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Abstract. Graph Neural Networks (GNNs) have superior capability in
learning graph data. Full-graph GNN training generally has high accu-
racy, however, it suffers from large peak memory usage and encounters
the Out-of-Memory problem when handling large graphs. To address
this memory problem, a popular solution is mini-batch GNN train-
ing. However, mini-batch GNN training increases the training variance
and sacrifices the model accuracy. In this paper, we propose a new
memory-efficient GNN training method using spanning subgraph, called
SpanGNN. SpanGNN trains GNN models over a sequence of spanning
subgraphs, which are constructed from empty structure. To overcome
the excessive peak memory consumption problem, SpanGNN selects a
set of edges from the original graph to incrementally update the span-
ning subgraph between every epoch. To ensure the model accuracy, we
introduce two types of edge sampling strategies (i.e., variance-reduced
and noise-reduced), and help SpanGNN select high-quality edges for
the GNN learning. We conduct experiments with SpanGNN on widely
used datasets, demonstrating SpanGNN’s advantages in the model per-
formance and low peak memory usage.

1 Introduction

Graph Neural Networks (GNNs) achieve the state-of-the-art performance on
graph learning tasks, such as node classification [16,19,27], link prediction [23,39]
and graph classification [9,37]. They have been widely used in various domains,
like social network analysis [10,26], recommendation [17,34,35], healthcare [1,7],
short-term load forecasting [25] and bio-informatics [11,21]. Most of GNNs [16,
19,27,36] follow the message passing paradigm [13], which exploits graph topol-
ogy and node/edge features simultaneously. In this paradigm, the edge related
memory consumption predominantly influences the amount of peak GPU mem-
ory [30]. The edge calculation of GNNs involves four operations, which are collec-
tion, messaging, aggregation, and feature updating. The four operations require
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the storage of intermediate results (e.g., the updated embedding of edge fea-
ture and the aggregation of feature embedding), which are used for the gradient
calculation in the subsequent backward propagation process. According to the
existing empirical studies [30], the peak memory consumption can be up to 100
times of the size of dataset itself. As a result, the high memory usage of the edge
calculation restricts the GNNs scaling to large graphs.

Since the edge calculation is the main factor of high memory usage, an intu-
itive idea is to reduce the number of edges for training. Sampling is a standard
technique to generate graphs with few edges. It has been well studied in the mini-
batch training. Many works [6,8,16,37,38] use various sampling techniques to
create mini-batches, which are subgraphs rooted from a limited number of target
nodes. Although mini-batch training is scalable and memory-efficient, it brings
in non-negligible training variance and heavily compromises model accuracy.
Full-graph GNN training is more accurate than mini-batch training [18]. How-
ever, the existing complex sampling methods cannot be efficiently adopted to the
full-graph GNN training. The sampling step is time-consuming and becomes the
efficiency bottleneck for GNN training on large graphs [30]. Unlike the sampling
technique, DropEdge [22] randomly drops edges of the original graph during
the full-graph training. It not only reduces the size of peak memory, but also is
scalable to large graphs. Nonetheless, DropEdge also suffers from a prominent
model accuracy loss as the edge drop ratio increases, especially on large graphs.
This limitation arises because DropEdge treats all edges equally and ignores the
inherent structure of the original graph. Therefore, how to develop a memory-
efficient and accurate full-graph GNN learning method remains unsolved.

In this paper, we propose SpanGNN to achieve memory-efficient full-graph
GNN training while guaranteeing the model accuracy. First, SpanGNN trains
GNN models across a sequence of spanning subgraphs, which are constructed
from empty structure. Each spanning subgraph contains significantly fewer edges
than those present in the original graphs, thus effectively reducing the peak
memory footprint. Furthermore, in each training epoch, SpanGNN selects a set
of edges from the original graph to incrementally update the spanning subgraph
that used in the previous epoch. Meanwhile, the updated spanning graph always
satisfies the sparsity constraint defined by the edge ratio α (See the definition in
Sect. 2.2). Second, to guarantee the model accuracy and training efficiency, we
propose a fast quality-aware edge selection method for SpanGNN. We analyze
the training variance and gradient noise that inherent in the spanning subgraph
training framework, and propose variance-reduced sampling and gradient-noise
reduced sampling strategies, respectively, to help SpanGNN selects a set of high-
quality edges and guarantee the model accuracy. However, it is expensive to
directly apply the above two sampling strategies over large graphs, we introduce
a two-step sampling method to speed up the edge selection process. Extensive
experiments demonstrate that SpanGNN is capable of saving over 40% of GPU
memory usage without compromising training performance.
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Our main contributions are summarized as follows:

– We propose SpanGNN that supports memory-efficient and accurate full-graph
GNN training on large graphs. The new method reduces the peak memory
usage significantly during the training, meanwhile achieving high model accu-
racy.

– We introduce a fast quality-aware edge selection method to alleviate the neg-
ative impacts caused by spanning subgraph training and ensure training effi-
ciency.

– We analyze the connection between SpanGNN and curriculum learning [3].
With the help of quality-aware edge selection, SpanGNN selects edges that
are highly beneficial to the learning in priority, and then gradually uses edges
with low benefits.

– Experimental results on widely used datasets demonstrate that SpanGNN
reduces peak memory usage effectively while guaranteeing that the model
accuracy is almost equivalent to the one of full graph training.

2 Preliminary

2.1 Graph Neural Networks

The general matrix formulation of GNN models is as follows:

Z(l) = PH(l−1)W (l−1), (1)

H(l) = σ(Z(l)), (2)

where Z(l), H(l), and W (l) represent the intermediate embedding matrix, feature
embedding matrix and trainable weight matrix at l-th layer, respectively. σ is
a non-linear activation function, like ReLu. P is the propagation matrix that is
transformed from the graph adjacency matrix.

During the backward propagation, the gradient of the loss with respect to
W (l−1) is as follows:

∇W (l−1)L =
∂L

∂W (l−1)
= (H(l−1))T PT δ(l), (3)

where δ(l) denotes the gradient of the loss with respect to Z(l). Then, W (l−1) is
updated as follows:

W (l−1) = W (l−1) − η∇W (l−1)L, (4)

where η denotes the learning rate of training.

2.2 Spanning Subgraph GNN Training

Given a graph G = (V,E), a spanning subgraph Gs = (Vs, Es) generated from
G is a subgraph with vertex set V , i.e., Vs = V and Es ⊂ E [32]. We define edge
ratio α between Gs and G is |Es|

|E| . α represents the degree of edge reduction of a
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spanning subgraph against the corresponding original graph. The smaller α is,
the more edges are deleted, and less memory is demanded for training over the
spanning subgraph.

Spanning subgraph GNN training make GNNs only propagation along the
subgraph Gs. Therefore, the key GNN operations (Eqs. 1-3) are rewritten as:

Z̃(l) = P̃H(l−1)W (l−1), (5)

H̃(l) = σ(Z̃(l)), (6)

∇W (l−1)L̃ =
∂L̃

∂W (l−1)
= (H̃(l−1))T P̃T δ̃(l), (7)

where P̃ is the propagation matrix that is transformed from the spanning sub-
graph. Spanning subgraph GNN training results in approximated node embed-
ding matrix H̃(l) and the approximated embedding gradients δ̃(l). The model
accuracy is affected by these approximated intermediate results as well. We will
discuss the main factors that influence the model accuracy in Sect. 4.

3 SpanGNN: Memory-Efficient Full-Graph GNN
Learning

Fig. 1. The framework of SpanGNN.

Figure 1 illustrates the overview of SpanGNN. It starts with an empty span-
ning subgraph GT0 and progressively includes more edges during the training.
For every training epoch Ti, SpanGNN selects a set of edges from the original
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graph G, updates the spanning subgraph GTi−1 with the selected edge set, and
generates a new spanning subgraph GTi

. Furthermore, to limit the peak memory
usage, SpanGNN guarantees that, in each training epoch, the edge ratio |ETi

|
|E|

does not exceed αup, which is preset by users. According to the definition of edge
ratio, the parameter αup implies the upper bound of peak memory usage during
the training. Therefore, SpanGNN is able to control the maximal size of peak
memory flexibly and is memory-efficient. The pseudocode of the framework is
shown in Sect. 2.2 of our technical report [15].

Edge Selection. Edges in the graph contribute differently to the GNN training,
so it is important to pick out the most beneficial edges for the training to guar-
antee the model accuracy. Weighted sampling is a standard approach to select
important edges in priority. In this paper, we analyze two types of factors that
influence the model accuracy and propose quality-aware edge selection approach
in Sect. 4. The new edge selection approach adopts variance-reduced sampling
strategy and gradient-noise reduced sampling strategy to select high-quality
edges. However, directly sampling from the entire graph with non-uniform prob-
ability distribution is time-consuming. We further introduce the two-step edge
sampling method to speed up the edge selection. In addition, using the quality-
aware edge selection approach, the training process of SpanGNN aligns with the
principles of curriculum learning (discussed in Sect. 5), therefore, SpanGNN has
high accuracy.

Graph Update. In order to continuously satisfy the edge ratio constraint (i.e.,
|GTi

|
|G| ≤ αup), we introduce an edge drop step in the graph update. In each train-

ing epoch Ti, if SpanGNN detects that the new spanning subgraph will violate
the edge ratio constraint, it first randomly drops a set of edges in GTi−1 , then
adds the selected edge set to the subgraph GTi−1 ; otherwise, the selected edge set
is directly added into the subgraph GTi−1 . The edge drop step helps SpanGNN
ensure the memory-efficiency. More importantly, it improves the diversity of the
trained spanning subgraphs and enhances the model accuracy as well.

4 Fast Quality-Aware Edge Selection

In this section, we first introduce two types of edge sampling strategies, which are
variance-reduced sampling strategy and gradient noise-reduced sampling strat-
egy. Then, we introduce the two-step edge sampling method that optimizes the
efficiency of edge selection over large graphs.

4.1 Variance-Minimized Sampling Strategy

The Variance of Aggregated Embedding. Since the edges are probability
selected in SpanGNN, the spanning subgraph can be treated as a sampled sub-
graph from the original graph, and the variance of aggregated embeddings in
SpanGNN affects the model accuracy and should not be ignored. Similar to the
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existing works [38], the unbiased estimator of aggregated embeddings without
activation and the variance of embeddings estimator can be defined as:

ξ =
∑

(l)

∑

e

b
(l)
e

pe
1(l)

e (8)

V ar(ξ) =
∑

e

(
∑

l b
(l)
e )2

pe
−

∑

e

(
∑

l

b(l)e )2, (9)

where pe denotes the probability of an edge to be sampled, b
(l)
e = Pv,ux̃

(l−1)
u +

Pu,vx̃
(l−1)
v , P is the propagation matrix (e.g., the normalized adjacency matrix

in GCN), x̃ is feature matrix after linear operation, and 1e = 1 if e is in Es.

Variance Minimization. To minimize the variance of the aggregated embed-
dings estimator, we follow the strategy used in GraphSAINT [38]. By using the
Cauchy-Schwarz inequality, the variance of aggregated embeddings is minimized
when pe ∝ |∑l b

(l)
e |, which can be simplified as:

pe ∝ Pv,u + Pu,v =
1

deg(u)
+

1
deg(v)

. (10)

The probability pe defined in Eq. 10 interprets that if two nodes u, v are
connected and they have few neighbors, then edge between u and v are more
likely to be sampled and to reduce the variance. In other words, such edges will
contain more information for the nodes, which is more conducive to the training
of the node.

4.2 Gradient Noise-Reduced Sampling Strategy

The Noise of Gradient. As mentioned before, with the spanning subgraphs,
the final learned embeddings change compared to the exact ones. Therefore,
the results of loss function and gradient change as well. We define the noise of
gradient as the change between ∇W (l−1)Ls that is calculated by original graph
training and spanning subgraph training. We formulate the noise of gradient as
below:

Gnoise = ∇W (l−1)L̃ − ∇W (l−1)L. (11)

Gradient Noise Reduction. The noise of gradient slows down the convergence
and affects the model accuracy. To solve the problem, we derive a probability
distribution for edge sampling that can reduce the upper bound of gradient noise.
The probability of an edge e(u, v) is formulated as:

pv,u =
‖P∗,u‖2∑

(v,u)∈E ‖P∗,u‖2
, (12)
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where P∗,u denotes the vector of nodeu’s propagation matrix.. The larger the
sampling probability of the edge, the smaller the gradient noise in the training
process.

Next, we theoretically analyze the above probability and dig into the upper
bound of the expected gradient noise, which is summarized in Theorem 1.

Theorem 1. Upper bound of the expected gradient noise. Given the
square of Frobenius norm ‖P‖2F ,

∥∥H(l)
∥∥2

F
,
∥∥δ(l)

∥∥2

F
are bounded by some constants

B, C, D and the L2-norm
∥∥H(l)W (l)

∥∥ is bounded by constant ξ. Assume that the
activation function σ is ρσ−Lipschitz and the gradient ∇Z(l)L is ρZ−Lipschitz,
then we have:

E
[‖Gnoise‖2

F

] ≤ (2BDρσ + 4BCρZ)E

[∥
∥
∥Z̃(l) − Z(l)

∥
∥
∥
2

F

]
+ 4BCD. (13)

According to E.q. 13, the upper bound of the expected gradient noise is

decided by
∥∥∥Z̃(l) − Z(l)

∥∥∥
2

F
, i.e., the expected value of the difference of the hidden

layer embedding. We further analyze the upper bound of of this difference.

Theorem 2. Upper bound of the expected hidden embeddings’ differ-
ence. Given the entire edge set E and the selected edge subset Es, we derive the
following inequation:

EEs

[∥∥∥Z̃V,∗ − ZV,∗
∥∥∥
2

F

]
≤ 1

|Es|
∑

(v,u)∈E

1
p(v,u)

‖P∗,u‖22 ξ2. (14)

The detailed proof of the above two theorems are presented in Sect. 4.2 of
our technical report [15]. As illustrated in E.q. 14, we find the upper bound of
hidden embeddings’ difference is related to edge sampling probability pv,u. By
combining Eq. 13 and removing the constants that are hard to calculate, we can
formulate a gradient noise optimization problem and minimize the value of the
noise by using the following constraint:

s.t.
∑

(v,u)∈E

p(v,u) = 1 (15)

Based on E.q. 14 and Eq. 15, by using the Lagrange function, we derive the
edge sampling probability as defined in E.q. 12, and the probability can reduce
the gradient noise in the spanning subgraph training.

4.3 Two-Step Edge Sampling Method

The probabilities defined by Eqs. 10 and 12 are non-uniform. It is a challenge
to fast sample non-uniform distribution in large sample space [24]. An efficient
sampling method, Alias sampling [28], requires massive memory and entails the
high cost of building data structures. In this paper, we propose a simple but
effective approximate sampling method – two-step edge sampling to speed up
the quality-aware edge selection process.
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In the first step, SpanGNN reduces the sample space by randomly sampling
an edge set, denoted as et, in iteration Tt. This step confines the final selected
edges focusing on the edge set et rather than the entire edge set E. In the second
step, SpanGNN samples e

′
t from the edge set et according to the probability

defined by E.q. 10 and 12. The pseudocode of quality-aware edge selection with
two-step sampling is given in Sect. 4.3 of our technical report [15]. Additionally,
we show more details about parameter sensitive analysis of two-step sampling
in Sect. 6.6 of our technical report [15].

Here, we discuss the advantages of two-step sampling with a memory-efficient
non-uniform sampling method, which first constructs a cumulative probabil-
ity array, then uses random numbers to select elements. The time complex-
ity entailed by the first step of random sampling from the entire edge set is
O(|e|). The time complexity of the second step of weighted sampling is about
O(|e| + |e′ |log(|e|)). Therefore, the total time complexity of the two-step sam-
pling is O(|e|) + O(|e′ |log(|e|)). However, if we directly sample |e′ | edges from
entire edge set, the time complexity is O(|E| + |e′ |log(|E|)). In practice, |e| is
typically several to ten times |e′ |, while |E| can be up to a hundred times larger
than |e|. Therefore, the time cost of the two-step sampling is lower than that of
direct sampling.

5 Connection to Curriculum Learning

In this section, we analyze the connection between SpanGNN and curriculum
learning. To our knowledge, curriculum learning increases the robustness of the
learned model against noisy training samples by training samples from easy to
hard. An intuitive explanation is that curriculum learning spends less time with
the harder (noisy) samples to achieve better robustness.

SpanGNN incorporates the principles of curriculum learning by constructing
different graph structures (i.e., spanning subgraphs) during the learning process.
SpanGNN not only mirrors the educational strategy of progressing from easy to
hard lessons, but also aligns with the model’s need to first grasp fundamental
concepts before tackling more challenging tasks. The detailed discussion is as
follows.

First, in SpanGNN, the empty graph at the beginning can be regarded as
the simplest ‘course’. In the training process, edges are gradually added to the
graph. This progressive learning process helps the model master basic structural
information first, and then learn more complex graph structures, which helps
the model to learn more robust and avoid overfitting.

Second, through the Quality-aware Edge Selection, we prioritize edges that
are more significant for model training, to help minimize feature variance and
reduce gradient noise. Edges with smaller feature variance mean that the aggre-
gated features are more consistent. Also, edges with less gradient noise mean
that they can help the model learn more stable. This is similar to the ‘from easy
to hard’ in curriculum learning, where we initially learn the data that will be
more beneficial for subsequent learning.
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6 Experimental Studies

In this section, we start with the descriptions of experimental settings, which
cover the datasets and configurations used in the experiments. Then, we evaluate
the performance of SpanGNN by comparing it with full-graph training methods,
conduct ablation studies to verify the effectiveness of the proposed techniques,
and study the efficiency of SpanGNN. Finally, we also compare SpanGNN with
mini-batch training methods to demonstrate that generally SpanGNN is able to
achieve high accuracy. In addition, due to the limited space, we put the results
of parameter sensitivity in Sect. 6.6 of our technical report [15].

6.1 Experimental Setups

Table 1. Dataset statistics

Dataset Dataset attributions
name #Nodes #Edges Features Classes

Ogbn-proteins 132,534 79,122,504 8 112
Reddit 232,965 114,615,892 602 41
Amazon 1,598,960 264,339,468 200 107
Ogbn-products 2,449,029 126,167,053 100 47

Environments and Datasets. We implemented SpanGNN with PyTorch 2.0.1,
and the code is released1. We evaluate the performance of SpanGNN using two
common GNN models including GCN [19] and SAGE [16] with the mean aggre-
gator. All experiments are conducted on NVIDIA RTX A6000. We use four large
graph datasets. Table 1 lists the summary of the datasets.

Performance Metrics and Evaluation Protocol. Accuracy is used to mea-
sure the effectiveness of SpanGNN on Reddit and Ogbn-products datasets, F1-
score is used on Amazon, and AUC-ROC is used on Ogbn-proteins. All perfor-
mance metrics are calculated on the validation set and the results are the average
of three times experiments. Furthermore, we conduct experiments under different
edge ratios to verify the memory-efficiency of SpanGNN.

Baselines. 1) Full-graph. It is a naive full-graph training method, but con-
sumes heavy GPU memory. 2) DropEdge. It has good scalability for training on
large graphs. 3) GraphSAGE, ClusterGCN and GraphSAINT are selected
as the representations of the mini-batch training.

Additionally, SpanGNN equipped with variance-minimized sampling and gra-
dient noise-reduced sampling respectively are denoted by SpanGNN-F and
SpanGNN-G.
1 https://github.com/guxizhi/SpanGNN.

https://github.com/guxizhi/SpanGNN
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Fig. 2. The performance of the training methods on GCN (Up-side) and SAGE (Down-
side) with various edge ratios.

6.2 Performance of SpanGNN

Comparison of Model Accuracy. Figure. 2 illustrates the model accuracy
of SpanGNN, Full-graph and DropEdge on GCN and SAGE with various edge
ratios αup, which are set from 0.3 to 0.7. We see that SpanGNN-F’s performance
is similar to or even better than Full-graph. For example, on Reddit, the accuracy
of SpanGNN-F is higher than the one of Full-graph with SAGE, regardless of αup.
On Ogbn-proteins, as αup gets larger, the AUC-ROC of SpanGNN-F gradually
exceeds the one of Full-graph. The exception is on Amazon, where SpanGNN-
G is better than SpanGNN-F as αup gets larger. This is because SpanGNN-F’s
sampling probability on Amazon is extremely skewed, and it is caused by the fact
that few edges are connected by two low-degree nodes. These minority edges are
given larger weight during selection, causing them to be selected repeatedly in
every edge selection. It is hard to obtain enough edges for the spanning subgraph
(i.e., the edge ratio of a spanning subgraph is hard to reach αup) and results in a
decrease of F1-score. This problem also reduces the size of peak memory usage.
In Fig. 3, we see that the peak memory usage of SpanGNN-F is stable with
respect to different edge ratios on Amazon.

Compared to SpanGNN, DropEdge suffers from the decrease in model perfor-
mance more seriously. On Reddit, DropEdge losses the accuracy by up to 1.5%
on GCN and by up to 0.8% on SAGE. Even worse, DropEdge severely damages
the model’s F1-score on Amazon by more than 25%. Overall, SpanGNN is better
at ensuring model’s performance compared to DropEdge.

Comparison of Peak Memory Usage. Here we compare the peak memory
usage among SpanGNN, Full-graph, DropeEdge. As shown in Fig. 3, we see that
reducing the number of edges effectively reduces the size of peak memory by
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Fig. 3. Peak Memory Usage on GCN(Up-side) and SAGE(Down-side).

comparing SpanGNN and Full-graph. There is no significant difference between
SpanGNN and DropEdge, since they drop the same size of edges. In addition,
the percentage of peak memory saved is also independent of the model. By using
only 30% edges, SpanGNN and DropEdge can reduce the peak memory usage by
42%, 25% and 47% on Reddit, Ogbn-products and Ogbn-proteins, respectively.
Note that on Amazon, due to the actual edge ratio cannot achieve αup, which
is discussed in the “Comparison of model accuracy”, SpanGNN-F has less peak
memory overhead.

Fig. 4. Ablation studies on GCN(Up-side) and SAGE(Down-side)
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6.3 Ablation Studies

Effectiveness of the Framework. In order to verify the effectiveness of the
principles of curriculum learning used by SpanGNN, we compare the model
accuracy between SpanGNN and SpanGNN w/o EE. Instead of the empty graph,
SpanGNN w/o EE is initialized by the graph with αup|G| edges, which are
selected by quality-aware edge selection. The results are shown in Fig. 4.

The results indicate that SpanGNN improves the model performance on var-
ious datasets by adopting the curriculum learning principles. On Ogbn-proteins,
it is clear that SpanGNN outperforms SpanGNN w/o EE and the improvement
is around 0.2%. On other datasets, depending on the based model and the value
of αup, SpanGNN is generally better than or equal to SpanGNN w/o EE.

Effectiveness of Quality-Aware Edge Selection. In order to verify the effec-
tiveness of variance-minimized sampling and gradient noise-reduced sampling
strategies, we compare the model performance among SpanGNN-G, SpanGNN-
F, and SpanGNN w/o QA. Here SpanGNN w/o QA applies random sampling
instead of quality-aware sampling. The results are shown in Fig. 4.

Generally, SpanGNN-G and SpanGNN-F have better performance than
SpanGNN w/o QA. The advantage can reach 1.5% on Reddit and even more
than 20% on Amazon. In certain cases, SpanGNN w/o QA might outperform
SpanGNN. As discussed in the “Comparison of model accuracy”, on Amazon,
the spanning subgraph in SpanGNN is easy to contain fewer edges than the
required ones defined by αup because of the skewed sampling probability. How-
ever, SpanGNN w/o QA can successfully reach αup, and contain sufficient edges.
Therefore, SpanGNN does not always perform better than SpanGNN w/o QA
on SAGE. Overall, we conclude that the variance-minimized sampling and the
gradient noise-reduced sampling generally plays important roles in improving
performance of SpanGNN.

Fig. 5. The average time cost of generating spanning subgraphs.
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6.4 Efficiency of SpanGNN

In this section, we demonstrate the efficiency of SpanGNN by comparing the
average time cost of generating spanning subgraphs. Figure 5 illustrates the
results of SpanGNN, SpanGNN w/o EE, DropEdge and direct sampling from
the entire graph based on quality-aware edge selection (DS). To guarantee the
fairness of the comparison, all methods have the same edge ratio (i.e., αup = 0.3).

As we can see, SpanGNN is more efficient than other frameworks, and inte-
grating curriculum learning principle does not destroy the execution efficiency.
Specifically, compared to DropEdge, SpanGNN speeds up from 1.95x to 5.65x
on different datasets. As analyzed in Sect. 4.3, the time complexity of generat-
ing spanning subgraphs in SpanGNN is proportional to the number of first-step
sampling edges e. Due to dropping a lot of edges each iteration (i.e., αup = 0.3),
DropEdge entails much more time cost than SpanGNN. When compared to DS,
SpanGNN speeds up from 26.99x to 132.08x. This is because the time complex-
ity of DS is proportional to the number of edges in the entire graphs, which can
reach hundreds of times that of e.

Table 2. The comparison of model performance with mini-batch training methods.
Note that SpanGNN’s results are determined by taking the best one among different
edge ratios.

GNN Model Reddit Ogbn-products Amazon Ogbn-proteins
Acc Acc F1-score AUC-ROC

GCN SpanGNN-G 95.26 91.50 47.79 87.11
SpanGNN-F 95.46 91.68 46.78 87.19
GraphSAGE 91.99 90.18 28.73 71.31
ClusterGCN 92.05 89.94 46.86 79.30
GraphSAINT96.53 90.14 7.50 80.12

SAGE SpanGNN-G 96.51 91.33 76.29 90.36
SpanGNN-F 96.62 91.90 76.26 90.49
GraphSAGE 94.55 90.57 72.99 82.35
ClusterGCN 94.74 90.55 77.43 83.54
GraphSAINT97.46 90.15 75.21 85.35

6.5 Performance of SpanGNN Compared to Mini-batch Training

In this section, we compare SpanGNN with different mini-batch training meth-
ods in terms of model performance. The memory usages of mini-batch training
is related to the batch size, and it is more flexible than SpanGNN in terms
of memory consumption. However, as shown in Table 2, generally SpanGNN
achieves better performance than the mini-batch methods. On Ogbn-products
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and Ogbn-proteins, SpanGNN always outperforms the mini-batch methods and
its improvements can achieve 1.7% and 7.0% respectively. On other datasets,
SpanGNN is either the best one or the second best but very close to the best
one. Therefore, compared to the mini-batch training, SpanGNN achieves high
model performance.

7 Related Work

7.1 Memory-Efficient Graph Neural Networks

Mini-batch training is an effective approach to reduce the memory consumption.
Existing works do a lot of exploration on sampling methods with mini-batch
training approach. The works [5,16] apply node-level sampling to select a set of
nodes in neighbors. In this way, it reduce the number of each node’s neighbors in
the phase of aggregation. However, it can not resolve the problem of ‘neighbor
explosion’ when GNNs goes deeper. The works [8,42] apply layer-level sampling
to select a fixed number of nodes in each GNN layer. Since this type of sam-
pling methods use fixed number of nodes in the each layer, it can alleviate the
‘neighbor explosion’. However, FastGCN [8] suffers from unbalanced receptive
fields. LADIES [42] tracks each node’s neighbors in the previous layer and cal-
culates an importance estimator, but causes much overhead. The works [6,38]
apply subgraph-level sampling to limit the aggregation field to a subgraph. Clus-
terGCN [6] partitions the graph into a set of clusters and then randomly com-
bines partitions to be a mini-batch. GraphSAINT [38] directly forms subgraphs
with overlapping nodes among mini-batches. However, compared to Full-graph
training, mini-batch training incurs information loss.

Even though almost no work explicitly discusses using spanning subgraph to
reduce peak memory usage during GNNs training, there exist some close works.
DropEdge [22] randomly removes a certain percentage of edges from the original
input graph in each epoch. It alleviates the problem of over-smoothness [2,14]
and over-fitting and can be considered as a strategy that uses spanning subgraph.
TADropEdge [12] additionally considers the factors of graph structure. They ana-
lyze the graph connectivity and gives larger weight to keep inter-cluster edges
in GNNs training. NeuralSparse [41] applies a deep neural network to learn how
to sparse graphs with the feedback of downstream prediction tasks. It improves
generalization ability by removing potentially task-irrelevant edges. SGCN [20]
also considers sparsification as an optimization problem and applies ADMM-
based solution to solve it. But these works focus on improving the prediction
results, overlooking the problem of peak memory usage. In addition, some other
works directly delete or change the structure of GNNs model. SGC [33] reduces
redundant calculations by deleting the non-linear activation function between
GCN layers. PPRGo [4], by calculating the influence matrix, avoids the over-
head of collecting multi-hop neighbors. However, they fundamentally change the
characteristics of GNNs, and cannot directly be applied to existing models.
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7.2 Curriculum Learning on GNN

Recently, curriculum learning is introduced into GNNs training and achieves
performance improvement in GNN models. CurGraph [29] introduces curriculum
learning to train GNNs with graphs in ascending order of difficulty. This method
uses the informax technique for graph-level embeddings and a neural density
estimator to model the embedding distributions. After calculating the difficulty
scores of graphs, it first exposes GNN models to easy graphs and moves on
to harder ones. They focus on the prediction of graphs. CLnode [31] defines
the difficulty of samples at the level of the node and applies various pacing
functions to train GNNs from easy-to-hard. It measures nodes’ difficulty from the
perspective of neighborhoods and features. RCL [40] considers that connections
of nodes significantly affect the curriculum learning. It distinguishes the level of
difficulty for edges and gradually incorporates more information at the level of
edges. However, neither CLnode nor RCL takes the memory usage into account,
and they need to train GNNs on the entire graphs. Differently, our work sets an
upper bound of the number of edges and designs difficulty scoring function by
fully considering the impact of the spanning subgraph.

8 Conclusion

In this paper, we proposed SpanGNN that carries out GNNs training on large-
scale graphs efficiently by using spanning subgraphs and integrating the princi-
ples of curriculum learning. SpanGNN consists of two main components to limit
the memory overhead and ensure the model performance. Quality-aware edge
selection samples beneficial edges for spanning subgraph GNN training and fol-
lows the manner of curriculum learning to add edges for training. Graph update
determines the size of the spanning subgraph at each epoch to control the peak
memory. Overall, we provide an efficient large-scale GNN training method that
can reduce memory overhead and maintain the model performance.
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