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Abstract. While Hyperbolic Graph Neural Network (HGNN) has
recently emerged as a powerful tool dealing with hierarchical graph data,
the limitations of scalability and efficiency hinder itself from generalizing
to deep models. In this paper, by envisioning depth as a continuous-time
embedding evolution, we decouple the HGNN and reframe the infor-
mation propagation as a partial differential equation, letting node-wise
attention undertake the role of diffusivity within the Hyperbolic Neural
PDE (HPDE). By introducing theoretical principles e.g., field and flow,
gradient, divergence, and diffusivity on a non-Euclidean manifold for
HPDE integration, we discuss both implicit and explicit discretization
schemes to formulate numerical HPDE solvers. Further, we propose the
Hyperbolic Graph Diffusion Equation (HGDE) – a flexible vector flow
function that can be integrated to obtain expressive hyperbolic node
embeddings. By analyzing potential energy decay of embeddings, we
demonstrate that HGDE is capable of modeling both low- and high-order
proximity with the benefit of local-global diffusivity functions. Experi-
ments on node classification and link prediction and image-text classifi-
cation tasks verify the superiority of the proposed method, which consis-
tently outperforms various competitive models by a significant margin.

Keywords: Continuous GNN · Hyperbolic Space · Neural ODE

1 Introduction

Graphs play a vital role in various disciplines, including social network analysis
[12], bioinformatics [48], and computer vision [37]. The advent of Graph Neural
Networks (GNNs, [23]) has significantly enhanced the analysis of these structures
to capture complex relationships between nodes in a graph. However, traditional
GNNs operate within the borders of Euclidean space, which may not be suffi-
ciently expressive for data with inherent hierarchical or complex structures. To
improve, this paper delves into the realm of hyperbolic geometry, a Riemannian
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manifold demonstrated to be particularly effective for embedding hierarchical
data [16,18]. We focus on the development of HGNNs [6], which leverage the
unique properties of hyperbolic space to enhance the embedding of GNNs.

The principal challenge confronted by HGNNs is their architectural design,
which primarily consists of combinations of aggregation and transformation
within layers. This fusion presents a unique problem, particularly the difficulty of
training attention weights and manifold parameters (e.g., curvature of the hyper-
bolic manifold) layer-wise in a deeply layered scheme. With such challenge, we
pose our initial questions: Q1: Considering hyperbolic space slows down layer-
wise attention and propagation [11,25], how to develop a deeply-layered atten-
tive HGNN? Q2: How to incorporate high-order info to benefit a deeply layered
scheme? Q3: Deep GNNs suffer from embedding smoothing, how should the node
smoothness be measured when there is no defined metric for hyperbolic smooth-
ness. And how to tackle over-smoothing within hyperbolic manifold constraints?

Motivated by above questions, in this paper, we propose to decouple the func-
tions within layers of HGNNs so as to deal with each of them separately. Unlike
traditional decoupling-GNN approaches [15,35] that aggregate all information
from the neighbors, we view information propagation as a distillation process,
such that unimportant information is filtered out and significant information is
weighted and contributes to the continuous variation of embeddings. More explic-
itly, by letting the transformation layer manifest as an encoder-decoder scheme,
the aggregation layer is re-envisioned to solve the partial differential equation
(Neural ODE/PDE, [8]) - essentially, the graph diffusion equation [4] in hyper-
bolic space, which essentially simulates an infinitely deep HGNN with single layer
parameters. In specific, in response to Q1, we consider the PDE reformulation
and developed Hyperbolic-PDE (HPDE) solvers, which only leverage single-layer
parameters. To answer Q2, we formulate the Hyperbolic Graph Diffusion Equa-
tion (HGDE), a low-high order vector flow function that can be integrated by
HPDE. Tackling Q3, we firstly introduce the hyperbolic adaptation of Dirichelet
energy and augmented HGDE with a hyperbolic residual, powered by Poincaré
midpoint. Deconstructions above introduce extensive mathematical principles,
including for instance: manifold vector field, flow, gradient, divergence, diffusiv-
ity, numerical HPDE solvers and hyperbolic residuals for bounding embedding
energy decay. Through these concepts, we open new pathways to fully exploit the
unique potential of hyperbolic space in the contextual analysis of graph-based
data. In summary, the contributions of this paper are listed as follows.

(I) We present the geometric intuition for designing projective numerical
integration methods that solve hyperbolic ODE/PDE, and examine the connec-
tion to Riemannian gradient descent methods. Focusing on fixed-grid solvers, we
derive both hyperbolic generalizations of explicit schemes (Euler, Runge-Kutta)
and implicit schemes (Adams-Moulton).

(II) We formulate the HGDE, which acts as the vector flow of the HPDE,
and thereby induces concepts such as gradient, divergence and diffusivity within
HGDE. The proposed framework is flexible and efficient for generating expressive
(endowed by the depth) hyperbolic graph embeddings.
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(III) We instantiate the diffusivity function as a mixed-order multi-head
attention to account for both homophilic (local) and heterophilic (global) rela-
tions. Besides, we introduce hyperbolic residual technique to benefit the opti-
mization and prevent over-smoothing.

Through extensive experiments and comparison with the state-of-the-art
on multiple real-world datasets, we show that HGDE framework can not only
learn comparably high-quality node embeddings as Euclidean models on non-
hierarchical datasets, but outperform all compared hyperbolic models variants
on highly-hierarchical datasets with improved efficiency and accuracy. The code
and appendix can be found in https://github.com/ljxw88/HyperbolicGDE.

2 Preliminaries

Riemannian Geometry and Hyperbolic Space. A Riemannian manifold M
of n-dimension is a topological space associated with a metric tensor g, denoted
as (M, g), which extends curved surfaces to higher dimensions and can be locally
approximated by R

n. At any point x ∈ M, the tangent space TxM ∼= R
n rep-

resents the first-order approximation of a small perturbation around x, isomor-
phic to Euclidean space. The Riemannian metric g on the manifold determines a
smoothly varying positive definite inner product on the tangent space, enabling
the definition of diverse properties e.g. geodesic length, angles, and curvature.

The hyperbolic space H
n is a smooth Riemannian manifold with a constant

negative sectional curvature κ < 0. Its coordinates can be represented via various
isometric models. [3] established the equivalence of hyperbolic and Euclidean
geometry through the utilization of the n-dimensional Poincaré ball model, which
equips an open ball Dn

κ = (Dn
κ , gD), with point set Dn

κ = {x ∈ R
n : ‖x‖ < − 1

κ}
and Riemannian metric gDx = (λκ

x)
2In, where the conformal factor λκ

x = 2
1+κ‖x‖2 .

The Poincaré metric tensor induces various geometric properties e.g. distances
dκ
D
(x,y), inner products 〈u,v〉κ

x, geodesics γx→y(t) and more [26]. Geodesics also
induce the definition of exponential and logarithmic maps [13]. At point x ∈ D

n
κ,

the exponential map expκ
x : TxD

n
κ → D

n
κ essentially maps a small perturbation of

x by v ∈ TxD
n
κ to expκ

x(v) ∈ D
n
κ, so that t ∈ [0, 1] : expκ

x(tv) is the geodesic from
x to expκ

x(v). The logarithmic map logκ
x : Dn

κ → TxD
n
κ is defined as the inverse

of expκ
x. Finally, the parallel transport PT x→y : TxD

n
κ → TyD

n
κ moves a tangent

vector v ∈ TxD
n
κ along the geodesic to TyD

n
κ while preserving the metric tensor.

For closed-form expression of above operations, please refer to Appendix B.

Diffusion Equations. The process of generating representations of individual
data points through information flows can be characterized by an an-isotropic
diffusion process, a concept borrowed from physics used to describe heat diffusion
on Riemannian manifold. Denote the manifold as M, and let z(t) denote a family
of functions on M × [0,∞) and z(u, t) be the density at location u ∈ M and
times t. The general framework of diffusion equations is expressed as a PDE

https://github.com/ljxw88/HyperbolicGDE
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Fig. 1. (a–c) Illustration of various numerical integration methods with comparison to
RGD. In each time-step, an explicit scheme calibrates the vector field within only the
tangent space of time t, while an implicit scheme requires multiple tangent spaces to
estimate future slopes, thus requiring parallel transport for aligning the directions of
vectors in different spaces. (d) Illustration of hyperbolic interpolation method.

∂z(u, t)/∂t = div(a(z(u, t))∇z(u, t)), t > 0 (1)

where a(·) defines the diffusivity function controlling the diffusion strength
between any location pair at time t. The gradient operator ∇ : M → T M
describes the steepest change at point u ∈ M. div(·) : T M → M is the diver-
gence operator that summarizes the flow of the diffusivity-scaled vector field
(a(·)∇). Equation (1) can be physically viewed as a variation of heat based on
time at the location i, identical to the heat that flows through that point from
the surrounding areas.

Graph Diffusion Equation. Let G = (V, E) denote an undirected graph with
the node set V and the edge set E . Let x = {xi ∈ R

d}|V|
i=1 be the node features

and z(t) be node embeddings at time t. Process Eq. (1) can be re-written as

∂zi(t)/∂t = div(A(z(t))∇zi(t)), (2)

where A is generally realised by a time-independent n×n attention matrix [4,5],
consistent with the flow of heat flux in/out node i. The formulation of Eq. (2)
as a PDE allows leveraging vast existing numerical integration methods to solve
the continuous dynamics.

3 Hyperbolic Numerical Integrators

Consider the continuous form of ODE/PDE specified by a neural network param-
eterized by θ, expressed as

dh(t)/dt = fθ(h(t), t), h(0) = h0 (3)

where the time step t = [0, T ]. Equation (3) essentially tells that the rate of
change of h(t) ∈ R

n at each time step is given by the vector field fθ : Rn ×R →
R

n. Equation (3) is integrated to obtain h(T ). In our context, we are interested
in formulating a PDE recipe that is aware of hyperbolic geometry.
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Definition 1. A time-dependent manifold vector field is a mapping X : M×
R → T M, which assigns each point in M at t a tangent vector. The particle’s
time-evolution according to X is then given by the following PDE

dh(t)/dt = Xθ(h(t), t). (4)

Definition 2. A vector flow is a mapping generated by vector field, i.e.
F ≡ π(X ), where π : M → M is a smooth projection of vector field to manifold
of their local coordinates. Vice versa, if π is a diffeomorphism, then X ≡ π−1(F).

In hyperbolic geometry, where π and π−1 are properly defined exp and log maps,
our concern lies in the particle’s location on the manifold subsequent to integra-
tion, i.e. integrate through the path defined by flow F . This can be achieved via
the spirit of projective method [17]. In the following, we derive numerical solvers
for estimating the integral of field X or flow F w.r.t. time t using, respectively,
the explicit and implicit schemes.

3.1 Hyperbolic Projective Explicit Scheme

In an explicit scheme, the state at the next time step is computed directly
from the current state and its derivatives. In this part, we derive the hyperbolic
generalization of the explicit scheme. To illustrate high-level ideas, we introduce
both single step method and multi-step method. We also discuss the geometric
intuition and strong analogy between one-step explicit scheme and Riemannian
gradient descent (RGD).

H-Explicit Euler (HEuler). Consider a small time step τ . Iteratively, we seek
an approximation for h(t + τ) based on h(t) and vector field f(·). In Euclidean
space, the explicit Euler method is written as

h(t + τ) ≈ h(t) + τfθ(h(t), t), (5)

which is a discrete version of Eq. (3). Similarly in hyperbolic space, we discretize
Eq. (4), and have the stepping function formulated as

hHEuler(t + τ) = expκ
h(t)(τXHEuler(t)), (6)

where the vector field X gives the direction at time t according to flow Fκ
θ

XHEuler(t) = logκ
h(t)(Fκ

θ (h(t), t)) ∈ Th(t)D
n
κ. (7)

Geometric Intuition. The equation in Eq. (5) signifies a transition from h(t) in
the direction of f by a distance proportional to τ . In hyperbolic space, where
h(t) ∈ D

n
κ and we presume X κ : Dn

κ → T D
n
κ, the transition follows the geodesic

dictated by the direction of X κ. Recall the definition of exponential map: given
x ∈ Dκ, expκ

x(v) takes v ∈ TxDκ and returns a point in Dκ reached by moving
from x along the geodesic determined by the tangent vector v. Thus Eqs. (6–7)
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can be essentially viewed as a geometric transportation of points on manifold
along the curve defined by F .

Connection to RGD. As visualized in Fig. 1(a), the explicit Euler can be viewed
as reversed RGD, where the direction XHEuler(t) plays similar role as the Rie-
mannian gradient gt at h(t). Similar to RGD, when (M, ρ) is Euclidean space
(Rn, In), then Eq. (6) converges to Eq. (5) since we have expκ

h(v)
κ→0−−−→ h + v.

This property is useful on developing higher-order integrators.

H-Runge-Kutta (HRK). With a similar geometric intuition, we derive the
hyperbolic extension of the Runge-Kutta method. Define the s-order HRK step-
ping function

hHRK(t + τ) = expκ
h(t)(τXHRK(t)), (8)

where the vector field is estimated by

XHRK(t) =

(
s∑

i=1

φi logκ
h(t)(ki)

)
/

s∑
i=1

φi. (9)

In Eq. (9), k denotes the vector flow functions, {φi} are coefficients determined
by the order. Specifically for 4th order Runge-Kutta (HRK4), we have {φ1...4} =
{1, 3, 3, 1} derived from Taylor series expansion as in [8]. The vector flows k1...4

are respectively formulated by

k1 = hHEuler(t + τ), (Eq. (6)) (10)
k2 = Fκ

θ (exp
κ
h(t)(τXk2), t + τ/3), where Xk2 = logκ

h(t)(k1)/3.

k3 = Fκ
θ (exp

κ
h(t)(τXk3), t + 2τ/3), where Xk3 = logκ

h(t)(k2) − logκ
h(t)(k1)/3.

k4 = Fκ
θ (exp

κ
h(t)(τXk4), t + τ), where Xk4 = logκ

h(t)(k1) − logκ
h(t)(k2) + logκ

h(t)(k3).

As illustrated in Fig. 1(b), this method approximates the solution to the PDE
within a small interval, considering not only the derivative at the initial time (as
in Eq. (5)), but also at intermediate points and the end of the interval.

3.2 Hyperbolic Projective Implicit Scheme

In an implicit scheme, the state of the next iteration is computed by incorporat-
ing its own value. This requires solving a linear system to obtain h(t+ τ) based
on h(t). In below, we illustrate a hyperbolic generalization of the implicit solver.

H-Implicit Adams-Moulton (HAM). Adams numerical integration methods
are introduced as families of multi-step methods. With order s = 0, Adams
methods are identical to the Euler’s method. Principally, there are two types
of Adams methods, namely, Adams-Bashforth (explicit) and Adams-Moulton
(implicit). Our emphasis is on the latter.

The implicit nature of AM requires the initialization of first several steps
with a different method. We use the hyperbolic Runge-Kutta (Eq. (8)) for ini-
tialization. With the input h(t) ∈ D

n
κ and flow Fκ, define the warm up
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hHAM(iτ) = hHRK4(iτ), 0 ≤ i < smin (11)

where smin is the min order. During the whole warm up process, we maintain a
queue q of tangent vectors and the points spanning the tangent space. In each
time step of Eq. (11), we push [q0 = XRK4(iτ), q1 = h(iτ)] to the head of q.
When len(q) ≥ smin, we start the time-stepping

hHAM(t + τ) = expκ
h(t)(τXHAM(t)), (12)

where the vector field is expressed as

XHAM(t) =φ0PT h(t+τ)→h(t)(log
κ
h(t+τ)(Fκ

θ (h(t + τ), t + τ)))

+
s∑

i=1

φiPT qi,1→h(t)(qi,0). (13)

The order s = min(len(q), smax), {φi} are coefficients determined by the order,
which are typically within a pre-defined look-up table. As illustrated in Fig. 1(c),
since the reference point h(t)’s stored in q are different, the parallel transport PT
is leveraged for aligning tangent spaces for different slopes. When hHAM(t + τ)
is accepted as converged, [logκ

h(t)(hHAM(t+ τ)),h(t)] is pushed to q for the next
iteration and the last element is popped if len(q) reaches smax. We refer readers
to Appendix C for detailed explanation of the algorithms.

3.3 Interpolation on Curved Space

Fixed grid PDE solvers typically use their own internal step sizes τ to advance
the solution of the PDE. For certain time step t, given h(t) and h(t + τ), we
may want to obtain the solution at time point t + δ where 0 < δ < τ . Since δ
does not lie on the grid defined by {0, τ}, interpolation methods are invoked to
estimate h(t+ δ). For hyperbolic geometry that h ∈ D

n
κ, define the interpolation

h(t + δ) = expκ
h(t)

(
δ logκ

h(t)(h(t + τ))/τ
)

. (14)

Proposition 1 (Proved in Appendix D). For any step size 0 < δ < τ , the
interpolation h(t + δ) via Eq. (14) is on the geodesic between h(t) and h(t + τ)
on the manifold, and dκ

D
(h(t),h(t+δ))

dκ
D
(h(t),h(t+τ)) = δ

τ where dκ
D

is the geodesic length.

4 Diffusing Graphs in Hyperbolic Space

4.1 Hyperbolic Graph Diffusion Equation

We study the diffusion process of graphs with node representation residing in
hyperbolic geometry. Given the diffusion time t ∈ [0, T ], embedding space D

d
κt

with learnable curvature κt at time t, node embedding z∗(t) ∈ D
d
κt

and C(·)
being the correlated coordinates of certain node, we formulate the vector flow
Fκ

θ of the ith representation as
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Fig. 2. Schematic of HGDE. (a) The pipeline of our method includes hyperbolic pro-
jection, feature transformation, and HPDE block that integrates the GDE. After that,
a decoder is applied to the embeddings for specific downstream tasks. (b) The visual-
ization of the diffusion process within the HPDE block: first, map local gradients of
zi onto the tangent space, calculate the diffusivity, and diverge to obtain the vector
flow (green arrow), then perform one-step integration on the manifold with the guid-
ance of continuous curvature diffusion. (c) The details of attention-powered local-global
diffusivity function. (Color figure online)

expκt

zi(t)

(
σ

[ ∑
j∈C(i)︸ ︷︷ ︸

divergence

a(zi(t), zj(t))︸ ︷︷ ︸
diffusivity

logκt

zi(t)
(zj(t))︸ ︷︷ ︸

gradient

])
, (15)

where σ can be either identity/non-linear activation. With initial state encoded
by learnable feature transformation ψ, i.e. z(0) = ψ(x) ∈ D

d
κ, the final state

can be numerically estimated by our proposed HPDE integrators, i.e. zi(T ) =
HPDESolve(zi(0),

∂zi(t)
∂t , 0, T ). In matrix form, the vector flow is expressed as

Fκ
θ (z(t), t) = expκt

z(t)

(
σ
[
S(z(t))∇z(t)

])
, (16)

where S(z(t)) = (a(zi(t), zj(t))) is a normalized |V| × |V| similarity matrix, and
∇z(t))i,j := logκt

zi(t)
(zj(t). In below, we discuss the key ingredients of Eq. (15, 16).

Gradient. The gradient of a function z(u, t) at location u in a discrete space can
be approximated as the difference between the function values at neighboring
points. In graph space, let zi and {zj}j∈C(i), respectively, denote the target
node and the correlated positions of i that can be modeled by edge connectivity
or self-attention. The graph diffusion process [4,5] treats nodes as Euclidean
representations, such that the analogy of gradient operator (∇z(t))i,j : Rd → R

d

is expressed as zj(t)− zi(t). However, when nodes are embedded in Riemannian
manifolds, the gradient of a node is no longer the difference between itself and
neighboring points. Instead, we take vectors in the tangent space at zi that are
obtained by taking the derivative of z in all possible directions, i.e. (∇z(t))i,j :
D

d
κ → T D

d
κ that can be formulated as logκ

zi(t)(zj(t)). One recovers the discrete
Euclidean gradient as the curvature κ → 0.

Diffusivity. The diffusivity scales the gradient, with either isotropic or
anisotropic behavior. For graph diffusion, the isotropic formula is presented
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by the normalized adjacency matrix [23], where ai,j = 1√
didj

iff. (i, j) ∈ E and

d is the degree.
Alternatively, the anisotropic approach incorporates the attention mech-

anism [33] to account for the asymmetric relationship between pairs of nodes.
This paper considers local, global and local-global schemes based on structure
information. Define the schemes

⎧
⎪⎪⎨

⎪⎪⎩

aldiff
i,j = normalizej∈N (i)

(
fθ

(
zi(t), zj(t)

))
(local scheme)

agdiff
i,j = βnormalizej∈V

(
gφ

(
zi(t), zj(t)

))
+ 1−β√

didj
(global scheme)

algdiff
i,j = βnormalizej∈V

(
gφ

(
zi(t), zj(t)

))
+ (1 − β)aldiff

i,j (local-global scheme)

where fθ/gφ are learnable functions that compute the diffusivity weight between
node pair (i, j) ∈ E . β can be constant or trainable parameters that adjust the
emphasis on homophilic (local attention) and heterophilic (high-order, global
attention) relations. In comparison, the local attention scheme implicitly incor-
porates the graph information since only neighboring elements are considered
based on N (i). Whereas for global attention, it neglects the graph topology and
hence requires manual incorporation.

Low-Order Local Diffusivity. A straightforward approach is to leverage the for-
mula of graph attention [34], which is extended to the hyperbolic space by [6],
where the weights are calculated tacitly in the tangent space. An alternative
method to consider is the Oliver-Ricci Curvature (ORC) [27] attention, intro-
duced in [38,40] to drive message propagation. This approach is not limited by
the non-Euclidean property of node feature, as it computes attention weight via
the ORC value derived from the graph topology, thus allowing adoption without
leveraging tangent space.

High-Order Global Diffusivity. Propagation of high-order node pairs results in
exponentially increasing complexity compared to fθ. [36,42] introduced a series
of scalable and efficient node-level transformers. With a similar notion in the
hyperbolic space, we first project the embeddings onto the tangent space of the
origin. Subsequently, the weights can be obtained using existing graph trans-
former architectures. We adopt energy-constrained transformers [36] with a sig-
moid kernel, which performs well in most scenarios.

* Figure 2(c) presents the high-level schematic of diffuse. The implementation
and algorithmic details are delegated to Appendix C.

Divergence. For simplicity, we assume any xi ∈ R
d to be scalar-valued.

The divergence at a point zi is a measure of how much the vector field
X = {∇z(t))i,j}j∈C(i) is expanding or contracting at zi. In a Euclidean space,
the divergence would indeed be the sum of the components of the gradient, i.e.,
divi =

∑
j(∇z(t))i,j , producing a scalar (with dimensionality Tzi

D
d ∼= R

d). In
our context, we are interested in how zi is varied in the manifold rather than in
the tangent space; thus an exponential map is applied to the sum of gradients on
Tzi

D
d, giving divi = expzi(t)(

∑
j ai,j(∇z(t))i,j). This also satisfies the form of

Fκ
θ in Definition 2, and thus can be numerically integrated through HPDESolve.
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Continuous Curvature Diffusion. Equation (16) implicitly guides the mani-
fold towards its optimal geometry for embedding z(t) as the manifold parameter
κt also accumulates and is updated during backpropagation. Similar to the atten-
tion parameters θ, we let κ be time independent based on the assumption that
limτ→0

κt+τ −κt

τ = 0.

4.2 Convergence of Dirichlet Energy

Definition 3 Given the node embedding {zi ∈ D
d
κ}|V|

i=1, the hyperbolic Dirichlet
energy is defined as

fκ
DE(z) =

1
2

∑
(i,j)∈E dκ

D

(
expκ

o

(
logκ

o(zi)√
1+di

)
, expκ

o

(
logκ

o(zj)√
1+dj

))2

, (17)

where di/j denotes the node degree of node i/j. The distance dκ
D
(x,y) between

two points x,y ∈ D is the geodesic length; we detail the closed form expression
in Appendix B.

Definition 3 introduces a node-similarity measure to quantify over-smoothness in
hyperbolic space. fκ

DE of node representation can be viewed as the weighted sum
of distance between normalized node pairs. [25, Prop. 4] proved that hyperbolic
energy fκ

DE diminishes after message passing, and multiple aggregations result
in converging towards zero energy, indicating reduced embedding expressiveness
that could potentially cause over-smoothing. Also as proved in [43, Prop. 2]
that over-smoothing is an intrinsic property of first-order continuous GNN. In
a continuous diffusion process, where each iteration can be viewed as a layer
in HGNNs, as supported by Fig. 3, we also observe a convergence of hyperbolic
Dirichlet energy of z(t) w.r.t. time t.

Residual-Empowered Flow. Empirically, studies in multi-layer GNNs [15,24]
demonstrated the efficacy of adding residual connections to the initial layer. It is
also claimed in [45] that using residual connections for both initial and previous
layers can prevent the Dirichlet energy from reaching a lower energy limit, thus
avoiding over-smoothing. Building upon these studies, we define the hyperbolic
residual empowered vector flow

Fκ
θ (z(t), t) = μκ

D

(
{ż(t), z(t), z(0)}; {η}J

j=1

)
, (18)

where ż(t) = expκt

z(t)

(
σ
[
S(z(t))∇z(t)

])
is the manifold dynamic as in Eq. (16).

{η}J
j=1 are the weight coefficients. μκ

D
is the node-wise hyperbolic averaging. We

instantiate it via Möbius Gyromidpoint [32] for its trade-off between computa-
tional cost and precision. Define

μκ
D
({z}J

j=1; {η}J
j=1) =

⎛
⎝1
2

⊗κ

⎛
⎝

∑
j ηjλ

κ

z
(j)
i

z(j)
i∑

j |ηj |(λκ

z
(j)
i

− 1)

⎞
⎠

⎞
⎠

|V|

i=1

. (19)
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This operation ensures the point set constraint of D for the residual flow. We
recover the arithmetic mean as κ → 0. During diffusion, Eq. (18) retains at least a
portion of the initial and prior embeddings. Since the initial embedding possesses
high energy, the residual connection mitigates energy degradation and retains
the energy of the final iteration at the same level as the preceding iterations.

5 Empirical Results

5.1 Experiment Setup

Datasets. Under homophilic setting, we consider 5 datasets for node classifica-
tion and link prediction: Disease, Airport (transductive datasets, provided in
[6] to investigate the tree-likeness modeling), PubMed, CiteSeer and Cora
( [39] widely used citation networks), which are summarized in the table in
Appendix A. Additionally, we report the Gromov’s hyperbolicity δ given by [16]
for each dataset. A graph is more hyperbolic as δ → 0 and is a tree when δ = 0.

For heterophilic datasets, we evaluate node classification on three heterophilic
graphs, respectively, Cornell, Texas and Wisconsin [29] from the WebKB
dataset (webpage networks). Detailed statistics are summarized in Appendix A.
We use the original fixed 10 split datasets. In addition, we report the homophily
level H of each dataset, a sufficiently low H ≤ 0.3 means that the dataset is
more heterophilic when most of neighbours are not in the same class.

Baselines. We compare our models to (1) Euclidean-hyperbolic baselines, (2)
discrete-continuous depth baselines and (3) heterophilic relationship baselines.
For (1), we compare against feature-based models, Euclidean, and hyperbolic
graph-based models. Feature-based models: without using graph structure, we
feed node feature directly to MLP and HNN [14]; Euclidean graph-based models:
GCN [23], GAT [34], GraphSAGE [19], and SGC [35]; Hyperbolic graph-based
models: HGCN [6], κGCN [1], LGCN [44] and HyboNet [10]. For (2), we compare
our models on citation networks with the discrete-continuous depth models.
Discrete depth: GCNII [7], C-DropEdge [20]; Discrete-decouple: HyLa-SGC [41];
Continuous depth: GDE [30], GRAND and BLEND [4,5]. For (3), we compare
to the prevalent GNNs: GCN, GAT, HGCN, HyboNet, and those optimized for
heterophilic relationships: H2GCN [46], GCNII, GraphSAGE and GraphCON
[31]. The test results are partially derived from the above works. For fairness,
we compare to models with no more than 16 layers/iterations. Please refer to
Appendix A for more details regarding the compared baselines. We detail the
parameter settings for model and evaluation metric in Appendix C.

5.2 Experiment Results

Euclidean-Hyperbolic Baselines. We investigate our methods with different
solvers with τ = 1, i.e. HGDE-E (multi-step explicit integrator, HRK4) and
HGDE-I (multi-step implicit integrator, HAM). The experimental results are
summarized in Tables 1 and 2. (1) Our proposed models outperform previous
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Table 1. Test accuracy (%) for node classification task.

Dataset Disease Airport PubMed CiteSeer Cora

δ 0 1 3.5 5 11

MLP 32.5±1.1 60.9±3.4 72.4±0.2 59.5±0.9 51.6±1.3

HNN 45.5±3.3 80.6±0.5 69.9±0.4 59.5±1.2 54.7±0.6

GCN 69.7±0.4 81.6±0.6 78.1±0.4 70.3±0.4 81.5±0.5

GAT 70.4±0.4 82.7±0.4 78.2±0.4 71.6±0.8 83.0±0.5

SAGE 69.1±0.6 82.2±0.5 77.5±2.4 67.5±0.7 79.9±2.5

SGC 69.5±0.2 80.6±0.2 78.8±0.2 71.4±0.8 81.3±0.5

HGCN 82.8±0.8 89.2±1.3 80.3±0.3 68.0±0.6 79.9±0.2

κGCN 82.1±1.1 84.4±0.4 78.3±0.6 71.1±0.6 80.8±0.6

LGCN 84.4±0.8 90.9±1.0 78.8±0.5 71.1±0.3 83.3±0.5

HyboNet 96.0±1.0 90.9±1.4 78.0±1.0 69.8±0.6 80.2±1.3

HGDE-E 92.1±1.6 95.1±0.4 81.2±0.5 74.1±0.5 84.4±0.7

HGDE-I 90.9±2.5 93.9±0.8 81.0±0.3 73.5±0.7 84.0±0.4

Table 2. Test ROC AUC (%) results for link prediction task.

Dataset Disease Airport PubMed CiteSeer Cora

δ 0 1 3.5 5 11

MLP 69.9±3.4 68.9±0.5 83.3±0.6 93.7±0.6 83.3±0.6

HNN 70.2±0.1 80.6±0.5 94.7±0.1 93.3±0.5 90.9±0.4

GCN 64.7±0.5 89.3±0.4 89.6±3.7 82.6±1.9 90.5±0.2

GAT 69.8±0.3 90.9±0.2 91.5±1.8 86.5±1.5 93.2±0.2

SAGE 65.9±0.3 90.4±0.5 86.2±0.8 92.1±0.4 85.5±0.5

SGC 65.1±0.2 89.8±0.3 94.1±0.1 91.4±1.7 91.5±0.2

HGCN 91.2±0.6 96.4±0.1 95.1±0.1 96.6±0.1 93.8±0.1

κGCN 92.0±0.5 92.5±0.5 94.9±0.3 95.1±0.6 92.6±0.4

LGCN 96.6±0.6 96.0±0.6 96.6±0.1 95.8±0.4 93.6±0.4

HyboNet 96.8±0.4 97.3±0.3 95.8±0.2 96.7±0.8 93.6±0.3

HGDE-E 96.2±0.5 98.2±0.2 96.6±0.2 96.7±0.7 94.1±0.4

HGDE-I 95.6±0.5 97.6±0.5 96.2±0.7 96.4±0.7 94.5±0.8

Euclidean and hyperbolic models in four out of five datasets, suggesting that
graph learning in hyperbolic space through topological diffusion is beneficial.
(2) Hyperbolic models typically exhibit poor performance on datasets that are
less hyperbolic (e.g., Cora), while our method surprisingly exceeds Euclidean
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Table 3. Discrete-continuous depth GNN comparison.

Type Model Cora CiteSeer PubMed

GCNII 84.6±0.8 72.9±0.5 80.2±0.4Discrete
C-DropEdge 82.6±0.9 71.0±1.0 77.8±1.0

Decouple
(Hyp PosEnc)

HyLa-SGC 82.5±0.5 72.6±1.0 80.3±0.9

GDE 83.8±0.5 72.5±0.5 79.9±0.3Continuous
GRAND 82.9±0.7 73.6±0.3 81.0±0.4

Continuous
(Hyp PosEnc)

BLEND 84.2±0.6 74.4±0.7 80.7±0.7

HGDE(4) 83.4±0.5 73.0±0.3 80.2±0.6

HGDE(8) 83.7±0.6 73.5±0.7 80.8±0.4

HGDE(12) 84.2±0.6 74.1±0.5 81.2±0.5

Continuous
(Hyp Embed)

HGDE(16) 84.4±0.7 73.8±0.7 80.9±0.3

Table 4. Heterophilic relationship GNN comparison.

Texas Wisconsin Cornell
Type H 0.11 0.21 0.30

GCN 55.1±5.2 51.8±3.1 60.5±5.3Euclidean
GAT 52.2±6.6 49.4±4.1 61.9±5.1

HGCN 55.7±6.3 48.1±6.1 62.1±3.7Hyperbolic
HyboNet 60.0±4.1 51.2±3.3 62.3±3.5

H2GCN 84.9±7.2 87.7±5.0 82.7±5.3

GCNII 77.6±3.8 80.4±3.4 77.9±3.8

SAGE 82.4±6.1 81.2±5.6 76.0±5.0

High-Order
GNNs

GraphCON 85.4±4.2 87.8±3.3 84.3±4.8

Ours HGDE 85.9±2.8 86.2±2.4 85.0±5.3

GAT on datasets with lower δ, indicating the necessity of curvature diffusion in
adapting to datasets with scarce hierarchical structures and modeling long-term
dependency via the local-global diffusivity function. (3) HGDE and other hyper-
bolic models achieve superior performance compared to Euclidean counterparts
in link prediction due to the larger embedding space in hyperbolic geometry,
which better preserves structural dependencies and allows for improved node
arrangement. (4) HGDE-E generally outperforms HGDE-I with lower memory
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Table 5. Evaluation on image (CIFAR/STL) and text (20News) classification (Left)
and Memory & Runtime comparison (Right). � indicate OOM.

Dataset MLP LabelProp ManiReg GCN-kNN GAT-kNN DenseGAT GLCN HGDE

CIFAR

100 labels 65.9±1.3 66.2 67.0±1.9 66.7±1.5 66.0±2.1 � 66.6±1.4 68.9±2.1

500 labels 73.2±0.4 70.6 72.61±.2 72.9±0.4 72.4±0.5 � 72.7±0.5 74.0±1.8

1000 labels 75.4±0.6 71.9 74.3±0.4 74.7±0.5 74.1±0.5 � 74.7±0.3 76.3±0.9

STL

100 labels 66.2±1.4 65.2 66.5±1.9 66.9±0.5 66.5±0.8 � 66.4±0.8 66.9±1.3

500 labels 73.0±0.8 71.8 72.5±0.5 72.1±0.8 72.0±0.8 � 72.4±1.3 72.5±0.2

1000 labels 75.0±0.8 72.7 74.2±0.5 73.7±0.4 73.9±0.6 � 74.3±0.7 75.1±0.6

20News

1000 labels 54.1±0.9 55.9 56.3±1.2 56.1±0.6 55.2±0.8 54.6±0.2 56.2±0.8 56.3±0.9

2000 labels 57.8±0.9 57.6 60.0±0.8 60.6±1.3 59.1±2.2 59.3±1.4 60.2±0.7 61.0±1.0

4000 labels 62.4±0.6 59.5 63.6±0.7 64.3±1.0 62.9±0.7 62.4±1.0 64.1±0.8 64.1±0.8

T/τ Model (with Att) Memory (×106) Runtime (ms)

2

HGCN 4045 9.25
HGCN (LocalAtt) 4246 1310.31
LGCN 4630 16.64
HyboNet 4368 14.90
HGDE 62 13.66

4

HGCN 10255 29.77
HGCN (LocalAtt) 10578 4086.08
LGCN 12675 40.88
HyboNet 11931 35.23
HGDE 73 20.28

8

HGCN 22674 67.24
HGCN (LocalAtt) OOM �

LGCN 23712 160.75
HyboNet 23403 122.55
HGDE 112 34.11

16
All Baselines OOM �

HGDE 188 61.95

consumption and better precision, indicating that a larger τ may be necessary for
implicit solvers. To align with multi-layer GNN schema (step-size is analogous
to depth), we employ HGDE with HRK4 (τ = 1) for further evaluation.

Discrete-Continuous Depth Baselines. In Table 3, we compare our mod-
els with discrete and continuous-depth baselines. We observe that our method
with T ∈ [12, 16] achieves competitive results with the state-of-the-art models.
Notably, HGDE models consistently outperform discrete models and continu-
ous models with Euclidean embeddings, highlighting the benefits of utilizing
hyperbolic embeddings in a continuous-depth framework. Compared to posi-
tion encoding approaches (e.g., HyLa, BLEND), HGDE exhibits superior per-
formance, indicating the feasibility of using hyperbolic space embeddings directly
over initial position encoding. Interestingly, we find HGDE models performs bet-
ter when increasing T up to 12, but slightly worse at T = 16. This may due to
the capacity of Poincaré ball or potential over-smoothing. Overall, the results
underscore the effectiveness of the proposed HGDE models in harnessing the
power of hyperbolic space for graph data modeling.
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Heterophilic Relationship Baselines. We show that HGDE is also capable in
managing heterophilic relationship. In Table 4, HGDE achieves the highest scores
on the Texas and Cornell and a competitive score on Wisconsin. This shows
that hyperbolic space is beneficial in learning hierarchical heterophilic relation-
ships. It also reflects the flexibility of HGDE as a hyperbolic vector flow for
embedding high-order structures, with our model, powered by HPDE, outper-
forming other baselines on average.

Image and Text Classification. We follow the experiment setup in [36] and
conduct additional experiments on the CIFAR, STL, and 20News datasets to
evaluate HGDE in multiple scenarios with limited label rates. We employ the
SimCLR [9] extracted embedding as provided in [36] for image classification.
For the pre-processed 20News [28] for text classification, we take 10 topics and
regard words with TF-IDF > 5 as features. For graph-based models, we use
kNN to construct a graph over input features. For HGDE (hyperbolic), we map
the initial feature to Dκ via expκ

o(·) before the embedding process. As depicted
in Table 5(Left), HGDE consistently surpasses its opponents, including MLP,
LabelProp [47], ManiReg [2], GCN-kNN, GAT-kNN, DenseGAT, and GLCN
[21]. Across all datasets, HGDE outperforms the Euclidean models, underscor-
ing its proficiency in understanding the potential hierarchical structure of image
embeddings [22] and text embeddings. Furthermore, HGDE exhibits good per-
formance compared to static graph-based baselines e.g., GAT-kNN and GLCN,
which underlines the distinct advantage of the evolving diffusivity mechanism in
understanding the potential hierarchical structure of image/text embeddings.

5.3 Ablation Study

Efficacy of Hyperbolic Residual. Figure 3 visualizes the convergence of
hyperbolic energy through iterations. We observe that, without residuals, the
averaged energy rapidly decreases to near-zero values, supporting the hypoth-
esis that, without residual connections, the embedding can evolve to an overly
smoothed state that is potentially low in expressiveness. However, with hyper-
bolic residuals, for all three integrators, the average energy decreases over the
first few iterations and then appears to stabilize around a certain value above
zero. This behavior is consistent across both datasets, suggesting that the system
is able to converge to a stable state with non-zero energy (Fig. 4).

Efficacy of Diffusivity Function. Figure 5 visualizes sampled node embed-
dings and their edge diffusivity on Cora. The blue edges are inherently deter-
mined by the graph structure. Red ones are determined by global attention,
showing that algdiff accounts for high-order relations. The bar graph shows the
average accuracy on various datasets produced by HGDE with different diffu-
sivity functions. We find that anisotropic approaches generally outperform the
isotropic approach, suggesting the necessity of directional information in the dif-
fusion process. Although the performance degrades on CiteSeer when using
algdiff , there are significant improvements on other graphs, certifying the benefit
of higher-order proximity induced by local-global diffusivity.
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Fig. 3. Hyperbolic Dirichlet energy fκ
DE(·) variation

through t on Cora (left) and CiteSeer (right).
Models are compared with different integrators w
or w/o hyperbolic residual.

Fig. 4. Averaged node classification performance
comparison of models with different diffusivity func-
tions on various datasets.

Fig. 5. Cora diffusivity (400
node sampled from D

2
κ embed-

dings) produced by aldiff (left)
and algdiff (right), blue and red
lines denote local and global
attention; bolder lines indicate
more attentiveness. (Color figure
online)

Parameter Efficiency. In Table 5 (Right), we provide an additional compari-
son of peak GPU memory usage and per-epoch running time on the Cora. We
tested HGDE-E where all models have a 16 hidden dim. Our model significantly
outperforms the other baselines in both training time (for ≥ 4 layers) and mem-
ory consumption. The memory reduction is primarily due to the utilization of
sparse attention, and the advantages of a weight-tied network (requiring only
single-layer parameters) as a nature of HPDE. The training time efficiency is
achieved by eliminating layer-wise feature transformation, implementing weight-
tying, and applying scattered-agg for hyperbolic representation.

6 Conclusion

We developed multiple numerical integrators for HPDE, and proposed the first
hyperbolic continuous-time embedding diffusion framework – HGDE. Being
capable of capturing both low and high order proximity, HGDE outperforms
both Euclidean and hyperbolic baselines on various datasets. The effectiveness
of HGDE was further validated by the ablation studies on hyperbolic energy
and diffusivity functions. The superiority of HGDE underscores the potential of
developing PDE-based non-Euclidean models.

Limitation. While HGDE presents strong performance in modeling graph data,
hyperbolic spaces may not always be optimal, particularly for data without clear
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hierarchical structures. For instance, HGDE is difficult to beat natural Euclidean
deep models (e.g. GCNII) on the non-hierarchical Cora. Moreover, a higher
memory complexity and lower training time only tells the efficiency rather than
scalability of HGDE, since our models are evaluated with fixed number of param-
eters (which is natural for ODE-based models), increasing T is not necessarily
scaling up. Future work include addressing these limitations and exploring the
scalability and generalizability of HGDE in diverse real-world settings.
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