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Abstract. Identifying the underlying reason for a failing dynamic pro-
cess or otherwise anomalous observation is a fundamental challenge, yet
has numerous industrial applications. Identifying the failure-causing sub-
system using causal inference, one can ask the question: “Would the
observed failure also occur, if we had replaced the behaviour of a sub-
system at a certain point in time with its normal behaviour?” To this
end, a formal description of behaviour of the full system is needed in
which such counterfactual questions can be answered. However, exist-
ing causal methods for root cause identification are typically limited to
static settings and focusing on additive external influences causing fail-
ures rather than structural influences. In this paper, we address these
problems by modelling the dynamic causal system using a Residual Neu-
ral Network and deriving corresponding counterfactual distributions over
trajectories. We show quantitatively that more root causes are identified
when an intervention is performed on the structural equation and the
external influence, compared to an intervention on the external influence
only. By employing an efficient approximation to a corresponding Shap-
ley value, we also obtain a ranking between the different subsystems at
different points in time being responsible for an observed failure, which
is applicable in settings with large number of variables. We illustrate the
effectiveness of the proposed method on a benchmark dynamic system
as well as on a real world river dataset.

Keywords: Dynamic Root Cause Analysis · Counterfactual
Inference · Dynamic Systems

1 Introduction

Explaining unexpected behaviour in terms of underlying causes is a difficult chal-
lenge with a broad range of applications. Such applications range from identifying
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potential problems in industrial processes to understanding influencing factors
in anomalous weather phenomena. For example, within an assembly line of an
industrial manufacturing plant, faster identification of root causes of increased
scrap rate (the rate at which assembled products fail quality assessment audits)
can minimize cost, increase production yield, and increase overall efficiency. If
one can observe sufficiently many instances of anomalous behaviour or of faulty
traces of a process, one option would be to perform correlation based analysis or
causal discovery [14], thereby estimating the influencing factors to the variable
“fault” [2,9,17]. Alternatively, causal inference can be used even if only a single
anomalous observation is available [5,15]. Here, the identification of root causes
is formulated in terms of a counterfactual query: “Would the observed failure
also occur, if we had replaced the behaviour of a sub-system at a certain point
in time with its normal behaviour?”. Although such a causal inference approach
can estimate a ranked score of each variable involved of being the underlying
root cause, we address three main shortcomings of this approach in this paper:

Static Systems: Root cause analysis based on causal inference has been con-
sidered only in static environments [3,5,15]. To address this limitation, we fit
a time-discretized version of an Ordinary Differential Equation (ODE) system,
thereby obtaining a dynamic model. By deriving counterfactual distributions
over trajectories we then employ similar strategies as in the static case.

Structural Influences: Existing causal inference methods using counterfac-
tuals [5,15] focus on additive external influences causing failures rather than
structural influences. While [2] also considers structural influences, the method
is limited to linear models and does not include single time external influences.
In this paper, we address this problem by allowing for interventions on the struc-
tural equation and the external influence.

Non-linear Systems: Existing methods for root cause analysis are typically
limited to linear dynamic models. Here, we address this problem by allowing
transition functions to be non-linear using a simple neural network architecture.
Additionally, existing methods are limited to small systems as they rely on the
computation of Shapley values, which scales exponentially with the number of
variables. This becomes infeasible in a dynamic setting, since the corresponding
causal graph – unrolled over time – would have an increasingly large number of
nodes. While approximate methods for the computation of Shapley values have
been proposed [10], we suggest a simple approximation to the Shapley value,
which is applicable in settings with large number of variables.

The remainder of this paper is organized as follows: in Sect. 2, we review the
related work mentioned above in more detail, and provide necessary background
and notation in Sect. 3. In Sect. 4, we describe our method for identifying root
causes. In Sect. 5, we first illustrate the mechanisms of the proposed method in
a synthetic linear and non-linear setting before evaluating it on a benchmark
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dataset of [2] as well as on real data describing river levels as in [5]. In Sect. 6,
we conclude the paper.

2 Related Work

The problem of identifying the root cause of a system failure or anomaly has
been addressed in various domains, including healthcare [15], financial income
distributions [4], reliability engineering [9], to name a few. In the context of time-
series data, causal inference techniques have been used to qualitatively explain
outliers using counterfactual trajectories [16]. To detect root causes affecting
graphical structure or transition function Assad et al. [2] propose a method based
on assessing the direct causal effect. Modelling such causal effect with linear
models, Assad et al. [2] show that the total effects change if the underlying causal
model changes. In turn, they can use this fact to identify structural changes in
the causal model. However, the method is limited to linear models and does
not include single time external influences. If more observations of anomalous
data are available, the problem of identifying the root causes is also amenable to
statistically estimate the correlation or causation of the different variables and
time points onto the variable associated with the label “anomalous”. To this
end, Tonekaboni et al. [17] introduce feature importance in time (FIT), a scoring
mechanism to quantify importance of features in a multi-variate time-series. The
authors propose to assess feature importance based on their predictive power
w.r.t. the outcome distribution, while accounting for temporal distributional
shifts. The approach localizes important features over time and can thus be
used to gain useful insights into the behaviour of dynamic systems. However,
FIT does not leverage the causal structure of the underlying system and rather
provides correlative explanations for the observed outcomes.

Best aligned with our approach, though, is the work by [5] which defines the
problem of identifying root causes of a system failure as a counterfactual query.
With this reformulation, the authors claim to be the first to propose action-
able explanations to anomalous behaviour of underlying systems. In principle,
counterfactual reasoning assumes, and leverages, complete causal knowledge of
the underlying system in the form of a structural causal model (SCM). More
precisely, the work in [5] assumes invertible functional causal models: models in
which exogenous variables are computable from endogenous system observations.
In fact, the authors leverage the default split between endogenous and exogenous
variables in a graphical causal model to disentangle a node’s inherited impact
from its own contribution. They account for the notion of graded causation [7]
and provide order-independent feature scoring using a game-theoretic concept
commonly adopted in explainable machine learning [10], namely Shapley values
[13]. With its computation complexity, their approach lacks direct applicability
to dynamical systems. In our experiments, we compare against the linear model
performing interventions on the exogenous variable analogously to [5].



306 J. Weilbach et al.

3 Background and Notation

As mentioned in the introduction, we are interested in a counterfactual approach
to identify the root cause of a system failure. In this section, we introduce the
necessary concept from the literature and also introduce the notation we use
throughout the paper. Following the notation from Peters et al. [12], we denote
the sequence of observations of the system of interest by d -variate time series
(Yt)t∈Z where each Yt for fixed t is the vector (Y 1

t , ..., Y d
t ). Each Y j

t represents
the j th observable of a system at time t. By some abuse of notation, if we omit
super- or subscripts, we refer to the full time series. That is, Y = (Yt)t∈Z,
Yj = (Y j

t )t∈Z and Yt = (Y j
t )j∈{1,...,d}. The full time causal graph Gt with a

node for each time point and signal Y j
t for (j, t) ∈ 1, ..., d × Z has theoretically

infinitely many nodes and is assumed to be acyclic, while the summary graph G
with nodes Y 1, ..., Y d may be cyclic.

Definition 1. (Structural causal model (SCM)) [12]
An SCM M(S, PN ,G) is defined by a set of structural equations S, an acyclic
graph G = (Y, E), and a set of independent noise variables N j ∼ PNj , j ∈ Y.
The structural equations for each node j are given by:

Sj := Y j = f j(Y PA(j)G , N j)

where S = ∪j∈E{Sj} is a set of structural collections, and PA(j)G ⊆ E denotes
the parents of the node j according to the graph G.

To describe dynamic processes, again following [12], we extend the above
definition to the dynamic case by unrolling a causal graph over time as follows:

Definition 2. (Dynamic SCM)
In analogy to a static SCM, a dynamic SCM M(St, PNt

,Gt) is given by an acyclic
graph Gt and exogenous noise influences N j

t ∼ PNj
t

independent over each point
in time t and variable j. Gt is referring to a graph consisting of an unrolled
version of a summary graph G. Following the notation of [12], the structural
equations for node Y j

t are given by:

Sj
t := Y j

t = Y j
t−1 + f j(Y PA(j)

t−1 , Y j
t−1) + N j

t

with PA(j) being the parents of node j according to the summary graph G exclud-
ing the node itself. A notable difference from static SCMs is that the functional
coupling f is constant over time1.

Definition 3. (Interventional Dynamic SCM) Let J be a set of interventions
in which each element ξ can be of the following form:

1 Note that we restrict ourselves to additive noise in order to realize an invertible
SCM, see [5].
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ξ := do(PNj
t
) = P̃Nj

t
, (1) or ξ := do(Sj

t ) = S̃j
t (2)

where P̃Nj
t

is a new noise distribution and S̃j
t is a new structural equation for the

node j at time t. The interventional dynamic SCM is then defined by replacing
either the noise distribution or structural equation within a given dynamic SCM
M(St, PNt

,Gt). Here Eq. 1 denotes a soft intervention on the noise distribution
whereas Eq. 2 denotes an intervention on the structural intervention. We denote
the resulting intervened dynamic SCM then by MJ (St, PNt

, Gt).

As each SCM (interventional or not) defines structural equations and noise
distributions, it can generate a trajectory of observations. We denote the distri-
bution of the observations generated by the SCM as PM and the distribution of
the observations generated by the intervened SCM as PMJ . Given an observed
trajectory, we can now also define the counterfactual distribution describing
hypothetical trajectories which would have been observed if an (alternative)
intervention had been performed.

Abducted and Counterfactual SCMs. Let YF be an observed trajectory and M
a given dynamic SCM. In order to construct a counterfactual dynamic SCM, we
define the noise posterior distribution PNj

t
(N j

t |YF ) = δ(N j
t − NF,j

t ) by:

NF,j
t = −Y F,j

t−1 − f j(Y F,PA(j)
t−1 , Y F,j

t−1) + Y F,j
t (3)

where f j is the structural equation of the node j and PA(j) are the parents
of the node j according to the summary graph G. The resulting dynamic SCM,
in which the noise distributions PNj

t
are replaced with the above defined noise

posterior distributions, is then denoted as MF indicating that the noise distri-
butions are abducted from the observed trajectory YF . In fact, when generating
trajectories from this abducted SCM, it only generates the observed trajectory
YF due to the above setting of the noise variables. In order to generate new
counterfactual trajectories reflecting alternative outcomes, we need to perform
an intervention on this abducted SCM, leading to the counterfactual SCM. That
is, given an abducted SCM MF and a set of interventions J , we refer to the
resulting interventional SCM MF

J as the counterfactual SCM. For example,
when performing an intervention do(PNj

t
) = P̃Nj

t
on the noise distribution at a

specific point in time t and a node j, the counterfactual SCM is defined by the
following structural equations:

Y e
s = Y e

s−1 + fe(Y PA(e)
s−1 , Y e

s−1) + Ne
s , where (4)

Ne
s ∼

{
P̃Nj

t
if s = t and e = j

δ(N j
t − NF,j

t ) otherwise
(5)
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3.1 Root Cause

As we are interested in identifying a root cause, we state here more precisely
what we mean by this term. We define a root cause as an intervention according
to MJ (St, PNt

, Gt) leading to a faulty behaviour. Here, we assume that a faulty
behaviour can be detected or defined using a known classifier φ. This classifier
maps a time series to a binary value, indicating whether the time series is faulty.
Such classifier can either be given as a known test function (e.g. corresponding
to an end-of-line test in an assembly line, an assertion in a software system, or
a medical diagnosis) or can be learned from data (e.g. an outlier-score function
learned on normal data).

Definition 4. (Root cause) Given a classifier φ that determines whether an
observed trajectory is faulty, we refer to a (set of) intervention(s) Ξ to be the root
cause of a failure associated with the classifier φ, if observations (YF

t,t=1,...T )j

from the interventional SCM M{Ξ} are leading to an increased failure rate:

EYF
t,t=1,...T ∼MΞ

[φ(YF
t,t=1,...T )] − EYt,t=1,...T ∼M[φ(Yt,t=1,...T )] > 0

Note that this corresponds to the average treatment effect of an intervention on
the external influence or structural intervention. If the probability of a failure
for an external intervention on the noise or structure is larger than without any
intervention, we assume that the failure has an underlying root cause.

3.2 Shapley Value

Shapley values, originally defined to quantify the contribution of individual play-
ers to the outcome of a game, have been used by Budhathoki et al. [5] in a static
setup to define a score for nodes being potential root causes of an observed fault.
To this end, interventions (or possible root causes) are identified with players
in a game whose outcome is determined by a value function that quantifyes the
degree to which a set of interventions can increase the likelihood of correcting a
failure (to be defined below).

Definition 5. (Shapley value) The Shapley value [13] of a player i out of a set
N of possible players to the outcome of a game characterized by the outcome
function v is defined by:

Sh(i) :=
∑

S⊆N\{i}

|S|!(n − |S| − 1)!
n!

(v(S ∪ {i}) − v(S))

Note that in order to calculate the Shapley value, one has to sum over exponen-
tially many subsets of the set of possible players. This is feasible only for small
sets of players. As in the context of root cause analysis in a dynamic setting, the
set of players corresponds to the set of possible interventions ranging over all
possible times and nodes within the unrolled graph of a dynamic SCM. Due to
the exponential growth of the number of possible interventions, exact Shapley
value estimation is computationally infeasible for dynamic SCMs, and we have
to resort to an approximate version.
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4 Method for Identifying Root Causes

Now that we have the necessary background, we can describe our method for
identifying root causes in dynamic SCMs. The method is based on the follow-
ing steps and is illustrated in Fig. 1. We want to identify the root cause that
caused an observed failure in a system. To this end, we cast this problem in a
counterfactual query: “Would the observed failure also occur if we had replaced
the faulty behaviour of a sub-system at a certain point in time with its nor-
mal behaviour?”. To answer this question after we observed a faulty observation
(YF

t,t=1,...T )j , as illustrated in Inputs in Fig. 1, we follow the steps of counter-
factual distribution calculation: abduction, action and prediction [11]. However,
in order to apply those steps, we need an SCM characterizing the normal and
potentially the abnormal system. To characterize the normal system, we assume
to have access to data representing the normal behaviour of the system, as shown
in Inputs in Fig. 1. Additionally, we assume to have at least a summary graph
G of the system. This summary graph can be obtained from expert knowledge

'Normal' observations

2. Define dynamic SCM (Def. 2)

 Summary graph 

1. Derive unrolled graph 

3.1 Obtain normal system       by learning      with 'normal' data
                   of each node and its parents and 3.2 the system
by learning        with 'normal' & factum data 
on same parents.                                       
        

Faulty observation

4. Estimate Counterfactual SCM for intervention set     
and sample trajectories:  
        

5. Receive root causes by using approximative Shapley values to calculate the contribution of a counterfactual 
intervention to the failure. (Eq. 8)

Counterfactual samples for intervention at: (x1, t=6)

x

w

y z

w

x

w

y z

w

Failure classifier

Predictive samples with initial values:

5. Receive root causes by using approximative Shapley values to calculate the contribution of a counterfactual
intervention to the failure. (Eq. 8)

Evaluation

MethodInputs 

Assumptions

outputs a score for each point in time 
and node                 of being a root cause 
for the observed failure.

Fig. 1. This figure shows an overview of the individual steps of our method.
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or from data. Furthermore, as shown in Assumptions in Fig. 1, we assume that
we know a function φ that classifies an observation into faulty or normal.

Fitting the model in step 3.1 of the Method part in Fig. 1 we obtain the normal
behaviour system M by learning the functions f j

N with the inputs being normal
observations Yt of each node and its parents of the summary graph G. If for
both, normal as well as abnormal data, a node and hence its transition function
is not anomalous, the transition function would be identical for both settings.
Therefore, in 3.2 we additionally fit a transition function f j

NF with normal and
factum data as input on the same parents and children as in 3.1 of the known
graph G and with that we define the SCM FM. We show predictive samples of
M in the graph under 3.2.

Estimating the Counterfactual: In the abduction step, we first infer the noise
distribution corresponding to the observed factum. We refer to the abducted
SCMs MF and FMF by applying the factum as function input to f j

N and
f j

NF and constructing the resulting noise posterior distributions as described
in Eq. 3. We need to calculate the noise variables for both SCMs separately,
because function couplings and noise variables are coupled. In the action step,
we perform an intervention in M by ξM := {do(PNj

t
) = P̃Nj

t
} (see Eq. 1), where

we use the prediction error of our model to estimate the Gaussian noise variance:

P̃Nj
t

= N (0, σ2
val), σ2

val =
1
V

1
T

∑
v

∑
t

(Y j,v
t+1 − fj(Y

Pa(j),v
t ))2 (6)

with Y j,v being a validation trajectory of the normal data, and V the num-
ber of validation trajectories. For an intervention in FM we intervene on the
noise as before and we additionally intervene on the structure by do(Sj

t ) = S̃j
t

(see Eq. 2), which replaces the previous transition function f j
FN with a new

structural equation S̃j
t consisting of the transition function f j

N originating from
the ”normal” SCM, obtained purely from training data ξFM := {do(PNj

t
) =

P̃Nj
t
, do(Sj

t ) = S̃j
t }. After the construction of the corresponding counterfactual

SCM we can then generate counterfactual trajectories under the different inter-
ventions YCF ∼ PMF

ξM
, as illustrated in 4. in Fig. 1. If an external influence on

node j at time t leads to an abnormal factum, an intervention of the above type
should remove the abnormal behaviour and therefore lead to a normal trajectory.

Evaluation: To quantify how close these counterfactual samples are to normal
trajectories, the trajectories are processed via a classifier function φ (Eq. 4). In
turn, we receive a score for each counterfactual sample indicating whether the
failure was removed by the counterfactual intervention ξ. We then average over
multiple counterfactual samples. To rank interventions at different times and
nodes, we can use Shapley values by identifying players with interventions and
match-outcomes by the average normality of the counterfactual sample. Shapley
values, however, scale exponentially and therefore we use the following simple
approximation, which we obtain by ignoring interactions between different inter-
ventions, thereby only considering singleton intervention sets. Although mainly
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motivated by pure computational tractability, we can alternatively assume that
perfectly synchronous occurrence of multiple root causes is very unlikely, thereby
justifying the restriction to singleton intervention sets. Consequently we arrive
the following simple expression of contribution score of individual interventions
ξ for each point in time and node:

Sh(ξ) := logEY∼PMF
ξ

{φ (Y)} (7)

5 Experiments

In the following experiments, we evaluate the effectiveness of the proposed
method for different synthetic and real world data-sets. As for synthetic data-
sets, we consider both linear and non-linear dynamic systems with single point
external failure-causing disturbances as well as a benchmark data-set for identi-
fying structural causes for anomalies [2]. As for the real-world data-set, we are
investigating dynamic water flow rate in rivers [1]. For our synthetic experiments,
we perform two meta-experiments which analyze the influence on the model per-
formance of varying root cause injections and how robust the model is against
violating the assumption that the causal graph is known. We denote our models,
a linear and a non-linear model both performing a counterfactual intervention
on the external noise influence and on the structural equation with Lin(Sj

t , N j
t )

and NLin(Sj
t , N j

t ). We compare against a linear layer model with counterfactual
noise-influence intervention Lin(N j

t ), similar to [5] as well as against EasyRCA
[2] in the benchmarking experiment. For completeness, we additionally provide a
nonlinear model NLin(N j

t ) with counterfactual noise-influence intervention. In
order to model the non-linear dynamic SCM, for NLin we use a simple three-layer
residual neural network (ResNet) with hyperbolic tangent activation functions
and 128 neurons as latent layer.

5.1 Experimental Datasets

Linear Synthetic System: In our first data-set, we consider a linear multivariate
system with additive Gaussian noise consisting of four nodes (w, x, y, z), each
having two dimensions. The summary graph of the system is shown in Assump-
tions in Fig. 1. The structural equations of the system are of the form:

Y j
t := AiYj

t−1 +
∑

k∈PA(j)

BkYk
t−1 + ClN j

t , (N j
t )d ∼ N (0, 1) ∀d

with N j
t being zero mean standard Gaussian noise. For this system we chose the

transition matrices such that they generate a stable system by using eigenvalues
smaller than 1 (see Appendix). To simulate a root cause, we inject an additive
constant term at a single dimension of a node j at time t to the equation above.
Instead of a learned anomaly scoring function, in this experiment, we assume
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to have access to a function that checks the validity of a given observation,
similarly as it would be in a manufacturing scenario, in which an end of line
test is performed [6]. Therefore, we examine if a failure on the “last” node in a
manufacturing line (here “last” node in the summary graph is z) has occurred. To
this end, we use a threshold function, fixed over time for each dimension of node
z. More precisely, this classifier can be applied to any time-series observation
(Yj

t )t∈{1,...,T}, j∈{w,x,y,z}:

φ(Y) = 1 − 1
Dz

Dz∑
k=1

11[(μz)k−(σz)k,(μz)k+(σz)k](Y
z
k)

Here, the dimension of node z is denoted with Dz. Note that this function
provides a gradual feedback of how many of the dimensions in node z are outside
of the pre-specified corridor given by the threshold function.

FitzHugh-Nagumo System: Next, to allow for non-linear dynamic behaviour,
we are generating data of the FitzHugh-Nagumo system (FHN), which is cyclic
with regard to its summary graph, but acyclic in the unrolled graph Gt. Although
being a multivariate system, as the two dimensions interact, the corresponding
dynamic SCM consists of one node x with two dimensions:

ẋ1 = 3(x1 − x3
1/3 + x2), ẋ2 = (0.2 − 3x1 − 0.2x2)/3

We chose the initial values as in [8] but with slightly reduced additive Gaussian
noise variance σ2 = 0.0025. The root cause is simulated similarly to the linear
system by adding a constant to the difference equation at one dimension and
time point. We classify an observation as faulty, if it deviates too much from
a normal observation. As we have, in this setting, access to the ground truth,
a normal observation is represented by a trajectory generated from the ground
truth system. Consequently, the classifier consists of a time-varying threshold
bound around each dimension of the normal observation without the injected
root cause of node x. Denoting the expected trajectory from the system by E
a given observation Y is then classified to be faulty if it does not deviate more
than 10 standard deviations at any point in time from the expected trajectory:
φ(Y) = 1 − ∏

t 11[Ex
t −10σx,Ex

t +10σx](Y
x
t ).

5.2 Evaluation

When we have drawn counterfactual samples from our model, we calculate the
approximate Shapley values (see Eq. 4) and use the φ function to evaluate each
performed intervention based on whether it corrected the failure. The root cause
is the intervention of the node j at time t that has the highest influence on
the failure. If all counterfactual samples lead to the same φ evaluation for all
interventions, then no unique root cause could be identified. However, due to ran-
dom sampling of the counterfactual, this is an unlikely scenario (see for example
Fig. 5.) Nevertheless, for the evaluation, we only require that the ground truth
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Fig. 2. The figure shows the counterfactual samples for the FHN system with injected
root cause at (j = x1, t = 24). The injected root cause disrupts the system observation
heavily (black dashed line). However, the counterfactual intervention performed by our
model NLin(Sj

t , N
j
t ) corrects the failure in both dimensions, such that it lies inside

the threshold region (orange area). (Color figure online)

root cause is within the set of identified root causes. In Fig. 2 we show five
counterfactual samples for the nonlinear FHN system at the actual root cause
injection point. Although the injected root cause is fairly large with regard to
the interval of the normal observation without failure (drawn as orange line), the
counterfactual intervention performed by our model NLin(Sj

t , N j
t ) corrects the

failure for both dimensions of x. In order to analyze root cause injections and
how the identification capabilities of our model behave under varying injections,
we performed an Injection experiment for the synthetic linear and nonlinear
FHN system. External disturbances in dynamic systems may be propagated and
thereby increase their impact. Alternatively, if the system is robust against incre-
mental noise (as it is the case in the defined systems above due to the external
noise influence even under the ’normal’ conditions), it is not obvious how large
an external influence at which point in time is noticeable. In Fig. 3, we show
varying root cause injections for the linear synthetic system (varying constant
added to the structural equation) over 20 randomly sampled facta with T = 20.
It can be seen that the models intervening on the structure and the noise achieve
a significantly higher identification score for large added constants. This could be
due to a large root cause, in this setting leading to a factum with high distance
to the normal data, which may lead to a divergence over time of the normal
behaviour system M. Note that we did a similar injection experiment for the
FHN system, which can be found in the Appendix.

Assumption Violation. We probe our models on violation of the causal graph
assumption for the linear synthetic system. For this, we modify the causal graph
used by the underlying model through adding or removing random edges, while
keeping the original summary graph for data generation. We use the same facta
generated as σ = 500 in Fig. 3. In Table 1 it can be seen that removing edges
for all models has a stronger impact on predictive performance than adding. As
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Fig. 3. The root cause was injected at a random node j = x1 at t = 6 with varying
constants in [1, 10]. The horizontal axis shows the injected constant in relation to the
noise standard deviation denoted by σ. We report how many root causes could be
identified in %.

Table 1. We show the Accuracy for the setup σ = 500 of the linear synthetic system
(see Fig. 3) with varying number of removed or added edges of the summary graph G
used by the models.

NLin(Sj
t , N

j
t ) NLin(N j

t ) Lin(Sj
t , N

j
t ) Lin(N j

t )

nr. of removed edges

1 0.47 ± 0.25 0.23 ± 0.18 0.47 ± 0.24 0.18 ± 0.15

2 0.29 ± 0.20 0.06 ± 0.06 0.47 ± 0.24 0.12 ± 0.10

nr. of added edges

1 0.82 ± 0.15 0.12 ± 0.10 1.0 ± 0.0 0.18 ± 0.15

2 0.88 ± 0.10 0.0 ± 0.0 0.88 ± 0.10 0.06 ± 0.06

expected, Lin( (Sj
t , N j

t )) performs best on this linear system, closely followed by
NLin( (Sj

t , N j
t )). It must be mentioned that in a graph with only four edges,

removing an edge is a major incision in the model assumption.

Linear EasyRCA Benchmark. We compare against the linear univariate bench-
mark of [2] consisting of six nodes and two types of root causes. The parametric
root cause meaning they change the coefficient of the parent nodes to a random
uniform sampled value. As a special case of the parametric setting, they inject
structural root causes, which set the coefficient of the parent nodes to zero. Since
EasyRCA excludes single time point root causes, in order to do a fair compari-
son, we only rank sets of interventions, where we intervene on all times for a given
node and evaluating it accordingly by Sh(ξj

0, ...ξ
j
T ). In their work they inject on

two nodes, where one is always the root node of the system and the other one a
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randomly chosen node. As in their benchmark comparison the root node root
cause is excluded, we exclude it from the evaluation as well. In the evaluation
they distinguish for parametric and structural root causes, but because our model
makes no prediction about the type of root cause, it is sufficient if EasyRCA pre-
dicted root causes contain the true root cause, regardless of the type. To rate the
normality of a given trajectory Y, we make use of the learned dynamical SCM
M which was fitted on normal observations of the system. More precisely, for the
EasyRCA benchmark as well as the following River experiment, we used an out-
lier score similarly to [3], based on the learned dynamic SCM. That is, given a
dynamic SCM M consisting of N nodes and providing the conditional distribu-
tion p(Yj

t |YPA(j,t)
t ) via the dynamics equation learned from normal observational

data (Y)k, we can define the following outlier score:

φ(Y) =
1

NT

∑
j,t

log p(Yj
t |YPA(j,t)

t ) (8)

In Table 2, it can be seen that in general the intervention (Sj
t , N j

t ) is prefer-
able to an intervention only on (N j

t ). For the linear systems, the accuracy of
NLin(Sj

t , N j
t ) and Lin(Sj

t , N j
t ) are similarly good, while EasyRCA shows lower

performance in the factum T = 100 experiments. However, Lin(Sj
t , N j

t ) is inad-
equate for addressing the complexities of the nonlinear problem (Fig. 3).

Table 2. We report the Accuracy over 20 facta of the summary graph on a linear
system and the FHN oscillator. In the lower part of the table we present the experi-
mental results of the EasyRCA benchmark [2] comparing the accuracy for one factum
over 30 graphs for different factum lengths T (here, normal data has the same size
T . We excluded the 2000 factum length experiment of the EasyRCA benchmark for
computational reasons. Additionally, note that since EasyRCA is univariate, it can not
be applied to our synthetic systems.)

NLin Lin EasyRCA

(Sj
t , N

j
t ) (N j

t ) (Sj
t , N

j
t ) (N j

t )

Lin. system 0.94 ± 0.05 0.59 ± 0.24 1.0 ± 0.0 0.29 ± 0.20 –

FHN oscillator 0.90 ± 0.09 0.65 ± 0.23 0.20 ± 0.16 0.15 ± 0.13 –

Lin. Parametric

Factum-100 1.0 ± 0.0 0.97 ± 0.03 1.0 ± 0.0 0.97 ± 0.03 0.87 ± 0.12

Factum-200 0.97 ± 0.03 0.93 ± 0.06 1.0 ± 0.0 0.93 ± 0.06 0.93 ± 0.06

Factum-500 1.0 ± 0.0 0.97 ± 0.03 1.0 ± 0.0 0.97 ± 0.03 1.0 ± 0.0

Factum-1000 1.0 ± 0.0 1.0 ± 0.0 0.97 ± 0.03 0.83 ± 0.14 0.97 ± 0.03

Lin. Structural

Factum-100 1.0 ± 0.0 0.87 ± 0.12 1.0 ± 0.0 0.83 ± 0.14 0.8 ± 0.16

Factum-200 0.90 ± 0.09 0.27 ± 0.20 0.70 ± 0.21 0.53 ± 0.25 0.90 ± 0.09

Factum-500 1.0 ± 0.0 1.0 ± 0.0 0.87 ± 0.12 1.0 ± 0.0 1.0 ± 0.0

Factum-1000 1.0 ± 0.0 0.8 ± 0.16 1.0 ± 0.0 1.0 ± 0.0 0.97 ± 0.03
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Fig. 4. With the geographical knowledge of the river flow, a summary graph can be
inferred (Figure taken from [3]).

Real World River Experiment. We analyse our method on real-world data consid-
ering a univariate river experiment consisting of four nodes. The nodes represent
measuring stations of the Ribble River in England (data is from [1]). These mea-
suring stations are influenced by unknown external influences such as for example
rain. For this reason, the summary graph includes an unobserved confounder Z
that influences all nodes. This unobserved confounder affects the accuracy of our
model when learning the normal system M from observational data. The nodes
represent stations of the Ribble River that measure the flow rate. Although this
data-set has been investigated in [3], as a result of our dynamic viewpoint, we
consider a slightly different factum. They consider four time points as static
facta and infer the root causes for these. In contrast, we consider an entire time
series as factum and infer the root cause. In addition, we use a finer time res-
olution of 15-minute intervals instead of averaged daily values, which has the
advantage that the resulting SCM is less prone to instantaneous effects due to
aggregation within a time-window. The finer resolution means that we consider
a shorter period of time, namely the three days from 16.03.2019 to 19.03.2019
in which the flow rate is particularly high. As training data, we use the same
time span as [3] from 01.01.2010 to 31.12.2018. They provide a z-score threshold
for the New jumbles rock station, which we use as φ in 8, see also Fig. 5. We
find the Shapley values with the highest scores at station Henthorn, which is an
upstream station of the New jumbles rock station. Although no ground truth
root cause exist for this experiment since it is a real world example, the result is
plausible both geographically and with regard to the time point. Nevertheless,
the counterfactual intervention cannot correct the failure, as the counterfactual
sample is not below the z-score threshold. This could be due to the fact that the
influence of the unobserved confounders is particularly high.
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Fig. 5. We show five counterfactual samples (for each station) of our model
NLin(Sj

t , N
j
t ) with the intervention at the predicted root cause at 08:30 on 16.03.2019.

Additionally, we illustrate the resulting Shapley values for each time point, showing
that right before the failure occurs the Shapley values increase.
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6 Conclusion

In this paper, we have presented a method for identifying root causes in dynamic
systems based on counterfactual reasoning. As the proposed method ranks indi-
vidual interventions corresponding to individual nodes or sensors at particular
times within a trajectory, our method is capable of exploiting not only the causal
structure but also the natural direction of causality over time. By modelling tem-
poral transitions with a non-linear neural network and a Shapley value approx-
imation, we are able to remove important limitations of current counterfactual
root cause analysis methods. While we demonstrated both on synthetic as well
as real data the effectiveness of our method in identifying root causes in dynamic
systems, there are several directions for further improvement. For example, our
method is current limited to the assumption that the root cause consists of a
single intervention and that the causal graphical structure is known as well as
the absence of latent confounders. In future work, we plan to extend our method
to identify multiple root causes and to include uncertainties in the graphical
structure as well as potential latent confounders.

Disclosure of Interests. The authors have no competing interests to declare that

are relevant to the content of this article.
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