
Rejection Ensembles with Online
Calibration

Sebastian Buschjäger(B)

The Lamarr Institute for Machine Learning and Artificial Intelligence,
TU Dortmund University, Dortmund, Germany

sebastian.buschjaeger@tu-dortmund.de

Abstract. As machine learning models become increasingly integrated
into various applications, the need for resource-aware deployment
strategies becomes paramount. One promising approach for optimiz-
ing resource consumption is rejection ensembles. Rejection ensembles
combine a small model deployed to an edge device with a large model
deployed in the cloud with a rejector tasked to determine the most suit-
able model for a given input. Due to its novelty, existing research pre-
dominantly focuses on ad-hoc ensemble design, lacking a thorough under-
standing of rejector optimization and deployment strategies. This paper
addresses this research gap by presenting a theoretical investigation into
rejection ensembles and proposing a novel algorithm for training and
deploying rejectors based on these novel insights. We give precise condi-
tions of when a good rejector can improve the ensemble’s overall perfor-
mance beyond the big model’s performance and when a bad rejector can
make the ensemble worse than the small model. Second, we show that
even the perfect rejector can overuse its budget for using the big model
during deployment. Based on these insights, we propose to ignore any
budget constraints during training but introduce additional safeguards
during deployment. Experimental evaluation on 8 different datasets from
various domains demonstrates the efficacy of our novel rejection ensemble
outperforming existing approaches. Moreover, compared to standalone
large model inference, we highlight the energy efficiency gains during
deployment on a Nvidia Jetson AGX board.

Keywords: Ensemble Learning · Learning with Rejection ·
Resource-aware Machine Learning

1 Introduction

In recent years, the pervasive integration of machine learning models into various
applications has underscored the importance of resource-aware deployment. Most

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-70365-2_1.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
A. Bifet et al. (Eds.): ECML PKDD 2024, LNAI 14946, pp. 3–20, 2024.
https://doi.org/10.1007/978-3-031-70365-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-70365-2_1&domain=pdf
http://orcid.org/0000-0002-2780-3618
https://doi.org/10.1007/978-3-031-70365-2_1
https://doi.org/10.1007/978-3-031-70365-2_1


4 S. Buschjäger

famously, Deep Learning is one of the most resource-hungry technologies avail-
able, and therefore, a large body of the literature tries to improve the resource
usage of Deep Learning (see [19] for a recent overview). Similarly, approaches for
improving the resource usage of non-Deep Learning approaches, such as Random
Forests [3,4] or graphical models [21], have also been discussed in the literature.
Last, as ML models find their way into critical decision-making processes across
diverse domains, there is a growing need for strategies that balance fast model
application and the opportunity for human model inspection. This, again, leads
to a resource-accuracy trade-off. For example, consider a medical scenario in
which a machine-learning model autonomously diagnoses patients. Naturally,
such a model will not always be correct, and human supervision and interven-
tion are sometimes necessary. Hence, we have to balance human supervision and
autonomous predictions during deployment.

One area of research reduces resource consumption through the fusion of
small and large models into an ensemble coupled with a rejector (sometimes
called a router) that determines the most suitable model for a given input [2,8,
12]. Such a rejection ensemble first applies the small model alongside the rejector
and, if the rejector accepts the output of the small model, serves it. If the rejector
rejects the small model’s prediction, it also queries the big model (e.g., the doctor
in the previous example) for additional help. Such an approach can reduce the
overall resource consumption of the system if the small model is used most of
the time while maintaining competitive predictive performance due to the big
model.

The current literature on rejection ensembles mostly focuses on the ad-hoc
design of rejection ensembles. The design and training of a good rejector is
difficult and poorly understood. Moreover, while a budget is typically introduced
during training to capture how often the big model can be queried, it is no longer
considered during deployment. Hence, a deployed system might query the big
model too often (i.e., overuse its budget) and – in the worst case – only query
the big model if no additional safeguards are employed.

To address these issues, this paper presents the first theoretical investigation
of learning rejection ensembles and derives practical insights from it. To this end,
we propose a novel algorithm for training the rejector based on our theoretical
insights and introduce a novel algorithm that ensures that the budget is always
kept during deployment. More precisely, our contributions are as follows:

– Theoretical Investigation: We offer a thorough theoretical investigation
of the impact of the rejector on the ensemble. We give precise conditions of
when a good rejector can improve the ensemble’s overall performance beyond
the big model’s performance and when a bad rejector can make the ensemble
worse than the small model. Second, we show that even the perfect rejector
can overuse its budget during deployment. Third, we give an example of when
a rejector should not trust the outputs of the small and big models but learn
its own decision boundary based on the input data.

– Novel Algorithm: Based on our theoretical investigation, we propose
to ignore any budget constraints during training but introduce additional



Rejection Ensembles with Online Calibration 5

safeguards during deployment. For training the rejector, we introduce a novel
training algorithm based on so-called virtual labels capturing when to use the
small and when to use the big model. For deployment, we introduce safeguards
that essentially rank the rejector’s output during deployment and ensure we
always adhere to the prediction budget.

– Experimental Evaluation: We experimentally evaluate our proposed algo-
rithm on 8 datasets from various domains and execute it on a Nvidia Jetson
AGX board. We show that our novel rejection ensemble outperforms other
ensembles while keeping the budget during deployment. Moreover, we high-
light that these rejection ensembles use less energy during deployment com-
pared to simply running the big model. The code for these experiments is
available under https://github.com/sbuschjaeger/rewoc.

This paper is organized as the following: Sect. 2 introduces the notation and
related work. Section 3 presents our main theoretical findings, whereas Sect. 4
translates these into a practical algorithm. Section 5 then discusses the experi-
ments, whereas Sect. 6 concludes the paper.

2 Notation and Related Work

We consider a supervised classification setting in which training and test points
are drawn i.i.d. according to some distribution D over the input space X ⊆ R

d of
d-dimensional feature vectors and labels Y = {1, . . . , C}, where C is the number
of classes. We are interested in a classifier triplet that we call Rejection Ensemble:

f(x) = (fs, fb, r) (x) =

{
fs(x) if r(x) = 0
fb(x) else

(1)

Conceptually, fs : X → Y is a small model whose predictions can be easily
explained by a human and/or a model that does not use many resources, e.g.
a Decision Tree. Similarly, fb : X → Y is a big model whose predictions cannot
be easily explained, and its execution might require many resources, such as
e.g. a large neural network running in the cloud. Naturally, we want to use the
small model as often as possible to make predictions explainable and the overall
system more resource-efficient. At the same time, a small model might not be
powerful enough to provide (good) predictions for certain inputs. Hence, we
use a rejection function r : X → {0, 1} that outputs 1 if we should reject the
small model’s prediction and use the big model instead. For training the triplet
(fs, fb, r), we have given a (user-defined) budget1 p ∈ [0, 1], which defines how
often we can query the big model. For example, a budget of p = 1 means we
can always query the big model, a budget of p = 0 means we should never query

1 Sometimes this is called the coverage, if there is no big model available and the small
model abstains from a prediction.

https://github.com/sbuschjaeger/rewoc


6 S. Buschjäger

it, and everything in between allows for some queries of the small and the big
model. Given a loss � : RC × Y → R≥0 our goal is to find a model such that

f∗ = (f∗
s , f∗

b , r∗) = argmin
f

ED[�(f(x), y)] s.t. ED[r(x)] ≤ p (2)

Since D is typically unknown, we use a labeled training dataset S =
{(xi, yi)}mi=1 to approximate Eq. 2 with its empirical counterpart:

f∗ = (f∗
s , f∗

b , r∗) = argmin
f

1
m

m∑
i=1

�(f(xi), yi) s.t.
1
m

m∑
i=1

r(xi) ≤ p (3)

For convenience, we further define the predictions of fs, fb, f as ys, yb, yf and
the corresponding confidences as cs, cb, cf :

ys(x) = argmax
j=1,...,C

fs(x)j , yb(x) = argmax
j=1,...,C

fb(x)j , yf (x) = argmax
j=1,...,C

f(x)j

cs(x) = max
j=1,...,C

fs(x)j , cb(x) = max
j=1,...,C

fb(x)j , cf (x) = max
j=1,...,C

f(x)j

2.1 Related Work

Several approaches in the literature focus on classification with a reject option.
Arguably, the largest collection of works focuses on training a classifier tuple
(f, r) where f is the prediction model and r is the rejector. The rejector can
output a designated REJECT token, meaning that the model’s prediction should
be ignored. In this setting, the rejector is chosen such that f covers a certain
percentage of the input space, and f is chosen to maximize the classification
performance on the covered subspace. This way, a trade-off between the (likely
better) performance of f on smaller subspaces and maximizing the coverage
through r is introduced. The first works [5,6] in this area introduce a cost model
(c.f. [23]) that balances the costs of rejection and its miss-classification. Subse-
quent theoretical works in this direction further refine this idea by developing
new loss functions based on the hinge loss [1], introducing Bayes consistent loss
functions [18], and studying the Rademacher complexity of such a classifier pair
[7]. A second line of research is introduced in [22], sometimes called the bounded
improvement model (c.f. [23]), which does not assign specific costs to rejection
but views training a pair (f, r) as a min-max problem in which the goal is to
maximize coverage while minimizing the error. A recent example is presented in
[10], which introduces a novel ‘selection with a guaranteed risk’ algorithm that
dynamically adjusts the bounds for confidence scoring of a pre-trained classifier.
Similarly, SelectiveNet [11] is a neural network architecture that includes a reject
option and is trained based on a convex combination of classification and cover-
age loss. Finally, some works in the literature also discuss the joint training of
the model and the rejector without explicitly considering costs or coverage. For
example, [15] studies the joint learning of the rejector and classification model
by drawing inspiration from portfolio theory. Here, the authors introduce the



Rejection Ensembles with Online Calibration 7

REJECT token as an additional class and a novel information-centric loss func-
tion that uses the REJECT token for better optimization. Last, Madras et al.
study an edge case similar to our setting in [17], in which the small model can
PASS an observation to a domain expert. However, their study focuses on fairness
and does not introduce a budget constraint for optimization.

The framework presented in this paper extends prior work by using a clas-
sifier triplet (fs, fb, r) instead of a classifier tuple. Clearly, this generalization
recovers the classification with rejection framework by setting the big model to
output a constant reject value fb(x) = REJECT so that whenever r(x) = 1, we
output the REJECT token. Training such a triplet is much more difficult because
we cannot rely on the coverage as a guideline: When training a classifier with a
reject option, we can essentially ignore parts of the input space by training the
rejector r accordingly. However, when training a triplet, rejecting an observation
means that the big model is tasked to provide a prediction. Hence, the rejector
must take the shortcomings of the small and the big models into account and
only transfer those samples to the big model when it can be sure that the big
model will likely answer correctly to minimize the overall resource consumption.
To our knowledge, only three articles in the literature utilize this more general
framework. In [12], the authors propose a novel hybrid learning method in which
a triplet is trained using a Frank-Wolfe-style algorithm. First, they start with a
random rejector, which assigns training examples to a large and a small Deep
Neural Network. After these two models are trained, the rejector is updated
based on the overall performance, and the process is then repeated until conver-
gence. Notably, the rejector only receives the outputs of the small model as input
to minimize resource consumption. The resulting hybrid system achieves better
ImageNet accuracy over inference latency and energy used. In [2,8], the authors
deal with the problem of Human Activity Recognition by using a similar hybrid
system that combines models from different model classes, i.e., a decision tree
(DT) and a CNN. In [8], the authors introduce a multi-step learning process that
first fits a decision tree on the entire task (i.e., all samples with all labels) and
then iteratively merges the labels of samples that are too difficult in a common
FALLBACK class. Finally, a DT is trained on all unchanged ‘easy’ samples and all
difficult samples with the novel FALLBACK class assigned to them, whereas a CNN
is trained on all available difficult samples with their original classes. While [8]
shows the feasibility of this approach on a microcontroller unit (MCU), [2] goes
one step further and deploys the DT model to the sensor directly by leveraging
in-sensor computation and only executing the CNN on the MCU when necessary.

3 A Theoretical Investigation of Rejection

The adaption of Rejection Ensembles shows promising successes in practice [2,8,
12]. We extend this work by investigating the theoretical properties of Rejection
Ensembles with a particular focus on the rejector r. To this end, we assume
that the small model fs and the big model fb are already trained and given to
us for deployment. We assume that fb generally performs better than fs, but



8 S. Buschjäger

we do not have any special requirements towards fs and fb. In particular, our
discussion here does not assume any special model class or training algorithm for
the small and big models. Last, we assume that during deployment we receive
data in batches T = {x1, . . . , xN} of N data points for prediction and our task
is to provide a labeled set {(x1, f(x1)), . . . , (xM , f(xN ))}. We highlight three
theoretical insights about the rejector in this setting.

3.1 Three Distinct Situations Can Occur When Training
the Rejector

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Γs

Γb

III

II

I

p

Γf

Fig. 1. Number of correctly classified samples over the rejection rate p for three
archetypical examples. Γ{f,s,b} denotes the number of correctly classified samples of
the ensemble and the small and big model respectively. The green area III marks
improved performance in which the ensemble outperforms the big model while being
more resource-efficient. The blue area II marks an accuracy-resource trade-off in which
the ensemble underperforms compared to the big model but uses fewer resources.
Finally, the red area I marks where the combined model performs worse than the
small model and is more resource-hungry. The example curves in grey illustrate three
different archetypical behaviors, although they highly depend on the specific models,
data, and task. (Color figure online)

We identify three distinct situations that can occur when training a rejector: 1)
A bad rejector can destroy the performance of both models by always choosing
the wrong model for a given sample. For example, if the small model is correct,
it might choose the big one instead, and if the big one is correct, it chooses the



Rejection Ensembles with Online Calibration 9

small model. 2) If the big model is always better than the small model, i.e.,
∀x, y ∼ D : �(fb(x), y) ≤ �(fs(x), y) then the Rejection Ensemble will never
be better than the big model. However, the rejector can try to find situations
in which the small model makes the same prediction (ys(x) = yb(x)) as the
big model. Compared to fb this will not increase the overall accuracy, but it
decreases resource consumption while maintaining a comparable performance.
3) Both models complement each other through the rejector. Whenever fs would
be wrong, the rejector uses fb instead, and whenever fs is correct (and fb might
be wrong), fs is used. This way, the overall accuracy might exceed the accuracy
of fb, resulting in a better and more resource-friendly ensemble. An illustration
of these three cases is depicted in Fig. 1 and Theorem 1 formally establishes the
conditions for each case.

Theorem 1. Consider a binary classification problem with C = 2. Let (fs, fb, r)
be a rejection ensemble with budget p and let S ∼ Dm be a sample with m data
points. Define the following:

Γs =
∑

(x,y)∈S
1{ys(x) = y}, Nsb̄ =

∑
(x,y)∈S

1{ys(x) = y �= yb(x)}

Γb =
∑

(x,y)∈S
1{yb(x) = y}, Ns̄b =

∑
(x,y)∈S

1{yb(x) = y �= ys(x)}

Γf =
∑

(x,y)∈S
1{yf (x) = y}, Nsb =

∑
(x,y)∈S

1{ys(x) = yb(x) = y}

Let P = 	p · m
, then the following holds:

1. For all rejectors the following lower bound holds: Nsb+max{Nsb̄−P, 0} ≤ Γf

2. If Γb − P ≥ Γs, then Γs is a lower bound for Γf , i.e. Γs ≤ Γf

3. If Γb ≤ Γs + P , then Γb is a lower bound for Γf , i.e. Γb ≤ Γf

Proof. It holds that Γs = Nsb + Nsb̄ and Γb = Nsb + Ns̄b. Further, it holds that

Γf = Nsb + Nsb̄ +min{P,Ns̄b} = Nsb + Nsb̄ +min{P, Γb − Nsb}

since we can only use the big model up to P times and have to revert to the
small model otherwise. Given this, we proof each statement separately:

1. A worst-case rejector would always choose the big model when the small
model is correct and vice versa. For those samples on which both models
agree this is impossible, i.e., Nsb is a trivial lower bound for the performance
of the worst rejector. Moreover, due to the budget, the rejector can only
choose the big model up to P times, leading to

Nsb +max{Nsb̄ − P, 0} ≤ Γf

2. We want to show that Γs is a lower bound for Γf given Γb − P ≥ Γs:

Γs ≤ Γf ⇔ Γs < Nsb + Nsb̄ +min{P, Γb − Nsb} = Γs +min{P, Γb − Nsb}
⇔0 ≤ min{P, Γb − Nsb}



10 S. Buschjäger

Note that 0 ≤ P is true by definition of P . Similarly, 0 ≤ Γb−Nsb ⇔ Nsb ≤ Γb

is true due to the assumption Γb − P ≥ Γs.
3. We want to show that Γb is a lower bound for Γf given Γb < Γs + P :

Γb ≤ Γf ⇔ Γb < Nsb + Nsb̄ +min{p, Γb − Nsb} = Γs +min{P, Γb − Nsb}

We check both min− cases individually:

Γb ≤ Γs + Γb − Nsb ⇔ Nsb ≤ Γs

Γb ≤ Γs + P ⇔ Γb − P ≤ Γs

The first case Nsb ≤ Γs always holds by definition of Nsb and Γs, whereas the
second case Γb − P ≤ Γs holds by assumption. Hence, if Γb − P ≤ Γs holds,
then Γb ≤ Γf . �

Theorem 1 shows that both a good rejector and well-trained models are cru-
cial for good performance. Surprisingly, it also implies that the small model is
much more important for the overall performance because it will be queried most
of the time. The big model only needs to perform well on those P = 	p ·m
 data
points on which the small model underperforms and hence has a much smaller
impact overall. Therefore, a good rejector should always favor the small model
as much as possible and carefully pick those P samples.

3.2 Even a Perfect Rejector Will Overuse Its Budget

Recall that the rejector in [2,8,12] is trained to pick the big model at most
p times on average during training. Unfortunately, there is no guarantee that
the rejector will satisfy this constraint during deployment without further safe-
guards. Consider a deployed model (fs, fb, r), and a given batch T of N samples
that should be classified. Since during training ES [r(x)] ≤ p we hope that dur-
ing deployment it also holds that ET [r(x)] ≤ p but clearly we can construct
corner cases in which this is not true. More critically, even if the estimation of
ED[r(x)] = ES [r(x)] during training is perfect and we have the perfect rejector
with ED[r(x)] ≤ p, then there is still a non-zero chance to find a sample T that
forces us to overuse the big model breaking our budget p, i.e., a sample with
ET [r(x)] > p. Theorem 2 formalizes this insight. Its proof utilizes the fact that
ET ∼DN [r(x)] is normally distributed around ED[r(x)] due to the central limit
theorem. Conversely, for N < ∞, the standard deviation of this normal distri-
bution is larger than 0 so that there is a non-zero chance to find values above
the mean ED[r(x)].

Theorem 2. Assume we have given the Bayes optimal classifier (f∗
s , f∗

b , r∗) =
argminf ED[�(f(x), y)] s.t. ED[r(x)] ≤ p and ED[r(x)] ∈ (0, 1). Then there exists
a sample T ∼ DN such that ET [r(x)] = 1

N

∑N
i=1 r(xi) > p.



Rejection Ensembles with Online Calibration 11

Proof. Consider a sample T ∼ DN and the empirical mean p̂ = 1
N

∑N
i=1 r(xi).

For a sufficiently large N the empirical mean p̂ is normal distributed due to the
central limit theorem with p̂ ∼ N (μ, σ) where

μ = ED[r(x)]

σ =
VD[r(x)]√

N
=

μ(1 − μ)√
N

Let Φ denote the CDF of a Gaussian distribution. Then there is a non-zero
probability P (p̂ > p) = Φ(p̂) > 0, given M < +∞ and μ(1− μ) �= 0 which holds
due to the assumption that μ = ED[r(x)] ∈ (0, 1). Hence, there exists a sample
T such that r(x) is queried more often than p. �

3.3 A Rejector Should Not Trust fs and fb

Arguably, the most straightforward rejector that always adheres to the budget
p only selects the big model up to P = 	N · p
 times during deployment. In this
case, we do not necessarily need to train a rejector, as we could simply trust the
small model’s outputs to determine if it is in doubt about a sample or not. More
formally, we query the small model for all N data points, sort them according to
a confidence score (e.g., the model’s uncertainty), and then select those P data
points with the smallest scores to be predicted by the big model. The pseudocode
for this algorithm is depicted in Algorithm 3.1, where T is the current batch and
p is the budget. For general applicability (we will re-visit Algorithm3.1 in the
next section), we explicitly include the rejector r as a parameter. However, note
that using the confidence scores of the small model as rejector means we set
r = fs in the parameters, i.e., use confidence_thresholding(fs, fb, fs, T , p) so
that no rejector r is necessary.

Implicitly, this algorithm trusts that the small model can express its confi-
dence accurately. Unfortunately, this is not guaranteed without further assump-
tions on fs, and we argue that any rejector that blindly trusts the output prob-
abilities of a model can be fooled. And indeed, we can easily construct a simple
counter-example in which the big model is a decision tree of depth 2, which is
overly confident (but wrong), and the small model is a decision tree of depth
1, which is uncertain (but correct) for some samples. Theorem 3 formally estab-
lished this argument and shows that – in the worst case – the lower bound in
Theorem 2 can be realized.
Algorithm 3.1: Confidence Thresholding.
1 Function confidence_thresholding(fs, fb, r, T , p):
2 s ← (cr(x1), . . . , cr(xN ))

// Confidences of r
3 s, x ← sorted(s, x) // Sort confidences ascending
4 P ← 	N · p
 // Set cutoff
5 return {(xi, ys(xi)1{cr(xi) > sP } + yb(xi)1{cr(xi) ≤ sP })}Ni=1



12 S. Buschjäger

Theorem 3. Given two models fs, fb, a batch T of N data points, and a
budget p ∈ [0, 1], then confidence thresholding of the small model fs, i.e.,
using confidence_thresholding(fs, fb, fs, T ,p), can have a performance that
matches the lower bound 1 in Theorem 1, i.e.

Γf = Nsb +max{Nsb̄ − P, 0}

Proof. We give an example situation with two decision trees. Consider a one-
dimensional example x ∈ [0, 10] with two classes y ∈ {0, 1} that are assigned by
the following rule:

y =

⎧⎪⎨
⎪⎩
0 if x ≤ 5
1 if 5 < x ≤ 7.5
0 if 7.5 < x

We have gathered the following training data: S = {(3, 0.2), (3.5, 0.2),
(4, 0.2), (6, 0.2), (6.5, 0.2), (8, 0.2), (8.5, 0.2), (9, 0.2), (9.5, 0.2)}. We trained two
trees fb and fs as depicted in Fig. 2 using the CART algorithm. Clearly, fb
performs better most of the time than fs. However, for any x ∈ (7.25, 7.5), it
is very confident in its prediction (fb(x) = 1) and fs is comparably unconfi-
dent (fs = 4/6). Now consider a batch of N data points that fall exactly in the
region of x ∈ (7.25, 7.5). Here, we should always pick the small model because –
although unconfident – it is correct. However, confidence_thresholding picks
at least P = 	Np
 predictions from the big model, leading to a performance of
Γf = Nsb + Nsb̄ − P .

5 7.25

fb:

x < 5

x < 7.25

4
4 | 0

4
0
2 | 2

2
3
3 | 0

3

5

fs:

x < 5

3
3 | 0

3
2
6 | 4

6

Fig. 2. Two decision trees trained on the sample S = {(3, 0.2), (3.5, 0.2), (4, 0.2),
(6, 0.2), (6.5, 0.2), (8, 0.2), (8.5, 0.2), (9, 0.2), (9.5, 0.2)}. The color-shaded area marks the
correct class, and the samples are depicted as ‘-’ and ‘+’. Each leaf node shows the
empirical class probabilities for both classes, where the left entry represents the nega-
tive ‘-’ class and the right entry represents the positive class ‘+’.

�



Rejection Ensembles with Online Calibration 13

4 Training a Rejector for a Rejection Ensemble

The previous section discussed the theoretical properties of a (good) rejector,
which we summarize as follows: First, a good rejector should not (blindly) use the
confidence scores of the small model (c.f. Theorem 3). Hence, we argue against
training the rejector on the outputs of the small model (i.e., fs(x)) but propose
using the input data x or intermediate transformations such as, e.g., embeddings
of a Neural Network derived from fs directly. Second, a rejector will likely overuse
its budget during deployment. Hence, if the budget is a hard constraint, we must
employ additional safeguards (c.f. Theorem 2). Therefore, we argue that we can
simplify the training of r by ignoring any budget constraints during training, but
we add additional safeguards during deployment that handle these constraints.
Third, a rejector can improve the overall performance over fb if fs performs well
and is sufficiently different from fb. Hence, the training of r should favor the
small model in all cases where it is correct and only use fb if fs is incorrect
(c.f. Theorem 1). To this end, we propose Algorithm4.1 for training a rejection
ensemble. It receives the models fs and fb and applies them to the given training
set S. Then, it generates virtual labels that are 1 if both models disagree and the
big model is correct. Otherwise, it assigns the label 0 to a sample. Finally, the
rejector is trained on the original observations (or intermediate representations
if available) with the new labels.

Algorithm 4.1: Training of Rejection Ensembles via virtual labels.
1 Function fit(fs, fb, S):
2 V = ∅ // Virtual Labels for r
3 for i = 1, . . . , m do
4 if ys(xi) = yb(xi) then
5 vi ← 0 // Both models agree. Pick the small model
6 else
7 if yb(xi) = yi then
8 vi ← 1 // Big model is correct, pick it.
9 else

10 vi ← 0 // Big model is wrong. Use the small model.
11 end if
12 end if
13 V ← V ∪ {(xi, vi)}
14 end for

// Train r by minimizing � over V. fs, fb do not change
15 r ← argminr

1
m

∑
(x,v)∈V �(r(x), v)

16 return (fs, fb, r)

Ensuring that the rejector satisfies the budget constraint during deployment
is more challenging. For clarity, we now assume that the rejector outputs a confi-
dence score, i.e., it is a function r : X → [0, 1]. Then we can use Algorithm 3.1 to



14 S. Buschjäger

sort the confidence scores of the rejector in ascending order and only use the big
model up to 	Np
 times, i.e. using confidence_thresholding(fs, fb, r, T , p).
Notably, this algorithm now assumes that r(x) reflects the propensity of the
rejector to favor the big model instead of trusting fs. We argue that this is a
more favorable scenario, as we can focus our energy entirely on training a good
rejector instead of training three models at once.

5 Experiments

We now experimentally validate our findings in Theorem 1 and Theorem 2. Fur-
ther, we show that training via virtual labels and online calibration outperforms
existing methods. To do so, we perform two sets of experiments on the datasets
listed in Table 1. The first experiment uses Deep Learning models evaluated on
CIFAR100 and ImageNet, whereas the second experiment uses decision trees
evaluated on several UCI datasets. We compare four different methods: For our
baseline, we follow the established approaches of [2,8,12] by using confidence
scores for training the rejector. More formally, we apply the small model to the
training data and sort it according to the confidence score of the small model.
Then, we assign a 1-label to the 	Np
 examples with the smallest scores, whereas
the remaining samples receive a 0-label. Finally, we train the rejector with these
new labels. Note that, by construction, this approach satisfies the budget for the
training data if the rejector is sufficiently accurate. We call this approach con-
fidence labels. As a variation of this baseline, we combine a rejector trained via
confidence labels with Algorithm 3.1, i.e., with confidence calibration, and call
this method confidence calibrated. Third, we use Algorithm 4.1 to train the rejec-
tor and call this approach virtual labels, and finally, we combine Algorithm 4.1
and Algorithm 3.1 into virtual labels calibrated. The code for these experiments
is available under https://github.com/sbuschjaeger/rewoc. Additional ablation
studies on the UCI datasets can be found in the full version of the paper available
in the code repository.

Table 1. Datasets used for the experiments.

Dataset # Samples Dimensionality # Classes

ImageNet [24] 50 000 3 × 224 × 224 1 000

CIFAR 100 [14] 10 000 3 × 32 × 32 100

Anuran [13] 7 195 22 10

Covertype [13] 581 012 54 7
EEG [13] 14 980 14 2
Elec [13] 45 312 14 2
Gas Drift [13] 13 910 128 6
Weather [13] 18 159 8 2

https://github.com/sbuschjaeger/rewoc


Rejection Ensembles with Online Calibration 15

As mentioned earlier, we are interested in an energy-efficient deployment
in real-world scenarios. To measure the energy improvement under real-world
circumstances, we perform all experiments on an Nvidia Jetson Orin AGX board.
The Nvidia AGX board is a high-performance system-on-module (SoM) tailored
for AI applications and marketed explicitly for model deployment. It offers 12
ARM CPU cores, 2048 CUDA cores, and 64 tensor cores combined with 64GB
of main memory. Its maximum power usage is 50W, although we measured
significantly less than that during our experiments. In total, all experiments
can be run in roughly under 6 hours on the AGX, and we estimate a total
energy consumption of around 540 kJ on this platform for all experiments, which
equates to around 0.0444 KG CO2 given an average European energy mix. We
are interested in the following questions:

1. Out of the four methods, which method performs the best overall?
2. Can a Rejection Ensemble improve over the performance of the big model?
3. How severely will the budget be overused if no calibration is done?
4. Does a Rejection Ensemble use less energy than the big model fb?

5.1 Experiments with Deep Learning Models

For the Deep Learning experiments, we use the following setup: For the Ima-
geNet experiment, we employed ShuffleNetV2 x0.5 [16] as the small model and
Efficientnet-B4 [25] as the big model2. To evaluate the rejection ensemble’s per-
formance, we conducted a 5-fold cross-validation over the validation dataset of
ImageNet, i.e., in each fold, we used one part of the validation dataset to train
the rejector and the other part to test the ensemble. For CIFAR100, we also
use ShuffleNetV2 x0.5 [16] as the small model, while RepVGG-A2 [9] acted as
the big model3. Similar to the ImageNet experiment, we conducted a 5-fold
cross-validation over the test dataset of CIFAR100. We tested different rejectors
during pre-experiments but could not find meaningful differences. Hence, we use
a Logistic Regression as the rejector trained via scikit-learn [20] trained on inter-
mediate representations of the small model. In all experiments, we use N = 32
as the batch size during deployment and vary p ∈ {0, 0.1, . . . , 1.0}.

Figure 3 shows the results for CIFAR100 (left column) and ImageNet (right
column). As expected, the accuracy improves with increasing budget for all meth-
ods except virtual labels without calibration. Here, the method chooses always
to use the small model, so it does not increase its performance. Virtual labels
calibrated seems to be the best method, offering the highest accuracy, although
it does not outperform the big model. Looking at the power consumption, we
see a similar trend: As expected, with increasing usage of the big model, the
power consumption increases but never exceeds the power consumption of the
big model. However, on Imagenet, a notable plateau is visible for p > 0.5, in
which the energy consumption is already close to the big model. Second, we see

2 Obtained from https://pytorch.org/vision/stable/models.html.
3 Obtained from https://github.com/chenyaofo/pytorch-cifar-models.

https://pytorch.org/vision/stable/models.html
https://github.com/chenyaofo/pytorch-cifar-models


16 S. Buschjäger

0.725

0.750

0.775
T
es
t
ac
cu
ra
cy

[%
]

CIFAR100

0.70

0.75

0.80
ImageNet

15

20

25

P
ow

er
[W

]

20

25

30

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.5

1.0

p
p
er

b
at
ch

[%
]

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.5

1.0

confidence no calibration

virtual-labels no calibration

confidence calibrated

virtual-labels calibrated

Fig. 3. Experimental results on CIFAR100 (left column) and ImageNet (right col-
umn). The first row shows the test accuracies, and the second row shows the energy
consumption. The standard deviation is computed over the 5 cross-validation folds,
and the crosses mark the small (left cross) and big model’s (right cross) accuracy and
power consumption. The third row shows how often the big model is queried for each
batch p̂ = 1

N

∑
x,y∈T r(x), with one marker representing one batch. In all plots, the

x-axis represents the given budget p.

that confidence no calibration seems to use less energy for some budget con-
straints. While we are not entirely sure why this is the case, we assume that our
implementation of confidence_thresholding is sub-optimal4 and we expect a
more evolved implementation to have a better energy consumption. Looking at
the relative use of the big model (third row), we see a mixed picture: First, we
see that virtual-labels no calibration does not use the big model at all as expected
from its test accuracy. Second, we see that all other methods increase their usage
of the big model with a growing budget. Please note that the plots for confidence
calibrated and virtual-labels calibrated overlap due to the calibration step here,
so it is difficult to distinguish them in these plots. Both methods do not overuse
their budget and choose the big model close to as often as the budget allows.
For better interpretability, the gray line depicts the maximum usage allowed of
the big model for a given budget: Anything above the gray line means we are
overusing the budget, whereas everything below means we could have picked the
big model more often. Most interestingly, we see that confidence no calibration
does not overuse its budget on average, but there are many batches (a single

4 Due to sorting, data needs to be transferred between the CPU and GPU.



Rejection Ensembles with Online Calibration 17

marker represents one batch) in which the budget is not kept. In particular,
on the ImageNet dataset, there are batches in which the big model is used for
almost all data points, although the budget is close to zero. We conclude that
virtual-labels calibrated is overall the best approach: It always keeps the budget
while having a better test accuracy than the other methods with similar power
consumption.

5.2 Experiments with Decision Trees

For the decision tree experiments, we use the following setup: Theorem 1 suggests
that if the performance of the small model is close to the performance of the
big model, then a Rejection Ensemble can improve its accuracy over the big
model. To test this hypothesis, we use a small decision tree of depth three as
the big model and a decision stump as the small model trained via scikit-learn
[20]. Contrary to before, we now perform a 5-fold cross-validation and use the
training data to train the initial small and big models. Then, we further split
the testing data in each cross-validation run 50:50 into the training set for the
rejector and the actual test set. Similar to before, we tested different rejectors
during pre-experiments but could not find meaningful differences. Hence, we
use a Logistic Regression as the rejector in all experiments, now trained on the
original raw data. Similar to before, we use N = 32 as the batch size during
deployment and vary p ∈ {0, 0.1, . . . , 1.0}. For space reasons, we now focus on
classification accuracy and refer interested readers to the full version of the paper
for additional results.

Figure 4 shows the test accuracies for our UCI experiment. We highlight three
observations here: First, virtual labels no calibration and confidence calibrated
both do not seem to respect the budget at all as they have nearly a constant usage
of the big model. Second, on the gast-drift, covertype, and weather datasets, we
see an increase in the performance of the ensemble over the big model. Most
notably, on the gas-drift dataset, we see an increase of nearly 10% points in
accuracy. Third, on the weather dataset, we also see a decrease in performance
below the small model when using confidence no calibration. We conclude that
our analysis in Theorem 1 is correct and that the three different scenarios can
occur in practical settings. Overall, we conclude that virtual-labels calibrated is
the best method as it seems to offer the best accuracy over different budgets
compared to the other methods.

5.3 Conclusion from the Experiments

Indeed, a Rejection Ensemble can improve its performance over the big model
if the small and the big models have similar performances as predicted by The-
orem 1. In many scenarios, even when the rejector keeps the budget on average,
there are batches on which the big model is over- or underutilized, as implied
by Theorem 2. Overall, we find that virtual-labels calibrated seems to be the
best method, as it achieves the best accuracies while keeping the budget in all
scenarios. Last, we also find that, while Rejection Ensembles always use less



18 S. Buschjäger

0.76

0.78
T
es
t
ac
cu
ra
cy

[%
]

elec

0.60

0.65

eeg

0.6

0.7

0.8

T
es
t
ac
cu
ra
cy

[%
]

anuran

0.4

0.6

gas-drift

0.00 0.25 0.50 0.75 1.00

0.625

0.650

0.675

T
es
t
ac
cu
ra
cy

[%
]

covtype

0.00 0.25 0.50 0.75 1.00

0.70

0.75

weather

confidence no calibration

virtual-labels no calibration

confidence calibrated

virtual-labels calibrated

Fig. 4. Experimental results on the UCI datasets. All plots show the test accuracies
over different budgets p. The standard deviation is computed over the 5 cross-validation
folds, and the crosses mark the small (left cross) and big model’s (right cross) accuracy.

energy than simply using the big model, there is some room for more improved
implementations of the calibration step.

6 Conclusion

In this paper, we have presented a comprehensive investigation into rejection
ensembles, addressing the crucial challenge of resource-aware deployment in
machine learning systems. By leveraging a combination of small and large mod-
els with a rejector, Rejection Ensembles offer a promising approach to reduc-
ing resource consumption while maintaining competitive predictive performance.
Our theoretical investigation has shed light on key aspects of rejector optimiza-
tion and deployment, providing precise conditions under which rejection ensem-
bles can outperform standalone models. Furthermore, we have proposed a novel
algorithm for training and deploying rejectors based on theoretical insights that
adhere to a given budget during deployment in all cases.

In addition to our theoretical investigation, we experimentally evaluated our
novel algorithm. Our experimental evaluation on multiple datasets across vari-
ous domains, executed on an Nvidia Jetson AGX board, has demonstrated the
efficacy of our proposed rejection ensemble approach. In particular, we showed



Rejection Ensembles with Online Calibration 19

that our theoretical investigation in Theorem 1 and Theorem 2 capture the real-
world characteristics of Rejection Ensembles. Moreover, we also showed that our
novel algorithm performs better than existing approaches.

Looking ahead, future research may focus on refining and extending our
theoretical framework to the real-time setting in which we have given a single
sample for which we immediately need to provide a prediction (i.e., N = 1). This
scenario is somewhat ill-defined at the moment because it is unclear what the
budget should encapsulate here, i.e., under what time horizon should we consider
the budget? Once a precise definition is available, we can adapt our proposed
calibration algorithm to the more challenging online scenario.

Acknowledgements. This research has partly been funded by the Federal Ministry
of Education and Research of Germany and the state of North-Rhine Westphalia as
part of the Lamarr-Institute for Machine Learning and Artificial Intelligence.

References

1. Bartlett, P.L., Wegkamp, M.H.: Classification with a reject option using a hinge
loss. J. Mach. Learn. Res. 9, 1823–1840 (2008)

2. Brehler, M., Camphausen, L.: Combining decision tree and convolutional neural
network for energy efficient on-device activity recognition. In: 2023 IEEE 16th
International Symposium on Embedded Multicore/Many-core Systems-on-Chip
(MCSoC), pp. 179–185 (2023)

3. Buschjäger, S., Morik, K.: Joint leaf-refinement and ensemble pruning through l1
regularization. Data Min. Knowl. Discov. 37(3), 1230–1261 (2023)

4. Chen, K.H., et al.: Efficient realization of decision trees for real-time inference.
ACM Trans. Embed. Comput. Syst. (2021)

5. Chow, C.: On optimum recognition error and reject tradeoff. IEEE Trans. Inf.
Theory 16(1), 41–46 (1970)

6. Chow, C.K.: An optimum character recognition system using decision functions.
IRE Trans. Electron. Comput. 6(4), 247–254 (1957)

7. Cortes, C., DeSalvo, G., Mohri, M.: Learning with rejection. In: Ortner, R., Simon,
H.U., Zilles, S. (eds.) ALT 2016. LNCS (LNAI), vol. 9925, pp. 67–82. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-46379-7_5

8. Daghero, F., Pagliari, D.J., Poncino, M.: Two-stage human activity recognition on
microcontrollers with decision trees and CNNs. In: 2022 17th Conference on Ph.D.
Research in Microelectronics and Electronics (PRIME), pp. 173–176 (2022)

9. Ding, X., Zhang, X., Ma, N., Han, J., Ding, G., Sun, J.: RepVGG: making VGG-
style convnets great again. In: IEEE Conference on Computer Vision and Pattern
Recognition. CVPR 2021, Virtual, 19–25 June 2021, pp. 13733–13742. Computer
Vision Foundation/IEEE (2021)

10. Geifman, Y., El-Yaniv, R.: Selective classification for deep neural networks. In:
Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems, pp. 4878–4887 (2017)

11. Geifman, Y., El-Yaniv, R.: Selectivenet: a deep neural network with an integrated
reject option. In: Proceedings of the 36th International Conference on Machine
Learning. ICML 2019, vol. 97, pp. 2151–2159. PMLR (2019)

https://doi.org/10.1007/978-3-319-46379-7_5


20 S. Buschjäger

12. Kag, A., Fedorov, I., Gangrade, A., Whatmough, P.N., Saligrama, V.: Efficient
edge inference by selective query. In: The Eleventh International Conference on
Learning Representations. ICLR 2023, Kigali, Rwanda, 1–5 May 2023 (2023)

13. Kelly, M., Longjohn, R., Nottingham, K.: UCI machine learning repository.
https://archive.ics.uci.edu/

14. Krizhevsky, A.: Cifar-10 and cifar-100 datasets. https://www.cs.toronto.edu/
~kriz/cifar.html

15. Liu, Z., Wang, Z., Liang, P.P., Salakhutdinov, R., Morency, L., Ueda, M.: Deep
gamblers: learning to abstain with portfolio theory. In: Advances in Neural Informa-
tion Processing Systems 32: Annual Conference on Neural Information Processing
Systems 2019. NeurIPS 2019, pp. 10622–10632 (2019)

16. Ma, N., Zhang, X., Zheng, H.-T., Sun, J.: ShuffleNet V2: practical guidelines for
efficient CNN architecture design. In: Ferrari, V., Hebert, M., Sminchisescu, C.,
Weiss, Y. (eds.) ECCV 2018, Part XIV. LNCS, vol. 11218, pp. 122–138. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_8

17. Madras, D., Pitassi, T., Zemel, R.S.: Predict responsibly: improving fairness
and accuracy by learning to defer. In: Bengio, S., Wallach, H.M., Larochelle,
H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural
Information Processing Systems 31: Annual Conference on Neural Informa-
tion Processing Systems 2018. NeurIPS 2018, 3–8 December 2018, Montréal,
Canada, pp. 6150–6160 (2018). https://proceedings.neurips.cc/paper/2018/hash/
09d37c08f7b129e96277388757530c72-Abstract.html

18. Mao, A., Mohri, M., Zhong, Y.: Theoretically grounded loss functions and algo-
rithms for score-based multi-class abstention. CoRR abs/2310.14770 (2023)

19. Menghani, G.: Efficient deep learning: a survey on making deep learning models
smaller, faster, and better. ACM Comput. Surv. 55(12), 259:1–259:37 (2023)

20. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

21. Piatkowski, N., Lee, S., Morik, K.: Integer undirected graphical models for resource-
constrained systems. Neurocomputing 173, 9–23 (2016)

22. Pietraszek, T.: Optimizing abstaining classifiers using ROC analysis. In: Machine
Learning, Proceedings of the Twenty-Second International Conference (ICML
2005), Bonn, Germany, 7–11 August 2005. ACM International Conference Pro-
ceeding Series, vol. 119, pp. 665–672. ACM (2005)

23. Pugnana, A., Ruggieri, S.: A model-agnostic heuristics for selective classification.
In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37, no. 8,
pp. 9461–9469 (2023). https://doi.org/10.1609/aaai.v37i8.26133

24. Stanford Vision Lab, S.U.: Imagenet. https://www.image-net.org/
25. Tan, M., Le, Q.V.: Efficientnet: rethinking model scaling for convolutional neu-

ral networks. In: Proceedings of the 36th International Conference on Machine
Learning. ICML 2019, vol. 97, pp. 6105–6114. PMLR (2019)

https://archive.ics.uci.edu/
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://doi.org/10.1007/978-3-030-01264-9_8
https://proceedings.neurips.cc/paper/2018/hash/09d37c08f7b129e96277388757530c72-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/09d37c08f7b129e96277388757530c72-Abstract.html
https://doi.org/10.1609/aaai.v37i8.26133
https://www.image-net.org/

	Rejection Ensembles with Online Calibration
	1 Introduction
	2 Notation and Related Work
	2.1 Related Work

	3 A Theoretical Investigation of Rejection
	3.1 Three Distinct Situations Can Occur When Training the Rejector
	3.2 Even a Perfect Rejector Will Overuse Its Budget
	3.3 A Rejector Should Not Trust fs and fb

	4 Training a Rejector for a Rejection Ensemble
	5 Experiments
	5.1 Experiments with Deep Learning Models
	5.2 Experiments with Decision Trees
	5.3 Conclusion from the Experiments

	6 Conclusion
	References


