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Faculty of Informatics
Vytautas Magnus University
Akademija, Lithuania

Eirini Ntoutsi
Department of Computer Science
Bundeswehr University Munich
Munich, Germany

Jesse Davis
KU Leuven
Leuven, Belgium

Meelis Kull
Institute of Computer Science
University of Tartu
Tartu, Estonia
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Preface

The 2024 edition of the European Conference on Machine Learning and Principles and
Practice ofKnowledgeDiscovery inDatabases (ECMLPKDD2024)was held inVilnius,
Lithuania, from September 9 to 13, 2024.

The annual ECML PKDD conference acts as a world-wide platform showcasing the
latest advancements in machine learning and knowledge discovery in databases. Held
jointly since 2001, ECMLPKDD has established itself as the leading EuropeanMachine
Learning and Data Mining conference. It offers researchers and practitioners an unpar-
alleled opportunity to exchange knowledge and ideas about the latest technical advance-
ments in these disciplines. Moreover, the conference appreciates the synergy between
foundational advances and groundbreaking data science and hence strongly welcomes
contributions about howMachine Learning and Data Mining is being employed to solve
real-world challenges.

The conference continues to evolve reflecting evolving technological developments
and societal needs. For example, in theResearchTrack this year there has been an increase
in submissions on generative AI, especially LLMs, and various aspects of responsible
AI.

We received 826 submissions for the Research Track and 224 for the Applied Data
Science Track. The Research track accepted 202 papers (out of 826, 24.5%) and the
Applied Data Science Track accepted 56 (out of 224, 24.5%). In addition, 31 papers
from the Journal Track (accepted out of 65 submissions) and 14 Demo Track papers
(accepted out of 30 submissions).

The papers presented over the three main conference days were organized into five
distinct tracks:

Research Track: This track featured research and methodology papers spanning all
branches within Machine Learning, Knowledge Discovery, and Data Mining.
Applied Data Science Track: Papers in this track focused on novel applications
of machine learning, data mining, and knowledge discovery to address real-world
challenges, aiming to bridge the gap between theory and practical implementation.
Journal Track: This track included papers that had been published in special issues of
the journals Machine Learning and Data Mining and Knowledge Discovery.
Demo Track: Short papers in this track introduced new prototypes or fully operational
systems that leveragedata science techniques, demonstrated throughworkingprototypes.
Nectar Track: Concise presentations of recent scientific advances published in related
conferences or journals. It aimed to disseminate important research findings to a broader
audience within the ECML PKDD community.

The conference featured five keynote talks on diverse topics, reflecting emerging
needs like benchmarking and resource-awareness, as well as theoretical understanding
and industrial needs.
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– Gintarė Karolina Džiugaitė (Google DeepMind): TheDynamics ofMemorization and
Unlearning.

– Moritz Hardt (Max Planck Institute for Intelligent Systems): The Emerging Science
of Benchmarks.

– Mounia Lalmas-Roelleke (Spotify): Enhancing User Experience with AI-Powered
Search and Recommendations at Spotify.

– Patrick Lucey (Stats Perform): How to Utilize (and Generate) Player Tracking Data
in Sport.

– KatharinaMorik (TUDortmundUniversity):Resource-AwareMachine Learning—a
User-Oriented Approach.

The ECML PKDD 2024 Organizing Committee supported Diversity and Inclusion
by awarding some grants that enable early career researchers to attend the conference,
present their research activities, and become part of the ECML PKDD community. We
provided a total of 3 scholarships ofe1000 to individuals that come from the developing
countries and/or communitieswhich are underrepresented in science and technology.The
scholarships could be used for travel and accommodation. In addition 3 grants covering
all of the registration fees were awarded to individuals who belong to underrepresented
communities, based on gender and role/position, to attend the conference and present
their research activities. The Diversity and Inclusion action also included the Women
Networking event andDiversity and InclusionPanel discussion. TheWomenNetworking
event aimed to create a safe and inclusive space for networking and reflecting on the
experience of women in science. The event included a structured brainstorm/reflection
on the role and experience of women in science and technology, which will be published
in the conference newsletter. The Diversity and Inclusion Panel aimed to reach a wider
audience and encourage the discussion on the need for diversity in tech, and challenges
and solutions in achieving it.

We want to thank the authors, workshop and tutorial organizers, and participants
whose scientific contributions make this such an exciting event. Moreover, putting
together an outstanding conference program would also not be possible without the
dedication and (substantial) time investments of the area chairs, program committee,
and organizing committee. The event would not run smoothly without the many vol-
unteers and sessions chairs. Finally, we want to extend a special thanks to all the local
organizers – they dealt with all the little details that are needed to make the conference
a memorable event.

Wewant to extend our heartfelt gratitude to ourwonderful sponsors for their generous
financial support. We also want to thank Springer for their continuous support and
Microsoft for allowing us to use their CMT software for conference management and
providing help throughout. We very much appreciate the advice and guidance provided
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by the ECML PKDD Steering Committee over the past two years. Finally, we thank the
organizing institution, the Artificial Intelligence Association of Lithuania.

September 2024 Albert Bifet
Tomas Krilavičius

Eirini Ntoutsi
Indrė Žliobaitė

Jesse Davis
Meelis Kull

Ioanna Miliou
Slawomir Nowaczyk
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Jolita Bernatavičienė Vilnius University, Lithuania
Cuissart Bertrand University of Caen, France
Eva Besada-Portas Universidad Complutense de Madrid, Spain
Jalaj Bhandari Columbia University, USA
Monowar Bhuyan Umea University, Sweden
Manuele Bicego University of Verona, Italy
Przemyslaw Biecek Warsaw University of Technology, Poland
Albert Bifet Telecom Paris, France
Livio Bioglio University of Turin, Italy
Anton Björklund University of Helsinki, Finland
Szymon Bobek Jagiellonian University, Poland
Ludovico Boratto University of Cagliari, Italy
Stefano Bortoli Huawei Research Center
Annelot Bosman Universiteit Leiden, the Netherlands
Tassadit Bouadi Université de Rennes, France
Hamid Bouchachia Bournemouth University, UK
Jannis Brugger TU Darmstadt, Germany
Dariusz Brzezinski Poznan University of Technology, Poland
Maria Sofia Bucarelli Sapienza University of Rome, Italy
Mirko Bunse TU Dortmund University, Germany
Tomasz Burzykowski Hasselt University, Belgium



xx Organization

Sebastian Buschjäger TU Dortmund Artificial Intelligence Unit,
Germany

Maarten Buyl Ghent University, Belgium
Zaineb Chelly Dagdia UVSQ, Paris-Saclay, France
Huaming Chen University of Sydney, Australia
Xiaojun Chen Institute of Information Engineering, CAS, China
Tobias Callies Universtiät der Bundeswehr München, Germany
Xiaofeng Cao University of Technology Sydney, Australia
Cécile Capponi Aix-Marseille University, France
Lorenzo Cascioli KU Leuven, Belgium
Guilherme Cassales University of Waikato, New Zealand
Giovanna Castellano University of Bari ‘Aldo Moro’, Italy
Andrea Cavallo Delft University of Technology, the Netherlands
Remy Cazabet Lyon, France
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Artūras Serackis Vilnius Tech, Lithuania
Giuseppe Serra Goethe University Frankfurt, Germany
Mattia Setzu University of Pisa, Italy
Manali Sharma Samsung, USA
Shubhranshu Shekhar Brandeis University, USA
Qiang Sheng Institute of Computing Technology, Chinese

Academy of Sciences, China
John Sheppard Montana State University, USA
Bin Shi Xi’an Jiaotong University, China
Jimeng Shi Florida International University, USA
Paula Silva INESC TEC - LIAAD, Portugal



Organization xxxi

Telmo Silva Filho University of Bristol, UK
Esther-Lydia Silva-Ramírez Universidad de Cádiz, Spain
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The Dynamics of Memorization and Unlearning

Gintarė Karolina Džiugaitė

Google DeepMind

Abstract. Deep learning models exhibit a complex interplay between
memorization and generalization. This talk will begin by exploring the
ubiquitous nature ofmemorization, drawingonpriorworkon “data diets”,
example difficulty, pruning, and other empirical evidence. But is memo-
rization essential for generalization?Our recent theoretical work suggests
that eliminating it entirely may not be feasible. Instead, I will discuss
strategies to mitigate unwanted memorization by focusing on better data
curation and efficient unlearning mechanisms. Additionally, I will exam-
ine the potential of pruning techniques to selectively remove memorized
examples and explore their impact on factual recall versus in-context
learning.

Biography:Gintarė is a senior research scientist at Google DeepMind, based in Toronto,
an adjunct professor in the McGill University School of Computer Science, and an
associate industry member of Mila, the Quebec AI Institute. Prior to joining Google,
Gintarė led the Trustworthy AI program at Element AI/ServiceNow, and obtained her
Ph.D. in machine learning from the University of Cambridge, under the supervision of
Zoubin Ghahramani. Gintarė was recognized as a Rising Star in Machine Learning by
the University of Maryland program in 2019. Her research combines theoretical and
empirical approaches to understanding deep learning, with a focus on generalization,
memorization, unlearning, and network compression.



The Emerging Science of Benchmarks

Moritz Hardt

Max Planck Institute for Intelligent Systems

Abstract. Benchmarks have played a central role in the progress of
machine learning research since the 1980s. Although there’s much
researchers have done with them, we still know little about how and why
benchmarks work. In this talk, I will trace the rudiments of an emerging
science of benchmarks through selected empirical and theoretical obser-
vations. Looking back at the ImageNet era, I’ll discuss what we learned
about the validity of model rankings and the role of label errors. Looking
ahead, I’ll talk about new challenges to benchmarking and evaluation in
the era of large language models. The results we’ll encounter challenge
conventional wisdom and underscore the benefits of developing a science
of benchmarks.

Biography: Hardt is a director at the Max Planck Institute for Intelligent Systems,
Tübingen. Previously, he was Associate Professor for Electrical Engineering and Com-
puter Sciences at the University of California, Berkeley. His research contributes to
the scientific foundations of machine learning and algorithmic decision making with a
focus on social questions. He co-authored Fairness and Machine Learning: Limitations
and Opportunities (MIT Press) and Patterns, Predictions, and Actions: Foundations of
Machine Learning (Princeton University Press).



Enhancing User Experience with AI-Powered Search
and Recommendations at Spotify

Mounia Lalmas-Roelleke

Spotify

Abstract. This talk will explore the pivotal role of search and recom-
mendation systems in enhancing the Spotify user experience. These sys-
tems serve as the gateway to Spotify’s vast audio catalog, helping users
navigate millions of music tracks, podcasts, and audiobooks. Effective
search functionality allows users to quickly find specific content, whether
it is a favorite song, a trending podcast, or an informative audiobook,
while also satisfying broader search needs. Meanwhile, recommenda-
tion systems suggest new and relevant content that users might not have
thought to search for, while ensuring their current needs for familiar con-
tent are met. This encourages exploration and discovery of new artists,
genres, and shows, enriching the overall listening experience and keeping
users engaged with the platform. Achieving this dual objective of preci-
sion and discovery requires sophisticated technology. It involves a deep
understanding of representation learning, where both content and user
preferences are accurately modeled. Advanced AI techniques, including
machine learning and generative AI, play a crucial role in this process.
These technologies enable the creation of highly personalized recom-
mendations by understanding complex user behaviors and preferences.
Generative AI, for instance, allows us to create personalized playlists,
thereby enhancing the user experience with innovative features. This pre-
sentation is based on the collective research and publications of numerous
contributors at Spotify.

Biography: Mounia is a Senior Director of Research at Spotify and the Head of Tech
Research in Personalization, where she leads an interdisciplinary team of research sci-
entists. She also holds an honorary professorship at University College London and
serves as a Distinguished Research Fellow at the University of Amsterdam. Previously,
Mounia was a Director of Research at Yahoo, overseeing a team focused on adver-
tising quality and collaborating on user engagement projects related to news, search,
and user-generated content. Before her tenure at Yahoo, Mounia held a Microsoft
Research/RAEng Research Chair at the School of Computing Science, University of
Glasgow, and before that was a Professor of Information Retrieval at the Department
of Computer Science at Queen Mary, University of London. She is a prominent figure
in the research community, regularly serving as a senior program committee member at
major conferences such as WSDM, KDD, WWW, and SIGIR. She was also a program
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co-chair for SIGIR 2015,WWW2018,WSDM2020, andCIKM2023.Mounia is widely
recognized for her contributions as a speaker and author, with over 250 published papers
and appearances on platforms like ACM ByteCast and the AI Business Podcasts series.
She was nominated for the VentureBeat Women in AI Awards for Research in both 2022
and 2023.



How to Utilize (and Generate) Player Tracking Data
in Sport

Patrick Lucey

Stats Perform

Abstract. Even though player tracking data in sports has been around
for 25 years, it still poses as one of the most interesting and challeng-
ing datasets in machine learning due to its fine-grained, multi-agent,
team-based, and adversarial nature. Despite these challenges, it is also
extremely valuable as it is (relatively) low-dimensional, interpretable,
and interactive, allowing us to measure performance and answer ques-
tions we couldn’t objectively address before. In this talk, I will first give
a brief history of tracking data in sports, then highlight the challenges
associated with utilizing it. I will then show that by obtaining a permuta-
tion invariant representation, we can not only measure aspects of sports
that couldn’t be done before, but also interact with and simulate plays
akin to a video game via our “visual search” and “ghosting” technol-
ogy. Finally, I will show how we can use both tracking and event data
to create a multimodal foundation model, which enables us to generate
player tracking data at scale and achieve our goal of “digitizing every
game of professional sport.” Throughout the talk, I will utilize examples
from top-tier basketball, soccer, and tennis.

Biography: Patrick Lucey is currently the Chief Scientist at sports data giant Stats Per-
form, leading the AI team with the goal of maximizing the value of the company’s
extensive sports data. He has studied and worked in the fields of machine learning and
computer vision for the past 20 years, holding research positions at Disney Research and
the Robotics Institute at Carnegie Mellon University, as well as spending time at IBM’s
T.J. Watson Research Center while pursuing his Ph.D. Patrick originally hails fromAus-
tralia, where he received his BEng(EE) from the University of Southern Queensland and
his doctorate from Queensland University of Technology, which focused on multimodal
speech modeling. He has authored more than 100 peer-reviewed papers and has been
a co-author on papers in the MIT Sloan Sports Analytics Conference Best Research
Paper Track for 11 of the last 13 years, winning best paper in 2016 and runner-up in
2017 and 2018. Additionally, he has won best paper awards at INTERSPEECH and
WACV international conferences. His main research interests are in artificial intelli-
gence and interactive machine learning in sporting domains, as well as AI education.
He has recently piloted a course on “AI in Sport,” which aims to give students intuition
behind AI methods using the interactive and visual nature of sports data.

Website: www.patricklucey.com

https://patricklucey.com/index.html


Resource-Aware Machine Learning—A User-Oriented
Approach

Katharina Morik

TU Dortmund University

Abstract. Machine Learning (ML) has become integrated into several
processes, ranging from medicine, manufacturing, logistics, smart cities,
sales, recommendations and advertisements to entertainment and many
more business and private processes. The applications together consume
a considerable amount of energy and emit CO2.ML research investigates
how tomakemodels smaller and faster through pruning and quantization.
Also the use of more energy-efficient hardware is an encouraging field.
Research on ML under resource constraints is an active field propos-
ing novel algorithms and scenarios. The aim is that for each application
a variety of implementations is offered from which customers and the
different types of users may choose the most thrifty one. This, in turn,
would push tech providers to focus on the production of economical
systems. However, if the customers, users, stakeholders do not know
which of the models offers the best tradeoff between performance and
energy-efficiency, they cannot select the most frugal one. Hence, testing
implementations of learning and inference needs to be developed. They
should be easy to use, produce visualizations that are mass-tailored for
specific user groups. Automatized testing is difficult due to the diversity
of models, computing architectures, training and evaluation data, and the
fast rate of changes. The talk will illustrate work on resource-aware ML
and advocate to paymore attention to the role of users in the development
of scenarios, models, and tests.

Biography: Katharina Morik received her doctorate from the University of Hamburg in
1981 and her habilitation from the TU Berlin in 1988. In 1991, she established the chair
of Artificial Intelligence at the TU Dortmund. She retired in 2023. She is a pioneer of
bringing machine learning and computing architectures together so that machine learn-
ing models may be executed or even trained on resource restricted devices. In 2011,
she acquired the Collaborative Research Center CRC 876 “Providing Information by
Resource-Constrained Data Analysis” consisting of 12 projects and a graduate school.
After the longest possible funding period of 12 years, the CRC ended with the publi-
cation of 3 books on Resource-Constrained Machine Learning (De Gruyter). She has
participated in numerous European research projects and has been the coordinator of
one. Shewas a foundingmember and ProgramChair of the conference series IEEE Inter-
national Conference on DataMining (ICDM) and is a member of the steering committee
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of ECML PKDD. She is a co-founder of the Lamarr Institute for Machine Learning and
Artificial Intelligence. Prof. Morik is a member of the Academy of Technical Sciences
and of the North Rhine-Westphalian Academy of Sciences and Arts. She was made a
Fellow of the German Society of Computer Science GI e.V. in 2019.
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Rejection Ensembles with Online
Calibration

Sebastian Buschjäger(B)

The Lamarr Institute for Machine Learning and Artificial Intelligence,
TU Dortmund University, Dortmund, Germany

sebastian.buschjaeger@tu-dortmund.de

Abstract. As machine learning models become increasingly integrated
into various applications, the need for resource-aware deployment
strategies becomes paramount. One promising approach for optimiz-
ing resource consumption is rejection ensembles. Rejection ensembles
combine a small model deployed to an edge device with a large model
deployed in the cloud with a rejector tasked to determine the most suit-
able model for a given input. Due to its novelty, existing research pre-
dominantly focuses on ad-hoc ensemble design, lacking a thorough under-
standing of rejector optimization and deployment strategies. This paper
addresses this research gap by presenting a theoretical investigation into
rejection ensembles and proposing a novel algorithm for training and
deploying rejectors based on these novel insights. We give precise condi-
tions of when a good rejector can improve the ensemble’s overall perfor-
mance beyond the big model’s performance and when a bad rejector can
make the ensemble worse than the small model. Second, we show that
even the perfect rejector can overuse its budget for using the big model
during deployment. Based on these insights, we propose to ignore any
budget constraints during training but introduce additional safeguards
during deployment. Experimental evaluation on 8 different datasets from
various domains demonstrates the efficacy of our novel rejection ensemble
outperforming existing approaches. Moreover, compared to standalone
large model inference, we highlight the energy efficiency gains during
deployment on a Nvidia Jetson AGX board.

Keywords: Ensemble Learning · Learning with Rejection ·
Resource-aware Machine Learning

1 Introduction

In recent years, the pervasive integration of machine learning models into various
applications has underscored the importance of resource-aware deployment. Most
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famously, Deep Learning is one of the most resource-hungry technologies avail-
able, and therefore, a large body of the literature tries to improve the resource
usage of Deep Learning (see [19] for a recent overview). Similarly, approaches for
improving the resource usage of non-Deep Learning approaches, such as Random
Forests [3,4] or graphical models [21], have also been discussed in the literature.
Last, as ML models find their way into critical decision-making processes across
diverse domains, there is a growing need for strategies that balance fast model
application and the opportunity for human model inspection. This, again, leads
to a resource-accuracy trade-off. For example, consider a medical scenario in
which a machine-learning model autonomously diagnoses patients. Naturally,
such a model will not always be correct, and human supervision and interven-
tion are sometimes necessary. Hence, we have to balance human supervision and
autonomous predictions during deployment.

One area of research reduces resource consumption through the fusion of
small and large models into an ensemble coupled with a rejector (sometimes
called a router) that determines the most suitable model for a given input [2,8,
12]. Such a rejection ensemble first applies the small model alongside the rejector
and, if the rejector accepts the output of the small model, serves it. If the rejector
rejects the small model’s prediction, it also queries the big model (e.g., the doctor
in the previous example) for additional help. Such an approach can reduce the
overall resource consumption of the system if the small model is used most of
the time while maintaining competitive predictive performance due to the big
model.

The current literature on rejection ensembles mostly focuses on the ad-hoc
design of rejection ensembles. The design and training of a good rejector is
difficult and poorly understood. Moreover, while a budget is typically introduced
during training to capture how often the big model can be queried, it is no longer
considered during deployment. Hence, a deployed system might query the big
model too often (i.e., overuse its budget) and – in the worst case – only query
the big model if no additional safeguards are employed.

To address these issues, this paper presents the first theoretical investigation
of learning rejection ensembles and derives practical insights from it. To this end,
we propose a novel algorithm for training the rejector based on our theoretical
insights and introduce a novel algorithm that ensures that the budget is always
kept during deployment. More precisely, our contributions are as follows:

– Theoretical Investigation: We offer a thorough theoretical investigation
of the impact of the rejector on the ensemble. We give precise conditions of
when a good rejector can improve the ensemble’s overall performance beyond
the big model’s performance and when a bad rejector can make the ensemble
worse than the small model. Second, we show that even the perfect rejector
can overuse its budget during deployment. Third, we give an example of when
a rejector should not trust the outputs of the small and big models but learn
its own decision boundary based on the input data.

– Novel Algorithm: Based on our theoretical investigation, we propose
to ignore any budget constraints during training but introduce additional
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safeguards during deployment. For training the rejector, we introduce a novel
training algorithm based on so-called virtual labels capturing when to use the
small and when to use the big model. For deployment, we introduce safeguards
that essentially rank the rejector’s output during deployment and ensure we
always adhere to the prediction budget.

– Experimental Evaluation: We experimentally evaluate our proposed algo-
rithm on 8 datasets from various domains and execute it on a Nvidia Jetson
AGX board. We show that our novel rejection ensemble outperforms other
ensembles while keeping the budget during deployment. Moreover, we high-
light that these rejection ensembles use less energy during deployment com-
pared to simply running the big model. The code for these experiments is
available under https://github.com/sbuschjaeger/rewoc.

This paper is organized as the following: Sect. 2 introduces the notation and
related work. Section 3 presents our main theoretical findings, whereas Sect. 4
translates these into a practical algorithm. Section 5 then discusses the experi-
ments, whereas Sect. 6 concludes the paper.

2 Notation and Related Work

We consider a supervised classification setting in which training and test points
are drawn i.i.d. according to some distribution D over the input space X ⊆ R

d of
d-dimensional feature vectors and labels Y = {1, . . . , C}, where C is the number
of classes. We are interested in a classifier triplet that we call Rejection Ensemble:

f(x) = (fs, fb, r) (x) =

{
fs(x) if r(x) = 0
fb(x) else

(1)

Conceptually, fs : X → Y is a small model whose predictions can be easily
explained by a human and/or a model that does not use many resources, e.g.
a Decision Tree. Similarly, fb : X → Y is a big model whose predictions cannot
be easily explained, and its execution might require many resources, such as
e.g. a large neural network running in the cloud. Naturally, we want to use the
small model as often as possible to make predictions explainable and the overall
system more resource-efficient. At the same time, a small model might not be
powerful enough to provide (good) predictions for certain inputs. Hence, we
use a rejection function r : X → {0, 1} that outputs 1 if we should reject the
small model’s prediction and use the big model instead. For training the triplet
(fs, fb, r), we have given a (user-defined) budget1 p ∈ [0, 1], which defines how
often we can query the big model. For example, a budget of p = 1 means we
can always query the big model, a budget of p = 0 means we should never query

1 Sometimes this is called the coverage, if there is no big model available and the small
model abstains from a prediction.

https://github.com/sbuschjaeger/rewoc
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it, and everything in between allows for some queries of the small and the big
model. Given a loss � : RC × Y → R≥0 our goal is to find a model such that

f∗ = (f∗
s , f∗

b , r∗) = argmin
f

ED[�(f(x), y)] s.t. ED[r(x)] ≤ p (2)

Since D is typically unknown, we use a labeled training dataset S =
{(xi, yi)}mi=1 to approximate Eq. 2 with its empirical counterpart:

f∗ = (f∗
s , f∗

b , r∗) = argmin
f

1
m

m∑
i=1

�(f(xi), yi) s.t.
1
m

m∑
i=1

r(xi) ≤ p (3)

For convenience, we further define the predictions of fs, fb, f as ys, yb, yf and
the corresponding confidences as cs, cb, cf :

ys(x) = argmax
j=1,...,C

fs(x)j , yb(x) = argmax
j=1,...,C

fb(x)j , yf (x) = argmax
j=1,...,C

f(x)j

cs(x) = max
j=1,...,C

fs(x)j , cb(x) = max
j=1,...,C

fb(x)j , cf (x) = max
j=1,...,C

f(x)j

2.1 Related Work

Several approaches in the literature focus on classification with a reject option.
Arguably, the largest collection of works focuses on training a classifier tuple
(f, r) where f is the prediction model and r is the rejector. The rejector can
output a designated REJECT token, meaning that the model’s prediction should
be ignored. In this setting, the rejector is chosen such that f covers a certain
percentage of the input space, and f is chosen to maximize the classification
performance on the covered subspace. This way, a trade-off between the (likely
better) performance of f on smaller subspaces and maximizing the coverage
through r is introduced. The first works [5,6] in this area introduce a cost model
(c.f. [23]) that balances the costs of rejection and its miss-classification. Subse-
quent theoretical works in this direction further refine this idea by developing
new loss functions based on the hinge loss [1], introducing Bayes consistent loss
functions [18], and studying the Rademacher complexity of such a classifier pair
[7]. A second line of research is introduced in [22], sometimes called the bounded
improvement model (c.f. [23]), which does not assign specific costs to rejection
but views training a pair (f, r) as a min-max problem in which the goal is to
maximize coverage while minimizing the error. A recent example is presented in
[10], which introduces a novel ‘selection with a guaranteed risk’ algorithm that
dynamically adjusts the bounds for confidence scoring of a pre-trained classifier.
Similarly, SelectiveNet [11] is a neural network architecture that includes a reject
option and is trained based on a convex combination of classification and cover-
age loss. Finally, some works in the literature also discuss the joint training of
the model and the rejector without explicitly considering costs or coverage. For
example, [15] studies the joint learning of the rejector and classification model
by drawing inspiration from portfolio theory. Here, the authors introduce the
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REJECT token as an additional class and a novel information-centric loss func-
tion that uses the REJECT token for better optimization. Last, Madras et al.
study an edge case similar to our setting in [17], in which the small model can
PASS an observation to a domain expert. However, their study focuses on fairness
and does not introduce a budget constraint for optimization.

The framework presented in this paper extends prior work by using a clas-
sifier triplet (fs, fb, r) instead of a classifier tuple. Clearly, this generalization
recovers the classification with rejection framework by setting the big model to
output a constant reject value fb(x) = REJECT so that whenever r(x) = 1, we
output the REJECT token. Training such a triplet is much more difficult because
we cannot rely on the coverage as a guideline: When training a classifier with a
reject option, we can essentially ignore parts of the input space by training the
rejector r accordingly. However, when training a triplet, rejecting an observation
means that the big model is tasked to provide a prediction. Hence, the rejector
must take the shortcomings of the small and the big models into account and
only transfer those samples to the big model when it can be sure that the big
model will likely answer correctly to minimize the overall resource consumption.
To our knowledge, only three articles in the literature utilize this more general
framework. In [12], the authors propose a novel hybrid learning method in which
a triplet is trained using a Frank-Wolfe-style algorithm. First, they start with a
random rejector, which assigns training examples to a large and a small Deep
Neural Network. After these two models are trained, the rejector is updated
based on the overall performance, and the process is then repeated until conver-
gence. Notably, the rejector only receives the outputs of the small model as input
to minimize resource consumption. The resulting hybrid system achieves better
ImageNet accuracy over inference latency and energy used. In [2,8], the authors
deal with the problem of Human Activity Recognition by using a similar hybrid
system that combines models from different model classes, i.e., a decision tree
(DT) and a CNN. In [8], the authors introduce a multi-step learning process that
first fits a decision tree on the entire task (i.e., all samples with all labels) and
then iteratively merges the labels of samples that are too difficult in a common
FALLBACK class. Finally, a DT is trained on all unchanged ‘easy’ samples and all
difficult samples with the novel FALLBACK class assigned to them, whereas a CNN
is trained on all available difficult samples with their original classes. While [8]
shows the feasibility of this approach on a microcontroller unit (MCU), [2] goes
one step further and deploys the DT model to the sensor directly by leveraging
in-sensor computation and only executing the CNN on the MCU when necessary.

3 A Theoretical Investigation of Rejection

The adaption of Rejection Ensembles shows promising successes in practice [2,8,
12]. We extend this work by investigating the theoretical properties of Rejection
Ensembles with a particular focus on the rejector r. To this end, we assume
that the small model fs and the big model fb are already trained and given to
us for deployment. We assume that fb generally performs better than fs, but
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we do not have any special requirements towards fs and fb. In particular, our
discussion here does not assume any special model class or training algorithm for
the small and big models. Last, we assume that during deployment we receive
data in batches T = {x1, . . . , xN} of N data points for prediction and our task
is to provide a labeled set {(x1, f(x1)), . . . , (xM , f(xN ))}. We highlight three
theoretical insights about the rejector in this setting.

3.1 Three Distinct Situations Can Occur When Training
the Rejector

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Γs

Γb

III

II

I

p

Γf

Fig. 1. Number of correctly classified samples over the rejection rate p for three
archetypical examples. Γ{f,s,b} denotes the number of correctly classified samples of
the ensemble and the small and big model respectively. The green area III marks
improved performance in which the ensemble outperforms the big model while being
more resource-efficient. The blue area II marks an accuracy-resource trade-off in which
the ensemble underperforms compared to the big model but uses fewer resources.
Finally, the red area I marks where the combined model performs worse than the
small model and is more resource-hungry. The example curves in grey illustrate three
different archetypical behaviors, although they highly depend on the specific models,
data, and task. (Color figure online)

We identify three distinct situations that can occur when training a rejector: 1)
A bad rejector can destroy the performance of both models by always choosing
the wrong model for a given sample. For example, if the small model is correct,
it might choose the big one instead, and if the big one is correct, it chooses the
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small model. 2) If the big model is always better than the small model, i.e.,
∀x, y ∼ D : �(fb(x), y) ≤ �(fs(x), y) then the Rejection Ensemble will never
be better than the big model. However, the rejector can try to find situations
in which the small model makes the same prediction (ys(x) = yb(x)) as the
big model. Compared to fb this will not increase the overall accuracy, but it
decreases resource consumption while maintaining a comparable performance.
3) Both models complement each other through the rejector. Whenever fs would
be wrong, the rejector uses fb instead, and whenever fs is correct (and fb might
be wrong), fs is used. This way, the overall accuracy might exceed the accuracy
of fb, resulting in a better and more resource-friendly ensemble. An illustration
of these three cases is depicted in Fig. 1 and Theorem 1 formally establishes the
conditions for each case.

Theorem 1. Consider a binary classification problem with C = 2. Let (fs, fb, r)
be a rejection ensemble with budget p and let S ∼ Dm be a sample with m data
points. Define the following:

Γs =
∑

(x,y)∈S
1{ys(x) = y}, Nsb̄ =

∑
(x,y)∈S

1{ys(x) = y �= yb(x)}

Γb =
∑

(x,y)∈S
1{yb(x) = y}, Ns̄b =

∑
(x,y)∈S

1{yb(x) = y �= ys(x)}

Γf =
∑

(x,y)∈S
1{yf (x) = y}, Nsb =

∑
(x,y)∈S

1{ys(x) = yb(x) = y}

Let P = 	p · m
, then the following holds:

1. For all rejectors the following lower bound holds: Nsb+max{Nsb̄−P, 0} ≤ Γf

2. If Γb − P ≥ Γs, then Γs is a lower bound for Γf , i.e. Γs ≤ Γf

3. If Γb ≤ Γs + P , then Γb is a lower bound for Γf , i.e. Γb ≤ Γf

Proof. It holds that Γs = Nsb + Nsb̄ and Γb = Nsb + Ns̄b. Further, it holds that

Γf = Nsb + Nsb̄ +min{P,Ns̄b} = Nsb + Nsb̄ +min{P, Γb − Nsb}

since we can only use the big model up to P times and have to revert to the
small model otherwise. Given this, we proof each statement separately:

1. A worst-case rejector would always choose the big model when the small
model is correct and vice versa. For those samples on which both models
agree this is impossible, i.e., Nsb is a trivial lower bound for the performance
of the worst rejector. Moreover, due to the budget, the rejector can only
choose the big model up to P times, leading to

Nsb +max{Nsb̄ − P, 0} ≤ Γf

2. We want to show that Γs is a lower bound for Γf given Γb − P ≥ Γs:

Γs ≤ Γf ⇔ Γs < Nsb + Nsb̄ +min{P, Γb − Nsb} = Γs +min{P, Γb − Nsb}
⇔0 ≤ min{P, Γb − Nsb}



10 S. Buschjäger

Note that 0 ≤ P is true by definition of P . Similarly, 0 ≤ Γb−Nsb ⇔ Nsb ≤ Γb

is true due to the assumption Γb − P ≥ Γs.
3. We want to show that Γb is a lower bound for Γf given Γb < Γs + P :

Γb ≤ Γf ⇔ Γb < Nsb + Nsb̄ +min{p, Γb − Nsb} = Γs +min{P, Γb − Nsb}

We check both min− cases individually:

Γb ≤ Γs + Γb − Nsb ⇔ Nsb ≤ Γs

Γb ≤ Γs + P ⇔ Γb − P ≤ Γs

The first case Nsb ≤ Γs always holds by definition of Nsb and Γs, whereas the
second case Γb − P ≤ Γs holds by assumption. Hence, if Γb − P ≤ Γs holds,
then Γb ≤ Γf . �

Theorem 1 shows that both a good rejector and well-trained models are cru-
cial for good performance. Surprisingly, it also implies that the small model is
much more important for the overall performance because it will be queried most
of the time. The big model only needs to perform well on those P = 	p ·m
 data
points on which the small model underperforms and hence has a much smaller
impact overall. Therefore, a good rejector should always favor the small model
as much as possible and carefully pick those P samples.

3.2 Even a Perfect Rejector Will Overuse Its Budget

Recall that the rejector in [2,8,12] is trained to pick the big model at most
p times on average during training. Unfortunately, there is no guarantee that
the rejector will satisfy this constraint during deployment without further safe-
guards. Consider a deployed model (fs, fb, r), and a given batch T of N samples
that should be classified. Since during training ES [r(x)] ≤ p we hope that dur-
ing deployment it also holds that ET [r(x)] ≤ p but clearly we can construct
corner cases in which this is not true. More critically, even if the estimation of
ED[r(x)] = ES [r(x)] during training is perfect and we have the perfect rejector
with ED[r(x)] ≤ p, then there is still a non-zero chance to find a sample T that
forces us to overuse the big model breaking our budget p, i.e., a sample with
ET [r(x)] > p. Theorem 2 formalizes this insight. Its proof utilizes the fact that
ET ∼DN [r(x)] is normally distributed around ED[r(x)] due to the central limit
theorem. Conversely, for N < ∞, the standard deviation of this normal distri-
bution is larger than 0 so that there is a non-zero chance to find values above
the mean ED[r(x)].

Theorem 2. Assume we have given the Bayes optimal classifier (f∗
s , f∗

b , r∗) =
argminf ED[�(f(x), y)] s.t. ED[r(x)] ≤ p and ED[r(x)] ∈ (0, 1). Then there exists
a sample T ∼ DN such that ET [r(x)] = 1

N

∑N
i=1 r(xi) > p.
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Proof. Consider a sample T ∼ DN and the empirical mean p̂ = 1
N

∑N
i=1 r(xi).

For a sufficiently large N the empirical mean p̂ is normal distributed due to the
central limit theorem with p̂ ∼ N (μ, σ) where

μ = ED[r(x)]

σ =
VD[r(x)]√

N
=

μ(1 − μ)√
N

Let Φ denote the CDF of a Gaussian distribution. Then there is a non-zero
probability P (p̂ > p) = Φ(p̂) > 0, given M < +∞ and μ(1− μ) �= 0 which holds
due to the assumption that μ = ED[r(x)] ∈ (0, 1). Hence, there exists a sample
T such that r(x) is queried more often than p. �

3.3 A Rejector Should Not Trust fs and fb

Arguably, the most straightforward rejector that always adheres to the budget
p only selects the big model up to P = 	N · p
 times during deployment. In this
case, we do not necessarily need to train a rejector, as we could simply trust the
small model’s outputs to determine if it is in doubt about a sample or not. More
formally, we query the small model for all N data points, sort them according to
a confidence score (e.g., the model’s uncertainty), and then select those P data
points with the smallest scores to be predicted by the big model. The pseudocode
for this algorithm is depicted in Algorithm 3.1, where T is the current batch and
p is the budget. For general applicability (we will re-visit Algorithm3.1 in the
next section), we explicitly include the rejector r as a parameter. However, note
that using the confidence scores of the small model as rejector means we set
r = fs in the parameters, i.e., use confidence_thresholding(fs, fb, fs, T , p) so
that no rejector r is necessary.

Implicitly, this algorithm trusts that the small model can express its confi-
dence accurately. Unfortunately, this is not guaranteed without further assump-
tions on fs, and we argue that any rejector that blindly trusts the output prob-
abilities of a model can be fooled. And indeed, we can easily construct a simple
counter-example in which the big model is a decision tree of depth 2, which is
overly confident (but wrong), and the small model is a decision tree of depth
1, which is uncertain (but correct) for some samples. Theorem 3 formally estab-
lished this argument and shows that – in the worst case – the lower bound in
Theorem 2 can be realized.
Algorithm 3.1: Confidence Thresholding.
1 Function confidence_thresholding(fs, fb, r, T , p):
2 s ← (cr(x1), . . . , cr(xN ))

// Confidences of r
3 s, x ← sorted(s, x) // Sort confidences ascending
4 P ← 	N · p
 // Set cutoff
5 return {(xi, ys(xi)1{cr(xi) > sP } + yb(xi)1{cr(xi) ≤ sP })}Ni=1
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Theorem 3. Given two models fs, fb, a batch T of N data points, and a
budget p ∈ [0, 1], then confidence thresholding of the small model fs, i.e.,
using confidence_thresholding(fs, fb, fs, T ,p), can have a performance that
matches the lower bound 1 in Theorem 1, i.e.

Γf = Nsb +max{Nsb̄ − P, 0}

Proof. We give an example situation with two decision trees. Consider a one-
dimensional example x ∈ [0, 10] with two classes y ∈ {0, 1} that are assigned by
the following rule:

y =

⎧⎪⎨
⎪⎩
0 if x ≤ 5
1 if 5 < x ≤ 7.5
0 if 7.5 < x

We have gathered the following training data: S = {(3, 0.2), (3.5, 0.2),
(4, 0.2), (6, 0.2), (6.5, 0.2), (8, 0.2), (8.5, 0.2), (9, 0.2), (9.5, 0.2)}. We trained two
trees fb and fs as depicted in Fig. 2 using the CART algorithm. Clearly, fb
performs better most of the time than fs. However, for any x ∈ (7.25, 7.5), it
is very confident in its prediction (fb(x) = 1) and fs is comparably unconfi-
dent (fs = 4/6). Now consider a batch of N data points that fall exactly in the
region of x ∈ (7.25, 7.5). Here, we should always pick the small model because –
although unconfident – it is correct. However, confidence_thresholding picks
at least P = 	Np
 predictions from the big model, leading to a performance of
Γf = Nsb + Nsb̄ − P .

5 7.25

fb:

x < 5

x < 7.25

4
4 | 0

4
0
2 | 2

2
3
3 | 0

3

5

fs:

x < 5

3
3 | 0

3
2
6 | 4

6

Fig. 2. Two decision trees trained on the sample S = {(3, 0.2), (3.5, 0.2), (4, 0.2),
(6, 0.2), (6.5, 0.2), (8, 0.2), (8.5, 0.2), (9, 0.2), (9.5, 0.2)}. The color-shaded area marks the
correct class, and the samples are depicted as ‘-’ and ‘+’. Each leaf node shows the
empirical class probabilities for both classes, where the left entry represents the nega-
tive ‘-’ class and the right entry represents the positive class ‘+’.

�
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4 Training a Rejector for a Rejection Ensemble

The previous section discussed the theoretical properties of a (good) rejector,
which we summarize as follows: First, a good rejector should not (blindly) use the
confidence scores of the small model (c.f. Theorem 3). Hence, we argue against
training the rejector on the outputs of the small model (i.e., fs(x)) but propose
using the input data x or intermediate transformations such as, e.g., embeddings
of a Neural Network derived from fs directly. Second, a rejector will likely overuse
its budget during deployment. Hence, if the budget is a hard constraint, we must
employ additional safeguards (c.f. Theorem 2). Therefore, we argue that we can
simplify the training of r by ignoring any budget constraints during training, but
we add additional safeguards during deployment that handle these constraints.
Third, a rejector can improve the overall performance over fb if fs performs well
and is sufficiently different from fb. Hence, the training of r should favor the
small model in all cases where it is correct and only use fb if fs is incorrect
(c.f. Theorem 1). To this end, we propose Algorithm4.1 for training a rejection
ensemble. It receives the models fs and fb and applies them to the given training
set S. Then, it generates virtual labels that are 1 if both models disagree and the
big model is correct. Otherwise, it assigns the label 0 to a sample. Finally, the
rejector is trained on the original observations (or intermediate representations
if available) with the new labels.

Algorithm 4.1: Training of Rejection Ensembles via virtual labels.
1 Function fit(fs, fb, S):
2 V = ∅ // Virtual Labels for r
3 for i = 1, . . . , m do
4 if ys(xi) = yb(xi) then
5 vi ← 0 // Both models agree. Pick the small model
6 else
7 if yb(xi) = yi then
8 vi ← 1 // Big model is correct, pick it.
9 else

10 vi ← 0 // Big model is wrong. Use the small model.
11 end if
12 end if
13 V ← V ∪ {(xi, vi)}
14 end for

// Train r by minimizing � over V. fs, fb do not change
15 r ← argminr

1
m

∑
(x,v)∈V �(r(x), v)

16 return (fs, fb, r)

Ensuring that the rejector satisfies the budget constraint during deployment
is more challenging. For clarity, we now assume that the rejector outputs a confi-
dence score, i.e., it is a function r : X → [0, 1]. Then we can use Algorithm 3.1 to
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sort the confidence scores of the rejector in ascending order and only use the big
model up to 	Np
 times, i.e. using confidence_thresholding(fs, fb, r, T , p).
Notably, this algorithm now assumes that r(x) reflects the propensity of the
rejector to favor the big model instead of trusting fs. We argue that this is a
more favorable scenario, as we can focus our energy entirely on training a good
rejector instead of training three models at once.

5 Experiments

We now experimentally validate our findings in Theorem 1 and Theorem 2. Fur-
ther, we show that training via virtual labels and online calibration outperforms
existing methods. To do so, we perform two sets of experiments on the datasets
listed in Table 1. The first experiment uses Deep Learning models evaluated on
CIFAR100 and ImageNet, whereas the second experiment uses decision trees
evaluated on several UCI datasets. We compare four different methods: For our
baseline, we follow the established approaches of [2,8,12] by using confidence
scores for training the rejector. More formally, we apply the small model to the
training data and sort it according to the confidence score of the small model.
Then, we assign a 1-label to the 	Np
 examples with the smallest scores, whereas
the remaining samples receive a 0-label. Finally, we train the rejector with these
new labels. Note that, by construction, this approach satisfies the budget for the
training data if the rejector is sufficiently accurate. We call this approach con-
fidence labels. As a variation of this baseline, we combine a rejector trained via
confidence labels with Algorithm 3.1, i.e., with confidence calibration, and call
this method confidence calibrated. Third, we use Algorithm 4.1 to train the rejec-
tor and call this approach virtual labels, and finally, we combine Algorithm 4.1
and Algorithm 3.1 into virtual labels calibrated. The code for these experiments
is available under https://github.com/sbuschjaeger/rewoc. Additional ablation
studies on the UCI datasets can be found in the full version of the paper available
in the code repository.

Table 1. Datasets used for the experiments.

Dataset # Samples Dimensionality # Classes

ImageNet [24] 50 000 3 × 224 × 224 1 000

CIFAR 100 [14] 10 000 3 × 32 × 32 100

Anuran [13] 7 195 22 10

Covertype [13] 581 012 54 7
EEG [13] 14 980 14 2
Elec [13] 45 312 14 2
Gas Drift [13] 13 910 128 6
Weather [13] 18 159 8 2

https://github.com/sbuschjaeger/rewoc
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As mentioned earlier, we are interested in an energy-efficient deployment
in real-world scenarios. To measure the energy improvement under real-world
circumstances, we perform all experiments on an Nvidia Jetson Orin AGX board.
The Nvidia AGX board is a high-performance system-on-module (SoM) tailored
for AI applications and marketed explicitly for model deployment. It offers 12
ARM CPU cores, 2048 CUDA cores, and 64 tensor cores combined with 64GB
of main memory. Its maximum power usage is 50W, although we measured
significantly less than that during our experiments. In total, all experiments
can be run in roughly under 6 hours on the AGX, and we estimate a total
energy consumption of around 540 kJ on this platform for all experiments, which
equates to around 0.0444 KG CO2 given an average European energy mix. We
are interested in the following questions:

1. Out of the four methods, which method performs the best overall?
2. Can a Rejection Ensemble improve over the performance of the big model?
3. How severely will the budget be overused if no calibration is done?
4. Does a Rejection Ensemble use less energy than the big model fb?

5.1 Experiments with Deep Learning Models

For the Deep Learning experiments, we use the following setup: For the Ima-
geNet experiment, we employed ShuffleNetV2 x0.5 [16] as the small model and
Efficientnet-B4 [25] as the big model2. To evaluate the rejection ensemble’s per-
formance, we conducted a 5-fold cross-validation over the validation dataset of
ImageNet, i.e., in each fold, we used one part of the validation dataset to train
the rejector and the other part to test the ensemble. For CIFAR100, we also
use ShuffleNetV2 x0.5 [16] as the small model, while RepVGG-A2 [9] acted as
the big model3. Similar to the ImageNet experiment, we conducted a 5-fold
cross-validation over the test dataset of CIFAR100. We tested different rejectors
during pre-experiments but could not find meaningful differences. Hence, we use
a Logistic Regression as the rejector trained via scikit-learn [20] trained on inter-
mediate representations of the small model. In all experiments, we use N = 32
as the batch size during deployment and vary p ∈ {0, 0.1, . . . , 1.0}.

Figure 3 shows the results for CIFAR100 (left column) and ImageNet (right
column). As expected, the accuracy improves with increasing budget for all meth-
ods except virtual labels without calibration. Here, the method chooses always
to use the small model, so it does not increase its performance. Virtual labels
calibrated seems to be the best method, offering the highest accuracy, although
it does not outperform the big model. Looking at the power consumption, we
see a similar trend: As expected, with increasing usage of the big model, the
power consumption increases but never exceeds the power consumption of the
big model. However, on Imagenet, a notable plateau is visible for p > 0.5, in
which the energy consumption is already close to the big model. Second, we see

2 Obtained from https://pytorch.org/vision/stable/models.html.
3 Obtained from https://github.com/chenyaofo/pytorch-cifar-models.

https://pytorch.org/vision/stable/models.html
https://github.com/chenyaofo/pytorch-cifar-models
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Fig. 3. Experimental results on CIFAR100 (left column) and ImageNet (right col-
umn). The first row shows the test accuracies, and the second row shows the energy
consumption. The standard deviation is computed over the 5 cross-validation folds,
and the crosses mark the small (left cross) and big model’s (right cross) accuracy and
power consumption. The third row shows how often the big model is queried for each
batch p̂ = 1

N

∑
x,y∈T r(x), with one marker representing one batch. In all plots, the

x-axis represents the given budget p.

that confidence no calibration seems to use less energy for some budget con-
straints. While we are not entirely sure why this is the case, we assume that our
implementation of confidence_thresholding is sub-optimal4 and we expect a
more evolved implementation to have a better energy consumption. Looking at
the relative use of the big model (third row), we see a mixed picture: First, we
see that virtual-labels no calibration does not use the big model at all as expected
from its test accuracy. Second, we see that all other methods increase their usage
of the big model with a growing budget. Please note that the plots for confidence
calibrated and virtual-labels calibrated overlap due to the calibration step here,
so it is difficult to distinguish them in these plots. Both methods do not overuse
their budget and choose the big model close to as often as the budget allows.
For better interpretability, the gray line depicts the maximum usage allowed of
the big model for a given budget: Anything above the gray line means we are
overusing the budget, whereas everything below means we could have picked the
big model more often. Most interestingly, we see that confidence no calibration
does not overuse its budget on average, but there are many batches (a single

4 Due to sorting, data needs to be transferred between the CPU and GPU.



Rejection Ensembles with Online Calibration 17

marker represents one batch) in which the budget is not kept. In particular,
on the ImageNet dataset, there are batches in which the big model is used for
almost all data points, although the budget is close to zero. We conclude that
virtual-labels calibrated is overall the best approach: It always keeps the budget
while having a better test accuracy than the other methods with similar power
consumption.

5.2 Experiments with Decision Trees

For the decision tree experiments, we use the following setup: Theorem 1 suggests
that if the performance of the small model is close to the performance of the
big model, then a Rejection Ensemble can improve its accuracy over the big
model. To test this hypothesis, we use a small decision tree of depth three as
the big model and a decision stump as the small model trained via scikit-learn
[20]. Contrary to before, we now perform a 5-fold cross-validation and use the
training data to train the initial small and big models. Then, we further split
the testing data in each cross-validation run 50:50 into the training set for the
rejector and the actual test set. Similar to before, we tested different rejectors
during pre-experiments but could not find meaningful differences. Hence, we
use a Logistic Regression as the rejector in all experiments, now trained on the
original raw data. Similar to before, we use N = 32 as the batch size during
deployment and vary p ∈ {0, 0.1, . . . , 1.0}. For space reasons, we now focus on
classification accuracy and refer interested readers to the full version of the paper
for additional results.

Figure 4 shows the test accuracies for our UCI experiment. We highlight three
observations here: First, virtual labels no calibration and confidence calibrated
both do not seem to respect the budget at all as they have nearly a constant usage
of the big model. Second, on the gast-drift, covertype, and weather datasets, we
see an increase in the performance of the ensemble over the big model. Most
notably, on the gas-drift dataset, we see an increase of nearly 10% points in
accuracy. Third, on the weather dataset, we also see a decrease in performance
below the small model when using confidence no calibration. We conclude that
our analysis in Theorem 1 is correct and that the three different scenarios can
occur in practical settings. Overall, we conclude that virtual-labels calibrated is
the best method as it seems to offer the best accuracy over different budgets
compared to the other methods.

5.3 Conclusion from the Experiments

Indeed, a Rejection Ensemble can improve its performance over the big model
if the small and the big models have similar performances as predicted by The-
orem 1. In many scenarios, even when the rejector keeps the budget on average,
there are batches on which the big model is over- or underutilized, as implied
by Theorem 2. Overall, we find that virtual-labels calibrated seems to be the
best method, as it achieves the best accuracies while keeping the budget in all
scenarios. Last, we also find that, while Rejection Ensembles always use less
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Fig. 4. Experimental results on the UCI datasets. All plots show the test accuracies
over different budgets p. The standard deviation is computed over the 5 cross-validation
folds, and the crosses mark the small (left cross) and big model’s (right cross) accuracy.

energy than simply using the big model, there is some room for more improved
implementations of the calibration step.

6 Conclusion

In this paper, we have presented a comprehensive investigation into rejection
ensembles, addressing the crucial challenge of resource-aware deployment in
machine learning systems. By leveraging a combination of small and large mod-
els with a rejector, Rejection Ensembles offer a promising approach to reduc-
ing resource consumption while maintaining competitive predictive performance.
Our theoretical investigation has shed light on key aspects of rejector optimiza-
tion and deployment, providing precise conditions under which rejection ensem-
bles can outperform standalone models. Furthermore, we have proposed a novel
algorithm for training and deploying rejectors based on theoretical insights that
adhere to a given budget during deployment in all cases.

In addition to our theoretical investigation, we experimentally evaluated our
novel algorithm. Our experimental evaluation on multiple datasets across vari-
ous domains, executed on an Nvidia Jetson AGX board, has demonstrated the
efficacy of our proposed rejection ensemble approach. In particular, we showed
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that our theoretical investigation in Theorem 1 and Theorem 2 capture the real-
world characteristics of Rejection Ensembles. Moreover, we also showed that our
novel algorithm performs better than existing approaches.

Looking ahead, future research may focus on refining and extending our
theoretical framework to the real-time setting in which we have given a single
sample for which we immediately need to provide a prediction (i.e., N = 1). This
scenario is somewhat ill-defined at the moment because it is unclear what the
budget should encapsulate here, i.e., under what time horizon should we consider
the budget? Once a precise definition is available, we can adapt our proposed
calibration algorithm to the more challenging online scenario.

Acknowledgements. This research has partly been funded by the Federal Ministry
of Education and Research of Germany and the state of North-Rhine Westphalia as
part of the Lamarr-Institute for Machine Learning and Artificial Intelligence.
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Abstract. In this paper, we tackle Multi-Source Domain Adaptation
(MSDA), a task in transfer learning where one adapts multiple hetero-
geneous, labeled source probability measures towards a different, unla-
beled target measure. We propose a novel framework for MSDA, based
on Optimal Transport (OT) and Gaussian Mixture Models (GMMs).
Our framework has two key advantages. First, OT between GMMs can
be solved efficiently via linear programming. Second, it provides a con-
venient model for supervised learning, especially classification, as com-
ponents in the GMM can be associated with existing classes. Based on
the GMM-OT problem, we propose a novel technique for calculating
barycenters of GMMs. Based on this novel algorithm, we propose two new
strategies for MSDA: GMM-Wasserstein Barycenter Transport (WBT)
and GMM-Dataset Dictionary Learning (DaDiL). We empirically evalu-
ate our proposed methods on four benchmarks in image classification and
fault diagnosis, showing that we improve over the prior art while being
faster and involving fewer parameters (� Our code is publicly available
at https://github.com/eddardd/gmm_msda).

Keywords: Domain Adaptation · Optimal Transport · Gaussian
Mixture Models

1 Introduction

Supervised learning models, especially deep neural nets, rely on large amounts of
labeled data to learn a function that reliably predicts on unseen data. This prop-
erty is known as generalization. However, these models are subject to performance
degradation, when the conditions upon which test data is acquired changes. This
issue is known in the literature as distributional, or dataset shift [25].

Under distributional shift, a possible solution is to acquire a new labeled
dataset under the new conditions. This solution is, in many cases such as fault
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diagnosis [18], costly or infeasible. A different approach, known as Domain Adap-
tation (DA), consists of collecting an unlabeled target domain dataset, for which
the knowledge in the source domain dataset is transferred to [22]. A way to fur-
ther enhance this adaptation is to consider multiple related, but heterogeneous
sources, which is known as Multi-Source DA (MSDA) [5].

In the context of DA, a prominent framework is Optimal Transport (OT) [33],
which is a field of mathematics concerned with the displacement of mass at least
effort. This theory has been applied for DA in multiple ways, especially by (i)
mapping samples between domains [4] and (ii) learning invariant representa-
tions [28]. For MSDA, OT has been used for aggregating the multiple source
domains into a barycentric domain [15,16], which is later transported to the tar-
get domain, or by weighting source domain measures [30]. Our work considers the
problem of Wasserstein Dictionary Learning (WDL), initially proposed by [27]
for histogram data. This problem was later generalized by [14], for empirical mea-
sures, which allowed its application to MSDA. In [14], one expresses domains in
MSDA as a barycenter of atom measures, which have a free, learnable support.
As a result, the work of [14] learns how to interpolate distributional shift between
the measures in MSDA.

Fig. 1. Overview of proposed methods.  represent datasets, circles represent
barycenters and triangles represent learned measures. Blue and orange elements repre-
sent labeled and unlabeled measures respectively. In Gaussian Mixture Model (GMM)-
Wasserstein Barycenter Transport (WBT), a labeled GMM is determined for the target
domain by transporting the barycenter of sources. In GMM-Dataset Dictionary Learn-
ing (DaDiL), we learn to express each domain as a barycenter of learned GMMs, called
atoms, through dictionary learning.

However, previous algorithms relying on Wasserstein barycenters, such as
WBT [15,16] and DaDiL [14], are limited in scale, since the number of points
the support of the empirical measures scale with the number of samples in the
original datasets. As a consequence, previous works such as [15,16] are limited to
small scale datasets, or rely on mini-batch optimization [14], which introduces
artifacts in the OT. To tackle these limitations, in this paper we propose a
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novel, parametric framework for barycentric-based MSDA algorithms. based on
OT between GMMs [7]. We present an overview of our methods in Fig. 1.

Our contributions are threefold: 1. We propose a novel strategy for map-
ping the parameters of GMMs using OT (Sect. 3.1 and Theorem 1); 2. We pro-
pose a novel algorithm for computing mixture-Wasserstein barycenters of GMMs
(Algorithm1 in Sect. 3.3); 3. We propose an efficient parametric extension of the
WBT and DaDiL algorithms based on GMMs (Sect. 3.4). We highlight that,
while GMMs were previously employed in single source DA [10,20], to the best
of our knowledge this is the first work to leverage GMM-OT for MSDA.

The rest of this paper is divided as follows. Section 2 covers the background
behind our method. Section 3 covers our methodological contributions. Section 4
explores the empirical validation of our method with respect other OT-based
MSDA algorithms, where we show that our methods significantly outperform
prior art. Finally, Sect. 5 concludes this paper.

2 Preliminaries

2.1 Gaussian Mixtures

We denote the set of probability measures over a set X as P(X ). A Gaussian
measure corresponds to Pθ ∈ P(X ) with density,

fθ(x) =
1

√
(2π)d det(C(P ))

exp
(

−1
2
(x − m(P ))T (C(P ))−1(x − m(P ))

)
,

where θ = (m(P ),C(P )) are the mean vector m(P ) ∈ R
d and the covariance

matrix C(P ) ∈ S
d = {C ∈ R

d×d : C = CT and xCxT > 0,∀x ∈ R
d \ {0}}. We

generally denote Pθ = N (m(P ),C(P )). In addition, let K ≥ 1 be an integer. A
GMM over R

d is a probability measure Pθ ∈ P(Rd) such that,

Pθ =
K∑

k=1

pkPk, where Pk = N (m(P )
k ,C(P )

k ), and p ∈ ΔK , (1)

where ΔK = {p ∈ R
K
+ :

∑K
k=1 pk = 1}. Following [7], we denote the subset of

P(Rd) of probability measures which can be written as Gaussian mixtures with
less than K components by GMMd(K), and GMMd(∞) = ∪k≥0GMMd(K).

Given data points {x(P )
i }n

i=1 i.i.d. from P , one can determine the parameters
θ through maximum likelihood,

θ� = argmax
θ∈Θ

n∑

i=1

log Pθ(x
(P )
i ), (2)

where Θ = {{pk,m(P )
k ,C(P )

k }K
k=1 : m(P )

k ∈ R
d and C(P )

k ∈ S
d}. While Eq. 2 has

no closed-form solution, one can solve this optimization problem through the
celebrated Expectation-Maximization (EM) algorithm [8].
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2.2 Domain Adaptation

In this paper, we focus on the problem of classification. Given a feature space
X = R

d and a label space Y = {1, · · · , ncl}, this problem corresponds to finding
h ∈ H ⊂ YX that correctly classifies data {(x(Q)

i , y
(Q)
i )}n

i=1.
We use the Empirical Risk Minimization (ERM) framework [31], as it is

useful for domain adaptation theory. As follows, one assumes x(Q)
i

iid∼ Q, for a
measure Q ∈ P(X ), and h0 : X → Y such that y

(Q)
i = h0(x

(Q)
i ). h0 is called

ground-truth labeling function. Given a loss function L : Y × Y → R, a classi-
fier may be defined through risk minimization, i.e., h� = argminh∈HRQ(h), for
RQ(h) = EQ[L(h(x), h0(x))]. This strategy is oftentimes impractical as Q and
h0 are unknown. As a result, one resorts to the minimization of the empirical

risk, i.e., ĥ = argminh∈HR̂Q(h), where R̂Q(h) =
1
n

∑n
i=1 L(h(x(Q)

i ), y(Q)
i ).

From a theoretical standpoint, this framework is useful because RQ is
bounded by R̂Q and a complexity term depending on the number of samples
n, and the Vapnik-Chervonenkis dimension of H [31, Section 6]. As a result, ĥ
minimizing the empirical risk is guaranteed to generalize to unseen samples of Q.
Nevertheless, the assumption that unseen examples come from a fixed measure
Q is seldom verified in practice [25], since the conditions upon which data is
acquired may change. In this case, models are required to adapt to new data,
but at the same time re-training a model from the scratch is likely costly and
data intensive. A solution consists of using transfer learning [22], in which one
re-uses knowledge from a source domain or task to facilitate the learning on a
target domain or task.

In transfer learning, a domain is a pair (X , Q(X)) of a feature space and
a (marginal) probability measure. Likewise, a task is a pair (Y, Q(Y |X)) of a
label space and a conditional probability measure. Domain adaptation is a case in
which one has two domains (X , QS(X)), (X , QT (X)), a single task (Y, Q(Y |X)),
and QS(X) 
= QT (X). Furthermore, multi-source domain adaptation supposes
multiple source domain measures, i.e., QS1 , · · · , QSN

, with QSi

= QSj

, and
QSi


= QT . To reflect the idea that acquiring new data is costly, we have
an unsupervised scenario. In this case, we have N labeled source datasets
{(x

(QS�
)

i , y
(QS�

)

i )}n�
i=1, and an unlabeled target dataset {x(QT )

i }nT
i=1. Our goal is

to learn a classifier on QT by leveraging the knowledge from the source domains.

2.3 Optimal Transport

Optimal transport is a field of mathematics concerned with the displacement of
mass at least effort [17,24]. Given probability measures P,Q ∈ P(X ), the Monge
formulation [24, Section 2.2.] of OT seeks for a mapping T ,

T � = arginf
T�P=Q

∫

X
c(x, T (x))dP (x), (3)

where T� is the push-forward mapping of T , i.e., T�P (A) = P (T−1(A)), and
c : Rd × R

d → R is a ground-cost, that is, a measure of transportation effort.
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Nonetheless, this problem poses technical difficulties, mainly due the constraint
T�P = Q. A more tractable formulation was proposed by Kantorovich [24,
Section 2.3.], and relies on OT plans,

γ� = arginf
γ∈Γ(P,Q)

∫

X

∫

X
c(x, z)dγ(x, z), (4)

where Γ(P,Q) = {γ ∈ P(X × X ) :
∫

X γ(A, z) = P (A), and
∫

X γ(x,B) = Q(B)}
is called the transportation polytope. There is a metric between probability
measures, associated with OT, called Wasserstein distance [33]. As such, let
c(x, z) = d(x, z)α for α ∈ [1,∞), where d is a metric on X , then,

Wc,α(P,Q) =
(

inf γ ∈ Γ(P,Q)
∫

X

∫

X
c(x, z)dγ(x, z)

)1/α

. (5)

When X = R
d, a common choice is c(x, z) = ‖x − z‖α

2 , for which we omit the
subscript c. Furthermore, common values for α include 1 and 2. Throughout this
paper we adopt the Euclidean metric and α = 2.

While Eq. 4 is hard to solve for general P and Q, it has closed-form solution
for Gaussian measures [29]. As such, let P = N (m(P ),C(P )) (resp. Q). Under
these conditions, for C(P ) = S(P )(S(P ))T ,

W2(P,Q)2 = ‖m(P ) − m(Q)‖2
2 + Tr

(
C(P ) + C(Q) − 2(S(P )C(Q)S(P ))1/2

)
,

This expression can be further simplified for axis-aligned Gaussians, i.e., S(P ) =
diag(s(P )), with s(P ) ∈ R

d
+,

W2(P,Q)2 = ‖m(P ) − m(Q)‖2
2 + ‖s(P ) − s(Q)‖2

2. (6)

Henceforth, we assume axis-aligned Gaussian measures.

Remark. Here, we give further insight into the hypothesis of using axis-aligned
Gaussian measures. We use this assumption for numerical stability purposes,
i.e., estimating the covariance matrix of GMMs in high dimensions is much
more difficult than estimating the standard deviation vector s(P ). Here, one has
two choices. First, it is possible to introduce a transformation so as to force fea-
tures to be uncorrelated (e.g., through principal components analysis). This app-
roach, nonetheless, requires more data points per domain than features, which
is not always feasible. Conversely, one can increase the number of components
for expressing the shape of the data (see Fig. 2). As we show in our experiments
sections, we achieve good adaptation performance, even while sampling points
from axis-aligned GMMs.

We use the GMM-OT framework of [7], which is convenient to our setting
for 2 reasons. First, they are able to represent measures with sub-populations,
such as those commonly encountered in classification and domain adaptation.
Second, they yield a tractable OT problem, when γ is further restricted to be a
GMM itself, that is,



26 E. F. Montesuma et al.

−2 −1 0 1 2
x1

−3

−2

−1

0

1

2
x
2

Complete covariance

−2 −1 0 1 2
x1

−3

−2

−1

0

1

2

x
2

Axis-aligned

Fig. 2. Illustration of axis-aligned GMMs. This hypothesis leads to GMMs that
need more components to express the underlying data distribution.

ω� = GMMOT(P,Q) = argmin
ω∈Γ(p,q)

KP∑

i=1

KQ∑

j=1

ωijW2(Pi, Qj)2, (7)

where the OT plan is given by γ� =
∑n

i=1

∑m
j=1 ω�

ijfθ(x)δ(y − Tij(x)) and
W2(Pi, Qj)2 is the Wasserstein distance between components Pi and Qj (c.f.,
Eq. 6). Furthermore, the GMMOT problem defines the Mixture-Wasserstein
distance [7],

MW2(P,Q)2 =
KP∑

i=1

KQ∑

j=1

ω�
ijW2(Pi, Qj)2. (8)

DaDiL [14] is an OT-based framework for expressing probability measures
as barycenters of synthetic measures, called atoms. In this case, the authors use
empirical measures, i.e., P̂ = n−1

∑n
i=1 δ

(x
(P )
i ,y

(P )
i )

. The framework is inspired

by dictionary learning literature [27]. The authors introduce atoms P = {P̂c}C
c=1

and barycentric coordinates Λ = {λ�}N
�=1, such that each measure in MSDA is

expressed as a Wasserstein barycenter Q̂� = B(λ�,P). This framework leads to
the following optimization problem,

(Λ�,P�) = argmin
Λ,P

W2(Q̂T ,B(λ�;P)) +
N∑

�=1

Wc,2(Q̂�,B(λ�;P))2, (9)

where c
(
(x(Q�),y(Q�)), (x(B�),y(B�))

)
= ‖x(Q�) − x(B�)‖2

2 + β‖y(Q�) − y(B�)‖2
2,

and β ≥ 0 is a constant expressing how costly it is to move samples from dif-
ferent classes. This framework makes it easier to express the distributional shift
between the different Q = {Q̂1, · · · , Q̂NS

, Q̂T }. Especially, since B̂� = B(λ�,P)
is labeled, one can synthesize labeled target domain data by reconstructing the
target measure with λT := λN+1.
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3 Methodological Contributions

3.1 First Order Analysis of MW2

In this section we analyze P �→ MW2(P,Q)2, for a fixed Q. We are particularly
interested on how to map the components of P towards Q, while minimizing this
distance. The following theorem provides us a strategy,

Theorem 1. Let P and Q be two GMMs with components Pi = N (m(P )
i ,

(s(P )
i )2) (resp. Qj) and ω� be the solution of Eq. 7. The first-order optimality

conditions of MW2
2, with respect mi and si are given by,

m̂i = Tω�(m(P )
i ) =

KQ∑

j=1

ω�
ij

pi
m(Q)

j , and ŝi = Tω�(s(P )
i ) =

KQ∑

j=1

ω�
ij

pi
s(Q)
j , (10)

where ω� is the solution of Eq. 7.

Proof. Our proof relies on the analysis of {(mi, si)}KP
i=1 �→ MW2(P,Q)2 (c.f.,

Eq. 8). Given ω� = GMMOT(P,Q),

∂MW2
2

∂mi
= 2

KQ∑

j=1

ω�
ij(mi − m(Q)

j ) = 2

⎛

⎝pimi −
KQ∑

j=1

ω�
ijm

(Q)
j

⎞

⎠ ,

and, by equating this last term to 0, one gets the desired equality.

Equation 10 is similar to the barycentric mapping in Empirical Optimal
Transport (EOT) [4, eq. 13], which serves as an approximation for the Monge
mapping between P and Q. In our case, the barycentric mappings act on the
parameters of the GMM, rather than on its samples. Theorem 1 will be useful
in the calculation of MW2 barycenters.

3.2 Supervised Mixture-Wasserstein Distances

In this paper, we consider supervised learning problems. As such, it is necessary
to equip the components of GMMs with labels that represent the classes in the
datasets. We propose doing so through a simple heuristic, especially, we model
P (x|y) through a GMM. We then concatenate the nc obtained GMMs, and
assign, for the k−th GMM of the y−th class, v

(P )
k,y′ = δ(y′ −y), i.e., a vector of nc

components, and 1 on the y−th entry. We can assure that the resulting weights
sum to 1 by dividing their value by

∑nc

y=1

∑K
k=1 pk,y, where pk,y corresponds to

the weight of the k−th component of the y−th GMM.
Given a GMM {pk,m(P )

k , s(P )
k ,v(P )

k }K
k=1, we define a classifier through Max-

imum a Posteriori (MAP) estimation. This strategy is carried out through,

ĥMAP (x) = argmax
y=1,··· ,nc

P (y|x) =
K∑

k=1

Pθ(k|x)
︸ ︷︷ ︸

pkPk(x)/
∑

k′ pk′ Pk′ (x)

P (y|k)
︸ ︷︷ ︸

v
(P )
k,y

, (11)

we use this classifier in a few illustrative examples in Sect. 4.3.
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Remark. In Eq. 11, we are implicitly assuming that the component k is condi-
tionally independent with y given x. This remark is intuitive, as x explains, at
the same time, the component and the label.

Similarly to EOT, when the mixtures P and Q are labeled, one needs to take
into account the labels in the ground-cost. Given β > 0, we propose the following
distance between labeled GMMs,

SMW2(P,Q)2 = min
ω∈Γ(p,q)

KP∑

i=1

KQ∑

j=1

ωij(W2(Pi, Qj)2 + β‖v(P )
i − v(Q)

j ‖2
2). (12)

While simple, using an Euclidean distance for the soft-labels allows us to derive
similar first-order conditions for SMW2,

Theorem 2. Under the same conditions of Theorem 1, let Pi and Qj be equipped
with labels v(P )

i and v(Q)
j . The first order optimality conditions of SMW2 with

respect mi and si are given by Eq. 10. Furthermore, for vi,

v̂i = Tω(v(P )
i ) =

KQ∑

j=1

ω�
ij

pi
v(Q)

j . (13)

Proof. The label distance term in SMW is independent of mi and si, hence
the optimality conditions of these variables remain unchanged. Therefore, the
first-order optimality condition with respect vi is,

∂SMW2
2

∂vi
= 2β

KQ∑

j=1

ω�
ij(vi − v(Q)

j ) = 2β

⎛

⎝pivi −
KQ∑

j=1

ω�
ijv

(Q)
j

⎞

⎠ ,

which, for β > 0, is zero if and only if vi = Tω(v(P )
i ).

Remark. In Eq. 12, we are heuristically adding a label regularization term to the
MW2 distance. The actual continuous counterpart (between samples, rather
than components) is currently beyond the scope of this paper, but methodolog-
ically, this choice remains valid, and is closer to the contributions of [3].

3.3 Mixture Wasserstein Barycenters

In this section, we detail a new algorithm for computing barycenters of GMMs
under the MW2 and SMW2 metrics. As such, we adapt the definition of [1],

Definition 1. Given C ≥ 1 GMMs P = {Pc}C
c=1, KB ≥ 1, and a vector of

barycentric coordinates λ ∈ ΔC , the SMW2 barycenter is given by,

B� = B(λ,P) = argmin
B∈GMMd(KB)

{

L(B) =
C∑

c=1

λcSMW2(B,Pc)2
}

. (14)
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When the GMMs in P are unlabeled, one may define, by analogy, a barycenter
under the MW2. Henceforth we describe an algorithm for labeled GMMs, but its
extension for unlabeled GMMs is straightforward. Inspired by previous results in
empirical Wasserstein barycenters [6,14], we propose a novel strategy for comput-
ing B(λ,P). Our method relies on the analysis of θB = {(m(B)

i , s(B)
i ,v(B)

i )}KB
i=1 �→

∑C
c=1 λcSMW2(B,Pc)2. First, for a fixed θB, we find ω�

1 , · · · , ω�
C transport

plans. Then, for fixed transport plans, we solve,

argmin
θB

L(θB) =
C∑

c=1

λc

KB∑

i=1

KP∑

j=1

ω�
c,i,jCc,i,j ,

where Cc,i,j = ‖m(B)
i − m(Pc)

j ‖2
2 + ‖s(B)

i − s(Pc)
j ‖2

2 + β‖v(B)
i − v(Pc)

j ‖2
2

which can be optimized by taking derivatives with respect m(B)
i , s(B)

i and v(B)
i .

For instance, taking the derivative of L(θB) with respect m(B)
i ,

∂L
∂m

(B)
i

= 2
C∑

c=1

λk

KP∑

j=1

ω�
c,i,j(m

(B)
i − m

(Pc)
j ) =

2

KB
m

(B)
i − 2

C∑

c=1

λc

KP∑

j=1

ω�
c,i,jm

(Pc)
j

setting the derivative to 0, one has, m(B)
i =

∑C
c=1 λcTω�

c
(m(B)

i ). Similar results
can be acquired for s(B)

i and v(B)
i by taking the appropriate derivatives. Our

strategy is shown in Algorithm 1.

3.4 Multi-source Domain Adaptation Through GMM-OT

In this section, we detail two contributions for MSDA based on GMM-OT:
GMM-WBT and GMM-DaDiL. In both cases, we suppose access to N labeled
source GMMs QS = {QS�

}N
�=1 and an unlabeled target GMM QT . Contrary to

the empirical versions of these algorithms [14–16], we assume that an axis-aligned
GMM has been learned for each domain, including the target.

GMM-WBT. The intuition of this algorithm is transforming the MSDA sce-
nario into a single-source one, by first calculating a Wasserstein barycenter of
B = B(1N/N ;QS). After this step, WBT solves a single-source problem between
B and QT . When each QS�

is a GMM, the parameters of B are estimated through
Algorithm 1. Next, one solves for ω(T ) = GMMOT(B,QT ), so that the param-
eters of B are transported towards QT using Theorems 1 and 2,

m̂(QT )
i = KB

KT∑

j=1

ω
(T )
ij m(QT )

j , and, ŝ(QT )
i = KB

KT∑

j=1

ω
(T )
ij s(QT )

j . (15)

With a labeled GMM, {m̂(QT )
i , ŝ(QT )

i ,v(B)
i }KB

i=1, on the target domain, we can
learn a classifier on the target domain as explained in Sect. 3.2.
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Algorithm 1: SMW2 Barycenter of GMMs
1 function smw_barycenter({(M(Pc),S(Pc),V(Pc))}C

c=1, τ, Nit)
2 m

(B)
i ∼ N (0, Id), s(B)

i = 1 and y
(B)
i = 1nc/nc

3 while |Lit − Lit−1| ≥ τ and it ≤ Nit do
// Compute GMM-OT plans

4 for c = 1, · · · , C do
5 ω(c,it) = GMMOT(B, Pc)

// Note: W2(Bi, Pc,j)
2 = ‖m(B)

i − m
(Pc)
j ‖2

2 + ‖s(B)
i − s

(Pc)
j ‖2

2

6 Lit =
∑C

c=1 λc

∑KB
i=1

∑KP
j=1 ω

(c,it)
ij

(
(W2(Bi, Pc,j)

2 + β‖v(B)
i − v

(Pc)
j ‖2

2)

)

// Update barycenter parameters
7 m

(B)
i =

∑C
c=1 λcTω(c,it)(m

(B)
i )

8 s
(B)
i =

∑C
c=1 λcTω(c,it)(s

(B)
i )

9 v
(B)
i =

∑C
c=1 λcTω(c,it)(v

(B)
i )

10 return M(B), S(B), V(B)

GMM-DaDiL. Our second algorithm consists of a parametric version for the
DaDiL algorithm of [14]. The idea is to replace the atoms in P = {P̂c}C

c=1

by GMMs parametrized through ΘP = {(M(Pc),S(Pc),V(Pc))}C
c=1. Learning a

dictionary is thus equivalent to estimating these parameters, that is,

(Λ�,Θ�
P ) = argmin

Λ,ΘP

MW2(QT ,B(λT ,P))2 +
N∑

�=1

SMW2(Q�,B(λ�;P))2. (16)

While Eq. 16 does not have a closed-form solution, we optimize it through
gradient descent. An advantage of the GMM modeling is that this optimization
problem involves far less variables than DaDiL, hence we do not resort to mini-
batches. We detail our strategy in Algorithm 2. Note that we need to enforce
3 kinds of constraints: (i) s(Pc)

i ∈ R
d
+, (ii) λ� ∈ ΔC and (iii) y(Pc)

i ∈ Δncl
.

For (i) and (ii), we use orthogonal projections into R
d
+ and ΔC respectively.

We additionally set s(Pc)
i ≥ smin for numerical stability. For (iii), we perform a

change of variables y(Pc)
i = softmax(u(Pc)

i ).
Once the dictionary (Λ,P) is learned, we are able to reconstruct the domains

in MSDA via the barycenter B(λ;P). We are especially interested in the target
reconstruction λT , i.e., B(λT ,P). This barycenter is a labeled GMM (as we show
in Fig. 4b). As a result, we can obtain labeled samples from this GMM, then use
them to train a classifier that works on the target domain.

The computational complexity of an optimization step of Algorithm 2 cor-
responds to O(N × Nit × C × K3 log K), i.e., we calculate N barycenters
of C atoms. One should compare this complexity with that of DaDiL, i.e.,
O(N × Nit × M × C × n3

b log nb), where M = n/nb� is the number of mini-
batches sampled at each iteration. In our experiments in Sect. 4, we show that
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Algorithm 2: GMM-Dataset Dictionary Learning
1 function gmm_dadil({(M(QS�

),S(QS�
),V(QS�

))}N
�=1, {(M(QT ),S(QT ))}, Nit,

η)
// Initialization.

2 m
(Pk)
i ∼ N (0, Id), s(Pk)

i := 1, u(Pk)
i := 1/nc, and λ� = 1/K

3 for it = 1, · · · , Nit do
4 L ← 0

// Change of variables
5 v

(Pk)
i ← softmax(u

(Pk)
i )

// Evaluate supervised loss on sources
6 for � = 1, · · · , N do
7 L ← L + SMW2(QS� , B(λ�, P))2

// Evaluate unsupervised loss on targets
8 L ← L + MW2(QT , B(λT , P))2

// Gradient step
9 m

(Pk)
j ← m

(Pk)
j − η∂L/∂m

(Pk)
j

10 u
(Pk)
j ← u

(Pk)
j − η∂L/∂u

(Pk)
j

// Note: we project variables s and λ.
11 s

(Pk)
j ← proj

R
d
+
(s

(Pk)
j − η∂L/∂s

(Pk)
j )

12 λ� ← projΔC
(λ� − η∂L/∂λ�)

13 return Λ, P

we achieve state-of-the-art performance with K on the same order of magni-
tude as nb (e.g., a few hundred Gaussian components). As a result, we achieve
a speed-up on the order of M while solving an exact OT problem (see Fig. 5 (c)
below).

4 Experiments

4.1 Toy Example

In this section, we explore GMM-WBT and GMM-DaDiL in the context of a toy
example. We generate 4 datasets over R

d, by gradually shifting and deforming
initial measure through an affine mapping. In Fig. 3 (a) we show the generated
datasets. Starting with GMM-WBT, Fig. 3 (b) shows the learned GMMs for
each dataset, in which the target GMM is not labeled. The barycenter of QS =
{QS�

}N
�=1 is shown in Fig. 3c (bottom-left). This barycenter is labeled. As a

result, we may transfer its parameters to the target domain through GMM-OT
(upper part), which leads to a labeled GMM in the target domain.

Next, we show in Fig. 4 a summary for the GMM-DaDiL optimization process
(Fig. 4a), and the reconstruction of target domain GMMs (Fig. 4b). Note that, as
the training progresses, the reconstruction error and the negative log-likelihood
of the GMMs decrease. As a result, GMM-DaDiL produces accurate, labeled



32 E. F. Montesuma et al.

−5−1 3 7 11
x1

−5

−1

3

7

11

x
2

Q̂S1

−5−1 3 7 11
x1

x
2

Q̂S2

−5−1 3 7 11
x1

x
2

Q̂S3

−5−1 3 7 11
x1

x
2

Q̂T

(a) Data.

−5−1 3 7 11
x1

−5

−1

3

7

11

x
2

QS1

−5−1 3 7 11
x1

−5

−1

3

7

11

x
2

QS2

−5−1 3 7 11
x1

−5

−1

3

7

11

x
2

QS3

−5−1 3 7 11
x1

−5

−1

3

7

11

x
2

QT

(b) GMMs.

−5 −1 3 7 11
x1

−5

−1

3

7

11

x
2

−5 −1 3 7 11
x1

−5

−1

3

7

11

x
2

−5 −1 3 7 11
x1

−5

−1

3

7

11

x
2

−5 −1 3 7 11
x1

−5

−1

3

7

11

x
2

(c) GMM-WBT

Fig. 3. Data and GMMs used in the toy experiment. In (a) Each of these
datasets was generated by applying an affine transformation to an initial dataset. In
(b), we show an axis-aligned GMM fitted to the data via EM. In (c), we show a summary
of GMM-WBT, where show the OT plan between components (upper part) between
B (left) and QT (right). The resulting labeled GMM is shown in the lower right part
of (c).

GMMs for each domain. We provide further examples on the GMMs-DaDiL
optimization in the supplementary materials. Next, we present our results on
MSDA benchmarks.
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(b) Reconstructions (it = 200).

Fig. 4. Optimization and reconstruction summaries using GMM-DaDiL. In
(a), we show the evolution of loss, negative log-likelihood and barycentric coordinates
(i.e., λ�) over the course of optimization. In (b), we show the reconstructed GMMs
(i.e., B(λ�, P)) when the algorithm converges.

4.2 Multi-source Domain Adaptation

We compare our method to prior art. We focus on OT-based methods, such as
WJDOT [30], WBT [15,16] and DaDiL [14]. For completeness, we include recent
strategies on deep MSDA that update the encoder network during the adaptation
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process, rather than using pre-extracted features. These are M3SDA [23], LtC-
MSDA [34], KD3A [9] and Co-MDA [12]. We establish our comparison on 4
benchmarks, divided between visual domain adaptation (Office31 [26], Office-
Home [32]) and cross-domain fault diagnosis (TEP [19] and CWRU). See Table 1
for further details.

Table 1. Overview of benchmarks used in our experiments.

Benchmark Backbone Problem # Samples # Domains # Classes # Features

Office 31 ResNet50 Object Recognition 3287 3 31 2048
Office-Home ResNet101 Object Recognition 15500 4 65 2048
TEP CNN Fault Diagnosis 17289 6 29 128
CWRU MLP Fault Diagnosis 24000 3 10 256

As with previous works on OT-based MSDA, we perform domain adapta-
tion on pre-extracted features. As such, we pre-train a neural network (called
backbone) on the concatenation of source domain data, then we use it to
extract the features from each domain. For visual adaptation tasks, we use
ResNets [11], while for fault diagnosis, we use a CNN and a multi-layer per-
ceptron, as in [14,19]. We summarize our results in Table 2.

First, OT-based methods generally outperform other methods in MSDA.
Overall, shallow DA methods solve a simpler task compared to deep DA
methods, as they do not need to update the encoder network during adapta-
tion. Second, the GMM-OT framework generally improves over using empirical
OT. For instance, in the CWRU benchmark, GMM-WBT largely outperforms
WBT [15,16]. Furthermore, GMM-DaDiL outperforms its empirical counterpart
on all benchmarks, as well as GMM-WBT. This point further illustrates the
power of dictionary learning in MSDA. Note that, in Table 2 (d), GMM-DaDiL
manages to have the best average adaptation performance across domains with-
out actually being the best on any single domain. As a consequence, GMM-
DaDiL enjoys better stability, with respect distribution shift, than previous
methods.

4.3 Lighter, Better, Faster Domain Adaptation

Our first experiment illustrates why GMM-DaDiL is lighter than previous
barycenter-based algorithms, such as DaDiL. In this context, a lighter model
needs less parameters to achieve a certain domain adaptation performance.
We rank GMM-OT models by the number of components K, and empirical
models by the number of samples n in their support. Note that these param-
eters regulate the complexity of these algorithms. We use the adaptation task
(Cl, Pr,Rw) → Ar from Office-Home for our analysis. We show a comparison
in Fig. 5 (a). From this figure, we see that GMM-DaDiL surpasses all other
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Table 2. Classification accuracy of domain adaptation methods divided by benchmark.
	, †, ‡ and § denote results from [2,12,14,19], respectively.

Algorithm Ar Cl Pr Rw Avg. ↑

ResNet101 72.90 62.20 83.70 85.00 75.95

M3SDA 71.13 61.41 80.18 80.64 73.34
LtC-MSDA 74.52 60.56 85.52 83.63 76.05
KD3A 73.80 63.10 84.30 83.50 76.17
Co-MDA‡ 74.40 64.00 85.30 83.90 76.90

WJDOT 74.28 63.80 83.78 84.52 76.59
WBT 75.72 63.80 84.23 84.63 77.09
DaDiL-E 77.16 64.95 85.47 84.97 78.14
DaDiL-R 75.92 64.83 85.36 85.32 77.86

GMM-WBT 75.31 64.26 86.71 85.21 77.87
GMM-DaDiL77.1666.21 86.15 85.3278.81

(a) Office-Home.

Algorithm A D W Avg. ↑

ResNet50 67.50 95.00 96.83 86.40

M3SDA 66.75 97.00 96.83 86.86
LtC-MSDA 66.82 100.00 97.12 87.98
KD3A 65.20 100.0 98.70 87.96
Co-MDA 64.80 99.83 98.70 87.83

WJDOT 67.77 97.32 95.32 86.80
WBT 67.94 98.21 97.66 87.93
DaDiL-E 70.55 100.00 98.83 89.79
DaDiL-R 70.90 100.00 98.83 89.91

GMM-WBT 70.13 99.11 96.49 88.54
GMM-DaDiL72.47 100.0 99.4190.63

(b) Office 31.

Algorithm A B C Avg. ↑

MLP� 70.90 ± 0.40 79.76 ± 0.11 72.26 ± 0.23 74.31

M3SDA 56.86 ± 7.31 69.81 ± 0.36 61.06 ± 6.35 62.57
LTC-MSDA� 82.21 ± 8.03 75.33 ± 5.91 81.04 ± 5.45 79.52
KD3A§ 81.02 ± 2.92 78.04 ± 4.05 74.64 ± 5.65 77.90
Co-MDA 62.66 ± 0.96 55.78 ± 0.85 76.35 ± 0.79 64.93

WJDOT 99.96 ± 0.02 98.86 ± 0.55 100.0 ± 0.00 99.60
WBT� 99.28 ± 0.18 79.91 ± 0.04 97.71 ± 0.76 92.30
DaDiL-R� 99.86 ± 0.21 99.85 ± 0.08 100.00 ± 0.00 99.90
DaDiL-E� 93.71 ± 6.50 83.63 ± 4.98 99.97 ± 0.05 92.33

GMM-WBT 100.00 ± 0.0099.95 ± 0.07100.00 ± 0.0099.98
GMM-DaDiL100.00 ± 0.0099.95 ± 0.04100.00 ± 0.0099.98

(c) CWRU.

Algorithm Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Avg. ↑

CNN† 80.82 ± 0.96 63.69 ± 1.71 87.47 ± 0.99 79.96 ± 1.07 74.44 ± 1.52 84.53 ± 1.12 78.48

M3SDA† 81.17 ± 2.00 61.61 ± 2.71 79.99 ± 2.71 79.12 ± 2.41 75.16 ± 3.01 78.91 ± 3.24 75.99
KD3A§ 72.52 ± 3.04 18.96 ± 4.54 81.02 ± 2.40 74.42 ± 1.60 67.18 ± 2.37 78.22 ± 2.14 65.38
Co-MDA 64.56 ± 0.62 35.99 ± 1.21 79.66 ± 1.36 72.06 ± 1.66 66.33 ± 0.97 78.91 ± 1.87 66.34

WJDOT 89.06 ± 1.34 75.60 ± 1.84 89.99 ± 0.86 89.38 ± 0.77 85.32 ± 1.29 87.43 ± 1.23 86.13
WBT† 92.38 ± 0.66 73.74 ± 1.07 88.89 ± 0.85 89.38 ± 1.26 85.53 ± 1.35 86.60 ± 1.63 86.09
DaDiL-R‡ 91.97 ± 1.22 77.15 ± 1.32 85.41 ± 1.69 89.39 ± 1.03 84.49 ± 1.95 88.44 ± 1.29 86.14
DaDiL-E‡ 90.45 ± 1.02 77.08 ± 1.21 86.79 ± 2.14 89.01 ± 1.35 84.04 ± 3.16 87.85 ± 1.06 85.87

GMM-WBT 92.23 ± 0.70 71.81 ± 1.78 84.72 ± 1.92 89.28 ± 1.55 87.51 ± 1.73 82.49 ± 1.81 84.67
GMM-DaDiL 91.72 ± 1.41 76.41 ± 1.89 89.68 ± 1.49 89.18 ± 1.17 86.05 ± 1.46 88.02 ± 1.12 86.85

(d) TEP.

methods over the entire range K ∈ {65, 130, · · · , 910}. Especially, its empirical
counterpart, DaDiL, needs a large number of samples for accurately represent
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Fig. 5. Lighter, Better, Faster. In (a), we analyse the performance of interpolations
B((λ0, 1−λ0); QS), QS = {QS1 , QS2} and B((λ0, 1−λ0); P) with learned P = {P1, P2}
for GMM-WBT and GMM-DaDiL. In (b), we analyse the efficiency of barycenter-based
methods under an increasing number of GMM components (number of samples for
DaDiL and WBT). GMM-DaDiL has state-of-the-art performance even for the extreme
case where K = 65. In (c), we compare the running time of GMM-DaDiL with that
of DaDiL, as a function of number of components K and batch size nb, respectively.
This figure illustrates the speedup of GMM-DaDiL as the number of samples in DaDiL
(and hence, M = �n/nb�) increases. Circles represent the average over 5 independent
runs, while the error bars show 2 times the standard deviation.

probability measures. Curiously, the performance of GMM-WBT and WBT are
quite similar. Indeed, recent studies [21] show that Wasserstein barycenters are
effective in compressing probability measures with respect the number of their
samples. As a result, in this adaptation task, the GMM version of WBT has
similar performance to the empirical version.

Our second experiment illustrates why GMM-Optimal Transport Domain
Adaptation (OTDA) provides a better framework for MSDA. We use the adap-
tation (D,W ) → A in the Office-31 benchmark as the basis of our experi-
ment. Note that GMM-DaDiL reconstructs the target domain via a barycenter
B(λT ,P), where λT and P are learned parameters. We thus ablate the learn-
ing of λT and P, i.e., we compare it to λT = (λ0, 1 − λ0), λ0 ∈ [0, 1] and
QS = {QS�

}NS

�=1. This generates a series of measures parametrized by λ0. To
further match B(λT ,QS) with QT , we transport it to QT through Eq. 15. Note
that this corresponds to performing GMM-WBT with a barycenter calculated
with λT . The overall experiment is shown in Fig. 5 (b). While the performance
of GMM-WBT remains approximately stable, that of GMM-DaDiL grows as
we move closer to λ�

T learned by dictionary learning (blue star). Overall, the
interpolation space generated by atoms better captures the distributional shift
occurring on the target domain.

Our third experiment shows that GMM-DaDiL is faster than DaDiL. We
plot the running time of these methods on the Office 31 benchmark, for the
(D,W ) → A adaptation task. The variables that influence the complexity of
GMM and empirical DaDiL are the number of components K and the batch size
nb, respectively. For GMM-DaDiL, we simply measure its running time for 5
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independent runs of the algorithm (blue curve) for each K ∈ {31, 62, · · · , 217}.
For DaDiL, we set nb ∈ {31, 62, · · · , 217}, and set n = M × nb, where M is
the number of mini-batches. We measure the performance over 5 independent
runs as well. Other than these parameters, we fix Niter = 50 and C = 3. As
shown in Fig. 5 (c), the running time of GMM-DaDiL and DaDiL are essentially
equivalent for M = 1. For M > 1, we have a speedup that is proportional to M .

In our fourth experiment, we use the (B,C) → A adaptation task of CWRU.
We are interested in visualizing the evolution of atoms and reconstructions with
respect DaDiL and GMM-DaDiL iterations. We visualize this evolution through
UMAP [13], i.e., we concatenate the data from DaDiL’s atoms, i.e., x(Pc,it)

i ,
so that these are jointly embedded into R

2. For GMM-DaDiL, we concatenate
the mean parameters, i.e., m(Pc,it)

i . We summarize our results in Fig. 6. Overall,
as shown in Fig. 6 (a–d), GMM-DaDiL optimization is more stable than that of
DaDiL, especially since we do not use mini-batches. This remark is also evidenced
in the reconstructions in Fig. 6 (e–f).

(a) P1,it (b) P2,it (c) P̂1,it (d) P̂2,it

(e) B(λT ;Pit) (f) B(λT ; P̂it) (g) B(λT ;P ) (h) B(λT ; P̂ )

Fig. 6. From (a–d), we show the trajectory of atom distributions for GMM-DaDiL (a,
b) and DaDiL (c, d). Blue and orange points represent the initializations and final values
for atoms at convergence. In (e, f), we show the trajectory of barycentric reconstructions
for the target domain for these two methods. In (g, h), we show the reconstructions
alongside target domain data at convergence. (Color figure online)

5 Conclusion

In this work, we propose a novel framework for MSDA, using GMM-OT [7].
Especially, we propose a novel algorithm for calculating Wasserstein barycenters
of GMMs (Algorithm 1). Based on this algorithm, we propose two new strate-
gies for MSDA: GMM-WBT and GMM-DaDiL (Algorithm 2). The first method
determines a labeled GMM on the target domain by transporting the barycenter
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of source domain GMMs towards the target. The second strategy uses dictionary
learning to express each GMM in MSDA as the barycenter of learned GMMs.
Overall, we propose methods that are lighter, better, faster than previous
empirical OT methods in MSDA.
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Abstract. Commonsense question answering is a crucial task that
requires machines to employ reasoning according to commonsense. Previ-
ous studies predominantly employ an extracting-and-modeling paradigm
to harness the information in KG, which first extracts relevant subgraphs
based on pre-defined rules and then proceeds to design various strate-
gies aiming to improve the representations and fusion of the extracted
structural knowledge. Despite their effectiveness, there are still two chal-
lenges. On one hand, subgraphs extracted by rule-based methods may
have the potential to overlook critical nodes and result in uncontrol-
lable subgraph size. On the other hand, the misalignment between graph
and text modalities undermines the effectiveness of knowledge fusion,
ultimately impacting the task performance. To deal with the problems
above, we propose a novel framework: Subgraph REtrieval Enhanced
by GraPh-Text Alignment, named SEPTA. Firstly, we transform the
knowledge graph into a database of subgraph vectors and propose a
BFS-style subgraph sampling strategy to avoid information loss, lever-
aging the analogy between BFS and the message-passing mechanism.
In addition, we propose a bidirectional contrastive learning approach for
graph-text alignment, which effectively enhances both subgraph retrieval
and knowledge fusion. Finally, all the retrieved information is combined
for reasoning in the prediction module. Extensive experiments on five
datasets demonstrate the effectiveness and robustness of our framework.

Keywords: Commonsense Question Answering · Pre-trained
Language Models · Graph Neural Networks

1 Introduction

Commonsense question answering (CSQA) is a critical task in natural language
understanding, which requires systems to acquire different types of commonsense
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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knowledge and possess multi-hop reasoning ability [19,22,27]. Though massive
pre-trained models have achieved impressive performance on this task, it is dif-
ficult to learn commonsense knowledge solely from the pre-training text cor-
pus, as the commonsense knowledge is evident to humans and rarely expressed
explicitly in natural language. Compared with unstructured text, structured data
like knowledge graphs is much more efficient in representing commonsense [26].
The incorporation of external knowledge aids PLMs in comprehending question-
answer (Q-A) pairs, while the entity relations enhance the model’s reasoning
capabilities. Therefore, various commonsense knowledge graphs (CSKGs) (e.g.,
ConceptNet [25]) have been adopted in previous studies.

Existing KG-augmented models for CSQA primarily adhere to a extracting-
and-modeling paradigm [26,28,29,32,35,36]. First, the knowledge subgraphs or
paths related to a given question are extracted by string matching or semantic
similarity, which indicate the relations between concepts or imply the process
of multi-hop reasoning. Subsequently, diverse strategies emerge for the efficient
representation and fusion of the extracted structural knowledge. One research
path [8,12] involves elaborately crafting graph neural networks for better mod-
eling the extracted subgraphs, whereas another [26,34] explores the efficient
incorporation of knowledge from KG into language models by enhancing the
interactions between PLMs and GNNs.

Despite their success, these approaches still have several limitations. First,
the subgraph’s quality suffers when retrieved through a simple string or semantic
matching, posing limitations for subsequent operations. To obtain sufficient rele-
vant knowledge, the number of nodes will expand dramatically with the increase
of hop count, inevitably raising the burden of the model. Despite its ample size,
certain crucial nodes might remain elusive, since some entities are not learned
during the pre-training. Besides, the edges linked to the peripheral nodes within
the subgraph are pruned, causing the message-passing mechanism of GNN to be
blocked and impairing the attainment of effective representations, consequently
undermining valuable information. Second, the misalignment between graph and
text encoders presents a challenge for PLMs to internalize the knowledge con-
tained in the acquired subgraph, especially in scenarios with limited data, leading
to a reduced task performance [35]. Though Dragon [33] proposes a pre-training
method to align GNNs and PLMs, it requires additional corpus, and the text-
to-graph style to construct semantically equivalent graph-text pairs is challeng-
ing. The necessity for substantial computational resources poses another hurdle,
prompting the search for a more efficient alignment method.

In this paper, we propose a novel framework: Subgraph REtrieval Enhanced
by GraPh-Text Alignment (SEPTA), for CSQA. To mitigate the shortcom-
ings of the subgraph extraction process, we establish a database of subgraph
vectors derived from the knowledge graph. Consequently, the challenge shifts
from retrieving a pertinent subgraph to obtaining relevant subgraph vectors. A
BFS-style sampling method is employed to obtain the connected graph for each
node and the embedding of the subgraph is subsequently stored in the database.
Drawing on the parallels between BFS and the message-passing mechanism of
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GNNs, the central node’s representation learned from the subgraph could be
closely aligned with that derived from the entire graph, with almost no infor-
mation loss. Besides, to further improve the retrieval accuracy and facilitate
knowledge fusion during the prediction, we consider aligning the semantic space
of the graph and text encoders, proposing an effective approach for graph-text
alignment. A novel graph-to-text method is proposed to construct high-quality
semantically equivalent training pairs, with no requirement of external corpus
and easy to train. Finally, all the information retrieved is combined by a simple
attention mechanism to facilitate the model in commonsense reasoning.

Our contributions can be summarized as follows:

– We propose a novel and effective framework SEPTA, where we convert the
knowledge graph into a subgraph vector database and retrieve relevant sub-
graphs to facilitate commonsense reasoning.

– We design a bidirectional contrastive learning method to align the semantic
space of the graph and text encoders, with a graph-to-text method to con-
struct high-quality graph-text pairs, which facilitates subgraph retrieval and
knowledge fusion.

– We propose a BFS-style subgraph sampling strategy for subgraph construc-
tion. Drawing on the parallel between BFS and the message-passing mecha-
nism, our method can preserve complete neighbor information for each node.

– We conduct extensive experiments on five datasets. Our proposed approach
achieves better results than the state-of-the-art approaches and has promising
performance in weakly supervised settings.

2 Related Work

2.1 Commonsense Question Answering

Commonsense question answering aims to evaluate the reasoning ability of mod-
els based on commonsense knowledge [7], e.g., physical commonsense [2]. To
incorporate external knowledge and enhance reasoning ability, some works intro-
duce commonsense knowledge graphs (CSKGs, e.g. ConceptNet [25]). Gener-
ally, these methods [8,12,26,28,29,32–37] extract relevant knowledge subgraphs
through entity linking and adopt graph neural networks to learn knowledge rep-
resentations. Among them, a category of research focuses on designing more
efficient knowledge encoders. For example, SAFE [12] proposes a 2-layer MLP
to improve the efficiency of graph encoding. HamQA [8] considers learning hierar-
chical structures in KGs with hyperbolic geometry. Another research line tries to
enhance the interactions between PLMs and GNNs. For instance, QA-GNN [34]
adds a QA context node to the retrieved subgraphs and incorporates relevant
information from other entities. Unlike previous works, we convert the knowl-
edge graph into a subgraph database and transform the task to a subgraph vector
retrieval problem, thus bypassing the challenges inherent in the extracting-and-
modeling paradigm.
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2.2 Graph-Text Alignment

Aligning the embedding spaces of text encoders and graph encoders is an effective
way to take the strengths of two modalities [18]. Previous alignment methods can
be roughly classified into two groups, i.e. the symmetric method and the asym-
metric method, based on their training objectives. The symmetric alignments
enhance each modality equally, most of which adopt a two-tower style and uti-
lize contrastive learning techniques [3,5]. However, the asymmetric methods aim
to take advantage of the capabilities of GNNs to reinforce PLMs. The predom-
inant approaches can be categorized into two types, with the first type trying
to enhance PLMs by inserting graph encoders into transformers [13,38] and the
second type directly using GNNs as teacher models to generate soft labels for
the PLMs [39]. In this paper, we leverage PLM as a teacher model and distill its
knowledge into GNN, enabling us to retrieve related subgraphs in a manner akin
to retrieving relevant text. Although DRAGON [33] also proposes a pre-training
method to align PLMs and GNNs, our approach does not require additional
corpus and demands lower computational costs.

3 Task Formulation

We study the multiple-choice CSQA [19,27], which can be formulated as: given a
natural language question q and a set of answer candidates C = {c1, c2, . . . , cn},
the aim is to identify the optimal choice c∗ ∈ C. Consistent with previous
works [15], the CSQA problem is addressed in a knowledge-aware setting, that
is, we can utilize external commonsense knowledge graphs (CSKGs) to facilitate
model prediction. A CSKG can be formally described as a multi-relational graph
G = (V,R, E ,X), where V is the set of concept nodes (e.g., Sun and Holiday),
R is the set of relation types (e.g., HasProperty and AtLocation), E ∈ V ×E ×V
is the link set of the knowledge graph (or fact triplets, e.g. (House, MadeOf,
Wood)), and X ∈ R

|V|×d denotes pre-trained embedddings of all concept nodes.
Generally, the task can be treated as a score prediction task for each Q-A pair.

4 Methods

In this section, we will introduce the design of our SEPTA. Departing from
previous extracting-and-modeling approaches, we reframe the task as a subgraph
vector retrieval problem and propose a graph-text alignment method to improve
the retrieval accuracy and facilitate knowledge fusion for prediction. For ease
of exposition, we first introduce the graph-text alignment process in Sect. 4.1.
Then with the aligned encoder, the subgraph vector database is constructed and
retrieved, which will be presented in Sect. 4.2. Finally, how to combine all the
structural information retrieved for answer prediction is discussed in Sect. 4.3.
Figure 1 shows the overview of our SEPTA.
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Fig. 1. The overview of our proposed SEPTA. First, a bidirectional contrastive method
is proposed to align the semantic space of graph and text encoders. With the encoders
aligned, we then transform the knowledge graph into a subgraph vector database and
introduce a query enhancement strategy for better subgraph retrieval. Finally, all the
information retrieved is combined by a simple attention mechanism to bolster the
reasoning ability of PLMs for CSQA.

4.1 Graph-Text Alignment

To coordinate the embedding spaces of graph and text encoders and fully har-
ness the respective strengths of text and KG, we propose an alignment process
before downstream tasks. In our method, we initially address the challenge of
generating training graph-text pairs with equivalent semantics and subsequently
employ a bidirectional contrastive learning method to train the encoders of both
modalities. The alignment process plays a pivotal role, as for one thing, it decides
the efficacy of retrieving question-related subgraphs from the vector base, and
for another, it determines the successful integration of graph information with
the question context during the prediction phase.

Construction of Graph-Text Pairs. The construction of high-quality seman-
tically equivalent graph-text pairs is crucial for the alignment process, yet not
that straightforward. Previous methods mostly adopt a text-to-graph approach
to construct training pairs, where the goal is to discover a graph structure that
corresponds to the semantics of a provided text segment. However, utilizing exist-
ing transformation tools e.g. dependency graph could not well accommodate the
downstream subgraph retrieval, while rule-based methods to extract text-related
subgraphs from CSKGs are challenging. It is also notably time-consuming and
laborious to construct through manual annotation. Therefore, in this paper, we
propose a graph-to-text approach and consider constructing synonymous text
descriptions of the subgraphs.

Specifically, we propose a BFS-style sampling strategy for subgraph construc-
tion, which initiates from the central node and proceeds to sample neighbors
layer by layer. During the process, to address the challenge of an excessive num-
ber of neighbors, we set p as the probability for immediate neighbor selection.
In addition, since it is sufficient to describe local neighborhoods for determining
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structural equivalence [10], we set a parameter d to constrain the depth of the sam-
pled subgraphs. By restricting the search to nearby nodes, our sampling method
achieves this characterization and obtains a microscopic view of the neighborhood
of every node. Furthermore, a parameter n is established to regulate the size of
the subgraphs. Once the number of sampled nodes reaches n, the layer-wise sam-
pling is halted. Since nodes in the sampled neighbors tend to repeat many times,
our method could reduce the variance in characterizing the distribution of 1-hop
nodes with respect to the source node. The process can be formulated as:

Gi = (Vi, Ei,Ai,Xi) = BFS(vi, p, d, n), (1)

where Gi is the connected graph obtained, Vi, Ei are sets of concept nodes and
relation links in Gi, Ai represents the adjacent matrix, Xi denotes embeddings
of concept nodes, and vi is the central concept node.

After that, it is necessary to textualize the subgraphs to construct synony-
mous text descriptions. The first step is to convert all relation links into triplet
descriptions, which are later combined to compose the final description. Specifi-
cally, to transform relation links into sentences, we first map each relation type
to a relation template and then concatenate the head concept, relation template,
and tail concept as the description of each fact triplet. The textualization process
can be denoted as:

si =
⊕

ej∈Ei

TEXT(ej), (2)

where si is the description of the graph Gi and ⊕ denotes the concatenation
of sentences. Therefore, the training set can be denoted as {(Gi, si)}ni=1. The
overview of the construction process is shown in Fig. 2.

Fig. 2. The overview of the construction of graph-text pairs.

Graph-Text Contrastive Learning. The graph-text alignment procedure is
presented in the left part of Fig. 1. First, GNN and PLM are utilized to encode
the knowledge subgraphs and natural language descriptions to obtain the corre-
sponding representation, respectively, which can be formulated as:

ẽi = PoolG(GNN(Gi)),

h̃i = PoolT (PLM(si)),
(3)
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where ẽi is the average of all nodes’ embeddings and h̃i is the representation of
the [CLS] token. To project ẽi and h̃i into the same semantic space, two linear
projection layers are designed as follows:

ei = WGẽi + bG,

hi = WT h̃i + bT .
(4)

where WG, WT and bG, bT are the transform matrices and biases of the linear
projection layers.

We then employ InfoNCE with in-batch negative sampling to align the rep-
resentations of two modalities bidirectionally. The graph-to-text contrastive loss
can be formulated as:

LG2T = − 1
N

N∑

i=1

log
exp(sim(ei,hi)/τ)

∑N
j=1 exp(sim(ei,hj)/τ)

, (5)

where τ is a temperature coefficient and N is the number of instances in a batch.
Besides, function sim(·, ·) measures the similarity between two representations,
which can be calculated by:

sim(ei ,hi) =
eT

i hi

‖ei‖ · ‖hi‖ . (6)

Similarly, we also design a text-to-graph contrastive loss for uniformly align-
ing into the same semantic space, which is shown as:

LT2G = − 1
N

N∑

i=1

log
exp(sim(hi,ei)/τ)

∑N
j=1 exp(sim(hi,ej)/τ)

. (7)

The final contrastive loss LGT is defined as the average of LG2T and LT2G:

LGT =
1
2
(LG2T + LT2G). (8)

Remarks. (1) To avoid the loss of inherent knowledge caused by over-fitting of the
PLM, only the GNN and the linear projection layers are trainable during actual
implementation. From another perspective, we essentially distill the semantic
information from the PLM into the GNN, enabling the graph representations
encoded by the GNN to encompass both structural and textual information. (2)
As our ultimate goal is to obtain subgraph representations, we employ graph-
level contrastive learning to align subgraph embeddings with text embeddings,
yielding promising results. We also attempt other granular alignment signals,
such as aligning entity node representations with text representations or applying
the Masked Language Model (MLM) to text based on subgraph representations.
However, with our current computational resources, these methods are unable
to converge effectively. Through our contrastive learning, the model is able to
rapidly converge and achieve promising performance.
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4.2 Subgraph Retrieval Module

In this section, we initially present the establishment of the subgraph vector
database. After that, to better accommodate the alignment process, we propose
the query enhancement. Finally, we will outline the subgraph retrieval procedure.

Database Construction. Previous methodologies primarily adopt an extra-
cting-and-modeling paradigm for knowledge subgraph retrieval. However, as the
cornerstone of subsequent work, the retrieval of high-quality subgraphs proves to
be challenging. Consequently, we suggest transforming the knowledge graph into
a subgraph vector database, thereby transitioning the focus towards retrieving
pertinent subgraphs. Leveraging the analogy between BFS and the message-
passing mechanism, we adopt a BFS-style subgraph sampling strategy to con-
struct subgraphs, instead of DFS or Random Walk. On the one hand, each
subgraph contains complete neighbor information for at least one node, and on
the other hand, each node appears in at least one subgraph. Therefore, the infor-
mation supplied for our retrieval is complete, and each subgraph vector holds
fine-grained knowledge regarding the central node. Specifically, we first apply
the same method as in Sect. 4.1 to produce the graph embedding ei and the text
embedding hi. Then we add them up as the subgraph vector gi ∈ R

d:

gi =
1
2
(
‖hi‖
‖ei‖ ei + hi), (9)

where the regularization coefficient ‖hi‖
‖ei‖ maintains the consistency between the

norm of the subgraph vectors and the norm of the text representations, pre-
venting the prediction from relying predominantly on the features with larger
norms. Finally, a subgraph vector database G = {gi}|G|

i=1 is constructed with
all subgraph vectors. Note that we only need to generate subgraph vectors once
before performing downstream tasks, which saves computational resources.

Query Enhancement. Given a problem, we need to find the relevant subgraph
vectors. An intuitive method is to apply the embedding of the question-answer
pair as a query. However, there is a certain difference between such textual query
and the pre-trained corpus of the aligned encoder, as the latter is constructed
through triplet concatenation, which makes it difficult to ensure the quality
of text encoding and reduces the accuracy of the retrieval process. Therefore,
we propose to enhance the query by retrieving question-related triplets in the
knowledge graph and concatenating them after the Q-A pairs. Specifically, given
a pair of question-answers (q, ci), we first apply entity linking to find all entities
Eq = {e

(1)
q , e

(2)
q , . . . , e

(nq)
q }, Eci = {e

(1)
ci , e

(2)
ci , . . . , e

(nci
)

ci } appearing in question q
and choice c, respectively. Then, we find all triplets in the CSKG containing the
entities in Eq and Eci , which can be formulated as T = {(e∗, r, e), (e, r, e∗)|e ∈
Eq ∪ Eci}. All fact triplets in T are serialized to natural language sentences
and a pre-trained dense retriever is adopted to find the most relevant ones. We



SEPTA 47

concatenate the fact triplets retrieved together, along with the questions and
options: si = q ⊕ ci ⊕ text1 ⊕ text2 ⊕ · · · ⊕ textK . The aligned PLM is then
utilized to encode si to ti = PLM(si) ∈ R

d.

Subgraph Retrieval. After that, we employ the embedding of Q-A pairs con-
catenated with factual triples to retrieve the relevant subgraph vectors from the
subgraph vector database. As the embedding space of two modalities has been
aligned, the cosine similarity of ti with each subgraph vector gi in G is com-
petent for the retrieval. We recall the top k subgraph vectors with the highest
similarities, which is denoted as Gq,ci ∈ R

k×d.

4.3 Prediction

We combine all the knowledge retrieved to make the final predictions. We first
integrate the retrieved subgraph vectors through multi-head attention with ti as
the query, which can be formulated as:

α
(h)
i =

(tiW
(h)
Q )(Gq,ciW

(h)
K )T√

d
,

r
(h)
i = Softmax(α(h)

i )(Gq,ciW
(h)
V ),

ri = Concat(r(1)
i , r

(2)
i , . . . , r

(H)
i )WO,

(10)

where W
(h)
Q ,W

(h)
K ,W

(h)
V ∈ R

d×d are projection matrices under head h.
Subsequently, ri and ti are added and fed into a linear layer to predict the

score of option ci:
p̂i = W T

1 (ti + ri) + b1. (11)

Since some questions are expected to be answered based solely on the question
context, we also encode the Q-A pair (q, ci) to infer directly:

vi = PLM(q, ci),

p̃i = W T
2 vi + b2.

(12)

The two scores are weighted and summed to yield the final score:

pi = λp̂i + (1 − λ)p̃i, (13)

where λ is the hyper-parameter for the balance.
During the training phase, we employ the softmax function to normalize the

score for each choice and optimize the model by cross-entropy loss. For inference,
we determine the prediction by selecting the choice with the highest score.
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Table 1. Statistics of the datasets. ’-’ denotes the unavailable dataset split.

Task Train Dev Test

CommonsenseQA official split 9,741 1,221 1,140
CommonsenseQA in-house split 8,500 1,221 1,241
OpenBookQA 4,957 500 500
SocialIQA 33,410 1,954 –
PIQA 16,113 1,838 –
RiddleSenseQA 3,510 1,021 –

5 Experiments

5.1 Datasets

We conduct experiments to evaluate our method on five CSQA datasets, which
are shown in Table 1:

• CommonsenseQA [27] is a 5-way multiple-choice QA dataset, which is cre-
ated based on ConceptNet [25]. Due to the dual split of CommonsenseQA:
the official split [27] and the in-house (IH) split [15], we report the results
for both settings. For the official split, the ground truth of the test set is
not publicly available, so we submit our model’s predictions to the official
leaderboard1 to evaluate the test accuracy.

• OpenBookQA [19] is a 4-choice dataset about elementary science questions
to evaluate the science commonsense knowledge. We also submit the predic-
tions of the test set to the official leaderboard2.

• SocialIQA [22] is a 3-choice dataset to evaluate the understanding of com-
monsense social knowledge. Due to the unavailability of the test set, consistent
with prior works [24], we report the accuracy of the development set.

• PIQA [2] is a 2-choice QA dataset regarding physical commonsense. Since
the test set is hidden, evaluations are conducted on the development set.

• RiddleSenseQA [16] is a 5-choice QA dataset about commonsense riddles.
Because the test set is not released, we only report the validation accuracy.

5.2 Baselines

We compare with the mainstream RoBERTa-Large + GNN methods, including
RN [21], RGCN [23], GconAttn [31], MHGRN [9], QA-GNN [34], DGRN [37],
GreaseLM [36], JointLK [26], GSC [29], SAFE [12], DRAGON [33], HamQA [8],
and DHLK [32]. Among them, DRAGON introduces BookCorpus to joint-train
GNN and PLM, and DHLK additionally retrieves paraphrases of key entities in
WordNet and Wiktionary.
1 https://www.tau-nlp.sites.tau.ac.il/csqa-leaderboard.
2 https://leaderboard.allenai.org/open_book_qa/submissions/public.

https://www.tau-nlp.sites.tau.ac.il/csqa-leaderboard.
https://leaderboard.allenai.org/open_book_qa/submissions/public
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5.3 Implementation Details

According to the previous works, we use RoBERTa-Large [17] as the text
encoder and use GraphGPS [20] for the graph encoder. We also test Aris-
toRoBERTa [6] for OpenBookQA. We use ConceptNet [25], including 799,273
nodes and 2,487,003 edges, as the commonsense knowledge graph. For each node,
we treat it as the center and employ BFS to obtain the subgraph, which is then
translated into the corresponding natural language description.

In the graph-text alignment phase, we randomly sample 64,000 graph-text
pairs to train, and sample 16,000 pairs to evaluate two encoders. We fix the learn-
ing rate to 1e-3, the number of GNN layers to 2, and the dimensions of all embed-
dings to 1024. During the fine-tuning stage, we set the number of fact triplets to
10, tune the number of retrieved subgraph vectors k in {10, 30, 50, 70, 100}, the
batch size in {4, 8, 16}, the balance coefficient λ from 0.1 to 1.0, and the learning
rate in {2e-5, 1e-5, 5e-6, 2e-6, 1e-6}. The parameters of the model are optimized
by RAdam. We train 30 epochs until the performance does not improve on the
development sets for 3 consecutive epochs. We use the default parameter set-
tings as their original implementations for the baseline methods. We conduct all
experiments on NVIDIA A100-40GB GPUs.

5.4 Main Results

Following previous works [11,12,29,34], we compare our method with different
baselines on CommonsenseQA and OpenBookQA as main results, which are
shown in Table 2. The best and runner-up results in each column are highlighted
in bold and underlined, respectively.

From the results, we can observe: (1) Our method can contribute perfor-
mance gains to LMs, which improves 6.54% and 6.09% on IHdev and IHtest of
CommonsenseQA compared to fine-tuned RoBERTa. (2) SEPTA outperforms all
baselines without additional corpus on both datasets. For example, compared to
the GSC method, our method improves by 2.00% and 0.70% on OpenBookQA
using RoBERTa and AristoRoBERTa, respectively. (3) Compared to baselines
incorporating additional corpus, our method also achieves comparable perfor-
mance. Specifically, we surpass DHLK on both datasets and DRAGON on Open-
BookQA and slightly lag behind DRAGON on CommonsenseQA. It should be
noted that the DRAGON undergoes MLM training on the BookCorpus dataset
and requires training on 8×A100 GPUs for a week [32,33]. By eliminating the
MLM, our SEPTA model demonstrates a definitive enhancement.

In Table 3, we evaluate SEPTA on the official CommonsenseQA and Open-
BookQA leaderboards (as of March 22, 2024). Our method achieves results sur-
passing all baselines based on the same PLM and exhibits comparative perfor-
mance compared with methods with larger-scale parameters (e.g., UnifiedQA).

To comprehensively evaluate the efficiency of SEPTA, we extend our compar-
ative analysis to other commonsense reasoning datasets originating from diverse
domains or tasks. As shown in Table 4, our SEPTA consistently achieves superior
performance. This observation underscores the overall effectiveness of SEPTA in
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Table 2. Evaluation on CommonsenseQA (in-house split) and OpenBookQA. We use
RoBERTa-Large as the text encoder in CommonsenseQA, and use RoBERTA-Large
and AristoRoBERTa in OpenBookQA. Methods with AristoRoBERTa use the textual
evidence by [6] as an additional input to the QA context. The baselines incorporating
extra corpus are marked with ∗.

Methods CommonsenseQA OpenBookQA
IHdev-Acc (%) IHtest-Acc (%) RoBERTa-Large (%) AristoRoBERTa (%)

Fine-tuned LMs 73.07 (±0.45) 68.69 (±0.56) 64.80 (±2.37) 78.40 (±1.64)
+ RN 74.57 (±0.91) 69.08 (±0.21) 65.20 (±1.18) 75.35 (±1.39)
+ RGCN 72.69 (±0.19) 68.41 (±0.66) 62.45 (±1.57) 74.60 (±2.53)
+ GconAttn 72.61 (±0.39) 68.59 (±0.96) 64.75 (±1.48) 71.80 (±1.21)
+ MHGRN 74.45 (±0.10) 71.11 (±0.81) 66.85 (±1.19) 80.60
+ QA-GNN 76.54 (±0.21) 73.41 (±0.92) 67.80 (±2.75) 82.77 (±1.56)
+ DGRN 78.20 74.00 69.60 84.10
+ GreaseLM 78.50 (±0.50) 74.20 (±0.40) 68.80 (±1.75) 84.80
+ JointLK 77.88 (±0.25) 74.43 (±0.83) 70.34 (±0.75) 84.92 (±1.07)
+ GSC 79.11 (±0.22) 74.48 (±0.41) 70.33 (±0.81) 86.67 (±0.46)
+ SAFE 76.93 (±0.37) 74.03 (±0.43) 69.20 87.13
+ HamQA 76.88 73.91 71.12 84.59
+ DRAGON∗ - 76.00 72.00 -
+ DRAGON (w/o MLM)∗ - 73.80 66.40 -
+ DHLK∗ 79.39 (±0.24) 74.68 (±0.26) 72.20 (±0.40) 86.00 (±0.79)
+ SEPTA (Ours) 79.61 (±0.17) 74.78 (±0.23) 72.33 (±0.35) 87.37 (±0.51)

Table 3. Performance comparison on CommonsenseQA (left) and OpenBookQA
(right) official leaderboard.

Methods Test-Acc (%) Methods Test-Acc (%)

RoBERTa [17] 72.1 Careful Selection [1] 72.0
RoBERTa+FreeLB 72.2 AristoRoBERTa [6] 77.8
RoBERTa+HyKAS 73.2 KF+SIR 80.0
RoBERTa+KE 73.3 AristoRoBERTa+PG [30] 80.2
RoBERTa+KEDGN 74.4 AristoRoBERTa+MHGRN [9] 80.6
RoBERTa+MHGRN [9] 75.4 AristoRoBERTa+QA-GNN [34] 82.8
RoBERTa+QA-GNN [34] 76.1 AristoRoBERTa+GreaseLM [36] 84.8
RoBERTa+GSC [29] 76.2 AristoRoBERTa+GSC [29] 87.4
Albert 73.5 AristoRoBERTa+MVP-Tuning [11] 87.6
ALBERT+Path Generator [30] 75.6 ALBERT + KB 81.0
ALBERT+HGN [9] 77.3 T5 83.2
UnifiedQA (11B) [14] 79.1 UnifiedQA (11B) [14] 87.2
RoBERTa+SEPTA (Ours) 76.6 AristoRoBERTa+SEPTA (Ours) 87.8

addressing various commonsense reasoning datasets or tasks, demonstrating a
unified methodology.



SEPTA 51

Table 4. Performance comparison on SocialIQA, PIQA, and RiddleSenseQA.

Methods SocialIQA PIQA RiddleSenseQA

RoBERTa-Large 78.25 77.53 60.72
+ GconAttn 78.86 78.24 61.77
+ RN 78.45 76.88 62.17
+ MHGRN 78.11 77.15 63.27
+ QA-GNN 78.10 78.24 63.39
+ GreaseLM 77.89 78.02 63.88
+ GSC 78.61 78.40 64.07
+ SAFE 78.86 79.43 63.78
+ SEPTA (Ours) 79.21 80.85 67.62

Table 5. Ablation study on CommonsenseQA (IHtest) and OpenBookQA datasets.
The values in parentheses denote the extent of performance decline.

Ablation CommonsenseQA OpenBookQA

SEPTA 74.78 72.33
w/o alignment 69.83 (−4.95) 67.20 (−5.13)
w/o subgraph 72.34 (−2.44) 70.23 (−2.10)
w/o triplets 71.25 (−3.53) 69.67 (−2.66)
λ = 1.0 74.13 (−0.65) 70.47 (−1.86)

5.5 Ablation Study

We conduct an ablation study on CommonsenseQA and OpenBookQA to explore
the effectiveness of each component of SEPTA. We remove the alignment process
(w/o alignment), retrieved subgraph vectors (w/o subgraph), fact triplets (w/o
triplets), and scores predicted based on Q-A pairs (i.e. set λ = 1.0), respectively.

As shown in Table 5, four components are all crucial for SEPTA, and remov-
ing any part will result in a decrease in performance. Specifically, the perfor-
mance drops the most significantly when we remove the graph-text alignment.
This is because if the representations of graphs and texts are not semantically
aligned, then during the knowledge retrieval stage, the retrieved subgraph vectors
may be irrelevant and situated in different latent spaces from the textual infor-
mation. Moreover, removing either fact triplets or subgraph vectors will affect
the performance. On one hand, they represent different aspects of information,
with the former providing more specific knowledge and the latter describing more
comprehensive relationships between entities. On the other hand, fact triplets
also play an auxiliary role in retrieving relevant subgraph vectors. Furthermore,
only using knowledge-enhanced representations for predictions (i.e. λ = 1.0)
cannot achieve optimal results. This is because some questions do not require
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additional knowledge, or relevant information cannot be found in CSKGs, which
may instead become interference.

Table 6. Performance with different proportions of training data.

Methods CommonsenseQA OpenBookQA
5% 10% 20% 50% 80% 100% 5% 10% 20% 50% 80% 100%

RoBERTa-large 29.66 42.84 58.47 66.13 68.47 68.69 37.00 39.4 41.47 53.07 57.93 64.8
+ RGCN 24.41 43.75 59.44 66.07 68.33 68.41 38.67 37.53 43.67 56.33 63.73 62.45
+ GconAttn 21.92 49.83 60.09 66.93 69.14 68.59 38.60 36.13 43.93 50.87 57.87 64.75
+ RN 23.77 34.09 59.90 65.62 67.37 69.08 33.73 35.93 41.40 49.47 59.00 65.20
+ MHGRN 29.01 32.02 50.23 68.09 70.83 71.11 38.00 36.47 39.73 55.73 55.00 66.85
+ QA-GNN 32.95 37.77 50.15 69.33 70.99 73.41 33.53 35.07 42.40 54.53 52.47 67.80
+ GreaseLM 22.80 56.16 63.09 70.56 73.41 74.20 39.00 39.60 42.20 57.87 65.13 68.80
+ GSC 31.02 35.07 65.83 70.94 73.82 74.48 29.60 41.80 42.40 58.03 65.97 70.33
+ SAFE 36.45 56.51 65.16 70.72 73.22 74.03 38.80 41.20 44.93 58.33 65.60 69.20
+ SEPTA(Ours)50.69 62.37 68.09 71.80 74.05 74.78 45.63 54.80 58.10 66.57 68.30 72.33

5.6 Low-Resource Setting

To evaluate the robustness of SEPTA, we conduct extensive experiments in low-
resource settings, with different proportions of training data, including 5%, 10%,
20%, 50%, and 80%, in CommonsenseQA (IHtest) and OpenBookQA.

From the results in Table 6, we can observe that our SEPTA achieves promis-
ing performance in all settings, and it exhibits a trend where the performance
improvement relative to other baselines is more significant with fewer training
data. This is because we align text representations with graph representations
before fine-tuning on downstream tasks, enabling retrieved subgraph vectors to
integrate well with text representations even in low-resource settings. In contrast,
other baselines make it hard to project subgraph representations and text repre-
sentations into the same semantic space when training data is limited, resulting
in structure embeddings becoming a noise that interferes with PLM reasoning.

5.7 Evaluation with other GNNs

To demonstrate the generality of SEPTA, We employ GraphGPS [20], FILM-
GNN [4], and RGCN [23] as the graph encoders, respectively. Table 7 illus-
trates the results on CommonsenseQA and OpenBookQA. From the results, we
can observe that different graph encoders achieve competitive results on both
datasets, with their performances being relatively close (within a difference of
around 0.5%), which demonstrates the effectiveness and robustness of SEPTA.
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Table 7. Effect of different graph encoders.

GNN CommonsenseQA OpenBookQA

GraphGPS 74.78 72.33
FILM-GNN 74.67 72.17
RGCN 74.51 71.87

5.8 Hyper-parameter Analysis

We further conduct in-depth analyses to investigate the impact of hyper-
parameters. With other parameters fixed, we compare the effect of the number
of retrieved subgraph vectors k, the maximum number of nodes n in each sub-
graph, and the balance coefficient λ. The results on CommonsenseQA (IHtest)
and OpenBookQA datasets are reported in Fig. 3.

Effect of Subgraph Vectors Number k From the results, we observe that the
accuracy initially ascends with the increase in the number of retrieved subgraph
vectors, achieving its peak before subsequently declining. This is because fewer
subgraph vectors may lose crucial commonsense, while an excess of subgraph
vectors could introduce irrelevant information.

Effect of Maximum Number of Nodes n Based on the results, the perfor-
mance of the model initially increases with the increment of n, reaching a peak,
then decreases. It might be attributed to the fact that when n is relatively small,
subgraphs are unable to fully encompass the neighbor information of the central
nodes, leading to the inability to acquire sufficient relevant knowledge during the
subgraph retrieval phase. Conversely, when n is excessively large, each subgraph
may contain a significant amount of information irrelevant to the central node,
resulting in overall information redundancy.

Effect of the Balance Coefficient λ λ controls the proportion of inference
based on the retrieved knowledge. When λ is small, the model primarily relies
on its own knowledge for inference, which may lead to a lack of relevant infor-
mation for some questions. However, when λ is large, the model heavily depends
on retrieved knowledge to derive answers, although many questions need to be
resolved according to the question context. Therefore, in terms of results, the
accuracy generally increases initially with the increase in λ and then decreases.

6 Ethical Considerations and Limitations

6.1 Ethical Considerations

Our work proposes a novel and effective framework to combine PLMs and exter-
nal knowledge graphs for commonsense question answering. However, potential
issues may arise from the utilization of PLMs and CSKGs. On one hand, PLMs
tend to encapsulate certain biases present in the pre-training data. On the other
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(a) Effect of k. (b) Effect of n. (c) Effect of λ.

Fig. 3. Hyper-parameter analysis.

hand, CSKGs may harbor biased concepts stemming from human annotations.
To alleviate these biases, the implementation of appropriate screening rules offers
a promising approach, e.g., filter biased concepts during the subgraph extrac-
tion process from the CSKG. Although a comprehensive analysis of such biases is
not included in our work, it is imperative to implement supplementary measures
before deploying the system in real-world scenarios.

6.2 Limitations

We propose a subgraph retrieval enhanced by a graph-text alignment framework
named SEPTA for commonsense question answering. However, there are still
limitations that demand resolution. Firstly, the corresponding text generated by
rules from knowledge subgraphs still exhibits disparities from natural language.
One possible solution is to reorganize the text using LLMs, but the cost is pro-
hibitively high. Therefore, acquiring large-scale, high-quality graph-text pairs
remains an ongoing challenge. Secondly, the number of retrieved subgraph vec-
tors is required to tune according to the accuracy of development sets, which
is time-consuming. Designing a module to automatically select the number may
be a solution worth exploring. Thirdly, due to considerations of fairness in com-
parison and limited computational resources, we do not employ other PLMs,
especially LLMs, as text encoders, which will be considered in our future work.

7 Conclusion

We propose an effective framework: subgraph retrieval enhanced by graph-text
alignment, named SEPTA, for commonsense question answering. In our method,
we reframe the task as a subgraph vector retrieval problem and introduce a
graph-text alignment method to enhance retrieval accuracy and facilitate knowl-
edge fusion for prediction. Subsequently, all the structural information retrieved
is then combined by a simple attention mechanism to bolster the reasoning
capabilities of PLMs. Extensive experiments on five benchmarks demonstrate
the effectiveness of SEPTA.

In the future, our work will focus on the following aspects. First, we will
explore more efficacious pre-training tasks for semantic alignment. Second, if



SEPTA 55

there are sufficient computational resources, we intend to apply our approach to
larger language models. Third, we will try SEPTA on relevant tasks, e.g., node
classification and link predictions on text-attributed graphs.
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Abstract. Heterogeneous graph neural networks (HGNNs) have
recently
shown impressive capability in modeling heterogeneous graphs that are
ubiquitous in real-world applications. Most existing methods for het-
erogeneous graphs mainly learn node embeddings by stacking multiple
convolutional or attentional layers, which can be considered as captur-
ing the high-order information from node-level aspect. However, differ-
ent types of nodes in heterogeneous graphs have diverse features, it
is also necessary to capture interactions among node features, namely
the high-order information from feature-level aspect. In addition, most
methods first align node features by mapping them into one same low-
dimensional space, while they may lose some type information of nodes
in this way. To address these problems, in this paper, we propose a novel
Heterogeneous graph Cascade Attention Network (HetCAN) composed
of multiple cascade blocks. Each cascade block includes two components,
the type-aware encoder and the dimension-aware encoder. Specifically,
the type-aware encoder compensates for the loss of node type informa-
tion and aims to make full use of graph heterogeneity. The dimension-
aware encoder is able to learn the feature-level high-order information by
capturing the interactions among node features. With the assistance of
these components, HetCAN can comprehensively encode information of
node features, graph heterogeneity and graph structure in node embed-
dings. Extensive experiments demonstrate the superiority of HetCAN
over advanced competitors and also exhibit its efficiency and robustness.

Keywords: Heterogeneous Information Network · Graph Neural
Network · Graph Representation Learning

1 Introduction

Heterogeneous information networks (HINs) [17,19] typically include multiple
types of nodes and edges, implying the rich semantic information. These come
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together with a lot of real-world data, such as social networks [7,24], citation
networks [1,12] and recommendation systems [2,32]. The complicated hetero-
geneity and rich semantic information within HINs bring great challenges on
heterogeneous graph tasks, such as node classification, link prediction and graph
classification. Recently, the representation learning for heterogeneous graphs [28]
receives a surge of research attention, which presents a great opportunity for
analyzing HINs.

To capture both heterogeneity and structural information, heterogeneous
graph neural networks (HGNNs) have been proposed and widely used to model
HINs in recent years. Existing HGNNs can broadly be categorized into metapath-
based models and metapath-free models. Generally, metapath-based approaches
capture heterogeneity by using the predefined metapaths [5,26,29,31], while
they have to redefine appropriate metapaths to adapt to various heterogeneous
graphs. To get rid of the dependency on metapaths, metapath-free approaches
encode graph heterogeneity by designing additional tailored modules [11,13,14].
With the capability of encoding both graph structure and heterogeneity, exist-
ing approaches give rise to the performance in a variety of downstream tasks on
HINs. Their success demonstrates that leveraging the heterogeneity of HINs can
significantly boost the model’s performance.

Since nodes in different types may have diverse attributes, most existing
metapath-free methods first align node features by projecting them into a shared
low-dimensional space [13,14]. For example, as illustrated in Fig. 1, the input fea-
ture vectors of papers, authors and venues are first mapped into low-dimensional
embeddings with same dimension. Although the low-dimensional node embed-
dings can preserve original feature information and topological information [28],
node type information is not retained. This further leads to the loss of hetero-
geneity information in subsequent neighborhood aggregation operation. Under
this condition, when aggregating information from a node’s neighbors, most
existing methods can only identify which neighbors are in the same type, but
they fail to know the exact types of these neighbors. Based on the above analy-
sis, the first challenge is to design an encoder that can seamlessly integrate the
information of graph heterogeneity, including both node types and edge types,
with node features and graph structure.

Additionally, most existing approaches only consider the interactions between
nodes while neglecting the latent interactions among different node features
[14,26,30]. Specifically, each convolutional layer can be considered as the one-
order interaction between a node and its neighbors. By stacking multiple con-
volutional layers, the high-order information from multi-hop neighboring nodes
is captured. However, the feature-level high-order information is also useful for
label prediction. For example, in a co-authorship network, attributes of paper
nodes include keywords, and our target is to predict their research topics. For a
paper, suppose we only consider one keyword like graph neural networks (GNNs),
it is difficult to predict whether the paper’s label is Information Retrieval (IR) or
Artificial Intelligence (AI), as both IR and AI have sub-topics related to GNNs.
If we consider three keywords graph neural networks, personalized search and
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Fig. 1. An illustration of the feature processing for a toy citation network. WP , WA

and WV are type-specific transformation matrices w.r.t. node types.

query recommendation simultaneously, it is easier to classify the paper as IR
rather than AI. This indicates that considering such feature-level interactions
can boost the model’s capability. Therefore, the second challenge is to design an
encoder that can capture latent interactions among node features and leverage
feature-level high-order information to enhance node embeddings.

To address the challenges, in this paper, we propose a novel Heterogeneous
graph Cascade Attention Network (HetCAN). For the first challenge, we put
forward a type-aware encoder composed of multiple type-aware layers, in which
learnable type embeddings are explicitly introduced for both nodes and edges.
The key idea of introducing node type embeddings is to supplement the loss of
type information for node embeddings in the low-dimensional space. To this end,
we first propose to fuse node feature embeddings with node type embeddings and
then obtain the fused node embeddings. After that, we use fused node embed-
dings and edge type embeddings to perform attention-based weighted aggrega-
tion to learn the type-aware node embeddings. Owing to type information of
both nodes and edges, we can capture heterogeneity, node attributes and graph
structure simultaneously at the type-aware encoder.

For the second challenge, inspired by Transformer’s outstanding capabil-
ity of modeling interactions among tokens in the input sequences [22,30], we pro-
pose a dimension-aware encoder to enhance hidden embeddings by learning the
feature-level high-order information. To highlight the importance of node types,
we also introduce node type embeddings as type encoding which is similar to
the positional encoding in Transformer. This is intended to distinguish different
feature interactions corresponding to node types. Regarding each dimension (or
multiple dimensions) of node embedding as a token, we can construct an input
sequence for each node. We then apply multi-head self-attention to these input
sequences, allowing each dimension to attend to other dimensions and thereby
learn their latent interactions. The outputs from the dimension-aware encoder
are concatenated with those from the type-aware encoder to create the final node
representations., i.e., the outputs of one-layer cascade block.
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Overall, the proposed HetCAN can be regarded as a cascade model with
dual-level awareness, i.e., node-level and feature-level awareness. On the
one hand, each type-aware layer utilizes type embeddings of both nodes and
edges, allowing nodes to be aware of their neighborhood’s type information as
well as feature information. On the other hand, at each dimension-aware layer,
we employ multi-head self-attention on the sequences expanded from hidden
embeddings and make each dimension to be aware of others, thereby learning
the high-order information behind latent feature interactions. Finally, the main
contributions of this work are summarized as follows:

– We present a type-aware encoder to make up for heterogeneous information
and capture the node-level high-order information, as well as a dimension-
aware encoder for learning the feature-level high-order information.

– We propose a metapath-free model HetCAN built upon the above encoders,
which allows us to encode graph heterogeneity in a learnable way and obtain
more expressive node representations in an end-to-end manner.

– We conduct extensive experiments to demonstrate the effectiveness and effi-
ciency of the proposed HetCAN.

2 Related Work

Heterogeneous Network Embedding. A large number of graph embedding
approaches have been proposed in recent years [6,15,21], which aim to map
nodes or substructures into a low-dimensional space in which the connectivity
of the graph can be preserved. Meanwhile, as most of real-world networks are
usually composed of various types of nodes and relationships [28], researches on
heterogeneous network embeddings (HNEs) [17,25] have also received significant
attention. The approaches of HNEs can broadly be categorized into random walk
methods [3,4] and first/second-order proximity methods [18,20].

Heterogeneous Graph Neural Networks. To capture the rich semantic
information contained in heterogeneous graphs, a series of heterogeneous graph
neural networks have been proposed in recent years [13,27]. According to the
way to utilize the graph heterogeneity, HGNNs are divided into two categories,
i.e., metapath-based HGNNs [5,16,26,29] and metapath-free HGNNs [11,13,14].
Typically, metapath-based approaches aggregate messages from type-specific
neighboring nodes to generate semantic vectors, then fuse the semantic vectors
of different metapaths to output the final node representations. Their depen-
dencies on the predefined metapaths make them challenging to apply to com-
plex real-world networks. Metapath-free models update node representations by
directly employing message passing mechanism, with additional tailored mod-
ules to model the heterogeneity, which makes them free from the selection of
metapaths. But tailored modules tend to make the encoding of heterogeneity
separate from node features [14], which fails to capture the relations between
them. We aim to encode both graph heterogeneity and feature information in a
unified embedding for all nodes in HINs, allowing us to learn more expressive
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node representations and then improve the model’s performance on downstream
tasks.

3 Preliminaries

3.1 Heterogeneous Information Network

A heterogeneous information network (HIN) can be defined as G = {V, E ,A,R},
where V is the set of nodes as well as E is the set of edges. In HIN, each node
v ∈ V has a type φ(v) and each edge e ∈ E has a type ψ(e). The sets of node
types and edge types are denoted by A and R, where A = {φ(v) : ∀v ∈ V}
and R = {ψ(e) : ∀e ∈ E}, respectively. And φ : V → A is the node type
mapping function, ψ : E → R is the edge type mapping function. Typically, a
heterogeneous graph is with |A| + |R| > 2. Note that, when |A| = |R| = 1, the
graph degenerates into a homogeneous graph.

3.2 Graph Neural Networks

GNNs [12,23] and HGNNs [13,16,26] commonly rely on the key operation of
aggregating neighborhood information in a layer-wise manner, namely the node-
level aggregation. In this manner, messages can be recursively passed and trans-
formed from neighboring nodes to the target node. In the l-th layer, the repre-
sentation of node v can be calculated by

hl
v = Aggr(hl−1

v , {hl−1
u : u ∈ Nv}; θl

g). (1)

where Nv is the neighboring nodes set of node v (or type-specific neighbor-
ing nodes for HGNNs), and Aggr(·; θl

g) denotes the neighborhood aggregation
function parameterized by θl

g in the l-th layer. There are different neighborhood
aggregation functions, e.g., mean-pooling aggregation in GCN [12] and attention-
based aggregation in GAT [23]. Since GAT can distinguish different importance
of neighboring nodes, we adopt it as the backbone of the proposed type-aware
encoder, which will be discussed in next section.

3.3 Transformer-Style Architecture

In the following part, we introduce transformer encoder briefly. The transformer
encoder [22] is composed of one or multiple transformer blocks, where each trans-
former block mainly contains a multi-head self-attention (MHSA) module and a
feed-forward network (FFN). In natural language processing, the MHSA module,
the critical component, aims to receive the semantic correlations among input
tokens. Regarding each node feature as a token, it can also be generalized to
learn the interactions among node features.

Suppose we have an input H ∈ R
n×d, where n is the length (or number) of

input tokens and d is the hidden dimension. The MHSA firstly projects H to Q,
K and V by three linear transformations as

Q = HWq,K = HWk,V = HWv, (2)
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where Wq,Wk ∈ R
d×dk and Wv ∈ R

d×dv . Then we calculate the output of
MHSA by the scaled dot-product attention mechanism as

MHSA(H) = Softmax(
QKT

√
dk

)V, (3)

where
√

dk is the scaling factor. For simplicity, we use a single-head self-attention
module for the description. Thereafter, the MHSA module is followed by the FFN
module which contains two layers of Layer Normalization (LayerNorm) and the
residual connection [8]. Then we can obtain the output of l-th Transformer block
as

Hl = LayerNorm(FFN( ˜H
l
) + ˜H

l
)

˜H
l
= LayerNorm(MHSA(Hl−1) + Hl−1).

(4)

By stacking L Transformer blocks, we can obtain the final output representation
HL ∈ R

n×d, which can be used as the input of downstream tasks, such as node
classification and link prediction.

4 The Proposed Model

4.1 Overall Architecture

The overall framework of HetCAN is illustrated in Fig. 2. Given a heteroge-
neous graph HG, we first adopt type-specific linear transformations to project
nodes with different feature spaces into a shared feature space. Then, the aligned
embeddings are employed as initial node feature matrix and are fed into the
type-aware encoder, where each node can simultaneously perceive heterogeneity
information, feature information and structural information within its neigh-
borhood. After multiple type-aware layers, hidden node embeddings are passed
to the dimension-aware encoder, where latent feature interactions will be mod-
eled through multi-head self-attention mechanism. Afterward, we concatenate
the outputs from the type-aware encoder and the dimension-aware encoder to
construct the updated node embeddings, which are also referred to the outputs
of each cascade block. HetCAN typically includes N cascade blocks. Finally, we
perform downstream tasks based on the normalized final node representations.
In the following parts, we will illustrate the details of the type-aware encoder
and the dimension-aware encoder, respectively.

4.2 Type-Aware Encoder

In the type-aware encoder, we first introduce learnable type embeddings for
both nodes and edges, and integrate feature embeddings and type embeddings
as a whole. Formally, we first initialize a node type matrix denoted by M ∈
R

|A|×dt , where |A| is the number of node types. For each node vi, its node type
embedding ti ∈ R

dt is derived by ti = M[φ(vi), :]. Then we can obtain type
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Fig. 2. The overall framework of HetCAN. Each cascade block consists of L type-aware
layers and Ld dimension-aware layers.

embeddings of all nodes represented as T ∈ R
n×dt . As node features of different

types on HINs usually exist in different feature spaces, we project them into a
shared feature space before passing them to the type-aware encoder. Formally,
the feature processing is denoted as

hi = Wφ(vi)xi + bφ(vi), (5)

where Wφ(vi) ∈ R
d×dx is the learnable parameter matrix corresponding to node

type φ(vi) and bφ(vi) ∈ R
d is an optional bias term. Then we can obtain node

feature embeddings denoted by H ∈ R
n×d. After that, to comprehensively sup-

plement node type information, we present a combination function to integrate
node feature embeddings with node type embeddings as

˜H = Combine(H,T), (6)

where Combine (·) can be any operator function, such as learnable functions or
non-parametric functions. In practice, we simply implement it with Hadamard
product which is an element-wise operation. Based on [13], we then extend atten-
tion mechanism with integrated node embeddings that contain the node type
information. In this way, each type-aware layer calculates the attention coeffi-
cient between node vi and node vj as follows (layer marker (l) is omitted for
simplicity)

αij =
exp

(

σ
(

aT [Wh̃i||Wh̃j ||Wrrψ(vi,vj)]
))

∑

k∈Ni
exp

(

σ
(

aT [Wh̃i||Wh̃k||Wrrψ(i,k)]
)) , (7)
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where rψ(vi,vj) ∈ R
dr is learnable edge type embedding w.r.t. the type of edge

between node vi and node vj , W and Wr are learnable matrices, and σ is
the LeakyReLU activation function. To stabilize training process and improve
the performance, inspired by [8,9], we employ residual connection on attention
coefficients as

α̂
(l)
ij = (1 − β)α(l)

ij + βα̂
(l−1)
ij , (8)

where β ∈ [0, 1] denotes attention residual weight. Once obtained, the normalized
attention coefficients are used to update the hidden node embedding h′

i for each
node vi ∈ V as

h′
i = σ

⎛

⎝

∑

j∈Ni

α̂ijWh̃j

⎞

⎠ . (9)

To enhance model’s capacity and stabilize the learning process, we implement a
multi-head attention mechanism by averaging

h′
i = σ

⎛

⎝

1
K

K
∑

k=1

∑

j∈Ni

α̂k
ijW

kh̃j

⎞

⎠ , (10)

where K is the number of heads. Overall, with the type-aware encoder, hidden
node embeddings can seamlessly fuse the information of graph heterogeneity,
node feature and graph structure and have more powerful expressive capabilities.

4.3 Dimension-Aware Encoder

The success of Transformer has demonstrated its outstanding capability of learn-
ing interactions among the tokens in a sequence. Motivated by this, we pro-
pose a dimension-aware encoder with transformer architecture for capturing the
feature-level high-order information, which can further enhance the expressive
capability of node embeddings.

After acquiring hidden embeddings H′ ∈ R
n×d from L type-aware layers, the

dimension-aware encoder constructs the input sequence for each node to adapt
to transformer architecture. Specifically, for each node v ∈ V, we expand its
hidden embedding h′

v ∈ R
d to a sequence ĥ′

v ∈ R
d×1, treating each dimension

(or multiple dimensions) as a token represented by a one-dimensional (or multiple
dimensional) vector. Then we perform multi-head self-attention on each input
sequence to learn interactions among the tokens within it.

Besides, to learn distinct feature interaction patterns for different node types,
inspired by the positional encoding in Transformer, we introduce node type
embeddings T ∈ R

n×dt as type encoding and combine them with the hidden
node embeddings H′ before performing attention mechanism. We denote this
step as

Ĥ = Combine(H′,T)

Ĥ′ = Expand(Ĥ)
(11)
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where Ĥ′ ∈ R
n×d×1 denotes the constructed sequences of all nodes, illustrated

in upper right of Fig. 2. Similar to the type-aware encoder, the Combine (·) is
also implemented with Hadamard product by simply setting dt = d, so that the
shape of Ĥ remains consistent with H′. With type encoding, the dimension-aware
encoder can distinguish various node types and learn unique interaction patterns
for them. Then, we perform multi-head self-attention on the input sequences Ĥ′

and obtain the outputs of each dimension-aware layer as follows

H = Mhsa(Ĥ′), (12)

where Mhsa(·) denotes multi-head self-attention (refer to Sect. 3.3) and H ∈
R

n×d is the node representations containing rich feature-level information.
Finally, we concatenate the outputs of dimension-aware encoder H and the type-
aware encoder H′ to construct the final node representations as

Hf = H′ ‖ H, (13)

where Hf ∈ R
n×2d is the output of one-layer cascade block. For simplicity, we

only illustrate one layer of cascade block. After one or multiple cascade blocks, we
can obtain the enhanced node representations with more expressive capabilities
and use them for various downstream tasks.

4.4 Time Complexity Analysis

In this subsection, we give the time complexity analysis of the proposed compo-
nents in HetCAN. Let |V| and |E| are the number of nodes and edges. d is the
dimension of both node feature embeddings and node type embeddings, and dr

is the dimension of edge embeddings. For each type-aware layer, the time com-
plexity of a single attention head can be expressed as O(|V| × d2 + |E| × dr

2 +
|E| × (2d+ dr)). For each dimension-aware layer, the time complexity of a single
attention head can be expressed as O(|V| × d2). Thus, overall time complexity
of HetCAN is linear to both the number of nodes |V| and the number of edges
|E|. The efficiency studies of our model are shown in Fig. 4.

5 Experiments

We evaluate HetCAN by conducting extensive experiments on node classification
and link prediction, and compare various competitive approaches, including plain
homogeneous GNNs, metapath-based HGNNs and metapath-free HGNNs. In
addition, to further investigate the superiority of our model, we comprehensively
conduct three studies including an ablation study, an efficiency study and a
parameter study. The source code and datasets are available at https://github.
com/zzyzeyuan/HetCAN.

https://github.com/zzyzeyuan/HetCAN.
https://github.com/zzyzeyuan/HetCAN.
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5.1 Experimental Setups

Datasets. For node classification, we test our model on five public datasets.
Specifically, DBLP, IMDB, ACM and Freebase are from [13], and OGB-MAG
is from [10]. For link prediction, we test our model on three public datasets
from [13]. Heterogeneous Graph Benchmark standardizes the process pipeline
for fair comparison, so we follow their pipelines to conduct experiments. For
datasets without node features, we assign them one-hot or all-one vector features
to denote their existence. The statistics of all datasets are summarized in Table 1.

Table 1. Statistics of all datasets.

Datasets #Nodes #Node Types #Edges #Edge Types Target #Classes
DBLP 26,128 4 239,566 6 author 4
IMDB 21,420 4 86,642 6 movie 5
ACM 10,942 4 547,872 8 paper 3
Freebase 180,098 8 1,057,688 36 book 7
OGB-MAG 1,939,743 4 21,111,007 4 paper 349
Amazon 10,099 1 148,659 2 product-product –
LastFM 20,612 3 141,521 3 user-artist –
PubMed 63,109 4 244,986 10 disease-disease –

Baselines. To comprehensively evaluate our proposed model against the state-
of-the-art methods, we select a collection of baselines, including basic models
(GCN [12], GAT [23], Transformer [22]), metapath-based models (RGCN [16],
HAN [26], HetGNN [31], MAGNN [5], SeHGNN [29]) and metapath-free models
HGT [11], Simple-HGN [13], HINormer [14]). Specifically, as all baselines do not
utilize extra label embeddings, we report the results of SeHGNN without the
utilization of extra label embeddings.

Settings. Regarding datasets from HGB, we follow the split proportion of
24:6:70 for the training, validation and test sets, respectively. Regarding OGB-
MAG dataset, we propose to train on papers published until 2017, validate on
those published in 2018, and test on those published since 2019. We evaluate
classification performance of all baselines with Micro-F1 and Macro-F1 for HGB
datasets and accuracy for OGB-MAG dataset. Following HGB, we use ROC-
AUC (area under the ROC curve) and MRR (mean reciprocal rank) metrics to
evaluate link prediction performance. Since our experimental setup is consistent
with HGB and OGB, we directly borrow the results reported in HGB and OGB
leaderboard for comparison. For those results that are not available in HGB or
OGB, we conduct experiments based on original experimental setups.
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Table 2. Experiment results on four HGB datasets. The best result is bolded and
the runner-up is underlined. The error bar (±) denotes the standard deviation of the
results over five runs. “–” denotes the models run out of memory.

Methods DBLP IMDB ACM Freebase
Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

GCN 91.47± 0.34 90.84± 0.32 64.82± 0.64 57.88± 1.18 92.12± 0.23 92.17± 0.24 60.23± 0.92 27.84± 3.13
GAT 93.39± 0.30 93.83± 0.27 64.86± 0.43 58.94± 1.35 92.19± 0.93 92.26± 0.94 65.26± 0.80 40.74± 2.58
Transformer 93.99± 0.11 93.48± 0.12 66.29± 0.69 62.79± 0.65 92.32± 0.36 92.55± 0.34 65.74± 0.78 47.06± 2.42
HGT 93.49± 0.25 93.01± 0.23 67.20± 0.57 63.00± 1.19 91.00± 0.76 91.12± 0.76 60.51± 1.16 29.28± 2.52
Simple-HGN 94.46± 0.22 94.01± 0.24 67.36± 0.57 63.53± 1.36 93.35± 0.45 93.42± 0.44 66.29 ± 0.45 47.72± 1.48
HINormer 94.94± 0.21 94.57± 0.23 67.83± 0.34 64.65± 0.53 92.13± 0.32 92.20± 0.34 66.08± 0.74 49.37± 2.08
RGCN 92.07± 0.50 91.52± 0.50 62.05± 0.15 58.85± 0.26 91.41± 0.75 91.55± 0.74 58.33± 1.57 46.78± 0.77
HAN 92.05± 0.62 91.67± 0.49 64.63± 0.58 57.74± 0.96 90.79± 0.43 90.89± 0.43 54.77± 1.40 21.31± 1.68
MAGNN 93.76± 0.45 93.28± 0.51 64.67± 1.67 56.49± 3.20 90.88± 0.64 90.77± 0.65 – –
SeHGNN 95.24 ± 0.13 94.86 ± 0.14 68.21 ± 0.32 66.63 ± 0.34 93.87 ± 0.50 93.95 ± 0.48 63.41± 0.47 50.71 ± 0.44

HetCAN 95.78±0.28 95.45±0.23 69.50±0.34 67.23±0.28 94.35±0.35 94.47±0.36 66.79±0.52 51.48±0.63

5.2 Node Classification

Tables 2 and 3 summarize experimental results on node classification over five
runs. From the tables, we observe that:
(1) The plain models, i.e., GCN, GAT and Transformer, perform well on all
datasets when using proper inputs from HGB, indicating that preprocessing for
input node features has great impact on model performance.
(2) Compared to the vanilla models mentioned earlier, SeHGNN and HINormer
demonstrate superior performance, with SeHGNN being the best among
metapath-based models and HINormer excelling among metapath-free models.
By using the predefined metapaths, SeHGNN exploits semantic information to
boost model performance. HINormer samples a fixed-length sequence for each
node and designs an additional heterogeneous relation encoder, which enlarges
the receptive field for each node and also models the heterogeneity.
(3) HetCAN achieves superior results across all HGB datasets, demonstrating
its ability to generalize to datasets with varying degrees of heterogeneity. We
attribute the generalization ability of our model to the Cascade Block, which
allows us to simultaneously learn node-level and feature-level information. This
enables the node representations to have more powerful expressive capabilities,
thereby boosting both node classification and link prediction tasks.
(4) Based on the results from the large-scale dataset OGB-MAG (see Table 3), we
can observe that HetCAN outperforms all metapath-free competitors. This indi-
cate that our method has further narrowed the gap between metapath-free mod-
els and metapath-based models on large-scale dataset. In addition, we further
conduct efficiency studies on three datasets shown in Fig. 4, which demonstrates
that our method is faster than SeHGNN, the winner of OGB-MAG dataset. Par-
ticularly, shown in Fig. 4(c), the convergence speed of our model is much faster
than SeHGNN in the scenario with a large number of edge types (39 edge types
in Freebase). This is because metapath-based methods require aggregating infor-
mation through metapaths, and this inherent property results in slower training
and convergence speeds.
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Table 3. Experiment results on the large-scale dataset OGB-MAG. ∗ denotes
metapath-free models. The best result is bolded and the runner-up are underlined.

Methods Validation accuracy Test accuracy

RGCN 48.35 ± 0.36 47.37 ± 0.48
HGT* 49.89 ± 0.47 49.27 ± 0.61
NARS 51.85 ± 0.08 50.88 ± 0.12
SAGN* 52.25 ± 0.30 51.17 ± 0.32
GAMLP* 53.23 ± 0.23 51.63 ± 0.22
LEGNN* 54.43 ± 0.09 52.76 ± 0.14
SeHGNN 55.95 ± 0.11 53.99±0.18
HetCAN* 54.76 ± 0.18 53.79 ± 0.17

5.3 Link Prediction

Table 4 summarizes the results on the downstream link prediction task over five
runs. Based on this table, we observe that:
(1) Our method HetCAN consistently outperforms all advanced methods over
both ROC-AUC and MRR metrics. Particularly, we achieve significant improve-
ments on the Amazon and LastFM datasets. This indicates that our method can
learn more expressive node representations with such a cascade structure, while
also giving rise to the model’s performance on the link prediction task.
(2) Compared to Simple-HGN, the runner-up on link prediction, our method
achieves better performance. Our method introduces both the node-level and
the feature-level high-order information through the cascade block, while Simple-
HGN only uses learnable type embeddings to compensate for graph heterogeneity
and ignores the feature high-order interactions.

5.4 Model Analysis

Ablation Studies. To validate effectiveness of the proposed components, we
conduct ablation studies on four datasets by comparing with two variants of
HetCAN: (1) we remove node type embeddings and replace it with all-one vec-
tors, which is denoted by w/o Type-encoder ; (2) we remove the dimension-aware
encoder, which is denoted by w/o Dim-encoder. We report the results of ablation
studies in Fig. 3 and give the following observations.
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Table 4. Experiment results on link prediction. The best result is bolded and the
runner-up is underlined. The error bar ( ± ) denotes the standard deviation of the
results over five runs. “–” denotes the results are not available due to lack of metapaths
on those datasets.

Methods Amazon LastFM PubMed
ROC-AUC MRR ROC-AUC MRR ROC-AUC MRR

GCN 92.84± 0.34 97.05 ± 0.12 59.17± 0.31 79.38± 0.65 80.48± 0.81 90.99± 0.56
GAT 91.65± 0.80 96.58± 0.26 58.56± 0.66 77.04± 2.11 78.05± 1.77 90.02± 0.52
RGCN 86.34± 0.28 93.92± 0.16 57.21± 0.09 77.68± 0.17 78.29± 0.18 90.26± 0.24
GATNE 77.39± 0.50 92.04± 0.36 66.87± 0.16 85.93± 0.63 63.39± 0.65 80.05± 0.22
HetGNN 77.74± 0.24 91.79± 0.03 62.09± 0.01 83.56± 0.14 73.63± 0.01 84.00± 0.04
HGT 88.26± 2.06 93.87± 0.65 54.99± 0.28 74.96± 1.46 80.12± 0.93 90.85± 0.33
Simple-HGN 93.40 ± 0.62 96.94± 0.29 67.59 ± 0.23 90.81 ± 0.32 83.39 ± 0.39 92.07 ± 0.26

HetCAN 95.60±0.32 98.14±0.28 67.92±0.17 91.78±0.40 83.94±0.30 92.48±0.24

Fig. 3. Ablation studies.

Firstly, without the type-aware encoder, HetCAN fails to consider node type
when performing attention mechanism, resulting in degradation of classification
performance. Compared to other datasets, the absence of node type embeddings
has more prominent impacts on Freebase that has more node types, indicating
that introducing learnable node type embeddings explicitly can make up for type
information and benefit the model’s performance. From another perspective,
improvements on some datasets are not as significant as that on Freebase, thus
how to further exploit the underlying semantic relations between nodes is still a
promising direction and we will investigate it in future work.

Secondly, without dimension-aware encoder, HetCAN fails to capture latent
feature interactions, resulting in a significant reduction of performance. We also
notice that the absence of dimension-aware encoder has a more significant impact
on Macro-F1 scores than Micro-F1. Especially on Freebase, the Macro-F1 is
reduced by 2.88% and has a larger standard deviation, which indicates that
dimension-aware encoder can benefit the robustness of our model.

Efficiency Studies. To assess the efficiency of HetCAN, we compared the
training times of several advanced methods in the same experimental environ-
ment, using the hyper-parameters corresponding to optimal performance for each
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Fig. 4. Efficiency study: x-axis shows the training time and y-axis is the Micro-F1 score
on the validation set.

method. The results are illustrated in Fig. 4. Specifically, on IMDB, HetCAN
converges in around 10 s, while SeHGNN and HGT take more than 30 s. This
indicates that our model is as efficient as other metapath-free methods and sig-
nificantly faster than SeHGNN and HGT. On Freebase, HetCAN achieves the
optimal performance around 20 s, while HINormer and Simple-HGN approach
their optimal state around 40 s. This also demonstrates the efficiency and robust-
ness of HetCAN on information networks with a greater variety of node types
and edges. Surprisingly, we found that SeHGNN takes approximately 500 s, 20
times of our model, to converge to the optimal state. This demonstrates the
superiority and flexibility of being free from the predefined metapaths.

Fig. 5. Parameters comparison. The numbers below the model names represent the
ratio of the total number of parameters relative to GAT. For example, “1.24” below
HGT means its total parameters are 1.24 times that of GAT.

Parameter Studies. We experiment on DBLP (Fig. 5) to statistically compare
HetCAN’s total parameter count with that of other competitors. We use the
hyper-parameters corresponding to the optimal performance of these models.
We observe that SeHGNN achieves its peak performance with a large hidden
size (512), which leads to a slower convergence speed. In contrast, HetCAN
achieves state-of-the-art performance by introducing an affordable number of
parameters, ensuring both efficiency and effectiveness.
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Fig. 6. Hyper-parameters sensitivity studies.

We also examine the sensitivity of hyperparameters, including the number
of type-aware layers (L), dimension-aware layers (Ld), and hidden size. The
results are depicted in Fig. 6. We consistently observe strong performance across
a wide range of Ld values on both DBLP and IMDB datasets. The impact
of hidden size (d) is more significant on IMDB than on DBLP. Increasing L
initially improves performance gradually, but further increments eventually lead
to a decline, indicating potential harm from overly deep layers.

6 Conclusion

In this paper, we investigate the problem of exploiting graph heterogeneity and
the high-order feature information. To achieve our goals, we propose HetCAN
composed of multiple cascade blocks, where each block comprises multiple type-
aware layers and dimension-aware layers. The type-aware encoder seamlessly
integrates node types with node features to comprehensively leverage graph het-
erogeneity. The dimension-aware encoder pays attention to latent interactions
among node features, utilizing the high-order information inherent in such inter-
actions through a transformer architecture. Extensive experiments and studies
demonstrate the superiority, efficiency and robustness of the proposed HetCAN.
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Abstract. Multi-task learning (MTL) is a powerful machine learn-
ing paradigm designed to leverage shared knowledge across tasks to
improve generalization and performance. Previous works have proposed
approaches to MTL that can be divided into feature learning, focused on
the identification of a common feature representation, and task cluster-
ing, where similar tasks are grouped together. In this paper, we propose
an MTL approach at the intersection between task clustering and feature
transformation based on a two-phase iterative aggregation of targets and
features. First, we propose a bias-variance analysis for regression models
with additive Gaussian noise, where we provide a general expression of
the asymptotic bias and variance of a task, considering a linear regression
trained on aggregated input features and an aggregated target. Then,
we exploit this analysis to provide a two-phase MTL algorithm (Non-
LinCTFA). Firstly, this method partitions the tasks into clusters and
aggregates each obtained group of targets with their mean. Then, for
each aggregated task, it aggregates subsets of features with their mean
in a dimensionality reduction fashion. In both phases, a key aspect is to
preserve the interpretability of the reduced targets and features through
the aggregation with the mean, which is further motivated by applica-
tions to Earth science. Finally, we validate the algorithms on synthetic
data, showing the effect of different parameters and real-world datasets,
exploring the validity of the proposed methodology on classical datasets,
recent baselines, and Earth science applications.

Keywords: Multi-Task Learning · Variable Aggregation ·
Bias-Variance Analysis

1 Introduction

Machine Learning [5, ML] approaches usually consider an individual learning
problem, eventually decomposing complex problems into independent tasks.
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Inspired by the possibility to exploit their interconnections, Multi-task learn-
ing [10, MTL] methods are designed to simultaneously learn multiple related
tasks, leveraging shared knowledge to improve performance and generalization.
In recent years, MTL has gained significant attention across various domains,
including natural language processing [12], computer vision [3], and health-
care [37]. Additionally, MTL proved to be efficient in various real-world appli-
cations such as gene expression [26], cardiac ECG analysis [9], and quantitative
stock portfolio optimization [25].

Focusing on supervised MTL, task-clustering methods are designed to aggre-
gate different tasks into clusters, exploiting their relationships to learn groups of
tasks with the same model. On the other hand, feature-based MTL approaches
are focused on the identification of a subset of relevant common input features
(feature selection), or the extraction of a combination of relevant original inputs
(feature transformation). In the feature transformation context, a dimensional-
ity reduction approach may be considered to extract a set of relevant features
common to all the tasks, reducing the dimension of the feature space.

In this paper, we propose an MTL approach (NonLinCTFA) at the inter-
section between task clustering and feature transformation with dimensionality
reduction. Firstly, we introduce a specific task clustering, based on partitioning
the targets, aggregating each obtained group of targets with their mean. Then,
for each aggregated task (the mean of the targets of a cluster), we aggregate sub-
sets of features with their mean. This way, we first learn a single model for each
group of tasks. Then, we aggregate subsets of features with their mean in each
aggregated task, producing a set of reduced features in a dimensionality reduc-
tion fashion. In both cases, we provide theoretical guarantees on the improvement
(or not worsening) of the mean squared error on each of the original tasks. A
schematic view of this methodology can be found in Fig. 1a. Additionally, Fig. 1b
shows a variant that will be discussed in the next sections.

The choice to consider the mean as an aggregation function is to preserve
interpretability, following the definition of interpretability as the property of an
ML pipeline to be understood by domain experts, without explanations by ML
experts (see [20] for a broader discussion). Indeed, we aggregate targets and
features, reducing the dimension and the variance of the models and preserving
the meaning of each aggregation, which is a mean of variables. On the other
hand, the aggregations induce an increase in bias that will be controlled in the
analysis.

A motivational example is related to Earth science, where we may be inter-
ested in the prediction of a target variable at different (correlated) locations,
given a set of meteorological features measured in each of them (see Fig. 2a).
In this context, the proposed algorithm aggregates highly correlated targets and
learns an individual model for their mean, resulting in a reduced number of mod-
els, simplifying data representation (through further aggregating highly corre-
lated features) and enhancing the performances without loss of interpretability,
mitigating overfitting, and limiting the computational complexity (see Fig. 2b,
further discussed in the experimental section). In this example, preserving the
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Fig. 1. Block scheme of main algorithm and a homogeneous case variant.

(a) Motivational example. (b) Basins reduced by NonLinCTFA.

Fig. 2. Figure 2a represents some European hydrologic sub-basins, identified with
different colors, where a target variable and meteorological features are available.
Figure 2b shows the aggregated regions after the application of NonLinCTFA.
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interpretability is essential for climatologists, filling the gap between advanced
ML methods (considered as black-box algorithms) and their physical meaning.

Contributions. After introducing notation, problem formulation, and related
works (Sect. 2), the contributions of this paper can be summarized as:

1) General theoretical analysis of the asymptotic bias and variance, estimating
a target variable with a linear model, trained considering as target an average
of targets and as features a reduced set of basis functions (Sect. 3).

2) Introduction of a novel MTL approach, with theoretical guarantees, aggre-
gating targets and features with the mean for interpretability (Sect. 4).

3) Extension of recent dimensionality reduction methods [7,8], both to multiple
targets and generalizing the theoretical results in the single-task case.

4) Validation of the proposed algorithm on synthetic data, benchmark MTL
datasets and methods, and a multi-task dataset from Earth science (Sect. 5).

Technical proofs and additional results can be found in the Appendix, avail-
able in the supplementary material.

2 Preliminaries

Notation. Given L learning tasks {Ti}L
i=1, each task Ti is a supervised learning

problem with training set Si = {(xi, yi)j}ni
j=1, where ni samples for the i-th task

are available, (xi)j = (xi
1, . . . , x

i
Di

)j ∈ R
Di is the j-th training sample associated

to task i composed of Di features, and (yi)j is the corresponding target. The
random variable yi represents the i-th target, xi

k denotes the k-th feature of task
Ti, and the random vector xi is the full set of features of the i-th task. The
symbols σ2

a, cov(a, b), ρab and σ̂2
a, ˆcov(a, b), ρ̂ab denote the variance of a random

variable a, its covariance, and correlation with the random variable b and their
estimators, respectively. Finally, Ea[f(a)] is the expected value of a function f(·)
of the random variable a w.r.t. its distribution.

Remark 1. To simplify the notation, in this paper, we mainly consider a shared
set of D features x := {x1, . . . , xD} := {x1

1, . . . , x
1
D1

, . . . , xL
1 , . . . , xL

DL
} and the

same number of training samples n for each task. This simplification motivates
the workflow of Fig. 1a. We will also discuss a variant with D task-specific fea-
tures (workflow in Fig. 1b). Recalling the motivational example, this means that
we will consider the full set of measurements of meteorological features as a
shared set of D features. Then, we will discuss a variant with a set of mete-
orological features measured in each individual sub-region associated with its
target. Additionally, this homogeneous-feature variant could also be applied in
heterogeneous settings, aggregating corresponding features (e.g., temperature),
without changing specific features associated to a sub-region (e.g., some snow-
related features may be available only for a mountainous region).
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Data Generation Process. We consider a general relationship between the full
set of features and each target, with additive Gaussian noise. The noise variables
{εk}L

k=1 can be correlated with each other, but independent from features.
In the theoretical analysis, we consider a partition P of the tasks. Therefore,

each task Tk belongs to a set of the partition Pι(k). Without loss of generality, in
the analysis we will focus on the i-th task yi = fi(x1 . . . xD) + εi, εi ∼ N (0, σ2

i ),
and we will denote with Pι := Pι(i) the set of P that contains Ti, and with Kι

its cardinality. The aggregated (mean) target that contains yi is therefore ψι :=
1

Kι

∑
k:yk∈Pι

yk. Finally, to simplify the computations, we assume the expected
values of features and targets to be zero: E[xk] = E[yi] = E[fi(x1 . . . xD)] =
0, ∀k ∈ {1, . . . , D}, ∀i ∈ {1, . . . , L}.

Loss Measure. As a natural performance measure for regression and in line
with related works [7,8], in the theoretical analysis we evaluate the Mean Squared
Error (MSE), focusing on its bias and variance components (bias-variance decom-
position [16], see Eq. 1 of Appendix A).

Multi-task Learning via Aggregations. In the theoretical analysis of Sect. 3,
we consider a task yi = fi(x1 . . . xD) + εi, εi ∼ N (0, σ2

i ), and we evaluate the
effect (in terms of MSE) of learning a linear model trained on a target ψι, the
mean of a given subset of original targets which contains yi. Additionally, d
given transformations {φ1, . . . , φd} of the D original features are the inputs.
They could be any zero-mean transformations (basis functions), but we focus
on the means of d subsets of original features. Indeed, through Algorithm 1,
we exploit the theoretical results to identify iteratively, and aggregate with the
mean, convenient partitions of features and targets in polynomial time.

Remark 2 (Limitations). In the analysis, we focus on linear models to derive
closed-form results. However, the NonLinCTFA algorithm can be applied with
any supervised learning algorithm. In this case, its convenience becomes heuris-
tic, and its effectiveness should be tested empirically. The second main limitation
is the asymptoticity of the analysis, to identify expressions of variance and bias
without considering confidence intervals of each statistical estimator.

2.1 Related Works: Dimensionality Reduction, Multi-task Learning

Dimensionality Reduction. Considering each individual task, the aggrega-
tion of its input features can be considered a dimensionality reduction method.
These approaches map D features into a reduced dataset of dimension d < D,
with transformation functions aimed to maximize specific performance measures.
Linear, non-linear, supervised, and unsupervised methods exist. For broader dis-
cussions and algorithms on dimensionality reduction, we refer to [2,18,31].

In line with this work, some interpretable dimensionality reduction
approaches have also been studied to increase the interpretability of classical
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PCA [13], of kernel dimensionality reduction [33], or even of generative mod-
els [14]. The specific idea to aggregate groups of features with their mean resem-
bles group regularization methods, such as Cluster LASSO [29] and OSCAR [6],
although the method proposed in this paper aggregates features independently
from the training of the supervised model. This is in line with some recent
approaches [7,8], that we seek to generalize to a multi-task context and by con-
sidering the full set of features to identify the aggregations, rather than their
bivariate analyses.

Multi-task Learning. The main algorithm of this paper is an MTL approach
that identifies subsets of targets, learning a single model for their mean, that we
claim to be convenient for the original individual tasks. A classical description of
MTL is [10], and more recent algorithms are in [36]. Following their taxonomy,
we briefly revise parameter-based and feature-based MTL approaches. A few
instance-based approaches also exist, designed to share samples across tasks.

Parameter-based methods can be based on the assumption that similar tasks
have similar model parameters, forcing the coefficient matrix to be low-rank
(low-rank approaches, e.g., [35]); they can estimate and exploit task relation-
ships such as covariances (task-relation approaches, e.g., [39]); they can share
sets of parameters (decomposition approaches, e.g., [21]); or they can assume
that different tasks form several clusters (task-clustering approaches, e.g., [24]).
Some recent parameter-based MTL algorithms aim to identify groups of related
tasks exploiting different metrics, such as the effect of the gradient of the loss
associated with one task on the loss of another task [15], or summary statistics
[19]. The approach of this paper can be considered a task-clustering method
since we identify disjoint groups of tasks, averaging the corresponding targets.

Feature-based methods are based on the assumption that tasks share a com-
mon feature representation. Some approaches learn this feature representation
by maximizing the information to each task (feature transformation). Among
them, deep learning-based approaches are the most commonly used (e.g., [34]).
Other approaches select subsets of original features, maximizing their relevance
to the targets (feature selection). They usually optimize a loss function that
both penalizes the selection of different features across tasks and minimizes the
number of important features (e.g., [38]). The proposed algorithm combines the
task-clustering phase with a feature transformation phase, where for each cluster
of tasks, we identify and aggregate subsets of features.

3 Bias-Variance Analysis: Theoretical Results

In this section, we present the main theoretical results, deriving the asymptotic
bias and variance of aggregated tasks. We consider a generic task Ti:

yi = fi(x1 . . . xD) + εi, εi ∼ N (0, σ2
i ), (1)

and the set of targets Pι, that contains yi. In this setting, we estimate the target
yi with a linear model, trained with the mean of the elements of Pι as target,
and d inputs {φ1, . . . , φd}. Recalling that ψι := 1

Kι

∑
k:yk∈Pι

yk, we estimate:
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ŷi = ψ̂ι = ŵι
1φ1 + · · · + ŵι

dφd, (2)
with ŵι

j least squares estimates. In particular {φ1, . . . , φd} = {x1, . . . , xD} is
the case with original features, and Pι = {yi} identifies the single-task case.

Variance. We firstly derive the variance of the linear model ψ̂ι (Eq. 2), for the
i-th target yi. Proofs and additional discussions are in Appendix A.

Theorem 1. Let the relationship between the features and the target of a task
Ti be defined as Eq. 1. Let also each estimator converge in probability to the
quantity that it estimates. In the asymptotic case, let varι

d be the variance of a
linear regression trained with the basis functions {φ1, . . . , φd} as inputs and the
mean of a cluster of targets ψι, defined in Eq. 2, as output. It holds:

varι
d =

σ̄2
ι

(n − 1)
· d, (3)

where σ̄2
ι := var( 1

Kι

∑
k:yk∈Pι

εk) is the variance of the mean of noises of the
targets in Pι, n is the number of training samples, and d is the number of inputs.

Remark 3. The theorem follows the intuition that the asymptotic variance is
proportional to the number of inputs d (i.e., the number of estimated coefficients)
and the variance gets smaller as the number of samples increases, since the
estimate is more accurate. Finally, the asymptotic variance increases with σ̄2

ι ,
which is the distortion associated with the averaged target ψι.

Remark 4. Some specific cases are particularly relevant.

1) When the inputs are the D original features, we get varι
D = σ̄2

ι

(n−1) · D. For a

single-task approach, the variance is vari
d = σ2

i

(n−1) · d. Combining them, (D

features and a single-task), the variance is vari
D = σ2

i

(n−1) · D.
2) When the variance of the noises is constant (∀i : σ2

i = σ2), we get: σ̄2
ι =

σ2

Kι
(1 + (Kι − 1)ρ̄ι), with ρ̄ι average correlation among noises of the targets

in Pι. Therefore, if ρ̄ι = 1, the task aggregation does not reduce the variance
since the variance of the averaged noise is equal to the individual (σ2). On the
contrary, since ρ̄ι ≥ 1

1−Kι
by non-negativity of variance, maximum variance

gain corresponds to the minimum average correlation among noises ρ̄ι =
1

1−Kι
. Finally, when the noises are independent (ρ̄ι = 0), the aggregated noise

variance is reduced by a factor Kι ( 1
Kι

σ2). Intuitively, when the noises are
less correlated, the different tasks are better exploited to refine the knowledge
about each task.

3) In [7,8] a similar asymptotic result is provided in the single-task setting, with
an asymptotic variance equal to 2σ2

i

(n−1) in the bivariate case and σ2
i

(n−1) in the
univariate one. Theorem 1 generalizes that result to d input features, revealing
a cost of σ2

n−1 for each feature considered. Therefore, by reducing the features
from D to d < D, the asymptotic variance decrease is σ2

n−1 · (D − d).
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Bias. We now focus on the bias of the linear model ψ̂ι (Eq. 2), w.r.t. the i-th
target yi. Proofs and more discussions can be found in Appendix B.

Theorem 2. Let the relationship between the features and the target of a task
Ti be defined as Eq. 1. Let also each estimator converge in probability to the
quantity that it estimates. In the asymptotic case, let biasι

d be the bias of a
linear regression trained with the basis functions {φ1, . . . , φd} as inputs and the
mean of a cluster of targets ψι, defined in Eq. 2, as output. It is equal to:

biasι
d = σ2

fi
− σ2

ψι
R2

d,ι + 2(cov(ψι, fi − ψι|Φ) − cov(ψι, fi − ψι)), (4)

with σ2
fi

variance of the function of inputs defining the i-th task, σ2
ψι

variance of
the aggregated target ψι, R2

d,ι squared coefficient of multiple correlation between
the d inputs and the aggregated target ψι, and cov(ψι, fi−ψι|Φ) partial covariance
between the two random variables ψι, fi − ψι, given the inputs Φ.

Corollary 1. Considering the single-task setting, i.e., assuming ψι = yi, the
asymptotic bias of Theorem 2 reduces to:

biasi
d = σ2

fi
(1 − R2

d,i). (5)

Remark 5. Intuitively, Corollary 1 shows that, in single-task problems, the bias
is proportional to the information, measured through the coefficient of multiple
correlation, that the inputs share with the target. Additionally, the bias is pro-
portional to the variance of the function fi that regulates the i-th data generation
process. More generally, Theorem 2 shows that estimating the i-th target with a
linear model trained with the aggregated target ψι, the bias is still proportional
to the variance of the original i-th target, which is an irreducible cost. Then, the
bias decreases proportionally to the coefficient of multiple correlation between
aggregated target and features, representing the skill of the linear model to pre-
dict the aggregated target, weighted by the variance of the aggregated target
itself, which accounts for the simplification introduced by aggregating. Finally,
the third term of Eq. 4 is the difference of the covariance, with and without con-
ditioning on the inputs, between the aggregated target and the gap between the
i-th task and the aggregated target itself. This way, if the features reduce the
information shared between ψι and its gap with fi, the bias reduces since we are
exploiting the features to improve the learning of the i-th task.

Remark 6. Some specific cases can also be derived from the results on the bias.

1) Considering the D original features, the results of Theorem 2 and Corollary
1 hold, evaluating the quantities of the expressions with them (e.g., R2

D,ι).
2) In [7,8] a similar (bivariate) asymptotic analysis is provided in the single-task

setting. Corollary 1 extends those findings to a general case with d inputs.
Therefore, if we perform a single-task dimensionality reduction, aggregating
d sets of features with their mean, the asymptotic bias variation is σ2

fi
(R2

D,i −
R2

d,i).
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Theoretical Bounds for Aggregations. We conclude this Section by showing
a condition for a convenient aggregation of two tasks and another for features in
single-task problems. Both results can be deduced from Theorems 1 and 2, and
they will be exploited in the two phases of the main algorithm, respectively.

Corollary 2. Considering two tasks Ti, Tj regulated by Eq. 1, training an indi-
vidual linear model with the mean of the two targets as output is profitable w.r.t.
the individual single-task models, in terms of MSE, if and only if:

⎧
⎨

⎩

σ2
i

(n−1) · D + σ2
ψι

R2
D,ι ≥ σ2

ι

(n−1) · D + 1
2 [σ

2
fi

R2
D,i + σ2

fj
R2

D,j ]
σ2

j

(n−1) · D + σ2
ψι

R2
D,ι ≥ σ2

ι

(n−1) · D + 1
2 [σ

2
fi

R2
D,i + σ2

fj
R2

D,j ].
(6)

Proof. We compute variance and bias from Theorems 1 and 2, substituting ψι =
yi, ψι = yj , and ψι =

yi+yj

2 . Then, we impose that the sum of variance and bias
of the aggregated case is not worse than the individual one for both models.

Following the intuition, Eq. 6 shows the convenience of aggregating two tar-
gets if the variance of the noise is reduced or when the predictive capability of
the aggregated model is better than the average of the single-task ones.

Corollary 3. Considering a task Ti, the aggregation of D features into d < D
aggregated ones is profitable, in terms of MSE of a linear model, if and only if:

σ2
i

(n − 1)
· (D − d) ≥ σ2

fi
(R2

D,i − R2
d,i). (7)

Proof. The result follows comparing the single-task bias and variance that are
particular cases of the general results of Theorems 1 and 2.

Following the intuition, Eq. 7 shows the convenience in terms of variance to
reduce the number of features or in terms of bias when the predictive capability
of the linear regression is better when the features are aggregated.

4 Multi-task Learning via Aggregations: Algorithms

In this section, we present the NonLinCTFA algorithm, assuming L tasks and D
shared features. The algorithm is depicted in Fig. 1a, while a multi-input variant,
discussed in Remark 1, is depicted in Fig. 1b. Algorithm 1 reports the pseudo-
code of NonLinCTFA, exploiting the loop of Algorithm 1 (in Appendix D) to
iteratively aggregate targets firstly, and features subsequently.

Phase I: Task-Aggregation. Firstly, the algorithm iteratively adds targets to
a set, forming a partition until no aggregation is convenient. At any iteration,
Eq. 6 is exploited to test the convenience of adding a target variable yj into a
set of the partition, initialized as a singleton of a random target. Additionally, a
hyperparameter ε1 regulates the propensity of the algorithm to aggregate.
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Equation 6 regulates the convenience of an aggregation of two targets. There-
fore, the algorithm starts with L individual tasks, and it identifies two tasks that
benefit from the aggregation (e.g., T1, T2), moving to L− 1 linear models. Then,
the algorithm further aggregates a third task (e.g., T3) with them, moving to
L − 2 linear models, if the new aggregation (y1+y2+y3

3 in the example) is conve-
nient w.r.t. the aggregate two-task model (y1+y2

2 ) and the univariate one (y3).
The new aggregation is therefore convenient w.r.t. the original individual tasks,
and it is further convenient w.r.t. the previous two-task aggregation.

Similar to forward feature selection, we add a target in the current set, if
convenient, without inspecting all the possible combinations, which would be
combinatorial. This way, we do not identify the optimal partition of targets, but
a convenient one w.r.t. the single-tasks, with a quadratic number of comparisons
in the number of tasks (O(L2)) in the worst case, i.e., with no aggregations.

Additionally, the aggregation depends on the ordering of targets. For this
reason, we randomize it to avoid systemic biases. A possible variation could be
to introduce a heuristic (e.g., the correlation between couples of targets) to rank
them and test for the aggregations based on this ranking.

Phase II: Cluster-Level Feature-Aggregation. In the second phase, Non-
LinCTFA identifies groups of features to aggregate with their mean for each of
the l reduced tasks. This way, for each reduced task ι, we identify dι reduced
features, reducing the dimension and improving the performance.

Specifically, we exploit Eq. 7 to iteratively identify couples of features that
are convenient to average, following the same iterative procedure of the target
aggregation phase. This is quadratic w.r.t. the number of comparisons for each
aggregated task (O(l · D2)). Additionally, since the terms σ2

i , σ2
fi

, n are constant
across different comparisons, we include them in the hyperparameter ε2, which
regulates the propensity of the algorithm to aggregate features.

Remark 7. Algorithm 1 outputs a set of reduced tasks and the associated sets of
reduced features. We do not include a final regression to decouple the algorithm
from the regression model, which can be run independently, with theoretical
guarantees in linear regression. In this sense, we propose a filter method.

Remark 8. Recalling Remark 1, we may want to consider a multi-input setting,
with D features for each task individually {xi

1, . . . , x
i
D}L

i=1. In our example, they
can be D meteorological features measured at each location and associated with
its specific target. A variant of Algorithm 1 (Fig. 1b) compares, at each iteration,
the model trained with the features associated with each individual target and
the model for the aggregated task, trained on averaged features. This way, in a
single phase, we aggregate couples of targets and pairwise couples of features.
In our example, we would compare individual measurements of temperature
and precipitation for single-task problems and the means of temperatures and
precipitations as the two inputs of the averaged model. This variant can be
extended to a heterogeneous case where, for example, the first task has a snow-
related feature not available for the other. In this case, we consider it when
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Algorithm 1 . NonLinCTFA:Non-Linear Correlated Target-Feature Aggrega-
tion
Require: features x = {x1 . . . xD}; targets y = {y1 . . . yL}; n samples, tolerances ε1, ε2
Ensure: reduced tasks {ψ1, . . . , ψl}, reduced features {φ1, . . . , φdι}l

ι=1

function Compute_threshold_features(xcurr, y, zP , zj , ε) � From Eq. 7
Rsep ← R2score(xcurr, y)
Raggr ← R2score((xcurr \ {zP , zj}) ∪ {mean(zP , zj)}, y)

return Rsep − Raggr ≤ ε
end function
function Compute_threshold_targets(x, yP , yj , ε) � From Eq. 6

yag ← mean(yP , yj)
RP , σ2

P , σ2
fP ← R2score(x, yP), var_res(x, yP), var(yP) − var_res(x, yP)

Rj , σ
2
j , σ2

fj
← R2score(x, yj), var_res(x, yj), var(yj) − var_res(x, yj)

Rag, σ2
ag, σ2

fag
← R2score(x, yag), var_res(x, yag), var(yag) − var_res(x, yag)

threshold1 = D
(n−1)

(σ2
ag − σ2

P) +
1
2
(RPσ2

fP + Rjσ
2
fj
) − Ragσ2

fag

threshold2 = D
(n−1)

(σ2
ag − σ2

j ) +
1
2
(RPσ2

fP + Rjσ
2
fj
) − Ragσ2

fag

return (threshold1 ≤ ε) AND (threshold2 ≤ ε)
end function

function NonLinCTFA(Input) � Main function
PHASE I: task aggregations
{ψ1, . . . , ψl} ← Aggregation(z = y, phase = 1, ε = ε1,x = x, y = None)
PHASE II: feature aggregation for each task
for each ι ∈ {1, . . . , l} do

{φ1, . . . , φdι} ← Aggregation(z = x, phase = 2, ε = ε2,x = None, y = ψι)
end for

return {ψ1, . . . , ψl}, {φ1, . . . , φdι}l
ι=1

end function

the first task appears, keeping unchanged the aggregation of targets and other
features.

5 Experimental Validation

In this section we show synthetic experiments, validating the proposed algo-
rithm w.r.t. single-task regressions, showing its behavior by varying parameters,
and with an ablation study of its two phases. Then, applications to real-world
data show the competitiveness of the method w.r.t. single task and benchmark
MTL approaches1. In particular, we firstly show the competitiveness of the pro-
posed algorithm on standard benchmark datasets and in comparison with clas-
sical MTL approaches. Then, we further validate the proposed algorithm on a
large challenging dataset related to molecules, in comparison with some state-
of-the-art approaches, both re-running implementations from recently developed
libraries and considering results from some related works, where this dataset has
1 Code can be found at: https://github.com/PaoloBonettiPolimi/NonLinCTFA.

https://github.com/PaoloBonettiPolimi/NonLinCTFA
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been considered to test graph neural network-based MTL approaches. Finally,
we show an application on meteorological data, which are the main applicative
interest of this work.

5.1 Synthetic Experiments and Ablation Study

We start with synthetic experiments, validating the NonLinCTFA against single
tasks. Specifically, we consider L = 10 tasks, D = 100 features shared across all
tasks, n = 250 training samples (same number for testing), the standard devia-
tion of (independent) noises σ = 10, and hyperparameters ε1 = 0, ε2 = 0.0001.
Each target is obtained as a linear combination of all the features, with additive
Gaussian noise, randomly sampling each coefficient from a uniform distribution
in the interval [−1,−0.5] or [0.5, 1], obtaining two groups of tasks similar among
themselves. We perform linear regression on individual tasks and on aggregated
tasks after the first phase of the algorithm, or fully applying NonLinCTFA. We
repeat the experiment 10 times to produce confidence intervals, and we consider
as metrics the MSE and the coefficient of determination (R2), both in terms of
absolute values and of percentage increase w.r.t. single-task. We obtain a single-
task average R2 score of 0.48±0.02, which increases to 0.64±0.01(+33.45±3.31%)
considering the aggregated tasks and 0.67 ± 0.01(+39.82 ± 3.42%) adding the
feature aggregation. Similarly, the MSE is equal to 9.34 ± 0.04, reducing to
6.54± 0.03(−29.44± 1.45%) and 5.98± 0.06(−35.36± 1.27%). The L = 10 tasks
become l = 2.5± 0.6, and the D = 100 features reduce to d = 3.43± 1.76. These
results empirically validate the improvement provided by the proposed algorithm
w.r.t. the single-task counterparts in linear regression. Additionally, they show a
significant benefit with task-aggregation, with a subsequent feature-aggregation
phase refining the performances, with the added value of simplifying models.

We further tested the proposed approach, varying one parameter at a time,
and fixing the others. Figure 3 reports the results, in terms of MSE and of per-
centage increase of MSE w.r.t. the single-task, showing the improvement with
task-aggregation and then the combination with feature aggregation. The first
column of the figure shows that, with a small number of samples, both phases
provide significant improvement, which is mitigated by a large number of sam-
ples. In the second column, when the number of features increases, the feature
aggregation phase is more relevant. Similarly, the third column shows that the
task-aggregation phase is more relevant when the number of tasks increases,
assuming a constant number of features. Finally, the fourth column shows that
the problem becomes more difficult when the noise of the targets increases, with
the task aggregations that become more relevant. Figure 1 in Appendix E also
shows the behavior of the MSE when the hyperparameters ε1, ε2 are varied.
In particular, ε1 represents the propensity to aggregate tasks, spanning from
the single-task case to a single aggregated task, with a value equal to 0 that
balances the aggregation. Similarly, ε2 regulates the propensity to aggregate fea-
tures, spanning from preserving all original inputs to a single aggregation.
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Fig. 3. Test MSE (first row) and corresponding percentage decrease w.r.t. single-task
(second row), varying one parameter at a time, only aggregating targets (Phase I) or
adding the feature-aggregation phase (Phase I+II).

5.2 Real World Datasets

As a first investigation on real data, we consider two classical datasets, compar-
ing single-task regression performance, applying NonLinCTFA, and with some
standard MTL approaches. In particular, the SARCOS dataset [32] is composed
of 7 regression tasks, 21 shared features, and n = 48933 samples. We consider
n = 1000 and the full set of n = 48933 samples to investigate the effect of
the number of samples. Then, the School dataset [4] consists of 15362 samples,
exam records, distributed across 139 tasks (schools), with 27 features. This is an
example where different measures of the same features are associated to their
tasks, allowing to apply the variant of NonLinCTFA discussed in Remark 8. In
this case, we consider 27 tasks and 27 features, as well as the full set of 139 tasks.

We apply NonLinCTFA, combined with linear regression (LR), support vec-
tor regression (SVR), and multi-layer perceptron (MLP), in comparison with the
corresponding single-task models. Additionally, we consider a random prediction
as a trivial baseline and Alternating Structural Optimization [1, ASO], its con-
vex relaxation [11, cASO], and Convex Clustered MTL [17, CMTL], as bench-
marks representing feature-based and clustered-based MTL methods (adapting
the implementation of https://github.com/chcorbi/MultiTaskLearning). In line
with the implementation of these baselines, we evaluate test performance with
normalized root mean squared error (NRMSE), randomly selecting the 30% of
samples, with five different seeds, to produce test confidence intervals.

The results of Table 1 show that NonLinCTFA outperforms single-task mod-
els and is competitive w.r.t. MTL baselines, with the advantage of reducing the
number of models and parameters, still preserving the interpretability.

https://github.com/chcorbi/MultiTaskLearning
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Table 1. Experiments on SARCOS and School datasets, considering 70% of data for
training and 30% for testing, randomizing over 5 seeds for confidence intervals. NRMSE
is the performance measure (lower is better, best result in bold).

SARCOS_1000samples SARCOS_full School_27tasks School_full

# samples n 1000 48933 15362 15362

# tasks L 7 7 27 193

Reduced # tasks (ours) 6.0 ± 0.0 6.0 ± 0.0 6.0 ± 0.0 23.2 ± 2.7

# features D 21 21 27 (for each task) 27 (for each task)
Reduced # features (ours) 7.1 ± 0.3 6.9 ± 0.4 27 (for each aggregation) 27 (for each aggregation)
NRMSE random 0.363 ± 0.015 0.235 ± 0.011 0.634 ± 0.123 0.641 ± 0.294

NRMSE single-task LR 0.085 ± 0.001 0.069 ± 0.002 0.183 ± 0.002 0.165 ± 0.003

NRMSE single-task SVR 0.142 ± 0.010 0.092 ± 0.008 0.181 ± 0.009 0.162 ± 0.005

NRMSE single-task MLP 0.069 ± 0.002 0.045 ± 0.003 0.182 ± 0.003 0.174 ± 0.008

NRMSE ASO 0.075 ± 0.002 0.049 ± 0.001 0.172 ± 0.003 0.152 ± 0.006

NRMSE cASO 0.068 ± 0.001 0.048 ± 0.001 0.173 ± 0.002 0.154 ± 0.006

NRMSE CMTL 0.111 ± 0.001 0.067 ± 0.002 0.843 ± 0.316 1.187 ± 0.562

NRMSE NonLinCTFA + LR (ours) 0.054 ± 0.003 0.035 ± 0.002 0.162 ± 0.005 0.159 ± 0.002

NRMSE NonLinCTFA + SVR (ours) 0.154 ± 0.021 0.115 ± 0.024 0.159 ± 0.003 0.155 ± 0.004

NRMSE NonLinCTFA + MLP (ours) 0.049 ± 0.009 0.031 ± 0.001 0.160 ± 0.004 0.167 ± 0.003

In a second real-world application, we consider the QM9 dataset [28], a chal-
lenging quantum chemistry dataset with L = 19 tasks (properties of molecules),
with 139000 graph inputs (molecules structures). We averaged node features,
position, and edge attributes, obtaining D = 19 features. Following the experi-
mental setup of [27], we retrieved the dataset from PyTorch Geometric, randomly
selecting 10000 samples for testing and the others for training, normalizing each
task and repeating the experiments three times to produce confidence intervals.

Table 2. Experiments on QM9 dataset. 10000 random samples are used for testing (∼
138000 for training), 3 different seeds for confidence intervals. MSE is the performance
measure (lower is better). Training time is also reported.

QM9 Test Results # reduced tasks # reduced features MSE Time (minutes)

Single-task LR 19 20 0.969 ± 0.049∼ 1

Single-task MLP 19 20 0.518 ± 0.032∼ 11

Single-task baseline of [30] 19 13 0.533 ± 0.041NA
HPS GNN + RLW 19 11+graph 0.619 ± 0.254∼ 1 × 300epochs
Best GNN of [30] 19 11+graph 0.216 ± 0.009NA
NonLinCTFA + LR (ours) 12 ± 1.2 10.05 ± 2.96 0.955 ± 0.038∼ 2

NonLinCTFA + MLP (ours) 12 ± 1.2 10.05 ± 2.96 0.469 ± 0.024∼ 14

Table 2 shows the performance, in terms of test MSE, of the single-task linear
regression (LR) and multi-layer perceptron (MLP), together with the MSE asso-
ciated to the same models, applying NonLinCTFA. Additionally, we exploited
the implementation of LibMTL [23] of some state-of-the-art MTL methods and
its integration with the QM9 dataset for further benchmarking. In particular,
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the architecture of the library compatible with graph neural networks is the hard
parameter sharing (HPS GNN) that we trained with all the 14 weighting strate-
gies implemented in the library (we refer to it for details), up to 300 epochs,
identifying the Random Loss Weighting strategy [22, RLW] as best perform-
ing. For further comparison with the literature, in the table, we also show the
MSE of the baseline and the best-performing graph neural network (GNN) pro-
posed in [30]. Together with the MSE, Table 2 shows the computational time. We
can conclude that the NonLinCTFA provides significant aggregations, improv-
ing single task performances, especially combined with the MLP. Additionally,
it is competitive w.r.t. GNN-based approaches, without outperforming all of
them, given its much simpler tabular methodology, as also highlighted by the
computational time.

A final experimental setup shows an application of the NonLinCTFA Algo-
rithm to meteorological data, as depicted in Fig. 2, where L = 29934 European
hydrological basins are considered as tasks, each with a satellite signal as target,
and D = 16 meteorological measurements and climate indices as inputs. In this
context, we apply the variant of the algorithm described in Remark 8, with linear
regression (given the small amount of n = 102 monthly measurements and the
necessity to preserve the interpretability of the entire workflow).

Table 3. Experiments on climate dataset with NonLinCTFA, varying the hyperpa-
rameter ε. The number of aggregations and MSE are obtained cross-validating.

NonLinCTFA ε = 1 (single-task) ε = 0.5 ε = 0.1 ε = 0.05 ε = 0.01

# reduced tasks 29934 28024 2354 1345 969

MSE 1.058 ± 0.224 1.045 ± 0.221 0.758 ± 0.148 0.755 ± 0.143 0.753 ± 0.143

ε = 0 ε = −0.01 ε = −0.05 ε = −0.1 ε = −1

# reduced tasks 944 844 680 252 1

MSE 0.750 ± 0.140 0.746 ± 0.142 0.756 ± 0.146 0.909 ± 0.189 1.132 ± 0.193

Table 3 shows confidence intervals, in terms of MSE, associated with differ-
ent values of the hyperparameter ε. As expected, the MSE on the original tasks
reduces when reducing the value of ε since the aggregations of tasks are conve-
nient. However, when the hyperparameter is too small, the algorithm aggregates
too many tasks, becoming detrimental to the understanding of the behavior of
the original tasks, until the limit case of a single aggregation of all the tasks.
The average number of reduced tasks is also reported in the table to confirm
this behavior.

6 Conclusions and Future Developments

In this paper, we introduced a two-phase MTL approach (NonLinCTFA) that
aggregates sets of targets and features with their mean, motivated by meteo-
rological applications, and aimed to improve the final regression performance,
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preserving interpretability. We provided a bias-variance analysis, considering lin-
ear regression, and we empirically validated the approach with synthetic and
real-world datasets, showing promising results, also outside the context of linear
regression. A future development can be an extension of the analysis to general
ML models. Additionally, an applicative work with meteorological data is under
development.
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Abstract. While deep neural networks are highly effective at solving
complex tasks, large pre-trained models are commonly employed even
to solve consistently simpler downstream tasks, which do not necessarily
require a large model’s complexity. Motivated by the awareness of the
ever-growing AI environmental impact, we propose an efficiency strategy
that leverages prior knowledge transferred by large models. Simple but
effective, we propose a method relying on an Entropy-bASed Importance
mEtRic (EASIER) to reduce the depth of over-parametrized deep neu-
ral networks, which alleviates their computational burden. We assess the
effectiveness of our method on traditional image classification setups.
Our code is available at https://github.com/VGCQ/EASIER.

Keywords: Compression · Efficiency · Deep Learning

1 Introduction

Deep Neural Networks (DNNs) have drastically changed the field of computer
vision. They have been crucial in obtaining state-of-the-art results in several
important computer vision domains, such as semantic segmentation [8], classifi-
cation [26], and object detection [47]. Beyond traditional computer vision tasks,
DNNs have also impacted other fields by exhibiting unbridled potentials in nat-
ural language processing [45], and multi-modal tasks [41]. DNNs’ use is growing
significantly in our lives and appears to be perennial.

Despite DNNs have demonstrated scalability in terms of model and dataset
size [21], they hinder high computational demands. Indeed, neoteric architectures
are made up of millions, or even billions, of parameters, resulting in billions, or
even trillions, of FLoating-point OPerations (FLOPs) for a single inference [17].
Hence, these large models require enormous resources both in terms of pure
hardware capacity and energy consumption, for training and deployment, which
raises issues for real-time and on-device applications and also has an environ-
mental impact. For instance, GPT-3 [6], made of 175B parameters, emits around
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200tCO2eq for its training and its operational carbon footprint reached around
550tCO2eq [14].

The development of compression techniques, which constitute an essential
means of remedying the resource-hungry nature of DNNs, has marked the
research landscape over the past decade. It is well-known that the complex-
ity of the model is intrinsically linked to the generalizability of DNNs [21], and
since pre-trained architectures that can be used in downstream tasks tend to
be over-parameterized, compression with no (or only slight) performance degra-
dation is in principle possible [43]. To design a more efficient architecture, a
set of methods has been proposed, ranging from parameter pruning [18] to the
reduction of numerical precision [37]. Nonetheless, few approaches are capable of
lessening the number of layers in a DNN. Indeed, removing single parameters or
whole filters offers very few if any, practical benefits when it comes to using the
model on recent computing resources, such as GPU. Thanks to the intrinsic par-
allel computation nature of GPUs or TPUs, the limitation on layer size, whether
larger or smaller, comes mainly from memory caching and core availability.

In most cases, this parallelization capability avoids the need to reduce layer
size, suggesting that another approach needs to be explored to address this prob-
lem. Indeed, reducing the critical path that computations must traverse [2] would
help to relieve the DNN’s computation demand, which can be achieved by strate-
gically removing layers. Despite that existing approaches, like knowledge distil-
lation [22], implicitly tackle this issue, the absence of performance degradation
cannot be guaranteed, since a shallow target model is imposed. This motivates
the exploration of designing a method for neural networks’ depth reduction while
preserving optimal performance.

In this work, we present our method EASIER, which iteratively tries to
reduce the depth of deep neural networks. More precisely, EASIER identifies the
average state of a given rectifier-activated neuron for the trained task. Given the
definition of rectifier activation functions, EASIER can find the probability that
this neuron uses one of the two regions, and hence can calculate an entropy-
based metric per layer. Such a metric is then used to drive the linearization of
layers toward neural network depth reduction. We summarize, here below, our
key messages and contributions.

– We highlight how we can potentially reduce the depth of a neural network with
a marginal impact on the performance by characterizing layer degeneration
(Sect. 3.1).

– We propose EASIER, a method relying on an entropy-based importance met-
ric that pinpoints rectifier-activated layers that can be linearized (Sect. 3.3)
(Fig. 1).

– We test EASIER across multiple architectures and datasets for traditional
image classification setups (Sect. 4), demonstrating that layer withdrawal
can be achieved with little or no performance loss when over-parameterized
networks are employed. Notably, we show the potential savings in terms of
FLOPs and inference time on six different hardwares, highlighting the benefits
of our method (Sect. 4.3).
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Fig. 1. Overview of EASIER. We iteratively train, evaluate, and estimate the entropy
on the training set and linearize the lowest-entropy layer of the neural network, until
the performance drops.

2 Related Works

Neural Architecture Search. Popular deep neural network architectures have
mostly been designed by hand, among which we can cite VGG [40], ResNet [19],
MobileNet [23] or Swin transformer [31]. Despite leading to remarkable perfor-
mance on a variety of tasks, the design of novel architectures is time-consuming
and can be prone to errors. Neural Architecture Search (NAS) was the answer to
both these problems. Divided into subgroups such as evolutionary methods [34],
methods based on reinforcement learning [49], and differentiable methods [30],
NAS is finding the contemporary top-performing architectures [3]. While the
firsts are based on efficient heuristic search methods based on evolution to cap-
ture global solutions of complex optimization problems [38], the second relies on
goal-oriented optimization methods driven by an impact response or signal [1].
Differentiable methods learn architectural paths that enable the removal of entire
layers and sometimes add width to the previous ones to balance [46]. By disen-
tangling training and searching to reduce the cost, a popular approach proposed
a large once-for-all network [7] supporting diverse architectural designs. The idea
was to select a sub-network within the aforementioned model without the need
for additional training.

Nonetheless, despite reducing the model size across diverse dimensions, like
depth, width, kernel size, and resolution, NAS approaches, including also this
work, generally need expensive computational resources to span several search
space dimensions and train a super-network from scratch. In this paper, our sole
focus lies on depth as the exclusive search dimension, by leveraging a pre-trained
model, making easier convergence and reducing the overall training time.
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Neural Network Pruning. Neural network pruning, whose goal is to shrink a large
network to a smaller one while maintaining performance by removing irrelevant
weights, filters, or other structures from neural networks, has gained signifi-
cant attention in neoteric works since it allows a possible model performance
enhancement and an over-fitting reduction. On the one hand, structured prun-
ing focuses on removing entire neurons, filters, or channels [20,44]. On the other
hand, unstructured pruning algorithms discard weights without explicitly tak-
ing the neural network’s structure into account [18,43]. The main categories
of unstructured pruning methods are magnitude-based pruning [18,32,48] and
gradient-based pruning [28,43]. While the first eponymous approach takes the
weights’ magnitude as an importance score to prune parameters, the latter uses
the gradient magnitude (or its higher-order derivatives) to rank them. The effec-
tiveness of these techniques was compared by [4] and, in general, magnitude-
based methods are more accurate than gradient-based. Moreover, they are a
good trade-off between complexity and competitiveness. Indeed, [15] exposed
that simple magnitude pruning approaches reach similar or better results than
complex methods. From a computational perspective, in a general-purpose hard-
ware configuration, larger benefits in terms of both memory and computation
are produced by structured pruning compared to unstructured pruning, even
though the reached sparsity can be significantly lower [5].

However, a recent work [29] proposed an unstructured Entropy-Guided Prun-
ing (EGP) algorithm, that succeeds in reducing the depth of deep neural net-
works by prioritizing pruning connections in low-entropy layers, leading to their
entire removal while preserving performance. Our method differs from the latter
since EASIER considers a third state to calculate the entropy (Sect. 3) and unlike
EGP, our method does not involve pruning. Although effective, EGP only allows
a small number of layers to be removed. Indeed, after the removal of multiple
layers, the accuracy drops dramatically. This will be verified by comparing this
method with EASIER, in Sect. 4.

Activation Withdrawal. Private inference has led to an upsurge in works on
removing non-linear activations. Indeed, a high latency penalty is incurred when
computing on encrypted data, which is mainly due to non-linear activations such
as ReLU. Methods such as DeepReduce [24] and SNL [9] have been developed to
reduce private inference latency. While DeepReduce includes both optimizations
for ReLU dropping and knowledge distillation training to maximize the perfor-
mance, the latter proposes a gradient-based algorithm that selectively linearizes
ReLUs while maintaining prediction accuracy. However, although SNL signifi-
cantly reduces the number of ReLU units in the neural network, it never removes
activation from an entire layer, but only from units such as pixels or channels. In
contrast, our method focuses on removing activation functions at a layer level, in
order to reduce the depth of deep neural networks. Moreover, DeepReduce [24] is
based on a criticality metric requiring five optimized networks per optimization
iteration, resulting in the exploration of 5 × (D − 1) network architectures, for
a network with D stages, which is not very efficient at training time. On the
other hand, our method does not require leveraging the knowledge of a teacher
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model to boost performance, saving computation at training time. Although left
for future work, we believe our work can also be effective in accelerating private
inference.

In traditional classification setups, [13] introduced Layer Folding, a technique
that determines whether non-linear activations can be withdrawn, enabling the
folding of adjacent linear layers into one. More specifically, PReLU activations
with a trainable slope, replace ReLU-activated layers. The almost linear PReLUs
are eliminated post-training, enabling the layer to be folded with its successive
one. Furthermore, a comparable channel-wise method enabling a notable reduc-
tion in non-linear units in the neural network while preserving performance was
put forward by [2]. While the latter does not aim at reducing neural network
depth, Layer Folding was originally proposed only for ReLU-activated networks.
Designed for any rectifier, we will compare our method EASIER with Layer
Folding and demonstrate its effectiveness in Sect. 4.
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Fig. 2. Distribution of the product between X ∼ N (0, 1) and W ∼ N (0, 1) for different
values of ρ (a), and p[Z > 0] for different ρ (b).

3 Method

In this section, we first highlight how we can potentially reduce the depth of a
neural network with a marginal impact on performance. Based on this observa-
tion, we then derive an entropy formulation for rectifier activations, which will
be at the heart of our EASIER method.

3.1 How Layers Can Degenerate

Let us define the input x for a given neuron is a sequence of random variables
X ∼ N (μX , σ2

X). Similarly, we can assume the N parameters populating such
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neuron, for a large N limit, follow as well a Gaussian distribution, and we model
it as W ∼ N (μW , σ2

W ). Under the assumption of μX = μW = 0 (for narration
purposes, it is possible to derive a more general result according to [12]), we can
obtain the distribution for the pre-activation z (resulting from the product of
the weights and the input, modeled through the random variable Z), according
to the result obtained by [11,12,39], follows the probability density function

fZ(z) =
1

πσXσW

√
1 − ρ2

exp
[

ρz

σXσW (1 − ρ2)

]
K0

[ |z|
σXσW (1 − ρ2)

]
, (1)

where Kn is the n-th order modified Bessel function of the second kind and ρ
is the correlation coefficient between X and W . A visual representation of its
distribution is pictured in Fig. 2a. We can clearly observe the large impact of ρ,
steering how the values will effectively be distributed. Now, let us assume the
activation function of such a neuron is a rectifier function, and we are interested
in observing what is the probability of the post-activation output being in the
linear region: we are interested in measuring p[Z > 0] = 1 − FZ(0), where
FZ(x) = p[Z < x] is the cumulative distribution function (CDF) for the density
fZ(z). A visual representation of how these values are distributed for different
values of ρ is depicted in Fig. 2b.

The behavior of neurons, particularly when employing rectifiers like ReLU,
is tightly linked to the learning process, and W becomes more and more (anti-)
correlated with X. At ρ → 1, neurons operate linearly, leading to a layer’s
degeneration (as the current layer becomes a linear combination with the next
layer). Conversely, at ρ → −1, neurons become effectively “OFF”, leading to
insignificance in their contribution. In both cases, there’s a layer degeneration
that we aim to detect to reduce the neural network’s depth with a marginal
impact on the performance. In the next section, we will draft a metric to estimate
how close a layer is to degenerating.

3.2 Entropy for Rectifier Activations

To monitor the output yx
l,i of the i-th neuron from a given input x of the dataset

D, we define ψl as the rectifier of the l-th layer, populated by NL neurons. Hence,
by assuming that zxl,i is the output of the i-th neuron inside the l-th layer, we
obtain:

yx
l,i = ψl(zxl,i), (2)

Three possible “states” for the neuron can be identified from (2):

sxl,i =

⎧
⎨

⎩

+1 if yx
l,i > 0

−1 if yx
l,i < 0

0 if yx
l,i = 0.

(3)

More precisely, for the output of the i-th neuron, by simply applying the sign
function to zxl,i, we get sxl,i = sign(zxl,i) and can hence easily pinpoint in which
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of these states we are. Candidly, the neuron is in the ON state when sxl,i = +1,
as this generally corresponds to the linear region, as opposed to the OFF state
when sxl,i = −1 (considering that limx→−∞ ψ(x) = 0).1 Since it could belong to
either the ON or OFF state, the third state sxl,i = 0 is a special case, which will
not be considered in the following derivation.

The probability (in the frequentist sense) of the i-th neuron belonging to
either the ON or the OFF state can be calculated from the average over a batch
of outputs for this neuron. More precisely, we define the ON state probability
as:

p(sl,i=+1) =

⎧
⎪⎨

⎪⎩

1
Sl,i

|D|∑

j=1

s
xj

l,iΘ(sxj

l,i ) if Sl,i �= 0

0 otherwise,

(4)

where

Sl,i =
|D|∑

j=1

s
xj

l,i sign(sxj

l,i ) (5)

is the frequency of the ON and the OFF states encountered, |D| is the number of
input samples, and Θ is the Heaviside function.2 As explained above, the third
state is excluded from this count, as it can be associated with either the ON or
OFF state. We can therefore infer that since we are just concerned with the ON
or OFF states, when Sl,i �= 0, p(sl,i=−1) = 1 − p(sl,i=+1). We define as an
estimator for neuron’s degeneration the entropy of the i-th neuron in the l-th
layer, calculated as:

Hl,i = −
∑

sl,i=±1

p(sl,i) log2 [p(sl,i)] (6)

Given the definition in (6), Hl,i = 0 can be verified in two cases:

– sl,i =−1 ∀j. In this case, zl,i ≤ 0 ∀j. The output of the i-th neuron is always
0 when for example employing a ReLU.

– sl,i =+1 ∀j. In this case, zl,i ≥ 0 ∀j. As it belongs to the linear region, the
output of the i-th neuron is equal to its input (or very close as in GeLU).
Therefore, since there is no non-linearity between them anymore, this neuron
can in principle be absorbed by the following layer.

Please note that the case zl,i = 0 ∀j, can be associated with both cases, as
mentioned previously, and is therefore not taken into account in the previous
case disjunction.

1 Few exceptions to this exist, like LeakyReLU. In those occurrences, even though the
activation will not converge to zero, we still choose to call it OFF state as, given the
same input’s magnitude, the magnitude of the output is lower.

2 Please be aware that additional sum and average over the entire feature map gener-
ated per input are required for convolutional layers.
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As an estimator for layer’s degeneration we can employ the average entropy:
for the l-th layer counting Nl neuron it is

Ĥl =
1
Nl

∑

i

Hl,i. (7)

We would like to have Ĥl = 0 since we target deep neural networks’ depth
reduction by eliminating layers with almost zero entropy. In the next section,
we will present the whole framework that allows us to practically reduce the
network’s depth based on the layer degeneration estimator.

Algorithm 1. Our proposed method EASIER.
1: function EASIER(winit, D, δ)
2: w ←Train(winit, Dtrain)
3: dense_acc ←Evaluate(w, Dval)
4: current_acc ← dense_acc
5: while (dense_acc - current_acc) > δ do
6: ̂H = [ ̂H1, ̂H2, ..., ̂HL] � Entropy calculation on Dtrain

7: l ← argmin( ̂H) � Finding the lowest-entropy layer
8: ψl = Identity() � Replacement of the rectifier with an Identity
9: w ← Train(w, Dtrain) � Finetune

10: current_acc ← Evaluate(w, Dval)
11: end while
12: return w
13: end function

3.3 EASIER

Depicted in Algorithm 1, we present here our method to remove the lowest-
entropy layers. Indeed, the lowest-entropy layer is the one likely to make the
least use of the different regions, or states, of the rectifier. Therefore, the need
for a rectifier is reduced: the rectifier can be linearized entirely. In this regard,
we first train the neural network, represented by its weights at initialization
winit, on the training set Dtrain (line 2) and evaluate it on the validation set
Dval (line 3). As defined in (7), we then calculate the entropy Ĥ on the training
set Dtrain for all the L rectifier-activated layers, (therefore, the output layer is
excluded) (line 6). We then find the lowest-entropy layer (line 7) and replace
its activation with a linear one, i.e., the Identity function (line 8). Evidently,
after this step, this layer is not considered anymore. To recover the potential
performance loss, the model is then finetuned using the same policy (line 9) and
re-evaluated on the validation set Dval (line 10). The final model is obtained
once the performance on the validation set drops below the threshold δ.
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4 Experiments

In this section, we empirically evaluate the effectiveness of our proposed app-
roach, across multiple architectures and datasets for traditional image classifica-
tion setups. We compare our results with EGP [29], an entropy-guided unstruc-
tured pruning technique, as well as the Layer Folding method [13].

Table 1. Test performance (top-1) and the number of removed layers (Rem.) for all
the considered setups. Dense refers to the original trained model without layer deletion.
The best results between LF, EGP, and EASIER are in bold.

Dataset Approach ResNet-18 Swin-T MobileNetv2 VGG-16
top-1 Rem. top-1 Rem. top-1 Rem. top-1 Rem.

CIFAR-10 Dense 92,47 0/17 91,66 0/12 93,65 0/35 93,50 0/15
LF 90,65 1/17 85,73 2/12 89,24 9/35 86,46 3/15
EGP 92,00 3/17 86,04 6/12 92,22 6/35 10,00 1/15
EASIER 92,10 8/17 91,41 7/12 93,16 12/35 93,61 8/15

Tiny ImageNet 200 Dense 41,26 0/17 75,78 0/12 46,54 0/35 63,94 0/15
LF 37,86 4/17 50,54 1/12 25,88 12/35 31,44 6/15
EGP 39,82 4/17 67,38 3/12 47,52 6/35 — —
EASIER 40,42 4/17 68,46 3/12 48,80 28/35 57,60 7/15

PACS Dense 79,70 0/17 97,30 0/12 95,50 0/35 95,40 0/15
LF 82,90 3/17 87,70 2/12 79,70 1/35 93,60 3/15
EGP 81,60 3/17 93,50 4/12 17,70 3/35 — —
EASIER 84,30 13/17 94,30 4/12 94,20 8/35 95,50 4/15

VLCS Dense 68,13 0/17 83,04 0/12 81,36 0/35 82,76 0/15
LF 66,91 5/17 70,92 1/12 68,87 2/35 80,24 6/15
EGP 70,18 4/17 78,47 6/12 45,85 2/35 — —
EASIER 70,27 14/17 79,12 6/12 78,56 4/35 78,84 6/15

Flowers-102 Dense 88,88 0/17 92,70 0/12 88,50 0/35 86,47 0/15
LF 77,57 5/17 63,07 4/12 2,86 5/35 87,90 3/15
EGP 82,06 3/17 87,40 3/12 0,34 2/35 — —
EASIER 83,43 6/17 88,89 5/12 88,37 10/35 88,32 3/15

DTD Dense 60,53 0/17 67,50 0/12 64,41 0/35 64,20 0/15
LF 59,99 2/17 37,98 4/12 4,89 5/35 63,56 3/15
EGP 59,10 2/17 60,21 5/12 2,13 2/35 — —
EASIER 62,02 3/17 62,23 5/12 63,83 6/35 63,62 4/15

Aircraft Dense 73,36 0/17 76,39 0/12 73,36 0/35 75,85 0/15
LF 67,60 2/17 44,76 4/12 4,98 4/35 70,48 6/15
EGP 69,04 2/17 73,27 5/12 0,99 2/35 — —
EASIER 70,33 2/17 74,44 7/12 72,55 4/35 69,70 6/15
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4.1 Experimental Setup

We cover a variety of setups by evaluating our method on four popular mod-
els: ResNet-18, MobileNet-V2, Swin-T and VGG-16, trained on seven datasets:
CIFAR-10 [25], Tiny-ImageNet [27], PACS and VLCS from DomainBed [16], as
well as Flowers-102 [35], DTD [10], and Aircraft [33]. All the hyperparameters,
augmentation strategies, and learning policies are provided in Appendix, mainly
following [29] and [36]. For ResNet-18, MobileNetv2, and VGG-16 all the ReLU-
activated layers are taken into account. For Swin-T, all the GELU-activated
layers are considered. Moreover, the threshold δ is established for each dataset
and architecture pair to enable a fair comparison with the existing LF and EGP
approaches in terms of top-1 performance with a comparable number of removed
layers.3

Fig. 3. (a) EASIER applied on ResNet-18, VGG-16, Swin-T and MobileNetv2 net-
works on CIFAR-10. For each model, we gradually remove non-linear layers. (b) EAS-
IER applied on ResNet-18 on CIFAR-10 with different rectifiers: ReLU, LeakyReLU,
PReLU, GELU, and SiLU. Our method is not bound to a specific one and is effective
with the most popular.

4.2 Results

A First Overview. We first test our method on a widely known dataset: CIFAR-
10. Figure 3a shows the test performance (Top-1) versus the number of removed
layers for all the considered models on CIFAR-10, achieved with our method
EASIER. Interestingly, all the models exhibit a similar depth-accuracy trend,
regardless of their initial depth. Indeed, they first all preserve their original
performance, until it drops significantly once ten or so layers have been removed.

Table 1 shows the test performance (top-1) as well as the number of removed
layers (Rem.) for all the considered setups. For each combination of dataset and
architecture, the performances obtained for each iteration are shown in the tables
in the Appendix.
3 The code and the Appendix are available at https://github.com/VGCQ/EASIER.

https://github.com/VGCQ/EASIER
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Concurrent Method Failure in Some Setups. First, we highlight that the results
for EGP on the VGG-16 architecture are not reported apart from CIFAR-10.
Indeed, the EGP technique suffers from the layer collapse phenomenon [42]: by
forcing a layer to have a zero-entropy, it could force it to be always in the OFF
region of its activation, hence preventing the signal from passing through this
layer, and therefore leading to a complete failure of the algorithm. This is what
is happening on CIFAR-10, where a whole layer is pruned. Since EGP is not
working with the VGG architecture on this dataset, we choose not to run the
experiments for VGG on other datasets to save computations. Nonetheless, this is
not the case with other architectures like ResNet-18, Swin-T, and MobileNetv2,
which all have skip connections, leaving another alternative for the signal to
pass from the input to the output, in the case the full layer is pruned. However,
we also report a problem with transfer learning tasks (Flowers-102, DTD, and
Aircraft) for the MobileNetv2 architecture. Indeed, from the first iteration, the
EGP’s pruning mechanism focuses on the last single layer before the classifier
head, leading to its complete removal and hence observing the same layer collapse
phenomenon given the absence of a skip/residual connection at this point.

Moreover, even if the results are reported in the table, we underline the
failure of Layer Folding for MobileNetv2 in transfer learning setups (Flowers-102,
DTD, and Aircraft). The employed auxiliary loss that encourages activations to
become linear appears to have a strong effect on the final loss function. The
hyperparameter balancing this regularization plays a critical role: a high value
prioritizes depth reduction at a cost of performance degradation whereas a small
value leads to high performance but with no layers removed. For the mentioned
transfer learning task, a trade-off allowing a comparison with EASIER has not
been found. This is illustrated by the results obtained on Flowers-102: even with
half as many layers removed, LF achieves mediocre performance.

Comparison with Existing Approaches. On most of the considered setups, we
can observe the superiority of our method. Indeed, EASIER consistently pro-
duces models with better performance for the same number of layers removed,
as observed on all the models trained on Tiny-ImageNet-200. For example, while
all the methods are able to remove four layers for ResNet-18 on Tiny-ImageNet-
200, EASIER achieves respectively 0,6% and 2,56% higher performance than
EGP and LF. Moreover, on some setups, EASIER even achieves better perfor-
mance than the other competitors with more layers removed. This is the case, for
example, for all the models trained on CIFAR-10. For instance, for MobileNetv2
on CIFAR-10, EASIER can remove six more layers with 0,94% top-1 gain com-
pared to EGP, which obtains the second-best performance in this setup.

Nevertheless, we highlight the superiority of Layer Folding in two setups:
VGG-16 trained on VLCS and Aircraft, in which the models produced by LF
achieve better performance for the same number of layers removed, with perfor-
mance improvements of 1,4% and 0,78% respectively, compared to EASIER.

Comparison with the Original Model. Although on most setups (such as CIFAR-
10) it succeeds in compressing models while maintaining performance similar to
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the original model, EASIER (but also competing methods) is not capable of com-
pressing models without degrading performance. This is the case, for example,
with Swin-T on Tiny-ImageNet-200, which displays a 7% loss compared to the
original model. The question of a trade-off between performance and compress-
ibility may therefore arise depending on the model’s intended use. Nevertheless,
apart from VGG-16 on VLCS and Aircraft, our method produces compressed
models with the closest performance to the original model compared with exist-
ing methods.

4.3 Ablation Study

In this section, we first perform a study over the used rectifier, showing that
our method is not bound to a specific one and is effective with any. Figure 3b
shows the test performance of ResNet-18 on CIFAR-10, for different rectifiers
versus the number of linearized layers. Our method removes at least 8 layers
with a performance improvement for GELU, LeakyReLU, and PReLU and with
a marginal performance loss for ReLU and SiLU. We hypothesize that it is
due to the presence of more signal in backpropagation for GELU, LeakyReLU,
and PReLU. Moreover, to find out whether it was necessary (to maintain good
performance) to train the network starting from its previous iteration weights
(before a layer linearization), a randomly initialized ResNet-18 with the 8 layers
selected by EASIER linearized, was re-trained on CIFAR-10 using the same
learning policy. The model achieves a top-1 score of 91,56%, down 0,54% on the
performance achieved with EASIER. Despite being costly at training time, we
concluded that to maximize the performance of the compressed model, it was
important to keep training the model from its previous iteration weights.

Table 2. ResNet-18 on CIFAR-10.

Method Top-1 Rem.

Dense 92,60 0/17
EASIER 2× 92,26 8/17
EASIER 4× 92,45 8/17
EASIER 8× 91,82 8/17

Furthermore, to clear the way for the design of a one-shot approach, we con-
duct some experiments directly removing several layers at a time, for example
by iteratively linearizing the 2, 4, or 8 layers with the lowest entropy. These
approaches are denoted respectively EASIER 2×, EASIER 4×, and EASIER
8×. The results for a ResNet-18 trained on CIFAR-10 are presented in Table 2.
For fairness, we report the test performance (Top-1) for an equivalent number
of layers removed (Rem.). Hence, for EASIER 2× (respectively 4× and 8×),
four (respectively two and one) iterations were necessary to obtain these results.
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Despite removing the same number of layers, we observe that EASIER 2× and
EASIER 4× yield similar results with a slight drop in performance compared
to the original model, while EASIER 8× leads to worse performance. With a
performance loss of less than one percent compared to the original model, EAS-
IER 8× raises hope for the design of a one-shot approach, which would be more
efficient at training time.

Finally, Table 3 showcases the potential savings in terms of inference time
and FLOPs for ResNet-18 on CIFAR-10 on six different devices, including CPUs
and GPUs spanning from traditional GPU to embedded devices. In general, the
fewer layers the network has, the shorter the inference time and the smaller the
number of FLOPs. However, we also observe that blindly removing layers is not
sufficient to reduce computation. Indeed, a layer removal can result in an increase
in MFLOPs, as observed here at the fifth iteration, which is mainly due to the
fusion of two convolutional layers, that can result in a layer having a greater
size. For instance, to keep the same input/output ratio, two convolutional layers
having a kernel size of 3 will fuse in a convolutional layer having a kernel size
of 5. Moreover, looking at inference times, every device shows a different trend.
While larger devices, like RTX A4500, show a monotonically decreasing inference
time, for smaller devices, like P2000 or Jetson Orin, this is not always the case.
We also note the same problem on CPUs, like Raspberry Pi 4, where caching is
the major problem when dealing with larger kernels.

4.4 Limitations and Future Work

Despite being a successful approach to alleviating deep neural networks’ depth,
EASIER also presents some limits, which we discuss below.

Training Efficiency. The iterative nature of our method inevitably leads to a
longer training time and more intensive computations to achieve the compressed
models, compared for instance, to the Layer Folding approach. However, the
increased computational cost of training can be offset by the benefits of using
these models for inference. Indeed, since a neural network is going to be used
multiple times for inference, it is also important to lessen its computational
burden related to this use. As opposed to unstructured pruning which offers
very few, if any, practical benefits when it comes to deploying the model in
a resource-constrained system, our method reduces the critical path forward
propagation undergoes, making it useful for processing on parallel systems like
GPUs or TPUs, as the computational demands at inference time are reduced.

Nonetheless, even though the method has been thought out iteratively, there
is hope for the design of a one-shot approach, which would be more efficient
at training time, as shown by the results discussed in the previous ablation
study. Another way to address this problem can be to include the entropy in the
minimized objective function. However, this approach is not immediately feasible
as it is a non-differentiable metric. Therefore, the exploration of differentiable
proxies for the layer’s entropy is left as future work.
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Table 3. Inference time [ms] and MFLOPs of ResNet-18 on CIFAR-10.

Rem. MFLOPs Inference on CPU [ms] Inference on GPU [ms]
Xeon E5-2640 Raspi 4 Jetson Orin P2000 RTX 2080 A4500

0/17 725,47 13,50 135 8,52 4,45 4,43 3,32
1/17 258,24 9,33 111 8,31 4,53 4,43 3,27
2/17 243,46 9,69 106 7,83 4,28 4,21 3,10
3/17 231,79 9,43 139 7,38 4,02 3,93 2,96
4/17 197,85 10,10 117 6,91 3,79 3,68 2,78
5/17 159,05 11,30 144 6,44 3,60 3,46 2,60
6/17 159,99 8,39 225 6,13 4,11 3,18 1,79
7/17 152,36 9,18 144 6,06 4,16 3,10 1,71
8/17 149,84 9,14 149 6,14 3,67 3,21 1,55

Performance Degradation. It is difficult to compress existing parameter-efficient
architectures that are not overfitting, and EASIER cannot decrease the depth
of an already underfitting architecture without compromising performance, like
for example Swin-T on Tiny-ImageNet-200.

Nevertheless, EASIER was able to demonstrate its superiority over existing
methods on all the setups considered. Indeed, for the same number of removed
layers, EASIER achieves the best performance or can compress more than exist-
ing approaches while maintaining performance. We therefore believe that EAS-
IER is a serious candidate to be considered to achieve this kind of goal.

5 Conclusion

In this work, we have presented EASIER, an entropy-based method for layer
withdrawal in rectifier-activated deep neural networks. An entropy-based impor-
tance metric has been designed to select layers to remove from the network,
aiming at depth reduction while preserving high performance in the considered
tasks. The capability and effectiveness of reducing the number of layers in a
model of EASIER have been demonstrated by experiments conducted on four
popular architectures across seven datasets for image classification. Concerned
by the ever-growing AI environmental impact, we hope this work can inspire
future optimizations and new ways of thinking about network design.
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Abstract. Recent advancements in Graph Neural Networks (GNNs)
have spurred an upsurge of research dedicated to enhancing the explain-
ability of GNNs, particularly in critical domains such as medicine. A
promising approach is the self-explaining method, which outputs expla-
nations along with predictions. However, existing self-explaining models
require a large amount of training data, rendering them unavailable in
few-shot scenarios. To address this challenge, in this paper, we propose
a Meta-learned Self-Explaining GNN (MSE-GNN), a novel framework
that generates explanations to support predictions in few-shot settings.
MSE-GNN adopts a two-stage self-explaining structure, consisting of
an explainer and a predictor. Specifically, the explainer first imitates
the attention mechanism of humans to select the explanation subgraph,
whereby attention is naturally paid to regions containing important
characteristics. Subsequently, the predictor mimics the decision-making
process, which makes predictions based on the generated explanation.
Moreover, with a novel meta-training process and a designed mechanism
that exploits task information, MSE-GNN can achieve remarkable per-
formance on new few-shot tasks. Extensive experimental results on four
datasets demonstrate that MSE-GNN can achieve superior performance
on prediction tasks while generating high-quality explanations compared
with existing methods. The code is publicly available at https://github.
com/jypeng28/MSE-GNN.

Keywords: Explainability · Graph Neural Network · Meta Learning

1 Introduction

Due to the widespread presence of graph data in diverse domains [48,49], Graph
Neural Networks (GNNs) [6,14,36] are attracting increasing attention from the
research community. Leveraging the message passing paradigm, GNNs have
exhibited remarkable efficacy across multiple scenes, including molecule prop-
erty prediction [35], social network analysis [2,45], and recommender system
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[4]. Despite these successes, a significant drawback of GNN models is their lack
of explainability, making it unavailable for humans to understand the basis of
predictions. This limitation undermines the complete trust in GNN predictions,
consequently restricting their application in high-stake scenarios including med-
ical [50] and finance [24] fields. Furthermore, the European Union has explic-
itly emphasized the necessity of explainability for trustworthy AI in [28] and
any studies focusing on explainability have been conducted on interpretability
in other fields [41,43]. Therefore, there is an immediate and pressing need for
research into the explainability of GNNs.

Explainer

Prediction

Explanation

Input

Predictor

Fig. 1. Paradigm of “explainer-predictor ” two-stage self-explaining models. The first
part is composed of a explainer which selects an explanation subgraph for each input
graph. The second part is a predictor which makes predictions based on the explanation
subgraph. Given an input example from Synthetic dataset [39], explainer select
as explanation, then predictor predicts ŷ = house based on .

The field of GNN explainability has witnessed substantial scholarly attention
[16,17,21,30]. Generally, research on the explainability of GNN can be divided
into two main categories: post-hoc explanations and self-explaining methods
[40]. Among them, the post-hoc explanation strives to elucidate the predictions
made by a trained GNN model. Typically, this is achieved by leveraging another
explanatory model to select a subset of input as the explanation for GNN predic-
tion. Despite their utility, these post-hoc explainers often fall short of revealing
the actual reasoning process of the model [25] and require optimization for each
input graph, which is time-consuming. Therefore, in this paper, we focus on
self-explaining methods.

The self-explaining method refers to intrinsically explainable GNN models
that offer predictions and explanations concurrently, with the prediction being
rooted in the explanation. One prevalent type of self-explaining model typically
adopts a “explainer-predictor ” two-stage paradigm, as illustrated in Fig. 1. This
paradigm contains two stages, one is called the explainer, which generates an
explanation for each input graph, and the other is the predictor making predic-
tions based on the generated explanation [17,37].

Although the self-explaining methods in GNN are promising, they still suffer
from heavily relying on extensive training data, which restricts their applicability
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in situations with limited data sizes. For instance, during new drug discovery
processes, clinical trials are conducted to assess various drug attributes such as
toxicity and side effects. Due to safety concerns, the number of participants in
these trials is restricted, resulting in limited experimental data. In such few-shot
scenarios, existing self-explaining models fail to achieve satisfactory performance,
while existing few-shot learning methods are lack of explainability. Hence, there
is a pressing need to design a self-explaining GNN for few-shot scenarios.

Drawing on the fundamental human intelligence traits of rapid learning
and self-explainability [7,23,29], we develop Meta-learned Self-Explaining GNN
(MSE-GNN) for few-shot scenarios:

I. During classification tasks, humans initially concentrate on regions that con-
tain crucial features, and subsequently perform classification based on these
features, adhering to a two-stage paradigm [23].

II. When learning new concepts, humans tend to seek representative instances
or prototypes and compare new instances with these prototypes to categorize
them [29].

III. Humans can learn meta-knowledge from a multitude of tasks, which enables
them to achieve impressive performance on new tasks with limited data,
which is called “learn to learn” [7].

By incorporating these attributes into our MSE-GNN, we aim to solve the
explainability of GNNs in few-shot scenarios, and then enhance the performance
of both explanation and prediction tasks.

Specifically, the MSE-GNN model follows the two-stage paradigm as depicted
in Fig. 1, which naturally mimics the human’s two-stage recognition process as
mentioned in I. Among them, the explainer, which is composed of a GNN encoder
and a MLP, predicts the probability of each node being selected as an explana-
tion. Then, node representations encoded by another GNN encoder are separated
into explanation and non-explanation based on the prediction of the explainer.
Subsequently, the predictor mimics the decision-making process, which makes
predictions based on the explanation with a MLP.

Furthermore, the MSE-GNN model incorporates a novel mechanism that
exploits task information to help with selecting explanations and making predic-
tions. Prototype, as stated in II, has been proven to be effective to generate rep-
resentative representations for each category [31,46]. Therefore, in MSE-GNN,
the concept of prototype is utilized in generating task information. The training
framework of optimization-based meta-learning imitates the paradigm of “ learn-
ing to learn” in III, where models can acquire meta-knowledge by learning from
a vast array of tasks. One of the most popular and effective methods is MAML
[7] (Model-Agnostic Meta-Learning). Therefore, we design a new meta-training
framework based on MAML to train MSE-GNN.

We conduct extensive experiments on one synthetic dataset [39] and three real
datasets of graph classification tasks [11,15], which show excellent performance
on both prediction and explanation generated.
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2 Problem Definition

In this section, we will elaborate on the problem definition of our research.
Following [20], we form the few-shot graph classification problem as N-way K-
shot graph classification. Given the dataset G = {(G1, y1), (G2, y2), ..., (Gn, yn)},
where Gi denotes a graph with a node set Vi and a edge set Ei. ni denotes
the number of nodes in the graph. The structure feature is represented by an
adjacency matrix Ai ∈ R

ni×ni . The node attribute matrix is represented as
Xi ∈ R

ni×d, where d is the dimension of the node attribute.
Then, the dataset is splitted into {Gtrain, ytrain} and {Gtest, ytest} as training

set and test set respectively according to label y. Where ytrain
⋂

ytest = ∅. When
training, a task T is sampled each time and each task contains support set
Dtrain

sup = (Gtrain
i , ytrain

i )si=1 and query set Dtrain
que = (Gtrain

i , ytrain
i )qi=1, where s

and q stands for the size of support set and query set respectively. It is noteworthy
that the same class space is shared in the same task.

In each task, our goal is to optimize our model on the support set Dsup and
make predictions on the query set Dque. If a support set contains N classes and
K data for each class, then we name the problem as N-way K-shot. When test-
ing, we firstly finetune the learned model on support set Dtest

sup = (Gtest
i , ytest

i )si=1

and then report the classification performance of finetuned model on Dtest
que =

(Gtest
i , ytest

i )qi=1. Our goal of the few-shot graph classification problem is to
develop a model that can obtain meta-knowledge across {Gtrain, ytrain} and
predicts labels for graphs in the query set in test stage Dtest

que .
In the explanation generation task, for each graph Gi, a node mask vector

mi ∈ [0, 1]ni×1 is the explanation subgraph selected, a higher value means that
the corresponding node is more important for making prediction and vice versa.
Although selecting edges for explanation is a viable approach, in this paper we
focus on node selection due to its computational complexity.

3 The Proposed MSE-GNN

3.1 Architecture of MSE-GNN

In Fig. 2, we show the overall architecture of the MSE-GNN, which contains three
components: an explainer g that outputs the explanation selected, a predictor p
making the final prediction, and a graph encoder f .

Before we present the details of MSE-GNN, we first clarify several concepts.
Specifically, existing works often combine self-explaining methods with the con-
cept of rationale [17,37]. The rationale in graph data refers to the subsets of
nodes or subsets of edges, which form subgraphs that determine the prediction.
Hence, we posit that explanation and rationale are equivalent, as they share the
same concept.

In MSE-GNN, the input graph is encoded by f and each node v is encoded
into a node embedding h(v) ∈ R

d, where d stands for the dimension of hid-
den size. The encoder can be any kind of GNN, e.g. GCN [14], GIN [38], and
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GraphSAGE [10]. The selector outputs a mask vector m for each graph as an
explanation, which divides the graph into rationale (explanation) Gr and non-
rationale Gn. Then the predictor makes predictions based on the graph embed-
ding rationale subgraph. Meanwhile, augmented graphs that combine rationale
and non-rationale from different graphs are fed into the predictor to ensure the
robustness of the predictor. We categorize the parameters into fast parameters
and slow parameters according to the timing of updating, which will be described
in detail in Sect. 3.3.

Task Information. MSE-GNN generates task information for the explainer
and the predictor to facilitate explanation generation and prediction within each
task, which is composed of prototypes representing each class.

In each task, a support set is provided, which contains data from multiple
classes. We aim to extract prototypes from these data that capture the charac-
teristics of each class in the task, in order to help with task-specific selection of
explanations and the classification task. Encoded by encoder f , each graph is
represented by a matrix containing embedding of each node:

Hi = [..., h(v), ...]Tv∈Vi
= f(Gi) ∈ R

|Vi|×d. (1)

To obtain representation for each graph hi, the readout function, e.g. mean
pooling is employed, to aggregate node embeddings. By leveraging the concept
of prototype learning, we further fuse the graph representations of each class
with another readout function. Thus, we can obtain a prototype embedding for
each class:

TIc = freadout([..., freadout(Hi), ...]yi=c) ∈ R
d. (2)

For an N-way K-shot classification problem, the task information is formed by
concatenating prototypes of N classes. It is worth noting that, task information
for each input graph of both Dsup and Dque is composed solely of graphs in Dsup

to prevent label leakage.

Explainer. The explainer is responsible for choosing the explanation subgraph
corresponding to each input graph. Specifically, given an input graph Gi, the
explainer firstly uses another GNN encoder to map each node to another node
embedding h′

(v) for each node in Vi for selection. Then, a MLP is utilized to
transform the node embeddings into a soft mask vector mi ∈ [0, 1]ni×1, with
task information TIc and node embedding h′

(v) concatenated as input:

mi = σ(MLP ([..., [h′
(v), T I], ...]Tv∈Vi

)), (3)

where σ denotes the sigmoid function. Hence, we can decompose the input graph
Gi into a rationale subgraph and non-rationale subgraph according to mi respec-
tively:

Gr
i = {Ai,Xi � mi} Gn

i = {Ai,Xi � mi}, (4)
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Fig. 2. Overall architecture of MSE-GNN. The model employs a “explainer-predictor ”
2-stage self-explaining structure. The explainer selects explanation subgraphs for each
input graph. The predictor mimics the decision-making process, which makes predic-
tions solely based on the generated explanation.

where mi = 1− mi. Meanwhile, given the node embedding h(v) from encoder f ,
we can obtain the graph embedding for Gr

i and Gn
i :

hr
i = freadout(Hi � mi) hn

i = freadout(Hi � mi). (5)

Predictor and Graph Augmentation. The predictor takes the graph embed-
ding h as input and makes the final prediction ŷ = p(h) with a MLP. Moreover,
we enhance the robustness of the predictor through graph augmentation. Specifi-
cally, within the input graph, the rationale component represents the crucial part
that determines the category, while the non-rationale component represents the
noisy part. By combining the rationale and non-rationale from different graphs
in the same task, additional data with noise are generated. Then we assign the
label based on rationale. This approach allows us to increase the amount of noisy
data, thereby improving the robustness of the predictor. We do the combination
operation by adding subgraph embeddings:

h(i,j) = hr
i + hn

j y(i,j) = yi, (6)

where hr
i denotes rationale from Gi and hn

j means the non-rationale from Gj .
Therefore, in addition to task information TI, the predictor p receives the

embeddings of both the rationale subgraphs hr
i and the artificially augmented

graphs h(i,j) for optimization, and the output are denoted as ŷi and ˆy(i,j) respec-
tively.

3.2 Optimization Objective

The optimization objective of MSE-GNN is to achieve both high accuracy in
predictions and generate precise explanations, which reveal the underlying rea-
sons behind the predictions. Therefore, we design several types of loss functions
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and constraints. For the sake of simplicity, we consider a binary classification
task without loss of generality.

Algorithm 1 . Meta-training of MSE-GNN.
Input:Distribution over meta-training tasks: p(T ); Local learning rate: η1;
Global learning rate: η2; Local update times: T .
Output:Meta-trained parameters for encoder and explanation selector:θf , θg,
and initialization of parameters for predictor θp

1: Initialize θ = {θf , θg, θp} randomly;
2: while not converged do
3: Sample task T with support graphs Dtrain

sup and query graphs Dtrain
que .

4: Set fast adaptation parameters: θ′
p = θp

5: for t = 0 → T do
6: Evaluate ∇θp

Lsup(θf , θg, θ
′
p) by calculating loss via Eq. 10

7: Update θ′
p : θ′

p ← θ′
p − η1 · ∇θ′

p
Lsup(θf , θg, θ

′
p)

8: end for
9: Evaluate ∇θLque(θf , θg, θ

′
p) by calculating loss via Eq. 10

10: Update θ : θ ← θ − η2 · ∇θLque(θf , θg, θ
′
p)

11: end while

With the prediction of each rationale graph embedding p(hi) and correspond-
ing ground-truth label yi, the loss function is defined as:

Lr
i = yilog(ŷi) + (1 − yi)log(1 − ŷi). (7)

For the artificially augmented graph, our aim is to minimize the prediction
values for instances of the same category while maximizing the prediction values
for instances of different categories. To achieve this, we employ a contrastive loss
function. For example, for a 2-way K-shot classification task, we can obtain 4K2

augmented graphs, where each rationale graph is combined with other 2K − 1
non-rationales, then the loss is computed as:

La
i = − 1

2k − 1

j=2K∑

j=1

1i�=j · 1yi=yj log
exp(ŷi · ŷj)/τ

∑k=K
k=1 1i�=k exp(ŷi · ŷj)/τ

, (8)

where τ is a scalar temperature hyperparameter.
Besides, to address the deviation in the size of rationales, we introduce a

penalty based on the number of rationale nodes, the following regularization
term is utilized:

Lreg = |1
�
N · mi

ni
− γ|, (9)

where γ is manually set to control the rationale size. Finally, the total loss
function can be formulated as:

L = αr · Lr + αa · La + αreg · Lreg, (10)

where αr, αa, and αreg are hypermeters controlling the weight of each loss.
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Table 1. Statistics of four datasets.

SyntheticMNIST-spMolsiderMoltox21
# Graphs 10,000 70,000 1,427 7,831
Avg # nodes 74.5 75.0 33.6 18.6
Avg # edges 237.8 777.0 70.7 38.6
# Train tasks/classes 5 5 19 7
# Validate tasks/classes 2 2 3 2
# Test tasks/classes 3 3 5 3

3.3 Meta Training

Inspired by the concept of “learn to learn” [7], we propose a new meta-training
framework based on MAML to obtain meta knowledge from various tasks. We
denote θf , θg, and θp as the parameters of encoder, explanation selector, and
the predictor. Specifically, MSE-GNN is trained from two procedures. One is
global update, which aims to learn the parameters of encoder θf , explanation
generator θg, and initialization of the predictor θp from different tasks, the other
is called local update, which performs fast adaption on new tasks and locally
update only parameters of the predictor θ′

p within each task. According to the
timing of updating, we categorize the parameters into fast parameters (θp) and
slow parameters (θf and θg), as shown in Fig. 2.

The meta-training process is demonstrated in Algorithm 1. Firstly, we sample
a task composed of support Dtrain

sup and query data Dtrain
que for each episode.

Then adaption is operated by updating θp for T times on Dtrain
sup , where T is a

hyperparameter controlling the number of local updates, which is shown in lines
5–8. With updated θ′

p, we utilize the loss on Dtrain
que to update θf , θg and θp.

It is important to highlight that, the explainer is trained from a variety of
tasks and frozen when optimizing each task, which ensures the stability of the
explanation selected across different tasks and prevents over-fitting. Therefore,
θf and θg are only updated in the global update and fixed in the local update.
While the predictor needs to learn the relationship between features and cate-
gories in different tasks based on the generated explanations. As a result, the
θp is optimized in the local update to learn the association between features
and categories. Hyperparameters of loss computation in line 6 and line 9 can be
differently set according to the goal of local and global optimization.

4 Experiments

4.1 Datasets and Experimental Setup

Dataset. We conduct extensive experiments on four datasets to validate the
performance of MSE-GNN: (i) Synthetic: Due to the lack of graph datasets
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with explanation ground-truth, following [39], we create a synthetic dataset for
classification, which contains 10 classes and 500 samples for each class. Each
graph is composed of two parts: the rationale part and the non-rationale part.
The label of each graph is determined by the rationale part. Therefore, the
ground-truth of the explanation subgraph is the rationale part of each graph.
(ii) MNIST-sp [15]: MNIST-sp takes the MNIST images and transforms them
into 70,000 superpixel graphs. Each graph consists of 75 nodes and is assigned
one of 10 class labels. The subgraphs that represent the digits can be interpreted
as ground truth explanations. (iii) OGBG-Molsider and OGBG-Moltox21
[11]: These two datasets are molecule datasets from the graph property prediction
task on Open Graph Benchmark (OGBG), they contain 27 and 12 binary labels
for each graph, which transformed into 27 and 12 binary classification tasks
respectively. The dataset statistics are available in Table 1.

Table 2. 2-way 5-shot Classification Performance with a standard deviation of baseline
methods and MSE-GNN.

Accuracy AUC-ROC
Synthetic MNIST-sp OGBG-molsider OGBG-moltox21
GIN GraphSAGE GIN GraphSAGE GIN GraphSAGE GIN GraphSAGE

ProtoNet 0.8284±0.058 0.8327±0.027 0.5736±0.008 0.6575±0.034 0.5540±0.006 0.5468±0.006 0.6614±0.009 0.6495±0.008

MAML 0.8259±0.007 0.6409±0.327 0.6283±0.012 0.6722±0.009 0.6219±0.005 0.6538±0.016 0.7217±0.030 0.6965±0.014

ASMAML 0.8911±0.010 0.7849±0.014 0.6526±0.004 0.6699±0.023 0.6288±0.007 0.6818±0.008 0.7432±0.030 0.7181±0.017

GREA_Raw 0.6970±0.005 0.6970±0.020 0.6405±0.009 0.6667±0.009 0.5210±0.009 0.5180±0.007 0.5654±0.015 0.5479±0.006

CAL_Raw 0.7248±0.006 0.7488±0.007 0.6498±0.006 0.6670±0.010 0.5978±0.044 0.6230±0.008 0.6161±0.064 0.6814±0.014

GREA_Meta 0.8728±0.013 0.9180±0.002 0.6537±0.009 0.7430±0.008 0.6542±0.005 0.6303±0.008 0.7650±0.004 0.7582±0.007

CAL_Meta 0.8451±0.021 0.9096±0.003 0.6888±0.007 0.7445±0.019 0.6580±0.012 0.6553±0.018 0.7442±0.012 0.7652±0.005

MSE-GNN 0.9103±0.004 0.9200±0.004 0.6515±0.008 0.7309±0.009 0.6673±0.007 0.6587±0.002 0.7735±0.006 0.7728±0.011

Experimental Setup. To investigate whether generating explanations can help
with the classification task, we chose three few-shot learning methods: ProtoNet
[29], MAML [7], ASMAML [20]. To compare with existing self-explaining meth-
ods, we selected two state-of-the-art self-explaining models: GREA [17] and CAL
[30] as baselines to compare the performance of classification and quality of gen-
erated explanations. Moreover, for fairness, we adapt meta-training to GREA
[17] and CAL [30], enabling them to adapt to few-shot scenarios, which are
denoted as GREA_Meta and CAL_Meta respectively.

We use GIN and GraphSAGE as GNN backbones for all methods. The per-
formance of all models is evaluated on Dtest

que . For the Synthetic and MNIST-sp
with explanation ground-truth, we use Accuracy to evaluate the classification
performance and AUC-ROC to evaluate the quality of the explanation selected.
For the two molecule datasets, due to the absence of explanation ground-truth,
we only evaluate the classification performance using Area under the ROC curve
(AUC) following [17]. For meta-training, we utilize Adam optimizer for local and
global updates and set local update times T to 5. Local learning rate η1 is set
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to 0.001 and global learning rate η1 is tuned over {1e-5, 1e-4, 1e-3}. γ in Eq. 9
is tuned over {0.1, 0.2, 0.3, 0.4, 0.5}, number of GNN layers is tuned over {2,3}.
We select hyperparameters based on related works and grid searches. All our
experiments are conducted with one Tesla V100 GPU.

Table 3. For the Synthetic and MNIST-sp with explanation ground-truth, AUC-ROC
is utilized to evaluate the quality of the explanation selected.

Synthetic MNIST-sp
GIN GREA_Raw 0.4934±0.006 0.4789±0.044

CAL_Raw 0.4741±0.0250 0.4395±0.039

GREA_Meta 0.6745±0.0265 0.7855±0.013

CAL_Meta 0.6201±0.0550 0.1707±0.0243

MSE-GNN 0.7000±0.006 0.8222±0.030

GraghsageGREA_Raw 0.4929±0.023 0.5496±0.064

CAL_Raw 0.5080±0.054 0.4906±0.116

GREA_Meta 0.7099±0.014 0.6513±0.040

CAL_Meta 0.6858±0.015 0.6613±0.229

MSE-GNN 0.7189±0.012 0.7077±0.038

Performance on Synthetic Graphs and MNIST-sp. To explore whether
MSE-GNN can achieve high performance on classification and generate high-
quality explanation, we conduct 2-way 5-shot experiments on Synthetic and
MNIST-sp datasets which contain ground-truth explanations for each graph. The
experimental results are summarized in Table 2 and Table 3. We first compare
meta-trained self-explaining baseline models (GREA_Meta, CAL_Meta) with
themselves (GREA_Raw, CAL_Raw). We can observe that significant perfor-
mance boosts are brought by meta-training on both classification and explana-
tion, which indicates that meta-training can leverage the meta-knowledge learned
across training tasks effectively on new tasks.

On Synthetic, MSE-GNN shows superiority to other baseline methods on the
performance of classification and explanation quality. Compared to meta-trained
self-explaining baselines, MSE-GNN performs better on both classification and
explanation as MSE-GNN utilizes task information and effectively leverages the
augmented graph through the introduction of supervised contrastive loss. More-
over, the inherent denoising capability of self-explaining models contributes to
the superior classification performance of MSE-GNN compared to ProtoNet,
MAML, and ASMAML.

Unexpectedly, CAL achieves the best classification performance on MNIST-
sp, especially when using GIN as the backbone, surpassing MSE-GNN by over
5%. Meanwhile, the quality of explanations is significantly lower compared to
GREA and MSE-GNN. By visualization in Fig. 3, which reveals the internal
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reasoning process of models, we can find that CAL generated explanations that
were opposite to our expectations, indicating that CAL infers the digit based
on the shape of the background. It is also easy to understand that the digital in
a picture can be inferred from the background since the number part and the
background part are complementary sets. Therefore, despite the generated expla-
nations being contrary to our expectations, CAL’s performance demonstrated
that utilizing background information for digit prediction is more effective on
MNIST-sp. The reason for CAL generating opposite explanations is that it lacks
constraints on the size of the explanation. As a result, it tends to favor subgraphs
that contain more useful information and overlook the size of the explanation
subgraph. Furtherly comparing the visualization of explanations of MSE-GNN
and GREA, we can find that explanations of MSE-GNN are more compact and
focus more on the digital part, which is in line with the result in Table 3.

Fig. 3. Raw figure of MNIST-sp and visualization of explanations generated by
CAL(a), GREA(b) and MSE-GNN(c). Darker nodes indicate higher importance scores.

(a) Classification Perfor-
mance on Synthetic

(b) Quality of explanation
on Synthetic

(c) Classification Perfor-
mance on OGBG-Molsider

Fig. 4. Classification Performance and quality of explanation selected on Synthetic and
OGBG-Molsider with different γ.
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Performance on OGBG. MSE-GNN achieves comparable classification per-
formance on these two molecule datasets, demonstrating the effectiveness of its
structure. Furthermore, we can observe that the self-explaining models with
meta-training outperform all meta-learning models except on OGBG-molsider
using GraphSAGE. This is because the process of generating explanations can
potentially improve the classification task by eliminating irrelevant noise.

Performance with Different Size of Support Set. Intuitively, for a classi-
fication task, the size of the training set has a significant impact on the model’s
performance. Therefore, in the scenario of few-shot learning, we evaluate the per-
formance of MSE-GNN and other self-explaining models under different support
set sizes. Experimental results are shown in Fig. 5. First, comparing different
methods, we observe that MSE-GNN consistently outperforms other baselines
across different support set sizes, which further validates the performance of
MSE-GNN on both classification and explaining. Next, comparing the perfor-
mance of MSE-GNN across different support set sizes, we observe that as the
support set size increases, both the classification accuracy and the quality of gen-
erated explanations improve. This also demonstrates the importance of training
set size on model performance.

Fig. 5. Classification Performance and quality of explanation selected on Synthetic and
OGBG-Molsider with different size of support sets.

Ablation Study. Table 4 demonstrates the impact of contrastive loss and task
information utilized in MSE-GNN on Synthetic with GIN. When applying Con-
trastive Loss (CL), both the classification accuracy and the quality of generated
explanations of the model are improved. This indicates that introducing con-
trastive loss can enhance the model’s performance and lead to better results in
prediction and explanation tasks. On the other hand, when applying Task Infor-
mation (TI), the model’s performance is also improved across all datasets. This
suggests that incorporating task information into the model can provide addi-
tional context and guidance, thereby enhancing the model’s ability. Moreover,
when both CL and TI are used together, the model excels significantly across
all datasets, indicating that the combination of CL and TI can synergistically
contribute to better performance on both classification and explanation tasks.
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Table 4. Impact of contrastive loss and task information.

CLTISynthetic OGBG-molsider
Classif. Explain. Classif.
0.8728±0.013 0.6745±0.027 0.6542±0.005

� 0.8809±0.037 0.6860±0.028 0.6623±0.011

� 0.8800±0.011 0.6766±0.014 0.6616±0.001

� � 0.9103±0.004 0.7000±0.006 0.6673±0.007

Fig. 6. Classification Performance and quality of explanation selected on Synthetic and
OGBG-Molsider with different T .

Sensitivity Analysis. In MSE-GNN, the parameter γ is crucial in controlling
the size of the selected explanation. To examine the sensitivity of the model
to different values of γ, we conduct a sensitivity analysis on the Synthetic and
OGBG-Molsider datasets with GIN. As illustrated in Fig. 4, the results demon-
strate that MSE-GNN achieves the best classification performance when γ is set
to 0.1 on both datasets, while the explaining performance achieves best when γ
equals 0.05 on Synthetic. We observe that as the value of γ deviates from these
two optimal points, the classification performance or the quality of generated
explanations decreases. We also notice that the impact of γ is less pronounced
on the OGBG-Molsider dataset, indicating that the model is less sensitive to γ
on OGBG-Molsider.

Furthermore, T , which stands for the number of local update epochs, affects
both the effectiveness and efficiency of the MSE-GNN. We compared the per-
formance of MSE-GNN with different local update epochs on the Synthetic and
OGBG-Molsider datasets. The experimental results shown in Fig. 6 indicate that
when T is set to 5, MSE-GNN achieves the best classification and explaining per-
formance on both Synthetic and OGBG-molsider. A too-small (too-large) T may
result in underfitting (overfitting) of the model for new tasks.
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5 Related Works

Few-Shot Learning and Meta Learning on Graph Classification. Few-
shot learning aims to learn a model with only a few samples. A promising
kind of method is meta learning. Meta learning is also known as “learning to
learn”, which attempts to learn meta-knowledge from a variety of tasks. There
two categories for meta-learning [44]: metric-based models [3,8,22,29,32] and
optimization-based models [7,9,20,34,51]. The former focuses on computing the
distance between query data and class prototypes [29]. The latter aims to learn
an effective initialization of parameters, which enables rapid adaption [7]. [51]
firstly applied meta learning framework to the node classification task. [20] utilize
a step controller for the robustness and generalization of meta-learner. Notwith-
standing the remarkable accuracy improvement achieved by these methods on
few-shot learning tasks, their lack of explainability hinders their applicability in
certain scenarios such as the medical and finance area.

Explainability in Graph Neural Network. With more attention paid to
the applications of GNNs, the explainability of GNNs is more crucial. The
explanation increases the models’ transparency and enhances practitioners’
trust in GNN models by enriching their understanding of why the decision is
made by GNNs. Explainability of GNNs can be categorized into two classes
[40,42]: post-hoc explanations and self-explainable GNNs. Post-hoc explana-
tions attempt to give explanations for trained GNNs with additional explainer
model [1,5,12,13,18,19,33,39]. However, these post-hoc explainers often fail to
unveil the true reasoning process of the model due to the non-convexity and
complexity of the underlying GNN models [25]. Self-explaining GNNs design
specific GNN models which are interpretable intrinsically [1,17,21,30,37,50].
They output the prediction and corresponding explanation simultaneously. DIR
[37] aims to extract causal rationales that remain consistent across various distri-
butions while eliminating unstable spurious patterns. GREA [17] is another self-
explainable model that introduces a new augmentation operation called environ-
ment replacement that automatically creates virtual data examples to improve
rationale identification. Another category of self-explaining models leverages the
concept of prototype learning [1,26,27,47,50]. ProtGNN [50] provides explana-
tions by selecting subgraphs that are the most relevant to graph patterns for
identifying graphs of each class. However, existing self-explainable GNNs over-
look the scarcity of labeled graph data in many applications. Thus, it’s important
to build few-shot learning models with self-explainability.

6 Conclusion

In this paper, we proposed MSE-GNN to address the explainability of GNN in
few-shot scenarios. To be specific, MSE-GNN adopted a “explainer-predictor ”
2-stage self-explaining structure and a meta-training framework based on meta-
learning, which improved performance in few-shot scenarios. MSE-GNN also
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introduced a mechanism to leverage task information to assist explanation gener-
ation and result prediction. Additionally, MSE-GNN employed graph augmenta-
tion to enhance model robustness. Extensive experimental results demonstrated
that MSE-GNN achieves strong performance in classification tasks while select-
ing high-quality explanations in few-shot scenarios.
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Abstract. Estimating causal effects in e-commerce tends to involve
costly treatment assignments which can be impractical in large-scale
settings. Leveraging machine learning to predict such treatment effects
without actual intervention is a standard practice to diminish the risk.
However, existing methods for treatment effect prediction tend to rely on
training sets of substantial size, which are built from real experiments and
are thus inherently risky to create. In this work we propose a graph neu-
ral network to diminish the required training set size, relying on graphs
that are common in e-commerce data. Specifically, we view the problem
as node regression with a restricted number of labeled instances, develop
a two-model neural architecture akin to previous causal effect estimators,
and test varying message-passing layers for encoding. Furthermore, as an
extra step, we combine the model with an acquisition function to guide
the creation of the training set in settings with extremely low experi-
mental budget. The framework is flexible since each step can be used
separately with other models or treatment policies. The experiments on
real large-scale networks indicate a clear advantage of our methodology
over the state of the art, which in many cases performs close to ran-
dom, underlining the need for models that can generalize with limited
supervision to reduce experimental risks.

Keywords: Graph Neural Networks · Causal Inference · Active
Learning

1 Introduction

Statistical tests for causal inference are ubiquitous, from drug discovery [54]
and psychology [62] to social studies and online platforms—being at the core
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of decision-making. A prevalent example is A/B testing [19], the de facto way
to evaluate the potential of a system change before applying it in scenarios
such as e-commerce. Typically, the population is split into two random groups,
and the treatment is assigned to one of them (T = 1). The difference between
their response variable Y (e.g., time spent on the system) quantifies the average
treatment effect (ATE) of the randomized control trial (RCT) [44], i.e., YT−YC =
E[Y |T = 1] − E[Y |T = 0], where T and C refer to the treatment and control
groups, respectively. In this setting, however, we risk causing churn on a massive
scale if the proposed change is not effective [2]. It is thus more wise to test
on a smaller scale and try to extrapolate our findings. In these cases, we can
build a model that predicts the outcome without actually intervening, based on
the samples’ confounders, e.g., for a user, this could be the purchase history
and demographics. The core hypothesis is that given the common assumption
of unconfoundedness [10], samples with similar confounders will exhibit similar
outcomes under the same treatment. Developing a model that can predict the
effect of a treatment on unseen samples is referred to as uplift modeling (UM) [3,
42], mainly stemming from business context applications. The uplift refers to the
prediction of the outcome’s change due to the treatment, i.e., the ATE, for a
set of samples [12]. The problem is akin to individual treatment effect (ITE)
estimation, i.e., predicting the outcome of the same sample with and without
treatment (counterfactual) and computing their difference.

In this work, our attention is directed towards a real-world scenario of a
marketing campaign where promoting is costly/risky/time-consuming—a typical
uplift modeling setting [12,38]. In this context, we aim to rank the whole user
base based on how they will respond to the campaign, i.e., how much more they
will consume if they receive a coupon. The coupon resembles a treatment, and the
difference in consumption is the effect. We assume there is a fixed budget for the
number of users that can participate in the experiment and a predefined random
balanced treatment allocation to diminish the risks and costs. The problem can
then be broken down into two subproblems:

– Which users should participate in the experiment?
– How to use this experiment to predict the outcome of the rest of the dataset?

We approach the first problem with an active learning formulation [49], where
we sequentially choose subsets of the samples to label in order to maximize the
model’s effectiveness until we reach our budget. The latter problem pertains to
the model’s capacity to generalize with limited supervision, which can be cast
as a semi-supervised learning problem where graph neural networks (GNNs) are
rather effective [30]. In general, GNNs are popular in social network applications
and can be combined effectively with decision algorithms [39]. The majority of
online systems can be represented as heterogeneous graphs, e.g., user-product
purchases (e-commerce [60]) or follow relationships (social media [13]). Thus,
we frame the problem as an active semi-supervised learning task on a bipartite
graph and address it in alternating rounds.
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Contributions. Our contributions can be summarized as follows:

1. We develop a novel modular framework, based on two steps, a GNN, and an
active learning method, to address the need for limited supervision in UM,
moving from the standard “70%–80%” train set rule [11,21] down to 5%–20%.

2. We formulate UM for networks and test it in an open, large-scale network
with real experimental annotations. To the best of our knowledge, this is
the first such attempt in the literature. Moreover, we focus on continuous
outcomes, which are relatively understudied compared to binary UM [58] but
equally prevalent in the real world.

3. We conduct experiments with models from the UM and ITE literature, includ-
ing neural, tree-based, and graph-aware methods, and showcase that the pro-
posed methodology surpasses the state-of-the-art substantially.

2 Related Work

One of the most prevalent applications of machine learning (ML) in causality
is estimating the probability of a sample being assigned to a treatment, i.e.,
the propensity scores using the confounders, which can uncover design bias [32].
Models that predict the propensity score and the outcome can be used in tandem
in the double ML framework [6], which is provably doubly robust (DR), in the
sense that it is consistent if either the propensity or the outcome predictive model
is consistent. DR has been utilized for heterogeneous causal effect estimation
[29], which is similar to UM. Simpler models use treatment as an extra input (S-
Learner). Two models that learn the output of treatment and control groups
(T-Learner) are prevalent [41] and are the basis for the successful causal meta-
learners (R/X-Learner) [31]. In addition, meta-learners have been utilized in the
context of cost-effective uplift modeling [56].

Class transformation with regularized Logistic Regression [46] or XGBoost
[52] is also effective for binary outcomes and under balanced treatment assign-
ments, while random forests were some of the first models developed for causal
effect estimation [59]. Causal estimator models that allow for instrumental vari-
ables have been developed based on deep neural networks [23]. UpliftTrees [48]
have custom splitting criteria based on the outcome distribution in the treatment
groups of the tree nodes.

The effect of the network has not been examined in the context of UM, but
it has for ITE. One of the first works that proposed an adjustment to the causal
effect estimation based on the network was Arbour et al. [1]. Veitch et al. [57]
developed a neural method to identify hidden confounders in interconnected
samples. They extend the doubly robustness for non-iid data and build a model
that relies on random-walk-based node representations. The same team proposed
Dragonnet [51], a neural architecture that is split into predicting the outcomes
under each treatment and the propensity score.

Guo et al. [20] developed an ITE model with GNN encoding in the initial
layers and split output layers for each treatment. Furthermore, it minimizes the
distance between the representations’ distribution under different treatments.
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This stems from a seminal work on bounding the generalization error of ITE
models by the sum of the given model’s standard error and the distance between
the treatment and control confounders’ distributions [50]. Similar GNNs have
been developed based on multi-task and adversarial learning [7,26], the geometric
curvature of the network [14], or a network with multiple relations [33]. It should
be noted that predicting the causal estimates under network confounding and
the network interference [9,37] differs conceptually, although the models are
similar. An effort to predict ITE considering both the network confounding and
the interference was made using hypergraph neural networks [36]. We refer the
reader to Appendix A, where we make a distinction between confounding and
interference and justify why we follow the literature [7,14,57] on the assumption
for the latter.

One important difference between UM and ITE is that the latter defines
distinctly the counterfactual prediction and requires the respective ground truth
for evaluation, which renders the use of simulated data imperative [37]. Hence,
the aforementioned works on network-based ITE are evaluated with simulated
experiments on observational data and hardcoded network confounding. Our
work uses, for the first time, an open network with ground-truth experimental
variables. Furthermore, we address a network with heterogeneous nodes, a setting
prevalent in e-commerce. HINITE [33], which uses one type of node but multiple
relations, is in a similar heterogeneous direction but not comparable.

3 Proposed Methodology

We consider the e-commerce scenario where data is commonly structured
through bipartite, undirected graphs e.g. user-product. Given the effectiveness of
GNNs in semi-supervised learning [22], we create a general framework that can
be tested with several GNN layers. The model can be used as is, but we addition-
ally define an active learning method to build the training set iteratively based
on the model’s uncertainty and the samples’ properties. In the following, the
scalars are represented by a lowercase letter, the vectors or sets with an upper
case, and the matrices with an upper case bold letter.

3.1 Uplift Modeling with Graph Neural Networks (UMGNET)

Let u ∈ U and p ∈ P be a user and a product, respectively, having |U | = n
users and |P | = m products in total. Then, let R ∈ R

n×m be the user-product
interaction matrix, where Rup = 1 if there is a recorded interaction between
user u and product p, 0 otherwise. Moreover, let each user u be represented by
a tuple Zu = (Xu, Tu, Yu) where XU ∈ R

n×d are the covariates representing
features of dimensionality d from all n users, while YU ∈ R

n are the continuous
trial outcomes, and TU ∈ {0, 1}n is the treatment assignment.

Based on the Neyman-Rubin framework of potential outcomes [45] and using
the do operator introduced by Pearl [40], we define the average treatment effect
for the population as:



Uplift Modeling Under Limited Supervision 131

2 7

5

4

3

6

8

)

( )

( | = )

( | = )

Fig. 1. Schematic representation of UMGNet. First (a), the bipartite and undirected
user-product graph, along with the node features, are injected into the framework.
Second (b), node features for users and products are projected to the same latent
space through an FC layer and used as input to the GNN model; another FC layer
takes the GNN’s output and input to predict the regression outcome. Third (c), outputs
for T = 1 and T = 0 are considered separately and injected into two different FC layers
to calculate lossy; the general output of the regression FC is used to calculate losst.

ATE = E[YU |do(TU = 1)] − E[YU |do(TU = 0)]. (1)

If we consider the law of total expectation and the unconfoundedness [10], i.e.,
that the confounders X block all possible ways that the outcome depends on
treatment assignment, we can contend that the observed change is an unbiased
causal effect from the treatment. Taking into consideration once again the user-
product interaction matrix R as an extra confounder, we have:

ATE = E[YU |XU ,R, TU = 1] − E[YU |XU ,R, TU = 0]. (2)

Training one model to predict E[YU |XU ,R, TU ], e.g., the S-Learner [31],
has a specific disadvantage: we expect that Y and X differ between T = 0 and
T = 1. To this end, the two-model methods have exhibited improved perfor-
mance [31], especially in scenarios with imbalanced assignments. However, the
two model approaches do not facilitate sharing the obvious knowledge overlaps.
As mentioned in Sect. 2, this can be alleviated by developing a common neural
architecture for the first layers [27], including treatment prediction [51] and ran-
dom walk-based confounders [57]. That motivates us to adapt Dragonnet [51]
for bipartite graphs with GNN encoding.

We define the user-product bipartite and undirected graph as G = (U,P,A),
where we already introduced U and P , while A ∈ R

(n+m)×(n+m) is the adjacency
matrix of G:
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A =
(

0 R
R� 0

)
. (3)

The users’ features are represented as XU ∈ R
n×d, and the product features

as XP ∈ R
m×m. First, we project users and products to the same latent space

through a fully connected (FC) layer. The obtained projections are horizontally
concatenated to get a common set of node embeddings X ∈ R

(n+m)×w, as follows:

X = concat
(
[ReLU(XUWU ),ReLU(XPWP )]

)
, (4)

where WU ∈ R
d×w and WP ∈ R

m×w.
Subsequently, we learn graph features leveraging GNN layers. For this

part, we have examined different architectures, including GraphSAGE [22],
NGCF [60], and LGC [24], so we are going to keep it general in terms of formu-
lation:

H1 = GNN(A,X). (5)

The representations are then broken into two separate paths for T = 1 and T = 0
denoted as t and c, respectively, through another FC layer. We utilize a residual
connection from X, arriving for T = 1 in:

Ht
i+1 = ReLU

([
X[0 : n],H1[0 : n]

]
Wt

i

)
, (6)

where we are slicing the matrices to keep the first n rows that correspond to the
user representations, assuming the horizontal concatenation in Eq. (4). Two FC
layers (with F as depth) predict the outcome under treatment t and control c:

Ŷ c = Hc
FW

c
F , Ŷ t = Ht

FW
t
F .

The loss takes into consideration only the factual outcomes, i.e., where the treat-
ment vector T has 1 for the t output and 0 for the c:

lossy =
1
n

n∑
i=0

(
Ti(Ŷ t

i − Yi)2 + (1 − Ti)(Ŷ c
i − Yi)2

)
. (7)

We refer to this generic GNN-based uplift modeling framework as UMGNet. A
schematic representation of the model is shown in Fig. 1. As mentioned above, we
have examined various instances of the model with different GNN architectures.
Lastly, inspired by [51], we consider a variant denoted by UMGNet-Dr, in
which we add an extra output layer that predicts the treatment. For this model,
we add the following loss term to the one in Eq. (7):

losst =
1
n

n∑
i=0

CrossEntropy
(
T,Sigmoid(H�

FW
�
F )

)
. (8)
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3.2 Active Learning for Uplift GNNs (UMGNET-AL)

Active learning relies on the structure of the data and the uncertainty of the
model to build iteratively the train set in scenarios where data labeling is
costly [49]. We can break it down into two parts: the first is the uncertainty
estimation and the acquisition function over non-labeled samples, while the sec-
ond is the active learning policy we use to gather new samples to label, i.e., to
test in our case.

Uncertainty Estimation. Uncertainty estimation in graph learning is an
active research topic [25,53]. The uncertainty can be distinguished based on
its source: the model (epistemic) or the data (aleatoric). We will employ an
unprincipled yet effective practice to quantify epistemic uncertainty by measur-
ing the variance on the responses of an ensemble of models or simply performing
dropout multiple times [18]. The dropout mask is random during inference, so the
model will produce different outputs for each test sample, arriving at a Bayesian
approximation [15] of the uncertainty.

Aleatoric uncertainty can be measured using the structure of the graph and
the feature distance. Acquisition functions based on diverse criteria, including
both types of uncertainties, have proven more effective in node-level tasks [17,63].
We adopt a similar approach and define Du,∀u ∈ U to be the degree, Qu is
the model’s uncertainty, and b is the budget for new training samples in each
iteration. According to the literature [17,63], we define diversity based on feature
clustering. Specifically, we cluster the samples with a k-means algorithm in a
predefined number of clusters and store the assignments in C ∈ Z

n. Then we
calculate the distance Mu ∈ R

n between each sample and its cluster centroid and
compute the budget for each cluster based on its relative size and b, in Cb ∈ Z

|C|.
We can cast the problem of choosing a batch to add to the training set as ranking
based on U , D, and M , with the first constraint being on the batch size. The
second constraint, which represents diversity, pertains to how many samples of a
given cluster should be included in the train set in each round. Finally, we want
to keep the train set balanced in terms of treatment and control samples, hence
the third constraint:

maximize O =
N∑

u=1

xu(Qu + Du + Mu)

subject to :
n∑

u=1

xu ≤ b

n∑
u=1

xuCu ≤ Cb[Cu]

n∑
u=1

xuTu ≤ b

2

xu ∈ {0, 1}, for u = 1, 2, . . . , n.
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Algorithm 1. UMGNet AL
Input: O,D,M, b,UMGNet

S ← {argmaxs⊂UO(D,M, T, b)}
while |S| ≤ 5 ∗ b do

Train UMGNet(S)
Q, Ŷ ← UMGNet(U \ S)
S ← S ∪ {argmaxs⊂UO(Q,D,M, T, b)}

end while
Output: Ŷ

The problem can be solved greedily in each iteration of batch selection, while D,
C, and Cb are precomputed. In practice, we weigh each of the three criteria in the
objective function with a coefficient in [0, 1] based on the results of validation.

Acquisition Policy. Thompson sampling [47], and upper-confidence bandits
[16] are some of the most popular policies to perform active learning [49]. The
lack of knowledge at the initial iterations justifies the use of stochastic policies.
However, greedy selection has been effective in batch active learning, and it is
actually provably near-optimal in some cases [61]. Since our acquisition function
does not rely solely on the model’s output, which is less trustworthy due to the
initial lack of samples, we are going to use a greedy policy and solve the ranking
problem in every iteration. The whole procedure can be seen in Algorithm 1 for
5 iterations, assuming UMGNet includes by default the parameters X, T, Y,A
for clarity.

4 Experimental Evaluation

We report on the experimental results to empirically justify the soundness of our
framework. First, we present the main datasets and how we built them. Second,
we outline the benchmarking models adopted for this work. Finally, we discuss
the obtained results and answer different questions with an ablation study. The
code to reproduce the analysis is in GitHub1.

4.1 Datasets

RetailHero. The RetailHero [43] dataset is comprised of two equal groups of
anonymized users undergoing a marketing campaign, along with their product
purchase history and some relevant features. The treatment group has received
promotional SMS texts and the binary outcome corresponds to whether the user
has made a purchase or not after the promotional SMS. We follow suit from
the literature and the original competition and utilize features such as age, sex,
coupon issue time, coupon redeem time, and delay between issue and redeem

1 https://github.com/geopanag/UMGNet.

https://ods.ai/competitions/x5-retailhero-uplift-modeling/data
https://github.com/geopanag/UMGNet
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time. The products are represented by one-hot encoding. We filter the data for
erroneous samples e.g., when delay time is negative, or users are less than 16
years old. We created a user-product graph based on the purchases performed
before the time that the promotional coupon was redeemed from treated users.
Note that issue and redeem timestamps are added by the organizers for untreated
users as well, and they follow similar properties with the redeem time for treated
users. Similar to a real-life experiment, purchases done after the intervention are
not accessible in the initial form of the graph, except for training samples, i.e.,
users that have indeed taken part in the experiment in real life. We set two types
of continuous outcomes Y :

– RHC : The difference between the average money spent before and after
coupon redeem time. ATE = 2.60, Ȳ = 266, σ(Y ) = 521.

– RHP: The average money spent after coupon redeem time. ATE = 1.95, Ȳ =
423, σ(Y ) = 387.

The second outcome measures how much more prone treated users are to spend
money compared to the control. The first is similar but takes into account the
spending of each user before the treatment as a means of normalization.

MovieLens. We utilize the Movielens25 and filter the users based on the min-
imum number of ratings. We extract the features of the movie nodes using a
Universal Sentence Encoder-Lite [4] on the concatenation of the title, year, and
genres and bring them down to 16 dimensions using principal component analy-
sis. The adjacency is defined as in Eq. 3 from the movie-viewer bipartite network.
We define the treatment as T = 1 if the movie’s average rating is over the median
of 3.15 or T = 0 otherwise, akin to [33,36]. Similar to the same literature, the
regression outcome is simulated 5 times: ys = ReLU(wsx + wtt + es), where
ws ∈ U(10, 20) and es ∈∼ N (10, 52) are random variables of the simulation
(Table 1).

Table 1. Statistics of the bipartite datasets (directed).

Dataset Nodes E (before T )E (after T )T = 0 T = 1

RetailHero (180,653+40,542) 2,522,096 12,021,243 90,097 90,556
MovieLens (59,047+162,541) 9,369,966 15,630,129 29,518 29,529

4.2 Benchmark Models

To facilitate comparison with the state-of-the-art, we utilize a variety of method-
ologies from meta learners S, T, X, R [31] and doubly robust DR [29] to uplift
trees UpliftTree [42], and neural models CEVAE [34], Dragonnet [51], and
CFR [50]. We rely on the implementations from the CausalML package [5] for

https://grouplens.org/datasets/movielens/25\protect \kern +.1667em\relax m/
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all, using XGBoost as the output and the build-in elastic net as the propen-
sity model whenever required. We include NetDeconf [20] as the graph-aware
benchmark from ITE literature but remove the Wasserstein distance cost because
it fails to run on a GPU with 32GB. All methods are run with their suggested
parameters.

4.3 Experiments

In contrast to the aforementioned studies in ITE [20,37], we can not measure
the counterfactual error in the sample level because it does not exist. Moreover,
since our task is not binary, we can not utilize the uplift curve [12]. Even if
we could, our application focuses on the potential of the top ranked users in
order to target them with the campaign, hence it is not sensible to focus on the
estimation of the whole dataset. Instead, we rely on the realistic evaluation of
our scenario that was also the success criterion for our main dataset2:
up@40/20: We take the top 40% and 20% of the test samples sorted based on
their predicted uplifts, and measure the real ATE in this set [43].

Settings. To evaluate the models’ capacity in semi-supervised generalization,
we utilize 5 and 20-fold cross-validation where the test part is set for training
and vice versa, i.e., we will have 20% and 5% training set size and 5 and 20
iterations, respectively. We run each method 5 times with random seeds from
0 to 4 and log the average and standard deviation of the respective metric in
k-fold validation. For all datasets, we set the learning rate to 0.01 with a weight
decay of 1e − 4. We used ReLU as an activation function. The dropout rate is
set to 0.4, the number of epochs to 2000, and the hidden layers to (64, 64, 32).
Finally, the number of clusters is set to 50 and the coefficients for the acquisition
function are 0.2, 0.1, and 0.7, respectively.

In the active learning setting, denoted as UMGNet-AL, which utilizes the
UMGNet-SAGE model with the proposed acquisition function, instead of 20
and 5-fold, we train an initial model in 1% and 4% of the dataset and increase
the train set up to 5%/20% respectively with 5 batch queries using a greedy
policy. The experiments are performed with an Nvidia V100 16 GB and 32 GB
RAM. The results for RetailHero can be seen in Tables 2, 3. The best result is
indicated in boldface, and the second-best is underlined.

Results and Discussion. It can be seen that the proposed methods outper-
form the benchmarks for both outcome variables. Some benchmarks even exhibit
negative uplifts, which means the predicted sets have higher Yc than Yt. The reg-
ular ATE is the Ȳt − Ȳc of the whole dataset, and it is what we expect to get
by a random balanced subset of users without any ranking. If we consider it
as a baseline, we see that in most cases, the benchmarks tend to be under the
ATE. This is justified by the reduced supervision, which severely diminishes the

2 https://ods.ai/competitions/x5-retailhero-uplift-modeling.

https://ods.ai/competitions/x5-retailhero-uplift-modeling
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benchmarks’ generalization, moving their results closer to a random sample. In
contrast, the proposed methods achieve consistently and sometimes consider-
ably higher uplift than the ATE, signifying their ability to generalize in this
setting. We actually see that the difference between the proposed methods and
the benchmarks is close to or sometimes larger than the actual ATE.

Table 2. Uplift metrics of the predicted sets in the RHC. Regular ATE = 2.60.

Model 20% training size 5% training size
up@40 up@20 up@40 up@20

S-XGB −1.63 ± 1.85−0.67 ± 3.6 1.13 ± 1.09 2.43 ± 1.79

T-XGB 0.58 ± 1.48 3.25 ± 2.72 −0.05 ± 0.32 1.33 ± 1.51

X-XGB −2.55 ± 1.97−2.62 ± 1.47 0.21 ± 1.02 1.19 ± 1.64

R-XGB 1.77 ± 0.97 3.70 ± 1.62 2.01 ± 0.53 5.2 ± 1.81

DR-XGB −0.26 ± 1.04 1.18 ± 1.60 0.61 ± 1.00 2.65 ± 1.05

UpliftTree 5.95 ± 2.43 2.38 ± 7.00 3.74 ± 0.77 2.73 ± 1.83

CFR 0.76 ± 1.36 −2.09 ± 1.6 1.73 ± 0.8 1.41 ± 1.5

CEVAE 3.10 ± 0.59 3.23 ± 1.63 2.88 ± 0.75 3.34 ± 0.70

Dragonnet 2.24 ± 0.14 3.08 ± 0.34 2.26 ± 0.04 3.01 ± 0.10

NetDeconf 1.89 ± 1.86 2.73 ± 1.39 1.08 ± 0.46 2.06 ± 0.62

UMGNet-SAGE 3.20 ± 0.25 6.48 ± 0.70 2.66 ± 0.75 5.69 ± 1.01

UMGNet-AL 6.27 ± 3.00 4.64 ± 3.60 5.83 ± 2.75 6.83 ± 3.77

To be more specific, UMGNet-SAGE is overall more effective in settings
with 20% training size, and UMGNet-AL produces the strongest average uplift
when the training size is limited to 5%, which is sensible due to active learning
choosing the most informative training set. UpliftTree has the second best
performance in RHC albeit with the highest standard deviation (7). Further-
more, an effective model should exhibit higher up@20 than up@40, meaning
the top 20% predictions should have higher real uplift than the top 40% if the
predictive ranking is consistent. Our methods clearly follow this pattern in 15 out
of 16 comparisons, in contrast to UpliftTree in RHC. The propensity-based
methods, i.e., DR-XGB, DragonNet, R-XGB, are not as accurate because
the treatment assignment in the dataset is balanced. Thus, the potential bias is
minimized, and accordingly, the effect of the propensity score is diminished.

Throughout the experiments, the standard deviation grows with the average
value, with exceptions such as UMGNet-SAGE in RHC and T-XGB in RHP.
This makes sense given the range of values and their std. It should be noted
that although both tasks are challenging, RHC has significantly greater std (521
to 387) with a lower average (266 to 423), and it is arguably more informative.
RHC normalizes the effect of the treatment with the user’s normal behavior,
while RHP ranks based on absolute purchase average, which can be biased on
the user’s preferences.
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Finally, the five realizations of the semi-simulated MovieLens dataset are
used to compare UMGNet-SAGE with the best benchmarks from the first
experiment. The average results are shown in Fig. 2, where it is visible that
it consistently outperforms them. In this case, however, the benchmarks per-
form better compared to RetailHero if we consider the ATE, possibly due to
the outcome values being smaller and the input features of the movies being
considerably more informative.

Table 3. Uplift metrics of the predicted sets in the RHP. Regular ATE = 1.95.

Model 20% training size 5% training size
up@40 up@20 up@40 up@20

S-XGB 3.15 ± 2.07 4.54 ± 1.10 2.48 ± 0.93 3.56 ± 0.96

T-XGB 2.67 ± 0.26 5.65 ± 1.16 2.53 ± 0.39 4.65 ± 0.65

X-XGB 2.96 ± 1.01 5.33 ± 1.57 2.29 ± 0.35 4.04 ± 1.06

R-XGB 2.66 ± 1.10 4.58 ± 0.88 2.90 ± 0.32 4.11 ± 0.67

DR-XGB 3.23 ± 1.22 3.86 ± 1.38 2.77 ± 0.19 3.61 ± 1.00

UpliftTree 2.84 ± 0.75 5.01 ± 0.45 1.77 ± 0.70 3.26 ± 0.86

CFR 1 ± 1.31 0.25 ± 1.69 1.19 ± 0.55 1.39 ± 0.81

CEVAE 2.37 ± 1.67 3.26 ± 1.89 1.89 ± 0.54 2.10 ± 0.54

Dragonnet 0.21 ± 0.16 −0.01 ± 0.26 0.21 ± 0.01 −0.104 ± 0.01

NetDeconf 0.84 ± 1.28 2.00 ± 1.00 0.45 ± 0.63 0.770 ± 1.20

UMGNet-SAGE 5.01 ± 2.16 7.28 ± 4.34 3.99 ± 2.00 5.07 ± 3.61

UMGNet-AL 4.11 ± 2.59 4.69 ± 2.88 5.89 ± 2.48 6.04 ± 2.46

Ablation Study. We perform a number of extra experiments to answer certain
questions of interest.

• Does the GNN help? Dragonnet [51] is one of the most popular neural
architectures for ITE, though it has not been extensively utilized for uplift
modeling or in semi-supervised settings. Although they are trained with differ-
ent parameters, e.g., our architecture has fewer layers, UMGNet-Dr resem-
bles a version of Dragonnet with bipartite SAGE encoding. In Table 4, we
see that adding information from the network produces significantly better
results. The lack of supervision is detrimental for a deep neural network like
Dragonnet, as is prevalent in RHP.

• Does the GNN layer impact the prediction? We compare the results with
GNNs like SAGE [22], NGCF [60], and LGC [24]. These GNN models are
used to derive different instances of the UMGNet framework. The interested
reader may refer to Appendix B for a detailed presentation of each GNN layer.
Note that the layers also differ, i.e., SAGE has only 1 layer, but NGCF has
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Fig. 2. Uplift of the predicted sets on the MovieLens dataset. Regular ATE = 0.457.

Table 4. The effect of GNN compared to vanilla Dragonnet.

DatasetModel 20% training size 5% training size
up@40 up@20 up@40 up@20

RHC Dragonnet 2.24 ± 0.14 3.08 ± 0.34 2.26 ± 0.04 3.01 ± 0.10

UMGNet-Dr 2.41 ± 1.27 5.20 ± 1.64 3.00 ± 0.48 5.70 ± 0.50

Improvement (%) +7.6% +68.8% +32.7% +89.4%
RHP Dragonnet 0.21 ± 0.16−0.01 ± 0.26 0.21 ± 0.01−0.10 ± 0.01

UMGNet-Dr 4.19 ± 1.33 6.15 ± 2.42 3.47 ± 0.82 4.33 ± 0.90

Improvement (%) +1895.2% +2700% +1552.4% +4430%

3. The results can be seen in Table 5, where it is clear that SAGE overall
performs better, but NGCF is equally effective in RHC.

• Is active learning helpful? In Table 6 we are utilizing an e-greedy policy,
that uses random batches with probability ε = 0.5, noted as UMGNet-EG,
as a baseline to clarify the need for the acquisition function. We see a clear
improvement in each metric if we optimize the acquisition function in each
step.

5 Conclusion

The creation of a large enough training set to use for uplift modeling can be a
costly, time-consuming, or risky task. It is thus important to develop method-
ologies that select the right samples to intervene on and extrapolate efficiently
on the rest of the dataset. We propose a two-step modular methodology that
addresses these needs. The main problem is formulated as semi-supervised uplift
modeling, and we solve it using bipartite graph neural networks. Additionally,
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Table 5. The effect of different GNN layers in UMGNet.

Dataset UMGNet 20% training size 5% training size
up@40 up@20 up@40 up@20

RHC NGCF 5.34 ± 0.86 5.49 ± 1.15 3.71 ± 0.61 3.74 ± 0.97

LGC 4.17 ± 1.55 3.96 ± 2.70 3.70 ± 0.73 3.72 ± 0.87

SAGE 3.20 ± 0.25 6.48 ± 0.70 2.66 ± 0.75 5.69 ± 1.01

RHP NGCF 3.53 ± 2.30 3.06 ± 2.51 1.97 ± 0.24 2.22 ± 0.23

LGC 3.50 ± 2.00 2.89 ± 2.25 3.31 ± 0.52 3.30 ± 0.77

SAGE 5.01 ± 2.16 7.28 ± 4.34 3.99 ± 2.005.07 ± 3.61

Table 6. The effect of different active learning policies in UMGNet.

Dataset UMGNet 20% training size 5% training size
up@40 up@20 up@40 up@20

RHC EG 6.01 ± 4.33 3.94 ± 3.18 4.12 ± 5.00 4.18 ± 3.00

AL 6.27 ± 3.00 4.64 ± 3.60 5.83 ± 2.75 6.83 ± 3.77

Improvement (%) +4.3% +17.8% +41.5% +63.4%
RHP EG 1.91 ± 2.40 3.59 ± 4.51 3.91 ± 3.20 5.66 ± 3.45

AL 4.11 ± 2.59 4.69 ± 2.88 5.89 ± 2.48 6.04 ± 2.46

Improvement (%) +115.2% +30.6% +50.6% +6.7%

a batch active learning method is defined based on the model’s uncertainty,
structural importance, and feature diversity to build the training set.

We utilize, for the first time, a large-scale graph with ground-truth experi-
mental information to test our hypothesis. The proposed methodology is com-
pared to a breadth of benchmarks from both uplift modeling and individual
treatment effect literature. Our results indicate a clear advantage of the proposed
methodology compared to the benchmarks, which sometimes perform near ran-
dom in semi-supervised settings. Moreover, active learning enhances the results
as the supervision diminishes. It is important to note that each step can be
utilized separately e.g., the acquisition function can be used with other models.
This framework aspires to be an initial step towards addressing the realistic yet
overlooked problem of uplift modeling under budget for experimental interven-
tions.

Regarding future work, we plan to examine the theoretical aspects of the
method. Specifically, we aim to understand better the tradeoff between the num-
ber of treated nodes and the generalization capability of the model. Moreover,
as the main application revolves around social networks, it is vital to analyze the
model’s fairness in terms of treatment allocation or outcome prediction. Finally,
we plan to experiment with other available semi-synthetic datasets of varying
sizes to research the model’s robustness and scalability.
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Abstract. Time Series Anomaly Detection (TSAD) finds widespread
applications across various domains such as financial markets, industrial
production, and healthcare. Its primary objective is to learn the normal
patterns of time series data, thereby identifying deviations in test sam-
ples. Most existing TSAD methods focus on modeling data from the tem-
poral dimension, while ignoring the semantic information in the spatial
dimension. To address this issue, we introduce a novel approach, called
Spatial-Temporal Normality learning (STEN). STEN is composed of a
sequence Order prediction-based Temporal Normality learning (OTN)
module that captures the temporal correlations within sequences, and
a Distance prediction-based Spatial Normality learning (DSN) module
that learns the relative spatial relations between sequences in a fea-
ture space. By synthesizing these two modules, STEN learns expressive
spatial-temporal representations for the normal patterns hidden in the
time series data. Extensive experiments on five popular TSAD bench-
marks show that STEN substantially outperforms state-of-the-art com-
peting methods. Our code is available at https://github.com/mala-lab/
STEN.

Keywords: Anomaly Detection · Time Series · Self-supervised
Learning · Normality Learning

1 Introduction

Time series data are pervasive in many real-world application domains, including
finance, industrial production, network traffic, and health monitoring [2,25,26].
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Within these time series data, there can exist exceptional data observations,
a.k.a., anomalies, that deviate significantly from the majority of data, which
often indicates an abnormal change of the data-generating mechanism [10]. These
anomalies are of great interest to the analysts since accurately detecting them is
significant in alarming faults in target systems and preventing potential losses.

Anomaly detection aims to learn data normality during training and identify
those exceptional data during inference [23]. It is a non-trivial task to precisely
learn the normality of time series data. The challenge is primarily due to the
unsupervised nature of anomaly detection. Models like neural networks are actu-
ated by supervisory signals to learn high-level patterns from given training data.
However, it is prohibitively costly to collect large-scale labeled data for anomaly
detection. Thus, learning from unlabeled data is generally more preferable yet it
is difficult due to the lack of labeled training data. The challenge is aggravated
by the inherent complexity of time series data. Time series data is character-
ized by multiple components from temporal and spatial perspectives, including
the trending and seasonal changes along the time dimension and the spatial
proximity relation of temporal sequences in the feature space.

Current time series anomaly detection (TSAD) methods typically leverage
an encoder-decoder architecture and assess data abnormality according to recon-
struction/prediction errors of testing data [7,12,26,30,33–35]. Despite their gen-
eral effectiveness on various datasets, these methods often tend to overfit the
training data and fail to distinguish anomalies from the normal sequences, since
both types of sequences have similarly small reconstruction/prediction errors.
Self-supervised learning has been emerging as a promising technique in anomaly
detection due to its capability of deriving supervisory signals from the data itself.
Existing self-supervised methods, e.g., via pretext tasks like association learn-
ing [34] and dual attention contrastive representation learning [35], successfully
learn discriminative models to capture normal semantics of the temporal con-
tinuity into the representation space. However, apart from the data regularities
reflected in the temporal dimension, spatial normality is also a desideratum of
comprehensive normality learning in time series data.

In light of this limitation, this paper investigates an intriguing question: Can
we simultaneously learn spatial-temporal normality of time series data in the
self-supervised paradigm? As shown in Fig. 1, the input data sequences are the
training data of the Epilepsy dataset [33], which illustrates the normal patterns.
Time series continuously change along the time dimension, and this continuity
can be fully leveraged in temporal normality learning. More specifically, after
splitting the raw time sequences into several sub-sequences, the normality can
be modeled by learning the sub-sequence order. During inference, giving a test-
ing sequence with anomalies (Fig. 1(a)), the learning model ranks the randomly
shuffled sub-sequences and finally yields a sequence that resembles the training
data (Fig. 1(b)). This predicted order depicts a large difference compared to the
original distribution for the anomalous sequence, whereas the difference is small
for normal sequences.
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Fig. 1. Our key insights. (a) A sequence containing abnormal data is divided into equal-
length sub-sequences by dashed lines, with anomalies presented in the first three sub-
sequences. (b) Sub-sequences arranged according to the predicted order distribution,
showing differences between the predicted order distribution and the original data due
to the presence of the anomaly. (c) The distribution of distances between sequence pairs
in a random projection space, which can well preserve the spatial information of the
sequences within the feature space. (d) The distribution of distances between sequence
pairs learned by a trainable network, effectively resembling the distance distribution. (e)
The distribution of anomaly scores obtained by considering the prediction discrepancies
in both temporal and spatial dimensions for normal and abnormal data. The results
are based on the Epilepsy dataset [33].

In terms of spatial normality, we investigate the pairwise distance of time
series data sequences in a projection space. Generally, it is challenging to obtain
the spatial relation of data samples evolving along the time, especially under
the unsupervised learning paradigm. Motivated by the effective spatial infor-
mation preservation by random projection [4,16,29], we leverage the pairwise
distance in a randomly projected feature space. Since normal sequences often
locate in a dense region, as shown in Fig. 1(c), the distance distribution of a
normal sequence typically follows a Gaussian-like distribution with the expected
value approximating zero. On the contrary, that of anomalous sequences tends
to have a markedly different distance-based spatial distribution (e.g., uniform-
like distribution). Neural networks are capable of predicting those distance-based
spatial information, as shown in Fig. 1(d). By learning to accurately predict these
distances, the networks learn the spatial distribution of the sequence normal-
ity. During inference, testing anomalous sequences manifest significant deviation
from the normal data distribution according to the anomaly score (see Fig. 1(e)).

Based on this insight, we propose a novel approach for TSAD, called
Spatial-Temporal Normality learning (STEN for short), in which two pre-
text tasks are designed to construct a self-supervised learning pipeline for the
joint spatial-temporal normality modeling. Specifically, we first devise an Order
prediction-based Temporal Normality learning module (OTN). The inputting
time sequences are split into several sub-sequences. Supervised by their genuine
order, the neural network learns how to sort shuffled sub-sequences, during which
the temporal continuity can be captured and represented. On the other hand, we
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further introduce a Distance prediction-based Spatial Normality learning module
(DSN), which models the spatial proximity of sequences in the representation
space.

The main contributions are summarized as follows.

– We introduce the concept of spatial-temporal normality of time series data
and propose a novel anomaly detection approach STEN. STEN achieves
spatial-temporal modeling of the data normality, contrasting to the existing
methods that are focused on the temporal perspective only.

– To learn the temporal normality, we propose the OTN module. This mod-
ule captures temporal associations and contextual information in time series
by learning the distribution of sub-sequence orders. Different from many
Transformer-based methods that calculate associations via heavy attention
mechanisms, our method successfully models temporal normality by fully
harnessing the unique continuity of time series data.

– To learn the spatial normality, we propose the DSN module. By wield-
ing an informative random projection space, our approach further restrains
spatial proximity in the representation space. Compared to mainstream
reconstruction-based models that focus on individual normality, our approach
investigates data affinity among the sequences, thereby capturing the normal-
ity beyond the temporal perspective.

– STEN outperforms state-of-the-art methods on five popular benchmark
datasets for time series anomaly detection.

2 Related Work

Time Series Anomaly Detection. Time series anomaly detection is an old
discipline, which has received increasing attention in recent years. Early tradi-
tional methods focus on statistical approaches such as moving averages, AutoRe-
gressive Integrated Moving Average (ARIMA) models [5], and their multiple
variants [20]. With the emergence of machine learning technology, techniques
including classification [19], clustering [15], ensemble learning [32], and time
series forecasting [14] are applied to time series anomaly detection. Besides,
Tsfresh has inspired the window-to-feature approach, enhancing the efficiency of
feature extraction in time series analysis [8]. ROCKET’s focus on sub-sequence
patterns through random convolutional kernels has inspired advancements in
capturing local temporal patterns [11]. However, traditional methods are often
constrained by the learning capability and the quantity of labeled data, making
it challenging to achieve satisfactory performance.

With the burgeoning of deep learning techniques, many deep anomaly detec-
tion methods have been introduced in the literature. Owing to deep learning’s
powerful capability in modeling intricate data patterns and distributions, deep
anomaly detection methods dramatically improve the detection performance
over conventional methods [23]. Mainstream deep time-series anomaly detection
methods are based on generative models, in which the learning models are trained
to predict or reconstruct original raw time series data [10]. Prediction-based
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methods train models to forecast the value of the next timestamp, using the dis-
crepancy between predicted and actual values to indicate the abnormal degree
of the current timestamp. Reconstruction-based methods compare the error
between reconstructed and actual values. These methods employ various neural
network architectures such as internal memory, dilated convolutions, and graph
structure learning, intending to capture the temporal characteristic of time series,
yielding impressive results across numerous benchmarks [7,12,26,30]. Addition-
ally, some studies have coupled them with adversarial training to amplify the
discriminability of anomalies [3,22]. A recent work, named Anomaly Trans-
former [34], utilizes the Transformer to model the associations between sequences
and their neighboring priors, identifying anomalies through association differ-
ences.

Self-supervised Learning on Time Series. Self-supervised learning gener-
ates supervision signals from the data itself. Via various proxy learning tasks, the
learning models embed data patterns into the projection space, offering semantic-
rich representations to downstream tasks. Self-supervised time series analysis can
be categorized into generative-, contrastive-, and adversarial-based methods [38].
As introduced above, generative methods rely on prediction/reconstruction
learning objectives to capture the characteristics of time series data. These
methods often overfit the training data, and anomalies may have similarly small
reconstruction errors. Adversarial-based techniques, noted in [21,39], might be
hampered by complex and unstable training regimes.

Contrastive learning defines positive and negative pairs, and the learning
process minimizes the distance between positive pairs and maximizes the dis-
tance between negative pairs in the feature space. This approach can encourage
the model to learn meaningful and discriminative features. This concept has
been applied in studies such as [9,27,36]. DCdetector [35] is one of the latest
frameworks devised for anomaly detection tasks, which employs a dual-attention
contrastive representation mechanism to differentiate between normal and abnor-
mal samples effectively. However, this approach still overlooks the importance of
spatial normality learning in comprehending the normal patterns of time series
data.

3 STEN: Spatial-Temporal Normality Learning

3.1 Problem Statement

Let X = 〈x1,x2, · · · ,xN 〉 be a sequence of multivariate time series with N obser-
vations, with each observation xt ∈ R

D denotes the data values of D variants at
a certain timestamp t, where 1 ≤ t ≤ N , then unsupervised time series anomaly
detection (TSAD) aims to learn an anomaly scoring function f without reliance
on any labels of the training data X. f is applied to measure the abnormality of
observations in testing sequences Xtest. Higher anomaly scores indicate a higher
likelihood to be anomalies. In STEN, we design a particular f that can effectively
capture spatial-temporal normality in training data X.
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Fig. 2. Overview of STEN. STEN consists of two self-supervised components: DSN
and OTN. In DSN, the distances between sequence pairs after being projected by a
random network η form a compact distribution, from which we distill the spatial nor-
mality patterns using a MSE loss function Ldsn. OTN captures temporal normality by
predicting the order among sub-sequences after a random shuffling using a distribution
similarity-based loss function, Jensen-Shannon divergence.

3.2 Overview of The Proposed Approach

This paper proposes a novel unsupervised TSAD method STEN, in which data
normality is learned from both temporal and spatial perspectives. As shown in
Fig. 2, STEN consists of an Order prediction-based Temporal Normality learning
module (OTN) and a Distance prediction-based Spatial Normality learning mod-
ule (DSN). OTN learns the temporal normality information of the time series
by modeling the sequential distribution of sub-sequences. On the other hand,
DSN is designed to utilize the distance prediction between the sequence pairs
for spatial normality learning. Finally, the anomaly score which reflects both
temporal and spatial normality can be used to distinguish normal and abnor-
mal sequences. The details of OTN and DSN are discussed in the following two
sections.

3.3 OTN: Order Prediction-Based Temporal Normality Learning

Time series datasets are essentially organized into specific sequences, where con-
nectivity and sequential information of sub-sequences illuminate time-related
patterns and contextual relationships within the data. The temporality of time
series data reflects the dynamic changes of data in the time dimension. Analyzing
temporality can help understand the dynamic changes and time correlation of
data. Therefore, the OTN module is designed to extract temporal normality in
time series data by predicting the temporal order between their sub-sequences.
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To this end, OTN models the temporal patterns by predicting the primary
temporal order of randomly shuffled sub-sequences. Specifically, a sliding window
of length L and stride R are first used to divide X into a collection of n sequences
S = {S1, S1+R, ..., Sn}, where each St = 〈xt,xt+1, ...,xt+L−1〉. For each sequence
S ∈ S, we generate a fixed number of equal-length short sequences with a fixed
length l and stride r. One sequence St will result in m sub-sequences Rt =
{R1, R2, ..., Rm}. The position orders of the sub-sequences are used as a set of
self-supervised class labels to train the neural network φ. The Jensen-Shannon
(JS) divergence, a popular method for measuring the difference between two
different distributions, is then used to define our self-supervised loss Lotn in
predicting the order distributions of these sub-sequences, which is formulated as
follows:

Lotn =
c∑

i=1

ŶRi
log

⎛

⎝ ŶRi

1
2

(
ŶRi

+ YRi

)

⎞

⎠ +
c∑

i=1

YRi
log

⎛

⎝ YRi

1
2

(
ŶRi

+ YRi

)

⎞

⎠ , (1)

where ŶR represents the softmax results of the temporal order prediction for the
sub-sequence set R and YR is the ground truth order distribution. Minimizing
this loss enables the learning of temporal normal patterns based on the local
sub-sequence context.

3.4 DSN: Distance Prediction-Based Spatial Normality Learning

The spatial patterns of time series data we aim to capture are the spatial dis-
tribution of the data that changes over time in a feature space. It describes the
spatial distribution patterns, trends, and changes of the data over a period of
time, which cannot be captured by the temporal modeling. To complement the
temporal normality learning, we propose the DSN module to model the spatial
normality of the time series data in a feature space. Different from OTN that is
designed to learn the temporal dynamics within the individual sequences, DSN
is designed to model the spatial relation between the sequences, and thus, it is
performed on the sequences set S rather than the sub-sequences.

One challenge here is the lack of supervision signals for learning the spatial
patterns. Inspired by the solid theoretical and empirical results in [4,16,29],
we propose to use the distance of the sequences in a feature space spanned
by random projection as our supervision source for learning the spatial patterns
among the sequences. It has been theoretically justified and empirically shown in
these prior studies that although it is in a randomly projected feature space, the
distance information in the original space can be well preserved. To utilize these
random distances through deep neural networks, we design the self-supervised
distance prediction method. More specifically, for each sequence Si, we randomly
select one sequence from the remaining sequences and construct a sequence pair
(Si, Sj). They are then respectively fed to a trainable network φ : RD �→ R

M with
parameters Θ and a random network η : RD �→ R

M , which is a representation
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learner with parameters Φ. The parameters Φ in the network η is initialized with
random weights and frozen, which serves as the random project model. It is used
to project the original sequences and obtain the distance-based relation via:

dη(Si, Sj) = η(Si;Φ)T η(Sj ;Φ), (2)

where dη(Si, Sj) represents a spatial relation of the two sequences in the pro-
jected feature space. To learn these spatial relations, we train the network φ to
predict/distill these distances via:

Ldsn =
1
n

n∑

i=1

(dφ(Si, Sj) − dη(Si, Sj))2, (3)

where n is the number of sequence pairs and dφ(Si, Sj) is defined as follows:

dφ(Si, Sj) = φ(Si;Θ)T φ(Sj ;Θ). (4)

The training of the network φ can be seen as distilling semantic information
from the distance of sequence pairs, learning the relative spatial normality of
time series data. A normal sequence typically include a dense set of normal
sequences in their local neighborhood while being distant from the other normal
sequences. Thus, its distance-based spatial relation to the other sequences forms
a Gaussian-like distribution. By contrast, the anomalous sequences are assumed
to be distant from most sequences, so its distribution of the distances to other
sequences tends to be a uniform one. DSN is designed to learn such discriminative
patterns by minimizing the loss Ldsn.

3.5 Training and Inference

Training. The OTN and DSN are synthesized in our approach STEN to capture
the spatial-temporal dependencies of the time series data, offering a comprehen-
sive modeling of the normal patterns. Thus, the overall loss function in STEN
is composed of the loss functions from the two above two self-supervised tasks:

LSTEN = Lotn + αLdsn, (5)

where α is a hyperparameter used to modulate the two modules, and the learn-
able parameters in network φ are jointly learned by the loss function LSTEN .

Inference. In the OTN module, because of the continuity of the normal pat-
terns, the order distribution reflects the overall order prediction of a sub-sequence
collection R, and the discrete order of a single sub-sequence Ri reflects the pre-
diction of the current sub-sequence. Thus, the discrepancies in both types of
predictions for normal data will be less than those for anomalies. Motivated by
this, we use both of these differences in our anomaly scoring, which is defined as
follows:

Scoreotn(Ri) =

∣∣∣ŶRi
− YRi

∣∣∣
Lotni

, (6)
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where the numerator is the difference in a single subspace while the denominator
summarizes the differences across all sub-sequences. Note that Li has a differ-
ent scale from Lotn, so we perform an upsampling of this score in Eq. (6) by
replicating it from a scalar to a vector of length of m.

The spatial normality of the sequences is captured in Ldsn, i.e., for a normal
sequence Si, it is expected to have substantially smaller Ldsn than anomalous
sequences when paired with other sequences Sj . To utilize spatial-temporal nor-
mality for TSAD, STEN defines an overall anomaly score as:

Score(Ri) = Scoreotn(Ri) + βScoredsn(Ri), (7)

where β is a hyperparameter to control the importance of the spatial normality
term Scoredsn(Ri) = Ldsn(Ri). Note that Ldsn measures the normality at the
sequence level, and we assign the same anomaly score for the sub-subsequences
within a sequence.

4 Experiments

4.1 Experimental Setup

Benchmark Datasets. Five publicly available multivariate time series datasets
are used in our experiments, with the relevant statistics shown in Table 1. PSM
(Pooled Server Metrics Dataset) [1] is a dataset of IT system monitoring sig-
nals from eBay server machines with 25 dimensions. Both MSL (Mars Science
Laboratory Dataset) and SMAP (Soil Moisture Active Passive Dataset) [18] are
public datasets collected by NASA with 27 and 55 entities respectively, which
contain sensor and actuator data from the Mars Rover, as well as soil samples
and telemetry information from a satellite. Epilepsy (Epilepsy seizure dataset)
is an activity dataset collected from a triaxial accelerometer on the wrist of a
human subject’s hand, and we treat data during walking, running, and sawing
as normal data and seizures as anomalies according to [33]. DSADS (Daily and
Sports Activities Dataset) collects motion sensors from eight subjects, including
19 daily and physical activities. Following [33], we use intense activities as the
anomaly class, with the data collected from other activities used as normal.

Competing Methods. STEN is compared with the following eight state-of-
the-art (SotA) anomaly detectors specifically designed for time series data.
These competing methods can be generally categorized into four types, i.e., (1)
reconstruction-based models: MSCRED (MSC for short) [37], TranAD (Tran
for short) [28], and AnomalyTransformer (AT for short) [34]; (2) forecasting-
based models: GDN [12]; (3) one-class classification models: TcnED (TED for
short) [13], COUTA (COU for short) [33], and NCAD (NCA for short) [6]; (4)
contrastive learning-based models: DCdetector (DC for short) [35].
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Table 1. Key dataset statistics.

Ntrain Ntest #Dimensions #Entities AnomalyRatio(%)

PSM 132,481 87,841 25 1 27.8
MSL 2,160 2,731 55 27 10.7
SMAP 2,556 8,071 25 55 13.1
Epilepsy 33,784 22,866 5 1 10.2
DSADS 85,500 57,000 47 1 6.3

Table 2. AUC-ROC, AUC-PR, and F1 results on five TSAD datasets.

Dataset Ours DC AT NCA Tran COU TED GDN MSC

AUC-ROCPSM 0.998 0.967 0.993 0.973 0.972 0.975 0.970 0.968 0.963
MSL 0.996 0.961 0.979 0.983 0.986 0.989 0.983 0.976 0.899
SMAP 0.999 0.991 0.993 0.970 0.921 0.919 0.926 0.978 0.821
Epilepsy 0.998 0.886 0.996 0.984 0.935 0.951 0.933 0.990 0.832
DSADS 0.994 0.983 0.962 0.985 0.984 0.992 0.985 0.974 0.905

AUC-PR PSM 0.995 0.946 0.989 0.942 0.955 0.955 0.948 0.940 0.932
MSL 0.941 0.915 0.933 0.868 0.905 0.886 0.897 0.849 0.483
SMAP 0.991 0.961 0.971 0.884 0.753 0.758 0.717 0.869 0.644
Epilepsy 0.991 0.837 0.980 0.943 0.790 0.760 0.773 0.967 0.565
DSADS 0.948 0.876 0.926 0.880 0.917 0.947 0.913 0.785 0.659

BEST F1 PSM 0.986 0.959 0.982 0.908 0.914 0.925 0.881 0.870 0.889
MSL 0.944 0.932 0.942 0.809 0.888 0.867 0.890 0.852 0.605
SMAP 0.974 0.963 0.967 0.845 0.699 0.701 0.711 0.781 0.668
Epilepsy 0.991 0.875 0.987 0.904 0.803 0.793 0.777 0.918 0.640
DSADS 0.934 0.908 0.932 0.875 0.846 0.901 0.844 0.825 0.657

Evaluation Metrics. The performance of STEN is measured according to
a wide range of evaluation metrics. Following the mainstream studies in this
research line [3,28,33], we adopt three popular metrics including the Area Under
the Receiver Operating Characteristic Curve (AUC-ROC), the Area Under the
Precision-Recall Curve (AUC-PR), and the best F1 score. Note that these three
metrics are calculated upon anomaly scores processed by the point-adjust strat-
egy [31]. It is a commonly used strategy in time series anomaly detection [6,33–
35], which adjusts the anomaly score of each anomaly segment to the highest
score within this segment. To circumvent biases introduced by point adjustment,
we further employ five recently proposed evaluation measures. Considering the
temporal relationship/distance between ground truths and predictions, [17] cal-
culates the affiliation precision and recall. We utilize the harmonic mean of these
two measures, i.e., Affiliation F1 (denoted by Aff-F1). [24] introduces a novel
metric called Range-AUC, which extends the AUC measurement to account
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for range-based anomalies. Additionally, the paper introduces volume under the
ROC surface (VUS-ROC) and volume under the PR surface (VUS-PR) as new
metrics for computing the volume under ROC and PR curves, respectively.

Implementation Details. We summarize the default implementation settings
of our method STEN as follows. Both the number of generated sub-sequences
m and the sub-sequence length l are set to 10 across all datasets. The temporal
modeling network φ is composed of a single-layer GRU network with shared
parameters across 10 units, and the dimension of the hidden state dmodel is set
to 256. To balance the influence of OTN and DSN, the hyperparameters α and
β are set to 1 by default. For calculating the affiliation metric, an anomaly is
defined as any timestamp whose anomaly score exceeds the (100− δ) percentile,
with δ setting to 0.6 by default. The weight parameters are optimized using
Adam optimizer with a learning rate of 10−5 for a total of 5 epochs. For the
PSM, SMAP, and DSADS datasets, the batch size is set to 256, while for the
MSL and Epilepsy datasets, each mini-batch contains 64 training samples.

4.2 Main Results

To verify the detection performance of our method, we conduct experiments on
five real-world TSAD datasets and compare it with eight SotA methods.

The results for the methods in AUC-ROC, AUC-PR, and best F1 metrics are
shown in Table 2. Our method STEN is the best performer on all five datasets
across the three metrics, indicating the importance and effectiveness of joint
modeling of spatial-temporal normality. On average, STEN obtains an AUC-
ROC of 0.997, an AUC-PR of 0.973, and an F1 of 0.966. Specifically, in terms
of the AUC-PR metric, STEN achieves an average improvement ranging from
approximately 1.3% to 31.6% over eight SotA methods, which highlights the
effectiveness of our method in the precision and recall rates of detecting anoma-
lies. Impressively, our method marks a significant improvement on the SMAP
dataset, achieving an improvement of 2% to 34.7% in the AUC-PR metric. Com-
pared to other methods, AT exhibits relatively better detection performance on
these datasets, utilizing advanced Transformer structures and concepts like asso-
ciation differences for effective normality modeling. Nevertheless, our method
STEN still consistently outperforms AT, e.g., by a large margin on some chal-
lenging datasets like MSL and DSADS. This is mainly due to the additional
spatial normality modeling in STEN, besides the temporal normality learning.

It is important to note that recent studies have had vigorous discussions on
how to fairly evaluate the performance of TSAD methods. Although the results
in Table 2 have already demonstrated that our method outperforms the SotA
methods under the three traditional metrics, to have a more comprehensive
and fair evaluation, we also use several recently proposed evaluation metrics.
The evaluation results of our model under the new metrics are shown in Table 3,
with the best competing models NCA, DC, and AT as our baselines. It is evident
that on the PSM, MSL and SMAP datasets, our method outperforms all others
across almost all new metrics. For the remaining two datasets, we still achieve
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Table 3. Aff-F1, RAUC-ROC, RAUC-PR, VUS-ROC, and VUS-PR results.

Dataset Method Aff-F1 RAUC−ROC RAUC−PR VUS-ROC VUS-PR

PSM NCA 0.394 0.862 0.826 0.868 0.828
DC 0.583 0.817 0.839 0.805 0.826
AT 0.507 0.952 0.959 0.883 0.905
Ours 0.636 0.973 0.957 0.966 0.945

MSL NCA 0.586 0.947 0.755 0.949 0.760
DC 0.641 0.844 0.791 0.841 0.786
AT 0.659 0.915 0.844 0.917 0.804
Ours 0.687 0.955 0.853 0.957 0.858

SMAP NCA 0.662 0.958 0.838 0.957 0.837
DC 0.662 0.944 0.914 0.939 0.908
AT 0.675 0.968 0.938 0.958 0.930
Ours 0.677 0.985 0.954 0.985 0.952

Epilepsy NCA 0.585 0.965 0.917 0.965 0.917
DC 0.655 0.770 0.808 0.773 0.811
AT 0.691 0.935 0.936 0.939 0.940
Ours 0.746 0.964 0.943 0.966 0.947

DSADS NCA 0.650 0.835 0.779 0.839 0.785
DC 0.617 0.942 0.829 0.943 0.834
AT 0.682 0.866 0.860 0.870 0.864
Ours 0.657 0.940 0.856 0.944 0.865

superior results, with a minimal margin of less than 0.005 in all cases except
Aff-F1 on DSADS. These results re-affirm the improvement of our method over
SotA methods.

4.3 Ablation Study

Significance of the OTN and DSN Modules. We then investigate the
importance of the two components DSN and OTN. We remove each of them from
our method STEN individually, resulting in two ablation variants: one with only
DSN and another with only OTN. The results are presented in Table 4, which
demonstrate that both of the DSN and OTN modules have some major contribu-
tions to the model’s superior detection performance. This is particularly true for
the OTN module, which significantly increases the model’s performance in terms
of the F1 score by an average of approximately 16.9% over the five datasets.

OTN vs Error Prediction-Based Approach in Modeling Temporal Nor-
mality. Furthermore, to illustrate the effectiveness of OTN in capturing tem-
poral patterns, we derive a variant of STEN that combines the DSN with a
popular temporal pattern modeling module based on error prediction (EP) of
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the current timestamp. The experiment results reveal that the OTN module
achieves improvements of approximately 7.3% in AUC-PR and 10.1% in the F1

score, respectively. These results demonstrate that our OTN module is signifi-
cantly more effective compared to the popular error prediction methods, which is
mainly due to the fact that the OTN module allows the modeling of normal pat-
terns in multiple diverse temporal contexts, contrasting to the single temporal
context in the existing error prediction method.

Table 4. Ablation study results of STEN. EP represents the popular error prediction-
based approach for temporal pattern modeling.

DSNOTN PSM MSL SMAP Epilepsy DSADS
AUC-PR F1 AUC-PR F1 AUC-PR F1 AUC-PR F1 AUC-PR F1

� � 0.913 0.902 0.763 0.752 0.847 0.794 0.794 0.808 0.790 0.728
� � 0.995 0.975 0.946 0.919 0.990 0.963 0.979 0.978 0.929 0.906
� � 0.995 0.986 0.941 0.944 0.991 0.974 0.991 0.991 0.948 0.934
DSN + EP0.984 0.952 0.930 0.897 0.921 0.856 0.957 0.939 0.707 0.681

Fig. 3. (Top to Bottom) Training/testing segments of the PSM dataset, and the
anomalous timestamps (marked by small dots) predicted by STEN and the five best-
performing competing methods. The ground truth anomalous segments are highlighted
in gold. The most prominent false-positive data segments are encircled in red dashed
lines.

4.4 Qualitative Analysis

We visualize the results to further showcase the anomaly detection capabilities of
STEN. Fig. 3 presents the data from the PSM dataset (feature id 22), along with
the anomaly timestamps detected by STEN and its competing methods. This
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dataset exhibits complex temporal patterns, which may lead to false positives
by many algorithms during detection. Compared to the competing methods, our
method STEN can detect all three anomalies while at the same time having the
least false positives. For example, COU and TED incorrectly label test data seg-
ments that are similar to the normal patterns in the training data as anomalies.
Meanwhile, both Tran and TED miss an anomaly, i.e., the second anomalous
segment. DC and AT illustrate comparable performance in detecting all three
anomalies, but they still produce more false positives than our method. This
advatange is due to the spatial normality modeling of STEN, which is often
ignored in existing methods like DC and AT.

4.5 Sensitivity Analysis

We also conduct sensitivity analysis on four key hyperparameters. The F1 score
and AUC-PR results have a similar trend and we report the AUC-PR results
in Fig. 4 due to page limitation. Figure 4(a) illustrates the sensitivity of the
hyperparameter regulating the loss Ldsn, i.e., α, in the model’s overall loss func-
tion. This analysis aims to investigate the model’s capability to capture the
normal patterns of data when applying different weights to our two modules.
The results indicate that the model’s performance remains stable across multi-
ple benchmark datasets within a relatively large value range. Figure 4(b) focuses
on the weight β of Scoredsn(Ri), examining the contribution of the two modules
to the anomaly scoring. The results suggest that varying β does not significantly
affect the model’s detection performance, showcasing the model’s robustness.
We also experiment with different sub-sequence lengths l. The results are shown
in Fig. 4(c), from which it is clear that our method achieves stable detection
performance with sub-sequences of various lengths ranging from 10 to 100. Fur-
thermore, the anomaly threshold δ serves as a hyperparameter that distinguishes
anomalies from normal fluctuations in the data. Figure 4(d) illustrates the exper-
imental results when δ varies between 0.5 and 1. It can be observed that our
method performs stably w.r.t. changes in δ.

4.6 Time Efficiency

We compare training time of neural network-based models across various
datasets to investigate their time efficiency. Due to the obviously high algo-
rithmic complexity of GDN and MSCRED, we select six methods with com-
parable training duration for comparison, as shown in Table 5. Unlike previous
methods, our model employs two modules (DSN and OTN) to train and com-
bine sub-sequences of different length, potentially increasing the computational
complexity. Although not showing the most efficient performance, our method
illustrates significantly better detection accuracy than the competing methods.
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Fig. 4. AUC-PR results of STEN w.r.t different hyperparameters.

Table 5. Run times (in seconds) in multiple datasets. The best results are indicated
in bold, while the worst results are underlined.

Methods PSM MSL SMAP Epilepsy DSADS

TED 308.2 140.0 317.3 76.0 1646.3
Tran 144.5 70.3 152.8 35.2 755.1
NCA 711.3 330.3 746.8 179.0 421.5
COU 282.5 127.0 286.6 71.5 1440.2
DC 508.6 380.8 967.1 98.3 1536.5
AT 11.7 11.1 12.6 10.8 15.4
Ours 214.9 137.3 477.8 44.4 483.3

5 Conclusion

This article introduces a novel TSAD method named STEN. Unlike existing
methods that solely focus on the temporal normality of time series data, STEN
incorporates the spatial normality of the data as well, enabling a more com-
prehensive normality learning of the time series data. This enables STEN to
achieve greater discriminative feature representations in distinguishing abnor-
mal sequences from the normal ones. In STEN, we design two pretext tasks
to extract spatial-temporal features of time series data. The order prediction-
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based temporal normality learning (OTN) models the temporal dependencies of
the data by modeling the distribution of sub-sequence order, while the distance
prediction-based spatial normality learning (DSN) learns the spatial relation of
sequence pairs in the projected space in the form of distance prediction. Exten-
sive experiments demonstrate that STEN exhibits superior TSAD performance,
outperforming eight SotA algorithms on five benchmark datasets, with the effec-
tiveness of each of the proposed two modules justified in our ablation study.
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Abstract. Hierarchical Text Classification (HTC) aims to categorize
text data based on a structured label hierarchy, resulting in predicted
labels forming a sub-hierarchy tree. The semantics of the text should
align with the semantics of the labels in this sub-hierarchy. With the
sub-hierarchy changing for each sample, the dynamic nature of text-label
alignment poses challenges for existing methods, which typically process
text and labels independently. To overcome this limitation, we propose
a Text-Label Alignment (TLA) loss specifically designed to model the
alignment between text and labels. We obtain a set of negative labels for
a given text and its positive label set. By leveraging contrastive learn-
ing, the TLA loss pulls the text closer to its positive label and pushes it
away from its negative label in the embedding space. This process aligns
text representations with related labels while distancing them from unre-
lated ones. Building upon this framework, we introduce the Hierarchi-
cal Text-Label Alignment (HTLA) model, which leverages BERT as the
text encoder and GPTrans as the graph encoder and integrates text-label
embeddings to generate hierarchy-aware representations. Experimental
results on benchmark datasets and comparison with existing baselines
demonstrate the effectiveness of HTLA for HTC.

Keywords: Multi-Label Classification · NLP · Representation
Learning

1 Introduction

In HTC, documents are assigned labels corresponding to nodes within a label
hierarchy tree [27]. It has applications across diverse domains, such as scien-
tific text categorization [1], bioinformatics [18], and online product labeling [20].
However, the imbalance in label frequency, coupled with the complex hierarchical
structure, makes HTC a challenging task [16].

Recent approaches to HTC employ a two-encoder framework, where a text
encoder processes the input text while a graph encoder captures the label hierar-
chy [3,7,15,21,27]. The hierarchy is predefined based only on parent-child rela-
tionships between labels, but there are aspects to the hierarchy beyond these
static links. For instance, a text sample is associated with a subset of labels
that can be considered a sub-hierarchy tree. In HTC, the semantics of the text
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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should align with the semantics of the labels in this sub-hierarchy. Aligning the
semantics of the text with the semantics of the associated labels ensures that
the classification model comprehensively captures the meaning conveyed in the
text and accurately assigns it to the appropriate categories within the label hier-
archy. This text-label alignment is dynamic since the sub-hierarchy changes for
each text sample. Furthermore, existing two-encoder frameworks overlook this
alignment between them as they encode text and labels separately.

We propose a text-label alignment (TLA) loss to address this challenge. TLA
is based on the principle of contrastive learning and is formulated along lines sim-
ilar to the NT-Xent loss [4]. For TLA to be effective, it is essential to carefully
construct a negative label set consisting of challenging labels that are seman-
tically distant from the text within the hierarchical structure. A hard negative
mining technique is employed to select labels that demonstrate high similarity
to the text sample but are not included in the positive label set, thus serving as
effective negative labels. Positive and negative pairs are formed by associating
each text sample with labels from the corresponding positive and negative label
sets. The TLA loss increases alignment for the positive pairs, pulling text sam-
ples and their positive labels closer in the embedding space. Simultaneously, it
decreases the alignment for negative pairs, thus pushing the text and negative
labels away from each other in the embedding space. By dynamically aligning
text and labels to the sub-hierarchy associated with each sample, the TLA loss
approach inherently adjusts to the hierarchy’s depth. This adaptability simpli-
fies implementation and ensures robust performance across datasets with varying
levels of hierarchy. Furthermore, in HTC, certain labels may be more prevalent
as they are assigned to several documents, while others are linked to relatively
fewer documents. This variation in label frequencies can result in label imbal-
ance, posing challenges for model training and performance. Since TLA involves
explicitly modeling text-label alignment for each positive label, regardless of its
frequency, it also helps mitigate the label imbalance issue.

Building on this, we introduce the Hierarchical Text-Label Alignment
(HTLA) model, which utilizes text-label alignment for HTC. HTLA uses BERT
as its text encoder and a custom implementation of GPTrans as its graph
encoder. GPTrans [5] uses transformer blocks and outperforms state-of-the-art
graph models on several graph learning tasks. Its ability to model the graph from
multiple dimensions makes it easily customizable for the HTC task. Within this
framework, the text and label features are combined through addition, yielding
a composite representation. HTLA is jointly optimized using the binary cross
entropy (BCE) and TLA loss. Including TLA loss contributes to performance
enhancement across datasets with simple and complex hierarchies. It models the
dynamic alignment between text and labels within the hierarchical structure,
addressing a challenge inadequately tackled in existing two-encoder frameworks.
We summarize the contribution of our work as follows:

– We propose using the Text-Label Alignment (TLA), a loss function designed
to align text with its related labels in the hierarchy.
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– We introduce HTLA, a model that utilizes BERT as the text encoder and
GPTrans as the graph encoder, optimized with BCE and TLA loss functions.

– Experimental results across several datasets demonstrate the superiority of
HTLA in improving classification performance.

2 Related Work

HTC’s existing methods can be divided into local and global approaches based
on how they utilize hierarchical information. Local approaches use multiple clas-
sifiers [9,11,25] to make independent predictions at each node of the hierarchy,
considering the local context and relationships within that specific node and its
neighborhood. Global approaches model the entire hierarchical structure with a
single classifier to generate predictions. Early global approaches aimed to merge
the hierarchical label space using meta-learning [23], recursive regularization
[10], and reinforcement learning [16]. These methods primarily focused on refin-
ing decoders based on hierarchical paths. The typical approach in recent studies
involves enhancing flat predictions by using a graph encoder to comprehensively
model the entire label structure. In their study, Zhou et al. [27] developed a
graph encoder that effectively integrates existing knowledge of the hierarchical
label space to acquire representations of the labels. Building upon this research,
several subsequent models have emerged to explore how the hierarchical struc-
ture interacts with the text. For instance, in [2], the authors performed a joint
embedding of text and labels within the hyperbolic space. Similarly, Chen et al.
[3] treated the problem as semantic matching, utilizing a shared space to learn
representations of both text and labels. Deng et al. [7] introduced an informa-
tion maximization module that enhances the interaction between text and labels
while imposing constraints on label representation. Zhao et al. [26] presented a
self-adaptive fusion strategy capable of extracting representations from text and
labels. Wang et al. [21] utilized contrastive learning techniques to incorporate
hierarchical information into the text encoder embedding directly. Ning et al.
[17] utilizes a unidirectional message-passing mechanism to improve hierarchi-
cal label information and propose a generative model for HTC. Liu et al. [15]
enhance label features by introducing density coefficients for label importance in
the hierarchy tree and address label imbalance with a rebalanced loss. Existing
methods have employed various intricate approaches to learn hierarchical rela-
tionships and merge text-label features. However they have not emphasized on
learning text-label alignment within the hierarchy. HTLA explicitly models for
this dynamic alignment, ensuring that the semantics of the text align with asso-
ciated labels in each sample’s sub-hierarchy. This simplifies merging text and
label features, requiring only addition for obtaining the composite features.

3 Methodology

The overall architecture of HTLA is depicted in Fig. 1. This section details the
components of our HTLA model, which includes the text encoder, graph encoder,
generation of composite representation, and the loss functions used.
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Fig. 1. Architecture of the Hierarchical Text-Label Alignment (HTLA) model. For a
label i, its feature is combined with the text feature htext through addition to produce
the composite feature Ci ∈ R

dh for each label. A shared classifier is then utilized for
each Ci, and the corresponding logit li is selected from the output vector. The model
is jointly optimized for BCE and TLA loss.

3.1 Text Encoder

We use BERT [8], a transformer-based model that generates highly contextual-
ized text embeddings by leveraging bidirectional context and pre-trained knowl-
edge, as our text encoder. The input text is padded with two special tokens to
mark the start and end of the text, as w = {[CLS], w1, w2, . . . , wn−2, [SEP ]}.
This is then fed to the BERT encoder to produce token representations as:

H = φBERT (w) (1)

where H ∈ R
n×dh contains encoded representations for all n tokens. The token

representation for [CLS] is chosen as the text feature for the entire sequence
because it captures its contextual information, denoted as htext ∈ R

dh .

3.2 Graph Encoder

GPTrans, a graph neural network, introduces the Graph Propagation Atten-
tion (GPA) mechanism into the Transformer architecture. Unlike existing
Transformer-based models that often fuse node and edge information without
explicit consideration, GPA in GPTrans dynamically propagates information
among nodes and edges, offering a more comprehensive and nuanced under-
standing of the graph structure.

Our customised implementation of GPTrans consists of three main compo-
nents: Feature Initialization, GPA, and LabelEnhancer module.

Feature Initialization. The node and edge features are initialized in this com-
ponent. For each label node i, the node feature gi ∈ R

dh is initialized as:

gi = embednode(i) + embedname(i) (2)
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– embednode(.) is a learnable embedding function that generates embedding of
size dh for each input node to capture essential node characteristics.

– embedname(.) function uses the BERT tokenizer to tokenize each label name,
calculates the average of the token embeddings, and assigns it to the label.
This process aids in extracting semantic information and summarizing distinc-
tive characteristics associated with each label. The weights used for learning
text embeddings with BERT are shared with embedname(.), ensuring infor-
mativeness in label features.

The edge feature xij ∈ R
dp for each pair of nodes is initialized as:

xij = Sf(i,j) + Eij (3)

– Sf(i,j) is the spatial encoding component, indexed by distance measure func-
tion f(i, j), representing the distance between nodes i and j. It is a learnable
embedding of size dp.

– Eij is the edge encoding component, accounting for edge weights along the
unique path (e1, e2, ..., eD) connecting nodes i and j in the label hierarchy
tree, where D = f(i, j). The computation for Eij involves averaging the edge
weights along this path, expressed as 1

D

∑D
z=1 wez , where each wez ∈ R

dp

represents the weight parameter for the corresponding edge ez.

Finally, matrices g ∈ R
K×dh and x ∈ R

K×K×dp are formed by stacking node
and edge features, respectively, where K is the number of label nodes.

Graph Propagation Attention. This modified attention module explicitly
defines the information flow between nodes and edges, allowing for the capture of
both local and higher-order relationships within the label hierarchy. To simplify,
we assume single-head self-attention in the following equations.

In the node-to-node flow, self-attention is improved by incorporating edge
information. For this edge features x are transformed using W1 ∈ R

dp×nhead

which is then added to the attention map. The update node features g′ ∈ R
K×dh

are then computed by multiplying with value matrix V as:

x′ = xW1; A =
(gWQ)(gWK)T√

dimh

+ x′; g′ = softmax(A)V (4)

where WQ,WK ,WV ∈ R
dh×dh , V = gWV , and dimh = dh/nhead refers to the

size of each head.
The node-to-edge flow updates the edge features based on attention pat-

terns observed during node-to-node interactions. The attention scores A ∈
R

K×K×nhead are combined with their softmax values, creating a weighted sum,
which is then transformed by the matrix W2 ∈ R

nhead×dp as:

x′ = (A + softmax(A))W2 (5)

In the edge-to-node flow, weights are computed based on edge features
x′ ∈ R

K×K×dp calculated in previous step. Subsequently, a weighted sum of edge
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features is utilized to update node features, followed by linear transformations
W3 ∈ R

dp×dh and W4 ∈ R
dh×dh , as:

g′′ = (sum(x′.softmax(x′), dim = 1))W3; g′′′ = (g′ + g′′)W4 (6)

For more details on GPA please refer to the original paper [5].

LabelEnhancer. The label node features g′′′ ∈ R
K×dh generated by GPA serve

as input to LabelEnhancer, a multi-layered neural network. It refines these node
representations, producing the final label features L ∈ R

K×dh as:

L = LabelEnhancer(g′′′) (7)

3.3 Generation of Composite Representation

To create a composite representation, we merge the text and label features by
adding them together. In the label feature matrix L ∈ R

K×dh , each fi represents
the feature vector for label i. We enhance the label feature fi by incorporating
the text feature htext ∈ R

dh from the corresponding sample. This results in a
composite feature Ci that captures both the textual context and the specific
characteristics of label i. Subsequently, this composite feature is fed into the
classifier. The logit score li for label i is calculated as the ith element of the
resulting classifier output vector, and the predicted output for label i is obtained
after applying sigmoid(.) on li. This process is formally defined in Eq. 8 below:

Ci = htext + fi; li = (WT
c Ci + b)i; ŷi = sigmoid(li) (8)

where Wc ∈ R
dh×K and b ∈ R

K are weights and bias of the classifier. The
parameters of the classifier (Wc and b) are shared across all labels, ensuring
consistency in predictions.

3.4 Loss Functions

Text-Label Alignment Loss. In HTC, it is desired that the representation
of a sample not only reflects its semantic content but also aligns closely with its
positive labels while remaining distinct from negative labels in the embedding
space. The challenge lies in identifying negative labels to establish the necessary
contrasting relationship for alignment. We use hard negative mining to select a
set of negative labels for each sample. Once both positive and negative labels are
identified, we form pairs with the text samples and compute the TLA loss. This
encourages closer alignment between text and its positive labels while maximiz-
ing dissimilarity with negative ones.

The TLA loss operates on a batch of text samples, denoted as M , each asso-
ciated with a set of positive labels P (i), where i represents the index of the text
sample. For each sample, we obtain a set of negative labels with high similarity
scores to the text sample, excluding those already identified as positive labels
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and denote it as N(i). A positive pair is formed consisting of (htexti , fp) where
fp denotes the label feature for label p ∈ P (i) and htexti represents text feature
of the ith sample. Similarly, a negative pair is formed consisting of (htexti , fn),
where fn denotes the label feature for label n ∈ N(i). The TLA loss is then
defined as:

LossTLA =
1
M

M∑

i=1

1
|P (i)|

∑

p∈P (i)

− log

(
exp(sim(htexti , fp)/τ)

∑
s∈S(i) exp(sim(htexti , fs)/τ)

)

(9)

where sim(.) computes cosine similarity, |P (i)| denotes cardinality of label set
P (i), S(i) = N(i)∪P (i), and τ ∈ R

+ controls temperature. Algorithm 1 outlines
the steps to compute TLA loss for a batch of text samples.

Algorithm 1. Text-label alignment (TLA) loss
1: Input: Text features Z(M ×dh), Label features L(K ×dh), True labels Y (M ×K),

Temperature τ
2: Output: TLA loss, LossTLA

3: P ← {}, N ← {} � Initialize set for positive and negative labels
4: sim_mat ← cos_sim(Z, LT ) � Compute cosine similarity
5: P ← {pi | pi = {j | Yij = 1}, ∀i ∈ {1, 2, . . . , M}} � Add indices of positive labels
6: for each i from 1 to M do � HardMining to get negative label set
7: N [i] ← {}
8: p_labels ← P [i]
9: neg_sim ← sim_mat[i]

10: for each label in p_labels do
11: neg_sim[label] ← −∞ � Set similarity to negative infinity for positive

labels
12: end for
13: sorted_indices ← argsort(neg_sim, descending = True)
14: hard_negative_labels ← {sorted_indices[k] | k ∈ [1, len(p_labels)]}
15: N [i] ← N [i] ∪ hard_negative_labels
16: end for
17: S ← {}
18: for each i from 1 to M do � Combine positive and negative label sets
19: S[i] ← P [i] ∪ N [i]
20: end for
21: Compute LossTLA using Equation 9
22: return LossTLA

Binary Cross Entropy Loss. While TLA enhances semantic alignment by
aligning text with its labels, BCE complements this by emphasizing the correct-
ness of label predictions, enabling the model to learn the distinctive features of
each label independently. BCE loss for a batch of M samples is formulated as:
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LossBCE = − 1
M

M∑

i=1

K∑

j=1

(
Yij log(Ŷij) + (1 − Yij) log(1 − Ŷij)

)
(10)

where Y ∈ R
M×K represents the true label values and Ŷ ∈ R

M×K represents
the predicted label probabilities.

Final Loss. The final loss for the HTLA model is obtained by the sum of both
BCE and TLA losses as:

LossHTLA = LossBCE + LossTLA (11)

Table 1. Statistical details for the WOS, RCV1-V2, and NYT datasets. |Level| indi-
cates the number of hierarchy levels, |L| is the total label count, and Mean-|L| denotes
the mean number of labels per sample

Dataset |Level| Train Val Test |L| Mean-|L|
WOS 2 30070 7518 9397 141 2.0
RCV1-V2 4 20833 2316 781265 103 3.3
NYT 8 23345 5834 7292 166 7.6

4 Experiments

4.1 Datasets and Evaluation Metrics

We conducted experiments and model evaluations using three datasets: WOS
[13], RCV1-V2 [14], and NYT [19]. The WOS dataset contains abstracts from
scientific papers, with their corresponding labels arranged in a single-path hier-
archy. RCV1-V2 and NYT are news categorization datasets with multiple label
paths in the hierarchy. Table 1 provides detailed statistics for each dataset. In
line with previous HTC studies [3,7,15,21], we followed the label hierarchy tax-
onomy, data preprocessing steps and train-val-test splits outlined in [27]. We
evaluated performance using the Micro-F1 and Macro-F1 scores, consistent with
previous research [3,7,15,21,27].

4.2 Implementation Details

Our code is available at: https://github.com/havelhakimi/TLA. In our imple-
mentation, we use the bert-base-uncased model from the hugging face transform-
ers library [22] as our BERT-based text encoder. We utilize a single layer of the
GPTrans block, which includes a multi-headed attention mechanism with 12
attention heads (nhead). The edge feature size, dp, is set to 30 for all datasets,
determined through grid search on validation set. As for the node feature size,

https://github.com/havelhakimi/TLA
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dh, we keep it identical to the text representation size of 768. The temperature
hyperparameter τ for TLA is set to 0.07 for all datasets. During training, we use
a batch size of 10 and opt for the Adam optimizer with a learning rate of 1e-5.
Our model is implemented in PyTorch and trained end-to-end. We assess the
model’s performance on the validation set after each epoch and halt the training
procedure if the Macro-F1 score does not show improvement for six consecutive
epochs. The architectural details of the LabelEnhancer module are outlined in
Table 2.

Table 2. Layer specification for the LabelEnhancer module

Layer Input/Output Shape

Input K × dh (label features g′′′)
Linear K × dh/K × 4dh

Activation (GELU) K × 4dh/K × 4dh

Dropout K × 4dh/K × 4dh

Linear K × 4dh/K × dh

Dropout K × dh/K × dh (intermediate label features ĝ)
Residual Connection K × dh/K × dh (g′′′ + ĝ)
Layer Normalization K × dh/K × dh (Final label features L)

4.3 Experimental Results

Table 3 displays the results of HTLA and compares them with various baselines.
For a detailed analysis and comparison, we also implemented fine-tuned BERT
(bert-base-uncased from Hugging Face) and the BERT-GPTrans and HGCLR
[21] alongside HTLA. While BERT employs a flat multi-label classification with-
out considering hierarchy, BERT-GPTrans models hierarchy and is trained solely
on the BCE loss. HGCLR uses contrastive learning to embed hierarchy infor-
mation into BERT encoder. HGCLR, constructs positive samples for input text
by masking unimportant tokens from the representation obtained through cross-
attention between text and label features. The masking of tokens is determined
by a threshold value, an additional hyperparameter that needs tuning for each
dataset. This can inevitably introduce noise and overlook label correlations if
the threshold is not appropriate. HTLA aligns text with its positive labels on
a per-sample basis, ensuring that relationships between labels within the sub-
hierarchy tree are implicitly captured. We conducted a one-sided paired t-test
with significance level set at 0.05 to determine whether HTLA yield significantly
improved outcomes. t-tests are recommended for assessing hypotheses related to
average performance [6], and they remain robust even when normality assump-
tions are violated [12]. Across all datasets, the performance scores of HTLA show
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Table 3. Comparison of results across three datasets. We report average score of 8
random runs for our implemented models(denoted with an asterisk (*)), with the second
best results among our implemented models underlined. Results for other models were
sourced from their respective papers.

Model WOS RCV1-V2 NYT
MiF1 MaF1 MiF1 MaF1 MiF1 MaF1

TextCNN [27] 82.00 76.18 79.37 59.54 70.11 56.84
TextRCNN [27] 83.55 76.99 81.57 59.25 70.83 56.18
HiLap-RL [16] - - 83.30 60.10 74.60 51.60
HiAGM [27] 85.82 80.28 83.96 63.35 74.97 60.83
HTCInfoMax [7] 85.58 80.05 83.51 62.71 - -
HiMatch [3] 86.20 80.53 84.73 64.11 - -
LSE-HiAGM [15] 86.01 80.01 83.86 64.57 75.01 61.29
BERT+HiAGM [21] 86.04 80.19 85.58 67.93 78.64 66.76
BERT+HTCInfoMax [21] 86.30 79.97 85.53 67.09 78.75 67.31
HiMatch-BERT [3] 86.70 81.06 86.33 68.66 - -
HGCLR [21] 87.11 81.20 86.49 68.31 78.86 67.96
BERT* 85.85 79.93 86.14 67.10 78.65 66.31
BERT-GPTrans* 86.74 80.62 86.28 68.19 78.89 67.34
HGCLR* 87.09 81.08 86.27 68.09 78.53 67.20
HTLA* 87.38 81.88 87.14 70.05 80.30 69.74

a statistically significant improvement. Further details regarding the statistical
tests can be found in Appendix A.

For the WOS, RCV1-V2 and NYT datasets, the HTLA shows a 0.8%, 1.9%,
2.4%, increase in the Macro-F1 (MaF1) compared to the second best. HTLA is
more effective in enhancing text-label alignment for datasets with deeper hier-
archies like RCV1-V2 and NYT, where multiple positive labels exist at each
level. However, in WOS, characterized by a shallow two-level hierarchy and only
one related label per level, the improvements are comparatively modest. Also,
the improvements in Micro-F1(MiF1) are somewhat limited across all datasets,
mainly due to its computation method. MiF1 aggregates the confusion matrix
for each label, making it sensitive to predominant labels characterized by high
frequencies. Conversely, MaF1 computes distinct F1 scores for each label and
then averages them, assigning equal importance to all labels, irrespective of
their occurrence frequency. The considerable increase in MaF1 suggests that our
models effectively handle label imbalance and improve the classification of less
common labels.
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4.4 Analysis

Performance Amid Label Imbalance. Evaluating a model’s performance
across different levels of label prevalence can provide insight into its efficacy
under label imbalance. To assess model performance, we arrange the labels in
descending order by the number of associated documents and divide them into
five equally sized groups, denoted P1 to P5. Each group contains 20% of the
labels, with P1 comprising the most prevalent labels and P5 the least. Figure 2
illustrates performance across these prevalence categories. HTLA outperforms
other models, particularly for less prevalent labels in category P5, demonstrating
its effectiveness in addressing label imbalance.

(a) WOS (b) RCV1-V2 (c) NYT

Fig. 2. Model performance across label prevalence categories

Performance Across Hierarchy Levels. Labels within hierarchies can span
from general to highly specific categories. Models that excel at capturing broad
patterns may struggle with finer distinctions, particularly at lower levels of
the hierarchy. Figure 3 illustrates the model performance across hierarchy levels
for datasets with shallow hierarchies (WOS) and those with deeper hierarchies
(RCV1-V2 and NYT). In WOS, HTLA outperforms its counterparts, particu-
larly for fine-grained labels at the second level. In RCV1-V2, characterized by
numerous ambiguous labels at the second level and fine-grained labels at levels
two and three, HTLA consistently outperforms other models. In NYT, which fea-
tures the deepest hierarchy and an uneven distribution of labels across different
levels, HTLA exhibits superior performance, especially at the deeper levels.

(a) WOS (b) RCV1-V2 (c) NYT

Fig. 3. Model performance across hierarchy levels
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Performance Based on the Number of Label Paths. We conduct a perfor-
mance analysis for datasets with multiple label paths by grouping samples based
on the number of paths they traverse in the label hierarchy. Figure 4 illustrates
the performance on samples for both the RCV1-V2 and NYT datasets. For both
datasets, HTLA demonstrates a performance boost compared to other models
as the number of label paths increases. These results indicate that HTLA excels
in handling hierarchical structures with multiple label paths, making it a robust
performer for datasets with intricate and complex hierarchies.

(a) RCV1-V2 (b) NYT

Fig. 4. Model performance across label paths

Ablation Study and Model Generalizability. Our model, HTLA, lever-
ages TLA Loss and customized GPTrans, which consists of embednode(.) and
embedname(.) functions to initialize features, along with a LabelEnhancer(LE)
module to refine label features. To assess each component’s impact, we system-
atically removed them one at a time. The first part of Table 4 presents ablation
results for HTLA. The results clearly indicate that the removal of these com-
ponents leads to a decrease in performance, while HTLA, with all components
intact, achieves the best performance among the compared models. Furthermore,
to demonstrate model generalizability, we conducted experiments on two addi-
tional text datasets: AAPD [24] and BGC [1], using the same train-val-test splits
as the original studies. Further details regarding these datasets are provided in
Appendix B. The second part of Table 4 presents the results on these additional
datasets, where the use of HTLA shows a performance boost compared to other
models.
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Table 4. Ablation results for HTLA (first part) and results on AAPD and BGC
datasets (second part)

Model WOS RCV1-V2 NYT
MiF1 MaF1 MiF1 MaF1 MiF1 MaF1

w/o TLA(BERT-GPTrans) 86.74 80.62 86.28 68.19 78.89 67.34
w/o embedname 86.37 80.51 86.71 68.10 78.87 67.21
w/o embednode 86.48 80.58 86.90 68.45 79.58 68.24
w/o LE 86.81 80.87 86.53 68.38 79.15 68.75
HTLA 87.38 81.88 87.14 70.05 80.30 69.74

Model AAPD (2-level hierarchy) BGC (4-level hierarchy)
MiF1 MaF1 MiF1 MaF1

BERT 57.65 80.90 63.21 79.77
BERT-GPTrans 58.17 81.17 64.28 80.48
HTLA 62.37 81.95 66.05 81.05

5 Conclusion

Existing methods face challenges in effectively aligning text-label semantics
within the hierarchy. To address this, we propose TLA, a loss function explicitly
modeling the alignment between text and its associated labels. Building upon
this, we introduce HTLA model, employing a two-encoder architecture to merge
text-label embeddings for enhanced representations in HTC. Our experiments
show HTLA outperforms existing methods on benchmark datasets. We further
analyze its performance amid label imbalance, across hierarchy levels, and based
on the number of label paths to demonstrate effectiveness. Additionally, we val-
idate HTLA’s components and generalization capabilities. In future work, we
aim to extend our approach to non-textual domains like images, biological data,
and other multi-modal datasets.

Acknowledgements. This study was funded by the PMRF (Prime Minister’s
Research Fellow) program, run by the Ministry of Education, Government of India.
We also acknowledge National Supercomputing Mission (NSM) for providing comput-
ing resources of ‘PARAM Ganga’ at IIT Roorkee, which is implemented by C-DAC
and supported by the Ministry of Electronics and Information Technology (MeitY)
and Department of Science and Technology (DST), Government of India.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

A Details of Statistical Test

We evaluated the effectiveness of our implemented models by analyzing Micro-
F1 (MiF1) and Macro-F1 (MaF1) scores, reporting average results from 8 runs.
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Subsequently, we employed one-sided paired t-tests to assess the significance of
performance variations among the models across the three datasets as detailed
in Table 5. Except for the Micro-F1 score for the HTLA vs. HGCLR comparison
in WOS, all p-values for comparisons are significantly below the threshold of
0.05, implying that the HTLA model demonstrates a statistically significant
performance improvement.

Table 5. p-value for one-sided t-test

Model WOS RCV1-V2 NYT
MiF1 MaF1 MiF1 MaF1 MiF1 MaF1

HTLA vs HGCLR 0.23 1.8e−4 3.7e−5 1.8e−4 1.3e−6 3.4e−7
HTLA vs BERT-GPTrans 2.4e−2 4.2e−4 1.5e−6 3.1e−5 5.1e−6 2.7e−7
HTLA vs BERT 5.1e−3 1.7e−4 6.2e−8 2.2e−6 4.5e−7 1.3e−8

B Performance Analysis on Additional Datasets

We conducted experiments on two additional datasets, namely AAPD and BGC,
to validate the generalization capabilities of the HTLA model. AAPD consists
of abstracts of scientific papers from the arXiv.org1 website, while BGC2 con-
tains book blurbs from the Penguin Random House website. Both datasets con-
sist of multipath labels. Table 1 provides detailed statistics for the two datasets
(Table 6).

Table 6. Statistical details for the AAPD and BGC. |Level| indicates the number of
hierarchy levels, |L| is the total label count, and Mean-|L| denotes the mean number
of labels per sample

Dataset |Level| Train Val Test |L| Mean-|L|
AAPD 2 53840 1000 1000 61 4.09
BGC 4 58715 14785 18394 146 3.01
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Abstract. Secure aggregation (SecAgg) is a commonly-used privacy-
enhancing mechanism in federated learning, affording the server access
only to the aggregate of model updates while safeguarding the confi-
dentiality of individual updates. Despite widespread claims regarding
SecAgg’s privacy-preserving capabilities, a formal analysis of its privacy
is lacking, making such presumptions unjustified. In this paper, we delve
into the privacy implications of SecAgg by treating it as a local differen-
tial privacy (LDP) mechanism for each local update. We design a simple
attack wherein an adversarial server seeks to discern which update vector
a client submitted, out of two possible ones, in a single training round
of federated learning under SecAgg. By conducting privacy auditing, we
assess the success probability of this attack and quantify the LDP guar-
antees provided by SecAgg. Our numerical results unveil that, contrary
to prevailing claims, SecAgg offers weak privacy against membership
inference attacks even in a single training round. Indeed, it is difficult to
hide a local update by adding other independent local updates when the
updates are of high dimension. Our findings underscore the imperative
for additional privacy-enhancing mechanisms, such as noise injection, in
federated learning.

Keywords: Federated learning · Secure aggregation · Differential
privacy · Membership inference

1 Introduction

Federated learning (FL) [27] allows multiple clients to collaboratively train a
machine learning model. In each training round, the clients share their local
model updates with a central server, which then aggregates them to improve
the global model. Although raw data is not shared in the clear, vanilla FL is
prone to model-inversion attacks [18] and membership-inference attacks [29]. To
mitigate such attacks, secure aggregation (SecAgg) [9] has been proposed, where
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the clients jointly mask their local model updates so that only the aggregate is
revealed to the server.

Many papers explicitly or implicitly assume that SecAgg provides strong
privacy against honest-but-curious servers in a single round [16,19,30,31]. How-
ever, a formal analysis of the privacy offered by SecAgg is lacking, making this
presumption unjustified. SecAgg has been combined with differential privacy
(DP) [14] to ensure that the server only sees the aggregate of the noisy local
updates [2,22]. However, in these works, the privacy analysis does not account
for SecAgg. It remains unclear how much privacy SecAgg by itself provides for
individual updates.

Main Contributions. We address the question: how much privacy does SecAgg
by itself guarantee for the local updates? Specifically, we formally analyze the
privacy of SecAgg against membership inference attacks wherein the server aims
to distinguish, from two potential update vectors, the one a client submitted in
a single training round of FL with SecAgg. Our approach consists in treating
SecAgg as a local differential privacy (LDP) mechanism for each update, where
the sum of the other clients’ updates plays the role of a source of uncontrolled
noise. We then characterize the privacy parameters (ε, δ) for SecAgg to satisfy
(ε, δ)-LDP via the following steps.

• We show that, under some practical assumptions, as the client population
grows, the sum of the clients’ updates converges to a Gaussian vector (Theo-
rem 1). We analyze the optimal privacy guarantee of the Gaussian mechanism
with correlated noise (Theorem 2).

• We evaluate the optimal LDP parameters of SecAgg in some special cases
(Theorem 3 and Corollary 1) and verify that these parameters are close to
that of a Gaussian mechanism, even for a small number of clients (Fig. 1).

• Exploiting the similarity of SecAgg and a Gaussian mechanism, we audit
the privacy of SecAgg. Specifically, we design a simple membership inference
attack wherein the server regards SecAgg as a Gaussian mechanism with
correlated noise. We then evaluate the achievable false negative rate (FNR)
and false positive rate (FPR) of this attack and use these values to compute
a lower bound on the smallest ε for SecAgg to satisfy (ε, δ)-LDP.

We apply our privacy auditing procedure to federated averaging for a classifica-
tion problem on the ADULT dataset [5] and the EMNIST Digits dataset [11].
We show that both the FNR and FPR can be small simultaneously, and the
audited (ε, δ) are high. Our results reveal that SecAgg provides weak privacy
even for a single training round. Indeed, it is difficult to hide a local update by
adding other independent local updates when the updates are of high dimension.
Therefore, SecAgg cannot be used as a sole privacy-enhancing mechanism in FL.
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2 Related Work

Secure Aggregation. Based on cryptographic multi-party computation,
SecAgg ensures that the central server sees only the aggregate of the clients’
local updates, while individual updates are kept confidential. This is achieved
by letting the clients jointly add randomly sampled masks to their updates via
secret sharing, such that when the masked updates are aggregated, the masks
cancel out [6,9]. With SecAgg, a client’s update is obfuscated by many other
clients’ updates. However, the level of privacy provided by SecAgg lacks a for-
mal analysis. In [16], this level was measured by the mutual information between
a local update and the aggregated update. However, mutual information only
measures the average privacy leakage and does not capture the threat to the
most vulnerable data points. Furthermore, the bound provided in [16] is not
explicit, i.e., not computable.

Differential Privacy. DP is a rigorous privacy measure that quantifies the
ability of an adversary to guess which dataset, out of two neighboring ones, a
model was trained on [14,15]. DP is typically achieved by adding noise to the
model/gradients obtained from the dataset [1]. A variant of DP is LDP [13,24],
where the noise is added to individual data points. When applied to achieve
client-level privacy in FL, LDP lets the clients add noise to their updates before
sending the updates to the server.

Privacy Attacks in FL with SecAgg. Model inversion attacks [18] and
membership-inference attacks [29] have been shown to seriously jeopardize the
integrity of FL. When SecAgg is employed, the server can perform disaggregation
attacks to learn the individual data. A malicious server performs active attacks
by suppressing the updates of non-target clients [8,17]. For an honest-but-curious
server, existing passive attacks require that the server leverages the aggregated
model across many rounds [25,26]. Differently from these works, we consider a
passive attack based only on the observation in a single round.

3 Preliminaries

We denote random quantities with lowercase nonitalic letters, such as a scalar x
and a vector x. The only exception is the privacy-loss random variable (PLRV) L,
which is in uppercase. Deterministic quantities are denoted with italic letters,
such as a scalar x and a vector x. We denote the multidimensional normal dis-
tribution with mean μ and covariance matrix Σ by N (μ,Σ) and its probability
density function (PDF) evaluated at x by N (x;μ,Σ). We denote by Φ(x) the
cummulative distribution function (CDF) of the standard normal distribution
N (0, 1), i.e., Φ(x) � 1√

2π

∫ x

−∞ e−u2/2du. We denote by [m : n] the set of integers
from m to n; [n] � [1 : n]; (·)+ � max{0, ·}. Furthermore, 1{·} denotes the
indicator function, and f(n) = o(g(n)) means that f(n)/g(n) → 0 as n → ∞.
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Let φ be a decision rule of a hypothesis test between {H : the underlying
distribution is P} and {H ′ : the underlying distribution is Q}. Specifically, φ
returns 0 and 1 in favor of H and H ′, respectively. A false positive (resp. false
negative) occurs when H (resp. H ′) is true but rejected. The FPR and FNR of
the test are given by αφ � EP [φ] and βφ � 1 − EQ [φ], respectively.

Definition 1 (Trade-off function). The trade-off function TP,Q(·) : [0, 1] →
[0, 1] is the map from the FPR to the corresponding minimum FNR of the test
between P and Q, i.e., TP,Q(α) � infφ : αφ≤α βφ, α ∈ [0, 1].

We also write the trade-off function for the distributions of x and y as Tx,y(·).
We next state the definition of LDP.

Definition 2 (LDP [13,24]). A mechanism M satisfies (ε, δ)-LDP if and only
if, for every pair of data points (x,x′) and for every measurable set E, we have
P [M(x) ∈ E ] ≤ eε

P [M(x′) ∈ E ] + δ.

For a mechanism M , we define the optimal LDP curve δM (ε) as the function
that returns the smallest δ for which M satisfies (ε, δ)-LDP. We next define a
variant of LDP that is built upon the trade-off function in a similar manner as
f -DP [12, Def. 3].

Definition 3 (f-LDP). For a function f , a mechanism M satisfies f-LDP
if for every pair of data points (x,x′), we have that TM(x),M(x′)(α) ≥ f(α),∀α ∈
[0, 1].

For a mechanism M , we define the optimal f -LDP curve fM (·) as the upper
envelope of all functions f such that M satisfies f -LDP. In the paper, we regard
SecAgg as a LDP mechanism and provide bounds on both its optimal LDP curve
and optimal f -LDP curve.

4 Privacy Analysis of Secure Aggregation

We consider a FL scenario with n + 1 clients and a central server. The model
update of client i can be represented as a vector xi ∈ R

d. Under SecAgg, the
server only learns the aggregate model update x̄ =

∑n
i=0 xi, while the individual

updates {xi}n
i=0 remain confidential.

4.1 Threat Model

Server. The server is honest and follows the FL and SecAgg protocols. We
assume that it observes the exact sum x̄. In practical SecAgg, the clients dis-
cretize their updates (using, e.g., randomized rounding) and the server obtains
a modulo sum. These operations introduce perturbations that can improve pri-
vacy [34]. However, they do not capture the essence of SecAgg which is to use
the updates of other clients to obfuscate an individual update. The rounding and
modulo operations can be applied even in a setting without SecAgg. We ignore
the perturbation caused by these operations to focus on the privacy obtainable
by using the updates of other clients to obfuscate an update.
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Clients. The clients are also honest. Client i computes the local model update
xi from the global model in the previous round and its local dataset. We also
assume that each vector xi, i ∈ [0 : n], has correlated entries since these entries
together describe a model, and that the vectors are mutually independent. The
latter assumption holds in the first training round if the clients have independent
local data. Furthermore, the independence assumption results in the best-case
scenario for privacy as, if the vectors are dependent, the sum reveals more infor-
mation about each vector. Therefore, the privacy level for the case of independent
{xi}n

i=0 acts as an upper bound on the privacy for the case of dependent vectors.
So if privacy does not hold for independent data, it will also not hold when there
is dependence.

Privacy Threat. The server is curious. It seeks to infer the membership of a
targeted client, say client 0, from the aggregate model updates x̄. We consider a
membership inference game [33] where: i) a challenger selects a pair of possible
local updates (x0,x

′
0) of client 0, one of which is used in the aggregation, and

sends this pair to the server, ii) the server observes x̄ and guesses if x0 or x′
0

was submitted by client 0. Note that this attack can be an entry point for the
server to further infer the data of client 0. Our goal is to quantify the capability
of SecAgg in mitigating this attack.

4.2 SecAgg as a Noiseless LDP Mechanism

Hereafter, we focus on client 0; the analysis for other clients follows similarly. Our
key idea is to view SecAgg through the lens of noiseless DP [7], where the con-
tribution of other clients can be seen as noise and no external (controlled) noise
is added. More precisely, for client 0, SecAgg plays the role of the mechanism

M(x0) = x0 + y, (1)

where y =
∑n

i=1 xi is a source of uncontrolled noise.
The aforementioned membership inference game can be cast as follows: given

M(x0), the server guesses whether it came from PM(x0)|x0=x0 or PM(x0)|x0=x′
0

for
the worst-case pair (x0,x

′
0). This game is closely related to the LDP framework.

First, the tradeoff between the FPR and FNR of the server’s guesses is captured
by the f -LDP guarantee of M . Second, as M achieves a stronger (ε, δ)-LDP
guarantee, the distributions PM(x0)|x0=x0 and PM(x0)|x0=x′

0
become more simi-

lar, and the hypothesis test between them becomes harder. Therefore, we shall
address the following question: how much LDP or f -LDP does SecAgg guarantee
for client 0? Specifically, we shall establish bounds on the optimal LDP curve
δM (ε) and optimal f -LDP curve fM (·) of the mechanism M .

4.3 Asymptotic Privacy Guarantee

Let us first focus on the large-n regime. The following asymptotic analysis will
be used as inspiration for our privacy auditing procedure to establish a lower
bound on the LDP curve in Sect. 4.5.
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We assume that the �2 norm of the vectors {xi}n
i=1 scales as o(

√
n), which

holds if, e.g., d is fixed. In this case, y converges to a Gaussian vector when
n → ∞, as stated in the next theorem.

Theorem 1 (Asymptotic noise distribution). Assume that {xi}n
i=1 are

independent, ‖xi‖2 = o(
√

n) for i ∈ [n], and 1
n

∑n
i=1 Cov[xi] → Σ as n → ∞.

Then 1√
n

(∑n
i=1xi−E [

∑n
i=1xi]

)
converges in distribution to N (0,Σ) as n → ∞.

Proof. Theorem 1 follows by applying the multivariate Lindeberg-Feller central
limit Theorem [32, Prop. 2.27] to the triangular array

{
xi√

n

}
n,i

, upon verifying

the Lindeberg condition lim
n→∞

∑n
i=1 E

[‖xi‖2
2

n 1
{

‖xi‖2√
n

> ε
}]

= 0,∀ε > 0. Since

‖xi‖2 = o(
√

n), i.e., ‖xi‖2/
√

n → 0 as n → ∞, this condition indeed holds. 
�
Theorem 1 implies that, when n is large, under the presented assumptions,

the mechanism M̃(x0) = M(x0)−E [y] behaves like a Gaussian mechanism with
noise distribution N (0,Σy), where Σy is the covariance matrix of y. Further-
more, since the map from M to M̃ is simply a shift by a fixed vector E [y], i.e.,
it is a bijection, we have from the post-processing property1 that the optimal
LDP curve of M is the same as that of M̃ .

We now provide privacy guarantees for a Gaussian mechanism with correlated
noise, to capture the correlation between the entries of the vectors xi. The next
theorem, proved in Appendix A.1, is an extension of the optimal privacy curve
of the uncorrelated Gaussian mechanism [4, Theorem 8].

Theorem 2 (Correlated Gaussian mechanism). Consider the mechanism
G(x) = x+y where x belongs to a set Sd ⊂ R

d, and y ∼ N (0,Σy). The optimal
LDP curve of G is

δG(ε) = Φ
(Δ

2
− ε

Δ

)
− eεΦ

(
− Δ

2
− ε

Δ

)
(2)

where Δ = maxx,x′∈Sd
Δx,x′ with

Δx,x′ �
√

(x − x′)TΣ−1
y (x − x′). (3)

In Sect. 4.4, we shall verify the similarity between the privacy of SecAgg and
that of the Gaussian mechanism G via numerical examples.

Parameter Δ is the maximum Euclidean distance between a pair of input
vectors transformed by matrix Σ−1/2 (similar to the whitening transformation).
It plays the same role as the ratio of the sensitivity and the noise standard
deviation in the case of uncorrelated noise [4]. We remark that the privacy guar-
antee of G is weakened as Δ increases: for a given ε, δG(ε) increases with Δ.
To achieve small ε and δ, we need Δ to be small. The impact of Δ can also be

1 If a mechanism M satisfies (ε, δ)-LDP, then so does h ◦ M for a mapping h that
is independent of M . The proof of this result is similar to the proof of the post-
processing property of DP [15, Prop. 2.1].
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seen via the hypothesis test associated to the considered membership inference
game. Consider an adversary that observes an output z of G and tests between
{H : z came from PG(x)|x=x} and {H ′ : z came from PG(x)|x=x′}. This is effec-
tively a test between N (x,Σy) and N (x′,Σy). The trade-off function for this
test is stated in the following proposition, which is proved in Appendix A.3.

Proposition 1. TN (x,Σy),N (x′,Σy)(α) = Φ
(
Φ−1(1 − α) − Δx,x′

)
, α ∈ [0, 1].

The trade-off function decreases with Δx,x′ . A large Δx,x′ facilitates the dis-
tinguishability of the pair (x,x′), and thus weakens the privacy guarantee. Fur-
thermore, the worst-case pair (x,x′) that minimizes the trade-off function is
given by the maximizer of Δx,x′ . It follows that the optimal f -LDP curve of the
Gaussian mechanism G is fG(α) = Φ

(
Φ−1(1 − α) − Δ

)
, α ∈ [0, 1].

4.4 Upper Bounding δM (ε) via Dominating Pairs of Distributions

We now upper-bound the optimal LDP curve of M in (1) for finite n. We shall
then consider the case in which the upper bound is tight and verify the conver-
gence of SecAgg to a Gaussian mechanism.

We define the hockey-stick divergence with parameter α between two proba-
bility measures P and Q as Eα(P‖Q) = supE(P (E)− αQ(E)). We also write the
hockey-stick divergence between the distributions of x and y as Eα(x‖y). The
condition for LDP in Definition 2 is equivalent to supx 
=x′ Eeε(M(x)‖M(x′)) ≤ δ.
Therefore, the optimal LDP curve of mechanism M is given by

δM (ε) = supx 
=x′ Eeε(M(x)‖M(x′)) . (4)

A pair of measures (P,Q) is called a dominating pair of distributions for M if

supx 
=x′ Eeε(M(x)‖M(x′)) ≤ Eeε(P‖Q), ∀ε ≥ 0 . (5)

If equality is achieved in (5) for every ε ≥ 0, then (P,Q) is said to be a tightly
dominating pair of distributions for M . For each dominating pair (P,Q), we
associate a privacy-loss random variable L � ln dP

dQ (y) with y ∼ P , where dP
dQ is

the Radon-Nikodym derivative. We have that

Eeε(P‖Q) = E
[
(1 − eε−L)+

]
� δL(ε) . (6)

It follows readily that δL(ε) is an upper bound on the optimal LDP curve δM (ε).
Without a known distribution of y, it is challenging to characterize a dom-

inating pair of distributions for the mechanism M in (1). In the next theorem,
proved in Appendix B, we make some assumptions on Py to enable such char-
acterization.

Theorem 3 (Dominating pair of distributions). Let x0 = (x01, x02, . . . ,
x0d) and assume that rj ≤ x0j ≤ rj, j ∈ [d]. Assume further that y has indepen-
dent entries, i.e., Py = Py1

×· · ·×Pyd
, and that the marginal probabilities {Pyj

}
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are log-concave and symmetric.2 Then, a dominating pair of distributions for the
mechanism M(x0) in (1) is given by (Pr1+y1

×· · ·×Prd+yd
, Pr1+y1

×· · ·×Prd+yd
).

The family of log-concave distributions includes the typical noise distributions
in DP, namely, the Gaussian and Laplace distributions, as well as many other
common distributions, e.g., the exponential and uniform distributions [3]. If each
vector xi, i ∈ [n], has independent entries following a log-concave distribution,
then so does the sum y =

∑n
i=1 xi, because log-concavity is closed under convolu-

tions [28]. Under the presented assumptions, Theorem 3 allows us to characterize
an upper bound on the LDP curve of M as δL(ε) with L =

∑d
j=1 ln

Prj+yj
(zj)

Prj+yj
(zj)

where zj ∼ Prj+yj
, j ∈ [d].

Corollary 1. If the support of x0 contains (r1, . . . , rd) and (r1, . . . , rd), the
dominating pair of distributions in Theorem 3 becomes tight, and the resulting
upper bound δL(ε) is the optimal LDP curve.

We now use Corollary 1 to evaluate the optimal LDP curve of mechanism M
in (1) when each xi has independent entries. We aim to verify the convergence
of SecAgg to a Gaussian mechanism implied by Theorem 1 and understand how
the LDP curve depends on the model size d. We consider two cases. In the
first case, the entries follow the exponential distribution with parameter 1, and
thus y has independent entries following the Gamma distribution with shape n
and scale 1. For convenience, we further assume that x0 is truncated such that
0 ≤ x0j ≤ 4, j ∈ [d]. In the second case, the entries are uniformly distributed in
[−1/2, 1/2], and thus y has independent entries following the shifted Irwin-Hall
distribution with PDF pyi

(y) = 1
(n−1)!

∑n
k=0(−1)k

(
n
k

)[
(y+n/2−k)+

]n−1. Both
cases satisfy the conditions of Corollary 1. We can therefore obtain the optimal
LDP curves and depict them in Fig. 1. We also show the optimal LDP curve of the
Gaussian mechanism G with the same noise covariance matrix Σy. We see that
the optimal LDP curve of M is indeed close to that of G, even for a small value
of n in the second case. Furthermore, although Theorem 1 assumes a fixed d and
n → ∞, Fig. 1 suggests that M behaves similarly to a Gaussian mechanism even
for large d. Remarkably, for a given ε, the parameter δ increases rapidly with d,
indicating that the privacy of SecAgg is weak for high-dimensional models.

4.5 Lower Bounding δM (ε) and Upper Bounding fM (·) via Privacy
Auditing

In practical FL, the updates typically have a distribution that does not satisfy
the conditions of Theorem 3 and is not known in closed form. Therefore, we now
establish a numerical routine to compute a lower bound on the optimal LDP
curve and an upper bound on the optimal f -LDP curve of M . The proposed

2 Pyj
is symmetric if there exists a y∗ such that Pyj

(A+y∗) = Pyj
(−A+y∗) for every

subset A of the support of yj . Here, −A � {−y : y ∈ A}.
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Fig. 1. The optimal LDP curve of M in (1) where each xi has independent entries,
compared with the Gaussian mechanism G with the same noise covariance matrix.

numerical routine exploits the similarity of SecAgg and a Gaussian mechanism
as discussed in Sects. 4.3 and 4.4. The bounds are based on the following result.

Proposition 2 (LDP via the trade-off function). A mechanism M satisfies
(ε, δ)-LDP if and only if for every α ∈ [0, 1],

ε ≥ lnmax
{

1 − δ − α

infx 
=x′ TM(x),M(x′)(α)
,
1 − δ − infx 
=x′ TM(x),M(x′)(α)

α

}

. (7)

The proof of Proposition 2 follows from similar arguments for DP in [23,
Thm. 2.1]. This proposition implies that, if a pair (FPR,FNR) is achievable
for some decision rule φ between the distributions of M(x) and M(x′) for some
(x,x′), then the mechanism does not satisfy (ε, δ)-LDP for δ ∈ [0, 1] and

ε < lnmax
{
1 − δ − FPR

FNR
,
1 − δ − FNR

FPR

}

. (8)

This gives a lower bound on the optimal LDP curve of M . Furthermore, it
follows readily from Definition 3 that, for an achievable pair (FPR,FNR) of
the mentioned test, the mechanism does not satisfy f -LDP for any trade-off
function f such that f(FPR) < FNR. Therefore, a collection of achievable pairs
(FPR,FNR) constitutes an upper bound on the optimal f -LDP curve of M .

We shall use this result to perform privacy auditing [21,33]. Specifically, fol-
lowing the defined membership inference game (see privacy threat in Sect. 4.1),
we conduct a hypothesis test between {H : z came from PM(x0)|x0=x0} and
{H ′ : z came from PM(x0)|x0=x′

0
} for a given output z of M . That is, we select

a pair (x0,x
′
0) for the challenger and a decision rule φ for the server. We then
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evaluate the achievable pair (FPR,FNR), and obtain therefrom a lower bound
on the optimal LDP curve and an upper bound on the optimal f -LDP curve of
M . To design the attack, we draw inspiration from the asymptotic analysis in
Sect. 4.3 as follows.

We consider the likelihood-ratio test, i.e., the test rejects H if

ln
PM(x0) |x0(z |x0)
PM(x0) |x0(z |x′

0)
= ln

Py(z − x0)
Py(z − x′

0)
≤ θ (9)

for a given threshold θ. We choose the input pair (x0,x
′
0) as the worst-case

pair, i.e., (x0,x
′
0) = argmin

x,x′
TM(x),M(x′)(α), ∀α ∈ [0, 1]. However, the trade-off

function is not known in closed-form in general, and thus finding the worst-case
pair is challenging. Motivated by Theorem 1, we treat y as a Gaussian vector
with the same mean μy and covariance Σy. We thus approximate the trade-
off function TM(x),M(x′)(·) by TN (x,Σy),N (x′,Σy)(·), and choose (x0,x

′
0) as the

minimizer of the latter. Using Proposition 1, we have that

(x0,x
′
0) = argmax

x,x′∈X0

Δx,x′ (10)

where X0 is the support of x0.
If the server does not know Py(y) in closed form, we let it approximate Py(y)

as N (y;μy,Σy). That is, the test rejects x0 if

ln
N (z − x0;μy,Σy)
N (z − x′

0;μy,Σy)
≤ θ . (11)

Moreover, if the server does not know μy and Σy but can generate samples from
Py, we let it estimate μy and Σy as the sample mean and sample covariance
matrix, and use these estimates instead of the true values in (10) and (11).

We evaluate the FNR and FPR of the test via Monte-Carlo simulation.
Specifically, we repeat the test Ns times and count the number of false neg-
atives NFN and the number false positives NFP. We obtain a high-confidence
upper bound on FNR using the Clopper-Pearson method [10] as FNR =
B(1− γ/2;NFN + 1, Ns − NFN), where B(x; a, b) is the quantile of the Beta dis-
tribution with shapes (a, b), and 1− γ is the confidence level. A high-confidence
upper bound FPR on FPR is obtained similarly. By varying the threshold θ, we
obtain an empirical trade-off curve FNR vs. FPR. This curve is an upper bound
on the optimal f -LDP curve of SecAgg. For a given δ ∈ [0, 1], we also compute
a lower confidence bound on ε for SecAgg to satisfies (ε, δ)-LDP. Specifically,
we use FNR and FPR in place of FNR and FPR in (8). Note that FNR and
FPR are lower bounded by B(1−γ/2; 1, Ns) even if NFN = NFP = 0. Therefore,
the estimated ε is upper bounded by εδ � ln 1−δ−B(1−γ/2;1,Ns)

B(1−γ/2;1,Ns)
. That is, it is

impossible to audit an arbitrarily large ε with a finite number of trials.
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5 Experiments and Discussion

Experimental Setting. We consider federated averaging with ntot = 100
clients out of which n+1 clients are randomly selected in each round. The exper-
iments3 are conducted for a classification problem on the ADULT dataset [5] and
the EMNIST Digits dataset [11]. The ADULT dataset contains 30 162 entries
with 104 features; the entries belong to two classes with 7508 positive labels and
22 654 negative labels. The EMNIST Digits dataset contains 280 000 images of
size 28 × 28 of handwritten digits belonging to 10 balanced classes. We allocate
the training samples between ntot clients according to a latent Dirichlet alloca-
tion model with concentration parameter ω. Here, with ω → ∞, the training
samples are distributed evenly and uniformly between the clients; with ω → 0,
each client holds samples from only one class. We consider a single-layer neural
network and use the cross-entropy loss and stochastic gradient descent with a
learning rate of 0.01 and batch size of 64. The model size is d = 210 for ADULT
and d = 7850 for EMNIST Digits.

We focus on the first round, containing one local epoch, of federated aver-
aging and perform privacy auditing for a fixed initial model, which is known to
the server. Note that performing an attack in the first round is the most chal-
lenging because, in later rounds, the server accumulates more observations. Let
{xi}n

i=0 be the local updates of the selected clients in the first round. The server
does not know the distribution of {xi}n

i=0 in closed form, but can sample from
this distribution by simulating the learning scenario. Note that it is a common
assumption in membership inference attacks that the adversary can sample from
the population [33]. We let the server compute the sample mean μ̂x and sample
covariance matrix Σ̂x from 25 000 samples of xi, then estimate the mean and
covariance matrix of y =

∑n
i=1 xi as μ̂y = nμ̂x and Σ̂y = nΣ̂x. The server then

uses μ̂y and Σ̂y for privacy auditing, as described in Sect. 4.5. Following (10),
we find the worst-case input pair (x0,x

′
0) by searching for the maximizer of

Δx0,x′
0

among 5000 and 1000 samples of x0 for the ADULT and EMNIST Digits
datasets, respectively. The Clopper-Pearson confidence level is 1− γ = 95%. For
a given initial model, we consider Ns = 5000 trials with random data partition
and batch selection. In the simulation results, we report the average of FPR,
FNR, and the audited (ε, δ) over 10 and 5 initial models for the ADULT and
EMNIST Digits datasets, respectively.

Homogeneous Data Partitioning. We first consider ω = ∞. In Fig. 2(a),
we show the trade-off between the estimated FNR and FPR for the ADULT
dataset, achieved by varying the threshold θ in (11) for n + 1 ∈ {60, 70, 90}
clients. Both the FNR and FPR can be as small as 0.005 simultaneously. Hence,
the server can reliably distinguish the selected input pair, and the membership
inference attack is successful. We note that a reference for the trade-off curve
that represents different privacy levels is given in [12, Fig. 3]. There, the case with

3 The code is available at https://github.com/khachoang1412/SecAgg_not_private.

https://github.com/khachoang1412/SecAgg_not_private
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both FNR and FPR equal to 0.07 is already considered nonprivate. Comparing
Fig. 2(a) with this reference, we conclude that SecAgg provides essentially no
privacy for the ADULT dataset. Next, in Fig. 2(b), we show the average audited
LDP curves for the ADULT dataset. We observe that the audited LDP curves
are close to the largest auditable (εδ, δ) with the considered Ns and γ. As ε
increases, δ remains high until it drops due to the limit of the Clopper-Pearson
method–even for ε = 7, δ > 10−1. Furthermore, increasing n provides only a
marginal privacy improvement. This shows that the privacy of SecAgg, viewed
through the lens of LDP, is weak.
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Fig. 2. The audited FPR vs. FNR trade-off and LDP curve, averaged over 10 initial
models, for SecAgg in federated learning on the ADULT dataset with homogeneous
data partitioning. Here, d = 210.
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Fig. 3. Audited FPR vs. FNR trade-off and LDP curves, averaged over 5 initial models,
for federated learning with SecAgg on the EMNIST Digits dataset with homogeneous
data partitioning. Here, d = 7850.

In Fig. 3, we show the FPR vs. FNR trade-off and the audited LDP curve
for the EMNIST Digits dataset. Similar conclusions hold: SecAgg provides weak
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privacy. In this case, with a larger model size than the ADULT dataset, the
adversary achieves even smaller FPR and FNR simultaneously.

Heterogeneous Data Partitioning. We next consider ω = 1 and show the
FPR vs. FNR trade-off and the audited LDP curve for the EMNIST Digits
dataset in Fig. 4. In this case, the FPR and FNR are simultaneously reduced
with respect to the homogeneous case, and the audited (ε, δ) coincide with the
largest auditable values. This is because the worst-case pair (x0,x

′
0) is better

separated than in the homogeneous case and thus easier to distinguish.

Fig. 4. Same as Fig. 3 but with heterogeneous data partitioning.

Discussion. We have seen that SecAgg is expected to perform like a correlated
Gaussian mechanism (see Sect. 4.3). Why does SecAgg fail to prevent member-
ship inference attacks, given that the Gaussian mechanism (with appropriate
noise calibration) is known to be effective? We explain it as follows. We assume
that the individual updates have entries with a bounded magnitude such that
‖xi‖2 ≤ r

√
d, i ∈ [0 : n]. For large n, we expect the mechanism M in (1) to have

similar privacy guarantee as G in Theorem 2 with Sd = {x ∈ R
d : ‖x‖2 ≤ r

√
d}

and Σy being the covariance matrix of
∑n

i=1 xi. In this case, Δ ≥ 2
√

d/n (see
Appendix A.2). A strong privacy guarantee requires Δ to be small, which implies
that d/n must be small. This suggests that the privacy guarantee of SecAgg is
weak if the vector dimension d is large compared to the number of clients n.
This is, however, the case in most practical FL scenarios, as the model size is
typically much larger than the number of clients. Note that reducing the ratio
d/n by dividing the model into smaller chunks that are federated via SecAgg
does not solve this issue, as the privacy loss composes over these chunks.

While with our results we have shown that SecAgg provides weak privacy
for small models where d is in the order of 102–103, we remark that the privacy
guarantee is expected to further deteriorate for larger models. This is supported
by the rapid degradation of the privacy guarantee with d of the Gaussian mech-
anism (see Fig. 1) and the similarity of SecAgg and a Gaussian mechanism.
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6 Conclusions

We analyzed the privacy of SecAgg through the lens of LDP. Via privacy audit-
ing, we showed that membership inference attacks on the output of SecAgg
succeed with high probability: adding independent local updates is not suffi-
cient to hide a local update when the model is of high dimension. While this
result may not be surprising, our work fills an important gap by providing a
formal analysis of the privacy of SecAgg and challenges the prevailing claims of
the privacy robustness of SecAgg. Hence, it underscores that additional privacy
mechanisms, such as noise addition, are needed in federated learning.
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A Correlated Gaussian Mechanism

We present an analysis of the LDP guarantee of the Gaussian mechanism G(x) =
x+ y, where x belongs to a subset Sd of Rd, and y ∼ N (0,Σy).

A.1 Optimal LDP Curve: Proof of Theorem 2

We extend [4, Thm. 8] to the case of correlated noise. First, for a mechanism M

and a pair x,x′, we define the privacy loss function as LM,x,x′(z) � ln PM(x )(z)

PM(x ′)(z)
.

The PLRV LM,x,x′ is defined as the output of LM,x,x′ when the input fol-
lows PM(x). The PLRV can be used to express the optimal LDP curve as

δM (ε) = max
x,x′∈Sd

(
P [LM,x,x′ ≥ ε] − eε

P [LM,x′,x ≤ −ε]
)
. (12)

Equation (12) is obtained from a similar result for DP given in [4, Thm. 5], upon
modifying the notion of neighboring datasets.

For the mechanism G, we have that PG(x)(z) = exp(− 1
2 (z−x)TΣ −1

y (z−x))√
(2π)d|Σy| .

Therefore, the PLRV can be expressed as

LG,x,x′ =
1
2
(z − x′)TΣ−1

y (z − x′) − 1
2
(z − x)TΣ−1

y (z − x) (13)

=
1
2
(x − x′)TΣ−1

y (x − x′) + (x − x′)TΣ−1
y (z − x) . (14)

With z identically distributed to G(x), i.e., z ∼ N (x,Σy), we have that
LG,x,x′ ∼ N (η, 2η) with η = 1

2 (x − x′)TΣ−1
y (x − x′). It follows from [4, Lemma

7] that for x ∼ N (η, 2η), P [x ≥ ε] − eε [x ≤ −ε] is monotonically increasing in
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η. By applying this result with x = LG,x,x′ , we obtain that the maximum
in the right-hand side of (12) is achieved when η is maximized, i.e., when
η = maxx,x′∈Sd

1
2 (x − x′)TΣ−1

y (x − x′) = Δ2/2. We then obtain the optimal
LDP curve (2) after some simple computations.

A.2 The Case Sd = {x ∈ R
d : ||x ||2 ≤ r

√
d}

In this case, for every x,x′ ∈ Sd, we have that

(x − x′)TΣ−1
y (x − x′) = ‖x − x′‖22 · (x − x′)T

‖x − x′‖2 Σ−1
y

x − x′

‖x − x′‖2 (15)

≤ (‖x‖2 + ‖x′‖2)2 · λmax(Σ−1
y ) (16)

≤ (2r
√

d)2λ−1
min(Σy), (17)

where λmax(Σ−1
y ) is the largest eigenvalue of Σ−1

y and λmin(Σy) is the small-
est eigenvalue of Σy. Here, (16) follows from the triangle inequality and the
Rayleigh-Ritz theorem, and (17) holds because both ‖x‖2 and ‖x′‖2 are bounded
by r

√
d. Equalities occur in (16) and (17) if x = −x′ = r

√
dvmin where vmin is the

eigenvector of Σy corresponding to λ−1
min(Σy). Therefore, Δ = 2r

√
d/λmin(Σy).

If we let Σy equal the covariance matrix of the sum of n independent vectors
x1, . . . ,xn in Sd, it holds that λmin(Σy) ≤ 1

dTr(Σy) = 1
dE [Tr (

∑n
i=1 xixT

i )] =
1
d

∑n
i=1 E [Tr(xixT

i )] =
1
d

∑n
i=1 E

[‖xi‖22
] ≤ nr2. As a consequence, Δ ≥ 2

√
d/n.

A.3 Trade-Off Function: Proof of Proposition 1

The log-likelihood ratio (LLR) for the test between {H : z is generated from
N (x,Σy)} and {H ′ : z is generated from N (x′,Σy)} is given by the privacy
loss function LG,x,x′(z). For a threshold θ, the FNR and FPR are given by

FNR(θ) = Pz∼N (x′,Σy) [LG,x,x′(z) ≥ θ] = P [LG,x′,x ≤ −θ] , (18)

FPR(θ) = Pz∼N (x,Σy) [LG,x,x′(z) < θ] = P [LG,x,x′ < θ] . (19)

In the proof of Theorem 2, we have shown that LG,x,x′(z) ∼ N (η, 2η) with η =
1
2 (x − x′)TΣ−1

y (x − x′). Therefore, FNR(θ) = Φ(−θ−η√
2η

) and FPR(θ) = Φ( θ−η√
2η
).

To achieve FPR(θ) ≤ α, the threshold must satisfy θ ≤ η − √
2ηΦ−1(1 − α).

Under this constraint, the minimum FNR is given by Φ(Φ−1(1−α)−√
2η). This

is by definition the optimal trade-off TN (x,Σ ),N (x′,Σ )(α).

B LDP Analysis of the Mechanism (1) in a Special Case:
Proof of Theorem 3

To prove Theorem 3, we shall use the following preliminary results.
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Lemma 1. For two pairs of distributions (P1, Q1) and (P2, Q2), if TP1,Q1(α) ≥
TP2,Q2(α) for every α ∈ [0, 1], then Eeε(P1‖Q1) ≤ Eeε(P2‖Q2) for every ε > 0.

Lemma 1 follows directly by expressing the hockey-stick divergence in terms of
the trade-off function as follows.

Lemma 2. Consider two distributions P and Q defined over X . Define a ran-
dom variable LP = ln Q(x)

P (x) , x ∼ P , and denote its CDF by FP (x) = P [LP ≤ x].
It holds that Eeε(P‖Q) = FP (−ε) − eεTP,Q(1 − FP (−ε)).

Proof of Lemma 2. Define the random variable LQ = ln Q(x)
P (x) , x ∼ Q, and denote

its CDF by FQ(x). Observe that 1− FP (θ) and FQ(θ) are the FPR and FNR of
the likelihood test between P and Q with threshold θ. It follows from Definition 1
and the Neyman-Pearson lemma [20, Thm. 8.6.1] that

TP,Q(1 − FP (θ)) = FQ(θ). (20)

We further have that

Eeε(P‖Q) =
∫

X

(
P (x) − eεQ(x)

)+dx

=
∫

X

(
P (x) − eεQ(x)

)
1{P (x) ≥ eεQ(x)}dx

=
∫

X
P (x)1{P (x) ≥ eεQ(x)}dx − eε

∫

X
Q(x)1{P (x) ≥ eεQ(x)}dx

= FP (−ε) − eεFQ(−ε). (21)

By substituting (20) with θ = −ε into (21), we complete the proof. 
�
We are now ready to prove Theorem 3. For brevity, we omit the subscript 0

in x0 and x0j , j ∈ [d].

The Univariate Case. We first consider d = 1. Then M in (1) is written as

M(x) = x + y (22)

where r ≤ x ≤ r and y follows a symmetric and log-concave distribution Py.
We next show that a dominating pair of distribution for this mechanism is
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(Pr+y, Pr+y). By symmetry of Py around y0, we have that, for every a, b ∈ R,

Eeε(a + y‖b + y) = sup
A

Pa+y(A) − eεPb+y(A) (23)

= sup
A

Py(A − a) − eεPy(A − b) (24)

= sup
−A+z0

Py(−A + z0 − a) − eεPy(−A + z0 − b) (25)

= sup
A

Py(A + a + z0) − eεPy(A + b + z0) (26)

= sup
A′=A+a+b+z0

Py(A′ − b) − eεPy(A′ − a) (27)

= sup
A

Py(A − b) − eεPy(A − a) (28)

= Eeε(b + y‖a + y). (29)

Therefore, it suffices to prove that

Eeε(a + y‖b + y) ≤ Eeε(r + y‖r + y), ∀r ≤ a ≤ b ≤ r. (30)

To this end, we shall show that Eeε(a + y‖b + y) increases with b − a, and thus
maximized when (a, b) = argmax

a′,b′∈[r,r],a′≤b′
(b′ − a′) = (r, r). In light of Lemma 1, it

suffices to show that Ta+y,b+y(x) decreases with b − a for all x ∈ R. Indeed, this
is true because Ta+y,b+y(α) = Fy(F−1

y (1 − α) − (b − a)) for y following a log-
concave distribution (this follows from [12, Prop. A.3]), and because the CDF
Fy(·) is an increasing function.

The Multivariate Case. We now address the general case with d ≥ 1. Using
the independence assumption, we can write the mechanism (1) as M(x) =
(M1(x),M2(x), . . . ,Md(x)) where Mj(x) = eT

jx + yj , with ej being the jth
d-dimensional canonical basis vector. Therefore, M(x) is a (nonadaptive) com-
position of d mechanisms {Mj}j∈[d]. Observe that each mechanism Mj has
the form (22). Therefore, (Prj+yj

, Prj+yj
) is a dominating pair of distributions

for Mj . The proof is completed by applying [35, Thm. 10], which states that if
(Pj , Qj) is a dominating pair of distributions for mechanism Mj , j ∈ [d], then
(P1×· · ·×Pd, Q1×· · ·×Qd) is a dominating pair of distributions for mechanism
M(x) = (M1(x), . . . ,Md(x)).
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Abstract. Class expression learning based on refinement operators is
a popular family of explainable machine learning approaches for RDF
knowledge graphs with ontologies in description logics. However, most
implementations of this paradigm fail to scale to the large knowledge
graphs found on the Web. One common bottleneck of these implemen-
tations is the instance retrieval function. We address this drawback by
introducing an algorithm inspired by worst-case optimal multi-way joins
for the evaluation of SPARQL queries that correspond to ALC class
expressions. The main characteristic of our algorithm is the inclusion of
negation, which is prominent in SPARQL queries generated from ALC
class expressions, in multi-way join plans. We evaluate the implementa-
tion of our approach on five benchmark datasets against four state-of-
the-art graph storage solutions for RDF knowledge graphs. The results of
our extensive evaluation show that our approach outperforms its compe-
tition across all datasets and that it is the only one able to scale to large
datasets. With our approach, we enable learning algorithms to retrieve
information from Web-scale knowledge graphs, hence making ante-hoc
explainable machine learning easier to deploy on the Semantic Web.

Keywords: knowledge graphs · class expression learning · multi-way
joins

1 Introduction

RDF knowledge graphs are now first-class citizens of the Web. Over 80 billion
RDF assertions are found in the 2021 crawl of the Web Data Commons.1 RDF
data dumps on the Web cover a similar order of magnitude.2 Learning on RDF
data at this scale is hence crucial for the deployment of machine learning on the
Web—the world’s largest shared information source with over 5 billion users.
The large proportion of the human population impacted by machine learning on
1 http://webdatacommons.org/structureddata/#results-2021-1.
2 http://lod-a-lot.lod.labs.vu.nl/.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
A. Bifet et al. (Eds.): ECML PKDD 2024, LNAI 14946, pp. 199–216, 2024.
https://doi.org/10.1007/978-3-031-70365-2_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-70365-2_12&domain=pdf
http://orcid.org/0000-0002-0710-7180
http://orcid.org/0000-0002-9617-1466
http://orcid.org/0000-0001-8970-3850
http://orcid.org/0009-0006-2031-2548
http://orcid.org/0000-0001-7112-3516
http://webdatacommons.org/structureddata/#results-2021-1
http://lod-a-lot.lod.labs.vu.nl/
https://doi.org/10.1007/978-3-031-70365-2_12


200 N. Karalis et al.

the Web entails the need for explainable machine learning because of its known
societal advantages [8].

A popular family of ante-hoc explainable approaches for supervised learning
on RDF knowledge graphs are class expression learning algorithms based on
refinement operators [10,18,23]. Given a set of positive and negative examples,
these approaches generate a class expression in a predefined description logic,
which ideally describes the positive and not the negative examples. However,
a large body of literature on learning class expressions [13,17,23] suggests that
these approaches do not scale to the size of datasets found on the Web. This is
mostly due to their instance retrieval function–which computes the instances of
given class expressions [10,18,23]–being unable to retrieve instances in a time-
efficient manner [18,23]. The authors of [7] suggest that this weakness can be
addressed by converting class expressions into SPARQL queries.

SPARQL3 is the designated language for querying RDF knowledge graphs.
A recent advancement in querying processing is the introduction of worst-case
optimal multi-way join algorithms [19]. Worst-case optimal multi-way join algo-
rithms have been adopted by the semantic web community [15] and are now
being used by state-of-the-art knowledge graph storage solutions (e.g., triple
stores) for the efficient evaluation of SPARQL queries [2,5]. However, the use of
multi-way joins for SPARQL is mostly limited to conjunctive queries. However,
as demonstrated in Sect. 3, class expression learning with SPARQL does not only
deal with conjunctive queries; in particular, it requires the efficient evaluation of
queries containing negation.

The hypothesis behind this work is that we can exploit multi-way joins to
implement a time-efficient retrieval function for class expression learning. To
this end, as in previous works (e.g., [13,17]), we set our focus on the description
logic ALC and present a multi-way join algorithm for the efficient evaluation
of SPARQL queries generated by ALC class expressions. Such SPARQL queries
include union graph patterns and negation, which is captured by FILTER NOT
EXISTS patterns. To the best of our knowledge, there have not been any works
for SPARQL that consider the evaluation of negation in multi-way join plans.

The main contributions of this work are the following: (i) Inspired by worst-
case-optimal multi-way join algorithms and their efficiency in evaluating con-
junctive queries, we present a multi-way join algorithm for the evaluation of
SPARQL queries generated from ALC class expressions. Our approach relies
on theoretical foundations of SPARQL to enable the use of multi-way joins in
queries involving negation. (ii) We have identified an issue with the mapping of
class expressions to SPARQL queries presented in [7] and present a solution that
addresses this particular issue. (iii) We have implemented the proposed algorithm
in a state-of-the-art triple store and present the results of an extensive compari-
son of our implementation on multiple benchmark datasets of varying sizes with
multiple state-of-the-art triple stores using SPARQL queries that correspond to
ALC class expressions. In our evaluation, we use four datasets, ranging from

3 https://www.w3.org/TR/2013/REC-sparql11-query-20130321/.
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96K to 2.1M triples, that are commonly used to evaluate learning algorithms.
To evaluate the scalabilty of our approach, we also use a dataset consisting of
more than 40M triples. The results of our experimental evaluation show that our
approach outperforms its competition across all datasets and that it is the only
one that efficiently handles query workloads in the largest dataset.

The rest of this work is structured as follows: In Sect. 2, we provide back-
ground knowledge on the topics that are covered in this paper. In Sect. 3, we
cover the translation of ALC class expressions to SPARQL queries. We present
the proposed multi-way join algorithm for SPARQL queries generated from ALC
class expressions in Sect. 4. Our experimental results are presented in Sect. 5. We
discuss related works in Sect. 6 and conclude in Sect. 7.

2 Preliminaries

We begin first with a brief overview of the description logic ALC. Second, we
describe the problem of class expression learning. Third, we cover definitions and
properties of SPARQL queries that are required in this work. Last, we briefly
summarize worst-case optimal multi-way join algorithms.

2.1 The Description Logic ALC
A description logic is a decidable fragment of first-order predicate logic that
uses only unary and binary predicates [4]. The set of unary predicates, binary
predicates and constants correspond to the set of named concepts NC , roles NR,
and individuals NI of a description logic, respectively. Like in recent works on
class expression learning (e.g., [13,17]), we focus on the description logic ALC
[25]. Its syntax and semantics are provided in Table 1. In this paper, C denotes
all valid ALC concepts C under the construction rules: C ::= A | ¬C | C � C |
C � C | ∃r.C | ∀r.C, where A ∈ NC and r ∈ NR.

Knowledge bases in ALC are often defined as K = (Tbox,Abox). All axioms
in Tbox are of the form A � B or A ≡ B. Abox contains the relationships
between individuals a, b ∈ NI via roles r ∈ NR and membership relationships
between NI and C. Following previous works on class expression learning [13,17,
18], we adopt closed world semantics. Under the closed world assumption, the
ABox of a knowledge base is treated as the knowledge base’s model I [18]. In
addition, under closed world semantics, checking whether an instance belongs
to a particular concept or retrieving the individuals of a particular concept is
similar to querying in classical databases [7,14].

2.2 Class Expression Learning

Class expression learning is a family of supervised machine learning algorithms.
Given a knowledge base K = (Tbox,Abox), a set of positive examples E+, and
a set of negative examples E−, with E+ ∪ E− ⊆ NI and E+ ∩ E− = ∅, class
expression learning algorithms aim to learn a class expression H that ideally
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Table 1. Syntax and semantics of ALC. I denotes an interpretation and ΔI its domain.

Construct Syntax Semantics

Top concept � ΔI

Bottom concept ⊥ ∅
Atomic concept A AI ⊆ ΔI

Role r rI ⊆ ΔI × ΔI

Conjunction C � D CI ∩ DI

Disjunction C � D CI ∪ DI

Negation ¬C ΔI \ CI

Existential restriction ∃ r.C {x | ∃ (xI , yI) ∈ rI ∧ yI ∈ CI}
Universal restriction ∀ r.C {x | ∀ (xI , yI) ∈ rI =⇒ yI ∈ CI}

describes all of the individuals of E+ and not any of the individuals of E−

[18]. To find the most appropriate H for a particular pair of E+ and E−, a
class expression learning problem is often transformed into a search problem
within a quasi-ordered space (C,) [11,18,31], where  is often the subsumption
relation � between concepts [17]. The traversal of the search problem’s space is
usually conducted using a downward refinement operator ρ : C → 2C such that
ρ(C) ⊆ {C ′ ∈ C | C ′ � C,C ′ �= C} for all C ∈ C [17].

The quality of a class expression H (i.e., finding whether H describes the
individuals of E+ and not the individuals of E−) is commonly computed by a
heuristic function, such as CELOE [18]. Internally, such heuristic functions use
a retrieval function R : C → 2NI , which returns all individuals in NI that
are instances of the provided class expression H. As discussed in Sect. 2.1, we
assume that retrieval operations are carried out under closed world semantics.
As the size of an input knowledge base grows, executing retrieval operations
against reasoners becomes one of the main computational bottlenecks [7,18,23]
of learning algorithms. The goal of this work is to accelerate class expression
learning by reducing the runtimes of retrieval operations.

2.3 Semantics and Properties of SPARQL

Here, we provide the semantics and the properties of SPARQL queries that use
those features of the language that are used in queries generated by ALC class
expressions (Sect. 3). In particular, our focus is on SPARQL queries consisting
of triple patterns, basic graph patterns, union graph patterns, and negation in the
form of FILTER NOT EXISTS patterns. Note that SPARQL queries are defined
under bag semantics. In this work, we adopt set semantics (i.e., queries contain
DISTINCT), which are in line with the semantics of ALC. Let I be an infinite set
of IRIs, B an infinite set of blank nodes, and L an infinite set of literals. The sets
I, B and L are pairwise disjoint and their union, denoted as T = I∪B∪L, is the
set of all terms. Furthermore, let V be an infinite set of variables. An RDF graph
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is a set of triples and is defined as G = {(s, p, o) | s ∈ (I ∪ B), p ∈ I, o ∈ T},
where s, p, and o stand for subject, predicate, and object, respectively.

Triple, Basic and Union Graph Patterns. The following is based on [15,21].
A triple pattern tp is a triple (s, p, o), where s ∈ (I ∪ L ∪ V), p ∈ (I ∪ V), and
o ∈ (I ∪ L ∪ V). The set of variables of a triple pattern is denoted as var(tp).
Since blank nodes behave as variables, we do not consider them in triple patterns
[15,21]. A basic graph pattern (BGP) is a set of triple patterns. The semantics
of SPARQL queries are defined using mappings, which are partial functions
assigning terms to variables. A mapping is formally defined as μ : V → T and
its domain is denoted as dom(μ). With μ(tp), we denote the RDF triple obtained
by replacing the variables of var(tp) with their corresponding values in μ. Two
mappings μ1 and μ2 are compatible (μ1 ∼ μ2), iff μ1(?v) = μ2(?v) for every
variable ?v ∈ dom(μ1) ∩ dom(μ2). Two mappings μ1 and μ2 are not compatible
(μ1 � μ2), if for any ?v ∈ dom(μ1) ∩ dom(μ2), μ1(?v) �= μ2(?v). Given two sets
of mappings Ω1 and Ω2 the join operation is defined as Ω1 �� Ω2 = {μ1 ∪ μ2 |
μ1 ∈ Ω1, μ2 ∈ Ω2 and μ1 ∼ μ2} and the union operation is defined as Ω1 ∪Ω2 =
{μ | μ ∈ Ω1 or μ ∈ Ω2}. The evaluation of a triple pattern tp and a BGP P over
an RDF graph G is denoted as �tp�G = {μ | dom(μ) = var(tp) and μ(tp) ∈ G}
and �P �G = �tp1, . . . , tpn�G = �tp1�G �� . . . �� �tpn�G, respectively. In SPARQL,
graph patterns are constructed recursively. Triple patterns and BGPs are graph
patterns. The set of variables of a graph pattern P is denoted as var(P ). The
conjunction and union between two graph patterns P1 and P2 are also graph
patterns and are evaluated over G as �P1 AND P2�G = �P1�G �� �P2�G and
�P1 UNION P2�G = �P1�G ∪ �P2�G, respectively.

Negation. The following definitions are based on [1]. In SPARQL, there are
multiple ways to express negation [1]. Here, we focus on patterns of nega-
tion that are expressed using FILTER NOT EXISTS patterns, which are used for
converting ALC class expressions to SPARQL queries (Sect. 3). FILTER NOT
EXISTS can be provided with either a subquery or a graph pattern. In this
work, we are interested only in the latter case (Sect. 3). Given a graph pattern
P = (P1 FNE P2), where FNE stands for FILTER NOT EXISTS, the set of cor-
related variables corVars(P ) is defined as corVars(P ) = var(P1) ∩ var(P2); P1

and P2 are correlated if corVars(P ) �= ∅. In this work, we focus only on queries
for which P1 and P2 are always correlated (Sect. 3). If P1 and P2 are correlated,
P1 is evaluated before P2 and P2 is evaluated after each correlated variable in
P2 is replaced with its corresponding value obtained in the evaluation of P1 [1].
The set of certain variables of a graph pattern P , denoted as cVars(P ), consists
of the variables that are always bound in the solution mapping of P [24]. The
set of certain variables of a graph pattern P is defined recursively [1,24]: (i)
if P is a triple pattern tp, then cVars(P) = var(tp), (ii) if P = (P1 AND P2),
then cVars(P) = cVars(P1) ∪ cVars(P2), (iii) if P = (P1 UNION P2), then
cVars(P) = cVars(P1)∩cVars(P2), (iv) if P = (P1 FILTER R), then cVars(P) =
cVars(P1) with R being a built-in condition (e.g., integer addition), and (v) if
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Algorithm 1. Generic Join
1: // Execution is resumed after a yield operation
2: function GenericJoin(P , G, X) � P : BGP, G: RDF Graph, X: Mapping
3: if var(P ) = ∅ then yield X and return � All variables are evaluated
4: ?x ← a variable from var(P ) � Select a variable to be evaluated
5: K ← ⋂

tp∈P |?x∈var(tp){μ(?x) | μ ∈ �tp�G} � All possible values of ?x
6: for all k ∈ K do � Iterate over the possible values of ?x
7: X(?x) ← k � Store k in the solution mapping
8: P ′ ← assign k to all occurrences of ?x in P
9: yield all GenericJoin(P ′, G, X) � proceeds with the next k afterwards

P = (P1 FNE P2), then cVars(P) = cVars(P1). A graph pattern is fne-safe,
if for every subpattern P = (P1 FNE P2) holds that corVars(P) ⊆ cVars(P2).
Given two sets of mappings Ω1 and Ω2 the difference operation is defined as
Ω1 \ Ω2 = {μ1 ∈ Ω1 | ∀μ2 ∈ Ω2, μ1 � μ2}. For fne-safe patterns, the negation
is defined as �P1 FNE P2�G = �P1�G \ �P2�G. The notion of fne-safety ensures
that nested FNE patterns can be evaluated using the difference operation [1].

Filter Rewriting Rule and Union Normal Form. A graph pattern
((P1 FILTER R) AND P2) can be rewritten to a pattern ((P1 AND P2)
FILTER R), if every variable of R is also a certain variable of P1 or if R
and P2 do not share any variables [24]. A graph pattern P is in UNION nor-
mal form if it is in the form (P1 UNION P2 UNION . . . UNION Pn) and each
Pi, for 1 ≤ i ≤ n, is UNION-free [21]. Every AND-UNION-FILTER graph pat-
tern P is equivalent to a graph pattern P ′, which is in UNION normal form
[21].

2.4 Worst-Case Optimal Multi-way Join Algorithms

In recent years, worst-case optimal multi-way join algorithms [19] have been
the subject of many research works in the database literature. This is due to
their runtime complexity being bounded by the worst-case size of the result of
the input query [3] and their ability to achieve state-of-the-art performance in
the evaluation of conjunctive queries (e.g., [2,5,15]). Their main characteristic is
that, contrary to conventional binary joins that carry out joins on two operands
at a time, their evaluation follows a variable elimination process. This evaluation
process resembles a backtracking search, does not store any intermediate results
and enables the incremental output of solution mappings. A worst-case optimal
multi-way join algorithm for the evaluation of BGPs (conjunctive queries) based
on Generic Join [20] is shown in Algorithm 1.

3 Mapping ALC Class Expressions to SPARQL Queries

As discussed in Sect. 2.2, one of the main computational bottlenecks for class
expression learning algorithms is the execution of retrieval operations against
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reasoners. To alleviate this issue, Bin et al. [7] propose a mapping for the con-
version of class expressions to SPARQL queries. This mapping is shown in the
first six entries of Table 2—including the struck through text. These conversions
enable learning algorithms to carry out retrieval operations against a triple store
instead of a reasoner.

Table 2. The mapping of ALC expressions to SPARQL queries. The struck through
entry is the erroneous mapping for ∀r.C class expressions proposed in [7]. Our proposed
mapping for ∀r.C class expressions is shown in the table’s last entry.

ALC Class Expression
Ci

SPARQL Graph Pattern
τ(Ci, ?var)

A { ?var rdf:type A . }
¬C { ?var ?p ?o . FILTER NOT EXISTS { τ(C, ?var) } }

C1 � · · · � Cn { τ(C1, ?var) . τ(C2, ?var) . . . . . τ(Cn, ?var) }
C1 � · · · � Cn { { τ(C1, ?var) } UNION . . . UNION { τ(Cn, ?var) } }

∃r.C { ?var r ?s . τ(C, ?s) }

∀r.C

{ ?var r ?s0 . { SELECT ?var (COUNT(?s1) AS ?c1) WHERE
{ ?var r ?s1 . τ(C, ?s1) } GROUP BY ?var }
{ SELECT ?var (COUNT(?s2) AS ?c2) WHERE { ?var r ?s2 }
GROUP BY ?var } FILTER(?c1 =?c2) }

∀r.C
{ ?var ?p ?o . FILTER NOT EXISTS
{ ?var r ?s . FILTER NOT EXISTS { τ(C, ?s) } } }

During the development of our multi-way join algorithm for class expression
learning (Sect. 4), we identified an issue with the mapping presented in [7]. In
particular, the SPARQL queries corresponding to class expressions of the type
∀r.C did not return the expected results. As per the semantics of ALC, the set
of instances corresponding to a class expression ∀r.C should also contain those
individuals that do not have any r-successors [22, Remark 18]. For example,
assuming a knowledge base capturing the concepts of family members, the set
of individuals corresponding to the concept ∀hasChild.Male should also contain
those individuals that do not have any children. However, this was not the case
with the SPARQL queries corresponding to such class expressions, as they did
not take individuals not having any r-successors into account [7, Section 3 of the
corresponding technical report]. To alleviate this issue we propose a new mapping
for ∀r.C expressions, which is presented in the last entry of Table 2 and replaces
the struck through rule. The proposed graph pattern for ∀r.C class expressions is
constructed using the concept equivalence rule ∀r.C ≡ ¬∃r.¬C [22, Section 5.1].
For individuals that do not have any r-successors, the first FILTER NOT EXISTS
is always evaluated to true. For individuals that have at least one r-successor, the
first FILTER NOT EXISTS is evaluated to true, if all of their r-successors belong
to C, which is tested by the seconds FILTER NOT EXISTS. Note that applying a
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combination of the transformation rules corresponding to ¬C and ∃r.C would
yield a query that is semantically equivalent to the updated query.

The SPARQL queries shown in Table 2 use only those features of SPARQL
that were discussed in Sect. 2.3. Furthermore, all of the queries that involve pat-
terns of negation (FILTER NOT EXISTS) are fne-safe and hence, can be evaluated
using the difference operator for sets of mappings. To prove that the newly pro-
posed mapping for ∀r.C follows the semantics of ALC, the existing proofs for
¬C and ∃r.C, which are provided in the technical report of [7], can be used.

4 Negation in Multi-way Joins

The efficiency of worst-case optimal multi-way join algorithms in evaluating basic
graph pattern queries has been demonstrated in recent works (e.g., [2,5,15]).
However, to the best of our knowledge, there have not been any efforts for
SPARQL that include patterns of negation in multi-way join plans. In this
section, we present our algorithm for the efficient evaluation of SPARQL queries
corresponding to ALC class expressions. Our algorithm follows the sketch pro-
vided in [28] for the evaluation of Datalog rules containing negation and incor-
porates the evaluation of FILTER NOT EXISTS patterns in multi-way join plans.
The two main ideas behind the proposed algorithm are the following. First, the
evaluation of union graph patterns should take advantage of multi-way joins and
their efficiency in evaluating basic graph patterns [16]. To this end, we rely on the
definitions provided in Sect. 2.3 to rewrite each query generated by ALC class
expressions to a semantically equivalent query that is in UNION normal form.
Second, instead of waiting for a graph pattern to be fully evaluated, FILTER
NOT EXISTS patterns should be evaluated as soon as their correlated variables
(Sect. 2.3) are bound to a particular term.

4.1 Rewriting Rule for Negation and UNION Normal Form

As discussed in Sect. 2.3, a graph pattern ((P1 FILTER R) AND P2) can be
rewritten to a semantically equivalent graph pattern ((P1 AND P2) FILTER R),
if every variable of R is also a certain variable of P1 or R and P2 do not share
any variables [24]. The above rewriting rule is also applicable to FILTER NOT
EXISTS patterns. Note that the SPARQL standard treats FILTER NOT EXISTS
patterns as filter expressions.

Proposition 1. Let P = ((P1 FNE P3) AND P2) and P ′ = ((P1 AND P2)
FNE P3) be fne-safe graph patterns. P and P ′ are semantically equivalent, if
corVars(P1 FNE P3) = corVars((P1 AND P2) FNE P3).

Proof. For �P �G = �P ′�G, we need ((�P1�G \ �P3�G) �� �P2�G) = ((�P1�G ��
�P2�G) \ �P3�G). As per the semantics (Sect. 2.3), for the equality to hold, we
need (dom(�P1�G)∩dom(�P3�G)) = (dom(�P1�G �� �P2�G)∩dom(�P3�G)), which
holds because corVars(P1 FNE P3) = corVars((P1 AND P2) FNE P3).
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Intuitively, for the equivalence to hold, any variable of P2 that does not appear
in P1 should also not appear in P3. To enable the rewriting of P = ((P1 FNE P3)
AND P2) to a semantically equivalent pattern P ′ = ((P1 AND P2) FNE P3), we
propose the replacement of each variable of P3 that is not in corVars(P1 FNE P3)
with a unique variable that is not used in P . This way, we ensure that P2 and
P3 do not share any variables that do not appear in P1.

By following the SPARQL standard and treating FILTER NOT EXISTS pat-
terns as FILTER expressions, we can apply the UNION normal form provided for
AND-UNION-FILTER graph patterns (Sect. 2.3) to SPARQL queries generated
by ALC class expressions. By applying the UNION normal form and the rewrit-
ing rule proposed above to the queries of Table 2, we end up dealing with queries
that are disjunctions of graph patterns, where each graph pattern is either a
BGP or a set of triple patterns alongside patterns of negation. Our proposed
algorithm, which is presented below, is able to evaluate the resulting queries by
carrying out a series of multi-way joins.

Algorithm 2. Multi-Way Join for Class Expression Learning in ALC
1: function MWJ(P , G, X) � P : Graph Pattern, G: RDF Graph, X: Mapping
2: // P is a single graph pattern or a UNION of UNION -free graph patterns
3: for all UNION-free patterns Pi of P do
4: if Pi is a BGP then yield all GenericJoin(Pi, G, X) � Algorithm 1
5: else yield all MWJFNE(Pi, G, X) � Pi contains negation
6: function MWJFNE(P , G, X) � P : Graph Pattern, G: RDF Graph, X: Mapping
7: P ′ ← P � Copy pattern to preserve original
8: for all FNE patterns Pi of P do
9: Let Pi = Pl FNE Pr � Pl is a set of triple patterns

10: if corVars(Pi) = ∅ then � Correlated variables are evaluated (fne-safety)
11: if EvalFNE(Pr, G, X) is false then
12: return � The current mapping X does not yield a solution mapping
13: else remove (FNE Pr) from P ′ � successfully evaluated
14: // All FNE patterns that were evaluated returned true and were removed
15: if there are no more FNE patterns in P ′ then
16: yield all GenericJoin(P ′, G, X) and return
17: ?x ← a variable from cVars(P ′) � Select a certain variable to be evaluated
18: // Evaluate the selected variable ?x using the triple patterns of P ′

19: K ← ⋂
tp∈P ′|?x∈var(tp){μ(?x) | μ ∈ �tp�G}

20: for all k ∈ K do � Iterate over the possible values of ?x
21: X(?x) ← k � Store k in the solution mapping
22: P ′′ ← assign k to all occurrences of ?x in the triple patterns of P ′

23: yield all MWJFNE(P ′′, G, X) � after yielding proceeds with the next k

24: function EvalFNE(P , G, X)
25: // Uses the values assigned to the correlated variables to evaluate P
26: P ′ ← ∀?v ∈ var(P ) ∩ dom(X), assign X(?v) to ?v in the triple patterns of P
27: X ′ ← new empty mapping ; X ′(?v) ← X(?v)
28: if MWJ(P ′, G, X ′) yields a solution then return false
29: else return true
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4.2 Multi-way Join Algorithm

The proposed algorithm for the evaluation of SPARQL queries generated by
ALC class expressions is shown in Algorithm 2. The algorithm’s entry point
is the function MWJ (lines 1–5), which takes a graph pattern that is already in
UNION normal form as input. MWJ iterates over all UNION-free graph patterns
Pi of the input graph pattern P and for each Pi calls the appropriate function for
its evaluation. If Pi is a BGP, it is evaluated by Generic Join (line 4), otherwise
it is evaluated by the function MWJFNE (line 5), which is responsible for the
evaluation of graph patterns containing FILTER NOT EXISTS patterns.

The function MWJFNE (lines 6–23) iterates first over the FILTER NOT EXISTS
patterns (Pi = Pl FNE Pr) of the provided graph pattern P (lines 8–13). For
each Pi having its correlated variables evaluated (lines 11–13), the function
EvalFNE is called (line 11). EvalFNE (lines 24–29) checks whether the current
solution mapping X is a solution of Pi. This is done by evaluating Pr (line 28)
after all the occurrences of the correlated variables of Pi are replaced with their
corresponding term in the triple patterns of Pr (line 26). If the evaluation of
Pr yields at least one solution, EvalFNE is evaluated to false, which leads to the
active solution mapping in MWJFNE to be discarded (line 13). Recall that the
mappings of Pl and Pr should not be compatible (Sect. 2.3). If all FILTER NOT
EXISTS patterns are successfully evaluated, MWJFNE proceeds with the evalua-
tion of P ′ (lines 15–23). Note that successfully evaluated FILTER NOT EXISTS
patterns are removed from P ′ (line 13) and hence, are not evaluated multiple
times. If P ′ is a BGP, it is evaluated by Generic Join (line 16). Otherwise, the
evaluation proceeds in a similar fashion to Generic Join (lines 17–23). If there
are remaining FILTER NOT EXISTS patterns in P ′, the evaluation focuses on the
certain variables of P ′, i.e., on the variables appearing only in triple patterns
(line 19). For each possible value of the selected certain variable (lines 20–23),
MWJFNE is called recursively.

The proposed algorithm integrates negation in multi-way join plans by calling
MWJ within EvalFNE (line 28). In addition, provided a solution mapping, it does
not completely evaluate the right hand side of FILTER NOT EXISTS patterns.
Instead, it terminates its evaluation once a solution mapping is found, thus
avoiding storing intermediate results. The use of the UNION normal form may
result in a larger number of joins. However, this can be beneficial, as the joins
may limit the intermediate mappings generated by the original union patterns.

4.3 Implementation

We have implemented the proposed algorithm within the tensor-based triple
store Tentris [5]. We chose Tentris because it supports multi-way joins [5] and
achieves state-of-the-art performance in the evaluation of basic graph patterns
[6]. However, Tentris is not able to evaluate SPARQL queries generated by ALC
class expressions, due to its missing support for FILTER NOT EXISTS patterns.
By implementing our proposed algorithm within Tentris, we further improve
the state of the art, as demonstrated by the experimental results (Sect. 5). The
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performance of multi-way joins is affected by the order in which variables are
evaluated [15]. Tentris dynamically selects a variable at each recursive step of
the algorithm using cardinality estimations. We modified its selection process to
take the number of FILTER NOT EXISTS patterns a particular variable appears
into account to break ties (i.e., provided two variables with the same cardinality
estimation, the one that appears in a FILTER NOT EXISTS pattern is selected).
Last, we apply the UNION normal form to the provided queries while parsing
them. Henceforth, we refer to our implementation as TentrisALC.

5 Experimental Results

We evaluated the performance of our implementation using SPARQL queries
corresponding to ALC class expressions on five datasets of varying sizes. The
experiments that are presented below were carried out on a Debian 10 server with
an AMD EPYC 7282 CPU, 256GB RAM and a 2TB Samsung 970 EVO Plus
SSD. Supplementary material—including datasets, binaries, queries, scripts, and
configurations—is available online.4

5.1 Systems, Setup and Execution

As the learning of class expressions using SPARQL is carried out over HTTP
[7], we compared the performance of TentrisALC against the performance of the
following triple stores that provide a SPARQL compliant HTTP endpoint: (i)
Blazegraph 2.1.6.RC, (ii) Fuseki 4.10.0, (iii) GraphDB 10.3.3, and (iv) Virtuoso
7.2.10. In our experiments, we also wanted to include MilleniumDB5, commit:
442e650 [29], which uses multi-way joins for the evaluation of basic graph pat-
terns. However, we did not include it, as it does not evaluate queries having
union graph patterns within FILTER NOT EXISTS patterns correctly. Each triple
store was configured following its respective documentation. The experiments
were executed over HTTP using the benchmark execution framework IGUANA
3.3.3 [9]. For each dataset, each query was executed once during the warmup
phase. After the warmup phase, the sets of queries were executed three consecu-
tive times. The query timeout was set to three minutes. As in [6], we measured
the performance of the triple stores using the following metrics: (i) QPS, i.e., the
number of queries executed per second, (ii) pAvgQPS, i.e., the penalized aver-
age QPS and (iii) QMPH, i.e., the number of query mixes executed per hour.
A query mix is a set or a multiset of queries. The metric QMPH captures the
number of times a particular query mix is evaluated in an hour. This means that
the lower the runtimes of individual queries are, the higher the QMPH value is.
Queries that failed (e.g., timed out or returned an error code) are penalized with
a runtime of three minutes.

4 https://github.com/dice-group/alc2sparql-bench.
5 https://github.com/MillenniumDB/MillenniumDB.

https://github.com/dice-group/alc2sparql-bench
https://github.com/MillenniumDB/MillenniumDB
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5.2 Datasets and Queries

Our evaluation comprises five datasets (i.e., knowledge graphs). Four of these
datasets, namely Carcinogenesis, Mutagenesis, Premier League and Vicodi, are
frequently used to evaluate class expression learning algorithms (e.g., [13,17])
and are available in [17,30]. The largest of these datasets, namely Premier
League, contains 2.1M triples. To evaluate the scalability of our approach,
we used a subset of the English version of YAGO4 [26], which contains more
than 40M triples. As in previous works that follow closed-world semantics (e.g.,
[7,13]), we first materialized the inferences of the knowledge graphs. Table 3
reports the statistics of the knowledge bases after the materialization process.
For the class expression learning datasets, we generated 300 unique ALC class
expressions using a slightly modified version of the learning problem genera-
tor of [17]. This modified version does not prioritize simple class expressions.
For YAGO4English, due to the generator not scaling to its size, we randomly
created 300 unique class expressions by recursively applying the construction
rules of ALC. During the generation of class expressions for YAGO4English, we
focused only on the properties of the dataset that come from schemas.org (i.e.,
we did not consider properties coming from bioschemas.org or the RDF/S vocab-
ulary). Schema.org has a richer taxonomy than bioschemas.org, which resulted
in ∀r.C and ∃r.C class expressions being more diverse. All class expressions were
mapped to SPARQL queries using the mapping of Table 2. For YAGO4English,
we ended up having to remove eight queries, as IGUANA was not able to han-
dle them properly (non-escaped characters in IRIs). The last column of Table 3
shows the number of queries having at least one FILTER NOT EXISTS pattern.

Table 3. The statistics of the datasets used in the evaluation

#Triples #Distinct
Subjects

#Distinct
Predicates

#Distinct
Objects

# Queries \w
Negation

Carcinogenesis 157K 22.5K 25 23.2K 169
Mutagenesis 96K 14.2K 16 15K 208
Premier League 2.1M 11.5K 217 12.5K 209
Vicodi 405K 33.4K 14 35.2K 137
YAGO4English 40.2M 7.2M 104 3M 209

5.3 Results and Discussion

The results of our evaluation on the datasets for class expression learning are
shown in Tables 4 and 5. The results on YAGO4English are shown in Table 6.
Many queries of YAGO4English return more than 7M results, due to their cor-
responding class expression covering the whole set of individuals. As Virtuoso
has a limit of 220 results [5], we did not evaluate it on YAGO4English.
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Table 4. The results on class expression learning datasets (cold run). The column
failed reports the number of queries for which the corresponding system failed (e.g.,
timed out) at least once.

Carcinogenesis Mutagenesis
QMPH pAvgQPS failed QMPH pAvgQPS failed

Blazegraph 68.122 49.221 0 40.911 31.637 0
Fuseki 43.426 96.789 0 28.580 58.097 0
GraphDB 28.003 139.800 0 21.156 102.190 0
TentrisALC (ours) 1410.674 792.274 0 1128.076 545.604 0
Virtuoso 148.622 372.766 0 113.312 268.588 0

Premier League Vicodi
QMPH pAvgQPS failed QMPH pAvgQPS failed

Blazegraph 16.832 44.261 0 2.508 48.152 0
Fuseki 3.254 85.898 2 1.399 101.890 9
GraphDB 5.708 139.975 0 1.756 128.904 5
TentrisALC (ours) 2463.874 902.343 0 715.107 773.800 0
Virtuoso 82.245 390.305 0 6.227 411.529 0

The results show that TentrisALC achieves the highest pAvgQPS and QMPH
values across all datasets. To ensure the that difference in the performance is
statistically significant, we performed the Wilcoxon signed-rank test using the
penalized QPS values achieved by each system in each query. The null hypothesis
(i.e., the performances of TentrisALC and the baseline systems come from the
same distribution) was rejected for all systems in all datasets (p-value p < 0.001).

The scalability of our approach can already be observed in the datasets for
class expression learning. Table 5 shows that, in the smaller datasets for class
expression learning, TentrisALC achieves a value of QMPH that is 10 times
higher than the second best system, namely Virtuoso. In Premier League and
Vicodi, TentrisALC performs 37 and 126 times better than Virtuoso in terms
of QMPH, respectively. This is due to TentrisALC being able to efficiently eval-
uate queries having FILTER NOT EXISTS patterns. More specifically, in Vicodi,
TentrisALC achieves a QMPH value that is 7.6 times higher than the second
best system (Virtuoso) in the set of queries that do not have any FILTER NOT
EXISTS patterns. In the set of queries that contain negation, TentrisALC achieves
a QMPH value that is 128 times higher than the second best value (Virtuoso).
This shows that the overall results are mostly affected by the systems’ ability to
efficiently evaluate queries with FILTER NOT EXISTS patterns. This observation
becomes more evident in YAGO4English (Table 6), where all systems apart from
TentrisALC timed out in multiple queries. In particular, Fuseki and GraphDB
timed out in more than half of the queries. More importantly, the timeouts
occurred only in queries that contain FILTER NOT EXISTS patterns. As men-
tioned earlier, many queries in YAGO4English return more than 7M results. In
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Table 5. The results on class expression learning datasets (warm runs). The column
failed reports the number of queries for which the corresponding system failed (e.g.,
timed out) at least once.

Carcinogenesis Mutagenesis
QMPH pAvgQPS failed QMPH pAvgQPS failed

Blazegraph 72.920 58.134 0 42.615 37.090 0
Fuseki 45.509 133.754 0 28.940 82.716 0
GraphDB 31.263 246.155 0 22.802 162.238 0
TentrisALC (ours) 1605.557 1571.377 0 1224.473 1015.727 0
Virtuoso 149.928 734.093 0 114.822 532.871 0

Premier League Vicodi
QMPH pAvgQPS failed QMPH pAvgQPS failed

Blazegraph 17.303 51.415 0 2.524 58.075 0
Fuseki 3.237 110.457 2 1.381 144.729 14
GraphDB 5.823 257.314 0 1.763 220.353 5
TentrisALC (ours) 3176.005 1984.633 0 761.052 1554.764 0
Virtuoso 84.486 1150.088 0 5.991 762.763 0

Table 6. The results on the largest dataset, namely YAGO4English. The column failed
reports the number of queries for which the corresponding system failed (e.g., timed
out) at least once. Virtuoso is not included due to its hard limit of 220 results.

YAGO4English (cold run) YAGO4English (warm runs)
QMPH pAvgQPS failed QMPH pAvgQPS failed

Blazegraph 0.131 18.275 58 0.131 25.985 66
Fuseki 0.116 36.425 168 0.116 66.201 168
GraphDB 0.123 46.120 161 0.123 100.297 161
TentrisALC (ours) 1.342 207.281 0 1.351 435.361 0

queries with large result sets, the runtime can be heavily impacted by the results’
enumeration. An example of a class expression that captures the efficiency of
our approach is ¬(∀exampleOfWork.Prueba_Villafranca_de_Ordizia). The cor-
responding SPARQL query includes three nested FILTER NOT EXISTS patterns
and returns only 161 solutions (i.e., the results’ enumeration did not impact the
query’s execution time). TentrisALC required 8.3 s on average to evaluate this
query, whereas all other systems timed out.

The efficiency of our approach lies in its ability to evaluate FILTER NOT
EXISTS patterns without having to materialize intermediate results and its abil-
ity to terminate the evaluation of such patterns once a single mapping is found.
Regarding the size of the datasets, to the best of our knowledge, recent works on
class expression learning have focused only on small scale datasets that contain
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up to a few million triples (e.g., Premier League). As demonstrated above, our
approach is able to scale to large datasets and we believe that it will enable
learning algorithms to be deployed on large scale knowledge graphs.

6 Related Work

Class expression learning has been extensively investigated (e.g., [12,18,27]). In
recent years, several works have focused on accelerating the process of learning
class expressions. For instance, Westphal et al. [31] accelerate class expression
learning by introducing a heuristic function that is based on simulated anneal-
ing. With their meta-heuristics, they are able to reduce the number of instance
retrieval operations that are required to reach a goal concept. Kouagou et al. [17]
accelerate class expression learning by accurately predicting lengths of possi-
ble goal concepts. By this, they avoid instance retrieval operations on lengthy
concepts. In [11], the authors employ deep reinforcement learning to learn non-
myopic heuristic functions, i.e., heuristic functions that take future rewards into
account. These non-myopic heuristic functions accelerate class expression learn-
ing, as they are able to efficiently steer the search process towards goal states.
Our work builds upon [7] that showed that class expression learning can be accel-
erated by converting class expressions to SPARQL queries. Our work focuses on
improving the runtimes of retrieval operations and hence can be used in combi-
nation with the approaches described above.

Hogan et al. [15] were the first to formalize worst-case optimal join algo-
rithms for the evaluation of basic graph pattern SPARQL queries. Several works
have employed such algorithms for the evaluation of conjunctive queries [2,5,15]
and demonstrated their efficiency. Recently, a multi-way join algorithm for the
evaluation of conjunctive regular path queries based on the evaluation process
of worst-case optimal join algorithms was proposed in [16]. This algorithm also
makes use of the UNION normal form for AND-UNION patterns (i.e., it does not
consider filters). One of the first worst-case optimal multi-way join algorithms
was presented in [28]. As mentioned in Sect. 4, a sketch for the evaluation of
Datalog rules containing negation is provided in [28]. However, to the best of
our knowledge, there have not been any works for SPARQL that integrate the
evaluation of negation in multi-way join plans.

7 Conclusion And Future Work

We presented a multi-way join algorithm for the evaluation of SPARQL queries
corresponding to ALC class expressions. The main characteristic of our algo-
rithm is the inclusion of FILTER NOT EXISTS patterns (i.e., negation) in multi-
way join plans. Its purpose is to accelerate class expression learning in ALC
by reducing the runtimes of instance retrieval operations. The experimental
results on five datasets show that our implementation outperforms its competi-
tion across all datasets and that it is the only one scaling to the largest dataset,
which contains more than 40M triples. In the future, we will extend our approach
to support more expressive description logics (e.g., SROIQ).
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Abstract. Structural equation models (SEMs) have been widely used
to analyze causal relationships between variables via graphs. Linear non-
Gaussian acyclic model (LiNGAM) is a type of SEM mainly assuming
that the graph is a directed acyclic graph (DAG), the relationships are
linear, and the noises follow non-Gaussian distributions. DirectLiNGAM
is a popular LiNGAM learning method with applications in various
fields. However, DirectLiNGAM has computational difficulty on large-
scale data with many variables. In this study, we point out that the
bottleneck of DirectLiNGAM is in estimating a causal order of vari-
ables. We also propose an algorithm that improves the computational
complexity of estimating a causal order. The main idea is to construct a
DAG from multiple layers, and we name the algorithm LayeredLiNGAM.
As a result, the computational complexity of estimating a causal order
is reduced from O(Cd3) to O((C + d)Td2). We here denote the number
of variables by d and the number of detected layers by T . Furthermore,
C is the computational complexity required to compute independence
between two variables. Experimental results show that LayeredLiNGAM
is faster than DirectLiNGAM without quality degradation of learned
DAGs on synthetic and real-world datasets.

Keywords: Structural Equation Model · Linear Non-Gaussian Acyclic
Model · LiNGAM · Causal Discovery

1 Introduction

Structural equation models (SEMs) have been widely used to analyze causal
relationships between variables via graph structures, i.e., the nodes correspond
one-to-one to the variables and the arcs indicate causal relationships. There are
wide range of applications including pharmacy [8], epidemiology [9], biology [10],
and genetics [14]. Among various SEM formulations [5,11,13,15], Linear non-
Gaussian acyclic model (LiNGAM) [11] is a popular variant. LiNGAM is a simple
SEM by the assumption that the graph is a directed acyclic graph (DAG), the
relationships are linear, the noises follow non-Gaussian distributions with zero
means and non-zero variances, and the noises are independent of each other.
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Fig. 1. The concept of LayeredLiNGAM.

DirectLiNGAM [12] is a representative method for learning LiNGAM. The
algorithm consists of two steps (i) estimating a causal order and (ii) estimat-
ing a weighted adjacency matrix of the DAG. Especially, DirectLiNGAM has
validity by a theoretical framework derived from some observations of LiNGAM.
However, DirectLiNGAM has difficulty with large-scale data having many vari-
ables in terms of computation time. This paper points out that the bottleneck of
DirectLiNGAM is in estimating a causal order from both theoretical and empir-
ical aspects. Furthermore, we aim to improve its computational complexity.

As a main idea, we take advantage of the fact that we can decompose a
DAG into multiple layers. Introducing the concept of layers, we can regard
DirectLiNGAM as estimating a causal order with the restriction that each layer
has exactly one node. Therefore, we generalize the theoretical framework of
DirectLiNGAM and propose a new algorithm so that each layer is allowed to
consist of multiple nodes. It improves the computational complexity of estimat-
ing a causal order from O(Cd3) to O((C + d)Td2). We here denote the number
of variables by d and the number of detected layers by T . In addition, C is the
computational complexity required to compute independence between two vari-
ables. Note that the obvious lower bound of C is the sample size of the input
data. Furthermore, the sample size should be greater than d for accurate learn-
ing. Thus, our improvement is more effective when the DAG consists of fewer
layers relative to the number of nodes.

Contributions. In this paper, we propose LayeredLiNGAM as a practical and
fast learning method for LiNGAM to handle large-scale data consisting of many
variables. The contributions of this paper are as follows:

– We show that the bottleneck of DirectLiNGAM is the computation time for
estimating a causal order both theoretically and empirically. In the theoretical
aspect, we discuss the computational complexity of DirectLiNGAM. In the
empirical aspect, we show experimental evidence.

– We introduce the concept of layers and generalize the theoretical framework
that guarantees the validity of DirectLiNGAM. From the generalization, we
derive a new LiNGAM learning algorithm named LayeredLiNGAM. Figure 1
shows the concept of LayeredLiNGAM briefly.
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– We also discuss the computational complexity of LayeredLiNGAM and show
its superiority compared to DirectLiNGAM. Furthermore, by experiments
on synthetic datasets, we show that LayeredLiNGAM faithfully follows its
computational complexity.

– Our experimental results show that LayeredLiNGAM performs faster than
DirectLiNGAM without degrading the quality of learned DAGs in many cases
and with improving the quality in some cases. The speedups are more than
25 and 5 times for synthetic and real-world datasets.

2 Related Work

There are some existing studies that have leveraged the concept of layers in
learning SEMs [4,17]. While they can handle more general SEMs than the linear
model, they require some properties in the variances of variables conditioned on
their parent variables: all the variables have an equal conditional variance [4],
or each conditional variance is derived from a quadratic function of the condi-
tional mean [17]. Such properties of conditional variances are unrealistic as the
number of variables increases. Furthermore, the method of Zhou et al. [17] has
a disadvantage that the algorithm needs some modifications depending on the
assumed distribution of variables. Although our LayeredLiNGAM leverages the
concept of layers, it requires no additional assumption beyond LiNGAM and no
process modification depending on the assumed distribution of variables.

Ruixuan et al. [16] have leveraged the concept of layers in learning LiNGAM.
Hereinafter, we refer to this method as RuixuanLiNGAM in this paper. Ruixuan-
LiNGAM also requires no additional assumption beyond LiNGAM and no adap-
tive modification of the algorithm. The difference between RuixuanLiNGAM
and LayeredLiNGAM is whether the algorithm estimates the layers of DAGs in
a bottom-up (starting from sink nodes) or top-down (starting from root nodes)
fashion. RuixuanLiNGAM adopts a bottom-up fashion and leverages a different
theoretical framework to DirectLiNGAM. In contrast, LayeredLiNGAM adopts
a top-down fashion that purely extends the DirectLiNGAM. On the computa-
tional complexity, RuixuanLiNGAM takes O((C + Rd)Td2) time in estimating
a causal order where R is the number of steps for a precision matrix estima-
tion such as Graphical LASSO [3]. Therefore, we expect that LayeredLiNGAM
is faster than RuixuanLiNGAM. Our experiments focus on the superiority of
LayeredLiNGAM compared to DirectLiNGAM and RuixuanLiNGAM.

3 Preliminaries

This section describes LiNGAM and its learning algorithm, DirectLiNGAM.
Hereinafter, for simplicity, let [n] := {1, . . . , n} for any positive integer n ∈ N.

3.1 LiNGAM

LiNGAM is a type of SEM representing a data generation process using DAG.
For a d-dimensional random vector x = (x1, . . . , xd)� ∈ R

d, we consider a
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weighted adjacency matrix of a DAG with d nodes B = (bij)d×d ∈ R
d×d. Each

element bij represents the direct causal effect from a variable xj to another xi.
Without loss of generality, we assume that each observed variable xi has zero
mean. Then, the following equation expresses LiNGAM:

x = Bx+ e, (1)

where e = (e1, . . . , ed)� ∈ R
d is a random noise vector. We assume that each

ei follows a non-Gaussian distribution with zero mean and a non-zero variance.
Furthermore, all ei are assumed to be independent of each other. That is, there
are no latent confounding variables.

We can order all the variables according to their precedence relationships.
We call such an order of variables a causal order and denote it by a bijection
CO : [d] → [d]. That is, CO(i) < CO(j) ⇒ bij = 0 holds for any i, j ∈ [d]. Then,
the Eq. (1) is equivalent to

xi =
∑

j∈[d],CO(j)<CO(i)

bijxj + ei.

Furthermore, if xi has no precedent variable and its observations satisfy xi = ei,
we call xi an exogenous variable. According to the assumption of acyclicity and
no latent confounding variables, a causal order and an exogenous variable exist.

3.2 DirectLiNGAM

DirectLiNGAM [12] is a learning algorithm for LiNGAM. The algorithm consists
of two steps (i) estimating a causal order and (ii) estimating an adjacency matrix.
We here focus on two known lemmas to guarantee the validity of the step (i).
The first lemma indicates the criteria for determining exogenous variables, i.e.,
how to find a variable that can be first in the causal order. The second lemma
indicates that LiNGAM is preserved for the residuals of the simple regressions
by one exogenous variable. Those statements are as follows.

Lemma 1 ([12]). Assume the input data x follows LiNGAM, i.e., x satisfies
all the model assumptions and has infinite samples. Let r

(j)
i be the residual when

xj regreses xi. That is, r
(j)
i = xi − cov(xi,xj)

var(xj)
xj (i �= j). Then, xj is an exogenous

variable if and only if xj is independent of all residuals r
(j)
i (i �= j).

Lemma 2 ([12]). Assume the input data x follows LiNGAM. Furthermore,
assume that xj is an exogenous variable. Let r(j) := (r(j)i )�i�=j be the vector col-
lecting the residuals by xj for all xi (i �= j). Similarly, let e(j) := (ei)�i�=j. Then,
there is a matrix B(j) such that LiNGAM is preserved on r(j) = B(j)r(j) + e(j).

Transforming the Eq. (1), we can write x = Ae where A = (I − B)−1. Note
that, because B represents a DAG and can be permuted to be strictly lower
triangular, (I − B) is invertible. A = (aij)d×d corresponds to the transitive
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closure of the DAG represented by B, an element aij (i �= j) represents the total
causal effect from xj to xi, and aii = 1. According to the proof of Lemma 2 [12],
we can take B(j) = I−(A(j))−1 where A(j) is the matrix with removing j-th row
and j-th column from A. Note that since A is lower triangular and invertible,
A(j) is also lower triangular and invertible. Furthermore, from the structure
of A(j), we immediately see that the possible causal orders of x and r(j) are
equivalent by ignoring xj . Thus, we obtain the following corollary.

Corollary 1 ([12]). Assume the input data x follows LiNGAM. Furthermore,
assume that xj is an exogenous variable. Then, for any causal order CO of x,
there is a causal order COj of r(j) such that CO(k) < CO(l) ⇔ COj(k) < COj(l)
holds for any k �= j and l �= j, i.e., r(j) preserves the possible causal orders of x.

By Lemma 2 and Corollary 1, we see that a causal order can be estimated by
recursively finding an exogenous variable for the residuals. That is, if the algo-
rithm selects xj as an exogenous variable in the current step, then the algorithm
replaces x by r(j) before proceeding to the next step and removes xj . The algo-
rithm repeats the above operation until all variables are selected. As a result,
CO(i) becomes the number of steps before xi is selected.

As a quantified measure of exogenous variables, i.e., computing independence,
DirectLiNGAM leverages mutual information. Let K ⊆ [d] be the subset of
indices whose corresponding variables are unordered. For any i, j ∈ K, Mij :=
I(xj , r

(j)
i )− I(xi, r

(i)
j ) indicates the precedence between xi and xj as follows: xi

precedes xj if Mij > 0, the precedence between xi and xj is arbitrary if Mij = 0,
and xj precedes xi if Mij < 0. Let mi :=

∑
j∈K,i �=j min(0,Mij)2. Then, because

exogenous variables should precede more variables, the algorithm selects xj∗ as
an exogenous variable for j∗ ∈ arg minj∈Kmj .

After estimating a causal order CO, the algorithm estimates an adjacency
matrix B as follows: bij becomes a coefficient of a sparse regression such that
the precedent variables {xj | CO(j) < CO(i)} regress xi. A recommended sparse
regression method is Adaptive LASSO [18]. Algorithm 1 shows the pseudocode of
DirectLiNGAM. Note that, X ∈ R

d×n denotes the data matrix of n samples, and
R(j) denotes the matrix collecting the residuals by xj for {xi}i�=j,i∈K . Further-
more, AdaptiveLASSO(Xi, XP ) is the process that returns a sparse coefficient
vector resulting from {xj}j∈P regresses xi.

Computational Complexity. Let us confirm the computational complexity of
DirectLiNGAM. The computation of all the residual matrices R(j) (j ∈ K)
takes O(n|K|2) time by the simple regression. When the computation of Mij

takes O(C) time, the computation of all mj (j ∈ K) takes O(C|K|2) time. Note
that C ≥ n holds. Thus, estimating a causal order takes O((n + C)

∑d
k=1 k2) =

O(Cd3) time. AdaptiveLASSO takes O(n|P |2) time by using LARS algorithm [2].
Thus, estimating an adjacency matrix takes O(n

∑d
p=1 p2) = O(nd3) time. As a

result, DirectLiNGAM takes O(Cd3) time in total.
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Algorithm 1. DirectLiNGAM
Input: A data matrix X ∈ R

d×n of d variables and n samples
Output: A weighted adjacency matrix B ∈ R

d×d of a DAG
1: K ← [d], X(1) ← X
2: for t = 1, 2, . . . , d do
3: Compute R(j) for all j ∈ K over X(t)

4: Compute mj for all j ∈ K
5: Find j∗ ∈ arg minj∈Kmj

6: CO(j∗) ← t
7: K ← K \ {j∗}, X(t+1) ← R(j∗)

8: B ← d × d zero matrix
9: for i = 1, 2, . . . , d do

10: P = {j ∈ [d] | CO(j) < CO(i)}
11: (bij)j∈P ← AdaptiveLASSO(Xi, XP )
12: return B

Fig. 2. Computation times of DirectLiNGAM on synthetic datasets. Time-O and Time-
B are the computation time for estimating a causal order and an adjacency matrix,
respectively. See Sect. 5 for the detailed settings.

Research Question. From the above discussion, we can infer that estimating a
causal order (which takes O(Cd3) time) is dominant in the computation time of
DirectLiNGAM. Therefore, our research question is how to speed up estimating
a causal order. On the other hand, surprisingly, we obtain the lower bound C = n
by computing Mij using maximum entropy approximation [6]. In other words,
the theoretical result already appears to be tight. However, our preliminary
experiments (see Fig. 2) show that estimating a causal order is a few to 50
times slower than estimating an adjacency matrix. It indicates the presence of
overhead in maximum entropy approximation. Therefore, we aim to speed up
DirectLiNGAM in practice by improving the term d3 of O(Cd3) for estimating
a causal order.

4 LayeredLiNGAM

Since DirectLiNGAM determines the causal order for each variable one by one,
the term d3 inevitably appears in the computational complexity. Therefore, we
consider ordering multiple variables simultaneously to speed up estimating a
causal order. The strategy originates from the decomposition of the DAG into
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multiple layers. Each layer corresponds to a subset of variables whose causal
order can be arbitrarily among them.

Now, we decompose the DAG into T layers L1, . . . , LT ⊆ {x1, . . . , xd}. Note
that Ls ∩ Lt = ∅ (s �= t) and

⋃
t∈[T ] Lt = {xi}i∈[d] hold. Then, we introduce a

function LO : [d] → [T ] such that xi ∈ Lt ⇔ LO(i) = t for all i ∈ [d]. We call
LO a layered causal order if it satisfies the following equation:

xi =
∑

j∈[d],LO(j)<LO(i)

bijxj + ei.

If we restrict |Lt| = 1 for any layer t ∈ [T ], then a layered causal order is
equivalent to a causal order. Thus, we can say that layered causal order is a
generalization of causal order.

We propose a new LiNGAM learning algorithm that estimates a layered
causal order LO instead of a causal order CO. First, to design the algorithm
with validity, we generalize Lemma 2 and Corollary 1. Then, we present the
new algorithm and discuss its computational complexity with superiority over
DirectLiNGAM. We name the proposed algorithm LayeredLiNGAM.

4.1 Generalization of Lemma 2

We can regard that Lemma 2 originates from restricting |Lt| = 1 for all t ∈ [T ].
We show a similar lemma for the general cases such that |Lt| ≥ 1. Furthermore,
by the proof of the new lemma, we immediately obtain a new corollary that
generalizes Corollary 1.

Lemma 3. Assume the input data x follows LiNGAM. Furthermore, assume
that XJ := {xj}j∈J is a set of exogenous variables where J ⊆ [d] (J �= ∅). Let rJi
be the residual when XJ regresses xi. Let rJ := (rJi )

�
i/∈J be the vector collecting

the residuals by XJ for all xi (i /∈ J). Similarly, let eJ := (ei)�i/∈J . Then, there
is a matrix BJ such that LiNGAM is preserved on rJ = BJrJ + eJ .

Proof. Without loss of generality, we assume that B is a strictly lower triangular
matrix whose diagonal elements are zero, i.e., the rows and columns are arranged
according to a causal order. Then, we can assume that J = {1, . . . , k} ⊆ [d]. Since
XJ is a set of exogenous variables, we have xj = ej for all j ∈ J .

Let ĀJ be a (d−k)×k matrix that takes the last (d−k) rows and the first k
columns of A. Let AJ be a (d−k)×(d−k) matrix that takes the last (d−k) rows
and the last (d − k) columns of A. Then, we can rewrite the equation x = Ae
as follows:

x =
[

I O
ĀJ AJ

]
e (2)

From the model assumption, for any i ∈ [d] \ J and j ∈ J , aij is equal to
the regression coefficient when ej regresses xi, and we can write aij =

cov(xi,ej)
var(ej)

.
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Thus, we have

∀i ∈ [d] \ J, rJi = xi −
∑

j∈J

cov(xi, ej)
var(ej)

ej = xi −
∑

j∈J

aijej . (3)

Let r := (e1, . . . , ek, rJk+1, . . . r
J
d )

�. From the equations (2) and (3), by remov-
ing the causal effects of exogenous variables XJ from the equation x = Ae,
we have

r = x −
[
O O
ĀJ O

]
e =

[
I O
ĀJ AJ

]
e −

[
O O
ĀJ O

]
e =

[
I O
O AJ

]
e.

In the above equation, XJ does not affect any other variable. Thus, by remov-
ing XJ , we obtain rJ = AJeJ . Since A is lower triangular and invertible, AJ is
also lower triangular and invertible. Thus, we obtain a new SEM rJ = BJrJ+eJ

where BJ = I−(AJ )−1. Furthermore, BJ represents a DAG due to the structure
of AJ . Therefore, the lemma holds.

Corollary 2. Assume the input data x follows LiNGAM. Furthermore, assume
that XJ := {xj}j∈J is a set of exogenous variables where J ⊆ [d] (J �= ∅). Then,
for any layered causal order LO of x, there is a layered causal order LOJ of rJ
such that LO(k) < LO(l) ⇔ LOJ (k) < LOJ(l) holds for any k, l /∈ J , i.e., rJ
preserves the possible layered causal orders of x.

4.2 Algorithm

By Lemma 3 and Corollary 2, we see that a layered causal order can be estimated
by recursively finding a set of exogenous variables for the residuals. That is, if
the algorithm selects XJ as a set of exogenous variables in the current step, then
the algorithm replaces x by rJ before proceeding to the next step and removes
XJ . The algorithm repeats the above operation until all variables are selected.
As a result, LO(i) becomes the number of steps before xi is selected.

An algorithmic issue is the search for a set of exogenous variables XJ over
the unordered variables {xi}i∈K . We solve the issue by defining

J :=
{

j ∈ K

∣∣∣∣
√

mj

|K| − 1
≤ ε

}
,

where ε ∈ R≥0 is a threshold parameter. Note that
√

mj

|K|−1 is the root mean
square with respect to min(0,Mij), i.e., its scale is immutable regardless of K.

As a result, XJ contains variables that seem more exogenous. If there is no
j ∈ K such that

√
mj

|K|−1 ≤ ε, we set J = arg minj∈Kmj . After estimating a
layered causal order LO, the algorithm estimates an adjacency matrix B. We
conduct it by replacing CO with LO in line 10 of Algorithm 1. Therefore, we
can write the pseudocode of LayeredLiNGAM as Algorithm 2. Note that RJ is
the matrix collecting the residuals by XJ for {xi}i∈K\J .
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Algorithm 2. LayeredLiNGAM
Input: A data matrix X ∈ R

d×n and a threshold parameter ε
Output: A weighted adjacency matrix B ∈ R

d×d of a DAG
1: K ← [d], X(1) ← X, t ← 1
2: while K �= ∅ do
3: Compute R(j) for all j ∈ K over X(t)

4: Compute mj for all j ∈ K

5: J ←
{

j ∈ K
∣∣∣
√

mj

|K|−1
≤ ε

}

6: if J = ∅ then
7: J ← arg minj∈Kmj

8: LO(j) ← t for all j ∈ J
9: K ← K \ J , X(t+1) ← RJ , t ← t + 1

10: B ← d × d zero matrix
11: for i = 1, 2, . . . , d do
12: P = {j ∈ [d] | LO(j) < LO(i)}
13: (bij)j∈P ← AdaptiveLASSO(Xi, XP )
14: return B

Computational Complexity. We discuss the computational complexity of esti-
mating a layered causal order. Note that there is no difference in computa-
tional complexity of estimating an adjacency matrix between DirectLiNGAM
and LayeredLiNGAM. The main difference from DirectLiNGAM is the com-
putation of the residual matrix RJ by multiple regression. However, it can
be done in O(n|J ||K| + |J |2|K|) = O(n|K|2 + |K|3) time using the least-
squares. Thus, when C ≥ |K|, the bottleneck is still the computation of
all mj (j ∈ K) that takes O(C|K|2) time. Let T be the number of itera-
tions in lines 2 through 9 of Algorithm 2. It is equal to the number of layers
detected by LayeredLiNGAM. Then, estimating a layered causal order takes
O((n + C)

∑T
t=1 k2

t +
∑T

t=1 k3
t ) = O((C + d)Td2) time where kt is the size of K

at t-th iteration. Especially, we have O(CTd2) when C ≥ d or n ≥ d hold. Since
T ≤ d holds, we expect that LayeredLiNGAM is faster than DirectLiNGAM
when the estimated DAG consists of a small number of layers relative to the
number of nodes.

4.3 Adaptive Thresholding

The behavior of LayeredLiNGAM can vary depending on the threshold param-
eter ε. Specifically, as ε increases, the algorithm estimates each layer as a larger
variable set. Then, as the computation time decreases with ε increases, the out-
put DAG is more different from that of DirectLiNGAM. If the input data matrix
is always ideal for LiNGAM, we may be able to fix ε to a proper constant value.
However, it is an unrealistic strategy in practice. Therefore, we consider how to
determine a reasonable value of ε while running the algorithm.

A simple strategy is to use the minimum meaningful value multiplied by
a constant value. That is, we take an alternative constant parameter δ ≥ 1
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and use ε̂ := δ · minj∈K

{√
mj

|K|−1

}
as ε for each iteration. However, small ε

leads to no speedup effect, and large ε may cause quality degradation. There-
fore, we take an upper bound and a lower bound for ε: given two constant
parameters εmin, εmax ∈ R≥0 where εmin ≤ εmax, we compute the bounded value
ε = min{max{εmin, ε̂}, εmax}. In Sect. 5, we experimentally find better values of
δ, εmin, and εmax.

5 Experiments

We conducted experiments to confirm the actual behavior of LayeredLiNGAM
and its superiority over DirectLiNGAM and RuixuanLiNGAM. Note that we
used maximum entropy approximation for computing independence between two
variables to achieve C = n. The implementation1 was in Python 3.10 with lever-
aging numpy and numba for standard acceleration tools. The computer environ-
ment consisted of Ubuntu 22.04.2 LTS, Intel(R) Xeon(R) CPU E5-2667 v4, and
128GB RAM.

Although there is an existing library [7] for DirectLiNGAM, to be fair to
the implementation of the other algorithms, we implemented DirectLiNGAM on
our own. Furthermore, we have confirmed that our DirectLiNGAM implemen-
tation is more than ten times faster than the existing one and still produces
comparable output. In implementing RuixuanLiNGAM, we need a subroutine
to estimate a precision matrix such as Graphical LASSO [3]. However, because
RuixuanLiNGAM with Graphical LASSO was very slow, we used the empirical
precision matrix for ease.

5.1 Datasets and Evaluation Metrics

Synthetic Datasets. We used synthetic datasets based on three different types
of sparse random DAGs. After generating DAGs, we drew the value bij of each
directed edge uniformly at random from [−2.0,−0.5] ∪ [0.5, 2.0]. Then, we drew
each random noise ei from a Laplace distribution with mean 0 and variance 1.
Finally, we generated samples based on the formula (1). The variations of sparse
random DAGs are as follows:

– RG4 originated from an undirected graph with random 2d edges, i.e., the
expected degree of each node was four. We orientated each edge according to
a randomly generated causal order.

– BA4 originated from an undirected graph of Barabási-Albert model [1] that
added four random edges from a newly generated node to existing nodes. We
orientated each edge according to a randomly generated causal order.

– LA128 was a DAG with d = 128 nodes and T ∗ ∈ {2, 4, 8, 16, 32, 64, 128}
layers. Each layer exactly contained d

T∗ nodes. We connected each node to
just its above and below layers only.

1 The source code is available at https://doi.org/10.6084/m9.figshare.25425235.v1.

https://doi.org/10.6084/m9.figshare.25425235.v1
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Real-World Datasets. We used gene expression cancer RNA-Seq (GENE for
short) dataset2 and yprop_4_1 (YPROP for short) dataset3 taken from UCI
repository and OpenML, respectively. GENE contains 801 samples of patients
and 20531 variables of gene expressions. YPROP is a drug design dataset consist-
ing of 8885 samples and 252 variables. For each dataset, we resampled variables
and obtained ten different datasets: First, the variables were classified into d
clusters using the hierarchical clustering of Ward’s method. Second, we resam-
pled d variables by randomly selecting one variable from each of the d clusters.
We set d = 500 for GENE dataset and d = 100 for YPROP dataset. Finally, we
standardized all the resampled datasets.

Evaluation Metrics. We evaluated the competitors by the following metrics.

– Time-O and Time-B are the computation times of estimating a (layered)
causal order and an adjacency matrix, respectively.

– Precision and Recall are computed as |Etr∩Ele|
|Ele| and |Etr∩Ele|

|Etr| , respectively.
Etr and Ele are the edge set of the true DAG and learned DAG, respectively.

– Structural Hamming Distance (SHD) is the number of edge insertions,
deletions, and flips required to convert the estimated DAG to the true DAG.

– Bayesian Information Criterion (BIC) is defined as −2�(X,B)+m log n
where �(X,B) is the log-likelihood and m is the number of estimated edges.

– Root Mean Squared Error (RMSE) is the loss in terms of the regression

model and is defined as
√

1
nd‖X − BX‖22.

On the quality metrics, higher values are better for Precision and Recall, and
lower values are better for SHD, BIC, and RMSE. We used Precision, Recall, and
SHD for synthetic datasets because we knew the true DAGs. BIC and RMSE
were used for GENE and YPROP datasets because these datasets have no known
true DAG.

5.2 Determining Threshold Parameters

Before specific comparisons of the competitors, we experimentally determined
reasonable threshold parameters δ, εmin, and εmax for LayeredLiNGAM. We
here observed the behaviors when δ was given and ε was fixed, respectively. The
candidate values were δ ∈ {0, 1, . . . , 20} and ε ∈ {2−k | k ∈ {0, 1, . . . , 20}}.
Furthermore, we used synthetic datasets derived from RG4/BA4 of d = 100
and LA128 of T ∗ = 16 with the fixed sample size n = 5000. Figure 3 shows the
results.

We focused on parameters with low computation time and high quality. The
reasonable interval of δ for each graph type were [4, 12] for RG4, [11, 18] for BA4,
and [9, 13] for LA128. Since the intersection of these intervals was [11, 12], we
adopted its midpoint as δ = 11.5. The reasonable interval of ε was [2−12, 2−8]
for all the graph types. Therefore, we set εmin = 2−12 and εmax = 2−8.
2 https://archive.ics.uci.edu/dataset/401/gene+expression+cancer+rna+seq.
3 https://www.openml.org/search?type=data&sort=runs&id=416&status=active.

https://archive.ics.uci.edu/dataset/401/gene+expression+cancer+rna+seq
https://www.openml.org/search?type=data&sort=runs&id=416&status=active
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Fig. 3. Results of LayeredLiNGAM with various threshold parameters. We generated
ten random instances for each graph type. We plotted the means and standard errors
of four evaluation metrics total computation time (the sum of time-O and Time-B),
Precision, Recall, and SHD.

5.3 Results on Synthetic Datasets

We conducted observations over synthetic datasets in the following two ways.
(a) Varied the number of variables in RG4/BA4 and the number of layers in
LA128 and fixed the sample size to sufficient (d ∈ {10, 25, 50, 100, 250, 500},
T ∗ ∈ {2, 4, 8, 16, 32, 64, 128}, and n = 5000). (b) Varied the sample size and
fixed the number of variables in RG4/BA4 and the number of layers in LA128
(d = 100, T ∗ = 16, and n ∈ {10, 25, 50, 100, 250, 500, 1000, 2500, 5000}). Figure 4
and 5 show the results of (a) and (b), respectively.

From the results on RG4/BA4 in Fig. 4, estimating causal orders by Lay-
eredLiNGAM was faster than that by DirectLiNGAM and achieved speedups of
more than 50 times in the cases of d = 500. It was comparable to the compu-
tation times for estimating adjacency matrices. Furthermore, LayeredLiNGAM
achieved speedups more than 25 times in the total computation times. Since
there was no difference among the competitors in the computation times for
estimating adjacency matrices, we obtained dramatic impacts of the fast esti-
mation of causal orders by LayeredLiNGAM.

From the results for LA128 in Fig. 4, we observed that the computation times
for LayeredLiNGAM were close to that of DirectLiNGAM as the number of layers
increased. From Fig. 5, we observed that the acceleration by LayeredLiNGAM
did not work well in the cases of n ≤ d but worked significantly in the cases of
n > d. Therefore, we confirmed that LayeredLiNGAM performed faithfully with
respect to the theoretical computational complexity O((C + d)Td2).

Focusing on the quality metrics, LayeredLiNGAM achieved comparable
results to DirectLiNGAM in almost all cases and improvements in some cases.
From Fig. 5, LayeredLiNGAM achieved sufficient quality with a larger sample
size (n ≥ 1000 � 10d) for any graph type. We observed significant quality degra-
dations in LayeredLiNGAM in only the cases of LA128 with n ∈ {250, 500}



LayeredLiNGAM: A Practical and Fast Method for Learning LiNGAM 229

Fig. 4. Results on synthetic datasets that we focused on the number of variables
d ∈ {10, 25, 50, 100, 250, 500} and layers T ∗ ∈ {2, 4, 8, 16, 32, 64, 128} with the fixed
sample size n = 5000. We generated ten random instances for each setting. We plotted
the means and standard errors of five evaluation metrics Time-O, Time-B, Precision,
Recall, and SHD.

in Fig. 5. However, since LA128 is a special DAG and sufficient samples solve
quality degradation, the above observation is not an issue.

The results of RuixuanLiNGAM are as follows. RuixuanLiNGAM was faster
than DirectLiNGAM but a few to ten times slower than LayeredLiNGAM. Fur-
thermore, RuixuanLiNGAM obtained a more significant quality degradation as
the number of variables increased compared to the other methods. Therefore,
the top-down fashion may be more appropriate than the bottom-up fashion for
estimating layers in learning LiNGAM.

In summary, on synthetic datasets, LayeredLiNGAM performed faster than
DirectLiNGAM without degrading quality in almost all cases and with improv-
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Fig. 5. Results on synthetic datasets that we focused on the sample size n ∈
{10, 25, 50, 100, 250, 500, 1000, 2500, 5000} with the fixed number of variables d = 100
for RG4/BA4 and the fixed number of layers T ∗ = 16 for LA128. We generated ten
random instances for each setting. We plotted the means and standard errors of five
evaluation metrics Time-O, Time-B, Precision, Recall, and SHD.

ing quality in some cases. In addition, we found that LayeredLiNGAM was
a more reasonable acceleration method of DirectLiNGAM compared to Ruix-
uanLiNGAM. These results show that LayeredLiNGAM is a more practical
LiNGAM learning method than DirectLiNGAM and RuixuanLiNGAM when
the input data follows LiNGAM and has a sufficient size of samples.

5.4 Results on Real-World Datasets

We conducted ten trials for each GENE and YPROP dataset via bootstrap sam-
pling. We measured BIC and RMSE on the original rather than the bootstrapped
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Fig. 6. Results on GENE datasets. We tried ten random bootstrap samplings for each
dataset. We plotted the means and standard errors of four evaluation metrics Time-O,
Time-B, BIC, and RMSE.

Fig. 7. Results on YPROP datasets. We tried ten random bootstrap samplings for each
dataset. We plotted the means and standard errors of four evaluation metrics Time-O,
Time-B, BIC, and RMSE.

dataset. As mentioned above, we did not measure Precision, Recall, and SHD
because there is no known true DAG. Figure 6 and 7 show the results on GENE
and YPROP datasets, respectively.

LayeredLiNGAM estimated causal orders more than five times faster than
DirectLiNGAM on both GENE and YPROP datasets. In the total computa-
tion times, the speedups by LayeredLiNGAM were more than five and three
times on GENE and YPROP datasets, respectively. Thus, we achieved desirable
accelerations by LayeredLiNGAM on real-world datasets.

The results on the quality of learned DAGs are as follows. On GENE datasets,
LayeredLiNGAM was slightly inferior in RMSE but significantly superior in
BIC. On YPROP datasets, LayeredLiNGAM achieved almost comparable BIC
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and RMSE to DirectLiNGAM. Thus, we succeeded to avoid undesirable quality
degradations of learned DAGs on LayeredLiNGAM.

RuixuanLiNGAM performed as fast as LayeredLiNGAM on GENE datasets
and faster than DirectLiNGAM on YPROP datasets. However, its BIC and
RMSE were comparable or significantly inferior to DirectLiNGAM. Therefore,
the top-down fashion can be more appropriate than the bottom-up fashion for
estimating layers in learning LiNGAM on real-world datasets.

In summary, on real-world datasets, LayeredLiNGAM performed faster than
DirectLiNGAM without undesirable quality degradations of learned DAGs. On
the other hand, RuixuanLiNGAM could accelerate learning LiNGAM but would
obtain quality degradations. These results show that LayeredLiNGAM is a more
practical LiNGAM learning method than DirectLiNGAM and RuixuanLiNGAM
on real-world datasets.

6 Conclusion

This paper focused on a representative LiNGAM learning method called
DirectLiNGAM. First, we pointed out that the bottleneck of DirectLiNGAM is in
estimating causal order both theoretically and empirically. Second, we proposed
LayeredLiNGAM improving the computational complexity of DirectLiNGAM by
leveraging the concept of layers in DAG structures. To derive the algorithm of
LayeredLiNGAM, we generalized the theoretical framework of DirectLiNGAM.
We also conducted experiments on both synthetic and real-world datasets. The
experimental results showed that LayeredLiNGAM succeeded in learning faster
than DirectLiNGAM when the estimated DAG consisted of a small number of
layers relative to the number of nodes. Furthermore, LayeredLiNGAM faith-
fully followed its computational complexity and obtained no undesirable quality
degradation of learned DAG in almost all cases and quality improvements in
some cases. An interesting open research question is how to make the output of
LayeredLiNGAM closer to DirectLiNGAM while maintaining the computation
time of LayeredLiNGAM.
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Abstract. Experimental (design) optimization is a key driver in design-
ing and discovering new products and processes. Bayesian Optimization
(BO) is an effective tool for optimizing expensive and black-box exper-
imental design processes. While Bayesian optimization is a principled
data-driven approach to experimental optimization, it learns everything
from scratch and could greatly benefit from the expertise of its human
(domain) experts who often reason about systems at different abstrac-
tion levels using physical properties that are not necessarily directly
measured (or measurable). In this paper, we propose a human-AI col-
laborative Bayesian framework to incorporate expert preferences about
unmeasured abstract properties into the surrogate modeling to further
boost the performance of BO. We provide an efficient strategy that can
also handle any incorrect/misleading expert bias in preferential judg-
ments. We discuss the convergence behavior of our proposed framework.
Our experimental results involving synthetic functions and real-world
datasets show the superiority of our method against the baselines.

Keywords: Machine Learning · Bayesian Optimization · Gaussian
Process · Expert Feedback · Preferential Modeling

1 Introduction

Experimental design is the workhorse of scientific design and discovery. Bayesian
Optimization (BO) has emerged as a powerful methodology for experimental
design tasks [1,2] due to its sample-efficiency in optimizing expensive black-
box functions. In its basic form, BO starts with a set of randomly initialized
designs and then sequentially suggests the next design until the target objective is
reached or the optimization budget is depleted. Theoretical analyses [3,4] of BO
methods have provided mathematical guarantees of sample efficiency in the form
of sub-linear regret bounds. While BO is an efficient optimization method, it only
uses data gathered during the design optimization process. However, in real world
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experimental design tasks, we also have access to human experts [5] who have
enormous knowledge about the underlying physical phenomena. Incorporating
such valuable knowledge can greatly accelerate the sample-efficiency of BO.

Previous efforts in BO literature have incorporated expert knowledge on the
shape of functions [6], form of trends [7], priors over optima [8] and model selec-
tion [9], which require experts to provide very detailed knowledge about the
black-box function. However, most experts understand the process in an approxi-
mate or qualitative way, and usually reason in terms of the intermediate abstract
properties - the expert will compare designs, and reason as to why one design
is better than another using high level abstractions. For instance, consider the
design of a spacecraft shield (Whipple shield) consisting of 2 plates separated
by a gap to safeguard the spacecraft against micro-meteoroid and orbital debris
particle impacts. The design efficacy is measured by observing the penetration
caused by hyper-velocity debris. An expert would reason why one design is bet-
ter than another and accordingly come up with a new design to try out. As
part of their domain knowledge, human experts often expect the first plate to
shatter the space debris while the second to absorb the fragments effect. Based
on these abstract intuitions, the expert will compare a pair of designs by exam-
ining the shield penetration images and ask: Does the first plate shatter better
(Shattering)? Does the second plate absorb the fragments better (Absorption)?
The use of such abstractions allows experts to predict the overall design objec-
tive thus resulting in an efficient experimental design process. It is important to
note that measuring such abstractions is not usually feasible and only expert’s
qualitative inputs are available. Incorporating such abstract properties in BO for
the acceleration of experimental design process is not well explored.

In this paper, we propose a novel human-AI collaborative approach -
Bayesian Optimization with Abstract Properties (BOAP) - to accelerate BO
by capturing expert inputs about the abstract, unmeasurable properties of the
designs. Since expert inputs are usually qualitative [10] and often available in the
form of design preferences based on abstract properties, we model each abstract
property via a latent function using the qualitative pairwise rankings. We note
that eliciting such pairwise preferences about designs does not add significant
cognitive overhead for the expert, in contrast to asking for explicit knowledge
about properties. We fit a separate rank Gaussian process [11] to model each
property. Our framework allows enormous flexibility for expert collaborations
as it does not need the exact value of an abstract property, just its ranking. A
schematic of our proposed BOAP framework is shown in Fig. 1.

Although we anticipate that experts will provide accurate preferences on
abstract properties, the expert preferential knowledge can sometimes be mislead-
ing. Therefore to avoid such undesired bias, we use two models for the black-box
function. The first model uses a “main” Gaussian Process (GP) to model the
black-box function in an augmented input space where the design variables are
augmented with the estimated abstract properties modeled via their respective
rank GPs. The second model uses another “main” GP to model the black-box
function using the original design space without any expert inputs. At each iter-
ation, we use predictive likelihood-based model selection to choose the “best”
model that has higher probability of finding the optima.
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Fig. 1. A schematic representation of our proposed framework Bayesian Optimization
with Abstract Properties (BOAP).

Our contributions are: (i) we propose a novel human-AI collaborative BO
algorithm (BOAP) for incorporating the expert pairwise preferences on abstract
properties via rank GPs (Sect. 3), (ii) we provide a brief discussion on the
convergence behavior of our proposed BOAP method (Sect. 4), (iii) we provide
empirical results on both synthetic optimization problems and real-world design
optimization problems to prove the usefulness of BOAP framework (Sect. 5).

2 Background

Notations

We use lower case bold fonts v for vectors and vi for each element in v. vᵀ is
the transpose. We use upper case bold fonts (and bold greek symbols) M for
matrices and Mij for each element in M. abs(·) is the absolute value. | · | is the
determinant. Nn = {1, 2, · · · , n}. R for Reals. X is a index set and x ∈ X .

2.1 Bayesian Optimization

Bayesian Optimization (BO) [12,13] provides an elegant framework for find-
ing the global optima of an expensive black-box function f(x), given as x� ∈
argmaxx∈X f(x), where X is a compact search space. BO is comprised of two
main components: (i) a surrogate model (usually a Gaussian Process [11]) of the
unknown objective function f(x), and (ii) an Acquisition Function u(x) [14] to
guide the search for optima.

Gaussian Process. A Gaussian Process (GP) [11] is a flexible, non-parametric
distribution over functions. It is a preferred surrogate model because of its sim-
plicity and tractability, in contrast to other surrogate models such as Student-
t process [15] and Wiener process [16]. A GP is defined by a prior mean
function μ(x) and a kernel k : X × X→R. The function f(x) is modeled
using a GP as f(x) ∼ GP(0, k(x,x′)). If D1:t = {x1:t,y1:t} denotes a set of
observations, where y = f(x) + η is the observation corrupted with noise
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η ∈ N (0, σ2
η) then, according to the properties of GP, the observed samples

D1:t and a new observation (x�, f(x�)) are jointly Gaussian. Thus, the poste-
rior distribution f(x�) is N (μ(x�), σ2(x�)), where μ(x�) = kᵀ[K + σ2

ηI]
−1y1:t,

σ2(x�) = k(x�,x�) − kᵀ[K + σ2
ηI]

−1k, k =[k(x�,x1) · · · k(x�,xt)]ᵀ, and K =
[k(xi,xj)]i,j∈Nt

.

Acquisition Functions. The acquisition function selects the next point for
evaluation by balancing the exploitation vs exploration (i.e. searching in high
value regions vs highly uncertain regions). Some popular acquisition functions
include Expected Improvement (EI) [17], GP-UCB [3] and Thompson Sampling
(TS) [18]. A standard BO algorithm is provided in Sect. 8 of the supplementary
material1.

2.2 Rank GP Distributions

[19] demonstrated that humans are better at providing qualitative comparisons
than absolute magnitudes. Thus modeling latent human preferences is crucial
when optimization objectives are in domains such as A/B testing of web design-
ing [20], recommender systems [21], players skill rating [22] and many more. [23]
proposed a non-parametric Bayesian algorithm for learning instance or label
preferences. We now discuss modeling pairwise preference relations using rank
GPs.

Consider a set of n distinct training instances denoted by X = {xi ∀i ∈
Nn} based on which pairwise preference relations are observed. Let P = {(x �
x′) | x,x′ ∈ X} be a set of pairwise preference relations, where the notation
x � x′ expresses the preference of instance x over x′. For example, the pair
{x,x′} can be two different spacecraft shield designs and x � x′ implies that
spacecraft design x is preferred over x′. [23] assume that each training instance
is associated with an unobservable latent function value {f̄(x)} measured from
an underlying hidden preference function f̄ : Rd → R, where x � x′, implies
f̄(x) > f̄(x′). Employing an appropriate GP prior and likelihood, user preference
can be modeled via rank Gaussian process distributions.

Preference learning has been used in BO literature [24,25]. [24] proposed Pref-
erential BO (PBO) to model the unobserved objective function using a binary
design preferential feedback. [26] modified PBO to compute posteriors via skew
GPs. [27] proposed a preference learning based BO to model preferences in a
multi-objective setup using multi-output GPs. [28] proposed a preference learn-
ing with Siamese Networks to capture preferences in a Multi-task learning setup.
All these works incorporate preferences about an unobserved objective function.
However, in this paper, we use preference learning to model expert preferences
about the intermediate abstract (auxiliary) properties. Our latent model learned
using such preferential data is then used as an input to model the main objective
function.
1 The supplementary material of BOAP is accessible online at the following link:

https://doi.org/10.1007/978-3-031-70365-2_14.

https://doi.org/10.1007/978-3-031-70365-2_14
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3 Framework

This paper addresses the global optimization of an expensive, black-box function
f , i.e., we aim to find the global optima (x�) of the unknown objective function
f represented as:

x� ∈ argmax f(x)
x∈X

(1)

where f : X → R is a noisy and expensive objective function. For example, f
could be a metric signifying the strength of the spacecraft shield. The motiva-
tion of this research work is to model f by capturing the cognitive knowledge of
experts in making preferential decisions based on the inherent non-measurable
abstract properties of the possible designs. The objective here is same as that of
standard BO i.e., to find the optimal design (x�) that maximizes the unknown
function f , but in the light of expert preferential knowledge on abstract prop-
erties. The central idea is to use preferential feedback to model and utilize the
underlying higher-order properties that underpin preferential decisions about
designs. We propose Bayesian Optimization with Abstract Properties (BOAP)
for the optimization of f in the light of expert preferential inputs. First, we dis-
cuss expert knowledge about abstract properties. Next, we discuss GP modeling
of f with preferential inputs, followed by a model-selection step that is capable of
overcoming a futile expert bias in preferential knowledge. A complete algorithm
for BOAP is presented in Algorithm 1 at the end of this section.

3.1 Expert Preferential Inputs on Abstract Properties

In numerous scenarios, domain experts reason the output of a system in terms
of higher-order properties ω1(x), ω2(x), . . . of a design x ∈ X . However, these
abstract properties are rarely measured, only being accessible via expert prefer-
ential inputs. For instance, a material scientist designing spacecraft shield can
easily provide her pairwise preferences on the properties such as shattering,
shock absorption, i.e., “this design absorbs shock better than that design”, in con-
trast to specifying the exact measurements of shock absorption. These properties
can be simple physical properties or abstract combinations of multiple physical
properties which an expert uses to reason about the output of a system. We
propose to incorporate such qualitative properties accessible to the expert in
the surrogate modeling of the given objective function to further accelerate the
sample-efficiency of BO.

Let ω1:m(x) be a set of m abstract properties derived from the design x ∈ X .
For property ωi, design x is preferred over design x′ if ωi(x) > ωi(x′). We denote
the set of preferences provided on ωi as Pωi = {(x � x′) if ωi(x) > ωi(x′) | x ∈
X}.

Rank GPs for Abstract Properties. We capture the aforementioned expert
preferential data for each of the abstract properties ω1:m individually using m
separate rank Gaussian process distributions [23]. In conventional GPs the obser-
vation model consists of a map of input-output pairs. In contrast, the observation
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model of a rank (preferential) Gaussian process (GP) consists of a set of instances
and a set of pairwise preferences between those instances. The central idea here
is to capture the ordering over a set of n instances X = {xi |∀i ∈ Nn} by learning
latent preference functions {ωi | ∀i ∈ Nm}. We denote such a rank GP modeling
abstract property ωi by the notation GPωi

.
Let X ∈ R

d be a d−dimensional compact search space and X = {xi |∀i ∈ Nn}
be a set of n training instances. Let ω = {ω(x)} be the unobservable latent
preference function values associated with each of the instances x ∈ X. Let P
be the set of p pairwise preferences between instances in X, defined as:

P = {(x � x′)j if ω(x) > ω(x′) | x ∈ X,∀j ∈ Np}
where ω is the latent preference function. The observation model for the rank
GP distribution GPω modeling the latent preference function ω is given as:

D̄ = {x1:n, P = {(x � x′)j ∀x,x′ ∈ X, j ∈ Np}}
We follow the probabilistic kernel approach for preference learning [23] to

formulate the likelihood function and Bayesian probabilities. Imposing non-
parametric GP priors on the latent function values ω, we arrive at the prior
probability of ω given by:

P(ω) = (2π)−
n
2 |K|− 1

2 exp
(
− 1

2ω
ᵀK−1ω

)
(2)

With suitable noise assumptions N (0, σ̃2
η) on inputs and the preference rela-

tions (x,x′)1:p in P , the Gaussian likelihood function based on [29] is:

P((x � x′)i|ω(x), ω(x′)) = Φ
(
zi(x,x′)

)
(3)

where Φ is the c.d.f of standard normal distribution and z(x,x′) = ω(x)−ω(x′)√
2σ̃2

η

.

Based on Bayes theorem, the posterior distribution of the latent function given
the data is given by:

P(ω|D̄) =
P(ω)
P(D̄)

P(D̄|ω)

where P(ω) is the prior distribution (Eq. (2)), P(D̄) =
∫ P(D̄|ω)P(ω) dω is the

evidence of model parameters including kernel hyperparameters, and P(D̄|ω) is
the probability of observing the pairwise preferences given the latent function
values ω, which can be computed as a product of the likelihood (Eq. (3)) i.e.,
P(D̄|ω) =

∏
p P((x � x′)p|ω(x), ω(x′)). We find the posterior distribution using

Laplace approximation and the Maximum A Posteriori estimate (MAP) ωMAP as
the mode of posterior distribution. We can find the MAP using Newton-Raphson
descent given by:

ωnew = ωold − H−1g|ω=ωold (4)

where the Hessian H = [K+ σ̃2
ηI]

−1+C, and the gradient g = ∇ω log P(ω|D̄) =
−[K+ σ̃2

ηI]
−1ω +b, given bj = ∂

∂ω(xj)

∑

p

lnΦ(zp) and Cij = −∂2

∂ω(xi)∂ω(xj)

∑

p

lnΦ(zp).
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Hyperparameter Optimization. Kernel hyperparameters (θ) are crucial to
optimize the generalization performance of the GP. We perform the model selec-
tion for our rank-GPs by maximizing the corresponding log-likelihood in the light
of latent values ωMAP. In contrast to the evidence maximization mentioned in
[23] i.e., θ�

ω = argmaxθω
P(D̄|θω), we find the optimal kernel hyperparameters

by maximizing the log-likelihood (L̄) of rank GPs i.e., θ�
ω = argmaxθω

L̄. The
closed-form of log-likelihood of the rank GP is given as:

L̄=−1

2
ωᵀ

MAP
[K+ σ̃2

ηI]
−1ωMAP − 1

2
log|K+ σ̃2

ηI |−n

2
log(2π) (5)

3.2 Augmented GP with Abstract Property Preferences

To account for property preferences in modeling f , we augment the input x
of a conventional GP modeling f with the mean predictions obtained from
m rank GPs (GPω1:m) as auxiliary inputs capturing the property preferences
ω1:m, in other words, instead of modeling GP directly on x we model on
x̃ = [x, μω1(x), · · · , μωm

(x)], where μωi
is the predictive mean computed using:

μωi
(x) = kᵀ[K+σ2

ηI]
−1ωMAP

where k = [k(x,x1), · · · , k(x,xn)]ᵀ, K = [k(xi,xj)]i,j∈Nn
and xi ∈ X. To handle

different scaling levels in rank GPs, we normalize its output in the interval [0, 1],
such that μωi

(x) ∈ [0, 1].
Although we model x̃ using mean predictions μωi

(x), the uncertainty esti-
mates were not (directly) considered in the modeling. The GP predictive vari-
ance tends to be high outside of the neighborhood of observations, indicating
the uncertainty in our beliefs on the model. Therefore, a data point with high
predictive variance (σω1(x))

2 in rank GP indicates the model uncertainty. We
incorporate this uncertainty in our main GP modeling x̃ such that the effects of
predicted abstract properties μωi

(x) are appropriately reduced when the model
is uncertain i.e. when (σωi

(x))2 is high.
To achieve this, we formulate the feature-wise lengthscales as a function of

predictive uncertainty of the augmented dimensions to control their importance
in the overall GP. Note that augmented features can be detrimental when the
model is uncertain. To address this potential problem, we use a spatially varying
kernel [6] that treats the lengthscale as a function of the input, rather than a
constant. A positive definite kernel with spatially varying lengthscale is given as:

k(x,x′) =
d∏

i=1

√
2l(xi)l(x′

i)
l2(xi) + l2(x′

i)
exp

(
−

d∑

i=1

(xi − x′
i)

2

l2(xi) + l2(x′
i)

)
(6)

where l(·) is the lengthscale function and x ∈ R
d. In our proposed framework, we

model x̃ ∈ R
d+m and use lengthscale as a function l(·) only for the newly aug-

mented (m) dimensions and retain the lengthscales of the original (d) dimensions
to standard constant values i.e. l(xi) = li ∀i ∈ Nd. Therefore the overall kernel
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hyperparameter set is given as θ = [l1, · · · , ld, lω1(x), · · · , lωm
(x)]. As we need

lengthscale function to reflect the model uncertainty, we set lωi
(x) = αiσ̃ωi

(x),
where σ̃ωi

(x) is the normalized standard deviation of the rank GP predicted for
the abstract property ωi and αi is a scale parameter that is tuned using the stan-
dard GP log-marginal likelihood in conjunction with other kernel parameters.
The aforementioned lengthscales ensure that the data points x̃ with high model
uncertainty have higher lengthscale on the augmented dimensions and thus are
treated as less important.

The objective function is modeled on the concatenated inputs x̃ ∈ R
d+m

using the spatially varying kernel (Eq. (6)) k(x̃, x̃) ∀x̃ ∈ R
d+m and we denote

this function with augmented inputs x̃ as human-inspired objective function
h(x̃). The GP (GPh) constructed in the light of expert preferential data is then
used in BO to find the global optima of h(x̃), given as:

x� ∈ argmax
x∈X

h(x̃) (7)

The observation model is D = {(x, y = h(x̃) ≈ f(x))} i.e. the human-inspired
objective function h(x̃) is a simplified f(x) with auxiliary features in the input,
thus we observe the h(x̃) via f(x). The kernel hyperparameters associated with
GPh are denoted as θh given as θh = {l1:d, α1:m}.

3.3 Overcoming Inaccurate Expert Inputs

Up to this point we have assumed that expert input is accurate and thus likely
to accelerate BO. However, in some cases this feedback may be inaccurate, and
potentially slowing optimization. To overcome such bias and encourage explo-
ration we maintain 2 models, one of which is augmented by expert abstract
properties (we refer to this as Human Arm-h) and an un-augmented model (we
refer to this as Control Arm-f), and use predictive likelihood to select the arm
at each iteration.

The control arm models f directly by observing the function values at sug-
gested candidate points. Here, we fit a standard GP (GPf ) based on the data
collected i.e., D = {(x, y = f(x)+η)} where η ∼ N (0, σ2

η) is the Gaussian noise.
The GP distribution (GPf ) with hyperparameters θf = {l1:d} may be used to
optimize f using a BO algorithm.

At each iteration t, we compare the predictive likelihoods (Lt) of both the
human augmented arm (Arm-h) and the control arm (Arm-f) to select the arm
to pull for suggesting the next promising candidate for the function evaluation.
Then, we use Thompson Sampling (TS) strategy [18] to draw a sample St from
the GP distribution of the arm pulled and find its corresponding maxima given
as:

xh
t = argmax

x∈X
(Sh(x̃)); xf

t = argmax
x∈X

(Sf(x)) (8)

The arm with maximum predictive likelihood is chosen at each iteration and
we observe f at the suggested location i.e., (xh

t , f(xh
t )) or (xf

t, f(x
f
t)). Then rank

GPs are updated to capture the preferences with respect to the new suggestion
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xh
t or xf

t. This process continues until the evaluation budget T is exhausted. A
complete flowchart of our framework is shown in Fig. 2. Additional details of
BOAP framework are provided in the supplementary material (Sect. 9).

Evaluate              suggested 

point & update preferences

Input Observations,

Expert Preferences

Optimize hyperparameters

of all the GP models

<
if

?

False

Update Data

model

Fit       Rank GPs Fit GP with augmented inputs

Fit a standard GP

Evaluate . suggested 

point & update preferences

True Compute Predictive

Likelihoods       and 

Fig. 2. A complete process flowchart of our proposed BOAP framework.

Algorithm 1. BO with Preferences on Abstract Properties (BOAP)
Input: Sampling Budget T, Initial Samples: D1:t′ = {x1:t′ ,y1:t′}, Expert Preferences:
P ωi = {(x � x′)1:p | ∀i ∈ Nm}
1. for t = t′ + 1, · · · , T iterations do
2. optimize hyperparameters Θ�

t = {θ�
ω1:m , θ�

h, θ�
f} and update GPω1:m , GPh, GPf

3. compute predictive likelihoods Lh
t and Lf

t for Arm-h and Arm-f
4. if Lh

t > Lf
t, then

5. draw a random sample Sh
t from Arm-h using Thompson Sampling

6. maximize Sh
t to find xh

t = argmax
x∈X

(Sh
t (x̃))

7. xt = xh
t

8. else,
9. draw a random sample Sf

t Arm-f using Thompson Sampling
10. maximize Sf

t to find xf
t = argmax

x∈X
(Sf

t(x))

11. xt = xf
t

12. evaluate f at xt to obtain yt = f(xt) + ηt

13. augment data D = D ∪ (xt, yt) and update expert preferences P ω1:m w.r.t xt

14. x� = argmax y
(x,y)∈D

15. end for
16. return x�

4 Convergence Remarks

In this section we discuss the convergence of our BOAP algorithm in terms of
regret bounds. As we are dealing with human expert feedback in our algorithm,
it is difficult to make absolute statements as we are reliant on the accuracy of
the feedback given and the knowledge of the expert involved, which may be
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limited if the objective must explore less thoroughly understood areas of the
search space (so the expert learns alongside the GP model). Nevertheless, with
minimal assumptions we may draw some conclusions that help us to better
understand the impact of expert feedback, which is important not only to better
understand the potential of BOAP to accelerate convergence but also to give
insight into possible future directions.

BOAP may be understood as kernel learning in practice - the core distinction
between the human and control arms is that the human arm features an evolving
kernel (6). Assuming for simplicity that the human arm comes to dominate over
time (as measured by likelihood) then the influence of the kernel (6) on the con-
vergence of the BO algorithm is measured through the maximum information
gain γT (d), where d is the input dimension. For Thompson sampling type algo-
rithm the cumulative regret RT =

∑
t f(x�) − f(xt) is typically [4,30] bounded

as RT = O(
√

TγT (d)) (up to log factors), where the maximum information gain
γT (d) is governed by the kernel K through the eigenvalues λ1 ≥ λ2 ≥ . . . of the
covariance matrix KT evaluated on the observations {(xt, yt) : t ≤ T} [3]:

γT (d) ≤ 1
2

1− 1
e

max
(mt:

∑
t mt=T )

∑|D|
t=1 log

(
1 + σ−2mtλt

)
(9)

Moreover in [3] it is shown that the asymptotic behavior of γT (d) is controlled by
the dimension d of the input. Our key insight for the kernel (6) is that we can drop
features with lengthscales over a threshold without overly perturbing the kernel,
effectively replacing d with the number of features (deff) having lengthscales
below the threshold, bounding the resulting error so introduced.

Assuming that (a) expert observations obey a simple convergence assumption
maxx∈X ,t Kωi

(x,xt) = O(g(T )), where g(T ) → 0 as T → ∞, and (b) as T → ∞,
only deff < d of the lengthscales (augmenting or otherwise) satisfy ld, lωi

< lmax,
then, for the kernel (6), γT (d) ≤ γ̆T (deff)+O( deff

l2max
)+O(g(T )). In this expression

γ̆T (deff) is the maximum information gain for a deff dimensional SE kernel, i.e. [3]
γ̆T (deff) = O((log T )deff+1). Thus we would expect cumulative regret to satisfy:

RT = O
(√

T
(
(log T )deff+1 + deff

l2max

))
(10)

That is, the regret bound for BOAP, assuming the human arm dominates as
T → ∞, is the the regret bound for BO with effective dimension deff plus a
term that scales as the ratio of deff and the cut-off lengthscale l2max. The more
effectively the augmenting features are able to summarize the data in a useful
way that renders other features superfluous (i.e. minimizes deff), the tighter the
regret bound becomes. A detailed discussion on the maximum information gain
and the regret bounds is provided in the supplementary material (Sect. 10)

5 Experiments

We evaluate the performance of BOAP method using synthetic benchmark
function optimization problems and real-world optimization problems arising
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in advanced battery manufacturing processes. We have considered the follow-
ing experimental settings for BOAP. We use the popular Automatic Relevance
Determination (ARD) kernel [31] for the construction of both the rank GPs
and the conventional (un-augmented) GPs. For rank GPs, we tune ARD kernel
hyperparameters θd = {ld} using max-likelihood estimation (Eq. (5)). For the
augmented GP modeling x̃, we use a spatially varying kernel with a parametric
lengthscale function (See discussion in Sect. 3.2). As we normalize the bounds,
we tune ld (the lengthscale for the un-augmented features) in the interval [0.1, 1]
and the scale parameter α (for the auxiliary features) in the interval (0, 2]. Fur-
ther, we set signal variance σ2

f = 1 as we standardize the outputs.
We compare the performance of BOAP algorithm with the following state-

of-the-art baselines. (i) BO-TS: a standard Bayesian Optimization (BO) with
Thompson Sampling (TS) strategy, (ii) BO-EI: BO with Expected Improve-
ment (EI) acquisition function, and (iii) BOAP - Only Augmentation (BOAP-
OA): Here we run our algorithm without the 2-arm scheme and we only use aug-
mented input for GP modeling. This method shows the effectiveness of expert’s
inputs. We evaluate the performance of our method against the baselines by plot-
ting the simple regret (Rt) given by: Rt = f(x�)− max

x∈D1:t
f(x), where f(x�) is the

true optima of the objective function. We do not consider any preference based
BO methods [24,26] as baselines, because the preferences are provided directly
on the objective function, as opposed to abstract properties that are not mea-
sured directly. The additional details of our experimental setup are provided in
the supplementary material (Sect. 11).

5.1 Synthetic Experiments

We evaluate BOAP framework in the global optimization of synthetic benchmark
functions [32]. The list of synthetic functions used are provided in Table 1.

Emulating Preferential Expert Inputs: As discussed in Sect. 3.1, we fit a
rank GP using the expert preferences provided on designs based on their cogni-
tive knowledge. In all our synthetic experiments we set m = 2, i.e., we model
two abstract properties {ω1, ω2} for the considered synthetic function. We expect
the expert to know the higher order abstract features of each design x ∈ X . We
construct rank GPs by emulating the expert preferences based on such high level
features of the given synthetic function. The possible set of high level features
of the synthetic functions are mentioned in Table 1. We generate preference list
Pωi for each high level feature of the designs by comparing its utility. We start
with p =

(
t′

2

)
preferences in P , that gets updated in every iteration of the opti-

mization process. We construct rank GP surrogates {GPω1 ,GPω2} using Pω1

and Pω2 .
For a given d−dimensional problem, we have considered t′ = d + 3 initial

observations and allocate T = 10 × d + 5 budget. We repeat all our synthetic
experiments 10 times with random initialization and report the average sim-
ple regret [12] (along with its standard error) as a function of iterations. The
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convergence plots obtained for the optimization of synthetic functions after 10
runs are shown in Fig. 3. It is evident from the convergence results that our
proposed BOAP method has outperformed the standard baselines by a huge
margin, thereby proving its superiority. Further, it is also observed that BOAP-
OA, a BOAP variant without the 2-arm bandit strategy and just the augmented
GP (GPh), has a superior performance when compared to the baselines (BO-EI
and BO-TS), thereby indicating the usefulness of expert inputs in significantly
improving the performance of Bayesian optimization algorithm.

Table 1. Details of the synthetic optimization benchmark functions. Analytical forms
are provided in the 2nd column and the last column depicts the high level features used
by a simulated expert.

Functions f(x) High Level Features

Benchmark-1D exp(2−x)2 +exp
(6−x)2

10 + 1
x2+1

ω1 = exp(2−x)2 , ω2 = 1
x2

Rosenbrock-3D
d−1∑

i=1

[100 × (xi+1 − x2
i )

2 + (xi − 1)2]ω1 = (x3 − x2
2)

2 + (x2 − x2
1)

2

ω2 = (x2 − 1)2 + (x1 − 1)2

Griewank-5D
d∑

i=1

[
x2

i
4000

−
d∏

i=1

cos
(

xi√
i

)
+ 1

]

ω1 =
d∑

i=1

x2
i , ω2 =

d∏

i=1

cosxi

Fig. 3. Simple regret vs iterations for robustness experiments using synthetic multi-
dimensional benchmark functions. We plot the average regret (along with its standard
error) obtained after 10 random repeated runs.

To demonstrate the robustness of our approach we have conducted addi-
tional experiments by accounting for the inaccuracy or poor choices in expert
preferential knowledge. Here, we show the robustness of our BOAP approach in
two scenarios. First, we show the performance of our proposed approach when
the higher order abstract properties are poorly selected. Second, we incorpo-
rate noise in the expert preferential feedback by flipping the expert preference
between two inputs (designs) with a probability δ. We now discuss in detail the
aforementioned two variations of our proposed method.
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Inaccurate Abstract Properties (BOAP-IA). In the first variation, we
assume that the expert poorly selects the human abstraction features. Table 2
depicts the synthetic functions considered and the corresponding (poorly chosen
or uninformative) human abstraction features (ω1 and ω2). BOAP-IA uses such
inaccurate human abstract features while augmenting the original input space.

Table 2. Selection of abstract (uninformative) features by a simulated human expert.
The human abstraction (high level) features shown in the 3rd column are deliberately
selected to be uninformative.

Functions f(x) Human Abstraction Features

Benchmark-1D exp(2−x)2 +exp
(6−x)2

10 + 1
x2+1

ω1 = sinx, ω2 = cosx

Rosenbrock-3D
d−1∑

i=1

[100 × (xi+1 − x2
i )

2 + (xi − 1)2]ω1 = sinx, ω2 = cosx

Griewank-5D
d∑

i=1

[
x2

i
4000

−
d∏

i=1

cos
(

xi√
i

)
+ 1

]

ω1 = sinx, ω2 = x3

Noisy Expert Preferences (BOAP-NP). In the second variation, we
account for the inaccurate expert preferential knowledge by introducing an error
in human expert preferential feedback. To do this, we flip the preference ordering
with a probability δ i.e., Pω,δ = {(xi � xj) |xi,xj ∈ x1:n, νij ω(xi) > νij ω(xj)},
where νij is drawn from a random distribution such that it is +1 with proba-
bility 1 − δ, −1 with probability δ. In this set of experiments we have set the
probability δ = 0.3.

We evaluate the performance by computing the simple regret after 10 × d
iterations. The empirical results for BOAP with inaccurate features (BOAP-
IA) and BOAP framework with noisy preferences (BOAP-NP) are presented in
Fig. 4. Although the expert preferential knowledge is noisy and inaccurate, it is
significant from the results that our proposed BOAP framework outperforms the
standard baselines. We believe that the superior performance of BOAP variants
is due to the model selection based safeguard mechanism that uses 2-arm scheme
to intelligently select the arm with the maximum predictive likelihood to suggest
the next sample.

5.2 Real-World Experiments

We demonstrate the performance of BOAP in two real-world optimization use-
cases in Lithium-ion battery manufacturing that are proven to be very complex
and expensive in nature, thus providing a wide scope for the optimization. Fur-
ther, battery scientists often reveal additional knowledge about the abstract
properties in the battery design space and thus providing a rich playground
for the evaluation of our framework. We refer to the supplementary material
(Sect. 11.2) for the detailed experimental setup.
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Fig. 4. Simple regret vs iterations for the synthetic multi-dimensional benchmark func-
tions. We plot the average regret (along with its standard error) obtained after 10
random repeated runs.

Optimization of Electrode Calendering. In this experiment, we consider
a case study on the calendering process proposed in [33]. The authors analyzed
the effect of parameters such as calendering pressure (εcal), electrode porosity
and electrode composition on the electrode properties such as electrolyte con-
ductivity, tortuosity (both in solid phase (τsol) and liquid phase (τliq)), Current
Collector (CC), Active Surface (AS), etc. We define an optimization paradigm
using the data grid published in [33].

We use our proposed BOAP framework to optimize the electrode calendering
process by maximizing the Active Surface of electrodes by modeling two abstract
properties: (i) Property 1 (ω1): Tortuosity in liquid phase τliq, and (ii) Prop-
erty 2 (ω2): Output Porosity (OP). We simulate the expert pairwise preferential
inputs {Pωτliq , PωOP} by comparing the actual measurements reported in the
dataset published in [33]. We consider 4 initial observations and maximize the
active surface of the electrodes for 50 iterations. We compare the performance
of our proposed BOAP framework by plotting the average simple regret (along
with its standard error) after 10 repeated runs with random initialization. The
convergence results obtained for the electrode optimization are shown in Fig. 5a.

Electrode Manufacturing Optimization. The best battery formulation and
the optimal selection of process parameters is crucial for manufacturing long-
life and energy-dense batteries. [34] analyzed the manufacturing of Lithium-ion
graphite based electrodes and reported the process parameters in manufacturing
a battery along with the output charge capacities of the battery measured after
certain charge-discharge cycles. In our experiment, we use BOAP to optimally
select the manufacturing process parameters to design a battery with maximum
endurance i.e., a battery that can retain the maximum charge after certain
charge-discharge cycles. We consider Anode Thickness (AT) and Active Mass
(AM) as abstract properties {ωAT, ωAM} to maximize the battery endurance
E = D50

D5
, where D50 and D5 are the discharge capacities of the cell at 50th

and 5th cycle, respectively. We consider 4 initial observations and maximize the
endurance of the cell for 50 iterations. We compare the performance by plotting
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the average simple regret versus iterations after 10 random repeated runs. The
convergence results obtained for maximizing the endurance is shown in Fig. 5b.

Fig. 5. Simple regret vs iterations for battery manufacturing optimization experiments:
(a) Optimization of electrode calendering process (b) Optimization of the battery
endurance.

It is evident from Fig. 5 that BOAP is superior to the baselines due to its
ability to model the abstract properties of the battery designs that can be ben-
eficial in accelerating BO performance. Similar to the trends observed in the
synthetic experiments, BOAP-OA with just the augmented inputs has outper-
formed the standard baselines (BO-EI and BO-TS), thereby proving again the
benefits of expert inputs in boosting the optimization performance. The supple-
mentary material along with the necessary implementation details and the code
snippets are available at https://github.com/mailtoarunkumarav/BOAP.

6 Conclusion

We present a novel approach for human-AI collaborative BO for modeling the
expert inputs on abstract properties to further improve the sample-efficiency of
BO. Experts provide preferential inputs about the abstract and unmeasurable
properties. We model such preferential inputs using rank GPs. We augment the
inputs of a standard GP with the output of such auxiliary rank GPs to learn
the underlying preferences in the instance space. We use a 2-arm strategy, a key
safeguard that provides assurance to utilize only relevant and accurate expert
preferential inputs in the modeling, thus overcoming any futile expert bias. We
discuss the convergence of our proposed BOAP framework. The experimental
results show the superiority of our proposed BOAP algorithm.
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Abstract. Retrieval-augmented text generation attribution is of great
significance for knowledge-intensive tasks as it can enhance the credibil-
ity and verifiability of large language models (LLMs). However, existing
research often ignores the adverse effect of “Middle Loss” in lengthy input
contexts on answer correctness, and the potential negative impact of
unverified citations on the quality of attribution. To address these chal-
lenges, we propose a framework IVAKF (Iterative Verified Attribution
with Keyword Fronting), which better utilizes long context information
and integrates attribution verification throughout the whole process of
response generation. Specifically, for the “Middle Loss” issue, we employ a
keyword fronting strategy with Named Entity Recognition (NER), guid-
ing the model’s attention to focus on key entities and their relationship
with other parts. As for the issue of poor attribution quality, we design a
verification-based iterative optimization algorithm, which continuously
updates candidate statements and citations until it produces a satis-
factory output result. Experiments on three public knowledge-intensive
datasets demonstrate that the proposed framework significantly improves
the quality of the final response. It improved answer correctness by 6.4%,
and citation quality by 9.1% than the baselines.

Keywords: Text Generation Attribution · Retrieval Augmented
Generation · Large Language Models

1 Introduction

The rapid development of LLMs has facilitated their widespread application
across numerous domains, bringing new opportunities for knowledge-intensive
industries such as law and healthcare. In these application scenarios, the core of
model reliability lies in the verifiability of its output content. However, with the
continuous advancement of LLMs, the so-called “hallucination” [10] phenomenon
has sparked widespread concern and apprehension among users regarding the
credibility and safety of their outputs. This phenomenon is characterized by the

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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Fig. 1. An illustration of LLM’s response with citations

distortion or fabrication of facts in the generated content, as well as the lack of
authoritative sources.

To enhance the discernibility and verifiability of text generation system out-
puts, text generation attribution methods have emerged. This approach aims
to enable the text generation model to provide corresponding evidence when
generating a response. Evidence usually comes in the form of citations or doc-
uments to substantiate claims or statements. Figure 1 presents a case that an
LLM enhances its response by integrating evidence from identifiable sources to
support its answer. This evidence ensures that the relevant statements are logi-
cally derived from the underlying corpus, enabling the general audience to under-
stand and verify this information. Some studies have attempted to directly apply
LLMs to generate attributions [4,27], yet resulting in unsatisfactory response.
Other methods [14,28] focus on integrating the attribution process with infor-
mation retrieval tasks, enhancing attribution by retrieving relevant documents
from external sources to improve model performance. Meanwhile, researchers are
also dedicated to establishing criteria for evaluating citation quality [21], aiming
to assess the credibility of the content generated by text generation systems.

Despite substantial progress, existing methods for retrieval-augmented text
generation attribution still exhibit noteworthy drawbacks that need to be
addressed. These methods typically utilize the entire retrieved document as
input, and lack effective means of verifying the attribution statements. To be spe-
cific, current language models struggle to effectively leverage information from
lengthy input contexts [16]. Even models explicitly designed for handling long
contexts experience a considerable drop in performance when extracting rele-
vant information from extensive contexts. This implies that models may fail to
consider crucial information when dealing with extended inputs, which in turn
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impacts the accuracy of the output. Moreover, using unverified attribution to
explain the relationship between statements and citations poses a potential reli-
ability risk. Without a dependable attribution verification mechanism, there is
a risk of inaccurately attributing statements to irrelevant citations. In conclu-
sion, the development of effective long context parsing and citation verification
mechanisms is essential for enhancing LLMs.

To tackle the aforementioned issues, this paper introduces a novel frame-
work called IVAKF (Iterative Verification Attribution with Keyword Fronting)
for enhancing answers and attributions in LLMs. To address information loss in
lengthy input contexts, IVAKF incorporates an explicit keyword fronting mech-
anism. Initially, the NER model [13] is utilized to identify entity information,
considered essential clues within retrieved documents. Subsequently, these enti-
ties are explicitly prioritized by positioning them ahead of the original text during
the construction of contextual information. Regarding the attribution verifica-
tion challenge, IVAKF devises a new citation verification mechanism capable of
effectively capturing the intricate relationship between statements and their sup-
porting evidence. It leverages a Natural Language Inference (NLI) model to eval-
uate the logical coherence that candidate evidence offers to statements. Through
iterative attribution generation, IVAKF enables LLMs to maintain high-quality
attribution outcomes, rectify false statements, and address inconsistent refer-
ences continuously. Experimental results demonstrate that the proposed app-
roach significantly enhances the overall accuracy and credibility of attribution.

In summary, the main contributions of our paper include:

1. Introduction of the novel framework IVAKF, which enhances LLMs through
the integration of a keyword fronting strategy and a verification-based itera-
tive optimization algorithm, leading to the generation of verified high-quality
outputs and attributions. Both algorithms are designed for easy integration
as plug-ins for LLMs.

2. Development of a keyword fronting strategy to address the issue of informa-
tion omission in lengthy input contexts.

3. Proposition of a verification-based iterative optimization algorithm that
enables a thorough exploration of the inherent logical relationships between
statements and candidate evidence. This algorithm facilitates the verification
and refinement of mismatched statements and citations.

4. Experimental validation conducted on three publicly available knowledge-
intensive task datasets. The results demonstrate that IVAKF offers significant
advantages in terms of answer correctness and citation quality compared to
current attribution methods.

2 Related Work

2.1 Retrieval-Augmented Generation

Retrieval-Augmented Generation (RAG) is a typical method that enhances the
capabilities of LLMs by integrating external knowledge bases and has been
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widely used for efficiently handling knowledge-intensive tasks. Initially, this
enhancement relied mainly on unstructured data [1,11], such as plain text. The
scope of the retrieval unit varied from words, phrases to document paragraphs
with different granularities, which, despite improving the precision of features to
increase accuracy, also made the retrieval process more complex. This method
was later further expanded to cover the use of structured data. RET-LLM [18]
utilizes previous dialogues to build a knowledge graph memory bank, laying the
foundation for future references. KnowledGPT [25] enhances the performance of
RAG models in terms of knowledge richness and contextual relevance by generat-
ing search queries aimed at the knowledge base and storing the retrieved knowl-
edge in a personalized library. Recently, research trends using the content gen-
erated by LLMs themselves to support retrieval and enhancement have become
increasingly popular [26]. However, tasks based on these retrieval-augmented
Generation methods inevitably have the problem of so-called “intermediate loss”.
Specifically, when language models process long text, they tend to show a weaker
ability to recognize information in the middle of the text. To mitigate this prob-
lem in the attribution task, we implemented a keyword front strategy to explicitly
focus important information.

2.2 Text Generation Attribution

Text Generation Attribution refers to the process of tracing the information or
decisions produced by a model back to its original materials or input features,
requiring appropriate and sufficient citation support for each perspective and
statement of the model. The ways in which models handle attribution are mainly
divided into two categories: direct model-driven attribution and retrieval-driven
attribution. In direct model-driven attribution, the cited documents originate
from the model itself and are used to corroborate the generated answer. Sun
et al. [24] found that by requiring the model to perform self-attribution, the
factual basis of the generated text was enhanced, improving performance in
downstream tasks. However, Gravel et al. [8] pointed out that even when the
model correctly answers the question, the evidence it provides is often incorrect in
most cases, offering knowledge sources unrelated to the current topic. Therefore,
in retrieval-driven attribution, the model generates answers with citations based
on retrieved documents. Among these, Li et al. [15] used knowledge graphs as
sources of evidence. However, it should be noted that retrieval is not inherently
equivalent to attribution. To enhance the supportiveness of documents to the
answer, LLatreivel [14] continuously updates retrieval results until it is confirmed
that the retrieved documents sufficiently support the answer to the question.
RARR [6] first generates an answer and then performs the attribution operation.
Different from previous methods, we introduce a candidate citation verification
mechanism during the attribution generation process, repeatedly ensuring that
the citation indeed supports the statement rather than establishing the citation
for the statement all at once.
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3 Methodology

3.1 Task Formalization

In general, we can formalize the text generation attribution task as follows.
Specifically, given a question q and a corpus of text passages D. The goal
of the attribution task is to produce an output S, where S is a set of n
distinct statements s1, . . . , sn. Each statement si cites a series of paragraphs
Ci = {ci,1, ci,2, . . . , ci,n}, thus the statement-citation pair within the model
response can be represented as (si ⇐ Ci), where ci,j ∈ D. Model output’s cita-
tion set C covers all elements of any Ci, and ensures that each element occurs
only once. For ease of narration, we adopt a format akin to citing references
in academic papers for attribution, that is, placing the citation numbers within
square brackets, such as [1] [2].

Fig. 2. The overall framework of IVAKF.

3.2 Overall Framework

Compared to traditional attribution paradigms, our proposed IVAKF framework
follows a “fronting + verification + optimization” approach, with a heightened
focus on mitigating the “Middle Loss” issue within lengthy input contexts and
is dedicated to enhancing the consistency of statement-citation pairs. On the
other hand, if correct statements lack the support of appropriate citations, they
appear unconvincing. In light of this, we have implemented a full-process opti-
mization cycle to more effectively produce accurate answers and appropriate
citation matches. Figure 2 demonstrates our IVAKF framework, whose workflow
mainly comprises the following three steps:
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Table 1. Keywords extraction from top-2 retrieved documents. Entities E1,E2 extracted
by NER models from different text passages dtop2

1 ,dtop2
2 related to question q are taken

as keywords.

q When was the 13th amendment ratified by the states ?

dtop2
1 ratification did not imply federal power to legislate on the status of

former slaves. During the first week of December, North Carolina and
Georgia gave the amendment the final votes needed for it to become

part of the Constitution. The Thirteenth Amendment became part of the
Constitution on December 6, 1865, based on the following ratifications:
Having been ratified by the legislatures of three-fourths of the several
states (27 of the 36 states, including those that had been “in rebellion”),
Secretary of State Seward , on December 18, 1865, certified that the
Thirteenth Amendment had become valid, to all intents and

E1 “Georgia”, “North Carolina”, “Seward”, “Thirteenth Amendment”
dtop2
2 Thirteenth Amendment to the UnitedStates Constitution The

Thirteenth Amendment (Amendment XIII) to the
United States Constitution abolished slavery and involuntary

servitude, except as punishment for a crime. In Congress, it was passed by
the Senate on April 8, 1864, and by the House on January 31, 1865. The
amendment was ratified by the required number of states on December 6,
1865. On December 18, 1865, Secretary of State William H.Seward
proclaimed its adoption. It was the first of the three
Reconstruction Amendments adopted following the
American Civil War . Since the American Revolution , states had

divided into states that
E2 “William H. Seward”, “Thirteenth Amendment to the United States

Constitution”, “American Revolution”, “United States Constitution”,
“Reconstruction Amendments”, “American Civil War”

1. Keyword Fronting: Key information from external knowledge is extracted
through NER models at first, and integrated into the process of constructing
contextual prompts.

2. Attribution Verification: Based on the prompts enriched with key information
obtained from the first step, raw statements and candidate citations are gen-
erated, followed by verification of the extent to which the candidate citations
support the raw statements.

3. Iterative Optimization: In the previous step, statements that did not pass
attribution verification will undergo iterative statement corrections and cita-
tion updates.

3.3 Keyword Fronting

Extract Document Keywords. For effectively capture key information from
the retrieved documents, we propose using a NER model to extract paragraph
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entities as keywords. In our experiments, we chose the span-marker-mbert-
base-multinerd model [5] for this NER task. This model is a fine-tuned ver-
sion of SpanMarker based on the bert-base-multilingual-cased model, specifi-
cally trained for multilingual named entity recognition, and has demonstrated
high precision and recall in the field of multilingual named entity recognition.
Specifically, the retriever R searches for the top-k most suitable documents
Dtopk =

{
dtopk1 , dtopk2 , . . . , dtopkk

}
based on the question q as follows:

Dtopk = R(q,D, k) = Top-kdtopk
i ∈D simi-score(q, dtopki ), (1)

where simi-score(·, ·) is the similarity score of R. Then we require the NER model
to extract a set of entities Ei = {ei,1, ei,2, . . . , ei,n} from each document dtopki ,
where dtopki ∈ Dtopk. So we have

Ei = NERDtopk⊆D(dtopki ). (2)

Table 1 shows an example of keyword extraction. From this example, we can
clearly see that for the question “When was the 13th amendment ratified by the
states ?” the retriever returned two paragraphs and successfully identified their
respective relevant entities. These entities, as keywords, effectively carry most of
the information content of the entire paragraph.

Construct Keyword-Based Documents. After completing the entity extrac-
tion task for all documents in Dtopk, we need to efficiently utilize the obtained
entity information Ei. According to research by Liu et al. [16], LLMs can pro-
cess information more effectively when it is located at the beginning or end
rather than in the middle. Therefore, when constructing the context, we explic-
itly place the entity information in front of the corresponding document. We use
the ordered text pair set Dtopk∗

consisting of entity information Ei and document
dtopki to represent the result of the construction, which can be defined as:

Dtopk∗
=

{
(Ei, d

topk
i ) | Ei = {ei,1, ei,2, . . . , ei,n} , dtopki ∈ Dtopk

}
(3)

We did not simply discard the original document because relying on keywords
alone does not adequately capture the context of the entire document. Context
is the key to understanding the relationship between entities in a text, and
to generate an excellent model response, both of them are needed to achieve
perfection.

3.4 Attribution Verification

The study [29] notes that direct model-driven attribution is only about 50%
successful in providing the correct answer to a question, and its recommended
attribution sources are only 14% true. For the four generative search engines
that used retrieval-driven attribution, on average, only 51.5% of the generated
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sentences were fully supported by the citations, while 74.5% of the citations sup-
ported the relevant generated sentences [17]. In our study, we do not consider the
one-off generated statements and attributions as the final output. Conversely, we
filter out those statement-citation pairs that are logically untenable through the
verification process, so as to reconstruct these suboptimal responses in subse-
quent steps. The details of this step are as follows:

Statement and Candidate Citation Generation. We follow Gao et al. [7]
use the instruction I and demonstrations to guide LLMs to generate answers
and citations to documents Dtopk, the instruction looks like this “Instruction:
Refer to the provided search content and keywords to write high-quality answers
to the given question and reference them correctly using [1][2][3] whenever pos-
sible.” For a specific question q, we concatenate it with the top-k relevant docu-
ments Dtopk∗

constructed in the previous step that contain keyword information
Ei (1 ≤ i ≤ k), as well as the selected few-shot prompts, all serving as input to
the LLM. The model output includes a set of candidate statements S ′

and their
pointers to the citation, which can be represented by statement-citation pairs as
follows:

(si
′ ⇐ Ci

′
) = LLMfew-shot(I, q,Dtopk∗

), (4)

where si
′ ∈ S ′

and supported by a set of candidate citations Ci

′
(Ci

′ ⊆ Dtopk),
which is a LLMs determination that may not always be accurate. Therefore, we
will next verify these citations to determine whether they indeed support the
corresponding statements.

Leveraging NLI Models for Effective Verification. Inspired by natural
language inference tasks, we utilize a NLI model to assess whether candidate
citations logically support the current statement. The core of this model lies
in determining the semantic entailment relationship between two sentences or
phrases, namely “premise” and “hypothesis”. In addition, we adopt a strict stan-
dard that requires the text to only faithfully reflect its original content, without
considering its “correctness” towards the “real world.” This makes the task def-
inition clearer because judging the truthfulness of general “real world” facts is
subjective, depending on an individual’s knowledge, values, and beliefs. This
definition also demonstrates similar rigor in tasks involving textual entailment,
question answering, summarization, and other understandings based on given
foundational texts without considering conflicts with other world knowledge [9].
Citation validation uses binary labeling, which means that the NLI model out-
puts 1 if the premise (candidate citations Ci

′
) entails the hypothesis (candidate

statement si
′
), and 0 otherwise.

NLICi
′⊆Dtopk,si

′ ∈S′ (Ci

′
, si

′
) =

{
1 if Ci

′
entails si

′
,

0 otherwise.
(5)

In an ideal scenario, all statement-citation pairs should be labeled as 1 by the
NLI model, indicating that these statements are backed by precise citations and
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not just unfounded conjecture. If a label of 0 occurs, it only signifies that the
statement cannot be supported by the corresponding citations, and we must not
hastily dismiss these statements as factual errors and exclude them from the
final response. This is because the output generated by the model may depend
not only on external non-parametric knowledge but also on its own internal
parametric knowledge. This internal knowledge could be correct and relevant
yet uncaptured by the retrieved documents, or it could be omitted due to the
“Middle Loss” issue.

3.5 Iterative Optimization

Careful consideration reveals that for all the candidate statements S ′
, the rea-

son for the verification failure of the statement-citation pairs could be that the
statement itself is a “hallucination” or the citation collection lacks references
related to the statement. To correct this “hallucination” and update the citation
collection, we need to broaden the scope of the information collected. This is a
process of continuous iterative optimization.

Algorithm 1. Iterative Optimization of IVAKF
Input: corpus D, original query q, gold statement set G, suboptimal statement set B,

the NLI model, the NER model, the LLM, the retriever R, the maximum iteration
T

Output: gold statement set G and suboptimal statement set B
1: t ← 0
2: Initialize G and B
3: while t < T do
4: if t = 0 then
5: Dtopk ← R(q,D, k)
6: else
7: Q∗ ← LLMfew-shot(Iq, q, Sf )
8: Dtopk ← R(Q∗,D, k)
9: B ← B − (sf ⇐ Cf )

10: end if
11: Dtopk∗ ← Use NER model to extract keywords and put in front of Dtopk

12: (si
′ ⇐ Ci

′
)NEW ← LLMfew-shot(I,Q∗,Dtopk∗

)

13: if NLICi
′ ⊆Dtopk∗ (Ci

′
, si

′
) = 1 then

14: G ← G ∪ (sv ⇐ Cv)NEW

15: else
16: B ← B ∪ (sf ⇐ Cf )NEW

17: end if
18: t = t+ 1
19: end while
20: return G and B

Our approach for iterative optimization is presented in Algorithm 1. Specif-
ically, each verified statement-citation pair will be saved into a Gold Statement
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Set G and denoted as (sv ⇐ Cv). Similarly, each unvalidated statement-citation
pair (sf ⇐ Cf ) will be saved to the Suboptimal Statement Set B and proceed to
the next round of iterative optimization. Firstly, we will conduct viewpoint min-
ing through instruction to guide the LLM to generate multi-perspective questions
Q∗ = {q∗

1 , . . . q
∗
m}about the original query q and all the suboptimal statements

Sf , which is given by:

Q∗ = LLMfew-shot(Iq, q, Sf ), (6)

where Iq represents the instruction input to the LLM, specifically saying: “Based
on the original query and the following statements, please generate no more
than K multi-perspective questions that help to reveal more information.” Then,
the retriever retrieves relevant documents D from external corpus based on
these multi-perspective questions, and LLM generates some new statement-
citation pairs (si

′ ⇐ Ci

′
)NEW based on these newly obtained documents. The

(si
′ ⇐ Ci

′
)NEW also need to undergo attribution verification. Finally, the gold

statement set is updated, and the iterative process continues until the preset
maximum number of iterations is reached. Notably, before generating new state-
ments in each round, the newly retrieved documents also need to undergo key-
word fronting operations.

4 Experiments

4.1 Experimental Setup

Datasets. We conducted experiments on three publicly available knowledge-
intensive question answering task datasets, including ASQA [22], ELI5 [3], and
NQ [12]. Among them, ASQA and ELI5 are datasets specifically designed for
long-form question answering, requiring answers to be composed of multiple
sentences to comprehensively address all aspects of a question. In contrast, NQ
is the first dataset created based on naturally occurring queries, comprising
300,000 real-world questions along with their corresponding human-annotated
answers from Wikipedia pages. We randomly selected 1,000 examples from the
development set of each dataset as the basis for performance evaluation.

Evaluation Metrics. In order to evaluate the correctness of the answers, we
adopted the evaluation criteria proposed by Gao et al. [7] when evaluating the
long-form QA datasets ASQA and ELI5. For ASQA, we use Exact Match recall
(EM-R) to calculate the recall of correct short answers. When processing the
ELI5, the NLI model is used to measure whether the model prediction entails
the sub-claims of the gold answer (Claim). Following Sun et al. [23], we use
Exact Match (EM ) scores as correctness evaluation metrics for open-domain
QA dataset NQ. In addition, to assess the quality of citations in responses, we
focused on calculating Citation Recall [7], Citation Precision [7], and the Citation
F1 [14] score. Citation Recall evaluates the proportion of all statements in the
output that are supported by cited passages, while Citation Precision checks the
portion of irrelevant citations among all citations.
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Baselines. The five baseline methods proposed in ALCE [7] are chosen for
comparison: (i) answers with citations are generated based on top-k documents
(VANILLA), (ii) answers with citations are generated based on the summaries,
which are summarized from the top-k documents (SUMM), (iii) answers with
citations are generated based on relevant snippets, which are extracted from the
top-k documents (SNIPPET), (iv) use high temperature to generate four unique
responses and outputs the one with the highest citation recall (RERANK),
(v) generate answers with citations directly without any retrieved documents
(CLOSEDBOOK). Additionally, we also examine (vi) LLatrieval [14], an attri-
bution method in which the LLM continuously updates the retrieval results until
it verifies that the retrieved documents can support answering the question.

Implementation Details. We use LLMs with different parameter sizes and
context window for evaluation, specifically, gpt-3.5-turbo-0613, gpt-3.5-turbo-
16k-0613 and the open-source model Vicuna-13B [2]. For the natural language
inference task, we chose the currently best performing TRUE model [20]. In
addition, the 2018-12-20 Wikipedia snapshot was used as the retrieval corpus,
and GTR [19] was chosen as the dense retriever. In terms of model decoding
methods, ChatGPT uses a sampling with temperature 0.5, while Vicuna uses
Nucleus sampling and sets the top-p parameter to 0.95. Unless otherwise stated,
gpt-3.5-turbo-0613 was used in all experiments in this paper, and the number of
multi-perspective questions was set to 2, and 3 related documents were retrieved
for each multi-perspective question. The initial number of documents retrieved
is 5, and the maximum number of iterations is limited to 5.

4.2 Main Results

Table 2 presents the results of our IVAKF framework and baseline attribution
approach in three knowledge-intensive datasets. We can see that IVAKF per-
forms better than baseline on all three datasets. This shows the effectiveness of
IVAKF in improving the correctness of model output and improving the quality
of attribution. Specifically, when evaluated using the three LLMs, Vicuna-13B,
gpt-3.5-turbo-0613, and gpt-3.5-turbo-16k-0613, respectively, IVAKF improved
by 6.4%, 5.4%, and 4.5% in terms of correct responses compared to the opti-
mal baseline, and in terms of citation quality then improved by 9.1%, 8.7%
and 8.3%, respectively. These experimental results clearly show that our app-
roach can achieve significant performance improvements for LLMs with different
parameter sizes and context window sizes.

The baseline approach often optimizes one performance at the expense of oth-
ers. SUMM and SNIPPET have shown an improvement in correctness, thanks to
their strategy of using summaries or snippets instead of full documents, which
dramatically reduces the context length while preserving core information as
much as possible, thereby mitigating the “Middle Loss” problem and reducing
noise. However, overcompressing the text can be detrimental to the quality of
the citations. Similarly, CLOSEDBOOK maintains a high level of answer cor-
rectness by completely eliminating the interference of external knowledge, but
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Table 2. Comparisons between IVAKF and baselines on knowledge-intensive QA task.

ASQA ELI5 NQ Overall

Correct Citation Correct Citation Correct Citation
CorrectCitation F1

EM-R Rec Pc F1 Claim Rec Prec F1 EM Rec Prec F1

Vicuna-13B
VANILLA 31.40 52.31 51.18 51.74 11.20 16.46 14.27 15.29 53.20 59.78 53.51 56.47 31.93 41.17
SUMM 42.53 49.75 50.71 50.23 10.26 13.23 12.41 12.81 56.40 48.65 47.71 48.18 36.40 37.07
SNIPPET 40.02 46.59 48.52 47.54 13.35 20.57 18.30 19.37 56.40 40.26 38.13 39.17 36.60 35.36
RERANK 34.86 64.27 63.03 63.64 11.47 29.87 36.41 32.82 55.80 61.23 55.64 58.30 34.04 51.59
CLOSEDBOOK 33.84 15.42 15.42 15.42 17.16 5.30 5.30 5.30 56.00 24.32 24.32 24.32 35.67 15.01
LLatrieval 43.64 59.96 60.45 60.20 12.42 27.85 34.68 30.89 58.30 60.02 56.34 58.12 38.12 49.74
IVAKF 44.67 66.8366.2366.52 17.67 38.5344.1741.16 59.40 63.5959.1061.26 40.58 56.31

gpt-3.5-turbo-0613
VANILLA 40.35 70.13 71.17 70.65 13.05 53.43 51.12 52.25 61.20 62.38 56.26 59.16 38.20 60.69
SUMM 42.14 64.38 62.94 63.65 11.87 47.60 49.20 48.39 61.50 48.61 42.85 45.55 38.50 52.53
SNIPPET 39.85 61.14 59.26 60.19 13.56 46.21 46.29 46.25 63.00 56.74 50.47 53.42 38.80 53.29
RERANK 38.55 75.01 76.84 75.91 12.68 74.36 68.54 71.33 61.00 70.30 66.34 68.26 37.41 71.83
CLOSEDBOOK 39.13 27.94 27.94 27.94 18.23 14.66 14.66 14.66 62.50 34.62 34.62 34.62 39.95 25.74
LLatrieval 42.21 78.36 75.23 76.76 16.74 73.02 69.87 71.41 65.50 71.41 65.55 68.35 41.48 72.17
IVAKF 44.05 84.2581.0282.60 18.68 78.8275.2176.97 68.50 76.3475.0975.71 43.74 78.43

gpt-3.5-turbo-16k-0613
VANILLA 38.76 72.44 71.57 72.00 13.91 48.32 47.97 48.14 60.50 63.12 55.94 59.31 37.72 59.82
SUMM 41.23 66.14 61.31 63.63 12.55 44.38 49.15 46.64 62.20 49.31 40.76 44.63 38.66 51.63
SNIPPET 40.32 63.14 61.28 62.20 14.05 43.76 41.36 42.53 61.80 58.10 49.32 53.35 38.72 52.69
RERANK 39.62 78.26 77.19 77.72 15.14 70.29 69.17 69.73 61.80 72.69 68.62 70.60 38.85 72.68
CLOSEDBOOK 38.63 26.44 26.44 26.44 18.35 14.16 14.16 14.16 60.50 33.43 33.43 33.43 39.16 24.68
LLatrieval 43.25 80.22 77.14 78.65 16.21 72.02 69.39 70.68 63.80 70.03 68.39 69.20 41.09 72.84
IVAKF 44.54 83.5581.1282.32 18.53 78.6376.5477.57 65.80 76.3477.2276.78 42.96 78.89

its citation quality is lower due to the lack of citation support. In contrast,
RERANK stands out in citation quality due to its multi-sampling strategy. It is
worth noting that LLatrieval adopts a similar iterative approach to this paper
and makes significant progress in both correctness and citation quality. But its
iteration is only limited to the statement generated before retrieval phase, does
not involve direct attribution of quality assurance. The iterative optimization
of IVAKF covers the whole process, and clearly introduces the attribution ver-
ification mechanism, which realizes the mutual enhancement of correctness and
citation quality.

4.3 Ablation Studies

To analyze in depth the specific impact of each component in IVAKF on over-
all performance, we conducted a series of ablation experiments on the ASQA
dataset. By removing each component one by one, we were able to accurately
assess their respective contributions. In this process, “w/o KF” represents the
removal of the keyword fronting strategy; “w/o VM” means that viewpoint min-
ing is not implemented to generate multi-perspective questions during the iter-
ation process, but only the current statement is utilized to iterate. Considering
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that attribution verification is used jointly with iterative optimization, there-
fore, “w/o AV & IO” means that the verification-based iterative optimization is
removed.

Table 3. Ablation Study on ASQA.

Correct Citation
EM Rec Pc F1

IVAKF 44.05 84.25 81.02 82.60
-w/o KF 41.27 81.15 77.37 79.21
-w/o VM 40.42 76.26 73.51 74.86
-w/o AV & IO 40.13 69.15 71.21 70.16

The experimental results shown in Table 3 clearly show that the model per-
formance is adversely affected once any component is removed. In particular,
the performance of the model deteriorates significantly in the absence of citation
validation and iterative optimization support. This is mainly because the model
cannot judge the appropriateness of candidate citations without the process of
attribution verification. At the same time, the lack of iterative optimization also
hinders the possibility of improving the quality of attribution. In addition, the
removal of keyword lead steps also weakens the performance of the model, mainly
because the lack of explicit prompts for keywords increases the risk of ignoring
key intermediate information in a long context. Finally, the removal of the view-
point mining operation limits the model’s ability to retrieve relevant documents,
thus affecting the overall performance.

4.4 Impact of Hyperparameters

In this section, we explore the effects of different parameters on IVAKF perfor-
mance. Where M represents the number of generated multi-perspective questions
and N represents the number of documents that need to be retrieved for each
multi-perspective question. As shown in Table 4, we find that providing a more
comprehensive perspective of the question and increasing the number of rele-
vant documents helps LLM to utilize more comprehensive information, which in
turn improves the correctness of output and the quality of citations. However,
simply increasing M and N does not consistently produce better results; When
their value exceeds a certain threshold, performance deteriorates. This is mainly
because a large pool of documents can introduce noisy information, which can
have a negative impact on both the statement generation and citation generation
processes. In addition, we observed that obtaining 5 initial documents was bet-
ter than 10 documents during the retrieval of the original question, suggesting
that the model may not be able to efficiently utilize all the information when
dealing with overly long contexts. In addition, we studied the effects of a few
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Table 4. Hyperparameter analysis of IVAKF on ASQA.

5-passage 10-passage

Correct Citation Correct Citation

EM Rec Pc F1 EM Rec Pc F1

N = 1
M = 1 41.82 76.67 74.48 75.56 39.76 77.5276.3576.93
M = 2 43.38 81.46 78.92 80.17 41.65 78.1976.3277.24
M = 3 42.32 79.32 75.32 77.27 41.92 76.8274.5975.69

N = 3
M = 1 43.52 80.45 76.47 78.41 40.74 81.2178.9280.05
M = 2 44.05 84.2581.0282.60 42.13 80.2679.6179.93
M = 3 44.68 82.13 78.35 80.20 39.54 79.3378.2178.76

N = 5
M = 1 41.92 80.72 79.24 79.97 36.99 78.9178.5178.71
M = 2 43.09 82.65 80.02 81.31 38.41 78.9679.4479.20
M = 3 42.24 80.64 77.38 78.98 37.62 76.9378.6877.80

shot prompt on answering questions and generating multi-perspective questions.
Table 5 and Table 6 shows the templates. In general, the 0-shot and 1-shot sam-
ple sizes are not large enough for the language model to fully understand the
learning context. When the sample size is increased to 2-shot and 3-shot, the
language model is able to generate better-quality responses and a rich variety
of multi-perspective questions. However, if the number of samples is too large,
excessive costs will be incurred.

4.5 The Performance of the Iteration

In this section, we will analyze the impact of multiple iterations on the per-
formance of three datasets. Specifically, we plot the performance change line
in Fig. 3. From this figure, we can see that the correctness and citation qual-
ity of IVAKF improve with the increase of the maximum number of iterations,
which confirms the effectiveness of the multi-iteration optimization strategy in
our method. At the same time, we also found that due to the limitation of the
content richness of the corpus, although increasing the maximum number of iter-
ations could indeed improve the performance, the growth trend was not linear all
the time, but tended to flatline after reaching a certain stage, indicating that the
performance began to approach saturation. Therefore, considering the issue of
token consumption, we recommend that the iteration parameter setting should
preferably not exceed 5.
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Table 5. Few-shot prompt template for LLMs to generate statements and candidate
citations.

Instructions: Refer to the provided search content and keywords to write high-quality
answers to the given question and reference them correctly using [1] [2] [3] whenever
possible.

[Example Query 1]: Number of branches of oriental bank of commerce in india ?

[Doc 1]: (Keywords: OBC, 31 March 2010, Public Sector Bank, India, ...) as on 31
March 2010 making it the seventh largest Public Sector Bank in India. On 14 August
2004, OBC amalgamated Global Trust Bank (GTB) ... The acquisition brought with
it 103 branches, which ...
[Doc 2]:(Keywords:{keyword1, Keyword2, Keyword3, ...}){Retrieved Document}
[Doc 3]:(Keywords:{keyword1, Keyword2, Keyword3, ...}){Retrieved Document}
...

[Answer]: In August 2004, Oriental Bank of Commerce in India united with Global
Trust Bank, which was ... the acquisition brought with it 103 branches [1], which
brought OBC’s branch total to 1092. According to ..., it has 2390 branches [2]. On
April 1st, 2020, Oriental Bank ... the total amount of branches to 11,437 [3].
[Example Query 2]: ...
[Example Query 3]: ...
...
[Original Query]: When was the 13th amendment ratified by the states ?

Table 6. Few-shot prompt template for LLMs to generate multi-perspective questions.

Instructions: Based on the original query and the following statements, please generate
no more than K multi-perspective questions that help to reveal more information.

[Example Query 1]: Number of branches of oriental bank of commerce in india ?
[statement 1]:On April 1st, 2020, Oriental Bank of Commerce ... brings the total
amount of branches to 11,437.
[statement 2]:...
...
[multi-perspective questions]: "What is the total number of branches of the newly
formed bank after the merger of OBC, United Bank of India and Punjab National
Bank on 1 April 2020 ?", "According to the ...", ...
[Example Query 2]: ...
[Example Query 3]: ...
...
[Original Query]: When was the 13th amendment ratified by the states ?
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(a) ASQA (b) ELI5 (c) NQ

Fig. 3. Performance analysis with different max iteration.

5 Conclusion

In this paper, we design and propose IVAKF, a novel framework for the text gen-
eration attribution. This framework adopts a keyword fronting strategy at first,
focusing on extracting key information from long texts, and ensuring that these
important document features can be accurately identified, extracted, and effec-
tively applied during the text generation process. Moreover, compared with the
traditional text generation attribution process, IVAKF also combines attribution
verification with iterative optimization. This algorithm enables the attribution
system to accurately evaluate the rationality of the statement and its citation,
and to perform iterative optimization in time, so as to improve the correctness of
response and the quality of attribution. We conducted extensive experiments on
knowledge-intensive tasks across three different datasets to verify the effective-
ness of the IVAKF framework. The experimental results indicate that the frame-
work significantly enhances the performance of text generation models in terms
of attribution accuracy and generated text quality, demonstrating its advantages
in dealing with text generation attribution tasks.
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Abstract. In recent years, there has been a significant surge in machine
learning techniques, particularly in the domain of deep learning, tailored
for handling attributed graphs. Nevertheless, to work, these methods
assume that the attributes values are fully known, which is not realistic
in numerous real-world applications. This paper explores the potential
of Optimal Transport (OT) to impute missing attributes on graphs. To
proceed, we design a novel multi-view OT loss function that can encom-
pass both node feature data and the underlying topological structure of
the graph by utilizing multiple graph representations. We then utilize
this novel loss to train efficiently a Graph Convolutional Neural Net-
work (GCN) architecture capable of imputing all missing values over the
graph at once. We evaluate the interest of our approach with experiments
both on synthetic data and real-world graphs, including different miss-
ingness mechanisms and a wide range of missing data. These experiments
demonstrate that our method is competitive with the state-of-the-art in
all cases and of particular interest on weakly homophilic graphs.

Keywords: Attributed Graph · Missing Data Imputation · Optimal
Transport

1 Introduction

Graphs have become an indispensable tool for modeling and solving a wide
range of practical problems. From transportation networks to protein-protein
interactions, graphs provide a natural and versatile representation framework
for modeling relationships of various kinds. In this context, so-called attributed
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graphs possess a valuable set of information about the objects whose relation-
ships they model, e.g., the personal information of users for online social net-
works, or the properties of atoms for a molecule. However, for real-world appli-
cations, attributed graphs often suffer from missing data [17]. For instance, it is
quite common for traditional online social networks, usually modeled as graphs
of users, to have missing attribute values, as some of the information filled in
by users is not mandatory (e.g., gender, age). This will result in missing node
attributes in a graph.

Imputing missing data is a long-standing challenge in statistics that has been
at the forefront of research and practice for decades [19]. This problem arises
when datasets contain missing or incomplete information, which can lead to
biased analyses, reduced statistical power, and inaccurate results.

Missing data may be the result of different factors, also referred to in the
literature as mechanisms [25]. The simplest case is MCAR (Missing Completely
At Random), where the missingness of the attribute values (true or false) can be
modeled by i.i.d. random variables. For instance, a social platform’s localization
data might be lost due to occasional technical glitches. In the MAR (Miss-
ing At Random) case, the missing data probability depends on other observed
attributes. For example, in social media profiles, MAR might occur if the prob-
ability of users omitting their hobbies depends on their gender. MNAR (Missing
Not At Random) is the most challenging case, where missing data probability
depends on unobserved variables. For instance, users may choose not to share
their income due to personal factors, unaccounted for in the dataset. Depending
on the mechanism, imputation can be more or less difficult.

In graph data, one approach to address missing node attributes is to cast
the problem as imputing missing information in tabular data, given that node
attributes are structured as a matrix. However, this method does not use the
crucial structural dependencies inherent in graph data. Therefore, addressing
missing information on graphs requires methods that respect and leverage the
underlying graph structure [10].

Most imputation methods on graphs assume homophily [24], but as it turns
out, real graphs are sometimes heterophilic [34]. A graph is homophilic if nodes
sharing similar attributes tend to be more often connected than those with differ-
ent attributes: “birds of a feather flock together” [20]. In this paper, we are inter-
ested in the problem of the imputation of missing node attributes, whatever the
nature of the graph, homophilic or heterophilic, or the missingness mechanism
(MCAR or MNAR). To proceed, we propose to exploit the Optimal Transport
(OT) theory to impute missing node attributes on graphs. In recent years, OT
has proved remarkably successful in machine learning notably for missing values
imputation on tabular data [23] and more recently with applications on graphs
including node embedding [33], fair edge prediction [18], graph prediction [2], to
name a few. The intuition of using OT for imputation [23] is that the distance
between two random samples from the data distribution should be small (using
Wasserstein distance from optimal transport theory). Thus, a good imputation
of missing values should minimize this distance between many pairs of random
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samples. This goal is particularly suitable for OT-based distances, as they can be
(and have already been) used in gradient-based optimization as valid loss terms
due to their attractive differentiability properties [2,21]. However, the classic
Wasserstein distance does not take the graph topology into account.

Contributions. We propose to use a novel distance, multi-view Wasserstein
(MultiW), able to take into account any representation of the graph, such as
attributes, topology, but also hierarchy, spectral decomposition, and more. This
distance is also more flexible and more computationally efficient than similar
multi-view loss functions, such as FGW [29] or OTT [13]. The MultiW distance
is used as a loss to train a Graph Neural Network (GNN) model able to impute
missing attributes on a graph. The main distinctive feature of our approach
is its ability to use the trained imputer on new nodes without the need to be
retrained (contrary to state-of-the-art FP [24]). This feature is of particular
interest as many graphs, such as social networks, are inherently dynamic.

Summing up, our contributions embed (1) the creation of an efficient Multi-
view loss function referred to as MultiW; (2) a framework for graph missing
attributes imputation GRIOT (GRaph Imputation with Optimal Transport) ;
an extensive empirical study of the performance of our approach and the most
recent state-of-the-art methods on a very wide variety of scenarios, whereas
most studies generally focus on a very small subset of these scenarios. The code
is available online1.

2 Related Works

Over the years, researchers have developed a wide range of techniques to tackle
the problem of missing data imputation [26,28,32]. Despite the progress made,
the field of research for data imputation remains dynamic due to evolving data
complexity. In this paper, we specifically address missing node attribute values
in data structured as graphs. There has been a renewal of interest in graphs,
driven particularly by the rise of Graph Neural Networks (GNNs) that require
complete attributes.

While various approaches like SAT [3], GCNMF [27], and PaGNN [11] have
aimed to adapt GNNs to this context, they primarily emphasize task perfor-
mance rather than imputation quality. Conversely, some methods employ GNNs
for graph completion [1,22], focusing on attribute matrix reconstruction over
task performance, but they often encounter scalability challenges.

Finally, to the best of our knowledge, Feature Propagation (FP) [24] is cur-
rently the state-of-the-art method for missing node attribute imputation. FP is
a diffusion-based attribute reconstruction approach that allows imputation on
the graphs upstream to the node classification task. As such, it is not tied to
any particular model or architecture for solving the final task. However, sim-
ilarly to the aforementioned approaches, FP assumes a strong attribute-based
homophily in the graph to impute the missing attributes. This means that nodes
1 Code and additional material available at: github.com/RichardSrn/GRIOT.
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in the graph are more likely to be connected to other nodes that have similar
attributes.

Our approach is at the crossroads of these methods. Much like FP, we impute
the missing node attributes matrix in an initial pre-processing step. However,
our approach involves training an imputer that relies on GNNs. Our framework
is also mainly different in the design of the loss function, which simultaneously
takes into account graph topology and node attributes, potentially assigning
different weights to each. This distinctive property makes our approach well-
suited to graphs with low homophily, and for complex missing data mechanisms,
in contrast with SOTA methods, which have not been evaluated in this context
before, and which are outperformed by GRIOT according to our experiments.

3 Multi-view Optimal Transport Loss for Attribute
Imputation

Hereafter, we define our notations and provide a reminder about Optimal Trans-
port (OT) and the Wasserstein distance. We then propose a novel loss function
that extends OT to enable graph attribute imputation.

3.1 Notations

We denote by G = (V, E , F ), an undirected and attributed graph, where V =
(vi)1≤i≤n is the set of nodes, E ⊆ V × V the set of edges represented by an
adjacency matrix A = (aij)ni,j=1 ∈ {0, 1}n×n, such that aij = 1 if (vi, vj) ∈ E ,
0 otherwise and F = (fi)i≤n ∈ F

n×d are the node attribute vectors. In this
paper, we consider real or binary attributes: F = R or F = {0, 1}. In the context
of missing data, some values in F are not observable. These missing values are
encoded as 0 in a binary mask Ω ∈ {0, 1}n×d. The ground truth values are
denoted F gt and F = F gt � Ω + NaN � (1 − Ω), where � is the Hadamard
product and NaN denotes missing values. The missing value imputation problem
is to recover an approximation F̂ of F gt from G and Ω. In the following, a view
ζj of a graph G is a collection of n vectors in a zi dimensional space. Formally,
ζi is a n × zi matrix, with its �-th vector associated to the �-th node of G (the
nodes attribute matrix F is such a view).

There exist multiple tasks associated with graph analysis including node
classification, edge prediction, and community detection to name a few. In this
paper, we consider node classification as our auxiliary task; missing data impu-
tation being the primary task. Therefore, we assume a label associated with each
node: C : V → {1, · · · , k}. The goal of node classification is to learn a classifica-
tion function that maps each node vi in the graph to a class label, i.e., we aim
to learn ε : V → {1, · · · , k} s.t. ε(vi) = C(vi),∀i ∈ {1, · · · , n}. Note that because
our imputation procedure is done before solving the task, one can easily apply
our method to any subsequent task.
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3.2 Optimal Transport and Wasserstein Distance

We present theoretical notions from Optimal Transport (OT) [30] restricted to
two weighted sets of data points in R

d, useful for understanding the sequel.
Given two weighted sets of data points (X,w1) and (Y,w2) where X =

{xi}i≤n1 ∈ R
d×n1 and Y = {yj}j≤n2 ∈ R

d×n2 are composed respectively of
n1 and n2 vectors of size d. The weight vector w1 of size n1 (resp. w2 of size
n2) defines the weights of each vector of X (resp. Y ). Each weight vector is a
discrete probability distribution on X (resp. Y ), meaning that all the weights
are positive, and they sum to one.

The goal of OT is to find a transport plan of minimal cost between (X,w1)
and (Y,w2). This minimal cost is called the Wasserstein distance between (X,w1)
and (Y,w2). A transport plan is represented by a matrix π such that πi,j is the
weight transported from data point xi to data point yj . The constraints are that
the total weight transported from xi must sum to w1(i) and the total weight
transported to yj must sum to w2(j). More formally, π must belong to the set
of valid transportation plans Π(w1, w2):

Π(w1, w2) = {π ∈ R
n1×n2
+ | π11n2 = w1, πT 11n1 = w2}, (1)

where 11n is the vector (1, 1, ..., 1)T of dimension n, and ·T the transposition
operation.

The costs mi,j of transporting one unit of weight from xi to yj are given in
a matrix MX,Y = (mi,j)1≤i≤n1,1≤j≤n2 . This matrix is usually computed as the
�2 norm between the points of X and Y .

Finally, the optimal plan is found by solving the following regularized mini-
mization problem:

π((X,w1), (Y,w2)) = argmin
π∈Π(w1,w2)

〈MX,Y , π〉F + εH(π) (2)

where 〈·, ·〉F is the Frobenius inner product, ε is the regularization hyperpa-
rameter, and H is the entropy.

The Wasserstein distance [12] is the cost associated with the optimal plan:

W((X,w1), (Y,w2)) = min
π∈Π(w1,w2)

〈MX,Y , π〉F + εH(π) (3)

Being equipped with all the necessary material from OT theory, we can now
move on to the description of MultiW, our newly introduced loss function.

3.3 Definition of the MultiW Loss Function

Graphs are complex objects, that can be represented through various means,
each offering distinct insights. For example, an adjacency matrix captures pair-
wise node connections, reflecting first-order proximity. On the other hand, the
Laplacian matrix [4] conveys information on node degrees and their relationships,
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providing a deeper understanding of the graph’s structure beyond pairwise con-
nections. Finally, the node attribute matrix is yet another way to represent the
nodes of the graph.

To capture all these properties at once, we aim to design a loss function that
can simultaneously leverage these diverse views of a graph to impute missing
data in the feature matrix. Note that while our focus is on missing attributes,
our approach could be extended to the imputation of missing information on
any other view, notably the adjacency matrix for link completion.

Motivation for OT. We opt for OT theory as it provides a clever way of estimat-
ing the discrepancy between distributions. We assume that the distribution of
imputed values should resemble that of the known values, especially when tak-
ing into account multiple views of the graph, i.e. the optimal transport distance
between these distributions should be small.

General Definition. Let us consider a graph G = (E ,V) with n nodes and
ζ = (ζi)i≤q be q views representing G in different spaces, such that for all i, ζi

is a n × zi matrix. Let α = (αi)1≤i≤q ∈ [0, 1]q be the views’ weights such that∑q
i=1 αi = 1. To proceed, we quantify the distance between random subgraphs to

evaluate the gap between the distributions. Therefore, we consider two subgraphs
of G respectively obtained by randomly selecting two subsets of nodes V1 and
V2 from V, and their respective views (ζ1i )1≤i≤q and (ζ2i )1≤i≤q.

To compute an optimal transport between V1 and V2 with the q views of
ζ, one could solve the OT problem q times independently, and get q different
transport plans. In our case, we are interested in solving the OT problem in
a way that takes into account the q views simultaneously, resulting in a single
transportation plan.

With MultiW, we propose to solve a unique optimization problem considering
all views at once:

MultiWα((ζ1i )i≤q, (ζ2i )i≤q) = min
π∈Π(w1,w2)

q∑

i=1

αi〈M ζ1
i ,ζ2

i , π〉F + εH(π) (4)

However, this issue is not solvable in a reasonable time with existing tools,
such as the POT [9] library, because of our q optimization objectives. Nonetheless,
as a direct consequence of the linearity of the Frobenius inner product, we have:

q∑

i=1

αi〈M ζ1
i ,ζ2

i , π〉F = 〈
q∑

i=1

αiM
ζ1
i ,ζ2

i , π〉F (5)

Hence, using the linearity, the q optimization problems, defined in Eq. (4),
can be simplified to one as defined in Eq. (6):

Definition 1. Multi-view Wasserstein. Given a graph G, and q views ζ =
(ζi)i≤q. For any two subgraphs corresponding to the subsets of nodes V1 and V2,
and their respective views (ζ1i )1≤i≤q and (ζ2i )1≤i≤q; given the weights of nodes of
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the subgraphs w1 and w2; given α = (αi)1≤i≤q ∈ [0, 1]q such that
∑q

i=1 αi = 1,
let M ζ1

i ,ζ2
i be the cost matrix between the subgraphs, according to the i-th view,

then:

MultiWα((ζ1i )i≤q, (ζ2i )i≤q) = min
π∈Π(w1,w2)

〈
q∑

i=1

αiM
ζ1
i ,ζ2

i , π〉F + εH(π) (6)

Remark : The weights w1 (resp. w2) can be set to a uniform distribution ∀i ∈
[[1, n1]], (w1)i = 1

n1
or proportional to the nodes’ degree.

The optimization problem presented in Eq. (6) can be solved by the Sinkhorn-
Knopp’s fixed point iteration algorithm [6], and the solution is a well-defined
transport plan.

3.4 Instantiation of MultiW Loss with Attributes and Structure

In this work, our focus lies on imputing missing node attributes in a graph.
Therefore, we use Eq. (6) to integrate two views. These two views encapsulate
both the structural characteristics and the node attributes matrix F associated
with the graph. To represent the structural aspects, a straightforward represen-
tation is through the adjacency matrix A. To effectively incorporate this rep-
resentation into our loss function, we propose the computation of a proximity
matrix P ∈ N

n×n which is defined as P = (pi,j) where pi,j is the geodesic path
length between the nodes vi and vj . Now, based on the two views P and F , we
can leverage the MultiW loss to estimate the mean distance between random
subgraphs of G. We operate under the assumption that nodes with comparable
roles in the graph exhibit similar attribute distributions, a well-imputed graph
thus yielding a smaller MultiW distance.

Let us consider G1, a subgraph of G, and the corresponding vertices V1.
Let P1 ∈ N

|V1|×n be the sub-matrix of P associated to G1 defined as P1 =
{pi,j |vi ∈ V1, vj ∈ V}. Unlike a sub-adjacency-matrix, P1 is a rectangular matrix,
representing the relative position of each node in V1 to every other node in V as
shown in Fig. 1. Let F 1 be the sub-features-matrix associated to G1. Similarly,
P 2, F 2 are views corresponding to a random sub-graph G2.

The distance between G1 and G2 can be computed as:

MultiWα((F1, P1), (F2, P2)) = min
π∈Π(w1,w2)

〈Mα, π〉F + εH(π) (7)

where Mα = (1−α)MF1,F2 +αMP1,P2 , and (1−α), α are the weights attributed
to, respectively, the features and the structure.

Remark : The Fused-Gromov-Wasserstein (FGW) [29] could also be used to com-
pute the distance between G1 and G2. However, FGW transports pairs of nodes
on pairs of nodes yielding a O(n4) complexity of the Frobenius product com-
putation of the loss versus O(n2) for MultiW. Moreover, FGW only takes into
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account the edges of the two subgraphs contrary to MultiW which uses the prox-
imity matrix with all other nodes of the whole graph. Finally, the complexity of
MultiW grows linearly with the number of views considered, which makes it very
efficient when compared to other multi-views OT approaches such as Optimal
Tensor Transport (OTT) [13].

4 Imputing Missing Attributes with MultiW Loss

Next, we describe the architecture that we designed to train an imputer that
optimizes the GRIOT loss with the ability to impute all features in parallel.

Fig. 1. Architecture of the GRIOT Framework. Given a graph G = (V, E) with nodes
attributes F , and a mask of missing data Ω as input , GRIOT decomposes in 2

main elements : the GCN Imputer and the MultiW Loss Function used to optimize it.
The framework outputs the last imputed attributes matrix F̂ and the GNN imputer
trained and ready to be reused on new nodes with missing attributes.

4.1 Architecture of GRIOT

The overall architecture of GRIOT is presented in Fig. 1, a detailed pseudocode is
shown in the additional material (see Algorithm GRIOT), and the code is available
online (see footnote 1).

Input of GRIOT. Given a graph G = (V, E), a matrix of attributes F , and a mask
Ω of missing features GRIOT aims at reconstructing the node attributes matrix,
F̂ . Our imputer takes as input the adjacency (A) and the feature (F ) matrices.
However, the missing values of F must be filled in at the first iteration. To this
end, we initialize F̂ by imputing the missing values with normal random values
such that (μj , σj)j≤d are the average and standard deviation of each feature over
observed ones.

∀i ≤ n, ∀j ≤ d, F̂i,j =

{
Fi,j , if ωi,j == 1 (i.e. Fij is observed)
F̂i,j ∼ N (μj , σj) otherwise

. (8)
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The loss takes as input the proximity matrix P computed from the adjacency
matrix such that ∀1 ≤ i ≤ n, ∀1 ≤ j ≤ n, pi,j is the length of the geodesic path
between the nodes vi and vj , and the imputed feature matrix F̂ .

Architecture and Training of the Imputer. The imputer is a Graph Con-
volutional Network (GCN) [16] that takes as input F̂ ∈ F

n×d after the initial-
ization of the missing values and A. The output of the GCN is the imputed
feature matrix, F imp. Formally, we get the following equations for a GCN with
� = 1, · · · , L layers:

H1 = σ(D̂−1/2ÂD̂−1/2F̂Θ1)

H�+1 = σ(D̂−1/2ÂD̂−1/2H�Θ�+1)

F imp = σ′(HLΘT
L+1 + ΘL+1)

where Â = A + I denotes the adjacency matrix with inserted self-loops, D̂ is
the diagonal degree matrix, (Hi)i≤L are hidden states, σ and σ′ are activation
functions, and (Θi)i≤L+2 are the learned parameters.

Finally, the mask of observed features is applied to the imputed matrix such
that only missing features are replaced:

F̂ = F � Ω + F imp � (1 − Ω) (9)

where � is the element-wise product. The GCN is trained by minimizing the
MultiW loss (see Definition 1). To compute the loss, we consider two subgraphs
G1 and G2 from G, defined from two subsets of nodes randomly drawn from V,
and as explained in Sect. 3.4, we use the MultiW loss function to estimate the
distance between them. This operation is carried out with np couples of random
subgraphs, and sum as loss =

∑np

i=1 MultiW((F 1
i , P 1

i ), (F
2
i , P 2

i )), before being
back-propagated through the imputer. The whole process is repeated epochs
times, with a new imputation at each epoch.

Output of GRIOT. The output of GRIOT is the last version of the imputed feature
matrix F̂ , and the imputer itself. The trained imputer offers the possibility to
perform inductive feature imputation. Indeed, an important difference between
our approach and current SOTA methods is that it goes beyond one-shot impu-
tation on a graph and can impute missing features on new nodes.

4.2 Accelerating the Imputation

The training of machine learning models as imputers has been studied in the
literature on tabular data, but these approaches are generally based on the
Round-Robin principle of sequentially training one ML model imputer for each
feature (not parallelizable as each ML imputer depends on the previous ones).
As a result, the Round-Robin principle suffers from scalability and efficiency
problems that limit its use for high-dimensional data. Indeed, all real graphs
considered in this paper have in the order of magnitude of 103 attributes.



278 R. Serrano et al.

In contrast, our approach can impute all features simultaneously using one
GNN imputer, providing a parallelizable solution, especially when utilizing
GPUs.

Complexity Analysis. The theoretical time complexity analysis of GRIOT
yields a complexity of O(d × m × n2 × n_epochs × n_pairs), where d is the
number of features, m is the number of views, n is the batch size, n_epochs and
n_pairs are parameters of Algorithm GRIOT (c.f. additional material).

5 Experimental Analysis

Now, we propose an extensive comparison of GRIOT against different SOTA
approaches while covering a rich variety of scenarios: two different masking
strategies (MCAR and MNAR), different percentages of missing information,
and different levels of homophily. In addition, our evaluation unfolds across two
dimensions: the quality of the values imputed by the different approaches and
their impact on node classification. Note that, most recent works focus on the
latter aspect for homophilic graph and with MCAR masking. Overall, our goal
is to answer the following research questions:

Table 1. Datasets summary. hobs is the observed homophily, hexp is the expected
homophily from a random graph and hratio = hobs/hexp. + (resp. −) denotes a strong
(resp. weak) homophily level. k is the number of classes.

|V| |E| F k sparsity hobs hexp hratio

SBM2− (low hom.) 796 2407 [0, 1]3 4 2.8% 0.13 0.34 0.38
SBM1∼ (med hom.) 794 1939 3.1% 0.55 0.61 1.11
SBM0+ (high hom.) 770 2085 3.1% 0.90 0.36 2.50
SBM 794 1939 [0, 1]3 4 2.5% 0.76 0.35 2.19
CORNELL− 127 159 {0, 1}1,702 5 94.3% 0.13 0.32 0.42
TEXAS− 129 171 95.0% 0.13 0.42 0.31
WISCONSIN− 168 232 93.6% 0.17 0.30 0.55
CITESEER+ 2,120 3,679 {0, 1}3,702 6 99.1% 0.74 0.19 3.90
CORA+ 2,485 5,069 {0, 1}1,433 7 98.7% 0.80 0.18 4.50
PUBMED+ 19,717 44,324 [0, 2]499 3 89.9% 0.80 0.36 2.20

1. Can we outperform state-of-the-art methods by using the OT theory in GRIOT
on graph features imputation, and on node classification?

2. Does the masking strategy impact the imputation?
3. Theoretically, GRIOT can impute new nodes without recycling. How does it

behave in such a scenario?

In this section, we first describe the experimental protocol setup to address these
questions and then present the results obtained for all aforementioned scenarios.
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5.1 Experimental Protocol

Baselines. We include both naive and SOTA baselines. For the naive baseline,
we compare with a K-nearest-neighbors-based principle and simply impute the
average of the features of nodes directly connected to the node presenting missing
values. The strong baselines comprise three models. The first one, PaGNN [11],
considers the mask Ω when classifying nodes. The second baseline, OT-tab [23]
is also an OT-based imputation approach but for tabular data only leaving out
the graph’s structure. It corresponds to two algorithms, a one-shot imputation
referred to as OT-tab and a Round-Robin-based version referred to as OT-tab-
rr that, similar to us, allows the training of an imputer. Note that we could not
run the OT-tab-rr algorithm on all datasets for time complexity reasons. The
third and strongest baseline is Feature Propagation (FP) [24] which is currently
the best approach among SOTA for this task.

Datasets. We evaluate our algorithm and baseline methods on diverse graphs,
both synthetic and real, covering various homophily levels as summarized in
Table 1. Homophily is defined as the tendency for nodes with similar attributes
to be more likely connected [14]. Table 1 presents the expected homophily hexp

derived from a randomly drawn graph with equivalent node count and edge
probability, alongside the observed homophily hobs in the given graph. The ratio
hratio = hobs

hexp
provides a key insight, where a value exceeding 1 signifies high

homophily, while a value below 1 indicates weak homophily.
We use the Stochastic Block Model (SBM) to generate synthetic graphs with

different homophily levels, spanning from low to medium and high homophily.
Each dataset has four imbalanced clusters, and specific parameters for genera-
tion can be found in the online code repository (see footnote 1). In addition to
the synthetic graphs, our evaluation encompassed three datasets from the Web-
KnowledgeBase (WebKB) [5] (weakly homophilic, marked with a superscript “−”
sign) and three citation graphs from the citation network (Planetoid) datasets
[31] (highly homophilic, marked with a superscript “+” sign).

Missing Data Masking. We use two strategies to build the mask Ω: Missing
Completely At Random (MCAR) and Missing Not At Random (MNAR). For
MCAR, we draw Ω = (ωi,j)i≤n, j≤d i.i.d. such that ∀(i, j), ωi,j ∼ B(p) follows a
Bernoulli distribution, where p is the probability of values being set to 0 in the
feature matrix. MCAR exhibits no correlation with the data or graph structure.
In MNAR, we consider the self-masked context, where P (ωi,j = 0) depends on
the values of the unobserved data itself (extreme values are more likely to be
missing) and the characteristics of the graph’s structure (nodes with lower degree
are more prone to have missing data). Finally, we also vary the level of missing
data during experiments, maintaining consistency at 20%, 50%, and 80%.

Evaluation Metrics. Evaluation metrics fall into two categories. The first cate-
gory assesses the quality of the imputed values by comparing the imputed matrix
F̂ to ground truth values F gt, using Mean Absolute Error (MAE) and Root Mean
Square Error (RMSE), where lower is better. The second evaluates imputation’s
impact on node classification done with a Graph Neural Network after impu-
tation and is based on accuracy and ROC-AUC scores, where higher is better.
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We use the Mann-Whitney U test with a 5% p-value over 5 runs to determine
significant results.

Remark : Results presented in the following are a subset of our experiments.
Additional results are available in the additional material.

Imputer Architecture. To build the reconstructed feature matrix F̂ , we
employ a Graph Neural Network (GNN). The imputer accepts as input the
edge index E and the imputed features F̂ , which have dimensions n × d. Conse-
quently, both the input and output of the imputer are of size d. We optimized
the imputer’s architecture through cross-validation, resulting in a model with 2
layers of Graph Convolutional Network (GCN) and 1 linear layer, with respective
dimensions (d, �√d), (�√d, �√d), and (�√d, d). This architecture enhances
graph abstraction and improves overall reconstruction quality. Furthermore, we
introduced a 50% dropout rate to increase the model’s robustness against over-
fitting.

The imputer’s parameters are optimized using the Adam optimizer [15], with
a learning rate set to 0.01 and a weight decay of 10−5.

Classifier Architecture. To evaluate the performance of all imputers on the
node classification task, we define a GNN classifier. This classifier takes (E , F̂ )

Fig. 2. Comparison of GRIOT v.s. baselines. (a,b,c) imputation MAE↓, (d,e,f) clas-
sification ROC AUC↑, on multiple datasets with (1) varying degrees of missing data:
(a,d) 20%, (b,e) 50%, and (c,f) 80%, and (2) varying missingness mechanisms: MCAR
(upper parts of the matrices) and MNAR (lower parts). In the visualization, white
squares denote non-significant differences, grayscale squares indicate instances where
GRIOT is outperformed, and colored squares represent significant improvements of GRIOT
over baseline methods, with colors ranging from yellow (small differences) to red (larger
differences).
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as input, where F̂ has dimensions n × d, and each node is assigned to one of
k distinct classes. The classifier consists of 2 Cheb layers [7] and 1 linear layer,
with dimensions (d, �√d), (�√d, �√d), and (�√d, k), respectively.

We determined the type of layers through cross-validation, although we spent
a short time optimizing the layers’ hyperparameters, as the primary goal was to
assess the impact of imputation on classification performance.

5.2 Imputation Quality v.s. Node Classification Accuracy

We start by assessing the performances of all methods, with a distinction between
the accuracy of the imputed values and the impact on node classification accu-
racy.

Imputed Values. Looking at the quality of the imputed values, Fig. 2 (a, b, c)
shows the MAE obtained by all baselines, with a distinction between homophilic
and heterophilic graphs with different masking strategies, MCAR in the upper
parts and MNAR in the lower parts, and percentages of missing attributes vary-
ing from 20% (a), 50% (b) to 80% (c). This figure presents pairwise comparisons
between GRIOT and each of the baselines; colored squares (from yellow to red)
correspond to the case when GRIOT significantly outperforms other baselines.
Overall, GRIOT performs much better for this particular task than its competi-
tors, and this difference is even more significant on heterophilic graphs. However,
we note that despite the high sparsity of the attributes, the strategy that consists
of imputing a zero in place of all missing attributes, indicated by zero, performs
poorly. Now, taking a closer look at the masking strategy, we can see that the
results of KNN and OT-tab are consistent with the ones obtained when using
MCAR or MNAR. Finally, we observe that the differences in FP performances
become more pronounced as the percentage of missing data increases.

Node Classification. Figure 2 (d, e, f) presents the AUC score differences
between all baselines versus GRIOT, it reads the same way as Fig. 2 (a, b, c). We
observe that, although GRIOT showed better imputation performance compared
to baselines, this superiority does not systematically translate into a noticeable
improvement in the node classification task. Indeed, when dealing with 20% and
50% of missing attributes, we see that GRIOT obtains comparable AUC with
almost all baselines, including FP on all datasets. We also note that GRIOT is
always outperforming PaGNN. Now moving on to the 80% of missing attributes,
FP is obtaining better results for all the homophilic graphs. This comes as no
surprise, as FP was shown to perform extremely well in these extreme types of
scenarios [24]. Finally, it is worth remarking that, with 80% of missing attributes,
GRIOT significantly outperforms OT-tab on the homophilic graphs.

Are Both Objectives Always Aligned? To get more insights into the corre-
lation between imputation quality and node classification, we take a closer look
at the hyper-parameter α of GRIOT, which determines the importance of each
view. A value of α close to 0 emphasizes the attribute information, while a value
close to 1 prioritizes the topology. Table 2, shows the α corresponding to the
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Table 2. Average of the best α over the type of graph and the tasks: imputation and
node classification.

Masking SBM WebKB− Planetoid+

MCAR MNAR MCAR MNAR MCAR MNAR

Imput. 0.50 0.42 0.31 0.50 0.14 0.33
Classif. 0.42 0.42 0.25 0.31 0.33 0.58

best results, selected on a validation set. We distinguish between WebKB and
Planetoid graphs.

For WebKB graphs, we notice that α tends to be higher during the impu-
tation task compared to classification. This suggests an increased emphasis on
the graph structure during the imputation optimization and a decreased empha-
sis during classification. Conversely, the opposite trend is observed for Plane-
toid graphs. Additionally, on the SBM graph, which has a balanced homophily,
α remains relatively stable, hovering around 0.50. Smaller values of α during
the imputation of homophilic graphs imply that the structure is considered less
crucial than with the heterophilic graphs. However, when it comes to classify-
ing heterophilic graphs, it appears beneficial for the network to downplay the
importance of structure, as it can potentially lead to misleading outcomes.

Moreover, we note that α is generally higher for real graphs (and similar for
SBM) in the MNAR scenario, indicating a greater emphasis on topology than
in the MCAR scenario. We recall that the MNAR mechanisms tend to mask
extreme values and attributes of weakly connected nodes. Thus, information loss
on attributes caused by the MNAR mechanism is likely being counterbalanced
during the network training by leveraging more of the graph’s structure.

For homophilic graphs, we observed only a small decrease of AUC when
focusing on MAE for the cross-validation (1.22%) against a decrease of 16% on
heterophilic ones. We believe that this is a particularly interesting finding as the
performances of recently proposed models are mostly evaluated on homophilic
graphs using node classification accuracy.

5.3 Imputing Missing Values for Unseen Nodes

The key feature of our approach is the ability to impute missing values on new
nodes dynamically added to the graph without having to retrain our imputer
from scratch. To evaluate this feature, we propose to build a test set composed
of nodes that were fully removed from the graph during the training of GRIOT.
We report results in Fig. 3 and focus on the most heterophilic graphs, as we have
shown that these are the most complex ones. For the MAE, we observe that the
results of our imputer on unseen nodes are consistent with the ones obtained
when all nodes are known from training time, with a small increase in MAE
only for extreme cases (80% of missing data). However, this increase in MAE
does not coincide with a decrease in AUC score. Indeed, for AUC the results
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are comparable most of the time, and the imputer is even getting slightly better
results on unseen nodes in the majority of the scenarios.

Fig. 3. Performance in terms of (left) MAE and (right) AUC score of GRIOT and GRIOT
tested on nodes not present at training time for all settings.

Table 3. Imputation time complexity (in seconds) for all graphs. We report results for
the case of 50% missing data.

Model CITESEERCORA PUBMED CORNELLTEXAS WISCONSIN
GRIOT-CPU 846 ± 162 338 ± 6 1096 ± 216 186 ± 10 195 ± 64 244 ± 67

GRIOT-GPU 571 ± 48 236 ± 6 819 ± 189 194 ± 18 148 ± 44 168 ± 67

FP 14 ± 1 4 ± 0 18 ± 1 .3 ± .0 .3 ± .1 .3 ± .0

OT-tab 489 ± 17 160 ± 7 597 ± 32 79.2 ± 1 78.0 ± 0 43 ± 0

OT-tab-rr (estimation) 5.5e6 9.0e5 8.3e5 1.7e5 1.6e5 1.9e5

5.4 Time Complexity

Table 3 displays the running times. GRIOT is comparable in processing time to
OT-tab [23], which is less complex as it does not involve imputer training and
fills missing values in one step. Additionally, we were not able to compare with
OT-tab-rr, based on Round-Robin, as running time was always exceeding mul-
tiple days per run. Unsurprisingly, GRIOT is considerably slower than FP, which
does not require any learning process. Finally, FP is faster than GRIOT as it does
not require training an imputer (one-shot imputation). Bearing this in mind
and taking CITESEER as an example, it means that in a dynamic environment
GRIOT becomes more efficient than FP if more than 40 new nodes requiring
attribute imputation appear in the graph after training, and more efficient than
OT-tab after just 1 new node.

Summing Up Our Results. When summarizing the comparison between
GRIOT and state-of-the-art methods (Table 4), we observe that GRIOT signifi-
cantly enhances data reconstruction in 68% of the scenarios and improves the
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Table 4. Each cell shows the number of times GRIOT (a) underperforms, (b) shows
no significant changes, or (c) outperforms compared to strong baselines when averaged
over all scenarios.

(a) underperform (b) similar (c) outperform

MAE 6% 26% 68%
ROC 8% 56% 37%

classification task in 37% of the cases. However, it remains on par with the best-
performing method, FP if we consider its impact on node classification. Our
method is particularly relevant in dynamic environments such as social graphs,
where the number of new users is constantly increasing. The use of a trained
imputer improves adaptability and guarantees our efficiency in dynamic envi-
ronments. Furthermore, we hope that our findings provide interesting insights
to the community regarding the counterintuitive observations made between the
quality of imputed values and subsequent node classification, offering the poten-
tial for valuable advances in the understanding and optimization of imputation
strategies for various applications.

6 Conclusion and Perspectives

We introduce GRIOT, a framework employing OT and the MultiW metric for
missing attribute imputation in attributed graphs. Key features include support
for multiple graph representations, efficient parallelization of the imputation,
and a trained imputer for new nodes. Finally, GRIOT is also independent of the
task at hand and can therefore be used for tasks other than node classification.
Our extensive experiments, spanning synthetic and real-world data with diverse
missingness mechanisms, demonstrate the competitiveness of GRIOT in address-
ing the challenge of missing attributes, particularly in weakly homophilic graphs.
Another way to better adapt to heterophilic graphs would be to use an imputer
architecture that relies less on the homophilic assumption than GCN. We have
begun to investigate the potential use of convolutional graph transformers [8] in
place of GCN, but have so far been unable to achieve better results. The future
perspective of this work will also consist in deepening our study of the impact
of different structural views for tasks other than node classification.
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field that can have potential societal consequences, but none of which we feel must be
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Abstract. Assessing and improving the robustness of a graph G are
critical steps in network design and analysis. To this end, we consider
the optimisation problem of removing k edges from G such that the
resulting graph has minimal robustness, simulating attacks or failures.

In this paper, we propose total harmonic resistance as a new robust-
ness measure for this purpose – and compare it to the recently pro-
posed forest index [Zhu et al., IEEE Trans. Inf. Forensics and Security,
2023]. Both measures are related to the established total effective resis-
tance measure, but their advantage is that they can handle disconnected
graphs. This is also important for originally connected graphs due to the
removal of the k edges. To compare our measure with the forest index, we
first investigate exact solutions for small examples. The best k edges to
select when optimizing for the forest index lie at the periphery. Our pro-
posed measure, in turn, prioritizes more central edges, which should be
beneficial for most applications. Furthermore, we adapt a generic greedy
algorithm to our optimization problem with the total harmonic resis-
tance. With this algorithm, we perform a case study on the Berlin road
network and also apply the algorithm to established benchmark graphs.
The results are similar as for the small example graphs above and indi-
cate the higher suitability of the new measure.

Keywords: Graph robustness optimization · infrastructure
protection · total harmonic resistance · forest index · effective resistance

1 Introduction

The analysis of network1 topologies, a major subarea of data science on net-
work data, is key to understanding the functionality, dynamics, and evolution
of networks [5,26]. An important property of a network in this context is its
robustness, i. e., its ability to withstand failures of its components (or the extent
of this ability) [5]. As an example, a typical question is whether a network
remains (mostly) connected if a certain fraction of its vertices and/or edges are
1 We use the terms network and graph interchangeably.
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deleted [26, Ch. 15]. Despite the widespread use of vertex deletions, edge dele-
tions can be more appropriate depending on the modeled phenomenon. Examples
include, among others, road blocks in street or public transportation networks;
pollution in water distribution networks; disruption of gas pipelines, energy grids,
or computer/telecommunication networks. Such deletions may occur as a result
of failure or of an attack; robustness thus is a critical design issue that arises in
many application areas [13], e. g., various public infrastructures [9,19,33,37].

Due to economic reasons, it is unrealistic that all network components can
be protected with the same effort. Thus, with the protection of critical infras-
tructure as application in mind, we consider the following optimization problem:
given a graph G = (V,E) and a budget of k graph edges to be removed, find
the subset S ⊂ E such that the robustness of G′ = (V,E \S) is minimized. This
problem, which we call k-GRoDel (short for graph robustness problem with k
deletions), models a concurrent attack (or failure). The solution indicates which
set of edges should be particularly safeguarded, e. g., segments in a water distri-
bution network. Clearly, for a particular application, one must also instantiate
this generic problem with a sensible notion of robustness.

Not surprisingly, numerous robustness measures have been proposed in the
literature [5,33]. For the related problem of optimizing the robustness by adding
k edges (called k-GRIP in Ref. [30], short for graph robustness improvement
problem), total effective resistance was established as a meaningful robustness
measure in various scenarios [12,29,31,36]. Effective resistance is a pairwise met-
ric on the vertices of G; intuitively, it becomes small if there are many short paths
between two vertices. Two disconnected vertices have infinite effective resistance,
though. When total graph resistance were used in k-GRoDel, a trivial solution
to maximize it would thus be to disconnect G. Yet, from an application’s point of
view, disconnecting a small part from the vast majority of the graph may be less
problematic than a bottleneck (or a disconnection) between two large parts. Liu
et al. [22] handles this issue by demanding that G is still connected after edge
removal. Given an infrastructure scenario, this is a rather unnatural assump-
tion. Zhu et al. [38] address the issue by proposing the forest index, Rf (G), as
robustness measure. Instead of effective resistance, Rf (G) sums up the closely
related forest distance [11] for all vertex pairs. Forest distance is derived from
the number of certain rooted forests in G. It yields finite distance values also for
disconnected vertex pairs.

Contribution. We show in this paper that k-GRoDel using the forest index
favors peripheral edges in many networks. We deem this behavior unintuitive
and, most importantly, undesirable for most applications. That is why we pro-
pose total harmonic resistance Rh(·) instead. This measure adds up the recip-
rocal of effective resistance for all vertex pairs, leading to a zero contribution of
disconnected pairs (details in Sect. 2). The use of Rh(·) may seem like a straight-
forward extension to handle deletions given that the use of reciprocals is known
for the popular (harmonic) closeness centrality (based on the ordinary graph
distance) to handle disconnectedness [26]. Nonetheless, we are to our knowledge
the first to investigate this notion of robustness (also see Sect. 3).
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To substantiate the higher suitability of Rh(·) compared to the forest index
in k-GRoDel, we first examine optimal solutions for small graphs with the two
measures (Sect. 4). They clearly show that Rh(·) favors more central edges than
the forest index and also finds balanced cuts in examples with suitable k.

Since exact solutions for either k-GRoDel measure are expensive to com-
pute, we adapt in Sect. 5 the general greedy algorithm used in several previ-
ous papers for related problems. For Rh(·), our greedy algorithm differentiates
between bridge edges and other edges. When a bridge edge is removed, a sim-
ple update operation for the Laplacian pseudoinverse does not work. For these
cases, we thus provide specialized update functions. For the forest index, we
derive a connection to total effective resistance, which allows the re-use of opti-
mized Laplacian pseudoinverse solvers instead of more general matrix inversion
solvers.

Our experiments (Sect. 6) include a case study on the road network of (a
part of) Berlin, Germany, as well as numerous public benchmark graphs used
before in related work. They show: (i) visually, the case study results indicate
that the greedy solution for Rh(·) prefers more central edges than the one with
the forest index. Maybe not surprisingly, one can find an even better solution
regarding Rh(·) by choosing natural cut edges (river bridges in the road network)
manually, which underlines the expressiveness of the new measure; (ii) for the
benchmark graphs, a ranking based on closeness centrality confirms that greedy
solutions of Rh(·) lead to more central edges than the forest index in most cases,
too.

2 Problem Statement and a New Robustness Measure

2.1 Problem Statement and Notation

The input to k-GRoDel is an integer k ∈ N and a simple undirected graph
G = (V,E) with |V | = n, |E| = m. Given S ⊂ E, let G′ = (V,E \ S) be the
graph with the edges from S removed. k-GRoDel aims at finding S with |S| = k
such that the robustness of G′ is minimized (i. e., Rh(G′) is minimized or Rf (G′)
is maximized, respectively).

We use well-known matrix representations of graphs. LG = D − A ∈ R
n×n

is the Laplacian matrix of G, where D is the vertex degree matrix and A is the
adjacency matrix. LG is symmetric (since G is undirected) and has zero row and
column sums (L1 = 0 = 1TL). Since LG is not invertible, the Moore-Penrose
pseudoinverse L† is used instead (cf. [8]). When G has multiple components,
LG is a (permuted) block diagonal matrix where each block corresponds to one
component of G.

2.2 Robustness Measures

Effective Resistance. Viewing the graph as an electrical circuit where each edge is
a resistor, the effective resistance is the potential difference between two nodes u
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and v when injecting [extracting] a unit current at u [v] [17]. It can be computed
via L†: rG(u, v) = L†

G[u, u]−2L†
G[u, v]+L†

G[v, v] for nodes in the same component
of G. For disconnected pairs, the resistance is infinite. As a robustness measure,
one can take the sum over all pairwise effective resistances to compute the total
effective resistance Rr(G) =

∑
u<v rG(u, v), which has previously been used as

optimization target for k-GRIP [29,31,36] in graphs with only one component.
Combining both equations above results in a simple trace-based formula [8]:

Rr(G) = n · tr(L†
G). (1)

Forest Index (FI). To address the issue of disconnected graphs, other robustness
measures are required. The forest index, based on the forest distance [11] dfG(·, ·),
was proposed by Zhu et al. [38]. Similar to effective resistance, the forest distance
is based on the forest matrix Ω = (L+I)−1, with dfG(u, v) = Ω[u, u]−2Ω[u, v]+
Ω[v, v]. The forest distance is closely related to effective resistance (for details
see Sect. 5), but yields finite values also for disconnected vertex pairs. Similar
to total effective resistance, the forest index is the sum of the forest distance
(instead of the effective resistance) of all ordered vertex pairs (u, v):

Rf (G) :=
∑

u<v

dfG(u, v). (2)

With an argument analogous to the one for total effective resistance, the forest
index can be expressed using the trace as well:

Rf (G) = n · tr(Ω) − n. (3)

Total Harmonic Resistance (THR). We now propose a new measure to handle
disconnected graphs, total harmonic resistance. This measure is again based on
the effective resistance; this time one sums up the reciprocal of all pairwise
effective resistances – therefore harmonic:

Rh(G) :=
∑

u<v

1
rG(u, v)

. (4)

For vertex pairs where the effective resistance is infinite (i. e., vertices lie in
different components), we define the reciprocal to be zero. The reciprocity in
this sum makes computations more difficult compared to the other two metrics.

3 Related Work

Due to its high relevance in numerous application areas as well as a rich assort-
ment of research questions, robustness in networks has been an active research
area for several decades [13]. We thus point the interested reader to recent sur-
veys for a broader overview [13,27]. Concerning robustness measures, the survey
by Freitas et al. [13] categorizes them into three classes: (i) based on structural
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(combinatorial) properties, (ii) spectral properties of the adjacency matrix, and
(iii) spectral properties of the Laplacian matrix. Total effective resistance belongs
to the third class as it can be computed by the sum of the Laplacian (inverse)
eigenvalues. Chan and Akoglu [10] propose a budget-constrained edge rewiring
mechanism to address six different spectral measures – a related optimization
problem, yet different from k-GRoDel. Note that Oehlers and Fabian [27] focus
on communication networks and use a more fine-grained categorization than Fre-
itas et al. within their context.

Failures of components can result from various reasons, e. g., from natural
disasters, attacks, or wear. The targeted attack models surveyed by Freitas et
al. [13] refer to vertex removals and are based on vertex degrees and central-
ity scores. In general, vertex removals are the predominant failure model in
the literature; Newman [26, Ch. 15] discusses percolation (removal of a frac-
tion of the nodes), for example. An important question in this context is after
which fraction the graph becomes disconnected or, more generally, when the
giant component dissolves. One can address this question analytically in gener-
ative models (e. g., [26]) and/or empirically with real-world data (e. g., [6]). As
a prime example, an influential paper by Albert et al. [1] and follow-up work
led to the popular belief that scale-free networks are “robust-yet-fragile”, i. e.,
robust against uniform vertex deletion and fragile against targeted attacks that
remove high-degree vertices. Recent work by Hasheminezhad and Brandes [15]
puts this view into a more nuanced perspective: robustness depends primarily
on the graph’s minimum degree, not a power-law degree distribution.

As mentioned in Sect. 1, edge deletions are natural to model failures in numer-
ous applications. Liu et al. [22], who study the problem of minimizing one node’s
information centrality when removing k edges, argue that edge deletions are less
intrusive than vertex deletions and that they provide a more fine-granular control
of disruptions. To measure how easy two vertices can reach each other via alter-
native paths, numerous works use effective resistance [12,22,29,30,36], whereas
Zhu et al. [38] use forest distance [11] as summands of their forest index, a met-
ric related to effective resistance. Both robustness measures express with lower
values that more alternative pathways exist. A small total forest distance (as
well as a small total effective resistance) thus means that many vertex pairs can
reach each other via many alternative short paths. Obviously, this is a desirable
property for a robustness measure in a number of applications, e. g., when it
comes to routing information or goods [27]. Forest distance has recently been
used for forest closeness centrality [14,16]. There and when used as part of the
forest index, it has the advantage (compared to the ordinary graph distance or
effective resistance) to be able to handle disconnected graphs without changes.

An exact solution of the k-GRoDel problem with total harmonic resistance
or a related measure is likely infeasible for instances of non-trivial size: (i) sim-
ilar optimization problems have been shown to be NP-hard [14,18], including
the single-vertex variant of Liu et al. [22] with information centrality, and (ii)
mathematical programming, even when applied to related problems with sim-
pler objective functions, can usually solve instances with only hundreds or at
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most a few thousand vertices in reasonable time [2]. Empirically, however, the
related problem of adding k edges to minimize total effective resistance can be
solved adequately (yet in general not optimally) with a standard greedy algo-
rithm [35]. we developed in our previous work [30,31] heuristics to accelerate
the greedy algorithm for the k-GRIP problem (with usually tolerable losses in
solution quality). Even more closely related, Liu et al. [22] and Zhu et al. [38]
use greedy strategies to identify k edges to delete from G while optimizing for a
robustness measure (information centrality vs forest index). We thus expect an
adapted greedy algorithm to work similarly well for our variant of k-GRoDel.

4 Comparison of Exact Solutions

To investigate the difference between forest index and total harmonic resistance
as robustness measures for k-GRoDel, we analyze exact solutions for a collec-
tion of small examples. These examples consist of different graph classes: grid
graphs and variants thereof, random graphs [26, Part III] generated using the
Barabási-Albert model (parameters: k = 3, nmax = 18), and random graphs gen-
erated with the Watts-Strogatz model (parameters: n = 16, deg = 3, p = 0.7).
For each example, we compute the exact solutions of the optimization problem
for both robustness measures. Results for the grid-like grahps are visualized in
Fig. 1. Due to symmetry in the grid-like graphs, there are often multiple optimal
solutions; for simplicity, we only show one of these solutions.

Visually, the figures suggest that the forest index (FI) finds edges in the
periphery, while THR finds central edges. THR also seems to be more robust
regarding changes to low-degree nodes in the periphery of a graph: THR finds
the same solution for the 4x7 grid and for the hotdog grid, while the FI solution
changes.

To further support our claim about periphery vs center, we compute a cen-
trality score for an edge set as follows: Given the closeness centrality c(·) of all
nodes in G = (V,E) and a set of edges S ⊂ E, we rank the nodes by their close-
ness centrality and convert their rank into a relative (quantile) score s ∈ [0, 1],
where the most central node has score 1 and the least central node has score
0. Then, for each edge e = (u, v) ∈ S, we take the mean score of both incident
nodes and call this the score of that edge s(e). Edges which are central in the
graph have a larger score than less central edges. Finally, we define the score of
S as the mean of all edge scores in the set. Scores for all solution sets are listed
in Table 1. The centrality scores of the solutions further support our claim: for
all graphs of all three types, the score of the THR solution is higher (i. e., more
central) than in the FI solution. This even holds when comparing the best FI
solution to the worst THR solution in this metric.

Discussion. We would like to note that the observed behavior of the forest index
is not according to our original intuition (which was similar to the one given by
Zhu et al. [38]) before working on this paper. Broadly speaking, we generally
expected the forest index to be maximized when the number of disconnected
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Forest Index Total Harmonic Resistance

Fig. 1. Optimal solutions for k = 5 on grid-like graphs using FI (left column) and THR
(right column) as resistance measures. Edges highlighted in blue belong to the solution
set. (Color figure online)

vertex pairs is maximized, because this leads to many high terms in the sum. The
optimal solution (for appropriate k) on a grid graph would then be a balanced cut
in the middle. Instead, the optimal solution when using the forest index is a set of
edges at the boundary of the grid, disconnecting just a few vertices from a large
component. While such peripheral edges may be desirable in some applications,
we argue that in most scenarios more central edges – whose deletion ideally even
leads to several connected components – are beneficial from an attacker’s point
of view. We further explore this in our case study on (parts of) the Berlin road
network in Sect. 6. To be able to process non-trivial instances, we propose to
adapt a generic greedy algorithm in the next section.
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5 Greedy Heuristic for k-GRODEL

We adapt the general greedy algorithm previously used for many related prob-
lems. The basic idea of this algorithm is to iteratively pick the edge with best
marginal loss until k edges are found (see Algorithm 1).

Table 1. Solution set centrality scores as defined in Sect. 4. Since multiple optimal
solutions exist for some graphs, the score is computed for each solution and aggregated
in this table.

graph BA1 BA2 BA3 grid5x3 grid5x6
opt FI THR FI THR FI THR FI THR FI THR

min 0.31 0.40 0.29 0.47 0.32 0.40 0.24 0.53 0.09 0.69
mean 0.33 0.40 0.29 0.47 0.34 0.40 0.24 0.60 0.10 0.69
max 0.37 0.40 0.29 0.47 0.36 0.40 0.24 0.67 0.13 0.69

graph grid7x4 hotdog5x6 WS1 WS2 WS3
opt FI THR FI THR FI THR FI THR FI THR

min 0.11 0.76 0.14 0.71 0.34 0.49 0.27 0.34 0.16 0.28
mean 0.11 0.76 0.14 0.71 0.34 0.49 0.27 0.34 0.16 0.28
max 0.11 0.76 0.14 0.71 0.34 0.49 0.27 0.34 0.16 0.28

The greedy algorithm starts by computing the Laplacian pseudoinverse,
which is required to compute the effective resistance and hence the loss when
removing an edge from G. Then, in the main loop, the algorithm iterates all
edges in G and computes the loss for each one. The best edge is picked, and G
and L† are updated. The main loop runs for k iterations.

To implement the greedy algorithm, we need a formula to compute the
marginal loss when removing an edge (Line 7) as well as a way to update L†

after choosing an edge to compute the objective function in the next iteration
(Line 10). These depend on the robustness metric used and will be derived in
the next section.

For submodular functions the greedy framework can be combined with lazy
evaluation [24] to speed up the computation. This lazy evaluation stores all
candidates in a priority queue with their most recent loss value and instead
of evaluating the loss for all candidates in each iteration of the main loop, it
iteratively evaluates (and updates) only the top candidates’ loss value until the
top candidate is a candidate that has been evaluated in the current iteration
of the main loop. Effectively, lazy evaluation reduces the number of evaluations
significantly, while still providing a quality guarantee for submodular problems.
Even though k-GRoDel is not known to be submodular for THR and is not
submodular for FI [38], we still apply this technique because practical experience
has proven to lead to good results even for non-submodular problems [25].

Combining the lazy evaluation technique with the general greedy algorithm
and THR-based loss and update function leads to GreedyTHR: first, compute L†

G.
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Algorithm 1. Greedy algorithm for k-GRoDel
1: function Greedy(G, k)
2: Input: Graph G = (V, E), k ∈ N

3: Output: Gk – graph after k edge deletions
4: G0 ← G
5: Compute L†

6: for r ← 0, . . . , k − 1 do � main loop
7: Compute loss(e)∀e ∈ E � evaluation step
8: e∗ ← argmaxe∈E loss(e)
9: Gr+1 = Gr \ e∗

10: Update(L†, Gr+1) � update step
11: end for
12: return Gr+1

13: end function

This takes O(n3) time (with standard tools in practice). Then, compute the loss
for all edges of G and set up a priority queue of all edges by their respective loss
value. In the main loop, get the top entry from the priority queue (using lazy
evaluation), remove that edge from G and update L†

Gr
.

5.1 Total Harmonic Resistance Loss After Deleting an Edge

We now derive an update formula and state the loss formula for THR, which are
required for the greedy algorithm.

For the Update step (Line 10) there are efficient ways to compute L†
G′ :

Removing an edge e = {a, b} ∈ E from G results in G′ = (V,E \ {e}) and
LG′ = LG − (ea − eb)(ea − eb)T , where ei is the i-th unit vector. One can apply
the Sherman-Morrison-Formula [34] (which holds for L and (ea − eb) as well) to
write:

L†
G′ = L†

G +
L†
G(ea − eb)(ea − eb)TL

†
G

1 − (ea − eb)TL
†
G(ea − eb)

(5)

= L†
G +

L†
G(ea − eb)(ea − eb)TL

†
G

1 − rG(a, b)

There are limitations to using the Sherman-Morrison-Formula for updates:
if the removed edge is a bridge, rG(·, ·) = 1 [23] and hence the denominator in
Eq. 5 is 0. In case the edge is not a bridge though, we can apply the Sherman-
Morrison-Formula.

To handle the case of a bridge edge e, some more involved computation
is required. Recall that L is a (permuted) block diagonal matrix where each
block corresponds to a component of G (see Sect. 2). Removing e causes the
corresponding block in L to be split into two blocks – one for each component. All
other blocks of L are not modified by this edge removal. Since the pseudoinverse
of a block diagonal matrix is the block matrix build from the pseudoinverse of
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each block, L†
G′ can be found by computing the pseudoinverse of the two blocks

related to e and re-using the other pseudoinverse blocks from L†
G.

One has to keep track of a mapping from each node to its component (since
in general L is permuted and we need to know which row/column belongs to
which block) which takes O(n + m) time. For simplicity, we re-compute this
after removing a bridge edge (because the pseudoinversion step dominates the
running time), but in principle it is possible to dynamically update the connected
components instead. The running time of the update step is either O(c2) (non-
bridge edge) or O(max(n+m, c3)) (bridge edge), where c is the size of the block
matrix (resp. component of G) that contains e.

For the loss function, the basic formula is loss(a, b) := Rh(G) − Rh(G′) =
∑

u<v
1

rG(u,v) − 1
rG′ (u,v) . This formula depends on values in L†

G and L†
G′ (via

rG(u, v) = L†
G[u, u] + L†

G[v, v] − 2L†
G[u, v]). Since this is a sum of reciprocal

values, deriving an efficient formula proves difficult; we do not know of a closed
formula analogous to the forest index or effective resistance yet. Using the basic
formula to compute the loss requires computing L†

G′ which we have discussed
above. Computing the loss when L†

G′ is given takes O(n2) time and the loss is
computed up to O(km) times in the greedy algorithm (in the worst case, the
loss is computed for each edge even though we use lazy evaluation). This leads
to O(kmn2 ·max(n+m, c3)) time overall for the loss computation. The running
time varies a lot depending on the size and number of the components in G and
the number of bridge edges.

5.2 Forest Index Loss After Deleting an Edge

For our experiments, we are also interested in results from the greedy algorithm
for FI. Since the experimental setup by Zhu et al. [38] is to our knowledge not
publicly available, we implemented our own version of this algorithm. There are
two differences in our implementation compared to the algorithm description
given in their paper though: (i) we exploit a connection between forest index
and effective resistance to convert the FI computation back to a problem that
is based on the Laplacian matrix. This allows re-use of specialized Laplacian
pseudoinverse solvers. (ii) we use the lazy evaluation technique described in
Sect. 5, even though FI is not submodular. As mentioned, this technique usually
yields good results even for non-submodular problems and in our preliminary
experiments we observed no difference in the solution quality.

To derive a marginal loss formula for the forest index, we use a theorem
on the connection between effective resistance and forest distance; it allows to
reduce the forest index formula (based on forest distance) back to total effective
resistance and this reduction facilitates the reuse of some other theorems and
algorithms:

Theorem 1. Given G = (V,E), define the augmented Graph G∗ = (V∗, E∗)
with a universal vertex u∗ which is connected to all other vertices: V∗ = V ∪{u∗}
and E∗ = E ∪ {(v, u∗) : v ∈ V }.

Then dfG(u, v) = rG∗(u, v) ∀u, v ∈ V .
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The proof (with a slight change in the forest distance definition that does not
affect the validity of the result) can be found in Ref. [11, Proposition 7]. From
Theorem 1 the following result can be derived:

Proposition 1. The forest index can be written in terms of the effective resis-
tance of the augmented graph: Rf (G) = n · tr(L†

G∗) − (n + 1) · L†
G∗ [u

∗, u∗].

Proof. See Appendix A.1. The main idea is to extend the forest index sum by
adding a zero term, which then includes the trace of L†

G∗ .

Edge Removal. We can now use Proposition 1 to write the forest index Rf (G)
in terms of the augmented graph G∗ and L†

G∗ , which allows us to compute the
marginal loss via L†

G∗ when removing an edge from G.
Removing an edge {a, b} ∈ E from G results in G′ = (V,E \ {{a, b}}) and

LG′∗ = LG∗ − (ea − eb)(ea − eb)T , where ei is the i-th unit vector. Apply the
Sherman-Morrison-Formula [34] to write:

L†
G′∗

= L†
G∗ +

L†
G∗(ea − eb)(ea − eb)TL

†
G∗

1 − rG∗(a, b)
(6)

To calculate the loss(a, b) := Rf (G′)−Rf (G) when removing e = {a, b} from
G, we can use Eqs. (1) and (6) and the connection to total effective resistance
(Proposition 1):

Proposition 2. The marginal loss for the forest index when removing edge (a, b)
from G is:

loss(a, b) =
n

1 − rG∗(a, b)
·
∥
∥
∥L†

G∗ [:, a] − L†
G∗ [:, b]

∥
∥
∥
2

− n + 1
1 − rG∗(a, b)

· (L†
G∗ [u

∗, a] − L†
G∗ [u

∗, b])2.

Proof. See Appendix A.2.

We use these loss and update formulae in our greedy algorithm, which allows
us to re-use existing code. Running times for the loss and update computation are
O(n) and O(n2) respectively, which results in a overall running time of O(kmn)
and O(kn2) for k iterations of the greedy algorithm.

6 Experimental Results

6.1 Experimental Setup

We conduct experiments to evaluate the quality of the greedy solution for THR
to the greedy solution for FI (GreedyTHR and GreedyFI). Our algorithms are
implemented in C++ using the NetworKit toolkit [3] as a graph library. We also
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build upon the previous work in Refs. [30,31]. To solve linear systems and com-
pute the pseudoinverse, we use the LAMG solver from NetworKit. SimExPal [4]
is used to manage our experiments and analyze the results. All experiments are
run on a machine with an Intel Xeon 6126 CPU and 192 GB RAM. Code and the
experimental setup are available on github: https://github.com/bernlu/GRoDel-
THR-FI.

Table 2 lists all networks used in our case study and benchmark study with
their approximate number of nodes and edges. For the following analysis, we
split them into two groups: small graphs with |V | < 50K and large graphs with
|V | > 50K. These networks are taken from SNAP [21], Networkrepository [32]
and KONECT [20]. For our experiments, we perform preprocessing on these
graphs to turn them into simple graphs by removing self-loops, multi-edges and
edge weights; we use the largest connected component of each graph. We set
the accuracy parameter ε of our LAMG solver (which we use to compute L†) to
10−5.

Table 2. Graph instances used for experiments, their vertex and edge counts after
preprocessing, and the mean closeness centrality of the greedy THR and FI solutions.

Graph |V | |E| THR FI

euro-road 1K 1.3K 0.661 0.160
EmailUniv 1K 5.4K 0.405 0.526
air-traffic-control 1.2K 2.4K 0.579 0.063
inf-power 4K 6K 0.858 0.257
web-spam 4K 37K 0.457 0.039
Bcspwr10 5.3K 8.2K 0.301 0.740
Erdos992 6K 7.5K 0.643 0.691
Reality 6.8K 7.6K 0.825 0.508
Mitte-Berlin-Germany 1K 1.5K 0.648 0.334
Treptow-Köpenick-Berlin-Germany 3.6K 5.2K 0.733 0.283

6.2 Case Study: Berlin Districts

For our case study, we use the road networks of two Berlin districts (Table 2).
We choose these networks because road networks in general are easy to visualize
and understand intuitively; Berlin specifically has some rivers flowing through
the city which create cuts for many districts. These river bridges make for a
natural solution to k-GRoDel which we will use as a manually chosen solution
to compare to the greedy solutions.

Our graphs are generated from OpenStreetMap [28] data using the osmnx [7]
python library. We convert the data into a simple graph and use our NetworKit-
based greedy algorithm to find the solution for both THR and FI.

https://github.com/bernlu/GRoDel-THR-FI
https://github.com/bernlu/GRoDel-THR-FI
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Fig. 2. Berlin case study result. Grey edges are the GreedyTHR solution; orange edges
are the GreedyFI solution. The image is cropped – not all edges in the solution are
displayed. GreedyTHR finds four of seven river bridges while GreedyFI mostly finds
residential roads. Image created using OpenStreetMap [28]

The solutions for the Mitte district are drawn on a map for visual inspection
(Fig. 2). One can clearly see that GreedyTHR finds some of the river bridges
and other main roads, while GreedyFI finds less important streets. We also
compare the solutions to the hand-picked solution that consists of the seven river
bridges in this district (12 edges in total in our network because of multi-lane
bridges). The THR of this manual solution is larger than that of the GreedyTHR
solution, even though the greedy solution was computed for k = 20 edges – this
further indicates that THR is a metric that prioritizes edges in a way we consider
desirable. In contrast to the previous observation, the FI score of the manual
solution is worse than the solution (of the same size) found by GreedyFI; this
is another hint that FI prioritizes edges in the periphery of a network. We have
also investigated other districts of Berlin, with very similar results: GreedyTHR
finds some bridges and large streets; GreedyFI finds edges in the periphery and
a manual choice of river bridges is better than the greedy solution.

6.3 Benchmark Results

For the benchmark graphs, we evaluate the results by comparing the average
closeness centrality of the solutions using the same we method described for the
exact solutions in Sect. 4.

Results are available in Table 2. For most benchmark graphs we observe that
the GreedyTHR solution is considerably more central than the GreedyFI solution;
on average, the GreedyTHR solution is about 25% more central in the closeness
centrality metric. In the Bcspwr10 graph GreedyTHR provides a considerably
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less central solution than GreedyFI – though there is no obvious reason for this
result.

Regarding running times, with a timeout of 12 h we found solutions for graphs
with up to 6.8K nodes or 13K edges. We observe that the network structure (esp.
the amount of bridge edges) has significant impact on running times – which is
expected given the two ways to compute the update step, where the update for
bridge edges is much more expensive. As expected, running times for GreedyFI
are 2-4 orders of magnitude lower than GreedyTHR. The reason for this is that we
can use the much more efficient loss formula using the trace of L† for GreedyFI
while we do not know of an analogous formula for GreedyTHR.

7 Conclusions

With the protection of large infrastructure in mind, we considered the k-
GRoDel problem to identify a set of k particularly vulnerable edges in a graph.
To this end, we proposed total harmonic resistance as objective function and
compared it against the recently proposed forest index.

We show with small examples where we compute the exact solution that
total harmonic resistance prioritizes more central edges than the forest index.
We adapt the general greedy algorithm for similar optimization problems to
k-GRoDel with total harmonic resistance and show in a case study on the
Berlin road network that THR favors more central edges in larger examples
as well. Finally, we run benchmark experiments which show that THR mostly
favors more central edges than FI in a range of different network types. We note
that the greedy algorithm for THR has higher time complexity than the greedy
algorithm for FI and our experiments confirm this in practice.

In the future, we would like to focus on speeding up the greedy algorithm
for THR by improving the update and loss formulae and by finding other, faster
heuristics. These are highly complex problems because of the reciprocity in the
objective function – which prevents re-use of most of the results and techniques
used for related robustness measures like total effective resistance or forest index.

Acknowledgments. We would like to thank Rob Kooij from TU Delft for insightful
discussions on total harmonic resistance and many related measures.
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Abstract. Identifying the underlying reason for a failing dynamic pro-
cess or otherwise anomalous observation is a fundamental challenge, yet
has numerous industrial applications. Identifying the failure-causing sub-
system using causal inference, one can ask the question: “Would the
observed failure also occur, if we had replaced the behaviour of a sub-
system at a certain point in time with its normal behaviour?” To this
end, a formal description of behaviour of the full system is needed in
which such counterfactual questions can be answered. However, exist-
ing causal methods for root cause identification are typically limited to
static settings and focusing on additive external influences causing fail-
ures rather than structural influences. In this paper, we address these
problems by modelling the dynamic causal system using a Residual Neu-
ral Network and deriving corresponding counterfactual distributions over
trajectories. We show quantitatively that more root causes are identified
when an intervention is performed on the structural equation and the
external influence, compared to an intervention on the external influence
only. By employing an efficient approximation to a corresponding Shap-
ley value, we also obtain a ranking between the different subsystems at
different points in time being responsible for an observed failure, which
is applicable in settings with large number of variables. We illustrate the
effectiveness of the proposed method on a benchmark dynamic system
as well as on a real world river dataset.

Keywords: Dynamic Root Cause Analysis · Counterfactual
Inference · Dynamic Systems

1 Introduction

Explaining unexpected behaviour in terms of underlying causes is a difficult chal-
lenge with a broad range of applications. Such applications range from identifying
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potential problems in industrial processes to understanding influencing factors
in anomalous weather phenomena. For example, within an assembly line of an
industrial manufacturing plant, faster identification of root causes of increased
scrap rate (the rate at which assembled products fail quality assessment audits)
can minimize cost, increase production yield, and increase overall efficiency. If
one can observe sufficiently many instances of anomalous behaviour or of faulty
traces of a process, one option would be to perform correlation based analysis or
causal discovery [14], thereby estimating the influencing factors to the variable
“fault” [2,9,17]. Alternatively, causal inference can be used even if only a single
anomalous observation is available [5,15]. Here, the identification of root causes
is formulated in terms of a counterfactual query: “Would the observed failure
also occur, if we had replaced the behaviour of a sub-system at a certain point
in time with its normal behaviour?”. Although such a causal inference approach
can estimate a ranked score of each variable involved of being the underlying
root cause, we address three main shortcomings of this approach in this paper:

Static Systems: Root cause analysis based on causal inference has been con-
sidered only in static environments [3,5,15]. To address this limitation, we fit
a time-discretized version of an Ordinary Differential Equation (ODE) system,
thereby obtaining a dynamic model. By deriving counterfactual distributions
over trajectories we then employ similar strategies as in the static case.

Structural Influences: Existing causal inference methods using counterfac-
tuals [5,15] focus on additive external influences causing failures rather than
structural influences. While [2] also considers structural influences, the method
is limited to linear models and does not include single time external influences.
In this paper, we address this problem by allowing for interventions on the struc-
tural equation and the external influence.

Non-linear Systems: Existing methods for root cause analysis are typically
limited to linear dynamic models. Here, we address this problem by allowing
transition functions to be non-linear using a simple neural network architecture.
Additionally, existing methods are limited to small systems as they rely on the
computation of Shapley values, which scales exponentially with the number of
variables. This becomes infeasible in a dynamic setting, since the corresponding
causal graph – unrolled over time – would have an increasingly large number of
nodes. While approximate methods for the computation of Shapley values have
been proposed [10], we suggest a simple approximation to the Shapley value,
which is applicable in settings with large number of variables.

The remainder of this paper is organized as follows: in Sect. 2, we review the
related work mentioned above in more detail, and provide necessary background
and notation in Sect. 3. In Sect. 4, we describe our method for identifying root
causes. In Sect. 5, we first illustrate the mechanisms of the proposed method in
a synthetic linear and non-linear setting before evaluating it on a benchmark
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dataset of [2] as well as on real data describing river levels as in [5]. In Sect. 6,
we conclude the paper.

2 Related Work

The problem of identifying the root cause of a system failure or anomaly has
been addressed in various domains, including healthcare [15], financial income
distributions [4], reliability engineering [9], to name a few. In the context of time-
series data, causal inference techniques have been used to qualitatively explain
outliers using counterfactual trajectories [16]. To detect root causes affecting
graphical structure or transition function Assad et al. [2] propose a method based
on assessing the direct causal effect. Modelling such causal effect with linear
models, Assad et al. [2] show that the total effects change if the underlying causal
model changes. In turn, they can use this fact to identify structural changes in
the causal model. However, the method is limited to linear models and does
not include single time external influences. If more observations of anomalous
data are available, the problem of identifying the root causes is also amenable to
statistically estimate the correlation or causation of the different variables and
time points onto the variable associated with the label “anomalous”. To this
end, Tonekaboni et al. [17] introduce feature importance in time (FIT), a scoring
mechanism to quantify importance of features in a multi-variate time-series. The
authors propose to assess feature importance based on their predictive power
w.r.t. the outcome distribution, while accounting for temporal distributional
shifts. The approach localizes important features over time and can thus be
used to gain useful insights into the behaviour of dynamic systems. However,
FIT does not leverage the causal structure of the underlying system and rather
provides correlative explanations for the observed outcomes.

Best aligned with our approach, though, is the work by [5] which defines the
problem of identifying root causes of a system failure as a counterfactual query.
With this reformulation, the authors claim to be the first to propose action-
able explanations to anomalous behaviour of underlying systems. In principle,
counterfactual reasoning assumes, and leverages, complete causal knowledge of
the underlying system in the form of a structural causal model (SCM). More
precisely, the work in [5] assumes invertible functional causal models: models in
which exogenous variables are computable from endogenous system observations.
In fact, the authors leverage the default split between endogenous and exogenous
variables in a graphical causal model to disentangle a node’s inherited impact
from its own contribution. They account for the notion of graded causation [7]
and provide order-independent feature scoring using a game-theoretic concept
commonly adopted in explainable machine learning [10], namely Shapley values
[13]. With its computation complexity, their approach lacks direct applicability
to dynamical systems. In our experiments, we compare against the linear model
performing interventions on the exogenous variable analogously to [5].
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3 Background and Notation

As mentioned in the introduction, we are interested in a counterfactual approach
to identify the root cause of a system failure. In this section, we introduce the
necessary concept from the literature and also introduce the notation we use
throughout the paper. Following the notation from Peters et al. [12], we denote
the sequence of observations of the system of interest by d -variate time series
(Yt)t∈Z where each Yt for fixed t is the vector (Y 1

t , ..., Y d
t ). Each Y j

t represents
the j th observable of a system at time t. By some abuse of notation, if we omit
super- or subscripts, we refer to the full time series. That is, Y = (Yt)t∈Z,
Yj = (Y j

t )t∈Z and Yt = (Y j
t )j∈{1,...,d}. The full time causal graph Gt with a

node for each time point and signal Y j
t for (j, t) ∈ 1, ..., d × Z has theoretically

infinitely many nodes and is assumed to be acyclic, while the summary graph G
with nodes Y 1, ..., Y d may be cyclic.

Definition 1. (Structural causal model (SCM)) [12]
An SCM M(S, PN ,G) is defined by a set of structural equations S, an acyclic
graph G = (Y, E), and a set of independent noise variables N j ∼ PNj , j ∈ Y.
The structural equations for each node j are given by:

Sj := Y j = f j(Y PA(j)G , N j)

where S = ∪j∈E{Sj} is a set of structural collections, and PA(j)G ⊆ E denotes
the parents of the node j according to the graph G.

To describe dynamic processes, again following [12], we extend the above
definition to the dynamic case by unrolling a causal graph over time as follows:

Definition 2. (Dynamic SCM)
In analogy to a static SCM, a dynamic SCM M(St, PNt

,Gt) is given by an acyclic
graph Gt and exogenous noise influences N j

t ∼ PNj
t

independent over each point
in time t and variable j. Gt is referring to a graph consisting of an unrolled
version of a summary graph G. Following the notation of [12], the structural
equations for node Y j

t are given by:

Sj
t := Y j

t = Y j
t−1 + f j(Y PA(j)

t−1 , Y j
t−1) + N j

t

with PA(j) being the parents of node j according to the summary graph G exclud-
ing the node itself. A notable difference from static SCMs is that the functional
coupling f is constant over time1.

Definition 3. (Interventional Dynamic SCM) Let J be a set of interventions
in which each element ξ can be of the following form:

1 Note that we restrict ourselves to additive noise in order to realize an invertible
SCM, see [5].
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ξ := do(PNj
t
) = P̃Nj

t
, (1) or ξ := do(Sj

t ) = S̃j
t (2)

where P̃Nj
t

is a new noise distribution and S̃j
t is a new structural equation for the

node j at time t. The interventional dynamic SCM is then defined by replacing
either the noise distribution or structural equation within a given dynamic SCM
M(St, PNt

,Gt). Here Eq. 1 denotes a soft intervention on the noise distribution
whereas Eq. 2 denotes an intervention on the structural intervention. We denote
the resulting intervened dynamic SCM then by MJ (St, PNt

, Gt).

As each SCM (interventional or not) defines structural equations and noise
distributions, it can generate a trajectory of observations. We denote the distri-
bution of the observations generated by the SCM as PM and the distribution of
the observations generated by the intervened SCM as PMJ . Given an observed
trajectory, we can now also define the counterfactual distribution describing
hypothetical trajectories which would have been observed if an (alternative)
intervention had been performed.

Abducted and Counterfactual SCMs. Let YF be an observed trajectory and M
a given dynamic SCM. In order to construct a counterfactual dynamic SCM, we
define the noise posterior distribution PNj

t
(N j

t |YF ) = δ(N j
t − NF,j

t ) by:

NF,j
t = −Y F,j

t−1 − f j(Y F,PA(j)
t−1 , Y F,j

t−1) + Y F,j
t (3)

where f j is the structural equation of the node j and PA(j) are the parents
of the node j according to the summary graph G. The resulting dynamic SCM,
in which the noise distributions PNj

t
are replaced with the above defined noise

posterior distributions, is then denoted as MF indicating that the noise distri-
butions are abducted from the observed trajectory YF . In fact, when generating
trajectories from this abducted SCM, it only generates the observed trajectory
YF due to the above setting of the noise variables. In order to generate new
counterfactual trajectories reflecting alternative outcomes, we need to perform
an intervention on this abducted SCM, leading to the counterfactual SCM. That
is, given an abducted SCM MF and a set of interventions J , we refer to the
resulting interventional SCM MF

J as the counterfactual SCM. For example,
when performing an intervention do(PNj

t
) = P̃Nj

t
on the noise distribution at a

specific point in time t and a node j, the counterfactual SCM is defined by the
following structural equations:

Y e
s = Y e

s−1 + fe(Y PA(e)
s−1 , Y e

s−1) + Ne
s , where (4)

Ne
s ∼

{
P̃Nj

t
if s = t and e = j

δ(N j
t − NF,j

t ) otherwise
(5)
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3.1 Root Cause

As we are interested in identifying a root cause, we state here more precisely
what we mean by this term. We define a root cause as an intervention according
to MJ (St, PNt

, Gt) leading to a faulty behaviour. Here, we assume that a faulty
behaviour can be detected or defined using a known classifier φ. This classifier
maps a time series to a binary value, indicating whether the time series is faulty.
Such classifier can either be given as a known test function (e.g. corresponding
to an end-of-line test in an assembly line, an assertion in a software system, or
a medical diagnosis) or can be learned from data (e.g. an outlier-score function
learned on normal data).

Definition 4. (Root cause) Given a classifier φ that determines whether an
observed trajectory is faulty, we refer to a (set of) intervention(s) Ξ to be the root
cause of a failure associated with the classifier φ, if observations (YF

t,t=1,...T )j

from the interventional SCM M{Ξ} are leading to an increased failure rate:

EYF
t,t=1,...T ∼MΞ

[φ(YF
t,t=1,...T )] − EYt,t=1,...T ∼M[φ(Yt,t=1,...T )] > 0

Note that this corresponds to the average treatment effect of an intervention on
the external influence or structural intervention. If the probability of a failure
for an external intervention on the noise or structure is larger than without any
intervention, we assume that the failure has an underlying root cause.

3.2 Shapley Value

Shapley values, originally defined to quantify the contribution of individual play-
ers to the outcome of a game, have been used by Budhathoki et al. [5] in a static
setup to define a score for nodes being potential root causes of an observed fault.
To this end, interventions (or possible root causes) are identified with players
in a game whose outcome is determined by a value function that quantifyes the
degree to which a set of interventions can increase the likelihood of correcting a
failure (to be defined below).

Definition 5. (Shapley value) The Shapley value [13] of a player i out of a set
N of possible players to the outcome of a game characterized by the outcome
function v is defined by:

Sh(i) :=
∑

S⊆N\{i}

|S|!(n − |S| − 1)!
n!

(v(S ∪ {i}) − v(S))

Note that in order to calculate the Shapley value, one has to sum over exponen-
tially many subsets of the set of possible players. This is feasible only for small
sets of players. As in the context of root cause analysis in a dynamic setting, the
set of players corresponds to the set of possible interventions ranging over all
possible times and nodes within the unrolled graph of a dynamic SCM. Due to
the exponential growth of the number of possible interventions, exact Shapley
value estimation is computationally infeasible for dynamic SCMs, and we have
to resort to an approximate version.
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4 Method for Identifying Root Causes

Now that we have the necessary background, we can describe our method for
identifying root causes in dynamic SCMs. The method is based on the follow-
ing steps and is illustrated in Fig. 1. We want to identify the root cause that
caused an observed failure in a system. To this end, we cast this problem in a
counterfactual query: “Would the observed failure also occur if we had replaced
the faulty behaviour of a sub-system at a certain point in time with its nor-
mal behaviour?”. To answer this question after we observed a faulty observation
(YF

t,t=1,...T )j , as illustrated in Inputs in Fig. 1, we follow the steps of counter-
factual distribution calculation: abduction, action and prediction [11]. However,
in order to apply those steps, we need an SCM characterizing the normal and
potentially the abnormal system. To characterize the normal system, we assume
to have access to data representing the normal behaviour of the system, as shown
in Inputs in Fig. 1. Additionally, we assume to have at least a summary graph
G of the system. This summary graph can be obtained from expert knowledge

'Normal' observations

2. Define dynamic SCM (Def. 2)

 Summary graph 

1. Derive unrolled graph 

3.1 Obtain normal system       by learning      with 'normal' data
                   of each node and its parents and 3.2 the system
by learning        with 'normal' & factum data 
on same parents.                                       
        

Faulty observation

4. Estimate Counterfactual SCM for intervention set     
and sample trajectories:  
        

5. Receive root causes by using approximative Shapley values to calculate the contribution of a counterfactual 
intervention to the failure. (Eq. 8)

Counterfactual samples for intervention at: (x1, t=6)

x

w

y z

w

x

w

y z

w

Failure classifier

Predictive samples with initial values:

5. Receive root causes by using approximative Shapley values to calculate the contribution of a counterfactual
intervention to the failure. (Eq. 8)

Evaluation

MethodInputs 

Assumptions

outputs a score for each point in time 
and node                 of being a root cause 
for the observed failure.

Fig. 1. This figure shows an overview of the individual steps of our method.
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or from data. Furthermore, as shown in Assumptions in Fig. 1, we assume that
we know a function φ that classifies an observation into faulty or normal.

Fitting the model in step 3.1 of the Method part in Fig. 1 we obtain the normal
behaviour system M by learning the functions f j

N with the inputs being normal
observations Yt of each node and its parents of the summary graph G. If for
both, normal as well as abnormal data, a node and hence its transition function
is not anomalous, the transition function would be identical for both settings.
Therefore, in 3.2 we additionally fit a transition function f j

NF with normal and
factum data as input on the same parents and children as in 3.1 of the known
graph G and with that we define the SCM FM. We show predictive samples of
M in the graph under 3.2.

Estimating the Counterfactual: In the abduction step, we first infer the noise
distribution corresponding to the observed factum. We refer to the abducted
SCMs MF and FMF by applying the factum as function input to f j

N and
f j

NF and constructing the resulting noise posterior distributions as described
in Eq. 3. We need to calculate the noise variables for both SCMs separately,
because function couplings and noise variables are coupled. In the action step,
we perform an intervention in M by ξM := {do(PNj

t
) = P̃Nj

t
} (see Eq. 1), where

we use the prediction error of our model to estimate the Gaussian noise variance:

P̃Nj
t

= N (0, σ2
val), σ2

val =
1
V

1
T

∑
v

∑
t

(Y j,v
t+1 − fj(Y

Pa(j),v
t ))2 (6)

with Y j,v being a validation trajectory of the normal data, and V the num-
ber of validation trajectories. For an intervention in FM we intervene on the
noise as before and we additionally intervene on the structure by do(Sj

t ) = S̃j
t

(see Eq. 2), which replaces the previous transition function f j
FN with a new

structural equation S̃j
t consisting of the transition function f j

N originating from
the ”normal” SCM, obtained purely from training data ξFM := {do(PNj

t
) =

P̃Nj
t
, do(Sj

t ) = S̃j
t }. After the construction of the corresponding counterfactual

SCM we can then generate counterfactual trajectories under the different inter-
ventions YCF ∼ PMF

ξM
, as illustrated in 4. in Fig. 1. If an external influence on

node j at time t leads to an abnormal factum, an intervention of the above type
should remove the abnormal behaviour and therefore lead to a normal trajectory.

Evaluation: To quantify how close these counterfactual samples are to normal
trajectories, the trajectories are processed via a classifier function φ (Eq. 4). In
turn, we receive a score for each counterfactual sample indicating whether the
failure was removed by the counterfactual intervention ξ. We then average over
multiple counterfactual samples. To rank interventions at different times and
nodes, we can use Shapley values by identifying players with interventions and
match-outcomes by the average normality of the counterfactual sample. Shapley
values, however, scale exponentially and therefore we use the following simple
approximation, which we obtain by ignoring interactions between different inter-
ventions, thereby only considering singleton intervention sets. Although mainly
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motivated by pure computational tractability, we can alternatively assume that
perfectly synchronous occurrence of multiple root causes is very unlikely, thereby
justifying the restriction to singleton intervention sets. Consequently we arrive
the following simple expression of contribution score of individual interventions
ξ for each point in time and node:

Sh(ξ) := logEY∼PMF
ξ

{φ (Y)} (7)

5 Experiments

In the following experiments, we evaluate the effectiveness of the proposed
method for different synthetic and real world data-sets. As for synthetic data-
sets, we consider both linear and non-linear dynamic systems with single point
external failure-causing disturbances as well as a benchmark data-set for identi-
fying structural causes for anomalies [2]. As for the real-world data-set, we are
investigating dynamic water flow rate in rivers [1]. For our synthetic experiments,
we perform two meta-experiments which analyze the influence on the model per-
formance of varying root cause injections and how robust the model is against
violating the assumption that the causal graph is known. We denote our models,
a linear and a non-linear model both performing a counterfactual intervention
on the external noise influence and on the structural equation with Lin(Sj

t , N j
t )

and NLin(Sj
t , N j

t ). We compare against a linear layer model with counterfactual
noise-influence intervention Lin(N j

t ), similar to [5] as well as against EasyRCA
[2] in the benchmarking experiment. For completeness, we additionally provide a
nonlinear model NLin(N j

t ) with counterfactual noise-influence intervention. In
order to model the non-linear dynamic SCM, for NLin we use a simple three-layer
residual neural network (ResNet) with hyperbolic tangent activation functions
and 128 neurons as latent layer.

5.1 Experimental Datasets

Linear Synthetic System: In our first data-set, we consider a linear multivariate
system with additive Gaussian noise consisting of four nodes (w, x, y, z), each
having two dimensions. The summary graph of the system is shown in Assump-
tions in Fig. 1. The structural equations of the system are of the form:

Y j
t := AiYj

t−1 +
∑

k∈PA(j)

BkYk
t−1 + ClN j

t , (N j
t )d ∼ N (0, 1) ∀d

with N j
t being zero mean standard Gaussian noise. For this system we chose the

transition matrices such that they generate a stable system by using eigenvalues
smaller than 1 (see Appendix). To simulate a root cause, we inject an additive
constant term at a single dimension of a node j at time t to the equation above.
Instead of a learned anomaly scoring function, in this experiment, we assume
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to have access to a function that checks the validity of a given observation,
similarly as it would be in a manufacturing scenario, in which an end of line
test is performed [6]. Therefore, we examine if a failure on the “last” node in a
manufacturing line (here “last” node in the summary graph is z) has occurred. To
this end, we use a threshold function, fixed over time for each dimension of node
z. More precisely, this classifier can be applied to any time-series observation
(Yj

t )t∈{1,...,T}, j∈{w,x,y,z}:

φ(Y) = 1 − 1
Dz

Dz∑
k=1

11[(μz)k−(σz)k,(μz)k+(σz)k](Y
z
k)

Here, the dimension of node z is denoted with Dz. Note that this function
provides a gradual feedback of how many of the dimensions in node z are outside
of the pre-specified corridor given by the threshold function.

FitzHugh-Nagumo System: Next, to allow for non-linear dynamic behaviour,
we are generating data of the FitzHugh-Nagumo system (FHN), which is cyclic
with regard to its summary graph, but acyclic in the unrolled graph Gt. Although
being a multivariate system, as the two dimensions interact, the corresponding
dynamic SCM consists of one node x with two dimensions:

ẋ1 = 3(x1 − x3
1/3 + x2), ẋ2 = (0.2 − 3x1 − 0.2x2)/3

We chose the initial values as in [8] but with slightly reduced additive Gaussian
noise variance σ2 = 0.0025. The root cause is simulated similarly to the linear
system by adding a constant to the difference equation at one dimension and
time point. We classify an observation as faulty, if it deviates too much from
a normal observation. As we have, in this setting, access to the ground truth,
a normal observation is represented by a trajectory generated from the ground
truth system. Consequently, the classifier consists of a time-varying threshold
bound around each dimension of the normal observation without the injected
root cause of node x. Denoting the expected trajectory from the system by E
a given observation Y is then classified to be faulty if it does not deviate more
than 10 standard deviations at any point in time from the expected trajectory:
φ(Y) = 1 − ∏

t 11[Ex
t −10σx,Ex

t +10σx](Y
x
t ).

5.2 Evaluation

When we have drawn counterfactual samples from our model, we calculate the
approximate Shapley values (see Eq. 4) and use the φ function to evaluate each
performed intervention based on whether it corrected the failure. The root cause
is the intervention of the node j at time t that has the highest influence on
the failure. If all counterfactual samples lead to the same φ evaluation for all
interventions, then no unique root cause could be identified. However, due to ran-
dom sampling of the counterfactual, this is an unlikely scenario (see for example
Fig. 5.) Nevertheless, for the evaluation, we only require that the ground truth
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Fig. 2. The figure shows the counterfactual samples for the FHN system with injected
root cause at (j = x1, t = 24). The injected root cause disrupts the system observation
heavily (black dashed line). However, the counterfactual intervention performed by our
model NLin(Sj

t , N
j
t ) corrects the failure in both dimensions, such that it lies inside

the threshold region (orange area). (Color figure online)

root cause is within the set of identified root causes. In Fig. 2 we show five
counterfactual samples for the nonlinear FHN system at the actual root cause
injection point. Although the injected root cause is fairly large with regard to
the interval of the normal observation without failure (drawn as orange line), the
counterfactual intervention performed by our model NLin(Sj

t , N j
t ) corrects the

failure for both dimensions of x. In order to analyze root cause injections and
how the identification capabilities of our model behave under varying injections,
we performed an Injection experiment for the synthetic linear and nonlinear
FHN system. External disturbances in dynamic systems may be propagated and
thereby increase their impact. Alternatively, if the system is robust against incre-
mental noise (as it is the case in the defined systems above due to the external
noise influence even under the ’normal’ conditions), it is not obvious how large
an external influence at which point in time is noticeable. In Fig. 3, we show
varying root cause injections for the linear synthetic system (varying constant
added to the structural equation) over 20 randomly sampled facta with T = 20.
It can be seen that the models intervening on the structure and the noise achieve
a significantly higher identification score for large added constants. This could be
due to a large root cause, in this setting leading to a factum with high distance
to the normal data, which may lead to a divergence over time of the normal
behaviour system M. Note that we did a similar injection experiment for the
FHN system, which can be found in the Appendix.

Assumption Violation. We probe our models on violation of the causal graph
assumption for the linear synthetic system. For this, we modify the causal graph
used by the underlying model through adding or removing random edges, while
keeping the original summary graph for data generation. We use the same facta
generated as σ = 500 in Fig. 3. In Table 1 it can be seen that removing edges
for all models has a stronger impact on predictive performance than adding. As
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Fig. 3. The root cause was injected at a random node j = x1 at t = 6 with varying
constants in [1, 10]. The horizontal axis shows the injected constant in relation to the
noise standard deviation denoted by σ. We report how many root causes could be
identified in %.

Table 1. We show the Accuracy for the setup σ = 500 of the linear synthetic system
(see Fig. 3) with varying number of removed or added edges of the summary graph G
used by the models.

NLin(Sj
t , N

j
t ) NLin(N j

t ) Lin(Sj
t , N

j
t ) Lin(N j

t )

nr. of removed edges

1 0.47 ± 0.25 0.23 ± 0.18 0.47 ± 0.24 0.18 ± 0.15

2 0.29 ± 0.20 0.06 ± 0.06 0.47 ± 0.24 0.12 ± 0.10

nr. of added edges

1 0.82 ± 0.15 0.12 ± 0.10 1.0 ± 0.0 0.18 ± 0.15

2 0.88 ± 0.10 0.0 ± 0.0 0.88 ± 0.10 0.06 ± 0.06

expected, Lin( (Sj
t , N j

t )) performs best on this linear system, closely followed by
NLin( (Sj

t , N j
t )). It must be mentioned that in a graph with only four edges,

removing an edge is a major incision in the model assumption.

Linear EasyRCA Benchmark. We compare against the linear univariate bench-
mark of [2] consisting of six nodes and two types of root causes. The parametric
root cause meaning they change the coefficient of the parent nodes to a random
uniform sampled value. As a special case of the parametric setting, they inject
structural root causes, which set the coefficient of the parent nodes to zero. Since
EasyRCA excludes single time point root causes, in order to do a fair compari-
son, we only rank sets of interventions, where we intervene on all times for a given
node and evaluating it accordingly by Sh(ξj

0, ...ξ
j
T ). In their work they inject on

two nodes, where one is always the root node of the system and the other one a
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randomly chosen node. As in their benchmark comparison the root node root
cause is excluded, we exclude it from the evaluation as well. In the evaluation
they distinguish for parametric and structural root causes, but because our model
makes no prediction about the type of root cause, it is sufficient if EasyRCA pre-
dicted root causes contain the true root cause, regardless of the type. To rate the
normality of a given trajectory Y, we make use of the learned dynamical SCM
M which was fitted on normal observations of the system. More precisely, for the
EasyRCA benchmark as well as the following River experiment, we used an out-
lier score similarly to [3], based on the learned dynamic SCM. That is, given a
dynamic SCM M consisting of N nodes and providing the conditional distribu-
tion p(Yj

t |YPA(j,t)
t ) via the dynamics equation learned from normal observational

data (Y)k, we can define the following outlier score:

φ(Y) =
1

NT

∑
j,t

log p(Yj
t |YPA(j,t)

t ) (8)

In Table 2, it can be seen that in general the intervention (Sj
t , N j

t ) is prefer-
able to an intervention only on (N j

t ). For the linear systems, the accuracy of
NLin(Sj

t , N j
t ) and Lin(Sj

t , N j
t ) are similarly good, while EasyRCA shows lower

performance in the factum T = 100 experiments. However, Lin(Sj
t , N j

t ) is inad-
equate for addressing the complexities of the nonlinear problem (Fig. 3).

Table 2. We report the Accuracy over 20 facta of the summary graph on a linear
system and the FHN oscillator. In the lower part of the table we present the experi-
mental results of the EasyRCA benchmark [2] comparing the accuracy for one factum
over 30 graphs for different factum lengths T (here, normal data has the same size
T . We excluded the 2000 factum length experiment of the EasyRCA benchmark for
computational reasons. Additionally, note that since EasyRCA is univariate, it can not
be applied to our synthetic systems.)

NLin Lin EasyRCA

(Sj
t , N

j
t ) (N j

t ) (Sj
t , N

j
t ) (N j

t )

Lin. system 0.94 ± 0.05 0.59 ± 0.24 1.0 ± 0.0 0.29 ± 0.20 –

FHN oscillator 0.90 ± 0.09 0.65 ± 0.23 0.20 ± 0.16 0.15 ± 0.13 –

Lin. Parametric

Factum-100 1.0 ± 0.0 0.97 ± 0.03 1.0 ± 0.0 0.97 ± 0.03 0.87 ± 0.12

Factum-200 0.97 ± 0.03 0.93 ± 0.06 1.0 ± 0.0 0.93 ± 0.06 0.93 ± 0.06

Factum-500 1.0 ± 0.0 0.97 ± 0.03 1.0 ± 0.0 0.97 ± 0.03 1.0 ± 0.0

Factum-1000 1.0 ± 0.0 1.0 ± 0.0 0.97 ± 0.03 0.83 ± 0.14 0.97 ± 0.03

Lin. Structural

Factum-100 1.0 ± 0.0 0.87 ± 0.12 1.0 ± 0.0 0.83 ± 0.14 0.8 ± 0.16

Factum-200 0.90 ± 0.09 0.27 ± 0.20 0.70 ± 0.21 0.53 ± 0.25 0.90 ± 0.09

Factum-500 1.0 ± 0.0 1.0 ± 0.0 0.87 ± 0.12 1.0 ± 0.0 1.0 ± 0.0

Factum-1000 1.0 ± 0.0 0.8 ± 0.16 1.0 ± 0.0 1.0 ± 0.0 0.97 ± 0.03
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Fig. 4. With the geographical knowledge of the river flow, a summary graph can be
inferred (Figure taken from [3]).

Real World River Experiment. We analyse our method on real-world data consid-
ering a univariate river experiment consisting of four nodes. The nodes represent
measuring stations of the Ribble River in England (data is from [1]). These mea-
suring stations are influenced by unknown external influences such as for example
rain. For this reason, the summary graph includes an unobserved confounder Z
that influences all nodes. This unobserved confounder affects the accuracy of our
model when learning the normal system M from observational data. The nodes
represent stations of the Ribble River that measure the flow rate. Although this
data-set has been investigated in [3], as a result of our dynamic viewpoint, we
consider a slightly different factum. They consider four time points as static
facta and infer the root causes for these. In contrast, we consider an entire time
series as factum and infer the root cause. In addition, we use a finer time res-
olution of 15-minute intervals instead of averaged daily values, which has the
advantage that the resulting SCM is less prone to instantaneous effects due to
aggregation within a time-window. The finer resolution means that we consider
a shorter period of time, namely the three days from 16.03.2019 to 19.03.2019
in which the flow rate is particularly high. As training data, we use the same
time span as [3] from 01.01.2010 to 31.12.2018. They provide a z-score threshold
for the New jumbles rock station, which we use as φ in 8, see also Fig. 5. We
find the Shapley values with the highest scores at station Henthorn, which is an
upstream station of the New jumbles rock station. Although no ground truth
root cause exist for this experiment since it is a real world example, the result is
plausible both geographically and with regard to the time point. Nevertheless,
the counterfactual intervention cannot correct the failure, as the counterfactual
sample is not below the z-score threshold. This could be due to the fact that the
influence of the unobserved confounders is particularly high.
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Fig. 5. We show five counterfactual samples (for each station) of our model
NLin(Sj

t , N
j
t ) with the intervention at the predicted root cause at 08:30 on 16.03.2019.

Additionally, we illustrate the resulting Shapley values for each time point, showing
that right before the failure occurs the Shapley values increase.
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6 Conclusion

In this paper, we have presented a method for identifying root causes in dynamic
systems based on counterfactual reasoning. As the proposed method ranks indi-
vidual interventions corresponding to individual nodes or sensors at particular
times within a trajectory, our method is capable of exploiting not only the causal
structure but also the natural direction of causality over time. By modelling tem-
poral transitions with a non-linear neural network and a Shapley value approx-
imation, we are able to remove important limitations of current counterfactual
root cause analysis methods. While we demonstrated both on synthetic as well
as real data the effectiveness of our method in identifying root causes in dynamic
systems, there are several directions for further improvement. For example, our
method is current limited to the assumption that the root cause consists of a
single intervention and that the causal graphical structure is known as well as
the absence of latent confounders. In future work, we plan to extend our method
to identify multiple root causes and to include uncertainties in the graphical
structure as well as potential latent confounders.

Disclosure of Interests. The authors have no competing interests to declare that

are relevant to the content of this article.
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Abstract. Even though dropout is a popular regularization technique,
its theoretical properties are not fully understood. In this paper we study
dropout regularization in extended generalized linear models based on
double exponential families, for which the dispersion parameter can vary
with the features. A theoretical analysis shows that dropout regulariza-
tion prefers rare but important features in both the mean and dispersion,
generalizing an earlier result for conventional generalized linear models.
To illustrate, we apply dropout to adaptive smoothing with B-splines,
where both the mean and dispersion parameters are modeled flexibly.
The important B-spline basis functions can be thought of as rare fea-
tures, and we confirm in experiments that dropout is an effective form
of regularization for mean and dispersion parameters that improves on
a penalized maximum likelihood approach with an explicit smoothness
penalty. An application to traffic detection data from Berlin further illus-
trates the benefits of our method.

Keywords: B-splines · double exponential families · dropout
regularization · generalized linear models · nonparametric estimation ·
overdispersion and underdispersion

1 Introduction

Dropout regularization [12,20] was introduced in the context of neural networks
and has been successfully implemented in a large number of applications [18,
21,22]. In its original formulation, dropout omits a randomly chosen subset of
features during each iteration of stochastic gradient descent (SGD) optimization
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of the training loss. It has been generalized in various ways, and is an example of
a broader class of methods using randomly corrupted features in model training
[5,16].

This work considers dropout for extended generalized linear models (GLMs)
based on double exponential families (DEFs). The DEF was introduced by [7] and
generalizes the natural exponential family (EF) by incorporating an additional
dispersion parameter. [7] also developed regression models where the distribution
of the output follows a DEF, and both the mean and dispersion can vary with
the features. The extended GLMs of [7] are related to extended quasi-likelihood
methods [14] and are particularly useful for count data. If count data are modelled
using a binomial or Poisson distribution, then there is no separate scale parame-
ter, and the variance is a function of the mean. For real count data, the variance
can be more or less than expected based on a binomial or Poisson mean-variance
relationship. If the variance is larger than expected, this is referred to as overdis-
persion [17] and not taking it into account can result in unreliable inference [6].
Underdispersion, where the variance is less than expected, can also occur, but is
less common. [17] state that it should be assumed that overdispersion is present
unless proven otherwise. Extended GLMs for double binomial or double Poisson
distributions are suitable alternatives to standard GLMs for count data exhibit-
ing over- or underdispersion. We use dropout regularization in the mean and the
dispersion to avoid overfitting and to prevent co-adaptation of features [11].

Overdispersed or underdispersed models for count data arise in important
machine learning applications. One example is the use of Dirichlet-multinomial
models, which generalize beta-binomial models, in topic modelling [4]. Flexible
models for count data also arise in large-scale regression applications [10] and in
mixture-of-experts models with GLM components. The subtleties that arise in
the behaviour of dropout for DEF-GLMs will potentially arise in other overdis-
persed models, where the effect of regularization on the mean and variance needs
to be considered jointly.

In conventional GLMs with canonical link functions, [23] have shown that
dropout performs regularization which is first-order equivalent to L2 regular-
ization, with a penalty matrix related to the empirical Fisher information. The
form of the penalty favors rare but important features. In the neural network
literature, previous work by [3] has shown that adding Gaussian noise to the
training data is equivalent to L2 regularization (also known as Tikhonov regular-
ization). [1] analyze dropout for both linear and non-linear networks, obtaining
related results. [24] consider fast dropout based on analytically marginalizing the
dropout noise. [25] consider deep network architectures and identify both explicit
and implicit regularization effects of dropout training, where the explicit effect of
regularization is approximated by an L2 penalty term. Despite the connections
between L2 regularization and dropout, dropout can behave very differently from
both L1 and L2 regularization in some circumstances [11].

Our work generalizes the study of [23] to extended GLMs based on DEFs.
Our first contribution is to give a theoretical analysis of the behaviour of dropout
for extended GLMs. We discuss the way that the regularization parameters for
the mean and dispersion models interact, and the effect of over- or underdis-
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persion on the regularization of the mean. We illustrate that dropout regular-
ization in DEF-GLMs can be regarded as a form of L2 regularization, where
the penalty matrix depends on the Fisher information for the mean and dis-
persion parameters. Understanding of the induced penalty requires considering
penalization of the mean and dispersion parameters jointly, and penalization
of the dispersion model behaves differently to penalization in the mean, with
an asymmetry in the treatment of over- and underdispersion. Our paper con-
tributes to the understanding of dropout regularization beyond its traditional
application in neural networks, demonstrating its applicability in other model
classes. Our second contribution is to consider the use of dropout regularization
in nonparametric estimation of extended GLMs with B-splines, and to compare
dropout with penalized maximum likelihood estimation (PMLE) [9] in this set-
ting. [9] consider an explicit smoothness penalty based on second-order difference
operators for regularization [8]. In accordance with our theoretical analysis, our
experiments demonstrate that dropout regularization can be particularly effec-
tive when important B-spline basis functions are analogous to rare features in the
mean and dispersion model. We also verify that the performance improves when
there is only overdispersion and no underdispersion. After having confirmed the
theory in our simulations, we illustrate the efficacy of dropout for DEF-GLMs
with a real data set on traffic detection in Berlin.

The rest of this paper is organized as follows. Section 2 introduces the
extended GLM based on DEFs and Sect. 3 analyzes the regularization induced
by dropout in this model class. Then, an application to adaptive smoothing with
B-splines based on simulated and real world data is discussed in Sect. 4. Section 5
gives a concluding discussion. Our code, together with the traffic detection data
and the Appendix is publicly available on GitHub1.

2 Generalized Linear Models Based on Double
Exponential Families

2.1 Double Exponential Family

The distribution of a random vector Y is in a natural exponential family (EF)
if its target density has the form

fθ(y) = exp (〈θ, y〉 − b(θ) + c(y)) , (1)

where c(y) = log h(y) and b(θ) = logC(θ)−1 for known functions C(·) and h(·).
The EF is parameterized through θ ∈ Θ. When Y is a random variable with
density (1), μ := Eθ[Y ] = b′(θ) and Vθ[Y ] = b′′(θ), that is,

Vθ[Y ] =
∂

∂θ
Eθ[Y ].

This shows that the variance is determined by the mean function only. Many
popular distributions such as the Gaussian, Poisson and binomial have densities
1 https://github.com/luetkeschwienhorst/dropoutinextendedGLMs.

https://github.com/luetkeschwienhorst/dropoutinextendedGLMs
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of the form (1). As discussed earlier, the implied mean-variance relationship
for binomial and Poisson models may be inappropriate for real data, since for
the Poisson distribution Vθ(Y ) = Eθ(Y ), and for a binomial distribution with
N trials Vθ(Y ) = Eθ(Y )(N − Eθ(Y ))/N . For a general introduction and more
details on EFs we refer to [15].

[7] extends the notion of the EF to the double exponential family (DEF) by
introducing a dispersion parameter γ > 0. Target densities in the DEF are of
the form

fγ,θ(y) := C(γ, θ)γ
1
2 fθ(y)γfθ(y)(y)1−γ , (2)

where fθ and fθ(y) are densities as in (1), C is a normalizing constant and
θ(y) = (b′)−1(y) is the value of θ for which the mean is y, and we allow for
θ(y) ∈ R ∪ {−∞,∞} to deal with boundary cases. The introduction of the dis-
persion parameter γ decouples the mean and variance of the underlying natural
EF and [7] shows that for a random variable Y ∼ DEF(θ, γ) with density (2),
E[Y ] ≈ μ, V[Y ] ≈ b′′(θ)/γ and C(γ, θ) ≈ 1; see [7] for further discussion of the
accuracy of these approximations. From the expression for the variance, γ < 1
(γ > 1) corresponds to overdispersion (underdispersion). Also, we will assume
that the map θ 	→ b′(θ) is one-to-one, such that we can parameterize via μ instead
of θ. We will write fγ,μ and Y ∼ DEF(μ, γ) instead of fγ,θ and Y ∼ DEF(θ, γ).

2.2 GLMs Based on DEFs

Consider observed data {(yi,xi,zi)}n
i=1 of responses yi ∈ Y ⊆ R and feature

vectors xi ∈ R
dμ and zi ∈ R

dγ . Conditionally on the features, the responses will
be modelled as observations of independent random variables Yi with distribu-
tions from a DEF. The features xi and zi will appear in models for the mean
and dispersion respectively. In the regression context it is convenient to rewrite
the natural EF target density (1) for scalar Yi as

fθ,φ/νi
(yi) = exp

(
θiyi − b(θi)

φ/νi
+ c (yi, φ/νi)

)
, (3)

where φ is a fixed scale parameter, νi is a known weight and both νi and θi

can vary between observations. The mean for density (3) is μi = b′(θi), and the
variance is (φ/νi)b′′(θi). For a conventional GLM with a binomial response such
as a logistic regression, the weight νi would be ni, the number of binomial trials
for the ith observation. For binomial and Poisson GLMs the scale φ is 1, but in a
Gaussian linear regression the scale parameter φ is the variance of the response.

We leave dependence of all quantities on φ/νi implicit in our notation in the
following discussion, retaining our previously established notation for DEFs. In
our extended GLMs based on DEFs, we assume

Yi | θi, γi ∼ DEF(θi, γi),

where, as discussed below, θi and γi are functions of xi and zi respectively.
Following [7], the DEF assumption implies
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μi := E[Yi | θi, γi] ≈ b′(θi),

σ2
i := V[Yi | θi, γi] ≈ φb′′(θi)

γiνi
,

and C(γi, θi) ≈ 1. We take μi and γi to be functions of linear predictors xT
i β

and zT
i α, where β ∈ R

dμ and α ∈ R
dγ are unknown coefficient vectors. We

choose a canonical link in the mean and a log-link for the dispersion so that

θi = (b′)−1(μi) = xT
i β,

log(γi) = zT
i α.

The log-link for the dispersion ensures the dispersion parameter is nonnegative.

3 Dropout Regularization in GLMs Based on DEFs

3.1 Dropout Regularization

Dropout regularization randomly perturbs the observed feature vectors. Given
some noise vector ξ and a noise function ν, an observed feature vector x ∈ R

d

is transformed into x̃ := ν(x, ξ). The random perturbation is unbiased, which
means that E(x̃) = x. In what follows we use multiplicative noise, ν(x, ξ) = x�ξ,
where � is the elementwise product of two vectors. Assuming E[ξ] = 1d, we have
E[x̃] = x � E[ξ] = x.

Typical choices for the distribution of ξ include Bernoulli dropout with
i.i.d. ξj ∼ (1 − δ)−1Bernoulli(1 − δ), where δ ∈ (0, 1) is the dropout probabil-
ity, and Gaussian dropout with i.i.d. ξj ∼ N (1, σ2), with noise variance σ2 for
j = 1 . . . , d. We have described the process of random perturbation for a single
feature vector. With many feature vectors, different random perturbations are
performed independently for each one. Extended GLMs incorporate features in
both the mean and dispersion models and these need not be the same, although
they can be. When dropout is performed in both the mean and dispersion mod-
els, the perturbations will be independent in the mean and dispersion compo-
nents. When the features enter into a model linearly, perturbing the features is
equivalent to perturbing the parameters independently in the terms of the loss
function, since (x � ξ)T β = xT (β � ξ).

3.2 Dropout Regularization for the Mean Parameter

We first consider dropout for extended GLMs, where dropout is performed only
in the mean and not the dispersion model. The argument closely follows the one
given in [23] for the case of conventional GLMs. Dropout in both the mean and
dispersion is more complex and is considered in the next subsection.

Based on the assumptions from Subsect. 2.2, dropout regularization in the
mean model leads to the optimization problem

min
β ,α

n∑
i=1

−E [�i (β � ξi,α)] , (4)
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where we have written �i(β, α) for the log-likelihood term for the ith observation,
and the expectation is taken with respect to the distribution of the i.i.d. vectors
ξi with E[ξi] = 1dμ

and V[ξi] = σ2
μIdμ

. Using the definition of the DEF, and
assuming that C(γi, θi) = 1,

�i(β,α) =
1
2
zT

i α + exp(zT
i α)

{
yix

T
i β − b(xT

i β)
}

φ/νi

+ (1 − exp(zT
i α))

{yiθ(yi) − b(θ(yi))}
φ/νi

.

(5)

Appendix A.1 shows that (4) is approximately equal to

min
β ,α

{
−

n∑
i=1

�i(β,α) +
1
2
σ2

μ‖Θβ‖22
}

, (6)

where Θ = diag(XT WX)1/2 is a penalty matrix, X ∈ R
n,dμ is the design

matrix with ith row xi, and the diagonal weight matrix W depends on both β
and α,

W := diag
(

γ1b
′′(xT

1 β)
φ/ν1

, . . . ,
γnb′′(xT

nβ)
φ/νn

)
∈ R

n,n. (7)

The L2 penalty shrinks the normalized vector Θβ towards the origin. As a
result, the estimated weights β̂j of some features can be close to zero, effectively
removing the feature. The hyperparameter σ2

μ controls the degree of shrinkage.
The form of Θ allows us to understand which features will experience little

penalty. The diagonal entries are

Θjj =

(
n∑

i=1

(γiνi/φ)2V[Yi]x2
ij

)1/2

=

(
n∑

i=1

(νi/φ)2γiϕix
2
ij

)1/2

, (8)

where V[Yi] := φb′′(xT
i β)/(νiγi) = ϕi/γi is the variance of the dependent vari-

able Yi according to the model and ϕi := φb′′(xT
i β)/νi is the “baseline” variance

when there is no over- or under-dispersion (γi = 1). The expression inside the
brackets in (8) is a rescaled second moment of the jth feature. It will be small if
xij is small – or even zero – for most i, or if (γiνi/φ)2V[Yi] = (νi/φ)2γiϕi is small
enough when xij is large. Thus, “rare” features which are close to zero for most
samples, and which are associated with small baseline variances ϕi and large
overdispersions γi when the feature value is large, will experience little penalty.

Our general perspective includes the special case of GLMs where γi = 1 for
i = 1, . . . , n. Logistic regression was discussed in detail by [23] and they point out
that little penalty is exerted on rare features which produce confident predictions.
In addition, [23] state that (1/n)XT WX is the observed Fisher information with
respect to β. This adds a geometric perspective to dropout regularization: the
normalization of β by Θ ensures that penalization is performed in accordance
with the curvature of � around the true parameter value. Θβ represents β in
another basis such that the level sets of � parameterized in Θβ are spherical.
We derive this Fisher information matrix in Appendix A.2.
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3.3 Dropout Regularization for the Mean and Dispersion Parameter

Next we extend to the case where dropout is performed in both the mean and
dispersion models. As before, θi = xT

i β and log(γi) = zT
i α. Dropout regulariza-

tion leads to the minimization problem

min
β ,α

n∑
i=1

−E[�i(β � ξi,α � ζi)], (9)

where the expectation is taken with respect to the dropout noise vectors ξi

and ζi, which are independent from each other. It is assumed that E[ξi] = 1dμ
,

V[ξi] = σ2
μIdμ

, E[ζi] = 1dγ
and V[ζi] = σ2

γIdγ
. Write θ̃i := xT

i (β � ξi) and
log(γ̃i) := zT

i (α�ζi). Our assumptions on the dropout noise imply that E[θ̃i] =
θi and E[log γ̃i] = log γi.

In order to get a better understanding of dropout regularization in the dis-
persion, we aim to find an approximation of (9) similar to the one in (6). We
make a normality assumption, ζi ∼ N (1dγ

, σ2
γIdγ

) so that

log(γ̃i) = zT
i (α � ζi) ∼ N

⎛
⎝zT

i α, σ2
γ

dγ∑
j=1

z2ijα
2
j

⎞
⎠ . (10)

Although this assumption may seem strong, (10) will often be a good approxi-
mation for non-Gaussian dropout noise via a central limit argument. Since γ̃i is
lognormal, its expectation is

E[γ̃i] = exp

⎛
⎝zT

i α +
1
2
σ2

γ

dγ∑
j=1

z2ijα
2
j

⎞
⎠ = γi exp

(
1
2
σ2

γ‖zi � α‖22
)

. (11)

Using (5), we obtain

E[�i(β � ξi,α � ζi] =
1
2
zT

i α + E[γ̃i]

{
yix

T
i β − E[b(xT

i (β � ξi))]
}

φ/νi

+ (1 − E[γ̃i])
{yiθ(yi) − b(θ(yi))}

φ/νi
.

Writing zT
i α = logE[γ̃i] − 1/2σ2

γ‖zi � α‖2, and

�̃i(β,α) =
1
2
logE[γ̃i] + E[γ̃i]

{
yix

T
i β − b(xT

i β)
}

φ/νi

+ (1 − E[γ̃i])
{yiθ(yi) − b(θ(yi))}

φ/νi
,

and using a second-order Taylor series approximation of E[b(xT
i (β � ξi))] (see

Appendix A.3 for a derivation) gives the following approximation of (9):

min
β ,α

{
n∑

i=1

−�̃i(β,α) +
1
2
σ2

μ‖Θ̃β‖22 +
1
4
σ2

γ‖Γα‖22
}

, (12)
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with the penalty matrices Θ̃ = diag(XT W̃X)1/2 and Γ = diag(ZT Z)1/2 and
the weight matrix

W̃ := diag
(
E[γ̃1]b′′(xT

1 β)
φ/ν1

, . . . ,
E[γ̃n]b′′(xT

nβ)
φ/νn

)
. (13)

We will now address the behavior of all three terms in the approximation (12).

Misspecified Log-Likelihood. The first term in (12) is the negative log-
likelihood of a DEF model in which the ith observation has location parameter
θi = xT

i β and dispersion parameter

E[γ̃i] = γi exp
(
1
2
σ2

γ‖zi � α‖22
)

.

If the originally specified model was correct, �̃i(β,α) is a misspecified log-
likelihood term where γi is multiplied by a multiplicative factor exp(12σ2

γ‖zi �
α‖22) which is larger than 1. Hence, for the misspecified log-likelihood to achieve
a similar fit to the correctly specified case, ‖zi � α‖22 has to be small favoring
rare and important features. As zT

i α → −∞ implies γi = exp(zT
i α) → 0, this

misspecification penalty favors overdispersion.

Penalty for the Mean Parameter. The second term in (12) is a Tikhonov
penalty on β, where the penalty matrix Θ̃ = diag(XT W̃X)1/2 is affected by
the dropout noise in the dispersion model. Writing Γi := diag(zi1, . . . , zidγ

), we
define

Λ := diag
(
exp(σ2

γ‖Γ1α‖22/2), . . . , exp(σ2
γ‖Γnα‖22/2)

)

and then W̃ = ΛW due to E[γ̃i] = γi exp((1/2)σ2
γ‖Γiα‖22). The weight matrix in

(13) is therefore a rescaled version of the weight matrix in (7). Furthermore, σ2
γ >

0 and ‖Γiα‖22 > 0 imply exp((1/2)σ2
γ‖Γiα‖22) > 1, which yields the property

W̃jj > Wjj > 0. This carries over to the entries

Θ̃jj =

(
n∑

i=1

exp
(
(1/2)σ2

γ‖Γiα‖22
)
(νi/φ)2γiϕix

2
ij

)1/2

of Θ̃, which then fulfill Θ̃jj > Θjj > 0. The observations regarding Θjj from
Sect. 3.2 apply to Θ̃jj as well, i.e. rare but important features are favored and
overdispersion can attenuate the penalty, such that locally the mean might be
modelled by features which are not that rare. Θ̃jj contains the additional expo-
nential term exp((1/2)σ2

γ‖Γiα‖22) compared to Θjj increasing the penalty. This
increase will be minimal however, if the terms ‖Γiα‖22 = ‖zi �α‖22 are negligible
in size.
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Penalty for the Dispersion Parameter. The third term in (12) is also a
Tikhonov penalty, but on α and with the penalty matrix Γ = diag(ZT Z)1/2.
It shrinks α towards the origin, i.e. γi = exp(zT

i α) → 1 and therefore no
overdispersion. For rare features the diagonal entries Γjj = (

∑n
i=1 z2ij)

1/2 are
small, and then αj can still be large. Similar to the case for β, the penalty for α
has an interpretation in terms of the Fisher information, with the observed Fisher
information with respect to α being approximately (1/n)ZT Z; see Appendix A.2
for further details.

In summary, simultaneous dropout regularization on the mean and the dis-
persion parameter favors rare but important features both in the mean and the
dispersion model. Over- or underdispersion can attenuate or strengthen the level
of regularization in the mean. Further, the dropout noise in the dispersion model
imposes an additional penalty in the mean, if deviations from the base variance
cannot be modeled using rare features. While the degree of regularization in the
dispersion is controlled by σ2

γ alone, it is regulated by σ2
μ and σ2

γ together in the
mean. Lastly, overdispersion appears to be favored relative to underdispersion
for two reasons. First, if the features in the dispersion are not that rare, the
large misspecification term will encourage overdispersion. Second, the increased
penalization due to underdispersion could be large, such that modeling under-
dispersion might be avoided altogether.

Based on our analysis, an “ideal scenario” in which dropout regularization will
be most successful is characterized by true parameter vectors β and α which
are sparse relating to a feature vector with only a few components having a
significant impact. These significant features should be rare themselves, meaning
they should be large only for a relatively small fraction of the data. In addition,
we find that overdispersion, i.e. the true dispersion function fulfills γ(z) < 1 for
all z, can be better handled by dropout compared to underdispersion. Further
insights on the finite sample properties of employed approximations used can be
found in Section A.3 of the Appendix.

4 Application to Adaptive Smoothing with B-Splines

4.1 Simulations

We consider the non-linear regression model

yi | xi ∼ DEF (f(xi), g(xi)) , i = 1, . . . , n, (14)

with xi ∈ [0, 1]. The functional effects f(·) and g(·) are modelled using a B-spline
basis expansion after a transformation by appropriate link functions. We use B-
splines with a relatively large number of knots, so that each basis functions is
supported on only a small compact subset of the domain [0, 1]. If the true effects
are mostly flat, but vary rapidly on small sub-intervals of [0, 1], then the B-spline
basis functions are rare but important features.

Estimates are obtained using SGD, and the choice of optimal hyperparam-
eters

(
σ∗

μ, σ∗
γ

)
for the dropout noise is performed via random search cross-

validation (CV) [2]. A detailed description of the algorithm is given in Appendix
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A.4. We consider Bernoulli dropout as well as Gaussian dropout and compare
the performance to the PMLE approach discussed in [9].

We simulate data according to (14) for the double Gaussian, double Poisson
and double binomial distributions. For both dropout regularization and PMLE
the mean is estimated well, but estimation of the dispersion function reveals
differences in performance. Therefore, for each distribution we chose a similar
mean function and paired it with three different dispersion functions in order
to illustrate the conjectures from Sect. 3. A detailed description of the simula-
tion design can be found in Appendix A.5. The three dispersion testfunctions
depicted in Fig. 1 coincide with the subsequently mentioned Scenarios 1, 2 and
3. Additional results not presented in the main paper are given in Appendix A.6.
The three different scenarios considered are:

Scenario 1: The mean and dispersion functions are mostly flat, with rapid
variation over some small intervals, and only overdispersion is present. This
is a setting where dropout should perform well according to Subsect. 3.3.
Scenario 2: Scenario 2 is similar to Scenario 1, but there is both over- and
underdispersion.
Scenario 3: The mean function is mostly flat, with rapid variation over some
small intervals, but the dispersion changes slowly with the feature values, and
only overdispersion is present.

For each distribution and each Scenario we simulate R = 100 replicate data
sets with n = 250, 500, 1000. To evaluate and compare different regularization
methods we compute the root mean squared error (RMSE) over a fine equidistant
grid on [0, 1].

Fig. 1. Testfunctions for the mean and dispersion.

Figure 2 presents boxplots for the RMSEs of the dispersion estimates for
the three distributions and across all different scenarios. Figure 7 in Appendix
A.6 contains the respective boxplots for the mean estimates. All three meth-
ods estimate the mean very well. Figure 2 reveals that dropout regularization is
competitive with PMLE in all scenarios.
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Fig. 2. Boxplots of RMSEs for dispersion parameters of Gaussian data (left column),
Poisson data (middle column) and binomial data (right column) across Scenarios 1
(top row), 2 (middle row) and 3 (bottom row). Outliers in the dispersion were cut at
the 95-th percentile.

In Scenario 1 with Gaussian data, dropout outperforms PMLE across all sam-
ple sizes, and Bernoulli dropout performs slightly better than Gaussian dropout.
With count data the difference between dropout and PMLE is less pronounced.
Performance of Gaussian dropout is poor for Poisson data in Scenarios 1 and 2
for the largest sample size, n = 1000. Figure 10 gives evidence that this poor per-
formance is associated with large bias in estimation of the dispersion function.
However, Gaussian dropout performs slightly better than Bernoulli dropout in
most cases involving count data. In the binomial case, dropout shows improved
performance relative to PMLE as the sample size increases.

Scenario 2 is based on rare but important features as well, but now for some
values of the covariate there is strong underdispersion. We find that in small
sample sizes dropout performs well compared to dropout for Gaussian and bino-
mial data, but poorly for Poisson data. In other cases the differences are minor.



Dropout in Extended Generalized Linear Models 331

For Gaussian data, Bernoulli dropout is slightly better than Gaussian dropout,
similar to Scenario 1.

Since the true dispersion function for Scenario 3 cannot be modeled through
rare features, dropout performs slightly worse than PMLE across all distributions
and sample sizes for this case. The findings with respect to the three scenarios
match our theoretical analysis from Sect. 3.

Figure 3a depicts the estimated dispersion effects from Gaussian data for all
three scenarios and n = 1, 000. Figure 8 in Appendix A.6 contains the same plots
for the mean estimates. The estimation of the mean function is quite accurate
across the three methods. The estimated dispersion functions are less accurate
since estimation is more difficult [9]. However, in most cases the dispersion esti-
mates reproduced the correct shape. The PMLE estimates suffer from oscillations
at the boundaries. For Scenario 2, the rapid changes are not captured very well
by Gaussian dropout, particularly where they correspond to regions of underdis-
persion. The problem also occurs with Bernoulli dropout but is less pronounced.
For Scenario 3 the dropout estimates of the dispersion function are noticeably
less smooth than the estimates obtained via PMLE. This is consistent with the
boxplots at the bottom of the first column of Fig. 2.

Fig. 3. Estimated dispersion effects in the (a) Gaussian model and (b) binomial model
for Bernoulli dropout (left), Gaussian dropout (middle) and PMLE (right) in Scenario
1 (upper row), Scenario 2 (middle row) and Scenario 3 (bottom row) for R = 100
replicates and n = 1, 000. The true effects are given by the black lines.

Figure 3b presents the estimated dispersion effects obtained from binomial
data. Previous observations with respect to Gaussian data apply as well. Addi-
tionally, we can observe a notable local minimum in the dispersion estimates in
the vicinity of x ≈ 0.5. This is even more pronounced in case of smaller sample
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sizes (not shown). It confirms the observation from Sect. 3, that there is an incen-
tive to compensate a large variance caused by the mean with overdispersion. The
variance function of the binomial distribution is given by V (μ) = μ(N − μ)/N ,
i.e. its maximizer is N/2. Thus, one can expect this behavior to take place at
x ≈ 0.5 for the mean function depicted in Fig. 1. For the Poisson distribution, the
variance function is given by V(μ) = μ, and again referring to Fig. 1, we expect
the regularization to favour overdispersion around x ≈ 0.55. This could be the
reason for the reduced competitiveness of dropout regularization in the case of
count data. The PMLE estimates are less smooth than the dropout estimates in
Scenarios 1 and 2 and they oversmooth the true function in Scenario 3.

4.2 Traffic Detection Data

Several hundred sensors monitor the traffic along main roads in the German
capital Berlin. These sensors provide hourly aggregated data on the number of
cars passing the sensors that is publicly available through the Senatsverwaltung
für Umwelt, Mobilität, Verbraucher- und Klimaschutz and Verkehrsinformation-
szentrale Berlin2. The Berlin traffic detection data was recently analysed in a
regression context in [13]. Here, we consider data collected during summer of
2019 (June, July, and August) from four distinct locations on the outskirts of
the city center (see Fig. 4a), leading to a total of 10, 314 data points. The sensors
are located at streets connecting outskirt neighbourhoods with the city center.
Hence, as one might expect, the number of cars peaks during rush hour (see
Figs. 4b–4e), when people are commuting between home and work making this
data set especially suitable for an analysis with a dropout DEF-GLM.

Denote the number of cars passing the sensor at time-point t as yt. We
assume a double Poisson model yt | t ∼ DPoi

(
f(t), g(t)

)
, where the functional

effects f(t) and g(t) are effects of the day time t in the mean and disperson
modelled using cyclic B-spline basis expansions. The dropout rates (pμ, pγ and
σμ, σγ for Bernoulli and Gaussian dropout, respectively) are chosen via random
search cross-validation by sampling 5,000 times from the sets HBer = [0, 1]2 and
HN = [0, 2]2 (see Fig. 6 in the Appendix).

Estimates based on the optimal dropout rates are shown in Fig. 5. We find a
similar behaviour across all four sensors. The mean effects are bimodal with one
peak in the morning and a second peak in the evening. For the inbound traffic
the peaks in the morning are more pronounced than the peaks in the afternoon
and the outbound traffic mirrors this behaviour having a stronger peak in the
evening. This corresponds well with an expected rush hour effect as people drive
into the city for work in the morning and come back in the evening. These find-
ings indicate that the dropout estimators are well suited to capture the peaks
during morning and evening rush hours for inbound and outbound traffic respec-
tively. Moreover, time-dependent overdispersion (γ < 1) with narrow peaks in
the early morning justifies the use of the extended GLM. The mean estimates
obtained from Bernoulli noise are virtually indistinguishable from the ones based

2 https://viz.berlin.de.

https://viz.berlin.de
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Fig. 4. Traffic detection data with the (a) positioning of the four sensors in the (b)
West, (c) South, (d) East and (e) North of the Berlin city center. For (b)–(e) the upper
panels depict the counts (y-axis) for inbound traffic for each hour from 0am (=0) to
11pm (=23) (x-axis). The bottom panels show the corresponding outbound traffic.

on Gaussian noise, which is most likely due to the small degree of regularization
in the mean across all data sets (see Fig. 6 in the Appendix). Differences are more
pronounced between the dispersion estimates. However this is to be expected,
since the dispersion is more difficult to estimate.
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Fig. 5. Cross-validated estimates for the traffic detection data of the four sensors in
the (•) West, (•) South, (•) East and (•) North of the Berlin city center. (Color figure
online)

5 Conclusion

We studied dropout regularization in the context of flexible GLMs based on the
DEF. Our theoretical analysis shows that dropout favors rare but important
features in the mean and dispersion parameters, and overdispersion relative to
underdispersion. Overdispersion alleviates the penalization on the mean provided
the dispersion can be modelled by rare but important features itself. These
findings are further justified by an empirical application to adaptive smoothing
with B-splines and an application to real data on traffic detection in Berlin.
Our experiments confirm that dropout regularization outperforms PMLE under
ideal conditions. Deviations from the ideal scenario, such as the presence of
underdispersion or a mean or dispersion function which cannot be modelled
by rare but important features, leads to a decrease in performance of dropout
regularization relative to PMLE. Thus, our findings extend previous work on
dropout regularization for GLMs and add to the theoretical understanding of
dropout methods in general.

However, the presented results can surely be broadened in a number of ways.
Among them could be an extension of our findings to generalized additive mod-
els and quasi-likelihood estimation. Considering a greater number of real-world
datasets certainly presents a challenge, given that the requirements on such data
are quite particular, but it would unquestionably generalize our work. Lastly, the
interpretable approximations used in our work to gain understanding of dropout
regularization in extended GLMs are useful for predicting what we observe in
the numerical experiments. Yet it must be acknowledged that we use approx-
imations, and that there may be some situations where these approximations
are inadequate. It could be interesting to investigate this more systematically in
future work.
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Abstract. Graph-Level Anomaly Detection (GLAD) aims to distin-
guish anomalous graphs within a graph data set. However, current meth-
ods are constrained by their receptive fields, struggling to learn global
features within the graphs. Moreover, most these methods are based on
spatial domain and lack exploration of spectral characteristics. In this
paper, we propose a multi-perspective hybrid graph-level anomaly detec-
tor named GLADformer, consisting of two key modules. Specifically, we
first design a Graph Transformer module with global spectrum enhance-
ment, which ensures balanced and resilient parameter distributions by
fusing global features and spectral distribution characteristics. Further-
more, to explore local anomalous attributes, we customize a band-pass
spectral GNN message passing module that enhances the model’s gen-
eralization capability. Through comprehensive experiments on ten real-
world datasets from multiple domains, we validate the effectiveness and
robustness of GLADformer. This demonstrates that GLADformer out-
performs current state-of-the-art graph-level anomaly detection methods,
particularly in effectively capturing global anomaly representations and
spectral characteristics.

Keywords: Graph-level Anomaly Detection · Graph Transformer ·
Spectral Graph Neural Network

1 Introduction

Graphs are profoundly employed to model the intricate relationships between
data instances across various domains, spanning bioinformatics [48], chem-
istry [29], transportation [13], and social networks [13], etc. Among the down-
stream tasks for graph data, graph-level anomaly detection [50] emerges as a
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
A. Bifet et al. (Eds.): ECML PKDD 2024, LNAI 14946, pp. 337–353, 2024.
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Fig. 1. Examples for different categories of graph-level anomalies.

significant challenge and encompasses a wide array of application scenarios, such
as cancer drug discovery [10] and the identification of toxic molecules [35].

In recent years, Graph Neural Networks (GNNs) have achieved significant
advancements in graph representation learning, like node classification [18], link
prediction [5], and graph classification [41], etc. Specifically, GNNs encode intri-
cate structure and attribute information of graphs into vectors for learning within
the latent representation space. To date, a multitude of GNN-based models have
been proposed for anomaly detection in graph-structured data [9], while they
predominantly focus on detecting anomalous nodes or edges [40] within a single
large graph. In contrast, the domain of graph-level anomaly detection is yet to
be extensively explored.

Anomalous graphs manifest as outliers and may arise in various scenarios,
including local attribute anomalies, substructure anomalies, global interaction
anomalies [28,32], etc. Taking biochemistry molecular data [31] as an example,
Fig. 1 (a) illustrates the toxic molecule of Methyl Isocyanate (CH3NCO), where
the nitrogen atom serves as a critical toxic factor. Figure 1 (b) depicts a type
of muscarinic molecule, featuring a cyclic peptide structure that distinguishes it
from other compounds. Figure 1 (c) displays the main active ingredient in Nux
vomica, which is Strychnine (C21H22N2O2), a toxic ketone alkaloid. However,
as Strychnine lacks distinctive elements or specific substructures, researchers
need to discern it from the complete molecular structure. Therefore, for a more
comprehensive identification of various anomalous graphs, it is imperative to
design models that consider both local attributes and structural information
while incorporating global interactions within the graph.

The mainstream GLAD models primarily employs GNNs to jointly encode
node attributes and topological structural features for acquiring node repre-
sentations [50]. Additionally, they design various graph pooling functions [22]
to generate graph-level representations for identification of anomalous graphs.
However, these methods still face several challenges. On the one hand, traditional
GNNs exhibit restricted receptive fields [21], focusing solely on local neighbors
or subgraph information of the current node, thereby lacking the ability to cap-
ture long-distance information interactions and global features. Although some
methods attempt to learn intra-graph and inter-graph knowledge by maintaining
a repository of anomalous node or graph candidates [28], they still fall short in
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capturing the global information within the graphs. On the other hand, when
learning local features, spatial-domain GNNs tend to overlook essential high-
frequency information and underlying semantic details due to their low-pass fil-
tering characteristics [4]. Moreover, the current graph-level pooling mechanisms
exhibit constrained generalization capabilities, leading to erratic performances
across disparate datasets.

To address the aforementioned challenges, we propose a novel graph-level
anomaly detection model, which combines spectral-enhanced global perception
and local multi-frequency information guidance. Our method, GLADformer, pri-
marily consists of two key modules: the Spectrum-Enhanced Graph Transformer
module and the Local Spectral Message Passing module. Specifically, we first
introduce a Graph Transformer operator in the spatial domain, where effec-
tive graph-induced biases such as node degrees and structural information are
jointly inputted, incorporating explicit spectral distribution deviations to cap-
ture anomaly information from a global perspective. Subsequently, to better
explore local features and mitigate the limitations of spatial GNNs, we design a
novel wavelet spectral GNN to learn discriminative local attributes and struc-
tural features in a complex spectral domain. Finally, to overcome class imbalance
issues and excessive confidence of traditional cross-entropy loss, we propose an
improved variation-optimized cross-entropy loss function. Our main contribu-
tions can be summarized as follows:

• Our approach not only incorporates a Graph Transformer module designed in
the spatial domain but also integrates spectral energy distribution deviations
to enhance global perception. Additionally, we design a spectral GNN with
multi-frequency message passing characteristics to guide the extraction of
local anomaly features.

• To better alleviate the issue of class imbalance and overcome the limitations
of using cross-entropy as a measure for anomaly detdection, we propose a
weighted variation-optimized cross-entropy loss function.

• Comprehensive experiments on a variety of datasets across ten baselines
demonstrate that GALDformer exhibits competitive performance in terms
of both effectiveness and robustness.

2 Related Work

2.1 Graph-Level Anomaly Detection

In recent years, graph anomaly detection has garnered extensive attention across
various domains. However, most existing approaches focus on detecting anoma-
lous nodes or edges within an individual graph [44,45], while graph-level anomaly
detection remains largely unexplored.

GLAD aims to differentiate deviant structures or abnormal properties within
a single graph to identify anomalous graphs that exhibit substantial differences
compared to the majority in a collection. State-of-the-art end-to-end meth-
ods leverage powerful GNN backbones and incorporate advanced strategies to
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learn graph representations suitable for anomaly detection. For instance, GLo-
calKD [27] and OCGTL [33] respectively combine GNN with knowledge distil-
lation and one-class classification to detect anomalous graphs. iGAD [50] intro-
duces an abnormal substructure-aware deep random walk kernel and a node-
aware kernel to capture both topology information and node features. To bet-
ter explore inter-graph information, GmapAD [28] maps individual graphs to a
representation space by computing similarity between graphs and inter-graph
candidate nodes, achieving high discriminability between abnormal and normal
graphs. Some recent works focus on interpretable analysis of graph-level anomaly
detection and have achieved promising results. For instance, SIGNET [24] mea-
sures the anomaly degree of each graph based on cross-view mutual informa-
tion [11] and extracts bottleneck subgraphs in a self-supervised manner to pro-
vide explanations for anomaly discrimination. However, existing methods mostly
originate from a spatial perspective, and there is still a lack of exploration regard-
ing the influence of graph-level spectrum energy information.

2.2 Graph Transformer

Transformer [38,42] has achieved overwhelming advantages in the NLP [6,43]
and CV [8,25] domains, and recently many researchers have been devoted to
extending Transformer to the study of graph-structured data [49]. One of the
strengths of Transformer is its ability to capture global receptive fields, but
it lacks the capability to capture positional information, which poses signifi-
cant limitations in graph data [37]. Recently, researchers investigate the use of
Position Encoding (PE) and Structure Encoding (SE) [23,51] within the graph
domain to capture various types of graph structure features, leveraging tech-
niques such as shortest path proximity [26] or spectral information to enhance
inductive bias. For example, Graphformer [49] designs novel structural position
encoding that outperforms popular GNN models in a wide range of graph predic-
tion tasks. Further, SAN [19] employs both sparse and global attention mech-
anisms at each layer and introduces learnable Position Encoding (LapPE) to
replace static Laplacian eigenvectors. Exphormer [34] explores sparse attention
mechanisms with virtual global nodes and extended graphs, showcasing linear
complexity and desirable theoretical properties.

3 Preliminary

3.1 Problem Definition

Given a graph set Ĝ = {G1, G2, ..., GN}, each graph is denoted as Gi = (Vi, Ei),
where Vi is the set of nodes and Ei is the set of edges. The node features can
be represented as Xi ∈ RNi×d, and the edge information can be denoted as an
adjacency matrix Ai ∈ [0, 1]Ni×Ni . In this paper, we concentrate on supervised
graph-level anomaly detection, thus we aim to learn an anomaly labeling function
based on the given training graphs and their graph labels yi = {0, 1}. Then
we hope to assign a high anomaly score to a graph G in the testing set if it
significantly deviates from the majority.
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Fig. 2. The above image presents the overview of our model GLADformer, where (a)
and (b) demonstrate the the spectrum-enhanced graph-transformer module and the
local spectral message passing module respectively.

3.2 Graph Spectrum and Rayleigh Quotient

For each graph G in the graph set, the adjacency matrix is denoted by A. The
diagonal degree matrix D is defined as (D)ii =

∑
j(A)ij , and the normalized

laplacian matrix L is defined as I − D− 1
2 AD− 1

2 . The laplacian L can be decom-
posed into its eigenvectors and eigenvalues as UΛUT . The diagonal elements of Λ
are composed of its eigenvalues: Λ = diag([λ1, λ2, . . . , λN ]), and the eigenvalues
satisfy 0 ≤ λ1 ≤ · · · ≤ λN ≤ 2. Let X = (x1, x2, ..., xN ) be a signal on graph G,
then UT X is the graph Fourier transformation of X. Then we introduce Rayleigh
quotient to demonstrate the standardized variance fraction of signal X.

R(L,X) =
XT LX

XT X
=

∑N
i=1 λix̃

2
i

∑N
i=1 x̃2

i

= λN ∗ f(t)max − Sspec, (1)

where Sspec denotes the the integration of signal energy in the frequency domain
(with respect to eigenvalues) [36]. Thus Rayleigh quotient can also denote the
contribution of high-frequency region.

4 Method

In this section, we will systematically describe the technical details of the GLAD-
former framework (view Fig. 2 for demonstration), which consists of three core
components. Specifically, we first detail the design of our spectrum-enhanced
of Graph Transformer from a global perspective (Sect. 4.1). Subsequently, we
explore the discriminative local attribute and structure features through a multi-
frequency spectral GNN (Sect. 4.2). Finally, we present the meticulously designed
variation-optimize cross-entropy loss function (Sect. 4.3).



342 F. Xu et al.

4.1 Spectrum-Enhanced Graph Transformer Module

Initially, we establish a super-node in each graph, which forms connections with
all remaining nodes within that graph. Further, to address the issue of the Trans-
former architecture’s lack of strong inductive biases and to leverage the advan-
tages of message passing strategy in GNNs, we incorporate appropriate graph
structures and relative position encoding. We first employ a single-layer MLP to
obtain the initial node representations.

hi = φ(Wxi + b). (2)

Subsequently, we enhance the node features by introducing an adaptive
degree-scaler to maintain the degree information.

gi = hi · θ1 + (log(1 + degi) · hi · θ2) , (3)

where θ1, θ2 ∈ Rd are learnable weights, and degi is the degree of node i. Then
we utilize Relative Random Walk Probabilities (RRWP) [16] to initialize the rel-
ative position encoding, thus capturing intriguing graph structure information.
According to [26], RRWP has been proved to be more expressive than shortest
path distances (SPD) [1] through recently proposed Weisfeiler-Leman-like graph
isomorphism tests [30]. Let A, D be the adjacency matrix and degree matrix of
a graph, we can define R := AD−1, and Rij denotes the possibility of node i
transitioning to node j in one step.

Then the RRWP initial positional encoding for each pair of nodes is illus-
trated as Ri,j = [I,R,R2, . . . , RT−1]i,j ∈ RT . To make full use of the struc-
tural information, we utilize the position encoding Rij as the edge feature eij .
Further, we cleverly combine Transformer’s self-attention mechanism and cus-
tomized edge features to design a novel Graph Transformer architecture. Specif-
ically, in the stage of calculating attention score, we replace the scalar product
of Query and Key with the vector product [47], and inject the initialized edge
features to obtain learnable edge features [12]. This learnable edge feature is
subsequently utilized in the calculation of attention score and output encoding.
The specific formula is as follows:

êij = σ((giWQ ⊗ gjWK) + eijWE),
αij = Softmax(êij · Wα),

ĝi =
∑

j∈V

αij (gjWV + êij) ,
(4)

where WQ,WK ,WV ∈ Rd×d′
, WE ∈ RK×d′

and Wα ∈ Rd′×1 are learnable
weight matrices; and ⊗ denotes element-wise multiplication of vectors.

Similar to other Transformer architectures, we can easily convert the afore-
mentioned attention mechanism into multi-head attention. Then we follow [26]
to obtain the output of the l-th layer, denoted as G(l):
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G′(l) = Norm(RRWP-MHA(G(l−1)) + G(l−1)),

G(l) = Norm(FFN(G′(l))) + G′(l),
(5)

where Norm(·) indicates layer-norm function, RRWP-MHA is the multi-head
attention mechanism designed before, and FFN [38] is a feed-forward network.
Afterward, we merge the encoding representations from each layer of the super-
node to obtain the graph-level representations.

HG
sup = fCOMBINE

(
G(l)

sup | l = 1, ..., L
)

. (6)

Spectrum Enhancement. Subsequently, as discussed in Sect. 3.2, we have
already known the positive correlation between Rayleigh quotient and high-
frequency components. According to [7], the spectral energy distributions of
normal and anomalous graphs are distinct in the graph spectral domain. There-
fore, it is crucial to incorporate spectral energy distributions into the GLAD
task. However, accurately calculating the ratios of spectral energies requires the
eigenvalue-eigenvector decomposition of the graph Laplacian matrix, which has a
complexity of O(n3) and is computationally expensive for large-scale graphs. To
avoid high time complexity, we employ the Rayleigh quotient R(L,X) = XT LX

XT X

as a substitute. For signal X ∈ RN×d, it can be proven that the diagonal elements
of the Rayleigh quotient R(L,X) correspond to the spectral characteristics of
the signal X in each feature dimension on the graph.

Given the potential sparsity of graph adjacency matrices and graph signals, as
well as the possibility of high discretization levels, we utilize a single-layer MLP
to derive the Rayleigh quotient vector for each graph. This vector denotes the
explicit Rayleigh quotient feature and it primarily focuses on the global spectral
distribution characteristics of the graph. Then, we utilize this to enhance the
previously obtained graph-level representation.

HG
rq = MLP (diag (R(X,L))) ,

HG
gt =MLP

(
CONCAT

(
HG

sup,H
G
rq

))
.

(7)

4.2 Local Spectral Message-Passing Module

To devise an adaptive local message passing filter, we introduce the Beta-
distributed wavelet basis [36], which conforms to the Hammond’s graph wavelet
theory [3] and is band-pass in nature. The underlying probability distribution
function is fBeta (w) = wα(1 − w)β/B(α + 1, β + 1), where w ∈ [0, 1], and
B(α + 1, β + 1) = α!β!/(α + β + 1)! is a constant. According to [36], since the
eigenvalues of the normalized Laplacian matrix satisfy λ ∈ [0, 2], we utilize a
variation like f∗

Beta(λ) = 1
2fBeta(λ

2 ). The obtained band-pass filter is expressed
below:

Fα,β
B = Uf∗

Beta(Λ)UT =
(L
2 )α(I − L

2 )β

2B(α + 1, β + 1)
. (8)
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Mapping this band-pass wavelet kernel into the graph spectral domain, M =
α + β denotes the neighboring receptive field order of this filter. In turn, we
obtain the spectral domain Beta wavelet transform group FB:

FB = (F0,M
B ,F1,M−1

B , · · · ,FM,0
B ). (9)

Contrasting with conventional graph neural network message passing mecha-
nisms, this work employs parallel wavelet kernels for message propagation. Sub-
sequently, it combines the corresponding filtered information.

hi,b = fCOMBINE

(
Fm,M−m

B ·h(0)
i | m = 1, ...,M

)
, (10)

where hi,b denotes the node representation of vi after band-pass filtering.
Upon meticulous analysis, it is ascertained that each constituent of the Beta

band-pass wavelet kernel manifests as an amalgam of elevated powers of the
adjacency matrix A and the Laplacian matrix L. This architecture conspicu-
ously lacks specialized low-pass and high-pass filtering kernels imperative for
mitigating lower and higher frequencies, potentially precipitating the omission
of pivotal information. To rectify this shortfall, we propose the adoption of the
generalized Laplacian low-pass and high-pass filters:

FL = (ψ + 1)I − L = U [(ψ + 1)I − Λ]U�,

FH = (ψ − 1)I + L = U [(ψ − 1)I + Λ]U�,
(11)

where ψ ∈ [0, 1] plays a pivotal role in modulating the characteristics of both
low-pass and high-pass filter kernels. Subsequently, the dual filter kernels are
concurrently utilized to discern and assimilate the pure low-frequency and high-
frequency signals aggregating from neighbors, thereby enhancing the model’s
fidelity to local structures.

h
(l)
i,p = MLP

(
AGG

(
FL·h(l−1)

i ,FH ·h(l−1)
i

))
,

hi,p = fCOMBINE

(
h
(l)
i,p | l = 1, ...,K

)
.

(12)

The features from each layer are sequentially concatenated and subsequently
amalgamated to obtain the corresponding aggregated low-order neighbor
attributes. Ultimately, the feature is amalgamated with the band-pass filtering
outcomes, procuring the definitive local graph-level representation.

HG
loc = READOUT (AGG (hi,b, hi,p) | vi ∈ G) , (13)

where READOUT function can be achieved by permutation invariant graph
pooling functions like summation or mean [28]. Finally, we fuse the features
obtained from two modules to obtain the final graph-level representation:

HG = MLP
(
CONCAT

(
HG

gt,H
G
loc

))
. (14)
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4.3 Variation-Optimize Cross-Entropy Loss Function

The cross-entropy loss is widely used in various classification tasks and is often
employed as the loss function for designing anomaly detection. However, cross-
entropy suffers from phenomena such as overconfidence and struggles to adapt
to scenarios like data imbalance. It is well known that the conventional eval-
uation metric for classification problems is accuracy, but cross-entropy is not
a smooth approximation of accuracy, which significantly impacts the precision
of model predictions. For instance, when the predicted probability of training
samples is very low, cross-entropy tends to yield a tremendously large loss, even
though these data points are likely to be noises. This phenomenon is particu-
larly pronounced in anomaly detection data, leading to overfitting of the model
to noise data. To address these issues and cater to the graph anomaly detection
scenarios, we propose a novel cross-entropy loss function.

Approaching from a gradient-based perspective, if accuracy is employed as
the evaluation metric, the gradient with respect to pθ(y|x) is −∇θpθ(y|x). Con-
versely, for the cross-entropy − log pθ(y|x), the gradient is − 1

pθ(y|x)∇θpθ(y|x)
(ytrue is not involved in the gradient computation and has been omitted). Now,
we construct a new gradient based on these two equations:

− 1
κ + (1 − κ)pθ(y|x)

κ ∈ [0, 1] . (15)

This new gradient retains the advantages of cross-entropy while synchronizing
better with changes in accuracy, thus overcoming the problem of overfitting.
Subsequently, we seek the original function based on this differential gradient.

− ∇θpθ(y|x)
κ + (1 − κ)pθ(y|x)

= ∇θ

(

− log [κ + (1 − κ)pθ(y|x)]
1 − κ

)

. (16)

By incorporating the original function into the GLAD task, we can obtain
the variation-optimize cross-entropy loss function LV OCE .

LV OCE = −∂y
log [κ + (1 − κ)p]

1 − κ
− (1 − y)

log [κ + (1 − κ)(1 − p)]
1 − κ

, (17)

where the hyperparameter κ is utilized to modulate the balance between accu-
racy and cross-entropy within the loss function (κ is set to 0.2 in experiments),
and ∂ is logarithm of the ratio between normal and anomalous samples.

5 Experiment

In this section, we perform thorough experiments to validate the effectiveness
of our proposed GLADformer method against nine baselines on ten real-world
datasets. Furthermore, we conduct comprehensive ablation tests on GLADformer
and perform visual analysis of key components.
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5.1 Experiment Settings

Datasets. We conduct experiments on 10 real-world graph datasets from two
popular application domains: (i) BZR, AIDS, COX2, NCI1, ENZYMES, and
PROTEINS are collected from biochemistry [31], samples from minority or
truly abnormal classes are considered as anomalies. Following [28], the selected
anomaly samples are downsampled, retaining only 10% of the samples. (ii) MCF-
7, MOLT-4, SW-620, and PC-3 are collected from PubChem [17], and they reflect
the anti-cancer activity test results of a large number of compounds on cancer
cell lines. Chemical compounds that exhibit antibody activity against cancer
are labeled as abnormal graphs, while others are labeled as normal graphs. The
statistics of these graph datasets are summarized in Table 1.

Table 1. The statistics of the 10 datasets.

Dataset N.G N.A Ratio%AV G.nAV G.eAttr

AIDS 2000 400 20.00 15.69 16.20 4

BZR 405 86 21.23 35.75 38.36 3

COX2 467 102 21.84 41.22 43.45 3

NCI1 4110 2053 49.95 29.87 32.30 37

ENZYMES 600 100 16.67 32.63 62.14 18

PROTEINS 1113 450 40.43 39.06 72.82 29

MCF-7 25476 2294 8.26 26.39 28.52 46

MOLT-4 36625 3140 7.90 26.07 28.13 64

SW-620 38122 2410 5.95 26.05 28.08 65

PC-3 25941 1568 5.70 26.35 28.49 45

Comparison Method. To illustrate the effectiveness of our proposed model, we
conduct extensive experiments between GLADformer and 9 competitive meth-
ods, which can be classified into three groups. (i) Spatial GNNs with average
pooling function: GCN [18], GAT [39] and GIN [46]. (ii) Graph classification
methods: SAGPool [20] and GMT [2]. (iii) State-of-the-art deep GLAD meth-
ods: GLocalKD [27], iGAD [50], HimNet [32], and GmapAD [28].

Evaluation Metrics. We evaluate methods using popular anomaly detection
metrics, AUC values and Macro-F1 scores [15]. The results are reported by per-
forming 5-fold cross-validation for all datasets.

Experimental Settings. For our model, the dimensions of the hidden layers
and output features for all three modules are set to 128 and 32 respectively. Dur-
ing training, the hyperparameters T,L,M,K are set to 4, 6, 3 and 4 separately,
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and the batch size is 128 for all datasets. We use Adam as the optimizer with
a learning rate of 0.001 and utilize cross-entropy loss as the basic loss function.
Each dataset is randomly shuffled and split for training, validation, and testing
with ratios of 70%, 15%, and 15%. For GCN, GAT and GIN, we utilize 2 layers
and apply average pooling function to obtain graph-level representations. For
other baselines, we use their published settings unless the parameters are spe-
cially identified in the original paper. All experiments in this work are conducted
on an NVIDIA A100-PCIE-40GB.

Table 2. The performance comparison in terms of AUC value (in percent, mean value).
Best result in bold, second best underlined.

Datasets GCN GAT GIN SAGPool GMTGLocalKD iGAD HimNet GmapADOurs

BZR 55.87 57.37 58.92 61.78 65.91 67.95 69.37 70.38 72.58 77.25

AIDS 86.37 88.29 87.62 90.48 92.16 93.24 97.62 98.71 99.06 99.62

COX2 50.21 52.77 52.08 54.38 53.58 58.93 61.48 63.76 62.73 68.47

ENZYMES 53.94 55.61 54.75 56.90 58.75 63.27 60.92 58.94 57.62 63.86

PROTEINS 68.70 69.53 70.05 72.58 74.94 76.41 75.93 77.28 78.35 77.68

NCI1 62.34 64.28 63.98 66.32 71.98 68.38 70.45 68.63 71.52 76.83

MCF-7 64.48 65.26 65.62 71.64 77.06 63.63 81.46 63.69 71.28 83.58

PC-3 66.97 67.36 67.95 69.37 78.96 67.27 85.63 67.03 74.26 84.19

MOLT-4 63.74 65.21 64.82 65.11 76.06 66.31 82.79 66.33 69.82 83.24

SW-620 59.87 62.31 61.30 72.51 74.67 65.42 84.86 65.44 72.97 85.73

Table 3. The performance comparison in terms of F1 score (in percent, mean value).
Best result in bold, second best underlined.

Datasets GCN GAT GIN SAGPool GMTGLocalKD iGADHimNet GmapADOurs

BZR 51.27 52.31 52.97 55.93 54.35 56.12 56.74 58.14 59.82 61.87

AIDS 68.10 70.83 71.64 74.28 74.32 76.63 77.93 78.92 80.17 82.47

COX2 43.28 43.75 45.15 47.33 48.85 50.82 51.35 52.18 51.38 57.05

ENZYMES 44.73 43.95 44.16 47.18 46.94 50.23 48.02 48.85 48.53 53.28

PROTEINS 49.82 49.26 50.08 55.74 58.75 61.03 60.61 52.47 62.84 61.74

NCI1 51.17 50.84 51.20 59.03 61.27 57.92 58.09 56.93 58.29 64.29

MCF-7 48.83 47.97 48.05 58.83 62.12 60.31 64.68 57.58 60.47 65.84

PC-3 48.79 47.98 48.56 59.65 63.87 59.93 67.10 61.25 63.31 67.37

MOLT-4 49.87 50.32 50.02 59.37 62.07 61.74 66.81 60.53 62.84 68.06

SW-620 48.65 48.84 48.74 58.60 61.28 60.86 66.23 59.46 61.73 68.58

5.2 Main Results

We first compare GLADformer with the aforementioned baselines of different
categories. The overall performances of all methods with respect to AUC value
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and F1 score against ten datasets are illustrated in Table 2 and Table 3. Among
all the ten datasets, GLADformer achieves the highest AUC values in eight and
the highest F1 scores in nine. Specifically, we have the following observations:

– When compared with the spatial GNNs combined with average graph pooling
function, GLADformer demonstrates significant advantages on ten real world
datasets in terms of AUC value and F1 score. The performance of conventional
GCN, GAT, and GIN models falls short of expectations, this may be because
they can only capture local low-frequency features, and the average pooling
function further exacerbates the over-smoothing issue.

– Subsequently, when compared with the two graph classification methods,
SGAPool and GMT obtain some performance improvement compared to tra-
ditional methods, which can be attributed to their specially designed pooling
strategies. However, they are not specifically tailored for detecting anoma-
lous graphs, and GLADformer explores more comprehensive global and local
information and fully considers spectral characteristics, thus there still exists
a considerable gap between them and GLADformer.

– Finally, in comparison with the state-of-the-art GLAD methods, our app-
roach achieves superior performance on nearly all datasets in terms of AUC
value and F1 score. Specifically, the performance improvement over OCGTL
and GLocalKD demonstrates the effectiveness of considering global and local
features in intra-graph collaboration and exploring spectral characteristics
within and between graphs for graph-level anomaly detection. Moreover, the
HimNet and GmapAD methods achieve the modest performance on the first
six biochemistry datasets, indicating the effectiveness of maintaining and
updating a pool of anomalous nodes or subgraphs on certain datasets with
attribute anomalies. It is noteworthy that iGAD achieves commendable per-
formance on the four Pubchem datasets. We hypothesize that this may be
because the iGAD method encodes rich local substructure information into
the graph-level embeddings, and these four datasets contain a multitude of
substructure anomalies. The aforementioned results validate the superiority
and effectiveness of GLADformer in graph-level anomaly detection tasks.

5.3 Ablation Study

To evaluate the performance impact of different components on our proposed
model GLADformer, we conduct comprehensive ablation study experiments.
Specifically, for the two key modules: spectrum-enhance graph-transformer mod-
ule (GT) and local spectral message-passing module (LS), we construct a total
of five variant models, and the overall results are demonstrated in Table 4. From
top to bottom, the five variant models represent the following: (1) Elimination of
the GT module, (2) Elimination of the spectral enhancement component within
the GT module, (3) Elimination of the LS module, (4) Replacement of the LS
module with GIN, and (5) Replacement of the LS module with BernNet [14].

As illustrated in Table 4, we observe that removing either the GT module
or the LS module resulted in a significant decline in model performance, with
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Table 4. Experimental results of ablation with different model variants on four datasets
with respect to AUC value. Best result in bold, second best underlined.

Model BZR NCI1 MCF-7 MOLT-4

GLADformer w/o GT 72.56 71.30 77.64 78.47

GLADformer (GT w/o SEC) 76.40 76.18 82.37 81.92

GLADformer w/o LS 73.68 72.20 78.19 78.70

GLADformer w/o LS + GIN 73.73 72.56 78.23 79.18

GLADformer w/o LS + BernNet 75.68 74.79 80.85 82.03

GLADformer 77.25 76.83 83.58 83.24

Fig. 3. Visualization analysis on NCI1 dataset.

the performance decrease being more pronounced when the GT module was
eliminated. Furthermore, when the spectrum enhancement component (SEC)
within the GT module is removed, we notice a slight performance degradation.
This indicates that the distribution of spectral energy indeed plays a guiding
role in determining the anomalous properties of the graph. Additionally, when
replacing the LS module with different local GNNs like GIN and BernNet, we
find the model performs better with the use of BernNet, which possesses spectral
filtering characteristics. This suggests that the low-pass filtering effect smooths
out the local feature, resulting in the losses of local anomaly information.

5.4 Visualization Analysis

To further demonstrate the performance of our model and validate the effec-
tiveness of each module, we conduct extensive visual analysis in this subsection.
We firstly load the parameters of the last two models that only retain a single
module in the ablation experiment, as well as the complete GLADformer model.
Specifically, we employ t-SNE to visualize the embeddings generated by these
three models. Due to space constraints, we present visualization results for the
NCI1 dataset only in this section, the visual results are presented in Fig. 3.

As observed in Fig. 3, the three figures respectively represent the embeddings
output of individual GT module, LS module, as well as the entire GLADformer
model, visualized in a two-dimensional space. We observe that each of the first
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two figures demonstrates a certain level of discriminability between anomalous
and normal graphs, verifying the meaningfulness of the two core modules. Then
in the third figure, the anomalous graphs are well separated from the normal
graphs, and they exhibit distinct distributions. This observation highlights the
successful integration of the two modules we designed, further confirming their
synergistic effectiveness.

6 Conclusion

In this paper, we rethink the task of graph-level anomaly detection from a multi-
perspective view and propose a meticulously designed GLAD model, namely
GLADformer. Firstly, we introduce Graph Transformer into the GLAD task to
incorporate the inductive bias of graph structures and leverage the differences
in spectral energy distribution across graphs. This helps capture global implicit
attributes and structural features. Subsequently, departing from the conventional
spatial GNNs, we design a novel wavelet spectral GNN for local feature extrac-
tion. Further, we propose an improved optimization for the cross-entropy loss
function, alleviating the issue of overfitting during training.
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Abstract. The discovery of drug-target interactions (DTIs) plays a
crucial role in pharmaceutical development. The deep learning model
achieves more accurate results in DTI prediction due to its ability to
extract robust and expressive features from drug and target chemical
structures. However, existing deep learning methods typically generate
drug features via aggregating molecular atom representations, ignor-
ing the chemical properties carried by motifs, i.e., substructures of
the molecular graph. The atom-drug double-level molecular represen-
tation learning can not fully exploit structure information and fails to
interpret the DTI mechanism from the motif perspective. In addition,
sequential model-based target feature extraction either fuses limited
contextual information or requires expensive computational resources.
To tackle the above issues, we propose a hierarchical graph representa-
tion learning-based DTI prediction method (HiGraphDTI). Specifically,
HiGraphDTI learns hierarchical drug representations from triple-level
molecular graphs to thoroughly exploit chemical information embedded
in atoms, motifs, and molecules. Then, an attentional feature fusion mod-
ule incorporates information from different receptive fields to extract
expressive target features. Last, the hierarchical attention mechanism
identifies crucial molecular segments, which offers complementary views
for interpreting interaction mechanisms. The experiment results not only
demonstrate the superiority of HiGraphDTI to the state-of-the-art meth-
ods, but also confirm the practical ability of our model in interaction
interpretation and new DTI discovery.
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1 Introduction

Nowadays, pharmaceutical scientists still rely on existing drug-target interac-
tions (DTIs) to develop novel drugs [3]. Therefore, there is a pressing need
to accurately and efficiently discover new DTIs. Although traditional in vitro
wet-lab verification can obtain reliable DTIs, the complex experimental process
consumes considerable time and labor, making it challenging to screen through a
large number of candidates rapidly [30]. The computational methods receive con-
siderable focus, since they can significantly diminish the resources for screening
by predicting reliable DTI candidates [1]. Deep learning models have achieved
superior performances in DTI prediction due to their ability to extract robust
and high-quality features from abundant drug and target structure information
[3,23]. Deep learning DTI prediction methods typically extract drug and tar-
get features from their chemical structures and integrate them to infer unseen
interactions [28].

Drugs are chemical molecules, represented by either the Simplified Molec-
ular Input Line Entry System (SMILES) strings [2] or molecular graphs [20].
Convolutional Neural network (CNN) [29] and Transformer [13,27] are utilized
to generate drug embeddings via encoding sequential molecular information in
SMILES strings. On the other hand, the molecular graphs explicitly depict
atom relations in 2-dimensional geometric space, enabling Graph Neural Net-
works (GNNs) to extract more informative drug representations [12,16]. Motifs,
molecular subgraphs composed of part of atoms and their bonds, usually carry
indicative information about the important molecular properties and functions
[26]. Nevertheless, existing GNN-based approaches typically learn atom node
embeddings and aggregate them via readout or attention-weighted summation
to derive molecular representations, ignoring important functional characteris-
tics expressed by motifs. Furthermore, current DTI prediction methods focus
on identifying the contribution of each atom to DTIs, failing to investigate the
biological interpretation of interactions from a motif perspective.

For protein targets, DTI prediction methods use sequential models, such as
CNN [12,24], RNN [11] and Transformer [7] to extract high-level features from
their amino acid sequences. CNNs typically have limited convolution kernel size
and number of layers, and RNNs suffer from the issue of vanishing gradients when
dealing with long sequences. Consequently, they learn target features that lack a
broad receptive field, i.e., failing to capture distant amino acid relationships within
the target sequence [11,12,24]. Although Transformer-based target features fuse
every amino acid embeddings, they suffer expensive computational costs [7].

In this study, we propose a hierarchical graph representation learning-based
DTI prediction method (HiGraphDTI) to enrich the information involved in
drug and target features and enhance the interpretation of DTI mechanisms.
First, we employ hierarchical molecular graph representations to extract atom,
motif, and global-level embeddings, enabling atomic information aggregation
more orderly and reliable while incorporating more chemical properties. Then,
we develop an attentional target feature fusion module, which extends recep-
tive fields to improve the expressive ability of protein representations. Finally,
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we design a hierarchical attention mechanism to capture the various level cor-
relations between drugs and targets, providing comprehensive interpretations of
DTIs from multiple perspectives. Experimental results on four benchmark DTI
datasets verify that HiGraphDTI surpasses six state-of-the-art methods. The
effectiveness of our method in providing valuable biological insights is confirmed
via case studies on multi-level attention weight visualizations.

2 Related Work

Predicting drug-target interactions (DTIs) is a crucial area of research in drug
development. In recent years, predominant computational approaches comprise
two categories: traditional machine learning and deep learning.

Traditional machine learning DTI prediction methods typically rely on man-
ually crafted features, e.g., molecular descriptors for drugs and structural and
physicochemical property-based protein features [22]. The SVM classifier uti-
lizes different kernel functions to determine the similarity of compounds and
proteins, and combines chemical and genomic spaces via tensor products [14].
WkNNIR is a neighborhood method that recovers potential missing interac-
tions and predicts new DTIs based on the interaction information of proximate
known drugs and targets [18]. EBiCTR [21] is an ensemble of bi-clustering trees
trained on the reconstructed output space and dyadic (drug and target) fea-
ture space. MDMF [17] is a DeepWalk-based Matrix Factorization model that
explores potential interactions between drugs and targets embedded in multiplex
heterogeneous networks.

Compared with machine learning methods, deep learning-based DTI predic-
tion approaches directly learn high-level features from drug and target struc-
tures. DeepDTA [31] leverages the sequence information of drugs and targets
to predict drug-target binding affinity. DeepConv-DTI [15] employs convolution
on amino acid subsequences of varying lengths to capture local residue patterns
in proteins, enriching the information of target features. TransformerCPI [6] let
target features serve as the output of the Transformer encoder and the drug
features serve as the input to the Transformer decoder to catch the interactions
between drugs and targets. MolTrans [13] introduces a Frequent Consecutive
Sub-sequence (FCS) mining algorithm, which utilizes unlabeled data to learn
contextual semantic information in SMILES strings and amino acid sequences.
The FCS algorithm enhances the expressive power of the model and makes
progress in exploiting other information. However, it merely identifies patterns
in SMILES strings, which may not correspond to the structural characteristics of
drugs. IIFDTI [8] comprises four feature components: target features extracted
by convolutional neural networks, drug features extracted by graph attention
networks, and two interaction features obtained from the Transformer. Similar
to MolTrans, it also incorporates semantic information of SMILES and amino
acid sequences. DrugBAN [4] utilizes a bilinear attention network module to
capture local interactions between drugs and targets for DTI prediction.

Although the aforementioned methods have achieved good performance, they
still encounter three issues: the inadequate exploration of triple-level structural
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information in drug molecules, the unordered information aggregation via simple
summation or averaging, and the absence of multi-level biological interpretation.

3 Method

Fig. 1. The overview architecture of HiGraphDTI.

In this section, we illustrate the proposed HiGraphDTI model that predicts
interactions between drugs and targets via hierarchical graph representation
learning. Figure 1 outlines the architecture of HiGraphDTI, which consists of
three main modules:

– Hierarchical molecular graph representation that extracts drug features,
enriching the chemical structure properties and characteristics exploitation
and making the information aggregation process more orderly and reliable.

– Attentional target feature fusion that adopts a broader receptive field to pro-
tein sequence representation extraction.

– Hierarchical attention mechanism that captures the correlations between drug
and target features from various perspectives, providing comprehensive expla-
nations for DTI mechanisms.
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3.1 Hierarchical Molecular Graph Representation

Hierarchical graph representation for drugs contains two steps, namely hierar-
chical graph construction and message-passing.

The molecular graph partition process is illustrated in Fig. 2. First, we trans-
form the original drug molecules into a graph G = (V,E), where each atom
corresponds to a node v ∈ V , and the bonds between atoms correspond to bidi-
rectional edges in E. G is the atom layer of the molecular graph. Then, we
divide the drug molecules into multiple functional fragments using the Breaking
of Retrosynthetically Interesting Chemical Substructures (BRICS) algorithm,
which defines 16 rules and breaks strategic bonds in a molecule that match a set
of chemical reactions [10]. Following the work [26], we supplement an additional
partition rule, i.e., disconnecting cycles and branches around minimum rings,
to BRICS algorithm to get rid of excessively large fragments. These obtained
fragments, referred to as motifs, construct the second level of the molecular
graph. We create a node for each motif, and the collection of nodes is defined
as Vm. We connect each motif node with its involved atoms in the atom layer,
and the collection of these edges is defined as Em. To avoid the over-smoothing
issue in graph neural networks and make message aggregation more reasonable,
these edges are unidirectional, pointing from the atom layer to the motif layer.
Finally, to aggregate the global information of drug molecules, we construct a
global node Vg, which is the graph-layer. We establish connections between it
and all motif nodes, and the collection of these edges is referred to as Eg. These
edges are also unidirectional, pointing from motif nodes to the global node Vg.
The final hierarchical graph is constructed as follows:

Ḡ = (V̄ , Ē), V̄ = (V, Vm, Vg), Ē = (E,Em, Eg) (1)

Given the triple-layer molecular graph, we employ Graph Isomorphism Net-
work (GIN) to propagate messages and learn node embeddings due to its superior
expressive power demonstrated by Weisfeiler-Lehman (WL) test [25]. Specifi-
cally, the message-passing formula of GIN is defined as:

hs
v = MLP s(hs−1

v +
∑

u∈N (v)

(hs−1
u + WsXuv)) (2)

where MLP s represents a multi-layer perceptron (MLP) at the s-th layer that
contains an input linear layer, a Relu activation function, and an output linear
layer, Xuv represents the edge embeddings between nodes u and v, Ws represents
the embedding parameters of Xuv for s-th layer, and h0

v = Xv is the input node
feature of v ∈ V̄ , hs

v represents the hidden state for node at the s-th layer.
After multiple iterations of updates, we obtain the final embeddings of atom,
motif, and global nodes, denoted as Ha ∈ R|a|×d, Hm ∈ R|m|×d and Hg ∈ R1×d

respectively, where |a| is the number of atoms, |m| is the number of motifs. We
adopt Hg as the representation of the whole drug molecule.
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Fig. 2. Hierarchical graph representation construction, where solid lines represent bidi-
rectional edges, and dashed lines represent unidirectional edges.

3.2 Attentional Target Feature Fusion

Following previous work [24], we partition the target sequence into 3-gram amino
acids to obtain the initial vector, denoted as XP = {x1, x2, ..., xl}, where xi ∈ Rd

represents the embedding of the i-th segment, l is the number of the partitioned
sequences, and d is the embedding dimension. To better aggregate critical fea-
tures in the protein vector representation, We design a one-dimensional (1D)
convolutional neural network with layer-wise decreasing channels, and the for-
mula for each layer is as follows:

Xi = Relu(BNi(Conv1Di(Xi−1))) (3)

where Xi represents the feature representation for the i-th layer, and X0 = XP ,
Conv1Di represents the 1D convolution in the i-th layer with the kernel size of
15 and the output channels reduced by half, Relu represents the ReLu nonlinear
activation function, BNi represents the batch normalization in the i-th layer.

We obtain target feature representations X1, X2, X3 at three different con-
volutional layers. To aggregate target information, we adapt the attentional fea-
ture fusion (AFF) module [9] tailored to amino acid sequences. The process is
depicted in Fig. 3. We perform transposed convolution on X3 to map it to the
same dimension as X2 and then put it into the AFF module. Next, we map the
result to the same dimension as X1 and put it into the AFF module to obtain
the outcome, denoted as HP ∈ Rl×d, of which the size is the same with initial
target features XP .

The detailed illustration of AFF module are shown in Fig. 4. AFF module
receives two inputs, I1 and I2, where I1 is the high-level feature after trans-
posed convolution, and I2 is the low-level feature. We combine the information
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Fig. 3. The overview architecture of feature fusion module for protein. The high-level
feature is mapped to the same dimension as the low-level using transposed convolution
and then input into the AFF module for fusion. Taking the result as high-level features,
repeat the operation.

Fig. 4. The architecture of AFF module, which utilizes operation M to compute the
attention matrix for weighted aggregation of inputs I1 and I2.
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from those through element-wise summation as I and feed the result into mod-
ule M to extract additional information. Module M achieves channel attention
across multiple scales by changing the spatial pooling size. It mainly consists of
two parts: one for extracting global features and the other for extracting local
features, as illustrated in Eq. (4).

M(I) = σ(L(I) ⊕ L(MeanPooling(I))) (4)

where σ is the Sigmoid function, MeanPooling(I) = 1
l

∑l
i=1 I[i, :] is the average

pooling along columns, ⊕ refers to the broadcasting addition and L(I) is defined
as:

L(I) = BN(PWConv2(Relu(BN(PWConv1(I))))) (5)

In Eq. (5), PWConv1 and PWConv2 refer to two point-wise 1D convolutions to
capture information from diverse channels. To maintain the model as lightweight
as possible., we adopt a bottleneck structure. Specifically, PWConv1 is used to
reduce the channels by a factor of r, and PWConv2 is employed to restore them.
After applying the module M , We obtain the attention matrix. To get the final
output, we perform the following operations:

O = M(I) ⊗ I1 + (1 − M(I)) ⊗ I2 (6)

where ⊗ denotes the element-wise multiplication. In Fig. 4, the black dashed line
denotes (1 − M(I)). M(I) and 1 − M(I) are real arrays in the range of 0 to 1,
facilitating a weighted sum of I1 and I2.

3.3 Hierarchical Attention Mechanism

We design a hierarchical attention mechanism to capture the correlation between
triple-level drug features (Ha, Hm, Hg) and target features (HP ). Graph level
drug feature vector Hg aggregates the global molecular information via cross-
level message-passing. Nevertheless, incorporating excessive information into Hg

could significantly decrease its express capacity. Therefore, we incorporate drug
features into the target embedding HP , and calculate the attention between
targets and different levels of drugs as follows:

Attna = Relu(H�
PWaHa) (7)

Attnm = Relu(H�
PWmHm) (8)

Attng = Relu(H�
PWgHg) (9)

where Attna ∈ Rl×|a|, Attnm ∈ Rl×|m|, Attng ∈ Rl×1 represent attention
matrices between protein partitioned sequence and different levels (atom, motif,
and global) of the drug molecule. Next, we calculate the mean along the rows
for each attention matrix, resulting in three attention vectors Aa, Am, Ag. The
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summation of these vectors utilized as weights for updating HP yields the protein
representation enriched with drug information:

FP = HP · (SF (Aa) + SF (Am) + SF (Ag)) (10)

where SF is the softmax function.
Finally, we concatenate Hg and FP and then feed them into a multi-layer

perceptron (MLP) model to derive the probability of drug-target interaction
Ŷ. Our model The binary cross-entropy loss, defined in Eq. (11), is utilized for
training our model.

L = − 1
N

N∑

i

yi · log(ŷi) + (1 − yi) · log(1 − ŷi) (11)

In Eq. (11), yi and ŷi are the true and predicted label of i-th drug-target pair
(samples) respectively, N is the number of training drug-target pairs.

4 Experiments

4.1 Experimental Setup

We select four benchmark datasets in the DTI field to evaluate our model,
including Human [19], C.elegans (Caenorhabditis elegans) [19], BindingDB [11],
GPCR [6]. Human and C.elegans datasets are created using a systematic screen-
ing framework to obtain highly credible negative samples [19]. GPCR dataset
is constructed from the GLASS database [5], which uses scores to describe the
drug-target affinity(DTA). To obtain samples for DTIs, GPCR uses a threshold
of 6.0 to categorize positive and negative samples. The BindingDB dataset [11] is
created from the BindingDB database, which is a public, web-accessible database
of measured binding affinities, focusing on the interactions of small molecules.
BindingDB dataset employs IC50 to filter samples, i.e., samples with IC50 below
100nM is labeled as positive, while those with IC50 above 10000nM is labeled
as negative. Table 1 presents the statistics of the four datasets.

Table 1. Statistics of datasets.

Datasets Targets Drugs Interactions Positive Negative

Human 852 1052 6738 3369 3369

C.elegans 2504 1434 8000 4000 4000

BindingDB 812 49745 61258 33772 27486

GPCR 356 5359 15343 7989 7354

We employ a five-fold cross-validation approach for the Human and C.elegans
datasets, dividing the whole datasets into training, validation and test sets
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according to the ratio of 8:1:1. For the BindingDB dataset, we employ the same
data partition strategy used by [11], i.e., 28237 samples in the training set, 2830
samples in the validation set, and 2705 samples in the test set. In regard to
GPCR dataset, we follow the data partition strategy described in [6], and fur-
ther randomly select the 20% of the training set as the validation set. The size
of the training, validation and test sets are 11,045, 2761 and 15377, respectively.

We select six state-of-the-art DTI prediction methods for comparison: Deep-
DTA [31], DeepConv-DTI [15], MolTrans [13], TransformerCPI [6], IIFDTI [8],
and DrugBAN [4]. A brief introduction to the methods mentioned above is pro-
vided in the Supplementary Materials. To adapt DeepDTA, a drug-target affinity
prediction model, to the DTI prediction task, we replace the loss function in its
last layer with binary cross-entropy loss.

We choose four metrics for evaluating our models: AUC (the area under the
receiver operating characteristic curve), AUPR (the area under the precision-
recall curve), Precision, and Recall. We execute all models on all datasets ten
times using different random seeds, calculating their averages and standard devi-
ation (std) for performance comparison.

Our experiments were conducted on a machine with a 32-core 2.30 GHz Intel
i9-10900J processor, 512G of RAM, and a single V100 GPU. We utilize the
Pytorch Framework to implement the proposed model. Regarding the experi-
ment process, we save the model parameters that achieve the highest AUC on the
validation set. Then, we evaluate its performance on the test set to obtain results.
Details regarding model hyperparameter settings are available in Table 2. The
codes of our model are available at https://github.com/547-own/HiGraphDTI.

Table 2. Summary of model hyperparameters

Hyperparameter Value

Number of GNN layers 5 for C.elegans

3 for the other three datasets

Number of CNN layers 3

Epochs 100

Weight decay 1e–6

Learning rate 1e–4

Embedding dimension (d) 256

Batch size 32

Dropout rate 0.1

N-gram 3

4.2 Comparison Results

As shown in Tables 3 and 4, HiGraphDTI outperforms the six baselines in terms
of AUC and AUPR on all datasets. We attribute the excellent performance to its

https://github.com/547-own/HiGraphDTI/blob/main/Supplementary%20Materials.pdf
https://github.com/547-own/HiGraphDTI


364 B. Liu et al.

three merits. First, HiGraphDTI learns hierarchical drug graph representation
to aggregate chemical structure information across different levels, enriching the
molecular structure representation. Second, employing feature fusion modules
enables targets to capture information from different receptive fields, enhancing
the protein sequence representation. Third, the hierarchical attention mechanism
computes interactive attention between different levels of drugs and targets,
augmenting the interaction information between drugs and targets.

Table 3. Experiment results in terms of AUC, where the best and runner-up results
are highlighted in bold and underlined, respectively.

Model Dataset

Human C.elegans BindingDB GPCR

DeepDTA 0.972 (0.001) 0.983 (0.001) 0.934 (0.007) 0.776 (0.006)

DeepConv-DTI 0.967 (0.002) 0.983 (0.002) 0.922 (0.003) 0.752 (0.011)

MolTrans 0.974 (0.002) 0.982 (0.003) 0.899 (0.006) 0.807 (0.004)

TransformerCPI 0.970 (0.006) 0.984 (0.002) 0.933 (0.011) 0.842 (0.007)

IIFDTI 0.984 (0.003) 0.991 (0.002) 0.944 (0.003) 0.845 (0.008)

DrugBAN 0.984 (0.001) 0.989 (0.001) 0.945 (0.007) 0.837 (0.010)

Ours 0.985 (0.001) 0.993 (0.001) 0.954 (0.003) 0.858 (0.004)

Table 4. Experiment results in terms of AUPR, where the best and runner-up results
are highlighted in bold and underlined, respectively.

Model Dataset

Human C.elegans BindingDB GPCR

DeepDTA 0.973 (0.002) 0.984 (0.007) 0.934 (0.008) 0.762 (0.015)

DeepConv-DTI 0.964 (0.004) 0.985 (0.001) 0.921 (0.004) 0.685 (0.010)

MolTrans 0.976 (0.003) 0.982 (0.003) 0.897 (0.010) 0.788 (0.009)

TransformerCPI 0.974 (0.005) 0.983 (0.003) 0.934 (0.015) 0.837 (0.010)

IIFDTI 0.985 (0.003) 0.992 (0.003) 0.945 (0.004) 0.842 (0.007)

DrugBAN 0.981 (0.001) 0.990 (0.002) 0.944 (0.005) 0.823 (0.013)

Ours 0.988 (0.001) 0.993 (0.001) 0.955 (0.003) 0.850 (0.003)

IIFDTI ranks second on the Human, C. elegans and GPCR datasets. It lever-
ages Word2Vec to extract drug features from textual information encoded in
SMILES string, while HiGraphDTI enriches hierarchical information in molecu-
lar graph representations. Compared to compressed textual information, hierar-
chically aggregated information based on molecular chemical properties is more
expressive. At the same time, after hierarchical partitioning, our method can
calculate attention scores between different levels and the target. That enriches
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the information of interaction features and allows for diverse biological interpre-
tations at different levels of DTI. HiGraphDTI surpasses IIFDTI in AUC and
AUPR, especially on the GPCR dataset, with improvements of 1.3% and 0.8%,
respectively.

For the larger dataset BindingDB, DrugBAN is the second-best method in
terms of AUC. DrugBAN utilizes GNN and CNN to extract feature representa-
tions for drugs and targets and employs Bilinear Attention Network to obtain
interaction features. However, it does not incorporate additional information to
enrich its feature representations, resulting in its inferiority to HiGraphDTI. Fur-
thermore, HiGraphDTI also exhibits advantages over IIFDTI on the BindingDB
dataset, achieving improvements of 0.9% in AUC and 1.1% in AUPR. The results
for precision and recall are presented in the Supplementary Materials.

4.3 Ablation Experiment

To validate the effectiveness of each module in HiGraph, we design the following
ablation experiments:

– HiGraphDTIw/oFF: We remove the target feature fusion module and retain
the last output convolutional layer as target representation.

– HiGraphDTIw/oHI: We remove all attentions between drugs and targets. We
only concatenate the global-level features of drugs and the mean of target
features for prediction.

– HiGraphDTIw/oHC: We remove the hierarchical structure from the graph
representation and only use atom-level embeddings to construct drug features.

– HiGraphDTIw/oML: We remove the motif-level nodes from the hierarchical
molecular graph and only utilize atom and global nodes to construct drug
features.

The experimental results on the GPCR dataset are shown in Fig. 5. The
results of HiGraphDTIw/oFF validates the importance of the feature fusion
module in constructing target features. Losing multiple receptive fields leads to a
decrease in model performance. The results of HiGraphDTIw/oHI demonstrate
the validity of the hierarchical attention mechanism, which comprehends the
interaction between drugs and targets from different perspectives, enhancing the
understanding and predictive capability of the model. Finally, the comparison
between HiGraphDTIw/oHC and HiGraphDTIw/oML confirms the superiority
of hierarchical graph representation learning methods in drug feature extraction.
The multi-layered structure enriches the expression of drug features.

4.4 Attention Interpretation

The hierarchical attention mechanism not only enhances model performance
but also assists us in understanding DTIs from various insights. In this part,
we utilize the attention weights to interpret the effectiveness of the hierarchical
attention mechanism. Furthermore, we illustrate the drug-target interaction from
the atom and motif levels to offer valuable interpretations for drug discovery.

https://github.com/547-own/HiGraphDTI/blob/main/Supplementary%20Materials.pdf
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Fig. 5. Ablation experiment results on the GPCR dataset

We choose target PDB: 1N28 and drug (ligands) PDB: I3N (C19H19NO3) as a
case study for attention interpretation. We use the hierarchical attention mecha-
nism to calculate the attention vector BP = SF (Aa)+SF (Am)+SF (Ag) ∈ Rl,
which demonstrates the distribution of amino acid attention weights. The values
in BP are all within the range of 0 to 1. The attention weights for each amino
acid of PDB:1N28 are shown in Fig. 6(a), where different colors represent vary-
ing attention weights. The actual binding sites are represented by amino acid
letters with a red background. From Fig. 6(a), we can observe that the model
gives high attention to six among the total eleven binding sites. In addition, the
model provides seven other positions (located at 30, 31, 32, 69, 70, 97, 98) with
high attention weights, which could serve as potential binding sites for future
chemical experiments. Figure 6(b) depicts the 3D visualization of the docking
interaction of PDB: I3N and PDB: 1N28, where red regions represent binding
sites with high attention weights, yellow segments indicate the binding site with
low attention weights, green regions represent the high attention weighted amino
acids that have not been recognized as binding sites.

In the process of computing BP , we obtain three attention matrices: Attna ∈
Rl×|a|, Attnm ∈ Rl×|m|, and Attng ∈ Rl×1. We further average every column of
Attna, Attnm to obtain the attention vector Ba ∈ R|a|, Bm ∈ R|m|, where each
element illustrates the importance of each atom and motif nodes to the DTI. The
visualization of drug attention weights for the interaction of PDB: I3N and PDB:
1N28 is shown in Fig. 7, where dashed lines of the same color connect motif and
its composed atoms. There are fifteen atoms interacting with at least one amino
acid, where 2/3 attention weights exceed 0.6. The corresponding motif nodes also
exhibit high attention weights. It can be observed that the 11-th atom (C) is an
active node in the docking simulation. While its atom attention weight is not
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(a) Attention Weights for each amino acid of PDB: 1N28

(b) 3D visualization of docking interaction
of PDB: I3N with PDB: 1N28

Fig. 6. Visualization of target attention weights for interaction of PDB: I3N and PDB:
1N28

high, the 3-rd motif node containing it has a high attention weight, serving as a
powerful supplement. This validates that the hierarchical graph representation
approach to constructing drug features permits the model to better discern the
importance of atoms and motifs and ensures crucial elements are not overlooked
during the drug development process.
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Fig. 7. Visualization of drug attention weights for the interaction of PDB: I3N and
PDB:1N28

5 Conclusion

In this paper, we propose HiGraphDTI, a novel deep learning model designed
for predicting DTIs. HiGraphDTI has three key advantages. First, it employs a
hierarchical molecular graph representation to construct drug features, enhanc-
ing the incorporation of chemical structure information and facilitating more
effective message conveyance. Second, to augment the receptive field of target
features, HiGraphDTI integrates an attentional target feature fusion strategy,
resulting in more informative protein representations. In addition, the model
incorporates a hierarchical attention mechanism to capture interactive informa-
tion between drugs and targets from multiple perspectives. To validate the effec-
tiveness of the proposed model, we compare it with six state-of-the-art baselines
on four datasets. The experimental results indicate that our model outperforms
comparing baselines in terms of AUC and AUPR metrics. Finally, visualizations
of attention weights confirm the interpretation ability of HiGraphDTI to support
new drug discovery.
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Abstract. Message passing neural networks iteratively generate node
embeddings by aggregating information from neighboring nodes. With
increasing depth, information from more distant nodes is included. How-
ever, node embeddings may be unable to represent the growing node
neighborhoods accurately and the influence of distant nodes may van-
ish, a problem referred to as oversquashing. Information redundancy in
message passing, i.e., the repetitive exchange and encoding of identi-
cal information amplifies oversquashing. We develop a novel aggrega-
tion scheme based on neighborhood trees, which allows for controlling
redundancy by pruning redundant branches of unfolding trees underly-
ing standard message passing. While the regular structure of unfolding
trees allows the reuse of intermediate results in a straightforward way, the
use of neighborhood trees poses computational challenges. We propose
compact representations of neighborhood trees and merge them, exploit-
ing computational redundancy by identifying isomorphic subtrees. From
this, node and graph embeddings are computed via a neural architecture
inspired by tree canonization techniques. Our method is less susceptible
to oversquashing than traditional message passing neural networks and
can improve the accuracy on widely used benchmark datasets.

Keywords: Graph neural networks · Oversquashing · Non-redundant
message passing

1 Introduction

Graph neural networks (GNNs) emerged as the dominant approach for machine
learning on graph data, with the class of message passing neural networks
(MPNNs) [13] being widely used. These networks update node embeddings layer
wise by combining the current embedding of a node with those of its neighbors,
involving learnable parameters. Suitable neural architectures, which admit a
parametrization such that each layer represents an injective function uniquely
encoding the input, have the same expressive power as the Weisfeiler-Leman
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algorithm [36]. The Weisfeiler-Leman algorithm distinguishes two nodes if and
only if the unfolding trees representing their neighborhoods are non-isomorphic.
These unfolding trees correspond to the computational trees of MPNNs [16,31].
Hence, nodes with isomorphic unfolding trees will obtain the same embedding,
while for nodes with non-isomorphic unfolding trees, there exist parameters such
that their embeddings differ. This implies that deeper unfolding trees lead to
more expressive methods. Despite this theoretical connection, shallow MPNNs
are often favored in practice. Challenges arise from the observed convergence of
node embeddings for deep architectures, referred to as oversmoothing [21,22],
and the issue of oversquashing [5], where the node neighborhood grows expo-
nentially with the number of layers, and therefore, cannot be supposed to be
accurately represented by a fixed-sized embedding. Recently, oversquashing has
been investigated by analyzing the sensitivity of node embeddings to the initial
features of distant nodes, relating the phenomenon to the graph curvature [34],
the effective resistance [8] and the commute time [14]. On this basis several graph
rewiring strategies have been proposed to mitigate oversquashing [8,34].

We address the problem of oversquashing by modifying the message passing
scheme for eliminating the encoding of repeated information. For example, in an
undirected graph, when a node sends information to its neighbour, future mes-
sages sent back via the same edge will contain the exact information previously
sent, leading to redundancy. In the context of walk-based graph learning this
problem is well-known and referred to as tottering [23]. Recent work by Chen
et al. [9] established a first result formalizing the relation between redundancy
and oversquashing by sensitivity analysis. Several recent GNNs replace the walk-
based aggregation by mechanisms based on simple or shortest paths reporting
promising results [2,17,27]. PathNNs [27] and RFGNN [17] are closely related
approaches, defining path-based trees for nodes and employing custom aggre-
gation schemes. However, these methods suffer from high computational costs
compared to standard MPNNs and often have an exponential time complexity.
The crucial advantage of MPNNs is the regular structure of aggregations applied
through all layers, while reducing information redundancy leads to a less regular
structure, rendering it challenging to exploit computational redundancy.

Our Contribution. We systematically explore the issue of information redun-
dancy within MPNNs and introduce principled techniques to eliminate superflu-
ous messages. Our investigation is based on the implicit tree representation used
by both MPNNs and the Weisfeiler-Leman algorithm. We first develop a neural
tree canonization approach that systematically processes trees in a bottom-up
fashion and extend it to directed acyclic graphs (DAGs). To exploit computa-
tional redundancy, we merge trees representing node neighborhoods into a DAG,
identifying isomorphic subtrees. Our approach, termed DAG-MLP, recovers the
computational graph of MPNNs for unfolding trees, while avoiding redundant
computations in the presence of symmetries. We employ the canonization tech-
nique on neighborhood trees, which are derived from unfolding trees by elimi-
nating redundant nodes. We show that neighborhood trees allow distinguishing
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Table 1. Time complexity of preprocessing, size of computation graph and expressivity
of our method compared to related work. n: number of nodes, m: number of edges,
b: maximum node degree, K: path length, h: tree height, L: number of layers, and
m2 = 0.5

∑
v∈V |N2(v)|.

Method Preprocessing Size Comp. Graph/Runtime Expressivity

PathNet O(mb) O(2L(m + m2)) n/a

PathNN-SP O(nbK) O(nbK) incomparable

PathNN-SP+ O(nbK) O(nbK) > 1-WL

RFGNN O(n!/(n−h−1)!) O(n!/(n−h−1)!) incomparable

DAG-MLP (0-/1-NTs) O(nm) O(nm) incomparable

nodes that are indistinguishable by the Weisfeiler-Leman algorithm. The DAGs
derived from neighborhood trees have size at most O(nm) for input graphs with
n nodes and m edges making the approach computational feasible. We formally
show by sensitivity analysis that our approach reduces oversquashing. Our app-
roach achieves high accuracy across various node and graph classification tasks.

2 Related Work

The graph isomorphism network (GIN) [36] is an MPNN that generalizes the
Weisfeiler-Leman algorithm, achieving its expressive power. The limited expres-
sivity of simple MPNNs has led to an increased interest in researching more pow-
erful architectures, such as encoding graph structure as additional features or
modifying the message passing procedure. Shortest Path Networks [2] use multi-
ple aggregation functions for different shortest path lengths, allowing direct com-
munication with distant nodes. While this might help mitigate oversquashing,
information about the structure of the neighborhood still cannot be represented
adequately and the gain in expressivity is limited. Distance Encoding GNNs [20]
encode the distances of nodes to a set of target nodes. While being provably more
expressive than the standard WL algorithm, the approach is limited to solving
node-level tasks, as the encoding depends on a fixed set of target nodes and
has not been employed for graph-level tasks. MixHop [3] concatenates results
from activation functions for each neighborhood, but in contrast to Shortest
Path Networks [2], the aggregation is based on normalized powers of the adja-
cency matrix, not shortest paths, which fails to solve the problem of redundant
messages. SPAGAN [38] proposes a path-based attention mechanism, sampling
shortest paths and using them as features. However, a theoretical investigation
is lacking and the approach utilizes only one layer. Short-rooted random walks
in [33] capture long-range dependencies, but have notable limitations due to
sampling paths. The evaluation is restricted to node classification datasets and
an extensive study of their expressive power is lacking. IDGNN [39] tracks the
identity of the root node in unfolding trees, achieving higher expressivity than
1-WL, but failing to reduce redundant information aggregation. PathNNs [27]
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Fig. 1. Graph G and its unfolding trees F v
2 for all v ∈ V (G).

define path-based trees and a custom aggregation scheme, but overlook exploit-
ing computational redundancy. RFGNNs [9] aim to reduce redundancy by alter-
ing the message flow to only include each node (except for the root node) at
most once in each path of the computational tree. While this reduces redun-
dancy to some extent, nodes and even the same subpaths may repeatedly occur
in the computational trees. The size and running time complexity of RFGNN are
very restrictive. While the term breadth-first search used in the definition of the
underlying TPTs suggests linear running time, the breadth-first search has to
be modified, leading to exponential running time. Additionally, redundancy in
computation is not addressed resulting in a highly inefficient preprocessing and
computation, limiting the method to a maximum of 3 layers in the experiments.

These architectures lack thorough investigation of their expressivity and con-
nections to other approaches. Importantly, they do not explicitly investigate both
types of redundancy in MPNNs – redundancy in the information flow and in
computation. We compare the time complexity, as well as the expressivity of our
method DAG-MLP and other relevant methods in Table 1 and further discuss it
in Sect. 4.5.

3 Preliminaries

Graph Theory. A graph G = (V,E, μ, ν) consists of a set of vertices V , a set
of edges E ⊆ V × V between them, and functions μ : V → X and ν : E → X
assigning arbitrary attributes to the vertices and edges, respectively.1 An edge
from u to v is denoted by uv, and in undirected graphs uv = vu. The vertices and
edges of a graph G are denoted by V (G) and E(G), respectively. The neighbors
(or in-neighbors) of a vertex u ∈ V are denoted by N(u) = {v | vu ∈ E}, and
the out-neighbors of a vertex u ∈ V are denoted by No(u) = {v | uv ∈ E}. A
multigraph is a graph, where E is a multiset, allowing multiple edges between
a pair of vertices. Two graphs G and H are isomorphic, denoted by G � H,
if there exists a bijection φ : V (G) → V (H), such that ∀u, v ∈ V (G) : μ(v) =
μ(φ(v)) ∧ uv ∈ E(G) ⇔ φ(u)φ(v) ∈ E(H) ∧ ∀uv ∈ E(G) : ν(uv) = ν(φ(u)φ(v)).
We refer to φ as an isomorphism between G and H.

An in-tree T is a connected, directed, acyclic graph with a distinct vertex
r ∈ V (T ) with no outgoing edges, referred to as root (r(T )), in which ∀v ∈
V (T )\r(T ) : |No(v)| = 1. For v ∈ V (T )\r(T ) the parent p(v) is the unique
vertex u ∈ No(v), and ∀v ∈ V (T ) the children are defined as chi(v) = N(v).

1 Edge attributes are not considered in the following for clarity of presentation, though
the proposed methods can be extended to incorporate them.
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Fig. 2. Graph G and the unfolding, 0- and 1-redundant neighborhood trees of height
2 of vertex v (vertex in the upper left of G).

We refer to vertices without incoming edges as leaves, denoted by l(T ) = {v ∈
V (T ) | chi(v) = ∅}. Conceptually an in-tree is a directed tree, in which there
is a unique directed path from each vertex to the root [26]. In our paper, we
only consider in-trees and will therefore refer to them simply as trees. In-trees
are generalized by directed, acyclic graphs (DAGs). The leaves of a DAG D and
the children of a vertex are defined as in trees. However, there can be multiple
roots, and a vertex may have more than one parent. We refer to all vertices in
D without outgoing edges as roots, denoted by r(D) = {v ∈ V (D) | No(v) = ∅},
and define the parents p(v) of a vertex v as p(v) = No(v). The height hgt of a
node v is the length of the longest path from any leaf to v: hgt(v) = 0, if v ∈
l(D) and hgt(v) = maxc∈chi(v) hgt(c) + 1, otherwise. The height of a DAG D is
defined as hgt(D) = maxv∈V (D) hgt(v). For clarity we refer to the vertices of a
DAG as nodes to distinguish them from the graphs that are the input of a graph
neural network.

Weisfeiler-Leman and Message Passing Neural Networks. The 1-dim.
Weisfeiler-Leman (WL) algorithm, also known as color refinement, starts with
vertices having a color corresponding to their label (or a uniform coloring for
unlabeled vertices). In each iteration the vertex color is updated based on the
multiset of colors of its neighbors according to

c
(i+1)
wl (v) = h

(
c
(i)
wl (v), {{c

(i)
wl (u) | u ∈ N(v)}}

)
∀v ∈ V (G),

where h is an injective function, typically using integers to represent colors.
The color of a vertex encodes its neighborhood through a tree T , which

may contain multiple representatives of each vertex. Let φ : V (T ) → V (G) be
a mapping such that φ(n) = v if the node n in V (T ) represents the vertex v
in V (G). The unfolding tree F v

i with height i of the vertex v ∈ V (G) consists
of a root nv with φ(nv) = v and child subtrees Fu

i−1 for all u ∈ N(v), where
F v
0 = ({nv}, ∅). The attributes of the original graph are preserved, as illustrated

in Fig. 1. The unfolding trees F v
i and Fw

i of two vertices v and w are isomorphic
if and only if c

(i)
wl (v) = c

(i)
wl (w).

Message passing neural networks such as GIN [36] can be seen as a neural
variant of the Weisfeiler-Leman algorithm. The embedding of a vertex v in layer
i of GIN is defined as
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xi(v) = MLPi

⎛
⎝(1 + εi) · xi−1(v) +

∑
u∈N(v)

xi−1(u)

⎞
⎠ , (1)

where the initial features x0(v) are usually acquired by applying a multi-layer
perceptron (MLP) to the vertex features.

4 Non-redundant Graph Neural Networks

We propose to restrict the information flow in message passing to regulate redun-
dancy through the use of k-redundant neighborhood trees. We first develop a
neural tree canonization technique, and obtain an MPNN via its application to
unfolding trees. Subsequently, we explore computational methods on graph level,
reusing information computed for subtrees and derive a customized GNN archi-
tecture. Finally, we prove that k-redundant neighborhood trees and unfolding
trees are incomparable regarding their expressivity on node-level.

4.1 Removing Information Redundancy

As previously discussed, two vertices obtain the same WL color if and only if
their unfolding trees are isomorphic. This concept directly carries over to message
passing neural networks and their computational tree [16,31]. However, unfold-
ing trees were mainly used as tools in expressivity analysis and as a conceptual
framework for explaining mathematical properties in graph learning [19,30]. We
propose a novel perspective on MPNNs through tree canonization. From this per-
spective, we derive a non-redundant GNN architecture based on neighborhood
trees.

In their classical textbook, Aho, Hopcroft, and Ullman [4, Section 3.2]
describe a linear time isomorphism test for rooted unordered trees. We give a
high-level description to establish the foundation for our neural variant without
focusing on the running time. The algorithm proceeds in a bottom-up manner,
assigning integers cahu(v) to each node v in the tree. The function f injectively
maps a pair consisting of an integer and a multiset of integers to a new, unused
integer. Initially, all leaves v are assigned integers cahu(v) = f(μ(v), ∅) based on
their label μ(v). Then internal nodes are processed level-wise in a bottom-up
manner, ensuring that whenever a node is processed, all its children have been
considered. Hence, the algorithm computes for all nodes v of the tree

cahu(v) = f(μ(v), {{cahu(u) | u ∈ chi(v)}}). (2)

This process ensures the unique representation of non-isomorphic trees, serving
as the foundation of our neural tree canonization technique.
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GNNs via Unfolding Tree Canonization. Combining Eq. (2) and unfolding
trees, denoting the root of an unfolding tree of a vertex v of height i by ni

v, yields

cahu(ni
v) = f(μ(ni

v), {{cahu(ni−1
u ) | ni−1

u ∈ chi(ni
v)}})

= f(μ(v), {{cahu(ni−1
u ) | u ∈ N(v)}}). (3)

By implementing the function f using a suitable neural architecture and replac-
ing its codomain with embeddings in R

d, we readily obtain a GNN based on
our canonization approach. The key difference to standard GNNs is that the
first component of the pair in Eq. (3) is the initial vertex feature instead of the
embedding from the previous iteration. Utilizing the technique proposed by Xu
et al. [36] and replacing the first addend in Eq. (1) with the initial embedding,
we formulate the unfolding tree canonization GNN

xi(v) = MLPi

⎛
⎝(1 + εi) · x0(v) +

∑
u∈N(v)

xi−1(u)

⎞
⎠ . (4)

It is established that MPNNs cannot distinguish two vertices with the same WL
color or unfolding tree. Given that the function cahu(ni

v) uniquely represents the
unfolding tree for an injective function f , realizable by Eq. (4) [36], we infer the
following proposition.

Proposition 1. Unfolding tree canonization GNNs, as defined in Eq. (4), are
as expressive as GIN, as defined in Eq. (1).

Despite the equivalence in expressivity, the canonization-based approach avoids
redundancy since xi−1(v) represents the entire unfolding tree rooted at v of
height i−1, while using the initial vertex features x0(v) is sufficient. We proceed
by investigating redundancy within unfolding trees themselves.

GNNs via Neighborhood Tree Canonization. We leverage the concept of
neighborhood trees to manage redundancy in unfolding trees.2 A k-redundant
neighborhood tree (k-NT) T v

i,k is derived from the unfolding tree F v
i by removing

all subtrees with roots that occurred more than k levels before (seen from root
to leaves). Here, depth(v) denotes the length of the path from v to the root, and
φ(v) denotes the original vertex in V (G) represented by v in the tree.

Definition 1 (k-redundant Neighborhood Tree). For k ≥ 0, the k-
redundant neighborhood tree (k-NT) of a vertex v ∈ V (G) with height i, denoted
by T v

i,k, is defined as the subtree of the unfolding tree F v
i induced by the nodes

u ∈ V (F v
i ) satisfying

∀w ∈ V (F v
i ) : φ(u) = φ(w) ⇒ depth(u) ≤ depth(w) + k.

Figures 2 and 3 provide examples of unfolding and neighborhood trees. It is
worth noting that for k ≥ i the k-NT is equivalent to the WL unfolding tree.
2 In a parallel work, neighborhood trees were investigated for approximating the graph

edit distance [7].
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Fig. 3. Graph G and its 0-NTs T v
2,0 for all v ∈ V (G).

Fig. 4. Computation DAGs for unfolding (a) and 0-NTs (b) of height 2 of graph G.
And edges in the different layers of the merge DAG of 0-NTs (c), (d).

We can directly apply the neural tree canonization technique to neighborhood
trees. However, a simplifying expression based on the neighbors in the input
graph, as given by Eq. (3) for unfolding trees, is not possible for neighborhood
trees. Therefore, we explore techniques to systematically exploit computational
redundancy.

4.2 Removing Computational Redundancy

The computation DAG of an MPNN involves the embedding of a set of trees
representing the vertex neighborhoods of a single or multiple graphs. Results
computed for one tree can be reused for others by identifying isomorphic sub-
structures, thereby minimizing computational redundancy. We first describe how
to merge trees in a general context and then discuss its application to unfolding
and neighborhood trees.

Merging Trees Into a DAG. The neural tree canonization approach devel-
oped in the last section can be directly applied to DAGs. Given a DAG D, it com-
putes an embedding for each node n in D that represents the tree Fn obtained by
recursively following its children, similar as in unfolding trees, cf. Sect. 3. Since
D is acyclic, the height of Fn is bounded. A detailed description of a neural
architecture is postponed to Sect. 4.3.

Given a set of trees T = {T1, . . . , Tn}, a merge DAG of T is a pair (D, ξ),
where D is a DAG, ξ : {1, . . . n} → V (D) is a mapping, and for all i ∈ {1, . . . , n}
we have Ti � Fξ(i). The definition guarantees that the neural tree canonization
approach applied to the merge DAG produces the same result for the nodes in the
DAG as for the nodes in the original trees. A trivial merge DAG is the disjoint
union of the trees with ξ(i) = r(Ti). However, depending on the structure of
the given trees, we can identify the subtrees they have in common and represent
them only once, such that two nodes of different trees share the same child,
resulting in a DAG instead of a forest.
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We propose an algorithm that builds a merge DAG by successively adding
trees to an initially empty DAG, creating new nodes only when necessary. Our
approach maintains a canonical labeling for each node of the DAG and computes
a canonical labeling for each node of the tree to be added using the AHU algo-
rithm. Then, the tree is processed starting at the root. If the canonical labeling
of the root is present in the DAG, then the algorithm terminates. Otherwise,
the subtrees rooted at its children are inserted into the DAG by recursive calls.
Finally, the root is created and connected to the representatives of its children in
the DAG. We introduce a node labeling L : VT → O used for tree canonization,
where VT =

⋃n
i=1 V (Ti) and O an arbitrary set of labels, refining the original

node attributes, i.e., L(u) = L(v) ⇒ μ(u) = μ(v) for all u, v in VT . When O
consists of integers from the range 1 to |VT |, the algorithm runs in O(|VT |) time.
When two siblings that are the roots of isomorphic subtrees are merged, this
leads to parallel edges in the DAG. Parallel edges can be avoided by using a
labeling satisfying L(u) = L(v) ⇒ μ(u) = μ(v) ∧ p(u) = p(v) for all u, v in VT .

Unfolding trees and k-NTs can grow exponentially in size with increasing
height. However, this is not case for merge DAGs obtained by the algorithm
described above, as we will show below. Moreover, we can directly generate
DAGs of size O(m · (k + 1)) representing individual k-NTs with unbounded
height in a graph with m edges (see Bause et al. [7] for details on generating
compact DAGs).

Merging Unfolding Trees. Merging the unfolding trees of a graph with the
labeling L = φ leads to the computation DAG of GNNs. Figure 4a shows the
computation DAG for the graph from Fig. 1. The roots in this DAG correspond
to the representation of the vertices after aggregating information from the lower
layers. Each vertex occurs once at every layer of the DAG, and the links between
any two consecutive layers are given by the adjacency matrix of the original
graph. While this allows computation based on the adjacency matrix widely-
used for MPNNs, it involves the encoding of redundant information. Our method
has the potential to compress the computation DAG further by using the less
restrictive labeling L = μ, leading to a DAG where at layer i all vertices u, v with
c
(i)
wl (u) = c

(i)
wl (v) are represented by the same node. This compression appears

particularly promising for graphs with symmetries.

Merging Neighborhood Trees. When merging k-redundant neighborhood
trees in the same way using the labeling L = μ (or L = φ to avoid parallel
edges), it results in a computation DAG with a more irregular structure, as
illustrated in Fig. 4b. Firstly, there might be multiple nodes at the same level
representing the same original vertex. Secondly, the adjacency matrix of the
original graph cannot be used to propagate the information. A straightforward
upper bound on the size of the merge DAG for a graph with n nodes and m
edges is O(nmk + nm).

We apply the neural tree canonization approach to the merge DAG in a
bottom-up fashion, starting from the leaves and progressing to the roots. Each
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edge is used exactly once in this computation. Let D = (V, E) be a merge DAG.
The nodes can be partitioned based on their height, leading to Li = {v ∈ V |
hgt(v) = i}. This induces an edge partition Ei = {uv ∈ E | v ∈ Li}, where all
edges with the same end node v are in the same layer, and all incoming edges of
children of v belong to a previous layer. Note that, since L0 contains all leaves
of the DAG, there is no E0. Figures 4c and 4d depict the edge sets E1 and E2 for
the example merge DAG illustrated in Fig. 4b.

4.3 Non-redundant Neural Architecture (DAG-MLP)

We propose a neural architecture to compute embeddings for nodes in a merge
DAG, allowing to retrieve embeddings of the contained trees from their roots.
The process involves a preprocessing step that transforms the node labels, using
MLP0 to map them to an embedding space of fixed dimensions. Subsequently,
an MLPi is used to process nodes at each layer Li.

μ′(v) = MLP0 (μ(v)) , ∀v ∈ V
x(v) = μ′(v), ∀v ∈ L0

x(v) = MLPi

(
(1 + εi) · μ′(v) +

∑
∀u : uv∈Ei

x(u)

)
, ∀v ∈ Li, i ∈ {1, . . . , n}

The DAG-MLP can be computed through iterated matrix-vector multiplication
analogous to standard GNNs. Let Li be a square matrix with ones on the diago-
nal at position j if vj ∈ Li, and zeros elsewhere. Let Ei represent the adjacency
matrix of (V, Ei), and let F denote the node features of V, corresponding to the
initial node labels. The transformed features F′ are obtained through MLP0,
and X[i] represents the updated embeddings at layer i of the DAG.

F′ = MLP0 (F) , X[0] = L0F′,

X[i] = MLPi

(
(1 + εi) · LiF′ + EiX[i−1]

)
+ X[i−1]

In the above equation, MLPi is applied to the rows associated with nodes
in Li. The embeddings X[i] are initialized to zero for inner nodes and com-
puted level-wise. To preserve embeddings from all previous layers, we add X[i−1]

during the computation of X[i]. Suppose the merge DAG (D, ξ) contains the
trees {T1, . . . , Tn}. We obtain a node embedding X[n]

ξ(i) for each tree Ti with
i ∈ {1, . . . , n}. This approach allows for obtaining the final embedding for a ver-
tex by using a single tree (Fixed Single-Height) or combining trees of different
heights, for example all NTs of size up to a certain maximum (Combine Heights).

Figure 5 shows the DAG-MLP architecture for graph-level tasks. Vertex
features are transformed using MLP0. Messages propagate through the DAG
according to Ei. After n layers, all node embeddings have been computed and
stored in X[n]. Readouts extract embeddings from k-NTs of varying heights.
Pooling operations are applied to each layer’s output, and the pooled outputs
are averaged and processed by a final MLP for prediction.
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Fig. 5. DAG-MLP architecture for graph-level tasks with n layers. Each layer includes
a DAG-MLP, readout, and pooling operations, processing the input F.

4.4 Expressivity of k-NTs

We investigate how expressive k-NTs are compared to unfolding trees. While it
is evident that k-NTs are a node invariant, providing the same result for nodes
that can be mapped to each other by an isomophism or automorphism, they
might also produce the same results for nodes that cannot. This means that,
similar to unfolding trees, they are not a complete node invariant.

We show that there are vertices that 1-WL cannot distinguish, but k-NTs
can, and vice versa, proving that both methods are incomparable regarding
their expressivity on node level. We further conjecture that, while k-NTs cannot
distinguish certain vertices that 1-WL can, they can still distinguish the graphs
containing such vertices, making k-NTs more expressive on the graph level.

Theorem 1. The expressivity of k-NT and unfolding trees is incomparable, i.e.,

1. ∃u, v : Fu
∞ = F v

∞ ∧ Tu
∞,k = T v

∞,k

2. ∃u, v : Fu
∞ = F v

∞ ∧ Tu
∞,k = T v

∞,k

Proof. We prove the statement by giving concrete examples. Figure 6 gives an
example for 1.: the Weisfeiler-Leman algorithm is unable to distinguish the two
graphs, indicating identical unfolding trees of the vertices. However, for any k
the k-NT of the vertices will differ for h ≥ k + 2. Figure 7 gives an example for
2. (for 1-NTs): the unfolding trees of the two marked vertices differ, while the
1-NTs are identical.

We have shown that on node level, the expressivity of k-NTs and unfolding
trees is incomparable. However, the examples, where k-NTs fail to distinguish
nodes that 1-WL can, can actually be distinguished on the graph level. This
arises from the fact, that the graphs have a different number of vertices and the
k-NTs of the other nodes differ.

4.5 Theoretical Analysis and Comparison to Related Work

We provide a detailed analysis of the computational complexity and expressivity
of our approach compared to related work and formally prove, that our method
can mitigate oversquashing better than comparable approaches.
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(a) Hexagon (b) Two triangles (c) Unfolding trees (d) 1-NTs

Fig. 6. Two graphs (a), (b) that cannot be distinguished by unfolding trees, but by
k-NTs. Figure (c) shows the unfolding tree F3, which is the same for all vertices of
both graphs, while (d) shows the 1-NTs of the vertices in the hexagon (left) and the
triangle (right).

(a)G1 (b)G2 (c) 1-NTs of red vertices

Fig. 7. Two graphs (a), (b) in which the red vertices can be distinguished by unfolding
trees, but not by k-NTs. The 1-NTs of the red vertices (c) are the same. However, G1

and G2 can be distinguished by their multisets of 1-NTs. (Color figure online)

Computational Complexity and Expressivity. The DAG representing the
k-NT of a single vertex has a size in O(mk+m), where m is the number of edges
in the graph. The lexicographic encoding and merging of k-NTs to generate the
DAG can be done in time linear in its size. A trivial upper bound on the size of
the merge DAG of a graph with n nodes and m edges is O(nmk +nm). Overall,
this means that preprocessing can be done in O(nmk) time, where k can be
considered constant. For 0- and 1-NTs, we obtain time O(nm).

Table 1 compares the complexity and expressivity of our method to related
work. Understanding and relating the expressivity of different approaches is non-
trivial. In the case of PathNet, its expressivity concerning the WL-hierarchy
remains unexplored. PathNN-SP+ has been shown to be more expressive than 1-
WL. While it is claimed that RFGNNs are maximally expressive, the proof claim-
ing higher expressivity on node level as presented in Chen et al. [9, Lemma 7]
is not correct (rather it is incomparable on node level), which was shown in
Bause et al. [6]. Consequently, it remains uncertain, whether RFGNN is strictly
more expressive on graph level. PathNN-SP [27] states that it can only disam-
biguate graphs at least as well as 1-WL and is not strictly more powerful. Due
to sampling, isomorphic graphs could be mapped to different representations,
indicating that it is not a graph invariant.

RFGNN and PathNN-SP+ involve enumerating all possible paths and all
shortest paths, respectively. Our approach avoids this redundancy by not explic-
itly building NTs, but instead generate DAGs, resulting in a much more com-
pact representation (refer to Bause et al. [7] for an algorithm on how to generate
compact DAGs). We investigate the theoretical connection of our method and
RFGNN in terms of relative influence, and show that 0- and 1-NTs can address
the oversquashing problem more effectively.
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Oversquashing. Several authors [8,9,14,34,37] developed and refined tech-
niques to measure the influence of a vertex v with initial vertex feature xv on
the output h(l)

u of a vertex u after layer l by the Jacobian ∂h(l)
u /∂xv. Following

Chen et al. [9, Lemma 3], the relative influence of a vertex v on a vertex u in an
MPNN is

I(v, u) = E

(
∂h(l)

u /∂xv∑
w∈V ∂h(l)

u /∂xw

)
=

[Âl]u,v∑
w∈V [Âl]u,w

,

where Â = A+ I is the adjacency matrix of G with added self-loops, and [Âl]u,v

is the number of walks of length l from u to v (and vice versa) in G with added
self-loops. Oversquashing occurs when I(v, u) becomes small, indicating that
only a small fraction of walks of length up to l ending at u start at v.

This idea can easily be linked to the trees underlying our work. Consider the
unfolding tree Fu

l of u with height l. It follows from its construction that there is
a bijection between walks of length at most l ending at u in G and paths in Fu

l

from some node to the root (see [18] for details on unfolding trees and walks).
Therefore, pruning the unfolding tree has an effect on walk counts and, thus, on
the relative influence. Consider the example in Fig. 1 and let u be the red vertex
(upper left) and v the yellow vertex (lower right). We obtain a relative influence
of IMPNN(v, u) = 1

8 for unfolding trees, and I0NT(v, u) = 1
4 for 0-NTs, showing

that NTs have the potential to reduce oversquashing.
We formally show that our method is less susceptible to oversquashing than

MPNNs and RFGNN [9]. Consider a vertex v and a vertex u with shortest-path
distance of l. To pass information from v to u, at least l layers are required.
Comparing the unfolding tree underlying MPNNs, the 0- and 1-NT, and the
TPT used in RFGNN, all of height l, reveals that the vertex v occurs in the last
level only, i.e., as a leaf of the tree, and the number of occurrences of v is equal in
all trees, since all walks and simple paths of length l reaching v are shortest paths.
Hence, the numerator of the relative influence is equal for all methods. However,
since 0- and 1-NTs are subtrees of unfolding trees, and 0-NTs/1-NTs are subtrees
of TPTs (they contain only shortest paths/some simple paths, instead of all
simple paths), the total number of nodes in the trees, i.e., walks contributing to
the denominator of the relevant information can be compared, obtaining

IMPNN(v, u) ≤ ITPT(v, u) ≤ I1NT(v, u) ≤ I0NT(v, u).

This theoretical analysis shows that our proposed method offers advantages
in mitigating oversquashing, leveraging the formalization developed in recent
papers. Additionally, it establishes a theoretical connection between the pro-
posed approach and RFGNN [9], highlighting that our method more effectively
addresses the oversquashing problem.

To summarize, our method is the first to address both types of redundancy in
GNNs, informational and computational redundancy, with polynomial running
time, and can mitigate oversquashing better than comparable approaches.
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5 Experimental Evaluation

We assess the performance of DAG-MLP with k-NTs on a range of synthetic
[1,29] and real-world datasets [10,12,25,28,32].3

Experimental Setup. For synthetic datasets, we determine the number of lay-
ers in DAG-MLP based on the average graph diameter, ensuring effective aggre-
gation during message propagation. The embeddings at each layer are obtained
using readouts, concatenated, and then fed through two learnable linear layers
for prediction. For TUDataset, we use the 10-fold splits proposed by Errica et
al. [11], allowing a grid search for optimal hyper-parameters. The architecture for
combined heights involves using each “readouti” to extract the embeddings for
each layer, with mean of the average-pooled embeddings being passed to a final
MLP layer responsible for prediction. For the fixed single-height architecture,
only the last readout is used, pooled, and passed to the final MLP layer.

Graph Classification. Table 2 presents the results on synthetic expressivity
datasets. Our hypothesis that NTs are more expressive than GIN on graph level
is experimentally validated, but a theoretical proof remains future work.

In Table 3, we investigate the impact of the parameter k and the number
of layers l on the accuracy for the EXP-Class dataset. Cases where k > l can
be disregarded, as the computation for NTs remains the same as when k = l.
Empirically, 0- and 1-NTs yield the highest accuracy. This observation aligns
with our discussions on expressivity in Sect. 4.4. The decrease in accuracy with
increasing k indicates that information redundancy leads to oversquashing. We
investigate this theoretically in Sect. 4.5.

For TUDataset, we report the accuracy compared to related work in Table 4.
We report only the best results for the different parameter combinations reported
in Michel et al. [27], and the best result for our different combine methods. We
group the methods by their time complexity. Note that, while PathNN performs
well on ENZYMES and PROTEINS, the time complexity of this method is
exponential. Therefore, we also highlight the best method with polynomial time
complexity. For IMDB-B and IMDB-M, which have small diameters, k-NTs out-
perform all other methods. For ENZYMES a variant of our approach achieves
the best result among the approaches with non-exponential time complexity, and
k-NTs lead to a significant improvement over GIN.

Node Classification. We investigate the performance of our approach on node
classification datasets. These datasets differ regarding their homophily ratio,
i.e., the fraction of edges in a graph that connect vertices with the same class
label [40]. Heterophily tasks are particularly challenging for standard GNNs [40]
as they require capturing the structure of neighborhoods instead of “averaging”
over the neighboring features. In Table 5 we present results from Giraldo et
3 The implementation is available at github.com/samirmoustafa/k-redundancyGNNs.

https://github.com/SamirMoustafa/k-RedundancyGNNs/
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Table 2. Average classification accuracy for EXP-Class and CSL across k-folds (4-
folds and 5-folds), and the number of indistinguishable pairs of graphs in EXP-Iso.
Best results are highlighted in gray, best results from methods with polynomial time
complexity are highlighted in bold.

Model EXP-Class ↑ EXP-Iso ↓ CSL ↑
GIN [36] 50.0 ± 0.0 600 10.0 ± 0.0

3WLGNN [24] 100.0 ± 0.0 0 97.8 ± 10.9

PathNN-SP+ [27] 100.0 ± 0.0 0 100.0 ± 0.0

PathNN-AP [27] 100.0 ± 0.0 0 100.0 ± 0.0

DAG-MLP (0-NTs) 100.0 ± 0.0 0 100.0 ± 0.0

DAG-MLP (1-NTs) 100.0 ± 0.0 0 100.0 ± 0.0

Table 3. Average accuracy for DAG-MLP using 4-fold cross-validation on EXP-
Class [1], evaluated with varying number of layers.

k-NTs 1 layer 2 layers 3 layers 4 layers 5 layers 6 layers

0-NTs 51.1 ± 1.6 57.5 ± 6.6 91.7 ± 11.6 99.7 ± 0.3 100.0 ± 0.0 100.0 ± 0.0

1-NTs 50.1 ± 0.2 58.9 ± 4.6 59.4 ± 5.7 99.6 ± 0.5 99.9 ± 0.2 100.0 ± 0.0

2-NTs – 52.6 ± 3.4 54.9 ± 5.3 52.4 ± 3.8 97.6 ± 1.9 100.0 ± 0.0

3-NTs – – 56.2 ± 5.7 51.1 ± 1.9 52.4 ± 4.1 87.1 ± 21.4

4-NTs – – – 50.1 ± 0.2 50.6 ± 1.0 50.4 ± 0.7

5-NTs – – – – 50.4 ± 0.7 50.0 ± 0.0

6-NTs – – – – – 53.2 ± 5.2

al. [15] including the state-of-the-art graph rewiring technique SJLR combined
with SGC and GCN, which performs best in the evaluation. We also performed
experiments with GIN and DAG-MLP, using the same data splits as Giraldo et
al. [15] to ensure a fair comparison. We report the best results for l layers with
l ∈ {2, 3, 4} and four different combine methods for GIN and DAG-MLP.

DAG-MLP outperforms GIN on heterophily datasets (those with low
homophily ratio), while GIN performs better on homophily ones, indicating that
neighborhood trees can capture the relevant neighborhood structure more accu-
rately than unfolding trees used by GIN. Additionally, our method outperforms
SJLR on heterophily datasets Texas and Wisconsin by a large margin.

6 Conclusion

We introduce a neural tree canonization technique and combine it with neigh-
borhood trees, which are pruned versions of unfolding trees used by standard
MPNNs. By merging trees in a DAG, we create compact representations that
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Table 4. Classification accuracy (± standard deviation) over 10-fold cross-validation
on the datasets from TUDataset, taken from Michel et al. [27]. Best results highlighted
in gray, best results from methods with polynomial time complexity highlighted in
bold. “-”: not applicable, “NA”: not available.

Model IMDB-B IMDB-M ENZYMES PROTEINS

L
in

ea
r

GIN [36] 71.2 ± 3.9 48.5 ± 3.3 59.6 ± 4.5 73.3 ± 4.0

GAT [35] 69.2 ± 4.8 48.2 ± 4.9 49.5 ± 8.9 70.9 ± 2.7

SPN (l = 1) [2] NA NA 67.5 ± 5.5 71.0 ± 3.7

SPN (l = 5) [2] NA NA 69.4 ± 6.2 74.2 ± 2.7

E
x
p

PathNet [33] 70.4 ± 3.8 49.1 ± 3.6 69.3 ± 5.4 70.5 ± 3.9

PathNN-P [27] 72.6 ± 3.3 50.8 ± 4.5 73.0 ± 5.2 75.2 ± 3.9

PathNN-SP+ [27] - - 70.4 ± 3.1 73.2 ± 3.3

O
u
rs DAG-MLP (0-NTs) 72.9 ± 5.0 50.2 ± 3.2 67.9 ± 5.3 70.1 ± 1.7

DAG-MLP (1-NTs) 72.4 ± 3.8 51.3 ± 4.4 70.6 ± 5.5 70.2 ± 3.4

Table 5. Classification accuracy (± standard deviation) on node classification tasks
(GCN, SJLR-GCN, SGC and SJLR-GCN taken from Giraldo et al. [15]).

Model Texas Wisconsin Cornell Cora CiteSeer PubMed

Homophily ratio 0.11 0.21 0.3 0.8 0.74 0.8

GCN 58.05 ± 0.9 52.10 ± 0.9 67.34 ± 1.5 81.81 ± 0.2 68.35 ± 0.3 78.25 ± 0.3

SJLR-GCN 60.13 ± 0.8 55.16 ± 0.9 71.75 ± 1.5 81.95 ± 0.2 69.50 ± 0.3 78.60 ± 0.3

SGC 56.69 ± 1.7 47.90 ± 1.7 53.40 ± 2.1 76.90 ± 1.3 67.45 ± 0.8 71.79 ± 2.1

SJLR-SGC 58.40 ± 1.4 55.42 ± 0.9 67.37 ± 1.6 81.24 ± 0.7 68.39 ± 0.6 76.28 ± 0.9

GIN 73.78 ± 6.0 71.76 ± 5.1 60.81 ± 8.5 76.76 ± 1.4 64.49 ± 1.5 76.46 ± 1.1

DAG-MLP (0-NTs) 85.68 ± 4.8 81.35 ± 4.1 79.02 ± 6.8 74.01 ± 2.0 60.55 ± 3.6 75.33 ± 1.1

DAG-MLP (1-NTs) 80.54 ± 6.0 81.62 ± 3.4 79.41 ± 4.6 74.54 ± 1.4 61.09 ± 1.5 75.53 ± 1.1

serve as the foundation for our neural architecture termed DAG-MLP. It inherits
the advantageous properties of the GIN architecture, while being more expres-
sive than 1-WL on many graphs. Notably, our method is only less expressive
on node level for specific examples. Our work contributes general techniques for
constructing compact computation DAGs for tree structures that encode node
neighborhoods. This exploration reveals a complex interplay between informa-
tion redundancy, computational redundancy, and expressivity. The delicate bal-
ance of these factors is an avenue for future work.

Acknowledgments. We would like to thank Christian Permann for his contribu-
tion to the conception of k-redundant neighborhood trees and their efficient genera-
tion. This work was supported by the Vienna Science and Technology Fund (WWTF)
[10.47379/VRG19009]. The computational results presented have been achieved in part
using the Vienna Scientific Cluster (VSC).



On the Two Sides of Redundancy in Graph Neural Networks 387

References

1. Abboud, R., Ceylan, I.I., Grohe, M., Lukasiewicz, T.: The surprising power of
graph neural networks with random node initialization. In: IJCAI (2021)
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35. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph
attention networks. In: ICLR (2018)

36. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks?
In: ICLR (2019)

37. Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K., Jegelka, S.: Representation
learning on graphs with jumping knowledge networks. In: ICML (2018)

38. Yang, Y., Wang, X., Song, M., Yuan, J., Tao, D.: SPAGAN: shortest path graph
attention network. In: IJCAI (2019)

39. You, J., Selman, J.M.G., Ying, R., Leskovec, J.: Identity-aware graph neural net-
works. In: AAAI (2021)

40. Zhu, J., Yan, Y., Zhao, L., Heimann, M., Akoglu, L., Koutra, D.: Beyond homophily
in graph neural networks: current limitations and effective designs. In: NeurIPS
(2020)

https://doi.org/10.1007/978-3-540-77978-0


Policy Control with Delayed, Aggregate,
and Anonymous Feedback

Guilherme Dinis Junior(B) , Sindri Magnússon , and Jaakko Hollmén
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Abstract. Reinforcement learning algorithms have a dependency on
observing rewards for actions taken. The relaxed setting of having fully
observable rewards, however, can be infeasible in certain scenarios, due
to either cost or the nature of the problem. Of specific interest here is the
challenge of learning a policy when rewards are delayed, aggregated, and
anonymous (DAAF). A problem which has been addressed in bandits lit-
erature and, to the best of our knowledge, to a lesser extent in the more
general reinforcement learning (RL) setting. We introduce a novel for-
mulation that mirrors scenarios encountered in real-world applications,
characterized by intermittent and aggregated reward observations. To
address these constraints, we develop four new algorithms: one employs
least squares for true reward estimation; two and three adapt Q-learning
and SARSA, to deal with our unique setting; and the fourth leverages
a policy with options framework. Through a thorough and methodical
experimental analysis, we compare these methodologies, demonstrating
that three of them can approximate policies nearly as effectively as those
derived from complete information scenarios, albeit with minimal perfor-
mance degradation due to informational constraints. Our findings pave
the way for more robust RL applications in environments with limited
reward feedback.

Keywords: control · reinforcement learning · delayed feedback ·
aggregate feedback

1 Introduction

Sequential decision making problems exist in many domains, from manufacturing
to networks, with applications ranging from small to large scale settings. One
of the most common formulations of sequential decision making problems is
reinforcement learning (RL). In such formulations, we have an agent making
decisions in order to achieve an objective that has been encoded as a reward
signal. RL has been widely adopted in industrial applications. In the energy
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sector, for instance, it has been used to control the temperature in buildings
[18,30], as well as for dynamic pricing [7] and demand management of electrical
grids [13]. In network systems, it has been used to dynamically manage load for
both network efficiency [32] and throughput [9]. Recent advances have garnered
further interest in RL, resulting in its deployment in areas such as ride ordering
and car pooling [12,15,27,29], recommender systems [4,5], and to generate feeds
of digital content [31,33].

While early RL algorithms for learning and evaluating policies rely on per-
fect observability of the interaction of a policy with the environment, many real
world applications have constraints. These constraints limit the signal available
to agents, which can make learning difficult, if not impossible, without compen-
sating strategies. As a result, problems with limited feedback settings have been
studied for the past few decades. In literature, the term delay in relation to feed-
back can carry different meanings. It can refer to rewards observed at a future
time, though still clearly connected to a specific decision. It can also refer to
feedback that is distributed in time, with partial observations at each time step.
In this paper, we focus on a problem that lies between the ideal setting of reward
signals available at each step and those where reward signals are only available
at the end. The problem is one of delayed rewards, observed on aggregate for
several actions and thus anonymous with respect to each specific action since it
is unclear how much each action contributed to the observed feedback.

In industrial settings, this scenario is common for instance in decision or
recommender systems that rely on third party or external signals for attribu-
tion, such as marketing and market-places. In the latter case, for instance, there
is often aggregate data from sellers on sales, which can be tied to a user but
not a specific impression. While these problems have been studied extensively
for standard click-based optimisation algorithms, they have been less investi-
gated for sequential decision making settings, where there is a time dependency
between actions. Our work is a step in that direction.

Delayed, aggregated and anonymous feedback (DAAF) is presented in [19]
for multi-armed bandits, which are a special case of RL where there is only
one state. In this paper, we expand the study of DAAF in three ways. First, we
formulate the problem for the more general RL setting, and study policy control.
Second, we draw a connection between Non-markovian decision processes and
DAAF. Third and finally, we develop new methods for learning policies more
efficiently under constrained feedback, and demonstrate their efficacy through
extensive empirical experiments on different environments, with varying degrees
of difficulty. The main research questions we raise are RQ1 what impact does
delayed, aggregate and anonymous feedback have on policy control? and RQ2
how might we develop methods for sample efficient policy control under DAAF?

2 Related Work

We discuss the four areas of research most related to our work: adversarial
markov decision process (MDP)s, inverse reinforcement learning (IRL), credit
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assignment, and non-Markovian rewards. We start with adversarial MDPs
[11,16], which study environments where rewards are observed based on an
unknown distribution of time, set by an adversarial agent. The defining trait
of these MDPs is that rewards are delayed, but observable and tied to a specific
state-action. The rewards in our problem are observed with either a known or
unknown delay, yet they are also aggregated, so that one cannot discern the
contribution of each state-action.

For the second area, we have inverse reinforcement learning, the subject of
which is deriving a reward function from observations. It is typically employed
to extract knowledge from experts to then design RL agents, a task known
as learning from imitation. In [20], this problem is formulated as a supervised
learning task, where feature maps representing state-action pairs are used to
learn rewards that can maximize the similarity of a learned policy to that of an
expert policy or trajectory. Later works have extended this problem, with either
novel formulations or new conditions. Both [22] and [8] sought to incorporate
expert feedback on trajectories to constrain the learned reward functions and
policies, the former with a binary success and failure labeling, and the latter
with scoring. Others, such as [6] and [21], expanded IRL to MDPs with partially
observable and hidden states, respectively, allowing for imitation learning under
limited observations of state. Unlike the traditional IRL setting, we consider
problems where the observation of rewards is limited, instead of fully absent,
and the observed rewards are delayed, aggregated and anonymous. Our approach
differs in that we seek to leverage the rewards available and their structure to
constrain the reward function we estimate.

For the third area, credit assignment, we can draw a parallel between our
work and that in [1]. The challenge they solve is one of single-step structural
credit attribution. Given a multi-agent system, at every step all agents make a
decision, and the environment gives a global signal in return. The task is then
to determine how each agent contributed to the global signal. To solve that, the
authors use agent-centric utility functions. Our setting has a time-domain credit
attribution challenge for different state-actions, instead; and the equivalent of
multi-agent utility functions in our setting are the rewards for each state-action,
and that forms the basis of our reward recovery approach.

Finally, there are studies on non-Markovian rewards, which span a wide range
of topics. For instance, the authors in [26] address the problem of maximizing
rewards when an agent can actively choose to observe the reward for an action at
a cost. Their proposed solution relies on estimating the gain of a reward obser-
vation, and pay the cost whenever the gain is deemed valuable. Our problem is
distinct from theirs in that the agent in our setting cannot decide when to observe
a reward, because this is controlled by a known or unknown random process. In
[2], the authors address the problem of sample efficiency when learning policies
in environments where rewards are only observed at the end of an episode, i.e.
sparse rewards. Their solution relies on a theorem built on the idea that learning
can be accelerated by re-distributing rewards to earlier time-steps, and learn-
ing a return-equivalent policy afterwards. The distinction with our work is that



392 G. D. Junior et al.

we focus on a different setting where there are intermittent aggregate rewards
rather than sparse rewards; and furthermore, their experiments rely on function
approximation with deep learning, whilst we aim to study the problem in more
simplistic conditions with tabular RL and derive insights on the impact learning
the true rewards. In contrast, [10] presents a closer setting of rewards observed in
intervals that are sampled uniformly at random from a range of values. Though,
their study is centered on policy gradient methods, whilst we address the tabular
case.

Turning to theory, a framework that describes a generalization that can be
leveraged in our setting is introduced in [25]. The authors present MDPs with
options, which are semi-MDPs. Options are actions that last for more than one
time step. The reward for an option is computed when an option ends and
another starts, and this can be after a set of known or unknown steps. Since in
our setting a policy can make several decisions before observing a reward, we can
recast DAAF environments as trajectories of options policies, where the options
are composite actions (e.g. a set of actions taken in a specific order). With this
lens, we leverage existing theory on MDPs with options to study control for our
setting.

Our problem is similar to that presented in [3], where delayed, aggregated and
anonymous feedback (DAAF) is studied the bandit setting. For control problems,
the authors do so by playing the same action repeatedly, and estimate its average
based on the number of steps. To the best of our knowledge, our work is the first
to extend the problem of policy control with DAAF to the tabular RL setting,
where there are state transitions.

3 Problem Formulation

3.1 Preliminaries

We consider the typical reinforcement learning (RL) setting, where an agent
wants to learn a policy to maximize rewards in an unknown environment. The
environment is modeled as an MDP with a set of states S, actions A, transition
dynamic T(S,A, S′) and rewards (S,A) → R. A state St encapsulates informa-
tion about the environment at time step t. An action At is chosen by the agent
given the state π(At | St) - which is a density function indicating the probability
of action A given that we are in state S - upon which the environment tran-
sitions into a new state St+1 and the agent receives a reward Rt+1. Thus the
agent follows the learning trajectory

S0, A0, R1, S1, A1, R2, ...., ST−1, AT−1, RT

where T is the length of the episode, which is finite for episodic tasks and infinite
for continuing tasks. The goal of the agent is to maximize future cumulative
rewards, i.e. the sum of rewards from future states

∑T
t=0 γtRt+1, where γ ∈ (0, 1]

is a discount factor that can be chosen to favor near-term rewards (γ < 1) or
give all rewards equal weight (γ = 1).
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A policy π has a state-value or action-value function, represented as Vπ(S)
and Qπ(S,A), respectively. The state-value function Vπ(S) tells us the maximum
returns from being in state S and using π to make decisions starting from that
state. The action-value function Qπ(S,A) tells us the maximum returns from
being in state S, taking a specific action A, and from there using the policy π
to make decisions. One of the fundamental problems in RL is to learn a policy
that has the highest return amongst all policies. This policy is called an optimal
policy, π∗, and it has value functions V ∗

π (S) and Q∗
π(S,A).

3.2 Policy Control

Algorithms to learn policies that act optimally in an environment were devel-
oped as early as the late nineteen eighties. Temporal difference (TD) methods
presented in [23] and Q-learning [28] are two well known algorithms. Some of
these algorithms follow the off-policy paradigm, where the agent learns using
trajectory data generated by a different policy. And others follow the on-policy
paradigm, where the agent interacts with an environment, either directly or
through a simulator, to generate trajectory data. What they all have in com-
mon is the use rewards observed for actions chosen by a policy to learn. For an
overview of policy control algorithms, we refer the reader to [24].

3.3 Delayed, Aggregate, Anonymous Feedback

In this paper, we study policy control when rewards are observed with some
delay. Additionally, they are observed on aggregate, in that the rewards observed
at time t correspond to the sum of rewards for the last P steps. This aggregation
makes the contribution of each state-action in the feedback window anonymous.
In our experiments, we make P a constant, but our solutions easily extend to P
coming from any discrete and bounded distribution p ∼ τ(t). Mathematically,
with a constant P , if we denote by Ro

t the reward signal observed by the agent
at time t then we have:

Ro
t =

{∑t+P
i=t−P+1 Ri if (t mod P = 0)

∅ otherwise.
(1)

Here ∅ denotes the empty reward, meaning that the agent receives no reward
signal. Whenever the feedback is observed the value of the equation is equivalent
to:

Ro
t =

t+P∑

i=t−P+1

R(s, a)i. (2)

One known method for policy control is SARSA [24], and it uses the update
rule:

Q(S,A) ← Q(S,A) + α ∗ (R + γ ∗ Q(S′, A′) − Q(S,A)) (3)

Q-learning has a similar update rule to SARSA, with the distinction that
the value used for the next state-action pair is argmaxaQ(S′, A′). Without a



394 G. D. Junior et al.

reward, the update function of the algorithms cannot be executed. In the case of
DAAF, only a fraction of transition steps have an observed reward value - albeit,
an aggregate one. This creates two issues: (1) sample inefficiency and (2) biased
value updates. The first issue, sample inefficiency, is due to the fact that many
transitions can be ignored, and the fraction of transitions ignored is proportional
to the reward period. For example, if the reward period is fixed as P = 5, then
we would observe an aggregate reward on every fifth step, and update the value
function estimate while ignoring the previous four steps. This would effectively
mean we would reject 80% of the data in this case. More generally, P−1

P transi-
tions are ignored. The second issue, though, can have more dire consequences.
As we increase the reward period P , we reduce data efficiency but also bias the
value of the true state-action rewards, since the observed reward is compounded
from multiple state transitions. We study these issues, through extensive empir-
ical experiments where we simulate DAAF. To overcome the aforementioned
issues created with DAAF, we propose four approaches. The first employs least
squares for true reward estimation; two and three adapt Q-learning and SARSA,
to deal with our unique setting; and the fourth leverages a policy with options
framework. We describe each approach in the coming sections.

4 Algorithms Development

Linear Estimation of State-Action Rewards. The first method we propose
is to attempt to recover the underlying reward function with data. Doing so
gives us a reward model, R̂(s, a), which we can use with standard policy control
methods such as SARSA, with the learned reward:

Q(S,A) ← Q(S,A) + α ∗ (R̂ + γ ∗ Q(S′, A′) − Q(S,A)) (4)

In principle, this approach enables us to use any of the pre-existing policy
control algorithms, and the results hinge on the bias of our reward model. For
problems with deterministic dynamics, we present linear estimation of state-
action rewards (LEAST) - an algorithm for recovering the reward function. With
the learned rewards, we can replace both the aggregate anonymous and missing
rewards in a trajectory with their estimate, R̂t.

To understand how LEAST works, we first take note of the structure of the
problem. Say the aggregated anonymous rewards are observed at fixed time step
intervals, P . We denote by R(s, a) the average reward from the state-action pair
(s, a). Then our goal is to use the data observed from the aggregate rewards
to estimate R(s, a) for all pairs (s, a). This is naturally formulated as a least-
squares problem. Mathematically, we can denote by the vector of R(s, a) for all
pairs (s, a), i.e., x = [R(s, a)](s,a) with (s, a) ∈ S × A.

We can define a matrix B ∈ R
N×(|S|∗|A|) and vector c ∈ R

N such that our
estimated reward is the solution to the least squares problem [14]:

min
x

|| Bx − c ||22 (5)
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Each row in the matrix B is constructed from a single reward window P , and
each column corresponds to the number of observations of state-action pairs
within that same window. Our factors to be learned, x, are the average rewards
for each state-action pair that when multiplied by a row i in B yield ci, the
DAAF observed in the window. To illustrate this structure, assume we have an
MDP with two states and one action, and a reward of 10 for every action in
any state. Assuming our reward period P = 2, and that over two transitions
we observe both states and the same action, an entry row for our regression
estimation would be Bi = [1, 1] with each 1 indicating a single observation for
both (s = 0, a = 0) and (s = 1, a = 0); and ci = 20 the undiscounted DAAF
observed.

Our formulation is similar to that described by the authors in [20] for the
task of learning a reward function for a policy that mimics some trajectory data
through supervised learning. When the approximation of R(s, a) is unbiased,
LEAST can provide a more reliable observation of returns to estimate Vπ(s) or
Qπ(s, a). Note that this formulation also works on problems where the reward
period is sampled from any discrete and bounded distribution p ∼ τ(t) within
an episode, i.e. the delay changes in each window.

Impute Missing Rewards. The second method, as the name suggests, is an
approach whereby we simply make the assumption that an absent reward cor-
responds to a reward value of zero. The intuition is that because the observed
feedback is aggregate, it is still worth updating the steps in-between feedback
steps with values that do not alter the episodic return (zero being a base assump-
tion) to allow for more frequent TD updates. Note that the rewards used for
estimating Qπ(s, a) can still differ from the true rewards. However, this method
requires no computation, and the returns observed from a given starting state
are closer to the true returns when the discount factor γ = 1, matching exactly
when the episode ends with the observation of aggregate feedback. Otherwise,
the learned Qπ(s, a) can be biased.

N-Step TD with Selective Updates. As a third method, we introduce a
modification to the standard n-step SARSA algorithm. The change we make is
to only update steps that lie t − n steps before the current time step t when
t is a step on which we observe aggregate feedback, i.e. (t mod P ) = 0. This
variant is called nTD-SU. Following the update rule for n-step SARSA, these
updates are expected to be unbiased when γ = 1; however, skipping updating
other states should make the variant less sample efficient. We do this to simulate
how one would realistically use aggregate feedback with n-step methods.

MDP with Options. Options, as described in [25], are action choices that
last longer than one step. Each option can be comprised of one or more actions,
called primitive actions, which can be shared amongst options, e.g. going up or
down, picking up an object or dropping it. More formally, an option is comprised
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of a triplet < I, π, β >, where I is a set initiation states where the option can
be chosen; π is a policy that chooses primitive actions; and β is a stochastic
termination function, and when it returns 1, we terminate the current option and
choose another. For our formulation, we assume every state is a valid initiation
state, and termination happens P steps after the option starts. Since an option
can take several primitive actions until it terminates, the reward in options is
the sum of discounted rewards for the duration of the option:

ro
s = E{rt+1 + γrt+2 + ... + γk−1rt+k | ε(o, s, t)} (6)

where ε(o, s, t) denotes the event that option o is initiated in state s at time t.
And the transition function similarly follows:

po
ss′ =

∞∑

k=1

p(s
′
, k)γk (7)

where p(s
′
, k) is the probability the option ends at state s

′
after k steps, and γk

factors in the transition delay.
Upon close inspection, Eq. 6 has some striking similarity to the aggregate

reward definition in Eq. 2. In fact, if we consider a sequence of actions, we get an
MDP with options where the options are composite actions. The distinction lies
in that options assume rewards are observed per primitive action step, and can
thus be discounted accordingly. Since with DAAF the only reward we observe is
aggregate with respect to the a sequence of actions, this reward corresponds to
the reward for an option specified in Eq. 6, when γ = 1. It follows that we can
learn a policy that uses sequences of actions as options in undiscounted settings.

The authors in [25] suggest that for episodic tasks, if the goal of the under-
lying MDP coincides with the terminal state of an option, there are advantages
to using options, but otherwise, it can be sub-optimal. We extend this analysis,
with an observation about the dynamics. Let us consider an environment with
DAAF, where delays are fixed as a constant P , with P > 1. To observe feedback
for options, we have to use options that last for exactly P steps. Assuming we
have deterministic environments, there is no guarantee that episodic termina-
tion will coincide with the observation of a aggregate reward. For example, if
the options are of length P, but the episode ends one step after an option starts.
Such a condition can prevent a policy from learning how to act in the final stages
of the environment. Turning to environments with stochastic dynamics, can we
fair any better? On the one hand, non-deterministic dynamics may allow options
to coincide with episodic termination in some cases. However, they also make it
difficult to learn the best option in a state because the state where the option
terminates and its aggregate reward would vary in proportion to the number of
actions and reward period. Consider a maze without obstacles where the agent
has to navigate to an exit by moving up, down, left or right. If every action has
a ε probability moving the agent in its opposite direction, then the larger the
reward period P gets, the more possible ending states and rewards each option
has. While it may be possible to learn an optimal policy that is as good as
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a primitive actions policy, under certain conditions, the process would be less
efficient with respect to data samples. Thus, our expectation is that addressing
problems with DAAF using options policies can lead to sub-optimal solutions,
but adequate results under the specific conditions described beforehand.

5 Experiments

For our experiments, we evaluate impute missing rewards (IMR), LEAST, and
options policies of composite actions on two single-step TD algorithms: SARSA
and Q-learning. For n-step algorithms, we evaluate IMR, LEAST and n-step-SU
on n-step SARSA. The reason for this is that the parameter n in n-step SARSA
defines how many steps of look ahead are used to update the value of a state-
action, and only options policies with option of length n would have updates,
which in turn would reduce the problem to standard SARSA on an options
trajectory that we already evaluate.

For each method and algorithm combination, we vary the discount (γ ∈
{1, 0.99}), the reward period (P ∈ {2, 4, 6, 8}), and use exploration rate of ε =
20%, and a learning rate of α = 0.1. We test each configuration by running
policy learning for 2500 episodes, 20 times with different seeds. We note that for
LEAST, we wait until we observe every state-action combination to get a full
ranked matrix B and estimate the rewards. Thus, before we have the reward
estimates, we use IMR and switch to the predicted rewards once available. The
samples used to learn the reward for LEAST are factored into our evaluation,
by being part of the same 2500 episodes every method gets. Lastly, due to their
memory requirements, we could only run options policies experiments with P = 6
as a maximum, but provide results of larger values of P for the other methods.1

The code for our experiments, including notebooks with analyses of the results,
are available in github2.

Baselines. For the one step TD methods SARSA and Q-learning, our baselines
are (1) to drop missing rewards (DMR), since we cannot perform TD updates
and (2) to use options policies; and for multi step TD method n-step SARSA,
we use nTD-SU as the baseline. Under scenarios with undiscounted reward, i.e.
γ = 1, both the options policy and n-TD-SU are expected to yield unbiased
updates. Additionally, in order to understand the gap in performance for each
our proposed methods, we carry out on-policy learning with rewards observed
at each step for each environment and policy learning algorithm. This serves as
a benchmark and oracle.

1 An environment where P = 8, |S| = 30 and |A| = 6 yields a Q-table with 50M values
for an options policy.

2 https://github.com/dsv-data-science/rl-daaf/tree/ec21d0c9cd581d2e641ba20e138f7
a621d1ffc06.

https://github.com/dsv-data-science/rl-daaf/tree/ec21d0c9cd581d2e641ba20e138f7a621d1ffc06
https://github.com/dsv-data-science/rl-daaf/tree/ec21d0c9cd581d2e641ba20e138f7a621d1ffc06
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Environments. We use a set of environments to represent a range of tasks
with different challenges, and with commonalities with real world applications
including from navigation, discovery, sequence ordering, and item sorting.

Grid World - an environment where the goal is to navigate from a starting
position to an exit, avoiding falling into cliffs; from Gymnasium3; Ice World - an
environment similar to Grid World, with the distinction that there are holes in
the ice, and falling into one ends the game. An agent fails to reach their goal in
the episode in such case. There are two configurations: a 4x4 and 8x8 grid; ABC
Sequence - an environment where the goal is to select a set of actions in order,
each corresponding to the correct next step in the sequence; this environment
has configurable complexity, since the number of actions grows with the number
of states. A parameter n defines the number of states and actions; RedGreen
- an environment where the goal is to choose one of three options (red, green,
wait) correctly at each step of a given sequence. We use a sequence of length
n = 9 (red, green, wait, green, red, red, green, wait); Tower of Hanoi - given
n disks stacked in one of three pegs, from smallest at the top to the largest at
the bottom, the goal is to move all disks from the leftmost peg to the rightmost
peg, whilst never placing a large disk on top of a smaller one. More details are
provided in the Appendix.

5.1 Returns

Our first results are the return curves for select environments, due to space con-
straints. In Fig. 1 we have plots for Q-learning and in Fig. 2 for n-step SARSA
on Grid World, Ice World (8x8), and Hanoi Tower. The results for SARSA
are similar to Q-learning. Starting with Fig. 1, the plots show how the per-
formance of options policies degrade as the reward period P increases across
the three environments. This pattern occurs in every environment tested. With
more and lengthier options (actions) due to longer reward delay, signal prop-
agation becomes more inefficient. Generally, DMR achieves better results than
the options policy, while IMR and LEAST have better results than both. Note
that in Ice World, every method we test degrades in performance as the reward
period increases, but they maintain their performance rank (IMR/LEAST >
DMR > Options).

Turning to n-step SARSA in Fig. 2, we can observe the delay in learning for
nTD-SU compared to the both IMR and LEAST. In the Ice World results, there
is higher variance in the returns for every method, including the full rewards
policies, due to the nature of the problem, whereby several terminal states with
different returns exist. And in some of the GridWorld configurations, LEAST had
worst returns in some of the runs. This occurred in cases where the estimated
reward was incorrect for certain state-actions - in particular for state-actions
near the goal, leading to delayed termination.

3 https://gymnasium.farama.org/.

https://gymnasium.farama.org/
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5.2 Sample Efficacy

To measure sample efficacy, we compute a returns ratio using a policy learned
with full rewards (FR) as the oracle. First, we take the average return over all
episodes at the final episode K, ḠK = 1

K

∑K
k=1 Gk, where Gk is the return

for an episode k ∈ [1...K]. We then average the value over the 20 runs for each
configuration, yielding μḠK

Finally, we compute a returns ratio with the formula:

μḠm
K

− μḠFR
K

|μḠFR
K

| (8)

Returns ratio measures the percentage difference in average return between
the policy trained with method m compared to the full rewards policy, as a ratio.
A positive number indicates the method performs better than a full rewards
policy, and a negative value indicates the opposite. The results are given in
Fig. 3a and 3b, for one-step and n-step algorithms respectively. For one step

Fig. 1. Return plots for on-policy control using Q-learning. The solid blue line repre-
sents returns for policies learned with full rewards, while the others are the methods
under comparison. Each line is the average and standard deviation of 20 runs. Note:
results for options policies are limited to P = 6 due to its memory requirements. (Color
figure online)
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Fig. 2. Return plots for on-policy control using n-step SARSA. The solid blue line rep-
resents returns for policies learned with full rewards, while the others are the methods
under comparison. Each line is the average and standard deviation of 20 runs.

methods, the options policy has worse returns ratio than IMR and LEAST for
every environment, with returns worsening as the delay increases. In the majority
of cases, LEAST either has the best returns ratio or it performs on par with IMR.
The exception is the environment Ice World (4x4), where DMR has the best
returns ratio when P > 2. The pattern with n-step SARSA is similar for most
environments, with nTD-SU having the worst returns ratio. Here, the exceptions
are Grid World and Ice World (4x4) & (8x8) where IMR has a better returns
ratio than LEAST.

5.3 Stochastic Similarity to Full Rewards Policies

To study the difference in returns between the methods under comparison and
policies with full rewards information, we average the returns from the 20 runs
for each configuration and run a one-sided non-parametric Mann-Whitney U
test [17] comparing them to returns from the full rewards policies. The null
hypotheses is that the results come from the same distribution (i.e. stochastically
similar), and the alternative is that the results are lower. The p-value for the test



Policy Control with Delayed, Aggregate, and Anonymous Feedback 401

Fig. 3. The returns ratio for each method compared to control with full rewards. Values
closer to zero indicate parity with full rewards, positive values indicate better perfor-
mance than full rewards, and negative values indicate worse returns than full rewards.

is 0.05. We then count the configurations where the null hypothesis is rejected
(Less than) and failed to be rejected (Similar) for each method in the case of
one-step and n-step methods, separately. In the case of one step methods, DMR
has similar results to the full rewards policy in 3.8% of the configurations (out
of 160), the options policies in 4.2% (out of 94), IMR in 7.5% (out of 160) and
LEAST in 10% (out of 160). For n-step, the outcomes are substantially different.
On the one hand, the returns ratio for LEAST has higher worse case values than
the other methods in Grid World. Despite that, the proportion of configurations
with results statistically similar to the policies with full rewards are 81.3% (out
of 64) for LEAST, 52% (out of 64) for IMR, and 14.1% for the baseline nTD-SU
(out of 64).
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6 Discussion

The results obtained in the experiments corroborate our analysis from Sect. 4.
When carrying out control with DAAF, the performance of options policies is
inversely related to delay, as their action space grows exponentially with it. Out
of our proposed methods, IMR and LEAST are more sample efficient. This par-
ticularly striking considering that LEAST first collects data to estimate rewards,
and still manages to achieve a better returns ratio than the other methods in
all but few cases: with Ice World (4x4) on one-step TD methods, where DMR is
better; and for Grid World and Ice World (4x4) & (8x8) when used with n-step
SARSA, where IMR is better.

Both IMR and LEAST have results that can be, based on Mann-Whitney U
statistical testing, indistinguishable from the results of a policy with full rewards
in a reasonable number of cases when used with n-step SARSA (37.9% and 61.3%
respectively) indicating we can do well despite the limited rewards information.
With the exclusion of two environments, LEAST’s better returns ratio would
align with our hypothesis that recovering the rewards can lead to less biased
policy control. Both Grid World and Ice World, where LEAST did not per-
form best, are the more challenging environments, though the reasons for the
results with LEAST are different in each one. For the former, Grid World, we
encountered cases where reward estimation was incorrect for certain actions just
before the terminal state. This is because the observed data in those instances
had many possible solutions, since the rewards in terminal states are zero. By
analysing reward estimation in other environments, we found that this problem
isn’t exclusive to Grid World. The results with LEAST for Ice World have a
different reason: there are several terminal states (ice holes) that prevent the
agent from reaching the preferred exit. In fact, in Ice World 8x8, even the policy
with full rewards did not reach the goal in any of our runs - thus, its returns are
based on ending the episode early by falling onto the nearest ice hole. In these
cases, the matrix required to estimate the true rewards with LEAST was incom-
plete, and thus LEAST was equivalent to IMR. Such idiosyncrasies serve as guide
for challenges to be addressed in future work, which we discuss in Sect. 7. The
stochastic similarity of results for IMR and LEAST to the full rewards policy
when coupled with n-step SARSA is likely an artifact of the efficiency of tem-
poral feedback propagation inherit in n-step methods, which our methods can
leverage well; n-step methods, after all, combine the best of both worlds between
monte-carlo and TD approaches.

One advantage of IMR is that it requires no additional computational
resources. Its superior performance against the baselines makes it a viable initial
candidate for settings with DAAF. For LEAST, the main advantage is that its
structure only depends on observing every state-action pair, or the most rel-
evant ones, irrespective of the delay. Approximating the reward function with
LEAST requires resources of the order O(|A|∗|S|∗m) for storage and a one-time
O(|A|2 ∗ (m + |A|)) compute cost, where m is the number of samples collected.
This can make it unsuitable for environments with constrained resources. Despite
this, the expectation of lower relative regret with the bounded compute costs
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make it, in our view, an attractive solution for real-world applications along
with IMR when compute resources are available. Furthermore, should the data
be too large to fit in memory, one can resort to gradient based methods for
least squares, which allow smaller samples to be processed at a time, making
computation viable for large problems.

It is worth stating that many applications where DAAF would be observed
are managed settings, where it is possible to choose P . Consider, for instance,
networking systems where we wish to reduce the frequency at which nodes com-
municate feedback to a central control system. The savings in networking, which
are typically the highest cost in such settings, are proportional to the delay. With
our proposed solutions, it is now possible to achieve those savings without sac-
rificing performance as much.

One final aspect we deliberate on is the bias in IMR. We hypothesized that
using aggregate feedback as the reward for a given state-action pair and zero
otherwise would yield a biased Qπ. What we have observed is that, despite these
biased updates, the agent can still learn a reasonably good policy. Our hypothesis
for this is that this bias does not prevent the agent from learning which action
is the best in a given state, at least in expectation, which is why IMR performs
adequately well.

7 Conclusion

In this paper, we study policy control in environments with DAAF. We formalise
the problem and use the framework of MDPs with options to study it. We pro-
pose four methods for policy control with DAAF, and run extensive experiments
to validate their performance. From our analyses, we conclude that MDPs with
options are ill suited for problems with fixed long delays while our other pro-
posed methods IMR and LEAST, on the other hand, can allow policy control
with higher returns than the baselines, in exchange for extra compute and stor-
age in the case of LEAST.

There are several avenues to extend the work presented here. For starters, we
have focused our study on environments with finite state spaces. Many real-world
applications though require very large or continuous state spaces. Thus, studying
reward imputation and formulating reward recovery in such environments is of
interest. Second, one of our methods assumes a linear relationship between state-
actions and aggregate rewards. Whilst this assumption makes it practical to use
reword recovery in our setting, its effectiveness in environments with non-linear
reward aggregation is unknown. Addressing that would allow wider application
of the solution. Third, with LEAST we solve an unconstrained optimisation
problem, which leads to incorrect estimates in cases where the samples collected
yield a matrix for which the solution for certain state-action pairs can be many.
Given prior knowledge about the environment, e.g. the terminal states which are
generally known, one can solve a constrained optimisation problem, and reduce
errors in the estimation. Finally, several applications of RL involve optimising a
composite reward function that is made up of different objectives. Disentangling
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the effect of a sequence of actions on each objective is an interesting problem
area to explore as well, to expand the range of applications of RL.

Disclosure of Interests. The authors have no competing interests to declare that

are relevant to the content of this article.
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Abstract. Pattern mining addresses the challenge of automatically
identifying interpretable and discriminative patterns within data. Recent
approaches, leveraging differentiable approach through neural autoen-
coder with class recovery, have achieved encouraging results but tend to
fall short as the magnitude of the noise and the number of underlying fea-
tures increase in the data. Empirically, one can observe that the number
of discovered patterns tend to be limited in these challenging contexts.
In this article, we present a differentiable binary model that integrates
a new regularization technique to enhance pattern coverage. Besides,
we introduce an innovative pattern decoding strategy taking advantage
of non-negative matrix factorization (NMF), extending beyond conven-
tional thresholding methods prevalent in existing approaches. Experi-
ments on four real-world datasets exhibit superior performances of Dif-
fVersify in terms of the ROC-AUC metric. On synthetic data, we
observe an increase in the similarity between the discovered patterns
and the ground truth. Finally, using several metrics to finely evaluate
the quality of the patterns in regard to the data, we show the global
effectiveness of the approach.

1 Introduction

Pattern mining is a crucial field for extracting meaningful and easily interpretable
insights from data. Traditional frequent pattern mining techniques [24], while
widely used, often fail to capture all the underlying regularities in the data and
tend to produce results that are overly general and redundant. To address this
limitation, various techniques [6,10] have emerged, aimed at identifying a smaller
yet more informative set of patterns. However, these approaches are computa-
tionally intensive due to the use of enumeration-based strategies on large search
space. Thus, they often struggle to scale effectively, particularly in scenarios
with large and complex datasets. To mitigate these challenges, many methods
use heuristic approaches [3,8] and consider data of limited size, particularly on
the number of features. This restricted scope excludes many potential application
areas, such as biological and large-scale complex problems.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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The differentiable pattern mining framework, as introduced in recent works
[9,21], represents a significant advancement in leveraging neural network archi-
tectures to extract interpretable relations from data. Grounded in neuro-
symbolic learning principles, it harnesses the computational power of neu-
ral networks to learn fully interpretable patterns within a constrained neu-
ral architecture. In the seminal paper by Fischer et al. [9], a novel binarized
autoencoder is proposed to uncover human-interpretable sets of conjunctive pat-
terns using gradient-based optimization. This model projects input data into
an interpretable latent space, striving to faithfully reconstruct the data from
patterns encoded in this space. Interpretability is achieved through the use
of binary weights and activations during the forward pass, while scalability
is ensured through efficient continuous optimization during backpropagation.
Building upon this foundation, Walter et al. [21] extend the framework to learn
patterns that can effectively differentiate between classes. Their approach com-
bines a binary autoencoder with a classifier attached to the hidden layer, allowing
for joint optimization of reconstruction and classification tasks. This integrated
model enhances the interpretability of learned patterns while enabling effective
classification of data instances based on these patterns.

While the neural autoencoder with class recovery shows promise, particularly
on high-dimensional data, its performance tends to degrade as noise magnitude
and the number of underlying classes and features in the data increase. In such
scenarios, patterns may become redundant, leaving a substantial portion of the
data uncovered. To address this limitation, we propose integrating a novel regu-
larization technique into the differentiable binary model, aimed at promoting the
extraction of patterns that provide better coverage of the data while enforcing
pattern diversity. Our experiments demonstrate that the orthogonality regu-
larization term in the loss function yields significant improvements in pattern
extraction. Additionally, we introduce an innovative pattern decoding strategy
that utilizes non-negative matrix factorization (NMF), extending beyond con-
ventional thresholding methods prevalent in existing approaches. This robust
and original decoding strategy adapts well to diverse datasets and enhances the
overall performance of the model.

The experiments show the scalability of the proposed DiffVersify method
concerning the number of features, classes and noise levels, which are pivotal
factors in real-world pattern mining scenarios. The evaluation of the effectiveness
of the approach on synthetic datasets shows its ability to improve the detection
of ground truth patterns with the increase, compared to the baselines, of their
similarity with the extracted patterns. Additionally, DiffVersify demonstrates
superior performance in terms of the ROC-AUC metric across four real-world
datasets. Recognizing that the assessment of pattern collections associated with
classes requires more than just supervised classification measures, we introduce
novel evaluation metrics to better characterize the appropriateness of discovered
patterns relative to the data, with a particular focus on pattern coverage. Our
results reveal the effectiveness of DiffVersify on this aspect.
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Section 2 reviews related literature. Section 3 introduces notations and con-
cepts while Sect. 4 outlines the approach; Sect. 5 presents the experiments, and
Sect. 6 resumes the contributions and discusses their limitations.

2 Related Work

The problem of pattern set and association rule mining was introduced as a
method for identifying local structures within data [1]. Rule-based classification,
as studied in [5,11,15,19], aims to derive interpretable classification conjunctive
rules. Despite featuring interpretability, these methods predominantly prioritize
prediction over description, leading to a loss of important contextual details.
Furthermore, their reliance on combinatorial optimization techniques hampers
their scalability, particularly when applied to high-dimensional datasets. Neuro-
symbolic classification [7,14,22] offers a solution to these computational limita-
tions. These methods devise neural architectures that, following training, allow
for the extraction of symbolic classification rules. Despite their focus on opti-
mization, these approaches share similarities with traditional rule-based clas-
sifiers in their emphasis on classification accuracy rather than descriptive rule
discovery. Association discovery research domain experienced a period of robust
activity characterized by a plethora of studies, yielding significant insights. Fol-
lowing this first collection of work, the field experienced a resurgence with the
introduction of a pioneering neural approach [9], revitalizing research efforts and
bringing renewed attention to the domain. In [9], Fischer and Vreeken propose a
novel approach, BiNaps, for discovering high-quality and noise-robust pattern
sets. Unlike existing methods limited by combinatorial search, BiNaps employs a
gradient-based optimization strategy, bridging the discrete search space and con-
tinuous optimization. This approach involves a neural autoencoder with binary
activations and binarized weights, termed BiNaps, which directly represent con-
junctive patterns. By optimizing a data-sparsity aware reconstruction loss, the
authors achieve effective pattern discovery, demonstrating scalability to real-
world datasets such as supermarket transactions and biological datasets. The
patterns are effectively decoded using a thresholded binarisation of the weight
matrix of the model after convergence.

In [21], the authors build on BiNaps to propose DiffNaps, a novel binary
neural network architecture that builds class-specific patterns. Similarly to
BiNaps, DiffNaps also uses a binary autoencoder but combined to a separate
classification head. The model is learnt by jointly optimizing reconstruction and
classification. Succinct class-specific patterns are promoted thanks to elastic-net
regularizers.

Table 1 details the composition of the respective losses and pattern decoding
strategies of the main state-of-the-art approaches of the recent literature. While
numerous attempts have proposed to take into account various elements of con-
straints for pattern discovery, our approach DiffVersify proposes two novel
contributions. First, we explicitly promote diversity over the resulting pattern set
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Table 1. Comparison of the losses and pattern decoding of baselines and DiffVersify.

RL-NET [7] RRL [22] R2N [14] BiNaps [9] DiffNaps [21] DiffVersify

Losses Reconstruction ✓ ✗ ✗ ✓ ✓ ✓

Classification ✗ ✓ ✓ ✗ ✓ ✓

L1 regularization ✗ ✗ ✓ ✗ ✓ ✓

L2 regularization ✓ ✓ ✗ ✗ ✓ ✓

Coverage regularization ✗ ✗ ✗ ✗ ✗ ✓

Decoding

Threshold ✗ ✗ ✗ ✓ ✓ ✓

NMF ✗ ✗ ✗ ✗ ✗ ✓

with a dedicated differentiable loss. Second, to enable the discovery of more spe-
cific patterns, we propose a novel pattern decoding strategy using latent variable
model inference using Non-Negative Matrix factorization for pattern extraction.

3 Preliminaries

We assume a supervised input dataset D : (X,Y) with X ∈ {0, 1}n×m composed
with n samples and m features, and Y ∈ [0, 1]n×k, the probability for each
sample to be assigned to one of the class labels K = {1, . . . , k}. Our purpose
consists in finding a set of patterns P , where each pattern p ∈ P is a set of feature
indices p ⊂ {1, 2, . . . ,m} representing feature co-occurrences. To find such sets of
patterns, it has been recently proposed to learn a binarized autoencoder type of
neural network, where W ∈ R

m,h is its weight matrix with h hidden dimensions.
We denote by Wi, the i-th row of W. Wd indicate the binarized version of W.
We also consider b for a bias, and bd for its discretized value. For a given binary
database, our aim is to find a diverse set of patterns P that describes the data.
One interpretation of this claim consists in defining a set of patterns as correct
if it can marginally reconstruct the database.

4 Differentiable Pattern Mining with Coverage
Regularization

Pattern mining has been recently tackled using autoencoders, minimizing recon-
struction loss with additional class prediction, facilitating robust pattern dis-
covery. As a first contribution, we introduce a diversity objective to minimize
collapsing among neurons of the encoder layer during training. Secondly, we pro-
pose a novel decoding process after training, promoting the creation of longer
patterns with respect to solely thresholding using Non-Negative Matrix Factor-
ization (NMF).

4.1 Neural Model for Pattern Mining

For various data, autoencoders have proven to be a successful approach for cap-
turing the main regularities in the data by minimizing reconstruction loss. An
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autoencoder is a neural network consisting of task-specific encoding layers that
end in an embedding layer, and a symmetric decoder to reconstruct the input
from the embedding layer. The embedding layer is usually small compared to
the input layer, imposing an information bottleneck and forcing the network to
learn relevant and shared structure between inputs.

To support interpretability, a novel type of neural autoencoder as been
recently proposed, where weights and activations are discretized in {0, 1} dur-
ing the forward pass. To learn in small noisy steps during backpropagation, for
training continuous versions of the weights are used, optimizing reconstruction
loss with respect to these continuous weights. The autoencoder consists of one
linear hidden layer - a so-called pattern layer - and one linear output layer. For
each neuron in the hidden layer, incoming binary weights indicate whether an
input item is part of the encoded pattern. For example, a binarized weight Wd

i,j

means that input item j is part of the pattern given by hidden neuron i. Thus,
each neuron in the hidden layer corresponds to a pattern p, while all neurons
together correspond to the pattern set P .

Concretely, one binarized version of the weights is construct for compute the
forward pass, and used for reconstruction. To ensure that the hidden neurons
correspond to interpretable patterns, the auto-encoder architecture is symmet-
rical as the weight of the decoding layer is the transpose of the weight of the
encoding layer.

4.2 Learning Algorithm

The architecture of differentiable pattern recognition usually consists of a binary
autoencoder. The encoding and decoding layers of the autoencoder share a set of
continuous weights W. The forward pass uses a binarized version of this weight
matrix Wd following [9]. Each hidden neuron j represents a pattern, and a fea-
ture i is part of the pattern corresponding to neuron j if Wd

i,j = 1. The decoding
layer performs the transposed linear transformation of the encoding layer which
enforces the patterns formed during optimization to describe the data. In recent
work, a classifier has been added to the pattern layer with continuous weights
Wc to act as an additional regularizer. This classifier is linear and hence inter-
pretable.

The overall objective function consists of a series of terms for the autoencoder
reconstruction, the classification error, and various regularization terms.

Reconstruction Loss. First, the autoencoder reconstruction loss from the
input points is defined with a weighted XOR function as proposed in [9]. As
binary data tends to be sparse and dominated toward zeros, a sparsity-aware
reconstruction loss weighs the importance of reconstructing a 1 proportional to
the sparsity of the data.

Le(Xi, ̂Xi) =
m

∑

j=1

((1 − Xi,j)α + Xi,j(1 − α))| ̂Xi,j − Xi,j |, (1)
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with α = #1s
#1s+#0s the sparsity of X and ̂X the reconstruction of X by the

autoencoder.

Classification Loss. Second, to optimize the classifier, the cross-entropy loss
is naturally optimized between the predicted logits ̂Y and the true label Y:

Lc(Yi, ̂Yi) = −
k

∑

�=1

Yi,� log( ̂Yi,�) (2)

L2 -regularizer. Next, to promote parsimonious patterns, the L2-regularizer is
leveraged to penalize long patterns, i.e., rows with many 1 s. The function rs(W)
is defined as:

rs(W) =
m

∑

i=1

⎛

⎝

h
∑

j=1

Wi,j

⎞

⎠

2

(3)

This function computes the squared sum of each row of the weight matrix W.
This loss penalizes a pattern as a whole as it defines a quadratic cost on the length
of the pattern. Hence, the regularizer is promoting shorter patterns discovery.

W-Shaped Regularizer. To further force the weights towards a binary solu-
tion, a W-shaped regularizer is defined. The function rb(W) is defined as:

rb(W) = min
i

{r(Wi), r(Wi − 1)}, (4)

where r(Wi) is defined as r(Wi) = κ‖Wi‖1 + λ‖Wi‖22. Here, κ and λ are
hyperparameters specifying the trade-off between the L1 and L2 regularization
penalties. This regularizer takes the classic form of an elastic-net, where the κ
and λ hyperparameters respectively specify the trade-off between the ridge and
lasso penalty.

Coverage Regularization. Finally, to enforce diversity and data-coverage am-
ong the patterns in the model’s representations, we introduce a orthogonality
component into the loss function. By including the orthogonality constraint in
the loss function, the model is encouraged to learn diverse and independent fea-
tures, which can lead to improved generalization performance. The orthogonality
constraint is defined through a cosine similarity between each pair of the neu-
rons, which correspond to a line of W. By encouraging orthogonality, the loss
function helps prevent the model from collapsing to specific features and encour-
ages it to learn more informative representations. Formally, the loss is defined
as follows:

Lcov(W) =
1

m(m − 1)

∑

i�=j

(

Wi · Wj

‖Wi‖‖Wj‖
)

. (5)
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This orthogonality component is combined with other regularization terms
to form the complete loss function. As a result, given the parameters of the
network {W,Wc}, the loss function is given by:

L(D,W,Wc}) =
n

∑

i=1

[

Le(Xi, ̂Xi) + λcLc(Yi, ̂Yi)
]

+ rs(W)

+ rb(W) + rb(Wc) + Lcov(W), (6)

where λc is a parameter that weighs the classification loss.

4.3 Pattern Decoding from Latent Representation

To extract differential patterns at convergence, W and Wc are classically thresh-
olded with τe and τc, respectively. As described above, a pattern pj is given by the
index set of all i’s such that Wd

i,j = 1. However, one limitation can be mentioned:
the decoding process does not consider the creation of long patterns, resulting
from the coverage loss. These longer patterns capture intricate dependencies and
interactions between features, possibly offering a deeper understanding of the
underlying data structure. Unfortunately, the decoding mechanism may over-
look these longer patterns, potentially leading to a loss of information during
the reconstruction phase. As a result, the reconstructed data may lack the finer
details captured by these longer patterns, hindering the fidelity of the recon-
structed dataset. This limitation underscores the need for a decoding strategy
that can effectively incorporates the information encoded in longer patterns. So,
we propose to improve the pattern decoding process using Non-Negative Matrix
Factorization (NMF) over M define as

Mi,j =

∑m
�=0 Xi,�.Wd

�,j
∑m

�=0 W
d
�,j

(7)

This way, one can improve the quality and accuracy of the reconstructed pat-
terns.

Non-negative Matrix Factorization is a popular technique of dimensionality
reduction that has been explored in numerous applications, like topic modelling
and recommendation systems [2]. Given a non-negative matrix M with dimen-
sions m×h, NMF seeks to factorize this matrix into two non-negative matrices U
and V, such that M ≈ UV. Here, U represents a basis matrix with dimensions
m × g, where g is typically chosen to be smaller than m and h, and V denotes
a coefficient matrix with dimensions g × h. The factorization is constrained to
be non-negative, meaning that all elements of U and V are non-negative. The
resulting factorization aims to represent M as a linear combination of a reduced
set of basis vectors from U, weighted by the coefficients in V. The objective loss
function of NMF is defined as the Frobenius norm of the difference between the
original matrix and the reconstructed matrix:

LNMF(M, ̂M) = ‖M − ̂M‖2F = ‖M − UV‖2F . (8)



414 T. Chataing et al.

As for topic modeling in natural language processing [20,23], we build new
and longer patterns by aggregating the top-p patterns defined as

top-p = argmaxj=1...pVd,j

that corresponds to the most co-occurred patterns for each latent dimension
d ∈ [1, g] of the matrix V . This approach aims at regrouping the patterns that
frequently co-occurs in the data. This composition is complementary to the pro-
posed coverage loss which tend to create shorter and orthogonal patterns.

5 Experiments

In the following experiments, we address the following questions. First, we assess
how our proposed model performs with respect to the current state-of-the-art
methods in terms of scalability, robustness, and overall effectiveness, across both
real-world and synthetic datasets. Second, we assess how the diversity regularizer
allows to discover a larger variety of discriminative patterns. Third, we question
how the proposed NMF decoding build more specific patterns beyond generalist
ones in real and synthetic data1.

5.1 Metrics

We use a set of metrics to assess the pertinence of the discovered patterns. Indeed,
the sheer volume and complexity of the patterns generated makes it challenging
to identify the most relevant and informative ones. So, several metrics can help
to assess the quality, novelty, and usefulness of patterns, and to identify those
that are most likely to be of interest to domain experts or end-users. Let P be
the set of patterns found and zp is the binary vector denoting the assignment of
the dataset point to the support of pattern p. We use the following measures to
describe the collection of patterns:

– Cover: It computes the proportion of the dataset samples covered by at least
one pattern:

|| ∨
p∈P zp||

n .
– Purity: It measures the purity of a pattern with respect to y:

1
|P |

∑

p∈P
max� ||y�

∧
zp||

||zp||

Then, we use a set of measures to evaluate the collection of patterns as a
prediction model:

– Weighted-F1: For each sample, we take the set of patterns that support it.
Among those patterns, we select one with the highest purity and associate
this class as the predicted label for the sample. In the case where no pattern
is supporting a sample, the majority class is associated to it. Weighted-F1
score calculates the F1 score for each class and then computes a weighted
average based on the number of samples in each class.

1 Code and data are available: https://chataingt.github.io/DiffVersify/.

https://chataingt.github.io/DiffVersify/
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– ROC-AUC based on Purity and Cover: Since ground truth labels are not
available for real-world data, we evaluate the collection of patterns as pre-
sented in [21], by using the area under the curve of the percentage of data
covered by patterns (Cover measure) once patterns are sorted according to
their Purity that is proportional to the probability of predicting the target
class). This evaluation can be interpreted as a trade-off between sensitivity,
i.e. the proportion of the dataset covered, and specificity, i.e. the pattern’s
relevance to a particular class. To eliminate spurious patterns, we only con-
sider those with a predictive probability of 1

k + 0.1 or higher, indicating a
slightly greater likelihood than chance.

– Soft-F1: When the ground truth patterns are accessible, as usually in syn-
thetic datasets, we utilizes the Jaccard distance instead of strict equality for
calculating recall and precision as it prevents an excessive penalty for meth-
ods that only partially recover individual patterns [12]. The Soft-F1 score
is defined as the harmonic mean of soft precision and soft recall defined by:
soft precision(Pd, Pg) = 1

|Pd|
∑

pd∈Pd
maxpg∈Pg

|pd∩pg|
|pd∪pg|

soft recall(Pd, Pg) = 1
|Pg|

∑

pg∈Pg
maxpd∈Pd

|pd∩pg|
|pd∪pg|

where soft recall and soft precision are computed using the Jaccard distance
between the recovered and ground truth patterns. The soft F1 score allows
to take into accounts partial matches between recovered and ground truth
patterns.

We also consider other description measures of pattern collection:

– # Patterns: The number of patterns in P .
– Avg. Supp.: The average support of the patterns in P :

∑
p∈P ||zp||

# Patterns .

5.2 Baselines

We evaluate our model against the seminal proposal of BiNaps and DiffNaps,
its improvement in class-specific pattern set mining. By transitivity, we challenge
the current state-of-the-art methodologies including decision trees, significant
pattern mining [18], MDL-based label-descriptive approaches [12], classification
rule learning [19], neuro-symbolic classification rule learning [22], top-k subgroup
discovery [16], difference description [4], falling rule lists [17], optimal sparse deci-
sion trees [11], and class-specific BMF [13] reported by DiffNaps [21]. Indeed,
DiffNaps has superior performance than these baselines. Throughout all exper-
iments, we utilize the replication package of DiffNaps to establish parameters
for consistency across the subsequent experiments.

5.3 Experiments on Real-World Benchmarks

First, we evaluate DiffVersify on four biology-related benchmarks with the
variant DiffVersify-Abl to do an ablation study over the use of the non-
negative factorization. The impact of the diversity regularizer is evaluated
through the comparison with DiffNaps.
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Datasets. We consider a phenotypical cardio dataset2, a disease diagno-
sis dataset3 and two high-dimensional binarized gene expression datasets for
breast cancer, brca-n and brca-s, both derived from The Cancer Genome Atlas
(TCGA)4. The number of descriptive features are respectively 45, 131, 1976 and
1976. The number of individuals are respectively, 68k, 5k, 222 and 187. The
number of classes are respectively 2, 41, 2 and 4. We use the hyper-parameters
reported in DiffNaps and BiNaps, which were optimized on these dataset, and
we use cross-validation to define the ones for DiffVersify. In particular, the
rank g of NMF decoding determined for each real-world dataset is as follows:
cardio: 10, disease: 15, brca-n: 100 and brca-s: 500.

Fig. 1. ROC curve on four biology-related benchmarks, brca-n, brca-s, cardio and
disease.

Results. Table 2 reports the measure values obtained by the different methods
on the 4 datasets. First, notice that BiNaps returns 0 patterns on both brca
datasets and therefore the measures can not be evaluated. For all dataset, we can
observe that DiffVersify’s patterns exhibit an almost perfect Cover, indicat-
ing a complete representation of the data. Notice that there is a large number
of patterns on brca datasets due to their high number of features compared to
their number of data points.

The ROC-AUC shows that DiffVersify’s patterns consistently provide
superior Cover with better Purity, suggesting that they are more effective in
describing the classes. Figure 1 shows the ROC curves. For brca-s and brca-n
datasets, we can observe the critical role of regularization for this metric (see the
increase compared to DiffNaps). This is particularly pertinent with datasets
that exhibit a disparity between the number of rows and columns. When applied

2 https://www.kaggle.com/datasets/sulianova/cardiovasculardisease-dataset.
3 https://www.kaggle.com/datasets/itachi9604/diseasesymptom-description-dataset.
4 The BRCA datasets were derived from data made available by the TCGA Research

Network.

https://www.kaggle.com/datasets/sulianova/cardiovasculardisease-dataset
https://www.kaggle.com/datasets/itachi9604/diseasesymptom-description-dataset
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to datasets such as cardio and disease, both DiffVersify and DiffNaps
demonstrate comparable performance levels. However, as the complexity of the
dataset increases, DiffVersify seems to generate better patterns. Indeed, these
patterns offer better coverage while maintaining good Purity, thereby under-
scoring the potential efficacy of DiffVersify.

Table 2. Comparison of performance metrics across four real-world datasets. Average
values and standard-deviations are reported over 5 runs of the methods.

Measures Methods Datasets

brca-n brca-s cardio disease

Model evaluation ROC AUC BiNaps nan± nan nan± nan 0.06± 0.15 0.76± 0.01

DiffNaps 0.90± 0.05 0.79± 0.04 0.34± 0.05 0.84± 0.0

DiffVersify-Abl 0.92± 0.00 0.89± 0.03 0.54± 0.02 0.86± 0.01

DiffVersify 0.95±0.00 0.93±0.03 0.55±0.18 0.90±0.01

Weighted-F1 BiNaps nan± nan nan± nan 0.34± 0.0 0.76± 0.03

DiffNaps 0.55± 0.21 0.18± 0.19 0.71±0.01 0.88± 0.04

DiffVersify-Abl 0.63± 0.28 0.20± 0.07 0.68± 0.02 0.98± 0.00

DiffVersify 0.79±0.25 0.38±0.14 0.69± 0.02 1.00±0.01

Model description Cover BiNaps nan± nan nan± nan 0.87± 0.07 0.79± 0.03

DiffNaps 1.00±0.00 1.00± 0.00 0.66± 0.17 0.99± 0.01

DiffVersify-Abl 1.00±0.00 1.00±0.00 0.98±0.02 1.00±0.00

DiffVersify 1.00±0.00 1.00±0.00 0.98±0.02 1.00±0.00

Purity BiNaps nan± nan nan± nan 0.54± 0.05 0.98±0.01

DiffNaps 0.84±0.03 0.37±0.05 0.77±0.04 0.13± 0.00

DiffVersify-Abl 0.59± 0.01 0.35± 0.02 0.73± 0.03 0.10± 0.00

DiffVersify 0.61± 0.02 0.37±0.02 0.77±0.02 0.22± 0.00

Other measures # Patterns BiNaps 0± 0 0± 0 5.80± 1.92 124.60± 2.07

DiffNaps 182.60± 40.83 939.20± 336.21 10.06± 1.14 3693.69± 206.63

DiffVersify-Abl 2674.80± 1088.92 9630.00± 1398.29 8.20± 1.64 2626.40± 59.58

DiffVersify 2874.80± 1088.93 11630.00± 1398.29 22.2± 1.64 3241.40± 59.58

Avg. Supp. BiNaps nan± nan nan± nan 49849.89± 8703.88 95.22± 3.61

DiffNaps 33.02± 0.58 26.08± 1.79 9731.81± 4711.73 275.12± 7.21

DiffVersify-Abl 31.05± 0.58 26.26± 1.79 18231.42± 2514.64 273.41± 5.07

DiffVersify 29.83± 0.60 24.29± 1.61 14938.36± 4172.42 263.72± 4.86

The Weighted-F1 score, in conjunction with the perfect coverage, under-
scores the ability of DiffVersify’s pattern set to discriminate between classes,
even when the pattern set covers all the samples of the dataset. This indicates
that DiffVersify not only provides thorough coverage but also maintains
a high discriminating capability. The ablation study, where the NMF step is
excluded, demonstrates that although DiffVersify-Abl may outperform Dif-
fVersify on ROC-AUC, as on brca-n, DiffVersify systematically benefits
from this post-processing in all other performance measures.

However, it is worth noting that DiffVersify identified a substantially
higher number of patterns (# Patterns) in three of the datasets. This can be
attributed to the diversity constraint, which facilitates the generation of more
general patterns, and the subsequent NMF decoding that refines these patterns
into more precise ones.

This limitation can be addressed through a straightforward yet efficient pro-
cedure: sorting the patterns based on their Cover value and selecting pat-
terns until achieving a coverage of 1. Figure 2 illustrates the performance metrics
achieved with an increasing set of selected patterns. The results indicate that this
post-processing leads to a more compact and effective pattern set. In brca-n



418 T. Chataing et al.

Fig. 2. Evolution of the performance metrics of DiffVersify over subsets of patterns
defined by increasing Cover values across brca-n, brca-s, cardio and disease.

and disease, merely one hundred patterns yield satisfactory performance, align-
ing the # Patterns value with the minimum observed in other methods. On
brca-s, a trade-off between Weighted-F1 and ROC-AUC can be achieved
applying an elbow method on Cover measure. However, in cardio, where the
pattern set is already small, this post-processing step is deemed unnecessary.

Finally Table 3 reports qualitative results. Considering in detail top patterns
with respect to Cover found per class on cardio by all three methods (BiNaps,
DiffNaps and DiffVersify), Table 3 reveals that DiffVersify consistently
identifies at least the same set of patterns as the baseline DiffNaps. Remark-
ably, DiffVersify outperforms DiffNaps by uncovering additional patterns,
characterized by high coverage and purity scores, that the latter fails to detect.

5.4 Experiments on Synthetic Data

To enhance the understanding and comparison of the different methods, we use
synthetic data to readily access ground truth patterns, providing a controlled
environment for evaluating the properties of the considered approaches.

Dataset Generation. For the data generation process, we use the publicly
available DiffNaps replication package. Within each class, ten patterns are
randomly sampled across features, with lengths drawn from a uniform distri-
bution (U(5, 15)). Also, 20 common patterns are sampled, with lengths drawn
from U(0.01 × m, 0.025 × m) to maintain data density. Each class comprises an
equal number of samples, each containing two common and three class-specific
patterns randomly embedded. We introduce additive and destructive noise by
flipping ten 0 s to 1 s and flipping 1 s affected by a pattern to 0 s with a 2.5% prob-
ability, respectively. Class labels are assigned to satisfy (zt

pY)k

n = 0.9. Means and
std of measures across four independently generated datasets are reported. We
set the rank g for NMF decoding equal to the number of ground truth patterns.
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Table 3. Analysis of the top 6 patterns in terms of Cover by class on cardio and thus
for the three methods: BiNaps, DiffNaps and DiffVersify. A pattern is mentioned
as Unique if only one of the methods discovered it.

c Method Unique Cover Cover[c] Purity Features

Heart attack DiffVersify ✓ 0.28 0.44 0.77 ap lo High 2

DiffNaps 0.26 0.45 0.84 ap hi High 2

DiffVersify 0.26 0.45 0.84 ap hi High 2

DiffNaps 0.20 0.35 0.84 ap hi High 2, ap lo High 2

DiffVersify 0.20 0.35 0.84 ap hi High 2, ap lo High 2

DiffVersify ✓ 0.16 0.27 0.83 ap hi High 2, cholesterol normal

DiffNaps 0.14 0.20 0.70 age (60.0, 64.0)

DiffVersify 0.14 0.20 0.70 age (60.0, 64.0)

DiffNaps 0.11 0.18 0.76 cholesterol way above

DiffVersify 0.11 0.18 0.76 cholesterol way above

Healthy DiffVersify ✓ 0.71 0.86 0.62 ap lo Normal Elevated

DiffNaps 0.59 0.80 0.68 ap hi Normal

DiffVersify 0.59 0.80 0.68 ap hi Normal

DiffVersify ✓ 0.57 0.74 0.66 ap lo Normal Elevated, cholesterol normal

DiffNaps 0.57 0.77 0.69 ap hi Normal. ap lo Normal Elevated

DiffVersify 0.57 0.77 0.69 ap hi Normal, ap lo Normal Elevated

BiNaps ✓ 0.23 0.33 0.73 gender women, ap hi Normal

DiffNaps 0.18 0.24 0.69 age (29.0, 45.0)

DiffVersify 0.18 0.24 0.69 age (29.0, 45.0)

Scalability in m. One significant challenge in existing pattern-set mining
approaches is handling high-dimensional data. We thus vary the number of fea-
tures m within {102, 5 × 102, 103, 5 × 103, 104, 1.5 × 104, 2 × 104, 2.5 × 104, 5 ×
104, 105}. We set the number of classes to k = 2 and the number of rows to
n = 104. To mitigate pattern overlap in low-dimensional data (m < 103), we
sample 5 patterns per class without sharing.

Multi-classes. We assess the methods’ capability to classify data as the number
of distinct classes increases. The number of classes k ranges from 2 to 50, with
4 × 103 samples generated per class and m = 5 × 103 features.

Robustness to Additive Noise. We evaluate the robustness of our model
to additive noise, by simulating scenarios in which data may be corrupted or
perturbed. Setting k = 2, m = 5×103, and n = 103, we introduce additive noise
by varying the number of randomly added 1 s per row from 0 to 100.

Robustness to Destructive Noise. The robustness of the model against
destructive noise, a significant challenge in extracting meaningful patterns, is
evaluated by varying the probability of flipping 1 s to 0 s from 0% to 60%.

Results. The results are shown in Fig. 3 and Table 4. In the feature and noise
experiments in Table 4, we expect to identify 20 ground truth patterns. Remark-
ably, DiffVersify is the only method that consistently achieves near-perfect
coverage, irrespective of the magnitude of the noise or the value of dimensionality.
Both DiffVersify and DiffNaps discover class-specific patterns with an aver-
age purity surpassing 0.8 across all experiments. Notably, DiffVersify shows
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Table 4. Performance comparison on synthetic datasets.

Measures Method # Features # Classes Add. noise Dest. noise

Model evaluation Soft-F1 BiNaps 0.24± 0.3 0.52± 0.21 0.09± 0.08 0.07± 0.03

DiffNaps 0.89±0.12 0.59± 0.09 0.65± 0.05 0.5± 0.17

DiffVersify 0.81±0.23 0.66±0.09 0.73±0.07 0.68±0.13

Weighted-F1 BiNaps 0.63± 0.15 0.11± 0.16 0.61± 0.04 0.57± 0.03

DiffNaps 0.88±0.03 0.65± 0.12 0.76± 0.01 0.56± 0.18

DiffVersify 0.89±0.02 0.75±0.11 0.84±0.06 0.62±0.2

Model description Cover BiNaps 1.0±0.01 1.0±0.0 1.0±0.0 0.99±0.01

DiffNaps 0.95±0.06 0.79± 0.2 0.73± 0.03 0.38± 0.28

DiffVersify 0.99±0.02 0.85±0.17 0.84± 0.9 0.48± 0.35

Purity BiNaps 0.71± 0.08 0.53± 0.05 0.73± 0.05 0.7± 0.02

DiffNaps 0.9±0.01 0.83±0.08 0.9±0.02 0.88±0.06

DiffVersify 0.87±0.04 0.84±0.08 0.9±0.02 0.9±0.06

Other measures # Patterns BiNaps 369.51± 259.53 – 323.35± 93.86 203.02± 22.48

DiffNaps 17.8± 4.87 – 14.13± 2.05 9.73± 4.95

DiffVersify 41.36± 29.23 – 16.85± 2 13.47± 6.7

Avg. Supp. BiNaps 1896.77± 1136.14 1206.58± 679.08 119.8± 32.5 118.38± 8.06

DiffNaps 2667.88± 1106.17 210.69± 88.06 170± 28.1 106.17± 64.27

DiffVersify 2664.29± 1294.1 188.88± 38.18 188.51± 24.31 102.27± 75.84

higher similarity to the ground truth patterns relative to its baselines, a phe-
nomenon attributable to the NMF decoding process. It is worth mentioning that
the addition of obtained patterns to the existing ones invariably introduces sim-
ilarity among patterns. Furthermore, both DiffVersify and DiffNaps man-
age to identify the majority of the ground-truth, with an average soft-F1 score
exceeding 0.70. The exception to this observation is in the experiment involving
the number of classes, where the complexity of the classes diminished perfor-
mance to a level akin to the baseline, BiNaps. In terms of weighted-F1 results,
DiffVersify and DiffNaps show comparable performance, although Dif-
fVersify exhibits superior average results. As the number of class is varying,
the number of groundtruth patterns is varying accordingly. As a consequence,
we do not compute the number of patterns for these specific experimental set-
tings in the table. In Fig. 3, DiffVersify exhibits better robustness to both
additive and destructive noises. Furthermore, DiffVersify demonstrates scal-
ability with respect to the number of features, particularly in high-dimensional
settings where it outperforms DiffNaps in terms of robustness.

The results suggest that our proposed method is able to discover more diverse
and discriminative patterns compared to the baseline methods, while maintain-
ing high coverage and purity. The use of diversity regularization and NMF decod-
ing in DiffVersify allows for the discovery of longer and more specific patterns,
which lead to improved generalization performance. Further work could be done
to improve the proposed approach in several ways. One potential direction is to
explore other decoding strategies beyond NMF, such as using more advanced
matrix factorization techniques or incorporating domain-specific knowledge into
the decoding process. Another direction is to investigate the use of other regu-
larization techniques, such as group-sparsity regularizers, to further encourage
diversity and interpretability in the learned patterns. One limitation of our pro-
posed approach is that it relies on the assumption that the data can be well-
represented by a set of binary patterns. However, in some cases, the data may
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Fig. 3. F1 scores obtained on the synthetic datasets by varying (from left to right) the
additive noise level, the destructive noise level, k and m.

contain more complex relationships that cannot be captured by binary patterns
alone. In such cases, it may be necessary to extend the approach to allow for more
complex pattern representations, such as real-valued or continuous patterns.

6 Conclusion

We introduced a novel differentiable binary model for pattern mining that
incorporates a regularization loss emphasizing pattern coverage and a pattern
decoding strategy using non-negative matrix factorization (NMF). Our approach
demonstrates superior performance in terms of ROC-AUC on four real-world
biology-related datasets and improves pattern detection by increasing similarity
measure to ground truth patterns on synthetic data. Through extensive evalu-
ations, we show the appropriateness of discovered patterns relative to the data,
focusing on pattern coverage, indicating the efficacy of our approach in handling
challenging scenarios with high noise levels and multiple classes. One possible
future direction is to search for alternative techniques for pattern decoding from
differentiable model. This could help to better capture complex patterns and
improve the overall accuracy of our approach. Another direction is to incorporate
additional regularizers such as those proposed in neuro-symbolic approaches.
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Abstract. In comparison to numerical ratings and implicit feedback,
textual reviews offer a deeper understanding of user preferences and item
attributes. Recent research underscores the potential of reviews in aug-
menting recommendation capabilities, thereby advancing the deployment
of review-enhanced recommendation systems. However, existing method-
ologies often neglect the significance of rating magnitudes and are sus-
ceptible to challenges such as data sparsity and long-tail distribution in
real-world contexts. To address these challenges, we propose Hierarchi-
cal Graph Contrastive Learning (HGCL) for advancing review-enhanced
recommendation systems. HGCL dynamically learns hypergraph struc-
tures to capture higher-order correlations among nodes and simultane-
ously integrates local and global collaborative relations through global-
local contrastive learning. Additionally, we propose hierarchical graph
contrastive learning methods to better model the intrinsic correlation
between ratings and reviews, encompassing aspects such as local-global,
cross-rating, and edge-level contrastive learning. Extensive experimen-
tation on five public datasets demonstrates that the proposed method
notably outperforms state-of-the-art approaches.

Keywords: Graph Representation Learning · Hypergraph Learning ·
Contrastive Learning · Recommender Systems

1 Introduction

In recent years, the explosion of information has propelled recommender sys-
tems [2,9,31,35], into indispensable tools for e-commerce and social media plat-
forms. Among the core challenges in recommender systems, predicting ratings
stands prominently [16,21,34,43]. However, a notable disparity between ratings
and implicit feedback (such as purchases, clicks, or favorites) is the concurrent
provision of textual reviews by many users. While ratings offer a direct reflec-
tion of user preferences for items [10], they often fall short in capturing nuanced
sentiments. In contrast, textual reviews encapsulate users’ personalized needs
and attention to specific aspects, providing essential insights into genuine user
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preferences. The rapid advancement of Natural Language Processing (NLP), has
significantly augmented semantic understanding capabilities, such as BERT [11]
and its variants [24], and BERT4Rec [25]. These NLP models excel in trans-
forming textual reviews into high-fidelity vector representations, effectively cap-
turing users’ semantic sentiments. Consequently, review-based recommendation
systems, empowered by these advancements, have become ubiquitous in recom-
mendation technology landscapes.

Traditional review-based recommendation approaches usually rely on the
Bag-of-Words model, neglecting contextual and sequential information within
the text, which results in the loss of critical semantic nuances. With the advent
of deep learning, various methodologies have integrated review information into
graph neural network (GNN) architectures [5,33,41]. Notably, GNN-based meth-
ods have emerged as potent models for comprehensively understanding user-item
interactions. Integrating reviews into GNN-based recommendation models has
thus become pivotal in enhancing recommendation effectiveness. Wu et al. [32]
propose a novel method named RMG which stands as a pioneering effort, inte-
grating graph signals and review information for recommender systems. Sub-
sequently, Shuai et al. [23] build upon this foundation by leveraging semantic
information embedded within review features and then propose their RGCL
model. It fine-tunes the influence of neighboring nodes and employs contrastive
learning techniques to achieve superior interaction modeling. These GNN-based
methods for review-enhance recommendation adeptly model user-item bipar-
tite graphs using graph convolution, seamlessly incorporating review vectors
obtained through NLP models as semantic cues for interaction edges. They not
only surmount limitations in traditional approaches but also enrich recommender
systems with precise semantic understanding, amalgamating interaction details
with contextual insights gleaned from reviews.

Despite their efficacy, existing methods grapple with several challenges. First,
they often rely on stacking multiple layers to capture high-order correlations and
constraints, leading to noise accumulation and over-smoothing issues. Second,
inherent susceptibility to data sparsity and distribution imbalances in user-item
interaction data poses a significant hurdle, exacerbated by long-tail distribution
patterns and rating imbalances. Last, the intrinsic correlation between reviews
and ratings remains inadequately addressed, with many recommender systems
neglecting rating magnitude and order, contrary to implicit feedback mecha-
nisms. Efforts to mitigate these challenges and further enhance the effectiveness
of GNN-based recommender systems are imperative for advancing recommenda-
tion technology in evolving information landscapes.

Desired by addressing the aforementioned challenges, we propose a novel
Hierarchical Graph Contrastive Learning for review-enhanced recommendation
named HGCL. Specifically, to mitigate the over-smoothing issue, we design
a hypergraph learner to capture high-order dependencies between nodes and
employ hierarchical contrastive learning to achieve mutual enhancement between
two views. Additionally, we propose multi-rating contrastive learning and global-
local contrastive learning to strengthen dependencies between adjacent rat-
ings, and further enhance the intrinsic correlation between ratings and reviews
through edge-level contrastive learning.
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We highlight the key contributions of this work as follows:

– HGCL explicitly proposes the idea of hierarchical contrastive learning, which
not only acquires node features from both local and global views between
user-item node pairs but also learns complex interaction information from
multi-rating and edge-level perspectives.

– HGCL leverages hypergraph learning to partition the user-item interaction
graph into distinct subgraphs, which can dynamically learn hypergraph struc-
tures to capture higher-order correlations during training.

– Comprehensive experiments on five real-world datasets are conducted to eval-
uate model performance, and results show HGCL achieves up to 4.10% and
4.35% performance improvement in terms of MSE and MAE, respectively.

2 Related Work

2.1 GNNs for Review-Enhanced Recommendation

To explicitly leverage collaborative signals within user-item interaction graphs,
an increasing number of studies in collaborative filtering (CF) have recently inte-
grated graph convolutional networks (GCNs) to enhance model performance.
Traditional GNN-based methods [12,27,38] extract information from neigh-
bors in the user-item graph through multi-hop convolutions to exploit high-
order correlations defined by initial pairwise links. Although these methods have
shown promising results, they overlook the fact that neighbors should be target-
relevant. Despite some existing methods utilizing attention mechanisms to assign
different weights to neighbors, they encounter two main challenges. Firstly, their
performance is hindered by the lack of fine-grained details. Secondly, attention
learned solely from interaction data may not accurately capture users’ prefer-
ences.

To tackle these challenges, review-based recommender systems have been
proposed [14,20,23,29]. For instance, RMG [32] is a pioneering effort, integrat-
ing graph signals and review information for recommendations. Subsequently,
RGCL [23] builds upon this foundation by leveraging semantic information
embedded within review features. It fine-tunes the influence of neighboring nodes
and employs contrastive learning to achieve superior interaction modeling.

2.2 Contrastive Learning

Contrastive learning has emerged as a powerful self-supervised framework, with
its core idea being to promote the closeness of representations among differ-
ent views of the same object, while simultaneously increasing the dispersion of
representations among different objects. The essence of contrastive learning lies
in bringing an ‘anchor’ and a ‘positive’ sample closer in the embedding space,
while simultaneously pushing the anchor away from multiple ‘negative’ sam-
ples [15]. Drawing inspiration from the successes of contrastive learning across
various domains [3,7,13,17,39], many researchers have integrated contrastive
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learning into graph data to address the challenges posed by insufficient super-
vision signals in recommender systems recently [19,26,28,37,44]. RGCL [23]
introduces review-based contrastive learning, where corresponding review rep-
resentations are selected as positive samples. This innovative approach effec-
tively leverages the semantic richness encapsulated within reviews, contributing
to more informed and review-enhanced recommendations. Contrastive learning
has emerged as a promising avenue for addressing data sparsity and distribution
issues within recommender systems. The adoption of these techniques under-
scores their potential to enhance recommendation models and enrich the user
experience.

3 Problem Definition

We let U = {u1, u2, . . . , uM} denote the set of users and let V = {v1, v2, . . . , vN}
denote the set of items, where M and N denote the number of users and items,
respectively. Each interaction can be defined as a tuple (ui, vj , yuivj

, cuivj
), where

yuivj
indicates the interaction between ui and vj and cuivj

is the textual review.
Additionally, we utilize a pre-trained BERT-Whitening model to process user
ui’s reviews on item vj , obtaining the vector c̃uivj

∈ R
d as the review embedding.

The collection of all review embeddings can be represented as ˜E ∈ R
M×N×d. We

typically use a rating matrix R to store historical ratings from users to items
and R is the set of all ratings (e.g.,R = {1, 2, 3, 4, 5}), where ruivj

indicates a
historical rating from ui to vj while ruivj

= 0 means that vj is unexposed to ui.
Here we represent the interaction network as a user-item bipartite graph G,

and there are only interactions between users and items. The task of review-
enhanced recommendation is to predict missing ratings in the bipartite graph.

4 Methodology

In this section, we provide a comprehensive exposition of the proposed HGCL, as
illustrated in Fig. 1. HGCL encompasses five pivotal processes: (1) Subgraph
Partition and Review-aware Graph Convolution, (2) Multi-Rating
Contrastive Learning, (3) Hypergraph Structure Learning, (4) Global-
Local Contrastive Learning, and (5) Edge-Level Contrastive Learning.
Generally, through these five integral components, HGCL stands as a holistic
solution designed to enhance the accuracy and efficiency of recommendation, by
effectively leveraging collaborative signals, topological features, and high-order
correlations across varying ratings within user-item interaction data.

4.1 Subgraph Partition and Review-Aware Graph Convolution

Inspired by previous models [22,40,42], we divide the bipartite graph into differ-
ent rating subgraphs, the initial feature for each node consists of three different
indices (identical index, role-aware index, and one-hot index) in each subgraph.
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Fig. 1. The overall architecture of the proposed HGCL.

With the feature of each node, we can utilize it to derive the initial embedding
of the node from the trainable parameter matrix E ∈ R

|R|×(M+N+3)×d, where
|R| represents the number of rating categories.

As previously mentioned, in contrast to simple rating information, review
text provides a more nuanced description of the current interaction edge. It can
reflect the user’s preference for the item and the popularity of the item itself in
greater detail. Therefore, we compute the weight coefficient of different neighbors
based on the reviews corresponding to each edge as follows:

xl+1
r [ui] =

∑

j∈Nr(ui)

σ(wl
r c̃uivj

)
√|Nr(ui)| · |Nr(vj)|

xl
r[vj ], (1)

where xl+1
r [ui] denotes the embedding of the ui at layer l + 1 in the r-th rating

subgraph, Nr(ui) is the set of neighbors for ui in the r-th rating subgraph,
wl

r represents the trainable parameter matrix of the rating subgraph r at the l
layer, and σ(·) indicates the sigmoid activation function. These embeddings can
represent the collaborative signal and the topological information of each user
and item on different subgraphs.

4.2 Multi-rating Contrastive Learning

Compared to traditional heterogeneous graphs with multiple edge types, the
importance of ratings suggests that users giving nearby ratings share similar
preferences, thus leading to similar representations. However, real datasets with
imbalanced rating distributions add complexity to this scenario. Partitioning the
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heterogeneous graph into rating subgraphs unintentionally results in the loss of
sequential rating information.

To tackle this challenge, we propose an innovative multi-rating contrastive
learning module that captures the correlation between different ratings by lever-
aging multi-view contrastive learning. Specifically, we adopt the well-established
InfoNCE loss [8] based on multi-rating representations of users and items. We
treat a user’s embedding learned from the current rating subgraph and the
user embedding from the next adjacent rating subgraph as positive pairs while
respecting the order of ratings.

LU
MR(r) =

∑

u∈U
− log

exp((x(r)
u · x

(r+1)
u /τ))

∑

v∈U exp((x(r)
v · x

(r+1)
v /τ))

, (2)

where x
(r)
u is the normalized output embedding of rating subgraph r and τ is

the temperature hyper-parameter of softmax.
As an illustrative example, consider a 5-point Likert scale. In this case,

LU
MR(1) denotes the multi-rating contrastive loss between the subgraphs with

a rating of ‘1’ and ‘2’. Similarly, LU
MR(2) signifies the multi-rating contrastive

loss between the subgraphs with a rating of ‘2’ and ‘3’, while LU
MR(3) captures

the multi-rating contrastive loss between the subgraphs with a rating of ‘3’ and
‘4’. The overall multi-rating contrastive loss for the entire user can be expressed
as follows:

LU
MR = LU

MR(1) + LU
MR(2) + ... + LU

MR(|R|−1). (3)

where |R| denotes the number of rating categories. Similarly, we can obtain
the loss function of the item side LV

MR. The complete multi-rating contrastive
objective function LMR is the sum of the above two losses:

LMR = LU
MR + LV

MR. (4)

4.3 Hypergraph Structure Learning

As previously discussed, the embedding derived from Eq. (2) effectively encap-
sulates collaborative signals and topological information pertaining to users and
items within distinct rating subgraphs. It is worth noting that the inherent topo-
logical similarities among nodes often mirror implicit similarities in user pref-
erences or item features. In light of this insight, we endeavor to transcend the
conventional limitation inherent in bipartite graphs, where edges typically link
nodes of the same type. Drawing inspiration from prior methodologies [31,35],
we employ a multi-layer perceptron (MLP) in the computation of hyperedge
assignments for users and items within each rating subgraph. This process yields
hypergraphs Hr

u for users and Hr
v for items, each reflecting the intricate relations

and dependencies that exist within the respective rating contexts:

Hr
u = norm(LeakyReLU(xr

uW
r
u)),

Hr
v = norm(LeakyReLU(xr

vW
r
v)),

(5)
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where Wr
u ∈ R

K×d and Wr
v ∈ R

K×d are trainable weight matrices, in which
K is the number of hyperedges. Upon deriving the user hypergraph and item
hypergraph associated with various ratings, we possess the means to incorporate
implicit high-order correlations among nodes into the updated representations
of both users and items. The hypergraph convolution, which operates indepen-
dently on each rating subgraph, is formally defined as follows:

hr
u = Hr

uL
−1
u Hr

u
Txr

u, hr
v = Hr

vH
−1
v Hr

v
Txr

v. (6)

Here, Lu and Lv represent the vertex degree matrices associated with the
learned user hypergraph Hr

u and item hypergraph Hr
v, respectively. These matri-

ces play a crucial role in the re-scaling of the resulting embeddings.

4.4 Global-Local Contrastive Learning

As elucidated in Eq. (2) and Eq. (10), each node is endowed with a local embed-
ding capturing the nuances of its local topology, as well as a global embedding
encapsulating higher-order dependencies within each rating subgraph. However,
in downstream tasks, there often arises a necessity for more concise node embed-
dings. Conventional approaches typically employ simplistic pooling operations
(such as average or sum pooling) on embeddings from various perspectives to
derive condensed representations, inadvertently overlooking the importance of
node representations pertaining to diverse relations.

To overcome this drawback, we propose a global-local contrastive learning
aimed at reinforcing relationships between adjacent ratings. Formally, let Nr

denote the two ratings adjacent to rating r, and let xr represent the local embed-
dings of nodes within the r-th rating subgraph. The process of message passing
between adjacent ratings unfolds as follows:

er = xr +
∑

r′∈Nr

ζr′ · xr′
, (7)

where ζr′ is the normalized relevance of rating r′ to r, which is calculated by:

ζr′ =
exp

(

LeakyReLU
(

qrxr′
))

∑

r′∈N (r) exp (LeakyReLU (qrxr′))
. (8)

qr constitutes a trainable attention mechanism specifically designed for rating
r. It plays a crucial role in governing the flow of information between rating r
and its neighboring ratings within N (r). Similarly, we utilize the global-local
contrastive learning in parallel to derive global embeddings γr.

Finally, we further process this intermediate output through a linear opera-
tor:

e[i] = tanh(W1

∑

r∈R
zr[i]), γ[i] = tanh(W2

∑

r∈R
gammar[i]), (9)
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where W1 and W2 denote the weight parameters of the nonlinear function
tanh(·), e[·] and γ[·] represent local and global embeddings after multi-view
aggregation, and the final representation of users and items is the combination
of local embeddings and global embeddings.

Specifically, we differentiate between the local and global embeddings as two
distinct perspectives. In this context, we consider different views of the same
user or item as positive pairs, while treating divergent views of users/items as
negative pairs. Formally, we introduce our global-local contrastive loss function
for user representations, leveraging the InfoNCE framework, as follows:

LU
GL =

∑

u∈U

− log
exp((e[u] · γ[u]/τ))

∑

u′∈U exp((e[u′] · γ[u′]/τ))
. (10)

The final global-local contrastive loss is the sum of user and item objectives:

LGL = LU
GL + LV

GL. (11)

4.5 Edge-Level Contrastive Learning

The preceding multi-rating and local-global methods represent variants of multi-
view contrastive learning. These methodologies aim to foster the congruence of
identical nodes across diverse views while emphasizing the divergence of distinct
nodes, thereby facilitating synergistic augmentation and information comple-
mentarity across varied perspectives. Nevertheless, while embeddings predom-
inantly capture the characteristics of associated interaction edges, the afore-
mentioned contrastive learning techniques fail to account for the self-supervised
cues inherent within interaction edges and their corresponding reviews. Draw-
ing inspiration from prior methodologies, we capitalize on the richness of review
data by employing edge-level contrastive learning to fully harness the potential
of review information.

To capture the interaction edge between users and items, we employs a
Multi-layer Perceptron (MLP) to construct the interaction embedding huivj

.
This embedding is derived by concatenating the final representations of users
and items.

huivj
= MLP(e[ui], e[vj ]), (12)

where e[ui] and e[vj ] represent the final embeddings of user ui and item vj respec-
tively, and MLP comprises two hidden layers with a ReLU activation function.
Subsequently, all interaction embeddings serve as anchor examples, while the
corresponding review embeddings are designated as positive samples. However,
in the case of an interaction embedding with an actual rating of ‘1’, for instance,
the ideal negative sample should be chosen from the review embeddings with
a rating of ‘5’. Nevertheless, RGCL (presumably a previous method) imposes
no constraints on the random sampling range of negative samples, and each
anchor of RGCL corresponds to only one negative sample, thereby diminish-
ing the effectiveness of contrastive learning. Hence, HGCL takes into account
the sequentiality of ratings and the distribution of the number of interactions
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corresponding to different ratings and introduces a method to extract negative
samples based on ratings. In essence, each rating selectively chooses negative
samples from reviews associated with ratings that are farther away. The edge-
level contrastive learning mechanism can be formulated as follows:

LEL =
∑

ui,vj∈ε

− log
exp((huivj

· c̃uivj
/τ))

∑

c′
uivj

∈N (huivj
) exp((huivj

· c′
uivj

/τ))
. (13)

4.6 Model Optimization

In line with prior work [1,22], we adopt a bilinear decoder for the purpose of
reconstructing edges within the user-item graph. The decoder functions by bi-
linearizing the potential rating levels, generating a probability distribution, and
subsequently applying a softmax function:

p(Řuivj
= r) =

e(e[ui])
T Qre[vj ]

∑R
r′=1 e(e[ui])T Qr′ e[vj ]

, (14)

where Qr is the learnable parameter matrix of rating r. The predicted rating
matrix is calculated as:

Řuivj
=

∑

r∈R
rp

(

Řuivj
= r

)

. (15)

We minimize the cross-entropy loss (denoted by CE) between the predictions
and the ground truth ratings. While assigning a value of ‘1’ to each ground
truth label, we also set two adjacent labels to a smaller value, denoted as lclose,
mitigating the problem that CE loss ignores differences between incorrect labels.
Typically, we set lclose to 0.1 to strike an appropriate balance.

Lmain =
1

|(ui, vj)|Ωui,vj
= 1|

∑

(ui,vj)|Ωui,vj
=1

CE(r[ui, vj ], r̂[ui, vj ]), (16)

where we represent the expanded true rating label as r[ui, vj ], while r̂[ui, vj ]
signifies the predicted rating for the pair (i, j). In parallel, we introduce hyper-
parameters α and β to weigh and optimize the contrastive learning tasks. This
leads us to the final loss function, which is defined as follows:

L = Lmain + αLMR + βLGL + θLEL + ϕLNRR. (17)

Here, we introduce ϕLNRR as a regularization mechanism inspired by prior
models [1,22]. This regularization method is designed to account for both magni-
tude and order information, which aims to foster similarity in the representation
of each node in the rating subgraph that is adjacent to each other.
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5 Experiment

5.1 Experimental Settings

Datasets. We use two publicly benchmark data source, Amazon and Yelp,
where Amazon includes “Digital Music”, “Toys and Games”, “Clothing” and
“CDs and Vinly” four domains. Following the preprocessing steps outlined
in [23], we convert all datasets to “5-core” format, which means there are at
least five reviews for each user or item. Table 1 presents the summary of dataset
statistics.

Table 1. Statistical summaries of datasets, U: number of users; I: number of items; R:
rating counts; We present percentage distributions of user ratings.

Dataset U I R density(%) Ratings%

1 2 3 4 5

Yelp 8,423 3,742 88,647 0.281 5.88 9.41 15.29 37.13 32.09

Digital Music 5,541 3,568 64,706 0.330 4.31 4.65 10.49 25.55 54.98

Clothing 39,387 23,033 278,677 4.01 5.55 10.91 27.14 20.94 58.57

Toys and Games 19,412 11,924 167,597 0.072 2.80 3.75 9.75 22.34 61.33

CDs and Vinly 75,258 64,443 1,097,592 0.023 4.06 4.06 8.86 21.47 57.06

Evaluation Protocols and Metrics. We split our training, validation, and
test datasets in the ratio of 8:1:1 following the same settings in the most recent
studies [22,40]. In order to mitigate the sampling bias and to fairly evaluate the
prediction results of the ratings, we set up MAE and MSE, two widely used
metrics in the field of matrix complementation.

Baselines. The baselines can be broadly classified into three distinct groups: (1)
Traditional methods: SVD [18] is a matrix factorization model that uses the
inner product of users’ and items’ latent factors to estimate ratings. NNMF [4] is
a classical matrix factorization model that uses the user-item ratings only as the
target value of their objective function. (2) Review-based methods: Deep-
CoNN [1] is one of the pioneer works that applies a neural network to a review
recommendation system, using two parallel CNNs to capture the latent factors
of users and items. NARRE [22] is a model based on the review level attention
mechanism, which estimates the importance of different reviews. DAML [36]
uses both local and interactive attention layers to learn the embedding of users
and items when doing CNN convolution. TransNets [42] converts the learned
information into an approximation of the corresponding review through a trans-
formation layer, and uses it for rating prediction. (3) Graph and review fusion
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methods: RMG [32] fuses review information in graph structure to select impor-
tant words, sentences, and comments through a three-level attention network.
SSG [6] augments the existing single-view approach by merging two additional
views and constructs a three-way encoder to capture the long-term, short-term,
and collaborative features of users and items for recommendation. RGCL [23] is
a graph-based contrastive learning framework that creates a review-aware user-
item graph with edge features enriched by review content and introduces two
additional contrastive learning tasks to provide self-supervised signals.

Parameter Setting. We employ the Adam optimizer for the entirety of model
training, initializing all trainable parameters using the Xavier method. We sys-
tematically explore several key hyperparameters: The number of layers is varied
within the range {1, 2, ..., 5}. The hyperparameters α, β and θ in a range of
{0.001, 0.01, 0.02, 0.05, 0.1, 0.2}, λ is searched in {1e−7, 1e−6, 1e−5, 1e−4}. In
the embedding layer, we consider different vector sizes, selecting from 30, 60, ...,
1200, and the dimension of the review embedding generated by BERT-Whitening
is set to 64. The number of hyperedges is searched in {4, 8, 16, 32, 128}. Addi-
tionally, we implement early stopping to mitigate the risk of overfitting. The
complete model implementation is carried out using the Deep Graph Library [30]
and PyTorch, harnessing the computational power of an Intel Xeon Gold 5320T
CPU (2.3GHz) with two NVIDIA 3090 GPUs. The source code of our model is
available at: https://github.com/lx970414/PKDD24/tree/master.

5.2 Comparison and Result Analysis

Performance comparison of baselines and our proposed HGCL has been shown in
the Table 2. Compared with traditional recommendation models based matrix
factorization, SVD and NNMF, other GNN-based baselines that fusing graph
structure information have achieved better performance, which proves the advan-
tages of graph learning for modeling the interaction between nodes.

Specifically, for review-based methods, Deep- CoNN and DAML both use
CNNs to capture the latent factors of users and items, which performs well but
ignores important graph-level information. NARRE is a review-based model with
a review-level attention mechanism, which estimates the importance of different
reviews, but it neglects high-order information of nodes. TransNets converts the
learned information into an approximation of the corresponding review through
a transformation layer. However, it brings a lot of extra time overhead and the
experimental performance is inferior to our proposed HGCL.

For the graph and review fusion method, RMG, uses review information in
graph structure to select important context through a three-level attention net-
work, but it only focuses on local information of nodes and reviews which leads to
the lack of high-order information. For SSG and RGCL, which also incorporate
graph structure information, perform worse than the other two fusion methods.
This can be attributed to the fact that SSG has difficulty in to adequately cap-
turing collaborative information shared between users and items. Furthermore,

https://github.com/lx970414/PKDD24/tree/master


434 C. Shui et al.

HGCL achieves the best performance across all datasets and shows a signifi-
cant improvement compared to the latest graph-review fusion method RGCL.
This can be attributed to hierarchical graph contrastive learnings of HGCL,
which alleviative long-tail distribution by rendering the learned representation
distribution more uniform. Additionally, HGCL captures high-order correlations
between nodes through the hypergraph learner and uses cross-view contrastive
learning to achieve mutual enhancement of information between different views.
Finally, HGCL also captures the intrinsic correlation between ratings and reviews
through edge-level contrastive learning.

Table 2. Performance comparison of the proposed model and different baselines.

Method Digital Music Toys and Games Clothing CDs and Vinly Yelp

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

SVD 0.8523 0.6879 0.8301 0.6812 1.1167 0.8082 0.8662 0.8246 1.1741 0.8705

NNMF 0.8316 0.6960 0.8296 0.6822 1.1156 0.8095 0.8663 0.8257 1.1695 0.8637

DeepCoNN 0.8378 0.7032 0.8207 0.6739 1.1184 0.8113 0.8621 0.8231 1.1671 0.8611

NARRE 0.8172 0.6616 0.8175 0.6730 1.1064 0.8077 0.8495 0.8065 1.1673 0.8551

DAML 0.8237 0.6597 0.8143 0.6714 1.1065 0.8082 0.8483 0.8072 1.1588 0.8471

TransNets 0.8273 0.6788 0.8163 0.6782 1.1141 0.8127 0.8440 0.7986 1.1661 0.8447

RMG 0.8074 0.6635 0.8092 0.6586 1.1064 0.8067 0.8425 0.7991 1.1507 0.8433

SSG 0.8218 0.6780 0.8194 0.6770 1.1228 0.8135 0.8458 0.8013 1.1613 0.8529

RGCL 0.7735 0.6524 0.7984 0.6502 1.0858 0.7783 0.8180 0.7729 1.1397 0.8394

HGCL 0.7585 0.6240 0.7657 0.6355 1.0753 0.7731 0.8059 0.7624 1.1172 0.8097

5.3 Ablation Study

To evaluate the effectiveness of each component, we further conduct the ablation
study on different HGCL variations. We report the results of the ablation study
on five datasets in Table 3. Specifically, we generate the following variants:

– w/o R - which removes review-aware graph convolution.
– w/o CLH - which removes all the hierarchical contrastive learnings and

hypergraph convolution.
– w/o M-R - which removes the multi-ratings contrastive learning.
– w/o G - which removes the hypergraph structure learning module and hyper-

graph convolution on learned hypergraph, so that the final representation of
the node contains only local embeddings.

– w/o ECL - which removes edge-level contrastive learning.

Based on the results, we have the following four observations: (1) The results
of w/o ECL and w/o R demonstrate the necessity of considering the intrin-
sic correlation between ratings and reviews in HGCL. Furthermore, w/o CLH
performs worse than all variants on all datasets, which is equivalent to degener-
ating into a normal GAE-based model. (2) Both w/o M-R and w/o G have
decreased compared to HGCL, which indicates the effectiveness of these two
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Table 3. Performance comparison of different variants (MSE)

Dataset Digital Music Toys and Games Clothing CDs and Vinly Yelp

w/o R 0.7638 0.7731 1.0829 0.8133 1.1229

w/o CLH 0.7922 0.7989 1.1124 0.8122 1.1381

w/o M-R 0.7809 0.7863 1.0848 0.8225 1.1204

w/o G 0.7694 0.7742 1.0913 0.8159 1.1259

w/o ECL 0.7642 0.7701 1.0811 0.8127 1.1241

HGCL 0.7585 0.7657 1.0753 0.8059 1.1172

modules. Specifically, we can see that the two modules contribute differently to
different datasets, which may be affected by the situation of specific datasets.
For example, multi-ratings contrastive learning has significantly improved per-
formance in Toys and CDs, which may be due to the most prominent issue of
rating imbalanced distribution. The better performance of hypergraph learning
for Yelp and Clothing may be due to the higher density of these two datasets and
more complex dependency relations between nodes, thus requiring hypergraphs
to represent the global collaborative information.

5.4 Impact of Imbalanced Data Distribution

To validate HGCL’s efficacy in addressing popularity bias, we conduct exper-
iments assessing the impact of imbalanced node interaction distribution and
rating distribution. In the interest of brevity, we present the results specifically
for Digital Music datasets. However, it is worth noting that similar observations
are made across other datasets, reinforcing the robustness of our findings.

Impact of Imbalanced Node Interactions. In this section, we assess the
performance of HGCL across users exhibiting varying degrees of sparsity in their
interactions. To achieve this, we categorize all users into three distinct subsets,
based on their interaction frequencies. Specifically, we designate 80% of users
with the fewest interactions as ‘Inactive’, classify the top 5% of users with the
most interactions as ‘Active’, and assign the remaining users as ‘Normal’. The
resulting finding is visually depicted in Fig. 2(a). Notably, this figure reveals
a consistent trend wherein HGCL consistently outperforms the two baseline
models. Intriguingly, the observed improvements are most pronounced among
users with lower interaction frequencies. This phenomenon can be attributed to
the effectiveness of InfoNCE losses, which address the popularity bias issue by
promoting uniformity in the learned representations.

Impact of Imbalanced Rating Interactions. In this section, we present an
analysis of HGCL’s performance across different rating categories. The outcomes
of this evaluation are visually depicted in Fig. 2(b). Our findings underscore the
significant improvements achieved, particularly in the context of long-tail ratings
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Fig. 2. Impact of imbalanced data distribution.

(‘1’ and ‘2’). Importantly, these enhancements do not come at the expense of per-
formance in more common data categories (head class). This compelling result
reaffirms the role of InfoNCE in reshaping the overall distribution of embed-
dings, aligning them more closely with the characteristics of long-tail rating
distributions.

5.5 Parameter Sensitivity

In our evaluation, we systematically investigate the sensitivity of HGCL with
regard to four primary hyperparameters: α, β, θ, and the number of hyper-
edges. The corresponding MSE results obtained under different hyperparameter
settings are presented Fig. 3. For the sake of conciseness, we present results
exclusively for the ML-100K and Amazon datasets; however, it’s important to
emphasize that our observations hold true across other datasets as well.

Effect of α, β and θ. To assess the impact of three contrastive learning losses,
we conduct a series of parameter sensitivity experiments. The range for α, β and
θ is varied from 0.001 to 0.2. The resulting insights of three hyperparameters
are presented in Fig. 3(a) and 3(b), respectively. We observe similar trends in
the variation of three parameters across the two datasets. Initially, as the values
increase, the performance of HGCL improves on both datasets. This indicates
that contrastive learning effectively facilitates coordinated node representation
learning within HGCL. However, it is noteworthy that when the parameters
become too large, they might affect the importance of the loss function of the
specific task in the model learning, thus damaging the model performance.

Effect of Hyperedge Number. This part delves into the exploration of the
optimal number of hyperedges. We conduct experiments by varying the hyper-
edge numbers, ranging from 4 to 128 on two datasets. The resulting insights
are presented in Fig. 3(c) and 3(d). For Digital Music, the optimal number of
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Fig. 3. The parameter sensitivity results.

hyperedges appears to be 16, while on Toys and Games, the model’s performance
reaches its peak at 8. Interestingly, further increasing the number of hyperedges
beyond these optimal values tends to degrade model performance to varying
degrees, which can be attributed to the fact that an excessive number of hyper-
edges can introduce unnecessary noise into the representations.

6 Conclusion

In this paper, we introduce a novel Hierarchical Graph Contrastive Learning
(HGCL) for review-enhanced recommendation. First, we apply review-aware
graph convolution on each rating subgraph, dynamically learning the hyper-
graph structure of different subgraphs. Second, we employ a cross-rating con-
trastive learning to enhance mutual reinforcement by encouraging alignment
between adjacent views. Third, we use global-local contrastive learning to col-
laboratively learn node representations. Additionally, we design an edge-level
contrastive learning to strengthen the intrinsic correlation between reviews and
ratings. Experiment results on five benchmark datasets show the superiority and
effectiveness of the proposed HGCL.
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Abstract. We study the Linear Contextual Bandit (LinearCB) problem
in the hybrid reward setting. In this setting, every arm’s reward model
contains arm specific parameters in addition to parameters shared across
the reward models of all the arms. We can easily reduce this setting to two
closely related settings; (a) Shared - no arm specific parameters, and (b)
Disjoint - only arm specific parameters, enabling the application of two
popular state of the art algorithms - LinUCB and DisLinUCB (proposed
as Algorithm 1 in Li et al. 2010). When the arm features are stochastic
and satisfy a popular diversity condition, we provide new regret analy-
ses for both LinUCB and DisLinUCB that significantly improves upon the
known regret guarantees of these algorithms. Our novel analysis critically
exploits the structure of the hybrid rewards and diversity of the arm fea-
tures. Along with proving these new guarantees, we introduce a new algo-
rithm HyLinUCB that crucially modifies LinUCB (using a new exploration
coefficient) to account for sparsity in the hybrid setting. Under the same
diversity assumptions, we prove that at the end of T rounds, HyLinUCB
also incurs only Õ(

√
T ) regret. We perform extensive experiments on

synthetic and real-world datasets demonstrating strong empirical per-
formance of HyLinUCB. When the number of arm specific parameters
is much larger than the number of shared parameters, we observe that
DisLinUCB incurs the lowest regret. In this case, regret of HyLinUCB is the
second best and it is extremely competitive to DisLinUCB. In all other
situations, including our real-world dataset, HyLinUCB has significantly
lower regret than LinUCB, DisLinUCB and other state of the art baselines
we considered. We also empirically observe that the regret of HyLinUCB
grows much slower with the number of arms K, compared to baselines,
making it suitable even for very large action spaces.
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1 Introduction

The LinearCB problem is a popular choice to model sequential decision making
scenarios such as news recommendations [16], web-page optimization [11] etc. In
LinearCB, at each round, a learner receives (from the environment) a set of arms
(actions) specified as feature vectors, selects one of them, and receives a reward
sampled from a linear model (over the features of the selected arm). The goal of
the learner is to design a policy of selecting arms that minimizes its cumulative
regret. Here, regret of a round is calculated as the difference between the best
possible reward in that round and the actual reward received.

The LinearCB problem is most commonly studied under the shared setting.
Here, the linear reward model is shared across all the arms and algorithms such
as LinUCB [15,16] achieve state of the art regret. However, this setting can be
quite restrictive in applications where the reward model is different for differ-
ent arms. For example, in news recommendation, where arms are different news
items, the reward model (say click through rate) for news items about sports
could be very different from that of politics, movies etc. As a result, the problem
has also been studied under the disjoint and hybrid settings [16]. While in the
disjoint setting, the reward model of each arm only contains parameters spe-
cific to the arm (called arm-specific parameters), in the hybrid setting they also
contain parameters shared across all the arms (called shared parameters). Algo-
rithms were developed for the disjoint and hybrid settings in Algorithm 1 and
Algorithm 2 (respectively) of [16]. While Algorithm 1 (called DisLinUCB from
here on-wards) can be analyzed using ideas similar to the analysis of LinUCB
for the shared setting [15], Algorithm 2 requires tuning of a hyper-parameter.
Analyzing the regret of this algorithm is quite non-trivial and to the best of our
knowledge tight regret guarantees for the hybrid setting are not known. Design-
ing algorithms for the hybrid setting that overcome this challenge and also have
strong regret guarantees is the main focus of our work. For each arm’s reward
model, let d1, d2 be the number of shared and arm specific parameters respec-
tively, and let K be the total number of arms. Further, define d := d1 + d2K.
We make the following contributions.

1.1 Our Contributions

1. First, we reduce the hybrid setting to the shared setting with d parameters
and provide a new analysis for LinUCB [15]. We prove that if features of arms
pulled by LinUCB satisfy Assumption 1, then, at the end of T rounds, LinUCB
incurs a regret of Õ(

√
dKT ), when T = Ω̃(K3). Note that the standard

guarantee of LinUCB for this reduced problem is Õ(d
√

T ).
2. Next, by reducing to the disjoint setting, we provide a new analysis for

DisLinUCB. We prove that, under the same assumption as above, at the
end of T rounds, DisLinUCB incurs a regret of Õ

(√
(d1 + d2)KT

)
, when

T = Ω̃(1). The standard analysis (following analysis of LinUCB in [15]) implies
Õ((d1 + d2)

√
KT ) regret, which is much worse.



Hybrid Linear Contextual Bandits Revisited 443

3. Finally, we modify LinUCB using a tighter exploration parameter and develop
a new algorithm HyLinUCB. Under the same diversity assumption, we prove
a Õ(

√
K3T +

√
dKT ) regret guarantee for this algorithm. While our guar-

antee has a weaker dependence on K compared to the above algorithms, we
empirically observe it to be much stronger compared to them. By perform-
ing extensive experiments on synthetic (capturing a wide range of problem
settings) and real-world datasets (Yahoo! Front Page Dataset [25]), we demon-
strate that in almost all cases HyLinUCB has much lower regret than LinUCB,
DisLinUCB and other baselines. When the number of shared parameters is
larger than the arm-specific parameters, regret of HyLinUCB is significantly
lower than all state of the art baselines we compare it with. In the other
case, i.e., when the number of arm-specific parameters are larger, HyLinUCB
is extremely competitive with the best algorithm i.e. DisLinUCB. We also
empirically study the variation in regret with respect to the number of arms
K, and observe that regret of HyLinUCB grows much slower with K, compared
to baselines, making it suitable even for very large action spaces.

1.2 Additional Remarks on Contributions

We make some additional remarks to provide more clarity on our contributions.

Reduction to the Shared Setting: The hybrid setting is easily reduced to
the shared setting by combining the parameters of linear reward models of all
the actions into a common reward model. We provide complete details of this
reduction in Sect. 2. This reduction helps us apply most of the known algorithms
for LinearCB (discussed in detail in Sect. 1.3). Note that the reduction signif-
icantly increases the dimensionality of the arm features and the known regret
guarantees of these LinearCB algorithms might not be optimal anymore. The
additional structure in the problem needs to be exploited in the analysis to
improve these guarantees. Our first contribution does this for LinUCB. Similar
improved analysis might exist for other state of the art LinearCB algorithms we
discuss in Sect. 1.3. We leave this problem for future work.

Regret Guarantee of HyLinUCB: Even though our regret guarantee for
HyLinUCB has a slightly worse dependence on K, we believe this is an artifact
of our proof and that it can be improved further. Our synthetic and real-data
experiments provide strong evidence of this as HyLinUCB performs much better
than LinUCB in all the different problem settings we consider. Regret guarantee
that improves this dependence is an interesting direction for future work.

Diversity Assumption: Our regret guarantees are derived under the assump-
tion that the arms pulled by the algorithms satisfy a diversity condition
(Assumption 1) that has been studied in [5,9,10]. The assumption states that the
minimum eigenvalue of the expected outer product of the pulled arm’s feature
vector with itself, is bounded away from zero. This assumption allows the algo-
rithms to perform parameter estimation in conjunction to regret minimization,
the former being crucial to derive better dependence on the number of arms in
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the regret upper bound. The necessity of such diversity assumptions and their
implications on better regret rates has been studied in [19]. Even though the
assumption is algorithm dependent, there are problem instances for which all
algorithms satisfy it (Sect. 3, [19]). We empirically show that Assumption 1 is
indeed satisfied by the algorithms we study in this work.

1.3 Related Work

As highlighted in Sect. 1.2, the LinearCB problem in the hybrid setting can be
reduced to the shared setting, enabling the application of all LinearCB algo-
rithms designed for the shared setting. Over the last couple of decades, there
has been a substantial progress on LinearCB for the shared setting. Many state
of the art algorithms follow the optimism in the face of uncertainty approach [14],
and provide regret analysis with near optimal guarantees [1,4,6,8,20]. For gen-
eral stochastic arm features, the best known regret upper bound (independent
of number of arms K) provided in these works is Õ(d

√
T ) and the best known

lower bound [6] is Ω̃(
√

dT ), where d is the dimensionality of the arm features
and T is the number of rounds. The LinUCB algorithm [16] attains this upper
bound (Õ(d

√
T )) [15] and is also a popular choice for applications such as news

recommendation [16] due to it’s strong empirical performance. Moreover, it was
also adapted to the hybrid setting in [16]. As a result we choose it as one of our
main candidate algorithms to study in this paper. The popular SupLinUCB [6]
algorithm improves the dependence on d and guarantees Õ(

√
dT log3/2 K) regret

where K is the number of actions. A recent variant of the SupLinUCB algorithm
[18] improves this further to Õ(

√
dT logK). While the dependence on d improves,

it is traded off with a logarithmic dependence on K. It has also been noted
[13] that despite strong regret guarantees, SupLinUCB and its variants [17,18]
explore excessively and perform worse in practice due to computational ineffi-
ciency. Recently, [13] developed a new algorithm HyRan which does not depend
on K in the leading terms and attains a regret guarantee of Õ(

√
dT ) (improv-

ing significantly over SupLinUCB both theoretically and empirically). While they
prove this under an additional assumption on stochasticity of the arm features,
they also provide a matching lower bound showing tightness of their guarantee.
Their experiments validate their strong upper bound by demonstrating supe-
rior performance compared to many state of the art LinearCB baselines for a
large variety of problem instances. Due to their strong guarantee and empirical
performance, we compare our algorithms with HyRan in Sect. 4. Another family
of algorithms (based on randomized exploration) referred to as Thompson Sam-
pling [22] based methods are an active area of research. Linear contextual version
of this method was recently developed [2,3] and best known regret guarantees
are either Õ(d

√
T logK) or Õ(d3/2

√
T ). Both guarantees are worse than that

of LinUCB. Even though Thompson Sampling does well practically, the HyRan
algorithm from [13] was shown to be superior to them for all problem instances
considered in [13]. Since we already compare with HyRan in our experiments in
Sect. 4, we do not compare to Thompson Sampling based methods.
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2 Problem Formulation

Notations: [N ] denotes the set {1, . . . , N}. K, d1, d2 ∈ N denote the number
of arms, shared parameters and arm-specific parameters respectively. We denote
by ‖·‖2 the �2 norm of a vector and by ‖·‖ the operator norm of a matrix. We
denote all matrices with boldface and vectors in small case. For two symmetric
matrices A and B, we write A � B to indicate that A − B is positive semi-
definite. Further, we will denote by Ip the p×p identity matrix and 0 as the zero
matrix/vector (whose dimension will be clear from context when not specified).

LinearCB with Hybrid Rewards: We assume there exist unknown parameter
vectors θ∗ ∈ R

d1 and β∗
i ∈ R

d2 for i ∈ [K]. At each round t ∈ N, the learner
receives a set of K feature vector tuples Xt = {(xi,t, zi,t) : i ∈ [K]}. For each
arm i ∈ [K], the features xi,t ∈ R

d1 correspond to the parameter vector θ∗ and
the features zi,t ∈ R

d2 correspond to the arm-specific parameters β∗
i , i.e. if the

learner selects arm it ∈ [K] at round t, she receives a reward

rt = 〈xit,t, θ
∗〉 + 〈zit,t, β

∗
it〉 + ηt,

where ηt is a conditionally 1-subgaussian random noise. Specifically, let Ft be the
filtration (X1, i1, r1, . . . , rt−1), then, E[ηt | Ft] = 0, and, E[eαηt | Ft] ≤ eα2/2,
for all α ∈ R. Note that we do not assume the noise variable ηt to depend on the
arms selected by the learner. This later allows us to reduce the problem to the
shared setting albeit in a larger dimension. We define the (cumulative) regret of
the learner Alg at the end of round T as,

Reg(T, Alg) =
T∑

t=1

max
j∈[K]

(〈xj,t, θ
∗〉 + 〈zj,t, β

∗
j 〉) −

T∑
t=1

(〈xit,t, θ
∗〉 + 〈zit,t, β

∗
it〉

)
.

Assumptions: The key assumption in this work is the diversity assumption,
similar to the one made in [5,9,10] for the shared setting. We extend this assump-
tion (stated below) to the hybrid setting by adding one extra assumption that
arises from the hybrid nature of the problem.

Assumption 1 (Diversity). There exists a constant ρ > 0, such that features
of the arm selected by the algorithm, i.e., xit,t, zit,t, for all rounds t ∈ N, satisfy,

1. E[xit,t | Ft−1] = 0,E[zit,t | Ft−1] = 0, and E
[
xit,tz

ᵀ
it,t

| Ft−1

]
= 0,

2. E
[
xit,tx

ᵀ
it,t

| Ft−1

]
� ρId1 ,E

[
zit,tz

ᵀ
it,t

| Ft−1

]
� ρId2

We note that this assumption is algorithm dependent, however, there are
problem instances in the shared setting for which any algorithm satisfies it
(Section 3, [19]). We empirically validate this assumption in the hybrid set-
ting for the algorithms studied in this work, thereby demonstrating that the
assumption and its crucial implications indeed hold in practice. The details of
this empirical study is presented in Appendix F. We also make the following
standard assumption on the reward parameters.
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Assumption 2. There is a fixed constant S ∈ R (known to us) such that the
reward parameters ‖θ∗‖2 ≤ S and ‖β∗

i ‖2 ≤ S for all i ∈ [K]. Further, ‖xi,t‖2 ≤ 1
and ‖zi,t‖2 ≤ 1, for all arms i ∈ [K] and rounds t ∈ N.

Reduction to Shared Setting: We will now formalize our discussion from
Sect. 1.2 about reducing the hybrid setting to the shared setting. We first embed
the arm features into a sparse feature vector in R

d1+d2K via transformation
P : [K] × R

d1 × R
d2 → R

d1+d2K which takes as input arm i ∈ [K] and its
features x ∈ R

d1 , z ∈ R
d2 and maps it as follows:

P(i, x, z) = (xᵀ, 0, . . . , 0, zᵀ, 0, . . . , 0)ᵀ (1)

that is, the coordinate entries of x are copied to the first d1 coordinates of
P(i, x, z) while the coordinate entries of z are copied to the location starting
from d1+(i−1)d2+1 and ending at d1+id2. We also combine the true shared and
arm-specific parameters into a global parameter vector φ∗ = (θ∗ᵀ, β∗ᵀ

1 , . . . , β∗ᵀ
K )ᵀ.

It’s easy to see that this transformation converts the hybrid setting to the shared
setting while preserving the mean reward of every arm, i.e.,

〈P(i, x, z), φ∗〉 = 〈x, θ∗〉 + 〈z, β∗
i 〉 ∀ i ∈ [K].

Moreover, since the noise variable ηt at round t is assumed to be independent
of the arm selected, the noisy rewards rt = 〈P(i, x, z), φ∗〉 + ηt in this shared
setting exactly captures the reward received by arm i in the hybrid setting.

More Notations. For a matrix M ∈ R
p×p and vector a ∈ R

p, for any p > 0,
we define ‖a‖M =

√
aᵀMa. For a square matrix A ∈ R

p×p, we will denote
by λmax(A) and λmin(A) its maximum and minimum eigenvalues respectively.
Finally, for p, q ∈ R, we will write p ∨ q = max {p, q} and p ∧ q = min {p, q}.

3 Algorithms and Analysis

In this section, we present our main algorithms and their analyses. First, in
Sect. 3.1 we present the LinUCB and DisLinUCB algorithms for the hybrid setting
in Algorithms 1 and 2 respectively. These algorithms are well known, however,
for completeness we present them with the minor modifications we need to make
to apply them to the hybrid setting. Following this, in Theorem 3 and Corollary
1, we present the improved regret guarantees for LinUCB and DisLinUCB (under
Assumptions 1 and 2) respectively. Next, in Sect. 3.2, we introduce the HyLinUCB
algorithm which is exactly the same as LinUCB presented in Algorithm 1 but
with a new confidence parameter γ that we describe. We provide some intuition
regarding our choice of this parameter and then in Theorem 4 present a regret
guarantee for this algorithm under Assumptions 1 and 2.
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3.1 LinUCB and DisLinUCB

The LinUCB algorithm (Algorithm 1 with appropriate choices described below)
takes as input the total number of rounds T , a regularization parameter λ, an
exploration coefficient γ (whose exact values we provide later) that controls the
weightage to be put on the UCB (Upper Confidence Bound) bonus term, and a
desired failure probability δ ∈ (0, 1). In Step 1, it performs initialization of the
reward parameter vector and the design matrix M. Note that all initialization is
done assuming a feature space of dimension d1+d2K which is the dimensionality
after reducing the hybrid setting to the shared setting. The algorithm runs for
rounds t = 1 to t = T (Steps 2–9 ). In Steps 3,4, it receives the set Xt of
arm features and for each arm i, converts its features to appropriate shared
setting features x̃i ∈ R

d1+d2K , using the mapping P described in Sect. 2. Then,
in Step 5, it selects the arm it with the best UCB estimate, and receives a
reward rt corresponding to it. This is then used to update the design matrix and
the estimated reward parameters in Steps 8,9. For our LinUCB implementation,
we set the regularizer λ = 1 and carefully choose the exploration coefficient
γ = S

√
K +

√
2(d1 + d2K) log(T/δ)1 (in accordance with Theorem 2 in [1]).

This choice of λ and γ is standard for LinUCB in the d1+d2K dimensional shared
setting. For these values of λ and γ, the regret analysis of LinUCB [1,15,16], under
Assumption 2, leads to a regret guarantee of Õ((d1 + d2K)

√
T ). In Theorem 3,

we present a much stronger guarantee when Assumption 1 is also satisfied.

Algorithm 1. LinUCB (λ, γ)
Require: Regularizer λ, exploration coefficient γ, failure probability δ ∈ (0, 1)

1: Initialize ̂φ = 0 ∈ R
d1+d2K , M = λId1+d2K , u = 0 ∈ R

d1+d2K

2: for t = 1, . . . , T do
3: Receive context Xt = {(xi, zi)}i∈[K]

4: x̃i := P(i, xi, zi) for all i ∈ [K]

5: it = argmaxi∈[K]〈x̃i, ̂φ〉 + γ ‖x̃i‖M−1

6: Play arm it and observe reward rt
7: u ← u + rtx̃t

8: M ← M+ x̃tx̃
ᵀ
t

9: Update: ̂φ = M−1u
10: end for

Theorem 3 (Regret of LinUCB). At the end of T rounds, the regret of LinUCB
(Algorithm 1 with λ = 1, γ = S

√
K +

√
2(d1 + d2K) log(T/δ)) under Assump-

tions 1 and 2 is upper bounded by C
√
(d1 + d2K)T log(T/δ) with probability at

least 1− 4δ. Here, C > 0 is a universal constant and T is assumed to be Ω̃(K4).

The reduction from the hybrid setting to the shared setting leads to a sparse
design matrix. Our proof of Theorem 3 critically exploits the structure of this
1 S is a known upper bound on the magnitude of the reward parameter vector.
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sparse matrix and its inverse, along with some key technical ideas involving
geometry of random vectors and eigenvalue bounds on random matrices applied
to the stochastic arm features and the design matrix. For brevity, we present the
complete proof in Appendix A.

Our second algorithm DisLinUCB presented in Algorithm 2 (same as Algo-
rithm 1 in [16]) takes the same set of inputs as Algorithm 1 above, i.e., the total
number of rounds T , a regularization parameter λ, an exploration coefficient γ
and a desired failure probability δ ∈ (0, 1). In Step 1, for each arm i ∈ [K], it per-
forms initialization of the reward parameter vectors φi and (d1 + d2)× (d1 + d2)
size design matrices Vi. This algorithm treats the hybrid setting as a disjoint
setting and therefore the dimensionality of the problem remains the same as the
hybrid setting i.e. d1 + d2. The algorithm runs for rounds t = 1 to t = T (Steps
2–9 ). In Steps 3,4, it receives the set Xt of arm features. For each arm i ∈ [K], it
concatenates the shared and disjoint arm features to obtain the d1 + d2 dimen-
sional feature vector xi and treats it as the vector of arm-specific parameters in
the algorithm. Then, in Step 5, it selects the arm it with the best UCB estimate,
and receives a reward rt corresponding to it. This is then used to update the
corresponding design matrix (i.e. Vit) and the estimated reward parameter vec-
tor (i.e. φit) in Steps 8,9. A key difference from the previous algorithm is that in
DisLinUCB the UCB bonus for arm i ∈ [K] is computed using the arm specific
design matrix i.e. Vi, whereas in LinUCB it is computed using the overall design
matrix M. In our DisLinUCB instantiation, we set the regularizer λ = 1 and
choose the exploration coefficient γ = 2

√
S+

√
2(d1 + d2) log(KT/δ). This choice

of λ and γ is standard for LinUCB in the d1 + d2 dimensional shared setting. For
these values of λ and γ, the regret analysis of LinUCB (under Assumption 2) can
be appropriately modified to provide a regret guarantee of Õ((d1+d2)

√
KT ) for

DisLinUCB. In Corollary 1, we present a much stronger guarantee when Assump-
tion 1 is also satisfied.

Algorithm 2. DisLinUCB (Algorithm 1 in [16])
Require: Regularizer λ, exploration coefficient γ, failure probability δ ∈ (0, 1)
1: For every arm i ∈ [K], initialize φi = 0 ∈ R

d1+d2 , Vi = λId1+d2 , ui = 0 ∈ R
d1+d2

2: for t = 1, . . . , T do
3: Receive context Xt = {(xi, zi)}i∈[K]

4: Set xi =
[

xᵀ
i zᵀ

i

]ᵀ for all i ∈ [K]
5: it = argmaxi∈[K]〈xi, φi〉 + γ ‖xi‖Vi

6: Play arm it and observe reward rt
7: ui ← ui + rtxit

8: Vit ← Vit + xitx
ᵀ
it

9: Update φi = V−1
it

uit

10: end for

Corollary 1 (Regret of DisLinUCB). At the end of T rounds, the regret of
DisLinUCB (Algorithm 2 with λ = 1, γ = 2

√
S +

√
2(d1 + d2) log(KT/δ)) under
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Assumptions 1 and 2 is upper bounded by C
√

(d1 + d2)T log(KT/δ) with prob-
ability at least 1 − 4δ. Here, C > 0 is a universal constant and T is assumed to
be Ω̃(1).

Proof of Corollary 1 uses techniques similar to the ones used in the proof of
Theorem 3 with modifications to adapt it to the disjoint setting. Complete proof
is provided in Appendix C.

3.2 HyLinUCB

Our new algorithm HyLinUCB, is derived from Algorithm 1 by using differ-
ent values for parameters λ and γ. In our HyLinUCB instantiation, we set
the regularizer λ = K and choose the exploration coefficient γ = 2(S

√
K +√

2(d1 + d2) log(T/δ)). The rest of the algorithm is exactly the same as Algo-
rithm 1. However, due to this change the known regret analysis of LinUCB (under
Assumption 2) cannot be directly applied to get optimal regret with respect to
T . The optimality of the guarantee relies heavily on choosing γ correctly (since
it represents confidence in estimation of model parameters) and therefore, even
simple modifications do not seem to work. Our main intuition behind using this
new value for γ is that even though the feature vector post reduction to the
shared setting i.e. x̃i (See Step 4 in Algorithm 1) is d1+d2K dimensional, it has
only d1+d2 non-zero entries. This leads us to the question whether we can use a
tighter exploration parameter that depends on the true intrinsic dimensionality
of our feature vectors. In Theorem 4, we prove a strong regret guarantee (opti-
mal with respect to T ) when Assumptions 1 and 2 are satisfied. We also provide
strong empirical evidence in support of our choice for γ in Sect. 4.

Theorem 4 (Regret of HyLinUCB). At the end of T rounds, the regret of
HyLinUCB (Algorithm 1 with λ = K, γ = 2(S

√
K +

√
2(d1 + d2) log(T/δ)))

under Assumptions 1 and 2 is upper bounded by

C1

√
K3T log(K(d1 + d2)/δ) + C2

√
(d1 + d2K)KT log(KT (d1 + d2)/δ)

with probability at least 1 − 4δ. Here C1, C2 > 0 are universal constants and T
is assumed to be Ω̃(K4).

Our proof of Theorem 4 requires many new ideas on top of the techniques used in
the proof of Theorem 3 in order to accommodate the new confidence parameter.
Complete proof is provided in Appendix B. We finish this section with a few
remarks on the algorithm.

Remark 1. The scheme of HyLinUCB is similar to Algorithm 2 in [16]. However,
in [16], the exploration coefficient γ is treated as a hyperparameter to be tuned.
As a result it’s extremely difficult to compute a regret guarantee and no such
guarantee is known. Moreover, it also brings a practical overhead of experimen-
tally finding the optimal parameter. However, in HyLinUCB, we fix an appropriate
value of γ and prove optimal (with respect to T ) regret guarantees. This is where
our algorithm differs from [16].
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Remark 2. Line 9 in Algorithm 1 requires an inverse of a square matrix of d1 +
d2K dimension, which requires O((d1 + d2K)2) computation if one uses the
Sherman-Morrison formula (Section 0.7.4 in [12]). This is still quadratic in K.
However, it can be made linear in K using block matrix inversion technique
(see [16,21]). For simplicity, we present the algorithm in the above format.

4 Experimental Setup

In this section, we provide details of our experimental setup. We perform exten-
sive experiments under different problem settings and on real world datasets
to compare HyLinUCB, LinUCB, DisLinUCB and a baseline HyRan [13]. We set
HyRan as our baseline because for the shared setting with similar assumptions,
it was recently shown to have much better regret than all popular LinearCB
baselines described in Sect. 1.3. Our experiments are divided into two types (a)
synthetic (b) real-world. We provide further details about the setup below. The
code for all the experiments are available at https://github.com/nirjhar-das/
HyPay_Bandits.

4.1 Synthetic

For the synthetic experiments, the contextual arm features are generated by
sampling randomly from some distribution. Since the hybrid reward setting is
characterized by 3 key parameters: d1, d2 and K, to be exhaustive in our evalu-
ation, we design 3 parameter settings to study the effect of these parameters on
the regret of the various algorithms.

Parameter Settings: In Setting 1, we fix d1 = 40 and d2 = 5 to observe the
regret when d2 is small compared to d1. In Setting 2, we reverse the situation
and fix d1 = 5 and d2 = 40. For both Setting 1 and Setting 2 we fix K = 25
and T = 80, 000. For Setting 3, we fix d1 = d2 = 5 and T = 30, 000 but vary K
over a set of points between 10 and 400. This helps us capture the dependence
of regret on the number of arms K for the various algorithms.

Environments: We model the environment as a sequence of T contexts (arm
features) and a set of reward parameters. For each of our parameter settings,
we create 5 different environments. For each environment, we run 5 parallel
trials. In two different trials of the same environment, the sequence of contexts
and the reward parameters remain unchanged, but the random noise in reward
generation is allowed to vary.

Stochastic Feature Generation: For each environment, the contexts i.e., the
shared and arm-specific features of an arm in a particular round are gener-
ated by uniformly sampling d1 and d2 sized vectors from unit balls in d1 and d2
dimensions respectively.

https://github.com/nirjhar-das/HyPay_Bandits
https://github.com/nirjhar-das/HyPay_Bandits
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Reward Simulation: Reward parameters for an environment are created by uni-
formly sampling the shared parameter θ∗ from the d1-dimensional ball of radius
1 (i.e., S = 1). Thereafter, K vectors are sampled uniformly from the d2-
dimensional ball of radius 1, which become the disjoint parameters {β∗

i }i∈[K].
The stochastic reward generated for arm i ∈ [K] with features (xi, zi) is

rt = 〈xi, θ
∗〉 + 〈zi, β

∗
i 〉 + η ,

where noise η is sampled from the Gaussian distribution N (0, 0.01).

4.2 Real-World

We also perform experiments on the Yahoo! Front Page Dataset [25]. This dataset
contains click logs from real time user interactions with the news articles dis-
played in the Featured tab of the Today module on Yahoo! Front Page during
the first 10 days of May 2009. This dataset was also used in [16] for experiments
with the hybrid model.

Dataset Description: At every round, a user arrives and is presented with K = 20
news articles. The user is described by 6 features and every article presented
also has 6 features. The first feature is always 1 while the remaining 5 features
correspond to the 5 membership features constructed via conjoint analysis with
a bi-linear model as described in [7]. The dataset contains about 45 million such
user-article interaction entries. Further, one of the articles out of these K articles
is actually shown to the user, for which click (or no-click) is recorded.

Feature Construction: At a particular round, suppose the user features are
denoted by u ∈ R

6 and the arm (news article) features of arm i ∈ [K] are
denoted by vi ∈ R

6. Then, for arm i, the shared features xi are given by vector-
izing uvᵀ

i , while the disjoint features zi are set equal to vi. Thus, d1 = 36 and
d2 = 6.

Parameter Learning: We first learn a reward model by training a hybrid linear
regression model on the first 1M data points (contained in May 1, 2009 dataset).
For every user and the article that was actually shown to the user, we create
the shared and the arm parameters xi and zi (respectively) of the arm (article).
Note that the index of the arm shown in round n, i.e., in, is also an essential
part of this dataset (as we need to train the arm parameters too). The target
variable yn is the click feedback, which is a boolean variable. Thus, for N = 1M
data points, we have (xin,n, zin,n, yn)Nn=1. Finally we obtain the parameters as:

θ∗, {β∗
i }i∈[K] = argmin

θ,{βi}i∈[K]

N∑
n=1

(〈xin,n, θ〉 + 〈zin,n, βin〉 − yn)
2
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Reward Simulation: For simulating the bandit experiments, the stochastic
reward for an arm i with features xi, zi is generated as

rt = 〈xi, θ
∗〉 + 〈zi, β

∗
i 〉 + η ,

where noise η is sampled from the Gaussian distribution N (0, 0.0001). The rea-
son for keeping the variance of the noise low is that it was observed that the
mean rewards are themselves of the order 0.01, so high noise variance causes
the algorithms to take longer to demonstrate sub-linear regret due to smaller
signal-to-noise ratio in each arm pull’s feedback.

5 Results

In all experiments, we compare HyLinUCB, LinUCB, DisLinUCB and HyRan [13].

Fig. 1. Results of our experiments. Top-left: Regret vs # of Rounds (T ) for Setting
1; Top-right: Regret vs # of Rounds (T ) for Setting 2; Bottom-left: Regret versus
# of Arms for Setting 3; Bottom-right: Relative regret with respect to HyLinUCB for
Yahoo! Dataset.

5.1 Synthetic Experiments

Regret vs T : In Fig. 1, in the top row, we present results for Setting 1 (left)
and Setting 2 (right). We plot the cumulative regret averaged over 5 parallel
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trials for each of the 5 different environments. In Setting 1, with d1 � d2,
we observe that the performance of HyLinUCB is the best followed by LinUCB,
thus validating the superiority of these algorithms with higher shared parame-
ters, which resembles more like a fully shared setting. DisLinUCB also performs
comparably but the regret is higher than LinUCB. HyRan performs the worst in
Setting 1 although some sub-linear nature can be observed. In Setting 2, with
d2 � d1, DisLinUCB emerges as the best algorithm, while HyLinUCB is a very
close second. HyRan exhibits a linear regret in this regime and eventually crosses
beyond both DisLinUCB and HyLinUCB. Notably, LinUCB has the worst perfor-
mance in this setting, although the regret looks sub-linear. This matches with
the intuition that Setting 2 is closer to the fully disjoint setting, hence LinUCB
is not well-suited. However, the advantage of HyLinUCB is very clear from these
experiments as HyLinUCB performs very well in both the settings, thus validating
its suitability for the hybrid reward problem.

Regret vs K: In Fig. 1, the left plot in the bottom row shows the effect of K
on the total regret. This plot corresponds to Setting 3, with d1 = d2 = 5. We
again perform 5 parallel trials for (each of the) 5 different environments and then
calculate the average of the total regret over T rounds in all these 5 × 5 = 25
simulations. The X-axis in the plot represents the number of arms K while the
Y-axis denotes the (average) total regret. From the plot, we can observe that
HyLinUCB has the smallest regret over all values of K while DisLinUCB is the
second best, followed by LinUCB and then HyRan. HyLinUCB displays a very slow
growth with K, leading us to believe that its regret guarantee in Sect. 3 is not
tight and can possibly be improved significantly.

5.2 Real-World Experiment

The results of the semi-synthetic experiment for 10M rounds (starting from
May 2, 2009 dataset and moving to subsequent days’ dataset till 10M rounds
are complete) is shown in Fig. 1 in the bottom right. We plot the regret of other
algorithms relative to HyLinUCB (subtract the cumulative regret of HyLinUCB
from the cumulative regret of the algorithm), which has the smallest regret.
LinUCB comes close to HyLinUCB whereas regret of DisLinUCB and HyRan are
much larger. In this experiment, we do not have any control over the context fea-
tures hence it is possible that the diversity assumption is not satisfied. However,
we observe that HyLinUCB still performs much better than the other algorithms,
demonstrating strong evidence of good performance in hybrid models.

6 Conclusion and Future Work

In this work, we revisited the problem of linear contextual bandits with hybrid
rewards which is a useful setting in many applications such as news recommen-
dation. The problem was originally proposed in [16] albeit without any theoret-
ical guarantees. Reducing this problem to the shared and disjoint settings, we
derived regret guarantee for the LinUCB and DisLinUCB (Algorithm 1 in [16])
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algorithms, improving over their well known guarantees under a popular diver-
sity assumption. Finally, we propose a new algorithm HyLinUCB that employs
a tighter exploration coefficient leveraging the sparsity of the problem. We also
derive regret guarantee for this algorithm that has optimal dependence on T .
We perform extensive empirical evaluation of the three algorithms in various
synthetic scenarios (choices of d1, d2 and K) as well as on real-world datasets
(Yahoo! Front Page Dataset [25]). We empirically compare these algorithms with
the state-of-the-art HyRan [13] algorithm and demonstrate that HyLinUCB out-
performs the other algorithms in almost all cases and comes very close to the
best in the remaining.

Since HyLinUCB performs much better than LinUCB empirically, an interest-
ing future direction will be to derive tighter regret bounds that will provably
demonstrate the efficacy of HyLinUCB. Another future direction is to derive the
regret guarantees under a different diversity assumption and understanding the
trade-offs therein.
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