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Abstract. Recent advancements in Graph Neural Networks (GNNs)
have spurred an upsurge of research dedicated to enhancing the explain-
ability of GNNs, particularly in critical domains such as medicine. A
promising approach is the self-explaining method, which outputs expla-
nations along with predictions. However, existing self-explaining models
require a large amount of training data, rendering them unavailable in
few-shot scenarios. To address this challenge, in this paper, we propose
a Meta-learned Self-Explaining GNN (MSE-GNN), a novel framework
that generates explanations to support predictions in few-shot settings.
MSE-GNN adopts a two-stage self-explaining structure, consisting of
an explainer and a predictor. Specifically, the explainer first imitates
the attention mechanism of humans to select the explanation subgraph,
whereby attention is naturally paid to regions containing important
characteristics. Subsequently, the predictor mimics the decision-making
process, which makes predictions based on the generated explanation.
Moreover, with a novel meta-training process and a designed mechanism
that exploits task information, MSE-GNN can achieve remarkable per-
formance on new few-shot tasks. Extensive experimental results on four
datasets demonstrate that MSE-GNN can achieve superior performance
on prediction tasks while generating high-quality explanations compared
with existing methods. The code is publicly available at https://github.
com/jypeng28/MSE-GNN.
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1 Introduction

Due to the widespread presence of graph data in diverse domains [48,49], Graph
Neural Networks (GNNs) [6,14,36] are attracting increasing attention from the
research community. Leveraging the message passing paradigm, GNNs have
exhibited remarkable efficacy across multiple scenes, including molecule prop-
erty prediction [35], social network analysis [2,45], and recommender system
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[4]. Despite these successes, a significant drawback of GNN models is their lack
of explainability, making it unavailable for humans to understand the basis of
predictions. This limitation undermines the complete trust in GNN predictions,
consequently restricting their application in high-stake scenarios including med-
ical [50] and finance [24] fields. Furthermore, the European Union has explic-
itly emphasized the necessity of explainability for trustworthy AI in [28] and
any studies focusing on explainability have been conducted on interpretability
in other fields [41,43]. Therefore, there is an immediate and pressing need for
research into the explainability of GNNs.

Explainer

Prediction

Explanation

Input

Predictor

Fig. 1. Paradigm of “explainer-predictor ” two-stage self-explaining models. The first
part is composed of a explainer which selects an explanation subgraph for each input
graph. The second part is a predictor which makes predictions based on the explanation
subgraph. Given an input example from Synthetic dataset [39], explainer select
as explanation, then predictor predicts ŷ = house based on .

The field of GNN explainability has witnessed substantial scholarly attention
[16,17,21,30]. Generally, research on the explainability of GNN can be divided
into two main categories: post-hoc explanations and self-explaining methods
[40]. Among them, the post-hoc explanation strives to elucidate the predictions
made by a trained GNN model. Typically, this is achieved by leveraging another
explanatory model to select a subset of input as the explanation for GNN predic-
tion. Despite their utility, these post-hoc explainers often fall short of revealing
the actual reasoning process of the model [25] and require optimization for each
input graph, which is time-consuming. Therefore, in this paper, we focus on
self-explaining methods.

The self-explaining method refers to intrinsically explainable GNN models
that offer predictions and explanations concurrently, with the prediction being
rooted in the explanation. One prevalent type of self-explaining model typically
adopts a “explainer-predictor ” two-stage paradigm, as illustrated in Fig. 1. This
paradigm contains two stages, one is called the explainer, which generates an
explanation for each input graph, and the other is the predictor making predic-
tions based on the generated explanation [17,37].

Although the self-explaining methods in GNN are promising, they still suffer
from heavily relying on extensive training data, which restricts their applicability
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in situations with limited data sizes. For instance, during new drug discovery
processes, clinical trials are conducted to assess various drug attributes such as
toxicity and side effects. Due to safety concerns, the number of participants in
these trials is restricted, resulting in limited experimental data. In such few-shot
scenarios, existing self-explaining models fail to achieve satisfactory performance,
while existing few-shot learning methods are lack of explainability. Hence, there
is a pressing need to design a self-explaining GNN for few-shot scenarios.

Drawing on the fundamental human intelligence traits of rapid learning
and self-explainability [7,23,29], we develop Meta-learned Self-Explaining GNN
(MSE-GNN) for few-shot scenarios:

I. During classification tasks, humans initially concentrate on regions that con-
tain crucial features, and subsequently perform classification based on these
features, adhering to a two-stage paradigm [23].

II. When learning new concepts, humans tend to seek representative instances
or prototypes and compare new instances with these prototypes to categorize
them [29].

III. Humans can learn meta-knowledge from a multitude of tasks, which enables
them to achieve impressive performance on new tasks with limited data,
which is called “learn to learn” [7].

By incorporating these attributes into our MSE-GNN, we aim to solve the
explainability of GNNs in few-shot scenarios, and then enhance the performance
of both explanation and prediction tasks.

Specifically, the MSE-GNN model follows the two-stage paradigm as depicted
in Fig. 1, which naturally mimics the human’s two-stage recognition process as
mentioned in I. Among them, the explainer, which is composed of a GNN encoder
and a MLP, predicts the probability of each node being selected as an explana-
tion. Then, node representations encoded by another GNN encoder are separated
into explanation and non-explanation based on the prediction of the explainer.
Subsequently, the predictor mimics the decision-making process, which makes
predictions based on the explanation with a MLP.

Furthermore, the MSE-GNN model incorporates a novel mechanism that
exploits task information to help with selecting explanations and making predic-
tions. Prototype, as stated in II, has been proven to be effective to generate rep-
resentative representations for each category [31,46]. Therefore, in MSE-GNN,
the concept of prototype is utilized in generating task information. The training
framework of optimization-based meta-learning imitates the paradigm of “ learn-
ing to learn” in III, where models can acquire meta-knowledge by learning from
a vast array of tasks. One of the most popular and effective methods is MAML
[7] (Model-Agnostic Meta-Learning). Therefore, we design a new meta-training
framework based on MAML to train MSE-GNN.

We conduct extensive experiments on one synthetic dataset [39] and three real
datasets of graph classification tasks [11,15], which show excellent performance
on both prediction and explanation generated.
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2 Problem Definition

In this section, we will elaborate on the problem definition of our research.
Following [20], we form the few-shot graph classification problem as N-way K-
shot graph classification. Given the dataset G = {(G1, y1), (G2, y2), ..., (Gn, yn)},
where Gi denotes a graph with a node set Vi and a edge set Ei. ni denotes
the number of nodes in the graph. The structure feature is represented by an
adjacency matrix Ai ∈ R

ni×ni . The node attribute matrix is represented as
Xi ∈ R

ni×d, where d is the dimension of the node attribute.
Then, the dataset is splitted into {Gtrain, ytrain} and {Gtest, ytest} as training

set and test set respectively according to label y. Where ytrain
⋂

ytest = ∅. When
training, a task T is sampled each time and each task contains support set
Dtrain

sup = (Gtrain
i , ytrain

i )si=1 and query set Dtrain
que = (Gtrain

i , ytrain
i )qi=1, where s

and q stands for the size of support set and query set respectively. It is noteworthy
that the same class space is shared in the same task.

In each task, our goal is to optimize our model on the support set Dsup and
make predictions on the query set Dque. If a support set contains N classes and
K data for each class, then we name the problem as N-way K-shot. When test-
ing, we firstly finetune the learned model on support set Dtest

sup = (Gtest
i , ytest

i )si=1

and then report the classification performance of finetuned model on Dtest
que =

(Gtest
i , ytest

i )qi=1. Our goal of the few-shot graph classification problem is to
develop a model that can obtain meta-knowledge across {Gtrain, ytrain} and
predicts labels for graphs in the query set in test stage Dtest

que .
In the explanation generation task, for each graph Gi, a node mask vector

mi ∈ [0, 1]ni×1 is the explanation subgraph selected, a higher value means that
the corresponding node is more important for making prediction and vice versa.
Although selecting edges for explanation is a viable approach, in this paper we
focus on node selection due to its computational complexity.

3 The Proposed MSE-GNN

3.1 Architecture of MSE-GNN

In Fig. 2, we show the overall architecture of the MSE-GNN, which contains three
components: an explainer g that outputs the explanation selected, a predictor p
making the final prediction, and a graph encoder f .

Before we present the details of MSE-GNN, we first clarify several concepts.
Specifically, existing works often combine self-explaining methods with the con-
cept of rationale [17,37]. The rationale in graph data refers to the subsets of
nodes or subsets of edges, which form subgraphs that determine the prediction.
Hence, we posit that explanation and rationale are equivalent, as they share the
same concept.

In MSE-GNN, the input graph is encoded by f and each node v is encoded
into a node embedding h(v) ∈ R

d, where d stands for the dimension of hid-
den size. The encoder can be any kind of GNN, e.g. GCN [14], GIN [38], and
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GraphSAGE [10]. The selector outputs a mask vector m for each graph as an
explanation, which divides the graph into rationale (explanation) Gr and non-
rationale Gn. Then the predictor makes predictions based on the graph embed-
ding rationale subgraph. Meanwhile, augmented graphs that combine rationale
and non-rationale from different graphs are fed into the predictor to ensure the
robustness of the predictor. We categorize the parameters into fast parameters
and slow parameters according to the timing of updating, which will be described
in detail in Sect. 3.3.

Task Information. MSE-GNN generates task information for the explainer
and the predictor to facilitate explanation generation and prediction within each
task, which is composed of prototypes representing each class.

In each task, a support set is provided, which contains data from multiple
classes. We aim to extract prototypes from these data that capture the charac-
teristics of each class in the task, in order to help with task-specific selection of
explanations and the classification task. Encoded by encoder f , each graph is
represented by a matrix containing embedding of each node:

Hi = [..., h(v), ...]Tv∈Vi
= f(Gi) ∈ R

|Vi|×d. (1)

To obtain representation for each graph hi, the readout function, e.g. mean
pooling is employed, to aggregate node embeddings. By leveraging the concept
of prototype learning, we further fuse the graph representations of each class
with another readout function. Thus, we can obtain a prototype embedding for
each class:

TIc = freadout([..., freadout(Hi), ...]yi=c) ∈ R
d. (2)

For an N-way K-shot classification problem, the task information is formed by
concatenating prototypes of N classes. It is worth noting that, task information
for each input graph of both Dsup and Dque is composed solely of graphs in Dsup

to prevent label leakage.

Explainer. The explainer is responsible for choosing the explanation subgraph
corresponding to each input graph. Specifically, given an input graph Gi, the
explainer firstly uses another GNN encoder to map each node to another node
embedding h′

(v) for each node in Vi for selection. Then, a MLP is utilized to
transform the node embeddings into a soft mask vector mi ∈ [0, 1]ni×1, with
task information TIc and node embedding h′

(v) concatenated as input:

mi = σ(MLP ([..., [h′
(v), T I], ...]Tv∈Vi

)), (3)

where σ denotes the sigmoid function. Hence, we can decompose the input graph
Gi into a rationale subgraph and non-rationale subgraph according to mi respec-
tively:

Gr
i = {Ai,Xi � mi} Gn

i = {Ai,Xi � mi}, (4)
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Fig. 2. Overall architecture of MSE-GNN. The model employs a “explainer-predictor ”
2-stage self-explaining structure. The explainer selects explanation subgraphs for each
input graph. The predictor mimics the decision-making process, which makes predic-
tions solely based on the generated explanation.

where mi = 1− mi. Meanwhile, given the node embedding h(v) from encoder f ,
we can obtain the graph embedding for Gr

i and Gn
i :

hr
i = freadout(Hi � mi) hn

i = freadout(Hi � mi). (5)

Predictor and Graph Augmentation. The predictor takes the graph embed-
ding h as input and makes the final prediction ŷ = p(h) with a MLP. Moreover,
we enhance the robustness of the predictor through graph augmentation. Specifi-
cally, within the input graph, the rationale component represents the crucial part
that determines the category, while the non-rationale component represents the
noisy part. By combining the rationale and non-rationale from different graphs
in the same task, additional data with noise are generated. Then we assign the
label based on rationale. This approach allows us to increase the amount of noisy
data, thereby improving the robustness of the predictor. We do the combination
operation by adding subgraph embeddings:

h(i,j) = hr
i + hn

j y(i,j) = yi, (6)

where hr
i denotes rationale from Gi and hn

j means the non-rationale from Gj .
Therefore, in addition to task information TI, the predictor p receives the

embeddings of both the rationale subgraphs hr
i and the artificially augmented

graphs h(i,j) for optimization, and the output are denoted as ŷi and ˆy(i,j) respec-
tively.

3.2 Optimization Objective

The optimization objective of MSE-GNN is to achieve both high accuracy in
predictions and generate precise explanations, which reveal the underlying rea-
sons behind the predictions. Therefore, we design several types of loss functions



Towards Few-Shot Self-explaining Graph Neural Networks 115

and constraints. For the sake of simplicity, we consider a binary classification
task without loss of generality.

Algorithm 1 . Meta-training of MSE-GNN.
Input:Distribution over meta-training tasks: p(T ); Local learning rate: η1;
Global learning rate: η2; Local update times: T .
Output:Meta-trained parameters for encoder and explanation selector:θf , θg,
and initialization of parameters for predictor θp

1: Initialize θ = {θf , θg, θp} randomly;
2: while not converged do
3: Sample task T with support graphs Dtrain

sup and query graphs Dtrain
que .

4: Set fast adaptation parameters: θ′
p = θp

5: for t = 0 → T do
6: Evaluate ∇θp

Lsup(θf , θg, θ
′
p) by calculating loss via Eq. 10

7: Update θ′
p : θ′

p ← θ′
p − η1 · ∇θ′

p
Lsup(θf , θg, θ

′
p)

8: end for
9: Evaluate ∇θLque(θf , θg, θ

′
p) by calculating loss via Eq. 10

10: Update θ : θ ← θ − η2 · ∇θLque(θf , θg, θ
′
p)

11: end while

With the prediction of each rationale graph embedding p(hi) and correspond-
ing ground-truth label yi, the loss function is defined as:

Lr
i = yilog(ŷi) + (1 − yi)log(1 − ŷi). (7)

For the artificially augmented graph, our aim is to minimize the prediction
values for instances of the same category while maximizing the prediction values
for instances of different categories. To achieve this, we employ a contrastive loss
function. For example, for a 2-way K-shot classification task, we can obtain 4K2

augmented graphs, where each rationale graph is combined with other 2K − 1
non-rationales, then the loss is computed as:

La
i = − 1

2k − 1

j=2K∑

j=1

1i�=j · 1yi=yj log
exp(ŷi · ŷj)/τ

∑k=K
k=1 1i�=k exp(ŷi · ŷj)/τ

, (8)

where τ is a scalar temperature hyperparameter.
Besides, to address the deviation in the size of rationales, we introduce a

penalty based on the number of rationale nodes, the following regularization
term is utilized:

Lreg = |1
�
N · mi

ni
− γ|, (9)

where γ is manually set to control the rationale size. Finally, the total loss
function can be formulated as:

L = αr · Lr + αa · La + αreg · Lreg, (10)

where αr, αa, and αreg are hypermeters controlling the weight of each loss.
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Table 1. Statistics of four datasets.

SyntheticMNIST-spMolsiderMoltox21
# Graphs 10,000 70,000 1,427 7,831
Avg # nodes 74.5 75.0 33.6 18.6
Avg # edges 237.8 777.0 70.7 38.6
# Train tasks/classes 5 5 19 7
# Validate tasks/classes 2 2 3 2
# Test tasks/classes 3 3 5 3

3.3 Meta Training

Inspired by the concept of “learn to learn” [7], we propose a new meta-training
framework based on MAML to obtain meta knowledge from various tasks. We
denote θf , θg, and θp as the parameters of encoder, explanation selector, and
the predictor. Specifically, MSE-GNN is trained from two procedures. One is
global update, which aims to learn the parameters of encoder θf , explanation
generator θg, and initialization of the predictor θp from different tasks, the other
is called local update, which performs fast adaption on new tasks and locally
update only parameters of the predictor θ′

p within each task. According to the
timing of updating, we categorize the parameters into fast parameters (θp) and
slow parameters (θf and θg), as shown in Fig. 2.

The meta-training process is demonstrated in Algorithm 1. Firstly, we sample
a task composed of support Dtrain

sup and query data Dtrain
que for each episode.

Then adaption is operated by updating θp for T times on Dtrain
sup , where T is a

hyperparameter controlling the number of local updates, which is shown in lines
5–8. With updated θ′

p, we utilize the loss on Dtrain
que to update θf , θg and θp.

It is important to highlight that, the explainer is trained from a variety of
tasks and frozen when optimizing each task, which ensures the stability of the
explanation selected across different tasks and prevents over-fitting. Therefore,
θf and θg are only updated in the global update and fixed in the local update.
While the predictor needs to learn the relationship between features and cate-
gories in different tasks based on the generated explanations. As a result, the
θp is optimized in the local update to learn the association between features
and categories. Hyperparameters of loss computation in line 6 and line 9 can be
differently set according to the goal of local and global optimization.

4 Experiments

4.1 Datasets and Experimental Setup

Dataset. We conduct extensive experiments on four datasets to validate the
performance of MSE-GNN: (i) Synthetic: Due to the lack of graph datasets
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with explanation ground-truth, following [39], we create a synthetic dataset for
classification, which contains 10 classes and 500 samples for each class. Each
graph is composed of two parts: the rationale part and the non-rationale part.
The label of each graph is determined by the rationale part. Therefore, the
ground-truth of the explanation subgraph is the rationale part of each graph.
(ii) MNIST-sp [15]: MNIST-sp takes the MNIST images and transforms them
into 70,000 superpixel graphs. Each graph consists of 75 nodes and is assigned
one of 10 class labels. The subgraphs that represent the digits can be interpreted
as ground truth explanations. (iii) OGBG-Molsider and OGBG-Moltox21
[11]: These two datasets are molecule datasets from the graph property prediction
task on Open Graph Benchmark (OGBG), they contain 27 and 12 binary labels
for each graph, which transformed into 27 and 12 binary classification tasks
respectively. The dataset statistics are available in Table 1.

Table 2. 2-way 5-shot Classification Performance with a standard deviation of baseline
methods and MSE-GNN.

Accuracy AUC-ROC
Synthetic MNIST-sp OGBG-molsider OGBG-moltox21
GIN GraphSAGE GIN GraphSAGE GIN GraphSAGE GIN GraphSAGE

ProtoNet 0.8284±0.058 0.8327±0.027 0.5736±0.008 0.6575±0.034 0.5540±0.006 0.5468±0.006 0.6614±0.009 0.6495±0.008

MAML 0.8259±0.007 0.6409±0.327 0.6283±0.012 0.6722±0.009 0.6219±0.005 0.6538±0.016 0.7217±0.030 0.6965±0.014

ASMAML 0.8911±0.010 0.7849±0.014 0.6526±0.004 0.6699±0.023 0.6288±0.007 0.6818±0.008 0.7432±0.030 0.7181±0.017

GREA_Raw 0.6970±0.005 0.6970±0.020 0.6405±0.009 0.6667±0.009 0.5210±0.009 0.5180±0.007 0.5654±0.015 0.5479±0.006

CAL_Raw 0.7248±0.006 0.7488±0.007 0.6498±0.006 0.6670±0.010 0.5978±0.044 0.6230±0.008 0.6161±0.064 0.6814±0.014

GREA_Meta 0.8728±0.013 0.9180±0.002 0.6537±0.009 0.7430±0.008 0.6542±0.005 0.6303±0.008 0.7650±0.004 0.7582±0.007

CAL_Meta 0.8451±0.021 0.9096±0.003 0.6888±0.007 0.7445±0.019 0.6580±0.012 0.6553±0.018 0.7442±0.012 0.7652±0.005

MSE-GNN 0.9103±0.004 0.9200±0.004 0.6515±0.008 0.7309±0.009 0.6673±0.007 0.6587±0.002 0.7735±0.006 0.7728±0.011

Experimental Setup. To investigate whether generating explanations can help
with the classification task, we chose three few-shot learning methods: ProtoNet
[29], MAML [7], ASMAML [20]. To compare with existing self-explaining meth-
ods, we selected two state-of-the-art self-explaining models: GREA [17] and CAL
[30] as baselines to compare the performance of classification and quality of gen-
erated explanations. Moreover, for fairness, we adapt meta-training to GREA
[17] and CAL [30], enabling them to adapt to few-shot scenarios, which are
denoted as GREA_Meta and CAL_Meta respectively.

We use GIN and GraphSAGE as GNN backbones for all methods. The per-
formance of all models is evaluated on Dtest

que . For the Synthetic and MNIST-sp
with explanation ground-truth, we use Accuracy to evaluate the classification
performance and AUC-ROC to evaluate the quality of the explanation selected.
For the two molecule datasets, due to the absence of explanation ground-truth,
we only evaluate the classification performance using Area under the ROC curve
(AUC) following [17]. For meta-training, we utilize Adam optimizer for local and
global updates and set local update times T to 5. Local learning rate η1 is set
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to 0.001 and global learning rate η1 is tuned over {1e-5, 1e-4, 1e-3}. γ in Eq. 9
is tuned over {0.1, 0.2, 0.3, 0.4, 0.5}, number of GNN layers is tuned over {2,3}.
We select hyperparameters based on related works and grid searches. All our
experiments are conducted with one Tesla V100 GPU.

Table 3. For the Synthetic and MNIST-sp with explanation ground-truth, AUC-ROC
is utilized to evaluate the quality of the explanation selected.

Synthetic MNIST-sp
GIN GREA_Raw 0.4934±0.006 0.4789±0.044

CAL_Raw 0.4741±0.0250 0.4395±0.039

GREA_Meta 0.6745±0.0265 0.7855±0.013

CAL_Meta 0.6201±0.0550 0.1707±0.0243

MSE-GNN 0.7000±0.006 0.8222±0.030

GraghsageGREA_Raw 0.4929±0.023 0.5496±0.064

CAL_Raw 0.5080±0.054 0.4906±0.116

GREA_Meta 0.7099±0.014 0.6513±0.040

CAL_Meta 0.6858±0.015 0.6613±0.229

MSE-GNN 0.7189±0.012 0.7077±0.038

Performance on Synthetic Graphs and MNIST-sp. To explore whether
MSE-GNN can achieve high performance on classification and generate high-
quality explanation, we conduct 2-way 5-shot experiments on Synthetic and
MNIST-sp datasets which contain ground-truth explanations for each graph. The
experimental results are summarized in Table 2 and Table 3. We first compare
meta-trained self-explaining baseline models (GREA_Meta, CAL_Meta) with
themselves (GREA_Raw, CAL_Raw). We can observe that significant perfor-
mance boosts are brought by meta-training on both classification and explana-
tion, which indicates that meta-training can leverage the meta-knowledge learned
across training tasks effectively on new tasks.

On Synthetic, MSE-GNN shows superiority to other baseline methods on the
performance of classification and explanation quality. Compared to meta-trained
self-explaining baselines, MSE-GNN performs better on both classification and
explanation as MSE-GNN utilizes task information and effectively leverages the
augmented graph through the introduction of supervised contrastive loss. More-
over, the inherent denoising capability of self-explaining models contributes to
the superior classification performance of MSE-GNN compared to ProtoNet,
MAML, and ASMAML.

Unexpectedly, CAL achieves the best classification performance on MNIST-
sp, especially when using GIN as the backbone, surpassing MSE-GNN by over
5%. Meanwhile, the quality of explanations is significantly lower compared to
GREA and MSE-GNN. By visualization in Fig. 3, which reveals the internal



Towards Few-Shot Self-explaining Graph Neural Networks 119

reasoning process of models, we can find that CAL generated explanations that
were opposite to our expectations, indicating that CAL infers the digit based
on the shape of the background. It is also easy to understand that the digital in
a picture can be inferred from the background since the number part and the
background part are complementary sets. Therefore, despite the generated expla-
nations being contrary to our expectations, CAL’s performance demonstrated
that utilizing background information for digit prediction is more effective on
MNIST-sp. The reason for CAL generating opposite explanations is that it lacks
constraints on the size of the explanation. As a result, it tends to favor subgraphs
that contain more useful information and overlook the size of the explanation
subgraph. Furtherly comparing the visualization of explanations of MSE-GNN
and GREA, we can find that explanations of MSE-GNN are more compact and
focus more on the digital part, which is in line with the result in Table 3.

Fig. 3. Raw figure of MNIST-sp and visualization of explanations generated by
CAL(a), GREA(b) and MSE-GNN(c). Darker nodes indicate higher importance scores.

(a) Classification Perfor-
mance on Synthetic

(b) Quality of explanation
on Synthetic

(c) Classification Perfor-
mance on OGBG-Molsider

Fig. 4. Classification Performance and quality of explanation selected on Synthetic and
OGBG-Molsider with different γ.
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Performance on OGBG. MSE-GNN achieves comparable classification per-
formance on these two molecule datasets, demonstrating the effectiveness of its
structure. Furthermore, we can observe that the self-explaining models with
meta-training outperform all meta-learning models except on OGBG-molsider
using GraphSAGE. This is because the process of generating explanations can
potentially improve the classification task by eliminating irrelevant noise.

Performance with Different Size of Support Set. Intuitively, for a classi-
fication task, the size of the training set has a significant impact on the model’s
performance. Therefore, in the scenario of few-shot learning, we evaluate the per-
formance of MSE-GNN and other self-explaining models under different support
set sizes. Experimental results are shown in Fig. 5. First, comparing different
methods, we observe that MSE-GNN consistently outperforms other baselines
across different support set sizes, which further validates the performance of
MSE-GNN on both classification and explaining. Next, comparing the perfor-
mance of MSE-GNN across different support set sizes, we observe that as the
support set size increases, both the classification accuracy and the quality of gen-
erated explanations improve. This also demonstrates the importance of training
set size on model performance.

Fig. 5. Classification Performance and quality of explanation selected on Synthetic and
OGBG-Molsider with different size of support sets.

Ablation Study. Table 4 demonstrates the impact of contrastive loss and task
information utilized in MSE-GNN on Synthetic with GIN. When applying Con-
trastive Loss (CL), both the classification accuracy and the quality of generated
explanations of the model are improved. This indicates that introducing con-
trastive loss can enhance the model’s performance and lead to better results in
prediction and explanation tasks. On the other hand, when applying Task Infor-
mation (TI), the model’s performance is also improved across all datasets. This
suggests that incorporating task information into the model can provide addi-
tional context and guidance, thereby enhancing the model’s ability. Moreover,
when both CL and TI are used together, the model excels significantly across
all datasets, indicating that the combination of CL and TI can synergistically
contribute to better performance on both classification and explanation tasks.
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Table 4. Impact of contrastive loss and task information.

CLTISynthetic OGBG-molsider
Classif. Explain. Classif.
0.8728±0.013 0.6745±0.027 0.6542±0.005

� 0.8809±0.037 0.6860±0.028 0.6623±0.011

� 0.8800±0.011 0.6766±0.014 0.6616±0.001

� � 0.9103±0.004 0.7000±0.006 0.6673±0.007

Fig. 6. Classification Performance and quality of explanation selected on Synthetic and
OGBG-Molsider with different T .

Sensitivity Analysis. In MSE-GNN, the parameter γ is crucial in controlling
the size of the selected explanation. To examine the sensitivity of the model
to different values of γ, we conduct a sensitivity analysis on the Synthetic and
OGBG-Molsider datasets with GIN. As illustrated in Fig. 4, the results demon-
strate that MSE-GNN achieves the best classification performance when γ is set
to 0.1 on both datasets, while the explaining performance achieves best when γ
equals 0.05 on Synthetic. We observe that as the value of γ deviates from these
two optimal points, the classification performance or the quality of generated
explanations decreases. We also notice that the impact of γ is less pronounced
on the OGBG-Molsider dataset, indicating that the model is less sensitive to γ
on OGBG-Molsider.

Furthermore, T , which stands for the number of local update epochs, affects
both the effectiveness and efficiency of the MSE-GNN. We compared the per-
formance of MSE-GNN with different local update epochs on the Synthetic and
OGBG-Molsider datasets. The experimental results shown in Fig. 6 indicate that
when T is set to 5, MSE-GNN achieves the best classification and explaining per-
formance on both Synthetic and OGBG-molsider. A too-small (too-large) T may
result in underfitting (overfitting) of the model for new tasks.



122 J. Peng et al.

5 Related Works

Few-Shot Learning and Meta Learning on Graph Classification. Few-
shot learning aims to learn a model with only a few samples. A promising
kind of method is meta learning. Meta learning is also known as “learning to
learn”, which attempts to learn meta-knowledge from a variety of tasks. There
two categories for meta-learning [44]: metric-based models [3,8,22,29,32] and
optimization-based models [7,9,20,34,51]. The former focuses on computing the
distance between query data and class prototypes [29]. The latter aims to learn
an effective initialization of parameters, which enables rapid adaption [7]. [51]
firstly applied meta learning framework to the node classification task. [20] utilize
a step controller for the robustness and generalization of meta-learner. Notwith-
standing the remarkable accuracy improvement achieved by these methods on
few-shot learning tasks, their lack of explainability hinders their applicability in
certain scenarios such as the medical and finance area.

Explainability in Graph Neural Network. With more attention paid to
the applications of GNNs, the explainability of GNNs is more crucial. The
explanation increases the models’ transparency and enhances practitioners’
trust in GNN models by enriching their understanding of why the decision is
made by GNNs. Explainability of GNNs can be categorized into two classes
[40,42]: post-hoc explanations and self-explainable GNNs. Post-hoc explana-
tions attempt to give explanations for trained GNNs with additional explainer
model [1,5,12,13,18,19,33,39]. However, these post-hoc explainers often fail to
unveil the true reasoning process of the model due to the non-convexity and
complexity of the underlying GNN models [25]. Self-explaining GNNs design
specific GNN models which are interpretable intrinsically [1,17,21,30,37,50].
They output the prediction and corresponding explanation simultaneously. DIR
[37] aims to extract causal rationales that remain consistent across various distri-
butions while eliminating unstable spurious patterns. GREA [17] is another self-
explainable model that introduces a new augmentation operation called environ-
ment replacement that automatically creates virtual data examples to improve
rationale identification. Another category of self-explaining models leverages the
concept of prototype learning [1,26,27,47,50]. ProtGNN [50] provides explana-
tions by selecting subgraphs that are the most relevant to graph patterns for
identifying graphs of each class. However, existing self-explainable GNNs over-
look the scarcity of labeled graph data in many applications. Thus, it’s important
to build few-shot learning models with self-explainability.

6 Conclusion

In this paper, we proposed MSE-GNN to address the explainability of GNN in
few-shot scenarios. To be specific, MSE-GNN adopted a “explainer-predictor ”
2-stage self-explaining structure and a meta-training framework based on meta-
learning, which improved performance in few-shot scenarios. MSE-GNN also
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introduced a mechanism to leverage task information to assist explanation gener-
ation and result prediction. Additionally, MSE-GNN employed graph augmenta-
tion to enhance model robustness. Extensive experimental results demonstrated
that MSE-GNN achieves strong performance in classification tasks while select-
ing high-quality explanations in few-shot scenarios.
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