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Abstract. Multivariate time series forecasting is critical in finance and
meteorology, influencing decision-making. Though effective in captur-
ing long-range dependencies in natural language processing, traditional
Transformer models face challenges when applied to time series data,
including computational inefficiency and the loss of positional encoding
effects. Time-Series Mixer (TSMixer) addresses these issues by efficiently
blending the temporal and feature dimensions in multivariate time series
data, thereby facilitating sequential dependent feature extraction. How-
ever, the current feature mixing in TSMixer applies a common multi-
layer perception across all time steps, leading to time-invariant, non-
adaptive feature exchange that does not allow for accurate extraction of
historical information. Therefore, we propose incorporating adaptive fre-
quency components and event proximity as additional information vec-
tors into the Feature Mixing component of TSMixer to improve its capac-
ity to interpret complex feature interrelations. Our research validates the
effectiveness of these enhancements through experiments with various
real-world multivariate time series datasets, including weather and traf-
fic data, emphasizing its potential across different scenarios. Codes are
available at https://github.com/rikuter67/FAM-EPAM.

Keywords: Multivariate Time Series · TSMixer · Time Series
Forecasting

1 Introduction

Time series forecasting is indispensable across various sectors, shaping crucial
decision-making processes. Traditional methods, such as ARIMA [4,5], rely on
predefined models to capture trends and cycles of historical series. While they are
effective for stationary series, their fixed structure and inability to capture the
dynamic dependencies among multiple features would result in poor performance
with real-world data.

Deep neural networks with recurrent architectures, i.e., RNNs [12,15], and
memory cells, i.e., LSTMs [7,10], enable to capture dynamic and temporal depen-
dencies by encoding significant information into latent vectors extracted from
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historical series. However, RNNs with a one-step recurrent connection face lim-
itations on long-term dependencies due to gradient vanishing and exploding
issues. While LSTMs with gates and cells can capture longer-term dependencies,
their effectiveness is still constrained due to the finite capacity of the memory
cells and the complexity of their computational processes.

Transformers [11,14,16,18] introduce an attention mechanism, e.g., self-
attention, which allows the model to directly encode important information into
the sequence vectors themselves based on the relationship, e.g., co-occurrence
within the sequence. This mechanism enables models to process sequences in
parallel and provides an enhanced capacity to capture complex and long-term
dependencies. However, the inherent permutation invariance of the attention
mechanisms poses significant challenges for processing time series data despite
the success in natural language processing, which employs a heuristic extension,
called positional encoding, to add information about the order of time steps.

In light of this, recent studies have suggested the potential of linear models,
which are inherently sensitive to the order of the inputs, for sequential data [17].
Among linear models, the TSMixer (Time-Series Mixer) [6] model employs
repeated MLPs (Multi-layer perceptions) to mix time and feature information
alternately, encoding useful information into sequence vectors from complex mul-
tivariate time series data. However, TSMixer’s feature mixing approach uses a
common MLP across all time steps, leading to time-invariant, non-adaptive fea-
ture mixing, hindering the accurate extraction of historical information.

To address this issue, we propose enhancements to the Feature Mixing com-
ponent of TSMixer. Firstly, we propose a Frequency-Aware Mixer (FAM), which
adds an adaptive frequency component of each feature to the feature-mixing,
enabling the adjustment of the strength of feature mixing based on the adaptive
time cycles. Secondly, we propose an Event Proximity-Aware Mixer (EPAM),
which adds the proximity to the principal observation (event) as an additional
component of the feature mixing, enabling the strength of the feature mixing to
be adjusted based on the relation to the representative events. These enhance-
ments will enable the model to more accurately grasp the complex interrelations
among features.

The main contributions of this paper are summarized as follows:

1. We propose to enhance the Feature Mixing component of TSMixer, the
state-of-the-art multivariate time-series forecasting method, to allow for time-
dependent and adaptive mixing by introducing principal frequency compo-
nents, called Frequency-Aware Mixer (FAM) and the distance to principal
time-step, called Event Proximity-Aware Mixer (EPAM) as additional infor-
mation vectors.

2. We demonstrate the effectiveness of the proposed method over existing state-
of-the-art multivariate time-series forecasting methods through extensive
comparative experiments on various real-world datasets.

After this introductory section, the rest of this paper is organized as follows.
Section 2 describes the formulation and reviews related works. Section 3 details
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Fig. 1. Illustration of the time series forecasting process based on the formulation
using weather-related multivariate data. fθ (·) transforms L-step of observations X−t

to generate T -step future observations ̂Xt+, which is then evaluated against the ground
truth Xt+ using the loss function L(·, ·) to compute the discrepancy. Multivariate data
are adapted from [8].

the proposed method. Section 4 describes the experimental evaluation and dis-
cussion; Sect. 6 presents the conclusion.

2 Formulation and Related Works

This section formulates the problem of multivariate time series forecasting and
reviews its related works.

2.1 Formulation

Let Xtc denote the c-th observation at time t and : denote all elements at the
corresponding axis. Let X−t ∈ R

L×C be L-step history of observations where
X−t

t: ∈ R
1×C be a vector of C observations at time step t and X−t

:c ∈ R
L×1 be

a vector of the c-th observation over L-step. Meanwhile, let Xt+ ∈ R
T×C be

T -step future observations starting from the next step of X−t as follows:

X−t =
[
Xt−L+1:, . . . , Xt−1:,Xt:

]
,

Xt+ =
[
Xt+1:,Xt+2: . . . , Xt+T :

]
. (1)

The task of multivariate time-series forecasting is to obtain a model f(·) to
predict future observations Xt+ given its history X−t as follows:

X̂t+ = fθ (X−t), (2)
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Parameter θ of the model is tuned to minimize the loss function L(·) averaged
over training data Dtr as follows:

min
θ

1
|Dtr|

|Dtr|∑

t=L

L(
Xt+, fθ (X−t)

)
, (3)

where Dtr is defined as follows:

Dtr ≡
{(

X−t,Xt+
)}Ntr−T

t=L
, (4)

where Ntr is the number of steps in the training sequence. Similarly, the valida-
tion and test data are defined as follows:

Dval ≡
{(

X−t,Xt+
)}Ntr+Nval−T

t=Ntr

,

Dte ≡
{(

X−t,Xt+
)}Ntr+Nval+Nte−T

t=Ntr+Nval

, (5)

where Nval and Nte are the numbers of steps in the validation and test
sequence, respectively—there is no overlap between training, validation, and
test sequences. As Fig. 1 illustrates the formulation overview.

2.2 Attention Mechanisms in Time Series Forecasting

Attention mechanisms have been applied to time series forecasting [11,14,16,18],
enabling models to dynamically encode important information into the sequence
vectors X−t based on the relationships between observation vectors at different
time steps. More specifically, in the attention mechanism, affinity weight W att ∈
R

L×L is computed based on the similarity between query vectors Q ∈ R
L×C and

key vectors K ∈ R
L×C . Next, query Q is transformed through an interpolation

of value vectors V ∈ R
L×C , as follows:

W att = softmax
( (QWQ) (KWK)�

√
C

)
,

Q′ = Attention(Q,K, V ) = W att(V WV ), (6)

where WQ,WK , and WV ∈ R
C×C are trainable linear projection matrices. This

weight W att captures the dependencies across the time series, making attention
mechanisms particularly useful for identifying intricate temporal relationships.

There are several extensions to overcome the limitation of Transformer for
multivariate time-series forecasting, such as Autoformer [16], Informer [18], and
PatchPST [11]. Autoformer incorporates an autocorrelation mechanism to cap-
ture long-term dependency and a deep decomposition architecture that sequen-
tially decomposes the time series data into trend, seasonal, and random compo-
nents during forecasting. Informer introduces ProbSparse self-attention, which
probabilistically selects important queries with higher attention scores to reduce
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Fig. 2. Architecture of TSMixer, consisting of N repeated mixer layers and a temporal
projection. Note that time and feature-mixing MLPs in each mixer layer are shared
across all features and all time steps.

computational complexity enabling the efficient capture of long-term depen-
dency. PatchTST divides the time series into patch chunks treated as time steps
in the attention mechanism and applies single embedding and attention mech-
anism individually to each multivariate series, enabling efficient multivariate
time-series forecasting.

However, due to the attention mechanisms’ inherent permutation invariance
property, Transformer models face challenges when directly applied to time series
data, where the order of time steps critically impacts forecasting accuracy. Cur-
rently, Transformer models attempt to address this issue through positional
encoding, which aims to inject sequence information into the model. Yet, there
is a concern that the effect of positional encoding may diminish as the attention
mechanism is applied repeatedly.

2.3 TSMixer: An All-MLP Architecture for Time Series Forecasting

Recent research [17] has highlighted that simple linear models can be highly effec-
tive for time series forecasting, surpassing Transformer-based models, i.e., Auto-
former [16], Informer [18] and FEDformer [19]. As illustrated in Fig. 2, TSMixer
applies MLPs alternatively in time and feature domains. TSMixer consists of
three main components: Time-mixer, Feature-mixer, and Temporal Projection
as follows:
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Time-Mixer encodes temporal information, e.g., long-term dependencies, into
the history X−t by blending across the time direction X−t

:c as follows:

TM(X−t
:c ) = Drop

(
σ
(
(X−t

:c )�WTM + bTM

))
,

X−t
:c ← Norm

(
X−t

:c + TM(X−t
:c )�

)
, (7)

where WTM ∈ R
L×L and bTM ∈ R

1×L are trainable weight and bias, respectively.
σ(·), Drop(·), and Norm(·) represent an activation function, i.e., ReLU, a dropout
operation, and a normalization operation, i.e., 2D batch normalization applied
over the L×C plane along the batch dimension, respectively. Note that the same
time-mixing MLPs are shared across all types of features.

Feature-Mixer encodes information regarding the relationship among differ-
ent observations, e.g., co-occurrence of observations, into the history X−t by
blending across the feature direction X−t

t: as follows:

Ut: = Drop
(
σ
(
X−t

t: WFM1 + bFM1

))
, FM(X−t

t: ) = Drop
(
Ut:WFM2 + bFM2

)
,

X−t
t: ← Norm

(
X−t

t: + FM(X−t
t: )

)
, (8)

where WFM1 ∈ R
C×H and WFM2 ∈ R

H×C are trainable weights, and bFM1 ∈
R

1×H and bFM2 ∈ R
1×C are trainable biases. U ∈ R

L×H represents the hidden
variables with the the number H of nodes. Note that the same feature-mixing
MLPs are shared across all time steps.

Temporal Projection compresses the L-step history X−t
:c to the length of

future prediction period, i.e., T -step, using a fully-connected layer as follows:

X̂t+
:c =

(
(X−t

:c )�WTP + bTP

)�
, (9)

where X−t represents the output of the Mixer Layer, WTP ∈ R
L×T and bTP ∈

R
1×T are trainable weight and bias.

The permutation-sensitive properties of the time-mixing MLPs in TSMixer
empower the model to effectively capture the dynamic relationships among
observations along the time direction, enhancing the prediction performance
for multivariate time series data. On the other hand, a limitation exists in the
feature-mixing MLPs where the same MLPs are used across time direction, and
thus, the identical transformation is applied to vector X−t

t: regardless of position
in the sequence. This permutation-invariant feature mixing avoids capturing sig-
nificant relationships between observations, e.g., co-occurrence of observations
related to trend and seasonal cycles, and potentially degrades the prediction
performance.
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Fig. 3. Architecture of frequency-aware mixer (FAM), a permutation-sensitive exten-
sion of Feature Mixing MLPs in TSMixer (in Fig. 2). A matrix Sfre ∈ R

L×K contains
K different waveforms along the time axis, linearly integrated by weight Wfre.

3 Proposed Method

To allow for time-dependent and adaptive feature mixing, we propose to
enhance the feature mixing by introducing principal frequency components,
called Frequency-Aware Mixer (FAM), and the distance to the principal time
step, called Event Proximity-Aware Mixer (EPAM), as additional information
vectors.

3.1 Frequency-Aware Mixer (FAM)

We propose Frequency-Aware Mixer (FAM) which incorporates an adaptive fre-
quency component into the first layer of feature-mixing MLPs (in Eq. 8 and
Fig. 2) as depicted in Fig. 4 and as follows:

Ut: = Drop
(
σ
(
X−t

t: WFM1 + Sfre
t: Wfre + bFM1

))
,

Sfre
tk = ak cos

(
2πpk
Ntr

t

)
+ bk sin

(
2πpk
Ntr

t

)
, k = 1, 2, . . . ,K, (10)

where the frequency component Sfre
t: Wfre is a linear integration of K different

waveforms along time-axis, Sfre ∈ R
L×K using weight Wfre ∈ R

K×H . ak, bk, and
pk are trainable parameters tuning the amplitude of cos and sin waves and the
frequency for the k-th waveform, respectively.

To prepare initial waveforms Sfre
t: representing training time-series data Dtr,

we apply a Fourier transform to the sequence [X0c,X1c, . . . , X(Ntr−1)c] of each
observation c and extract Ntr/2 waves. Among the waves whose periods do not
exceed the history length L, we select m waves with the largest power spectra
and set their amplitudes and frequencies as the initial values of a, b, and p for
each observation c—there are total K = mC waves.

The feature-mixing in FAM is sensitive to permutations as the frequency
components may vary with the time-step t. This allows for flexible feature mixing
based on the inherent periodic characteristics of time series, e.g., seasonality,
trend cycles, and cyclical cycles. This could potentially enhance the capacity
of the model to capture the temporal dynamics of the data and improve the
prediction performance.
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Fig. 4. Architecture of event proximity-aware mixer (EPAM), a temporal
characteristics-sensitive extension of Feature Mixing MLPs in TSMixer (in Fig. 2). A
matrix Spro ∈ R

L×R contains R different representative observations (events) along
the time axis, linearly integrated by weight Wpro.

3.2 Event Proximity-Aware Mixer (EPAM)

We propose Event Proximity-Aware Mixer (EPAM) which incorporates an adap-
tive proximity component into the first layer of feature-mixing MLPs (in Eq. 8
and Fig. 2) as depicted in Fig. 4 and as follows:

Ut: = Drop
(
σ
(
X−t

t: WFM1 + Spro
t: Wpro + bFM1

))
,

Spro
t: = X−t

t: Xrep, (11)

where the proximity component Spro
t: Wpro is a linear integration of proximities

to R different representative observations (events), Spro ∈ R
L×R, using weight

Wpro ∈ R
R×H . Xrep ∈ R

C×R is a set of R representative observation vectors
and Spro

t: is the inner product (similarity) between an observation vector X−t
t: at

time-step t and representative vectors Xrep.
To prepare representative vectors Xrep, we apply a clustering method, e.g.,

k-means, into C-dimensional vectors across all training time steps, {Xt:}Ntr−1
t=0

and set R cluster centroids as Xrep.
The feature mixing in EPAM is also sensitive to permutations as the prox-

imity components may vary with the time-step t. This allows for flexible feature
mixing based on the natural variability of time series due to the occurrence of
various types of events, e.g., holiday and weather events, etc., potentially enhanc-
ing the capacity of the model to capture the fluctuation pattern of the data and
improve the prediction performance.

3.3 Entire Architecture and Training

The architecture of the proposed method, i.e., fθ (X−t), is a variant of TSMixer
depicted in Fig. 2 where its feature mixer component is replaced with our pro-
posed permutation-sensitive feature mixier: FAM (in Fig. 3 or TPAM (in Fig. 4.
We refer to the combination of TSMixer with our proposed feature mixers as
TSMixer + FAM and TSMixer + TPAM, respectively.
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For training the entire architecture, we used mean squared error (MSE) as
the loss function L(·) in Eq. 3 as follows:

L(Xt+, fθ (X−t)) =
1

TC

∥
∥Xt+ − fθ (X−t)

∥
∥2

F
, (12)

where ‖ · ‖F is Frobenius norm.
We use early stopping with 5-epoch patience based on the validation loss

computed using the validation data described in Table 1 and select the best
model with the minimum validation loss.

4 Experimental Evaluation

In this section, we show the effectiveness of the proposed method through exper-
iments on seven popular multivariate long-term forecasting benchmarks such as
weather, electricity, and traffic.

4.1 Setting and Comparative Methods

We set the length of history observations as L = 512 following the work [11],
and the length of future prediction observations as T ∈ {96, 192, 336, 720}.

We compared the performance of prediction with the state-of-the-art multi-
variate time series forecasting methods: Transformer-based and MLP-mixer-
based models as follows:

– Transformer-based models: we used codes with default settings provided in
following githubs:

• Autoformer [16]: https://github.com/thuml/Autoformer
• Informer [18]: https://github.com/zhouhaoyi/Informer2020
• PatchTST [11]: https://github.com/yuqinie98/PatchTST

– MLP-mixer-based models:
• TSMixer [6]: we used the basic version of TSMixer provided

in the github https://github.com/google-research/google-research/tree/
master/tsmixer and settings described in the work [6].

• TMix-Only: we eliminated the feature mixer component (in Fig. 2) from
the above TSMixer following the work [6].

• TSMixer + FAM (proposed method, Sect. 3.1): we set the number of
waves for each observation type as m = 3 for datasets with fewer obser-
vation types, i.e., ETT and Weather, and m = 1 for datasets with more
types, i.e., Electricity and Traffic. We utilized numpy.fft.rfft function
for the implementation of Fourier transform. Other settings are same
as TSMixer. In addition, we applied reversible instance normalization
(RevIN) into the each input X−t and output X̂t+ of the model [9].

• TSMixer + EPAM (proposed method in Sect. 3.2): we set the number of
representative observations as R = 5. We utilized sklearn.cluster module
for k-means clustering. Other settings are same as TSMixer + FAM.

https://github.com/thuml/Autoformer
https://github.com/zhouhaoyi/Informer2020
https://github.com/yuqinie98/PatchTST
https://github.com/google-research/google-research/tree/master/tsmixer
https://github.com/google-research/google-research/tree/master/tsmixer
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Table 1. Details of the datasets used in the experiments

ETTh1/h2 ETTm1/m2 Weather Electricity Traffic

No. of obs. C 7 7 21 321 862

Time steps 17,420 69,680 52,696 26,304 17,544

Time cycle 1 h 15 min 10 min 1 h 1 h

Data split train:valid:test 12:4:4 [month] 70:10:20 [%]

4.2 Datasets

We used seven real-world multi-variate time series datasets: ETT [13],
Weather [3], Electricity [2], and Traffic [1], provided by the work of Auto-
former [16] in https://github.com/thuml/Autoformer.

More specifically, Electricity Transformer Temperature (ETT) datasets con-
tain two-year sequences of loads and oil temperature collected from electricity
transformers every 1 h and 15 min. Weather dataset contains one-year sequences
of 21 meteorological indicators, such as air temperature and humidity, recorded
every 10 min. Electricity dataset contains three-year sequences of electricity con-
sumption of 321 customers, collected every hour. Finally, Traffic dataset contains
two-year sequences of road occupancy rates at 862 different places, recorded
every hour. Table 1 summarizes the details of the datasets.

As a preprocessing step for the data, we divided the sequences from each
dataset into training, validation, and test subsequences, as described in Table 1.
We then calculated the mean and standard deviation for each subsequence
[X0c,X1c, . . .] for each observation c and sed these values to normalize the corre-
sponding subsequences. Then, we used these normalized subsequences as training
Dtr (in Eq. 4), validation Dval, test Dte (in Eq. 5) data.

4.3 Result

The experimental results are shown in Table 2. The performance is measured
using MSE of test data Dte as follows:

MSE(Dte) =
1

TC|Dte|
∑

(X−t,Xt+)∈Dte

∥
∥Xt+ − fθ (X−t)

∥
∥2

F
. (13)

In principle, multivariate models that simultaneously consider the relationships
between time and features are expected to offer higher flexibility and perfor-
mance in time series forecasting compared to univariate models, which only
independently consider the time series of individual features. However, Table 2
demonstrates that the performance of Autoformer and Informer in multivariate
models is inferior to that of the univariate model. Furthermore, the performance
of TSMixer is equivalent to that of TMix-Only, which lacks a feature mixer, indi-
cating that the co-occurrences in feature direction provided by a feature mixer,
are not necessarily important for prediction, as reported in the work [6].

https://github.com/thuml/Autoformer
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Table 2. Performance comparison in multivariate time series forecasting. The per-
formance is measured using the MSE computed from each test data Dte (in Eq. 13).
Those performance surpassing TSMixer is indicated in red among multivariate models.
In addition, the best performance among all models is indicated in bold.

Dataset Univariate Model Multivariate Model

Model TMix-Only PatchTST Autoformer Informer TSMixer +FAM +EPAM

ETTh1

96 0.3643 0.3721 0.6110 0.8437 0.3645 0.3644 0.3626

192 0.3995 0.4106 0.5105 0.9920 0.4011 0.4010 0.3948

336 0.4231 0.4216 0.5767 1.3062 0.4249 0.4245 0.4104

720 0.4543 0.4473 0.6887 1.3983 0.4562 0.4535 0.4342

ETTh2

96 0.2698 0.2749 0.4826 0.3512 0.2730 0.2707 0.2734

192 0.3366 0.3385 0.5602 0.3805 0.3386 0.3347 0.3344

336 0.3602 0.3302 0.7877 0.3832 0.3631 0.3639 0.3654

720 0.4229 0.3839 0.9875 0.6024 0.4219 0.4269 0.4520

ETTm1

96 0.2879 0.2909 0.4769 0.6620 0.2861 0.2858 0.2852

192 0.3256 0.3349 0.5854 0.7321 0.3266 0.3254 0.3326

3360.3561 0.3636 0.6663 0.6024 0.3568 0.3587 0.3691

7200.4160 0.4166 0.6939 0.6474 0.4167 0.4202 0.4192

ETTm2

96 0.1678 0.1652 0.2866 0.3290 0.1677 0.1654 0.1962

1920.2184 0.2226 0.3288 0.6741 0.2185 0.2222 0.2299

336 0.2817 0.2735 0.3809 0.8493 0.2815 0.2782 0.2953

720 0.4015 0.3593 0.4683 0.9752 0.4175 0.4074 0.5512

Weather

96 0.1491 0.1482 0.3799 0.4160 0.1489 0.1474 0.1480

1920.1888 0.1938 0.3174 0.7115 0.1894 0.1897 0.1913

336 0.2396 0.2468 0.3487 0.9766 0.2370 0.2429 0.2363

720 0.3148 0.3136 0.3888 1.1191 0.3124 0.3219 0.3087

Electricity

96 0.1307 0.1289 0.2265 0.3316 0.1300 0.1288 0.1290

192 0.1497 0.1468 0.2203 0.3574 0.1487 0.1491 0.1460

336 0.1636 0.1659 0.2203 0.3848 0.1633 0.1633 0.1604

720 0.1940 0.1997 0.2441 0.4170 0.1948 0.1939 0.1925

Traffic

96 0.3795 0.4104 0.6804 1.2582 0.3798 0.3758 0.3791

192 0.3979 0.4125 0.6732 1.3366 0.3982 0.3936 0.3959

336 0.4152 0.4232 0.7119 1.4528 0.4147 0.4085 0.4171

720 0.4509 0.4614 0.7401 1.4859 0.4497 0.4487 0.4498

On the other hand, Table 2 shows that the proposed methods, TSMixer+
FAM and TSMixer+EPAM, which enhance the feature-mixer with permutation
sensitivity, outperform TSMixer in various datasets and future prediction steps,
i.e., T . This indicates the potential of the proposed methods for permutation-
dependent feature mixing in adaptively modeling relationships between features
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and reveals the potential importance of feature mixing in multivariate time series
forecasting.

Table 3. Comparison of parameter counts and averaged inference time per instance,
measured using the test data Dte in Traffic dataset.

Traffic

Model # of params Average inference time (ms)

TMix-Only 903,292 1.557

TSMixer 1,795,112 1.838

+FAM 2,245,948 3.769

+EPAM 1,797,722 1.831

Table 3 presents a comparison of parameter counts and the average time per
inference, measured using the test data Dte in Traffic dataset with the most types
of observations as shown in Table 1. As the table shows, multivariate models tend
to have larger parameters as the number of observations C increases compared
to univariate models. Furthermore, in the case of the TSMixer+FAM, model,
datasets with a large number of observations result in a significantly higher
number of extracted frequencies K (in Eq. 10), leading to a much longer inference
time compared to other models. In the future, it will be necessary to adopt
strategies such as feature grouping to reduce the number of additional vectors
while maintaining predictive accuracy.

4.4 Analysis

In addition, Fig. 5 depicts examples of forecasts by TSMixer, FAM, and EPAM,
for T (Temperature), WV (Wind Velocity), rain(precipitation), SWDR (Short
Wave Downward Radiation), and CO2 (CO2 concentration) of Weather dataset
with forecasting length T = 720—the history X−t

:c and ground truth Xt+
:c (Eq. 1)

in blue and the prediction X̂t+
:c (in Eq. 2) in orange.

Figure 5 shows that compared to TSMixer, TSMixer+FAM is able to more
closely follow the true values with its periodic predictions such as in WV
and CO2. This outcome underscores the impact of FAM’s dynamic frequency-
dependent feature mixing, which is further enhanced by the incorporation of
additional frequency information into the feature mixing process. Therefore, in
fields such as multivariate time series forecasting involving frequency compo-
nents, like temporal traffic patterns, FAM’s ability to accurately track waveforms
is considered effective.

Similarly, EPAM is able to more closely follow the true values with its finer-
grained predictions. This fine-grained prediction reflects the impact of EPAM’s
approach of integrating distance information between major events and each
historical point into the feature mixing. Therefore, in multivariate time series
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Fig. 5. Examples of ground truth (in blue) and prediction (in orange) by TSMixer,
+FAM, and +EPAM models, for T (Temperature), RH (Relative Humidity), WV
(Wind Velocity), SWDR (Short Wave Downward Radiation), and CO2 (CO2 con-
centration) variables in the test data Dtr of Weather dataset with forecasting length
T = 720. The history length L is fixed at 512 for all experiments, and the grey verti-
cal line indicates the boundary date between the history and the future. (Color figure
online)

forecasting involving rapid changes within short periods, such as Electricity data,
EPAM’s ability to make detailed adjustments is considered effective.

From these observations, it is clear that in the domain of multivariate time
series data with complex inter-feature relationships, the proposed method can
enhance the ability to utilize the relationships between features for more accurate
forecasting.
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Fig. 6. Examples of ground truth (in blue) and prediction (in orange) for Oil Tem-
perature (OT) variable in the test data Dtr of ETTh1 dataset. Each row and column
corresponds to a different model and forecast length T ∈ {96, 192, 336, 720}. The his-
tory length L is fixed at 512 for all experiments, and the grey vertical line indicates
the boundary date between the history and the future. (Color figure online)

To further analyze the effectiveness of the proposed method, we visualized
the experimental results for different forecasting lengths across all comparison
methods. Fig. 6 depicts examples of forecasts for Oil Temperature (OT) variable
of ETTh1 dataset with forecasting length T ∈ {96, 192, 336, 720}—the history
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X−t
:c and ground truth Xt+

:c (Eq. 1) in blue and the prediction X̂t+
:c (in Eq. 2)

in orange, where c corresponds to OT.
In contrast to nonlinear multivariate models, i.e., Autoformer and Informer,

which increasingly diverge from the ground truth as the forecast horizon extends,
TSMixer-based models are capable of delivering forecasts that are on par with
univariate models across various forecast lengths, T . Furthermore, compared to
TSMixer, FAM tends to predict with more periodic trends, while EPAM tends
to predict with finer amplitudes. This likely occurs because the models have
effectively adjusted the mixing features based on the overall frequency of the
training data and the proximity to representative events. Consequently, these
models not only capture the temporal mixing of information but also extract
useful information through feature mixing.

5 Conclusion

In this study, we enhance feature mixing in the TSMixer model for multivariate
time series forecasting by introducing principal frequency components through
the Frequency-Aware Mixer (FAM) and incorporating distances to principal time
steps with the Event Proximity-Aware Mixer (EPAM). These proposed methods
enable time-dependent and adaptive feature mixing, demonstrating the utility of
permutation-dependent feature mixing for dynamically capturing the relation-
ships between features. Experimental results across various real-world datasets
indicate the potential of the proposed methods for permutation-dependent fea-
ture mixing in adaptively modeling relationships between features and reveal the
importance of feature mixing in multivariate time series forecasting.

Disclosure of Interests. The authors have no competing interests to declare that

are relevant to the content of this article.
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