
Federated Frank-Wolfe Algorithm

Ali Dadras(B), Sourasekhar Banerjee, Karthik Prakhya, and Alp Yurtsever

Umeå University, Umeå, Sweden
{ali.dadras,sourasekhar.banerjee,karthik.prakhya,alp.yurtsever}@umu.se

Abstract. Federated learning (FL) has gained a lot of attention in
recent years for building privacy-preserving collaborative learning sys-
tems. However, FL algorithms for constrained machine learning prob-
lems are still limited, particularly when the projection step is costly.
To this end, we propose a Federated Frank-Wolfe Algorithm (FedFW).
FedFW features data privacy, low per-iteration cost, and communica-
tion of sparse signals. In the deterministic setting, FedFW achieves an
ε-suboptimal solution within O(ε−2) iterations for smooth and convex
objectives, and O(ε−3) iterations for smooth but non-convex objectives.
Furthermore, we present a stochastic variant of FedFW and show that
it finds a solution within O(ε−3) iterations in the convex setting. We
demonstrate the empirical performance of FedFW on several machine
learning tasks.

Keywords: Federated learning · Frank-Wolfe · Conditional gradient
method · Projection-free · Distributed optimization

1 Introduction

We present a new variant of the Frank-Wolfe (FW) algorithm, FedFW, designed
for the increasingly popular Federated Learning (FL) paradigm in machine learn-
ing. Consider the following constrained empirical risk minimization template:

min
x∈D

F (x) :=
1
n

n∑

i=1

fi(x), (1)

where D ⊆ R
p is a convex and compact set. We define the diameter of D as

D := maxx,y∈D ‖x − y‖. The function F : Rp → R represents the objective
function, and fi : Rp → R (for i = 1, . . . , n) represent the loss functions of the
clients, where n is the number of clients. Throughout, we assume fi is L-smooth,
meaning that it has Lipschitz continuous gradients with parameter L.

FL holds great promise for solving optimization problems over a large net-
work, where clients collaborate under the coordination of a server to find a

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-70352-2_4.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
A. Bifet et al. (Eds.): ECML PKDD 2024, LNAI 14943, pp. 58–75, 2024.
https://doi.org/10.1007/978-3-031-70352-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-70352-2_4&domain=pdf
https://doi.org/10.1007/978-3-031-70352-2_4
https://doi.org/10.1007/978-3-031-70352-2_4


Federated Frank-Wolfe Algorithm 59

common good model. Privacy is an explicit goal in FL; clients work together
towards a common goal by utilizing their own data without sharing it. As a
result, FL exhibits remarkable potential for data science applications involving
privacy-sensitive information. Its applications range from learning tasks (such
as training neural networks) on mobile devices without sharing personal data [1]
to medical applications of machine learning, where hospitals collaborate without
sharing sensitive patient information [2].

Most FL algorithms focus on unconstrained optimization problems, and
extending these algorithms to handle constrained problems typically requires
projection steps. However, in many machine learning applications, the projec-
tion cost can create a computational bottleneck, preventing us from solving these
problems at a large scale. The FW algorithm [3] has emerged as a preferred
method for addressing these problems in machine learning. The main workhorse
of the FW algorithm is the linear minimization oracle (LMO),

lmo(y) := argmin
x∈D

〈y,x〉. (2)

Evaluating linear minimization is generally less computationally expensive than
performing the projection step. A famous example illustrating this is the nuclear-
norm constraint: projecting onto a nuclear-norm ball often requires computing
a full-spectrum singular value decomposition. In contrast, linear minimization
involves finding the top singular vector, a task that can be efficiently approxi-
mated using methods such as the power method or Lanczos iterations.

To our knowledge, FW has not yet been explored in the context of FL. This
paper aims to close this gap. Our primary contribution lies in adapting the FW
method for FL with convergence guarantees.

The paper is organized as follows: Sect. 2 provides a brief review of the lit-
erature on FL and the FW method. In Sect. 3, we introduce FedFW. Unlike
traditional FL methods, FedFW does not overwrite clients’ local models with
the global model sent by the server. Instead, it penalizes clients’ loss functions
by using the global model. We present the convergence guarantees of FedFW in
Sect. 3.1. Specifically, our method provably finds a ε-suboptimal solution after
O(ε−2) iterations for smooth and convex objective functions (refer to Theo-
rem 1). In the case of non-convex objectives, the complexity increases to O(ε−3)
(refer to Theorem 2). Section 4 introduces several design variations of FedFW,
including a stochastic variant. Section 5 presents numerical experiments on var-
ious machine learning tasks with both convex and non-convex objective func-
tions. Finally, Sect. 6 provides concluding remarks along with a discussion on
the limitations of the proposed method. Detailed proofs and technical aspects
are deferred to the supplementary material.

2 Related Work

Federated Learning. FL is a distributed learning paradigm that, unlike most
traditional distributed settings, focuses on a scenario where only a subset of



60 A. Dadras et al.

clients participate in each training round, data is often heterogeneous, and clients
can perform different numbers of iterations in each round [4,5]. FedAvg [4] has
been a cornerstone in the FL literature, demonstrating practical capabilities in
addressing key concerns such as privacy and security, data heterogeneity, and
computational costs. Although it is shown that fixed points of some FedAvg
variants do not necessarily converge to the minimizer of the objective function,
even in the least squares problem [6], and can even diverge [7], the convergence
guarantees of FedAvg have been studied under different assumptions (see [8–
15] and the references therein). However, all these works on the convergence
guarantees of FedAvg are restricted to unconstrained problems.

Constrained or composite optimization problems are ubiquitous in machine
learning, often used to impose structural priors such as sparsity or low-rankness.
To our knowledge, FedDR [16] and FedDA [17] are the first FL algorithms with
convergence guarantees for constrained problems. The former employs Douglas-
Rachford splitting, while the latter is based on the dual averaging method [18], to
solve composite optimization problems, including constrained problems via indi-
cator functions, within the FL setting. [19] introduced a ‘fast’ variant of FedDA,
achieving rapid convergence rates with linear speedup and reduced communi-
cation rounds for composite strongly convex problems. FedADMM [20] was
proposed for federated composite optimization problems involving a non-convex
smooth term and a convex non-smooth term in the objective. Moreover, [21]
proposed a FL algorithm based on a proximal augmented Lagrangian approach
to address problems with convex functional constraints. None of these works
address our problem template, where the constraints are challenging to project
onto but allow for an efficient solution to the linear minimization problem.

Frank-Wolfe Algorithm. The FW algorithm, also known as the conditional
gradient method or CGM, was initially introduced in [3] to minimize a convex
quadratic objective over a polytope, and was extended to general convex objec-
tives and arbitrary convex and compact sets in [22]. Following the seminal works
in [23,24], the method gained popularity in machine learning.

The increasing interest in FW methods for data science applications has led
to the development of new results and variants. For example, [25] established con-
vergence guarantees for FW with non-convex objective functions. Additionally,
online, stochastic, and variance-reduced variants of FW have been proposed; see
[26–31] and the references therein. FW has also been combined with smoothing
strategies for non-smooth and composite objectives [32–35], and with augmented
Lagrangian methods for problems with affine equality constraints [36,37]. Fur-
thermore, various design variants of FW, such as the away-step and pairwise step
strategies, can offer computational advantages. For a comprehensive overview of
FW-type methods and their applications, we refer to [38,39].

The most closely related methods to our work are the distributed FW vari-
ants. However, the variants in [40–42] are fundamentally different from FedFW
as they require sharing gradient information of the clients with the server or
with the neighboring nodes. In FedFW, clients do not share gradients, which



Federated Frank-Wolfe Algorithm 61

is critical for data privacy [43,44]. Other distributed FW variants are proposed
in [45–47]. However, the method proposed by [46] is limited to the convex low-
rank matrix optimization problem, and the methods in [45,47] assume that the
problem domain is block separable.

3 Federated Frank-Wolfe Algorithm

In essence, any first-order optimization algorithm can be adapted for a sim-
plified federated setting by transmitting local gradients to the server at each
iteration. These local gradients can be aggregated to compute the full gradi-
ent and distributed back to the clients. Although it is possible to implement
the standard FW algorithm in FL this way, this baseline has two major prob-
lems. First, it relies on communication at each iteration, which raises scalability
concerns, as extending this approach to multiple local steps is not feasible. Sec-
ondly, sharing raw gradients raises privacy concerns, as sensitive information
and data points can be inferred with high precision from transmitted gradients
[43]. Consequently, most FL algorithms are designed to exchange local models
or step-directions rather than gradients. Unfortunately, a simple combination of
the FW algorithm with a model aggregation step fails to find a solution to (1),
as we demonstrate with a simple counterexample in the supplementary material.
Therefore, developing FedFW requires a special algorithmic approach, which
we elaborate on below.

We start by rewriting problem (1) in terms of the matrix decision variable
X := [x1,x2, . . . ,xn], as follows:

min
X∈Dn

1
n

n∑

i=1

fi(Xei) + δC(X). (3)

Here, ei denotes the ith standard unit vector, and δC is the indicator function
for the consensus set:

C := {[x1, . . . ,xn] ∈ R
p×n : x1 = x2 = . . . = xn}. (4)

It is evident that problems (1) and (3) are equivalent. However, the latter for-
mulation represents the local models of the clients as the columns of the matrix
X, offering a more explicit representation for FL.

The original FW algorithm is ill-suited for solving problem (3) due to the
non-smooth nature of the objective function because of the indicator function.
Drawing inspiration from techniques proposed in [33], we adopt a quadratic
penalty strategy to address this challenge. The main idea is to perform FW
updates on a surrogate objective which replaces the hard constraint δC with a
smooth function that penalizes the distance between X and the consensus set C:

F̂t(X) =
1
n

n∑

i=1

fi(Xei) +
λt

2
dist2(X, C), (5)



62 A. Dadras et al.

where λt ≥ 0 is the penalty parameter. Note that the surrogate function is
parameterized by the iteration counter t, as it is crucial to amplify the impact
of the penalty function by gradually increasing λt at a specific rate through the
iterations. This adjustment will ensure that the generated sequence converges to
a solution of the original problem in (3).

To perform an FW update with respect to the surrogate function, first, we
need to compute the gradient of F̂t, given by

∇F̂t(X) =
1
n

n∑

i=1

∇fi(Xei)e�
i + λt(X − projC(X))

=
1
n

n∑

i=1

∇fi(xi)e�
i + λt

n∑

i=1

(xi − x̄)e�
i

(6)

where x̄ := 1
n

∑n
i=1 xi. Then, we call the linear minimization oracle:

St ∈ argmin
X∈Dn

〈∇F̂t(Xt),X〉. (7)

Since Dn is separable for the columns of X, we can evaluate (7) in parallel for
x1,x2, . . . ,xn. Define st

i as

st
i ∈ argmin

x∈D
〈 1
n

∇fi(xt
i) + λt(xt

i − x̄t),x〉, (8)

where x̄t := 1
n

∑n
i=1 x

t
i. Then, St =

∑n
i=1 s

t
i e

�
i .

Finally, we update the decision variable by Xt+1 = (1− ηt)Xt + ηtSt, which
can be computed column-wise in parallel:

xt+1
i = (1 − ηt)xt

i + ηtst
i, (9)

where ηt ∈ [0, 1] is the step-size.
This establishes the fundamental update rule for our proposed algorithm,

FedFW. Note that communication is required only during the computation
of x̄t, which constitutes our aggregation step. All other computations can be
performed locally by the clients. Algorithm1 presents FedFW and several design
variants, which are further detailed in Sect. 4.

3.1 Convergence Guarantees

This section presents the convergence guarantees of FedFW. We begin with the
guarantees for problems with a smooth and convex objective function.

Theorem 1. Consider problem (1) with L-smooth and convex loss functions fi.
Then, estimation x̄t generated by FedFW with step-size ηt = 2

t+1 and penalty
parameter λt = λ0

√
t + 1 for any λ0 > 0 satisfies

F (x̄t) − F (x̄∗) ≤ O(t−1/2). (10)



Federated Frank-Wolfe Algorithm 63

Algorithm 1. FedFW: Federated Frank-Wolfe Algorithm (+variants)
input x1

i ∈ R
p, ∀i ∈ [n], λt, ηt, ρt, x̄1 = 1

n

∑n
i=1 x

1
i , y1

i = 0, d1
i = 0

for round t = 1, 2, . . . , T do
— Client-level local training ———————————–
for client i = 1, 2, . . . , n do

— FedFW: gt
i =

1
n
∇fi(x

t
i) + λt(x

t
i − x̄t)

— FedFW+: yt+1
i = yt

i + λ0(x
t
i − x̄t)

gt
i =

1
n
∇fi(x

t
i) + λt(x

t
i − x̄t)+yt+1

i

— FedFW-sto: dt+1
i = (1 − ρt)d

t
i + ρt

1
n
∇fi(x

t
i, ω

t
i)

gt
i = dt+1

i + λt(x
t
i − x̄t)

sti = argmin{〈gt
i ,x〉 : x ∈ D}

xt+1
i = (1 − ηt)x

t
i + ηts

t
i

Client communicates sti to the server.
end for
— Server-level aggregation ————————————
x̄t+1 = (1 − ηt)x̄

t + ηt

(
1
n

∑n
i=1 s

t
i

)

Server communicates x̄t+1 to the clients.

end for

Remark 1. Our proof is inspired by the analysis in [33]. However, a distinction
lies in how the guarantees are expressed. In [33], the authors demonstrate the
convergence of xt

i towards a solution by proving that both the objective residual
and the distance to the feasible set converge to zero. In contrast, we establish the
convergence of x̄t, representing a feasible point, focusing only on the objective
residual. We present detailed proof in the supplementary material.

It is worth noting that the convergence guarantees of FedFW are slower com-
pared to those of existing unconstrained or projection-based FL algorithms. For
instance, in the smooth convex setting with full gradients, FedAvg [4] achieves
a rate of O(t−1) in the objective residual. In a convex composite problem setting,
FedDA [17] converges at a rate of O(t−2/3). While FedFW guarantees a slower
rate of O(t−1/2), it is important to highlight that FedFW employs cheap linear
minimization oracles.

Next, we present the convergence guarantees of FedFW for non-convex prob-
lems. For unconstrained non-convex problems, the gradient norm is commonly
used as a metric to demonstrate convergence to a stationary point. However, this
metric is not suitable for constrained problems, as the gradient may not app-
roach zero if the solution resides on the boundary of the feasible set. To address
this, we use the following gap function, standard in FW analysis [25]:

gap(x) := max
u∈D

〈∇F (x),x − u〉. (11)

It is straightforward to show that gap(x) is non-negative for all x ∈ D, and it
attains zero if and only if x is a first-order stationary point of Problem (1).



64 A. Dadras et al.

Theorem 2. Consider problem (1) with L-smooth loss functions fi. Suppose
the sequence x̄t is generated by FedFW with the fixed step-size ηt = T−2/3, and
penalty parameter λt = λ0T

1/3 for an arbitrary λ0 > 0. Then,

min
1≤t≤T

gap(x̄t) ≤ O(T−1/3). (12)

Remark 2. We present the proof in the supplementary material. Our analysis
introduces a novel approach, as [33] does not explore non-convex problems. While
our focus is primarily on problems (1) and (3), our methodology can be used to
derive guarantees for a broader setting of minimization of a smooth non-convex
function subject to affine constraints over a convex and compact set.

As with our previous results, the convergence rate in the non-convex setting
is slower compared to FedAvg, which achieves an O(t−1/2) rate in the gradient
norm (note the distinction between the gradient norm and squared gradient
norm metrics). For composite FL problems with a non-convex smooth loss and
a convex non-smooth regularizer, FedDR [16] achieves an O(t−1/2) rate in the
norm of a proximal gradient mapping. In contrast, our guarantees are in terms of
the Frank-Wolfe (FW) gap. To our knowledge, FedDA does not offer guarantees
in the non-convex setting.

3.2 Privacy and Communication Benefits

FedFW offers low communication overhead since the communicated signals are
the extreme points of D, which typically have low dimensional representation.
For example, if D is �1 (resp., nuclear) norm-ball, then the signals si are 1-
sparse (resp., rank-one). Additionally, linear minimization is a nonlinear oracle,
the reverse operator of which is highly ill-conditioned. Retrieving the gradient
from its linear minimization output is generally unfeasible. For example, if D
is the �1 norm-ball, then si merely reveals the sign of the maximum entry of
the gradient. In the case of a box constraint, si only reveals the gradient signs.
For the nuclear norm-ball, si unveils only the top eigenvectors of the gradient.
Furthermore, FW is robust against additive and multiplicative errors in the
linear minimization step [24]; consequently, we can introduce noise to augment
data privacy without compromising the convergence guarantees.

In a simple numerical experiment, we demonstrate the privacy benefits of
communicating linear minimization outputs instead of gradients. This exper-
iment is based on the Deep Leakage algorithm [43] using the CIFAR100
dataset. Our experiment compares reconstructed images (i.e., leaked data
points) obtained from shared gradients versus shared linear minimization out-
puts, under �1 and �2 norm constraints. Figure 1 displays the final reconstructed
images alongside the Peak Signal-to-Noise Ratio (PSNR) across iterations. It is
evident that reconstruction via linear minimization oracles, particularly under
the �1 ball constraint, is significantly more challenging than raw gradients.

4 Design Variants of FEDFW

This section discusses several design variants and extensions of FedFW.



Federated Frank-Wolfe Algorithm 65

Fig. 1. Privacy benefits of sharing linear minimization outputs vs gradients. The Deep
Leakage Algorithm can recover CIFAR-100 data points from shared gradients. Sharing
linear minimization outputs enhances privacy. (a) and (b) compares reconstructions
from gradients and LMO outputs with �2 and �1-norm ball constraints after 105 iter-
ations for two different data points. (c) and (d) present the reconstruction PSNR as a
function of iterations for the corresponding images.

4.1 FEDFW with stochastic gradients

Consider the following stochastic problem template:

min
x∈D

F (x) :=
1
n

n∑

i=1

Eωi

[
fi(x, ωi)

]
. (13)

Here, ωi is a random variable with an unknown distribution Pi. The client loss
function fi(x) := Eωi

[
fi(x, ωi)

]
is defined as the expectation over this unknown

distribution; hence we cannot compute its gradient. We design FedFW-sto for
solving this problem.

We assume that at each iteration, every participating client can indepen-
dently draw a sample ωt

i from their distribution Pi. ∇fi(x, ωt
i) serves as an

unbiased estimator of ∇fi(x). Additionally, we adopt the standard assumption
that the estimator has bounded variance.

Assumption 1 (Bounded variance). Let ∇fi(x, ωi) denote the stochastic
gradients. We assume that it satisfies the following condition for some σ < ∞:

Eωi

[∥∥∇fi(x, ωi) − ∇fi(x)
∥∥2

]
≤ σ2. (14)

Unfortunately, FW does not readily extend to stochastic settings by replacing
the gradient with an unbiased estimator of bounded variance. Instead, adapting



66 A. Dadras et al.

FW for stochastic settings, in general, requires a variance reduction strategy.
Inspired by [30,34], we employ the following averaged gradient estimator to
tackle this challenge. We start by d0

i = 0, and iteratively update

dt+1
i = (1 − ρt)dt

i + ρt
1
n

∇fi(xt
i, ω

t
i), (15)

for some ρt ∈ (0, 1]. FedFW-sto uses dt+1
i in place of the gradient in the

linear minimization step; pseudocode is shown in Algorithm 1. Although dt+1
i

is not an unbiased estimator, it offers the advantage of reduced variance. The
balance between bias and variance can be adjusted by modifying ρt, and the
analysis relies on finding the right balance, reducing variance sufficiently while
maintaining the bias within tolerable limits.

Theorem 3. Consider problem (13) with L-smooth and convex loss functions
fi. Suppose Assumption 1 holds. Then, the sequence x̄t generated by FedFW-
sto in Algorithm 1, with step-size ηt = 9

t+8 , penalty parameter λt = λ0

√
t + 8

for an arbitrary λ0 > 0, and ρt = 4
(t+7)2/3

satisfies

E[F (x̄t)] − F (x∗) ≤ O(t−1/3). (16)

Remark 3. Our analysis in this setting is inspired by [34]; however, we establish
the convergence of the feasible point x̄t. This differs from the guarantees in [34],
which demonstrate the convergence of xt

i towards a solution by proving that
both the expected objective residual and the expected distance to the feasible set
converge to zero. We present the detailed proof in the supplementary material.

In the smooth convex stochastic setting, FedAvg achieves a convergence
rate of O(t−1/2). This rate also applies to FedDA when addressing composite
convex problems. Additionally, under the assumption of strong convexity, Fast-
FedDA [19] achieves an accelerated rate of O(t−1). In comparison, FedFW-sto
converges with O(t−1/3) rate; however, it benefits from the use of inexpensive
linear minimization oracles.

4.2 FEDFW with Partial Client Participation

A key challenge in FL is to tackle random device participation schedules. Unlike a
classical distributed optimization scheme, in most FL applications, clients have
some autonomy and are not entirely controlled by the server. Due to various
factors, such as network congestion or resource constraints, clients may inter-
mittently participate in the training process. This obstacle can be tackled in
FedFW by employing a block-coordinate Frank-Wolfe approach [48]. Given that
the domain of problem (3) is block-separable, we can extend our FedFW anal-
ysis to block-coordinate updates.

Suppose that in every round t, the client i participates in the training pro-
cedure with a fixed probability of pi ∈ (0, 1]. For simplicity, we assume the
participation rate is the same among all clients, i.e., p1 = . . . = pn := p, but



Federated Frank-Wolfe Algorithm 67

non-uniform participation can be addressed similarly. Instate the convex opti-
mization problem described in Theorem 1 but with the random client participa-
tion scheme. At round t, the training procedure follows the same as in Algorithm
1 for the participating clients, and xt+1

i = xt
i for the non-participants. Then, the

estimation x̄t generated with the step-size ηt = 2
p(t−1)+2 and penalty parameter

λt=λ0

√
p(t−1)+2 converges to a solution with rate

E[F (x̄t) − F (x∗)] ≤ O(
(p t)−1/2

)
. (17)

Similarly, if we consider the non-convex setting of Theorem 2 with random-
ized client participation, and use the block-coordinate FedFW with step-size
ηt = (pT + 1)−

2
3 , and penalty parameter λt = λ0(pT + 1)

1
3 , we get

min
1≤t≤T

E[gap(x̄t)] ≤ O(
(pT )−1/3

)
. (18)

The proofs are provided in the supplementary material.

4.3 FEDFW with Split Constraints for Stragglers

FL systems are frequently implemented across heterogeneous pools of client hard-
ware, leading to the ‘straggler effect’– delays in execution resulting from clients
with less computation or communication speeds. In FedFW, we can mitigate
this issue by assigning tasks to straggling clients more compatible with their com-
putational capabilities. Theoretically, this adjustment can be achieved through
certain special reformulations of the problem defined in (3). Specifically, the
constraint X ∈ Dn can be refined to X ∈ ⋂n

i=1 Di, where
⋂n

i=1 Di = D. This
modification does not affect the solution set, due to the consensus constraint.

In general, in FedFW, most of the computation occurs during the linear min-
imization step. Suppose that the resources of the client i are limited, particularly
for arithmetic computations. In this case, we can select Di as a superset of D
where linear minimization computations are more straightforward. For instance,
a Euclidean (or Frobenius) norm-ball encompassing D could be an excellent
choice. Then, st

i becomes proportional to the negative of gt
i with appropriate

normalization based on the radius of Di, facilitating computation with minimal
effort. On the other hand, if the primary bottleneck is communication, we might
opt for Di characterized by sparse extreme points, such as an �1-norm ball con-
taining D or by low-rank extreme points like those in a nuclear-norm ball. This
strategy results in sparse (or low-rank) st

i, thereby streamlining communication.

4.4 FEDFW with Augmented Lagrangian

FedFW employs a quadratic penalty strategy to handle the consensus con-
straint. We also propose an alternative variant, FedFW+, which is modeled
after the augmented Lagrangian strategy in [37]. The pseudocode for FedFW+
is presented in Algorithm 1. We compare the empirical performance of FedFW
and FedFW+ in Sect. 5. The theoretical analysis of FedFW+ is omitted here;
for further details, we refer readers to [37].



68 A. Dadras et al.

5 Numerical Experiments

In this section, we evaluate and compare the empirical performance of our meth-
ods against FedDR, which serves as the baseline algorithm, on the convex mul-
ticlass logistic regression (MCLR) problem and the non-convex tasks of training
convolutional neural networks (CNN) and deep neural networks (DNN). For each
problem, we consider two different choices for the domain D: namely the �1 and
�2 ball constraints, each with a radius of 10. We assess the models’ performance
based on validation accuracy, validation loss, and the Frank-Wolfe gap (11).
To evaluate the effect of data heterogeneity, we conducted experiments using
both IID and non-IID data distributions across clients. The code for the numer-
ical experiments can be accessed via https://github.com/sourasb05/Federated-
Frank-Wolfe.git.

Datasets. We use several datasets in our experiments: MNIST [49], CIFAR-
10 [50], EMNIST [51], and a synthetic dataset generated as described in [52].
Specifically, the synthetic data is drawn from a multivariate normal distribution,
and the labels are computed using softmax functions. We create data points of
60 features and from 10 different labels. For all datasets, we consider both IID
and non-IID data distributions across the clients. In the non-IID scenario, each
user has data from only 3 labels. We followed this rule for the synthetic data,
as well as MNIST, CIFAR10, and EMNIST-10. For EMNIST-62, each user has
data from 20 classes, with unequal distribution among users.

5.1 Comparison of Algorithms in the Convex Setting

We tested the performance of the algorithms on the strongly convex MCLR prob-
lem using the MNIST and CIFAR-10 datasets as well as the synthetic dataset.
Table 1 presents the test accuracy results for the algorithms with IID and non-
IID data distributions, and for two different choices of D. In these experiments,
we simulated FL with 10 clients, all participating fully (p = 1). We ran the
algorithms for 100 communication rounds, with one local iteration per round.

5.2 Comparison of Algorithms in the Non-convex Setting

For the experiments in the non-convex setting we trained CNNs using the MNIST
dataset and a DNN with two hidden layers using the synthetic dataset. We
considered an FL system with 10 clients and full participation (p = 1). Similar
to the previous case, we evaluated IID and non-IID data distributions as well as
different choices of D, and ran the methods for 100 communication rounds with
a single local training step. Table 2 summarizes the resulting test accuracies.

https://github.com/sourasb05/Federated-Frank-Wolfe.git
https://github.com/sourasb05/Federated-Frank-Wolfe.git


Federated Frank-Wolfe Algorithm 69

Table 1. Comparison of algorithms on the convex MCLR problem with different
datasets and choices of D. We consider both IID and non-IID data distributions. The
numbers represent test accuracy.

IID non-IID
MNIST Synthetic CIFAR10 MNIST Synthetic CIFAR10
�2 constraint

FedDR 89.59(±0.0003) 78.24(±0.007) 39.95(±0.001) 83.72(±0.001) 92.97(±0.005) 37.79(±0.004)

FedFW 86.96(±0.009) 80.20(±0.01) 36.30(±0.001) 86.95(±0.001) 94.81(±0.001) 38.13(±0.003)

FedFW+ 86.50(±0.001) 79.96(±0.001) 36.30(±0.001) 86.98(±0.001) 94.56(±0.009) 37.20(±0.004)

�1 constraint
FedDR 72.18(±0.0004) 79.00(±0.004) 23.25(±0.00) 74.29(±0.0) 93.81(±0.009) 24.77(±0.0)

FedFW 78.07(±0.005) 81.63(±0.01) 21.86(±0.003) 80.54(±0.0) 90.84(±0.003) 25.08(±0.004)

FedFW+ 69.17(±0.004) 81.92(±0.008) 21.99(0.006) 71.32(±0.002) 91.20(±0.006) 25.16(±0.008)

Table 2. Comparison of algorithms on the non-convex tasks. We train a CNN using
MNIST, and a DNN with synthetic data. We consider IID and non-IID data distribu-
tions, and different choices of D. The numbers show test accuracy.

IID non-IID
MNIST Synthetic MNIST Synthetic
�2 constraint

FedDR 96.89(±0.0009) 75.96(±0.03) 88.93(±0.013) 93.85(±0.009)

FedFW 95.87(±0.01) 81.70(±0.008) 92.70(±0.002) 96.13(±0.007)

FedFW+ 95.05(±0.005) 81.96(±0.006) 91.79(±0.005) 96.08(±0.004)

�1 constraint
FedDR 11.72(±0.0) 78.59(±0.006) 16.75(±0.01) 93.51(±0.006)

FedFW 23.88(±0.005) 75.52(±0.008) 37.62(±0.008) 91.53(±0.01)

FedFW+ 20.40(±0.003) 76.44(±0.004) 36.27(±0.006) 91.96(±0.003)

5.3 Comparison of Algorithms in the Stochastic Setting

Finally, we compared the performance of FedFW-sto against FedDR in the
stochastic setting, where only stochastic gradients are accessible. For this experi-
ment, we consider an FL network with 100 clients with full participation (p = 1).
Over this network, we trained the MCLR model using EMNIST-10, EMNIST-62,
CIFAR10, and the synthetic dataset. We used a mini-batch size of 64, one local
iteration per communication round, and ran the algorithms for 300 communica-
tion rounds. Table 3 summarizes the test accuracies obtained in this experiment.
FedFW-sto outperformed FedDR in our experiments in the stochastic setting.

5.4 Impact of Hyperparameters

We conclude our experiments with an ablation study to investigate how varying
hyperparameters impact the performance of FedFW.



70 A. Dadras et al.

Table 3. Comparison of algorithms in the stochastic setting on the convex MCLR
problem with different datasets and �2 ball constraint. We consider both IID and non-
IID data distributions. The numbers represent test accuracy.

IID non-IID
EMNIST-10 EMNIST-62 EMNIST-10 EMNIST-62

FedDR 92.18(±0.01) 39.58(±0.00) 85.70(±0.002) 41.09(±0.002)

FedFW-sto 93.79(±0.00) 41.22(±0.00) 91.88(±0.01) 60.51(±0.002)

Synthetic CIFAR10 Synthetic CIFAR10
FedDR 67.68(±0.003) 36.39(±0.004) 84.70(±0.01) 34.91(±0.008)

FedFW-sto 72.01(±0.004) 38.52(±0.01) 87.32(±0.003) 37.83(±0.01)

Fig. 2. Effect of participation p on FedFW. The experiment was conducted with
MCLR using synthetic data, an �1 constraint, and two different choices of λ0.

Fig. 3. Effect of participation p on FedFW and FedFW+. We trained a DNN model
using synthetic data, an �2 constraint, and a fixed λt = 10−3.

Impact of Partial Participation (p). Figure 2 shows the validation accuracy
and loss of FedFW algorithm for synthetic data and MCLR model. Figure 3
depicts the validation accuracy and loss of FedFW and FedFW+ algorithms
for synthetic data and DNN model. Both convex and non-convex experiments
show faster convergence for higher participation probability. It is worth men-
tioning that variations in λ0 do not alter the influence of p. These observations
are in accordance with the theoretical guarantees presented in Sect. 4.2.



Federated Frank-Wolfe Algorithm 71

Fig. 4. Effect of the initial penalty (λ0) on FedFW. (a) and (b) show the results for
the convex setting, (c) and (d) demonstrates the non-convex setting.



72 A. Dadras et al.

Impact of Initial Penalty Parameter (λ0). Figure 4 illustrates the effect
of hyperparameters on the convergence of loss, Frank-Wolfe gap, and validation
accuracy of the algorithms. A higher λ0 leads to a larger gap in the initial iter-
ations of the algorithm due to its regularization effect. In other words, increas-
ing λ0 enforces the update direction towards the consensus set, which in turn
increases the gap value in the first iteration. The exact expressions for the con-
stants in the convergence guarantees, which are detailed in the supplementary
material, can guide the optimal choice of λ0.

6 Conclusions

We introduced a FW-type method for FL and established its theoretical conver-
gence rates. The proposed method, FedFW, guarantees O(t−1/2) convergence
rates when the objective function smooth and convex. If we remove the con-
vexity assumption, the rate reduces to O(t−1/3). With access to only stochastic
gradients, FedFW achieves an O(t−1/3) convergence rate in the convex setting.
Additionally, we proposed an empirically faster version of FedFW by incorpo-
rating an augmented Lagrangian dual update.

We conclude with a brief discussion on the limitations of our work. The
primary limitation of FedFW is its slower convergence rates compared to state-
of-the-art FL methods. Developing a tighter bound for FedFW, with multiple
local steps, is an area for future research. Additionally, the analysis of FedFW+
is left to future work. Another important piece of future work is the convergence
analysis of FedFW-sto for non-convex objectives. Finally, the development and
analysis of an extension for asynchronous updates also remain as future work.

Acknowledgements. This work was supported by the Wallenberg AI, Autonomous
Systems and Software Program (WASP) funded by the Knut and Alice Wallenberg
Foundation. We also acknowledge support from the Swedish Research Council under the
grant registration number 2023-05476. The computations were enabled by the Berzelius
resource provided by the Knut and Alice Wallenberg Foundation at the National Super-
computer Centre. Additionally, computations in an earlier version of this work were
enabled by resources provided by the Swedish National Infrastructure for Comput-
ing (SNIC) at Chalmers Centre for Computational Science and Engineering (C3SE)
partially funded by the Swedish Research Council through grant agreement no. 2018-
05973. We appreciate the discussions with Yikun Hou on the numerical experiments
and implementation. We acknowledge the use of OpenAI’s ChatGPT for editorial assis-
tance in preparing this manuscript.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.



Federated Frank-Wolfe Algorithm 73

References

1. Lim, W.Y.B., et al.: Federated learning in mobile edge networks: a comprehensive
survey. IEEE Commun. Surv. Tutor. 22(3), 2031–2063 (2020)

2. Wang, J., et al.: A field guide to federated optimization. arXiv:2107.06917 (2021)
3. Frank, M., Wolfe, P.: An algorithm for quadratic programming. Naval Res. Logist.

Q. 3(1–2), 95–110 (1956)
4. McMahan, B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.: Communication-

efficient learning of deep networks from decentralized data. In: Artificial Intelligence
and Statistics, pp. 1273–1282. PMLR (2017)

5. Konečnỳ, J., McMahan, H.B., Ramage, D., Richtárik, P.: Federated optimization:
distributed machine learning for on-device intelligence. arXiv:1610.02527 (2016)

6. Pathak, R., Wainwright, M.J.: Fedsplit: an algorithmic framework for fast federated
optimization. In: Advances in Neural Information Processing Systems, vol. 33, pp.
7057–7066 (2020)

7. Zhang, X., Hong, M., Dhople, S., Yin, W., Liu, Y.: Fedpd: a federated learning
framework with adaptivity to non-IID data. IEEE Trans. Sig. Process. 69, 6055–
6070 (2021)

8. Stich, S.U.: Local SGD converges fast and communicates little. arXiv:1805.09767
(2018)

9. Li, X., Huang, K., Yang, W., Wang, S., Zhang, Z.: On the convergence of FedAVG
on non-IID data. In: International Conference on Learning Representations (2019)

10. Haddadpour, F., Kamani, M.M., Mahdavi, M., Cadambe, V.: Local SGD with
periodic averaging: tighter analysis and adaptive synchronization. In: Advances in
Neural Information Processing Systems, vol. 32 (2019)

11. Yu, H., Yang, S., Zhu, S.: Parallel restarted SGD with faster convergence and less
communication: demystifying why model averaging works for deep learning. In:
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, no. 1, pp.
5693–5700 (2019)

12. Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar, A., Smith, V.: Feder-
ated optimization in heterogeneous networks. Proc. Mach. Learn. Syst. 2, 429–450
(2020)

13. Woodworth, B., et al.: Is local SGD better than minibatch SGD? In: International
Conference on Machine Learning, pp. 10334–10343. PMLR (2020)

14. Woodworth, B.E., Patel, K.K., Srebro, N.: Minibatch vs local SGD for heteroge-
neous distributed learning. In: Advances in Neural Information Processing Systems,
vol. 33, pp. 6281–6292 (2020)

15. Al-Shedivat, M., Gillenwater, J., Xing, E., Rostamizadeh, A.: Federated learn-
ing via posterior averaging: a new perspective and practical algorithms.
arXiv:2010.05273 (2020)

16. Tran Dinh, Q., Pham, N.H., Phan, D., Nguyen, L.: FedDR-randomized Douglas-
Rachford splitting algorithms for nonconvex federated composite optimization. In:
Advances in Neural Information Processing Systems, vol. 34, pp. 30326–30338
(2021)

17. Yuan, H., Zaheer, M., Reddi, S.: Federated composite optimization. In: Interna-
tional Conference on Machine Learning, pp. 12253–12266. PMLR (2021)

18. Nesterov, Y.: Primal-dual subgradient methods for convex problems. Math. Pro-
gram. 120(1), 221–259 (2009)

19. Bao, Y., Crawshaw, M., Luo, S., Liu, M.: Fast composite optimization and sta-
tistical recovery in federated learning. In: International Conference on Machine
Learning, pp. 1508–1536. PMLR (2022)

http://arxiv.org/abs/2107.06917
http://arxiv.org/abs/1610.02527
http://arxiv.org/abs/1805.09767
http://arxiv.org/abs/2010.05273


74 A. Dadras et al.

20. Wang, H., Marella, S., Anderson, J.: Fedadmm: a federated primal-dual algorithm
allowing partial participation. In: 2022 IEEE 61st Conference on Decision and
Control (CDC), pp. 287–294. IEEE (2022)

21. He, C., Peng, L., Sun, J.: Federated learning with convex global and local con-
straints. In: OPT 2023: Optimization for Machine Learning (2023)

22. Levitin, E.S., Polyak, B.T.: Constrained minimization methods. USSR Comput.
Math. Math. Phys. 6(5), 1–50 (1966)

23. Hazan, E.: Sparse approximate solutions to semidefinite programs. In: Laber, E.S.,
Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS, vol. 4957, pp.
306–316. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78773-
0_27

24. Jaggi, M.: Revisiting frank-wolfe: projection-free sparse convex optimization. In:
International Conference on Machine Learning, pp. 427–435. PMLR (2013)

25. Lacoste-Julien, S.: Convergence rate of Frank-Wolfe for non-convex objectives.
arXiv:1607.00345 (2016)

26. Hazan, E., Kale, S.: Projection-free online learning. In: International Conference
on Machine Learning. PMLR (2012)

27. Hazan, E., Luo, H.: Variance-reduced and projection-free stochastic optimization.
In: International Conference on Machine Learning, pp. 1263–1271. PMLR (2016)

28. Reddi, S.J., Sra, S., Póczos, B., Smola, A.: Stochastic Frank-Wolfe methods for
nonconvex optimization. In: 2016 54th Annual Allerton Conference on Communi-
cation, Control, and Computing (Allerton), pp. 1244–1251. IEEE (2016)

29. Yurtsever, A., Sra, S., Cevher, V.: Conditional gradient methods via stochastic
path-integrated differential estimator. In: International Conference on Machine
Learning. pp. 7282–7291. PMLR (2019)

30. Mokhtari, A., Hassani, H., Karbasi, A.: Stochastic conditional gradient methods:
from convex minimization to submodular maximization. J. Mach. Learn. Res.
21(105), 1–49 (2020)

31. Négiar, G., et al.: Stochastic Frank-Wolfe for constrained finite-sum minimization.
In: international Conference on Machine Learning, pp. 7253–7262. PMLR (2020)

32. Lan, G.: An optimal method for stochastic composite optimization. Math. Pro-
gram. 133(1), 365–397 (2012)

33. Yurtsever, A., Fercoq, O., Locatello, F., Cevher, V.: A conditional gradient frame-
work for composite convex minimization with applications to semidefinite program-
ming. In: International Conference on Machine Learning, pp. 5727–5736. PMLR
(2018)

34. Locatello, F., Yurtsever, A., Fercoq, O., Cevher, V.: Stochastic Frank-Wolfe for
composite convex minimization. In: Advances in Neural Information Processing
Systems, vol. 32 (2019)

35. Dresdner, G., Vladarean, M.L., Rätsch, G., Locatello, F., Cevher, V., Yurtsever,
A.: Faster one-sample stochastic conditional gradient method for composite convex
minimization. In: International Conference on Artificial Intelligence and Statistics,
pp. 8439–8457. PMLR (2022)

36. Gidel, G., Pedregosa, F., Lacoste-Julien, S.: Frank-Wolfe splitting via augmented
Lagrangian method. In: International Conference on Artificial Intelligence and
Statistics, pp. 1456–1465. PMLR (2018)

37. Yurtsever, A., Fercoq, O., Cevher, V.: A conditional-gradient-based augmented
Lagrangian framework. In: International Conference on Machine Learning, pp.
7272–7281. PMLR (2019)

38. Kerdreux, T.: Accelerating conditional gradient methods. Ph.D. thesis, Université
Paris sciences et lettres (2020)

https://doi.org/10.1007/978-3-540-78773-0_27
https://doi.org/10.1007/978-3-540-78773-0_27
http://arxiv.org/abs/1607.00345


Federated Frank-Wolfe Algorithm 75

39. Bomze, I.M., Rinaldi, F., Zeffiro, D.: Frank–Wolfe and friends: a journey into
projection-free first-order optimization methods. 4OR 19, 313–345 (2021)

40. Wai, H.T., Lafond, J., Scaglione, A., Moulines, E.: Decentralized Frank-Wolfe algo-
rithm for convex and nonconvex problems. IEEE Trans. Autom. Control 62(11),
5522–5537 (2017)

41. Mokhtari, A., Hassani, H., Karbasi, A.: Decentralized submodular maximization:
bridging discrete and continuous settings. In: International Conference on Machine
Learning, pp. 3616–3625. PMLR (2018)

42. Gao, H., Xu, H., Vucetic, S.: Sample efficient decentralized stochastic Frank-Wolfe
methods for continuous DR-submodular maximization. In: Thirtieth International
Joint Conference on Artificial Intelligence (2021)

43. Zhu, L., Liu, Z., Han, S.: Deep leakage from gradients. In: Advances in Neural
Information Processing Systems, vol. 32 (2019)

44. Li, Z., Zhang, J., Liu, L., Liu, J.: Auditing privacy defenses in federated learning
via generative gradient leakage. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 10132–10142 (2022)

45. Wang, Y.X., Sadhanala, V., Dai, W., Neiswanger, W., Sra, S., Xing, E.: Parallel and
distributed block-coordinate Frank-Wolfe algorithms. In: International Conference
on Machine Learning, pp. 1548–1557. PMLR (2016)

46. Zheng, W., Bellet, A., Gallinari, P.: A distributed Frank-Wolfe framework for learn-
ing low-rank matrices with the trace norm. Mach. Learn. 107(8), 1457–1475 (2018)

47. Zhang, M., Zhou, Y., Ge, Q., Zheng, R., Wu, Q.: Decentralized randomized block-
coordinate Frank-Wolfe algorithms for submodular maximization over networks.
IEEE Trans. Syst. Man Cybern. Syst. (2021)

48. Lacoste-Julien, S., Jaggi, M., Schmidt, M., Pletscher, P.: Block-coordinate Frank-
Wolfe optimization for structural SVMs. In: International Conference on Machine
Learning, pp. 53–61. PMLR (2013)

49. LeCun, Y., et al.: Gradient-based learning applied to document recognition. Proc.
IEEE 86(11), 2278–2324 (1998)

50. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny
images, Toronto, ON, Canada (2009)

51. Cohen, G., et al.: EMNIST: extending MNIST to handwritten letters. In: IJCNN,
pp. 2921–2926. IEEE (2017)

52. Dinh, T., Tran, C., Nguyen, N., Personalized federated learning with Moreau
envelopes. J. Adv. Neural Inf. Process. Syst. 33, 21394–21405 (2020)


	Federated Frank-Wolfe Algorithm
	1 Introduction
	2 Related Work
	3 Federated Frank-Wolfe Algorithm
	3.1 Convergence Guarantees
	3.2 Privacy and Communication Benefits

	4 Design Variants of FedFW
	4.1 FedFW with stochastic gradients
	4.2 FedFW with Partial Client Participation
	4.3 FedFW with Split Constraints for Stragglers
	4.4 FedFW with Augmented Lagrangian

	5 Numerical Experiments
	5.1 Comparison of Algorithms in the Convex Setting
	5.2 Comparison of Algorithms in the Non-convex Setting
	5.3 Comparison of Algorithms in the Stochastic Setting
	5.4 Impact of Hyperparameters

	6 Conclusions
	References


