
Deep Sketched Output Kernel Regression
for Structured Prediction

Tamim El Ahmad1(B), Junjie Yang1, Pierre Laforgue2,
and Florence d’Alché-Buc1

1 LTCI, Télécom Paris, IP Paris, Palaiseau, France
tamim.elahmad@telecom-paris.fr

2 Department of Computer Science, University of Milan, Milan, Italy

pierre.laforgue@unimi.it

Abstract. By leveraging the kernel trick in the output space, kernel-
induced losses provide a principled way to define structured output pre-
diction tasks for a wide variety of output modalities. In particular, they
have been successfully used in the context of surrogate non-parametric
regression, where the kernel trick is typically exploited in the input space
as well. However, when inputs are images or texts, more expressive mod-
els such as deep neural networks seem more suited than non-parametric
methods. In this work, we tackle the question of how to train neural net-
works to solve structured output prediction tasks, while still benefiting
from the versatility and relevance of kernel-induced losses. We design a
novel family of deep neural architectures, whose last layer predicts in
a data-dependent finite-dimensional subspace of the infinite-dimensional
output feature space deriving from the kernel-induced loss. This subspace
is chosen as the span of the eigenfunctions of a randomly-approximated
version of the empirical kernel covariance operator. Interestingly, this
approach unlocks the use of gradient descent algorithms (and conse-
quently of any neural architecture) for structured prediction. Experi-
ments on synthetic tasks as well as real-world supervised graph predic-
tion problems show the relevance of our method.

Keywords: Structured prediction · Deep learning · Kernel methods

1 Introduction

Learning to predict complex outputs, such as graphs or any other composite
object, raises many challenges in machine learning [3,19,51]. The most impor-
tant of them is undoubtedly the difficulty of leveraging the geometry of the

T. El Ahmad and J. Yang—Equal contribution.

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-70352-2 6.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
A. Bifet et al. (Eds.): ECML PKDD 2024, LNAI 14943, pp. 93–110, 2024.
https://doi.org/10.1007/978-3-031-70352-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-70352-2_6&domain=pdf
https://doi.org/10.1007/978-3-031-70352-2_6
https://doi.org/10.1007/978-3-031-70352-2_6

94 T. El Ahmad et al.

output space. In supervised graph prediction, for instance, it is often required to
use node permutation-invariant and node size-insensitive distances, such as the
Fused Gromov-Wasserstein distance [69]. In that regard, surrogate methods such
as Output Kernel Regression [25,33,71] offer a powerful and flexible framework
by using the kernel trick in the output space. By appropriately choosing the out-
put kernel, it is possible to incorporate various kinds of information, both in the
model and in the loss function [13,15,49]. One important limitation of this app-
roach, however, is that the induced output features may be infinite-dimensional.

If leveraging the kernel trick in the input space may be a solution [12,16],
such non-parametric methods are usually outperformed by more expressive mod-
els such as neural networks when input data consist of images or texts. In the
context of structured prediction, deep learning has led to impressive results for
specific tasks, such as semantic segmentation [37] or the protein 3D structure
prediction [32]. To create versatile deep models, the main approach explored in
the literature is the energy-based approach, which consists of converting struc-
tured prediction into learning a scalar score function [4,27,42,43]. However, these
methods usually fail to go beyond structured prediction problems which can be
reformulated as high-dimensional multi-label classification problems, as pointed
out by [26]. Besides, this approach requires a two-step strategy, since the energy
function is first learned thanks to the training data, and then maximized at
inference time. To obtain an end-to-end model, [5] uses direct risk minimization
techniques, and [67] introduces inference networks, a neural architecture that
approximates the inference problem. In this work, we choose to benefit from the
versatility of kernel-induced losses, and deploy it to neural networks. To this
end, we address the infinite-dimensionality of the output features by comput-
ing a finite-dimensional basis within the output feature space, defined as the
eigenbasis of a sketched version of the output empirical covariance operator.

Sketching [45,73] is a dimension-reduction technique based on random lin-
ear projections. In the context of kernel methods, it has mainly been explored
through the so-called Nyström approximation [56,72], or via specific distribu-
tions such as Gaussian or Randomized Orthogonal Systems [40,75]. Previous
works tackle sketched scalar kernel regression by providing a low-rank approxi-
mation of the Gram matrix [2,20], reducing the number of parameters to learn
at the optimization stage [40,75], providing data-dependent random features
[39,72,74], or leveraging an orthogonal projection operator in the feature space
[56]. This last interpretation has been used to learn large-scale dynamical sys-
tems [47], and structured prediction [22].

In our proposition to solve structured prediction from complex input data,
we make the following contributions:

• We introduce Deep Sketched Output Kernel Regression, a novel family of
deep neural architectures whose last layer predicts a data-dependent finite-
dimensional representation of the outputs, that lies in the infinite-dimensional
feature space deriving from the kernel-induced loss.

Deep Sketched Output Kernel Regression 95

• This last layer is computed beforehand, and is the eigenbasis of the sketched
empirical covariance operator, unlocking the use of gradient-based techniques
to learn the weights of the previous layers for any neural architecture.

• We empirically show the relevance of our approach on a synthetic least squares
regression problem, and provide a strategy to select the sketching size.

• We show that DSOKR performs well on two text-to-molecule datasets.

2 Deep Sketched Output Kernel Regression

In this section, we set up the problem of structured prediction. Specifically, we
consider surrogate regression approaches for kernel-induced losses. By introduc-
ing a last layer able to make predictions in a Reproducing Kernel Hilbert Space
(RKHS), we unlock the use of deep neural networks as hypothesis space.

Consider the general regression task from an input domain X to a structured
output domain Y (e.g., the set of labeled graphs of arbitrary size). Learning a
mapping from X to Y naturally requires taking into account the structure of
the output space. One way to do so is the Output Kernel Regression (OKR)
framework [10,12,16,25,71], which is part of the family of surrogate regression
methods [14,15].

Output Kernel Regression. A positive definite (p.d.) kernel k : Y ×Y → R is
a symmetric function such that for all n ≥ 1, and any (yi)

n
i=1 ∈ Yn, (αi)

n
i=1 ∈ R

n,
we have

∑n
i,j=1 αi k (yi, yj) αj ≥ 0. Such a kernel is associated with a canonical

feature map ψ : y ∈ Y �→ k(·, y), which is uniquely associated with a Hilbert
space of functions H ⊂ R

Y , the RKHS, such that ψ(y) ∈ H for all y ∈ Y, and
h (y) = 〈h, ψ(y)〉H for any (h, y) ∈ H × Y. Given a p.d. kernel k, ψ its canonical
feature map and H its RKHS, the OKR approach that we consider in this work
exploits the kernel-induced squared loss:

Δ(y, y′) := ‖ψ(y) − ψ(y′)‖2H = k(y, y) − 2 k(y, y′) + k(y′, y′) . (1)

The versatility of loss (1) stems from the large variety of kernels that have
been designed to compare structured objects [7,24,38]. In multi-label classifi-
cation, for instance, choosing the linear kernel or the Tanimoto kernel induces
respectively the Hamming and the F1-loss [65]. In label ranking, Kemeny and
Hamming embeddings define respectively Kendall’s τ distance and the Hamming
loss [38,50]. For sequence prediction tasks, n-gram kernels have been proven
useful [17,33,50], while an abundant collection of kernels has been designed
for graphs, based either on bags of structures or information propagation, see
Appendix B and [7] for examples.

If kernel-induced losses can be computed easily thanks to the kernel trick,
note that most of them are however non-differentiable. In particular, this largely
compromises their use within deep neural architectures, that are however key
to achieve state-of-the-art performances in many applications. In this work, we
close this gap and propose an approach that benefits from both the expressivity
of neural networks for input image/textual data, as well as the relevance of

96 T. El Ahmad et al.

kernel-induced losses for structured outputs. Formally, let ρ be a joint probability
distribution on X × Y. Our goal is to design a family (fθ)θ∈Θ ⊂ YX of neural
networks with outputs in Y that can minimize the kernel-induced loss, i.e., that
can solve

min
θ∈Θ

E(x,y)∼ρ

[∥
∥ψ(y) − ψ

(
fθ(x)

)∥
∥2

H
]
. (2)

To do so, we assume that we can access a training sample {(x1, y1), . . . , (xn, yn)}

Fig. 1. Illustration of DSOKR model.

drawn i.i.d. from ρ. Since learning fθ through ψ is difficult, we employ a two-step
method. First, we solve the surrogate empirical problem

θ̂ ∈ arg min
θ∈Θ

L(θ) = arg min
θ∈Θ

1
n

n∑

i=1

‖hθ(x) − ψ(y)‖2H, (3)

where (hθ)θ∈Θ ⊂ HX is a family of neural networks with outputs in H. We then
retrieve the solution by solving for any prediction the pre-image problem

fθ̂(x) = arg min
y∈Y

‖hθ̂(x) − ψ(y)‖2H. (4)

This approach nonetheless raises a major challenge. Indeed, the dimension of
the canonical feature space H may be infinite, making the training very difficult.
The question we have to answer now is: how can we design a neural architecture
that is able to learn infinite-dimensional output kernel features?

Neural Networks with Infinite-Dimensional Outputs. We propose a novel
architecture of neural networks to compute the function hθ with values in H,
as illustrated in Fig. 1. Let p ≥ 1, our architecture is the composition of two
networks: an input neural network, denoted gW : X → R

p, with generic weights
W ∈ W, and a last layer composed of a unique functional neuron, denoted
gE : Rp → H, that predicts in H. The latter depends on the kernel k used in the
loss definition, and on a finite basis E = ((ej)

p
j=1) ∈ Hp of elements in H. We

let θ = (W,E), and for any x ∈ X , we have

Deep Sketched Output Kernel Regression 97

hθ(x) := gE ◦ gW (x), (5)

where gW typically implements a L − 1 neural architecture encompassing, mul-
tilayered perceptrons, convolutional neural networks, or transformers. Instead,
gE computes a linear combination of some basis functions E = (ej)

p
j=1 ∈ Hp

gE : z ∈ R
p �→

p∑

j=1

zjej ∈ H . (6)

With this architecture, computations remain finite, and the input neural network
outputs the coefficients of the basis expansion, generating predictions in H.

Remark 1 (Input Neural net’s last layers). Since the neural network gW learns
the coordinates of the surrogate estimator in the basis, its last layers are always
mere fully connected ones, regardless of the nature of the output data at hand.

2.1 Learning Neural Networks with Infinite-Dimensional Outputs

Learning the surrogate regression model hθ now boils down to computing θ =
(W,E). We propose to solve this problem in two steps. First, we learn a suitable E
using only the output training data (ψ(yi))n

i=1 in an unsupervised fashion. Then,
we use standard gradient-based algorithms to learn W through the frozen last
layer, minimizing the loss on the whole supervised training sample (xi, ψ(yi))n

i=1.

Estimating the Functional Last Unit gE. A very first idea is to choose E
as the non-orthogonal dictionary ψ(yj)n

j=1. But this choice induces a very large
output dimension (namely, p = n) for large training datasets.

An alternative consists in using Kernel Principal Component Analy-
sis (KPCA) [58]. Given a marginal probability distribution over Y, let
C = Ey[ψ(y) ⊗ ψ(y)] be the covariance operator associated with k, and
Ĉ = (1/n)

∑n
i=1 ψ(yi) ⊗ ψ(yi) its empirical counterpart. Let S be the

sampling operator that transforms a function f ∈ H into the vector
(1/

√
n)(f(x1), . . . , f(xn))� in R

n, and denote by S# its adjoint. We have
S# : α ∈ R

n �→ (1/
√

n)
∑n

i=1 αi ψ(yi) ∈ H, and Ĉ = S# S. KPCA provides
the eigenbasis of Ĉ by computing the SVD of the output Gram matrix, for a
prohibitive computational cost of O(n3). In practice, though, it is often the case
that the so-called capacity condition holds [15,22], i.e., that the spectrum of the
empirical covariance operator enjoys a large eigendecay. It is then possible to
efficiently approximate the eigenbasis of Ĉ using random projections techniques
[45], also known as sketching, solving this way the computational and memory
issues.

Sketching for Kernel Methods. Sketching [73] is a dimension reduction tech-
nique based on random linear projections. Since the goal is to reduce the depen-
dency on the number of training samples n in kernel methods, such linear pro-
jections can be encoded by a randomly drawn matrix R ∈ R

m×n, where m n.

98 T. El Ahmad et al.

Standard examples include Nyström approximation [46], where each row of R is
randomly drawn from the rows of the identity matrix In, also called sub-sampling
sketches, and Gaussian sketches [75], where all entries of R are i.i.d. Gaussian
random variables. As they act as a random training data sub-sampler and then
largely reduce both the time and space complexities induced by kernel methods,
sub-sampling sketches are the most popular sketching type applied to kernels,
while Gaussian sketches are less computationally efficient but offer better sta-
tistical properties. Hence, given a sketching matrix R ∈ R

m×n, one can defines
H̃Y = span((

∑n
j=1 Rij ψ(yj))mi=1) which is a low-dimensional linear subspace of

H of dimension at most m. One can even compute the basis Ẽ of H̃Y , providing
the last layer gẼ .

Sketching to Estimate gE . We here show how to compute the basis Ẽ of
H̃Y . Let m < n, and R ∈ R

m×n be a sketching matrix. Let K̃ = R K R� ∈
R

m×m be the sketched Gram matrix, and
{
(σi(K̃), ṽi), i ∈ [m]

}
its eigenpairs,

in descending order. We set p = rank
(
K̃

)
. Note that p ≤ m, and that p =

m for classical examples, e.g. full-rank K and sub-sample without replacement
or Gaussian R. The following proposition provides the eigenfunctions of the
sketched empirical covariance operator.

Proposition 1. [22, Proposition 2] The eigenfunctions of the sketched empirical
covariance operator C̃ = S#R�R S are the ẽj =

√
n

σj(˜K)
S# R� ṽj ∈ H, for

j ≤ p.

Hence, computing the eigenfunctions of C̃ provides a basis of H of dimension p.
Note that in sketched KPCA, which has been explored via Nyström approxima-
tion in [63,64], one solves for i = 1, . . . ,m

fi = arg max
f∈H

{
〈f, Ĉ f〉H : f ∈ H̃Y , ‖f‖H = 1, f ⊥ {f1, . . . , fi−1}

}
(7)

where H̃Y = span((
∑n

j=1 Rij ψ(yj))mi=1). Let P̃ be the orthogonal projector onto
the basis (ẽ1, . . . , ẽp), solving Equation (7) is equivalent to compute the eigen-
functions of the projected empirical covariance operator P̃ Ĉ P̃, i.e., to compute
the KPCA of the projected kernel 〈P̃ ψ(·), P̃ ψ(·)〉H. Besides, as for the SVD
of C̃, sketched KPCA needs the SVD of K̃ to obtain its square root, but also

requires the additional K̃
1/2

R K2 R� K̃
1/2

SVD computation.

Remark 2 (Random Fourier Features). Another popular kernel approximation
is the Random Fourier Features [44,52,57]. They approximate a kernel function
as the inner product of small random features using Monte-Carlo sampling when
the kernel writes as the Fourier transform of a probability distribution. Such an
approach, however, defines a new randomly approximated kernel, then a new
randomly approximated loss, which can induce learning difficulties due to the
bias and variance inherent to the approximation. Unlike RFF, sketching is not
limited to kernels writing as the Fourier transform of a probability distribution

Deep Sketched Output Kernel Regression 99

and to defining an approximated loss, it allows the building of a low-dimensional
basis within the original feature space of interest.

Learning the Input Neural Network gW . Equipped with the basis Ẽ =
(ẽj)j≤p, we can compute a novel expression of the loss L(θ) = L(Ẽ,W), see
Appendix A for the proof.

Algorithm 1 . Deep Sketched Output Kernel Regression (DSOKR)
input: training {(xi, yi)}n

i=1, validation {(xval
i , yval

i)}nval
i=1 pairs, test inputs {xte

i }nte
i=1,

candidate outputs test inputs {yc
i }nc

i=1, normalized output kernel k, sketching
matrix R ∈ R

m ×n, neural network gW

init : ˜K = R K R� ∈ R
m × m where K = (k(yi, yj))1≤i,j≤n ∈ R

n×n

// 1. a. Training of gE: computations for the basis ˜E

• Construct ˜Dp ∈ R
p × p, ˜Vp ∈ R

m × p such that ˜Vp
˜Dp

˜V �
p = ˜K (SVD of ˜K)

• ˜Ω = ˜D
−1/2
p

˜V �
p ∈ R

p × m

// 1. b. Training of gW : solving the surrogate problem

• ψ̃(yi) = ˜Ω R kyi ∈ R
p, ∀ 1 ≤ i ≤ n, ψ̃(yval

i) = ˜Ω R kyval
i ∈ R

p, ∀ 1 ≤ i ≤ nval

• Ŵ = arg min
W∈W

1
n

∑n
i=1

∥

∥

∥gW (xi) − ψ̃(yi)
∥

∥

∥

2

2
(training of gW with training

{(xi, ψ̃(yi))}n
i=1 and validation {(xval

i , ψ̃(yval
i))}nval

i=1 pairs and Mean Squared Error loss)

// 2. Inference

• ψ̃(yc
i) = ˜Ω R kyc

i ∈ R
p, ∀ 1 ≤ i ≤ nc

• fθ̂(x
te
i) = yc

j where j = arg max
1≤j≤nc

gŴ (xte
i)�ψ̃(yc

j), ∀ 1 ≤ i ≤ nte

return fθ̂(x
te
i), ∀ 1 ≤ i ≤ nte

Proposition 2. Given the pre-trained basis Ẽ = (ẽj)j≤p, L(Ẽ,W) expresses as

L(Ẽ,W) =
1
n

n∑

i=1

∥
∥
∥gW (xi) − ψ̃(yi)

∥
∥
∥
2

2
, (8)

where ψ̃(y) = (ẽ1(y), . . . , ẽp(y))� = D̃
−1/2
p Ṽ �

p R ky ∈ R
p, Ṽp = (ṽ1, . . . , ṽp),

D̃p = diag(σ1(K̃), . . . , σp(K̃)), and ky = (k(y, y1), . . . , k(y, yn)).

Finally, given Ẽ and Proposition 2, learning the full network hθ boils down to
learning the input neural network gW and thus finding a solution Ŵ to

min
W∈W

1
n

n∑

i=1

∥
∥
∥gW (xi) − ψ̃(yi)

∥
∥
∥
2

2
. (9)

A classical stochastic gradient descent algorithm can then be applied to learn W .
Compared to the initial loss (3), the relevance of (9) is governed by the quality of

100 T. El Ahmad et al.

the approximation of Ĉ by C̃. If our approach regularises the solution (the range
of the surrogate estimator hθ is restricted from H to E), this restriction may not
be limiting if we set m ≥ p high enough to capture all the information contained
in Ĉ. We discuss strategies to correctly set m at the beginning of Sect. 3.

Remark 3 (Beyond the square loss). Equipped with such an architecture gW ◦gE ,
one can easily consider any loss that writes Δ(y, y′) = c(‖ψ(y)−ψ(y′)‖2H), where
c : R+ → R+ is a non-decreasing sub-differentiable function. For instance, in the
presence of output outliers, one could typically consider robust losses such as
the Huber or ε-insensitive losses, that correspond to different choices of function
c [30,41,62].

2.2 The Pre-image Problem at Inference Time

We focus now on the decoding part, i.e., on computing

d ◦ hθ̂(x) = arg min
y∈Y

k(y, y) − 2gŴ (x)� ψ̃(y) = arg max
y∈Y

gŴ (x)� ψ̃(y)

if we assume k to be normalized, i.e. k(y, y′) = 1,∀y, y′ ∈ Y. For a test set
Xte = (xte

1 , . . . , xte
nte

) ∈ X nte and a candidate set Y c = (yc
1, . . . , y

c
nc

) ∈ Ync , for
all 1 ≤ i ≤ nte, the prediction is given by

fθ̂(x
te
i) = yc

j where j = arg max
1≤j≤nc

gŴ (xte
i)�ψ̃(yc

j) . (10)

Hence, the decoding is particularly suited to problems for which we have
some knowledge of the possible outcomes, such as molecular identification prob-
lems [11]. When the output kernel is differentiable, it may also be solved using
standard gradient-based methods. Finally, some ad-hoc ways to solve the pre-
image problem exist for specific kernels, see e.g., [17] for the sequence prediction
via n-gram kernels, or [38] for label ranking via Kemeny, Hamming, or Lehmer
embeddings. The DSOKR framework is summarized in Algorithm1.

3 Experiments

In this section, we first present a range of strategies to select the sketch-
ing size and an analysis of our proposed DSOKR on a synthetic dataset.
Besides, we show the effectiveness of DSOKR through its application to two
real-world Supervised Graph Prediction (SGP) tasks: SMILES to Molecule
and Text to Molecule. The code to reproduce our results is available at:
https://github.com/tamim-el/dsokr.

Sketching Size Selection Strategy. A critical hyper-parameter of DSOKR is
the sketching size m. Indeed, the optimal choice is the dimension of the subspace
containing the output features. However, to estimate this dimension, one has to
compute the eigenvalues of K, which has the prohibitive complexity of O(n3).
Hence, a first solution is to compute the Approximate Leverage Scores (ALS)

https://github.com/tamim-el/dsokr

Deep Sketched Output Kernel Regression 101

as described in [1]. This is an approximation of the eigenvalues of K that relies
on sub-sampling nS < n entries within the whole training set. Moreover, we
use another technique that we call Perfect h. Considering any pair (x, y) in a
validation set, we replace gW (x) by the “perfect” coefficients of the expansion,
i.e., for each j = 1, . . . , p, 〈ẽj , ψ(y)〉H and define “perfect” surrogate estimator
hψ as follows

hψ(x) =
p∑

j=1

〈ẽj , ψ(y)〉H ẽj =
p∑

j=1

ψ̃(y)j ẽj . (11)

Then, we evaluate the performance of this “perfect” surrogate estimator hψ on a
validation set to select m. Hence, Perfect h allows to select the minimal m in the
range given by ALS such that the performance of hψ reaches an optimal value.

3.1 Analysis of DSOKR on Synthetic Least Squares Regression

Fig. 2. Sorted 400 highest ALS (left), validation MSE of Perfect h w.r.t. m (center)
and the difference between test MSE of DSOKR and NN w.r.t. m (right).

Dataset. We generate a synthetic dataset of least-squares regression, using then
a linear output kernel, with n = 50, 000 training data points, X = R

2,000, Y =
R

1,000, and H = Y = R
1,000. The goal is to build this dataset such that the

outputs lie in a subspace of Y of dimension d = 50 < 1, 000. Hence, given d
randomly drawn orthonormal vectors (uj)d

j=1, for all 1 ≤ i ≤ n, the outputs
are such that yi =

∑d
j=1 α(xi)juj + εi, where α is a function of the inputs

and εi ∼ N (0, σ2I1,000) are i.i.d. with σ2 = 0.01. We generate i.i.d. normal
distributed inputs xi ∼ N (0, C), where (σj(C) = j−1/2)2,000

j=1 and its eigenvectors
are randomly drawn. Finally, we draw H ∈ R

d×2,000 with i.i.d. coefficients from
the standard normal distribution, and the outputs are given for 1 ≤ i ≤ n by

yi = UHxi + εi , (12)

where U = (u1, . . . , ud) ∈ R
1,000×d. We generate validation and test sets of

nval = 5, 000 and nte = 10, 000 points in the same way.

102 T. El Ahmad et al.

Experimental Settings. We first compute the ALS as described above. We
take as regularisation penalty λ = 10−4, sampling parameter nS =

√
n and

probability vector (pi = 1/n)n
i=1 (uniform sampling). Then, we perform the

sketching size selection strategy Perfect h. Note that using a linear output kernel,

ψ : y ∈ R
1,000 �→ y, then ẽi = (1/

√

σi(K̃))ṽ�
i R Y , where Y = (y1, . . . , yn)� ∈

R
n×1,000, and

hθ̂(x) = Y � R� ṼpD̃
−1/2
p gŴ (x) . (13)

Finally, we perform our DSOKR model whose neural network gW is a Single-
Layer Perceptron, i.e. with no hidden layer, and compare it with an SLP whose
output size is 1, 000, and trained with a Mean Squared Error loss, that we call
“NN”. We select the optimal number of epochs thanks to the validation set and
evaluate the performance via the MSE. We use the ADAM [36] optimizer. For the
Perfect h and DSOKR models and any sketching size m ∈ [2, 400], we average the
results over five replicates of the models. We use uniform sub-sampling without
replacement and Gaussian sketching distributions.

Experimental Results. Figure 2 (left) presents the sorted 400 highest leverage
scores. This gives a rough estimate of the optimal sketching size since the leverage
scores converge to a minimal value starting from 200 approximately, which is an
upper bound of the true basis dimension d = 50. Figure 2 (center) shows that
Perfect h is a relevant strategy to fine-tune m since the obtained optimal value is
m = 75, which is very close to d = 50. This small difference comes from the added
noise εi. Moreover, this value corresponds to the optimal value based on the
DSOKR test MSE. In fact, Fig. 2 (right) presents the performance DSOKR for
many m values compared with NN. DSOKR performance converges to the NN’s
performance for m = 75 as well. Hence, we show that DSOKR attains optimal
performance if its sketching size is set as the dimension of the output marginal
distribution’s range, which can be estimated thanks to the ALS and the Perfect
h strategies. There is no difference between sub-sample and Gaussian sketching
since the dataset is rather simple. Moreover, note that the neural network of the
DSOKR model for m = 75 contains 150, 075 parameters, whereas the NN model
contains 2, 001, 000 parameters. Then, our sketched basis strategy, even in the
context of multi-output regression, allows to reduce the size of the last layer,
simplifying the regression problem and reducing the number of weights to learn.

3.2 SMILES to Molecule: SMI2Mol

Dataset. We use the QM9 molecule dataset [54,55], containing around 130,000
small organic molecules. These molecules have been processed using RDKit1,
with aromatic rings converted to their Kekule form and hydrogen atoms removed.
We also remove molecules containing only one atom. Each molecule contains up
to 9 atoms of Carbon, Nitrogen, Oxygen, or Fluorine, along with three types

1 RDKit: Open-source cheminformatics. https://www.rdkit.org.

https://www.rdkit.org

Deep Sketched Output Kernel Regression 103

of bonds: single, double, and triple. As input features, we use the Simplified
Molecular Input Line-Entry System (SMILES), which are strings describing their
chemical structure. We refer to the resulting dataset as SMI2Mol.

Experimental Set-Up. Using all SMILES-Molecule pairs, we build five splits
using different seeds. Each split has 131,382 training samples, 500 validation
samples, and 2,000 test samples. In DSOKR, gW is a Transformer [68]. The
SMILES strings are tokenized into character sequences as inputs for the Trans-
former encoder. To define the loss on output molecules, we cross-validate several
graph kernels, including the Weisfeiler-Lehman subtree kernel (WL-VH) [60],
the neighborhood subgraph pairwise distance kernel (NSPD) [18], and the core
Weisfeiler-Lehman subtree kernel (CORE-WL) [48]. We use the implementation
of the graph kernels provided by the Python library GraKel [61]. We employ
SubSample sketching for the output kernel. The sketching size m is fixed using
our proposed Perfect h strategy. Our method is benchmarked against SISOKR
[22], NNBary-FGW [9], and ILE-FGW [9]. For ILE-FGW and SISOKR, we addi-
tionally use SubSample sketching [56] for input kernel approximation. To ensure
a fair comparison, both SISOKR and ILE-FGW adopt the 3-gram kernel for the
input strings, whereas NNBary-FGW and DSOKR use a Transformer encoder.
The performance is evaluated using Graph Edit Distance (GED), implemented
by the NetworkX package [28].

Fig. 3. The GED w/ edge feature w.r.t. the sketching size m for Perfect h for three
graph kernels on SMI2Mol (m > 6400 is too costly computationally).

Table 1. Edit distance of different methods on SMI2Mol test set

GED w/o edge feature ↓ GED w/ edge feature ↓
SISOKR 3.330 ± 0.080 4.192 ± 0.109

NNBary-FGW 5.115 ± 0.129 -

Sketched ILE-FGW 2.998 ± 0.253 -

DSOKR 1.951 ± 0.074 2.960 ± 0.079

104 T. El Ahmad et al.

Experimental Results. Figure 3 displays the GED obtained by Perfect h con-
cerning various graph kernels. Based on this visualization, we have set the sketch-
ing sizes of WL-VH, CORE-WL, and NPSD to 3200, 3200, and 6400 respectively.
Table 1 showcases the performance of various methods of SGP. Notably, DSOKR
outperforms all baseline methods. It is evident that while graph kernels and the
fused Gromov-Wasserstein (FGW) distance induce a meaningful feature space,
the capabilities of SISOKR and ILE-FGW are constrained by the input kernels,
thus highlighting the relevance of our proposed method. For further insight, a
comparison of some prediction examples is provided in Fig. 4 and Appendix C.1.

Fig. 4. Predicted molecules on the SMI2Mol dataset.

Fig. 5. The MRR scores on ChEBI-20 validation set w.r.t. m for Perfect h when the
output kernel is Cosine or Gaussian on the ChEBI-20 dataset.

Deep Sketched Output Kernel Regression 105

Table 2. Performance of different methods on ChEBI-20 test set. All the methods
based on NNs use SciBERT as input text encoder for fair comparison. The number in
the ensemble setting indicates the number of single models used.

Hits@1 ↑ Hits@10 ↑ MRR ↑
SISOKR 0.4% 2.8% 0.015

SciBERT Regression 16.8% 56.9% 0.298

CMAM - MLP 34.9% 84.2% 0.513

CMAM - GCN 33.2% 82.5% 0.495

CMAM - Ensemble (MLP×3) 39.8% 87.6% 0.562

CMAM - Ensemble (GCN×3) 39.0% 87.0% 0.551

CMAM - Ensemble (MLP×3 + GCN×3) 44.2% 88.7% 0.597

DSOKR - SubSample Sketch 48.2% 87.4% 0.624

DSOKR - Gaussian Sketch 49.0% 87.5% 0.630

DSOKR - Ensemble (SubSample×3) 51.0% 88.2% 0.642

DSOKR - Ensemble (Gaussian×3) 50.5% 87.9% 0.642

DSOKR - Ensemble (SubSample×3 + Gaussian×3) 50.0% 88.3% 0.640

3.3 Text to Molecule: ChEBI-20

Dataset. The ChEBI-20 [21] dataset contains 33,010 pairs of compounds and
descriptions. The compounds come from PubChem [34,35], and their descrip-
tions (more than 20 words) from the Chemical Entities of Biological Interest
(ChEBI) database [29]. The dataset is divided as follows: 80% for training, 10%
for validation, and 10% for testing. The candidate set contains all compounds.
The mean and median number of atoms per molecule is 32 and 25 respectively,
and the mean and median number of words per description is 55 and 51 respec-
tively.

Experimental Set-Up. For our method DSOKR, we use SciBERT [6] with an
additional linear layer to parameterize gW . The maximum length of the input
tokens is set to 256. Mol2vec [31] is used as the output molecule representation,
which is a vector of dimension 300. Based on the Mol2vec representation, we
conduct cross-validation using the following kernels: Cosine kernel and Gaussian
kernel with gamma chosen from {10−9, 10−6, 10−3, 1}, along with the follow-
ing three sketches: sub-sampling [56], Gaussian [75], and p-sparsified [23]. The
sketching size for all combinations of the output kernels and sketches is deter-
mined using the Perfect h strategy. As for the baselines, we consider SciBERT
Regression, Cross-Modal Attention Model (CMAM) [21], and SISOKR. In the
case of SciBERT Regression, we address the regression problem using Mean
Squared Error loss, where the output space is the embedding space of Mol2vec,
within a function space parameterized by SciBERT. CMAM aims to enhance the
cosine similarity between the text embedding and the corresponding molecule
in true pairs by employing a contrastive loss function. Specifically, the former is

106 T. El Ahmad et al.

derived from SciBERT, while the latter is generated using either a multi-layer
perceptron (MLP) or a graph convolutional network (GCN) atop the Mol2vec
representation. We reproduce the results of CMAM with the codes2 released
by [21]. In SISOKR, we use SciBERT embeddings as input features, leveraging
the cosine kernel atop them. We maintain the identical output kernel sketching
setup as in DSOKR. For all methods, we train the model using the best hyper-
parameters with three random seeds and report the one with the best validation
performance. The performance is evaluated with mean reciprocal rank (MRR),
Hits@1 and Hits@10. We could not benchmark AMAN [76], as no implementa-
tion is publicly available.

Ensemble. In [21], the authors propose an ensemble strategy to enhance the
results by aggregating the ranks obtained by different training of their models.
If for each 1 ≤ t ≤ T , Rt denotes the ranking returned by the model t, the new
score is computed as follows

s(yi) =
T∑

t=1

wtRt(yi) s.t.

T∑

i=1

ωt = 1 (14)

for each yi in the candidate set. In our case, the computation of DSOKR’s last
layer gE depends on a draw of the sketching matrix R, which means that DSOKR
is particularly well-suited to the aggregation via multiple draws of the sketching
matrix Rt and the training of the corresponding neural networks gWt

. Hence, we
explore two more ways of aggregating multiple DSOKR models, by averaging or
maximizing these models’ scores, i.e. for any input x and candidate y,

s(x, y) =
T∑

t=1

ωt gŴt
(x)� ψ̃t(y) or s(x, y) = arg max

1≤t≤T
gŴt

(x)� ψ̃t(y). (15)

We explore all three ensemble methods for DSOKR models and subsequently
select the optimal one based on its validation performance.

Experimental Results. Figure 5 illustrates the validation MRR scores with
Perfect h, for many m values, and either Cosine or Gaussian output kernels. It
is evident that for both the Cosine kernel and Gaussian kernel (with γ = 10−6)
employing various sketching methods, the MRR score stabilizes as the sketching
size exceeds 100, and that Cosine outperforms Gaussian. This observation allows
us to choose m = 100, smaller than the original Mol2vec dimension, which is 300.
Table 2 presents a comprehensive comparison of DSOKR with various baseline
models. Firstly, comparing DSOKR with SISOKR reveals the critical importance
of employing deep neural networks when dealing with complex structured inputs
and DSOKR makes it possible in the case of functional output space. Secondly,
the notable improvement over SciBERT Regression underscores the value of
employing kernel sketching to derive more compact and better output features,
thereby facilitating regression problem-solving. Lastly, DSOKR outperforms the
sota CMAP for both single and ensemble models. See Appendix C.2 for more
details.
2 https://github.com/cnedwards/text2mol.

https://github.com/cnedwards/text2mol

Deep Sketched Output Kernel Regression 107

4 Conclusion

We designed a new architecture of neural networks able to minimize kernel-
induced losses for structured prediction and achieving sota performance on
molecular identification. An interesting avenue for future work is to derive excess
risk for this estimator by combining deep learning theory and surrogate regres-
sion bounds.

Acknowledgments. Funded by the European Union. Views and opinions expressed
are however those of the author(s) only and do not necessarily reflect those of the Euro-
pean Union or European Commission. Neither the European Union nor the granting
authority can be held responsible for them. This project has received funding from the
European Union’s Horizon Europe research and innovation programme under grant
agreement 101120237 (ELIAS), the Télécom Paris research chair on Data Science and
Artificial Intelligence for Digitalized Industry and Services (DSAIDIS) and the PEPR-
IA through the project FOUNDRY.

Disclosure of Interests. The authors have no competing interests to declare that

are relevant to the content of this article.

References

1. Alaoui, A., Mahoney, M.W.: Fast randomized kernel ridge regression with statis-
tical guarantees. In: NeurIPS, vol. 28 (2015)

2. Bach, F.: Sharp analysis of low-rank kernel matrix approximations. In: COLT, pp.
185–209 (2013)

3. Bakir, G., Hofmann, T., Smola, A.J., Schölkopf, B., Taskar, B.: Predicting Struc-
tured Data. The MIT Press, Cambridge (2007)

4. Belanger, D., McCallum, A.: Structured prediction energy networks. In: ICML, pp.
983–992 (2016)

5. Belanger, D., Yang, B., McCallum, A.: End-to-end learning for structured predic-
tion energy networks. In: ICML, vol. 70, pp. 429–439 (2017)

6. Beltagy, I., Lo, K., Cohan, A.: SciBERT: a pretrained language model for scientific
text. In: EMNLP-IJCNLP, pp. 3615–3620. Hong Kong, China (2019)

7. Borgwardt, K., Ghisu, E., Llinares-López, F., O’Bray, L., Rieck, B.: Graph kernels:
state-of-the-art and future challenges. Found. Trends Mach. Learn. 13(5–6), 531–
712 (2020)

8. Borgwardt, K., Kriegel, H.: Shortest-path kernels on graphs. In: Fifth IEEE Inter-
national Conference on Data Mining (ICDM’05), pp. 8 pp.– (2005)

9. Brogat-Motte, L., Flamary, R., Brouard, C., Rousu, J., D’Alché-Buc, F.: Learning
to predict graphs with fused Gromov-Wasserstein barycenters. In: ICML, vol. 162,
pp. 2321–2335 (2022)

10. Brouard, C., d’Alché-Buc, F., Szafranski, M.: Semi-supervised penalized output
kernel regression for link prediction. In: ICML, pp. 593–600 (2011)

11. Brouard, C., Shen, H., Dührkop, K., d’Alché-Buc, F., Böcker, S., Rousu, J.:
Fast metabolite identification with input output kernel regression. Bioinformat-
ics 32(12), 28–36 (2016)

108 T. El Ahmad et al.

12. Brouard, C., Szafranski, M., d’Alché Buc, F.: Input output kernel regression: super-
vised and semi-supervised structured output prediction with operator-valued ker-
nels. JMLR 17(1), 6105–6152 (2016)

13. Cabannes, V.A., Bach, F., Rudi, A.: Fast rates for structured prediction. In: COLT,
pp. 823–865 (2021)

14. Ciliberto, C., Rosasco, L., Rudi, A.: A consistent regularization approach for struc-
tured prediction. In: NeurIPS, pp. 4412–4420 (2016)

15. Ciliberto, C., Rosasco, L., Rudi, A.: A general framework for consistent structured
prediction with implicit loss embeddings. JMLR 21(98), 1–67 (2020)

16. Cortes, C., Mohri, M., Weston, J.: A general regression technique for learning
transductions. In: ICML, pp. 153–160 (2005)

17. Cortes, C., Mohri, M., Weston, J.: A general regression framework for learning
string-to-string mappings. In: Predicting Structured Data (2007)

18. Costa, F., Grave, K.D.: Fast neighborhood subgraph pairwise distance kernel. In:
ICML, pp. 255–262 (2010)

19. Deshwal, A., Doppa, J.R., Roth, D.: Learning and inference for structured predic-
tion: a unifying perspective. In: IJCAI (2019)

20. Drineas, P., Mahoney, M.W., Cristianini, N.: On the nyström method for approx-
imating a gram matrix for improved kernel-based learning. JMLR 6(12) (2005)

21. Edwards, C., Zhai, C., Ji, H.: Text2Mol: cross-modal molecule retrieval with nat-
ural language queries. In: EMNLP, pp. 595–607 (2021)

22. El Ahmad, T., Brogat-Motte, L., Laforgue, P., d’Alché-Buc, F.: Sketch in, sketch
out: accelerating both learning and inference for structured prediction with kernels
(2023)

23. El Ahmad, T., Laforgue, P., d’Alché Buc, F.: Fast kernel methods for generic
lipschitz losses via p-sparsified sketches. TMLR (2023)

24. Gärtner, T.: Kernels for Structured Data, Series in Machine Perception and Arti-
ficial Intelligence, vol. 72. WorldScientific (2008)

25. Geurts, P., Wehenkel, L., d’Alché Buc, F.: Kernelizing the output of tree-based
methods. In: ICML, pp. 345–352 (2006)

26. Graber, C., Meshi, O., Schwing, A.: Deep structured prediction with nonlinear
output transformations. In: NeurIPS, vol. 31 (2018)

27. Gygli, M., Norouzi, M., Angelova, A.: Deep value networks learn to evaluate and
iteratively refine structured outputs. In: ICML, p. 1341–1351 (2017)

28. Hagberg, A.A., Schult, D.A., Swart, P.J.: Exploring network structure, dynam-
ics, and function using NetworkX. In: Proceedings of the 7th Python in Science
Conference, pp. 11–15 (2008)

29. Hastings, J., et al.: ChEBI in 2016: improved services and an expanding collection
of metabolites. Nucleic Acids Res. 44(D1), D1214–D1219 (2016)

30. Huber, P.J.: Robust estimation of a location parameter. Ann. Math. Stat. 73–101
(1964)

31. Jaeger, S., Fulle, S., Turk, S.: Mol2Vec: unsupervised machine learning approach
with chemical intuition. J. Chem. Inf. Model. 58(1), 27–35 (2018)

32. Jumper, J., et al.: Highly accurate protein structure prediction with alphafold.
Nature 596(7873), 583–589 (2021)

33. Kadri, H., Ghavamzadeh, M., Preux, P.: A generalized kernel approach to struc-
tured output learning. In: ICML, pp. 471–479 (2013)

34. Kim, S., et al.: PubChem 2019 update: improved access to chemical data. Nucleic
Acids Res. 47(D1), D1102–D1109 (2019)

35. Kim, S., et al.: PubChem substance and compound databases. Nucleic Acids Res.
44(D1), D1202–D1213 (2016)

Deep Sketched Output Kernel Regression 109

36. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)
37. Kirillov, A., et al.: Segment anything. In: ICCV, pp. 4015–4026 (2023)
38. Korba, A., Garcia, A., d’ Alché-Buc, F.: A structured prediction approach for label

ranking. In: NeurIPS, vol. 31 (2018)
39. Kpotufe, S., Sriperumbudur, B.K.: Gaussian sketching yields a J-L lemma in

RKHS. In: Chiappa, S., Calandra, R. (eds.) AISTATS (2020)
40. Lacotte, J., Pilanci, M.: Adaptive and oblivious randomized subspace methods for

high-dimensional optimization: sharp analysis and lower bounds. IEEE Trans. Inf.
Theory 68(5), 3281–3303 (2022)

41. Laforgue, P., Lambert, A., Brogat-Motte, L., d’Alché Buc, F.: Duality in RKHSS
with infinite dimensional outputs: application to robust losses. In: ICML, pp. 5598–
5607 (2020)

42. LeCun, Y., Chopra, S., Hadsell, R., Ranzato, A., Huang, F.J.: A tutorial on energy-
based learning. In: Predicting Structured Data (2006)

43. Lee, J.Y., Patel, D., Goyal, P., Zhao, W., Xu, Z., McCallum, A.: Structured energy
network as a loss. In: NeurIPS (2022)

44. Li, Z., Ton, J.F., Oglic, D., Sejdinovic, D.: Towards a unified analysis of random
Fourier features. JMLR 22(108), 1–51 (2021)

45. Mahoney, M.W., et al.: Randomized algorithms for matrices and data. Found.
Trends R© Mach. Learn. 3(2), 123–224 (2011)

46. Meanti, G., Carratino, L., Rosasco, L., Rudi, A.: Kernel methods through the
roof: handling billions of points efficiently. In: Advances in Neural Information
Processing Systems (NeurIPS), vol. 33 (2020)

47. Meanti, G., Chatalic, A., Kostic, V., Novelli, P., Pontil, M., Rosasco, L.: Estimating
Koopman operators with sketching to provably learn large scale dynamical systems.
In: NeurIPS (2023)

48. Nikolentzos, G., Meladianos, P., Limnios, S., Vazirgiannis, M.: A degeneracy frame-
work for graph similarity. In: IJCAI (2018)

49. Nowak, A., Bach, F., Rudi, A.: Sharp analysis of learning with discrete losses. In:
AISTAT (2019)

50. Nowak, A., Bach, F., Rudi, A.: Consistent structured prediction with max-min
margin Markov networks. In: ICML (2020)

51. Nowozin, S., Lampert, C.H.: Structured learning and prediction in computer vision.
Found. Trends Comput. Graph. Vision 6 (2011)

52. Rahimi, A., Recht, B.: Random features for large scale kernel machines. In:
NeurIPS, vol. 20, pp. 1177–1184 (2007)

53. Ralaivola, L., Swamidass, S.J., Saigo, H., Baldi, P.: Graph kernels for chemical
informatics. Neural Netw. 18(8), 1093–1110 (2005)

54. Ramakrishnan, R., Dral, P.O., Rupp, M., von Lilienfeld, O.A.: Quantum chemistry
structures and properties of 134 kilo molecules. Sci. Data 1 (2014)

55. Ruddigkeit, L., van Deursen, R., Blum, L.C., Reymond, J.L.: Enumeration of 166
billion organic small molecules in the chemical universe database GDB-17. J. Chem.
Inf. Modeli. 52(11) (2012)

56. Rudi, A., Camoriano, R., Rosasco, L.: Less is more: Nyström computational regu-
larization. In: NeurIPS, vol. 28 (2015)

57. Rudi, A., Rosasco, L.: Generalization properties of learning with random features.
In: NeurIPS, pp. 3215–3225 (2017)

58. Schölkopf, B., Smola, A., Müller, K.R.: Kernel principal component analysis. In:
ICANN (1997)

59. Seidman, S.B.: Network structure and minimum degree. Soc. Netw. 5(3), 269–287
(1983)

110 T. El Ahmad et al.

60. Shervashidze, N., Schweitzer, P., van Leeuwen, E.J., Mehlhorn, K., Borgwardt,
K.M.: Weisfeiler-Lehman graph kernels. JMLR (2011)

61. Siglidis, G., Nikolentzos, G., Limnios, S., Giatsidis, C., Skianis, K., Vazirgiannis,
M.: Grakel: a graph kernel library in python. JMLR (2020)

62. Steinwart, I., Christmann, A.: Sparsity of SVMs that use the epsilon-insensitive
loss. In: NeurIPS (2008)

63. Sterge, N., Sriperumbudur, B., Rosasco, L., Rudi, A.: Gain with no pain: efficiency
of kernel-PCA by Nyström sampling. In: AISTATS (2020)

64. Sterge, N., Sriperumbudur, B.K.: Statistical optimality and computational effi-
ciency of Nystrom kernel PCA. JMLR 23(337), 1–32 (2022)

65. Tanimoto, T.: An Elementary Mathematical Theory of Classification and Predic-
tion. International Business Machines Corporation (1958)

66. Tripp, A., Bacallado, S., Singh, S., Hernández-Lobato, J.M.: Tanimoto random
features for scalable molecular machine learning. In: NeurIPS (2023)

67. Tu, L., Gimpel, K.: Learning approximate inference networks for structured pre-
diction. In: ICLR (2018)

68. Vaswani, A., et al.: Attention is all you need. In: NeurIPS (2017)
69. Vayer, T., Courty, N., Tavenard, R., Laetitia, C., Flamary, R.: Optimal transport

for structured data with application on graphs. In: ICML (2019)
70. Weisfeiler, B., Leman, A.: The reduction of a graph to canonical form and the

algebra which appears therein. NTI, Ser. 2(9), 12–16 (1968)
71. Weston, J., Chapelle, O., Vapnik, V., Elisseeff, A., Schölkopf, B.: Kernel depen-

dency estimation. In: NeurIPS, pp. 897–904. MIT Press (2003)
72. Williams, C., Seeger, M.: Using the Nyström method to speed up kernel machines.

In: NeurIPS, vol. 13, pp. 682–688 (2001)
73. Woodruff, D.P.: Sketching as a tool for numerical linear algebra. Found. Trends

Theor. Comput. Sci. 10(1–2), 1–157 (2014)
74. Yang, T., Li, Y.F., Mahdavi, M., Jin, R., Zhou, Z.H.: Nyström method vs ran-

dom Fourier features: a theoretical and empirical comparison. In: NeurIPS, vol. 25
(2012)

75. Yang, Y., Pilanci, M., Wainwright, M.J., et al.: Randomized sketches for kernels:
fast and optimal nonparametric regression. Ann. Stat. 45(3), 991–1023 (2017)

76. Zhao, W., Zhou, D., Cao, B., Zhang, K., Chen, J.: Adversarial modality alignment
network for cross-modal molecule retrieval. IEEE Trans. Artif. Intell. 5(1) (2024)

	Deep Sketched Output Kernel Regression for Structured Prediction
	1 Introduction
	2 Deep Sketched Output Kernel Regression
	2.1 Learning Neural Networks with Infinite-Dimensional Outputs
	2.2 The Pre-image Problem at Inference Time

	3 Experiments
	3.1 Analysis of DSOKR on Synthetic Least Squares Regression
	3.2 SMILES to Molecule: SMI2Mol
	3.3 Text to Molecule: ChEBI-20

	4 Conclusion
	References

