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Abstract. Experimental (design) optimization is a key driver in design-
ing and discovering new products and processes. Bayesian Optimization
(BO) is an effective tool for optimizing expensive and black-box exper-
imental design processes. While Bayesian optimization is a principled
data-driven approach to experimental optimization, it learns everything
from scratch and could greatly benefit from the expertise of its human
(domain) experts who often reason about systems at different abstrac-
tion levels using physical properties that are not necessarily directly
measured (or measurable). In this paper, we propose a human-AI col-
laborative Bayesian framework to incorporate expert preferences about
unmeasured abstract properties into the surrogate modeling to further
boost the performance of BO. We provide an efficient strategy that can
also handle any incorrect/misleading expert bias in preferential judg-
ments. We discuss the convergence behavior of our proposed framework.
Our experimental results involving synthetic functions and real-world
datasets show the superiority of our method against the baselines.

Keywords: Machine Learning · Bayesian Optimization · Gaussian
Process · Expert Feedback · Preferential Modeling

1 Introduction

Experimental design is the workhorse of scientific design and discovery. Bayesian
Optimization (BO) has emerged as a powerful methodology for experimental
design tasks [1,2] due to its sample-efficiency in optimizing expensive black-
box functions. In its basic form, BO starts with a set of randomly initialized
designs and then sequentially suggests the next design until the target objective is
reached or the optimization budget is depleted. Theoretical analyses [3,4] of BO
methods have provided mathematical guarantees of sample efficiency in the form
of sub-linear regret bounds. While BO is an efficient optimization method, it only
uses data gathered during the design optimization process. However, in real world

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-70365-2_14.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
A. Bifet et al. (Eds.): ECML PKDD 2024, LNAI 14946, pp. 234–250, 2024.
https://doi.org/10.1007/978-3-031-70365-2_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-70365-2_14&domain=pdf
https://doi.org/10.1007/978-3-031-70365-2_14
https://doi.org/10.1007/978-3-031-70365-2_14


BOAP: Bayesian Optimization with Abstract Properties 235

experimental design tasks, we also have access to human experts [5] who have
enormous knowledge about the underlying physical phenomena. Incorporating
such valuable knowledge can greatly accelerate the sample-efficiency of BO.

Previous efforts in BO literature have incorporated expert knowledge on the
shape of functions [6], form of trends [7], priors over optima [8] and model selec-
tion [9], which require experts to provide very detailed knowledge about the
black-box function. However, most experts understand the process in an approxi-
mate or qualitative way, and usually reason in terms of the intermediate abstract
properties - the expert will compare designs, and reason as to why one design
is better than another using high level abstractions. For instance, consider the
design of a spacecraft shield (Whipple shield) consisting of 2 plates separated
by a gap to safeguard the spacecraft against micro-meteoroid and orbital debris
particle impacts. The design efficacy is measured by observing the penetration
caused by hyper-velocity debris. An expert would reason why one design is bet-
ter than another and accordingly come up with a new design to try out. As
part of their domain knowledge, human experts often expect the first plate to
shatter the space debris while the second to absorb the fragments effect. Based
on these abstract intuitions, the expert will compare a pair of designs by exam-
ining the shield penetration images and ask: Does the first plate shatter better
(Shattering)? Does the second plate absorb the fragments better (Absorption)?
The use of such abstractions allows experts to predict the overall design objec-
tive thus resulting in an efficient experimental design process. It is important to
note that measuring such abstractions is not usually feasible and only expert’s
qualitative inputs are available. Incorporating such abstract properties in BO for
the acceleration of experimental design process is not well explored.

In this paper, we propose a novel human-AI collaborative approach -
Bayesian Optimization with Abstract Properties (BOAP) - to accelerate BO
by capturing expert inputs about the abstract, unmeasurable properties of the
designs. Since expert inputs are usually qualitative [10] and often available in the
form of design preferences based on abstract properties, we model each abstract
property via a latent function using the qualitative pairwise rankings. We note
that eliciting such pairwise preferences about designs does not add significant
cognitive overhead for the expert, in contrast to asking for explicit knowledge
about properties. We fit a separate rank Gaussian process [11] to model each
property. Our framework allows enormous flexibility for expert collaborations
as it does not need the exact value of an abstract property, just its ranking. A
schematic of our proposed BOAP framework is shown in Fig. 1.

Although we anticipate that experts will provide accurate preferences on
abstract properties, the expert preferential knowledge can sometimes be mislead-
ing. Therefore to avoid such undesired bias, we use two models for the black-box
function. The first model uses a “main” Gaussian Process (GP) to model the
black-box function in an augmented input space where the design variables are
augmented with the estimated abstract properties modeled via their respective
rank GPs. The second model uses another “main” GP to model the black-box
function using the original design space without any expert inputs. At each iter-
ation, we use predictive likelihood-based model selection to choose the “best”
model that has higher probability of finding the optima.
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Fig. 1. A schematic representation of our proposed framework Bayesian Optimization
with Abstract Properties (BOAP).

Our contributions are: (i) we propose a novel human-AI collaborative BO
algorithm (BOAP) for incorporating the expert pairwise preferences on abstract
properties via rank GPs (Sect. 3), (ii) we provide a brief discussion on the
convergence behavior of our proposed BOAP method (Sect. 4), (iii) we provide
empirical results on both synthetic optimization problems and real-world design
optimization problems to prove the usefulness of BOAP framework (Sect. 5).

2 Background

Notations

We use lower case bold fonts v for vectors and vi for each element in v. vᵀ is
the transpose. We use upper case bold fonts (and bold greek symbols) M for
matrices and Mij for each element in M. abs(·) is the absolute value. | · | is the
determinant. Nn = {1, 2, · · · , n}. R for Reals. X is a index set and x ∈ X .

2.1 Bayesian Optimization

Bayesian Optimization (BO) [12,13] provides an elegant framework for find-
ing the global optima of an expensive black-box function f(x), given as x� ∈
argmaxx∈X f(x), where X is a compact search space. BO is comprised of two
main components: (i) a surrogate model (usually a Gaussian Process [11]) of the
unknown objective function f(x), and (ii) an Acquisition Function u(x) [14] to
guide the search for optima.

Gaussian Process. A Gaussian Process (GP) [11] is a flexible, non-parametric
distribution over functions. It is a preferred surrogate model because of its sim-
plicity and tractability, in contrast to other surrogate models such as Student-
t process [15] and Wiener process [16]. A GP is defined by a prior mean
function μ(x) and a kernel k : X × X→R. The function f(x) is modeled
using a GP as f(x) ∼ GP(0, k(x,x′)). If D1:t = {x1:t,y1:t} denotes a set of
observations, where y = f(x) + η is the observation corrupted with noise
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η ∈ N (0, σ2
η) then, according to the properties of GP, the observed samples

D1:t and a new observation (x�, f(x�)) are jointly Gaussian. Thus, the poste-
rior distribution f(x�) is N (μ(x�), σ2(x�)), where μ(x�) = kᵀ[K + σ2

ηI]
−1y1:t,

σ2(x�) = k(x�,x�) − kᵀ[K + σ2
ηI]

−1k, k =[k(x�,x1) · · · k(x�,xt)]ᵀ, and K =
[k(xi,xj)]i,j∈Nt

.

Acquisition Functions. The acquisition function selects the next point for
evaluation by balancing the exploitation vs exploration (i.e. searching in high
value regions vs highly uncertain regions). Some popular acquisition functions
include Expected Improvement (EI) [17], GP-UCB [3] and Thompson Sampling
(TS) [18]. A standard BO algorithm is provided in Sect. 8 of the supplementary
material1.

2.2 Rank GP Distributions

[19] demonstrated that humans are better at providing qualitative comparisons
than absolute magnitudes. Thus modeling latent human preferences is crucial
when optimization objectives are in domains such as A/B testing of web design-
ing [20], recommender systems [21], players skill rating [22] and many more. [23]
proposed a non-parametric Bayesian algorithm for learning instance or label
preferences. We now discuss modeling pairwise preference relations using rank
GPs.

Consider a set of n distinct training instances denoted by X = {xi ∀i ∈
Nn} based on which pairwise preference relations are observed. Let P = {(x �
x′) | x,x′ ∈ X} be a set of pairwise preference relations, where the notation
x � x′ expresses the preference of instance x over x′. For example, the pair
{x,x′} can be two different spacecraft shield designs and x � x′ implies that
spacecraft design x is preferred over x′. [23] assume that each training instance
is associated with an unobservable latent function value {f̄(x)} measured from
an underlying hidden preference function f̄ : Rd → R, where x � x′, implies
f̄(x) > f̄(x′). Employing an appropriate GP prior and likelihood, user preference
can be modeled via rank Gaussian process distributions.

Preference learning has been used in BO literature [24,25]. [24] proposed Pref-
erential BO (PBO) to model the unobserved objective function using a binary
design preferential feedback. [26] modified PBO to compute posteriors via skew
GPs. [27] proposed a preference learning based BO to model preferences in a
multi-objective setup using multi-output GPs. [28] proposed a preference learn-
ing with Siamese Networks to capture preferences in a Multi-task learning setup.
All these works incorporate preferences about an unobserved objective function.
However, in this paper, we use preference learning to model expert preferences
about the intermediate abstract (auxiliary) properties. Our latent model learned
using such preferential data is then used as an input to model the main objective
function.
1 The supplementary material of BOAP is accessible online at the following link:

https://doi.org/10.1007/978-3-031-70365-2_14.

https://doi.org/10.1007/978-3-031-70365-2_14
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3 Framework

This paper addresses the global optimization of an expensive, black-box function
f , i.e., we aim to find the global optima (x�) of the unknown objective function
f represented as:

x� ∈ argmax f(x)
x∈X

(1)

where f : X → R is a noisy and expensive objective function. For example, f
could be a metric signifying the strength of the spacecraft shield. The motiva-
tion of this research work is to model f by capturing the cognitive knowledge of
experts in making preferential decisions based on the inherent non-measurable
abstract properties of the possible designs. The objective here is same as that of
standard BO i.e., to find the optimal design (x�) that maximizes the unknown
function f , but in the light of expert preferential knowledge on abstract prop-
erties. The central idea is to use preferential feedback to model and utilize the
underlying higher-order properties that underpin preferential decisions about
designs. We propose Bayesian Optimization with Abstract Properties (BOAP)
for the optimization of f in the light of expert preferential inputs. First, we dis-
cuss expert knowledge about abstract properties. Next, we discuss GP modeling
of f with preferential inputs, followed by a model-selection step that is capable of
overcoming a futile expert bias in preferential knowledge. A complete algorithm
for BOAP is presented in Algorithm 1 at the end of this section.

3.1 Expert Preferential Inputs on Abstract Properties

In numerous scenarios, domain experts reason the output of a system in terms
of higher-order properties ω1(x), ω2(x), . . . of a design x ∈ X . However, these
abstract properties are rarely measured, only being accessible via expert prefer-
ential inputs. For instance, a material scientist designing spacecraft shield can
easily provide her pairwise preferences on the properties such as shattering,
shock absorption, i.e., “this design absorbs shock better than that design”, in con-
trast to specifying the exact measurements of shock absorption. These properties
can be simple physical properties or abstract combinations of multiple physical
properties which an expert uses to reason about the output of a system. We
propose to incorporate such qualitative properties accessible to the expert in
the surrogate modeling of the given objective function to further accelerate the
sample-efficiency of BO.

Let ω1:m(x) be a set of m abstract properties derived from the design x ∈ X .
For property ωi, design x is preferred over design x′ if ωi(x) > ωi(x′). We denote
the set of preferences provided on ωi as Pωi = {(x � x′) if ωi(x) > ωi(x′) | x ∈
X}.

Rank GPs for Abstract Properties. We capture the aforementioned expert
preferential data for each of the abstract properties ω1:m individually using m
separate rank Gaussian process distributions [23]. In conventional GPs the obser-
vation model consists of a map of input-output pairs. In contrast, the observation
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model of a rank (preferential) Gaussian process (GP) consists of a set of instances
and a set of pairwise preferences between those instances. The central idea here
is to capture the ordering over a set of n instances X = {xi |∀i ∈ Nn} by learning
latent preference functions {ωi | ∀i ∈ Nm}. We denote such a rank GP modeling
abstract property ωi by the notation GPωi

.
Let X ∈ R

d be a d−dimensional compact search space and X = {xi |∀i ∈ Nn}
be a set of n training instances. Let ω = {ω(x)} be the unobservable latent
preference function values associated with each of the instances x ∈ X. Let P
be the set of p pairwise preferences between instances in X, defined as:

P = {(x � x′)j if ω(x) > ω(x′) | x ∈ X,∀j ∈ Np}
where ω is the latent preference function. The observation model for the rank
GP distribution GPω modeling the latent preference function ω is given as:

D̄ = {x1:n, P = {(x � x′)j ∀x,x′ ∈ X, j ∈ Np}}
We follow the probabilistic kernel approach for preference learning [23] to

formulate the likelihood function and Bayesian probabilities. Imposing non-
parametric GP priors on the latent function values ω, we arrive at the prior
probability of ω given by:

P(ω) = (2π)−
n
2 |K|− 1

2 exp
(
− 1

2ω
ᵀK−1ω

)
(2)

With suitable noise assumptions N (0, σ̃2
η) on inputs and the preference rela-

tions (x,x′)1:p in P , the Gaussian likelihood function based on [29] is:

P((x � x′)i|ω(x), ω(x′)) = Φ
(
zi(x,x′)

)
(3)

where Φ is the c.d.f of standard normal distribution and z(x,x′) = ω(x)−ω(x′)√
2σ̃2

η

.

Based on Bayes theorem, the posterior distribution of the latent function given
the data is given by:

P(ω|D̄) =
P(ω)
P(D̄)

P(D̄|ω)

where P(ω) is the prior distribution (Eq. (2)), P(D̄) =
∫ P(D̄|ω)P(ω) dω is the

evidence of model parameters including kernel hyperparameters, and P(D̄|ω) is
the probability of observing the pairwise preferences given the latent function
values ω, which can be computed as a product of the likelihood (Eq. (3)) i.e.,
P(D̄|ω) =

∏
p P((x � x′)p|ω(x), ω(x′)). We find the posterior distribution using

Laplace approximation and the Maximum A Posteriori estimate (MAP) ωMAP as
the mode of posterior distribution. We can find the MAP using Newton-Raphson
descent given by:

ωnew = ωold − H−1g|ω=ωold (4)

where the Hessian H = [K+ σ̃2
ηI]

−1+C, and the gradient g = ∇ω log P(ω|D̄) =
−[K+ σ̃2

ηI]
−1ω +b, given bj = ∂

∂ω(xj)

∑

p

lnΦ(zp) and Cij = −∂2

∂ω(xi)∂ω(xj)

∑

p

lnΦ(zp).
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Hyperparameter Optimization. Kernel hyperparameters (θ) are crucial to
optimize the generalization performance of the GP. We perform the model selec-
tion for our rank-GPs by maximizing the corresponding log-likelihood in the light
of latent values ωMAP. In contrast to the evidence maximization mentioned in
[23] i.e., θ�

ω = argmaxθω
P(D̄|θω), we find the optimal kernel hyperparameters

by maximizing the log-likelihood (L̄) of rank GPs i.e., θ�
ω = argmaxθω

L̄. The
closed-form of log-likelihood of the rank GP is given as:

L̄=−1

2
ωᵀ

MAP
[K+ σ̃2

ηI]
−1ωMAP − 1

2
log|K+ σ̃2

ηI |−n

2
log(2π) (5)

3.2 Augmented GP with Abstract Property Preferences

To account for property preferences in modeling f , we augment the input x
of a conventional GP modeling f with the mean predictions obtained from
m rank GPs (GPω1:m) as auxiliary inputs capturing the property preferences
ω1:m, in other words, instead of modeling GP directly on x we model on
x̃ = [x, μω1(x), · · · , μωm

(x)], where μωi
is the predictive mean computed using:

μωi
(x) = kᵀ[K+σ2

ηI]
−1ωMAP

where k = [k(x,x1), · · · , k(x,xn)]ᵀ, K = [k(xi,xj)]i,j∈Nn
and xi ∈ X. To handle

different scaling levels in rank GPs, we normalize its output in the interval [0, 1],
such that μωi

(x) ∈ [0, 1].
Although we model x̃ using mean predictions μωi

(x), the uncertainty esti-
mates were not (directly) considered in the modeling. The GP predictive vari-
ance tends to be high outside of the neighborhood of observations, indicating
the uncertainty in our beliefs on the model. Therefore, a data point with high
predictive variance (σω1(x))

2 in rank GP indicates the model uncertainty. We
incorporate this uncertainty in our main GP modeling x̃ such that the effects of
predicted abstract properties μωi

(x) are appropriately reduced when the model
is uncertain i.e. when (σωi

(x))2 is high.
To achieve this, we formulate the feature-wise lengthscales as a function of

predictive uncertainty of the augmented dimensions to control their importance
in the overall GP. Note that augmented features can be detrimental when the
model is uncertain. To address this potential problem, we use a spatially varying
kernel [6] that treats the lengthscale as a function of the input, rather than a
constant. A positive definite kernel with spatially varying lengthscale is given as:

k(x,x′) =
d∏

i=1

√
2l(xi)l(x′

i)
l2(xi) + l2(x′

i)
exp

(
−

d∑

i=1

(xi − x′
i)

2

l2(xi) + l2(x′
i)

)
(6)

where l(·) is the lengthscale function and x ∈ R
d. In our proposed framework, we

model x̃ ∈ R
d+m and use lengthscale as a function l(·) only for the newly aug-

mented (m) dimensions and retain the lengthscales of the original (d) dimensions
to standard constant values i.e. l(xi) = li ∀i ∈ Nd. Therefore the overall kernel



BOAP: Bayesian Optimization with Abstract Properties 241

hyperparameter set is given as θ = [l1, · · · , ld, lω1(x), · · · , lωm
(x)]. As we need

lengthscale function to reflect the model uncertainty, we set lωi
(x) = αiσ̃ωi

(x),
where σ̃ωi

(x) is the normalized standard deviation of the rank GP predicted for
the abstract property ωi and αi is a scale parameter that is tuned using the stan-
dard GP log-marginal likelihood in conjunction with other kernel parameters.
The aforementioned lengthscales ensure that the data points x̃ with high model
uncertainty have higher lengthscale on the augmented dimensions and thus are
treated as less important.

The objective function is modeled on the concatenated inputs x̃ ∈ R
d+m

using the spatially varying kernel (Eq. (6)) k(x̃, x̃) ∀x̃ ∈ R
d+m and we denote

this function with augmented inputs x̃ as human-inspired objective function
h(x̃). The GP (GPh) constructed in the light of expert preferential data is then
used in BO to find the global optima of h(x̃), given as:

x� ∈ argmax
x∈X

h(x̃) (7)

The observation model is D = {(x, y = h(x̃) ≈ f(x))} i.e. the human-inspired
objective function h(x̃) is a simplified f(x) with auxiliary features in the input,
thus we observe the h(x̃) via f(x). The kernel hyperparameters associated with
GPh are denoted as θh given as θh = {l1:d, α1:m}.

3.3 Overcoming Inaccurate Expert Inputs

Up to this point we have assumed that expert input is accurate and thus likely
to accelerate BO. However, in some cases this feedback may be inaccurate, and
potentially slowing optimization. To overcome such bias and encourage explo-
ration we maintain 2 models, one of which is augmented by expert abstract
properties (we refer to this as Human Arm-h) and an un-augmented model (we
refer to this as Control Arm-f), and use predictive likelihood to select the arm
at each iteration.

The control arm models f directly by observing the function values at sug-
gested candidate points. Here, we fit a standard GP (GPf ) based on the data
collected i.e., D = {(x, y = f(x)+η)} where η ∼ N (0, σ2

η) is the Gaussian noise.
The GP distribution (GPf ) with hyperparameters θf = {l1:d} may be used to
optimize f using a BO algorithm.

At each iteration t, we compare the predictive likelihoods (Lt) of both the
human augmented arm (Arm-h) and the control arm (Arm-f) to select the arm
to pull for suggesting the next promising candidate for the function evaluation.
Then, we use Thompson Sampling (TS) strategy [18] to draw a sample St from
the GP distribution of the arm pulled and find its corresponding maxima given
as:

xh
t = argmax

x∈X
(Sh(x̃)); xf

t = argmax
x∈X

(Sf(x)) (8)

The arm with maximum predictive likelihood is chosen at each iteration and
we observe f at the suggested location i.e., (xh

t , f(xh
t )) or (xf

t, f(x
f
t)). Then rank

GPs are updated to capture the preferences with respect to the new suggestion
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xh
t or xf

t. This process continues until the evaluation budget T is exhausted. A
complete flowchart of our framework is shown in Fig. 2. Additional details of
BOAP framework are provided in the supplementary material (Sect. 9).
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Fig. 2. A complete process flowchart of our proposed BOAP framework.

Algorithm 1. BO with Preferences on Abstract Properties (BOAP)
Input: Sampling Budget T, Initial Samples: D1:t′ = {x1:t′ ,y1:t′}, Expert Preferences:
P ωi = {(x � x′)1:p | ∀i ∈ Nm}
1. for t = t′ + 1, · · · , T iterations do
2. optimize hyperparameters Θ�

t = {θ�
ω1:m , θ�

h, θ�
f} and update GPω1:m , GPh, GPf

3. compute predictive likelihoods Lh
t and Lf

t for Arm-h and Arm-f
4. if Lh

t > Lf
t, then

5. draw a random sample Sh
t from Arm-h using Thompson Sampling

6. maximize Sh
t to find xh

t = argmax
x∈X

(Sh
t (x̃))

7. xt = xh
t

8. else,
9. draw a random sample Sf

t Arm-f using Thompson Sampling
10. maximize Sf

t to find xf
t = argmax

x∈X
(Sf

t(x))

11. xt = xf
t

12. evaluate f at xt to obtain yt = f(xt) + ηt

13. augment data D = D ∪ (xt, yt) and update expert preferences P ω1:m w.r.t xt

14. x� = argmax y
(x,y)∈D

15. end for
16. return x�

4 Convergence Remarks

In this section we discuss the convergence of our BOAP algorithm in terms of
regret bounds. As we are dealing with human expert feedback in our algorithm,
it is difficult to make absolute statements as we are reliant on the accuracy of
the feedback given and the knowledge of the expert involved, which may be
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limited if the objective must explore less thoroughly understood areas of the
search space (so the expert learns alongside the GP model). Nevertheless, with
minimal assumptions we may draw some conclusions that help us to better
understand the impact of expert feedback, which is important not only to better
understand the potential of BOAP to accelerate convergence but also to give
insight into possible future directions.

BOAP may be understood as kernel learning in practice - the core distinction
between the human and control arms is that the human arm features an evolving
kernel (6). Assuming for simplicity that the human arm comes to dominate over
time (as measured by likelihood) then the influence of the kernel (6) on the con-
vergence of the BO algorithm is measured through the maximum information
gain γT (d), where d is the input dimension. For Thompson sampling type algo-
rithm the cumulative regret RT =

∑
t f(x�) − f(xt) is typically [4,30] bounded

as RT = O(
√

TγT (d)) (up to log factors), where the maximum information gain
γT (d) is governed by the kernel K through the eigenvalues λ1 ≥ λ2 ≥ . . . of the
covariance matrix KT evaluated on the observations {(xt, yt) : t ≤ T} [3]:

γT (d) ≤ 1
2

1− 1
e

max
(mt:

∑
t mt=T )

∑|D|
t=1 log

(
1 + σ−2mtλt

)
(9)

Moreover in [3] it is shown that the asymptotic behavior of γT (d) is controlled by
the dimension d of the input. Our key insight for the kernel (6) is that we can drop
features with lengthscales over a threshold without overly perturbing the kernel,
effectively replacing d with the number of features (deff) having lengthscales
below the threshold, bounding the resulting error so introduced.

Assuming that (a) expert observations obey a simple convergence assumption
maxx∈X ,t Kωi

(x,xt) = O(g(T )), where g(T ) → 0 as T → ∞, and (b) as T → ∞,
only deff < d of the lengthscales (augmenting or otherwise) satisfy ld, lωi

< lmax,
then, for the kernel (6), γT (d) ≤ γ̆T (deff)+O( deff

l2max
)+O(g(T )). In this expression

γ̆T (deff) is the maximum information gain for a deff dimensional SE kernel, i.e. [3]
γ̆T (deff) = O((log T )deff+1). Thus we would expect cumulative regret to satisfy:

RT = O
(√

T
(
(log T )deff+1 + deff

l2max

))
(10)

That is, the regret bound for BOAP, assuming the human arm dominates as
T → ∞, is the the regret bound for BO with effective dimension deff plus a
term that scales as the ratio of deff and the cut-off lengthscale l2max. The more
effectively the augmenting features are able to summarize the data in a useful
way that renders other features superfluous (i.e. minimizes deff), the tighter the
regret bound becomes. A detailed discussion on the maximum information gain
and the regret bounds is provided in the supplementary material (Sect. 10)

5 Experiments

We evaluate the performance of BOAP method using synthetic benchmark
function optimization problems and real-world optimization problems arising
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in advanced battery manufacturing processes. We have considered the follow-
ing experimental settings for BOAP. We use the popular Automatic Relevance
Determination (ARD) kernel [31] for the construction of both the rank GPs
and the conventional (un-augmented) GPs. For rank GPs, we tune ARD kernel
hyperparameters θd = {ld} using max-likelihood estimation (Eq. (5)). For the
augmented GP modeling x̃, we use a spatially varying kernel with a parametric
lengthscale function (See discussion in Sect. 3.2). As we normalize the bounds,
we tune ld (the lengthscale for the un-augmented features) in the interval [0.1, 1]
and the scale parameter α (for the auxiliary features) in the interval (0, 2]. Fur-
ther, we set signal variance σ2

f = 1 as we standardize the outputs.
We compare the performance of BOAP algorithm with the following state-

of-the-art baselines. (i) BO-TS: a standard Bayesian Optimization (BO) with
Thompson Sampling (TS) strategy, (ii) BO-EI: BO with Expected Improve-
ment (EI) acquisition function, and (iii) BOAP - Only Augmentation (BOAP-
OA): Here we run our algorithm without the 2-arm scheme and we only use aug-
mented input for GP modeling. This method shows the effectiveness of expert’s
inputs. We evaluate the performance of our method against the baselines by plot-
ting the simple regret (Rt) given by: Rt = f(x�)− max

x∈D1:t
f(x), where f(x�) is the

true optima of the objective function. We do not consider any preference based
BO methods [24,26] as baselines, because the preferences are provided directly
on the objective function, as opposed to abstract properties that are not mea-
sured directly. The additional details of our experimental setup are provided in
the supplementary material (Sect. 11).

5.1 Synthetic Experiments

We evaluate BOAP framework in the global optimization of synthetic benchmark
functions [32]. The list of synthetic functions used are provided in Table 1.

Emulating Preferential Expert Inputs: As discussed in Sect. 3.1, we fit a
rank GP using the expert preferences provided on designs based on their cogni-
tive knowledge. In all our synthetic experiments we set m = 2, i.e., we model
two abstract properties {ω1, ω2} for the considered synthetic function. We expect
the expert to know the higher order abstract features of each design x ∈ X . We
construct rank GPs by emulating the expert preferences based on such high level
features of the given synthetic function. The possible set of high level features
of the synthetic functions are mentioned in Table 1. We generate preference list
Pωi for each high level feature of the designs by comparing its utility. We start
with p =

(
t′

2

)
preferences in P , that gets updated in every iteration of the opti-

mization process. We construct rank GP surrogates {GPω1 ,GPω2} using Pω1

and Pω2 .
For a given d−dimensional problem, we have considered t′ = d + 3 initial

observations and allocate T = 10 × d + 5 budget. We repeat all our synthetic
experiments 10 times with random initialization and report the average sim-
ple regret [12] (along with its standard error) as a function of iterations. The
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convergence plots obtained for the optimization of synthetic functions after 10
runs are shown in Fig. 3. It is evident from the convergence results that our
proposed BOAP method has outperformed the standard baselines by a huge
margin, thereby proving its superiority. Further, it is also observed that BOAP-
OA, a BOAP variant without the 2-arm bandit strategy and just the augmented
GP (GPh), has a superior performance when compared to the baselines (BO-EI
and BO-TS), thereby indicating the usefulness of expert inputs in significantly
improving the performance of Bayesian optimization algorithm.

Table 1. Details of the synthetic optimization benchmark functions. Analytical forms
are provided in the 2nd column and the last column depicts the high level features used
by a simulated expert.

Functions f(x) High Level Features

Benchmark-1D exp(2−x)2 +exp
(6−x)2

10 + 1
x2+1

ω1 = exp(2−x)2 , ω2 = 1
x2

Rosenbrock-3D
d−1∑

i=1

[100 × (xi+1 − x2
i )

2 + (xi − 1)2]ω1 = (x3 − x2
2)

2 + (x2 − x2
1)

2

ω2 = (x2 − 1)2 + (x1 − 1)2

Griewank-5D
d∑

i=1

[
x2

i
4000

−
d∏

i=1

cos
(

xi√
i

)
+ 1

]

ω1 =
d∑

i=1

x2
i , ω2 =

d∏

i=1

cosxi

Fig. 3. Simple regret vs iterations for robustness experiments using synthetic multi-
dimensional benchmark functions. We plot the average regret (along with its standard
error) obtained after 10 random repeated runs.

To demonstrate the robustness of our approach we have conducted addi-
tional experiments by accounting for the inaccuracy or poor choices in expert
preferential knowledge. Here, we show the robustness of our BOAP approach in
two scenarios. First, we show the performance of our proposed approach when
the higher order abstract properties are poorly selected. Second, we incorpo-
rate noise in the expert preferential feedback by flipping the expert preference
between two inputs (designs) with a probability δ. We now discuss in detail the
aforementioned two variations of our proposed method.
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Inaccurate Abstract Properties (BOAP-IA). In the first variation, we
assume that the expert poorly selects the human abstraction features. Table 2
depicts the synthetic functions considered and the corresponding (poorly chosen
or uninformative) human abstraction features (ω1 and ω2). BOAP-IA uses such
inaccurate human abstract features while augmenting the original input space.

Table 2. Selection of abstract (uninformative) features by a simulated human expert.
The human abstraction (high level) features shown in the 3rd column are deliberately
selected to be uninformative.

Functions f(x) Human Abstraction Features

Benchmark-1D exp(2−x)2 +exp
(6−x)2

10 + 1
x2+1

ω1 = sinx, ω2 = cosx

Rosenbrock-3D
d−1∑

i=1

[100 × (xi+1 − x2
i )

2 + (xi − 1)2]ω1 = sinx, ω2 = cosx

Griewank-5D
d∑

i=1

[
x2

i
4000

−
d∏

i=1

cos
(

xi√
i

)
+ 1

]

ω1 = sinx, ω2 = x3

Noisy Expert Preferences (BOAP-NP). In the second variation, we
account for the inaccurate expert preferential knowledge by introducing an error
in human expert preferential feedback. To do this, we flip the preference ordering
with a probability δ i.e., Pω,δ = {(xi � xj) |xi,xj ∈ x1:n, νij ω(xi) > νij ω(xj)},
where νij is drawn from a random distribution such that it is +1 with proba-
bility 1 − δ, −1 with probability δ. In this set of experiments we have set the
probability δ = 0.3.

We evaluate the performance by computing the simple regret after 10 × d
iterations. The empirical results for BOAP with inaccurate features (BOAP-
IA) and BOAP framework with noisy preferences (BOAP-NP) are presented in
Fig. 4. Although the expert preferential knowledge is noisy and inaccurate, it is
significant from the results that our proposed BOAP framework outperforms the
standard baselines. We believe that the superior performance of BOAP variants
is due to the model selection based safeguard mechanism that uses 2-arm scheme
to intelligently select the arm with the maximum predictive likelihood to suggest
the next sample.

5.2 Real-World Experiments

We demonstrate the performance of BOAP in two real-world optimization use-
cases in Lithium-ion battery manufacturing that are proven to be very complex
and expensive in nature, thus providing a wide scope for the optimization. Fur-
ther, battery scientists often reveal additional knowledge about the abstract
properties in the battery design space and thus providing a rich playground
for the evaluation of our framework. We refer to the supplementary material
(Sect. 11.2) for the detailed experimental setup.
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Fig. 4. Simple regret vs iterations for the synthetic multi-dimensional benchmark func-
tions. We plot the average regret (along with its standard error) obtained after 10
random repeated runs.

Optimization of Electrode Calendering. In this experiment, we consider
a case study on the calendering process proposed in [33]. The authors analyzed
the effect of parameters such as calendering pressure (εcal), electrode porosity
and electrode composition on the electrode properties such as electrolyte con-
ductivity, tortuosity (both in solid phase (τsol) and liquid phase (τliq)), Current
Collector (CC), Active Surface (AS), etc. We define an optimization paradigm
using the data grid published in [33].

We use our proposed BOAP framework to optimize the electrode calendering
process by maximizing the Active Surface of electrodes by modeling two abstract
properties: (i) Property 1 (ω1): Tortuosity in liquid phase τliq, and (ii) Prop-
erty 2 (ω2): Output Porosity (OP). We simulate the expert pairwise preferential
inputs {Pωτliq , PωOP} by comparing the actual measurements reported in the
dataset published in [33]. We consider 4 initial observations and maximize the
active surface of the electrodes for 50 iterations. We compare the performance
of our proposed BOAP framework by plotting the average simple regret (along
with its standard error) after 10 repeated runs with random initialization. The
convergence results obtained for the electrode optimization are shown in Fig. 5a.

Electrode Manufacturing Optimization. The best battery formulation and
the optimal selection of process parameters is crucial for manufacturing long-
life and energy-dense batteries. [34] analyzed the manufacturing of Lithium-ion
graphite based electrodes and reported the process parameters in manufacturing
a battery along with the output charge capacities of the battery measured after
certain charge-discharge cycles. In our experiment, we use BOAP to optimally
select the manufacturing process parameters to design a battery with maximum
endurance i.e., a battery that can retain the maximum charge after certain
charge-discharge cycles. We consider Anode Thickness (AT) and Active Mass
(AM) as abstract properties {ωAT, ωAM} to maximize the battery endurance
E = D50

D5
, where D50 and D5 are the discharge capacities of the cell at 50th

and 5th cycle, respectively. We consider 4 initial observations and maximize the
endurance of the cell for 50 iterations. We compare the performance by plotting
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the average simple regret versus iterations after 10 random repeated runs. The
convergence results obtained for maximizing the endurance is shown in Fig. 5b.

Fig. 5. Simple regret vs iterations for battery manufacturing optimization experiments:
(a) Optimization of electrode calendering process (b) Optimization of the battery
endurance.

It is evident from Fig. 5 that BOAP is superior to the baselines due to its
ability to model the abstract properties of the battery designs that can be ben-
eficial in accelerating BO performance. Similar to the trends observed in the
synthetic experiments, BOAP-OA with just the augmented inputs has outper-
formed the standard baselines (BO-EI and BO-TS), thereby proving again the
benefits of expert inputs in boosting the optimization performance. The supple-
mentary material along with the necessary implementation details and the code
snippets are available at https://github.com/mailtoarunkumarav/BOAP.

6 Conclusion

We present a novel approach for human-AI collaborative BO for modeling the
expert inputs on abstract properties to further improve the sample-efficiency of
BO. Experts provide preferential inputs about the abstract and unmeasurable
properties. We model such preferential inputs using rank GPs. We augment the
inputs of a standard GP with the output of such auxiliary rank GPs to learn
the underlying preferences in the instance space. We use a 2-arm strategy, a key
safeguard that provides assurance to utilize only relevant and accurate expert
preferential inputs in the modeling, thus overcoming any futile expert bias. We
discuss the convergence of our proposed BOAP framework. The experimental
results show the superiority of our proposed BOAP algorithm.
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