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Abstract. In recent years, significant strides have been made in the field
of spatiotemporal predictive learning, a discipline that focuses on accu-
rately forecasting future sequences based on previously observed frames.
Despite the impressive capabilities of current leading-edge models, which
leverage specialized network architectures to optimize learning in both
spatial and temporal domains, these models often fall short in their
ability to accurately interpret underlying spatiotemporal dependencies
and extend their learnings to unseen data. In this study, we attempt
to address these shortcomings by disentangling the context and motion
within sequential spatiotemporal data, and then systematically analyzing
the relationship between the original and disentangled data. We introduce
context-motion disentanglement modules that utilize temporal entropy to
segregate the context and motion, and then apply regularization to the dis-
entangled motion to ensure its consistency with the predicted frames pro-
duced by conventional spatiotemporal predictive learning. Our proposed
methodology can be trained in an end-to-end fashion and serves to improve
not just the predictive performance but also the interpretability and gener-
alizability of the model. The efficacy of our proposed method is illustrated
through comprehensive quantitative and qualitative assessments.

Keywords: Spatiotemporal predictive learning · self-supervised
learning · convolutional neural networks · computer vision applications

1 Introduction

Deep learning has demonstrated considerable success in numerous domains
[4,24–26,43,44,54]. A critical subfield of deep learning is spatiotemporal pre-
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dictive learning, a self-supervised learning discipline that focuses on forecasting
future frames based on past observations. Previous studies have made commend-
able contributions by developing specialized modules to capture spatial corre-
lations and temporal dependencies based on LSTM [16] and GRU [7]. Though
these seminal works have achieved superior results, they face challenges in effec-
tively interpreting the underlying spatiotemporal dependencies and generalizing
the insights from disentangled information.

Past research [17,47] have strived to separate static contexts from dynamic
motions, aiming to extract meaningful representations from sequential video
data. The primary premise of these studies is that once the model successfully
disentangles the context from the motion, it would have effectively learned the
spatial correlations and temporal dependencies. Thus, they either build dual net-
works to separately capture motions and semantic contexts [11] or impose con-
straints in the latent spaces [17]. However, mediately predicting future frames by
fusing the representations of contexts and motions usually performs worse than
those directly optimizing for the future frames [12,52]. The reason to blame may
be brute-force disentangling that destroys nonlinear spatiotemporal relations.
Moreover, these methods employ disentangling in the latent space, which is dif-
ficult to present the actual disentangled contexts and motions explicitly. Their
inherent complex architectures even hinder their interpretable ability.

Fig. 1. The consistency between the manifolds of original sequential video data and
disentangled representations.

Our study aspires to bridge this gap by fusing standard spatiotemporal learn-
ing with disentangled context-motion, creating a framework for interpretable and
generalizable spatiotemporal learning. We introduce context-motion disentangle-
ment modules leveraging temporal entropy to separate the context and motion.
Based on the principles of manifold learning [27], we hypothesize that the original
data and disentangled representations exist on different manifolds with analo-
gous topological spaces. The assumption primarily comes from the basis of the
static context and the dynamic motions. While the context is static, we can
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regard the context as a constant that is added to the motion. We obtain the
disentangled manifold from the original manifold minus a constant so that the
manifolds are homeomorphic. As shown in Fig. 1, the disentangled representation
containing varying motions should have similar spatiotemporal dependencies to
the original data. By imposing a consistency constraint between manifolds, we
exploit the disentangled representations in enhancing interpretable and general-
izable spatiotemporal predictive learning.

2 Related Works

2.1 Spatiotemporal Predictive Learning

Recent advances in recurrent models [13,30] have provided valuable insights
into spatiotemporal predictive learning [1,8,35,41,42,58]. Inspired by recurrent
neural networks, VideoModeling [31] adopts language modeling and quantizes
the image patches into an extensive dictionary for recurrent units. Composi-
teLSTM [39] further introduces the LSTM architecture and improves its per-
formance. ConvLSTM [37] leverages convolutional neural networks to model
the LSTM architecture. PredNet [29] continually predicts future video frames
using deep recurrent convolutional neural networks with bottom-up and top-
down connections. PredRNN [50] proposes a Spatiotemporal LSTM unit that
simultaneously extracts and memorizes spatial and temporal representations. Its
subsequential work PredRNN++ [52] further proposes a gradient highway unit
and Casual LSTM adaptively capture temporal dependencies. E3D-LSTM [51]
designs eidetic memory transition in recurrent convolutional units. Conv-TT-
LSTM [40] employs a higher-order ConvLSTM to predict by combining convolu-
tional features across time. MotionRNN [55] focuses on motion trends and tran-
sient variations. LMC-Memory [23] introduces a long-term motion context mem-
ory using memory alignment learning. PredCNN [57] and TrajectoryCNN [28]
implement convolutional neural networks as the temporal module. SimVP [12] is
a seminal work that applies Inception modules with a UNet architecture to learn
the temporal evolution. TAU [45] proposes an attention-based temporal mod-
ule that performs both intra-frame and inter-frame attention for spatiotemporal
predictive learning.

2.2 Disentangled Representation

Decomposing the raw sequential video data into disentangled representations is
an essential topic in the computer vision. DRNet [11] and MCnet [49] are early
works on learning disentangled image representations from video. Their proposed
methods aim to learn contexts and motions by two individual networks sepa-
rately and then fuse the learned static and dynamic features in the latent space.
MoCoGAN [47] shares a similar idea but generates video frames conditioned on
random vectors. DDPAE [17] performs the video decomposition with multiple
objects in addition to disentanglement and designs a specialized framework for
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Moving MNIST. MGP-VAE [3] also models the latent space for disentangled
representations in video sequences. While the previous studies focus on learn-
ing in the latent space, our method aims to explicitly present interpretable and
generalizable spatiotemporal predictive learning by a disentangled consistency
constraint.

3 Methods

3.1 Preliminaries

We formally define the spatiotemporal predictive learning problem as follows.
Given a video sequence Xt,T = {xi}t

t−T+1 at time t with the past T frames,
we aim to predict the subsequent T ′ frames Y t+1,T ′

= {xi}t+T ′
t+1 from time

t + 1, where xi ∈ R
C×H×W is usually an image with channels C, height H,

and width W . In practice, we represent the video sequences as tensors, i.e.,
Xt,T ∈ R

T×C×H×W and Y t+1,T ′ ∈ R
T ′×C×H×W .

The model with learnable parameters Θ learns a mapping FΘ : Xt,T �→
Y t+1,T ′

by exploring both spatial and temporal dependencies. In our case,
the mapping FΘ is a neural network model trained to minimize the difference
between the predicted future frames and the ground-truth future frames. The
optimal parameters Θ∗ are:

Θ∗ = arg min
Θ

L(FΘ(Xt,T ),Y t+1,T ′
), (1)

where L is a loss function that evaluates such differences. By optimizing such a
loss function, the model is able to learn the inherent spatiotemporal dependencies
and thus accurately predicts future frames.

We recognize context and motion as semantically static and dynamic objects,
respectively. The data X are assumed to consist of the context c ∈ R

C×H×W and
the motion O = {oi|oi ∈ R

C×H×W }. The context and the motion are controlled
by the state of movement S = {si|si ∈ R

1×H×W }. For each frame xi in X , the
formal representation is:

xi = oi � s + c � (1 − s),∀xi ∈ X,oi ∈ O, si ∈ S, (2)

where � is the Hadamard product.
In this study, we decouple the context and motion of each frame through

explicit context-motion disentanglement mechanism and implicit disentangled
consistency for presenting an interpretable and generalizable spatiotemporal pre-
dictive learning.

3.2 Context-Motion Disentanglement

We first decompose the desired mapping F into two submappings:

F � H ◦ G, (3)
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where H : Xt,T �→ Ht, G : Ht �→ Y t+1,T ′
, and Ht ∈ R

T ′×C×H×H×W is the
latent representation at time t that contains information from previous T and
following T ′. H can be an arbitrary mapping that aims to explore the underlying
spatiotemporal dependencies of the input frames X t,T and project it into an
informative latent space. In contrast to the mapping H, the latter mapping G
reconstructs the visual imaging and predicts the future frames Y t+1,T ′

based on
the representation Ht in the latent space.

For standard spatiotemporal predictive learning methods, G can be an arbi-
trary mapping, as well as H. In this study, we explicitly define the mapping G
for specific context-motion disentanglement:

G � O � S + c � (1 − S), (4)

where we practically represent the sets as tensors, i.e., O ∈ R
T ′×C×H×W and

S ∈ R
T ′×1×H×W . The context tensor c ∈ R

1×C×H×W is a tensor variation
compared to the definition in Sect. 3.1. The motion tensor O, context tensor c,
and state tensor S are obtained by mappings O : H �→ O, C : H �→ c, and
S : H �→ S, respectively.

Though the G is specified to decouple the context and motion, directly opti-
mizing the mean square error (MSE) loss alone, as standard spatiotemporal
predictive learning does, is unreliable. The MSE loss cannot guide the neural
network automatically separate the context and motion. We argue that the key
to context-motion disentanglement is to determine the context accurately. Thus,
we impose the inductive bias that the pixels in context are likely to be static
across the varying time.

To evaluate the inherent uncertainty of video frames, we intuitively borrow
the concept of entropy from information theory. Here we refer to Δxi as a pixel
in a specific position of frame xi and ΔX as the pixel in the same position of
all frames in X. We define the probability of whether this pixel is changing Δwi

as:

Δwi =
Δxi − Δx0

max Δx − min Δx
, (5)

which is normalized in [0, 1] according to the changing scope compared to the
initial frame. The uncertainty of whether the pixel belongs to the context is
evaluated by its average entropy of w:

E(Δw) = − 1
T

t∑

i=t−T+1

p(Δwi) log p(Δwi), (6)

then we obtain a mask M ∈ {0, 1}1×C×H×W that should be able to filter reliable
context by a threshold w̄. For each pixel, if the corresponding E is lower than
w̄, we recognize it as the static context, i.e., M has a value of 1 for this pixel
and vice versa.
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With the inductive bias of reliable context given by M , we design the disen-
tanglement loss as:

Ld(X) =
1
T ′

t+T ′∑

t+1

‖(c − xi) � M‖. (7)

This loss guarantees that at least the reliable static context is learned. Taking
advantage of the flatness of convolutional networks, the model can disentangle
actual context based on the above reliable context.

3.3 Disentangled Consistency

Despite the disentanglement loss Ld enforcing explicit model discrimination
between context and motion, it remains reliant on the inductive bias M . We
contend that the context is intrinsically static in its semantics and that the dis-
entangled frames should exhibit consistency with the actual frames. Consider a
manifold Mx representative of the original data, with the correlated disentan-
gled representations inhabiting another manifold, denoted as Mo. s Definition.
We define two topological spaces, denoted as Mx and Mo, to be homeomorphic
if and only if there exists a bijective mapping function f : Mx �→ Mo with
the following properties: (i) The function f is continuous. (ii) The inverse of f ,
denoted as f−1, exists and is also continuous.

This definition [10,15,32,38] reveals the relationship between the manifold
Mx and Mo. According to Eq. 4, we can observe that once the mapping is
bijective the disentangled manifold is homeomorphic to the original manifold. In
other words, the original manifold Mx and the disentangled manifold Mo are
topological equivalences.

Theorem. Given a homeomorphism f(X), a mapping that is both smooth
and possesses a unique inverse, the mutual information is invariant under such
transformation, such that I(X,O) = I(f(X),O).

Proof. First, remember that the entropy of a discrete random variable X
is defined as H(X) = −∑

x∈X p(x) log p(x), where p(x) is the probability mass
function of X. For continuous random variables, the entropy is similarly defined
but with an integral instead of a sum, and the probability density function
instead of the probability mass function.

Now consider a homeomorphism f , and suppose pX (x) is the probability
density function of X and pO (o) is the probability density function of O, which
equals to pX (f−1(o)) due to the invariance of probability under the transforma-
tion.

The differential entropy H(O) of O is then:

H(O) = −
∫

pO (o) log pO (o)do

= −
∫

pX (f−1(o)) log pX (f−1(o))do,

(8)
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By changing the variable from o to x = f−1(o), and remembering that home-
omorphisms preserve the measure, the differential entropy H(O) of O transforms
to:

H(O) = −
∫

pX (x) log pX (x)dx = H(X). (9)

So, the entropy of X and O are equal. Since the entropy is invariant under
homeomorphisms, the conditional entropy is also invariant. Therefore, mutual
information, which is a combination of entropy and conditional entropy, is also
invariant under homeomorphisms.

Fig. 2. Characterize the relationship between Mx and Md from the geometric view-
point and regularize the geometric property to be consistent.

This theorem [9,21,46] reveals the connections between Mx and Mo. If the
mapping f is bijective, their mutual information is:

I(X,O) = H(X) + H(O) − H(X,O) (10)

is maximized. Based on the above observation, we characterize the relationship
between the manifolds Mx and Mo from the geometric viewpoint. As shown in
Fig. 2, we consider the pairwise distance as the key geometric property and reg-
ularize the manifold Mo to have a similar geometric structure as Mx. For those
limited data points, the mapping f is approaching bijective through preserving
this geometric property.

Then, we define the pairwise distances in the two manifolds as follows:

dx =
‖xi − xj‖√

D
, do =

‖oi − oj‖√
D

, (11)

where ‖ · ‖ is Euclidean distance, D = C × H × W is a scale factor for avoiding
large magnitude [48], i, j ∈ {t+1, ..., t+T ′}, and i 
= j. To model the distance in
a nonlinear manner and obtain expressive metrics, we project the distance into
normal distributions:

p(dx) =
Cx

σx

√
2π

exp
( − d2x

2σ2
x

)
,

p(do) =
Co

σo

√
2π

exp
( − d2o

2σ2
o

)
,

(12)
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where Cx, Co are constants that forces the p(·) ∈ [0, 1], and σx, σo are controllable
hyperparameters. For the convenience of optimization, we empirically assumes
p(dg), p(do) ∼ N(0, 1

2 ) in the experiments.
The disentangled consistency is formulated as:

Lc(X,O) = − p(dx) log(p(do))
− (1 − p(dx)) log(1 − p(do)),

(13)

in which the binary cross entropy between p(dx) and p(do) is expected to be
minimized.

Fig. 3. The model architecture of our proposed method with the input from Moving
MNIST. We employ a simple encoder-decoder model as the base architecture. The
decoded representation H t is used to obtain the context c, motion OT ′

t+1 and state

ST ′
t+1.

3.4 Practical Implementation

We implement our proposed method by modifying the network of the current
state-of-the-art method SimVP [12]. SimVP is a solid baseline in spatiotem-
poral predictive learning. As shown in Fig. 3, a spatial encoder and a spatial
decoder are simple convolutional networks with downsampling and upsampling
operations, while a translator network is in the middle for learning the spa-
tiotemporal correlations. In SimVP, the translator network consists of blocks of
Inception-UNet (IncepUNet). We remove the last layer of SimVP and employ
the output of the penultimate layer as Ht . The mappings O, C,S are imple-
mented by one-layer convolutional networks that project H to OT ′

t+1,S
T ′
t+1, and

c, respectively.
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The overall loss function is a linear combination of MSE loss, disentanglement
loss Ld, and disentangled consistency loss Lc:

L = MSE(FΘ(Xt,T ),Y t+1,T ′
) + αLd + βLc,

= ‖FΘ(Xt,T ) − Y t+1,T ′‖2 + αLd + βLc,
(14)

where α, β are weights of loss Ld and Lc. We empirically set the values as α =
1.0, β = 0.1 in default.

It is worth noting that though our proposed method is implemented based
on the baseline SimVP, it is also suitable for other spatiotemporal predictive
learning baselines.

4 Experiments

We evaluate our method by both quantitative and qualitative validation. We
present the interpretability across different experimental settings as follows: (1)
standard spatiotemporal predictive learning, (2) generalizing to unknown scenes.

4.1 Standard Spatiotemporal Predictive Learning

Fig. 4. Qualitative results on the Moving MNIST dataset. We show the disentangled
context, motion, and state in the dotted boxes.

Moving MNIST. The Moving MNIST dataset [39], a widely recognized bench-
mark in standard spatiotemporal predictive learning, is a synthetic compilation.
It comprises two individual digits meandering within a 64 × 64 grid, reacting
to boundaries with a bounce-back motion. The task involves predicting the
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subsequent 10 frames, given a historical sequence of 10 frames. Our proposed
methodology addresses this by explicitly disentangling the complex spatiotem-
poral dependencies and capitalizing on the ensuing disentangled consistency for
improved performance. It is anticipated that our model will demonstrate a high
level of proficiency in predicting future frames with precision.

Our experimental setup parallels the one detailed in SimVP [12]. We mea-
sure our approach’s performance against formidable benchmarks, including Con-
vLSTM [37], PredRNN [50], E3D-LSTM [51], MotionGRU [55], CrevNet [59],
PhyDNet [14], SimVP [12], and others. We also compare our results with
advanced techniques such as PhyDNet [14] and DDPAE [17], which engage in
latent space disentanglement. The efficacy of our method is evidenced through
quantitative metrics-frame-wise Mean Squared Error (MSE), Mean Absolute
Error (MAE), and Structural Similarity Index Measure (SSIM)-and showcased
in Table 1. To supplement our quantitative results, we offer a visual represen-
tation of our qualitative findings in Fig. 4. It becomes clear that our approach
surpasses other state-of-the-art methods in performance, attributing its success
to the robust modeling of context and motion. This capability confers our model
with a competitive advantage, enabling it to outperform its counterparts.

Table 1. Quantitative results of different methods on the Moving MNIST dataset
(10 → 10 frames).

Method Moving MNIST (2 digits)

MSE↓ MAE↓ SSIM↑
ConvLSTM [37] 103.3 182.9 0.707

PredRNN [50] 56.8 126.1 0.867

PredRNN++ [52] 46.5 106.8 0.898

MIM [53] 44.2 101.1 0.910

LMC [23] 41.5 – 0.924

E3D-LSTM [51] 41.3 87.2 0.910

Conv-TT-LSTM [40] 53.0 – 0.915

DDPAE [17] 38.9 90.7 0.922

CrevNet [59] 38.5 – 0.928

MotionGRU [55] 34.3 – 0.928

CMS-LSTM [5] 33.6 73.1 0.931

MAU [6] 27.6 – 0.937

PhyDNet [14] 24.4 70.3 0.947

SimVP [12] 23.8 68.9 0.948

Ours 22.9 68.6 0.949

KTH. The KTH dataset [36], a compendium of human poses, encapsulates 25
individuals performing six distinct actions: walking, jogging, running, boxing,
hand waving, and hand clapping. The intricacies of human motion stem from
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the stochastic nature of various individuals performing different actions. The
KTH dataset, however, is noted for its relatively consistent motion patterns. By
studying historical frames, our model-built on the principles of interpretable and
generalizable spatiotemporal predictive learning-is engineered to comprehend the
dynamics of human motion and, subsequently, to anticipate long-term changes
in future poses. Additionally, the prediction of extended sequences accurately
is a nuanced problem in conventional spatiotemporal predictive learning. Our
method strives to cultivate an interpretable and robust model, harnessing the
learned spatiotemporal dependencies to predict long sequences with precision.

Fig. 5. Qualitative results on the KTH dataset. The example is predicting the next 40
frames based on the given historical 10 frames. The context c, motion O, and state S
are shown in the dotted box.

Our experimental framework mirrors the one employed in SimVP [12], with
the model being trained for 100 epochs. The evaluation of its performance is car-
ried out using the SSIM and PSNR metrics [34,51]. Empirically, SSIM tends to
focus more on disparities in visual sharpness, while PSNR leans towards pixel-
level accuracy. By taking both these metrics into account, we ensure a com-
prehensive evaluation of the models. We compare the performance under two
distinct settings: predicting the next 20 or 40 frames based on the historical ten
frames. As depicted in Table 2, our method outperforms state-of-the-art methods
on the KTH dataset in both the 10 → 20 and 10 → 40 scenarios. Despite the
notable accomplishments of previous baselines, our method still demonstrates
superior performance, thereby underscoring the efficacy of delving into context-
motion disentanglement and implementing a disentangled consistency strategy.

We visualize an example of the predicted and disentangled results in Fig. 5.
It can be seen that the model captures the static part that consists of a scene
and a person with blurry arms as the context. The motion captures the details of
the arms when it is swung. The result is controlled by the state that determines
the proportion of dynamic and static parts. The motion ignores details of the
scene and the static legs of the person but clearly delineates the swinging arms.
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Table 2. Quantitative results of different methods on the KTH dataset (10 → 20
frames and 10 → 40 frames).

Method KTH (10 → 20) KTH (10 → 40)

SSIM↑ PSNR↑ SSIM↑ PSNR↑
MCnet [49] 0.804 25.95 0.73 23.89

ConvLSTM [37] 0.712 23.58 0.639 22.85

DFN [18] 0.794 27.26 0.652 23.01

fRNN [33] 0.771 26.12 0.678 23.77

SV2Pv [2] 0.838 27.79 0.789 26.12

PredRNN [50] 0.839 27.55 0.703 24.16

VarNet [19] 0.843 28.48 0.739 25.37

SAVP-VAE [22] 0.852 27.77 0.811 26.18

PredRNN++ [52] 0.865 28.47 0.741 25.21

E3d-LSTM [51] 0.879 29.31 0.810 27.24

STMFANet [20] 0.893 29.85 0.851 27.56

SimVP [12] 0.905 33.72 0.886 32.93

Ours 0.909 33.97 0.890 33.20

4.2 Generalizing to Unknown Scenes

Unknown Object. Our method benefits from the robust modeling of spa-
tiotemporal dependencies that exploits the relationship between context and
motion in both explicit and implicit ways. To verify the robustness and general-
ization ability, we make the Moving Fashion MNIST dataset by replacing digits
with objects of Fashion MNIST [56]. We use the models pre-trained on Moving
MNIST to evaluate the performance on Moving Fashion MNIST.

Table 3. Quantitative results on the Moving Fashion MNIST dataset (10 → 10 frames).

Method Moving Fashion MNIST (2 objects)

MSE↓ MAE↓ SSIM↑
ConvLSTM [37] 96.2 268.1 0.628

PredRNN [50] 90.6 225.6 0.749

PredRNN++ [52] 82.2 204.5 0.782

MIM [53] 80.6 204.7 0.778

E3D-LSTM [51] 78.3 196.9 0.791

PhyDNet [14] 86.7 207.7 0.774

MAU [6] 82.8 201.0 0.781

SimVP [12] 79.1 196.9 0.789

Ours 72.3 178.5 0.810
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Fig. 6. Qualitative results on unknown scenes. With the model pretrained on the
vanilla Moving MNIST dataset, we show the visualization of evaluating Moving Fash-
ion MNIST and three-object Moving MNIST. The disentangled context, motion and
state are shown in dotted boxes below the predicted frames.

Table 4. Quantitative results on the Moving MNIST dataset with three digits (10 → 10
frames).

Method Moving MNIST (3 digits)

MSE↓ MAE↓ SSIM↑
ConvLSTM [37] 115.4 262.0 0.730

PredRNN [50] 101.8 235.7 0.766

PredRNN++ [52] 84.4 203.3 0.808

MIM [53] 83.1 198.0 0.816

E3D-LSTM [51] 75.6 186.0 0.829

PhyDNet [14] 85.6 179.2 0.833

MAU [6] 71.2 159.0 0.859

SimVP [12] 75.2 165.7 0.849

Ours 68.9 144.1 0.870

We show the quantitative results in Table 3. It can be seen that our model
achieves significantly better performance than baseline models. Specifically, our
model improves the state-of-the-art SimVP model by about 8.60% in the MSE
metric and about 9.34% in the MAE metric, indicating the strong generalization
ability of our model. The qualitative results in Fig. 6(a) show that our model
captures context and motion well despite the objects have changed.
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Unknown Setting. We extend our exploration to test the model’s generaliz-
ability in a more complex setting that incorporates three moving digits instead of
the customary two. This approach aligns with the strategy delineated in Sect. 4.2,
wherein the model, initially trained on the Moving MNIST dataset with two dig-
its, is employed to gauge its performance on a Moving MNIST variant with three
digits. To put it differently, we train the model using data containing two dig-
its and evaluate its performance with data featuring three digits. The model is
expected to identify the dynamic elements, as opposed to merely recalling the
previously observed scenarios.

As represented in Table 4, our model consistently surpasses baseline models
by a considerable margin across all metrics. Specifically, our model enhances
the state-of-the-art SimVP model by approximately 9.14% in the MSE metric
and around 13.03% in the MAE metric. We illustrate a predicted example in
Fig. 6(b). Although the context-motion disentanglement mechanism distinctly
recognizes the dynamic and static elements, the predicted frames closely resemble
the ground-truth frames. These experimental results affirm that our model, by
learning the context-motion, exhibits a formidable generalization capacity.

4.3 Ablation Study

A series of ablation studies have been conducted on both Moving MNIST and
Moving Fashion MNIST datasets, with the MSE metrics reported in Table 5.
Initially, we eliminate the disentangled consistency, a mechanism that implicitly
disentangles the context and motion. As a result, we observe a significant deteri-
oration in performance on the Moving Fashion MNIST dataset, underlining the
pivotal role disentangled consistency plays in enhancing the model’s generaliza-
tion capabilities. Subsequently, when we remove the context-motion disentan-
glement modules, the performance suffers an even more profound degradation.

Table 5. Ablation study of our proposed method. (MSE ↓)

Method M-MNIST M-FMNIST

Ours 22.9 72.3

w/o disentangled consistency 23.2 75.4

w/o disentanglement modules 23.8 79.1

5 Limitations

5.1 Reverse Problem

Our model is designed to forecast subsequent sequences given an input sequence
{xi,xi+1, ...,xi+T }, yielding a prediction of the form {xi+T ,xi+T+1, ...,xi+T ′}.
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An intriguing question that arises is whether the model could perform a ”reverse
prediction” if the input is rearranged as {xi+T ,xi+T−1, ...,xi}, essentially pre-
dicting a sequence of the form {xi−1,xi−2, ...,xi−T ′}. We refer to this scenario
as the “reverse prediction problem”. The potential of our model, which excels
in interpretable and generalizable spatiotemporal predictive learning, to address
this challenge presents a fascinating direction for future exploration. This inno-
vative application could provide valuable insights into how prediction models
can be utilized in more flexible and versatile ways.

5.2 Handling of Irregularly Sampled Data

The datasets utilized in this research were sampled at consistent time intervals.
This approach may not be well-suited for handling irregularly sampled data,
such as those with missing values. Our method may struggle to learn from such
data and to make predictions for arbitrary timestamps in the future. A plausible
solution to this challenge might involve appending timestamp information to the
input or hidden feature vectors during the generation phase. Alternatively, neural
ordinary differential equations could be employed to model time-continuous data.

5.3 Adaptability to Dynamic Views

The proposed context-motion disentanglement module is likely more compatible
with static views, as it operates under the assumption that the background of
the same video remains largely unchanged. The extension of our disentanglement
strategy to more dynamic views represents an interesting area for future research.

6 Conclusion

In this work, we present an interpretable and generalizable spatiotemporal pre-
dictive learning method, which seeks to disentangle the context and the motion
from sequential spatiotemporal data. Specifically, we design a context-motion
disentanglement mechanism and a disentangled consistency strategy to perform
both explicit and implicit context-motion disentanglement. Our experimental
results demonstrate that our proposed model adeptly decouples static context
from dynamic motion, and further learns the nuanced spatiotemporal depen-
dencies, outshining models that merely rely on rote memorization. Crucially,
our model demonstrates robust generalization to previously unseen data. We
anticipate that the methodology we have put forth may provide fresh insights
and potentially stimulate advancements in the sphere of artificial general intel-
ligence.
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