances between the corresponding elements of the considered sequences at each
time step. If this distance is commonly admitted, it cannot be used in our case
because it requires that the series be the same length. Length resampling would
be problematic for a marketing application as it would risk losing the evolu-
tionary aspect of the customer path. However, in our work, we place ourselves
in a case where the observation of the context variables can be irregular. For
example, one visitor may visit the site more frequently than another. The sim-
ilarity measure DTW (dynamic time warping) is a metric between two series
of different sizes widely recognized as relevant for many application domains.
The DTW method matches the elements of the sequences by aligning them in a
way that respects the total order of the sequence of values, without crossing the
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associations (see Alg. 2 in Appendix). DTW can be sensitive to noise, but this
is not a problem in our web application where the data is not noisy. A warping
path is constructed by computing the minimum cumulative distance between all
possible pairs of points in the two-time series. It is usually calculated using the
Euclidean distance, but other distance metrics can also be used. Once the warp-
ing path is obtained, the DTW distance is computed as the sum of the distances
along the path. The objective function optimally solved by DTW corresponds
to the minimization of the sum of the costs of the different associations. Figure
8 in Appendix illustrates the concept of the similarity measure DTW.

After defining the similarity metric used in our approach, we propose to use
an averaging method based on the barycentre (Dynamic Barycenter Average,
see Alg. 3 in Appendix) [17]. Once the series have been aligned using DTW and
represented by their average series using DBA, the K-means divide the data
into K clusters by similarity, where K is a predefined number (see Alg. 4 in
Appendix). It assigns each series to the cluster whose average series is closest to
it in terms of DTW similarity. Our number of clusters is based on the Silhouette
score: it measures how similar a series is to each other. The Silhouette score,
denoted as S(i), is computed using the formula:

S(i) =
b(i) − a(i)

max{a(i); b(i)}
where a(i) is the average DTW distance from the ith series to others in the
same cluster, and b(i) is the average distance from the ith series to series in the
nearest cluster to which it does not belong. The optimal number of clusters is
the one that maximizes the average Silhouette score. A higher Silhouette score
indicates better-defined clusters. Our experiments have demonstrated that this
is the most reliable indicator for determining the number of clusters (see Exper-
imentation section). By combining these three components, the DBA-DTW-
kmeans method identifies clusters of similar profiles, taking into account tempo-
ral variations and using a more flexible similarity measure. The Fig. 2 shows an
example with centroids obtained from DBA-DTW-Kmeans on the preprocess-
ing step (774 visitors) on AB Tasty Dataset 1. We apply DBA-DTW-kmeans to
presence_time_serie, connection_time_serie and time_spend_time_serie
that describe visitors to AB Tasty dataset 1.

Dynamic Allocation. Each time series is replaced by the centroid to which
it is closest. For DBA-Ctree-Ucb the tree model g is learned from L, where
each time series has been substituted with the number of clusters to which
it belongs. The second step of these two algorithms corresponds to the online
A/B-Test step involving Ctree-Ucb and LinUcb. Cluster replacement can
then be directly utilized by a contextual bandit model. Consequently, in the
DBA-LinUCB/DBA-Ctree-Ucb version, the allocation is down according to
a LinUcb/Ctree-Ucb modelling (see Alg. 5 and Alg. 6 in Appendix). The
global schema of our idea is drawn in Fig. 9 in Appendix. The offline part is
common to both methods: the past log is used to generate the clusters. An
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Fig. 2. The series represents 5 centroïds based on the presence/non-presence per day
series associated with visitors (from the first day of their visit to the site to the day
they appeared on the page being tested). If the visitor does not log on during the day,
the series is set to 0.

additional step for DBA-Ctree-Ucb also creates the segmentation tree that
will be used in the online part. The online part corresponds to the start of the
test. The time series of new items are replaced by the nearest cluster, and the
allocation of variation depends on the bandit strategy used (according to the
segmentation tree g for DBA-Ctree-Ucb and according to the upper bound
of a linear regression for DBA-LinUCB). The DBA-LinUCB algorithm uses
a linear approach to estimate the parameters between clusters and potential
rewards. This approach assumes that this reward function can be approximated
by a linear function. The DBA-Ctree-Ucb divides the cluster sets into dis-
tinct groups, enabling the capture of more complex and nonlinear function links
between the context and rewards. It evaluates each group and identify optimal
variation according to each group by the Ucb strategy. This approach facilitates
faster exploration when one or more groups demonstrate sensitivity to the test
while avoiding unnecessary slowdown in cases where the test would yield no
changes for some items (e.g. Fig. 3).

4 Experiments

Here, we present the results of the DBA-Ctree-Ucb and DBA-LinUCB mod-
els on real-world datasets. We compare our algorithms with Ctree-Ucb [6] and
LinUcb [1] which require transforming each context time series by taking the
average of its values. These experiments observe whether clustering (which is
defined by a partial observation of the data) significantly reduces regret. The
choice of the number of clusters is first evaluated using the Silhouette index [19].
All experiments are reproducible in our R package from our GitHub repository1.

AB Tasty Dataset 1. We present the results on the dataset introduced in
Sect. 3.1. The available payoffs are those associated with the pages presented in
the case of a static allocation, so observing the regret requires a k-nearest neigh-
bors replacement technique: we replaced the missing values by sampling from
the visitors at a minimal distance (<10% of the sequence for each series). If no
1 https://github.com/manuclaeys/banditWithR.

https://github.com/manuclaeys/banditWithR
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Fig. 3. Preprocessing tree obtained by DBA-Ctree-Ucb on AB TASTY dataset 1.
Each leaf represents a click rate. 4 groups are identified from the pre-processing dataset.

similar visitor profile exists, a reward is randomly drawn from the alternative
page dataset. The “k-nearest neighbors” method, employed to replace missing
data, keeps the correlation between the time series and the corresponding gen-
erated rewards. Unlike predefined theoretical replacement models, this method
does not rely on such models, which may introduce a strong dependency between
missing values and their replacements in small datasets; however, this is not the
case in our experiment.

Number of Clusters and Regret. The cumulative regret of DBA-Ctree-Ucb and
DBA-LinUCB is influenced by the choice of number of clusters, as depicted in
the three graphs of Fig. 4. Our method chooses to parameterize the number of
clusters based on the Silhouette index (here 5, 5, 10 for the three series). When
employing DBA-Ctree-Ucb, the use of an inference tree to partition visitors
into subgroups introduces the possibility of grouping clusters with no significant
differences (statistically) if the number of clusters is set too large (see Fig. 3).
On the other hand, for DBA-LinUCB, the learning time and regret increase
linearly with the number of clusters. Consequently, choosing an inappropriate
value will lead to a longer learning process and result in a greater level of regret.
The centroids generated by DBA-Ctree-Ucb and DBA-LinUCB must be
interpretable from a marketing perspective by the user. Those presented in Fig. 2
represent, for example, visitor patterns such as: the regular visitor (3), those
prospecting for a product (1, 4, and 5) with varying intervals between visits, and
those who do not return (2). By coupling with other types of series DBA-Ctree-
Ucb identifies “high-potential” or “low-potential” visitors. In the generated tree
(see Fig. 3), DBA-Ctree-Ucb identifies 4 visitor groups, each with a varying
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CTR. New visitors placed in these groups had an independent allocation by Ucb
policy, and the user was able to identify at the end of the test which variation
was better for each group. It should be noted that generally, groups with very
low CTR are usually less sensitive to the test. For example, visitors in group
7 (see Fig. 3) showed no preference between variations. This visitor group was
highly represented in the traffic, and its ‘isolation’ helped accelerate learning for
the other groups.

Fig. 4. Cumulative regret obtained by DBA-Ctree-Ucb (red) and DBA-LinUCB
(light blue) over number of clusters for AB Tasty dataset 1 on presence_time (left),
connexion_time (middle) and time_spend (right). For each graph, the algorithms
are trained using only one of the three series as feature context information. In
comparison, Silhouette’s indexes suggest the following settings (presence_time =5,
connexion_time = 5, time_spend = 10). (Color figure online)

The evolution of cumulative regret according to time for all methods is pre-
sented in Fig. 5. It is observed that the gap between DBA-Ctree-Ucb and
the other methods widens during learning. The cumulative regret (to minimize)
according to clusters setting for DBA-Ctree-Ucb and DBA-LinUCB is shown
in Fig. 4 and confirms that the silhouette index is a good indicator for choosing
the number of clusters before starting the test. The average click-through rates
(to maximize) as a function of the number of clusters are also referenced in Table
1 for comparing all methods with different settings (number of clusters, web page
used for preprocessing). The lower performance of DBA-LinUCB compared to
DBA-Ctree-Ucb can be explained by the fact that if the number of clusters
is large, DBA-LinUCB will require more data than DBA-Ctree-Ucb. The
differences in terms of regret may seem small, but as the objective of the test
is a click to buy, the probability of success is relatively low, regardless of the
variation displayed. The average click rate at the end of A/B-Test was 14.14%
for DBA-Ctree-Ucb, 12.79% for Ctree-Ucb and <12% for DBA-LinUCB,
LinUcb and UNIFORM (see Table 1).
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Fig. 5. Cumulative Regret Ucb, LinUcb, Ctree-Ucb, DBA-Ctree-Ucb and DBA-
LinUCB on AB TASTY dataset 1

Complementary Experiment: AB Tasty 2. We provide a complementary experi-
ment on another AB Tasty dataset (AB Tasty dataset 2). These data have the
same type of time series and come from a video streaming website. The objec-
tive of the AB Test is to increase the click-through rate of the tested page. To
learn the clusters and groups, we test several configurations. One uses 30% of
the visitors (1591), and the other uses all the visitors (5306). The reader can see
the results in the Table 1, in particular the interest of the two new approach
proposed to increase the average click rate at the end of the experiment. DBA-
Ctree-Ucb identified 2 visitor groups (see Fig. 6) where Ctree-Ucb did not
identify any groups. The Silouhette index suggested setting 10,5 and 10.

Localization Data for Posture Reconstruction. In this experiment, we assess the
performance of DBA-Ctree-Ucb and DBA-LinUCB in a non-e-commerce set-
ting using the ‘Localization Data for Posture Reconstruction’ dataset [10]. The

Fig. 6. Preprocessing tree obtained by DBA-Ctree-Ucb on AB TASTY dataset 2.
Each leaf represents a click rate. 2 groups are identified from the pre-processing dataset.
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Fig. 7. Cumulative regret Ucb, LinUcb, Ctree-Ucb, DBA-Ctree-Ucb and DBA-
LinUCB for Position Dataset

dataset comprises 164860 positional measurements from five patients, each rep-
resented by three time series (V 1, V 2, V 3) capturing displacements along the x,
y, and z axes. The objective is to differentiate between ‘sitting’ and ‘sitting on the
floor’ activities based on these measurements. Our A/B test categorizes activities
as A (‘sitting on the floor’) and B (‘sitting’), with rewards assigned for successful
detection. We frame this as a classification problem, aiming to identify patient
activities accurately without imputation, unlike traditional e-commerce datasets.
The study involves 1000 items and various bandit configurations. The results are
on Table 2. The parameter settings are according to the max Silhouette index:
KV 1 = 10, KV 2 = 10, KV 3 = 10. The regret comparison is shown in Fig. 7 pro-

Table 1. Average click rate at the end of the test according to different settings for
AB Tasty dataset 1 and 2

AB Tasty Dataset 1 AB Tasty Dataset 2
Conf30,70

DBA-Ctree-Ucb L = P1 L = P2 L = P1 L = P2

Nb clusters
3;5;5 13.80± 1.1% 12.56± 1.1% 9.53± 1% 9.53± 1%
5;5;10 14,14± 1.2% 13.47± 1.2% 9.53± 1% 9.53± 1%
10;5;10 13.67± 1.2% 12.82± 1% 9.92± 1% 8.66± 1%
DBA-LinUCB

Nb cluster
3;5;5 11,61± 1.1% 8.39± 1%
5;5;10 11,89± 1.2% 8.51± 1%
10;5;10 11.81± 1.2% 9.19%
Ctree-Ucb 12.79%± 1% 11.47%± 1% 9.07% 9.09%
LinUcb 11.56%± 1% 8.57± 1%
UNIFORM 11.49%± 1% 8.26%± 1%
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vides additional evidence to support the effectiveness of the method effectiveness
for signal-type series. For this dataset, DBA-LinUCB achieves the best perfor-
mance. The lower performance of DBA-Ctree-Ucb can be explained by the
fact that the sensors are not strongly correlated with each other, and the choice
of sensor used for learning strongly influences the algorithm’s performance.

Table 2. Average classification rate at the end of the test according to different settings
for Localization Dataset

Localization Dataset
Conf30,70

DBA-Ctree-Ucb Nb cluster L = V 1 L = V 2 L = V 3

5; 5; 10 68.9% ± 3% 44.1% ± 4% 43,6% ± 3%
10; 10; 10 69,8%± 3% 58.6% ± 4% 66,8% ± 3%
10; 15; 15 68,8%± 4% 57.3%± 4% 35,6%± 4%
DBA-LinUCB Nb cluster
5; 5; 10 76%± 3%
10; 10; 10 81,7% ± 3%
10; 15; 15 74,6%± 3%
LinUcb 66,2% ± 2%
Ctree-Ucb 33.7%± 3% 32.2± 3% 31.5± 4%
UNIFORM 32,5% ± 1%

5 Discussion of Results and Conclusion

The choice of cluster number K, based on the Silhouette index, indicates that the
algorithm is suitable for parameter selection. We tested 6 other quality indices,
none of which yielded such results. One crucial aspect of our method is the reduc-
tion in context size, which leads to a significant decrease in computation time.
Since the cluster identification component is executed offline, it does not decrease
the efficiency of the online A/B-Test test step. The DBA-Ctree-Ucb method
enables the grouping of previously learned clusters if the reward distributions
(on variation “A”) are statistically identical. Therefore, setting the number of
clusters too large has minimal impact on the regret, as clusters with identical
reward distributions are grouped together. Our experiments also demonstrated
that DBA-Ctree-Ucb and DBA-LinUCB facilitate business interpretation of
clusters. For instance, separating a “perfect prospect” from a “visitor who arrived
by mistake” can be challenging. Their visits are nearly short before they reach
the test page. By combining different types of clusters (one based on presence
and the other on time spent on the site) and predicting their click probabilities,
we can differentiate between these two profiles and determine the most suitable
variation. DBA-Ctree-Ucb/DBA-LinUCB appears to be a more advanta-
geous method than Ctree-Ucb/LinUcb in terms of regrets. Clusters allow for
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the construction of more homogeneous groups in terms of reward distribution
rather than relying solely on series averages. Separating groups based on series
mean values makes learning highly sensitive to extreme values, which the clus-
tering model avoids. However, DBA-Ctree-Ucb requires a correlation between
the earnings of different variations: the earnings distribution of a group, whether
on variation A or B, follows the same distribution (with the same variance), but
the means may differ. In a further work we will show how this pre-processing
step has helped the user to create more personalized variation B by generative
DNN.
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Abstract. The ongoing energy transition towards renewable sources
increases the importance of energy exchanges and creates demand for
automated trading tools on these exchanges. Day-ahead exchanges play a
prominent role in this area. Participants in these exchanges place buy/sell
bids collections before each trading day. However, machine learning-
based approaches to automated trading are based on placing a single
bid for each time instant. The bid is either executed or not, depending
on the relation between the market price and the bid price. This is con-
trary to economic rationality, which usually requires buying more when
the market price is lower and selling more when it is higher. Single bids
do not allow the expression of such preferences. In this paper, we fill
this gap and design a policy that translates the information available
to the trading agent into price-dependent supply and demand curves.
Also, we demonstrate how to train this policy with reinforcement learn-
ing and real-life data. Our proposed method is now being deployed in a
real system for energy storage management. Here, we demonstrate how
it performs in four data-driven simulations. The proposed method out-
performs alternatives in all cases.

Keywords: Automated trading · Reinforcement learning · Energy
market

1 Introduction

In 2023, wind and solar energy represented 14.26% of global electricity generation,
after these shares doubled in 5 preceding years [42]. The power of wind and sun-
light reaching the Earth’s surface is, to some extent, random. Therefore, while the
rise of renewable energy sources presents the prospect of cheap and clean energy,
it also exacerbates the problem of balancing power supply and demand.
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In many countries, the main institution that balances volatile electricity sup-
ply and demand is a day-ahead energy market [13,14,27,30]. Every day, agents
participating in this market place their buy and sell bids separately for every
hour between 0 am and 11 pm the next day. Market clearing prices are then
designated for each of these hours, and the bids are consequently executed or
not, depending on the proposed prices.

Here, we consider an agent that (i) consumes electricity, (ii) produces elec-
tricity, and (iii) has electricity storage. What is of main interest here is a strategy
for automated trading on a day-ahead energy market on behalf of this agent.

Reinforcement learning (RL) [32] is a natural tool to optimize a policy of
sequential decision-making in dynamical, stochastic systems that elude modeling.
RL has been applied to optimize strategies of on-line energy trading within local
energy markets [4,15,20,21,24,28], real-time bidding for internet ads [6], stock
market trading [10,18,38,41], power grid control [1,14,25], trading on the day-
ahead energy market [8,9].

In existing studies on RL for automated trading, an action either selects a bid
from a predefined set or directly defines parameters (type, price, and quantity)
of a single bid or a pair (sell and buy) of bids.

The fact that for each bidding, the agent is able to submit only one or two
bids is a serious limitation. Most electronic markets allow their participants to
define many bids for each time interval. By submitting a collection of bids, the
participant can define how much of the commodity he wishes to sell and/or buy,
depending on the market price. The actual trading agents usually take advantage
of this possibility since buying more when the price is low and selling more when
the price is high usually results from economic rationality.

In this paper, we design a strategy that translates the information avail-
able to the trading agent into parameters of the supply and demand curves.
These parameters are then translated into a collection of bids. The number of
bids within the collection is variable. This strategy enables the trading agent to
behave rationally in an economic sense, which is not possible when the strategy
only produces single bids. We have designed our strategy with the day-ahead
electricity market. However, it can also be applied to other electronic markets.

In this paper, we demonstrate the performance of our proposed automated
trading strategy in several real data-based scenarios of the day-ahead electricity
market trading. The strategy is currently being deployed in a real system for
energy storage management.

The paper contributes as follows:

– We design a parametric automated trading strategy suitable for electronic
markets with significant lags between bidding and its corresponding trans-
action. This strategy produces supply and demand curves by means of bid
collections of variable sizes, thereby enabling the trading agent to behave
rationally.

– We formalize a framework in which on-line RL can be applied to optimize
a policy on the basis of recorded observations of the external environment
without data on earlier decision-making.
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– We apply reinforcement learning to optimize the above strategy and select
the best algorithm for this purpose. The resulting strategy is fitted to the
data and ready to use in real life.

2 Related Work

Automated Trading on the Electricity Market. Research on automated trad-
ing on the electricity market covers various approaches. Some works introduce
theoretical frameworks of bidding strategies [5,17,36]. Many authors propose
various forms of parametric bidding strategies. These strategies are optimized
with methods like linear programming [3], genetic and evolutionary algorithms
[2,37] or stochastic optimization [13,19]. However, as a more complex bidding
strategy is expected and a more complex transformation of observations into
bids is required, these techniques become less effective.

With the advent of electricity prosumers, energy microgrids, energy cooper-
atives, and flexible price-driven energy consumption, there is an increasing need
for automated decision-making and control in various activities undertaken by
the energy market participants. Strategies for these agents can be optimized
with reinforcement learning. Various applications of RL in power systems are
reviewed in [14,26,39]. The authors of [23] analyze bidding on a DA energy mar-
ket as a zero-sum stochastic game played by energy producers willing to exercise
their market power and keep their generators productive. RL is used there to
optimize their bidding strategy. In [35], bidding on a DA energy market from
the point of view of a flexible buyer (who charges a fleet of electric vehicles)
is analyzed. His strategy is optimized with RL. A number of papers is devoted
to peer-to-peer trading with electricity on a local, event-driven energy market,
with RL applied to optimize the behavior of such peers [4,7,8,15,28]. RL and
neural price predictions are used in [20] to optimize the scheduling of home
appliances of private users. The authors assume that the electricity prices are
changing and are known one hour ahead. The work [4] analyzes a similar setting
in which the users also trade energy with each other. This setting is used in [28]
to optimize the user strategies with multi-agent RL. The authors of [21] opti-
mize peer-to-peer energy microgrid operations with multi-agent reinforcement
learning, with their method generating higher net profits than simple fixed price
biddings. Q-Learning and SARSA algorithms are used in [24] to create simple
bidding strategies and test them on German real-life data.

The authors of [9] consider simultaneous trading on a DA and hour-ahead
energy markets by an energy storage operator as a Markov Decision Process
(MDP). The authors use RL to optimize a strategy of bidding on a DA energy
market by a battery energy storage system. They use RL to optimize a strategy
of bidding on a DA energy market by a battery energy storage system (BESS).
However, the authors address the dynamics of that process only to a limited
extent. Consecutive days are separate episodes, so the between-day dynamics
of the market are not accounted for. Discrete actions define the parameters of
the bids. They are not based on external observations such as weather forecasts.
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Also, only a single bid can be placed each hour. In the current paper, we address
all of these limitations, which leads to significantly better performance of our
proposed strategy and allows it to be deployed in real-life scenarios.

Automated Stock Market Trading. In this area, the trading agent observes a set
of time series of prices of different assets. The agent makes on-line decisions on
buying these assets at the current prices in anticipation of their price increase
or selling them in anticipation of their price decrease. Because the problem is
formalized as an MDP, it is addressed with RL [10,40].

Additional related works are discussed in Appendix A of the supplementary
material.

3 Problem Definition

In this paper, we consider automated trading on the commodity markets with
lags between biddings and their corresponding transactions. We specifically focus
on the day-ahead energy market, understanding that other commodity markets
could be approached alike, with some minor variations.

3.1 Day-Ahead Electricity Market

A trading agent is an entity such as a small- or medium-sized consumer of
electricity e.g., a group of households connected together to the power network.
We assume that it may consume electricity randomly, produce electricity with
weather-dependent sources such as solar panels and windmills, and store energy
in batteries.

The trading agent participates in the day-ahead energy market. Every day
before 10.30 am1 the agent submits bids for 24 separate biddings: for hours 0
am, 1 am, . . . , 11 pm of the following day. Each bid is defined by the hour, type
(sell/buy), price (per 1 kWh), and quantity (in kWhs). Any number of bids for
each hour is acceptable. Right after the biddings close at 10.30 am, market prices
are designated for each hour. The buy bids with prices higher than or equal to
the market price will be executed at the market price. Likewise, the sell bids with
prices lower than or equal to the market price will be executed at the market price.
On the next day, at each hour, the agent consumes, produces, and transmits the
energy to/from the power network according to its bids being executed. The net
energy is transmitted to or released from the energy storage. When the agent tries
to get energy from empty storage or put the energy into full storage, it actually
exchanges it with the market and pays a special fine for that.

The problem is to designate the bids on behalf of the trading agent to maxi-
mize the profit gained (or minimize the cost incurred) from participation in the
market.

1 We take details from the specific DA market considered in the experimental study.
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3.2 Reinforcement Learning to Bid

We adopt the general framework of reinforcement learning [32]. The objective is
to optimize a policy that translates relevant available information into bids. The
said information defines the state of the environment. It is relevant for future
market prices, e.g., weather forecasts or the day of the week. Also, it is relevant
to the current situation of the trading agent and its potential to produce and
consume energy, e.g., battery charge and, again, weather forecasts.

Every day, the trading agent is receives a reward equal to the financial net
result of its bids (and fines). The goal is to optimize the policy to yield the
largest possible sums of future discounted rewards in each environmental state
the trading agent encounters.

4 Method

4.1 Analysis

Within traditional microeconomics, we analyze the relation between the amount
of goods the agent sells or buys and the unit price of these goods. If the agent is
only able to express its offered supply and demand in a pair of bids, the agent
either sells/buys its defined quantity or not, depending on whether the market
price is lower/higher than its defined threshold. The supply/demand curves that
visualize these relations can be seen in the top part of Fig. 1. To the best of our
knowledge, placing a single bid, or a sell-and-buy pair of bids, at a time has only
been considered in the literature of automated trading.

However, it is folklore of microeconomics [16] that a rational economic agent
is most often willing to sell a higher quantity of commodity when its market price
is higher. Also, the economic agent most likely is willing to buy a higher quantity
of commodity when its market price is lower. For our considered trading agent,
both the above cases create a lucrative opportunity to sell high and buy cheap.
These typical preferences are depicted in the middle part of Fig. 1, in the form
of increasing supply curve and decreasing demand curve. How can the trading
agent express such preferences with bids?

4.2 Price-Dependent Supply and Demand in Bids

Let us consider, for a given hour h, a collection of sell bids

〈sell, h, ph,is , q0〉, i = 1, . . . , nh
s , ph,is ≤ ph,i+1

s , (1)

where q0 > 0 is a certain constant quantity, nh
s is the number of bids, and ph,is

are unit prices. Let phm be a market price, and integer j be such that

ph,js ≤ phm < ph,j+1
s . (2)
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Fig. 1. Top: Supply and demand defined by a pair of bids; the agents sells qs units at
the unit price of pm. Middle: Nondecreasing supply and nonincreasing demand. Bottom:
Nondecreasing supply and nonincreasing demand as defined by a collection of bids.



374 Ł. Lepak and P. Wawrzyński

Then, only the first j bids are executed and the bidding agent sells a quantity
of jq0 at the market price phm. The above collection of bids (1) can thus be
represented as a nondecreasing supply curve, similar to that depicted on the
left-bottom part of Fig. 1.

Any nondecreasing function can be approximated by a piecewise constant
step function. Consequently, any reasonable preferences of selling can be approx-
imately represented by the collection of bids (1). Moreover, for technical reasons,
in most electronic markets, quantities can only be defined in bids as integer num-
bers (or as integer multiples of the minimum tradable quantity). Consequently,
any supply curves feasible in the electronic market is a piecewise constant step
function, and it can be represented in the form (1).

The above reasoning can be repeated, with similar conclusions, for demand.
It can effectively be represented as a collection of bids in the form

〈buy, h, ph,id , q0〉, i = 1, . . . , nh
d , ph,id ≥ ph,i+1

d , (3)

where nh
d is the number of bids, and ph,id are unit prices.

4.3 Parametric Representation of a Collection of Bids

In order to apply reinforcement learning to learn to designate collections of
bids in the form (1) and (3), we need a way to translate vectors of predefined
dimension into bid collections of variable size. We design this translation as
follows. Let the action space be 100-dimensional, a ∈ [−1, 1]100. Coordinates of
a single action define all bids for the whole day. The collection of sell bids for
the hour h = 0, . . . , 23 is given by (1) with

nh
s = �cq exp(ceah)/q0 + 1/2� (4)

ph,is = chp exp(ah+24)
(
1 + exp(a96)

(−(2a98 + 4)−1 + (i/nh
s )

2a98+3
) )

(5)

The collection of buy bids for the hour h = 0, . . . , 23 is given by (3) with

nh
d = �cq exp(ceah+48)/q0 + 1/2� (6)

ph,id = chp exp(ah+72)
(
1 + exp(a97)

(
(2a99 + 4)−1 − (i/nh

d)
2a99+3

) )
(7)

where ak denotes k-th coordinate of the action a, and

– ah/ah+48 defines the width of the supply/demand curve, i.e., the number of
sell/buy bids for the hour h,

– ah+24/ah+72 defines the average height at which the supply/demand curve is
located,

– ah+24 + a96/ah+72 + a97 defines vertical span of the supply/demand curve,
– a98/a99 defines convexity/concavity of the supply/demand curve,
– cq—quantity scaling factor (we assume its value equal to the maximum hourly

production of the installed sources),
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– chp—price scaling factor (we assume its value equal to the median price for
hour h over the last 28 days),

– ce—quantity exponent scaling factor (we assume ce = 3).

The resulting supply and demand curves are depicted in Fig. 2. Note that the
above symbols, except q0, cq, ce, depend on t, but we skip this dependence in the
notation.

The supply and demand curves above are designed symmetrically. Thus, let
us only analyze ph,is (5). The term

− (2a98 + 4)−1 + (i/nh
d)

2a98+3 (8)

makes the supply curve an increasing power function with the exponent 2a98+3
controlling the convexity/concavity of the curve; for a98 ∈ [−1, 1] the exponent is
in the [1, 5] interval. The component −(2a98+4)−1 makes the average of (8) over
i ∈ [0, nh

d ] equal to zero. The term exp(a96) controls a vertical span of the supply
curve. The values of a96 and a98 do not impact the average height at which the
supply curve is located, which is designated only by the term chp exp(ah+24).

The widths and vertical locations of the curves are specified separately for
different hours by their corresponding action coordinates. However, the vertical
span of these curves and their convexity/concavity are specified for all hours by
the same action coordinates a96 . . . a99. This parameter sharing is intended to
maintain a low enough dimensionality of the action space.

Fig. 2. Supply and demand defined by our proposed collections of bids.

4.4 Bidding Policy

In general in reinforcement learning, a policy, π, is a probability distribution of
actions conditioned on states:

at ∼ π(·|st), (9)
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where st and at are, respectively, the state and the action at the instant t of
discrete time.2 We adopt a policy in the form

at = g1(st; θ) + ξt ◦ exp(g2(st; θ)), ξt ∼ N (0, I), (10)

where g1 and g2 are two vectors produced by the g neural network which is
fed with the state st and parameterized by the vector θ of trained weights; “◦”
denotes the Hadamard (elementwise) product; ξt denotes random normal noise.

4.5 Bidding Policy Optimization with Reinforcement Learning

Participation in the day-ahead market can be naturally modeled as a Markov
Decision Process in which the state, st, of the environment at time t = 1, 2, . . .
is a vector composed of two sub-vectors, uncontrollable variables sut , and control-
lable variables sct . The uncontrollable state variables denote external conditions
like weather forecasts. They evolve according to an unknown stationary condi-
tional probability

sut+1 ∼ P (·|sut ). (11)

The controllable variables sct are directly determined by the actions at taken and
the uncontrollable state coordinates that is

sct+1 = f(sct , at, s
u
t , sut+1), (12)

where f is known. The key controllable state variable is the power storage charge.
It trivially results from the agent’s bids (actions) and uncontrollable variables:
market prices and the agent’s own energy production and consumption.

The critical assumption that allows us to distinguish uncontrollable and con-
trollable variables is that the trading agent is small enough not to impact the
market prices. Therefore, we may simulate its bidding and determine whether
the bids are executed based on the recorded market prices. If the agent was large
enough to actually impact the market prices, then this simulation would not be
realistic, at least without an elaborate model of the impact of this agent on the
market prices.

Note that the above-defined division of state variables into controllable and
uncontrollable is unusual. In a typical MDP, we assume that the state changes
according to

st+1 ∼ Ps(·|st, at), (13)

where the conditional probability Ps may be quite difficult to analyze and esti-
mate. Therefore, a strategy of choosing actions cannot be evaluated without bias
within a simulation based on a model of Ps.

Based on a recorded trajectory of uncontrollable states, (sut : t = 1, . . . , T ),
we can designate a strategy of selecting actions at based on states st and eval-
uate this strategy in a simulation with the record (sut : t = 1, . . . , T ) replayed.
2 In Sect. 4.3, ak denoted k-th coordinate of action and here at denotes action at the

time t.
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This valuation will be an unbiased estimate of the performance of this strategy
deployed in reality. Furthermore, we can replay this record repeatedly and sim-
ulate episodes of on-line RL just using f (12) to designate consecutive values of
sct .

In order to optimize the strategy (10), we may use any algorithm of on-
line reinforcement learning [33] e.g., A2C [22], PPO [31] or SAC [11]. In the
experiments below, we used the A2C algorithm, which showed the best stability
by far. Our comparison of RL algorithms is presented in Appendix G of the
supplementary material. A training consists of a sequence of simulated trials in
which the trajectory of uncontrollable states is just replayed from the data, and
the corresponding trajectory of controllable states is designated based on the
uncontrollable states, the actions selected, and the function f (12).

4.6 Alternative Bidding Strategies

In order to verify our proposed bidding strategy, we compare it to two more
intuitive ones.

Simple Arbitrage Strategy. Perhaps the simplest conceivable bidding strategy is
to buy energy when it is cheap, keep it in the battery, and sell it when it is
expensive. On most days, the market value of electricity is the lowest at 2 am,
and it is the highest at 10 am. Therefore, our reference simple arbitrage strategy
assumes placing the two bids:

〈buy, 2am,+∞, θ1 − l̂〉, 〈sell, 10am,−∞, θ2〉, (14)

where l̂ is an estimated storage state of charge at 0 am, and θ1, θ2 are opti-
mized parameters. We apply the CMA-ES evolutionary algorithm [12] for their
optimization.

Pair of Bids Strategy. A simple approach to bidding on the day-ahead electricity
market, which also involves reinforcement learning, is to present just two bids
for each hour h = 0am, . . . , 11pm, namely

〈buy, h, phd , nh
dq0〉, 〈sell, h, phs , nh

s q0〉, (15)

where phd , nh
d , phs and nh

s are defined by an action, a ∈ [−1, 1]96, as follows:

nh
d = �cq exp(ceah+48)/q0 + 1/2�, ph,id = chp exp(ah+72), (16)

nh
s = �cq exp(ceah)/q0 + 1/2�, ph,is = chp exp(ah+24). (17)

For comparison, see nh
d (6), ph,id (7), nh

s (4), ph,is (5). The collection of bids
strategy introduced in Sect. 4.2 would be equivalent to (16) and (17), if all buy
bids for a given hour had equal price and all sell bids for a given hour had equal
price. In our simulations, we use the same reinforcement learning setup to train
strategies that place the above pairs of bids and the collections of bids introduced
in Sect. 4.3.
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5 Simulations

5.1 Simulation Environment

Experiments are conducted using a custom environment simulating day-ahead
energy market operations. This simulator is based on real-life data from the Pol-
ish market. It allows for customization of various market settings, such as a bid
creation time, a scale of the trading agent (defined by the number of households),
or its solar and wind energy generation capabilities. The environment is based on
the Gymnasium environment interface [34], making it compatible with popular
reinforcement learning libraries, including Stable-Baselines3 [29], which we use
as our source of RL algorithms.

We provide details and parameters on the simulation environment, the trad-
ing agent’s energy consumption and production profile, and weather forecast
randomization in Appendices B–E of the supplementary material.

We run our experiments by replaying the events that occurred in the years
2016–2019. We selected this period as preceding the COVID-19 pandemic, which
destabilized markets. The runs involve replaying original price data and weather
data. In order to diversify every replay and thus avoid overfitting to the data, we
randomize weather forecasts and electricity demand according to their statistical
profile.

During the simulation, the trading agent may be forced to buy missing energy
or sell excess energy immediately. It happens when the agent sells or uses energy
it does not have or buys energy it does not have room for. The agent is being
penalized for such events. Immediate buying is realized for double the current
market price, and immediate selling is realized for half the current market price
so that the agent has the incentive to better plan its bids instead of relying on
instant buys or sells. Also, we do not include market entry and transaction fees,
as they are fixed costs independent of the bidding strategy.

5.2 Experiments

Reinforcement learning is used to optimize the bidding policy for a collection of
bids parameterized as in Sect. 4.3, later referred to as COLLECTION. It utilizes
data from 2016 to the third quarter of 2018 as the training set, data from the
fourth quarter of 2018 as the validation set, and data from 2019 as the testing
set. The training is done in randomly generated intervals from the training set,
which are 90 days long. Periodically, evaluation is done on a single validation
interval 90 days long. After the training timesteps budget is depleted, the model
for which the highest reward on validation interval was achieved is evaluated on
the single testing interval 365 days long. Common parameters used for the RL
experiments are available in Table 2 of the supplementary material.

The observation of the environment’s state (117 values) is passed to the agent
at bid placing time and contains the following information:
– prices of energy at the current day for every hour (24 values) – these are the

prices for the current day, for which the bids were created the day before; the
agent does not know energy prices for the bids currently submitted,
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– current relative battery charge (1 value),
– estimated relative battery charge at midnight (1 value),
– one-hot encoded information about the current month (12 values),
– one-hot encoded information about the current day of the week (7 values),
– cloudiness, wind speed, and temperature forecasts for each hour of the next

day (72 values).

Rewards are computed as

rt = 10−3 (pt − p̄t − ρt) , (18)

where pt is the daily profit from selling and buying energy, p̄t is a reference profit,
and ρt is a regularizing penalty. The reference profit p̄t is a daily profit that would
be achieved if the difference between daily produced and consumed energy was
sold or bought at the average market price from that day. The reference profit is
not trivial to achieve since the agent mostly consumes energy when it is expensive
and produces energy when it is cheap. The regularizing penalty

ρt =
dim(at)∑

i=1

[|at,i| > 0.99] (19)

where [condition] equals 1 if the condition is true, else 0, prevents the action
coordinates from saturating at their bounds. The effect of regularization on the
performance of tested strategies is presented and discussed in Appendix I of the
supplementary material.

We compare the collection of bids strategy to the strategy to the alternative
strategies presented in Sect. 4.6. The simple arbitrage strategy is later referred
to as ARBITRAGE, and the pair of bids strategy is later referred to as PAIR.

We also applied the algorithm from [9], later referred to as FARL, which is
a conceptually different approach to optimize a bidding strategy. FARL considers
each day a 24-step episode and places a single sell/buy bid at each hour. FARL is
based on the assumption that each bid is placed when market prices for preceding
hours are known. This assumption is wrong for any day-ahead electricity market
we are aware of. We used this algorithm to produce bids for consecutive hours
without access to the market prices of previous biddings. We fed it with the same
training, evaluation, and test data as discussed above. However, when used this
way, it was unable to produce even remotely reasonable strategy. Implementation
details, parameters, and discussion about the FARL algorithm are provided in
Appendix F of the supplementary material.

5.3 Different Operation Scenarios

We tested the proposed collection of bids strategy in comparison to the alterna-
tives from Sect. 4.6 in the following scenarios:

– an agent has an energy storage only (BES),
– an agent has an energy storage and production capabilities (BES+PROD),
– an agent has an energy storage and consumes energy (BES+CON),
– an agent has an energy storage, produces and consumes electricity (ALL).
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5.4 Results

Table 1. Differences between achieved balances and the reference profit for the tested
strategies in different scenarios; last column contains the reference.

Scenario\strategy ARBITRAGE PAIR COLLECTION Reference

BES 13251.29 ± 6238.36 30791.40 ± 851.3132826.71 ± 1127.88 0.00
BES+PROD 17578.67 ± 8039.00 28388.18 ± 765.4529170.47 ± 1630.18 37470.07
BES+CON 3446.76 ± 7042.91 28485.64 ± 667.7428547.43 ± 1154.93−45089.87
ALL 16217.54 ± 6677.35 30203.35 ± 644.5131036.12 ± 1310.28−7619.80

Table 1 presents differences between total profits achieved by tested strategies
and the total reference profit described above; the last column contains the
reference. It is seen that depending on the scenario, the reference varies a lot
because the trading agent either sells the energy produced, buys the energy
consumed or does both or neither. The proposed collection of bids strategy
achieved the best profits, beating the pair of bids strategy in all tested scenarios.
The pair of bids strategy achieved reasonable results but slightly worse than the
proposed strategy.

Of all tested scenarios, the collection of bids achieved the best advantage
over the pair of bids strategy in the battery-only scenario. Here, the agent earns
money solely based on bids created, without any production or consumption to
include in the bids. It is noticeable that the collection of bids strategy is able to
adapt to these circumstances, making the biggest buys when the energy price
is low and the biggest sells when the energy price is high, with some additional
smaller transactions also happening in beneficial hours. This means that the col-
lection of bids strategy is able to recognize significant price fluctuations, allowing
it to capitalize on occasional prices.

In all of the tested scenarios, both strategies were able to adapt to the cir-
cumstances, buying enough energy when only consumption was active and selling
surpluses of energy when only production was active. Immediate transactions due
to lack or excess of energy were, in fact, very rare.

In Fig. 3, the mean hourly relative charge for the battery is presented. These
were calculated for the COLLECTION strategy based on the test run that
achieved the best profit. The proposed strategy is able to make the best use
of its available capacities, with smooth transitions between hours, indicative of
reasonable bid creation. It is seen that the battery is charged at night, which
means that the agent buys energy when it is cheap. The battery is discharged
at about 10 am, which means that the agent sells energy when it is the most
expensive. The PAIR strategy is generally able to leverage that regularity and
achieve reasonable profits. However, our proposed COLLECTION strategy is
also able to leverage unpredictable variations of prices to the agent’s benefit: It
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Fig. 3. Mean hourly relative battery charge. Strategy: COLLECTION. Scenario: ALL.

buys more when the prices are unexpectedly low and sells more when the prices
are unexpectedly high.

The supplementary material attached to this paper contains the following:

– Appendix A - additional related works
– Appendix B - details and parameters of the simulation environment
– Appendix C - model of the trading agent’s energy consumption
– Appendix D - model of the trading agent’s energy production
– Appendix E - model for creating weather forecasts from real weather data
– Appendix F - description of adapting the FARL algorithm [9] to our simula-

tion environment
– Appendix G - comparison of other RL algorithms (PPO, SAC, TD3) together

with their hyperparameters
– Appendix H - detailed results for the pair of bids strategy
– Appendix I - study of using regularization in the collection of bids and the

pair of bids strategies
– Plots for the collection of bids and the pair of bids strategies with different

scenarios.

6 Conclusions

In this paper, we have proposed a parametrization of supply and demand
curves, which allows for multiple sell and buy bids at each time, thus intro-
ducing increased flexibility and efficiency to automated trading on electronic
markets. We have described a framework for optimization of this parametrized
bidding strategy on a day-ahead energy market based on simulations and real-
life data. We have used reinforcement learning to optimize this strategy and
have compared it with different strategies. The proposed collection of bids strat-
egy achieved the best results, getting the highest financial profit while showing
reasonable behavior with battery management and bid placement.

The proposed strategy’s generality and adaptability to data allow it to be
deployed in real life. Indeed, the strategy is now being deployed in a system for
energy storage management.
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Abstract. Air pollution, especially particulate matter 2.5 (PM2.5), is a
pressing concern for public health and is difficult to estimate in develop-
ing countries (data-poor regions) due to a lack of ground sensors. Transfer
learning models can be leveraged to solve this problem, as they use alter-
nate data sources to gain knowledge (i.e., data from data-rich regions).
However, current transfer learning methodologies do not account for
dependencies between the source and the target domains. We recognize
this transfer problem as spatial transfer learning and propose a new fea-
ture named Latent Dependency Factor (LDF) that captures spatial and
semantic dependencies of both domains and is subsequently added to the
feature spaces of the domains. We generate LDF using a novel two-stage
autoencoder model that learns from clusters of similar source and target
domain data. Our experiments show that transfer learning models using
LDF have a 19.34% improvement over the baselines. We additionally
support our experiments with qualitative findings.

Keywords: Spatial transfer learning · Autoencoder model · PM2.5

data

1 Introduction

Air pollution, especially atmospheric aerosols smaller than 2.5µm i.e. PM2.5

poses a significant concern to public health [30]. Emissions from vehicles [20],
wildfires [7], and industrial processes [11] are major contributors to high PM2.5

levels. Current approaches for measuring PM2.5 involves using either remote
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sensing methodologies [3] or ground sensors [1]. While satellite-based remote
sensing methodologies are a low-cost way to measure PM2.5, however, their data
collection is affected by factors like cloudy weather and high surface reflectance,
thereby significantly reducing the accuracy of measured PM2.5 levels [3]. Alter-
natively, installing PM2.5 ground sensors yields highly accurate data as these
sensors employ gravimetric data collection methodologies [1]. However, due to
their high installation and maintenance costs [21], it is challenging to scale them
in developing countries [8], creating an imbalance of data-rich (developed) and
data-poor (developing) regions with PM2.5 data for air pollution estimation.

Transfer learning (TL) can ameliorate this situation by utilizing data-rich
(source data) regions to learn a prediction model on data-poor (target data)
regions [26]. Prior research on estimating PM2.5 through TL is geared towards
time-series forecasting where the model learns historical data of an observed
location (sensors) and forecasts the horizon (i.e. future values) for the observed
locations [12,24,37,38]. Therefore, these models cannot estimate the PM2.5 levels
for locations where historical data is unavailable [33]. Alternatively, one can
employ Instance transfer learning (ITL) models that avoid the limitations of
time-series forecasting models by not relying on continuous temporal data [13,
14]. ITL models reweigh source domain samples based on the target domain and
subsequently combine the two domains.

Unfortunately, ITL models are limited in estimating PM2.5 as they overlook
the spatial and semantic correlations in the datasets. PM2.5 estimation data
is uniquely heterogeneous and complex, containing topographical, meteorolog-
ical, and geographical features. These features exhibit spatial autocorrelations
(dependencies), i.e. nearby locations tend to have similar PM2.5 levels, as well
as semantic correlations (dependencies), e.g. locations with similar meteorolog-
ical and topographical conditions exhibit similar PM2.5 levels with high likeli-
hood [22]. Spatial dependencies are prevalent within a domain, whereas semantic
dependencies will likely arise when combining two domains (case for ITL). We
call this complex transfer problem as spatial transfer learning.

In this paper, we solve spatial transfer learning to improve PM2.5 estimation
by allowing source and target data points to learn from each other in the com-
bined domain space. We achieve this by introducing a new feature called Latent
Dependency Factor (LDF) in both the source and target datasets to bridge the
gap between the two domains. To generate LDF, we first learn a cluster of sim-
ilar (spatially and semantically similar) data points for each sample, which are
fed to our novel two-stage autoencoder model. The first stage, encoder-decoder,
aims to learn a latent representation from the combined feature space of the
cluster, while the second stage, encoder-estimator, learns from the target label
(PM2.5 value). The LDF is highly correlated to the target (dependent) variable
and contains learned dependencies from both domains. To illustrate the benefits
of LDF, we utilize real-world PM2.5 data for the United States and Lima city
in Peru. Our experiments include a comparative analysis of ML and TL models
within the US boundaries, where we observe a 19.34% improvement in prediction
accuracy over baseline models. We also present a qualitative analysis showcas-
ing the deployment of our methodology in data-poor regions such as Lima. In
summary, we make the following contributions:
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1. We present Latent Dependency Factor (LDF), a new feature to learn the
spatial and semantic dependencies within the combined source and target
domains and close the gap between the two domains.

2. We introduce a novel two-stage autoencoder model to generate LDF. It learns
dependencies from the combined feature space of the clustered input data and
the dependent variable.

3. We explore the settings for spatial transfer learning for PM2.5 estimation in
data-poor regions, a challenging problem with untrained test locations and
sparse target and source locations causing minimal spatial autocorrelation.

4. We deploy our technique in Lima, Peru, and validate the results by domain
experts due to the scarcity of true labels. This offers insights into the real-
world application of our technique and its effectiveness.

2 Related Work

Estimating PM2.5 via Transfer Learning. Prior studies have utilized trans-
fer learning for PM2.5 estimation through time-series forecasting models, which
learn from historical data of target sensors to forecast their future values. Fong et
al. [12] incorporate Recurrent Neural Networks (RNN) in their temporal transfer
learning model. Yao et al. [38] employ Variational Auto-Encoders (VAE) using
nearby sensors as source data, while Ma et al. [24] combine Long-Short Term
Memory (LSTM) and RNN to forecast long-range PM2.5 levels from short-range
historical data. Yadav et al. [37] leverage low-cost sensors as source data for tem-
poral transfer learning for ground sensors. However, our problem is not suited for
time-series forecasting due to missing temporal points and the lack of temporal
matching between regions with varying meteorological conditions.

Transfer Learning via Feature Augmentation. Previous studies have
improved model predictions by imputing features from another dataset [21,23] or
generating synthetic samples to augment data [18,34,35]. The former leverages
datasets with low marginal distribution, while the latter focuses on augment-
ing samples rather than features. In the domain of transfer learning, Daume et
al. [6] and Duan et al. [10] introduce domain adaptation models—Feature Aug-
mentation Method (FAM) and Heterogeneous Feature Augmentation (HFM),
respectively—to create a common feature space using source and target features.
These models are useful when the source and target domains have a dissimilar
feature space, as noted by Pan et al. [25], whereas our approach incorporates
spatial and semantic dependencies during ITL for domains with similar feature
spaces, high marginal distribution, and low spatial autocorrelation.

3 Problem Formulation

Our problem comprises the source region with higher PM2.5 sensors and the tar-
get region with fewer sensors. The data is heterogeneous due to diverse features
and complex due to spatial and semantic dependencies between its samples.
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Fig. 1. Framework for spatial transfer learning via Latent Dependency Factor

Let XS
f be the feature set for the source domain with m samples, and let

XT
f be the feature set for the target domain with n samples, such that m >> n,

and contains f features. Let Y S and Y T be the source and target domain labels
(PM2.5 levels). Hence, DS = (xS

i , yS
i )

m

i=1 is the source domain dataset, where
xS
i ∈ XS

f is the feature vector for the i-th PM2.5 monitor, and yS
i ∈ YS is the

corresponding PM2.5 value at the sensor. Similarly, DT = (xT
i , yT

i )
n

i=1 is the
target domain dataset with xT

i and yT
i representing i-th monitor and its PM2.5

value, respectively.
Instance Transfer Learning (ITL) methodologies are employed when the two

domains have varying marginal distributions. They find a reweighing function
w(x) that adjusts the importance of each sample in the source domain based on
its relevance to the target domain. The importance weights w(xS

i ) are calculated
for each sample xS

i in the source domain DS , where w(xS
i ) represents the degree

of relevance of xS
i to the target domain DT . This degree of relevance is often

calculated using probability densities, expressed as w(xS
i ) = PDT (xS

i )

PDS (xS
i )

, where

PDT (xS
i ) and PDS (xS

i ) is the probability density of xS
i in the target domain

and source domain respectively. The importance weights are applied to the
source domain samples to obtain D̄S = (x̄S

i , yS
i )

m

i=1 where x̄S
i = w(xS

i ) · xS
i . The

reweighed source domain samples are used in the target domain for training; the
combined domain is represented as DS̄T = (xS̄T

i , yS̄T
i )

m+n

i=1 .
Our goal is to improve the estimation of PM2.5, such that the com-

bined domain DS̄T after reweighing source domain data DS successfully
captures the spatial and semantic dependencies.

4 Methodology

We introduce Latent Dependency Factor (LDF), a new feature imputed in the
dataset to achieve spatial transfer learning for PM2.5 estimation. The LDF has
the following attributes: (1) It is highly correlated to the observed variable
(PM2.5 value), (2) It captures the spatial dependencies (spatial autocorrelation
between nearby locations), (3) It captures the semantic dependencies (semantic
correlation in the combined data).

Imputing a new feature allows to learn a new loss function. Hence, if a func-
tion f : X S̄T

f → YT can predict the missing PM2.5 values in the target domain
DT . Then, f is learned by minimizing the empirical risk as,
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min
f

[
1

m + n

m+n∑

i=1

�(yS̄T
i , f(xS̄T

i )) + λ · Ω(f)] (1)

where �(y, ŷ) is the loss calculated between true PM2.5 value (y) and predicted
value (ŷ) (here f(xS̄T

i )), Ω(f) is a regularization term, and λ controls the trade-
off between the empirical risk and model complexity. When a new feature is
imputed, the empirical risk in (1) is transformed as,

min
f

[
1

m + n

m+n∑

i=1

�̃(yS̄T
i , f̃(xS̄T

i )) + λ · Ω(f̃)] (2)

with the new trained regressor, f̃ and loss function �̃. Hence, the new loss
function allows obtaining a lower minimum. The framework for spatial trans-
fer learning via LDF contains 3 stages, as shown in Fig. 1, which we elaborate
further.

4.1 Neighborhood Cloud Generation

The first stage (Fig. 1(a)) generates a neighborhood cloud of k similar data points
for each sensor in the source and target regions. This cloud is training data for the
two-stage autoencoder model, allowing each sensor to learn the spatial depen-
dencies of its neighbors and semantic dependencies between the two domains.
The similarity between data points (sensors) is calculated by minimizing the
||L||2 distance across geographical, topographical, and meteorological features
(see supplementary).

4.2 Generating Latent Dependency Factor (LDF)

After generating the neighborhood cloud, the subsequent steps involve generat-
ing the LDF, imputed as a new feature into the original dataset. This feature is
derived using a two-stage autoencoder model (Fig. 2(a)), where the input dataset
(neighborhood cloud) utilizes features – topographical, meteorological, geograph-
ical, and PM2.5 levels. We believe these predictors influence the PM2.5 levels at
the objective location (centroid of the cluster). E.g., given a sensor location, li, in
the target region, the predictors such as the wind-direction, elevation, population,
and more, for the surrounding sensors can influence the PM2.5 levels at li (spa-
tial autocorrelation). Additionally, the sensor location, li, can be semantically
correlated to another location, lj , in the source region, influencing the PM2.5

levels at li in the combined dataset. In Fig. 2(a), each sensor has (p+1) features
with p features and a label. We first calculate the weight for each feature. This
is achieved by finding the similarity (inverse distance) between the feature of the
objective location and neighboring sensors. This allows sensors with influential
features to be given more importance. Following the weighing, the features from
m sensors are stacked together with the objective location to generate the input
data of size (m + 1) · (p + 1). The PM2.5 for the objective location is voided by
setting it to 0. This high-dimensional data is summarized into the LDF, using
the two-stage autoencoder model shown in Fig. 2(b).
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Fig. 2. Two-stage autoencoder model for generating LDF.

Encoder-Decoder Stage. The encoder-decoder stage of the two-stage autoen-
coder model is similar to the standard autoencoder model, where the encoder
first summarizes the input data to generate a latent value. The decoder employs
backpropagation to train the autoencoder. The encoder and the decoder have
three 1D-CNN layers with varying filter sizes, as shown in Fig. 2(b). For the
encoder, the kernel size of the first 2 CNN layers is chosen as 1 to achieve indi-
vidual attention for each sensor and amplify the effectiveness of information
summarization [19]. The third CNN layer has a kernel size 3 to retain the con-
densed pattern from multiple stations. Finally, the information is summed up
using an FNN layer, which outputs the latent value, i.e., the LDF value.

Encoder-Estimator Stage. Since the input data consists of multiple features,
we increase the attention on PM2.5 labels using the encoder-estimator stage. The
estimator layer takes the encoded LDF value as input. It has a single FNN layer
with a single weight and bias set. It utilizes back-propagation and PM2.5 value
of the objective location to train the encoder-decoder model and consequently
optimize the LDF generation process. The autoencoder stages alternate training
over the epochs. We also explore extending LDF to include Aerosol Optical Depth
(AOD) [29] feature, which we call LDF-A and which measures the aerial density
of aerosols such as smoke, dust, and PM particles, in the encoder-esitmator stage.

4.3 Transfer Learning and Multivariate Regression

In Fig. 1(c), we employ Instance Transfer Learning (ITL) to mitigate discrepan-
cies between source and target domain samples [13]. This involves reweighing the
source domain samples to align them closer to the target domain. The reweighed
source data is combined with the target data, creating a unified dataset reflecting
both domains’ characteristics.

This combined dataset is subsequently used to train a multivariate regressor
for predicting PM2.5 values. The choice of regressor can range as polynomial-
function based, decision-tree based, or ensemble model. We employ an ensemble
regressor for our framework, given their high prediction accuracy [9].
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Fig. 3. (a) US PM2.5 ground sensors. The points in the pink target region represent
sample training (green) and testing (red) sensors. The green and yellow regions rep-
resent the eastern and north-eastern source regions, respectively. (b) PM2.5 sensors in
Lima, Peru. Red points represent sensors used for training, and the grey area represents
satellite data for testing. (Color figure online)

5 Evaluation

5.1 Datasets

We employ existing PM2.5 datasets of two distinct regions: the US [27] and the
Lima, Peru [36]. In comparison to other datasets [5], these corpora draw from
diverse sources (EPA, NLDAS-2, and NED for the US and SENAMHI and JHU
for Lima) and encompass a wide array of heterogeneous features such as wind
patterns, atmospheric pressure, humidity levels, potential energy and more.

United States Dataset. As the US region has abundant PM2.5 sensors, we
select this dataset to simulate a transfer learning scenario within its geographical
boundaries. The US dataset has daily averaged PM2.5 levels for 2011 using 1081
sensors, as shown in Fig. 3, with over 249k samples and 77 features. Although
the sample size should be 1081 × 365, some sensors were inactive on certain days
(daily average active sensors: ∼ 682). This contributes to missing temporal points
in the dataset, which limits the application of time-series forecasting methodolo-
gies. We follow the prior work [27] and use Layerwise Relevance Propagation [2]
to extract 27 meteorological, topographical, and geographical features. As illus-
trated in Fig. 3(a), we select two source regions, the eastern US (highlighted
green; marker: x) and north-eastern US (highlighted yellow; marker: ) and a
target region, California-Nevada (highlighted pink). Prior works [4] show that
the California-Nevada region has a diverse landscape compared to the remain-
ing US, thereby simulating a TL scenario with distribution shift and low spatial
correlation among the two domains.
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We sample the 128 target region sensors into sets of 5, 7, 9, and 11 sensors
to have fewer samples. The remaining sensors are used for testing. For cross-
validation (CV), we use 20 random samples per sensor. We extrapolate the active
sensors per day and generate a neighborhood cloud for each sensor that includes
both source and target sensors. Next, the clustered data is used to generate the
LDF which is fed to the transfer models. Our reported R2 and RMSE values
represent averages across the 20 CVs. The features are normalized before model
training. For qualitative analysis (Sect. 5.5), we use ∼ 19.5 million unlabeled
satellite data samples from the California-Nevada region.

Lima Dataset. Given the dearth of sensors in the Lima data, it is a use-case of
real-world transfer learning, where the source data is the complete US dataset
(249k+ samples, 27 features). Lima region has 10 PM2.5 sensors, as shown in
Fig. 3(b), with 2419 samples and 21 features for the year 2016. Lima and the US
datasets have only 14 common features (see supplementary material). For the
qualitative analysis, the Lima satellite data contains 5959 samples covering the
entire Lima region, as shown in Fig. 3(b) (highlighted grey). We use all 10 sensors
and the US dataset to construct the neighborhood cloud data such that each
day of the year (doy) between the two datasets (e.g., day 17 in Lima matched
with day 17 in the US) are extrapolated to generate the clusters. However, the
matching of doy is not on the same year or season between the two domains to
have a real-world transfer condition with minimal alignment.

5.2 Prediction Models

Machine Learning (ML) Models. We select two popular ML models, Ran-
dom Forest Regressor (RF) [41] and Gradient Boosting Regressor
(GBR) [40], trained on only the target region data and tested on the remain-
ing test data. The RF and GBR have parameters varied as n-estimators: {100,
400, 1000}, max-depth: {4, 8, inf} with max-leaf-node: {4, 8, inf} for RF and
learning-rate: {0.1, 0.5, 1.0} for GBR, to get the best fit.

Transfer Learning (TL) Models. We select competitive ITL models [16,31,
42] for the regression task and train them on target and source region data.

1. Nearest Neighbor Weighing (NNW): The NNW [42] reweighs the source
samples by creating a Voronoi tessellation for each sample and counts the
number of target samples falling inside it. The model parameters are varied
as: neighbors: {6, 8, 10} and n-estimator : Decision Tree Regressor with depth:
{6, 8, inf} to get the best fit.

2. Kullback-Leibler Importance Estimation Procedure (KLIEP): The
KLIEP reweighs the source samples to minimize the KL divergence between
the source and target domains [31]. The model parameters are varied as:
kernel : {rbf, poly}, gamma: {0.1, 0.5, 1.0}, and n-estimator : Decision Tree
Regressor with depth: {6, 8, inf} to get the best fit.



Spatial Transfer Learning for Estimating PM2.5 393

3. Kernel Mean Matching (KMM): The KMM reweighs the source samples
such that means of source and target samples in reproducible kernel Hilbert
space is minimized [16]. The model parameters are varied as: kernel : {rbf,
poly}, gamma: {0.1, 0.5, 1.0}, and n-estimator : Decision Tree Regressor with
depth: {6, 8, inf} to get the best fit.

4. Fully-connected Neural Network (FNN): The FNN transfer model,
although not an ITL model, is utilized to validate the performance of non-
ITL models on the PM2.5 data. It uses 3 fully connected layers: nodes: 128,
activation-function: Relu, and 1 final layer with a single node and a linear
activation function. It was trained on LDF-imputed source data and trans-
ferred by fine-tuning over LDF-imputed target data.

The TL models are trained on data sans LDF, LDF, and LDF-A-imputed
data. We use the GBR model as the multivariate regressor to predict PM2.5,
with parameters varied as: estimators: {100, 400, 1000}, max-depth: {4, 8, inf},
max-leaf-node: {4, 8, inf}, and learning-rate: {0.1, 0.5, 1.0} to get the best fit.
The source code, datasets, and final hyperparameter values are available at:
https://github.com/YongbeeIngkle/spatial-transfer-learning.git.

5.3 Optimal k for Neighborhood Cloud

In Fig. 5(a), we use the eastern US as source data and vary the size of the
neighborhood cloud (k) for the NNW [LDF] model as {4, 8, 12, 16}. Our choice
of k mimicked optimizing parameters, ceasing at 16 due to high computational
costs. We observe that k = 4 has the worst performance, while for the remaining
values, there is no observable difference for sensors ≥9. For sensors ≤9, k = 12
has the most optimal performance. Hence, we chose k = 12 to optimize the
computation and generalizability of the model.

5.4 Results and Analysis

In Table 1 and Table 2, we compare the performance of various models with the
eastern US and the north-eastern US as source datasets, respectively.

Eastern US as Source Data. First, we compare the ML and TL sans LDF
models. In Table 1, we observe that NNW, KLIEP, and KMM have a posi-
tive transfer (improved accuracy), with NNW having the best performance. We
observe an unpredictable performance for the FNN transfer model, validating
that non-ITL models are less suited for such transfer problems. Next, we illus-
trate the impact of the Latent Dependency Factor (LDF) on TL models. We
observe an improvement in estimation accuracy for NNW, KLIEP, and KMM
(for both LDF and LDF-A), where NNW [LDF] is the best-performing model.
For the FNN model, LDF has no notable effect as it caters to only ITL models.
The high performance of NNW is due to the Voronoi tesselation neighborhood it
uses for reweighing source samples. This allows it to capture similar data points
in its neighbor, a spatially preferred reweighing for the PM2.5 data.

https://github.com/YongbeeIngkle/spatial-transfer-learning.git
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Table 1. Source: Eastern US (best highlighted; second-best underlined)

Sensors
5 7 9 11

Model R2 RMSE R2 RMSE R2 RMSE R2 RMSE
RF −0.082 8.855 0.002 8.565 0.066 8.387 0.071 8.311

GBR −0.061 8.684 0.064 8.210 0.177 7.857 0.157 7.891
NNW 0.236 7.563 0.263 7.447 0.280 7.406 0.296 7.288
KLIEP 0.155 7.960 0.192 7.801 0.200 7.811 0.222 7.666
KMM 0.197 7.757 0.226 7.634 0.242 7.601 0.258 7.479
FNN −0.064 8.818 −0.350 9.715 0.009 8.629 −0.039 8.765

NNW [LDF] 0.247 7.494 0.336 7.061 0.378 6.874 0.378 6.838
NNW [LDF-A] 0.225 7.596 0.298 7.230 0.359 6.973 0.359 6.924
KLIEP [LDF] 0.202 7.724 0.278 7.370 0.325 7.173 0.336 7.073

KLIEP [LDF-A] 0.232 7.584 0.267 7.427 0.319 7.201 0.330 7.100
KMM [LDF] 0.210 7.671 0.302 7.236 0.353 7.013 0.352 6.971

KMM [LDF-A] 0.196 7.723 0.295 7.277 0.330 7.134 0.333 7.067
FNN [LDF] −0.255 9.532 −0.141 9.082 0.072 8.374 0.087 8.236

FNN [LDF-A] −0.150 9.146 −0.105 8.990 0.091 8.275 0.078 8.287

North-Eastern US as Source Data. In Table 2, we observe a positive transfer
for NNW and KLIEP models, with NNW having the best performance. KMM
shows a negative transfer [28] due to the high marginal distribution present
between the target and source datasets [17]; unable to be minimized in repro-
ducing kernel Hilbert space (RKHS) [16]. Like earlier, the FNN transfer model
has an unpredictable performance. When the LDF is introduced, we observe
an improvement in estimation accuracy for NNW and KLIEP models. NNW
[LDF] and NNW [LDF-A] are the best-performing models. KMM [LDF-A] shows
improvement for more sensors (≥11). As expected, the FNN models using LDF
and LDF-A show no improvement.

5.5 Qualitative Analysis

While improving prediction accuracy is crucial, visualizing PM2.5 patterns on
geo-maps is also valuable. We visualize PM2.5 estimations for the California-
Nevada region and the Lima, Peru region in Fig. 4(a) and Fig. 4(b), respectively.
For this analysis, we need a ground truth against which all the models can be
compared. We use the GBR model, trained on all 128 monitors (249k+ samples)
and estimated on the unlabeled satellite data (∼ 19.5 M samples), and use its
predicted geo-map as the assumed ground truth for verification. We use 9 sen-
sors and the eastern US as source data for transfer models (NNW, NNW[LDF],
NNW[LDF-A]). For Lima, we use all 10 sensors and the eastern US as the source
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Table 2. Source: North Eastern US (best highlighted; second-best: underlined)

Sensors
5 7 9 11

Model R2 RMSE R2 RMSE R2 RMSE R2 RMSE
RF −0.082 8.855 0.002 8.565 0.066 8.387 0.071 8.311

GBR −0.061 8.684 0.064 8.210 0.177 7.857 0.157 7.891
NNW 0.199 7.732 0.294 7.286 0.301 7.297 0.298 7.257
KLIEP 0.098 8.180 0.219 7.650 0.263 7.494 0.270 7.408
KMM −0.142 9.053 −0.070 8.809 0.232 7.640 0.246 7.526
FNN 0.022 8.448 −0.006 8.598 0.091 8.266 0.078 8.307

NNW [LDF] 0.225 7.592 0.317 7.157 0.376 6.886 0.392 6.751
NNW [LDF-A] 0.201 7.702 0.320 7.122 0.378 6.873 0.374 6.847
KLIEP [LDF] 0.164 7.889 0.275 7.363 0.353 7.011 0.360 6.924

KLIEP [LDF-A] 0.170 7.860 0.270 7.396 0.342 7.068 0.348 6.991
KMM [LDF] −0.265 9.409 0.009 8.468 0.188 7.749 0.257 7.389

KMM [LDF-A] −0.152 9.042 −0.029 8.566 0.172 7.845 0.288 7.260
FNN [LDF] 0.036 8.429 −0.052 8.761 0.131 8.061 0.237 7.566

FNN [LDF-A] −0.060 8.774 0.045 8.390 0.159 7.983 0.207 7.708

data for the three transfer models. The true labels for Lima were unavailable,
and domain experts (environmental scientists) were consulted for analysis.

Due to the scarcity of target domain data, this qualitative analysis aims to
observe if transfer models successfully capture glaring PM2.5 estimation patterns.

California-Nevada Region. In Fig. 4(a), we observe that the NNW [LDF]
model has the most accurate PM2.5 estimation in the hotspots (solid boxes in
the GBR map). It accurately captures patterns in the Central Valley and the
Los Angeles Basin but overestimates in the Imperial Valley. NNW [LDF-A] has
the second-best performance but has a patchy estimation in the Central Valley.
For NNW, we observe obscure patterns that are patchy and underestimated in
the Central Valley and highly overestimated in the Imperial Valley.

Lima Region. In Fig. 4(b), all models exhibit lower PM2.5 levels near the coast
and higher levels moving inland, a pattern validated by domain experts. How-
ever, NNW [LDF] has a clearer concentration gradient of inland PM2.5 compared
to the other models. Near the Andes mountain ranges, the PM2.5 is the lowest,
which the NNW[LDF] model accurately captures but slightly and highly overesti-
mated by the NNW [LDF-A] and NNW models, respectively. These observations
confirm the improvement of prediction by LDF-based TL models.

Additionally, we performed a 60:40 train-test split on the Lima sensors and
trained NNW and NNW [LDF] TL models using 3-fold cross-validation, with
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Fig. 4. (a) Annual mean PM2.5 prediction for California-Nevada, trained using GBR
and NNW with and without LDF features (9 sensors). (b) Annual mean PM2.5 predic-
tion for Lima region trained using NNW models.

the complete US as the source data. The results for [R2, RMSE] for NNW and
NNW[LDF], respectively, were [0.476, 9.852] and [0.558, 9.091]. Hence, NNW
[LDF] outperforms NNW, validating the quantitative analysis.

5.6 Ablation Study

For the ablation study, we use GBR instead of ITL models to validate the per-
formance of non-transfer models using LDF-imputed data. Figure 5(b) shows the
comparison between GBR [LDF], GBR [LDF-A], GBR (target only), NNW, and
NNW [LDF]. For both the eastern US and the north-eastern US as source data,
GBR [LDF] is the second-best performing model. Though it doesn’t outperform
NNW [LDF], the improved predictions highlight LDF’s effectiveness.

The performance of FNN [LDF] and FNN [LDF-A] in Table 1 and Table 2
further tests LDF with non-ITL models, confirming that LDF is effective with
ITL and multivariate regression models but not other transfer models.

6 Discussion

While the evaluation results show the improvement using the LDF, we further
analyze the correlation between LDF and PM2.5, as shown in Table 3, where LDF
demonstrates the highest correlation with the dependent variable, indicating
strong predictive power and feature importance [15]. This experiment uses an
LDF-imputed dataset of 10 target sensors and eastern US source data.
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Fig. 5. (a) Comparing performance of NNW [LDF] model when neighborhood cloud
uses k = {4, 8, 12, 16} neighbors. (b) Ablation study comparing the performance of
GBR, GBR [LDF], GBR [LDF-A], NNW, and NNW [LDF] models.

Table 3. Most correlated features (5) to PM2.5 variable.

Method LDFPressfcDswrfsfc ElevUgrd10m
Corr Coeff 0.754 0.208 0.181 0.179 0.156

Deployment in Lima: Despite the lack of ground labels for deploying the
LDF-based NNW model in Lima, Peru, it is important to address the pressing
issue: Lima is the second most polluted city in the Americas [32] and suffers from
a scarcity of sensors [36] (Peru is a developing country). Our model provides a
groundbreaking outcome in PM2.5 estimation for Lima and serves as a vital first
step toward implementing similar models in other data-poor regions.

6.1 Limitations and Future Work

While our methodology improves PM2.5 estimation, further exploration, and
alternate improvements are still needed, which we outline below.

Experiments with Alternate Datasets. Previous experiments with the US
and Lima data are comprehensive but do not include datasets lacking spatial
and semantic dependencies [5]. This was done primarily to ensure accurate and
comprehensive data for modeling and estimation. Future plans include expanding
our study to incorporate such datasets.

Capturing Temporal Trends. The LDF feature captures spatial and semantic
dependencies but lacks focus on temporal trends in the data due to missing
temporal points. In the future, we aim to extend this technique to time-series
data, aiming for prediction rather than forecasting [39].

Extending to Alternate Domains. While our focus lies in PM2.5 estimation,
testing the LDF on alternate domains like wildfire estimation and weather fore-
casting is useful due to the presence of similar spatial patterns. Future studies
should explore these applications and develop new LDF features accordingly.
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7 Conclusion

This paper addresses the problem of spatial transfer learning for estimating
PM2.5 levels, emphasizing transfer between regions with low autocorrelation and
predicting at unseen test locations. We aim to improve instance transfer learn-
ing (ITL) models, which often overlook spatial and semantic dependencies in
the data. We introduce the Latent Dependency Factor (LDF) to capture these
dependencies, integrating it as a new feature in both source and target datasets.
Our experiments on US and Peru datasets demonstrate LDF’s effectiveness in
improving PM2.5 estimation. Furthermore, qualitative analysis of these datasets
confirms that the LDF captures larger PM2.5 patterns missed by regular trans-
fer models. While more future work remains in this space, we believe our app-
roach of achieving spatial transfer learning using Latent Dependency Factor is a
promising and novel solution for this highly complex domain.
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Abstract. Federated learning (FL) has obtained tremendous progress in
providing collaborative training solutions for distributed data silos with
privacy guarantees. However, few existing works explore a more realistic
scenario where the clients hold multiple data modalities. In this paper, we
aim to solve a novel challenge in multi-modal federated learning (MFL)
– modality missing – the clients may lose part of the modalities in their
local data sets. To tackle the problems, we propose a novel multi-modal
federated learning method, Federated Multi-modal contrastiVe train-
ing with Pre-trained completion (FedMVP), which integrates the large-
scale pre-trained models to enhance the federated training. In the pro-
posed FedMVP framework, each client deploys a large-scale pre-trained
model with frozen parameters for modality completion and representa-
tion knowledge transfer, enabling efficient and robust local training. On
the server side, we utilize generated data to uniformly measure the rep-
resentation similarity among the uploaded client models and construct a
graph perspective to aggregate them according to their importance in the
system. We demonstrate that the model achieves superior performance
over two real-world image-text classification datasets and is robust to
the performance degradation caused by missing modality.

Keywords: Federated Learning · Multi-modal Learning

1 Introduction

Federated learning (FL) has emerged as a promising paradigm for training
machine learning models on decentralized data [1,23,35–38]. In many realistic
scenarios, the multi-modal data are collected among distributed data silos and
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stored in a privacy-sensitive manner, such as the examination and diagnostic
records of patients in different hospitals and the multimedia data generated on
mobile devices. However, most existing federated learning works focus on sin-
gle modality scenarios (e.g., image or text) with limited capacity for data with
heterogeneous formats and properties. Regarding the fast development of multi-
media technology and distributed systems, developing a robust and efficient FL
framework for multi-modal machine learning tasks is significant.

To date, several early attempts for multimodal federated learning (MFL) [2]
have been proposed [3,6,18,42,44–46,48]. Some of these approaches [3,44,45]
consider scenarios where the federated system contains both uni-modal and
multi-modal clients. However, most of these works assume that all modalities
are available to all clients, which is a strong assumption that may not hold in
real-world situations. For example, content posted on social media often com-
bines images and text, but users may also publish posts containing only images
or text. This modality missing problem poses a substantial challenge as it can
severely impact the model’s learning ability and performance.

In this paper, we aim to address this general and realistic problem of modal-
ity missing, where clients share the same modality combinations, but some
multi-modal instances lack part of the modality data. For example, a client
holds 1000 image-text pairs, while 200 of them only have image data, and 300
instances have only text data. A few existing works [20,22] focus on the modality
incompleteness problem. However, they either only consider text missing in the
vision-language learning task or deal with sensor signals that are similar in for-
mat. We believe that an advanced MFL framework should be robust to modality
incomplete training data and maintain satisfactory performance.

To resolve those challenges, we proposed a multi-modal federated learn-
ing framework, namely Federated Multi-modal contrastiVe training with Pre-
trained completion (FedMVP), which uses frozen pre-trained models as the
teachers to support the learnable multi-modal joint encoder module for effi-
cient multi-modal representation learning and to generate informative synthetic
data. To enhance the model resilience to the performance degradation caused by
modality missing, we utilize the cross-modal generation ability of the recently
proposed pre-trained models [14,15,27] to complete the missing modalities. To
further improve the representation learning performance, we proposed an effi-
cient knowledge-transferring method to transfer the representation knowledge
from the pre-trained large models to our multi-modal joint learning module.
This knowledge-transferring method can alleviate the conflict between the mas-
sive data and computing costs requirements for training and fine-tuning of pre-
trained large models and the limited resources of federated learning clients.
The proposed framework is competent in integrating various pre-trained mod-
els with affordable communication costs. As shown in Table 1, compared to the
most costly baseline FedViLT, the FedMVP reduces the communication cost by
26.7× and computation FLOPS by 15.5×. The pre-trained foundation models
will play as the frozen data encoders to transform the original data into high-
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quality representations, which play an important role in the contrastive-manner
training process for the multi-modal joint encoder module.

Table 1. Comparison between FedMVP and baselines in terms of #FLOPS (Floating
Point Operations Per Second) and #transmitted parameters per round.

Method #FLOPS #Parameters

FedViT [8] 22.6G 86.4M

FedBERT [7] 38.1G 110.1M

FedCLIP [27] 60.7G 197.2M

FedViLT [21] 55.9G 298.6M

MMFed [42] 1.4G 4.49M

FedMVP 3.6G 11.2M

We summarize our contributions as follows: (1) We proposed a novel MFL
framework that integrates pre-trained large-scale models to conduct efficient
multi-modal representation learning and is robust to the modality missing chal-
lenge. Our proposed method shows superior performance on two multi-modal
classification benchmarks under both IID and non-IID settings. (2) To efficiently
transfer the learnable representation knowledge from the pre-trained model to
the multi-modal joint module under the resource-limited scenario, we proposed
a Multi-modal Contrastive Matching (MCM) loss and a Representation Aligned
Margin (RAM) loss, which effectively improve the model performance with severe
modality missing up to 80%. (3) Instead of aggregating the models based on the
data distribution or the model architecture, we propose a novel aggregation
algorithm for the MFL server aggregation based on the representation abilities
among the client models.

2 Related Work

Multi-modal Federated Learning (MFL). MFL is still in its early stages
of development. Some of the most existing works [18,42,48] focus on exploring
task-specific approaches with complete modalities. In [42], the authors propose a
multi-modal federated learning framework for multi-modal activity recognition
with a local co-attention module to fuse multi-modal features. [5] gives a detailed
analysis of the convergence problem of MFL with late fusion methods under
the Non-IID setting. [3,44,45] adapt modality-wise encoders to tackle the MFL
system with both uni-modal and multi-modal clients. However, few of them
explore the scenario where multi-modal data are incomplete, which may cause
significant performance degradation.

Modality Missing in Multi-modal Learning. As a widely existing challenge
in the realistic scenario, handling modality missing has drawn the attention of the
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multi-modal learning community. Some early works [25,30,39] build their meth-
ods based on conditional VAE to capture the multi-modal distribution for the
cross-modal generation. [33] as one of the recent works utilizes cross-modal fusion
to improve the model robustness for modality missing in testing. [29] proposes a
contrastive framework for learning both paired and unpaired data. In [22], the
authors leverage Bayesian meta-learning to reconstruct pseudo text input from
image input to resolve the missing modality issue. Instead of training a genera-
tive model from scratch, we utilize the large-scaled pre-trained model [14,15] and
prompt augmentation to achieve effective cross-modal generation for completing
the missing data pairs.

Vision-language Pre-training. Represented by CLIP [27] and ALIGN [12],
the large-scale Vision and Language Pre-training (VLP) models have demon-
strated their surprising performance in many downstream vision-language learn-
ing tasks [10] and strong adaptability to new scenarios. A few works have
taken the first steps towards incorporating federated learning with pre-training
techniques. In [32], the authors propose a splitting learning-based frame-
work for training large-scale models like BERT in federated learning systems.
PromptFL [9] allows the clients to train shared soft prompts collaboratively
using CLIP [27] to provide strong adaptation capability to distributed users
tasks. [4,19,40,41] are trying to explore the efficient methods for lightweight
and fast adaptation of pre-trained models. [31] proposes FedPCL to transfer
shared knowledge among the clients based on prototype contrastive learning. In
this work, instead of fine-tuning the large-scale pre-trained models or splitting
the model into multiple modules, we conduct effective knowledge transferring to
enhance the representation learning performance of a lightweight local module.

Multi-modal Contrastive Learning. Contrastive learning is widely used
in the self-supervised learning field, where the learned representations will be
assigned to positive and negative samples based on the class belongings. As for
its application in multi-modal learning [16,17,47], instead of using spatial or
temporal transforming to a single instance, the positive pairs are defined as the
samples with the same ID or time window. In [47], the authors propose CrossCLR
to improve the quality of learned joint embedding from multi-modal data with
a novel contrastive loss, which utilizes both inter-modality and intra-modality
alignment. [26] extends the multi-modal contrastive learning to efficiently align
the cross-modal representations. Inspired by the predecessors, we adopt a multi-
modal contrastive loss to improve the quality of the learned multi-modal joint
representations based on the modality-specific representation encoded by the
frozen pre-trained models.

3 Methodology

To explore multi-modal data in federated systems, we propose FedMVP for
MFL with the robustness of modality missing during training. As illustrated in
Fig. 1, the proposed FedMVP contains four main modules for effective MFL,
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Fig. 1. The overview of the proposed FedMVP framework.

including Modality Completion Module, Multi-modal Joint Learning Module,
Knowledge Transferring via Contrastive Training, CKA-based Aggregation.

3.1 Problem Formulation

Multi-modal Federated Learning. In an MFL system, there exist N clients
aiming to collaboratively train a global model wG for multi-modal representation
learning. For client n, its local data set Dn = {(Xi, yi)}|Dn|

i=1 contains |Dn| image-
text pairs denoted as Xi = {xI

i , x
T
i }, i.e., the i-th image data xI

i and text data
xT

i . yi is the corresponding label. A data instance is denoted as Xi = {xI
i }

or Xi = {xT
i } if modality missing happens. Each local model wn performs on

the local task Fn(·;wn) : Rn → R
d and collaborates with other clients for the

global task FG(·;wG) : RdG → R
d. Formally, the global objective of MFL for the

image-text classification problem is defined as

min LG(FG(·;wG)) = min
N∑

n=1

γnLn(Fn(Dn;wn)) (1)

where γn is the aggregation weights, and Ln is the local loss function.

3.2 Local Data Preprocessing

A pre-trained foundation model is deployed on both the server side and client
side, which consists of an image encoder f I

E(·) and a text encoder fT
E (·) for

representation extraction, an image decoder f I
D(·) and a text decoder fT

D(·) for
the cross-modal generation. Notably, all the parameters of the pre-trained models
are frozen and will not be transmitted between the server and clients. We will
explain the pre-trained model we used below, as well as the details of the local
training process.

Modality Completion Module. To solve the performance drop problem
caused by modality missing, the modality completion module utilizes the cross-
modal generation ability of the pre-trained model to complete the missing
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Fig. 2. Examples of the generated “snapdragon” images.

Fig. 3. Examples of the generated “yellowthroat” images.

part of multi-modal data. We use DALLE2 [28] for text-to-image generation,
and BLIP2 [14] for image-to-text generation. Inspired by [27], we use designed
prompts to improve the generation quality of the modality completion module.

Prompt Augmented Text-to-Image Generation. Given an image-text pair Xi with
only text data xT

i , the modality completion module could generate an image
from a text prompt. To avoid the semantic ambiguities caused by synonyms and
polysemy in the text data and label name. Instead of directly using text data
xT

i as the input, we adopt a coarse-to-fine prompt to augment the generation.
The prompt template is “A photo of {fine-grained label}, a kind of {class label},
{text description}”, which helps the pre-trained models to better understand
the characteristics of the generation target and improve the semantic correlation
between the text prompt and generated image. Figures 2 and 3 show examples
with different inputs to generate the classes “snapdragon” and “yellow throat”
on the Oxford Flower and CUB-200 datasets, where our designed prompt gives
high-quality fake images that are close to the original ones.

Accordingly, we obtain the image generation prompt based on the original
text data, and the process is denoted as pT (xT

i ). The augmented prompt pT (xT
i )

will firstly be decomposed by text encoder fT
E (·), then passed to image decoder

f I
D for generating the synthetic image x̂I

i , i.e.x̂I
i = f I

D(fT
E (pT (xT

i ))).

Prompt Augmented Image-to-text Generation. For the image-to-text generation,
considering the original text data contains detailed descriptions of the image
pair, the direct image captioning result may not be able to cover the fine-grained
text details. Therefore, we adapt both the visual question answering (VQA) and
image captioning functions of the pre-trained model to generate text pairs x̂T

i
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for the image input. Specifically, with a given image input xI
i , the modality com-

pletion module first performs the VQA task over three serial question prompts
to get fine-grained descriptions of the image. For instance, given prompt input
“What is the color of the petals?” for a flower image with the pink pedal, the
response answer could be “Pink”. After obtaining the answers to the three ques-
tion prompts, we combine them with the image captioning outcome as the final
synthetic text, e.g., “A photo of {flower}, with {pink} petals and {white} pis-
tils,{there is a pink flower with a yellow center in the middle of the picture}”.
We show examples of image-to-text generation in Table 2.

To better understand the model design and avoid notation confusion, we use
completed image-text pair Xi = {xI

i , x
T
i } in the following sections to illustrate

how data is processed in FedMVP.

Table 2. Image-to-text completion examples from CUB-200 and Oxford Flower.

Modality-specific Representations. The foundation models are believed to have
extraordinary representation extraction ability since they are trained with mil-
lions of data instances. Thus, we obtain the image-specific embedding and text-
specific embedding via the pre-trained encoders. Specifically, we use the pre-
trained Vision Transformer(ViT) [8] with the patch size of 16 × 16 as the
image-specific encoder to generate high-quality embedding from image input.
The image-specific embedding XI is encoded via the pre-trained image encoder
f I

E(·) and then mapping to the multi-modal latent space via a shared projec-
tion head fshared(·), i.e., XI = fshared(f I

E(xI)) ∈ R
dlatent . Similarly, we get

the text-specific embedding XT from the pre-trained BERT model [7], where
XT = fshared(fT

E (xT )) ∈ R
dlatent .
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3.3 Local Training

Multi-modal Joint Learning Module. The multi-modal joint learning mod-
ule contains a joint encoder fJoint

E (·) designed to efficiently fuse the image-text
information into a complete view. It consists of a cross-modal fusion layer and
follows attention-based embedding layers.

Pre-processing. Given an image-text pair {xI ,xT } as input, we use a non-
overlapped patch embedding layer and the pre-trained text encoder fT

E (·) to
get the patch sequence Icom and text embedding Tcom, both belongs to the
common dimension dcom.

Cross-Modal Fusion. After the positional embedding operation, both the image
and text embeddings are fed into the cross-modal fusion layer, which contains a
vision-to-language attention module and a language-to-vision attention module.
Both modules are based on the cross-modal attention [33], which can effectively
fuse the representation between the two input modality embeddings. We take
the image-to-text embedding XI→T to show the cross-modal attention:

XI→T = CMI→T (Icom,Tcom) = softmax(
WQI

IcomWT
KT

TT
com√

dcom

)WVT
. (2)

Similarly, we can get text-to-image embedding XT→I . The obtained XI→T

and XT→I will be concatenated together and projected to the latent space as
the final joint embedding via the shared projection head fshared(·) and a self-
attention layer as follows:

Xjoint = fshared(SelfAttention(XI→T ⊕ XT→I)). (3)

We now obtain the image-specific embedding XI , text-specific embedding
XT , and joint embedding Xjoint in the same latent space R

dlatent .

Knowledge Transferring from Pre-trained Model. The training data of
large-scale models in the pre-training stage is neither available nor affordable for
distributed silos to process, making the fine-tuning and traditional knowledge
distillation [11] of large-scale models impractical under the MFL scenario. In
order to transfer the rich representation knowledge from the pre-trained model,
we propose Multi-modal Contrastive Matching (MCM) Loss and Representation
Aligned Marginal (RAM) Loss to improve the representation learning perfor-
mance of the joint encoding module.

Multi-modal Contrastive Matching Loss. To obtain a high-quality joint represen-
tation, we utilize the idea of contrastive learning to closer the joint embedding
with its corresponding modality-specific embedding and distance it from the
embedding of the other categories in the latent space. Let sc(xi, xj) represent
the cosine similarity between two embedding, xi and xj , and τ ∈ (0, 1] be the
temperature hyperparameter. The corresponding scaled similarity is defined as:
sim(xi, xj) = exp( sc(xi,xj)

τ ).
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Given a batch of embedding B = {XT
i ,XI

i ,X
joint
i }|B|

i=1, the positive pair for
the contrastive learning is defined as the joint embedding with its corresponding
modality-specific embedding, i.e., (XT

i ,Xjoint
i ) and (XI

i ,X
joint
i ) . The other ways

of pairing will be treated as negative pairs, denoted as:

Ωm
i =

∑

i�=j

(sim(XM
i ,XM

j ) + sim(XM
i ,Xjoint

j ) + sim(Xjoint
i ,Xjoint

j )), (4)

where M ∈ {I, T} indicates the modality type. We define the multi-modal con-
trastive matching (MCM) loss of all data embedding as follows:

LMCM (B) = − 1
|B|

|B|∑

i=1

log

(
sim(XT

i ,Xjoint
i )

ΩT
i

+
sim(XI

i ,X
joint
i )

ΩI
i

)
. (5)

Representation Aligned Margin Loss. We propose the Representation Aligned
Margin (RAM) loss to further enrich the joint representation via pre-trained
knowledge to close the semantic gap between the joint embedding and the
modality-specific embeddings. We use the classification loss derived from the
embeddings to evaluate its representation quality. For the i-th data sample, the
supervised classification loss of one of its corresponding embeddings is denoted
as LM

sup(i) = CE(fc(XM
i ), yi).

Intuitively, embeddings with lower cross-entropy losses contain more infor-
mative features from the raw data. With an embedding batch B, the RAM
loss aligns joint embedding with image and text embedding separately, if the
modality-specific embedding has better representation. Thus, the RAM loss is
defined as:

LRAM (B) =
1

|B|
|B|∑

i=1

(
LI

RAM (i) + LT
RAM (i)

)
, (6)

LM
RAM (I) =

{
‖Xjoint

i − XM
i ‖2, if LM

sup(i) < Ljoint
sup (i)

0, otherwise
, (7)

where XM
i and Xjoint

i are all derived from the i-th sample in the batch, and |B|
is the batch size. The L2 norm is denoted by ‖·‖2.
Classification Loss. A two-layer linear classifier fC(·) will serve as the classifier
using only joint embedding as input. The supervised classification loss Lsup of
client n can be obtained:

Lsup(B) =
1

|B|
|B|∑

i=1

CE
(
fC

(
Xjoint

i ;ωn

)
, yi

)
, (8)

where fC(·) denotes the classifier model of client n, CE(·) is the cross-entropy
loss function, and yi is the corresponding label of i-th joint embedding Xjoint

i .

Total Loss. The final local training loss of client k in FedMVP is:

Llocal(Dk) = Lsup(Dk) + LMCM (Dk) + LRAM (Dk), (9)
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At each communication round, each client will upload the parameters of the
multi-modal joint learning module and classifier to the server for further global
aggregation.

Fig. 4. CKA-based Server Aggregation

3.4 Server Aggregation

Previous works tend to aggregate based on the modality type held by the
clients [3,43], share public dataset [44], or model structure [45], which may lead
to data privacy leakage and lacking uniformity. To better enhance the represen-
tational ability of the global model, we propose a server aggregation method
based on the similarity of model output representations.

At the beginning of the aggregation phase, the server-side pre-trained model
will automatically generate m synthetic data pairs Xm, where the data amount
m is equal to the number of classes of the dataset. Given an uploaded client
model, its output representations with generated data are defined as:

Xω = [Fω(X1), . . . , Fω(Xm)]T ∈ R
m×dout . (10)

To measure the similarity of the model representations among the clients,
we utilize the centered kernel alignment (CKA) metric [13] based on the output
representations from upload models, which is defined as follows:

sij(ωi, ωj) =
Cov(Xωi

,Xωj
)

√
Cov(Xωi

,Xωi
)Cov(Xωj

,Xωj
)
, (11)

where Cov(X,Y ) = (m − 1)2tr(XXT HmY Y T Hm), Hm is the centering matrix,
tr(·) denotes the matrix trace, m represents the number of input represents.

With the calculated representation similarity scores, the server constructs a
representation similarity graph to illustrate the relationship among clients, as
shown in Fig. 4. The importance of each client in the representation similarity
graph is determined by the sum of its similarity score with all the other clients.

γt
i = softmax([s1, . . . , si, . . . , sK ]), (12)
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where K is the number of clients who participate in the t-th aggregation, si =∑K−1
j=1 sij is the collection of the graph importance of all K clients. Finally, the

global model is weighted and aggregated based on the clients’ graph importance
γt

i as follows:

wt
G =

K∑

i=1

γt
iw

t
i . (13)

4 Experiments

4.1 Experiment Setting

Datasets. We evaluate the proposed FedMVP on two multi-modal fine-
grained categorization datasets, The Caltech-UCSD Birds-200-2011 (CUB-200)
dataset [34] and Oxford Flower [24]. Both contain paired image-text data, and
each image has 10 related descriptive text. CUB-200 has 200 bird classes with
10610 training image-text instances and 1178 for testing. Oxford Flower has 102
flower classes, a training size of 7370, and a testing size of 819.

Table 3. Evaluating the impact of incomplete modality on CUB-200 and Oxford Flower
datasets under IID setting. β indicates the missing ratio of the training set.

Methods CUB-200 Oxford Flower

β = 0.3 β = 0.5 β = 0.8 β = 0.3 β = 0.5 β = 0.8

FedViT 74.71% 67.12% 60.33% 92.15% 84.52% 76.64%

FedBERT 66.76% 58.98% 52.54% 74.23% 70.72% 67.81%

FedCLIP 75.73% 69.68% 63.41% 91.12% 86.32% 78.55%

FedViLT 76.29% 70.28% 64.11% 92.67% 88.31% 81.52%

MMFed 63.15% 57.48% 51.60% 72.91% 69.43% 64.05%

FedMVP(Ours) 77.89%74.46%70.31%93.19%91.28%89.32%

Data Distribution Setting. For Independent Identically Distribution
(IID) setting, we equally distribute the training data to 10 clients with random
selection. Each client will hold the same quantity of local data with a balanced
category distribution. To simulate the non-IID scenario in federated systems,
we divide the training data set into C shards according to the data set cate-
gories, i.e., 200 shards for CUB-200-2011 dataset and 102 shards for the Oxford
Flower dataset. With fixed 10 clients, the data shards are randomly and equally
distributed to clients.

Modality Missing Setting. We set β ∈ [0, 1] as the missing ratio. For example,
given a constant β = 0.3, 30% randomly selected image-text pairs will lose either
image or text data in equal chances. We select β = 0.3, 0.5, 0.8 to conduct our
experiments, and the number of missing images and texts is the same.
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Training Setting. With fixed 10 clients, the total communication round is
200. In each communication round, the clients will perform 10 epochs for local
training with their own local datasets and the server will randomly select 70% of
clients for aggregation. We choose AdamW as the optimization function with a
scheduler-controlled learning rate 2e − 5. We adopt the warm-up scheduler and
cosine annealing scheduler for the training process as well.

Baselines. Since the existing approaches for addressing modality missing in
multi-modal federated learning are relatively limited, we choose FedViT, Fed-
BERT as the uni-modal baseline and FedCLIP, FedViLT, MMFed as the
multi-modal baseline. FedViT [8], FedBERT [7], FedCLIP [27] and FedViLT [21]
are using large-scale foundation models pre-trained with millions of data as the
local models. These large models are fine-tuned on the local data and upload all
the parameters to the server for aggregation. MMFed [42] is a federated multi-
modal learning method without leveraging foundation models. FedViLT [21] is
designed specifically for modality missing. Please refer to Appendix for details
of the implementation.

Table 4. Evaluating the impact of incomplete modality on CUB-200 and Oxford Flower
datasets under the non-IID setting. β indicates the missing ratio of the training set.

Methods CUB-200 Oxford Flower

β = 0.3 β = 0.5 β = 0.8 β = 0.3 β = 0.5 β = 0.8

FedViT 67.05% 61.17% 50.39% 86.25% 78.30% 70.03%

FedBERT 59.31% 51.14% 43.67% 68.43% 62.01% 57.16%

FedCLIP 67.63% 61.72% 56.78% 85.01% 80.13% 72.91%

FedViLT 69.19% 65.26% 58.34% 86.96% 81.63% 73.32%

MMFed 57.55% 51.12% 42.14% 65.90% 59.26% 52.79%

FedMVP(Ours) 72.62%69.73%66.44%88.54%84.78%82.47%

Table 5. Evaluating the robustness of the methods over different test sets. image only
and text only indicate the test set only contains either image or text. All the methods
are trained over train set WITHOUT modality missing.

Methods CUB-200 Oxford Flower

image only text only complete image only text only complete

FedCLIP 56.47% 47.30% 79.73% 64.11% 53.59% 94.12%

FedViLT 64.55% 52.08% 82.29% 76.71% 60.91% 96.67%

MMFed 7.94% 13.07% 65.28% 26.37% 40.90% 74.89%

FedMVP(Ours) 70.39% 64.44% 80.79% 80.82% 73.50% 94.27%
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4.2 Empirical Results

Results of the IID Setting. Table 3 shows the superior performance of Fed-
MVP across different missing ratios under the IID setting on both CUB-200 and
Oxford Flower datasets. Observably, all models exhibit a decline in accuracy
with an increase in the missing ratio (β). FedMVP outperforms baseline methods
consistently and demonstrates exceptional resilience to performance degradation
due to missing modalities. For instance, on the CUB-200 dataset, FedMVP’s
accuracy margin over the next best-performing model, FedViLT, widens from
about 1.6% at β = 0.3 to 6.2% at β = 0.8. A similar trend is observed on the
Oxford Flower dataset, with the margin increasing from 0.52% to 7.8%. The
rate of performance degradation of FedMVP is notably slower than the other
models. Specifically, as β increases from 0.3 to 0.8, the accuracy of FedMVP
drops by merely 7.58% and 3.87% on the CUB-200 and Oxford Flower datasets,
respectively. In contrast, FedViT witnesses larger drops of 14.38% and 15.51%.

Results of the Non-IID Setting. The non-IID experimental results, presented
in Table 4, all methods experience a significant decrease in accuracy compared to
the IID setting, including FedMVP. The proposed FedMVP consistently outper-
forms the other methods across the settings. FedMVP has minimal performance
degradation caused by non-IID compared to the baseline methods, with no more
than 5% drop on CUB-200 and no more than 7% on Oxford Flower. Despite the
increasing missing ratio from β = 0.3 to β = 0.8, FedMVP maintains a substan-
tial lead in accuracy on both datasets. For instance, even with β = 0.8, Fed-
MVP achieves an accuracy of 66.44% and 82.47% on the CUB-200 and Oxford
Flower datasets, respectively, confirming its robustness to modality incomplete-
ness under non-IID settings. Notably, the performance margin between FedMVP
and baseline is further widened compared to the IID setting. For instance, on the
Oxford Flower dataset, as β = 0.8, the accuracy of FedMVP is 29.68% higher
than MMFed compared to 25.27% under IID.

Results of Single-modality Testing. Shown in Table 5, all methods experi-
ence significant performance drops when tested with only one modality (image
or text). FedMVP shows the best resilience, achieving the highest accuracy in
both image-only and text-only scenarios across datasets. FedViLT [21] performs
best with complete data since it has 26.7× more parameters than FedMVP
and is pre-trained over millions of pre-training data. It holds second place in
single-modality tests. FedCLIP’s performance is limited by local dataset size
but benefits from separate ViT and BERT encodings. MMFed suffers the most
due to its co-attention mechanism and performs better in text-only testing due
to its integrated BERT. In summary, FedMVP demonstrates robustness in both
training and testing under missing modalities.

Ablation Study. The results in Table 6 show that all the modules in the Fed-
MVP model significantly contribute to its performance. Experimental results
show that MCM loss and RAM loss can effectively improve the quality of the
representation generated by the multi-modal joint encoder and enhance the final
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performance of the model by transferring pre-trained knowledge through repre-
sentation learning. The modality completion module can supplement the data
by providing additional training information using the transferable knowledge of
the pre-trained model. Furthermore, the experimental results suggest that CKA
similarity can effectively measure the importance of the representation learned
by each client’s local model and can improve aggregation performance compared
to traditional average aggregation.

Table 6. Ablation study on both CUB-200 and Oxford Flower datasets with β = 0.3
under non-IID setting; wo/MCM denoting MCM Loss excluded; wo/RAM excludes
RAM loss; wo/Completion refers to training without modality completion module;
wo/CKA indicates server aggregation as FedAvg.

Model CUB-200 Oxford Flower

FedMVP 72.62% 88.54%

-wo/MCM 66.87% 81.44%

-wo/RAM 68.25% 83.60%

-wo/Completion 67.49% 81.87%

-wo/CKA 70.11% 85.01%

5 Conclusion

In conclusion, we proposed the FedMVP framework to tackle modality missing,
a widely existing real-world challenge, where part of the multi-modal data is
incomplete and unaligned. Our framework utilizes large-scale pre-trained mod-
els with frozen parameters for modality completion and representation knowl-
edge transfer at each client. It provides a solution for integrating large-scale pre-
trained models to empower the federated system with robustness towards modal-
ity incompleteness. The experiments on the real-world image-text pair bench-
mark demonstrated the effectiveness of our proposed method. The proposed
FedMVP framework shows great potential in addressing the missing modality
and unified representation learning challenges of multi-modal federated learning.
We hope this work can provide inspiration for future research in this field.
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Abstract. Tropical cyclone (TC) intensity estimation from satellite
images is the very first and critical step of making TC forecasts, whose
SOTA performance is achieved by methods built upon CNN based regres-
sion models. Unlike discriminative models trained for specific tasks, gen-
erative models on the other hand learns to comprehend data in a more
sophisticated way through generation. In this paper, we explore the
potential of using generative models to further improve the regression
task of TC intensity estimation, distinguished from precedents that aim
at classification tasks. Our proposed method ConDiff-RTTA optimizes a
TC regression model during test time, by back-propagating the loss of a
diffusion model conditioned on the regression outputs. More importantly,
by enhancing the diffusion model’s training process with our proposed
contrastive loss, the diffusion model is more likely to align diffusion losses
with prediction errors of the regression model. This enhancement leads to
a better understanding of incorrect conditions which facilitates the adap-
tation of the regression model. We evaluate our proposed method on a
benchmark dataset TCIR, where TCs of the latest two years are used
as testing cases. Experimental results show that our proposed method
ConDiff-RTTA improves the regression model in overall performance,
especially on high intensity tropical cyclones. Our code is publicly aval-
able at https://github.com/maxmaxcu/ConDiff-RTTA/.

Keywords: Tropical cyclone · Intensity estimation · Diffusion
Models · Test-time adaptation · Regression · Contrastive learning

1 Introduction

Tropical cyclones (TC) are among the most catastrophic weather events that can
cause injuries and deaths as well as huge economic losses. Tropical cyclone moni-
toring and forecasting are among the most concerned missions for meteorologists
and weather service centers worldwide. The very first and critical step of making
TC forecasts is intensity estimation, which is defined as the maximum sustained
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surface wind speed near the TC center (measured in knot, 1 kt ≈ 0.51 ms−1).
Since tropical cyclones usually occur on the open ocean, satellite images are
mostly used for estimating the intensity. Traditional methods, such as Dvorak [8],
DAV [22], and ADT [21] are based on cloud patterns recognized from satellite
images. Recently, many efforts have been made in developing Neural Network
(NN) based models [1–3,6,10,24,29,31] for the task of TC intensity estimation,
which has become a promising direction to achieve more accurate estimations.
All of these models are discriminative models that are inspired by the ability of
automatically learning useful features from satellite images with various network
architectures, data pre-processing methods or physics guided feature extractions.
Backbone models of these works are often CNN based regression models, which
predict numerical TC intensities directly.

Alternative to discriminative models, generative models are trained on a
harder task, forcing them to learn a deeper and more sophisticated compre-
hension of the data so as to synthesize new samples, thereby improving their
potential for discriminative tasks especially under limited data [11,20]. Inspired
by the recent advancements of diffusion models that show promising ability in
synthesizing high quality images following class or text conditions [7,12–14,26–
28], there emerge a number of studies [4,5,17,18,23] that aim to unleash the
potential of diffusion models on discriminative tasks. Among them, Diffusion-
TTA [23] uses a pre-trained conditional diffusion model to tune an image clas-
sifier during test time and observes improvements on accuracy over the original
classifier. The two models are attached in a way that, the classifier output serves
as the condition to the diffusion model, such that the classifier can be adapted
by back-propagating the diffusion loss.

It is natural to utilize diffusion models in a similar way on regression tasks to
achieve improved TC intensity estimations. Unlike classification tasks, where the
predicted attributes are categorical, regression tasks predict ordinal and numer-
ical attributes, and face additional challenges. To successfully tune a regressor
in a gradient descent manner, it should hold that given a biased prediction, the
gradient of the diffusion loss on the condition points to the direction toward the
ground truth, considering the ordinal nature of attributes to be regressed on.
Existing studies like Diffusion-TTA focus on classification tasks and have not
yet inspected into this problem. Furthermore, the level of diffusion loss should
be connected to the degree in which the condition is biased, so as to encour-
age the expected gradient. However conditional diffusion models are typically
trained with only correct conditions, lacking penalties for the incorrect ones let
alone such “distance awareness”, which could result in sub-optimal results.

In this paper, we propose a method driven by a contrastive learning enhanced
diffusion model that meets the aforementioned challenges and can better resolve
the tropical cyclone intensity estimation task. The main contributions of this
paper are the following:

1. We propose a test-time adaptation method Diff-RTTA to improve perfor-
mances of regression models utilizing diffusion models, and observe favorable
loss characteristics that lead adaptations towards more accurate predictions.
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2. We propose the ConDiff-RTTA method to enhance the diffusion model with
contrastive learning such that it is aware of the distance between true and
false conditions, which further optimizes the model to be more aligned with
the regression task.

3. We conduct experiments on a benchmark dataset of TC intensity estimation
and observe performance gains with our method, especially on high intensity
tropical cyclones.

The rest of this paper is organized as follows. We first give a brief overview of
related work in Sect. 2. Then, we introduce the preliminary knowledge on both
diffusion models and test-time adaptation with diffusion models, and propose our
constractive learning enhanced diffusion models in Sect. 3. Experimental results
of our proposed method on TC benchmark dataset TCIR are shown in Sect. 4.
Finally, we make concluding remarks in Sect. 5.

2 Related Work

Neural Network Models for TC Intensity Estimation. Neural network
based models for the TC intensity estimation problems fall into two categories in
terms of their outputs, i.e., classification models and regression models. Classifi-
cation models, e.g. [10,24], output TC categories or TC intensity ranges instead
of the numerical intensity value, whose performance is inferior to that of regres-
sion models [1–3,6,29,31] in terms of estimation accuracy in RMSE or MAE. For
regression models, recent works mostly focus on physics guided methods, through
using extra data or features as inputs [2,31,32], or designing loss functions with
TC knowledge [29,31]. Some works also focus on the network design [1,2], sug-
gesting that the neural network should not be too deep and need to exclude
dropout layers.

Diffusion Generative Models for Discriminative Tasks. There have been
continuing attempts in aiming to unleash the potential of generative models on
discriminative tasks, dated back to early studies [11,20,25]. With recent advance-
ments in diffusion models, a number of works [4,5,17] face this challenge by
sharing the idea that, a mildly noised image should be denoised by a diffusion
model with the best effect when given the correct condition. In this light, they
transform either class-conditional or text-to-image diffusion models to image
classifiers by enumerating through classes and converting their corresponding
diffusion losses to class probabilities. Diffusion models can also be seen as teacher
models to optimize dedicated discriminative student models. DreamTeacher [18]
distills knowledge from generative models pre-trained on large datasets onto a
discriminative backbone, which is later trained on small downstream datasets.
Diffusion-TTA [23] back-propagates the diffusion loss to a classifier, allowing
test-time adaptation to improve the classification accuracy of the discriminative
model. Our work is more similar to the latter than the former as we target at
TC intensity estimation, an area where data are limited due to the fact that
satellite images of TCs are only available since past few decades and have to be
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fully used by both generative and discriminative models, not allowing for an up-
and down-stream split.

Contrastive Learning to Capture Data Divergence. By contrasting posi-
tive samples with negative ones, contrastive learning serve as a powerful tool to
capture various forms of divergence in the data. Such divergence could be data
mismatching, label differences, or even the precise distances between values. For
instance, SupCon [15] projects data to positions in the embedding space accord-
ing to their class labels, and Rank-N-Contrast [30] further extends the idea to
continuous label values, making embeddings repel each other in a degree of their
label distances. CoDi [16] aims to generate tabular data entries which consist
of both continuous and discrete parts by two co-evolving diffusion models, and
penalizes mismatching between the two parts by utilizing contrastive learning.
Inspired by these works, we use contrastive learning to make our diffusion model
not only able to capture image-condition mismatching, but also be “distance
aware” of correct and biased conditions.

3 Methodology

3.1 Preliminaries

Diffusion Models. For an image x sampled from the real data distribution
x ∼ q(x), a diffusion model learns to approximate the data distribution by
gradually adding noise to x in the diffusion process and predict the noise in
the reverse process. Conditional diffusion models further learns the distribution
q(x|c), where c is the condition input corresponding to the image x. The diffusion
process, where a sequence of noise are added to the original input image x (now
denoted as x0) generating a noised image sequence x1, x2, ..., xT , is formally
defined [12] as:

q(x1:T |x0) :=
T∏

t=1

q(xt|xt−1),

q(xt|xt−1) := N(xt;
√

1 − βtxt−1, βtI),

(1)

where β1, ...βT , is a variance schedule that controls the level of the noise. We
can further sample xt from x0 using

xt =
√

ᾱtx0 +
√

1 − ᾱtε, ε ∼ N (0, I), (2)

where αt := 1 − βt and ᾱt :=
∏t

s=1 αs

A diffusion denoising network εφ(xt, t) learns to predict the noise with noisy
image xt and the noise level t as inputs. For conditional diffusion models that
takes c as an input condition during the reverse process, the diffusion loss for
training is defined as:

Ldiff(φ;D) =
1

|D|
∑

(xi,ci)∈D
‖ εφ(

√
ᾱtx

i +
√

1 − ᾱtε, c
i, t) − ε ‖2 (3)
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where D = {(xi, ci)}N
i=1 is a training batch of N images with their corresponding

conditions (labels).
Note that for the sake of simplicity, the above formulations are from

DDPM [12], an origin of diffusion models. In our work we follow the framework
of EDM [14] which includes altered design choices that boost the generative
ability.

Test-Time Adaptation with Diffusion Models. Test-time adaptation refers
to a procedure in which a pre-trained model is adapted on unlabeled test
data [19]. Without labels, what is helpful to the adapted model can be another
model that contains better knowledge about the test data. Diffusion-TTA [23]
tackles this by using a pre-trained diffusion model, and tune an image classifier
in an iterative manner. First, the classifier does inference on an image to provide
an initial guess of class probabilities, from which a class condition is synthe-
sized as weighted mixing of class embeddings. Then, a noise batch of different
strengths is added onto the image, as inputs into the diffusion model along with
the synthesized condition to compute the conditional diffusion loss. Last, loss
gradients are back-propagated to the classifier, updating it to produce new class
probabilities for the next iteration. After a specified number of iterations, the
classifier is optimized on the image sample to produce a more accurate classifi-
cation result with the help of the diffusion model, yielding better performance
on the test set.

3.2 Conditional Diffusion Model for a Regression Task

Existing works that use diffusion models in discriminative tasks are limited to
using categorical conditions such as one-hot class labels or text embedding during
the training and inference of diffusion models. This raises a direct question that
whether regression tasks can benefit from conditional diffusion models as well.
In our TC intensity estimation task, the intensity is a numerical number with its
range from 10 kt to 180 kt. Given the continuous nature of labels in regression
tasks, it is infeasible to build a generative regressor by enumerating through
labels as conditions and infer the target from corresponding conditional diffusion
losses as in [4,17]. Therefore we build our method on top of Diffusion-TTA which
is gradient based.

Towards this goal, we migrate Diffusion-TTA to TC intensity estimation in
a simple yet effective fashion. We follow the process of Diffusion-TTA and make
modifications to take the TC intensity value as the condition, instead of class
text embedding as in Diffusion-TTA. First we train a conditional diffusion model
on an open dataset of TCs (will be described in Sect. 4.1), where the intensity
condition is passed through a linear layer, projected to an embedding vector and
taken by the diffusion model. Then we take a CNN-based TC intensity regression
model [31] and conduct TTA on it in an instance-wise manner. We denote this
method as Diff-RTTA, whose overall architecture and pseudo code are shown
in Fig. 1 and Algorithm 1, respectively.

We see improvements on Diff-RTTA over the regression model (reported in
Sect. 4.4), but in this phase of study what we mainly want to inspect is the reason
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Fig. 1. Overall Architecture for Test-time Adaptation

Algorithm 1 Test-time Adaptation
Require: Test image x, regression model weights θ, diffusion model weights φ, adap-

tation steps N
1: for s ∈ [1, N ] do
2: Do inference on regression model to get prediction ĉ ← fθ(x)
3: Project ĉ to embedding eĉ by the linear layer
4: Sample noise strength batch t following settings of Diffusion-TTA
5: Sample noise batch ε ∼ N (0, I)
6: repeat x to build batch x
7: Compute Ldiff =‖ εφ(x + t � ε, eĉ, t) − ε ‖2

8: Take gradient descent step on ∇θLdiff to update θ
9: end for

10: return fθ(x)

why a diffusion model can indeed benefit regression tasks. To demonstrate it, for
every TC image we enumerate the intensity condition as an integer from 10 kt to
180 kt, and collect diffusion losses over the enumeration. It is expected that the
diffusion loss should be minimal at the correct intensity of the TC image. Figure 2
shows the loss enumerations on test set for TCs of CAT1-CAT5 categories (well
be defined in Sect. 4.1) and the entire set. It can be observed that the loss curves
tend to be U-shaped with the valley near the correct condition (denoted by c).
With the U-shaped loss curves, it is made possible that a biased proposed value
of intensity could be optimized towards the ground truth intensity by steps of
gradient descent, whereas enumeration on possible conditions is far more costly
for continuous values.
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Fig. 2. Diffusion loss enumerations over conditions by Diff-RTTA: For each TC image,
diffusion losses are calculated on each condition enumerated from range [c-40,c+40],
where c is the true condition of the corresponding TC image. The average of diffusion
losses on each condition offset value of all TC images from CAT1 to CAT5 categories
and from the entire test set are shown in (a) and (b), respectively.

3.3 Contrastive Learning Enhanced Diffusion Model

Observations on Diff-RTTA indicate that, by following the vanilla training proce-
dure, a diffusion model conditioned on numerical values can exhibit our expected
characteristic: the loss enumeration curve is U-shaped around the true condition.
In other words, the diffusion model denoises noisy images the best around the
true condition, and behaves worse when the proposed condition is farther away.
Nevertheless, we suppose this favorable characteristic can be even strengthened,
since the vanilla training way of the conditional diffusion model assumes the con-
ditions are always correct, thus paying no attention on the relation between true
and false conditions and their distances. It is reasonable because such knowledge
can hardly be of use for pure generation, but it comes to importance in the con-
text of our study. We expect that explicitly relating diffusion loss to condition
distances can point the gradient more to the correct direction, and reduce the
bias between the loss minimum point and correct condition.

Similar ideas can be seen in contrastive learning literature such as [30]. This
motivates us to explore supervised contrastive learning for the enhancement.
Contrastive learning works by contrasting similar samples (positive samples)
with dissimilar ones (negative samples). In the TC estimation scenario, for a TC
image x with its true condition c, a positive-negative pair is defined as:

Positive : [aug(x), cpos],
Negative : [aug(x), cneg],

(4)

where aug(·) is a data augmentation function, cpos := c and cneg is a false condi-
tion not equal to cpos. Concerning the ordinal nature of our conditions and the
local gradient we pursue, we sample the negative condition in a neighborhood of
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the positive, which also serves as a harder negative compared to some arbitrar-
ily positioned one. There are also common observations that regression models
tend to exhibit larger estimation errors on TCs of high intensities [1,2,29,31,32],
therefore we enlarge the sampling neighborhood for high intensities to cover the
potential error bar with negative samples. The sampling strategy is defined as

cneg = cpos + rand(−(log cpos)2, (log cpos)2), (5)

where rand(a, b) draws a random number from a uniform distribution on the
interval (a, b).

With the defined positive-negative pair, we propose a contrastive loss term
in the form of a triplet loss, which is formally defined as

Lcon = max (Ldiffpos − Ldiffneg + Margin(cpos, cneg), 0), (6)

where Ldiffpos is the diffusion loss for the positive sample and Ldiffneg is the dif-
fusion loss for the negative sample. In the standard triplet loss, margin is defined
as a constant to keep the positive away from the negative in a certain degree.
Here, we propose margin as a distance aware function so that it adjusts the
margin between positive and negative losses according to the distance between
the corresponding conditions. With a larger distance, the negative loss should
exceed the positive loss to a greater extent. The Margin function is defined as

Margin(cpos, cneg) = log (1 + D(cpos, cneg)) ∗ Ldiffpos, (7)

where D(cpos, cneg) is the distance between true and false conditions, and Ldiffpos

here only provides the value without contributing a gradient. We choose the
current form to let the margin shrink when cneg gets close to cpos. The margin is
also proportional to Ldiffpos because the loss scale differs through conditions and
the margin should be adjusted in a relative manner. With this distance aware
margin, the diffusion model learns to increase the diffusion loss under a false
condition adaptive to the condition distance and the loss scale.

We propose the following contrastive learning enhanced diffusion loss for
continuous training on the previously trained diffusion model,

LConDiff = Ldiff + λLcon (8)

where λ is the weight for the contrastive loss, which is a hyper parameter. The
training procedure is modified from the standard procedure of training a con-
ditional diffusion model, where in each iteration the batch is doubled to con-
struct the negative half whose conditions are sampled according to Eq. 5, and
the doubled batch is fed into the model to update it via LConDiff. The contrastive
learning enhanced diffusion model is then used in the TTA stage. We denote this
improved method as ConDiff-RTTA.

The pipeline for the contrastive enhanced diffusion model training phase is
shown in Fig. 3. The overall pseudo code for training is shown in Algorithm 2.
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Fig. 3. Overall Architecture for Constructive Enhanced Diffusion Model Training

Algorithm 2 Training of Contrastive Learning Enhanced Diffusion Model
Require: training set Dtrain, diffusion model weights φ
1: while not converged do
2: Sample training image-intensity batch (x0, cpos) ∼ Dtrain

3: Sample noise strength batch t following settings of EDM
4: Sample noise batch ε ∼ N (0, I)
5: xt ← x0 + t � ε
6: Synthesize false conditions cneg according to Eq. 5
7: Compute LConDiff according to Eq. 8
8: Take gradient descent step on ∇φLConDiff to update φ
9: end while

4 Experiments

4.1 Dataset

We use a publicly available benchmark dataset, the Tropical Cyclone Dataset
for Image Intensity Regression (TCIR)1 [1]. TCIR contains TCs in the North
Eastern Pacific, the North Western Pacific, and the Atlantic Ocean. The satel-
lite observations in TCIR are derived from two open datasets, GridSat and
CMORPH. The best track intensities (IBTrACS) are derived from the Joint
Typhoon Warning Center (JTWC) and the Atlantic Hurricane Database (HUR-
DAT2).

As shown in Table 1, we classify TCs according to the Saffir-Simpson Hur-
ricane Wind Scale, which consists of 7 classes, with higher classes representing
higher maximum sustained winds. We use a total of 36566 image frames from
TCs in 2003-2013 as training data, 3245 from TCs in 2014 as validation data,
1 Available at https://www.csie.ntu.edu.tw/∼htlin/program/TCIR/.

https://www.csie.ntu.edu.tw/~htlin/program/TCIR/
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and 7570 frames from TCs in 2015-2016 as testing data. Each frame has 201×201
pixels and a total of 4 channels per pixel, i.e., infrared (IR), water vapor (WV),
visible channel (VIS), and passive microwave rain-rate (PMW). In our exper-
iments, we use the IR channel, and normalize it to have zero mean and unit
standard deviation, and resize it to 65 × 65 pixels as the input.

Table 1. Number of Frames in TCIR from [1]

Category Training Validation Testing

TD (33≤kt) 13766 1154 2353

TS (34∼63 kt) 13850 1194 3048

CAT1 (64∼82 kt) 3793 388 787

CAT2 (83∼95 kt) 1909 178 490

CAT3 (96∼112 kt) 1381 129 418

CAT4 (113∼136 kt) 1558 147 394

CAT5 (≥137 kt) 309 55 80

Total 36566 3245 7570

4.2 Models and Metrics

Regression Model. To achieve SOTA performance on TC intensity estima-
tion, it is needed to include physics-guided features in the regression network,
and conduct special post-processing such as sliding windows and rotation ensem-
bles [1,2,29,31,32]. These techniques are along different dimensions compared to
our method, and will require a lot of extra efforts and computational resources.
Therefore we set our goal to explore the ability of diffusion models on improv-
ing the intensity estimation performance of CNN based backbone models. We
use ResNet-18 [9] as the backbone for feature extraction and train it on the
TCIR training set with L2 loss. This regression model achieves comparable per-
formance to backbone models in [1,31] on the TCIR validation set and test set.
We refer to this model as Regression or Reg Model in the experiments.

Diffusion Models. For diffusion models, we use the implementation framework
of EDM [14] and the U-Net backbone model from [28]. Diff-RTTA: This is a
diffusion model trained with our modification for the regression task as discussed
in Sect. 3.2. The trained diffusion model is then used to adapt the Reg Model
during test time. ConDiff-RTTA: We fine-tune the above diffusion model with
our proposed LConDiff loss. Same as in Diff-RTTA, Ldiff is used during TTA
stage.

Evaluation Metrics. We report the TC intensity estimation accuracy of various
models in terms of Root Mean Square Error (RMSE) and Mean Absolute Error
(MAE).
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4.3 Implementation Details

Models are trained on 8 RTX 4090 GPUs. We train a total of 21M TC images
randomly sampled from the training dataset with batch size 256 for the Diff-
RTTA and continue to train 3M TC images with batch size 128 for the ConDiff-
RTTA, with the rest of training settings following the default of EDM. For
test-time adaptation, the noise batch size is 200 with 10 adaptation steps and
Adam optimizer is used with a learning rate of 5 × 10−5.

4.4 Overall Performance

Diff-RTTA as Regression Model. To get a better understanding on using
diffusion model alone as a regression model, we test the performance of Diff-
RTTA model without using the pre-trained Reg Model but instead with 50 kt
as the initial conditional inputs for all the test TC images. 50 kt is the mean
value of the TC intensities from training set and has an overall RMSE of 30.39
on the entire test set. The performance of using 50 kt as initial conditions with
Diff-RTTA is shown in Table 2 labelled as Diff-RTTA (50). Even with the initial
condition of 50 kt, the overall RMSE of Diff-RTTA improves to 14.83, showing
its ability as a regression model. In Fig. 4, Diff-RTTA (50) results for each TC
image are ordered by the true conditions (from IBTrACS) from left to right. We
can see that the predicted intensities are spread along the true conditions, which
indicates the important fact that the correct adaptation directions are likely to
be found using the diffusion loss as the feedback.

Fig. 4. Diff-RTTA (50) results for each TC image

Comparisons to Baselines. The performances of Reg Model, Diff-RTTA and
ConDiff-RTTA are shown in Table 2. Diff-RTTA shows an improvement of 0.33
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on RMSE over Reg Model, from 11.22 to 10.89. ConDiff-RTTA further improves
the overall performance to 10.76. Although ConDiff-RTTA achieves mildly better
results over Diff-RTTA in overall performance, a detailed inspection reveals that
improvements on each TC category are made differently, as shown in Fig. 5.
ConDiff-RTTA shows more significant improvements over Diff-RTTA as the TC
intensity becomes higher, roughly between 0.6 to 1.0 compared to Reg Model on
CAT1-5, in which the most destructive TCs reside. We attribute this observation
to the stronger contrastive effect on high intensities due to larger contrastive
margins and wider negative sampling windows, which we design deliberately to
enhance the regression model’s performance on strong TCs.

Table 2. RMSE and MAE results on TCIR test set

TD TS CAT1-5 Overall

Method RMSEMAE RMSEMAE RMSEMAE RMSEMAE

Regression 6.76 4.95 9.89 7.70 15.76 12.16 11.22 8.17

Diff-RTTA (50) 9.25 6.91 12.49 9.28 21.21 17.12 14.83 10.84

Diff-RTTA 6.49 4.69 9.62 7.49 15.31 11.89 10.89 7.93

ConDiff-RTTA 6.66 4.80 9.58 7.43 14.97 11.57 10.76 7.85

Fig. 5. Improvements on different categories over baseline Reg Model

4.5 Diffusion Loss Analysis

We show the training curves of Ldiffpos and Ldiffneg in Fig. 6 (a). Ldiffpos, the
diffusion loss given true conditions, remains at a low level while Ldiffneg, the
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diffusion loss given false conditions, increases significantly during training. Dif-
fusion loss enumerations of the diffusion model trained in Diff-RTTA and that
trained in ConDiff-RTTA are shown in Fig. 6 (b) and (c), on CAT1 to CAT5
TCs and the entire test set respectively. We can see that on both figures, the
enumeration curves (yellow) with ConDiff-RTTA are sharper than the curves
(blue) with Diff-RTTA. The valley of the curve with ConDiff-RTTA also shifts
more towards the center (true condition c) compared to Diff-RTTA. These fig-
ures comply with our intention to still learn p(x|c) as well as impose stronger
constraints on false condition scenarios.

Fig. 6. (a) Training loss curves and diffusion loss enumerations over conditions on (b)
CAT1-CAT5 and (c) the entire test set

4.6 Parameter Study

A parameter study is conducted using validation set on the hyper parameter
λ, which is the weight of our proposed contrastive loss. Figure 7 (a) shows the
overall improvements over baseline Reg Model with different λ values of 0.1,
0.5, 1.0, 2.0. It shows that the overall performance improves even with a small λ
value. λ = 0.5 is selected according to our parameter study for reporting ConDiff-
RTTA results. We also perform another parameter study w.r.t. the number of
adaptation steps during test-time adaptation and the results are shown in Fig. 7
(b). It shows that by extending the adaptation steps, the overall RMSE keeps
decreasing. As more adaptation steps lead to more running time, we stop the
adaptation step at 10.

4.7 Case Study

We select from our test set the Super Typhoon Meranti, one of the most dis-
astrous typhoons of this century for our case study. Meranti impacted South
Eastern Asia and Southern China areas in September 2016, causing numerous
deaths and injuries along with massive economic loss. It was recognized as a
CAT5 typhoon during its peak times.
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Fig. 7. Parameter study on (a) Hyper Parameter λ and (b) Adaptation Steps

Figure 8 shows the best track intensities (from IBTrACS) and model intensity
estimations of Meranti throughout its lifetime. The regression model underesti-
mates the peak intensities, which is likely due to the rareness of violent typhoons
in the nature and therefore in the TCIR dataset. As a comparison, Our proposed
method ConDiff-RTTA revises the estimations upward such that they are closer
to IBTrACS values. This case demonstrates that with the assist of our con-
trastive learning enhanced diffusion model, over-fitting in the regression model
can be mitigated, resulting in a more accurate discriminative estimation on rare
data.

Fig. 8. The intensities of Super Typhoon Meranti over its lifetime
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5 Conclusion

In this paper, we propose a new method ConDiff-RTTA to improve TC intensity
estimation performance. We find that TC regression network can be optimized
during test time by a diffusion model conditioned on ordinal intensity numbers
instead of categorical labels as in previous works. Furthermore, we enhance the
diffusion model by training in a contrastive learning approach in order to improve
the alignment between diffusion losses and prediction errors of the regression
model. Experimental results show that the diffusion model pre-trained from
TC satellite images improves TC estimation performance, and ConDiff-RTTA
achieves further overall performance gains, especially significant on high intensity
TCs.
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Abstract. Medical Visual Question Answering (Med-VQA) is a task
that answers a natural language question with a medical image. Exist-
ing VQA techniques can be directly applied to solving the task. How-
ever, they often suffer from (i) the data insufficient problem, which
makes it difficult to train the state of the arts (SOTAs) for domain-
specific tasks, and (ii) the reproducibility problem, that existing mod-
els have not been thoroughly evaluated in a unified experimental setup.
To address the issues, we develop a Benchmark Evaluation SysTem for
Medical Visual Question Answering, denoted by BESTMVQA. Given
clinical data, our system provides a useful tool for users to automatically
build Med-VQA datasets. Users can conveniently select a wide spec-
trum of models from our library to perform a comprehensive evaluation
study. With simple configurations, our system can automatically train
and evaluate the selected models over a benchmark dataset, and reports
the comprehensive results for users to develop new techniques or perform
medical practice. Limitations of existing work are overcome (i) by the
data generation tool, which automatically constructs new datasets from
unstructured clinical data, and (ii) by evaluating SOTAs on benchmark
datasets in a unified experimental setup. The demonstration video of our
system can be found at https://youtu.be/QkEeFlu1x4A, and the source
code is shared on https://github.com/emmali808/BESTMVQA.

Keywords: Medical Visual Question Answering · Benchmark
Evaluation System · Comprehensive Experimental Study

1 Introduction

Medical visual question answering is a challenging task in healthcare industry,
which answers a natural language question with a medical image. Figure 1 shows
an example of the Med-VQA data. It may aid doctors in interpreting medical
images for diagnoses with responses to close-ended questions, or help patients
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Fig. 1. An example of Med-VQA Fig. 2. Publications on Med-VQA
since 2016

with urgent needs get timely feedback on open-ended questions [13]. It is a
challenging problem which processes multi-modal information. Different from
general VQA, Med-VQA requires substantial prior domain-specific knowledge to
thoroughly understand the contents and semantics of medical visual questions.

Many exiting techniques contribute to solving this task (e.g., [9]). However,
they generally suffer from the data insufficient problem. They need to be trained
on well-annotated large datasets, to learn enough domain-specific knowledge for
understanding medical visual questions. Several works focus on constructing
Med-VQA datasets [2,11,12,15,17]. However, these datasets seem to be a drop
in the bucket. Other works employ data augmentation method to tackle the
problem. VQAMix [9] has focused on generating Med-VQA training samples.
However, it may incur noisy samples that affect the performance of models.
Current work have adopted transfer learning to pre-train a visual encoder on
external medical image-text pairs to capture suitable visual representations for
subsequent cross-modal reasoning [6,9,13]. They achieve success by performing
pre-training using large-scale data unannotated data. However, they have not
been thoroughly evaluated in benchmark settings.

To address the problems, we develop BESTMVQA, which is a benchmark
evaluation system for Med-VQA. We first provide a data generation tool for
users to automatically construct new datasets from self-collected clinical data.
We implement a wide spectrum of SOTA models for Med-VQA in a model
library. Accordingly, users can conveniently select a benchmark dataset and any
model in model library for medical practice. Our system can automatically train
the models and evaluate them over the selected dataset, and present a final com-
prehensive report to users. With our system, researchers can comprehensively
study SOTA models and their applicability in Med-VQA. The impact of our con-
tributions also can be inferred from Fig. 2, which shows the significant increase
in Med-VQA publications since 2016. We provide a unified evaluation system
for users to (i) reveal the applicability of SOTA models to benchmark datasets,
(ii) conduct a comprehensive study of the available alternatives to develop new
Med-VQA techniques, and (iii) perform various medical practice.
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2 Research Scope and Task Description

The research scope is tailored to two types of readers: (i) Researchers who require
Med-VQA techniques to perform downstream tasks; (ii) Contributors in the
research community of Med-VQA who need to thoroughly evaluate the SOTAs.

Medical visual question answering is a domain-specific task that inputs a
medical image and a related question, outputting an answer in natural language.
It requires extensive domain knowledge, adding complexity beyond general VQA
tasks. The lack of well-annotated large-scale datasets makes it hard to learn
enough medical knowledge. To address the challenge, current work typically
pre-train a visual encoder on large unlabeled medical image-text pairs.

In Fig. 3, Med-VQA models consist of four main components: vision encoder,
text encoder, feature fusion, and answer prediction, which together process the
image and question inputs to predict answers.

Vision 
Encoder

Image

Question

Is this image 
abnormal?

Image Feature

Question Feature

Feature Fusion

Joint Feature

Classifier 
or

 Generator
Answer

Text 
Encoder

Fig. 3. The architecture of mainstream Med-VQA models

3 Related Work

Med-VQA is a challenging task that combines natural language processing and
computer vision. Early work employing traditional machine learning algorithms
suffers from poor performance due to significant differences between visual and
textual features [26]. Inspired by the success of deep learning in information
systems, deep learning models for Med-VQA are reported to have performance
gains over traditional models [23]. They can be classified into four categories:
joint embedding, encoder-decoder, attention-based, and large language models
(LLMs). Table 1 shows the statistics of SOTAs we reproduced.

The joint embedding models combine visual and textual embeddings into
a final representation. We implement some representative models such as
MEVF [19] and CR [32]. MEVF uses MAML [7] and CDAE [18] to initialize
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Table 1. The statistics of considered models, including the parameter size (Params),
the training time (Training Time), supporting pre-training or not (Support PT), sup-
porting fine-tuning or not (Support FT) and model category (Model Category). The
left value of Training Time represents the smallest training time over all datasets, while
the right value is the largest one.

Baseline Params Training Time Support PT Support FT Model Category

MEVF [19] 15M 0.03 h–0.3 h × � Joint Embedding

CR [32] 38M 0.04 h–0.4 h × � Joint Embedding

MMQ [4] 20M 0.5 h–3.0 h � � Joint Embedding

VQAMix [9] 19M 0.6 h–6.0 h × � Joint Embedding

CMSA [8] 88M 1.0 h–4.2 h × � Attention-Based

MMBERT [14] 117M 1.7 h–13.3 h � � Attention-Based

PTUnifier [3] 350M 3.0 h–13.0 h � � Attention-Based

METER [5] 320M 2.5 h–18.0 h � � Attention-Based

TCL [29] 580M 1.3 h–8.3 h × � Encoder-Decoder

MiniGPT-4 [34] 14110M - × × LLMs

LLaVA-Med [16] 6743M - × × LLMs

the model weights for visual feature extraction, while CR proposes question-
conditioned reasoning and task-conditioned reasoning modules for textual fea-
ture extraction.

For encoder-decoder models, visual and textual features are extracted sepa-
rately by encoders, and fused in a feature fusion layer. The decoder generates
the answer based on the fused features. NLM [21], TCL [29], and MedVInT [33]
are such representative models.

The third category employs attention mechanisms to capture representative
visual and textual features. MMBERT [14] employ Transformer-style architec-
ture to extract visual and textual features. CMSA [8] introduce a cross-modal
self-attention module to selectively capture the long-range contextual relevance
for more effective fusion of visual and textual features. MedFuseNet [22] excels in
open-ended visual question answering on recent public datasets through a BERT-
based multi-modal representation, coupled with an LSTM decoder. We have
implemented four representative models, including MMBERT [14], CMSA [8],
PTUnifier [3] and METER [5].

Recently, motivated by the achievements of ChatGPT [27] and GPT-4 [1],
alongside the efficacious deployment of open-source, instruction-tuned large
language models (LLMs) within the general domain, a myriad of biomedical-
oriented LLM chatbots have emerged. Notable among these are ChatDoctor [31],
Med-Alpaca [10], PMC-LLaMA [25], DoctorGLM [28], and Huatuo [24]. LLMs
are trained on large amounts of textual data that can help interpret complex
and detailed information in medical images. Our model library also provides
two recent models for generating the linguistic representation of the question
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in Med-VQA: MiniGPT-4 [34] has multi-modal abilities by properly aligning
visual features with advanced LLMs, and LLaVA-Med [16] performs multi-modal
instruction-tuning by leveraging large-scale biomedical data.

Fig. 4. System architecture of our BESTMVQA

4 System Overview

In Fig. 4, our BESTMVQA system has three components: data preparation,
model library, and model practice. The data preparation component is developed
based on a semi-automatic data generation tool. Users first upload self-collected
clinical data. Then, medical images and relevant texts are extracted for medical
concept discovery. We provide a human-in-the-loop framework to analyze and
annotate medical concepts. To facilitate the effort, we first auto-label the medical
concepts by employing the BioLinkBERT-BiLSTM-CRF [30]. Then, profession-
als can conveniently verify the medical concepts. After that, medical images,
medical concepts and diagnosis texts are fed into a pre-trained language model
for generating high-quality QA pairs. We employ a large-scale medical multi-
modal corpus to pre-train and fine-tune an effective model, which can be easily
incorporated into existing neural models for generating medical VQA pairs. our
system provides a model library, to avoid duplication of efforts on implement-
ing SOTAs for experimental evaluation. A wide spectrum of SOTAs have been
implemented. The detailed statistics of the models can be seen in Sect. 3. Based
our library, users can conveniently select a benchmark dataset and any number of
SOTAs from our model library. Then, our system automatically performs exten-
sive experiments to evaluate SOTAs over the benchmark dataset, and presents
the final report to the user. From our report, the user can comprehensively
study SOTAs and their applicability to Med-VQA. Users can also download the
experimental reports and the source codes for further practice.
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5 Empirical Study

Users can use our BESTMVQA system to systematically evaluate SOTAs on
benchmark datasets for Med-VQA. To comprehensively evaluate the effectiveness
of the models, we employ the metric of accuracy for open-ended, closed-ended,
and overall questions. Five datasets are provided for users for model practice to
investigate the applicability of models to diverse application scenarios.

Table 2. The statistics of datasets. NI, NQ and NA represent the number of images,
questions and answers, respectively. MeanQL and MeanAL represent the length of
questions and answers, respectively.

Dataset NI NQ MeanQL MeanAL NA

VQA-RAD [15] 314 3515 6.49 1.61 557

MedVQA-2019 [2] 4200 15292 6.88 2.12 1749

SLAKE-EN [17] 642 7033 8.03 1.4 234

PathVQA [11] 4289 32795 6.33 1.79 4946

OVQA [12] 2000 19020 8.73 3.32 1065

5.1 Considered Models

We emphasize the utilization of “out-of-the-box” models, defining a model as
“usable out of the box” if it meets the following criteria: (i) publicly avail-
able executable source code, (ii) well-defined default hyperparameters, (iii) no
mandatory hyperparameter optimization, and (iv) absence of requirements for
language model retraining and vocabulary adaptation. To ensure consistent eval-
uation and practical applicability, all models are expected to generate predictions
in a standard format. Adhering to the criteria is essential for models that can
help guarantee aligning with the concept of “out of the box”.

Models are identified and classified as shown in Table 1, containing (i) those
specifically tailored for Med-VQA, and (ii) the application of general VQA mod-
els to the medical domain.

5.2 Experimental Setup

Datasets. All models are evaluated using the following five datasets:
OVQA [12] has 2,001 images and 19,020 QA pairs, with each image linked

to multiple QA pairs.
VQA-RAD [15] includes 314 images and 3,515 questions answered by clin-

ical doctors, with 10 question types across the head, chest and abdomen.
SLAKE [17] is a bilingual dataset annotated by experienced doctors, which

is represented as SLAKE-EN in English.
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Table 3. Default values for Batch Size, Learning Rate, and Epoch for each model

Baseline Batch Size Learning Rate Epoch

MEVF+SAN 16 1.00E-03 20

MEVF+BAN 8 1.00E-03 20

CR 64 1.00E-03 40

MMQ 64 1.00E-03 60

VQAMix+SAN 8 1.00E-03 80

VQAMix+BAN 8 1.00E-03 80

CMSA 32 1.00E-03 60

MMBERT 16 1.00E-03 80

PTUnifier 8 1.00E-05 50

METER 32 1.00E-05 25

TCL 4 2.00E-05 20

Fig. 5. Distribution of question types per dataset

MedVQA-2019 [2] is a radiology dataset from the ImageClef challenge,
which includes 642 images with over 7,000 QA pairs.

PathVQA [11] consists of 32,795 pairs generated from pathological images.
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Datasets were chosen for their diversity in sample sizes (Table 2). For VQA-
RAD and SLAKE, we have reorganized the datasets in a 70%-15%-15% ratio due
to the lack of validation sets. As for the other datasets, We use the proportion
of the corresponding data splits. The detailed statistics for data splits are shown
in Table 4. The distribution of question types is illustrated in Fig. 5.

Table 4. The statistics of data splits. NI represents the number of images. MaxQL,
MinQL and MeanQL represent the max, min and mean length of questions, respec-
tively; NCF and NOF represent the number of close-ended and open-ended questions,
respectively. MedVQA-2019 is not divided into open-ended and closed-ended questions.

Dataset Sample NI MaxQL MinQL MeanQL Vocabulary NCF NOF

VQA-RAD (train) 2451 314 21 3 6.43 1114 1443 1008

VQA-RAD (valid) 613 258 19 3 6.42 625 380 233

VQA-RAD (test) 451 203 22 3 6.89 538 272 179

Total 3515 314 22 3 6.49 1288 2095 1420

MedVQA-2019 (train) 12792 3200 11 4 6.88 98 - -

MedVQA-2019 (valid) 2000 500 11 4 6.86 94 - -

MedVQA-2019 (test) 500 500 11 4 6.86 93 - -

Total 15292 4200 11 4 6.88 98 - -

SLAKE-EN (train) 4777 546 21 4 7.98 301 1905 2872

SLAKE-EN (valid) 1195 484 18 4 8.12 265 460 735

SLAKE-EN (test) 1061 96 21 4 8.11 265 416 645

Total 7033 642 21 4 8.03 306 2781 4252

PathVQA (train) 19755 2599 37 2 6.35 4161 9868 9887

PathVQA (valid) 6279 832 37 2 6.24 2537 3156 3123

PathVQA (test) 6761 858 42 2 6.33 2608 3409 3352

Total 32795 4289 42 2 6.33 5095 16433 16362

OVQA (train) 15216 2000 95 4 8.63 958 8037 7179

OVQA (valid) 1902 1235 62 4 9.04 613 830 1072

OVQA (test) 1902 1234 67 4 9.26 533 832 1070

Total 19020 2000 95 4 8.73 1005 9699 9321

Implementation Details. For pre-training, we use a large-scale publicly avail-
able dataset called by ROCO [20]. It contains image-text pairs collected from
PubMed (https://pubmed.ncbi.nlm.nih.gov/). We selected 87,952 non compos-
ite radiographic images with relevant captions. For fine-tuning, we follow the
training, validation, and testing data splits according to Table 4. Five bench-
mark Med-VQA datasets were used to train and evaluate SOTAs. Questions are
divided into closed-ended and open-ended. Closed-ended questions are usually
answered with “yes/no” or other limited options. Open-ended questions have

https://pubmed.ncbi.nlm.nih.gov/
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Table 5. Experimental results for discriminative models on the test set of VQA-RAD,
SLAKE-EN, PathVQA, and OVQA datasets, including the Accuracy (ACC) of three
indicators: Closed-ended, Open-ended, and Overall.

Dataset Baseline Closed-ended (ACC) Open-ended (ACC) Overall (ACC)

VQA-RAD MEVF+SAN 75.4 40.2 61.4

MEVF+BAN 78.3 52.5 68.1

CR 77.2 57.6 69.4

MMQ 75.7 56.9 68.2

VQAMix+SAN 79.4 57 70.5

VQAMix+BAN 80.9 57.5 71.6

CMSA 78.5 63.7 72.5

MMBERT 74.3 46.9 63.4

PTUnifier 86.4 68.2 79.2

METER 78.3 57 69.8

TCL 73.5 56.4 66.7

SLAKE-EN MEVF+SAN 78.4 75.3 76.5

MEVF+BAN 81 75.7 77.8

CR 76.9 78.4 77.5

MMQ 78.4 76.7 77.4

VQAMix+SAN 77.9 77.7 77.8

VQAMix+BAN 83.2 78.1 80.1

CMSA 68.3 49.1 56.6

MMBERT 43.3 1.9 18.1

PTUnifier 89.4 81.6 84.6

METER 87.3 79.2 82.4

TCL 87.5 78.4 82

PathVQA MEVF+SAN 83.4 13.1 48.5

MEVF+BAN 83.8 16.4 50.3

CR 84.9 15.9 50.5

MMQ 83.2 14.3 48.9

VQAMix+SAN 83.9 9.6 46.9

VQAMix+BAN 84.3 12.7 48.6

CMSA 83.7 16.1 50.2

MMBERT 83.2 13 48.1

PTUnifier 85.5 10.1 48.1

METER 89.9 29.8 60

TCL 88.1 36.9 62.7

OVQA MEVF+SAN 74.2 52.3 61.9

MEVF+BAN 76.6 50.5 61.9

CR 76.6 36.9 54.3

MMQ 79 53.2 64.5

VQAMix+SAN 77.6 59.1 67.2

VQAMix+BAN 79.3 57 66.8

CMSA 79.7 45.6 60.5

MMBERT 80.5 48.7 62.6

PTUnifier 84.9 60.5 71.3

METER 82.1 51.7 65.1

TCL 82.6 60.4 70.1

no restrictive structure and can have multiple correct answers. All models are
trained on dual graphics NVIDIA RTX V100 GPU. We use the AdamW opti-
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Table 6. Experimental results for discriminative models on the test set of MedVQA-
2019. Due to the fact that the MedVQA-2019 is not strictly divided into open-ended
and closed-ended question types, the table only contains the values of Overall Accuracy

Dataset Baseline Overall(ACC)

MedVQA-2019 MEVF+SAN 50

MEVF+BAN 47.4

CR 46.8

MMQ 50

VQAMix+SAN 47.2

VQAMix+BAN 49

CMSA 47.4

MMBERT 51.2

PTUnifier 60.3

METER 73.9

TCL 63

Table 7. Experimental results for generative models on the test set of VQA-RAD,
SLAKE-EN, PathVQA, OVQA and MedVQA-2019 datasets, including the Accuracy
(ACC) of Closed-ended and the Recall, METEOR of Open-ended.

Dataset Baseline Closed-ended (ACC) Open-ended

RecallMETEOR

VQA-RAD MiniGPT-4 56.2 32.2 0.043

LLaVA-Med 58.8 32.1 0.238

SLAKE-EN MiniGPT-4 53.2 36.8 0.038

LLaVA-Med 53.6 40.7 0.308

PathVQA MiniGPT-4 53.4 12 0.018

LLaVA-Med 57.9 11.8 0.026

OVQA MiniGPT-4 53.1 33.4 0.066

LLaVA-Med 66.8 39.1 0.237

MedVQA-2019 MiniGPT-4 - 23.2 0.019

LLaVA-Med - 25 0.055

mizer with the same preheating steps. See Table 3 for detailed parameter settings
of models.

5.3 Evaluation Metrics

To quantitatively measure the performance of models, we use the accuracy as
an evaluation metric, and compute it for closed-ended and open-ended questions
for discriminative models, as they can be defined as a classification task. Let Pi
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and Li respectively denote the prediction and ground-truth label of sample i in
the test set, and T represents the test set. The accuracy is calculated as follows:

accuracy =
1
|T |

∑

i∈T

l(Pi = Li) (1)

where l equals 1 only if Pi = Li, otherwise 0.
For generative models such as MiniGPT-4 and LLaVA-Med, we report the

accuracy for closed-ended questions as we leverage prompts to guide the model
in answering these questions under a specified candidate set. For open-ended
questions, we adopt recall to evaluate the ratio that ground-truth tokens appear
in the generated sequences and METEOR to assess the word order consistency
between generated answer and ground-truth. The recall can be formalized as:

recall =
TP

TP + FN
(2)

where TP is the number of ground-truth tokens that correctly predicted and
FN stands for the number of ground-truth tokens that didn’t appear in the
predicted answer.

5.4 Results

Tables 5, 7 and 6 show the accuracy achieved by all the considered models.
(i) In closed-ended questions, discriminative models (Table 5), are more

applicable to Med-VQA, compared with LLMs (Table 7). This is because the
generative models focus on simulating and generating data that requires broader
language understanding and visual information processing capabilities. For sim-
ple closed-ended questions, they may suffer from the over-generation problem.

(ii) Among discriminative models, the PTUnifier which is pre-trained in the
medical domain performs the best on VQA-RAD, SLAKE-EN and OVQA, but
not so well on PathVQA and MedVQA-2019. As for the pre-trained models in
general domain, TCL and METER achieve better performance on PathVQA
and MedVQA-2019. The possible reason is that PathVQA is collected from a
wide range of sources, including textbooks and literature, while MedVQA-2019
is artificially generated and cannot represent formal clinical data. PTUnifier
adopts a visual language pre-training framework and unifies the fused encoder
and dual encoder, thereby excelling on multi-modal tasks.

(iii) For generative models, MiniGPT-4 performs worst in terms of both the
accuracy and the word order of generating answer on every dataset. Although
utilizing massive amounts of data for training, it is still unable to effectively mine
the domain-specific knowledge to answer a medical question, then over-generate
lots of irrelevant text, and finally resulting in poor performance. In addition, the
usage of inappropriate prompts may further degrade the model performance.

(iv) The performance of lightweight models such as MEVF, CR, MMQ, and
CMSA is significantly inferior to complex models like PTUnifier, TCL, and
METER. This is because models like PTUnifier have more parameters and adopt
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a deeper neural network structure, which is beneficial for learning the alignment
between images and texts.

Fig. 6. Model performance varies with batch size and learning rate

5.5 Detailed Analysis

Figure 6 shows that the values of hyperparameters are determined based on the
values set with the best performance on the validation dataset. The results of
each model are obtained by changing the Batch Size (BZ) and Learning Rate
(LR). Due to limited computing power, we only show parts of the results: (i)
The results of MiniGPT-4 and LLaVA-Med are eliminated as they cannot be
fine-tuned; (ii) We show part of results for PTUnifier in Fig. 6(a), as it requires
more computing power for larger values of BZ; (iii) Similarly, we show part of
results for PTUnifier, TCL, and METER with larger number of parameters in
Fig. 6(b), as the value range of LR is not comparable to that of other models.

In Fig. 6(a), the performance of each model gradually increases when the
BZ values increase, and then decrease after reaching a saddle point, due to the
gradient calculation. However, when BZ is set to a large value, some models
converge to local stationary points, such as METER and VQAMix-SAN. In
Fig. 6(b), (i) with the increase of LR values, the performance of MMBERT
shows a significant decline, and (ii) the performance of MEVF, CR, and CMSA
first increase and then decrease with the increase of LR values.
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Fig. 7. The Accuracy of different question types for discriminative models in OVQA

Fig. 8. The performance of different question types for LLMs in OVQA

Figures 7 and 8 show the results on various question types for discriminative
and generative models over the OVQA dataset, respectively. In Fig. 7, we can
derive that:(i) All discriminative models perform well on the Modality type of
questions because MRI or CT image features are obvious, enabling the image
encoder to effectively extract image features. (ii) All models have unsatisfactory
performance on the Attribute Other type of questions, as descriptive questions
are not suitable for label classification tasks. (iii) PTUnifier and VQAMix per-
form well on most types of questions. PTUnifier introduces visual and textual
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prompts for feature representation and improves the diversity of the prompts by
constructing prompt pools, which enable different types of questions to select
the appropriate prompts and enhance the image-text alignment in the fusion
encoder. VQAMix incorporates a conditional label combination strategy for data
augmentation, allowing for extracting more comprehensive image features.

In Fig. 8, LLaVA-Med performs better than MiniGPT-4 on almost all types of
questions, as it contains extensive domain-specific knowledge by pre-training and
instruction tuning based on a large-scale biomedical dataset. Especially, LLaVA-
Med greatly outperforms MiniGPT-4 on the Plane type of open-ended questions,
as these specialized questions require models to fully capture the medical image
features and exert domain knowledge to generate answers.

5.6 Qualitative Analysis

We provide a qualitative comparison of all models. Two examples from the
OVQA dataset in Fig. 9 show that early discriminative models such as MEVF,
CR, MMBERT, CMSA, and VQAMix, fail to answer Med-VQA questions, com-
pared to the latest discriminative models such as TCL, METER, and PTUnifier.
In Fig. 9, the Red Cross indicates that the prediction is wrong, and the green
check indicates that the prediction is correct. The given question is to consult
the abnormal position of orthopedic images. We observed that traditional mod-
els such as MEVF predict wrong abnormal positions. While TCL, and other

Fig. 9. Two testing examples selected from OVQA
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advanced models can locate the abnormality to the correct position. This also
indicates that the advanced VQA deep learning models with large parameters
can not only correctly understand the image content, but also capture the region
of interest related to the question, leading to predicting the correct answer.

6 Conclusion

Deep learning models for Med-VQA face unique challenges, necessitating urgent
comprehensive empirical studies on SOTAs to advance techniques and medi-
cal practice. To address this, we implemented a benchmark evaluation system
that compares user-selected models and reports detailed experimental results.
Additionally, users can download datasets, reports, and source codes for further
exploration. Our system provides a unified platform to facilitate diverse medical
practices.
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Abstract. Effective optimisation of aerodynamic shapes requires high-
quality parameterisation of candidate geometries. In recent years, the
increasing availability and applicability of data - through increasing
computational power, GPUs, cloud storage and AI - has motivated the
development of data-driven approaches to the parameterisation problem,
particularly those that can process the image-based data coming from
scanned design parts. In this paper a novel approach to aerodynamic
shape parameterisation is proposed, which leverages meta-learning in a
generative deep learning framework. The solution put forward - AeroINR
- aims to learn continuous neural representations as surrogates of the
discrete field data used for shape representation in image-based appli-
cations. This approach transforms the learning problem to that of the
surrogate model weight distribution of candidate geometries, rather than
grid-based field values directly, which can reduce the number of variables
describing each geometry by an order of magnitude or more. Benchmark-
ing is carried out against three state-of-the-art deep-learning based aero-
foil parameterisations, with AeroINR shown to outperform these models
in two of the three metrics considered. Ablation study results show the
robustness of this approach to generative framework and choice of dis-
crete field representation.

Keywords: AI-Aided Design · Variational Auto-Encoders (VAE) ·
Hypernetworks · Implicit Neural Representations (INR) ·
Meta-Learning

1 Introduction

The requirement for engineering parts to be aerodynamically efficient is a com-
mon theme across many engineering projects, within specialities as diverse as
aerospace [24,29], automative [22,44], energy [10,25], civil [2,27] and beyond [21,
42]. In the context of aircraft design, aerodynamic considerations must be incor-
porated throughout the process. For example, in the design of the body itself,
wings and other lift-generating components are optimised to increase lift whilst
minimising drag and associated shock fronts [35], whereas non-lifting parts must
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satisfy drag constraints as well as ensuring the desired functionality of a given
part is achieved [36]. With regards to engine design, the profiles of turbomachi-
nary blades such as compressors, turbines and fans are optimised for power
efficiency, aiming to reduce pressure losses in the flow as it cascades through the
engine stages.

In three dimensions, optimisation of essential aerodynamic parts such as
blades and wings is typically carried out on a geometric parameterisation defined
by the stitching together of two-dimensional cross-sections - aerofoils - in the
third dimension [45,46]. Efficient parameterisation of the aerofoils - allowing
sufficient flexibility in a compact space - is therefore a particularly important
part of the aerodynamic design process, and has been extensively studied over
the years [20,23,30,41].

Traditional parameterisations, such as the NACA 4-digit [5] and Class-Shape
Transformation (CST) [23], specify a pre-defined functional form of the geometry
and allow some variation around this. More recently, data-driven approaches
built on neural networks have been investigated as an alternative approach to
aerofoil parameterisation [7,8,26]. Thus far, their primary use has been as a
dimensionality reduction algorithm, in which neural networks are used to find a
more compact representation of traditional aerofoil design spaces, such as CST
and Bezier curves. Correspondingly, the capability of data-driven approaches in
increasing design space size, whilst limiting the growth in dimensionality, are yet
to be fully understood. This has primarily been due to the difficulty in ensuring
sufficiently smooth output designs for aerodynamic applications, but such an
approach has been implemented successfully in SDF-GAN [3].

However, whilst SDF-GAN has been shown to be effective, scalability is still
an issue due to the direct grid-based learning utilised. Recent work has shown
that a more compact form of geometry representation is provided by Implicit
Neural Representations (INRs), in which neural networks are used to encode indi-
vidual geometries [11,31,32]. In this work INRs are utilised alongside a hyper-
network [19] to learn an efficient parameterisation of aerodynamic geometries
through meta-learning. The following contributions are made:

– Propose the use of functional representations for aerodynamic geometry rep-
resentation to achieve a continuous, grid-free parameterisation of the data

– Utilise meta-learning to learn a prior over the space of functions, yielding a
geometric parameterisation suitable for use in an optimisation procedure

– Demonstrate applicability to aerofoil design and compare to state-of-the-art
parameterisations

2 Existing Approaches and Related Work

2.1 Traditional Parameterisations

Traditional approaches to aerofoil parameterisation - those that don’t leverage
deep learning frameworks - can be categorised into two distinct groups. Defor-
mative approaches require a baseline geometry, with parameter variations modi-
fying the shape relative to this baseline. This approach can often be useful since
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a designer will typically know the main properties of the geometry required, with
only small scale variations necessary during the optimisation process. Parame-
terisations that fall into this group include Hicks-Henne and Free-Form Deforma-
tion (FFD) [20,37]. The alternative approach is to describe geometry explicitly,
without reference to a pre-chosen design. This is known as a constructive param-
eterisation, and includes the well known NACA method, as well as more modern
CST, PARSEC and orthogonal decomposition approaches [1,23,41,43]. In addi-
tion, shape descriptors built on piecewise polynomial curves such as B-splines
and Bezier curves also fall into this category.

2.2 Deep Learning-Based Approaches

With regards to deep learning-based parameterisation approaches, one of the
most successful is Bezier-GAN [7], which utilises an InfoGAN [9] framework to
create a two-tier design space. In this setup, higher level latent variables are
used to specify the class of shape required, and lower level noise variables vary
the design within this class. Output designs are constrained to a Bezier curve
to ensure smoothness of the geometry. An optimal transport variation has also
been proposed, in which a Sinkhorn divergence-based loss is used in place of the
discriminative network and aid stability in the training process; this is known as
Entropic Bezier-GAN [6].

In an attempt to leverage the full benefits of a data-driven parameterisation,
SDF-GAN has since been put forward which outputs designs directly through a
grid-based SDF representation [3]. As such, the only constraints on the design
space are the training data used and grid resolution, rather than an in-built
mathematical form. In this case, the design space is specified by a single set of
latent variables in an Adversarial Auto-Encoder [28] framework, which helps to
drive the smoothness of the output geometries through the reconstruction loss
term.

Fig. 1. NACA 1410 reconstruction comparison for 64 × 64 grid resolution with occu-
pancy map and SDF representations.
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2.3 Grid-Based Geometry Representation

In contrast to pre-defined mathematical forms for geometry representation, grid-
based representations - being essentially a direct visualisation - require very little
user input, thus limiting designer bias in the resulting design space. In addition,
the functional forms able to be represented are constrained only by the resolution
of the grid.

Occupancy Maps. Occupancy maps define a binary field over the domain,
with points inside the shape being assigned a value of 1, and all other points
assigned 0. In practice, the mapped values are assigned to the cells of a discretised
grid overlaying the domain. This is a memory intensive, brute force approach,
due to the requirement for fine cells at the boundary and the uniform nature of
the grid. Variations on this idea have been proposed to improve the efficiency,
particularly via adaptive grids [14,15,17].

Signed Distance Fields (SDF). The binary values associated with occupancy
maps give no information as to the distance of a given cell from the boundary,
only direction. Signed Distance Fields remedy this by assigning to each cell
a continuous value, signed to denote position relative to the boundary, with
the magnitude denoting distance to that boundary at its closest point. The
additional information is then used to interpolate the shape boundary during
reconstruction, allowing sub-pixel resolution and ensuring a smoother surface.
The simplicity and effectiveness of this representation has motivated its use for
a variety of applications, including medical imaging [34], collision detection [18]
and in engineering design [4,33].

2.4 Approaches for Learning Priors over Geometry Space

Given an appropriate geometry representation scheme, a data-driven parameter-
isation is constructed by leveraging generative deep learning to learn a prior over
the space of geometries. In the case of Bezier-GAN and SDF-GAN, this is done
by learning a prior over the representation space directly, in the form of grid
values and Bezier parameters. The effectiveness of such an approach is however
limited by its scalability. For Bezier-GAN, extending the output parameter space
to more complex or three-dimensional geometries is challenging due to the lack
of clear functional form that would be suited to such cases. On the other hand,
whilst the representation utilised by SDF-GAN is naturally flexible enough to
deal with a wider range of geometric datasets, practically such an approach is
limited by the increased memory requirements as the number of grid cells grows.

An alternative approach is to utilise Implicit Neural Representations (INRs)
for geometry encoding in a more compact space. This has the advantage of
retaining the natural flexibility of image-based representations, whilst simulta-
neously ensuring scalability to more complex and three-dimensional geometries.
INRs utilise overfitting to learn functional representations of geometries through
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a neural network encoding [11,31], thus converting a discrete sampling of a field
(e.g. occupancy map or SDF) into a continuous function. Such a solution has
two primary advantages: 1. the continuous nature of the learnt field ensures
the approach is resolution-agnostic, allowing easy scalability, 2. the number of
network parameters required to represent the geometry is significantly smaller
than the number of cells in high resolution uniform grids of equivalent capabil-
ity [11]. The problem of learning a prior over the space of geometries is thus con-
verted into learning the distribution of neural network parameterisations. This
type of framework has already been explored in a few works to date, includ-
ing MetaSDF which uses the MAML algorithm [16] for generalisation and INR
geometry instantiation via few-shot learning [39], and for scene representation
via hypernetworks [40]. A more compact approach is provided by DeepSDF,
which leverages an auto-decoding setup such that INR weights are shared across
all samples, with instantiation specified instead by the input latent code [32].

3 Framework of AeroINR

In this work, a hypernetwork is used within a generative framework (AeroINR -
Fig. 2) to learn a prior over the space of INR weight parameters. Meta-learning
is utilised during the training process, such that the target network weights
for the geometries in the dataset and generative network weights are learnt
simultaneously. During inference, INR weights corresponding to the input latent
code are output by the hypernetwork and reshaped for INR instantiation. Given
a set of coordinates corresponding to a grid of the desired resolution, the INR
is used to map these coordinates to SDF values (neural SDF), from which the
geometry can be reconstructed.

As far as the authors are aware AeroINR provides novelty in both framework
and application. In particular, whilst work has been carried out to learn a prior
over neural SDF weights in both MetaSDF [39] and with Scene Representation
Networks [40], in the former case the MAML algorithm was used for meta-
learning as opposed to hypernetworks, whereas in the latter the application is
not for generative learning. MAML-like algorithms were also used in [13], which
argued that INRs should be considered as data (functa) rather than models. No
previous work has been carried out on INR-based meta-learning for aerodynamic
parameterisation.

3.1 Implementation

The implementation of the generative component of AeroINR follows that of
SDF-GAN. As such the baseline network architectures are equivalent, with only
the four hyper-parameter attributes found to be the most impactful in [3] re-
optimised for the meta-learning application proposed here. The final implemen-
tation sets the learning rate to 0.001, uses a single decoder/hypernet layer, and
sets the number of discriminator features to 32. Note that the decoder feature
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Fig. 2. Schematic of the generative architecture. The downstream target network
weights are set to the output values of the hypernetwork, giving a unique neural rep-
resentation for each sample. An additional discriminative network acts to smooth the
structure of the latent space during training.

decrease rate is no longer applicable with only a single layer. For the INR archi-
tecture itself, the baseline network structure from SDF-GAN is also followed,
giving 3 layers, 32 features, and a feature increase rate of 2.

The standard AAE loss function is used for optimisation during training,
with the slight meta-learning modification that the reconstruction loss output is
calculated from the downstream INR output after weight instantiation, rather
than directly from the generative output. The final loss is given in Eq. 1, with
the loss weighting γ set to 0.998 as for SDF-GAN.

LAAE = Lrec + γ · Ladv , (1)

The reconstruction term uses an MSE loss to calculate the difference between
the raw aerofoil field data xi and the INR reconstructed values x̂i,

Lrec =
1
N

N∑

i=1

‖xi − x̂i‖2 , (2)

whilst the adversarial term uses the discriminator D to drive the latent coor-
dinates output by the encoder Q to the smooth Gaussian distribution specified
by the prior,

Ladv = min
Q

max
D

Ez∼pz(z)[log D(z)] + Ex∼pdata(x)[log(1 − D(Q(x)))] . (3)

Training is carried out until convergence is reached, taken to be the case when
the absolute change in all three loss components averaged over 1000 epochs is
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Algorithm 1 AeroINR Meta-Learning Algorithm.
Initialisation:
Initialise encoder qθ0(z|x), hypernetwork pφ0(w|z), INR fw; Convergence tolerance
ε; Batch size B; Learning rate β; Loss function weighting γ.
Input:
The grid data {(x(i), c(i))}N

i=1 representing aerofoil field values (SDF/Occupancy)
and corresponding coordinates.

1: while not IsConverged(ε) do
2: Sample a batch of aerofoils {(x(i))}B

i=1 from the dataset.
3: for each aerofoil j in the batch do
4: Generate weights wk,j = pφ(zj) corresponding to obtained representation

zj = qθ(x
(j))

5: Instantiate INR weights and sample grid values: x̂j = fwk,j (c(j))
6: Compute loss: Lj = LAAE(x(j), x̂j , γ, . . .)
7: Compute gradients: ∇Lj = ∇fwLj

8: Update hypernetwork: pφ ← pφ − β∇pφ

∑
j Lj

9: Increment epoch: k ← k + 1

less than 5% of their respective averages in the previous 1000 epochs. The full
training procedure is given in Algorithm 1.

4 Experiments

4.1 Dataset

Dataset construction follows that in SDF-GAN [3]. Raw aerofoil coordinate data
are used to construct the discrete field data for equivalent grid-based represen-
tation. Samples of 1500+ real aerofoils are first collected from the UIUC online
database [38]. A 25-parameter CST [23] is fit to each aerofoil from which stan-
dardised sampling is carried out, giving 500 coordinates for each upper and lower
aerofoil curve with a cosine sampling distribution. [30] showed such a fit to give
an approximation accuracy to within a typical wind tunnel tolerance for over
99% of aerofoils within the UIUC dataset. This gives a total of 1231 real aerofoils
in the dataset, after removal of those with unrealistic CST fits due to the small
sample size of the original data.

Synthetic aerofoils are created to augment this dataset by sampling param-
eters of an SVD [43] of the UIUC set. The resultant weighted expansion allows
sampling of coefficient values to create new designs. The mean and range of
each coefficient is calculated across all UIUC aerofoils, a Gaussian distribution
fit with the standard deviation set to a third of the range, and then random
sampling of these distributions carried out. All synthetic aerofoils are evaluated
by eye - ensuring a single smooth, continuous loop in each case - before being
incorporated into the dataset. The dataset is split into train and validation sets,
each containing 1000 samples. Only UIUC aerofoils are placed into the train-
ing set. Aerofoils are finally pre-processed into discrete grid representations of
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the relevant field (occupancy map/SDF). All grids are defined over a domain
x ∈ [−0.1, 1.1] and y ∈ [−0.3, 0.3], which is large enough to contain all nor-
malised aerofoils.

4.2 Benchmarks

AeroINR is compared as an aerofoil parameterisation tool against three state-
of-the-art deep-learning-based competitors: Bezier-GAN, Entropic Bezier-GAN
and SDF-GAN. Results for these models are taken from the original work.

Bezier-GAN [7]: GAN-based approach to parameterisation in which Bezier
parameters are output by the generator to ensure smoothness. This is effectively
a dimensionality reduction algorithm for the original Bezier curve parameterisa-
tion of aerofoils.

Entropic Bezier-GAN [6]: A variant of the Bezier-GAN approach. The train-
ing algorithm is modified such that the Sinkhorn divergence is utilised to min-
imise the difference between the generated and training distributions, rather
than adversarial learning. This simplifies the architecture through removal of
the discriminator and ensures a more stable learning process.

SDF-GAN [3]: Aerofoil parameterisation that outputs shapes directly as SDF
grid representations, rather than a constrained mathematical form, via an AAE.

4.3 Metrics

For consistency with prior work, parameterisation capability is assessed through
three metrics - MMD, relative diversity and latent space consistency - follow-
ing [7]. MMD (Maximum Mean Discrepancy) is a well known measure of the
difference between two distributions, used to quantify how well the learnt dis-
tribution matches that of the training data. Relative diversity measures the
variability of the generated aerofoils relative to the training set, through com-
parison of the variance. Finally, latent space consistency quantifies the structure
of the latent space through the correlation coefficient between distances of latent
variables and distances of the corresponding aerofoil outputs. A more consistent
latent space should aid the optimisation process.

To quantify the capabilities of the chosen AAE framework, an ablation study
is carried out on a variety of model configurations. The unconstrained nature
of the approach, alongside the auto-encoding functionality, means that mea-
sures of both design viability and reconstruction quality are required in this
case. As such, three metrics are used to assess AeroINR ablation performance:
feasibility, relative diversity and the L1 reconstruction error (evaluated on the
validation set). Following [3], feasibility is assigned to those aerofoils for which
the XFOIL aerodynamic solver [12] successfully finds convergent solutions, with
a ratio of feasibility evaluated through a random sampling of 1000 aerofoils from
the parameter space.
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Note that aerodynamic evaluation is carried out both as a feasibility check
on the output geometry, as well as for more precise lift-to-drag evaluations of
aerofoils. The feasiblity check is carried out with a Mach number of 0.15 and
Reynolds number of 6.0e+06. For lift-to-drag analysis, a smaller Mach number is
used and geometric smoothing applied due to the increased sensitivity required
for quantitative results with drag. In this case the Mach and Reynolds numbers
are set to 0.01 and 1.8e+06 respectively, whilst two applications of smoothing
via a Hanning filter are used before shape evaluation.

4.4 Experimental Setting

Experiments are carried out in parallel across a single, standard compute node
on the IRIDIS HPC cluster at the University of Southampton, which consists of
40 CPUs, and 192 GB of available memory.

4.5 Results

Fig. 3. Fractional lift-to-drag error for neu-
ral reconstructions across different sampling
resolutions. Error bars correspond to stan-
dard deviations over three runs.

Representation Capability of
INRs. To assess the quality of aero-
foil representation through INRs, a
random subset of 100 UIUC aerofoils
are used to train up equivalent neu-
ral field representations of the geome-
tries. Since the aerofoils are now
treated independently, as opposed to
the generalised training associated
with AeroINR, a slight modification
to the neural architecture is required
here. After some experimentation, an
8-layer INR is used with a constant
value of 256 features in each layer.
Each distinct INR is trained with a
learning rate of 1e-04 and a batch size of 64. Transfer learning is implemented to
speed up the training process, such that the first aerofoil is trained for 30 min,
whilst all subsequent aerofoils in the dataset are trained for 10 min with INRs
initialised to that of the previously trained aerofoil.

Figure 3 shows the average fractional lift-to-drag error of aerofoils recon-
structed from their neural representation relative to the original training aero-
foils. Results are shown for both type of field representation discussed (occupancy
and SDF), as well are for varying training data resolution. Each configuration is
run three times, for different weight initialisations and sampled aerofoils, to give
the error bars shown. All reconstructions show aerodynamic performance within
around 10–25% error relative to the original training aerofoils. As expected, the
aerodynamic performance of the lower resolution reconstructions is closer to that
of the original training data than that of higher resolutions, since overfitting is an
easier problem with fewer data points. Such behaviour means a trade off between
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Table 1. Metric comparison between AeroINR and alternative, state-of-the-art
approaches.

Model MMD2 Latent Space Consistency Relative Diversity

Bezier-GAN 0.1856 ± 0.0007 0.9432 ± 0.0025 1.0455 ± 0.0144

Entropic Bezier-GAN 0.0896 ± 0.0015 0.9878 ± 0.0005 1.3264 ± 0.0196

SDF-GAN 0.3224 ± 0.0219 0.9640 ± 0.0030 2.5396 ± 0.2908

AeroINR 0.3494 ± 0.0151 0.9996 ± 0.0001 2.6410 ± 0.1659

grid and neural represention accuracy exists in this formulation. No significant
difference is seen between the two representation fields for a given resolution.

AeroINR. The main results, both quantitative and qualitative, are presented
in this section. Table 1 shows the performance of AeroINR relative to the state-
of-the-art benchmark models for deep learning based aerofoil parameterisation
described in Sect. 4.2. AeroINR outperforms all other approaches in two of the
three metrics, with an inferior rank seen only for the MMD result. The relatively
poor performance of both SDF-based approaches - AeroINR and SDF-GAN - in
this metric is however somewhat unsurprising, given the output of the Bezier-
GAN approaches is the constrained functional form of a Bezier curve. In addition,
it is arguable as to whether superior performance in this metric is particularly
desirable for a generative approach to parameterisation, in which the aim is
not only to successfully parameterise shapes already known (i.e. the training
data distribution), but also to generalise this such that designs from outside the
original distribution may be synthesised.

Example aerofoils output with the proposed model are shown in both Figs. 4
and 5, which display the generative and reconstruction capabilities of AeroINR
respectively. Figure 4 depicts the diversity of the learnt design space through ran-
dom sampling of the prior distribution, and equivalent plots for both SDF-GAN
and Bezier-GAN are shown for comparison. Figure 5 shows example reconstruc-
tions of aerofoils from the training set of UIUC aerofoils.

A visualisation of the learned latent space is shown in Fig. 6. Each individ-
ual sub-plot corresponds to a cross-sectional view of different two-dimensional
subspaces, in which all other dimensions are fixed at the origin. Since there are
sixteen dimensions in total, each sub-plot corresponds to a unique pair such
that all dimensions are shown within the eight plots. The colour corresponds
to the lift-to-drag ratio associated with each individual aerofoil; lighter colours
represent higher values. The visualisation shows a clear structure within the
latent space, with distinct regions of aerofoils showing similar aerodynamic per-
formance. This is also true of the infeasible geometries within the latent space,
which are depicted by areas of white space within the plots. Such a structure
allows for intelligent searches through the space as required in an optimisation
process. Note that the infeasible regions tend to occur towards the boundary of
the space, as expected.
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Fig. 4. Visualisation of diversity of different parameterisations through random sam-
pling of the design space.

Fig. 5. Reconstructions of randomly selected aerofoils (blue, solid) with AeroINR.
(Color figure online)

Fig. 6. Visualisation of the learned latent space through sampling of 2D cross-sections
around the origin. Each point in space corresponds to a single aerofoil, colour-coded
by its lift-to-drag ratio (light colours correspond to higher values). Note that white
regions correspond to infeasible geometries.
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Ablation Study. To establish the robustness of the proposed approach, an
ablation study is carried out comparing AeroINR to a set of alternative con-
figurations. Three components of the approach are varied: the chosen model
framework, the encoding algorithm and the representation field. In particular,
a Variational Auto-Encoder (VAE) - being a similar auto-encoding approach
to generative modelling - is investigated as an alternative to the baseline AAE.
Inspired by DeepSDF [32], the auto-decoding approach to learning shape embed-
dings is also implemented, which removes the encoder and instead treats latent
variables as learnable parameters both during training and inference, with all
other parameters kept fixed in the latter case. This has two advantages. Firstly,
the number of parameters - and thus memory overhead - in the generative model
is reduced; secondly, the raw data is no longer input into the network, which
removes the constraints on resolution and shape that are enforced by an encoder.

The results are displayed in Table 2, which shows only the encoded embed-
dings for the occupancy representation produce impractically low feasibility frac-
tions. In general it is also apparent that the reconstruction accuracy is signifi-
cantly lower for the occupancy cases (as expected), whilst relative diversity can
often be higher; given a less faithful reconstruction, a correspondingly higher
diversity of aerofoils is not unsurprising. It is also worth stating that whilst
training was stopped through a convergence test (typically after 2–3 h) for speed
and convenience, performance may have been improved by periodically pausing
training and re-evaluating against the desired functionality, as is done in [3].

Note that the encode time is for an entire batch of aerofoils, rather than
individual geometries. The convergence tolerance is increased from 5 to 10 for
the occupancy cases with the AAE framework, and when used alongside a direct
encoding the learning rate is also reduced by a factor of 2, to stabilise training.

Table 2. Ablation study showing AeroINR performance (top row; bold) relative to a
variety of alternative configurations. Displayed results are averaged across three runs.
All times are in minutes.

Independent Variables Dependent Variables

Framework Embedding INR Feas. Rel. div Recon. error Train time Encode time

AAE Encoded SDF 0.53 3.78 1.3e-02 220 ∼ 0

AAE Encoded Occ 0.18 5.55 2.6e-01 514 ∼ 0

AAE Auto-dec. SDF 0.58 0.71 6.0e-03 104 20

AAE Auto-dec. Occ 0.46 0.83 1.5e-01 110 45

VAE Encoded SDF 0.48 2.65 3.3e-03 130 ∼ 0

VAE Encoded Occ 0.32 9.71 2.1e-01 260 ∼ 0

VAE Auto-dec. SDF 0.45 0.73 4.7e-03 105 20

VAE Auto-dec. Occ 0.48 0.89 1.1e-01 110 45

Scalability. Figure 7 shows the growth in training parameter number with
geometric resolution for the meta-learning approach of AeroINR relative to the
grid-based learning of SDF-GAN. This plot assumes the networks remain fixed in
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Fig. 7. Trainable parameter growth with resolution for the grid-based SDF-GAN and
AeroINR.

size as resolution is increased, apart from those which process the input/output
geometric grid directly. The benefit of AeroINR for scalable learning is apparent
for both encoding approaches, but the auto-decoding setup in particular allows
complete separation of network size from geometric resolution, highlighting the
potential for both high-resolution and three-dimensional learning.

5 Conclusions and Future Work

This work presents a novel approach for aerodynamic shape parameterisation
in which a prior distribution of candidate geometries is learnt through their
implicit neural representations. The training algorithm utilises a meta-learning
approach, leveraging hypernetworks to learn downstream neural representation
weights and instantiating on-the-fly to allow a fully contained training process.
Results show that this method is competitive with state-of-the-art deep-learning
aerofoil parameterisations, outperforming competitors in both output diversity
and consistency of the latent space. Whilst results are promising in the two-
dimensional setting, the key benefit of this approach is in the geometric compres-
sion gained by learning a distribution over neural representation weights rather
than directly over the image-based representations, allowing a significant reduc-
tion in the number of parameters required for accurate shape description - up
to an order of magnitude or more. The increased scalability does however come
with additional overhead; the auto-decoding implementation requires additional
training during inference, whilst the alternative encoding approach increases the
baseline number of parameters, and correspondingly time spent during optimi-
sation of hyper-parameters. Future work will investigate the application of this
method for three-dimensional design, where learning remains a significant chal-
lenge due to the large number of parameters required for sufficient geometric
resolution.
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using bézier generative adversarial networks. AIAA J. 58(11), 4723–4735 (2020).
https://doi.org/10.2514/1.J059317

8. Chen, W., Ramamurthy, A.: Deep generative model for efficient 3D airfoil param-
eterization and generation. In: AIAA Scitech 2021 Forum (2021). https://doi.org/
10.2514/6.2021-1690

9. Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., Abbeel, P.: Info-
gan: interpretable representation learning by information maximizing generative
adversarial nets. In: Proceedings of the 30th International Conference on Neural
Information Processing Systems, NIPS 2016, pp. 2180–2188. Curran Associates
Inc., Red Hook (2016). https://doi.org/10.5555/3157096.3157340

10. Chiapperi, J., Greitzer, E., Tan, C.: Attributes of bi-directional turbomachinery for
pumped thermal energy storage. J. Turbomach. 145(3), 031007 (2023). https://
doi.org/10.1115/1.4055647

11. Davies, T., Nowrouzezahrai, D., Jacobson, A.: Overfit neural networks as a compact
shape representation. arXiv (2020)

12. Drela, M.: XFOIL: an analysis and design system for low reynolds number airfoils.
In: Mueller, T.J. (ed.) Low Reynolds Number Aerodynamics, pp. 1–12. Springer,
Heidelberg (1989). https://doi.org/10.1007/978-3-642-84010-4 1

13. Dupont, E., Kim, H., Eslami, S.M.A., Rezende, D.J., Rosenbaum, D.: From data to
functa: your data point is a function and you can treat it like one. In: Proceedings
of the 39th International Conference on Machine Learning, vol. 162, pp. 5694–5725.
PMLR (2022)

14. Ebeida, M.S., Davis, R.L., Freund, R.W.: A new fast hybrid adaptive grid genera-
tion technique for arbitrary two-dimensional domains. Int. J. Numer. Meth. Eng.
84(3), 305–329 (2010). https://doi.org/10.1002/nme.2900

15. Finkel, H.B., Bentley, J.L.: Quad trees: a data structure for retrieval on composite
keys. Acta Informatica 4(1), 1–9 (1974). https://doi.org/10.1007/BF00288916

https://doi.org/10.1088/1755-1315/1022/1/012046
https://doi.org/10.1088/1755-1315/1022/1/012046
https://doi.org/10.1007/s00466-019-01740-0
https://doi.org/10.2514/6.2022-2352
https://doi.org/10.2514/1.J059317
https://doi.org/10.2514/6.2021-1690
https://doi.org/10.2514/6.2021-1690
https://doi.org/10.5555/3157096.3157340
https://doi.org/10.1115/1.4055647
https://doi.org/10.1115/1.4055647
https://doi.org/10.1007/978-3-642-84010-4_1
https://doi.org/10.1002/nme.2900
https://doi.org/10.1007/BF00288916


466 T. Bamford et al.

16. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation
of deep networks. In: Proceedings of the 34th International Conference on Machine
Learning, vol. 70, pp. 1126–1135. JMLR (2017)

17. Frey, P., Marechal, L.: Fast adaptive quadtree mesh generation. In: Proceedings of
the 7th International Meshing Roundtable, pp. 211–224 (2000)

18. Guendelman, E., Bridson, R., Fedkiw, R.: Nonconvex rigid bodies with stack-
ing. ACM Trans. Graph. 22(3), 871–878 (2003). https://doi.org/10.1145/882262.
882358

19. Ha, D., Dai, A.M., Le, Q.V.: Hypernetworks. In: International Conference on
Learning Representations (2017)

20. Hicks, R.M., Henne, P.A.: Wing design by numerical optimization. J. Aircr. 15(7),
407–412 (1978). https://doi.org/10.2514/3.58379

21. Hussain, S., Shah, S., Shahzad, A.: Optimization and aerodynamic design of a
soccer ball using numerical analysis. In: International Conference on Engineering
and Emerging Technologies (ICEET), pp. 1–7 (2020). https://doi.org/10.1109/
ICEET48479.2020.9048220

22. Igali, D., Mukhmetov, O., Zhao, Y., Fok, S.C., Teh, S.L.: Comparative analy-
sis of turbulence models for automotive aerodynamic simulation and design. Int.
J. Automot. Technol. 20(6), 1145–52 (2019). https://doi.org/10.1007/s12239-019-
0107-7

23. Kulfan, B., Bussoletti, J.: “fundamental” parameteric geometry representations for
aircraft component shapes. In: 11th AIAA/ISSMO Multidisciplinary Analysis and
Optimization Conference (2006). https://doi.org/10.2514/6.2006-6948

24. Kummel, A., Ress, R., Pulfer, M., Hirsch, F., Breitsamter, C.: Aerodynamic
design modification for utility helicopters. J. Aerosp. Eng. 36(4), 04023022 (2023).
https://doi.org/10.1061/JAEEEZ.ASENG-4785

25. Lee, J., Lee, K., Kim, B.: Aerodynamic optimal blade design and performance
analysis of 3 MW wind turbine blade with AEP enhancement for low-wind-speed-
sites. J. Renewable Sustain. Energy 8(6), 063303 (2016). https://doi.org/10.1063/
1.4967971

26. Lin, J., Zhang, C., Xie, X., Shi, X., Xu, X., Duan, Y.: CST-GANs: a generative
adversarial network based on CST parameterization for the generation of smooth
airfoils. In: 2022 IEEE International Conference on Unmanned Systems (ICUS),
pp. 600–605 (2022). https://doi.org/10.1109/ICUS55513.2022.9987080

27. Liu, D., Wang, C., Gonzalez-Libreros, J., Tu, Y., Elfgren, L., Sas, G.: A review on
aerodynamic load and dynamic behavior of railway noise barriers when high-speed
trains pass. J. Wind Eng. Ind. Aerodyn. 239 (2023). https://doi.org/10.1016/j.
jweia.2023.105458

28. Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I.: Adversarial autoencoders. In:
International Conference on Learning Representations (2016)

29. Martins, J.R.: Aerodynamic design optimization: challenges and perspectives.
Comput. Fluids 239, 105391 (2022). https://doi.org/10.1016/j.compfluid.2022.
105391

30. Masters, D.A., Taylor, N.J., Rendall, T.C.S., Allen, C.B., Poole, D.J.: Geometric
comparison of aerofoil shape parameterization methods. AIAA J. 55(5), 1575–1589
(2017). https://doi.org/10.2514/1.J054943

31. Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy
networks: learning 3D reconstruction in function space. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 4455–4465 (2019). https://doi.org/10.1109/CVPR.2019.00459

https://doi.org/10.1145/882262.882358
https://doi.org/10.1145/882262.882358
https://doi.org/10.2514/3.58379
https://doi.org/10.1109/ICEET48479.2020.9048220
https://doi.org/10.1109/ICEET48479.2020.9048220
https://doi.org/10.1007/s12239-019-0107-7
https://doi.org/10.1007/s12239-019-0107-7
https://doi.org/10.2514/6.2006-6948
https://doi.org/10.1061/JAEEEZ.ASENG-4785
https://doi.org/10.1063/1.4967971
https://doi.org/10.1063/1.4967971
https://doi.org/10.1109/ICUS55513.2022.9987080
https://doi.org/10.1016/j.jweia.2023.105458
https://doi.org/10.1016/j.jweia.2023.105458
https://doi.org/10.1016/j.compfluid.2022.105391
https://doi.org/10.1016/j.compfluid.2022.105391
https://doi.org/10.2514/1.J054943
https://doi.org/10.1109/CVPR.2019.00459


AeroINR: Meta-learning for Efficient Generation of Aerodynamic Geometries 467

32. Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: Deepsdf: learn-
ing continuous signed distance functions for shape representation. In: The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 165–174
(2019). https://doi.org/10.1109/CVPR.2019.00025

33. Perry, R.N., Frisken, S.F.: Kizamu: a system for sculpting digital characters. In:
Proceedings of the 28th Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH 2001, pp. 47–56. Association for Computing Machinery,
New York (2001). https://doi.org/10.1145/383259.383264

34. Pu, J., Zheng, B., Leader, J.K., Wang, X.H., Gur, D.: An automated CT based
lung nodule detection scheme using geometric analysis of signed distance field.
Med. Phys. 35(8), 3453–3461 (2008). https://doi.org/10.1118/1.2948349

35. Reuther, J., Jameson, A.: Aerodynamic shape optimization of wing and wing-
body configurations using control theory. In: 33rd Aerospace Sciences Meeting and
Exhibit (1995). https://doi.org/10.2514/6.1995-123

36. Robinson, M., MacManus, D., Christie, R.M., Sheaf, C., Grech, N.: Nacelle design
for ultra-high bypass ratio engines with CFD based optimisation. Aerosp. Sci.
Technol. 113, 106191 (2020). https://doi.org/10.1016/j.ast.2020.106191

37. Sederberg, T.W., Parry, S.R.: Free-form deformation of solid geometric models.
SIGGRAPH Comput. Graph. 20(4), 151–160 (1986). https://doi.org/10.1145/
15886.15903

38. Selig, M.: UIUC airfoil data site. Department of Aeronautical and Astronautical
Engineering University of Illinois at Urbana-Champaign (1996)

39. Sitzmann, V., Chan, E.R., Tucker, R., Snavely, N., Wetzstein, G.: MetaSDF: meta-
learning signed distance functions. In: Advances in Neural Information Processing
Systems, pp. 10136–10147. Curran Associates, Inc. (2020)
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