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Abstract. While deep neural networks are highly effective at solving
complex tasks, large pre-trained models are commonly employed even
to solve consistently simpler downstream tasks, which do not necessarily
require a large model’s complexity. Motivated by the awareness of the
ever-growing AI environmental impact, we propose an efficiency strategy
that leverages prior knowledge transferred by large models. Simple but
effective, we propose a method relying on an Entropy-bASed Importance
mEtRic (EASIER) to reduce the depth of over-parametrized deep neu-
ral networks, which alleviates their computational burden. We assess the
effectiveness of our method on traditional image classification setups.
Our code is available at https://github.com/VGCQ/EASIER.
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1 Introduction

Deep Neural Networks (DNNs) have drastically changed the field of computer
vision. They have been crucial in obtaining state-of-the-art results in several
important computer vision domains, such as semantic segmentation [8], classifi-
cation [26], and object detection [47]. Beyond traditional computer vision tasks,
DNNs have also impacted other fields by exhibiting unbridled potentials in nat-
ural language processing [45], and multi-modal tasks [41]. DNNs’ use is growing
significantly in our lives and appears to be perennial.

Despite DNNs have demonstrated scalability in terms of model and dataset
size [21], they hinder high computational demands. Indeed, neoteric architectures
are made up of millions, or even billions, of parameters, resulting in billions, or
even trillions, of FLoating-point OPerations (FLOPs) for a single inference [17].
Hence, these large models require enormous resources both in terms of pure
hardware capacity and energy consumption, for training and deployment, which
raises issues for real-time and on-device applications and also has an environ-
mental impact. For instance, GPT-3 [6], made of 175B parameters, emits around
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200tCO2eq for its training and its operational carbon footprint reached around
550tCO2eq [14].

The development of compression techniques, which constitute an essential
means of remedying the resource-hungry nature of DNNs, has marked the
research landscape over the past decade. It is well-known that the complex-
ity of the model is intrinsically linked to the generalizability of DNNs [21], and
since pre-trained architectures that can be used in downstream tasks tend to
be over-parameterized, compression with no (or only slight) performance degra-
dation is in principle possible [43]. To design a more efficient architecture, a
set of methods has been proposed, ranging from parameter pruning [18] to the
reduction of numerical precision [37]. Nonetheless, few approaches are capable of
lessening the number of layers in a DNN. Indeed, removing single parameters or
whole filters offers very few if any, practical benefits when it comes to using the
model on recent computing resources, such as GPU. Thanks to the intrinsic par-
allel computation nature of GPUs or TPUs, the limitation on layer size, whether
larger or smaller, comes mainly from memory caching and core availability.

In most cases, this parallelization capability avoids the need to reduce layer
size, suggesting that another approach needs to be explored to address this prob-
lem. Indeed, reducing the critical path that computations must traverse [2] would
help to relieve the DNN’s computation demand, which can be achieved by strate-
gically removing layers. Despite that existing approaches, like knowledge distil-
lation [22], implicitly tackle this issue, the absence of performance degradation
cannot be guaranteed, since a shallow target model is imposed. This motivates
the exploration of designing a method for neural networks’ depth reduction while
preserving optimal performance.

In this work, we present our method EASIER, which iteratively tries to
reduce the depth of deep neural networks. More precisely, EASIER identifies the
average state of a given rectifier-activated neuron for the trained task. Given the
definition of rectifier activation functions, EASIER can find the probability that
this neuron uses one of the two regions, and hence can calculate an entropy-
based metric per layer. Such a metric is then used to drive the linearization of
layers toward neural network depth reduction. We summarize, here below, our
key messages and contributions.

– We highlight how we can potentially reduce the depth of a neural network with
a marginal impact on the performance by characterizing layer degeneration
(Sect. 3.1).

– We propose EASIER, a method relying on an entropy-based importance met-
ric that pinpoints rectifier-activated layers that can be linearized (Sect. 3.3)
(Fig. 1).

– We test EASIER across multiple architectures and datasets for traditional
image classification setups (Sect. 4), demonstrating that layer withdrawal
can be achieved with little or no performance loss when over-parameterized
networks are employed. Notably, we show the potential savings in terms of
FLOPs and inference time on six different hardwares, highlighting the benefits
of our method (Sect. 4.3).
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Fig. 1. Overview of EASIER. We iteratively train, evaluate, and estimate the entropy
on the training set and linearize the lowest-entropy layer of the neural network, until
the performance drops.

2 Related Works

Neural Architecture Search. Popular deep neural network architectures have
mostly been designed by hand, among which we can cite VGG [40], ResNet [19],
MobileNet [23] or Swin transformer [31]. Despite leading to remarkable perfor-
mance on a variety of tasks, the design of novel architectures is time-consuming
and can be prone to errors. Neural Architecture Search (NAS) was the answer to
both these problems. Divided into subgroups such as evolutionary methods [34],
methods based on reinforcement learning [49], and differentiable methods [30],
NAS is finding the contemporary top-performing architectures [3]. While the
firsts are based on efficient heuristic search methods based on evolution to cap-
ture global solutions of complex optimization problems [38], the second relies on
goal-oriented optimization methods driven by an impact response or signal [1].
Differentiable methods learn architectural paths that enable the removal of entire
layers and sometimes add width to the previous ones to balance [46]. By disen-
tangling training and searching to reduce the cost, a popular approach proposed
a large once-for-all network [7] supporting diverse architectural designs. The idea
was to select a sub-network within the aforementioned model without the need
for additional training.

Nonetheless, despite reducing the model size across diverse dimensions, like
depth, width, kernel size, and resolution, NAS approaches, including also this
work, generally need expensive computational resources to span several search
space dimensions and train a super-network from scratch. In this paper, our sole
focus lies on depth as the exclusive search dimension, by leveraging a pre-trained
model, making easier convergence and reducing the overall training time.
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Neural Network Pruning. Neural network pruning, whose goal is to shrink a large
network to a smaller one while maintaining performance by removing irrelevant
weights, filters, or other structures from neural networks, has gained signifi-
cant attention in neoteric works since it allows a possible model performance
enhancement and an over-fitting reduction. On the one hand, structured prun-
ing focuses on removing entire neurons, filters, or channels [20,44]. On the other
hand, unstructured pruning algorithms discard weights without explicitly tak-
ing the neural network’s structure into account [18,43]. The main categories
of unstructured pruning methods are magnitude-based pruning [18,32,48] and
gradient-based pruning [28,43]. While the first eponymous approach takes the
weights’ magnitude as an importance score to prune parameters, the latter uses
the gradient magnitude (or its higher-order derivatives) to rank them. The effec-
tiveness of these techniques was compared by [4] and, in general, magnitude-
based methods are more accurate than gradient-based. Moreover, they are a
good trade-off between complexity and competitiveness. Indeed, [15] exposed
that simple magnitude pruning approaches reach similar or better results than
complex methods. From a computational perspective, in a general-purpose hard-
ware configuration, larger benefits in terms of both memory and computation
are produced by structured pruning compared to unstructured pruning, even
though the reached sparsity can be significantly lower [5].

However, a recent work [29] proposed an unstructured Entropy-Guided Prun-
ing (EGP) algorithm, that succeeds in reducing the depth of deep neural net-
works by prioritizing pruning connections in low-entropy layers, leading to their
entire removal while preserving performance. Our method differs from the latter
since EASIER considers a third state to calculate the entropy (Sect. 3) and unlike
EGP, our method does not involve pruning. Although effective, EGP only allows
a small number of layers to be removed. Indeed, after the removal of multiple
layers, the accuracy drops dramatically. This will be verified by comparing this
method with EASIER, in Sect. 4.

Activation Withdrawal. Private inference has led to an upsurge in works on
removing non-linear activations. Indeed, a high latency penalty is incurred when
computing on encrypted data, which is mainly due to non-linear activations such
as ReLU. Methods such as DeepReduce [24] and SNL [9] have been developed to
reduce private inference latency. While DeepReduce includes both optimizations
for ReLU dropping and knowledge distillation training to maximize the perfor-
mance, the latter proposes a gradient-based algorithm that selectively linearizes
ReLUs while maintaining prediction accuracy. However, although SNL signifi-
cantly reduces the number of ReLU units in the neural network, it never removes
activation from an entire layer, but only from units such as pixels or channels. In
contrast, our method focuses on removing activation functions at a layer level, in
order to reduce the depth of deep neural networks. Moreover, DeepReduce [24] is
based on a criticality metric requiring five optimized networks per optimization
iteration, resulting in the exploration of 5 × (D − 1) network architectures, for
a network with D stages, which is not very efficient at training time. On the
other hand, our method does not require leveraging the knowledge of a teacher
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model to boost performance, saving computation at training time. Although left
for future work, we believe our work can also be effective in accelerating private
inference.

In traditional classification setups, [13] introduced Layer Folding, a technique
that determines whether non-linear activations can be withdrawn, enabling the
folding of adjacent linear layers into one. More specifically, PReLU activations
with a trainable slope, replace ReLU-activated layers. The almost linear PReLUs
are eliminated post-training, enabling the layer to be folded with its successive
one. Furthermore, a comparable channel-wise method enabling a notable reduc-
tion in non-linear units in the neural network while preserving performance was
put forward by [2]. While the latter does not aim at reducing neural network
depth, Layer Folding was originally proposed only for ReLU-activated networks.
Designed for any rectifier, we will compare our method EASIER with Layer
Folding and demonstrate its effectiveness in Sect. 4.
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Fig. 2. Distribution of the product between X ∼ N (0, 1) and W ∼ N (0, 1) for different
values of ρ (a), and p[Z > 0] for different ρ (b).

3 Method

In this section, we first highlight how we can potentially reduce the depth of a
neural network with a marginal impact on performance. Based on this observa-
tion, we then derive an entropy formulation for rectifier activations, which will
be at the heart of our EASIER method.

3.1 How Layers Can Degenerate

Let us define the input x for a given neuron is a sequence of random variables
X ∼ N (μX , σ2

X). Similarly, we can assume the N parameters populating such



The Simpler The Better: EASIER 97

neuron, for a large N limit, follow as well a Gaussian distribution, and we model
it as W ∼ N (μW , σ2

W ). Under the assumption of μX = μW = 0 (for narration
purposes, it is possible to derive a more general result according to [12]), we can
obtain the distribution for the pre-activation z (resulting from the product of
the weights and the input, modeled through the random variable Z), according
to the result obtained by [11,12,39], follows the probability density function

fZ(z) =
1

πσXσW

√
1 − ρ2

exp
[

ρz

σXσW (1 − ρ2)

]
K0

[ |z|
σXσW (1 − ρ2)

]
, (1)

where Kn is the n-th order modified Bessel function of the second kind and ρ
is the correlation coefficient between X and W . A visual representation of its
distribution is pictured in Fig. 2a. We can clearly observe the large impact of ρ,
steering how the values will effectively be distributed. Now, let us assume the
activation function of such a neuron is a rectifier function, and we are interested
in observing what is the probability of the post-activation output being in the
linear region: we are interested in measuring p[Z > 0] = 1 − FZ(0), where
FZ(x) = p[Z < x] is the cumulative distribution function (CDF) for the density
fZ(z). A visual representation of how these values are distributed for different
values of ρ is depicted in Fig. 2b.

The behavior of neurons, particularly when employing rectifiers like ReLU,
is tightly linked to the learning process, and W becomes more and more (anti-)
correlated with X. At ρ → 1, neurons operate linearly, leading to a layer’s
degeneration (as the current layer becomes a linear combination with the next
layer). Conversely, at ρ → −1, neurons become effectively “OFF”, leading to
insignificance in their contribution. In both cases, there’s a layer degeneration
that we aim to detect to reduce the neural network’s depth with a marginal
impact on the performance. In the next section, we will draft a metric to estimate
how close a layer is to degenerating.

3.2 Entropy for Rectifier Activations

To monitor the output yx
l,i of the i-th neuron from a given input x of the dataset

D, we define ψl as the rectifier of the l-th layer, populated by NL neurons. Hence,
by assuming that zxl,i is the output of the i-th neuron inside the l-th layer, we
obtain:

yx
l,i = ψl(zxl,i), (2)

Three possible “states” for the neuron can be identified from (2):

sxl,i =

⎧
⎨

⎩

+1 if yx
l,i > 0

−1 if yx
l,i < 0

0 if yx
l,i = 0.

(3)

More precisely, for the output of the i-th neuron, by simply applying the sign
function to zxl,i, we get sxl,i = sign(zxl,i) and can hence easily pinpoint in which
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of these states we are. Candidly, the neuron is in the ON state when sxl,i = +1,
as this generally corresponds to the linear region, as opposed to the OFF state
when sxl,i = −1 (considering that limx→−∞ ψ(x) = 0).1 Since it could belong to
either the ON or OFF state, the third state sxl,i = 0 is a special case, which will
not be considered in the following derivation.

The probability (in the frequentist sense) of the i-th neuron belonging to
either the ON or the OFF state can be calculated from the average over a batch
of outputs for this neuron. More precisely, we define the ON state probability
as:

p(sl,i=+1) =

⎧
⎪⎨

⎪⎩

1
Sl,i

|D|∑

j=1

s
xj

l,iΘ(sxj

l,i ) if Sl,i �= 0

0 otherwise,

(4)

where

Sl,i =
|D|∑

j=1

s
xj

l,i sign(sxj

l,i ) (5)

is the frequency of the ON and the OFF states encountered, |D| is the number of
input samples, and Θ is the Heaviside function.2 As explained above, the third
state is excluded from this count, as it can be associated with either the ON or
OFF state. We can therefore infer that since we are just concerned with the ON
or OFF states, when Sl,i �= 0, p(sl,i=−1) = 1 − p(sl,i=+1). We define as an
estimator for neuron’s degeneration the entropy of the i-th neuron in the l-th
layer, calculated as:

Hl,i = −
∑

sl,i=±1

p(sl,i) log2 [p(sl,i)] (6)

Given the definition in (6), Hl,i = 0 can be verified in two cases:

– sl,i =−1 ∀j. In this case, zl,i ≤ 0 ∀j. The output of the i-th neuron is always
0 when for example employing a ReLU.

– sl,i =+1 ∀j. In this case, zl,i ≥ 0 ∀j. As it belongs to the linear region, the
output of the i-th neuron is equal to its input (or very close as in GeLU).
Therefore, since there is no non-linearity between them anymore, this neuron
can in principle be absorbed by the following layer.

Please note that the case zl,i = 0 ∀j, can be associated with both cases, as
mentioned previously, and is therefore not taken into account in the previous
case disjunction.

1 Few exceptions to this exist, like LeakyReLU. In those occurrences, even though the
activation will not converge to zero, we still choose to call it OFF state as, given the
same input’s magnitude, the magnitude of the output is lower.

2 Please be aware that additional sum and average over the entire feature map gener-
ated per input are required for convolutional layers.
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As an estimator for layer’s degeneration we can employ the average entropy:
for the l-th layer counting Nl neuron it is

Ĥl =
1
Nl

∑

i

Hl,i. (7)

We would like to have Ĥl = 0 since we target deep neural networks’ depth
reduction by eliminating layers with almost zero entropy. In the next section,
we will present the whole framework that allows us to practically reduce the
network’s depth based on the layer degeneration estimator.

Algorithm 1. Our proposed method EASIER.
1: function EASIER(winit, D, δ)
2: w ←Train(winit, Dtrain)
3: dense_acc ←Evaluate(w, Dval)
4: current_acc ← dense_acc
5: while (dense_acc - current_acc) > δ do
6: ̂H = [ ̂H1, ̂H2, ..., ̂HL] � Entropy calculation on Dtrain

7: l ← argmin( ̂H) � Finding the lowest-entropy layer
8: ψl = Identity() � Replacement of the rectifier with an Identity
9: w ← Train(w, Dtrain) � Finetune

10: current_acc ← Evaluate(w, Dval)
11: end while
12: return w
13: end function

3.3 EASIER

Depicted in Algorithm 1, we present here our method to remove the lowest-
entropy layers. Indeed, the lowest-entropy layer is the one likely to make the
least use of the different regions, or states, of the rectifier. Therefore, the need
for a rectifier is reduced: the rectifier can be linearized entirely. In this regard,
we first train the neural network, represented by its weights at initialization
winit, on the training set Dtrain (line 2) and evaluate it on the validation set
Dval (line 3). As defined in (7), we then calculate the entropy Ĥ on the training
set Dtrain for all the L rectifier-activated layers, (therefore, the output layer is
excluded) (line 6). We then find the lowest-entropy layer (line 7) and replace
its activation with a linear one, i.e., the Identity function (line 8). Evidently,
after this step, this layer is not considered anymore. To recover the potential
performance loss, the model is then finetuned using the same policy (line 9) and
re-evaluated on the validation set Dval (line 10). The final model is obtained
once the performance on the validation set drops below the threshold δ.
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4 Experiments

In this section, we empirically evaluate the effectiveness of our proposed app-
roach, across multiple architectures and datasets for traditional image classifica-
tion setups. We compare our results with EGP [29], an entropy-guided unstruc-
tured pruning technique, as well as the Layer Folding method [13].

Table 1. Test performance (top-1) and the number of removed layers (Rem.) for all
the considered setups. Dense refers to the original trained model without layer deletion.
The best results between LF, EGP, and EASIER are in bold.

Dataset Approach ResNet-18 Swin-T MobileNetv2 VGG-16
top-1 Rem. top-1 Rem. top-1 Rem. top-1 Rem.

CIFAR-10 Dense 92,47 0/17 91,66 0/12 93,65 0/35 93,50 0/15
LF 90,65 1/17 85,73 2/12 89,24 9/35 86,46 3/15
EGP 92,00 3/17 86,04 6/12 92,22 6/35 10,00 1/15
EASIER 92,10 8/17 91,41 7/12 93,16 12/35 93,61 8/15

Tiny ImageNet 200 Dense 41,26 0/17 75,78 0/12 46,54 0/35 63,94 0/15
LF 37,86 4/17 50,54 1/12 25,88 12/35 31,44 6/15
EGP 39,82 4/17 67,38 3/12 47,52 6/35 — —
EASIER 40,42 4/17 68,46 3/12 48,80 28/35 57,60 7/15

PACS Dense 79,70 0/17 97,30 0/12 95,50 0/35 95,40 0/15
LF 82,90 3/17 87,70 2/12 79,70 1/35 93,60 3/15
EGP 81,60 3/17 93,50 4/12 17,70 3/35 — —
EASIER 84,30 13/17 94,30 4/12 94,20 8/35 95,50 4/15

VLCS Dense 68,13 0/17 83,04 0/12 81,36 0/35 82,76 0/15
LF 66,91 5/17 70,92 1/12 68,87 2/35 80,24 6/15
EGP 70,18 4/17 78,47 6/12 45,85 2/35 — —
EASIER 70,27 14/17 79,12 6/12 78,56 4/35 78,84 6/15

Flowers-102 Dense 88,88 0/17 92,70 0/12 88,50 0/35 86,47 0/15
LF 77,57 5/17 63,07 4/12 2,86 5/35 87,90 3/15
EGP 82,06 3/17 87,40 3/12 0,34 2/35 — —
EASIER 83,43 6/17 88,89 5/12 88,37 10/35 88,32 3/15

DTD Dense 60,53 0/17 67,50 0/12 64,41 0/35 64,20 0/15
LF 59,99 2/17 37,98 4/12 4,89 5/35 63,56 3/15
EGP 59,10 2/17 60,21 5/12 2,13 2/35 — —
EASIER 62,02 3/17 62,23 5/12 63,83 6/35 63,62 4/15

Aircraft Dense 73,36 0/17 76,39 0/12 73,36 0/35 75,85 0/15
LF 67,60 2/17 44,76 4/12 4,98 4/35 70,48 6/15
EGP 69,04 2/17 73,27 5/12 0,99 2/35 — —
EASIER 70,33 2/17 74,44 7/12 72,55 4/35 69,70 6/15
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4.1 Experimental Setup

We cover a variety of setups by evaluating our method on four popular mod-
els: ResNet-18, MobileNet-V2, Swin-T and VGG-16, trained on seven datasets:
CIFAR-10 [25], Tiny-ImageNet [27], PACS and VLCS from DomainBed [16], as
well as Flowers-102 [35], DTD [10], and Aircraft [33]. All the hyperparameters,
augmentation strategies, and learning policies are provided in Appendix, mainly
following [29] and [36]. For ResNet-18, MobileNetv2, and VGG-16 all the ReLU-
activated layers are taken into account. For Swin-T, all the GELU-activated
layers are considered. Moreover, the threshold δ is established for each dataset
and architecture pair to enable a fair comparison with the existing LF and EGP
approaches in terms of top-1 performance with a comparable number of removed
layers.3

Fig. 3. (a) EASIER applied on ResNet-18, VGG-16, Swin-T and MobileNetv2 net-
works on CIFAR-10. For each model, we gradually remove non-linear layers. (b) EAS-
IER applied on ResNet-18 on CIFAR-10 with different rectifiers: ReLU, LeakyReLU,
PReLU, GELU, and SiLU. Our method is not bound to a specific one and is effective
with the most popular.

4.2 Results

A First Overview. We first test our method on a widely known dataset: CIFAR-
10. Figure 3a shows the test performance (Top-1) versus the number of removed
layers for all the considered models on CIFAR-10, achieved with our method
EASIER. Interestingly, all the models exhibit a similar depth-accuracy trend,
regardless of their initial depth. Indeed, they first all preserve their original
performance, until it drops significantly once ten or so layers have been removed.

Table 1 shows the test performance (top-1) as well as the number of removed
layers (Rem.) for all the considered setups. For each combination of dataset and
architecture, the performances obtained for each iteration are shown in the tables
in the Appendix.
3 The code and the Appendix are available at https://github.com/VGCQ/EASIER.

https://github.com/VGCQ/EASIER
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Concurrent Method Failure in Some Setups. First, we highlight that the results
for EGP on the VGG-16 architecture are not reported apart from CIFAR-10.
Indeed, the EGP technique suffers from the layer collapse phenomenon [42]: by
forcing a layer to have a zero-entropy, it could force it to be always in the OFF
region of its activation, hence preventing the signal from passing through this
layer, and therefore leading to a complete failure of the algorithm. This is what
is happening on CIFAR-10, where a whole layer is pruned. Since EGP is not
working with the VGG architecture on this dataset, we choose not to run the
experiments for VGG on other datasets to save computations. Nonetheless, this is
not the case with other architectures like ResNet-18, Swin-T, and MobileNetv2,
which all have skip connections, leaving another alternative for the signal to
pass from the input to the output, in the case the full layer is pruned. However,
we also report a problem with transfer learning tasks (Flowers-102, DTD, and
Aircraft) for the MobileNetv2 architecture. Indeed, from the first iteration, the
EGP’s pruning mechanism focuses on the last single layer before the classifier
head, leading to its complete removal and hence observing the same layer collapse
phenomenon given the absence of a skip/residual connection at this point.

Moreover, even if the results are reported in the table, we underline the
failure of Layer Folding for MobileNetv2 in transfer learning setups (Flowers-102,
DTD, and Aircraft). The employed auxiliary loss that encourages activations to
become linear appears to have a strong effect on the final loss function. The
hyperparameter balancing this regularization plays a critical role: a high value
prioritizes depth reduction at a cost of performance degradation whereas a small
value leads to high performance but with no layers removed. For the mentioned
transfer learning task, a trade-off allowing a comparison with EASIER has not
been found. This is illustrated by the results obtained on Flowers-102: even with
half as many layers removed, LF achieves mediocre performance.

Comparison with Existing Approaches. On most of the considered setups, we
can observe the superiority of our method. Indeed, EASIER consistently pro-
duces models with better performance for the same number of layers removed,
as observed on all the models trained on Tiny-ImageNet-200. For example, while
all the methods are able to remove four layers for ResNet-18 on Tiny-ImageNet-
200, EASIER achieves respectively 0,6% and 2,56% higher performance than
EGP and LF. Moreover, on some setups, EASIER even achieves better perfor-
mance than the other competitors with more layers removed. This is the case, for
example, for all the models trained on CIFAR-10. For instance, for MobileNetv2
on CIFAR-10, EASIER can remove six more layers with 0,94% top-1 gain com-
pared to EGP, which obtains the second-best performance in this setup.

Nevertheless, we highlight the superiority of Layer Folding in two setups:
VGG-16 trained on VLCS and Aircraft, in which the models produced by LF
achieve better performance for the same number of layers removed, with perfor-
mance improvements of 1,4% and 0,78% respectively, compared to EASIER.

Comparison with the Original Model. Although on most setups (such as CIFAR-
10) it succeeds in compressing models while maintaining performance similar to
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the original model, EASIER (but also competing methods) is not capable of com-
pressing models without degrading performance. This is the case, for example,
with Swin-T on Tiny-ImageNet-200, which displays a 7% loss compared to the
original model. The question of a trade-off between performance and compress-
ibility may therefore arise depending on the model’s intended use. Nevertheless,
apart from VGG-16 on VLCS and Aircraft, our method produces compressed
models with the closest performance to the original model compared with exist-
ing methods.

4.3 Ablation Study

In this section, we first perform a study over the used rectifier, showing that
our method is not bound to a specific one and is effective with any. Figure 3b
shows the test performance of ResNet-18 on CIFAR-10, for different rectifiers
versus the number of linearized layers. Our method removes at least 8 layers
with a performance improvement for GELU, LeakyReLU, and PReLU and with
a marginal performance loss for ReLU and SiLU. We hypothesize that it is
due to the presence of more signal in backpropagation for GELU, LeakyReLU,
and PReLU. Moreover, to find out whether it was necessary (to maintain good
performance) to train the network starting from its previous iteration weights
(before a layer linearization), a randomly initialized ResNet-18 with the 8 layers
selected by EASIER linearized, was re-trained on CIFAR-10 using the same
learning policy. The model achieves a top-1 score of 91,56%, down 0,54% on the
performance achieved with EASIER. Despite being costly at training time, we
concluded that to maximize the performance of the compressed model, it was
important to keep training the model from its previous iteration weights.

Table 2. ResNet-18 on CIFAR-10.

Method Top-1 Rem.

Dense 92,60 0/17
EASIER 2× 92,26 8/17
EASIER 4× 92,45 8/17
EASIER 8× 91,82 8/17

Furthermore, to clear the way for the design of a one-shot approach, we con-
duct some experiments directly removing several layers at a time, for example
by iteratively linearizing the 2, 4, or 8 layers with the lowest entropy. These
approaches are denoted respectively EASIER 2×, EASIER 4×, and EASIER
8×. The results for a ResNet-18 trained on CIFAR-10 are presented in Table 2.
For fairness, we report the test performance (Top-1) for an equivalent number
of layers removed (Rem.). Hence, for EASIER 2× (respectively 4× and 8×),
four (respectively two and one) iterations were necessary to obtain these results.
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Despite removing the same number of layers, we observe that EASIER 2× and
EASIER 4× yield similar results with a slight drop in performance compared
to the original model, while EASIER 8× leads to worse performance. With a
performance loss of less than one percent compared to the original model, EAS-
IER 8× raises hope for the design of a one-shot approach, which would be more
efficient at training time.

Finally, Table 3 showcases the potential savings in terms of inference time
and FLOPs for ResNet-18 on CIFAR-10 on six different devices, including CPUs
and GPUs spanning from traditional GPU to embedded devices. In general, the
fewer layers the network has, the shorter the inference time and the smaller the
number of FLOPs. However, we also observe that blindly removing layers is not
sufficient to reduce computation. Indeed, a layer removal can result in an increase
in MFLOPs, as observed here at the fifth iteration, which is mainly due to the
fusion of two convolutional layers, that can result in a layer having a greater
size. For instance, to keep the same input/output ratio, two convolutional layers
having a kernel size of 3 will fuse in a convolutional layer having a kernel size
of 5. Moreover, looking at inference times, every device shows a different trend.
While larger devices, like RTX A4500, show a monotonically decreasing inference
time, for smaller devices, like P2000 or Jetson Orin, this is not always the case.
We also note the same problem on CPUs, like Raspberry Pi 4, where caching is
the major problem when dealing with larger kernels.

4.4 Limitations and Future Work

Despite being a successful approach to alleviating deep neural networks’ depth,
EASIER also presents some limits, which we discuss below.

Training Efficiency. The iterative nature of our method inevitably leads to a
longer training time and more intensive computations to achieve the compressed
models, compared for instance, to the Layer Folding approach. However, the
increased computational cost of training can be offset by the benefits of using
these models for inference. Indeed, since a neural network is going to be used
multiple times for inference, it is also important to lessen its computational
burden related to this use. As opposed to unstructured pruning which offers
very few, if any, practical benefits when it comes to deploying the model in
a resource-constrained system, our method reduces the critical path forward
propagation undergoes, making it useful for processing on parallel systems like
GPUs or TPUs, as the computational demands at inference time are reduced.

Nonetheless, even though the method has been thought out iteratively, there
is hope for the design of a one-shot approach, which would be more efficient
at training time, as shown by the results discussed in the previous ablation
study. Another way to address this problem can be to include the entropy in the
minimized objective function. However, this approach is not immediately feasible
as it is a non-differentiable metric. Therefore, the exploration of differentiable
proxies for the layer’s entropy is left as future work.
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Table 3. Inference time [ms] and MFLOPs of ResNet-18 on CIFAR-10.

Rem. MFLOPs Inference on CPU [ms] Inference on GPU [ms]
Xeon E5-2640 Raspi 4 Jetson Orin P2000 RTX 2080 A4500

0/17 725,47 13,50 135 8,52 4,45 4,43 3,32
1/17 258,24 9,33 111 8,31 4,53 4,43 3,27
2/17 243,46 9,69 106 7,83 4,28 4,21 3,10
3/17 231,79 9,43 139 7,38 4,02 3,93 2,96
4/17 197,85 10,10 117 6,91 3,79 3,68 2,78
5/17 159,05 11,30 144 6,44 3,60 3,46 2,60
6/17 159,99 8,39 225 6,13 4,11 3,18 1,79
7/17 152,36 9,18 144 6,06 4,16 3,10 1,71
8/17 149,84 9,14 149 6,14 3,67 3,21 1,55

Performance Degradation. It is difficult to compress existing parameter-efficient
architectures that are not overfitting, and EASIER cannot decrease the depth
of an already underfitting architecture without compromising performance, like
for example Swin-T on Tiny-ImageNet-200.

Nevertheless, EASIER was able to demonstrate its superiority over existing
methods on all the setups considered. Indeed, for the same number of removed
layers, EASIER achieves the best performance or can compress more than exist-
ing approaches while maintaining performance. We therefore believe that EAS-
IER is a serious candidate to be considered to achieve this kind of goal.

5 Conclusion

In this work, we have presented EASIER, an entropy-based method for layer
withdrawal in rectifier-activated deep neural networks. An entropy-based impor-
tance metric has been designed to select layers to remove from the network,
aiming at depth reduction while preserving high performance in the considered
tasks. The capability and effectiveness of reducing the number of layers in a
model of EASIER have been demonstrated by experiments conducted on four
popular architectures across seven datasets for image classification. Concerned
by the ever-growing AI environmental impact, we hope this work can inspire
future optimizations and new ways of thinking about network design.
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