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Abstract. Assessing and improving the robustness of a graph G are
critical steps in network design and analysis. To this end, we consider
the optimisation problem of removing k edges from G such that the
resulting graph has minimal robustness, simulating attacks or failures.

In this paper, we propose total harmonic resistance as a new robust-
ness measure for this purpose – and compare it to the recently pro-
posed forest index [Zhu et al., IEEE Trans. Inf. Forensics and Security,
2023]. Both measures are related to the established total effective resis-
tance measure, but their advantage is that they can handle disconnected
graphs. This is also important for originally connected graphs due to the
removal of the k edges. To compare our measure with the forest index, we
first investigate exact solutions for small examples. The best k edges to
select when optimizing for the forest index lie at the periphery. Our pro-
posed measure, in turn, prioritizes more central edges, which should be
beneficial for most applications. Furthermore, we adapt a generic greedy
algorithm to our optimization problem with the total harmonic resis-
tance. With this algorithm, we perform a case study on the Berlin road
network and also apply the algorithm to established benchmark graphs.
The results are similar as for the small example graphs above and indi-
cate the higher suitability of the new measure.

Keywords: Graph robustness optimization · infrastructure
protection · total harmonic resistance · forest index · effective resistance

1 Introduction

The analysis of network1 topologies, a major subarea of data science on net-
work data, is key to understanding the functionality, dynamics, and evolution
of networks [5,26]. An important property of a network in this context is its
robustness, i. e., its ability to withstand failures of its components (or the extent
of this ability) [5]. As an example, a typical question is whether a network
remains (mostly) connected if a certain fraction of its vertices and/or edges are
1 We use the terms network and graph interchangeably.
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deleted [26, Ch. 15]. Despite the widespread use of vertex deletions, edge dele-
tions can be more appropriate depending on the modeled phenomenon. Examples
include, among others, road blocks in street or public transportation networks;
pollution in water distribution networks; disruption of gas pipelines, energy grids,
or computer/telecommunication networks. Such deletions may occur as a result
of failure or of an attack; robustness thus is a critical design issue that arises in
many application areas [13], e. g., various public infrastructures [9,19,33,37].

Due to economic reasons, it is unrealistic that all network components can
be protected with the same effort. Thus, with the protection of critical infras-
tructure as application in mind, we consider the following optimization problem:
given a graph G = (V,E) and a budget of k graph edges to be removed, find
the subset S ⊂ E such that the robustness of G′ = (V,E \S) is minimized. This
problem, which we call k-GRoDel (short for graph robustness problem with k
deletions), models a concurrent attack (or failure). The solution indicates which
set of edges should be particularly safeguarded, e. g., segments in a water distri-
bution network. Clearly, for a particular application, one must also instantiate
this generic problem with a sensible notion of robustness.

Not surprisingly, numerous robustness measures have been proposed in the
literature [5,33]. For the related problem of optimizing the robustness by adding
k edges (called k-GRIP in Ref. [30], short for graph robustness improvement
problem), total effective resistance was established as a meaningful robustness
measure in various scenarios [12,29,31,36]. Effective resistance is a pairwise met-
ric on the vertices of G; intuitively, it becomes small if there are many short paths
between two vertices. Two disconnected vertices have infinite effective resistance,
though. When total graph resistance were used in k-GRoDel, a trivial solution
to maximize it would thus be to disconnect G. Yet, from an application’s point of
view, disconnecting a small part from the vast majority of the graph may be less
problematic than a bottleneck (or a disconnection) between two large parts. Liu
et al. [22] handles this issue by demanding that G is still connected after edge
removal. Given an infrastructure scenario, this is a rather unnatural assump-
tion. Zhu et al. [38] address the issue by proposing the forest index, Rf (G), as
robustness measure. Instead of effective resistance, Rf (G) sums up the closely
related forest distance [11] for all vertex pairs. Forest distance is derived from
the number of certain rooted forests in G. It yields finite distance values also for
disconnected vertex pairs.

Contribution. We show in this paper that k-GRoDel using the forest index
favors peripheral edges in many networks. We deem this behavior unintuitive
and, most importantly, undesirable for most applications. That is why we pro-
pose total harmonic resistance Rh(·) instead. This measure adds up the recip-
rocal of effective resistance for all vertex pairs, leading to a zero contribution of
disconnected pairs (details in Sect. 2). The use of Rh(·) may seem like a straight-
forward extension to handle deletions given that the use of reciprocals is known
for the popular (harmonic) closeness centrality (based on the ordinary graph
distance) to handle disconnectedness [26]. Nonetheless, we are to our knowledge
the first to investigate this notion of robustness (also see Sect. 3).
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To substantiate the higher suitability of Rh(·) compared to the forest index
in k-GRoDel, we first examine optimal solutions for small graphs with the two
measures (Sect. 4). They clearly show that Rh(·) favors more central edges than
the forest index and also finds balanced cuts in examples with suitable k.

Since exact solutions for either k-GRoDel measure are expensive to com-
pute, we adapt in Sect. 5 the general greedy algorithm used in several previ-
ous papers for related problems. For Rh(·), our greedy algorithm differentiates
between bridge edges and other edges. When a bridge edge is removed, a sim-
ple update operation for the Laplacian pseudoinverse does not work. For these
cases, we thus provide specialized update functions. For the forest index, we
derive a connection to total effective resistance, which allows the re-use of opti-
mized Laplacian pseudoinverse solvers instead of more general matrix inversion
solvers.

Our experiments (Sect. 6) include a case study on the road network of (a
part of) Berlin, Germany, as well as numerous public benchmark graphs used
before in related work. They show: (i) visually, the case study results indicate
that the greedy solution for Rh(·) prefers more central edges than the one with
the forest index. Maybe not surprisingly, one can find an even better solution
regarding Rh(·) by choosing natural cut edges (river bridges in the road network)
manually, which underlines the expressiveness of the new measure; (ii) for the
benchmark graphs, a ranking based on closeness centrality confirms that greedy
solutions of Rh(·) lead to more central edges than the forest index in most cases,
too.

2 Problem Statement and a New Robustness Measure

2.1 Problem Statement and Notation

The input to k-GRoDel is an integer k ∈ N and a simple undirected graph
G = (V,E) with |V | = n, |E| = m. Given S ⊂ E, let G′ = (V,E \ S) be the
graph with the edges from S removed. k-GRoDel aims at finding S with |S| = k
such that the robustness of G′ is minimized (i. e., Rh(G′) is minimized or Rf (G′)
is maximized, respectively).

We use well-known matrix representations of graphs. LG = D − A ∈ R
n×n

is the Laplacian matrix of G, where D is the vertex degree matrix and A is the
adjacency matrix. LG is symmetric (since G is undirected) and has zero row and
column sums (L1 = 0 = 1TL). Since LG is not invertible, the Moore-Penrose
pseudoinverse L† is used instead (cf. [8]). When G has multiple components,
LG is a (permuted) block diagonal matrix where each block corresponds to one
component of G.

2.2 Robustness Measures

Effective Resistance. Viewing the graph as an electrical circuit where each edge is
a resistor, the effective resistance is the potential difference between two nodes u
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and v when injecting [extracting] a unit current at u [v] [17]. It can be computed
via L†: rG(u, v) = L†

G[u, u]−2L†
G[u, v]+L†

G[v, v] for nodes in the same component
of G. For disconnected pairs, the resistance is infinite. As a robustness measure,
one can take the sum over all pairwise effective resistances to compute the total
effective resistance Rr(G) =

∑
u<v rG(u, v), which has previously been used as

optimization target for k-GRIP [29,31,36] in graphs with only one component.
Combining both equations above results in a simple trace-based formula [8]:

Rr(G) = n · tr(L†
G). (1)

Forest Index (FI). To address the issue of disconnected graphs, other robustness
measures are required. The forest index, based on the forest distance [11] dfG(·, ·),
was proposed by Zhu et al. [38]. Similar to effective resistance, the forest distance
is based on the forest matrix Ω = (L+I)−1, with dfG(u, v) = Ω[u, u]−2Ω[u, v]+
Ω[v, v]. The forest distance is closely related to effective resistance (for details
see Sect. 5), but yields finite values also for disconnected vertex pairs. Similar
to total effective resistance, the forest index is the sum of the forest distance
(instead of the effective resistance) of all ordered vertex pairs (u, v):

Rf (G) :=
∑

u<v

dfG(u, v). (2)

With an argument analogous to the one for total effective resistance, the forest
index can be expressed using the trace as well:

Rf (G) = n · tr(Ω) − n. (3)

Total Harmonic Resistance (THR). We now propose a new measure to handle
disconnected graphs, total harmonic resistance. This measure is again based on
the effective resistance; this time one sums up the reciprocal of all pairwise
effective resistances – therefore harmonic:

Rh(G) :=
∑

u<v

1
rG(u, v)

. (4)

For vertex pairs where the effective resistance is infinite (i. e., vertices lie in
different components), we define the reciprocal to be zero. The reciprocity in
this sum makes computations more difficult compared to the other two metrics.

3 Related Work

Due to its high relevance in numerous application areas as well as a rich assort-
ment of research questions, robustness in networks has been an active research
area for several decades [13]. We thus point the interested reader to recent sur-
veys for a broader overview [13,27]. Concerning robustness measures, the survey
by Freitas et al. [13] categorizes them into three classes: (i) based on structural
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(combinatorial) properties, (ii) spectral properties of the adjacency matrix, and
(iii) spectral properties of the Laplacian matrix. Total effective resistance belongs
to the third class as it can be computed by the sum of the Laplacian (inverse)
eigenvalues. Chan and Akoglu [10] propose a budget-constrained edge rewiring
mechanism to address six different spectral measures – a related optimization
problem, yet different from k-GRoDel. Note that Oehlers and Fabian [27] focus
on communication networks and use a more fine-grained categorization than Fre-
itas et al. within their context.

Failures of components can result from various reasons, e. g., from natural
disasters, attacks, or wear. The targeted attack models surveyed by Freitas et
al. [13] refer to vertex removals and are based on vertex degrees and central-
ity scores. In general, vertex removals are the predominant failure model in
the literature; Newman [26, Ch. 15] discusses percolation (removal of a frac-
tion of the nodes), for example. An important question in this context is after
which fraction the graph becomes disconnected or, more generally, when the
giant component dissolves. One can address this question analytically in gener-
ative models (e. g., [26]) and/or empirically with real-world data (e. g., [6]). As
a prime example, an influential paper by Albert et al. [1] and follow-up work
led to the popular belief that scale-free networks are “robust-yet-fragile”, i. e.,
robust against uniform vertex deletion and fragile against targeted attacks that
remove high-degree vertices. Recent work by Hasheminezhad and Brandes [15]
puts this view into a more nuanced perspective: robustness depends primarily
on the graph’s minimum degree, not a power-law degree distribution.

As mentioned in Sect. 1, edge deletions are natural to model failures in numer-
ous applications. Liu et al. [22], who study the problem of minimizing one node’s
information centrality when removing k edges, argue that edge deletions are less
intrusive than vertex deletions and that they provide a more fine-granular control
of disruptions. To measure how easy two vertices can reach each other via alter-
native paths, numerous works use effective resistance [12,22,29,30,36], whereas
Zhu et al. [38] use forest distance [11] as summands of their forest index, a met-
ric related to effective resistance. Both robustness measures express with lower
values that more alternative pathways exist. A small total forest distance (as
well as a small total effective resistance) thus means that many vertex pairs can
reach each other via many alternative short paths. Obviously, this is a desirable
property for a robustness measure in a number of applications, e. g., when it
comes to routing information or goods [27]. Forest distance has recently been
used for forest closeness centrality [14,16]. There and when used as part of the
forest index, it has the advantage (compared to the ordinary graph distance or
effective resistance) to be able to handle disconnected graphs without changes.

An exact solution of the k-GRoDel problem with total harmonic resistance
or a related measure is likely infeasible for instances of non-trivial size: (i) sim-
ilar optimization problems have been shown to be NP-hard [14,18], including
the single-vertex variant of Liu et al. [22] with information centrality, and (ii)
mathematical programming, even when applied to related problems with sim-
pler objective functions, can usually solve instances with only hundreds or at
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most a few thousand vertices in reasonable time [2]. Empirically, however, the
related problem of adding k edges to minimize total effective resistance can be
solved adequately (yet in general not optimally) with a standard greedy algo-
rithm [35]. we developed in our previous work [30,31] heuristics to accelerate
the greedy algorithm for the k-GRIP problem (with usually tolerable losses in
solution quality). Even more closely related, Liu et al. [22] and Zhu et al. [38]
use greedy strategies to identify k edges to delete from G while optimizing for a
robustness measure (information centrality vs forest index). We thus expect an
adapted greedy algorithm to work similarly well for our variant of k-GRoDel.

4 Comparison of Exact Solutions

To investigate the difference between forest index and total harmonic resistance
as robustness measures for k-GRoDel, we analyze exact solutions for a collec-
tion of small examples. These examples consist of different graph classes: grid
graphs and variants thereof, random graphs [26, Part III] generated using the
Barabási-Albert model (parameters: k = 3, nmax = 18), and random graphs gen-
erated with the Watts-Strogatz model (parameters: n = 16, deg = 3, p = 0.7).
For each example, we compute the exact solutions of the optimization problem
for both robustness measures. Results for the grid-like grahps are visualized in
Fig. 1. Due to symmetry in the grid-like graphs, there are often multiple optimal
solutions; for simplicity, we only show one of these solutions.

Visually, the figures suggest that the forest index (FI) finds edges in the
periphery, while THR finds central edges. THR also seems to be more robust
regarding changes to low-degree nodes in the periphery of a graph: THR finds
the same solution for the 4x7 grid and for the hotdog grid, while the FI solution
changes.

To further support our claim about periphery vs center, we compute a cen-
trality score for an edge set as follows: Given the closeness centrality c(·) of all
nodes in G = (V,E) and a set of edges S ⊂ E, we rank the nodes by their close-
ness centrality and convert their rank into a relative (quantile) score s ∈ [0, 1],
where the most central node has score 1 and the least central node has score
0. Then, for each edge e = (u, v) ∈ S, we take the mean score of both incident
nodes and call this the score of that edge s(e). Edges which are central in the
graph have a larger score than less central edges. Finally, we define the score of
S as the mean of all edge scores in the set. Scores for all solution sets are listed
in Table 1. The centrality scores of the solutions further support our claim: for
all graphs of all three types, the score of the THR solution is higher (i. e., more
central) than in the FI solution. This even holds when comparing the best FI
solution to the worst THR solution in this metric.

Discussion. We would like to note that the observed behavior of the forest index
is not according to our original intuition (which was similar to the one given by
Zhu et al. [38]) before working on this paper. Broadly speaking, we generally
expected the forest index to be maximized when the number of disconnected
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Forest Index Total Harmonic Resistance

Fig. 1. Optimal solutions for k = 5 on grid-like graphs using FI (left column) and THR
(right column) as resistance measures. Edges highlighted in blue belong to the solution
set. (Color figure online)

vertex pairs is maximized, because this leads to many high terms in the sum. The
optimal solution (for appropriate k) on a grid graph would then be a balanced cut
in the middle. Instead, the optimal solution when using the forest index is a set of
edges at the boundary of the grid, disconnecting just a few vertices from a large
component. While such peripheral edges may be desirable in some applications,
we argue that in most scenarios more central edges – whose deletion ideally even
leads to several connected components – are beneficial from an attacker’s point
of view. We further explore this in our case study on (parts of) the Berlin road
network in Sect. 6. To be able to process non-trivial instances, we propose to
adapt a generic greedy algorithm in the next section.
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5 Greedy Heuristic for k-GRODEL

We adapt the general greedy algorithm previously used for many related prob-
lems. The basic idea of this algorithm is to iteratively pick the edge with best
marginal loss until k edges are found (see Algorithm 1).

Table 1. Solution set centrality scores as defined in Sect. 4. Since multiple optimal
solutions exist for some graphs, the score is computed for each solution and aggregated
in this table.

graph BA1 BA2 BA3 grid5x3 grid5x6
opt FI THR FI THR FI THR FI THR FI THR

min 0.31 0.40 0.29 0.47 0.32 0.40 0.24 0.53 0.09 0.69
mean 0.33 0.40 0.29 0.47 0.34 0.40 0.24 0.60 0.10 0.69
max 0.37 0.40 0.29 0.47 0.36 0.40 0.24 0.67 0.13 0.69

graph grid7x4 hotdog5x6 WS1 WS2 WS3
opt FI THR FI THR FI THR FI THR FI THR

min 0.11 0.76 0.14 0.71 0.34 0.49 0.27 0.34 0.16 0.28
mean 0.11 0.76 0.14 0.71 0.34 0.49 0.27 0.34 0.16 0.28
max 0.11 0.76 0.14 0.71 0.34 0.49 0.27 0.34 0.16 0.28

The greedy algorithm starts by computing the Laplacian pseudoinverse,
which is required to compute the effective resistance and hence the loss when
removing an edge from G. Then, in the main loop, the algorithm iterates all
edges in G and computes the loss for each one. The best edge is picked, and G
and L† are updated. The main loop runs for k iterations.

To implement the greedy algorithm, we need a formula to compute the
marginal loss when removing an edge (Line 7) as well as a way to update L†

after choosing an edge to compute the objective function in the next iteration
(Line 10). These depend on the robustness metric used and will be derived in
the next section.

For submodular functions the greedy framework can be combined with lazy
evaluation [24] to speed up the computation. This lazy evaluation stores all
candidates in a priority queue with their most recent loss value and instead
of evaluating the loss for all candidates in each iteration of the main loop, it
iteratively evaluates (and updates) only the top candidates’ loss value until the
top candidate is a candidate that has been evaluated in the current iteration
of the main loop. Effectively, lazy evaluation reduces the number of evaluations
significantly, while still providing a quality guarantee for submodular problems.
Even though k-GRoDel is not known to be submodular for THR and is not
submodular for FI [38], we still apply this technique because practical experience
has proven to lead to good results even for non-submodular problems [25].

Combining the lazy evaluation technique with the general greedy algorithm
and THR-based loss and update function leads to GreedyTHR: first, compute L†

G.
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Algorithm 1. Greedy algorithm for k-GRoDel
1: function Greedy(G, k)
2: Input: Graph G = (V, E), k ∈ N

3: Output: Gk – graph after k edge deletions
4: G0 ← G
5: Compute L†

6: for r ← 0, . . . , k − 1 do � main loop
7: Compute loss(e)∀e ∈ E � evaluation step
8: e∗ ← argmaxe∈E loss(e)
9: Gr+1 = Gr \ e∗

10: Update(L†, Gr+1) � update step
11: end for
12: return Gr+1

13: end function

This takes O(n3) time (with standard tools in practice). Then, compute the loss
for all edges of G and set up a priority queue of all edges by their respective loss
value. In the main loop, get the top entry from the priority queue (using lazy
evaluation), remove that edge from G and update L†

Gr
.

5.1 Total Harmonic Resistance Loss After Deleting an Edge

We now derive an update formula and state the loss formula for THR, which are
required for the greedy algorithm.

For the Update step (Line 10) there are efficient ways to compute L†
G′ :

Removing an edge e = {a, b} ∈ E from G results in G′ = (V,E \ {e}) and
LG′ = LG − (ea − eb)(ea − eb)T , where ei is the i-th unit vector. One can apply
the Sherman-Morrison-Formula [34] (which holds for L and (ea − eb) as well) to
write:

L†
G′ = L†

G +
L†
G(ea − eb)(ea − eb)TL

†
G

1 − (ea − eb)TL
†
G(ea − eb)

(5)

= L†
G +

L†
G(ea − eb)(ea − eb)TL

†
G

1 − rG(a, b)

There are limitations to using the Sherman-Morrison-Formula for updates:
if the removed edge is a bridge, rG(·, ·) = 1 [23] and hence the denominator in
Eq. 5 is 0. In case the edge is not a bridge though, we can apply the Sherman-
Morrison-Formula.

To handle the case of a bridge edge e, some more involved computation
is required. Recall that L is a (permuted) block diagonal matrix where each
block corresponds to a component of G (see Sect. 2). Removing e causes the
corresponding block in L to be split into two blocks – one for each component. All
other blocks of L are not modified by this edge removal. Since the pseudoinverse
of a block diagonal matrix is the block matrix build from the pseudoinverse of
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each block, L†
G′ can be found by computing the pseudoinverse of the two blocks

related to e and re-using the other pseudoinverse blocks from L†
G.

One has to keep track of a mapping from each node to its component (since
in general L is permuted and we need to know which row/column belongs to
which block) which takes O(n + m) time. For simplicity, we re-compute this
after removing a bridge edge (because the pseudoinversion step dominates the
running time), but in principle it is possible to dynamically update the connected
components instead. The running time of the update step is either O(c2) (non-
bridge edge) or O(max(n+m, c3)) (bridge edge), where c is the size of the block
matrix (resp. component of G) that contains e.

For the loss function, the basic formula is loss(a, b) := Rh(G) − Rh(G′) =
∑

u<v
1

rG(u,v) − 1
rG′ (u,v) . This formula depends on values in L†

G and L†
G′ (via

rG(u, v) = L†
G[u, u] + L†

G[v, v] − 2L†
G[u, v]). Since this is a sum of reciprocal

values, deriving an efficient formula proves difficult; we do not know of a closed
formula analogous to the forest index or effective resistance yet. Using the basic
formula to compute the loss requires computing L†

G′ which we have discussed
above. Computing the loss when L†

G′ is given takes O(n2) time and the loss is
computed up to O(km) times in the greedy algorithm (in the worst case, the
loss is computed for each edge even though we use lazy evaluation). This leads
to O(kmn2 ·max(n+m, c3)) time overall for the loss computation. The running
time varies a lot depending on the size and number of the components in G and
the number of bridge edges.

5.2 Forest Index Loss After Deleting an Edge

For our experiments, we are also interested in results from the greedy algorithm
for FI. Since the experimental setup by Zhu et al. [38] is to our knowledge not
publicly available, we implemented our own version of this algorithm. There are
two differences in our implementation compared to the algorithm description
given in their paper though: (i) we exploit a connection between forest index
and effective resistance to convert the FI computation back to a problem that
is based on the Laplacian matrix. This allows re-use of specialized Laplacian
pseudoinverse solvers. (ii) we use the lazy evaluation technique described in
Sect. 5, even though FI is not submodular. As mentioned, this technique usually
yields good results even for non-submodular problems and in our preliminary
experiments we observed no difference in the solution quality.

To derive a marginal loss formula for the forest index, we use a theorem
on the connection between effective resistance and forest distance; it allows to
reduce the forest index formula (based on forest distance) back to total effective
resistance and this reduction facilitates the reuse of some other theorems and
algorithms:

Theorem 1. Given G = (V,E), define the augmented Graph G∗ = (V∗, E∗)
with a universal vertex u∗ which is connected to all other vertices: V∗ = V ∪{u∗}
and E∗ = E ∪ {(v, u∗) : v ∈ V }.

Then dfG(u, v) = rG∗(u, v) ∀u, v ∈ V .
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The proof (with a slight change in the forest distance definition that does not
affect the validity of the result) can be found in Ref. [11, Proposition 7]. From
Theorem 1 the following result can be derived:

Proposition 1. The forest index can be written in terms of the effective resis-
tance of the augmented graph: Rf (G) = n · tr(L†

G∗) − (n + 1) · L†
G∗ [u

∗, u∗].

Proof. See Appendix A.1. The main idea is to extend the forest index sum by
adding a zero term, which then includes the trace of L†

G∗ .

Edge Removal. We can now use Proposition 1 to write the forest index Rf (G)
in terms of the augmented graph G∗ and L†

G∗ , which allows us to compute the
marginal loss via L†

G∗ when removing an edge from G.
Removing an edge {a, b} ∈ E from G results in G′ = (V,E \ {{a, b}}) and

LG′∗ = LG∗ − (ea − eb)(ea − eb)T , where ei is the i-th unit vector. Apply the
Sherman-Morrison-Formula [34] to write:

L†
G′∗

= L†
G∗ +

L†
G∗(ea − eb)(ea − eb)TL

†
G∗

1 − rG∗(a, b)
(6)

To calculate the loss(a, b) := Rf (G′)−Rf (G) when removing e = {a, b} from
G, we can use Eqs. (1) and (6) and the connection to total effective resistance
(Proposition 1):

Proposition 2. The marginal loss for the forest index when removing edge (a, b)
from G is:

loss(a, b) =
n

1 − rG∗(a, b)
·
∥
∥
∥L†

G∗ [:, a] − L†
G∗ [:, b]

∥
∥
∥
2

− n + 1
1 − rG∗(a, b)

· (L†
G∗ [u

∗, a] − L†
G∗ [u

∗, b])2.

Proof. See Appendix A.2.

We use these loss and update formulae in our greedy algorithm, which allows
us to re-use existing code. Running times for the loss and update computation are
O(n) and O(n2) respectively, which results in a overall running time of O(kmn)
and O(kn2) for k iterations of the greedy algorithm.

6 Experimental Results

6.1 Experimental Setup

We conduct experiments to evaluate the quality of the greedy solution for THR
to the greedy solution for FI (GreedyTHR and GreedyFI). Our algorithms are
implemented in C++ using the NetworKit toolkit [3] as a graph library. We also
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build upon the previous work in Refs. [30,31]. To solve linear systems and com-
pute the pseudoinverse, we use the LAMG solver from NetworKit. SimExPal [4]
is used to manage our experiments and analyze the results. All experiments are
run on a machine with an Intel Xeon 6126 CPU and 192 GB RAM. Code and the
experimental setup are available on github: https://github.com/bernlu/GRoDel-
THR-FI.

Table 2 lists all networks used in our case study and benchmark study with
their approximate number of nodes and edges. For the following analysis, we
split them into two groups: small graphs with |V | < 50K and large graphs with
|V | > 50K. These networks are taken from SNAP [21], Networkrepository [32]
and KONECT [20]. For our experiments, we perform preprocessing on these
graphs to turn them into simple graphs by removing self-loops, multi-edges and
edge weights; we use the largest connected component of each graph. We set
the accuracy parameter ε of our LAMG solver (which we use to compute L†) to
10−5.

Table 2. Graph instances used for experiments, their vertex and edge counts after
preprocessing, and the mean closeness centrality of the greedy THR and FI solutions.

Graph |V | |E| THR FI

euro-road 1K 1.3K 0.661 0.160
EmailUniv 1K 5.4K 0.405 0.526
air-traffic-control 1.2K 2.4K 0.579 0.063
inf-power 4K 6K 0.858 0.257
web-spam 4K 37K 0.457 0.039
Bcspwr10 5.3K 8.2K 0.301 0.740
Erdos992 6K 7.5K 0.643 0.691
Reality 6.8K 7.6K 0.825 0.508
Mitte-Berlin-Germany 1K 1.5K 0.648 0.334
Treptow-Köpenick-Berlin-Germany 3.6K 5.2K 0.733 0.283

6.2 Case Study: Berlin Districts

For our case study, we use the road networks of two Berlin districts (Table 2).
We choose these networks because road networks in general are easy to visualize
and understand intuitively; Berlin specifically has some rivers flowing through
the city which create cuts for many districts. These river bridges make for a
natural solution to k-GRoDel which we will use as a manually chosen solution
to compare to the greedy solutions.

Our graphs are generated from OpenStreetMap [28] data using the osmnx [7]
python library. We convert the data into a simple graph and use our NetworKit-
based greedy algorithm to find the solution for both THR and FI.

https://github.com/bernlu/GRoDel-THR-FI
https://github.com/bernlu/GRoDel-THR-FI
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Fig. 2. Berlin case study result. Grey edges are the GreedyTHR solution; orange edges
are the GreedyFI solution. The image is cropped – not all edges in the solution are
displayed. GreedyTHR finds four of seven river bridges while GreedyFI mostly finds
residential roads. Image created using OpenStreetMap [28]

The solutions for the Mitte district are drawn on a map for visual inspection
(Fig. 2). One can clearly see that GreedyTHR finds some of the river bridges
and other main roads, while GreedyFI finds less important streets. We also
compare the solutions to the hand-picked solution that consists of the seven river
bridges in this district (12 edges in total in our network because of multi-lane
bridges). The THR of this manual solution is larger than that of the GreedyTHR
solution, even though the greedy solution was computed for k = 20 edges – this
further indicates that THR is a metric that prioritizes edges in a way we consider
desirable. In contrast to the previous observation, the FI score of the manual
solution is worse than the solution (of the same size) found by GreedyFI; this
is another hint that FI prioritizes edges in the periphery of a network. We have
also investigated other districts of Berlin, with very similar results: GreedyTHR
finds some bridges and large streets; GreedyFI finds edges in the periphery and
a manual choice of river bridges is better than the greedy solution.

6.3 Benchmark Results

For the benchmark graphs, we evaluate the results by comparing the average
closeness centrality of the solutions using the same we method described for the
exact solutions in Sect. 4.

Results are available in Table 2. For most benchmark graphs we observe that
the GreedyTHR solution is considerably more central than the GreedyFI solution;
on average, the GreedyTHR solution is about 25% more central in the closeness
centrality metric. In the Bcspwr10 graph GreedyTHR provides a considerably
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less central solution than GreedyFI – though there is no obvious reason for this
result.

Regarding running times, with a timeout of 12 h we found solutions for graphs
with up to 6.8K nodes or 13K edges. We observe that the network structure (esp.
the amount of bridge edges) has significant impact on running times – which is
expected given the two ways to compute the update step, where the update for
bridge edges is much more expensive. As expected, running times for GreedyFI
are 2-4 orders of magnitude lower than GreedyTHR. The reason for this is that we
can use the much more efficient loss formula using the trace of L† for GreedyFI
while we do not know of an analogous formula for GreedyTHR.

7 Conclusions

With the protection of large infrastructure in mind, we considered the k-
GRoDel problem to identify a set of k particularly vulnerable edges in a graph.
To this end, we proposed total harmonic resistance as objective function and
compared it against the recently proposed forest index.

We show with small examples where we compute the exact solution that
total harmonic resistance prioritizes more central edges than the forest index.
We adapt the general greedy algorithm for similar optimization problems to
k-GRoDel with total harmonic resistance and show in a case study on the
Berlin road network that THR favors more central edges in larger examples
as well. Finally, we run benchmark experiments which show that THR mostly
favors more central edges than FI in a range of different network types. We note
that the greedy algorithm for THR has higher time complexity than the greedy
algorithm for FI and our experiments confirm this in practice.

In the future, we would like to focus on speeding up the greedy algorithm
for THR by improving the update and loss formulae and by finding other, faster
heuristics. These are highly complex problems because of the reciprocity in the
objective function – which prevents re-use of most of the results and techniques
used for related robustness measures like total effective resistance or forest index.

Acknowledgments. We would like to thank Rob Kooij from TU Delft for insightful
discussions on total harmonic resistance and many related measures.
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