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Preface

The 2024 edition of the European Conference on Machine Learning and Principles and
Practice ofKnowledgeDiscovery inDatabases (ECMLPKDD2024)was held inVilnius,
Lithuania, from September 9 to 13, 2024.

The annual ECML PKDD conference acts as a world-wide platform showcasing the
latest advancements in machine learning and knowledge discovery in databases. Held
jointly since 2001, ECMLPKDD has established itself as the leading EuropeanMachine
Learning and Data Mining conference. It offers researchers and practitioners an unpar-
alleled opportunity to exchange knowledge and ideas about the latest technical advance-
ments in these disciplines. Moreover, the conference appreciates the synergy between
foundational advances and groundbreaking data science and hence strongly welcomes
contributions about howMachine Learning and Data Mining is being employed to solve
real-world challenges.

The conference continues to evolve reflecting evolving technological developments
and societal needs. For example, in theResearchTrack this year there has been an increase
in submissions on generative AI, especially LLMs, and various aspects of responsible
AI.

We received 826 submissions for the Research Track and 224 for the Applied Data
Science Track. The Research track accepted 202 papers (out of 826, 24.5%) and the
Applied Data Science Track accepted 56 (out of 224, 24.5%). In addition, 31 papers
from the Journal Track (accepted out of 65 submissions) and 14 Demo Track papers
(accepted out of 30 submissions).

The papers presented over the three main conference days were organized into five
distinct tracks:

Research Track: This track featured research and methodology papers spanning all
branches within Machine Learning, Knowledge Discovery, and Data Mining.
Applied Data Science Track: Papers in this track focused on novel applications
of machine learning, data mining, and knowledge discovery to address real-world
challenges, aiming to bridge the gap between theory and practical implementation.
Journal Track: This track included papers that had been published in special issues of
the journals Machine Learning and Data Mining and Knowledge Discovery.
Demo Track: Short papers in this track introduced new prototypes or fully operational
systems that leveragedata science techniques, demonstrated throughworkingprototypes.
Nectar Track: Concise presentations of recent scientific advances published in related
conferences or journals. It aimed to disseminate important research findings to a broader
audience within the ECML PKDD community.

The conference featured five keynote talks on diverse topics, reflecting emerging
needs like benchmarking and resource-awareness, as well as theoretical understanding
and industrial needs.
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– Gintarė Karolina Džiugaitė (Google DeepMind): TheDynamics ofMemorization and
Unlearning.

– Moritz Hardt (Max Planck Institute for Intelligent Systems): The Emerging Science
of Benchmarks.

– Mounia Lalmas-Roelleke (Spotify): Enhancing User Experience with AI-Powered
Search and Recommendations at Spotify.

– Patrick Lucey (Stats Perform): How to Utilize (and Generate) Player Tracking Data
in Sport.

– KatharinaMorik (TUDortmundUniversity):Resource-AwareMachine Learning—a
User-Oriented Approach.

The ECML PKDD 2024 Organizing Committee supported Diversity and Inclusion
by awarding some grants that enable early career researchers to attend the conference,
present their research activities, and become part of the ECML PKDD community. We
provided a total of 3 scholarships ofe1000 to individuals that come from the developing
countries and/or communitieswhich are underrepresented in science and technology.The
scholarships could be used for travel and accommodation. In addition 3 grants covering
all of the registration fees were awarded to individuals who belong to underrepresented
communities, based on gender and role/position, to attend the conference and present
their research activities. The Diversity and Inclusion action also included the Women
Networking event andDiversity and InclusionPanel discussion. TheWomenNetworking
event aimed to create a safe and inclusive space for networking and reflecting on the
experience of women in science. The event included a structured brainstorm/reflection
on the role and experience of women in science and technology, which will be published
in the conference newsletter. The Diversity and Inclusion Panel aimed to reach a wider
audience and encourage the discussion on the need for diversity in tech, and challenges
and solutions in achieving it.

We want to thank the authors, workshop and tutorial organizers, and participants
whose scientific contributions make this such an exciting event. Moreover, putting
together an outstanding conference program would also not be possible without the
dedication and (substantial) time investments of the area chairs, program committee,
and organizing committee. The event would not run smoothly without the many vol-
unteers and sessions chairs. Finally, we want to extend a special thanks to all the local
organizers – they dealt with all the little details that are needed to make the conference
a memorable event.

Wewant to extend our heartfelt gratitude to ourwonderful sponsors for their generous
financial support. We also want to thank Springer for their continuous support and
Microsoft for allowing us to use their CMT software for conference management and
providing help throughout. We very much appreciate the advice and guidance provided
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by the ECML PKDD Steering Committee over the past two years. Finally, we thank the
organizing institution, the Artificial Intelligence Association of Lithuania.

September 2024 Albert Bifet
Tomas Krilavičius

Eirini Ntoutsi
Indrė Žliobaitė

Jesse Davis
Meelis Kull

Ioanna Miliou
Slawomir Nowaczyk
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The Dynamics of Memorization and Unlearning

Gintarė Karolina Džiugaitė

Google DeepMind

Abstract. Deep learning models exhibit a complex interplay between
memorization and generalization. This talk will begin by exploring the
ubiquitous nature ofmemorization, drawingonpriorworkon “data diets”,
example difficulty, pruning, and other empirical evidence. But is memo-
rization essential for generalization?Our recent theoretical work suggests
that eliminating it entirely may not be feasible. Instead, I will discuss
strategies to mitigate unwanted memorization by focusing on better data
curation and efficient unlearning mechanisms. Additionally, I will exam-
ine the potential of pruning techniques to selectively remove memorized
examples and explore their impact on factual recall versus in-context
learning.

Biography:Gintarė is a senior research scientist at Google DeepMind, based in Toronto,
an adjunct professor in the McGill University School of Computer Science, and an
associate industry member of Mila, the Quebec AI Institute. Prior to joining Google,
Gintarė led the Trustworthy AI program at Element AI/ServiceNow, and obtained her
Ph.D. in machine learning from the University of Cambridge, under the supervision of
Zoubin Ghahramani. Gintarė was recognized as a Rising Star in Machine Learning by
the University of Maryland program in 2019. Her research combines theoretical and
empirical approaches to understanding deep learning, with a focus on generalization,
memorization, unlearning, and network compression.



The Emerging Science of Benchmarks

Moritz Hardt

Max Planck Institute for Intelligent Systems

Abstract. Benchmarks have played a central role in the progress of
machine learning research since the 1980s. Although there’s much
researchers have done with them, we still know little about how and why
benchmarks work. In this talk, I will trace the rudiments of an emerging
science of benchmarks through selected empirical and theoretical obser-
vations. Looking back at the ImageNet era, I’ll discuss what we learned
about the validity of model rankings and the role of label errors. Looking
ahead, I’ll talk about new challenges to benchmarking and evaluation in
the era of large language models. The results we’ll encounter challenge
conventional wisdom and underscore the benefits of developing a science
of benchmarks.

Biography: Hardt is a director at the Max Planck Institute for Intelligent Systems,
Tübingen. Previously, he was Associate Professor for Electrical Engineering and Com-
puter Sciences at the University of California, Berkeley. His research contributes to
the scientific foundations of machine learning and algorithmic decision making with a
focus on social questions. He co-authored Fairness and Machine Learning: Limitations
and Opportunities (MIT Press) and Patterns, Predictions, and Actions: Foundations of
Machine Learning (Princeton University Press).



Enhancing User Experience with AI-Powered Search
and Recommendations at Spotify

Mounia Lalmas-Roelleke

Spotify

Abstract. This talk will explore the pivotal role of search and recom-
mendation systems in enhancing the Spotify user experience. These sys-
tems serve as the gateway to Spotify’s vast audio catalog, helping users
navigate millions of music tracks, podcasts, and audiobooks. Effective
search functionality allows users to quickly find specific content, whether
it is a favorite song, a trending podcast, or an informative audiobook,
while also satisfying broader search needs. Meanwhile, recommenda-
tion systems suggest new and relevant content that users might not have
thought to search for, while ensuring their current needs for familiar con-
tent are met. This encourages exploration and discovery of new artists,
genres, and shows, enriching the overall listening experience and keeping
users engaged with the platform. Achieving this dual objective of preci-
sion and discovery requires sophisticated technology. It involves a deep
understanding of representation learning, where both content and user
preferences are accurately modeled. Advanced AI techniques, including
machine learning and generative AI, play a crucial role in this process.
These technologies enable the creation of highly personalized recom-
mendations by understanding complex user behaviors and preferences.
Generative AI, for instance, allows us to create personalized playlists,
thereby enhancing the user experience with innovative features. This pre-
sentation is based on the collective research and publications of numerous
contributors at Spotify.

Biography: Mounia is a Senior Director of Research at Spotify and the Head of Tech
Research in Personalization, where she leads an interdisciplinary team of research sci-
entists. She also holds an honorary professorship at University College London and
serves as a Distinguished Research Fellow at the University of Amsterdam. Previously,
Mounia was a Director of Research at Yahoo, overseeing a team focused on adver-
tising quality and collaborating on user engagement projects related to news, search,
and user-generated content. Before her tenure at Yahoo, Mounia held a Microsoft
Research/RAEng Research Chair at the School of Computing Science, University of
Glasgow, and before that was a Professor of Information Retrieval at the Department
of Computer Science at Queen Mary, University of London. She is a prominent figure
in the research community, regularly serving as a senior program committee member at
major conferences such as WSDM, KDD, WWW, and SIGIR. She was also a program
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co-chair for SIGIR 2015,WWW2018,WSDM2020, andCIKM2023.Mounia is widely
recognized for her contributions as a speaker and author, with over 250 published papers
and appearances on platforms like ACM ByteCast and the AI Business Podcasts series.
She was nominated for the VentureBeat Women in AI Awards for Research in both 2022
and 2023.



How to Utilize (and Generate) Player Tracking Data
in Sport

Patrick Lucey

Stats Perform

Abstract. Even though player tracking data in sports has been around
for 25 years, it still poses as one of the most interesting and challeng-
ing datasets in machine learning due to its fine-grained, multi-agent,
team-based, and adversarial nature. Despite these challenges, it is also
extremely valuable as it is (relatively) low-dimensional, interpretable,
and interactive, allowing us to measure performance and answer ques-
tions we couldn’t objectively address before. In this talk, I will first give
a brief history of tracking data in sports, then highlight the challenges
associated with utilizing it. I will then show that by obtaining a permuta-
tion invariant representation, we can not only measure aspects of sports
that couldn’t be done before, but also interact with and simulate plays
akin to a video game via our “visual search” and “ghosting” technol-
ogy. Finally, I will show how we can use both tracking and event data
to create a multimodal foundation model, which enables us to generate
player tracking data at scale and achieve our goal of “digitizing every
game of professional sport.” Throughout the talk, I will utilize examples
from top-tier basketball, soccer, and tennis.

Biography: Patrick Lucey is currently the Chief Scientist at sports data giant Stats Per-
form, leading the AI team with the goal of maximizing the value of the company’s
extensive sports data. He has studied and worked in the fields of machine learning and
computer vision for the past 20 years, holding research positions at Disney Research and
the Robotics Institute at Carnegie Mellon University, as well as spending time at IBM’s
T.J. Watson Research Center while pursuing his Ph.D. Patrick originally hails fromAus-
tralia, where he received his BEng(EE) from the University of Southern Queensland and
his doctorate from Queensland University of Technology, which focused on multimodal
speech modeling. He has authored more than 100 peer-reviewed papers and has been
a co-author on papers in the MIT Sloan Sports Analytics Conference Best Research
Paper Track for 11 of the last 13 years, winning best paper in 2016 and runner-up in
2017 and 2018. Additionally, he has won best paper awards at INTERSPEECH and
WACV international conferences. His main research interests are in artificial intelli-
gence and interactive machine learning in sporting domains, as well as AI education.
He has recently piloted a course on “AI in Sport,” which aims to give students intuition
behind AI methods using the interactive and visual nature of sports data.

Website: www.patricklucey.com

https://patricklucey.com/index.html


Resource-Aware Machine Learning—A User-Oriented
Approach

Katharina Morik

TU Dortmund University

Abstract. Machine Learning (ML) has become integrated into several
processes, ranging from medicine, manufacturing, logistics, smart cities,
sales, recommendations and advertisements to entertainment and many
more business and private processes. The applications together consume
a considerable amount of energy and emit CO2.ML research investigates
how tomakemodels smaller and faster through pruning and quantization.
Also the use of more energy-efficient hardware is an encouraging field.
Research on ML under resource constraints is an active field propos-
ing novel algorithms and scenarios. The aim is that for each application
a variety of implementations is offered from which customers and the
different types of users may choose the most thrifty one. This, in turn,
would push tech providers to focus on the production of economical
systems. However, if the customers, users, stakeholders do not know
which of the models offers the best tradeoff between performance and
energy-efficiency, they cannot select the most frugal one. Hence, testing
implementations of learning and inference needs to be developed. They
should be easy to use, produce visualizations that are mass-tailored for
specific user groups. Automatized testing is difficult due to the diversity
of models, computing architectures, training and evaluation data, and the
fast rate of changes. The talk will illustrate work on resource-aware ML
and advocate to paymore attention to the role of users in the development
of scenarios, models, and tests.

Biography: Katharina Morik received her doctorate from the University of Hamburg in
1981 and her habilitation from the TU Berlin in 1988. In 1991, she established the chair
of Artificial Intelligence at the TU Dortmund. She retired in 2023. She is a pioneer of
bringing machine learning and computing architectures together so that machine learn-
ing models may be executed or even trained on resource restricted devices. In 2011,
she acquired the Collaborative Research Center CRC 876 “Providing Information by
Resource-Constrained Data Analysis” consisting of 12 projects and a graduate school.
After the longest possible funding period of 12 years, the CRC ended with the publi-
cation of 3 books on Resource-Constrained Machine Learning (De Gruyter). She has
participated in numerous European research projects and has been the coordinator of
one. Shewas a foundingmember and ProgramChair of the conference series IEEE Inter-
national Conference on DataMining (ICDM) and is a member of the steering committee
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of ECML PKDD. She is a co-founder of the Lamarr Institute for Machine Learning and
Artificial Intelligence. Prof. Morik is a member of the Academy of Technical Sciences
and of the North Rhine-Westphalian Academy of Sciences and Arts. She was made a
Fellow of the German Society of Computer Science GI e.V. in 2019.
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Interpretable and Generalizable
Spatiotemporal Predictive Learning

with Disentangled Consistency

Jingxuan Wei1,2, Cheng Tan3,4, Zhangyang Gao3,4, Linzhuang Sun1,2,
Bihui Yu1,2(B), Ruifeng Guo1,2(B), and Stan Li3,4(B)

1 Shenyang Institute of Computing Technology, Chinese Academy of Sciences,
Beijing, China

weijingxuan20@mails.ucas.edu.cn, sunlinzhuang21@mails.ucas.ac.cn
2 University of Chinese Academy of Sciences, Beijing, China

{yubihui,grf}@sict.ac.cn
3 Zhejiang University, Hangzhou, China

4 AI Lab, Research Center for Industries of the Future, Westlake University,
Hangzhou, China

{tancheng,gaozhangyang,stan.zq.li}@westlake.edu.cn

Abstract. In recent years, significant strides have been made in the field
of spatiotemporal predictive learning, a discipline that focuses on accu-
rately forecasting future sequences based on previously observed frames.
Despite the impressive capabilities of current leading-edge models, which
leverage specialized network architectures to optimize learning in both
spatial and temporal domains, these models often fall short in their
ability to accurately interpret underlying spatiotemporal dependencies
and extend their learnings to unseen data. In this study, we attempt
to address these shortcomings by disentangling the context and motion
within sequential spatiotemporal data, and then systematically analyzing
the relationship between the original and disentangled data. We introduce
context-motion disentanglement modules that utilize temporal entropy to
segregate the context and motion, and then apply regularization to the dis-
entangled motion to ensure its consistency with the predicted frames pro-
duced by conventional spatiotemporal predictive learning. Our proposed
methodology can be trained in an end-to-end fashion and serves to improve
not just the predictive performance but also the interpretability and gener-
alizability of the model. The efficacy of our proposed method is illustrated
through comprehensive quantitative and qualitative assessments.

Keywords: Spatiotemporal predictive learning · self-supervised
learning · convolutional neural networks · computer vision applications

1 Introduction

Deep learning has demonstrated considerable success in numerous domains
[4,24–26,43,44,54]. A critical subfield of deep learning is spatiotemporal pre-
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dictive learning, a self-supervised learning discipline that focuses on forecasting
future frames based on past observations. Previous studies have made commend-
able contributions by developing specialized modules to capture spatial corre-
lations and temporal dependencies based on LSTM [16] and GRU [7]. Though
these seminal works have achieved superior results, they face challenges in effec-
tively interpreting the underlying spatiotemporal dependencies and generalizing
the insights from disentangled information.

Past research [17,47] have strived to separate static contexts from dynamic
motions, aiming to extract meaningful representations from sequential video
data. The primary premise of these studies is that once the model successfully
disentangles the context from the motion, it would have effectively learned the
spatial correlations and temporal dependencies. Thus, they either build dual net-
works to separately capture motions and semantic contexts [11] or impose con-
straints in the latent spaces [17]. However, mediately predicting future frames by
fusing the representations of contexts and motions usually performs worse than
those directly optimizing for the future frames [12,52]. The reason to blame may
be brute-force disentangling that destroys nonlinear spatiotemporal relations.
Moreover, these methods employ disentangling in the latent space, which is dif-
ficult to present the actual disentangled contexts and motions explicitly. Their
inherent complex architectures even hinder their interpretable ability.

Fig. 1. The consistency between the manifolds of original sequential video data and
disentangled representations.

Our study aspires to bridge this gap by fusing standard spatiotemporal learn-
ing with disentangled context-motion, creating a framework for interpretable and
generalizable spatiotemporal learning. We introduce context-motion disentangle-
ment modules leveraging temporal entropy to separate the context and motion.
Based on the principles of manifold learning [27], we hypothesize that the original
data and disentangled representations exist on different manifolds with analo-
gous topological spaces. The assumption primarily comes from the basis of the
static context and the dynamic motions. While the context is static, we can
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regard the context as a constant that is added to the motion. We obtain the
disentangled manifold from the original manifold minus a constant so that the
manifolds are homeomorphic. As shown in Fig. 1, the disentangled representation
containing varying motions should have similar spatiotemporal dependencies to
the original data. By imposing a consistency constraint between manifolds, we
exploit the disentangled representations in enhancing interpretable and general-
izable spatiotemporal predictive learning.

2 Related Works

2.1 Spatiotemporal Predictive Learning

Recent advances in recurrent models [13,30] have provided valuable insights
into spatiotemporal predictive learning [1,8,35,41,42,58]. Inspired by recurrent
neural networks, VideoModeling [31] adopts language modeling and quantizes
the image patches into an extensive dictionary for recurrent units. Composi-
teLSTM [39] further introduces the LSTM architecture and improves its per-
formance. ConvLSTM [37] leverages convolutional neural networks to model
the LSTM architecture. PredNet [29] continually predicts future video frames
using deep recurrent convolutional neural networks with bottom-up and top-
down connections. PredRNN [50] proposes a Spatiotemporal LSTM unit that
simultaneously extracts and memorizes spatial and temporal representations. Its
subsequential work PredRNN++ [52] further proposes a gradient highway unit
and Casual LSTM adaptively capture temporal dependencies. E3D-LSTM [51]
designs eidetic memory transition in recurrent convolutional units. Conv-TT-
LSTM [40] employs a higher-order ConvLSTM to predict by combining convolu-
tional features across time. MotionRNN [55] focuses on motion trends and tran-
sient variations. LMC-Memory [23] introduces a long-term motion context mem-
ory using memory alignment learning. PredCNN [57] and TrajectoryCNN [28]
implement convolutional neural networks as the temporal module. SimVP [12] is
a seminal work that applies Inception modules with a UNet architecture to learn
the temporal evolution. TAU [45] proposes an attention-based temporal mod-
ule that performs both intra-frame and inter-frame attention for spatiotemporal
predictive learning.

2.2 Disentangled Representation

Decomposing the raw sequential video data into disentangled representations is
an essential topic in the computer vision. DRNet [11] and MCnet [49] are early
works on learning disentangled image representations from video. Their proposed
methods aim to learn contexts and motions by two individual networks sepa-
rately and then fuse the learned static and dynamic features in the latent space.
MoCoGAN [47] shares a similar idea but generates video frames conditioned on
random vectors. DDPAE [17] performs the video decomposition with multiple
objects in addition to disentanglement and designs a specialized framework for
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Moving MNIST. MGP-VAE [3] also models the latent space for disentangled
representations in video sequences. While the previous studies focus on learn-
ing in the latent space, our method aims to explicitly present interpretable and
generalizable spatiotemporal predictive learning by a disentangled consistency
constraint.

3 Methods

3.1 Preliminaries

We formally define the spatiotemporal predictive learning problem as follows.
Given a video sequence Xt,T = {xi}t

t−T+1 at time t with the past T frames,
we aim to predict the subsequent T ′ frames Y t+1,T ′

= {xi}t+T ′
t+1 from time

t + 1, where xi ∈ R
C×H×W is usually an image with channels C, height H,

and width W . In practice, we represent the video sequences as tensors, i.e.,
Xt,T ∈ R

T×C×H×W and Y t+1,T ′ ∈ R
T ′×C×H×W .

The model with learnable parameters Θ learns a mapping FΘ : Xt,T �→
Y t+1,T ′

by exploring both spatial and temporal dependencies. In our case,
the mapping FΘ is a neural network model trained to minimize the difference
between the predicted future frames and the ground-truth future frames. The
optimal parameters Θ∗ are:

Θ∗ = arg min
Θ

L(FΘ(Xt,T ),Y t+1,T ′
), (1)

where L is a loss function that evaluates such differences. By optimizing such a
loss function, the model is able to learn the inherent spatiotemporal dependencies
and thus accurately predicts future frames.

We recognize context and motion as semantically static and dynamic objects,
respectively. The data X are assumed to consist of the context c ∈ R

C×H×W and
the motion O = {oi|oi ∈ R

C×H×W }. The context and the motion are controlled
by the state of movement S = {si|si ∈ R

1×H×W }. For each frame xi in X , the
formal representation is:

xi = oi � s + c � (1 − s),∀xi ∈ X,oi ∈ O, si ∈ S, (2)

where � is the Hadamard product.
In this study, we decouple the context and motion of each frame through

explicit context-motion disentanglement mechanism and implicit disentangled
consistency for presenting an interpretable and generalizable spatiotemporal pre-
dictive learning.

3.2 Context-Motion Disentanglement

We first decompose the desired mapping F into two submappings:

F � H ◦ G, (3)
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where H : Xt,T �→ Ht, G : Ht �→ Y t+1,T ′
, and Ht ∈ R

T ′×C×H×H×W is the
latent representation at time t that contains information from previous T and
following T ′. H can be an arbitrary mapping that aims to explore the underlying
spatiotemporal dependencies of the input frames X t,T and project it into an
informative latent space. In contrast to the mapping H, the latter mapping G
reconstructs the visual imaging and predicts the future frames Y t+1,T ′

based on
the representation Ht in the latent space.

For standard spatiotemporal predictive learning methods, G can be an arbi-
trary mapping, as well as H. In this study, we explicitly define the mapping G
for specific context-motion disentanglement:

G � O � S + c � (1 − S), (4)

where we practically represent the sets as tensors, i.e., O ∈ R
T ′×C×H×W and

S ∈ R
T ′×1×H×W . The context tensor c ∈ R

1×C×H×W is a tensor variation
compared to the definition in Sect. 3.1. The motion tensor O, context tensor c,
and state tensor S are obtained by mappings O : H �→ O, C : H �→ c, and
S : H �→ S, respectively.

Though the G is specified to decouple the context and motion, directly opti-
mizing the mean square error (MSE) loss alone, as standard spatiotemporal
predictive learning does, is unreliable. The MSE loss cannot guide the neural
network automatically separate the context and motion. We argue that the key
to context-motion disentanglement is to determine the context accurately. Thus,
we impose the inductive bias that the pixels in context are likely to be static
across the varying time.

To evaluate the inherent uncertainty of video frames, we intuitively borrow
the concept of entropy from information theory. Here we refer to Δxi as a pixel
in a specific position of frame xi and ΔX as the pixel in the same position of
all frames in X. We define the probability of whether this pixel is changing Δwi

as:

Δwi =
Δxi − Δx0

max Δx − min Δx
, (5)

which is normalized in [0, 1] according to the changing scope compared to the
initial frame. The uncertainty of whether the pixel belongs to the context is
evaluated by its average entropy of w:

E(Δw) = − 1
T

t∑

i=t−T+1

p(Δwi) log p(Δwi), (6)

then we obtain a mask M ∈ {0, 1}1×C×H×W that should be able to filter reliable
context by a threshold w̄. For each pixel, if the corresponding E is lower than
w̄, we recognize it as the static context, i.e., M has a value of 1 for this pixel
and vice versa.
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With the inductive bias of reliable context given by M , we design the disen-
tanglement loss as:

Ld(X) =
1
T ′

t+T ′∑

t+1

‖(c − xi) � M‖. (7)

This loss guarantees that at least the reliable static context is learned. Taking
advantage of the flatness of convolutional networks, the model can disentangle
actual context based on the above reliable context.

3.3 Disentangled Consistency

Despite the disentanglement loss Ld enforcing explicit model discrimination
between context and motion, it remains reliant on the inductive bias M . We
contend that the context is intrinsically static in its semantics and that the dis-
entangled frames should exhibit consistency with the actual frames. Consider a
manifold Mx representative of the original data, with the correlated disentan-
gled representations inhabiting another manifold, denoted as Mo. s Definition.
We define two topological spaces, denoted as Mx and Mo, to be homeomorphic
if and only if there exists a bijective mapping function f : Mx �→ Mo with
the following properties: (i) The function f is continuous. (ii) The inverse of f ,
denoted as f−1, exists and is also continuous.

This definition [10,15,32,38] reveals the relationship between the manifold
Mx and Mo. According to Eq. 4, we can observe that once the mapping is
bijective the disentangled manifold is homeomorphic to the original manifold. In
other words, the original manifold Mx and the disentangled manifold Mo are
topological equivalences.

Theorem. Given a homeomorphism f(X), a mapping that is both smooth
and possesses a unique inverse, the mutual information is invariant under such
transformation, such that I(X,O) = I(f(X),O).

Proof. First, remember that the entropy of a discrete random variable X
is defined as H(X) = −∑

x∈X p(x) log p(x), where p(x) is the probability mass
function of X. For continuous random variables, the entropy is similarly defined
but with an integral instead of a sum, and the probability density function
instead of the probability mass function.

Now consider a homeomorphism f , and suppose pX (x) is the probability
density function of X and pO (o) is the probability density function of O, which
equals to pX (f−1(o)) due to the invariance of probability under the transforma-
tion.

The differential entropy H(O) of O is then:

H(O) = −
∫

pO (o) log pO (o)do

= −
∫

pX (f−1(o)) log pX (f−1(o))do,

(8)
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By changing the variable from o to x = f−1(o), and remembering that home-
omorphisms preserve the measure, the differential entropy H(O) of O transforms
to:

H(O) = −
∫

pX (x) log pX (x)dx = H(X). (9)

So, the entropy of X and O are equal. Since the entropy is invariant under
homeomorphisms, the conditional entropy is also invariant. Therefore, mutual
information, which is a combination of entropy and conditional entropy, is also
invariant under homeomorphisms.

Fig. 2. Characterize the relationship between Mx and Md from the geometric view-
point and regularize the geometric property to be consistent.

This theorem [9,21,46] reveals the connections between Mx and Mo. If the
mapping f is bijective, their mutual information is:

I(X,O) = H(X) + H(O) − H(X,O) (10)

is maximized. Based on the above observation, we characterize the relationship
between the manifolds Mx and Mo from the geometric viewpoint. As shown in
Fig. 2, we consider the pairwise distance as the key geometric property and reg-
ularize the manifold Mo to have a similar geometric structure as Mx. For those
limited data points, the mapping f is approaching bijective through preserving
this geometric property.

Then, we define the pairwise distances in the two manifolds as follows:

dx =
‖xi − xj‖√

D
, do =

‖oi − oj‖√
D

, (11)

where ‖ · ‖ is Euclidean distance, D = C × H × W is a scale factor for avoiding
large magnitude [48], i, j ∈ {t+1, ..., t+T ′}, and i 
= j. To model the distance in
a nonlinear manner and obtain expressive metrics, we project the distance into
normal distributions:

p(dx) =
Cx

σx

√
2π

exp
( − d2x

2σ2
x

)
,

p(do) =
Co

σo

√
2π

exp
( − d2o

2σ2
o

)
,

(12)
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where Cx, Co are constants that forces the p(·) ∈ [0, 1], and σx, σo are controllable
hyperparameters. For the convenience of optimization, we empirically assumes
p(dg), p(do) ∼ N(0, 1

2 ) in the experiments.
The disentangled consistency is formulated as:

Lc(X,O) = − p(dx) log(p(do))
− (1 − p(dx)) log(1 − p(do)),

(13)

in which the binary cross entropy between p(dx) and p(do) is expected to be
minimized.

Fig. 3. The model architecture of our proposed method with the input from Moving
MNIST. We employ a simple encoder-decoder model as the base architecture. The
decoded representation H t is used to obtain the context c, motion OT ′

t+1 and state

ST ′
t+1.

3.4 Practical Implementation

We implement our proposed method by modifying the network of the current
state-of-the-art method SimVP [12]. SimVP is a solid baseline in spatiotem-
poral predictive learning. As shown in Fig. 3, a spatial encoder and a spatial
decoder are simple convolutional networks with downsampling and upsampling
operations, while a translator network is in the middle for learning the spa-
tiotemporal correlations. In SimVP, the translator network consists of blocks of
Inception-UNet (IncepUNet). We remove the last layer of SimVP and employ
the output of the penultimate layer as Ht . The mappings O, C,S are imple-
mented by one-layer convolutional networks that project H to OT ′

t+1,S
T ′
t+1, and

c, respectively.
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The overall loss function is a linear combination of MSE loss, disentanglement
loss Ld, and disentangled consistency loss Lc:

L = MSE(FΘ(Xt,T ),Y t+1,T ′
) + αLd + βLc,

= ‖FΘ(Xt,T ) − Y t+1,T ′‖2 + αLd + βLc,
(14)

where α, β are weights of loss Ld and Lc. We empirically set the values as α =
1.0, β = 0.1 in default.

It is worth noting that though our proposed method is implemented based
on the baseline SimVP, it is also suitable for other spatiotemporal predictive
learning baselines.

4 Experiments

We evaluate our method by both quantitative and qualitative validation. We
present the interpretability across different experimental settings as follows: (1)
standard spatiotemporal predictive learning, (2) generalizing to unknown scenes.

4.1 Standard Spatiotemporal Predictive Learning

Fig. 4. Qualitative results on the Moving MNIST dataset. We show the disentangled
context, motion, and state in the dotted boxes.

Moving MNIST. The Moving MNIST dataset [39], a widely recognized bench-
mark in standard spatiotemporal predictive learning, is a synthetic compilation.
It comprises two individual digits meandering within a 64 × 64 grid, reacting
to boundaries with a bounce-back motion. The task involves predicting the
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subsequent 10 frames, given a historical sequence of 10 frames. Our proposed
methodology addresses this by explicitly disentangling the complex spatiotem-
poral dependencies and capitalizing on the ensuing disentangled consistency for
improved performance. It is anticipated that our model will demonstrate a high
level of proficiency in predicting future frames with precision.

Our experimental setup parallels the one detailed in SimVP [12]. We mea-
sure our approach’s performance against formidable benchmarks, including Con-
vLSTM [37], PredRNN [50], E3D-LSTM [51], MotionGRU [55], CrevNet [59],
PhyDNet [14], SimVP [12], and others. We also compare our results with
advanced techniques such as PhyDNet [14] and DDPAE [17], which engage in
latent space disentanglement. The efficacy of our method is evidenced through
quantitative metrics-frame-wise Mean Squared Error (MSE), Mean Absolute
Error (MAE), and Structural Similarity Index Measure (SSIM)-and showcased
in Table 1. To supplement our quantitative results, we offer a visual represen-
tation of our qualitative findings in Fig. 4. It becomes clear that our approach
surpasses other state-of-the-art methods in performance, attributing its success
to the robust modeling of context and motion. This capability confers our model
with a competitive advantage, enabling it to outperform its counterparts.

Table 1. Quantitative results of different methods on the Moving MNIST dataset
(10 → 10 frames).

Method Moving MNIST (2 digits)

MSE↓ MAE↓ SSIM↑
ConvLSTM [37] 103.3 182.9 0.707

PredRNN [50] 56.8 126.1 0.867

PredRNN++ [52] 46.5 106.8 0.898

MIM [53] 44.2 101.1 0.910

LMC [23] 41.5 – 0.924

E3D-LSTM [51] 41.3 87.2 0.910

Conv-TT-LSTM [40] 53.0 – 0.915

DDPAE [17] 38.9 90.7 0.922

CrevNet [59] 38.5 – 0.928

MotionGRU [55] 34.3 – 0.928

CMS-LSTM [5] 33.6 73.1 0.931

MAU [6] 27.6 – 0.937

PhyDNet [14] 24.4 70.3 0.947

SimVP [12] 23.8 68.9 0.948

Ours 22.9 68.6 0.949

KTH. The KTH dataset [36], a compendium of human poses, encapsulates 25
individuals performing six distinct actions: walking, jogging, running, boxing,
hand waving, and hand clapping. The intricacies of human motion stem from
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the stochastic nature of various individuals performing different actions. The
KTH dataset, however, is noted for its relatively consistent motion patterns. By
studying historical frames, our model-built on the principles of interpretable and
generalizable spatiotemporal predictive learning-is engineered to comprehend the
dynamics of human motion and, subsequently, to anticipate long-term changes
in future poses. Additionally, the prediction of extended sequences accurately
is a nuanced problem in conventional spatiotemporal predictive learning. Our
method strives to cultivate an interpretable and robust model, harnessing the
learned spatiotemporal dependencies to predict long sequences with precision.

Fig. 5. Qualitative results on the KTH dataset. The example is predicting the next 40
frames based on the given historical 10 frames. The context c, motion O, and state S
are shown in the dotted box.

Our experimental framework mirrors the one employed in SimVP [12], with
the model being trained for 100 epochs. The evaluation of its performance is car-
ried out using the SSIM and PSNR metrics [34,51]. Empirically, SSIM tends to
focus more on disparities in visual sharpness, while PSNR leans towards pixel-
level accuracy. By taking both these metrics into account, we ensure a com-
prehensive evaluation of the models. We compare the performance under two
distinct settings: predicting the next 20 or 40 frames based on the historical ten
frames. As depicted in Table 2, our method outperforms state-of-the-art methods
on the KTH dataset in both the 10 → 20 and 10 → 40 scenarios. Despite the
notable accomplishments of previous baselines, our method still demonstrates
superior performance, thereby underscoring the efficacy of delving into context-
motion disentanglement and implementing a disentangled consistency strategy.

We visualize an example of the predicted and disentangled results in Fig. 5.
It can be seen that the model captures the static part that consists of a scene
and a person with blurry arms as the context. The motion captures the details of
the arms when it is swung. The result is controlled by the state that determines
the proportion of dynamic and static parts. The motion ignores details of the
scene and the static legs of the person but clearly delineates the swinging arms.
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Table 2. Quantitative results of different methods on the KTH dataset (10 → 20
frames and 10 → 40 frames).

Method KTH (10 → 20) KTH (10 → 40)

SSIM↑ PSNR↑ SSIM↑ PSNR↑
MCnet [49] 0.804 25.95 0.73 23.89

ConvLSTM [37] 0.712 23.58 0.639 22.85

DFN [18] 0.794 27.26 0.652 23.01

fRNN [33] 0.771 26.12 0.678 23.77

SV2Pv [2] 0.838 27.79 0.789 26.12

PredRNN [50] 0.839 27.55 0.703 24.16

VarNet [19] 0.843 28.48 0.739 25.37

SAVP-VAE [22] 0.852 27.77 0.811 26.18

PredRNN++ [52] 0.865 28.47 0.741 25.21

E3d-LSTM [51] 0.879 29.31 0.810 27.24

STMFANet [20] 0.893 29.85 0.851 27.56

SimVP [12] 0.905 33.72 0.886 32.93

Ours 0.909 33.97 0.890 33.20

4.2 Generalizing to Unknown Scenes

Unknown Object. Our method benefits from the robust modeling of spa-
tiotemporal dependencies that exploits the relationship between context and
motion in both explicit and implicit ways. To verify the robustness and general-
ization ability, we make the Moving Fashion MNIST dataset by replacing digits
with objects of Fashion MNIST [56]. We use the models pre-trained on Moving
MNIST to evaluate the performance on Moving Fashion MNIST.

Table 3. Quantitative results on the Moving Fashion MNIST dataset (10 → 10 frames).

Method Moving Fashion MNIST (2 objects)

MSE↓ MAE↓ SSIM↑
ConvLSTM [37] 96.2 268.1 0.628

PredRNN [50] 90.6 225.6 0.749

PredRNN++ [52] 82.2 204.5 0.782

MIM [53] 80.6 204.7 0.778

E3D-LSTM [51] 78.3 196.9 0.791

PhyDNet [14] 86.7 207.7 0.774

MAU [6] 82.8 201.0 0.781

SimVP [12] 79.1 196.9 0.789

Ours 72.3 178.5 0.810
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Fig. 6. Qualitative results on unknown scenes. With the model pretrained on the
vanilla Moving MNIST dataset, we show the visualization of evaluating Moving Fash-
ion MNIST and three-object Moving MNIST. The disentangled context, motion and
state are shown in dotted boxes below the predicted frames.

Table 4. Quantitative results on the Moving MNIST dataset with three digits (10 → 10
frames).

Method Moving MNIST (3 digits)

MSE↓ MAE↓ SSIM↑
ConvLSTM [37] 115.4 262.0 0.730

PredRNN [50] 101.8 235.7 0.766

PredRNN++ [52] 84.4 203.3 0.808

MIM [53] 83.1 198.0 0.816

E3D-LSTM [51] 75.6 186.0 0.829

PhyDNet [14] 85.6 179.2 0.833

MAU [6] 71.2 159.0 0.859

SimVP [12] 75.2 165.7 0.849

Ours 68.9 144.1 0.870

We show the quantitative results in Table 3. It can be seen that our model
achieves significantly better performance than baseline models. Specifically, our
model improves the state-of-the-art SimVP model by about 8.60% in the MSE
metric and about 9.34% in the MAE metric, indicating the strong generalization
ability of our model. The qualitative results in Fig. 6(a) show that our model
captures context and motion well despite the objects have changed.
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Unknown Setting. We extend our exploration to test the model’s generaliz-
ability in a more complex setting that incorporates three moving digits instead of
the customary two. This approach aligns with the strategy delineated in Sect. 4.2,
wherein the model, initially trained on the Moving MNIST dataset with two dig-
its, is employed to gauge its performance on a Moving MNIST variant with three
digits. To put it differently, we train the model using data containing two dig-
its and evaluate its performance with data featuring three digits. The model is
expected to identify the dynamic elements, as opposed to merely recalling the
previously observed scenarios.

As represented in Table 4, our model consistently surpasses baseline models
by a considerable margin across all metrics. Specifically, our model enhances
the state-of-the-art SimVP model by approximately 9.14% in the MSE metric
and around 13.03% in the MAE metric. We illustrate a predicted example in
Fig. 6(b). Although the context-motion disentanglement mechanism distinctly
recognizes the dynamic and static elements, the predicted frames closely resemble
the ground-truth frames. These experimental results affirm that our model, by
learning the context-motion, exhibits a formidable generalization capacity.

4.3 Ablation Study

A series of ablation studies have been conducted on both Moving MNIST and
Moving Fashion MNIST datasets, with the MSE metrics reported in Table 5.
Initially, we eliminate the disentangled consistency, a mechanism that implicitly
disentangles the context and motion. As a result, we observe a significant deteri-
oration in performance on the Moving Fashion MNIST dataset, underlining the
pivotal role disentangled consistency plays in enhancing the model’s generaliza-
tion capabilities. Subsequently, when we remove the context-motion disentan-
glement modules, the performance suffers an even more profound degradation.

Table 5. Ablation study of our proposed method. (MSE ↓)

Method M-MNIST M-FMNIST

Ours 22.9 72.3

w/o disentangled consistency 23.2 75.4

w/o disentanglement modules 23.8 79.1

5 Limitations

5.1 Reverse Problem

Our model is designed to forecast subsequent sequences given an input sequence
{xi,xi+1, ...,xi+T }, yielding a prediction of the form {xi+T ,xi+T+1, ...,xi+T ′}.
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An intriguing question that arises is whether the model could perform a ”reverse
prediction” if the input is rearranged as {xi+T ,xi+T−1, ...,xi}, essentially pre-
dicting a sequence of the form {xi−1,xi−2, ...,xi−T ′}. We refer to this scenario
as the “reverse prediction problem”. The potential of our model, which excels
in interpretable and generalizable spatiotemporal predictive learning, to address
this challenge presents a fascinating direction for future exploration. This inno-
vative application could provide valuable insights into how prediction models
can be utilized in more flexible and versatile ways.

5.2 Handling of Irregularly Sampled Data

The datasets utilized in this research were sampled at consistent time intervals.
This approach may not be well-suited for handling irregularly sampled data,
such as those with missing values. Our method may struggle to learn from such
data and to make predictions for arbitrary timestamps in the future. A plausible
solution to this challenge might involve appending timestamp information to the
input or hidden feature vectors during the generation phase. Alternatively, neural
ordinary differential equations could be employed to model time-continuous data.

5.3 Adaptability to Dynamic Views

The proposed context-motion disentanglement module is likely more compatible
with static views, as it operates under the assumption that the background of
the same video remains largely unchanged. The extension of our disentanglement
strategy to more dynamic views represents an interesting area for future research.

6 Conclusion

In this work, we present an interpretable and generalizable spatiotemporal pre-
dictive learning method, which seeks to disentangle the context and the motion
from sequential spatiotemporal data. Specifically, we design a context-motion
disentanglement mechanism and a disentangled consistency strategy to perform
both explicit and implicit context-motion disentanglement. Our experimental
results demonstrate that our proposed model adeptly decouples static context
from dynamic motion, and further learns the nuanced spatiotemporal depen-
dencies, outshining models that merely rely on rote memorization. Crucially,
our model demonstrates robust generalization to previously unseen data. We
anticipate that the methodology we have put forth may provide fresh insights
and potentially stimulate advancements in the sphere of artificial general intel-
ligence.
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Abstract. Traffic forecasting is a crucial application in smart city
efforts. After revisiting the existing literature on deep learning-based
traffic forecasting methods, we identify two primary research approaches:
node-centric and graph-centric. Node-centric methods focus on con-
structing spatial features through preprocessing and modeling spatial
correlations in the input space. In contrast, graph-centric methods
mainly rely on graph neural networks to capture spatial correlations in
the latent space. We perform empirical evaluations to identify the pros
and cons of each: node methods excel in efficiency while graph meth-
ods demonstrate better performance. Based on this, we propose a simple
yet effective node-centric framework, named SimST, which overcomes
the drawbacks of node-centric methods and enhances their efficiency.
Extensive experiments show that SimST achieves performance on par
with graph-centric methods while exhibiting up to 39 times inference
speedup.

Keywords: Traffic Forecasting · Spatio-Temporal Neural Networks

1 Introduction

Traffic forecasting over road networks plays a pivotal role in enhancing urban
planning and traffic management, making it one of the most critical components
of Intelligent Transportation Systems [45]. After reviewing the traffic forecasting
methods proposed during this decade, we identified two events that have signif-
icantly shifted the modeling paradigm in this area. The first occurred with the
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breakthrough of deep learning, which enabled the extraction of non-linear pat-
terns in traffic time series. Following this, research in the field gradually moved
away from statistical or machine learning models and towards embracing deep
learning models [19,27]. The second shift happened after a series of improve-
ments to the technique of graph neural networks (GNNs) [9,17]. Since then,
Spatio-Temporal Graph Neural Networks (STGNNs) [2,20,36] have become the
de facto most popular tool for traffic forecasting, in which GNNs are utilized to
capture spatial correlations among different sensors and sequential models are
applied for modeling temporal dependencies.

Fig. 1. Representatives between the first and the second modeling paradigm shift.

In contrast to recent work focused on improving STGNNs, in this study we
take a step back and investigate how deep traffic forecasting methods modeled
spatial correlations after the first, but prior to the second paradigm shift. After
studying the related literature of this period (see Fig. 1), we observed that they
focus on modeling spatial correlations in the input space by incorporating the
time series of other nodes as a node’s input features. Then the deep models
process each node’s features individually. We refer to this category of meth-
ods as node-centric methods, in contrast to graph-centric methods, e.g.,
STGNNs, which establish spatial correlations in the latent space (see Fig. 2).

We then conduct a comprehensive evaluation to investigate the advantages
and disadvantages of these two types of methods since there are few direct com-
parisons between them in the literature [11]. Our results indicate that node-
centric methods have unique benefits in terms of fast inference time and low
GPU memory cost, thanks to their individual node processing nature. However,
they require lengthy preprocessing time for incorporating a multitude of nodes’
features and suffer from inferior model performance due to the absence of spatial
correlation modeling in the latent space.

Fig. 2. Illustration of two approaches. Node-centric methods rely solely on the latent
vectors of a node itself to predict its future, while graph-centric methods involve mes-
sage passing among nodes.



Reinventing Node-centric Traffic Forecasting 23

In this work, we argue that the efficient nature of node-centric methods is
crucial for the applications of traffic forecasting models in the real world, par-
ticularly when deploying models in large-scale and real-time forecasting systems
that are latency-bound and require fast inference [15]. Thus, we are commit-
ted to reinventing conventional node-centric methods by introducing the SimST
framework to address their limitations. Specifically, SimST includes a proximity
modeling module that restricts the receptive field of each node to its local con-
text, resulting in a significant reduction in preprocessing time. Moreover, SimST
adapts the technique of node-specific parameters to the node-centric scenario,
allowing for implicit node representation interactions. This is the key compo-
nent that bridges the performance gap between node-centric and graph-centric
methods. Our contribution is fourfold.

– Through revisiting the literature, we categorize existing deep traffic forecast-
ing methods into two classes: node-centric and graph-centric. We identify
their strengths and weaknesses via comprehensive empirical evaluations.

– We present a simple yet effective node-centric framework named SimST
that overcomes the shortcomings of conventional node-centric methods and
enhances their advantages in efficiency.

– Extensive experiments on common benchmarks reveal that compared to
graph-centric methods, SimST obtains up to 39× inference speedup while
performing on par with them. Compared with conventional node-centric
methods, SimST achieves up to 26% performance improvements and up to
83× inference speedup.

– We conduct extensive ablation analysis and case studies to promote a bet-
ter understanding of our method and motivate future research to pay more
attention to the node-centric methods.

2 Preliminaries

This section formulates the problem of deep traffic forecasting and defines the
graph- and node-centric methods used to address it. Then we describe the rep-
resentatives in these two research lines.

2.1 Formulations

Deep Traffic Forecasting. We denote the overall traffic readings in a particular
time window as X ∈ R

N×T×F , where N is the number of sensors, T is the
number of time steps, and F is the feature dimension consisting of a target
attribute (e.g., traffic flow) and auxiliary information. We additionally denote the
readings of node v as Xv ∈ R

T×F . Typically, a directed sensor graph G = (V, E)
with |V| = N nodes and |E| edges is used to represent the sensors’ correlations
[20,36]. In deep learning based traffic forecasting, a neural network Θ is trained
to predict the target attribute in future Tf steps Y ∈ R

N×Tf×1 based on Th

historical observations X ∈ R
N×Th×F over the graph [20,40].
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Graph-Centric Traffic Forecasting. To predict the future readings of a sensor
vi, the model accesses the sensor graph G, the input X, and the latent vectors
(generated from learnable parameters) of all other nodes for spatial correlations
modeling.

Node-Centric Traffic Forecasting. To predict the future readings of a sensor vi,
the model accesses the input f(X, G) and only sensor vi’s latent vectors, where
f(X, G) is a preprocessing function that builds spatial features for sensor vi in
the input space using G.

2.2 Graph-Centric Approaches

STGNNs are typical graph-centric methods for traffic forecasting, as they uti-
lize stacked GNN layers to establish spatial correlations between nodes and thus
require access to the latent vectors of neighboring nodes (see Fig. 2). In recent
years, STGNNs have become the most widely used tool for deep traffic fore-
casting [3,8,24]. They generally integrate GNNs with either RNNs or TCNs
to capture the complex spatial and temporal dependencies in traffic data. For
instance, DCRNN [20], AGCRN [2], and GMSDR [22] incorporated graph convo-
lution networks with RNN and its variants. To improve training speed and enjoy
parallel computation, a plethora of approaches such as STGCN [40], GWN [36],
and DMSTGCN [12] combined GNNs with dilated causal convolution. Meth-
ods that used attention mechanisms for spatial learning, such as GMAN [44]
and ASTGCN [11], also fall under the category of graph-centric methods, since
attention is performed on the latent vectors of various nodes. Despite achieving
great success in accuracy, these graph methods perform explicit node represen-
tation interactions via message passing and thus require storing a substantial
number of intermediate hidden vectors for each node, making many of them
unable to scale to large sensor graphs [15,25].

2.3 Node-centric Approaches

Before the emergence of GNNs, most deep learning-based traffic forecasting
approaches fell into the category of node-centric methods [5,21,26,33,37,39,41].
According to a survey [27], SAE [26] was the earliest deep learning-based method
for traffic forecasting. For an anchor node, SAE concatenated observations of all
other sensors into a large vector, which served as the node’s spatio-temporal fea-
tures and was passed through an MLP for predictions. To capture the dynamic
correlations between sensors, GeoMAN [21] applied an attention mechanism
between the histories of the anchor node and all other nodes. The output of the
attention module was seen as the spatial features of the anchor, and was then
fed into an encoder-decoder LSTM architecture for temporal dependencies mod-
eling. Moreover, DeepTransport [5] searched all possible travel paths that start
from an anchor node to its r-order neighbors. The method then used 1D convo-
lution to model the relations within the rth order nodes, and employed LSTMs
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and attention mechanisms to capture the relations across the orders. DMVST-
Net [37] and DeepAir [39] were also well-known node-centric approaches, which
focused on taxi demand prediction and air quality prediction. To summarize,
node-centric methods typically involve a preprocessing stage where observations
from all or some of the nodes are collected to consider spatial correlations in the
input space. Once the constructed input is passed through the neural networks,
only the sensor’s own latent vectors are used for making predictions (see Fig. 2).
However, as shown in Table 1, these methods necessitate considerable prepro-
cessing time and encounter subpar model performance. We notice that there
is one recently proposed node-centric method SGP [8] that utilizes deep echo
state networks for data preprocessing. Though this method obtains competitive
performance, its preprocessing duration spanned from tens of seconds to several
minutes, still lacking the ability to achieve rapid data preprocessing.

3 Empirical Comparisons on Graph-Centric
and Node-centric Methods

We experiment with five commonly used traffic datasets (see details in Sect. 5).
We predict the next 12 steps traffic status based on the 12-step historical data.
Three representative node-centric methods are implemented as baselines: SAE
[26], GeoMAN [21] and DeepTransport [5]. Since two of them employ LSTMs for
temporal dependencies modeling, we choose RNN-based graph-centric methods
for fair comparisons: DCRNN [20] (from the same era as node-centric methods)
and GMSDR [22] (a recent published work). We include a variant of the proposed
framework here, i.e., SimST-GRU to facilitate a direct comparison. The details
of SimST are presented in Sect. 4.

We provide a comprehensive comparison of graph- and node-centric methods
from the following criteria: (1) Accuracy. We adopt three common metrics in
forecasting tasks to evaluate the model performance, including mean absolute
error (MAE), root mean squared error (RMSE), and mean absolute percentage
error (MAPE). (2) Time consumption. We prioritize evaluating inference time
(including preprocessing time) over training time, as it is more critical in real-
world applications. Training time details can be found in Appendix F. (3) GPU
memory usage. We measure the GPU memory consumption to reflect the
ability of methods to scale to large-scale traffic datasets.

3.1 Results Analysis

We summarize the experimental results in Table 1, with the following observa-
tions and conclusions:

– Graph-centric methods achieve higher accuracy. As demonstrated
in the table, graph-centric methods outperform node-centric methods by a
significant margin, except for PeMSD8 where the improvement is less pro-
nounced. This can be attributed to the fact that PeMSD8 has the smallest
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Table 1. Due to the page limit, we present four of the five benchmark datasets and
only report the MAE metric here. The complete results are available in Appendix F.
MAE: averaged test MAE result over all predicted horizons. Pre: preprocessing time
(s) before inference. Infer: inference time (s) on the validation set. GPU: GPU memory
usage (GB). DeepTrans: DeepTransport. SimST: SimST-GRU, a variant of SimST.

Method PeMSD8 (N = 170) LA (N = 207) PeMSD4 (N = 307) BAY (N = 325)

MAE Pre Infer GPU MAE Pre Infer GPU MAE Pre Infer GPU MAE Pre Infer GPU

SAE 16.95 6.14 1.90 1.05 3.76 8.97 2.59 1.05 22.22 31.89 5.54 1.07 1.84 32.97 9.20 1.08

GeoMAN 16.83 6.21 4.98 1.42 3.66 8.86 6.54 1.46 23.06 32.54 12.55 1.66 1.85 32.51 20.77 1.68

DeepTrans 17.90 0.05 3.45 3.29 3.65 0.52 3.65 2.84 22.96 0.06 5.97 3.29 1.87 0.81 8.88 2.84

DCRNN 16.62 0 6.72 3.97 3.14 0 7.66 4.71 22.39 0 9.89 6.43 1.63 0 16.36 6.81

GMSDR 16.36 0 7.71 3.65 3.21 0 11.52 5.48 20.49 0 13.20 7.81 1.69 0 22.05 8.21

SimST(our) 14.99 0.01 0.34 2.53 3.16 0.03 0.45 2.65 19.19 0.02 0.55 3.15 1.57 0.07 0.96 3.23

number of nodes, with an average node degree of around 1. In such a sim-
ple graph, node-centric methods perform similarly to graph-centric methods
in terms of accuracy. However, as the graph becomes more complex, with
an increase in either the number of nodes (PeMSD4) or the number of edges
(average node degree of 7.3 for LA), modeling spatial correlations in the input
space becomes less effective compared to modeling them in the latent space.

– Graph-centric methods typically do not require preprocessing. As
shown in the table, SAE and GeoMAN require significant preprocessing
time as they need to concatenate observations from all other nodes into the
input for each node. This process is time-consuming and memory-intensive.
Although we used indexing techniques to optimize the time, the results still
remain impractical compared to the inference time. DeepTransport has a
shorter preprocessing time as it limits its consideration to r-order neighbors.
However, it falls short on datasets with a higher number of edges, such as LA
and BAY, due to the exponential growth of paths.

– Node-centric methods generally have faster inference time. The
results show that node-centric methods (SAE and DeepTransport) run sig-
nificantly faster than graph-centric methods (DCRNN and GMSDR). The
reason is that node-centric methods do not necessitate explicit node interac-
tions in the latent space, which is a requisite step in graph-centric methods.
For example, STGNNs rely on GNNs for performing the message passing step,
which can become significantly inefficient when graphs are large or with dense
connections [4,42]. We note that GeoMAN becomes slower than DCRNN and
GMSDR as node number increases. This is due to the use of a global spatial
attention module, which is computationally intensive when processing a large
number of nodes.

– Node-centric methods have lower GPU memory usage. Our results
reveal that node-centric methods require less GPU memory than graph-
centric methods, and their memory usage remains stable with an increas-
ing number of nodes. We explain the reasons as follows. During the train-
ing/inference of a graph-centric method, nodes are strictly bound together
and instances within a batch are sampled solely along the temporal axis. We
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refer to this as graph-based batch sampling, e.g., a batch with a size of Bg is
a four-dimensional tensor X ∈ R

Bg×N×Th×F . In contrast, node-centric meth-
ods uniformly sample instances across both temporal and spatial dimensions.
In this case, nodes belonging to the same time period are viewed as different
instances. Consequently, the input to node-centric methods is disproportion-
ate to N and becomes X ∈ R

Bn×Th×F , where Bn � Bg × N . This property
plays a key role in allowing node-centric methods to have low GPU costs and
admirable scalability. Detailed studies are conducted to reveal the benefits of
this node-based batch sampling strategy in Sect. 5.4.

From Table 1, we can also observe that SimST-GRU achieves substantial
improvements over node-centric baselines in terms of performance, preprocessing
time, and inference time, verifying the versatility of our framework.

Fig. 3. An illustration of the SimST framework from the perspective of a node v.

4 The Proposed Framework

As illustrated in the preceding section, we have recognized the benefits of node-
centric methods, i.e., rapid inference time and reduced GPU memory consump-
tion, as well as their drawbacks, including inferior model performance and
lengthy preprocessing time. In this study, we reinvent previous node-centric
methods by proposing SimST, a simple yet effective framework that addresses
their weaknesses and also enhances their strengths. Specifically, in Sect. 4.1, we
detail our approach for modeling local proximity of nodes in the input space,
which leads to a notable reduction in preprocessing time. In Sect. 4.2, we present
our utilization of node embeddings – a simple yet powerful technique to enable
implicit node representation interactions, resulting in significant performance
improvements. Lastly, we illustrate temporal encoders for capturing temporal
dependencies and a predictor for generating the future in Sect. 4.3. Figure 3
depicts the architecture of SimST.

4.1 Local Proximity Modeling

SAE and GeoMAN require concatenating the histories of all other nodes for each
node, leading to considerable computational and memory expenses. DeepTrans-
port searches and records all possible travel paths up to the r-order of neighbors,
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which results in an exponential increase in paths for dense graphs. In this study,
we also consider spatial correlations in the input space. However, we adopt a
more efficient and flexible approach by (1) modeling only the proximity of each
node, unlike SAE and GeoMAN, and (2) using h-hop top-k neighbors to describe
the local context, which avoids path explosion.

Specifically, we limit the receptive field of each node v by concatenating only
its top-k neighbors within one hop and extending the range up to h-hops. Addi-
tionally, we take an average of all h-th hop neighbors’ histories to allow the
anchor node to absorb its context in the h-th hop. The selection of top-k neigh-
bors is based on the weights in the normalized matrix Ã, where Ã = D̃

−1
(A+I)

and D̃ is the degree matrix of A + I. The weights in A are derived from the
road network distances between sensors, and the neighbors are ordered based
on the weights. Moreover, we consider the neighbors in the reversed direction,
i.e., the entries in AT , so that the model can perceive the impact from for-
ward and backward neighbors. Let N h

f (v) and N h
b (v) denote the selected top-k

nodes in the h-th hop in two directions, Xh
avgf

and Xh
avgb

represent the aver-
age histories of all h-th hop neighbors. We construct the input feature matrix
X ′

v ∈ R
Th×(F+h×(2k+2)) of node v during period Th:

Xh
v = ({Xh

vf
: vf ∈ N h

f (v)}, {Xh
vb

: vb ∈ N h
b (v)},Xh

avgf
,Xh

avgb
) (1)

X ′
v = (Xv || X1

v || . . . || Xh
v ) (2)

Then, we consider the second dimension of X ′
v as the feature dimension and

apply an MLP to embed it to the latent space Hv ∈ R
Th×Dm , where Dm is the

model latent dimension.

4.2 Node Correlation Learning

Representing users with unique embeddings and learning with these embeddings
to capture behavioral similarities among users is a fundamental technique in
recommender systems [13,43]. Along a similar line, we argue that the traffic
situation of a sensor is largely influenced by its specific position on a road, e.g.,
on the mainline or on a ramp. This is an intrinsic, time-invariant property of the
sensor: hence, we propose to represent it using static sensor embeddings.

Concretely, we randomly initialize a low-dimensional embedding for each sen-
sor, leading to an embedding table E ∈ R

|V|×Dn , where Dn is the embedding
size. This sensor embedding is integrated with the latent representations Hv

derived from the sensor’s histories, such that the embedding serves as a consis-
tent signal, allowing the model to distinguish different sensors based on the input
traffic patterns. Consequently, nodes with inherently similar traffic patterns tend
to learn comparable node embeddings. We hypothesize that the spatial relation-
ships between arbitrary sensor pairs can be reflected in their embedding similar-
ities, which enables implicit node representation interactions. The term implicit
in this context denotes the achievement of relevant sensors having similar hidden
representations, but without performing the message passing step like in GNNs.
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We empirically verify our hypothesis in a case study conducted in Sect. 5.5, where
we show that the learned sensor embeddings contain rich information for sensor
relevance reasoning.

In addition, we notice that some graph-centric methods [2,36] also employed
node-specific parameters. However, these parameters are used in their graph
neural networks components, and ours can be viewed as their adaptation in the
node-centric scenario.

Complexity Comparison. We compare the complexity of spatial learning mod-
ules between SimST and STGNNs. For simplicity we assume the number of
features Dm is fixed for all L layers. For STGNNs applying the predefined adja-
cency matrix [10,20,32,40], the complexity is O(L|E|Dm +LND2

m). When using
the adaptive adjacency matrix that boosts performance [2,6,12,36], the com-
plexity becomes quadratic: O(LN2Dm + LND2

m). SimST has a complexity of
O(h|E| +NDnDm), where the first term represents proximity modeling and the
second term refers to correlation learning. SimST generally has lower complexity
compared to STGNNs in both predefined and adaptive scenarios, when using the
common parameter choices such as L = 3, Dm = 32, Dn = 20.

4.3 Temporal Encoder and Predictor

There are several viable options for building the temporal dependencies of a
node’s history. To demonstrate that SimST can be generalized to various tem-
poral models, we incorporate three basic and popular backbones in this study:
GRU [7], WaveNet [28], and Transformer [35]. Furthermore, we follow WaveNet
to introduce causality into the attention mechanism, leading to the design of the
Causal Transformer. This ensures that the model cannot violate the temporal
order of inputs and such causality can be easily implemented by masking the
specific entries in the attention map. Note that GeoMAN and DeepTransport
used LSTM as their temporal models, but we have chosen to adopt GRU, which
has fewer parameters and faster processing times.

Formally, the input of temporal encoder is the representations Hv ∈
R

Th×Dm . For GRU and WaveNet, they compress the temporal dimension to
1, generating the output hv ∈ R

Dm . Note that the resulting representation of
Transformer still has the same shape as Hv and we only take the last time step
as the output. Then we concatenate hv ∈ R

Dm of node v with its node embed-
ding e′

v ∈ R
Dm , which is from a non-linear transformation of ev ∈ R

Dn . Lastly,
we implement the predictor as a two-layer MLP for generating the forecasting
results of node v: Ŷ v = MLP(hv||e′

v) ∈ R
Tf . The mean absolute error is used

as the loss function.

5 Experiments

5.1 Experimental Setup

Datasets & Baselines. Table 2 presents the experimental datasets, the first five
of which are commonly used traffic benchmarks. We also incorporate a recently
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Table 2. Dataset statistics.

Dataset Nodes Edges Degree Instances

PeMSD4 [32] 307 338 1.1 16,992

PeMSD7 [32] 883 865 1.0 28,224

PeMSD8 [32] 170 276 1.6 17,856

LA [20] 207 1,515 7.3 34,272

BAY [20] 325 2,369 7.3 52,116

CA [25] 8,600 201,363 23.4 35,040

published large-scale traffic dataset CA [25] to assess the scalability of our
method. The time interval is 15 min for CA and 5 min for other data. Follow-
ing [6,20,32], we use 12-step historical data to predict the next 12 steps, and
build adjacency matrices using road network distances with a thresholded Gaus-
sian kernel [31]. See more information in Appendix A. We compare SimST with
the following baselines. Historical Average (HA) [29] and Vector Autoregression
(VAR) [34] are traditional methods. DCRNN [20], STGCN [40], ASTGCN [11],
GWNET [36], STSGCN [32], AGCRN [2] are well-known graph-centric meth-
ods. We also include recently published graph-centric methods: STGODE [10],
STGNCDE [6], GMSDR [22], and DSTAGNN [18].

Table 3. Performance comparisons. Test MAE, RMSE, and MAPE results are aver-
aged over all predicted time steps. We bold the best results and underline the second
best results. ∗ denotes the improvement of a SimST variant over the best baseline is
statistically significant at level 0.05. We copy the test results of the best-performing
node-centric baseline SAE here for a direct comparison.

Method PeMSD8 (N = 170) LA (N = 207) PeMSD4 (N = 307) BAY (N=325) PeMSD7 (N = 883)

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

HA 34.86 59.24 27.88% 4.16 7.80 13.00% 38.03 59.24 27.88% 2.88 5.59 6.80% 45.12 65.64 24.51%

VAR 19.19 29.81 13.10% 5.28 9.06 12.50% 24.54 38.61 17.24% 2.24 3.96 4.83% 50.22 75.63 32.22%

DCRNN 16.62 25.95 10.60% 3.14 6.28 8.65% 22.39 34.93 15.19% 1.63 3.65 3.70% 23.41 36.66 9.98%

STGCN 17.41 26.72 11.78% 3.39 6.79 9.34% 21.59 33.83 15.49% 1.88 4.30 4.28% 26.12 41.43 11.92%

ASTGCN 17.91 27.34 11.36% 3.57 7.19 10.32% 21.58 33.76 14.71% 1.86 4.07 4.27% 25.77 39.41 11.67%

GWNET 14.98 23.75 9.75% 3.06 6.10 8.38% 19.33 30.73 13.18% 1.58 3.54 3.59% 20.65 33.47 8.84%

STSGCN 17.13 26.80 10.96% 3.32 6.66 9.06% 21.19 33.65 13.90% 1.79 3.91 4.06% 24.26 39.03 10.21%

AGCRN 15.95 25.22 10.09% 3.19 6.41 8.84% 19.83 32.26 12.97% 1.62 3.61 3.66% 20.69 34.19 8.86%

STGODE 16.81 25.97 10.62% 4.73 7.60 11.71% 20.84 32.82 13.77% 1.77 3.33 4.02% 22.99 37.54 10.14%

STGNCDE 15.45 24.81 9.92% 3.58 6.84 9.91% 19.21 31.09 12.76% 1.68 3.66 3.80% 20.53 33.84 8.80%

GMSDR 16.36 25.58 10.28% 3.21 6.41 8.76% 20.49 32.13 14.15% 1.69 3.80 3.74% 22.27 34.94 9.86%

DSTAGNN 15.67 24.77 9.94% 3.27 6.57 9.07% 19.30 31.46 12.70% 1.63 3.56 3.73% 21.42 34.51 9.01%

SAE 16.95 26.35 12.34% 3.76 7.40 10.72% 22.22 34.59 15.60% 1.84 4.13 4.16% 24.79 38.61 10.87%

SimST-WN 15.55 24.70 10.17% 3.19 6.35 8.97% 19.56 31.24 13.38% 1.60 3.55 3.66% 20.81 33.94 8.87%

SimST-CT 15.13 24.18 9.73% 3.11 6.19 8.73% 19.32 30.98 13.35% 1.59 3.50 3.61% 20.63 33.71 8.70%

SimST-GRU 14.99 24.26 9.66% 3.16 6.29 8.82% 19.19 30.92 13.13% 1.57 3.47 3.58% 20.14∗ 33.34 8.46%

Implementation Details. SimST is implemented with PyTorch 1.12. There are
three SimST variants based on the applied temporal encoders. We describe the
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configurations for variants in Appendix B. The following settings are the same
for all variants. We train our method via the Adam optimizer with a learning
rate of 0.001 and a weight decay of 0.0001. We set the maximum epochs to 100
and use an early stop strategy with a patience of 20. The batch size Bn is 1,024.
The embedding size Dn is 20. The selections of h and k are in Appendix C. For
baselines, we run their codes based on the recommended configurations if their
accuracy is not known for a dataset. If known, we use their officially reported
accuracy. Experiments are conducted on an NVIDIA RTX A6000 GPU. The
code is available at: https://github.com/liuxu77/SimST.

5.2 Comparisons on Common Benchmarks

We conduct a model comparison between SimST variants and state-of-the-art
graph-centric methods on traffic benchmarks. The three variants of SimST are
SimST-GRU, SimST-WaveNet (WN), and SimST-Causal Transformer (CT).
According to the results in Table 3, all variants of SimST achieve competitive
performance on the three evaluation metrics of all datasets, which validates the
effective design of SimST and indicates SimST can generalize to various temporal
encoders. For comparison among SimST variants: note that for fairness we ensure
that the variants have a similar parameter size (around 150k). SimST-GRU gen-
erally achieves comparable performance to state-of-the-art graph-centric meth-
ods, i.e., GWNET and STGNCDE. SimST-CT also attains competitive accu-
racy, with little difference from SimST-GRU and GWNET. In summary, our
results demonstrate that node-centric methods can perform comparable to the
graph-centric methods with elaborate design.

Table 4. Efficiency comparisons between best-performing graph-centric baselines and
SimST variants. GPU: GPU memory consumption (GB). Infer: inference time (s) on the
validation set. We bold the fastest inference time. The Δ column means the inference
time improvements of SimST-WN over all other methods.

Method PeMSD8 (N = 170) LA (N = 207) PeMSD4 (N = 307) BAY (N = 325) PeMSD7 (N = 883)

GPU Infer Δ GPU Infer Δ GPU Infer Δ GPU Infer Δ GPU Infer Δ

GWNET 3.15 1.10 3.79× 3.52 1.22 3.30× 4.30 1.81 4.21× 4.45 3.02 3.55× 10.78 10.79 5.65×
AGCRN 2.96 2.07 7.14× 3.46 2.15 5.81× 4.66 2.18 5.07× 4.77 3.58 4.21× 11.74 12.66 6.63×
STGODE 2.96 4.92 16.97× 3.07 4.99 13.49× 3.87 6.11 14.21× 3.91 9.75 11.47× 7.64 24.88 13.03×
STGNCDE 2.68 9.80 33.79× 2.88 13.65 36.89× 3.46 15.55 36.16× 3.57 25.53 30.04× 6.71 73.97 38.73×
GMSDR 3.65 7.71 26.59× 5.48 11.52 31.14× 7.81 13.20 30.70× 8.21 22.05 25.94× 20.68 47.32 24.77×
DSTAGNN 8.82 1.68 5.79× 10.44 1.89 5.11× 15.14 2.83 6.58× 15.98 4.65 5.47× 37.80 22.59 11.82×
SimST-CT 2.10 0.45 1.55× 2.19 0.58 1.57× 2.37 0.74 1.72× 2.40 1.30 1.53× 3.57 3.40 1.78×
SimST-GRU 2.53 0.34 1.17× 2.65 0.45 1.22× 3.15 0.55 1.28× 3.23 0.96 1.13× 5.34 2.48 1.30×
SimST-WN 2.00 0.29 – 2.06 0.37 – 2.19 0.43 – 2.22 0.85 – 2.99 1.91 –

We select the top-performing baselines and compare their efficiency with
SimST variants in Table 4. It can be seen that all SimST variants are signifi-
cantly faster and have lower GPU usage than graph-centric methods, thanks to
their simple model architecture and low model complexity. Among the variants,

https://github.com/liuxu77/SimST.
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SimST-WN are the fastest due to WaveNet’s superior parallelism ability. SimST-
GRU also achieves good results, which we attribute to an optimized implemen-
tation in the PyTorch library. SimST’s preprocessing time for the five datasets
in Table 4 is {0.01, 0.03, 0.02, 0.07, 0.09} seconds, respectively (all variants share
the same time), which is significantly faster than traditional node-centric meth-
ods and can be considered negligible. See Appendix D for more results.

5.3 Comparisons on the CA Dataset

In this part, we conduct an empirical comparison between graph-centric base-
lines and SimST on the CA dataset to assess the scalability of the models in a
vast traffic network. We select SimST-GRU because it exhibits a good balance
between performance and efficiency. We reproduce the results reported in [25]
due to the usage of different experimental hardware.

Table 5. Performance and efficiency comparisons on the CA dataset. Test MAE,
RMSE, and MAPE are averaged over all predicted time steps. Pre: preprocessing time
(s) before inference. Infer: inference time (s) on the validation set. GPU usage is not
reported, as the baselines typically necessitate the complete occupancy of GPU.

Method CA (N=8,600)

MAE RMSE MAPE Pre Infer Δ

DCRNN 21.75 34.21 17.06% 0 897 14.70×
STGCN 21.53 36.64 16.11% 0 215 3.52×
GWNET 21.01 33.29 16.71% 0 560 9.18×
STGODE 20.56 36.53 16.07% 0 682 11.18×
SimST-GRU 19.26 32.07 14.78% 1.48 61 –

Table 5 showcases the performance and efficiency evaluation results. The
absence of baselines in the table indicates the models incur out-of-memory issue
even when configured with a batch size of 4 on a GPU with 48 GB memory. In
particular, while STGNCDE is capable of execution, its speed is prohibitively
slow, so we exclude it in this analysis. It can be seen that the CA dataset
poses significant challenges for the selected graph-centric baselines in this study,
as only four of them are capable of running on it. In contrast, SimST-GRU
not only efficiently scales to the CA dataset with fast inference speed, but also
exhibits superior model performance. The potential reasons for this discernible
performance gap are worth speculating. According to Table 2, the average node
degree of the CA dataset is notably higher compared to others. This results
in more intricate sensor relationships. Some nodes might have redundant or
irrelevant information, and distinguishing between meaningful and noisy spatial
correlations becomes more challenging in such scenario. Furthermore, within a
sprawling graph, pertinent information might be dispersed across nodes that are
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distant from each other. The limited receptive field of GNNs can impede the
model’s capacity to capture long-range dependencies.

5.4 Ablation Studies

We next select SimST-GRU and SimST-CT as the representatives (due to their
preferable performance) and conduct ablation and case studies on one flow
dataset PeMSD4 and one speed dataset LA.

Fig. 4. Effects of correlation learning (CL) and proximity modeling (PM) modules.

Effects of Spatial Learning Modules. We study the effects of two spatial
modules in Fig. 4 by considering the following settings: (1) w/o Correlation
Learning (CL): we turn off the CL module. (2) w/o Proximity Modeling
(PM): for each node, we only input its own historical data. (3) CT/GRU: we
do not perform spatial learning. First, we find that removing CL leads to sig-
nificant degradation of MAE for SimST-GRU and SimST-CT on both datasets,
revealing the great importance of enabling node interactions in the latent space.
Second, the benefit of PM is marginal on PeMSD4 due to the limited neighbor
information available, with the average degree of nodes being 1.1. In contrast,
LA has an average node degree of 7.3, where PM affects performance more.
Third, we notice that removing CL has a greater impact on PeMSD4 than on
LA. This is because the CL module can act as a complement to the PM function
when neighbor information is scarce. Conversely, when there are more neighbors
available, the effect of CL on performance becomes less significant. Moreover,
there is a recent research trend in traffic forecasting that focuses on modeling
dynamic spatial correlations [18,30,38]. To address this, we incorporate a time
embedding into our CL module to explore dynamic modeling within node-centric
methods. See results in Appendix C.

Effects of Node-Based Batch Sampling. This section shows how the node-
based sampling strategy can benefit SimST. First, we show the impact of Bn

in the first column of Fig. 5. Generally, SimST-GRU and SimST-CT reach their
best performance when setting Bn to 1,024 on the two datasets, verifying that a
large Bn reduces the noise in the gradient estimation and leads to a degenerated
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Fig. 5. Effects of the node-based batch sampling method on PeMSD4 (first row) and
LA (second row). Here we denote SimST-GRU as GRU and SimST-CT as CT. In the
first column, the largest values in the x-axis are computed by N× 64 (the common
batch size used in STGNNs [2,6,36]). In the second and third columns, the number in
the legend denotes B∗.

generalization [16]. Second, we present the influence of different batch-forming
methods, i.e., graph-based and node-based sampling by drawing the convergence
curves in the second and third columns. Note that we ensure fair comparisons
by setting the same actual batch size B∗ = Bg × N = Bn for graph-based and
node-based methods. In Fig. 5, it can be seen that node-based batch sampling
surpasses the counterpart. Concretely, node-based sampling is marginally supe-
rior to graph-based method when using a large B∗ (e.g., 19,648/13,248), as the
sample diversity in graph-based method is already plentiful at this time. How-
ever, decreasing B∗ to small values (e.g., 1,228/828), which is essential to boost
performance, makes the impact of sample diversity more pronounced, i.e., gen-
eralization performance is greatly improved [1], especially on PeMSD4. Also, we
find that the curves of node-based sampling are generally more stable than the
graph-based method.

5.5 Case Study

We explore further to understand what exactly the node embeddings have learned
through a case study that makes connections between embedding similarities and
real-world sensor locations. We apply SimST-CT on LA and BAY since only
these two provide sensors’ coordinates. Concretely, we first compute pairwise
cosine similarities between node embeddings, i.e., for vi, vj ∈ V, similarity =

Evi
·Evj

‖Evi‖2‖Evj‖2

, and pairwise geodesic distances between sensors based on their

coordinates. Then we calculate the average cosine similarities within the ranges
of 0–1, 1–5, 5–10, 10–20, and 20–35 km of all sensors, leading to a statistical
overview shown in Fig. 6 (left part). It can be seen that cosine similarity becomes
smaller when the geodesic distance gets larger. This result obeys Tobler’s First
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Fig. 6. A case study of learned sensor embeddings. The Count axis on the left part
means the number of sensor pairs in the corresponding ranges. The sum of the counts
is N2, and the trend of count is indicated by red line. On the right part, the star icons
are the anchor sensor, the circle icons denote the selected similar sensors, and the roads
colored in red are the freeways in California, USA. (Color figure online)

Law of Geography: near things are more related than distant things. Next, we
look at an example by selecting sensor 62 in LA as the anchor node, which
is located at the intersection of two freeways. We also visualize its top similar
neighbors based on cosine similarity in Fig. 6 (upper right). We find that (1)
13 and 58 are the nearby neighbors, which are also included in the adjacency
matrix. (2) 201 and 178 are distant nodes for sensor 62. They are considered
similar sensors because they are also located at intersections, and thus share
similar traffic patterns to the anchor. The situation in the BAY dataset is similar
to LA (shown in the lower right of Fig. 6), so we do not elaborate further.

6 Conclusion and Future Work

By reviewing the literature, we classify existing deep traffic forecasting tech-
niques into two categories: node-centric and graph-centric methods. We then
compare them through empirical evaluations and propose SimST, a simple
yet effective node-centric framework to tackle the shortcomings of existing
node-centric methods. Our extensive experiments demonstrate that node-centric
methods can attain comparable performance to graph-centric methods, encour-
aging the community to advance more robust node-centric techniques.

Although SimST demonstrates the ability to generalize to newly added sen-
sors, we note that it still requires fine-tuning for these new nodes and is not
fully inductive. As a next step, future research can focus on developing a spatio-
temporal model that operates in a completely inductive manner, allowing seam-
less integration of new nodes without the need for additional fine-tuning. Fur-
thermore, our empirical analysis has specifically focused on traffic forecasting
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using STGNNs. Some emerging Transformer-based methods [14,23] have not
been discussed in this study. In the future, we intend to incorporate these meth-
ods to broaden the scope of our discussion.
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Abstract. We study the problem of out-of-distribution (o.o.d.) gen-
eralization where spurious correlations of attributes vary across train-
ing and test domains. This is known as the problem of correlation
shift and has posed concerns on the reliability of machine learning. In
this work, we introduce the framework of direct and indirect effects
from causal inference to the domain generalization problem. Models
that learn direct effects minimize the worst-case risk across correlation-
shifted domains. To eliminate the indirect effects, our algorithm con-
sists of two stages: in the first stage, we learn an indirect-effect rep-
resentation by minimizing the prediction error of domain labels using
the representation and the class labels; in the second stage, we remove
the indirect effects learned in the first stage by matching each data
with another data of similar indirect-effect representation but of dif-
ferent class labels in the training and validation phase. Our approach is
shown to be compatible with existing methods and improve the gener-
alization performance of them on correlation-shifted datasets. Exper-
iments on 5 correlation-shifted datasets and the DomainBed bench-
mark verify the effectiveness of our approach. Our code is available at
https://github.com/Liyuhui-12/DRMforDG.

Keywords: Domain generalization · Out-of-distribution
generalization · Transfer learning

1 Introduction

Machine learning has achieved huge success in many fields, yet they mostly
rely on the independent and identically distributed (i.i.d.) assumption. When it
comes to an out-of-distribution (o.o.d.) test domain, machine learning models
usually suffer from a sharp performance drop [2,4,31]. The o.o.d. data typically
come in the form of correlation shift, where spurious correlations of attributes
vary between training and test domains, or diversity shift, where the shifted test
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Fig. 1. Test accuracy of o.o.d. algorithms on 5 correlation shift datasets and the
DomainBed benchmark (avg). The pink region shows the performance of our method,
and the light blue indicates the prior best results implemented by DomainBed using
training-domain validation (Color figure online).

distribution keeps the semantic content of the data unchanged while altering
the data style [50]. The focus of this work is on the former setting known as
correlation shift. That is, given stable causality and spurious correlations between
attributes, how to disentangle the stable causality and the spurious correlations
from the training data. Figure 1 shows the performance gain of our method on
the correlation shift datasets.

Much effort has been devoted to learning representations that are invariant
across training environments, where many works have introduced the tools from
causality to address the o.o.d. generalization problems. When the data are of
high dimension and multiple attributes are entangled, it is challenging to identify
invariant causality across domains. Many methods have been designed to resolve
the issue. Representative methods include incorporating invariance constraints
by designing new loss functions [2,5,18,24], learning latent semantic features
in causal graphs by VAE [25,27], and eliminating selection bias by matching
[29,47]. However, these methods, despite their theoretical guarantees, fail to show
empirical improvement over Empirical Risk Minimization (ERM) as verified by
the DomainBed benchmark [15,45].

This paper uses the tool of direct and indirect effects from causal inference to
analyze the correlation shift problem. Many existing works indicate that under
certain conditions, models that learn stable direct causal effects minimize the
worst-case risk across domain-shifted domains. To learn the direct effects, we
propose a two-stage approach: in the first stage, we use an extractor to infer
the indirect-effect representation Ẑ from the data X such that Ẑ and the class
Y can predict the domain label E through a discriminator head (see the blue
box in Fig. 2). In the second stage, we construct balanced batches by augment-
ing the original training batches and the validation set with data of the same
indirect-effect representation Ẑ but of a different class Y . We test our approach
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Fig. 2. Description of our two-stage approach. In Stage 1, we jointly learn a discrimi-
nator and an (indirect-effect) extractor by predicting the domain labels E. In Stage 2,
the extractor in Stage 1 is used to construct a balanced batch of samples with a sim-
ilar indirect-effect representation (Ẑ and Ẑ′) but different class labels Y , as well as a
balanced validation set which have no access to the test domain. A predictor is trained
on the balanced batch and validated on the balanced validation set to predict the class
labels. The flow of our method is represented by the blue and the yellow arrows. The
red and black arrows form the graphical model of the correlation shift problem (data
generation process). The red arrows represent the direct effect and the black arrows
represent the indirect effect.

on the DomainBed benchmark. On the correlation shift dataset Colored MNIST,
our model obtains an average accuracy of 71.2% over three domain generaliza-
tion problems. While the information-theoretic best accuracy on the Colored
MNIST dataset is 75%, our method achieves an accuracy as high as 69.7% in
the most difficult “−90%” environment. We also demonstrate that our validation
balancing approach can overcome the inconsistency of the validation distribu-
tion with the test distribution, which was shown to be an important reason for
the performance degradation of many existing approaches under the DomainBed
protocol. Moreover, we provide evidence that the foundation models can alleviate
the diversity shift problem but cannot solve the correlation shift problem well,
demonstrating that our approach closes the gap between foundation models and
domain generalization to some extent. Our method can be combined with exist-
ing domain generalization methods to significantly improve their performance
on correlation shift datasets. Our main contributions are as follows:

• We present a framework to analyze the correlation shift problem based on
direct/indirect causal effects.

• We propose a new approach to improve o.o.d. generalization by alleviating
the correlation shift problem. We recover the indirect-effect representation
and eliminate the indirect effect during training and validation. We also show
that our model selection method can largely overcome the model selection
problem caused by the inconsistency between the validation and the test
distribution. Our approach can be easily compatible with other algorithms
and substantially improve their performances.
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Fig. 3. The causal graph of correlation shift problems. The red arrow represents the
stable direct effect, while the Y → L → Z → X pathway represents the indirect effects
that changes as the environment changes, which is what we want to remove. (Color
figure online)

• Our method outperforms baselines by a large margin on the correlation-
shifted datasets. For example, our approach achieves up to 15% absolute
improvement on the Colored MNIST dataset and up to 11% absolute improve-
ment on the CelebA datasets over the state-of-the-art in terms of average
accuracy over three domains.

2 Preliminaries

Notations. We use capital letters (X, Y , Z) for random variables, lower-case
(x, y, z) for their realizations, and hat (Ẑ) for model-inferred variables. The
calligraphic capital E signifies the set of environments, while lower-case e denotes
domain labels. X ⊥⊥ Y indicates X and Y are independent. De and P

e represent
the distribution and its probability density function (PDF) in environment e.
Variables with the superscript e (e.g., xe) are sampled from the distribution of
environment e, and (xe

i , l
e
i , e) refers to an instance sampled from De, in which lei

is the class label that may have been affected by the noise. We denote by H the
hypothesis class of models, by h : X → Y the predictor, and by Re(h) its risk in
environment e. We use environment and domain interchangeably.

2.1 Correlation Shift

We consider the correlation shift problem in this paper. In a supervised learning
setting, the goal is to learn the labeling function f : X → Y, which is consistent in
all environments. However, there often exists a variable set Z such that there are
spurious correlations between Z ∈ Z and the ground truth Y . When the spurious
correlation changes with the environment, the model that utilizes the spurious
correlation may face a performance breakdown in the new test environment.
Spurious correlations may originate from the data generation process or selection
bias, which is very common in reality. We define the correlation shift as follow,
which is consistent with that in [50].

Definition 1 (Correlation shift). Assume that we have a training environ-
ment eS ∈ Etrain and a test environment eT ∈ Etest, whose probability density
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functions are P
eS and P

eT , respectively. Assume that PeS (y) = P
eT (y) for every

y ∈ Y, and that eS and eT share the same labeling function. Then there exists
correlation shift between eS and eT if there exists a set Z such that

∑

y∈Y

∫

Z
|PeS (z|y) − P

eT (z|y)|dz �= 0,

where P
eS (z) × P

eT (z) �= 0.

By definition, we consider a direct acyclic graph (DAG) describing the data
generation process with label noise (see Fig. 3), where the pathways from Y to X
are composed of two parts: Y → X and Y → L → Z → X. In causal inference,
the former is referred to as the direct effect of Y on X, while the latter is referred
to as the indirect effect. Z is a child of the environment E, which leads to the
indirect effects varying with the environment. In a supervised learning setting,
models are trained to learn the reversed process of the data generation process,
i.e.X → Y or X → Z → L → Y . Many existing theoretical works (such as [10])
have demonstrated that to obtain models that can generalize across different
domains under correlation shift, we need to cut off the indirect effect pathway
and force the model to learn the reversed mapping of the robust direct effects.

It’s important to note that typically, there is only a correlation between the
ground truth Y and the mediator Z. For instance, the presence of a cow does
not imply the presence of grass. Yet, in the view of models, this correlation can
be seen as an indirect causal effect without human knowledge. With this view,
all confounders between Y and X are captured by Z, eliminating any unblocked
backdoor pathways [34] between them. Our data generation process description
under correlation shifts and the DAG align with recent studies such as [47].

An example. Consider a binary classification problem of cows and camels
(see Fig. 3). We assume that the animal category Y and background Z are the
two attributes that contribute to the generation of an image X. Our goal is to
predict the animal category Y from image X. The image X is the result of the
total effect of the two attributes. We assume that the value of Y is changed
from “camel” to “cow” during the data generation process. So the animal in the
image X is changed to “cow” (the red arrow in Fig. 3). Meanwhile, the cow is
more likely to be on the grass, while the camel is more likely to be in the desert.
Therefore, Z may change from “desert” to “grass” as the animal category Y and
the label L changes, changing the background in the image X. This process is
represented by the Y → L → Z path in Fig. 3, where the class label L is just
the ground truth Y that has been affected by the label noise NL.

2.2 Problem Setting

We consider a standard domain generalization setting, where the data come from
different environments e ∈ Eall. Assume that we have the training data collected
from a finite subset of training environments Etrain, where Etrain ⊂ Eall. For
every environment e ∈ Etrain, the training dataset {(xe

i , l
e
i , e)}Ne

i=1 is sampled



44 Y. Li et al.

from the distribution De, where Ne is the number of training data in environment
e. The PDF of the distribution is P

e(Xe, Le) = P(X,L | E = e), where X is
the instance (e.g., an image), L is the class label, and E is the domain label.
The goal of domain generalization is to train a model with data from training
environments Etrain that generalizes well to all environments e ∈ Eall. Our goal is
to find a predictor h∗ : X → Y in the hypothesis class H such that the worst-case
risk is minimized:

h∗ = argmin
h∈H

max
e∈Eall

Re(h), (1)

where Re(h) is the risk of predictor h in environment e.
Many existing works, such as [10], focus on theoretically analyzing the rela-

tionship between causal classifiers and worst-case risk, which indicate that the
model learning the stable direct effects is robust when the environment changes,
i.e. a minimax solution of Eq. 1. Built upon these theoretical analyses, our work
focuses on how to enable the model to learn the direct effects in the data. It is
desirable to cut off the pathway between Z and L so that they are independent.
To this end, we designed a novel framework with improved training process and
model selection.

3 Method

3.1 Recovering Indirect Effects

Since the variable Z on the indirect-effect pathway is often not observable, we
design an extractor to recover the representation Ẑ of the indirect effect from X
by learning a discriminator head in the first stage. From Fig. 3, we observe that
the indirect-effect representation Z and the class label L form a Markov blanket
for the domain label E, which means that E is independent of other variables
given L and Z. Hence the discriminator head needs Z and L to predict E. If we
take the output of the extractor and L as the input of the discriminator head,
the discriminator head will force the extractor to recover Z from X. Specifically,
assume that the dataset is sampled from NS training domains. We set up an
extractor G(·;ΘG) : X → Z and a discriminator head D(·, ·;ΘD) : Z × L →
[0, 1]NS that outputs the probability that a sample belongs to each training
domain, and update the parameters of both models by minimizing the prediction
error of domain label e:

Θ∗
G, Θ∗

D := argmin
ΘG,ΘD

Ex,y,eCE(D(G(x;ΘG), l;ΘD), e), (2)

where CE is the Cross Entropy loss, ΘG and ΘD stand for the parameters of
the extractor G and the discriminator head D, respectively, and (x, l, e) is a
training sample. We use the learned extractor to obtain the representation ẑe

i =
G(xe

i ;Θ
∗
G) for every instance (xe

i , l
e
i , e).

Many methods learned domain discriminators by a minimax problem
[1,14,22]. These methods extracted features that could maximize the domain
discriminator error. In our approach, on the other hand, the representation vec-
tor Ẑ is obtained by minimizing the domain discrimination error. This makes
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Table 1. The changes of joint distribution of Z and Y after balancing in the “80%”
domain of CMNIST.

Y Z Before Balancing After Balancing

1 1 0.4 0.4+0.1α
1+α

1 0 0.1 0.1+0.4α
1+α

0 1 0.1 0.1+0.4α
1+α

0 0 0.4 0.4+0.1α
1+α

our model easier to optimize and more stable than a minimax game. Moreover,
many other methods predict the domain label directly from the image, while our
method uses a carefully designed order of inputting images x and class labels l,
leveraging the Markov blanket property. This design enables us to extract the Ẑ
that truly represents Z and successfully reduce the correlation between Z and
Y , as shown in Fig. 5 and Fig. 8, thereby leading to performance improvements.

3.2 Eliminating Indirect Effects in Training (TB)

In the model training stage, we remove the indirect effects from the data by
creating balanced batches based on the representation Ẑ, which is referred to as
TB in the following. We start by defining the balanced batch.

Definition 2 (Balanced Batch). For any sample in a balanced batch, denoted
by (xe

i , l
e
i , e, ẑ

e
i ), there exists a corresponding sample (xe

j , l
e
j , e, ẑ

e
j ) with probabil-

ity P , such that ẑe
i = ẑe

j , lei �= lej , and PBatch(L) = PD(L), where PBatch(L)
and PD(L) are marginal probability density functions of L in the batch and the
training set, respectively.

Ideally, for each sample xi, we can find a corresponding sample xj with the same
indirect-effect representation ẑe

i = ẑe
j . However, we cannot always find exactly

equal ẑ as in the ideal case. To resolve this problem, for each sample (xe
i , l

e
i , e, ẑ

e
i ),

we search for another sample (xe
j , l

e
j , e, ẑ

e
j ) such that ẑe

j is the nearest neighbor
of ẑe

i . To ensure that the marginal distribution of label L does not change, we
include the matched sample into the batch with a probability that depends on
the proportion of each class of samples in the training set.

Taking the cow and camel classification problem in Fig. 3 as an example,
for each cow image in the batch, we search for a camel image with the same
background, e.g., a camel standing on grass for a cow standing on grass, as
well as a cow image with the same background for each camel image. Thus our
training batches consist of pairs of images. We train the model on balanced
batches constructed as described above.

A Toy Example. “80%” domain in CMNIST can be a simple example to intu-
itively explain why the balancing can reduce spurious correlations. We denote
by Y ∈ {0, 1} the label and by Z ∈ {0, 1} the color. Assuming that a propor-
tion α of the samples are successfully matched with their corresponding samples,
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Algorithm 1. Direct-Effect Risk Minimization (DRM)
Input: Training set D; validation set V ; initial predictor fθ0 ; training steps T ; check-
point frequency C; learning rate ε;
Output: Predictor fθT ;
1: Update ΘG, ΘD and get Θ∗

G, Θ∗
D by the following equation:

Θ∗
G, Θ∗

D := argmin
ΘG,ΘD

Ex,y,eCE(D(G(x;ΘG), l;ΘD), e);

2: Vb ← {}; # balanced validation set
3: for (xe, le) in V do
4: ẑe ← G(xe;Θ∗

G);
5: Search V for (xe

b, l
e
b) with the closest ẑe

b to ẑe, and le �= leb ;
6: Add (xe, le), (xe

b, l
e
b) to Vb;

7: end for
8: t ← 0;
9: while t ≤ T do

10: Sample a batch B = {(xe
i , l

e
i )}batchsize

i=1 from D;
11: for (xe, le) in batch do
12: ẑe ← G(xe;Θ∗

G);
13: Search D for (xe

b, l
e
b) with the closest ẑe

b to ẑe, and le �= leb ;
14: Add (xe

b, l
e
b) to B;

15: end for
16: Run ERM or other algorithms on B and update fθt ;
17: if C|t then
18: Evaluate model on balanced validation set Vb;
19: end if
20: t ← t + 1;
21: end while

i.e., those with the same Z but a different Y . The joint distribution of Z and
Y changes as shown in the following Table 1. Before balancing, it can be easily
calculated that the Pearson correlation coefficient (PCC) ρZ,Y = 0.6, while the
post-balancing PCC becomes:

ρZ,Y =
Cov(Z, Y )

σZσY
=

0.4+0.1α
1+α − 0.25

0.25
= 0.6 × 1 − α

1 + α
.

The value of the correlation coefficient monotonically decreases when α ∈ [0, 1].
Therefore, given that our algorithm has successfully extracted the representation
of color Ẑ in the first stage, the spurious correlation decreases as the propor-
tion of successful matches increases. We demonstrate in Fig. 5 that in real-world
datasets, balancing can actually reduce spurious correlations.

3.3 Model Selection (VB)

DomainBed [15] highlights that using random hyperparameter search affects
method performance, particularly for correlation-shifted datasets. Researchers
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Fig. 4. The inconsistency of validation set accuracy and test set accuracy during the
training process. (a) is for IRM, (b) is for VREx, and (c) is for CORAL.

should disclaim oracle-selection results and restrict access to the test domain. In
domain generalization, training and testing domain distributions differ notably,
and there is a large performance gap between selecting a model on the test and
the training domain distribution. Figure 4 demonstrates that training-domain
validation often leads to inconsistent validation and test accuracies. High-
validation-accuracy checkpoints might underperform on the test set. The random
hyperparameter search implemented by DomainBed avoids test domain access,
so its reported results for some methods might be lower. A key reason for this
performance drop, we postulate, is the misleading spurious correlation in the
validation set, since models relying on this cannot generalize to test domains
with opposite correlations.

Given the inconsistency, our DRM framework incorporates a novel model
selection method using the mentioned balancing approach, termed VB in sub-
sequent sections. We generate balanced validation sets as previously described.
The validation data, sourced from training domains, aligns with the training-
domain validation protocol of DomainBed, ensuring no model access to the test
set.

In our primary results (Table 2), we run ERM on balanced batches and eval-
uate the models on balanced validation sets (ERM+VB+TB). Notably, our VB
and TB methods can be integrated with numerous existing methods, enhancing
their performance. We show these results in Table 3. Our experiments adhered to
the DomainBed protocol, and for fairness, we compared DRM only with methods
adhering to the same protocol without test domain access.

The pseudo-code description of the whole DRM framework is shown in
Algorithm 1.

4 Experiments

We compare DRM with 16 baseline methods: ERM [44], IRM [2], GroupDRO
[40], Mixup [49,51], MLDG [20], CORAL [43], MMD [22], DANN [14], CDANN
[23], MTL [6], SagNet [32], ARM [53], VREx [18], RSC [17], CAD & CondCAD
[39], CausIRL with CORAL or MMD [9], EQRM [12], SWAD [8], and EOA [3],
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sourced from the DomainBed benchmark [15]. We assess DRM on correlation-
shifted datasets categorized by [48,50], with spurious correlations between class
labels and features, e.g., image background. Generalizing to the test domain
can be challenging due to possible spurious-correlation flips between training
and testing. While i.i.d. algorithms like ERM significantly drop in such cases,
DRM demonstrates enhanced performance. Adhering to DomainBed’s proto-
col in all stages, we conducted random hyperparameter searches and utilized
DomainBed’s codebase for method evaluations. Further experiment details are
in the Appendix.

4.1 Datasets

We evaluate our approach on CMNIST dataset, 3DShapes dataset, DSprites
dataset, and CelebA dataset, which are common correlation shift datasets used
to evaluate domain generalization methods [40,48,50].

Colored MNIST [2,19] introduces a spurious correlation between colors and
digits, using red or green coloring. The color-label correlations in three environ-
ments are +90%, +80%, and −90%. For instance, in the +90%" environment,
90% of images labeled 1 are red, while 90% labeled 0 are green. The dataset
also flips 25% of class labels, leading to a 75% shape-label correlation, which is
less than the color-label correlation. Thus, an i.i.d. learning method like ERM
is biased towards learning color-label correlations. For a broader and realistic
evaluation, we introduce another four correlation shift datasets: 3DShapes [7],
DSprites [30], CelebA-HB, and CelebA-NS [26]. Their stable and spurious fea-
tures are “floor hue” and “orientation”, “Position X” and “Position Y”, “No Beard”
and “Wearing Hat”, and “Smiling” and “Wearing Necktie”, respectively. Dataset
specifics are in the Appendix.

While focusing on the correlation shift, we also experiment on the diversity-
shifted datasets in DomainBed, such as PACS [21] and Office-Home (O-H) [46],
to confirm that DRM does not hurt model performance on such datasets. We
regard diversity shift as a distinct domain generalization problem from corre-
lation shift, aligning with [50]. For instance, a diversity shift example is when
training images are art paintings and cartoons, but test images are photos. Our
results indicate that ERM faces greater performance drops on correlation-shifted
datasets than on diversity-shifted ones in the o.o.d. scenario, suggesting differ-
ent remedy approaches. While foundation models trained with vast data perform
well in the latter case, our paper offers a solution for the former.

Notably, the domain shift type is not tied to whether a dataset is real-world.
Both CelebA-NS and CelebA-HB in our paper are real-world datasets with cor-
relation shifts. Such shifts often stem from selection bias in real-world settings,
as simulated by the CelebA datasets. However, due to shuffling of datasets in
research, the presence of this selection bias is often overlooked, despite its sig-
nificance.
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Fig. 5. The spurious correlation before & after balancing.

4.2 Results

Table 2 shows the performance of our approach under correlation shift. Fol-
lowing the DomainBed protocol, ERM and domain generalization algorithms
reported by DomainBed exhibit a notable performance decline during tests with
reversed correlation compared to training. Their accuracies align closely, mirror-
ing CMNIST results in DomainBed [15]. For CMNIST, where the information-
theoretic optimal accuracy is 75% given the 25% noise, ERM and other
algorithms achieve no more than 10.5% in the challenging “−90%" setting-
significantly below random guessing. Conversely, our DRM method reaches
69.7% accuracy, surpassing others by almost 60%. Additionally, our method
maintains its effectiveness in the “+90%” and “+80%” domains. On average,
DRM surpass ERM by 20% and the leading prior method by 15%. This perfor-
mance remains consistent across other datasets. Our method leads by roughly
50% in the toughest domain and offers over 15% improvement for correlation
shift problems.

Results Interpretation. We attribute the enhanced performance of DRM to
its capacity to substantially reduce spurious correlations in both training and
validation sets, even on more realistic datasets, as illustrated in Fig. 5. Figure 6
presents eight examples of balanced CMNIST image pairs. In these pairs, a label-
1 image with a red background pairs with a label-0 image with a red background,
and a label-0 image with a green background pairs with a label-1 image with
a green background. This design diminishes the correlation between color and
label. Consequently, models trained with balanced data exhibit improved o.o.d.
generalization capabilities.

Ablation Study. Our approach, focused on enhancing the sampling phase,
allows easy integration of training set balancing (TB) and validation set bal-
ancing (VB) with other algorithms. We examine the contributions of VB and
TB in our approach, with results presented in Table 3. Both TB and VB sig-
nificantly boost the o.o.d. performance of the original methods, underscoring
their effectiveness and importance within our general framework for addressing
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Table 2. Experimental results on the correlation-shifted datasets, where the experi-
ments are run by following the DomainBed setting. Min and Avg are the minimum
value and the average accuracy for all test environments, respectively. The benchmark
results on CMNIST are copied from DomainBed [15], while other benchmark results
are obtained by running the DomainBed code.

Copied from [15] Results Obtained Using the DomainBed Code [15]

Algorithm
CMNIST 3DShapes DSprites CelebA-HB CelebA-NS

Min Avg Min Avg Min Avg Min Avg Min Avg

ERM 10.0 ± 0.1 51.5 ± 0.1 10.1 ± 0.1 53.3 ± 0.1 13.8 ± 0.5 54.0 ± 0.1 16.8 ± 1.2 52.0 ± 0.5 21.1 ± 0.4 52.7 ± 0.5
IRM 10.2 ± 0.3 52.0 ± 0.1 10.0 ± 0.0 53.2 ± 0.1 14.5 ± 0.3 54.0 ± 0.1 20.4 ± 2.1 52.1 ± 0.7 21.5 ± 0.9 53.2 ± 0.4
GroupDRO 10.0 ± 0.2 52.1 ± 0.0 10.5 ± 0.4 53.4 ± 0.1 15.0 ± 0.4 54.4 ± 0.2 18.3 ± 1.5 52.8 ± 0.9 21.2 ± 0.2 53.3 ± 0.2
Mixup 10.1 ± 0.1 52.1 ± 0.2 10.2 ± 0.1 53.4 ± 0.2 14.0 ± 0.3 53.9 ± 0.0 17.9 ± 3.4 52.4 ± 1.1 22.2 ± 1.5 53.7 ± 0.7
MLDG 9.8 ± 0.1 51.5 ± 0.1 10.1 ± 0.1 53.5 ± 0.1 14.3 ± 0.3 54.2 ± 0.1 20.0 ± 2.1 53.0 ± 0.7 22.7 ± 1.7 53.7 ± 0.6
CORAL 9.9 ± 0.1 51.5 ± 0.1 10.0 ± 0.0 53.3 ± 0.1 13.8 ± 0.2 53.9 ± 0.2 17.7 ± 1.6 52.4 ± 0.6 22.1 ± 1.1 53.4 ± 0.4
MMD 9.9 ± 0.3 51.5 ± 0.2 10.0 ± 0.1 53.2 ± 0.1 14.4 ± 0.0 51.4 ± 2.1 17.4 ± 1.8 50.7 ± 0.5 22.5 ± 0.6 53.3 ± 0.1
DANN 10.0 ± 0.0 51.5 ± 0.3 10.0 ± 0.0 53.3 ± 0.0 14.7 ± 0.3 54.1 ± 0.3 16.9 ± 1.7 51.7 ± 0.3 21.8 ± 1.5 53.7 ± 0.8
CDANN 10.2 ± 0.1 51.7 ± 0.1 10.0 ± 0.0 53.3 ± 0.1 14.4 ± 0.2 54.0 ± 0.1 18.6 ± 2.6 52.5 ± 0.6 22.5 ± 1.2 53.9 ± 0.4
MTL 10.5 ± 0.1 51.4 ± 0.1 10.1 ± 0.0 53.4 ± 0.1 14.8 ± 0.5 54.3 ± 0.1 23.5 ± 1.4 53.7 ± 0.6 27.6 ± 1.2 54.9 ± 0.3
SagNet 10.3 ± 0.1 51.7 ± 0.0 10.1 ± 0.1 53.4 ± 0.1 13.6 ± 0.1 54.0 ± 0.0 14.9 ± 0.9 50.4 ± 0.3 22.0 ± 0.6 53.1 ± 0.2
ARM 10.2 ± 0.0 56.2 ± 0.2 10.0 ± 0.0 55.2 ± 0.3 14.5 ± 0.6 59.7 ± 0.4 22.8 ± 2.3 54.1 ± 0.6 21.1 ± 1.4 53.0 ± 0.5
VREx 10.2 ± 0.0 51.8 ± 0.1 10.8 ± 0.3 53.5 ± 0.1 13.8 ± 0.3 53.9 ± 0.1 19.2 ± 1.9 52.5 ± 0.7 20.3 ± 0.4 53.2 ± 0.3
RSC 10.0 ± 0.2 51.7 ± 0.2 10.1 ± 0.1 53.2 ± 0.1 13.3 ± 0.2 53.8 ± 0.1 18.9 ± 1.1 52.5 ± 0.5 23.7 ± 0.8 54.3 ± 0.5
CAD 10.4 ± 0.1 51.9 ± 0.1 10.1 ± 0.0 53.3 ± 0.1 13.3 ± 0.2 54.1 ± 0.2 20.1 ± 2.3 52.1 ± 1.3 22.9 ± 0.8 53.7 ± 1.5
CondCAD 9.7 ± 0.1 51.9 ± 0.1 10.1 ± 0.1 53.3 ± 0.1 15.4 ± 0.2 54.3 ± 0.1 16.1 ± 0.4 51.7 ± 0.6 23.9 ± 0.5 54.1 ± 0.3
CausIRLCORAL 10.0 ± 0.0 51.8 ± 0.1 10.1 ± 0.0 54.1 ± 0.1 15.8 ± 0.3 54.1 ± 0.1 17.8 ± 1.3 52.5 ± 0.6 22.3 ± 0.3 52.9 ± 0.2
CausIRLMMD 10.3 ± 0.1 51.5 ± 0.1 10.1 ± 0.0 40.7 ± 1.8 44.4 ± 3.1 53.7 ± 2.0 18.4 ± 0.7 52.3 ± 0.3 23.5 ± 0.6 53.8 ± 0.5
EQRM 10.3 ± 0.1 52.3 ± 0.1 10.3 ± 0.0 53.1 ± 0.. 16.0 ± 0.6 54.2 ± 0.2 17.9 ± 1.3 52.2 ± 0.7 20.6 ± 0.2 53.1 ± 0.2
SWAD 13.1 ± 1.9 52.7 ± 0.6 10.1 ± 0.0 53.2 ± 0.1 15.0 ± 0.3 53.9 ± 0.1 18.7 ± 0.1 51.2 ± 0.8 22.9 ± 0.2 54.0 ± 0.2
EOA 10.1 51.0 10.0 53.1 16.8 54.3 14.4 52.5 21.5 53.9
DRM (ours) 69.7 ± 1.5 71.2 ± 0.6 74.5 ± 0.2 74.8 ± 0.1 73.3 ± 0.5 73.8 ± 0.2 61.0 ± 4.9 66.1 ± 0.6 59.9 ± 2.6 65.4 ± 1.2

correlation shift issues. VB, in particular, reveals potential in leveraging existing
methods such as IRM, enabling them to substantially outperform ERM when
VB is added. Employing both VB and TB further enhances the performance
of existing methods. ERM performs well in this case because VB and TB have
largely eliminated spurious correlations.

Accuracy Curves Analysis. Many domain generalization methods design new
loss functions by incorporating invariant constraints, such as IRM and VREx,
which leads to a very unstable training process. In contrast, as shown in Fig. 7,
the fluctuation of the accuracy curve of our DRM in the training phase is rela-
tively small. The validation accuracy of our method is basically consistent with
the test accuracy, showing the same trend in the figure.

4.3 Foundation Models and O.o.d. Generalization

The significance of data scale is evident in domain generalization. We demon-
strate that models trained with vast data perform well on diversity-shifted
datasets, but show little improvement on correlation-shifted ones. We evalu-
ate using the Colored MNIST and CelebA-HB for correlation shift, and PACS
and Office-Home for diversity shift. Experiments with the large-scale pre-trained
models CLIP [37] and EVA [13] were conducted through linear probing. Table 4
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Fig. 6. Eight examples of balanced CMNIST image pairs.

Fig. 7. Accuracy curves of IRM and our DRM with different random seed for hyper-
parameter search.

reveals CLIP (ViT-L [11]) and EVA (ViT, 1B parameters) in the o.o.d. sce-
nario surpass ResNet-50 in the i.i.d. scenario for PACS and Office-Home. This
indicates increasing data scale, parameters, and refining model architecture can
mitigate the diversity shift problem. Yet, they cannot generalize well in the cor-
relation shift scenario. Therefore, we believe that our approach closes the gap
between foundation models and domain generalization to some extent.

4.4 Visual Explanation

We visualize results using the CelebA-HB and CelebA-NS datasets. For CelebA-
HB, the indirect effect is the pathway between the spurious feature and label,
which is “Wearing Hat” and “No Beard”, respectively. For CelebA-NS, the indirect
effect is the pathway between “Wearing Necktie” and “Smiling”.
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Table 3. Ablation study for CMNIST, DSprites, and CelebA-HB. VB stands for bal-
ancing during validation, while TB stands for balancing during training.

Algorithm
CMNIST DSprites CelebA-HB

Min Avg Min Avg Min Avg

ERM 10.0 ± 0.1 51.5 ± 0.1 13.8 ± 0.5 54.0 ± 0.1 16.8 ± 1.2 52.0 ± 0.5
ERM+VB 30.7 ± 1.1 58.2 ± 0.7 35.1 ± 2.2 61.1 ± 1.5 37.4 ± 1.6 59.1 ± 0.4
ERM+VB+TB 69.7 ± 1.5 71.2 ± 0.6 73.3 ± 0.5 73.8 ± 0.2 61.0 ± 4.9 66.1 ± 0.6

IRM 10.2 ± 0.3 52.0 ± 0.1 14.5 ± 0.3 54.0 ± 0.1 20.4 ± 2.1 52.1 ± 0.7
IRM+VB 40.1 ± 5.2 61.4 ± 1.7 50.1 ± 7.7 66.1 ± 3.2 47.4 ± 4.1 61.5 ± 1.6
IRM+VB+TB 67.6 ± 1.5 69.5 ± 0.4 71.3 ± 1.0 73.0 ± 0.6 65.7 ± 1.6 66.9 ± 0.3

VREx 10.2 ± 0.0 51.8 ± 0.1 13.8 ± 0.3 53.9 ± 0.1 19.2 ± 1.9 52.5 ± 0.7
VREx+VB 49.9 ± 5.0 65.1 ± 3.2 52.3 ± 7.9 66.8 ± 5.1 46.8 ± 2.3 61.4 ± 1.4
VREx+VB+TB 68.3 ± 0.3 70.6 ± 0.2 72.9 ± 0.4 73.6 ± 0.2 61.8 ± 3.0 65.8 ± 1.0

CORAL 9.9 ± 0.1 51.5 ± 0.1 13.8 ± 0.2 53.9 ± 0.2 17.7 ± 1.6 52.4 ± 0.6
CORAL+VB 33.2 ± 0.7 59.2 ± 0.3 28.8 ± 2.2 59.0 ± 1.3 47.3 ± 1.9 61.6 ± 0.9
CORAL+VB+TB 68.0 ± 0.8 70.7 ± 0.3 71.9 ± 1.0 73.3 ± 0.7 60.2 ± 4.6 64.8 ± 1.9

CDANN 10.2 ± 0.1 51.7 ± 0.1 14.4 ± 0.2 54.0 ± 0.1 18.6 ± 2.6 52.5 ± 0.6
CDANN+VB 45.9 ± 10.5 63.8 ± 4.6 48.7 ± 6.8 65.7 ± 3.2 48.4 ± 2.7 62.1 ± 1.2
CDANN+VB+TB 66.4 ± 0.7 69.2 ± 0.1 73.0 ± 0.1 73.7 ± 0.3 59.4 ± 3.1 65.6 ± 0.9

Analysis of Indirect Effect Representation. Using t-SNE [28], we reduce
dimension of Ẑ to 2, as depicted in Fig. 8. Data points with identical spurious
features cluster, indicating that Ẑ aptly represents the spurious feature, thus our
methods can match samples correctly during training and validation.

Attention Map. In Fig. 9, we present the attention maps of the last convolution
layer for ERM (the first row) and DRM (the second row). The model trained
by ERM focuses on the spurious feature “Wearing Hat” and “Wearing Necktie”,
while the model trained by DRM focuses on the stable feature “No Beard” and
“Smiling”.

5 Related Works

Domain Generalization with Causality. Numerous studies have integrated
causality inference tools into domain generalization. Causality has been shown
to be robust across domains [35]. Some studies identify extractable causal factors
[41,42] and link causality to generalization [10]. [33] defined natural direct effects.
Though this concept appeared in earlier works [16,36,52], no work analyzed
domain generalization using this framework.

Matching Based Methods. Matching eliminates selection bias in causal infer-
ence by pairing similar instances [38]. [29,47] presented unsupervised matching
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Table 4. Results of different methods on typical correlation and diversity-shifted
datasets. O-H represents Office-Home.

OOD Method
Correlation Shift Diversity Shift

CMNIST CelebA-HB PACS O-H

� ERM (RN50) 86.6 83.6 96.3 80.4
� ERM (RN50) 51.5 (−35.1) 52.0 (−31.6) 85.5 66.5
� CLIP (RN50) 48.9 (−37.7) 55.8 (−27.8) 64.1 48.3
� CLIP (ViT-B) 52.2 (−34.4) 54.8 (−28.8) 95.7 82.3
� CLIP (ViT-L) 52.5 (−34.1) 53.8 (−29.8) 98.4 88.3
� EVA (ViT-1B) 51.3 (−35.3) 53.6 (−30.0) 98.7 90.7
� DRM (RN50) 71.2 (−15.4) 66.1 (−17.5) 84.8 65.7

Fig. 8. Visualization of 2D t-SNE result of Z. Different colors represent different spu-
rious features, “Wearing Hat” vs. “No Hat”, or “Wearing Neckline” vs. “No Neckline”.
Each subfigure represents the results of two training domains when “−90%” is the test
domain, which is the most difficult to generalize.

Fig. 9. Attention maps of ERM and our method, respectively. The left half is on the
CelebA-HB dataset. The right half is on the CelebA-NS dataset.

and propensity score matching methods. Our method also involves mini-batch
balancing (matching) in its second stage. However, in the first stage, we derive
an indirect-effect representation through a domain discriminator and introduce
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a balancing-based model selection method. These unique features enhance the
efficacy of our method compared to previous approaches.

6 Conclusion

In this paper, we introduce direct and indirect effects from causal inference
to domain generalization. We propose a method to extract the indirect-effect
representation and remove the indirect effects during training. We also introduce
a novel approach for model selection in the o.o.d. setting. Our approaches can
be integrated with existing methods to enhance their performance substantially.
Experimental results confirm that our approach attains SOTA performance.
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Abstract. Federated learning (FL) has gained a lot of attention in
recent years for building privacy-preserving collaborative learning sys-
tems. However, FL algorithms for constrained machine learning prob-
lems are still limited, particularly when the projection step is costly.
To this end, we propose a Federated Frank-Wolfe Algorithm (FedFW).
FedFW features data privacy, low per-iteration cost, and communica-
tion of sparse signals. In the deterministic setting, FedFW achieves an
ε-suboptimal solution within O(ε−2) iterations for smooth and convex
objectives, and O(ε−3) iterations for smooth but non-convex objectives.
Furthermore, we present a stochastic variant of FedFW and show that
it finds a solution within O(ε−3) iterations in the convex setting. We
demonstrate the empirical performance of FedFW on several machine
learning tasks.

Keywords: Federated learning · Frank-Wolfe · Conditional gradient
method · Projection-free · Distributed optimization

1 Introduction

We present a new variant of the Frank-Wolfe (FW) algorithm, FedFW, designed
for the increasingly popular Federated Learning (FL) paradigm in machine learn-
ing. Consider the following constrained empirical risk minimization template:

min
x∈D

F (x) :=
1
n

n∑

i=1

fi(x), (1)

where D ⊆ R
p is a convex and compact set. We define the diameter of D as

D := maxx,y∈D ‖x − y‖. The function F : Rp → R represents the objective
function, and fi : Rp → R (for i = 1, . . . , n) represent the loss functions of the
clients, where n is the number of clients. Throughout, we assume fi is L-smooth,
meaning that it has Lipschitz continuous gradients with parameter L.

FL holds great promise for solving optimization problems over a large net-
work, where clients collaborate under the coordination of a server to find a
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common good model. Privacy is an explicit goal in FL; clients work together
towards a common goal by utilizing their own data without sharing it. As a
result, FL exhibits remarkable potential for data science applications involving
privacy-sensitive information. Its applications range from learning tasks (such
as training neural networks) on mobile devices without sharing personal data [1]
to medical applications of machine learning, where hospitals collaborate without
sharing sensitive patient information [2].

Most FL algorithms focus on unconstrained optimization problems, and
extending these algorithms to handle constrained problems typically requires
projection steps. However, in many machine learning applications, the projec-
tion cost can create a computational bottleneck, preventing us from solving these
problems at a large scale. The FW algorithm [3] has emerged as a preferred
method for addressing these problems in machine learning. The main workhorse
of the FW algorithm is the linear minimization oracle (LMO),

lmo(y) := argmin
x∈D

〈y,x〉. (2)

Evaluating linear minimization is generally less computationally expensive than
performing the projection step. A famous example illustrating this is the nuclear-
norm constraint: projecting onto a nuclear-norm ball often requires computing
a full-spectrum singular value decomposition. In contrast, linear minimization
involves finding the top singular vector, a task that can be efficiently approxi-
mated using methods such as the power method or Lanczos iterations.

To our knowledge, FW has not yet been explored in the context of FL. This
paper aims to close this gap. Our primary contribution lies in adapting the FW
method for FL with convergence guarantees.

The paper is organized as follows: Sect. 2 provides a brief review of the lit-
erature on FL and the FW method. In Sect. 3, we introduce FedFW. Unlike
traditional FL methods, FedFW does not overwrite clients’ local models with
the global model sent by the server. Instead, it penalizes clients’ loss functions
by using the global model. We present the convergence guarantees of FedFW in
Sect. 3.1. Specifically, our method provably finds a ε-suboptimal solution after
O(ε−2) iterations for smooth and convex objective functions (refer to Theo-
rem 1). In the case of non-convex objectives, the complexity increases to O(ε−3)
(refer to Theorem 2). Section 4 introduces several design variations of FedFW,
including a stochastic variant. Section 5 presents numerical experiments on var-
ious machine learning tasks with both convex and non-convex objective func-
tions. Finally, Sect. 6 provides concluding remarks along with a discussion on
the limitations of the proposed method. Detailed proofs and technical aspects
are deferred to the supplementary material.

2 Related Work

Federated Learning. FL is a distributed learning paradigm that, unlike most
traditional distributed settings, focuses on a scenario where only a subset of
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clients participate in each training round, data is often heterogeneous, and clients
can perform different numbers of iterations in each round [4,5]. FedAvg [4] has
been a cornerstone in the FL literature, demonstrating practical capabilities in
addressing key concerns such as privacy and security, data heterogeneity, and
computational costs. Although it is shown that fixed points of some FedAvg
variants do not necessarily converge to the minimizer of the objective function,
even in the least squares problem [6], and can even diverge [7], the convergence
guarantees of FedAvg have been studied under different assumptions (see [8–
15] and the references therein). However, all these works on the convergence
guarantees of FedAvg are restricted to unconstrained problems.

Constrained or composite optimization problems are ubiquitous in machine
learning, often used to impose structural priors such as sparsity or low-rankness.
To our knowledge, FedDR [16] and FedDA [17] are the first FL algorithms with
convergence guarantees for constrained problems. The former employs Douglas-
Rachford splitting, while the latter is based on the dual averaging method [18], to
solve composite optimization problems, including constrained problems via indi-
cator functions, within the FL setting. [19] introduced a ‘fast’ variant of FedDA,
achieving rapid convergence rates with linear speedup and reduced communi-
cation rounds for composite strongly convex problems. FedADMM [20] was
proposed for federated composite optimization problems involving a non-convex
smooth term and a convex non-smooth term in the objective. Moreover, [21]
proposed a FL algorithm based on a proximal augmented Lagrangian approach
to address problems with convex functional constraints. None of these works
address our problem template, where the constraints are challenging to project
onto but allow for an efficient solution to the linear minimization problem.

Frank-Wolfe Algorithm. The FW algorithm, also known as the conditional
gradient method or CGM, was initially introduced in [3] to minimize a convex
quadratic objective over a polytope, and was extended to general convex objec-
tives and arbitrary convex and compact sets in [22]. Following the seminal works
in [23,24], the method gained popularity in machine learning.

The increasing interest in FW methods for data science applications has led
to the development of new results and variants. For example, [25] established con-
vergence guarantees for FW with non-convex objective functions. Additionally,
online, stochastic, and variance-reduced variants of FW have been proposed; see
[26–31] and the references therein. FW has also been combined with smoothing
strategies for non-smooth and composite objectives [32–35], and with augmented
Lagrangian methods for problems with affine equality constraints [36,37]. Fur-
thermore, various design variants of FW, such as the away-step and pairwise step
strategies, can offer computational advantages. For a comprehensive overview of
FW-type methods and their applications, we refer to [38,39].

The most closely related methods to our work are the distributed FW vari-
ants. However, the variants in [40–42] are fundamentally different from FedFW
as they require sharing gradient information of the clients with the server or
with the neighboring nodes. In FedFW, clients do not share gradients, which



Federated Frank-Wolfe Algorithm 61

is critical for data privacy [43,44]. Other distributed FW variants are proposed
in [45–47]. However, the method proposed by [46] is limited to the convex low-
rank matrix optimization problem, and the methods in [45,47] assume that the
problem domain is block separable.

3 Federated Frank-Wolfe Algorithm

In essence, any first-order optimization algorithm can be adapted for a sim-
plified federated setting by transmitting local gradients to the server at each
iteration. These local gradients can be aggregated to compute the full gradi-
ent and distributed back to the clients. Although it is possible to implement
the standard FW algorithm in FL this way, this baseline has two major prob-
lems. First, it relies on communication at each iteration, which raises scalability
concerns, as extending this approach to multiple local steps is not feasible. Sec-
ondly, sharing raw gradients raises privacy concerns, as sensitive information
and data points can be inferred with high precision from transmitted gradients
[43]. Consequently, most FL algorithms are designed to exchange local models
or step-directions rather than gradients. Unfortunately, a simple combination of
the FW algorithm with a model aggregation step fails to find a solution to (1),
as we demonstrate with a simple counterexample in the supplementary material.
Therefore, developing FedFW requires a special algorithmic approach, which
we elaborate on below.

We start by rewriting problem (1) in terms of the matrix decision variable
X := [x1,x2, . . . ,xn], as follows:

min
X∈Dn

1
n

n∑

i=1

fi(Xei) + δC(X). (3)

Here, ei denotes the ith standard unit vector, and δC is the indicator function
for the consensus set:

C := {[x1, . . . ,xn] ∈ R
p×n : x1 = x2 = . . . = xn}. (4)

It is evident that problems (1) and (3) are equivalent. However, the latter for-
mulation represents the local models of the clients as the columns of the matrix
X, offering a more explicit representation for FL.

The original FW algorithm is ill-suited for solving problem (3) due to the
non-smooth nature of the objective function because of the indicator function.
Drawing inspiration from techniques proposed in [33], we adopt a quadratic
penalty strategy to address this challenge. The main idea is to perform FW
updates on a surrogate objective which replaces the hard constraint δC with a
smooth function that penalizes the distance between X and the consensus set C:

F̂t(X) =
1
n

n∑

i=1

fi(Xei) +
λt

2
dist2(X, C), (5)
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where λt ≥ 0 is the penalty parameter. Note that the surrogate function is
parameterized by the iteration counter t, as it is crucial to amplify the impact
of the penalty function by gradually increasing λt at a specific rate through the
iterations. This adjustment will ensure that the generated sequence converges to
a solution of the original problem in (3).

To perform an FW update with respect to the surrogate function, first, we
need to compute the gradient of F̂t, given by

∇F̂t(X) =
1
n

n∑

i=1

∇fi(Xei)e�
i + λt(X − projC(X))

=
1
n

n∑

i=1

∇fi(xi)e�
i + λt

n∑

i=1

(xi − x̄)e�
i

(6)

where x̄ := 1
n

∑n
i=1 xi. Then, we call the linear minimization oracle:

St ∈ argmin
X∈Dn

〈∇F̂t(Xt),X〉. (7)

Since Dn is separable for the columns of X, we can evaluate (7) in parallel for
x1,x2, . . . ,xn. Define st

i as

st
i ∈ argmin

x∈D
〈 1
n

∇fi(xt
i) + λt(xt

i − x̄t),x〉, (8)

where x̄t := 1
n

∑n
i=1 x

t
i. Then, St =

∑n
i=1 s

t
i e

�
i .

Finally, we update the decision variable by Xt+1 = (1− ηt)Xt + ηtSt, which
can be computed column-wise in parallel:

xt+1
i = (1 − ηt)xt

i + ηtst
i, (9)

where ηt ∈ [0, 1] is the step-size.
This establishes the fundamental update rule for our proposed algorithm,

FedFW. Note that communication is required only during the computation
of x̄t, which constitutes our aggregation step. All other computations can be
performed locally by the clients. Algorithm1 presents FedFW and several design
variants, which are further detailed in Sect. 4.

3.1 Convergence Guarantees

This section presents the convergence guarantees of FedFW. We begin with the
guarantees for problems with a smooth and convex objective function.

Theorem 1. Consider problem (1) with L-smooth and convex loss functions fi.
Then, estimation x̄t generated by FedFW with step-size ηt = 2

t+1 and penalty
parameter λt = λ0

√
t + 1 for any λ0 > 0 satisfies

F (x̄t) − F (x̄∗) ≤ O(t−1/2). (10)
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Algorithm 1. FedFW: Federated Frank-Wolfe Algorithm (+variants)
input x1

i ∈ R
p, ∀i ∈ [n], λt, ηt, ρt, x̄1 = 1

n

∑n
i=1 x

1
i , y1

i = 0, d1
i = 0

for round t = 1, 2, . . . , T do
— Client-level local training ———————————–
for client i = 1, 2, . . . , n do

— FedFW: gt
i =

1
n
∇fi(x

t
i) + λt(x

t
i − x̄t)

— FedFW+: yt+1
i = yt

i + λ0(x
t
i − x̄t)

gt
i =

1
n
∇fi(x

t
i) + λt(x

t
i − x̄t)+yt+1

i

— FedFW-sto: dt+1
i = (1 − ρt)d

t
i + ρt

1
n
∇fi(x

t
i, ω

t
i)

gt
i = dt+1

i + λt(x
t
i − x̄t)

sti = argmin{〈gt
i ,x〉 : x ∈ D}

xt+1
i = (1 − ηt)x

t
i + ηts

t
i

Client communicates sti to the server.
end for
— Server-level aggregation ————————————
x̄t+1 = (1 − ηt)x̄

t + ηt

(
1
n

∑n
i=1 s

t
i

)

Server communicates x̄t+1 to the clients.

end for

Remark 1. Our proof is inspired by the analysis in [33]. However, a distinction
lies in how the guarantees are expressed. In [33], the authors demonstrate the
convergence of xt

i towards a solution by proving that both the objective residual
and the distance to the feasible set converge to zero. In contrast, we establish the
convergence of x̄t, representing a feasible point, focusing only on the objective
residual. We present detailed proof in the supplementary material.

It is worth noting that the convergence guarantees of FedFW are slower com-
pared to those of existing unconstrained or projection-based FL algorithms. For
instance, in the smooth convex setting with full gradients, FedAvg [4] achieves
a rate of O(t−1) in the objective residual. In a convex composite problem setting,
FedDA [17] converges at a rate of O(t−2/3). While FedFW guarantees a slower
rate of O(t−1/2), it is important to highlight that FedFW employs cheap linear
minimization oracles.

Next, we present the convergence guarantees of FedFW for non-convex prob-
lems. For unconstrained non-convex problems, the gradient norm is commonly
used as a metric to demonstrate convergence to a stationary point. However, this
metric is not suitable for constrained problems, as the gradient may not app-
roach zero if the solution resides on the boundary of the feasible set. To address
this, we use the following gap function, standard in FW analysis [25]:

gap(x) := max
u∈D

〈∇F (x),x − u〉. (11)

It is straightforward to show that gap(x) is non-negative for all x ∈ D, and it
attains zero if and only if x is a first-order stationary point of Problem (1).
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Theorem 2. Consider problem (1) with L-smooth loss functions fi. Suppose
the sequence x̄t is generated by FedFW with the fixed step-size ηt = T−2/3, and
penalty parameter λt = λ0T

1/3 for an arbitrary λ0 > 0. Then,

min
1≤t≤T

gap(x̄t) ≤ O(T−1/3). (12)

Remark 2. We present the proof in the supplementary material. Our analysis
introduces a novel approach, as [33] does not explore non-convex problems. While
our focus is primarily on problems (1) and (3), our methodology can be used to
derive guarantees for a broader setting of minimization of a smooth non-convex
function subject to affine constraints over a convex and compact set.

As with our previous results, the convergence rate in the non-convex setting
is slower compared to FedAvg, which achieves an O(t−1/2) rate in the gradient
norm (note the distinction between the gradient norm and squared gradient
norm metrics). For composite FL problems with a non-convex smooth loss and
a convex non-smooth regularizer, FedDR [16] achieves an O(t−1/2) rate in the
norm of a proximal gradient mapping. In contrast, our guarantees are in terms of
the Frank-Wolfe (FW) gap. To our knowledge, FedDA does not offer guarantees
in the non-convex setting.

3.2 Privacy and Communication Benefits

FedFW offers low communication overhead since the communicated signals are
the extreme points of D, which typically have low dimensional representation.
For example, if D is �1 (resp., nuclear) norm-ball, then the signals si are 1-
sparse (resp., rank-one). Additionally, linear minimization is a nonlinear oracle,
the reverse operator of which is highly ill-conditioned. Retrieving the gradient
from its linear minimization output is generally unfeasible. For example, if D
is the �1 norm-ball, then si merely reveals the sign of the maximum entry of
the gradient. In the case of a box constraint, si only reveals the gradient signs.
For the nuclear norm-ball, si unveils only the top eigenvectors of the gradient.
Furthermore, FW is robust against additive and multiplicative errors in the
linear minimization step [24]; consequently, we can introduce noise to augment
data privacy without compromising the convergence guarantees.

In a simple numerical experiment, we demonstrate the privacy benefits of
communicating linear minimization outputs instead of gradients. This exper-
iment is based on the Deep Leakage algorithm [43] using the CIFAR100
dataset. Our experiment compares reconstructed images (i.e., leaked data
points) obtained from shared gradients versus shared linear minimization out-
puts, under �1 and �2 norm constraints. Figure 1 displays the final reconstructed
images alongside the Peak Signal-to-Noise Ratio (PSNR) across iterations. It is
evident that reconstruction via linear minimization oracles, particularly under
the �1 ball constraint, is significantly more challenging than raw gradients.

4 Design Variants of FEDFW

This section discusses several design variants and extensions of FedFW.



Federated Frank-Wolfe Algorithm 65

Fig. 1. Privacy benefits of sharing linear minimization outputs vs gradients. The Deep
Leakage Algorithm can recover CIFAR-100 data points from shared gradients. Sharing
linear minimization outputs enhances privacy. (a) and (b) compares reconstructions
from gradients and LMO outputs with �2 and �1-norm ball constraints after 105 iter-
ations for two different data points. (c) and (d) present the reconstruction PSNR as a
function of iterations for the corresponding images.

4.1 FEDFW with stochastic gradients

Consider the following stochastic problem template:

min
x∈D

F (x) :=
1
n

n∑

i=1

Eωi

[
fi(x, ωi)

]
. (13)

Here, ωi is a random variable with an unknown distribution Pi. The client loss
function fi(x) := Eωi

[
fi(x, ωi)

]
is defined as the expectation over this unknown

distribution; hence we cannot compute its gradient. We design FedFW-sto for
solving this problem.

We assume that at each iteration, every participating client can indepen-
dently draw a sample ωt

i from their distribution Pi. ∇fi(x, ωt
i) serves as an

unbiased estimator of ∇fi(x). Additionally, we adopt the standard assumption
that the estimator has bounded variance.

Assumption 1 (Bounded variance). Let ∇fi(x, ωi) denote the stochastic
gradients. We assume that it satisfies the following condition for some σ < ∞:

Eωi

[∥∥∇fi(x, ωi) − ∇fi(x)
∥∥2

]
≤ σ2. (14)

Unfortunately, FW does not readily extend to stochastic settings by replacing
the gradient with an unbiased estimator of bounded variance. Instead, adapting
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FW for stochastic settings, in general, requires a variance reduction strategy.
Inspired by [30,34], we employ the following averaged gradient estimator to
tackle this challenge. We start by d0

i = 0, and iteratively update

dt+1
i = (1 − ρt)dt

i + ρt
1
n

∇fi(xt
i, ω

t
i), (15)

for some ρt ∈ (0, 1]. FedFW-sto uses dt+1
i in place of the gradient in the

linear minimization step; pseudocode is shown in Algorithm 1. Although dt+1
i

is not an unbiased estimator, it offers the advantage of reduced variance. The
balance between bias and variance can be adjusted by modifying ρt, and the
analysis relies on finding the right balance, reducing variance sufficiently while
maintaining the bias within tolerable limits.

Theorem 3. Consider problem (13) with L-smooth and convex loss functions
fi. Suppose Assumption 1 holds. Then, the sequence x̄t generated by FedFW-
sto in Algorithm 1, with step-size ηt = 9

t+8 , penalty parameter λt = λ0

√
t + 8

for an arbitrary λ0 > 0, and ρt = 4
(t+7)2/3

satisfies

E[F (x̄t)] − F (x∗) ≤ O(t−1/3). (16)

Remark 3. Our analysis in this setting is inspired by [34]; however, we establish
the convergence of the feasible point x̄t. This differs from the guarantees in [34],
which demonstrate the convergence of xt

i towards a solution by proving that
both the expected objective residual and the expected distance to the feasible set
converge to zero. We present the detailed proof in the supplementary material.

In the smooth convex stochastic setting, FedAvg achieves a convergence
rate of O(t−1/2). This rate also applies to FedDA when addressing composite
convex problems. Additionally, under the assumption of strong convexity, Fast-
FedDA [19] achieves an accelerated rate of O(t−1). In comparison, FedFW-sto
converges with O(t−1/3) rate; however, it benefits from the use of inexpensive
linear minimization oracles.

4.2 FEDFW with Partial Client Participation

A key challenge in FL is to tackle random device participation schedules. Unlike a
classical distributed optimization scheme, in most FL applications, clients have
some autonomy and are not entirely controlled by the server. Due to various
factors, such as network congestion or resource constraints, clients may inter-
mittently participate in the training process. This obstacle can be tackled in
FedFW by employing a block-coordinate Frank-Wolfe approach [48]. Given that
the domain of problem (3) is block-separable, we can extend our FedFW anal-
ysis to block-coordinate updates.

Suppose that in every round t, the client i participates in the training pro-
cedure with a fixed probability of pi ∈ (0, 1]. For simplicity, we assume the
participation rate is the same among all clients, i.e., p1 = . . . = pn := p, but
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non-uniform participation can be addressed similarly. Instate the convex opti-
mization problem described in Theorem 1 but with the random client participa-
tion scheme. At round t, the training procedure follows the same as in Algorithm
1 for the participating clients, and xt+1

i = xt
i for the non-participants. Then, the

estimation x̄t generated with the step-size ηt = 2
p(t−1)+2 and penalty parameter

λt=λ0

√
p(t−1)+2 converges to a solution with rate

E[F (x̄t) − F (x∗)] ≤ O(
(p t)−1/2

)
. (17)

Similarly, if we consider the non-convex setting of Theorem 2 with random-
ized client participation, and use the block-coordinate FedFW with step-size
ηt = (pT + 1)−

2
3 , and penalty parameter λt = λ0(pT + 1)

1
3 , we get

min
1≤t≤T

E[gap(x̄t)] ≤ O(
(pT )−1/3

)
. (18)

The proofs are provided in the supplementary material.

4.3 FEDFW with Split Constraints for Stragglers

FL systems are frequently implemented across heterogeneous pools of client hard-
ware, leading to the ‘straggler effect’– delays in execution resulting from clients
with less computation or communication speeds. In FedFW, we can mitigate
this issue by assigning tasks to straggling clients more compatible with their com-
putational capabilities. Theoretically, this adjustment can be achieved through
certain special reformulations of the problem defined in (3). Specifically, the
constraint X ∈ Dn can be refined to X ∈ ⋂n

i=1 Di, where
⋂n

i=1 Di = D. This
modification does not affect the solution set, due to the consensus constraint.

In general, in FedFW, most of the computation occurs during the linear min-
imization step. Suppose that the resources of the client i are limited, particularly
for arithmetic computations. In this case, we can select Di as a superset of D
where linear minimization computations are more straightforward. For instance,
a Euclidean (or Frobenius) norm-ball encompassing D could be an excellent
choice. Then, st

i becomes proportional to the negative of gt
i with appropriate

normalization based on the radius of Di, facilitating computation with minimal
effort. On the other hand, if the primary bottleneck is communication, we might
opt for Di characterized by sparse extreme points, such as an �1-norm ball con-
taining D or by low-rank extreme points like those in a nuclear-norm ball. This
strategy results in sparse (or low-rank) st

i, thereby streamlining communication.

4.4 FEDFW with Augmented Lagrangian

FedFW employs a quadratic penalty strategy to handle the consensus con-
straint. We also propose an alternative variant, FedFW+, which is modeled
after the augmented Lagrangian strategy in [37]. The pseudocode for FedFW+
is presented in Algorithm 1. We compare the empirical performance of FedFW
and FedFW+ in Sect. 5. The theoretical analysis of FedFW+ is omitted here;
for further details, we refer readers to [37].
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5 Numerical Experiments

In this section, we evaluate and compare the empirical performance of our meth-
ods against FedDR, which serves as the baseline algorithm, on the convex mul-
ticlass logistic regression (MCLR) problem and the non-convex tasks of training
convolutional neural networks (CNN) and deep neural networks (DNN). For each
problem, we consider two different choices for the domain D: namely the �1 and
�2 ball constraints, each with a radius of 10. We assess the models’ performance
based on validation accuracy, validation loss, and the Frank-Wolfe gap (11).
To evaluate the effect of data heterogeneity, we conducted experiments using
both IID and non-IID data distributions across clients. The code for the numer-
ical experiments can be accessed via https://github.com/sourasb05/Federated-
Frank-Wolfe.git.

Datasets. We use several datasets in our experiments: MNIST [49], CIFAR-
10 [50], EMNIST [51], and a synthetic dataset generated as described in [52].
Specifically, the synthetic data is drawn from a multivariate normal distribution,
and the labels are computed using softmax functions. We create data points of
60 features and from 10 different labels. For all datasets, we consider both IID
and non-IID data distributions across the clients. In the non-IID scenario, each
user has data from only 3 labels. We followed this rule for the synthetic data,
as well as MNIST, CIFAR10, and EMNIST-10. For EMNIST-62, each user has
data from 20 classes, with unequal distribution among users.

5.1 Comparison of Algorithms in the Convex Setting

We tested the performance of the algorithms on the strongly convex MCLR prob-
lem using the MNIST and CIFAR-10 datasets as well as the synthetic dataset.
Table 1 presents the test accuracy results for the algorithms with IID and non-
IID data distributions, and for two different choices of D. In these experiments,
we simulated FL with 10 clients, all participating fully (p = 1). We ran the
algorithms for 100 communication rounds, with one local iteration per round.

5.2 Comparison of Algorithms in the Non-convex Setting

For the experiments in the non-convex setting we trained CNNs using the MNIST
dataset and a DNN with two hidden layers using the synthetic dataset. We
considered an FL system with 10 clients and full participation (p = 1). Similar
to the previous case, we evaluated IID and non-IID data distributions as well as
different choices of D, and ran the methods for 100 communication rounds with
a single local training step. Table 2 summarizes the resulting test accuracies.

https://github.com/sourasb05/Federated-Frank-Wolfe.git
https://github.com/sourasb05/Federated-Frank-Wolfe.git
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Table 1. Comparison of algorithms on the convex MCLR problem with different
datasets and choices of D. We consider both IID and non-IID data distributions. The
numbers represent test accuracy.

IID non-IID
MNIST Synthetic CIFAR10 MNIST Synthetic CIFAR10
�2 constraint

FedDR 89.59(±0.0003) 78.24(±0.007) 39.95(±0.001) 83.72(±0.001) 92.97(±0.005) 37.79(±0.004)

FedFW 86.96(±0.009) 80.20(±0.01) 36.30(±0.001) 86.95(±0.001) 94.81(±0.001) 38.13(±0.003)

FedFW+ 86.50(±0.001) 79.96(±0.001) 36.30(±0.001) 86.98(±0.001) 94.56(±0.009) 37.20(±0.004)

�1 constraint
FedDR 72.18(±0.0004) 79.00(±0.004) 23.25(±0.00) 74.29(±0.0) 93.81(±0.009) 24.77(±0.0)

FedFW 78.07(±0.005) 81.63(±0.01) 21.86(±0.003) 80.54(±0.0) 90.84(±0.003) 25.08(±0.004)

FedFW+ 69.17(±0.004) 81.92(±0.008) 21.99(0.006) 71.32(±0.002) 91.20(±0.006) 25.16(±0.008)

Table 2. Comparison of algorithms on the non-convex tasks. We train a CNN using
MNIST, and a DNN with synthetic data. We consider IID and non-IID data distribu-
tions, and different choices of D. The numbers show test accuracy.

IID non-IID
MNIST Synthetic MNIST Synthetic
�2 constraint

FedDR 96.89(±0.0009) 75.96(±0.03) 88.93(±0.013) 93.85(±0.009)

FedFW 95.87(±0.01) 81.70(±0.008) 92.70(±0.002) 96.13(±0.007)

FedFW+ 95.05(±0.005) 81.96(±0.006) 91.79(±0.005) 96.08(±0.004)

�1 constraint
FedDR 11.72(±0.0) 78.59(±0.006) 16.75(±0.01) 93.51(±0.006)

FedFW 23.88(±0.005) 75.52(±0.008) 37.62(±0.008) 91.53(±0.01)

FedFW+ 20.40(±0.003) 76.44(±0.004) 36.27(±0.006) 91.96(±0.003)

5.3 Comparison of Algorithms in the Stochastic Setting

Finally, we compared the performance of FedFW-sto against FedDR in the
stochastic setting, where only stochastic gradients are accessible. For this experi-
ment, we consider an FL network with 100 clients with full participation (p = 1).
Over this network, we trained the MCLR model using EMNIST-10, EMNIST-62,
CIFAR10, and the synthetic dataset. We used a mini-batch size of 64, one local
iteration per communication round, and ran the algorithms for 300 communica-
tion rounds. Table 3 summarizes the test accuracies obtained in this experiment.
FedFW-sto outperformed FedDR in our experiments in the stochastic setting.

5.4 Impact of Hyperparameters

We conclude our experiments with an ablation study to investigate how varying
hyperparameters impact the performance of FedFW.
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Table 3. Comparison of algorithms in the stochastic setting on the convex MCLR
problem with different datasets and �2 ball constraint. We consider both IID and non-
IID data distributions. The numbers represent test accuracy.

IID non-IID
EMNIST-10 EMNIST-62 EMNIST-10 EMNIST-62

FedDR 92.18(±0.01) 39.58(±0.00) 85.70(±0.002) 41.09(±0.002)

FedFW-sto 93.79(±0.00) 41.22(±0.00) 91.88(±0.01) 60.51(±0.002)

Synthetic CIFAR10 Synthetic CIFAR10
FedDR 67.68(±0.003) 36.39(±0.004) 84.70(±0.01) 34.91(±0.008)

FedFW-sto 72.01(±0.004) 38.52(±0.01) 87.32(±0.003) 37.83(±0.01)

Fig. 2. Effect of participation p on FedFW. The experiment was conducted with
MCLR using synthetic data, an �1 constraint, and two different choices of λ0.

Fig. 3. Effect of participation p on FedFW and FedFW+. We trained a DNN model
using synthetic data, an �2 constraint, and a fixed λt = 10−3.

Impact of Partial Participation (p). Figure 2 shows the validation accuracy
and loss of FedFW algorithm for synthetic data and MCLR model. Figure 3
depicts the validation accuracy and loss of FedFW and FedFW+ algorithms
for synthetic data and DNN model. Both convex and non-convex experiments
show faster convergence for higher participation probability. It is worth men-
tioning that variations in λ0 do not alter the influence of p. These observations
are in accordance with the theoretical guarantees presented in Sect. 4.2.
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Fig. 4. Effect of the initial penalty (λ0) on FedFW. (a) and (b) show the results for
the convex setting, (c) and (d) demonstrates the non-convex setting.
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Impact of Initial Penalty Parameter (λ0). Figure 4 illustrates the effect
of hyperparameters on the convergence of loss, Frank-Wolfe gap, and validation
accuracy of the algorithms. A higher λ0 leads to a larger gap in the initial iter-
ations of the algorithm due to its regularization effect. In other words, increas-
ing λ0 enforces the update direction towards the consensus set, which in turn
increases the gap value in the first iteration. The exact expressions for the con-
stants in the convergence guarantees, which are detailed in the supplementary
material, can guide the optimal choice of λ0.

6 Conclusions

We introduced a FW-type method for FL and established its theoretical conver-
gence rates. The proposed method, FedFW, guarantees O(t−1/2) convergence
rates when the objective function smooth and convex. If we remove the con-
vexity assumption, the rate reduces to O(t−1/3). With access to only stochastic
gradients, FedFW achieves an O(t−1/3) convergence rate in the convex setting.
Additionally, we proposed an empirically faster version of FedFW by incorpo-
rating an augmented Lagrangian dual update.

We conclude with a brief discussion on the limitations of our work. The
primary limitation of FedFW is its slower convergence rates compared to state-
of-the-art FL methods. Developing a tighter bound for FedFW, with multiple
local steps, is an area for future research. Additionally, the analysis of FedFW+
is left to future work. Another important piece of future work is the convergence
analysis of FedFW-sto for non-convex objectives. Finally, the development and
analysis of an extension for asynchronous updates also remain as future work.
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Abstract. Contrastive learning is a significant paradigm in graph self-
supervised learning. However, it requires negative samples to prevent
model collapse and learn discriminative representations. These negative
samples inevitably lead to heavy computation, memory overhead and
class collision, compromising the representation learning. Recent studies
present that methods obviating negative samples can attain competitive
performance and scalability enhancements, exemplified by bootstrapped
graph latents (BGRL). However, BGRL neglects the inherent graph
homophily, which provides valuable insights into underlying positive
pairs. Our motivation arises from the observation that subtly introducing
a few ground-truth positive pairs significantly improves BGRL. Although
we can’t obtain ground-truth positive pairs without labels under the self-
supervised setting, edges in the graph can reflect noisy positive pairs, i.e.,
neighboring nodes often share the same label. Therefore, we propose to
expand the positive pair set with node-neighbor pairs. Subsequently, we
introduce a cross-attention module to predict the supportiveness score of
a neighbor with respect to the anchor node. This score quantifies the pos-
itive support from each neighboring node, and is encoded into the train-
ing objective. Consequently, our method mitigates class collision from
negative and noisy positive samples, concurrently enhancing intra-class
compactness. Extensive experiments are conducted on five benchmark
datasets and three downstream task node classification, node clustering,
and node similarity search. The results demonstrate that our method
generates node representations with enhanced intra-class compactness
and achieves state-of-the-art performance. Our implementation code is
available at https://github.com/Cloudy1225/BLNN.

Keywords: Self-Supervised Learning · Graph Representation
Learning · Graph Neural Networks

1 Introduction

Graph self-supervised learning (GSSL) is a promising paradigm for learning more
informative representations without human annotations. Typically, GSSL models
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are pre-trained using well-designed pretext objectives, which serve as effective
initializations for diverse downstream tasks [16]. Consequently, GSSL has made
substantial advancements in graph representation learning. It offers performance,
generalizability, and robustness metrics comparable to or even surpassing those
of supervised methods [2,25,27].

A major branch of GSSL is graph contrastive learning (GCL) methods
[38,39], which aim to learn representations by maximizing the agreement between
two augmented samples (positive pair) while minimizing the similarities with
other samples (negative pairs). The constructed negative pairs is crucial for
preventing model collapse and generating discriminative representations [29].
Consequently, current GCL methods inherently rely on increasing the quantity
and quality of negative samples. This reliance not only introduces additional
computational and memory costs but also leads to the class collision issue,
where different samples from the same class are erroneously considered nega-
tive pairs, thereby impeding representation learning for classification [22]. To
address these issues, recent non-contrastive methods have explored the prospect
of learning without negative samples [1,12,14,24,25,34]. Among these methods,
Bootstrapped Graph Latents (BGRL) [25], derived from BYOL [5], has achieved
competitive performance and heightened scalability. BGRL learns node repre-
sentations by using representations of one augmented view to predict another
view, i.e., maximizing the similarity between the prediction and its paired tar-
get. Simultaneously, BGRL strategically leverages the asymmetry between the
online branch (with gradient) and the target branch (without gradient) to alle-
viate model collapse.

However, BGRL fails to account for inherent graph homophily, which indi-
cates the phenomenon that neighboring nodes tend to share the same seman-
tic label and thus offers valuable insights into underlying positive pairs. Why
does exploiting the homophily pattern make sense? In practice, some supervised
metric learning methods [10,31,33], which employ architectures and objectives
akin to self-supervised learning, have illustrated that introducing more ground-
truth positive pairs (i.e., samples with the same label) significantly enhances
representation learning for classification. Such success inspires us that mining
potential positive pairs could empower the model to learn highly intra-class-
compacted representations, which are more conducive to classification. Our
hypothesis is validated through empirical studies in Sect. 4.1. Unfortunately,
unlike the supervised setting, obtaining ground-truth positive pairs is unfeasible
due to the absence of labels under the self-supervised setting. But fortunately,
the homophily pattern is evident in various real-world graphs [18], where neigh-
boring nodes can be seen as noisy positive pairs. Consequently, exploiting such
neighbor information holds promise for graph self-supervised learning.

Based on the above analysis, we propose Bootstrap Latents of Nodes and
Neighbors (BLNN) to enhance Bootstrapped Graph Latents by incorporating
neighbor information. Specifically, we first expand the positive pair set with
node-neighbor pairs based on the graph homophily pattern. However, although
connected nodes tend to share the same label in the homophily scenario, there
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also exist inter-class edges, especially near the decision boundary between two
classes. Treating these inter-class connected nodes as positive (i.e., false positive)
pairs would inevitably compromise overall performance. To alleviate this class
collision caused by false positive pairs, we further introduce an attention module
to compute a supportiveness score of each neighbor representation with respect
to the current view anchor node. This score serves as a soft measure of the
supportiveness associated with each neighbor contributing to the current anchor
node during loss computations. Basically, a higher supportiveness often stands
for a higher weight to intra-class node-neighbor pairs. To this end, our BLNN
incorporates soft positive node-neighbor pairs to support the anchor node for loss
computations, resulting in more intra-class-compacted and discriminative node
representations. The contributions of our work can be summarized as follows:

– We empirically demonstrate the efficacy of introducing more ground-truth
positive pairs in boosting the negative-sample-free method BGRL. And we
propose exploiting the graph homophily to mining positive pairs in the
absence of labels.

– We expand the positive pair set with node-neighbor pairs and propose a cross-
attention module to weight the contribution of each neighbor to loss compu-
tations. This approach mitigates class collision resulting from false positive
node-neighbor pairs.

– Extensive experiments are conducted on five benchmark datasets and three
downstream task node classification, node clustering, and node similarity
search. The results demonstrate that our method generates node represen-
tations with enhanced intra-class compactness and achieves state-of-the-art
performance.

2 Related Work

2.1 Graph Self-supervised Learning

Recently, numerous research efforts have been devoted to graph self-supervised
learning, and a branch based on multi-view learning has garnered attention owing
to its superior performance. The basic idea involves ensuring consensus among
multiple views derived from the same sample under different graph transforma-
tions to optimize model parameters [16]. A crucial aspect of these methods is the
prevention of trivial solutions, where all representations converge either to a con-
stant point (i.e., complete collapse) or to a subspace (i.e., dimensional collapse).
The existing methods can be broadly classified into two groups: contrastive and
non-contrastive approaches, each delineated by its strategy for mitigating model
collapse.

Contrastive-Based Methods typically follow the criterion of mutual infor-
mation maximization [7], whose objective functions involve contrasting positive
pairs with negative ones. Pioneering works, such as DGI [27] and GMI [21],
focus on unsupervised representation learning by maximizing mutual informa-
tion between node-level representations and a graph summary vector, employing
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the Jensen-Shannon estimator [20]. MVGRL [6] proposes to learn both node-level
and graph-level representations by performing node diffusion and contrasting
node representations to augmented graph representation. GRACE [38] and its
variants GCA [39], gCooL [13], CSGCL [2] learn node representations by pulling
together the representations of the same node in two augmented views while
pushing away the representations of the other nodes in two views [29]. Despite
the success of contrastive learning on graphs, they require a large number of
negative samples with carefully crafted encoders and augmentation techniques
to learn discriminative representations, making them suffer seriously from heavy
computation, memory overhead and class collision [22].

Non-contrastive Methods discard negative samples, necessitating specialized
strategies to avoid collapsed solutions. CCA-SSG [34], G-BT [1] and iGCL [14]
learn augmentation invariant information while introducing feature decorrela-
tion to capture orthogonal features and prevent dimensional collapse. BGRL
[25], derived from BYOL [5], introduces an online network along with a target
network, where the target network is updated with a moving average of the
online network to avoid collapse. AFGRL [12] identifies nodes as positive sam-
ples by considering both local structural information and global graph seman-
tics, sidestepping the need for an augmented graph view and negative sampling.
SGCL [24] uncovers the hidden factors contributing to BGRL’s success and sim-
plifies the architecture design. In this paper, we propose mining potential positive
pairs from neighboring nodes to enhance BGRL.

2.2 Generation of Positive and Negative Pairs

There are two common approaches to generating positive and negative pairs,
depending on the availability of label information. In the supervised setting,
where label information is available, positive pairs consist of samples within
the same class, while negative pairs comprise samples from different classes
[10,31,33]. In the self-supervised setting without label information, a typical
strategy is to generate different views of the original sample via augmentation
[9]. Here, two views of the same sample serve as positive pairs for each other,
while those of different samples serve as negative pairs. However, such instance
discrimination based methods inevitably a class collision issue, which means even
for very similar samples, they still need to be pushed apart.

To mitigate the class collision issue, some studies focus on mining positive
pairs from nearest neighbors [3,4,12,37] while some propose methods without
negative pairs [5,12,25,34]. In the domain of graph, AF-GCL [28] regards multi-
hop neighboring nodes as potential positive pairs, utilizing well-designed similar-
ity metrics to identify the most similar nodes as positive pairs; nevertheless, this
method still necessitates a considerable number of negative pairs. AFGRL [12]
and HomoGCL [15] identify positive pairs by considering the local structural
information and the global semantics of graphs, but they require performing
time-consuming K-means clustering on the entire set of node representations
to capture global semantic information. Our BLNN differs from previous work
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in the following three highlights: 1) BLNN, derived from BGRL [25], is a non-
contrastive method, eliminating the introduction of class collision arising from
false negative pairs. 2) BLNN treats all one-hop node-neighbor pairs as candi-
date positive pairs, simplifying the selection of candidate neighbors from the
K-NN search. 3) BLNN employs a cross-attention module, instead of the time-
consuming K-means, to mitigate class collision caused by noisy positive node-
neighbor pairs.

3 Preliminary

3.1 Problem Statement

Let G = (V, E) represenst an attributed graph, where V = {v1, v2, · · · , vn} and
E ⊆ V × V denote the node set and the edge set, respectively. The graph G is
associated with a feature matrix X ∈ R

n×p, where xi ∈ R
p represents the feature

of vi, and an adjacency matrix A ∈ {0, 1}n×n, where Ai,j = 1 if and only if
(vi, vj) ∈ E . During training in the self-supervised setting, no task-specific labels
are provided for G. The primary objective is to learn an embedding function
fθ(A,X) that transforms X to H, where H ∈ R

n×d and d � p. The pre-
trained representations are intended to encapsulate both attribute and structure
information inherent in G and can be easily transferable to various downstream
tasks such as node classification, node clustering, and node similarity search.

3.2 Graph Homophily

Graph homophily suggests that neighboring nodes often belong to the same
class, offering valuable prior knowledge in real-world graphs such as citation
networks, co-purchase networks, or friendship networks [18]. A well-used metric
for quantifying graph homophily is edge homophily, which is defined as the
fraction of intra-class edges:

H =
1

|E|
∑

(vi,vj)∈E
I(yi = yj), (1)

where yi denotes the class of vi and I represents the indicator function. In Table 1,
edge homophily values for five benchmark datasets are presented. The table
illustrates that the majority of edges are intra-class, indicating the potential to
mine positive pairs from node-neighbor pairs.

3.3 Bootstrapped Graph Latents

We first introduce the pioneer work Bootstrapped Graph Latents (BGRL) [25],
which aims to maximize the similarity between representations of the same node
generated from two different augmented graph views and employs asymmetric
architectures to avoid collapsed representations. BGRL consists of three major
components: 1) a random graph augmentation generator T ; 2) two asymmetric
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graph encoders, i.e., the online encoder fθ and the target encoder fφ; 3) an
objective function to maximize the similarity between the positive pair.

Graph View Augmentation. Given the adjacency matrix A and feature
matrix X of a graph G, BGRL employs feature masking and edge dropping
to enhance both graph attributes and topological information (see Appendix
A.3). The augmentation function T comprises all possible graph transformation
operations, and each t ∼ T corresponds to a specific transformation applied to
graph G. At each training epoch, BGRL first samples two random augmentation
functions t1 ∼ T and t2 ∼ T , and then generates two views G1 = (A1,X1) and
G2 = (A2,X2) based on the chosen functions.

Node Representations Generation. Different from the classical contrastive
learning frameworks with a shared graph encoder, BGRL employs two asym-
metric graph encoders to avoid representation collapse. The online encoder fθ

generates an online representations from the first augmented graph, H1 =
fθ(A1,X1). Similarly, the target encoder fφ produces a target representation
of the second augmented graph, H2 = fφ(A2,X2). The online representation
is then input into a node-level predictor, pθ (implemented as a MLP), which
produces a prediction of the target representation, Z1 = pθ(H1).

Positive Pair Similarity Maximization. The learning process of BGRL cen-
ters around maximizing the cosine similarity between the predicted target rep-
resentations Z1 and the true target representations H2, i.e., positive pairs. The
objective function is defined as

LBGRL = − 1
n

n∑

i=1

z1
i · h2

i

‖ z1
i ‖‖ h2

i ‖
, (2)

where (·) denotes the dot production, and ‖ · ‖ represents the �2 normalization.
Notably, only the online encoder parameters θ are updated with respected to
the gradients from the objective function while the target encoder parameters
φ are updated as an exponential moving average (EMA) of θ with a decay
rate t, i.e., φ = tφ + (1 − t)θ. Therefore, BGRL utilizes the outputs from the
ensemble-optimized parameters as targets, progressively enhancing the model in
a step-by-step fashion, an approach commonly known as bootstrapping.

4 Methodology

In this section, we present an overview of the proposed BLNN, as depicted in
Fig. 1. In Sect. 4.1, we empirically analyze our motivation to introduce more
ground-truth positive pairs from node-neighbor pairs for graph self-supervised
learning. Then, we describe how to mine high-confidence positive information
from node-neighbor pairs in Sect. 4.2.

4.1 Motivation

As discussed in the introduction, some supervised metric learning methods
[10,31,33], which employ architectures and objectives similar to self-supervised
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Fig. 1. Overview of our proposed BLNN method. Given a graph, we first generate two
different views using augmentations t1, t2. From these, we use encoders fθ, fφ to form
online and target node representations H1,H2. They are then fed into the attention
module to compute the supportiveness wj of the neighbor vj w.r.t. the anchor node
vi. The predictor pθ uses H1 to form a prediction Z1 of the target H2. The final
objective is computed as a combination of the alignment of node-itself pairs and the
supportiveness-weighted alignment of node-neighbor pairs. Note that the alignment is
achieved by maximizing the cosine similarity between corresponding rows of Z1 and
H2, flowing gradients only through Z1. The target parameters φ are updated as an
exponentially moving average of θ.

learning, have shown that introducing more ground-truth positive pairs signifi-
cantly enhances representation learning for classification. Such success inspires
us that mining potential positive pairs could empower BGRL to learn highly
intra-class-compacted representations, which are more conducive to classifica-
tion.

Empirical Analysis. To verify our hypothesis, we conduct experiments by
incorporating a small subset of the whole ground-truth positive pair set from an
oracle perspective and assessing its influence on classification. According to the
graph homophily, neighboring nodes often share the same class. Therefore, we
first treat all node-neighbor pairs as noisy candidate positive pairs. Subsequently,
we manually filter out inter-class pairs, retaining only the intra-class pairs as the
clean positive pairs. We then extend the objective function Eq. (2) with an addi-
tional alignment of above intra-class node-neighbor pairs to train BGRL. Figure 2
illustrates the results of node classification across three datasets, revealing two
key observations: 1) The incorporation of clean positive node-neighbor pairs con-
sistently and significantly improves classification performance. 2) However, sim-
ply treating raw node-neighbor pairs as ground-truth positive pairs yields only
marginal improvement or even performance degradation, as raw node-neighbor
pairs include inter-class pairs, which would cause class collision.

Based on the above observations, we propose to enhance BGRL using two
key strategies: 1) expanding the positive pair set with node-neighbor pairs; 2)
mitigating class collision caused by false positive node-neighbor pairs via a cross-
attention weighting module.
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Fig. 2. Empirical studies on WikiCS, Computer and CS. “noisy pos” indicates raw
node-neighbor pairs in the input graph, while “clean pos” indicates clean node-neighbor
pairs that all are intra-class pairs.

4.2 Bootstrap Latents of Nodes and Neighbors

Motivated by the observations presented in Sect. 4.1, we introduce Bootstrap
Latents of Nodes and Neighbors (BLNN) to enhance Bootstrapped Graph
Latents (BGRL). We follow the BGRL framework illustrated in Sect. 3.3.

Objective Function. Our BLNN first treats node-neighbor pairs as candidate
positive pairs, leveraging the neighbor set Ni to support the anchor node vi.
Subsequently, it introduces an adaptive measurement of supportiveness through
a cross-attention module to mitigate class collision resulting from false positive
node-neighbor pairs. Specifically, for each neighbor vj ∈ Ni, we input its tar-
get representation h2

j and the anchor’s online representation h1
i into the atten-

tion module for cross-attention computations. This attention module predicts a
supportiveness value wj , which we use to adjust the contribution of h2

j to the
anchor’s prediction z1

i during training. The loss function of our BLNN can be
written as:

LBLNN = − 1
n

n∑

i=1

z1
i · h2

i

‖ z1
i ‖‖ h2

i ‖
︸ ︷︷ ︸

Bootstrap Latents of Nodes

− 1
n

n∑

i=1

∑

j∈Ni

wj

z1
i · h2

j

‖ z1
i ‖‖ h2

j ‖
︸ ︷︷ ︸
Bootstrap Latents of Neighbors

.

(3)

Attention Weighting. The attention module, which softly measure the pos-
itiveness of node-neighbor pairs, simply consists of a cross-attention operator,
and a softmax activation. Formally, given the anchor’s online representation h1

i

and its neighboring node’s target representation h2
j , the supportiveness score

can be computed as:

wj = softmaxj(eij) =
exp(eij/τ)∑

k∈Ni
exp(eik/τ)

, (4)
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where eij = h1
i · h2

j/ ‖ h1
i ‖‖ h2

j ‖ is the cosine similarity between h1
i and h2

j

and τ is a temperature parameter. This attention module assigns higher weights
to ground-truth positive node-neighbor pairs than false positive node-neighbor
pairs, thus mitigating class collision caused by aligning false node-neighbor pairs.

Comparison with BGRL. Our BLNN enhances BGRL by introducing poten-
tial positive node-neighbor pairs in the absence of ground-truth labels. It inherits
BGRL’s advantages, such as the negative-free property, which naturally address
class collision caused by false negative pairs. Different from the original BGRL
framework, which aligns only augmented views with the anchor node, the cross-
attention design in BLNN enriches the diversity of positive nodes to support the
anchor node in a soft and adaptive manner. This design empowers us to leverage
more positive pairs, enhancing intra-class compactness. Additionally, the com-
putations for supportiveness scores and node-neighbor alignment loss exhibit a
time complexity linear with the number of edges O(|E|). Given the sparsity of
real-world graphs, i.e., O(|E|) << O(|V|2), such complexity increase compared
to BGRL is acceptable and our model maintains lower time complexity than
contrastive learning baselines [13,36,38,39].

Algorithm 1. Bootstrap Latents of Nodes and Neighbors
Input: G = (A,X)
Parameter: Temperature τ , BGRL-related hyperparameters
Output: The graph encoder fθ

1: Initialize model parameters;
2: while not converge do
3: Sample two augmentation functions t1, t2 ∼ T ;
4: Generate augmented views (A1,X1), (A2,X2);
5: Obtain online representations H1 = fθ(A

1,X1);
6: Obtain target representations H2 = fφ(A

2,X2);
7: Compute positiveness scores of node-neighbor pairs via Eq. (4);
8: Predict the target representations Z1 = pθ(H

1);
9: Calculate the objective function via Eq. (3);

10: Update the parameters of fθ, pθ via SGD;
11: Update the parameters of fφ via an EMA of fθ;
12: end while
13: return fθ.

5 Experiments

In this section, we design the experiments to evaluate our proposed BLNN and
answer the following research questions. RQ1: Does BLNN outperform exist-
ing baseline methods on node classification, node clustering, and node similarity
search? RQ2: How does each component of BLNN benefit the performance?
RQ3: Can the supportiveness score measure the positiveness of node-neighbor
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pairs? RQ4: Is BLNN sensitive to the hyperparameter τ? RQ5: How to intu-
itively understand BLNN can enhance intra-class compactness of learned repre-
sentations?

5.1 Experiment Setup

Datasets. We adopt five publicly available real-world benchmark datasets,
including one reference network WikiCS [19], two co-purchase networks Photo,
Computer [23], and two co-authorship networks CS, Physics [23] to conduct the
experiments throughout the paper. The statistics of the datasets are provided
in Table 1. More details can be found in Appendix A.1.

Table 1. Dataset statistics. H is the fraction of intra-class node-neighbor pairs.

Dataset #Nodes #Edges #Feats #Classes H (%)

WikiCS 11,701 431,726 300 10 65.47
Photo 7,650 238,163 745 8 82.72
Computer 13,752 491,722 767 10 77.72
CS 18,333 163,788 6,805 15 80.81
Physics 34,493 495,924 8,415 5 93.14

Baselines. We compare BLNN with a variety of baselines, including supervised
methods MLP, GCN [11], and GAT [26]; contrastive methods DGI [27], MVGRL
[6], GRACE [38], GCA [39], AF-GCL [28], COSTA [36], FastGCL [30], gCooL
[13], ProGCL [32], and CGKS [35]; non-contrastive methods CCA-SSG [34], G-
BT [1], AFGRL [12], GraphMAE [8], and BGRL [25]. All the baseline results are
taken from previously published papers. And brief introductions of the baselines
can be found in Appendix A.2.

Evaluation Protocol. We evaluate BLNN on three tasks, i.e., node classifi-
cation, node clustering and node similarity search. We first train the model in
an unsupervised manner. For node classification, we use the learned represen-
tations to train and test a simple logistic regression classifier with twenty 1:1:8
train/validation/test random splits (twenty public splits for WikiCS) [25]. We
apply K-means to the learned representations, initializing the cluster numbers
with fixed values. For node similarity search, we use pairwise cosine similarity
to identify nearest node neighbors [12]. Evaluations are conducted at every 250
epochs, and we report the best results [12,25].

Metrics. Following AFGRL [12], we use accuracy for node classification, nor-
malized mutual information (NMI) and homogeneity (Hom.) for node clustering.
For node similarity search, we introduce S@k, which is average ratio among the
k nearest neighbors sharing the same label as the query node. Formulas of these
metrics can be found in Appendix A.4.
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Implementation Details. Since our BLNN is derived from BGRL, we imple-
ment BLNN based on the official code1 of BGRL. To ensure a fair comparison,
all BGRL-related hyperparameters are the same as those specified in the original
BGRL paper. We perform a grid-search on the introduced temperature hyperpa-
rameter τ . All experiments are conducted on a 32GB V100 GPU. Our implemen-
tation code is available at https://github.com/Cloudy1225/BLNN. More details
can be found in Appendix A.5.

Table 2. Node classification results measured by accuracy along with standard devia-
tions. The baseline results are taken from previously published papers. ‘-’ denotes the
absence of the result in the original paper. The Input column illustrates the data used
in the training stage, and Y denotes labels.

Method Input WikiCS Photo Computer CS Physics

MLP X ,Y 71.98± 0.00 78.53± 0.00 73.81± 0.00 90.37± 0.00 93.58± 0.00
GCN A ,X ,Y 77.19± 0.12 92.42± 0.22 86.51± 0.54 93.03± 0.31 95.65± 0.16
GAT A ,X ,Y 77.65± 0.11 92.56± 0.35 86.93± 0.29 92.31± 0.24 95.47± 0.15

DGI A ,X 78.25± 0.56 91.69± 1.07 87.98± 0.81 92.15± 0.63 94.51± 0.52
MVGRL A ,X 77.57± 0.46 92.04± 0.98 87.39± 0.92 92.11± 0.12 95.33± 0.03
GRACE A ,X 78.64± 0.33 92.46± 0.18 88.29± 0.11 92.17± 0.04 95.26± 0.22
GCA A ,X 78.35± 0.05 92.53± 0.16 87.85± 0.31 93.10± 0.01 95.68± 0.05
AF-GCL A ,X 79.01± 0.51 92.49± 0.31 89.68± 0.19 91.92± 0.10 95.12± 0.15
COSTA A ,X 79.12± 0.02 92.56± 0.45 88.32± 0.03 92.94± 0.10 95.60± 0.02
FastGCL A ,X 79.20± 0.07 92.91± 0.07 89.35± 0.09 92.71± 0.07 95.53± 0.02
gCooL A ,X 78.74± 0.04 93.18± 0.12 88.85± 0.14 93.32± 0.02 -
ProGCL A ,X 78.68± 0.12 93.30± 0.09 89.28± 0.15 93.51± 0.06 -
CGKS A ,X 79.20± 0.10 92.40± 0.10 88.50± 0.20 93.00± 0.20 -

CCA-SSG A ,X 79.08± 0.53 93.14± 0.14 88.74± 0.28 93.32± 0.22 95.38± ± 0.06
G-BT A ,X 76.83± 0.73 92.46± 0.35 87.93± 0.36 92.91± 0.25 95.25± 0.13
AFGRL A ,X 77.62± 0.49 93.22± 0.28 89.88± 0.33 93.27± 0.17 95.69± 0.10
GraphMAE A ,X 79.54± 0.58 92.98± 0.35 89.88± 0.10 93.08± 0.17 95.40± 0.06
BGRL A ,X 79.98± 0.10 93.17± 0.30 90.34± 0.19 93.31± 0.13 95.73± 0.05
BLNN A ,X 80.48± 0.52 93.54± 0.23 91.02± 0.23 93.61± 0.15 95.86± 0.10

5.2 Experiment Results

Performance Analysis (RQ1). The experimental results of node classifica-
tion are presented in Table 2, revealing that our BLNN outperforms both self-
supervised and even supervised baselines. This superiority can be attributed to
two primary factors: 1) The pioneering BGRL of BLNN can effectively learn dis-
criminative node representations, achieving competitive performance. 2) BLNN
introduces additional potential positive pairs, enhancing the intra-class compact-
ness of representations learned by BGRL. Node clustering results are detailed

1 https://github.com/nerdslab/bgrl.

https://github.com/Cloudy1225/BLNN
https://github.com/nerdslab/bgrl
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in Table 3, demonstrating BLNN’s superior performance across four datasets,
except Physics. Notably, BLNN exhibits significant improvement over BGRL,
especially on WikiCS, Computer and Physics, with an increase ranging from 5%
to 8%. These enhancements underscore the effectiveness of incorporating posi-
tive node-neighbor pairs to generate more intra-class compact representations.
Table 4 illustrates the node similarity search results, with BLNN demonstrat-
ing the best performance. This outcome aligns with expectations, as BLNN is
designed to softly pull together representations of nodes and their neighbors,
where neighboring nodes often share the same label in graphs.

Table 3. Performance on node clustering. The baseline results are taken from the
published AFGRL paper.

Dataset WikiCS Photo Computer CS Physics
Metric NMI Hom. NMI Hom. NMI Hom. NMI Hom. NMI Hom.

GRACE 42.82 44.23 65.13 66.57 47.93 52.22 75.62 79.09 - -
GCA 33.73 35.25 64.43 65.75 52.78 58.16 76.20 79.65 - -
AFGRL 41.32 43.07 65.63 67.43 55.20 60.40 78.59 81.61 72.89 73.54
BGRL 39.69 41.56 68.41 70.04 53.64 58.69 77.32 80.41 55.68 60.18
BLNN 47.17 49.11 71.05 72.18 58.79 64.33 78.97 82.08 62.41 67.39

Table 4. Performance on node similarity search. The baseline results are taken from
the published AFGRL paper.

Dataset WikiCS Photo Computer CS Physics
Metric S@5 S@10 S@5 S@10 S@5 S@10 S@5 S@10 S@5 S@10

GRACE 77.54 76.45 91.55 91.06 87.38 86.43 91.04 90.59 - -
GCA 77.86 76.73 91.12 90.52 88.26 87.42 91.26 91.00 - -
AFGRL 78.11 76.60 92.36 91.73 89.66 88.90 91.80 91.42 95.25 94.86
BGRL 77.39 76.17 92.45 91.95 89.47 88.55 91.12 90.86 95.04 94.64
BLNN 80.27 79.04 92.61 91.96 89.91 89.12 91.90 91.59 95.39 95.01

Ablation Studies (RQ2). To verify the benefit of each component of BLNN,
we conduct ablation studies with different variants of BGRL: BGRL with raw
nosiy node-neighbor pairs (BGRLnoisy), BGRL with clean node-neighbor pairs
(BGRLclean), and our proposed BLNN (BGRL with supportiveness-weighted
node-neighbor pairs). Results are reported in Table 5. We can find that simply
treating raw node-neighbor pairs as ground-truth positive pairs results in only
marginal improvement or even performance degradation, as raw node-neighbor
pairs include inter-class pairs, which would cause class collision. Our supportive-
ness weighting strategy, implemented through an attention module, effectively
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mitigates this class collision, yielding superior performance. However, there is
still a gap between our BLNN and the ideal solution BGRLclean, which necessi-
tates the availability of all labels. These results further confirm our motivation
described in Sect. 4.1.

Table 5. Ablation study on node classification.

Variant WikiCS Photo Computer CS Physics

BGRL 79.98 93.17 90.34 93.31 95.73
BLNN 80.48 93.54 91.02 93.61 95.86
BGRLnoisy 80.05 93.33 90.44 93.27 95.59
BGRLclean 81.51 93.66 91.31 93.92 95.98

Case Study (RQ3). Our attention module is implemented based on cosine
similarities of node-neighbor pairs and is expected to assign higher weights to
true positive node-neighbor pairs than false positive pairs. Here, we conduct
a twofold case study on Computer to verify that: 1) node-neighbor pairs with
higher cosine similarity tend to share the same label; 2) our attention module
indeed assigns higher weights to true positive node-neighbor pairs. We first sort
all node-neighbor pairs based on the learned cosine similarity and then divide
them into intervals of size 10, 000 to compute the homophily in each interval. As
shown in Fig. 3(a), the cosine similarity effectively estimates the probability of
neighbor nodes being positive, with more similar node-neighbor pairs exhibiting
larger homophily, which validates the efficacy of leveraging cosine similarity in
our attention module. Moreover, we select an anchor node with 949 neighbors,
sorting all anchor-neighbor pairs according to the supportiveness weights pre-
dicted by the attention module. We also partition them into intervals of size 50
to calculate homophily within each interval. As shown in Fig. 3(b), our atten-
tion module generally assigns higher weights to true positive node-neighbor pairs
compared to false positive pairs.

Hyperparameter Analysis (RQ4). We investigate the impact of the tem-
perature τ in Eq. (4) on node classification by varying τ from 0.1 to 2.0 in
increments of 0.1. Figure 4 presents the ACC scores on Photo, Computer and
CS. It is observed that, our BLNN almost always achieves better performance
than BGRL with respect to different τ . In general, BLNN exhibits robustness to
the temperature τ . Analysis for BGRL-related hyperparameters can be found in
the original BGRL paper [25].

Visualization and Compactness of Representations (RQ5). To gain a
more intuitive insight into node representations, we provide the t-SNE [17] visu-
alizations of the raw features and representations learned by BGRL and BLNN,
along with intra-class compactness score on Computer. The intra-class compact-
ness score is defined as the mean cosine similarity among all intra-class node
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Fig. 3. Case study to verify the efficacy of our attention module.

Fig. 4. Visualization of the impact of τ on node classification.

Fig. 5. t-SNE visualization and intra-class compactness of node representations on
Computer. ‘(∗)’ indicates the mean intra-class pair-wise cosine similarity.

pairs (the formula can be found in Appendix A.4). As shown in Fig. 5, the
representations learned by BLNN exhibit higher intra-class compactness, thus
underscoring the effectiveness of mining positive node-neighbor pairs.

6 Conclusion

In this paper, we introduce Bootstrap Latents of Nodes and Neighbors (BLNN).
Our proposal is motivated by the empirical observation that introducing ground-
truth positive node-neighbor pairs can yield significant improvements for BGRL.
We thus expand the positive pair set with node-neighbor pairs and propose a
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cross-attention module to weight the contribution of each neighbor to loss com-
putations. This module prioritizes higher weights for ground-truth positive node-
neighbor pairs compared to false positive node-neighbor pairs, thereby alleviating
class collision resulting from the alignment of false node-neighbor pairs. Exten-
sive experiments demonstrate that our BLNN effectively improves the intra-class
compactness of learned representations, establishing its state-of-the-art perfor-
mance in three downstream tasks across five benchmark datasets.
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Abstract. By leveraging the kernel trick in the output space, kernel-
induced losses provide a principled way to define structured output pre-
diction tasks for a wide variety of output modalities. In particular, they
have been successfully used in the context of surrogate non-parametric
regression, where the kernel trick is typically exploited in the input space
as well. However, when inputs are images or texts, more expressive mod-
els such as deep neural networks seem more suited than non-parametric
methods. In this work, we tackle the question of how to train neural net-
works to solve structured output prediction tasks, while still benefiting
from the versatility and relevance of kernel-induced losses. We design a
novel family of deep neural architectures, whose last layer predicts in
a data-dependent finite-dimensional subspace of the infinite-dimensional
output feature space deriving from the kernel-induced loss. This subspace
is chosen as the span of the eigenfunctions of a randomly-approximated
version of the empirical kernel covariance operator. Interestingly, this
approach unlocks the use of gradient descent algorithms (and conse-
quently of any neural architecture) for structured prediction. Experi-
ments on synthetic tasks as well as real-world supervised graph predic-
tion problems show the relevance of our method.

Keywords: Structured prediction · Deep learning · Kernel methods

1 Introduction

Learning to predict complex outputs, such as graphs or any other composite
object, raises many challenges in machine learning [3,19,51]. The most impor-
tant of them is undoubtedly the difficulty of leveraging the geometry of the
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output space. In supervised graph prediction, for instance, it is often required to
use node permutation-invariant and node size-insensitive distances, such as the
Fused Gromov-Wasserstein distance [69]. In that regard, surrogate methods such
as Output Kernel Regression [25,33,71] offer a powerful and flexible framework
by using the kernel trick in the output space. By appropriately choosing the out-
put kernel, it is possible to incorporate various kinds of information, both in the
model and in the loss function [13,15,49]. One important limitation of this app-
roach, however, is that the induced output features may be infinite-dimensional.

If leveraging the kernel trick in the input space may be a solution [12,16],
such non-parametric methods are usually outperformed by more expressive mod-
els such as neural networks when input data consist of images or texts. In the
context of structured prediction, deep learning has led to impressive results for
specific tasks, such as semantic segmentation [37] or the protein 3D structure
prediction [32]. To create versatile deep models, the main approach explored in
the literature is the energy-based approach, which consists of converting struc-
tured prediction into learning a scalar score function [4,27,42,43]. However, these
methods usually fail to go beyond structured prediction problems which can be
reformulated as high-dimensional multi-label classification problems, as pointed
out by [26]. Besides, this approach requires a two-step strategy, since the energy
function is first learned thanks to the training data, and then maximized at
inference time. To obtain an end-to-end model, [5] uses direct risk minimization
techniques, and [67] introduces inference networks, a neural architecture that
approximates the inference problem. In this work, we choose to benefit from the
versatility of kernel-induced losses, and deploy it to neural networks. To this
end, we address the infinite-dimensionality of the output features by comput-
ing a finite-dimensional basis within the output feature space, defined as the
eigenbasis of a sketched version of the output empirical covariance operator.

Sketching [45,73] is a dimension-reduction technique based on random lin-
ear projections. In the context of kernel methods, it has mainly been explored
through the so-called Nyström approximation [56,72], or via specific distribu-
tions such as Gaussian or Randomized Orthogonal Systems [40,75]. Previous
works tackle sketched scalar kernel regression by providing a low-rank approxi-
mation of the Gram matrix [2,20], reducing the number of parameters to learn
at the optimization stage [40,75], providing data-dependent random features
[39,72,74], or leveraging an orthogonal projection operator in the feature space
[56]. This last interpretation has been used to learn large-scale dynamical sys-
tems [47], and structured prediction [22].

In our proposition to solve structured prediction from complex input data,
we make the following contributions:

• We introduce Deep Sketched Output Kernel Regression, a novel family of
deep neural architectures whose last layer predicts a data-dependent finite-
dimensional representation of the outputs, that lies in the infinite-dimensional
feature space deriving from the kernel-induced loss.
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• This last layer is computed beforehand, and is the eigenbasis of the sketched
empirical covariance operator, unlocking the use of gradient-based techniques
to learn the weights of the previous layers for any neural architecture.

• We empirically show the relevance of our approach on a synthetic least squares
regression problem, and provide a strategy to select the sketching size.

• We show that DSOKR performs well on two text-to-molecule datasets.

2 Deep Sketched Output Kernel Regression

In this section, we set up the problem of structured prediction. Specifically, we
consider surrogate regression approaches for kernel-induced losses. By introduc-
ing a last layer able to make predictions in a Reproducing Kernel Hilbert Space
(RKHS), we unlock the use of deep neural networks as hypothesis space.

Consider the general regression task from an input domain X to a structured
output domain Y (e.g., the set of labeled graphs of arbitrary size). Learning a
mapping from X to Y naturally requires taking into account the structure of
the output space. One way to do so is the Output Kernel Regression (OKR)
framework [10,12,16,25,71], which is part of the family of surrogate regression
methods [14,15].

Output Kernel Regression. A positive definite (p.d.) kernel k : Y ×Y → R is
a symmetric function such that for all n ≥ 1, and any (yi)

n
i=1 ∈ Yn, (αi)

n
i=1 ∈ R

n,
we have

∑n
i,j=1 αi k (yi, yj) αj ≥ 0. Such a kernel is associated with a canonical

feature map ψ : y ∈ Y �→ k(·, y), which is uniquely associated with a Hilbert
space of functions H ⊂ R

Y , the RKHS, such that ψ(y) ∈ H for all y ∈ Y, and
h (y) = 〈h, ψ(y)〉H for any (h, y) ∈ H × Y. Given a p.d. kernel k, ψ its canonical
feature map and H its RKHS, the OKR approach that we consider in this work
exploits the kernel-induced squared loss:

Δ(y, y′) := ‖ψ(y) − ψ(y′)‖2H = k(y, y) − 2 k(y, y′) + k(y′, y′) . (1)

The versatility of loss (1) stems from the large variety of kernels that have
been designed to compare structured objects [7,24,38]. In multi-label classifi-
cation, for instance, choosing the linear kernel or the Tanimoto kernel induces
respectively the Hamming and the F1-loss [65]. In label ranking, Kemeny and
Hamming embeddings define respectively Kendall’s τ distance and the Hamming
loss [38,50]. For sequence prediction tasks, n-gram kernels have been proven
useful [17,33,50], while an abundant collection of kernels has been designed
for graphs, based either on bags of structures or information propagation, see
Appendix B and [7] for examples.

If kernel-induced losses can be computed easily thanks to the kernel trick,
note that most of them are however non-differentiable. In particular, this largely
compromises their use within deep neural architectures, that are however key
to achieve state-of-the-art performances in many applications. In this work, we
close this gap and propose an approach that benefits from both the expressivity
of neural networks for input image/textual data, as well as the relevance of
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kernel-induced losses for structured outputs. Formally, let ρ be a joint probability
distribution on X × Y. Our goal is to design a family (fθ)θ∈Θ ⊂ YX of neural
networks with outputs in Y that can minimize the kernel-induced loss, i.e., that
can solve

min
θ∈Θ

E(x,y)∼ρ

[ ∥
∥ψ(y) − ψ

(
fθ(x)

)∥
∥2

H
]
. (2)

To do so, we assume that we can access a training sample {(x1, y1), . . . , (xn, yn)}

Fig. 1. Illustration of DSOKR model.

drawn i.i.d. from ρ. Since learning fθ through ψ is difficult, we employ a two-step
method. First, we solve the surrogate empirical problem

θ̂ ∈ arg min
θ∈Θ

L(θ) = arg min
θ∈Θ

1
n

n∑

i=1

‖hθ(x) − ψ(y)‖2H, (3)

where (hθ)θ∈Θ ⊂ HX is a family of neural networks with outputs in H. We then
retrieve the solution by solving for any prediction the pre-image problem

fθ̂(x) = arg min
y∈Y

‖hθ̂(x) − ψ(y)‖2H. (4)

This approach nonetheless raises a major challenge. Indeed, the dimension of
the canonical feature space H may be infinite, making the training very difficult.
The question we have to answer now is: how can we design a neural architecture
that is able to learn infinite-dimensional output kernel features?

Neural Networks with Infinite-Dimensional Outputs. We propose a novel
architecture of neural networks to compute the function hθ with values in H,
as illustrated in Fig. 1. Let p ≥ 1, our architecture is the composition of two
networks: an input neural network, denoted gW : X → R

p, with generic weights
W ∈ W, and a last layer composed of a unique functional neuron, denoted
gE : Rp → H, that predicts in H. The latter depends on the kernel k used in the
loss definition, and on a finite basis E = ((ej)

p
j=1) ∈ Hp of elements in H. We

let θ = (W,E), and for any x ∈ X , we have
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hθ(x) := gE ◦ gW (x), (5)

where gW typically implements a L − 1 neural architecture encompassing, mul-
tilayered perceptrons, convolutional neural networks, or transformers. Instead,
gE computes a linear combination of some basis functions E = (ej)

p
j=1 ∈ Hp

gE : z ∈ R
p �→

p∑

j=1

zjej ∈ H . (6)

With this architecture, computations remain finite, and the input neural network
outputs the coefficients of the basis expansion, generating predictions in H.

Remark 1 (Input Neural net’s last layers). Since the neural network gW learns
the coordinates of the surrogate estimator in the basis, its last layers are always
mere fully connected ones, regardless of the nature of the output data at hand.

2.1 Learning Neural Networks with Infinite-Dimensional Outputs

Learning the surrogate regression model hθ now boils down to computing θ =
(W,E). We propose to solve this problem in two steps. First, we learn a suitable E
using only the output training data (ψ(yi))n

i=1 in an unsupervised fashion. Then,
we use standard gradient-based algorithms to learn W through the frozen last
layer, minimizing the loss on the whole supervised training sample (xi, ψ(yi))n

i=1.

Estimating the Functional Last Unit gE. A very first idea is to choose E
as the non-orthogonal dictionary ψ(yj)n

j=1. But this choice induces a very large
output dimension (namely, p = n) for large training datasets.

An alternative consists in using Kernel Principal Component Analy-
sis (KPCA) [58]. Given a marginal probability distribution over Y, let
C = Ey[ψ(y) ⊗ ψ(y)] be the covariance operator associated with k, and
Ĉ = (1/n)

∑n
i=1 ψ(yi) ⊗ ψ(yi) its empirical counterpart. Let S be the

sampling operator that transforms a function f ∈ H into the vector
(1/

√
n)(f(x1), . . . , f(xn))� in R

n, and denote by S# its adjoint. We have
S# : α ∈ R

n �→ (1/
√

n)
∑n

i=1 αi ψ(yi) ∈ H, and Ĉ = S# S. KPCA provides
the eigenbasis of Ĉ by computing the SVD of the output Gram matrix, for a
prohibitive computational cost of O(n3). In practice, though, it is often the case
that the so-called capacity condition holds [15,22], i.e., that the spectrum of the
empirical covariance operator enjoys a large eigendecay. It is then possible to
efficiently approximate the eigenbasis of Ĉ using random projections techniques
[45], also known as sketching, solving this way the computational and memory
issues.

Sketching for Kernel Methods. Sketching [73] is a dimension reduction tech-
nique based on random linear projections. Since the goal is to reduce the depen-
dency on the number of training samples n in kernel methods, such linear pro-
jections can be encoded by a randomly drawn matrix R ∈ R

m×n, where m  n.
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Standard examples include Nyström approximation [46], where each row of R is
randomly drawn from the rows of the identity matrix In, also called sub-sampling
sketches, and Gaussian sketches [75], where all entries of R are i.i.d. Gaussian
random variables. As they act as a random training data sub-sampler and then
largely reduce both the time and space complexities induced by kernel methods,
sub-sampling sketches are the most popular sketching type applied to kernels,
while Gaussian sketches are less computationally efficient but offer better sta-
tistical properties. Hence, given a sketching matrix R ∈ R

m×n, one can defines
H̃Y = span((

∑n
j=1 Rij ψ(yj))mi=1) which is a low-dimensional linear subspace of

H of dimension at most m. One can even compute the basis Ẽ of H̃Y , providing
the last layer gẼ .

Sketching to Estimate gE . We here show how to compute the basis Ẽ of
H̃Y . Let m < n, and R ∈ R

m×n be a sketching matrix. Let K̃ = R K R� ∈
R

m×m be the sketched Gram matrix, and
{
(σi(K̃), ṽi), i ∈ [m]

}
its eigenpairs,

in descending order. We set p = rank
(
K̃

)
. Note that p ≤ m, and that p =

m for classical examples, e.g. full-rank K and sub-sample without replacement
or Gaussian R. The following proposition provides the eigenfunctions of the
sketched empirical covariance operator.

Proposition 1. [22, Proposition 2] The eigenfunctions of the sketched empirical
covariance operator C̃ = S#R�R S are the ẽj =

√
n

σj(˜K)
S# R� ṽj ∈ H, for

j ≤ p.

Hence, computing the eigenfunctions of C̃ provides a basis of H of dimension p.
Note that in sketched KPCA, which has been explored via Nyström approxima-
tion in [63,64], one solves for i = 1, . . . ,m

fi = arg max
f∈H

{
〈f, Ĉ f〉H : f ∈ H̃Y , ‖f‖H = 1, f ⊥ {f1, . . . , fi−1}

}
(7)

where H̃Y = span((
∑n

j=1 Rij ψ(yj))mi=1). Let P̃ be the orthogonal projector onto
the basis (ẽ1, . . . , ẽp), solving Equation (7) is equivalent to compute the eigen-
functions of the projected empirical covariance operator P̃ Ĉ P̃, i.e., to compute
the KPCA of the projected kernel 〈P̃ ψ(·), P̃ ψ(·)〉H. Besides, as for the SVD
of C̃, sketched KPCA needs the SVD of K̃ to obtain its square root, but also

requires the additional K̃
1/2

R K2 R� K̃
1/2

SVD computation.

Remark 2 (Random Fourier Features). Another popular kernel approximation
is the Random Fourier Features [44,52,57]. They approximate a kernel function
as the inner product of small random features using Monte-Carlo sampling when
the kernel writes as the Fourier transform of a probability distribution. Such an
approach, however, defines a new randomly approximated kernel, then a new
randomly approximated loss, which can induce learning difficulties due to the
bias and variance inherent to the approximation. Unlike RFF, sketching is not
limited to kernels writing as the Fourier transform of a probability distribution
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and to defining an approximated loss, it allows the building of a low-dimensional
basis within the original feature space of interest.

Learning the Input Neural Network gW . Equipped with the basis Ẽ =
(ẽj)j≤p, we can compute a novel expression of the loss L(θ) = L(Ẽ,W ), see
Appendix A for the proof.

Algorithm 1 . Deep Sketched Output Kernel Regression (DSOKR)
input: training {(xi, yi)}n

i=1, validation {(xval
i , yval

i )}nval
i=1 pairs, test inputs {xte

i }nte
i=1,

candidate outputs test inputs {yc
i }nc

i=1, normalized output kernel k, sketching
matrix R ∈ R

m ×n, neural network gW

init : ˜K = R K R� ∈ R
m × m where K = (k(yi, yj))1≤i,j≤n ∈ R

n×n

// 1. a. Training of gE: computations for the basis ˜E

• Construct ˜Dp ∈ R
p × p, ˜Vp ∈ R

m × p such that ˜Vp
˜Dp

˜V �
p = ˜K (SVD of ˜K)

• ˜Ω = ˜D
−1/2
p

˜V �
p ∈ R

p × m

// 1. b. Training of gW : solving the surrogate problem

• ψ̃(yi) = ˜Ω R kyi ∈ R
p, ∀ 1 ≤ i ≤ n, ψ̃(yval

i ) = ˜Ω R kyval
i ∈ R

p, ∀ 1 ≤ i ≤ nval

• Ŵ = arg min
W∈W

1
n

∑n
i=1

∥

∥

∥gW (xi) − ψ̃(yi)
∥

∥

∥

2

2
(training of gW with training

{(xi, ψ̃(yi))}n
i=1 and validation {(xval

i , ψ̃(yval
i ))}nval

i=1 pairs and Mean Squared Error loss)

// 2. Inference

• ψ̃(yc
i ) = ˜Ω R kyc

i ∈ R
p, ∀ 1 ≤ i ≤ nc

• fθ̂(x
te
i ) = yc

j where j = arg max
1≤j≤nc

gŴ (xte
i )�ψ̃(yc

j), ∀ 1 ≤ i ≤ nte

return fθ̂(x
te
i ), ∀ 1 ≤ i ≤ nte

Proposition 2. Given the pre-trained basis Ẽ = (ẽj)j≤p, L(Ẽ,W ) expresses as

L(Ẽ,W ) =
1
n

n∑

i=1

∥
∥
∥gW (xi) − ψ̃(yi)

∥
∥
∥
2

2
, (8)

where ψ̃(y) = (ẽ1(y), . . . , ẽp(y))� = D̃
−1/2
p Ṽ �

p R ky ∈ R
p, Ṽp = (ṽ1, . . . , ṽp),

D̃p = diag(σ1(K̃), . . . , σp(K̃)), and ky = (k(y, y1), . . . , k(y, yn)).

Finally, given Ẽ and Proposition 2, learning the full network hθ boils down to
learning the input neural network gW and thus finding a solution Ŵ to

min
W∈W

1
n

n∑

i=1

∥
∥
∥gW (xi) − ψ̃(yi)

∥
∥
∥
2

2
. (9)

A classical stochastic gradient descent algorithm can then be applied to learn W .
Compared to the initial loss (3), the relevance of (9) is governed by the quality of
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the approximation of Ĉ by C̃. If our approach regularises the solution (the range
of the surrogate estimator hθ is restricted from H to E), this restriction may not
be limiting if we set m ≥ p high enough to capture all the information contained
in Ĉ. We discuss strategies to correctly set m at the beginning of Sect. 3.

Remark 3 (Beyond the square loss). Equipped with such an architecture gW ◦gE ,
one can easily consider any loss that writes Δ(y, y′) = c(‖ψ(y)−ψ(y′)‖2H), where
c : R+ → R+ is a non-decreasing sub-differentiable function. For instance, in the
presence of output outliers, one could typically consider robust losses such as
the Huber or ε-insensitive losses, that correspond to different choices of function
c [30,41,62].

2.2 The Pre-image Problem at Inference Time

We focus now on the decoding part, i.e., on computing

d ◦ hθ̂(x) = arg min
y∈Y

k(y, y) − 2gŴ (x)� ψ̃(y) = arg max
y∈Y

gŴ (x)� ψ̃(y)

if we assume k to be normalized, i.e. k(y, y′) = 1,∀y, y′ ∈ Y. For a test set
Xte = (xte

1 , . . . , xte
nte

) ∈ X nte and a candidate set Y c = (yc
1, . . . , y

c
nc

) ∈ Ync , for
all 1 ≤ i ≤ nte, the prediction is given by

fθ̂(x
te
i ) = yc

j where j = arg max
1≤j≤nc

gŴ (xte
i )�ψ̃(yc

j) . (10)

Hence, the decoding is particularly suited to problems for which we have
some knowledge of the possible outcomes, such as molecular identification prob-
lems [11]. When the output kernel is differentiable, it may also be solved using
standard gradient-based methods. Finally, some ad-hoc ways to solve the pre-
image problem exist for specific kernels, see e.g., [17] for the sequence prediction
via n-gram kernels, or [38] for label ranking via Kemeny, Hamming, or Lehmer
embeddings. The DSOKR framework is summarized in Algorithm1.

3 Experiments

In this section, we first present a range of strategies to select the sketch-
ing size and an analysis of our proposed DSOKR on a synthetic dataset.
Besides, we show the effectiveness of DSOKR through its application to two
real-world Supervised Graph Prediction (SGP) tasks: SMILES to Molecule
and Text to Molecule. The code to reproduce our results is available at:
https://github.com/tamim-el/dsokr.

Sketching Size Selection Strategy. A critical hyper-parameter of DSOKR is
the sketching size m. Indeed, the optimal choice is the dimension of the subspace
containing the output features. However, to estimate this dimension, one has to
compute the eigenvalues of K, which has the prohibitive complexity of O(n3).
Hence, a first solution is to compute the Approximate Leverage Scores (ALS)

https://github.com/tamim-el/dsokr
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as described in [1]. This is an approximation of the eigenvalues of K that relies
on sub-sampling nS < n entries within the whole training set. Moreover, we
use another technique that we call Perfect h. Considering any pair (x, y) in a
validation set, we replace gW (x) by the “perfect” coefficients of the expansion,
i.e., for each j = 1, . . . , p, 〈ẽj , ψ(y)〉H and define “perfect” surrogate estimator
hψ as follows

hψ(x) =
p∑

j=1

〈ẽj , ψ(y)〉H ẽj =
p∑

j=1

ψ̃(y)j ẽj . (11)

Then, we evaluate the performance of this “perfect” surrogate estimator hψ on a
validation set to select m. Hence, Perfect h allows to select the minimal m in the
range given by ALS such that the performance of hψ reaches an optimal value.

3.1 Analysis of DSOKR on Synthetic Least Squares Regression

Fig. 2. Sorted 400 highest ALS (left), validation MSE of Perfect h w.r.t. m (center)
and the difference between test MSE of DSOKR and NN w.r.t. m (right).

Dataset. We generate a synthetic dataset of least-squares regression, using then
a linear output kernel, with n = 50, 000 training data points, X = R

2,000, Y =
R

1,000, and H = Y = R
1,000. The goal is to build this dataset such that the

outputs lie in a subspace of Y of dimension d = 50 < 1, 000. Hence, given d
randomly drawn orthonormal vectors (uj)d

j=1, for all 1 ≤ i ≤ n, the outputs
are such that yi =

∑d
j=1 α(xi)juj + εi, where α is a function of the inputs

and εi ∼ N (0, σ2I1,000) are i.i.d. with σ2 = 0.01. We generate i.i.d. normal
distributed inputs xi ∼ N (0, C), where (σj(C) = j−1/2)2,000

j=1 and its eigenvectors
are randomly drawn. Finally, we draw H ∈ R

d×2,000 with i.i.d. coefficients from
the standard normal distribution, and the outputs are given for 1 ≤ i ≤ n by

yi = UHxi + εi , (12)

where U = (u1, . . . , ud) ∈ R
1,000×d. We generate validation and test sets of

nval = 5, 000 and nte = 10, 000 points in the same way.
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Experimental Settings. We first compute the ALS as described above. We
take as regularisation penalty λ = 10−4, sampling parameter nS =

√
n and

probability vector (pi = 1/n)n
i=1 (uniform sampling). Then, we perform the

sketching size selection strategy Perfect h. Note that using a linear output kernel,

ψ : y ∈ R
1,000 �→ y, then ẽi = (1/

√

σi(K̃))ṽ�
i R Y , where Y = (y1, . . . , yn)� ∈

R
n×1,000, and

hθ̂(x) = Y � R� ṼpD̃
−1/2
p gŴ (x) . (13)

Finally, we perform our DSOKR model whose neural network gW is a Single-
Layer Perceptron, i.e. with no hidden layer, and compare it with an SLP whose
output size is 1, 000, and trained with a Mean Squared Error loss, that we call
“NN”. We select the optimal number of epochs thanks to the validation set and
evaluate the performance via the MSE. We use the ADAM [36] optimizer. For the
Perfect h and DSOKR models and any sketching size m ∈ [2, 400], we average the
results over five replicates of the models. We use uniform sub-sampling without
replacement and Gaussian sketching distributions.

Experimental Results. Figure 2 (left) presents the sorted 400 highest leverage
scores. This gives a rough estimate of the optimal sketching size since the leverage
scores converge to a minimal value starting from 200 approximately, which is an
upper bound of the true basis dimension d = 50. Figure 2 (center) shows that
Perfect h is a relevant strategy to fine-tune m since the obtained optimal value is
m = 75, which is very close to d = 50. This small difference comes from the added
noise εi. Moreover, this value corresponds to the optimal value based on the
DSOKR test MSE. In fact, Fig. 2 (right) presents the performance DSOKR for
many m values compared with NN. DSOKR performance converges to the NN’s
performance for m = 75 as well. Hence, we show that DSOKR attains optimal
performance if its sketching size is set as the dimension of the output marginal
distribution’s range, which can be estimated thanks to the ALS and the Perfect
h strategies. There is no difference between sub-sample and Gaussian sketching
since the dataset is rather simple. Moreover, note that the neural network of the
DSOKR model for m = 75 contains 150, 075 parameters, whereas the NN model
contains 2, 001, 000 parameters. Then, our sketched basis strategy, even in the
context of multi-output regression, allows to reduce the size of the last layer,
simplifying the regression problem and reducing the number of weights to learn.

3.2 SMILES to Molecule: SMI2Mol

Dataset. We use the QM9 molecule dataset [54,55], containing around 130,000
small organic molecules. These molecules have been processed using RDKit1,
with aromatic rings converted to their Kekule form and hydrogen atoms removed.
We also remove molecules containing only one atom. Each molecule contains up
to 9 atoms of Carbon, Nitrogen, Oxygen, or Fluorine, along with three types

1 RDKit: Open-source cheminformatics. https://www.rdkit.org.

https://www.rdkit.org
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of bonds: single, double, and triple. As input features, we use the Simplified
Molecular Input Line-Entry System (SMILES), which are strings describing their
chemical structure. We refer to the resulting dataset as SMI2Mol.

Experimental Set-Up. Using all SMILES-Molecule pairs, we build five splits
using different seeds. Each split has 131,382 training samples, 500 validation
samples, and 2,000 test samples. In DSOKR, gW is a Transformer [68]. The
SMILES strings are tokenized into character sequences as inputs for the Trans-
former encoder. To define the loss on output molecules, we cross-validate several
graph kernels, including the Weisfeiler-Lehman subtree kernel (WL-VH) [60],
the neighborhood subgraph pairwise distance kernel (NSPD) [18], and the core
Weisfeiler-Lehman subtree kernel (CORE-WL) [48]. We use the implementation
of the graph kernels provided by the Python library GraKel [61]. We employ
SubSample sketching for the output kernel. The sketching size m is fixed using
our proposed Perfect h strategy. Our method is benchmarked against SISOKR
[22], NNBary-FGW [9], and ILE-FGW [9]. For ILE-FGW and SISOKR, we addi-
tionally use SubSample sketching [56] for input kernel approximation. To ensure
a fair comparison, both SISOKR and ILE-FGW adopt the 3-gram kernel for the
input strings, whereas NNBary-FGW and DSOKR use a Transformer encoder.
The performance is evaluated using Graph Edit Distance (GED), implemented
by the NetworkX package [28].

Fig. 3. The GED w/ edge feature w.r.t. the sketching size m for Perfect h for three
graph kernels on SMI2Mol (m > 6400 is too costly computationally).

Table 1. Edit distance of different methods on SMI2Mol test set

GED w/o edge feature ↓ GED w/ edge feature ↓
SISOKR 3.330 ± 0.080 4.192 ± 0.109

NNBary-FGW 5.115 ± 0.129 -

Sketched ILE-FGW 2.998 ± 0.253 -

DSOKR 1.951 ± 0.074 2.960 ± 0.079
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Experimental Results. Figure 3 displays the GED obtained by Perfect h con-
cerning various graph kernels. Based on this visualization, we have set the sketch-
ing sizes of WL-VH, CORE-WL, and NPSD to 3200, 3200, and 6400 respectively.
Table 1 showcases the performance of various methods of SGP. Notably, DSOKR
outperforms all baseline methods. It is evident that while graph kernels and the
fused Gromov-Wasserstein (FGW) distance induce a meaningful feature space,
the capabilities of SISOKR and ILE-FGW are constrained by the input kernels,
thus highlighting the relevance of our proposed method. For further insight, a
comparison of some prediction examples is provided in Fig. 4 and Appendix C.1.

Fig. 4. Predicted molecules on the SMI2Mol dataset.

Fig. 5. The MRR scores on ChEBI-20 validation set w.r.t. m for Perfect h when the
output kernel is Cosine or Gaussian on the ChEBI-20 dataset.
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Table 2. Performance of different methods on ChEBI-20 test set. All the methods
based on NNs use SciBERT as input text encoder for fair comparison. The number in
the ensemble setting indicates the number of single models used.

Hits@1 ↑ Hits@10 ↑ MRR ↑
SISOKR 0.4% 2.8% 0.015

SciBERT Regression 16.8% 56.9% 0.298

CMAM - MLP 34.9% 84.2% 0.513

CMAM - GCN 33.2% 82.5% 0.495

CMAM - Ensemble (MLP×3) 39.8% 87.6% 0.562

CMAM - Ensemble (GCN×3) 39.0% 87.0% 0.551

CMAM - Ensemble (MLP×3 + GCN×3) 44.2% 88.7% 0.597

DSOKR - SubSample Sketch 48.2% 87.4% 0.624

DSOKR - Gaussian Sketch 49.0% 87.5% 0.630

DSOKR - Ensemble (SubSample×3) 51.0% 88.2% 0.642

DSOKR - Ensemble (Gaussian×3) 50.5% 87.9% 0.642

DSOKR - Ensemble (SubSample×3 + Gaussian×3) 50.0% 88.3% 0.640

3.3 Text to Molecule: ChEBI-20

Dataset. The ChEBI-20 [21] dataset contains 33,010 pairs of compounds and
descriptions. The compounds come from PubChem [34,35], and their descrip-
tions (more than 20 words) from the Chemical Entities of Biological Interest
(ChEBI) database [29]. The dataset is divided as follows: 80% for training, 10%
for validation, and 10% for testing. The candidate set contains all compounds.
The mean and median number of atoms per molecule is 32 and 25 respectively,
and the mean and median number of words per description is 55 and 51 respec-
tively.

Experimental Set-Up. For our method DSOKR, we use SciBERT [6] with an
additional linear layer to parameterize gW . The maximum length of the input
tokens is set to 256. Mol2vec [31] is used as the output molecule representation,
which is a vector of dimension 300. Based on the Mol2vec representation, we
conduct cross-validation using the following kernels: Cosine kernel and Gaussian
kernel with gamma chosen from {10−9, 10−6, 10−3, 1}, along with the follow-
ing three sketches: sub-sampling [56], Gaussian [75], and p-sparsified [23]. The
sketching size for all combinations of the output kernels and sketches is deter-
mined using the Perfect h strategy. As for the baselines, we consider SciBERT
Regression, Cross-Modal Attention Model (CMAM) [21], and SISOKR. In the
case of SciBERT Regression, we address the regression problem using Mean
Squared Error loss, where the output space is the embedding space of Mol2vec,
within a function space parameterized by SciBERT. CMAM aims to enhance the
cosine similarity between the text embedding and the corresponding molecule
in true pairs by employing a contrastive loss function. Specifically, the former is
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derived from SciBERT, while the latter is generated using either a multi-layer
perceptron (MLP) or a graph convolutional network (GCN) atop the Mol2vec
representation. We reproduce the results of CMAM with the codes2 released
by [21]. In SISOKR, we use SciBERT embeddings as input features, leveraging
the cosine kernel atop them. We maintain the identical output kernel sketching
setup as in DSOKR. For all methods, we train the model using the best hyper-
parameters with three random seeds and report the one with the best validation
performance. The performance is evaluated with mean reciprocal rank (MRR),
Hits@1 and Hits@10. We could not benchmark AMAN [76], as no implementa-
tion is publicly available.

Ensemble. In [21], the authors propose an ensemble strategy to enhance the
results by aggregating the ranks obtained by different training of their models.
If for each 1 ≤ t ≤ T , Rt denotes the ranking returned by the model t, the new
score is computed as follows

s(yi) =
T∑

t=1

wtRt(yi) s.t.

T∑

i=1

ωt = 1 (14)

for each yi in the candidate set. In our case, the computation of DSOKR’s last
layer gE depends on a draw of the sketching matrix R, which means that DSOKR
is particularly well-suited to the aggregation via multiple draws of the sketching
matrix Rt and the training of the corresponding neural networks gWt

. Hence, we
explore two more ways of aggregating multiple DSOKR models, by averaging or
maximizing these models’ scores, i.e. for any input x and candidate y,

s(x, y) =
T∑

t=1

ωt gŴt
(x)� ψ̃t(y) or s(x, y) = arg max

1≤t≤T
gŴt

(x)� ψ̃t(y). (15)

We explore all three ensemble methods for DSOKR models and subsequently
select the optimal one based on its validation performance.

Experimental Results. Figure 5 illustrates the validation MRR scores with
Perfect h, for many m values, and either Cosine or Gaussian output kernels. It
is evident that for both the Cosine kernel and Gaussian kernel (with γ = 10−6)
employing various sketching methods, the MRR score stabilizes as the sketching
size exceeds 100, and that Cosine outperforms Gaussian. This observation allows
us to choose m = 100, smaller than the original Mol2vec dimension, which is 300.
Table 2 presents a comprehensive comparison of DSOKR with various baseline
models. Firstly, comparing DSOKR with SISOKR reveals the critical importance
of employing deep neural networks when dealing with complex structured inputs
and DSOKR makes it possible in the case of functional output space. Secondly,
the notable improvement over SciBERT Regression underscores the value of
employing kernel sketching to derive more compact and better output features,
thereby facilitating regression problem-solving. Lastly, DSOKR outperforms the
sota CMAP for both single and ensemble models. See Appendix C.2 for more
details.
2 https://github.com/cnedwards/text2mol.

https://github.com/cnedwards/text2mol
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4 Conclusion

We designed a new architecture of neural networks able to minimize kernel-
induced losses for structured prediction and achieving sota performance on
molecular identification. An interesting avenue for future work is to derive excess
risk for this estimator by combining deep learning theory and surrogate regres-
sion bounds.
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Abstract. Hyperbolic machine learning is an emerging field aimed at
representing data with a hierarchical structure. However, there is a lack
of tools for evaluation and analysis of the resulting hyperbolic data rep-
resentations. To this end, we propose Hyperbolic Delaunay Geometric
Alignment (HyperDGA) – a similarity score for comparing datasets in
a hyperbolic space. The core idea is counting the edges of the hyper-
bolic Delaunay graph connecting datapoints across the given sets. We
provide an empirical investigation on synthetic and real-life biological
data and demonstrate that HyperDGA outperforms the hyperbolic ver-
sion of classical distances between sets. Furthermore, we showcase the
potential of HyperDGA for evaluating latent representations inferred by
a Hyperbolic Variational Auto-Encoder.

Keywords: Hyperbolic Geometry · Hierarchical Data · Evaluation

1 Introduction

Hyperbolic geometry is a non-Euclidean geometry characterized by constant neg-
ative curvature [1], which is particularly suitable for low-dimensional tree embed-
ding. In contrast to the Euclidean case, a hyperbolic space requires only two
dimensions to embed any tree with arbitrary low distortion due to the expo-
nential volume growth away from the origin [26]. This has motivated the use
of hyperbolic geometry in machine learning for representing data that exhibit
a hierarchical structure. Examples of such data include geographic communica-
tion networks [12], internet networks [2], words in a natural language [17,28], or
single-cell data in biology [13]. Recent work in dimensionality reduction [5,9,25]
and generative modeling [15,16] has shown that performance in downstream
tasks is improved when hierarchical data is represented in a hyperbolic space.

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-70352-2_7.
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A. Bifet et al. (Eds.): ECML PKDD 2024, LNAI 14943, pp. 111–126, 2024.
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Fig. 1. Illustration of HyperDGA for a hyperbolic representation of hierarchical data.
Our score counts heterogeneous edges (black) of the Delaunay graph, which is dual to
the hyperbolic Voronoi diagram (gray). Data closer in the hierarchy (green & yellow)
have lower scores than data further apart (red & green). (Color figure online)

Despite the abundance of hyperbolic machine learning models, there is a
lack of methods for analyzing hyperbolic embeddings or for evaluating hyper-
bolic data representations independently of any downstream task. This raises
the need to design evaluation metrics suitable for hyperbolic geometry. To this
end, we propose Hyperbolic Delaunay Geometric Alignment (HyperDGA) – a
similarity score between two sets embedded in a hyperbolic space. Our method is
based on a hyperbolic Delaunay triangulation that takes into account the topol-
ogy and geometry of the data representation. Inspired by a recently-introduced
score deemed Delaunay Component Analysis (DCA) [22,23], HyperDGA relies
on counting the edges of the Delaunay graph that are heterogeneous i.e., con-
necting points across the given sets – see Fig. 1 for an illustration.

We validate HyperDGA empirically on synthetic and real-life datasets rep-
resented in a hyperbolic space, and compare it to hyperbolic versions of stan-
dard distances for sets – the Chamfer and the Wasserstein distances. Namely, we
investigate correlation of the metrics with noise in a synthetic dataset simulating
protein evolution, and evaluate the latent representation of a Hyperbolic Vari-
ational Auto-Encoder trained on the same dataset. Moreover, we compare the
measured distances on real-life biological data representing cells. We demonstrate
that HyperDGA outperforms the Chamfer distance, and performs comparably
or better than the Wasserstein distance.

In summary, our contributions include a geometric similarity score between
two sets in a hyperbolic space, and an experimental investigation showcasing how
HyperDGA can be used for hyperbolic data analysis and evaluation of hyperbolic
representations. The code for HyperDGA and the experiments is accessible at
the public repository: https://github.com/anissmedbouhi/HyperDGA.

https://github.com/anissmedbouhi/HyperDGA
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2 Related Work

Since HyperDGA is designed for data analysis of hyperbolic embeddings, we start
by reviewing hyperbolic dimensionality reduction techniques, as well as hyper-
bolic Variational Auto-Encoders (VAEs). Moreover, we review recent methods
for evaluating data representations in the Euclidean space, since this has not
been investigated yet in the hyperbolic case.

Hyperbolic Dimensionality Reduction. Classical dimensionality reduction
methods have been extended to the hyperbolic case, for example Multidimen-
sional Scaling [25], t-Distributed Stochastic Neighbor Embeddings [9], Principal
Component Analysis [5,8], and contrastive learning [4,17]. All these methods
embed data in a lower-dimensional hyperbolic space in order to exploit the inher-
ent hierarchical structure. HyperDGA is applicable on top of these dimensional-
ity reduction techniques to analyze the resulting hyperbolic data representations.

Hyperbolic VAEs. Hyperbolic VAEs were first proposed by [15,16] as hyper-
bolic analogues of the VAE [11,24]. These models differ in two aspects: the
model of hyperbolic geometry for the latent space, and the type of hyperbolic
Gaussian distribution deployed. Specifically, the hyperbolic models involved are
the Poincaré ball model and the hyperboloid model respectively, while the dis-
tributions are the Riemannian normal and the wrapped normal, respectively.
Mixed-Curvature VAEs [27] can be seen as a generalization of the above-cited
hyperbolic VAEs. The main difference is that the latent space consists of a prod-
uct of spaces of constant curvature selected among the Euclidean, spherical, or
hyperbolic one. Thus, the latent space has a non-constant curvature, resulting
in more flexibility to represent the data.

Evaluation of EuclideanDataRepresentations. Several methods have been
proposed to compare data representations in terms of their geometric and topolog-
ical structure. For example, Geometry Score [10] computes a topological approxi-
mation of the given datasets. This results in a the score that is robust to noise, but
is computationally expensive and requires tuning several hyperparameters. Sim-
ilarly, Improved Precision and Recall Metric (IPR) [14] approximates the under-
lying data manifold by a union of hyperspheres, but only contains a single hyper-
parameter controlling their sizes. IPR consists of two scores precision and recall,
counting the number of points of a dataset in the other dataset’s approximated
manifold. Geometric Component Analysis (GeomCA) [23] is inspired by IPR and
similarly provides local and global geometric scores. GeomCA approximates the
manifold via an ε-proximity graph connecting neighboring datapoints, where ε
is a hyperparameter controlling the neighbor size. The latter is difficult to tune
because clusters of different scales may appear in the data. DCA [22] amends to
this shortcoming by deploying the same evaluation scores while approximating the
data manifold via the 1-skeleton of the Delaunay triangulation. In summary, the
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above methods are designed specifically for Euclidean data representations and
cannot be applied directly to different geometries. On the contrary, HyperDGA
extends DCA to the hyperbolic space, and therefore is suitable for analyzing and
evaluating hyperbolic data representations.

3 Background

HyperDGA is based on the computation of a hyperbolic Delaunay graph. The
latter captures geometric and topological information in data, which motivates
our similarity score. However, a core challenge is computing the Delaunay graph
in a hyperbolic space. To this end, we deploy the Klein-Beltrami model of hyper-
bolic geometry, where the geodesics are straight lines. As a consequence, the
computation of the Delaunay graph can be reduced to the Euclidean case, which
in turn ca be addressed via standard algorithms from computational geometry.
In what follows, we introduce the necessary geometric background on Delaunay
triangulations and the Klein-Beltrami model.

3.1 Voronoi Cells and Delaunay Graph

A Delaunay triangulation is a collection of simplices in a metric space that is dual
to the Voronoi diagram [3]. The latter partitions the space into regions called
Voronoi cells. Intuitively, given a set of points, each one defines a Voronoi cell
with the property that points in R

n belong to the cell of their nearest neighbor.
More formally, let X be a metric space with distance function d : X × X → R≥0

and let P ⊆ X be a finite subset.

Definition 1. The Voronoi cell of p ∈ P is:

V (p) = {x ∈ X | ∀q ∈ P d(x, q) ≥ d(x, p)}. (1)

The Delaunay triangulation is the collection of simplices with vertices σ ⊆ P
such that

⋂
p∈σ V (p) �= ∅.

We refer to the 1-skeleton of the Delaunay triangulation as Delaunay graph.
In the case of the Euclidean space X = R

n, the Voronoi cells are convex n-
dimensional polytopes that intersect at the boundary and cover the ambient
space – see Fig. 2, left. Moreover, for generic P , the Delaunay triangulation is
embedded as a collection of non-overlapping simplices that cover the convex hull
of P .

3.2 The Klein-Beltrami Model

The n-dimensional hyperbolic space is, by definition, the unique simply-
connected Riemannian manifold with constant curvature equal to −1. It admits
several isometric models – see the supplementary material for an overview with
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other models1. As anticipated, we deploy the Klein-Beltrami model since its
geodesics are straight lines, which enables to reduce the derivations and compu-
tations to the Euclidean case, in particular for computing the hyperbolic Delau-
nay triangulation.

The n-dimensional Klein-Beltrami model is defined as the Riemannian man-
ifold with ambient space the Euclidean unit ball K

n = {z ∈ R
n | ‖z‖ < 1},

equipped with the metric tensor:

g(z) =
(

1
‖z‖2 − 1

In +
1

(‖z‖2 − 1)2
z ⊗ z

)

, (2)

where ⊗ denotes the tensor product, In the identity matrix, and 〈·, ·〉 the
Euclidean scalar product. As for any Riemannian manifold, K

n can be seen
as a metric space when equipped with the geodesic distance d(x, y) =
infγ

∫
[0,1]

√
γ′(t)†g(γ(t))γ′(t) dt, where γ : [0, 1] → K

n is a smooth curve with
γ(0) = x, γ(1) = y. Here, γ′ denotes the first derivative and † the transpose.
Explicitly, the distance is given by the expression:

d(x, y) = arccosh

(
1 − 〈x, y〉

√
(1 − ‖x‖2)(1 − ‖y‖2)

)

. (3)

4 Method

In this section, we describe HyperDGA – our proposed method for comparing
data representations in a hyperbolic space. An overview of the steps for comput-
ing HyperDGA is provided in Algorithm 1.

Algorithm 1: HyperDGA Overview
Data: Two datasets A,B represented in a hyperbolic space.
Result: Similarity score HyperDGA(A,B).
Step 1: Convert A and B to K

n via an isometry.
Step 2: Compute the hyperbolic Delaunay triangulation of A ∪ B.

Step 2.1: Compute the Euclidean power diagram of A ∪ B.
Step 2.2: Remove the non-Delaunay simplices.

Step 3: Compute HyperDGA(A,B) via Equation 6.

4.1 Conversion to Klein-Beltrami

Step 1 of Algorithm1 consists in converting the datasets A,B from the given
model of hyperbolic geometry to the Klein-Beltrami ball model K

n. This is
possible since there exist isometric diffeomorphisms between all the hyperbolic
models. For example, two popular models in hyperbolic machine learning are
the Poincaré ball model P

n and the Lorentz hyperboloid model L
n – see the

supplementary material for details (see Footnote 1). The following maps convert
these models to the Klein-Beltrami model:
1 https://github.com/anissmedbouhi/HyperDGA/blob/main/supp.pdf.

https://github.com/anissmedbouhi/HyperDGA/blob/main/supp.pdf
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Fig. 2. Depiction of the Euclidean power diagram (gray) equivalent to the hyperbolic
Voronoi diagram, the hyperbolic Delaunay graph (green), and the pruned edges (red).
Data is obtained from real-life cells (neoblasts 4 & 7, [21]) via Poincaré embedding [13]
and converted to the Klein-Beltrami model. (Color figure online)

– z = (z0, ..., zn) ∈ L
n �→

(
z1
z0

, ..., zn

z0

)
∈ K

n

– z ∈ P
n �→ 2z

1+‖z‖2 ∈ K
n.

4.2 Hyperbolic Voronoi Diagram in K
n

The goal of Step 2 in Algorithm1 is to compute the hyperbolic Delaunay trian-
gulation of the union of A and B in the Klein-Beltrami model. As shown by [18],
the hyperbolic Voronoi cells in the Klein-Beltrami model correspond to weighted
Euclidean Voronoi cells, referred to as power cells. We introduce the latter below
in a general metric space X .

Definition 2. The power cell of p ∈ P with weights {rp}p∈P ⊆ R≥0 is:

R(p) = {x ∈ X | ∀q ∈ P dq(x) ≥ dp(x)}, (4)

where dp(x) = d(x, p)2 − r2p.

If all the weights rp are set to 0, power cells specialize to Voronoi cells. By
leveraging on the non-isometric embedding of the Klein-Beltrami model into the
Euclidean space, it is possible to reduce the computation of hyperbolic Voronoi
cells to Euclidean power cells with appropriate points and weights. This is per-
formed in Step 2.1, where we compute the Euclidean power diagram of the
union of A and B – see Fig. 2 (left).

Theorem 1 ([18]). Given P ⊆ K
n, there exists an explicit set S ⊆ R

n and
weights {rs}s∈S such that the hyperbolic Voronoi cells of P correspond to restric-
tions to K

n of power cells of S.
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Explicitly, the set S and weights {rs}s∈S from Theorem 1 are obtained from
points p ∈ P via:

s =
p

2
√

1 − ‖p‖2 , r2s =
‖p‖2

4(1 − ‖p‖2) − 1
√

1 − ‖p‖2 . (5)

Power cells, together with their intersections, can be computed in the
Euclidean space via standard algorithms from computational geometry, for
example, by lifting the points to a hyperboloid and constructing a convex hull [7].
This enables us to compute hyperbolic Voronoi cells, together with hyperbolic
Delaunay triangulations, via Theorem 1.

However, one subtlety is that power cells might intersect outside the unit ball
in R

n. Since these intersections do not define hyperbolic Delaunay simplices, they
need to be removed – see Fig. 2 (right). By duality, the simplices correspond to
(potentially unbounded) convex polytopes in R

n. Therefore, it is possible to
determine whether the latter intersect K

n by finding their point of minimum
norm, which defines a quadratic programming problem [6]. When n = 2, this
reduces to determine whether segments and half-lines intersect the unit circle in
the Euclidean plane, which can be addressed by elementary algebraic methods.
This is achieved in Step 2.2 of Algorithm 1.

Fig. 3. Left: Klein-Beltrami hyperbolic representation (via Poincaré embedding [13])
of neoblasts 4 & 7 [21] (blue and orange). Right: Depiction of their corresponding
homogeneous edges (blue and orange) and heterogeneous edges (green). (Color figure
online)

4.3 HyperDGA

We now introduce HyperDGA, a similarity score between two sets of datapoints
embedded in a hyperbolic space. This is computed in the final Step 3 of Algo-
rithm1. Inspired by DCA [22], we leverage the Delaunay graph constructed on
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the union of both datasets. This graph naturally captures the geometric and
topological structure of the data by connecting neighboring points via edges
whose length adapts to local density changes. The core idea is to measure the
geometric alignment of two finite subsets A,B ⊂ K

n by counting the propor-
tion of heterogeneous edges of the Delaunay graph i.e., the edges connecting
points of A and B – see Fig. 3 for an illustration. As opposed to heterogeneous
edges, the homogeneous ones connect pairs of points that both belong to either
A or B. Intuitively, low HyperDGA scores indicate that the sets A and B are
geometrically aligned. This leads to the following definition.

Definition 3. Let E be the edges of the Delaunay graph of A ∪ B and consider
the heterogeneous edges Ẽ ⊆ E connecting a point in A to one in B. We define:

HyperDGA(A,B) = 1 − |Ẽ|
|E| ∈ [0, 1]. (6)

5 Experiments

We provide an empirical investigation of HyperDGA via two experiments on
synthetic data and one on real-life data. The goal of the first experiment is to
demonstrate the effectiveness of HyperDGA in measuring hyperbolic set dis-
tances, and to showcase the capabilities of inferring the noise injected in the
original data by analyzing its hyperbolic embedding. The second experiment is
aimed at showcasing the relevance of HyperDGA as a tool to evaluate latent rep-
resentations of a Hyperbolic VAE. Finally, in the last experiment, we validate
HyperDGA on real-life biological datasets of varying complexity by showing that
the measured hyperbolic distances are coherent with the semantics or domain
knowledge.

We compare HyperDGA to the two baselines given by hyperbolic versions of
classical metrics between finite sets. Specifically, we consider the (symmetrized)
Chamfer and Wasserstein distances, which are defined for A,B ⊂ K

n of the
same cardinality as:

Wasserstein Chamfer

min
π : A→B

∑

p∈A

d(p, π(p))
∑

p∈A

min
q∈B

d2(p, q) +
∑

q∈B

min
p∈A

d2(p, q)

Here, d is the Klein-Beltrami distance (Eq. 3) and π denotes a bijection between
A and B representing a discrete optimal transport.

We implement all of the experiments the Python programming language. Our
code is available at a public repository2. All the experiments are performed on
a machine with CPU Intel Core i7 and with 16GB of RAM.

2 https://github.com/anissmedbouhi/HyperDGA.

https://github.com/anissmedbouhi/HyperDGA
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5.1 Synthetic Data with Hyperbolic VAE

For our two experiments on synthetic data, following [16], we consider a binary
tree A0 of depth d = 11 whose nodes consist of binary sequences representing
a simple simulation of protein evolution. By construction, the graph geodesic
distance between any pair of nodes in the tree is equal to the Hamming distance
between their associated sequences. Furthermore, we consider a perturbed ver-
sion of A0 denoted Aε where we randomly flip the value of each coordinate of each
node with probability ε. The resulting points in Aε are encoded in a Euclidean
space of 2d − 1 dimensions (one dimension for each binary coordinate). We then
train a Hyperbolic VAE [16] on a dataset T sampled with ε = 0.1, in order to
represent data in a hyperbolic space. The architecture of the model consists of
a Multi Layer Perceptron of depth 3 and 100 hidden variables at each layer for
both encoder and decoder, with hyperbolic tangent as the activation function
and a latent space of dimension 2. We train the Hyperbolic VAE for 100000
epochs. In what follows, we denote the encoder and the decoder by E and D,
respectively.

Experiment 1: Distance Behavior and Noise Inference. Following the
procedure explained above, we construct 10 synthetic datasets in 2047 dimen-
sions Aε, ε ∈ {0.1, 0.2, ..., 0.9, 0.99}. As ε increases, a larger amount of noise is
injected in the binary tree data, resulting in more mutations. This can be visual-
ized in Fig. 4 (top), where the hyperbolic encoding of Aε shifts visibly. Our goal is
comparing the encoding E(T ) of the training set with the encoding E(Aε) of the
perturbed data. To this end, we measure their similarity in terms of HyperDGA
and of the hyperbolic versions of Chamfer and Wasserstein distances.

As evident from Fig. 5, HyperDGA(E(T ), E(Aε)) is strictly monotonic with
respect to ε, which is coherent with the increase of the amount of noise in the
data. The decrease of the number of heterogeneous edges of the hyperbolic Delau-
nay graph is visualized in Fig. 4 (bottom). Moreover, as reported in Table 1, all
the considered hyperbolic distances are strongly correlated with the perturbation
parameter ε. HyperDGA with hyperbolic Wasserstein exhibit the largest corre-
lation. From Fig. 5, it is clear that the noise injected in the original data can
be inferred from the latent representation. In other words, in a context of spe-
ciation, the amount of mutations between two populations can be inferred from
their latent representation by measuring distances between sets via HyperDGA
or the baselines.

Table 1. Comparison of the hyperbolic distances in terms of their Pearson correlation
with the perturbation ε.

Hyperbolic distance HyperDGA Chamfer Wasserstein

Correl. w/ ε 0.97 0.81 0.98
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Fig. 4. Top: Poincaré hyperbolic encodings of the training set (blue) and Aε (orange).
Bottom: Corresponding Klein-Beltrami visualizations of HyperDGA, with homoge-
neous edges (blue & orange) and heterogeneous ones (green). (Color figure online)

Fig. 5. Hyperbolic distances between the encodings of the training set and Aε in func-
tion of the random perturbation ε.

Experiment 2: Evaluation of Latent Representation. In this experiment,
we compare HyperDGA to the baselines as a method to evaluate the representa-
tion inferred by a Hyperbolic VAE. To this end, during training, we measure the
given distance between the encoding of the training set E(T ) and the encoding
of the decoding of its encoding E(D(E(T ))), as illustrated in Fig. 6. We then
investigate the correlation between this quantity and the loss of the VAE, as
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well as with a supervised performance score. Intuitively, as the training of the
Hyperbolic VAE progresses, its latent representation and reconstruction improve,
resulting in alignment between the latent distributions we consider. Following
[16], the supervised performance score is given by the absolute difference between
the geodesic distances in the binary tree data A0 – computed as the Hamming
distance in the input data space – and the hyperbolic latent distances of the
encoding of A0. In other words, the latter score evaluates whether the encoder
is isometric with respect to the binary tree data. We compute the correlation
every 100 epochs of training, up to 1700 epochs.

Fig. 6. Visualization of cluster creation in the encoding of the training set (red) and
the encoding of its decoding (purple) while training a Hyperbolic VAE. (Color figure
online)

Table 2 reports the means and standard deviations over three random ini-
tializations of the VAE. Moreover, Fig. 7 displays plots of the various quantities
involved as training progresses, while Fig. 6 shows visualizations of the hyperbolic
latent space. All three methods exhibit a strong Pearson correlation (>0.5) with
the loss and with the performance score. Even further, HyperDGA outperforms
the baselines in that it exhibits a stronger correlation. Jumps in HyperDGA

Table 2. Comparison of the hyperbolic distances in terms of their Pearson correlation
with the loss and the performance score.

Hyperbolic distance HyperDGA Chamfer Wasserstein

Correl. w/ Loss 0.76±0.07 0.52± 0.11 0.60± 0.06
Correl. w/ Performance−0.74±0.07−0.58± 0.17−0.65± 0.07
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Fig. 7. Plots of different metrics in function of the training iteration step, for one seed
of the neural network.

are associated with the creation of new clusters, as illustrated in Fig. 6 around
epochs 500 (from one to two clusters) and 1600 (from two to three clusters).
This means that in addition to the geometric information, HyperDGA takes
into account topological changes in the latent representation.

5.2 Real-Life Biological Data With Poincaré Embedding

In our last experiment, we validate HyperDGA on hyperbolic embeddings of real-
life biological data. In order to embed the data, we rely on the dimensionality
reduction technique from [13]. The latter is based on the Poincaré embedding
method [17], but is specifically designed to visualize single cell data in biology and
to uncover hierarchies. We consider three RNA single-cell sequencing datasets
to account for different scenarios and complexity in terms of geometric and
topological structure in data:

– Olsson: the mouse myelopoesis data from [19] containing 382 cells3.
– Paul : the mouse myeloid progenitors MARS-seq data from [20] containing

2730 cells4.

3 Accession code at https://tinyurl.com/olssondata.
4 Accession code at https://tinyurl.com/pauldata.

https://tinyurl.com/olssondata
https://tinyurl.com/pauldata
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– Planaria: the planaria droplet-based single cell transcriptome profiling from
[21] containing 21612 cells5.

Each dataset consists of several groups of cells and exhibits a hierarchical struc-
ture due to the cellular differentiation process where stem cells specialize into,
for example, muscle or neuron cells. We expect developmentally similar groups to
yield a low score, while dissimilar groups to yield a high score. The pre-processed
data are downloaded from https://tinyurl.com/3vw32jad.

Experiment 3: Validation on Real-Life Biological Data. For each dataset,
we measure HyperDGA and the baselines between each pair of three groups of
cells and verify that the resulting values are coherent with the domain knowledge.
The hyperbolic embeddings of the three groups for each dataset are displayed
in Fig. 8. For Olsson and Paul, we consider two similar classes that are close in
the hierarchical tree data: Mono and Gran for Olsson, 13Baso and 14Mo for
Paul. We compare these classes to a third class that lies further in the hierarchy:
HSPC-1 for Olsson, 7MEP for Paul. For Planaria, we divide the whole dataset
in three different groups of cells according to [21]: Neoblasts, Progenitors and
Differentiated cells. Given the semantics from biology [21], we expect the distance
between the neoblasts and the differentiated cells to be larger than both the
distance between the neoblasts and the progenitors, and the distance between
the progenitors and the differentiated cells.

Fig. 8. Poincaré embeddings of three classes from three different datasets.

All the results are reported in Table 3 – see the supplementary material for
HyperDGA visualizations6. As evident from the results, HyperDGA and the
baselines are consistent with the domain knowledge for all the scenarios among
the three datasets. Furthermore, for the embeddings of the neoblasts versus the
progenitors from the Planaria dataset (see Fig. 8), we argue that the values of
5 Accession code at https://tinyurl.com/plassdata.
6 https://github.com/anissmedbouhi/HyperDGA/blob/main/supp.pdf.

https://tinyurl.com/3vw32jad
https://tinyurl.com/plassdata
https://github.com/anissmedbouhi/HyperDGA/blob/main/supp.pdf
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Table 3. Hyperbolic distances (HyperDGA, Chamfer, Wasserstein) of three classes for
three datasets: Olsson (top), Paul (middle) and Planaria (bottom).

Gran HSPC-1

Mono (0.943, 2.6, 0.9) (0.988, 5.6, 1.3)
Gran / (0.987, 16.7, 2.7)

14Mo 7MEP

13Baso (0.713, 0.08, 0.25) (0.991, 2.70, 0.71)
14Mo / (0.995, 3.18, 0.70)

Progenitors Differentiated

Neoblasts (0.93, 0.07, 0.4) (0.97, 2.08, 1.2)
Progenitors / (0.96, 1.42, 0.9)

HyperDGA are topologically and geometrically more consistent with the true
semantics. Specifically, these two embeddings are visibly different and with sig-
nificant non-overlapping regions, whereas both Chamfer and Wasserstein give
remarkably low distances between them.

6 Conclusions, Limitations and Future Work

We have introduced HyperDGA – a tool for hyperbolic data analysis to comple-
ment hyperbolic dimensionality reduction techniques and to evaluate hyperbolic
representation learning models. We have demonstrated on synthetic and real-
life biological data the relevance of HyperDGA as a method to measure the
geometric alignment between two sets represented in a hyperbolic space.

One limitation of HyperDGA is that, by construction, it takes values in
rational numbers i.e., HyperDGA(A,B) ∈ Q. Since Q is totally disconnected,
HyperDGA is discontinuous in A and B. However, continuity and, especially, dif-
ferentiability are desirable properties in the context of optimization since they
enable gradient-based methods, such as gradient descent. The latter is poten-
tially useful, since similarity scores between sets can be exploited as optimization
objectives for generative modelling and regularization. Therefore, designing con-
tinuous and differentiable versions of HyperDGA represents a promising line for
future research.

Another future direction is to investigate practical applications of HyperDGA
in hyperbolic machine learning together with domain experts. For example, in
the context of biology, similarity scores such as HyperDGA can be deployed to
measure alignment between different types of cells, which are commonly rep-
resented in a hyperbolic space [13,29]. In particular, the geometric alignment
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between tumoral versus healthy cells might provide insights into the evolution
of a cancer, leading to a promising biomedical application of HyperDGA.
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Abstract. In this paper, we propose ApmNet, an effective asymmetric
two-stream framework for generalizable visual continuous control. Since
pre-trained image models (PIM) have achieved remarkable success in
many fields, researchers have attempted to extend PIM to visual con-
tinuous control tasks. However, directly applying the PIM to the visual
control tasks is difficult due to the absence of “task-specific” informa-
tion in pre-training. Fine-tuning the PIM for a control task can be an
effective solution. However, it is prone to overfitting, potentially causing
the PIM to lose the generalization ability gained through pre-training. To
address these issues, ApmNet adopts an asymmetric dual-stream network
design. ApmNet uses a frozen pre-trained Masked Autoencoder (MAE)
as a visual backbone for policy learning. The reconstructed distorted view
as data augmentation introduces a very powerful generalization ability
to ApmNet. Then ApmNet uses a separate pre-trained network with an
adapter module to fuse different pre-trained representations and generate
actions. The adapter module can ensure that ApmNet bridges the distri-
bution shift between pre-training data and vision states. After training,
ApmNet abandoned MAE and only relied on the separate pre-trained
network with an adapter as the final vision backbone. Through this
asymmetric strategy, ApmNet can achieve good generalization ability by
only fine-tuning a small number of parameters. Extensive experiments
on DMControl, DMControl-GB, and MetaWorld benchmarks verify the
effectiveness of our ApmNet. Empirical evidence suggests that ApmNet
outperforms previous state-of-the-art methods in terms of sample effi-
ciency and generalization.

Keywords: Pre-trained image models · Visual reinforcement
learning · Generalization · Masked autoencoder

1 Introduction

Large-scale pre-training [4,5] have led to a series of breakthroughs for Computer
Vision (CV) and Natural Language Processing (NLP). In recent years, some
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researchers have extended the large-scale pre-training paradigm to the field of
visual continuous control [27,42]. These works first use out-of-domain datasets
to pre-train a visual encoder. Then they apply the pre-trained image models
without fine-tuning to continuous control tasks by processing the vision states
frame-by-frame. Compared to the simple Learning-from-Scratch (LfS) methods,
Learning-from-Pretraining (LfP) can effectively improve the training efficiency
and generalization ability of visual continuous control.

Fig. 1. Prior methods for learning policy. (a) from scratch, (b) from a pre-trained
visual encoder with a frozen backbone, (c) an ensemble model that contains both a
pre-trained frozen encoder and learnable encoder, and (d) the proposed asymmetric
architecture. The right Figure (e) shows their performances on Metaworld general-
ization task, evaluated on both seen (training) and unseen (generalization) instances.

Indeed, the experiences from the fields of CV/NLP [17,37] indicate that
directly applying pre-trained image models to continuous control tasks may not
be optimal. This is due to the distributional shift that exists between the vision
states of continuous control and large-scale pre-trained datasets [21,27]. An intu-
itive solution would be to fine-tune the pre-trained image model. However, recent
research [42] has shown that when fine-tuned the pre-trained model for control
tasks, the pre-trained model will lose most of their pre-trained generalization
capabilities.

To better understand the effect of the pre-trained image model in visual con-
tinuous control tasks, we compare the LfS, LfP, and ensemble model, in Meta-
world generalization tasks [34]. Compared to LfS (Fig. 1 (a)), LfP (Fig. 1 (b))
achieves a higher success rate in generalization task but poor in training. This
result demonstrates that there is a data distribution shift under visual state and
pre-trained datasets. Compared to LfS and LfP, the ensemble model (Fig. 1 (c))
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achieves a higher success rate in both the training and generalization environ-
ment. This observation indicates that the ensemble models exhibit significant
improvements across all tasks. However, the naive approach of ensembling mod-
els results in notable additional computational costs due to inferring two mod-
els simultaneously. This limitation hinders practical applications in real-world
scenarios. Therefore, it is impressive to explore methods for consolidating the
ensemble model’s knowledge into a single model, mitigating the computational
burden.

To this end, we propose ApmNet (Adapting pre-trained models), a simple
yet effective asymmetric two-stream framework for generalizable visual contin-
uous control tasks. As shown in Fig. 1 (d), ApmNet uses a frozen pre-trained
Masked Autoencoder (MAE) as a visual backbone for both data augmentation
and policy learning. The reconstructed distorted view as data augmentation
introduces the very powerful “generalization ability” to continuous control
tasks. Then we introduce a separate pre-trained network with an adapter module
to fuse different pre-trained representations and generate actions. The learnable
adapter incorporates “domain-specific” features from the raw observations to
help handle distribution shifts. It is worth noting that we only use MAE in the
model training phase, while in the model testing and deployment stages, we only
retain the separated pre-trained network and adapter. Through this asymmet-
ric training strategy, ApmNet not only possesses high sampling efficiency and
generalization ability but also reduces computational consumption during the
application phase.

To validate the effectiveness of our framework, we conduct a series of exper-
iments on 3 challenging benchmarks: DMControl Suite [31], DMControl Gener-
alization Benchmark (DMControl-GB) [14], and MetaWorld manipulation tasks
[41]. Empirical studies have demonstrated that ApmNet outperforms previous
state-of-the-art visual control methods in terms of sample efficiency and gener-
alization. Below, we highlight the contribution of this paper:

1. We propose ApmNet, a simple yet effective asymmetric two-stream frame-
work. Our framework can adapt any pre-trained image model to a rein-
forcement learning agent on visual continuous control tasks. The asymmetric
architecture enables the model to retain both generalized and domain-specific
features with low computational cost.

2. ApmNet outperforms state-of-the-art methods in 3 visual control bench-
marks, showing significant improvement of our method in generalization and
sample efficiency.

2 Related Work

2.1 Pre-trained Models for Policy Learning

Using pre-trained models from other domains for visual continuous control has
achieved promising results [9,18,28,35,40]. For example, RRL [27] and PIE-G
[42] use pre-trained ResNet for state representation learning that can generalize
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to unseen visual scenarios in a zero-shot manner. VRL3 [33] proposes a multi-
stage pre-trained framework for solving visual control tasks. APV [26] introduces
a framework that learns representations useful for understanding the dynamics
via generative pre-training on videos. Recently, some studies [2,8] investigate the
use of pre-trained language models such as BERT [6] for understanding and inter-
preting visual scenarios. However, most of the above methods require additional
computational costs during fine-tuning or directly use the pre-trained encoder
without fine-tuning. Our proposed ApmNet leverages existing pre-trained visual
models, tunes only a small number of model parameters (much more efficient
than full fine-tuning), and achieves performance that is comparable to, or even
better than, that of previous state-of-the-art methods.

2.2 Data Augmentation for Policy Learning

Data augmentation has become a widely used technique in visual continuous
control to improve sample efficiency and generalization [14,24,39]. The advan-
tages of data augmentation for visual control can be viewed from two aspects:
(1) It can significantly increase the amount of original data, thus improving the
sample efficiency. Typical work includes methods like RAD [20], DrQ [19], DrQ-
v2 [38] and DrAC [22], which use classical manual augmentation techniques such
as flipping and cropping for data augmentation, significantly improving the sam-
ple efficiency of visual RL. (2) It introduces additional diversity to the original
training data, thereby enhancing the agent’s robustness to variations. For exam-
ple, CURL [29] and ATC [30] use data augmentation techniques to construct
positive and negative sample pairs for contrastive representation learning, aim-
ing to learn robust representations of states. Our ApmNet differs from theirs in
that we use a generative model for data augmentation, regularize both actor and
critic, and focus on both the problems of generalization and sample efficiency.

3 Preliminaries

3.1 Continuous Control from Image

In this work, we formalize the problem of continuous control tasks as an MDP
(Markov Decision Process) problem. We consider a standard reinforcement learn-
ing (RL) setup where an agent interacts with an environment. At each timestep
t, the agent takes an action at in a state st, and receives a scalar reward rt while
the environment transitions to a new state st+1. We formulate the standard
RL task as a Markov Decision Process (MDP) [3], which is defined as a tuple
(S,A, P,R, γ). Here, S is the state space, A is the action space, P : S×A → Δ(S)
is the transition function of system that defines a probability distribution over
the next state given the current state and action, where Δ(S) is the distribution
over the state space S. The reward function R : S × A → [0, 1] assigns a scalar
reward to each state-action pair (st, at), and γ ∈ [0, 1) is the discount factor. The
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objective of RL is to learn a policy π that maximizes the expected discounted
sum of rewards:

J = Es0,a0,s1,a1,···

[ ∞∑
t=0

γtrt

]
(1)

where s0 is the initial state and at = π(st) is the action selected by the policy
at timestep t.

To model image-based decision-making task as an RL task, we formulate this
task as an infinite-horizon MDP. Typically, a single video frame does not capture
the full latent state of the system. Therefore, we approximate the current state
of the system by stacking three consecutive prior video frames. The resulting
MDP can be described as a tuple (X ,A, P,R, γ), where X is the collection of
state xt = (st, st+1, st+2), represented as a three-stack of video frames. In this
work, we use neural networks to process the states. Let fθ denote the encoder
parameterized by θ, which maps xt into a d-dimensional feature. Then, the
extracted feature will be fed into a policy network πω to get the action at at
timestep t, i.e., at = πω(fθ(xt)).

3.2 Masked Autoencoders

The Masked Autoencoder (MAE) [15] is an effective and scalable visual learn-
ing method that operates by randomly masking patches of input visual data
and reconstructing the missing patches in the latent space. In particular, the
observation ot is first processed by a patchify stem, as introduced in the Vision
Transformer (ViT) [7], which reshapes it into a sequence of 2D patches ht. A
subset of patches is then randomly masked with a ratio of m to obtain hm

t .
The remaining patches are embedded into low-dimensional vectors using a ViT
encoder. Finally, a simple ViT decoder reconstructs the observation by process-
ing tokens from the encoder through Transformer layers followed by a linear
output head.

Patchify: ht ∼ fpatch (ot) (2)

Masking: hm
t ∼ pmask (hm

t |ht,m) (3)

ViT encoder: zm
t ∼ Eφ (zm

t |hm
t ) (4)

ViT decoder: ôt ∼ Dθ (ôt|zm
t ) (5)

The entire model is jointly optimized to minimize the mean squared error loss
(MSE) between the reconstructed and original patches.

4 Method

In this section, we introduce our ApmNet, a simple yet effective framework for
visual continuous control that benefits from pre-trained image models to enhance
the generalization and sample efficiency. We first introduce the current way of
using pre-trained image models for continuous control. Then, we present our
asymmetric architecture. Finally, we explain our policy learning framework for
continuous control.
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4.1 ApmNetArchitecture

Because fine-tuning pre-trained image models requires significant computational
resources, prior methods (as shown in Fig. 1(b)) [27,42] use the frozen pre-trained
image models as the feature extractor for continuous control tasks. However,
these approaches lack flexibility and lead to suboptimal control performance,
mainly due to the fact that the datasets used in pre-trained image models have a
different distribution from visual continuous control tasks. In addition, although
ensemble models (as shown in Fig. 1(c)) can avoid the aforementioned issues,
they also come with challenges such as difficult deployment and high computa-
tional cost.

Vision Backbone and Mask-reconstruct Augmentation: To enable the
model to learn flexible task-specific features while preserving the generalization
advantages of the pre-trained network, ApmNet adopts the design of an asym-
metric two stream architecture. As shown in Fig. 1(d), ApmNet explicitly lever-
ages the self-supervised pre-trained MAE as the vision backbone. Inspired by a
recent study [36] that has shown pre-trained MAE is not only a powerful feature
extractor but also a powerful data enhancer, ApmNet uses the reconstructed dis-
torted view as data augmentation for policy learning. Specifically, given the ran-
dom binary mask M and the t-th step state xt, ApmNet first divide the masked
state M �xt into non-overlapped patches and discard the masked patches. Then
the remaining unmasked patches are fed into the pre-trained vit encoder Eφ

and decoder Dθ to generate the reconstructed state x̂t = Dθ(Eφ(M � xt)). The
reconstructed state x̂t is seen as the augmented version of xt and then input
into another pre-trained image encoder (ResNet-18 [16]) for secondary feature
extraction.

Although MAE can produce new data, it might not fully simulate the noise
and variability present in real data, leading to a discrepancy between the gener-
ated data and the actual data. To tackle this issue, inspired by recent progress
on offline RL [1], ApmNet employ a simple method, symmetric sampling, to
introduce masked augmented states into policy learning. Specifically, for each
batch, ApmNet sample 50% of the data for masked data augmentation, and the
remaining 50% undergo linear transformations. As we will see in later sections,
this simple sampling strategy is surprisingly effective across a variety of tasks.

Adapter Tuning for Control: The pre-trained MAE and ResNet provide
strong generalization capabilities for visual control. Subsequently, ApmNet incor-
porates a very simple yet effective structure: the Adapter module, to intro-
duce “task-specific” information to the overall model. As shown in Fig. 2(a),
the adapter is a bottleneck architecture that consists of two convolutional layers
and an activation layer in the middle. The first convolutional layer projects the
input to a low dimension and the second convolutional layer projects it back
to the original dimension. ApmNet add this simple adapter after each residual
block of ResNet. During training, all the other layers of the ResNet are frozen
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Fig. 2. (a) The architecture of the Adapter. (b) ApmNet with Reinforcement Learning.

while only the adapters are updated. In this way, ApmNet is able to introduce
“task-specific” information to the overall model with minimal computational
cost. It is worth noting that the primary emphasis of this paper is on resolving
the issue of pre-trained models lacking “task-specific” information, rather than
designing a new adapter module. The flexibility of ApmNet allows for any type
of adapter module to be seamlessly integrated into its structure.

4.2 Asymmetric Policy Learning

The overview of ApmNet with reinforcement learning algorithm for visual con-
trol is shown in Fig. 2(b). The asymmetry of ApmNet is reflected in the use of
different visual backbones during the training and testing phases. During the
training phase, we adopt the entire ApmNet as the vision backbone that helps
the agent to learn a useful low-dimensional state representation. We implement
DrQ-v2 [38] as the basic visual reinforcement learning algorithm for downstream
control tasks. DrQ-v2 is an off-policy actor-critic approach that uses data aug-
mentation to learn directly from visual data. Our agent is trained with two Qθk

value functions and the corresponding target Qθ̄k
. The critic loss is

L(θk) = Eτ∼D
[
(Qθk

(st, at) − y)2
] ∀k ∈ {1, 2} (6)

where τ = (st, at, rt:t+n−1, st+n) is the mini-batch of transitions. y is the n-step
TD target:

y =
n−1∑

i

τ irt+i + τn min
k=1,2

Qθ̄k
(st+n, at+n) (7)

The actor πω is trained with the following loss:

L(D) = −Est∼D

[
min
k=1,2

Qθk
(st, at)

]
(8)

where st is augmented using our symmetric sampling strategy: a 50% probability
for non-linear data augmentation using MAE and a 50% probability for weak
data augmentation (e.g., random shift). In the setting of generalization, we follow
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the way of using the strong augmentation method (e.g., mixup) instead of weak
data augmentation. During the testing phase, we discard the MAE component of
ApmNet and only use ResNet with the adapter module as the vision backbone.
Through this asymmetric approach, the capabilities of different pre-trained mod-
els are retained in the adapter module via the backpropagation algorithm during
the training phase. By retaining only one branch of the visual encoder during the
testing phase, we can significantly preserve the feature extraction capabilities of
the model while reducing computational costs.

5 Experiments

In this section, we explore how ApmNet can affect the agent’s generalization
performance and sample efficiency. We compare our method with other state-
of-the-art baselines on a wide spectrum of tasks. These tasks include DeepMind
control suite (DMControl) [31], DeepMind control generalization Benchmark
(DMControl-GB) [14], and MetaWorld manipulation tasks [41]. We also conduct
a series of ablation studies to take a closer look at the proposed method. It
is worth noting that since the best baseline is different in each of the three
benchmarks, we compare ApmNet with the best-performing algorithm in each
benchmark. All pre-trained model weights used in ApmNet come from the open
source community and can be downloaded free of charge from the github of the
paper’s author1.

5.1 Environments Setup

DMControl. To quantify the sample efficiency of ApmNet, we evaluate Apm-
Net on various continuous control tasks from DMControl [31]. Following the
common setup in this benchmark [38], the episode length is 1000 steps with the
action repeat of 2, and the reward ranges from 0 to 1. We select several environ-
ments from the DMControl’s simple, medium, and difficult tasks for experimen-
tal evaluation.

DMcontrol-GB. To quantify the generalization ability, we evaluate ApmNet
and baselines on DMControl-GB [31]. RL agents are trained in an original
DMControl environment, and we measure generalization to three distinct test
distributions: (1) environments with random colors (color hard); (2) environ-
ments with simple natural videos as background (video easy); and (3) environ-
ments with difficult natural videos as background (video hard).

MetaWorld. To better emulate real-world problems with visual RL, we eval-
uate ApmNet on various vision-based manipulation tasks from MetaWorld [41].
In all manipulation tasks, the episode length is 500 steps with the action repeat
of 2. Detailed parameter settings for all experimental environments are shown
in the Appendix
1 ResNet: https://github.com/pytorch/vision; MAE: https://github.com/facebook

research/mae.

https://github.com/pytorch/vision
https://github.com/facebookresearch/mae
https://github.com/facebookresearch/mae
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Table 1. Generalization on unseen video backgrounds. Episode return of meth-
ods trained in a fixed environment and evaluated on DMControl-GB with two types
of unseen dynamic video background, i.e., video easy and video hard. ApmNet outper-
forms the baselines in most of the tasks.

Table 2. Generalization on random color environments. Episode return of meth-
ods trained in a fixed environment and evaluated on DMControl-GB with random
colors. ApmNet outperforms the baselines in most of the tasks.

5.2 Evaluation on Generalization Ability

We compare the generalization ability of ApmNet with strong baselines: SAC
[11]: a widely used off-policy RL algorithm; DrQ [19]: a visual RL algorithm
with augmented states based on SAC; DrQ-v2 [38]: the state-of-the-art visual
RL algorithm in terms of continuous control; SpawnNet [21]: the state-of-the-
art method in terms of generalization through ensemble learning; PIE-G [42]:
another state-of-the-art method generalization by using pre-trained encoder. For
a fair comparison, all baselines have employed the same data augmentation
method.

Generalization on Unseen and/or Moving Backgrounds. The general-
ization abilities of ApmNet and the baselines are evaluated on the DMControl-
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Table 3. Generalization on MetaWorld generalization tasks. Evaluation on
distracting textures. ApmNet is robust to the texture changing.

Table 4. Parameter comparison between ApmNet and Baselines.

Method Encoder Fine-tuning Tunable Params

DrQ-v2 CNN Fine-tune CNN 30.36k

SpawnNet ViT+CNN Fine-tune CNN 30.36k

PIE-G ResNet Frozen —

ApmNet MAE+ResNet Adapter 8.300K

GB benchmark. We evaluate ApmNet on the challenging generalization setting:
video easy and video hard, and compare to several recent state-of-the-art base-
lines. Results are shown in Table 1. We find that ApmNet outperforms previ-
ous methods in 11 out of 12 instances. In addition, Table 4 shows the number
of model parameters and the number of tunable parameters for ApmNet and
baselines. As can be seen, ApmNet surpasses DrQ-v2, PIE-G, and SpawnNet
comprehensively in the generalization task tests with the introduction of only a
few tunable parameters. These results suggest that (1) non-linear data augmen-
tation and efficient adapter tuning can handle generalization tasks of RL better.
(2) ApmNet achieves a good balance between generalization performance and
speed.

Generalization on Color Hard Observations. We then evaluate ApmNet
on DMControl-GB with the randomly jittered color setting. As shown in Table 2,
ApmNet obtains better or competitive performance in 5 out of 6 instances. These
results further demonstrate the superiority of ApmNet.

Generalization on Manipulation Tasks. Furthermore, we conduct experi-
ments on the MetaWorld generalization benchmark to test the ApmNet’s gener-
alization ability in manipulation tasks with different background textures. The
visualized observations are shown in Table 3. We use the success rate as the
evaluation metric for its goal-conditioned nature. From Table 3, we can find that
ApmNet can achieve better comparable generalization performance in all set-
tings.
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Fig. 3. Visualized feature map. Since both PIE-G and our ApmNet utilize the
ImageNet pre-trained ResNet-18 as the backbone, we chose to visualize the feature
maps from 4 identical pre-trained convolutional kernels. The difference of the feature
maps with ApmNet as the encoder is cleaner and more noticeable than that with
PIE-G, indicating that ApmNet is more robust to background noise.

Fig. 4. Visualization of sampled synthetic data and original data. The data is
sampled from the ‘Cheetah, Run’ task in DMControl.

Visualization Analysis. Attempting to explain why our method is better, we
visualize the difference between the feature maps extracted from our ApmNet
and the encoder used in PIE-G. We assume that in visual control generalization
tasks, the encoder treats observations of the same state with different back-
grounds as similar. Therefore, the difference in their feature maps should be
as minimal as possible. As shown in Fig. 3, the encoder of ApmNet produces
“cleaner” feature map differences than PIE-G, with more distinct contours and
less susceptibility to background interference. Numerically, we calculate the aver-
age pixel intensity in the difference of feature maps. The intensity is decreased
by 34% with ApmNet than that with PIE-G.

We also visualize the distribution of sampled synthetic data and original
data using T-SNE [32]. The distribution visualization is shown in Fig. 4. We
find that the data augmented by our MAE is of high fidelity, covering or even
broadening the original data distribution, which makes ApmNet perform better
in generalization tasks. Further, we also visualize the synthetic data of MAE. A
detailed description can be found in the Appendix.
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Fig. 5. Sample efficiency (Evaluation). Learning curves on 8 continuous control
tasks from DMControl suite as measured on the episode return. The solid line and
shaded regions represent the mean and standard deviations calculated over 5 seeds.
ApmNet achieves better sample efficiency in all instances.

Fig. 6. Sample efficiency (Evaluation). Learning curves on 8 visual robotic manip-
ulation tasks from MetaWorld as measured on the success rate. The solid line and
shaded regions represent the mean and standard deviations calculated over 5 seeds.
ApmNet achieves better or comparable performance in 7 out of 8 instances.

5.3 Evaluation on Sample Efficiency

We evaluate the sample efficiency of ApmNet on 8 challenging continuous control
tasks on the DeepMind Control Suite and 8 manipulation tasks on MetaWorld
environment, respectively. We compare the sample efficiency of ApmNet with
the state-of-the-art sample-efficiency baselines: DrQ-v2 [38], Dreamer-v2 [12],
MWM [25], and Dreamer-v3 [13]. It is worth noting that PIE-G and SpawnNet
are algorithms tailored for generalization tasks, and their sample efficiency is not
state-of-the-art.

Sample Efficiency on DMControl. Figure 5 demonstrates that ApmNet
achieves better sample efficiency and asymptotic performance than DrQ-v2 and
Dreamer-v3 in 8 out of 8 tasks. In particular, we also observe that ApmNet
gains significant improvement in humanoid control problems, i.e., Humanoid
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Fig. 7. Ablation study. Learning curves on 4 continuous tasks from DMControl Suite
that investigate the effect of (a) Masking Ratio, (b) Pre-trained Model, (c) Fine-tuning
Strategy, (d) Sampling Strategy. The solid line and shaded regions represent the mean
and standard deviations calculated over 5 seeds.

Walk and Humanoid Run. This indicates our approach’s superiority in complex
control problems.

Sample Efficiency on MetaWorld. Figure 6 demonstrates that in many
cases, ApmNet, despite being a model-free method, can rival the sample effi-
ciency of state-of-the-art model-based MWM. We note, however, that on some
manipulation tasks (for example Window Close) MWM and Dreamer-v2 out-
perform ApmNet. We will investigate this discrepancy in future work.

5.4 Ablation Study

In this section, we conduct several ablation studies to dissect the effect of each
component.

Masking Ratio. We report the performance with varying masking ratio m ∈
{0.25, 0.5, 0.75, 0.9} in Fig. 7(a). We find that m ∈ {0.5, 0.75} achieves better
performance than m = 0.25 because strong regularization can prevent the model
from finding a shortcut from input pixels. However, too strong regularization,
i.e., m = 0.9, degrades the performance.

Pre-trained Model. We also investigate the effectiveness of other visual rep-
resentations, MoCo-v2 [5]. Figure 7(b) shows that ApmNet with the pre-trained
representation of MoCo-v2 can also obtain competitive sample efficiency.

Fine-tuning Strategy. We conduct research to fully fine-tuning and freeze the
encoder’s parameters instead of using our adapter tuning. Figure 7(c) suggests
that compared with the adapter tuning, the full fine-tuning representations lead
to a drop in sample efficiency. The reason is that during the fine-tuning process,
the encoder has to adapt to the new data distribution and cannot inherit the
useful representations learned from ImageNet. When comparing ApmNet with
frozen parameters, we find that by introducing the adapter, ApmNet can not



140 H. Wang and H. Wu

only inherit the useful representations learned from ImageNet but also extract
more valuable information from the specific task, thereby improving the sample
efficiency in RL.

Sampling Strategy. Additionally, we evaluate the effect of symmetric sam-
pling. As we see in Fig. 7(d), with 100% MAE augmented data, the agent can-
not learn effective strategies. The reason is that the data generated by MAE
has a distribution shift compared to the original data, which prevents the agent
from observing real samples and thus hinders it from learning effective strate-
gies. After incorporating the symmetric sampling strategy, the agent can not
only observe the real environment but also perceive out-of-sample data from the
generative model. Our experiments demonstrate that ApmNet enhances both
the sample efficiency and generalization capability of visual continuous control.

6 Conclusion and Future Work

In this work, we propose ApmNet, a simple yet effective method that empowers
RL agents to benefit from both the readily available visual priors and domain-
specific information while minimizing computational costs. We show that Apm-
Net’s use of MAE and asymmetric learning not only improves performance on
training instances but more importantly, offers better generalization ability to
unseen environment tasks. ApmNet achieves better performance than prior state-
of-the-art methods on 3 challenging benchmarks.

Future Work. ApmNet is a highly flexible framework, and due to space limita-
tions, we have not fully explored its potential. In future work, we will delve into
the applications of various pre-trained models within the ApmNet framework.
For instance, apart from MAE, it would be intriguing to investigate whether
other generative models such as diffusion model [23] and GAN [10]., can achieve
better results. Furthermore, examining how the quality of images generated by
these models affects the performance of control tasks and exploring ways to
construct suitable Adapter modules are also exciting research directions.
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Abstract. Catastrophic forgetting is a major issue in task-incremental
learning, where a neural network loses what it has learned in previ-
ous tasks after being trained on new tasks. A number of architecture-
based approaches have been proposed to address this issue. However,
the architecture-based approaches suffer from another issue on network
capacity when the network learns long sequences of tasks. As the network
is trained on an increasing number of new tasks in a long sequence of
tasks, more parameters become static to prevent the network from for-
getting what it has learned in previous tasks. In this paper, we propose
an adaptive task-based hard attention mechanism which allows adap-
tive updates to static parameters by taking into account the information
about previous tasks on both the importance of these parameters to pre-
vious tasks and the current network capacity. We develop a new neural
network architecture incorporating our proposed Adaptive Hard Atten-
tion to the Task (AdaHAT) mechanism. AdaHAT extends an existing
architecture-based approach, Hard Attention to the Task (HAT), to learn
long sequences of tasks in an incremental manner. We conduct experi-
ments on a number of datasets and compare AdaHAT with a number
of baselines, including HAT. Our experimental results show that Ada-
HAT achieves better average performance over tasks than these base-
lines, especially on long sequences of tasks, demonstrating the benefits
from balancing the trade-off between stability and plasticity of a net-
work when learning such sequences of tasks. Our code is available at
github.com/pengxiang-wang/continual-learning-arena.
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1 Introduction

One of the key features of human intelligence is the ability to learn continu-
ally and adapt over time. One of the major challenges for deep neural networks
in continual learning is catastrophic forgetting [17,19], which results in dras-
tic performance drops on previous tasks after the network is trained on new
tasks. Continual learning addresses this issue by aiming to learn and accumulate
knowledge over a sequence of tasks without catastrophic forgetting [4].

To overcome catastrophic forgetting in task-incremental learning, a scenario
of continual learning in which an algorithm learns a sequence of distinct tasks
in an incremental manner [4], various strategies have been proposed. Most of
these strategies adopt the idea of exploring certain forms of information about
previous tasks and taking into account the information when learning new tasks
to prevent the network from forgetting the knowledge learned in previous tasks.
For example, some replay-based approaches prevent forgetting by storing parts
of the data from previous tasks, which replay algorithms use to consolidate
previous knowledge [3,14,20]; some regularization-based approaches typically
add regularization terms constructed using information about previous tasks to
the loss function when training new tasks [11–13,18,27].

Several architecture-based approaches have been proposed to explore the
inherent nature of parameter separability within the architecture of neural net-
works, focusing on reducing representational overlap between tasks in the net-
work. The key idea in these approaches is to dedicate network parameters in
different parts of the network to different tasks and to keep the parameters
learned in previous tasks from being significantly changed when learning new
tasks [2,15,16,22,26]. Therefore, they are also referred to as parameter isola-
tion methods [4]. An important consideration in these approaches is the trade-
off between stability and plasticity of the network, where stability emphasises
performance over tasks while plasticity emphasizes saving network capacity by
keeping parts of the network active for new tasks [25].

A recent architecture-based approach to reduce representational overlap is
the task-based hard attention mechanism called Hard Attention to the Task
(HAT) [22]. HAT learns layer-wise attention vectors (masks) for each task, con-
currently to learning network parameters, to prevent updates to parameters
important to previous tasks. When learning new tasks, HAT conditions updates
to these parameters with all the masks learned in previous tasks, thus prevent-
ing forgetting what has been learned in these tasks. Specifically, HAT adjusts
gradients during the training process to control the updates to the parame-
ters directly. However, as the number of tasks increases, the network capacity
is rapidly saturated, which greatly reduces the proportion of remaining active
parameters for new tasks. This highlights the critical issue of balancing the trade-
off between maintaining important parameters to previous tasks and preserving
learning plasticity in the network for new tasks, i.e., the trade-off between sta-
bility and plasticity [25]. HAT emphasises stability over plasticity, unlike some
other continual learning approaches which focus more on plasticity.
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In this paper, we propose an extension to the task-based hard attention mech-
anism proposed in HAT to prevent the neural network from forgetting. Follow-
ing the spirit of HAT, we propose a new mechanism, putting adaptive attention
to the task, which allows adaptive updates to those static network parameters
that have been attended to previous tasks when learning new tasks, taking into
account the information about previous tasks on both the importance of these
parameters to previous tasks and the current network capacity. These adap-
tive parameter updates help to reuse, in a measured way, parts of the network
that have been made static for previous tasks. We call our proposed mechanism
Adaptive Hard Attention to the Task (AdaHAT). AdaHAT has three distinctive
characteristics: 1. It balances the trade-off between stability and plasticity of
the network, i.e., between maintaining important parameters to previous tasks
and preserving network capacity for new tasks; 2. It particularly suits for learn-
ing long sequences of tasks; 3. It is an adaptive process to update previously
static parameters, based on both their effects on previous tasks and network
capacity usage. For instance, when the network capacity is insufficient, larger
updates are allowed to parameters that have been attended to fewer previous
tasks, hence preserving more network capacity by compromising only a small
amount of forgetting on previous tasks.

We implement AdaHAT, conduct experiments on a number of datasets and
compare it with a number of baselines, particularly including HAT which Ada-
HAT extends. Our experimental results show that AdaHAT achieves better aver-
age performance over tasks than these baselines, especially on long sequences of
tasks, demonstrating the benefits from balancing the stability-plasticity trade-off
of the network when learning such sequences of tasks. The code for our imple-
mentation and experiments is available1.

This paper makes the following contributions:

1. We propose a novel mechanism called Adaptive Hard Attention to the Task
(AdaHAT), which allows adaptive updates to previously static parameters
in a neural network, alleviating the problem of insufficient network capacity
when learning long sequences of tasks;

2. We implement a neural network architecture based on the architecture devel-
oped in HAT [22], integrating our proposed task-based attention mechanism
for adaptive parameter updating in the network while retaining the spirit of
hard attention to the task proposed in HAT;

3. Our experimental results on a number of datasets show that while slightly
causing forgetting, AdaHAT improves the average performance of the network
after it has reached the network capacity limit, which effectively balances the
trade-off between stability and plasticity in continual learning.

2 Related Work

Task-incremental learning is a continual learning scenario where the algorithm
learns a sequence of distinct tasks in an incremental manner [24]. In this scenario,
1 https://github.com/pengxiang-wang/continual-learning-arena.

https://github.com/pengxiang-wang/continual-learning-arena
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it is crucial to balance the trade-off between stability and plasticity to ensure
the optimal model performance over all tasks.

Catastrophic forgetting is a major issue in task-incremental learning, where a
neural network loses what it has learned in previous tasks after being trained on
new tasks. Major efforts have been focused on developing various mechanisms
to prevent the network from catastrophic forgetting, often leveraging certain
forms of information about previous tasks. In replay-based approaches, parts
of the data from previous tasks are stored and replayed during the training on
new tasks to prevent forgetting. Examples include iCaRL [20], GEM [14], and
DER [3]. In regularization-based approaches, catastrophic forgetting is allevi-
ated by incorporating regularization terms into the loss function, usually con-
structed from the information about previous tasks. Examples include LwF [13],
EWC [11], SI [27], IMM [12], and VCL [18]. These approaches have an emphasis
on stability in their forgetting prevention mechanisms, but generally still lean
towards plasticity in the trade-off.

Architecture-based approaches adopt distinctly different strategies that
overly prioritize stability, tilting the trade-off towards stability instead. They
dedicate different parts of a neural network to different tasks, i.e., specifying
task-specific parameters, which leverages the separability characteristic of the
neural network architecture. One strategy develops incrementally parallel sub-
networks to learn the sequence of tasks. A classical example is Progressive Neu-
ral Networks [21]. Other strategies allocate the parameter space within a fixed
(sometimes dynamically expanded when needed) network architecture, with the
allocation determined either by a set of rules, such as PackNet [16] and UCL [1],
or by learnable masks over the architecture trained along with network param-
eters, such as Piggyback [15], HAT [22], CPG [8], and SupSup [26].

Architecture-based approaches generally suffer from the network capacity
issue because they preserve and fix task-specific parameters for each previous
task. In this case, the network can achieve the maximum stability and the best
performance when there is sufficient capacity, but has to face drastic perfor-
mance drops on new tasks when capacity runs out. In other words, they sacrifice
learning plasticity for potential future tasks to maintain the stability for previous
tasks [25].

To alleviate the network capacity issue, many architecture-based approaches
introduce measures to carefully control their network capacity usage, with mech-
anisms such as sparsity regularization [22], which in turn limits their ability to
learn previous tasks [25]. Others gain additional capacity resources by breaking
the assumption of the fixed parameter space: some allow dynamically expanding
the network when capacity runs out as more new tasks arrive. Some approaches
like Progressive Neural Networks [21] even expand the network every time when
a new task arrives, causing a progressively linear increase of the parameter space.
In this case, the learning plasticity for new tasks leads to a significant storage
problem with the ever-expanding network.

Additionally, most architecture-based approaches use many hyperparame-
ters to control their network capacity usage, usually without directly leveraging
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any information about previous tasks. These hyperparameters need to be tuned
manually to determine how much capacity should be allocated to new tasks. For
instance, PackNet uses a pruning ratio to explicitly allocate a certain percent-
age of network parameters to new tasks [16]. HAT requires manually setting the
hyperparameter smax, where larger values provide stability for previous tasks,
and smaller values enhance plasticity for new tasks [22]. However, in real-world
continual learning scenarios, one usually does not know how many new tasks will
arrive, or may even encounter an infinite sequence of tasks [4], making manual
hyperparameter tuning infeasible. Even if the number of tasks is known, manual
tuning requires repetitive retraining, and as the task sequence becomes longer,
it may become necessary to make further adjustments to the hyperparameters,
which undermines the key continuity characteristics of continual learning.

Network capacity is a critical factor affecting learning plasticity when incre-
mentally learning long sequences of tasks [4]. To address this issue, we need to
balance the stability-plasticity trade-off as well as prevent catastrophic forget-
ting at the same time. In this paper, we propose a novel adaptive task-based
attention mechanism called Adaptive Hard Attention to the Task (AdaHAT)
to balance the trade-off in architecture-based approaches, enabling the adaptive
allocation of network capacity with taking into account the information about
previous tasks. Our proposed mechanism, in particular, addresses the problem
of lacking plasticity when incrementally learning long sequences of tasks.

3 Task-Incremental Learning with Adaptive Hard
Attention to the Task

In this section, we present a new approach for task-incremental learning – our
proposed adaptive attention mechanism called Adaptive Hard Attention to the
Task (AdaHAT) to balance the trade-off between stability and plasticity. Our
proposed mechanism extends the mechanism called Hard Attention to the Task
(HAT) proposed in [22].

In the task-incremental learning scenario, a sequence of tasks t = 1, · · · , N ,
arrive at a neural network in an incremental manner, with each task associated
with dataset Dt = {xt, yt}. The objective of task-incremental learning for the
network is to learn the sequence of tasks, preventing performance drops on pre-
vious tasks when learning new tasks, and ultimately getting better performance
over all tasks [4]. To achieve this objective, the stability-plasticity trade-off needs
to be balanced properly.

We adopt the hard attention to the task mechanism proposed in HAT, in
which layer-wise attention vectors mt

l with binary values are learned to pay
hard attention on units in each layer l = 1, · · · , L − 1 to a new task t. The
attention vectors are gated from layer-wise task embeddings et

l with real values:

mt
l = σ

(
set

l

)
(1)

where s is a positive scaling parameter and σ is the sigmoid gate function. The
attention vectors are learned as the task embeddings are trained along with
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network parameters. The binary attention vectors determine which part of the
network is dedicated to the task. We use Mt to denote all the attention vectors
to the task t, Θ to denote the parameter space, therefore Θt, parameters in Θ
dedicated to task t, are those masked by Mt.

When training on a new task t, HAT conditions gradients in the backward
pass according to cumulative attention vectors m≤t

l from all previous tasks. The
cumulative attention vectors are recursively calculated by

m≤t
l = max

(
mt

l ,m
≤t−1
l

)
(2)

after learning task t, using element-wise maximum2. This preserves the attention
values for units in the network that are important to previous tasks, and allows
these preserved values to condition network training on the new task.

To condition training on the new task t, HAT modifies the gradient gl,ij of
the parameter θl,ij connecting the j-th unit in layer l−1 to the i-th unit in layer
l, with a parameter-wise adjustment rate al,ij :

g′
l,ij = al,ij · gl,ij , al,ij ∈ {0, 1} (3)

where gl,ij is the gradient of parameter θl,ij , and

al,ij = 1 − min
(
m<t

l,i ,m<t
l−1,j

)
(4)

marks the hard clipping of the gradient, calculated as the reverse of the minimum
of the two cumulative attention values, which results in binary values again.
This means, those parameters become static without updates when the units
connected at both ends are masked by the cumulative attention vectors, as their
gradients are hard clipped.

As the task sequence becomes longer, more active parameters become static,
gradually taking up more network capacity, hence reducing learning plasticity
for new tasks. To address this issue, a regularization term controlling network
sparsity is employed in HAT to promote low network capacity usage and high
compactness of the masks:

L′ (f(xt), yt,Mt,M<t
)
= L(f(xt), yt) + cR

(
Mt,M<t

)
(5)

R
(
Mt,M<t

)
=

∑L−1
l=1

∑Nl

i=1 mt
l,i

(
1 − m<t

l,i

)

∑L−1
l=1

∑Nl

i=1

(
1 − m<t

l,i

) (6)

where c denotes the regularization constant (a hyperparameter in HAT) and Nl

denotes the number of units in layer l. This, to a certain extent, helps alleviate
the issue on network capacity. However, the network capacity will eventually
run out, as parameters will become static forever once they are learned to be
dedicated to previous tasks. As shown in an experiment illustrated in Fig. 1,

2 m≤0
l starts with all zeros to calculate m≤1

l .
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the cumulative attention vector of certain layer is rapidly occupied by value 1
as the network trains on new tasks, which means the network rapidly exhausts
all its available parameter space, resulting in insufficient network capacity for
the algorithm to be allocated for new tasks, hence significantly affecting the
performance of the trained network on new tasks.

Fig. 1. The evolution of
cumulative attention vec-
tor to previous tasks for
layer "fc1" in a MLP
architecture, represented
by the cumulative atten-
tion vector m≤t

fc1, with net-
work parameters attended
highlighted in black.

Fig. 2. Comparison between HAT and AdaHAT on the
evolution of adjustment rates on gradients of network
parameters (represented as circles). The hard clipping in
HAT distinctly binarizes parameters into static (orange)
and active (white) states, while the soft clipping in Ada-
HAT adaptively manages the adjustment rate between 0
and 1 based on both parameter importance (the number
of bordered rounded rectangle) and network capacity.
(Color figure online)

3.1 The Algorithm: Adaptive Updates to the Parameters
in the Network with Summative Attention to Previous Tasks

Following the spirit of the hard attention to the task mechanism proposed in
HAT [22], in order to address the network capacity issue in HAT on learning long
sequences of tasks, we propose a new adaptive parameter updating approach
extended from HAT called Adaptive Hard Attention to the Task (AdaHAT)
based on the HAT architecture. We propose to replace the cumulative attention
vector in HAT with our new summative attention vector, calculated as follows:

m≤t,sum
l = mt

l +m≤t−1,sum
l (7)

The network capacity issue in HAT can be alleviated by allowing adaptive
updates to parameters in the network that have become static for previous tasks.
As we can see, the hard gradient clipping from Eq. (3) is the underlying cause of
the network capacity issue in HAT because the parameters dedicated to previous
tasks remain completely and permanently static when learning any new tasks.
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In AdaHAT, we propose to softly clip the gradients as follows to release some
network capacity from previously static parameters:

g′
l,ij = a�

l,ij · gl,ij , a�
l,ij ∈ [0, 1] (8)

where a�
l,ij represents the adjustment rate of AdaHAT, which ranges between 0

and 1, softly clipping the gradient gl,ij . This allows updates to the parameter
θl,ij that is adaptive to both the parameter importance to previous tasks and
the current network capacity, as defined below. In the following parts, we first
define two measures for parameter importance and network sparsity respectively
and then integrate them into the adjustment rate.

Two pieces of information about previous tasks are considered to be cru-
cial for playing the role in adjusting the gradient and determining how much
parameter space for previous tasks can be released:

1. Parameter Importance
In HAT, cumulative attention vectors defined in Eq. (2) are used to pre-
serve those important parameters to previous tasks. Higher cumulative atten-
tion values in these vectors indicate greater importance of the corresponding
parameters, hence smaller updates are made to them in the backward pass
when learning new tasks. However, this binary measure of importance is often
indistinguishable. We propose to replace the cumulative attention vectors
with our new measure of parameter importance in AdaHAT, called the Sum-
mative Attention Vectors, as defined in Eq. (7) above. For each parameter
θl,ij , we still calculate the minimum of the summative attention values of the
connected units at both ends, min

(
m<t,sum

l,i ,m<t,sum
l−1,j

)
, which represents the

importance of the parameter to previous tasks. This value ranges from 0 up
to t − 1, therefore encapsulates the information about previous tasks.

Thus, a higher summative attention value indicates that the parameter is
dedicated to more previous tasks, hence smaller updates should be made, as
it is important in terms of its contribution to previous tasks. For those param-
eters with lower importance, their space can be released more. Therefore, the
adjustment rate should negatively correlate with this parameter importance
value.

2. Network Sparsity
The sparsity regularization term in HAT reflects the network sparsity by mea-
suring the compactness of hard attention values. Larger regularization values
indicate that when learning new tasks, the algorithm is paying more attention
to the active parameter space that is not dedicated to previous tasks, hence
there is less need to make the adaptive updates to the parameters that have
become static for previous tasks.

Furthermore, this regularization value is closely related to the current net-
work capacity. Generally, when a smaller proportion of parameters in the
network are static (i.e., sufficient network capacity), the regularization value
tends to be larger, as there is a great possibility for the hard attention to
be paid to active parameters. In such cases, since the network capacity is
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sufficient, we want the algorithm not to hastily release the parameter space
just learned and allocated for previous tasks, but to focus on learning those
active parameters instead. Therefore, the adjustment rate should positively
correlate with the network sparsity regularization value.

Considering this regularization term, AdaHAT tries its best to mimic HAT
before the network reaches its capacity limit, then starts to make larger
updates to the parameters for previous tasks afterwards. By retaining maxi-
mum stability before affecting the learning plasticity for new tasks, we follow
the spirit of HAT in terms of high stability and leverage this benefit from
HAT without losing our proposed adaptive features.

We now define our adjustment rate for AdaHAT, incorporating both param-
eter importance and network sparsity:

a�
l,ij =

rl

min
(
m<t,sum

l,i ,m<t,sum
l−1,j

)
+ rl

, rl =
α

R
(
Mt,M<t

)
+ ε

(9)

where α is a hyperparameter that control the overall intensity of gradient adjust-
ment. The constant value ε is set to 0.1 to help avoid division by zero. Note that
for those active parameters, the adjustment rate is 1 as the parameter impor-
tance value is 0, so the soft clipping applies only to the gradient of parameters for
previous tasks. As we can tell from Eq. (9), the adjustment rate correlates with
the parameter importance negatively and network sparsity positively, where the
two pieces of information collaboratively control the gradient adjustment thus
manage the network capacity.

We present an illustration on how the adjustment rates evolve as new tasks
arrive in Fig. 2 and the AdaHAT algorithm in Algorithm 1 summarizing the
implementation of our proposed approach as described in this section.

4 Experiments

In this section, we first describe our experiment settings and metrics for perfor-
mance, stability-plasticity trade-off and network capacity. We then present our
experimental results on the performance of AdaHAT on learning long sequences
of tasks and how AdaHAT achieves them by balancing stability-plasticity trade-
off. We finally discuss the results of ablation study and hyperparameter selection.
Our findings demonstrate that the proposed adaptive parameter updating app-
roach, which takes into account both the parameter importance and the current
network capacity, is effective. It can make adaptive gradient adjustments when
learning new tasks, within a very small adjustment rate.

4.1 Setups

Task Sequences. AdaHAT aims to address the issue of insufficient network
capacity in learning long sequences of tasks. Our experiments are conducted on
long sequences of tasks comprising 20 tasks, which is longer than the sequences
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Algorithm 1: Adaptive Hard Attention to the Task (AdaHAT)
Input: task sequence Dt, t = 1, 2, 3, · · · ; learning rate η; hyperparameters c,

smax (from HAT) and α.
Output: network parameters Θ shared by all tasks; hard attention vectors

(binary mask) Mt for each task t = 1, 2, 3, · · ·
Initialize: task embeddings el

t from N (0, 1); summative and cumulative
attention vectors m≤0,sum

l , m≤0
l both from all zeros.

for task t = 1, 2, 3, · · · do
for epoch do

Forward propagate through Θt under mask mt
l in Eq. (1);

Calculate current network sparsity R in Eq. (6);
Calculate loss L′ in Eq. (5) and backpropagate to gradients gl,ij of
network parameters θl,ij and gradients of task embeddings el

t;
Calculate adjustment rate a�

l,ij in Eq. (9);
Soft clip the gradients to g′

l,ij in Eq. (8) with the adjustment rate;
Update θl,ij using adjusted gradients g′

l,ij and update et
l ;

Calculate the summative and cumulative attention vectors m≤t,sum
l , m≤t

l of
task t in Eq. (7) and Eq. (2).

commonly used in conventional continual learning experiment setups, where their
task sequences usually comprise fewer than 10 tasks. This long task sequence
setup allows us to better observe how architecture-based approaches behave once
the network capacity has reached its limit and how it will evolve afterwards. We
also experiment on much longer sequences of tasks comprising up to 50 tasks.

Data. We use the permuted version of MNIST [23] and the split version of
CIFAR-100 [9] as our experiment datasets. We choose not to use permuted ver-
sions of CIFAR-10 and CIFAR-100 because they are overly challenging with long
sequences of tasks for most baselines, leading their performance to a rather low
level, which makes meaningful comparisons difficult. Besides, the split versions
of MNIST and CIFAR-10 are unsuitable for our experiments as well, because
their 10 classes cannot be divided into long sequences of tasks, for example, 20
tasks.

Baselines. To evaluate the performance of AdaHAT, we compare it with the
following baselines:

– Finetuning: standard gradient descent [6];
– LwF: Learning without Forgetting [13];
– EWC: Elastic Weight Consolidation [11];
– HAT: Hard Attention to the Task [22].

We also compare the effectiveness of our proposed adaptive task-based hard
attention mechanism with other gradient adjustment strategies. These strategies
all adjust gradients in a naive or unmeaningful way, randomly or uniformly,
without guidance by the information about previous tasks:
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– HAT-random: HAT with a random value adjustment rate, where al,ij in

Eq. (3) is replaced by

{
rand(0, 1), if 1 − min

(
m<t

l,i ,m<t
l−1,j

)
= 0,

1, otherwise.
– HAT-const-alpha: HAT with a fixed adjustment rate of constant value α

(equals to α in Eq. (9)), where al,ij =

{
α, if 1 − min

(
m<t

l,i ,m<t
l−1,j

)
= 0,

1, otherwise.
– HAT-const-1: HAT with a fixed adjustment rate of constant value 1, which

means there is no constraint on the backward pass imposed by any attention
values to previous tasks.

Evaluation Metrics. We evaluate AdaHAT and the baselines using 4 metrics:
performance, stability, plasticity and network capacity. We calculate Average
Accuracy (AA) [25] and Forgetting Ratio (FR) [22] on each dataset over all
tasks, which are the main performance metrics in task-incremental learning.
Additionally, we evaluate the stability-plasticity trade-off to show which side each
approach leans towards, or balanced, potentially. We evaluate it using backward
and forward transfer metrics (BWT and FWT) [25].

Let at,N denote the accuracy of the test model on dataset Dt after learn-
ing task N , aJ

t,N denote the accuracy on dataset Dt of a randomly-initialized
reference model jointly trained on ∪N

t=1D
t, aI

t and aR
t denote the accuracy of a

randomly-initialized reference model independently trained on Dt and a random
stratified model, respectively. The metrics are defined as follows [25]:

AAN =
1
N

N∑

t=1

at,N (10)

FRN =
1
N

N∑

t=1

at,N − aR
t

aJ
t,N − aR

t

− 1 (11)

BWTN =
1

N − 1

N−1∑

t=1

(at,N − at,t) (12)

FWTN =
1

N − 1

N∑

t=2

(
at,t − aI

t

)
(13)

Each experiment is repeated 5 times, and we report the mean and standard
deviation for each metric.

To compare the network capacity usage of the models, we measure the net-
work capacity using the average adjustment rate over all network parameters2:

NC =
1

∑
l Nl

∑

l,i,j

al,ij (14)

2 AdaHAT denotes the adjustment rate as a�
l,ij .
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Note that the defined Network Capacity (NC) ranges from 0 to 1, with 0 indi-
cating that all parameters can be adjusted freely (with no adjustment to their
gradients), and 1 indicating that no parameter can be updated.

Networks. For experiments on Permuted MNIST, we use a fully-connected
(MLP) network architecture including 3 hidden layers with dimensions 256, 100,
and 64 as the feature extractor. For the experiments on Split CIFAR-100, we
use ResNet-18 [7] as the feature extractor. Task embeddings are integrated into
each layer to generate task-based attention vectors [22]. Rectified linear unit is
used as the activation function. As this is a task-incremental learning scenario,
each task has its own output head which is a single linear output layer, and the
number of heads increases as new tasks arrive. All layers are randomly initialized
with Xavier initialization [5], except for task embeddings et

l , which are initialized
with a standard normal distribution N (0, 1).

Training. All models are trained using the Adam optimizer [10] with a learning
rate of 0.001. Since the experiments are intended to study the network after the
network capacity has reached its limit, the hyperparameter smax in Eq. (1) is set
to a large value of 400. The hyperparameter α in Eq. (9) is set to 10−6. We train
for 2 and 20 epochs for each task in Permuted MNIST and Split CIFAR-100,
validating at each epoch to select the best model for testing. We randomly split
10% of the training data for each task as validation data. Batch sizes are set
to 128 and 64. Permutation seeds are set to 1 through 20. All other random
variables are set by a single seed from 1 for each experiment run.

We apply gradient clipping to network parameters with a specified value of
0.001 and weight decay with a factor of 0.00035 for all approaches except those
using hard attention mechanism. Note that weight decay and gradient clipping
are incompatible with the HAT mechanism, as additional gradient adjustments
in these approaches can update those parameters meant to be static, potentially
causing forgetting.

4.2 Results

We present our experimental results on sequences of 20 tasks in Table 1. AdaHAT
demonstrates the best performance in terms of average accuracy and forgetting
ratio, outperforming all baseline approaches, which shows the superiority of Ada-
HAT in incrementally learning long sequences of tasks.

We observe that Finetuning and HAT exhibit extreme BWT and FWT
values. Finetuning leans towards plasticity with low BWT and high FWT,
while HAT leans towards stability with high BWT and low FWT, both show-
ing an imbalance on the stability-plasticity trade-off. AdaHAT, on the other
hand, maintains relatively balanced BWT and FWT values, neither excessively
high nor low, demonstrating a better trade-off between stability and plasticity.
Notably, on the Split CIFAR-100 dataset, AdaHAT exhibits even higher stability
and plasticity both. We can infer from these various approaches that achieving
higher performance often hinges on effectively balancing BWT and FWT, under-
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Table 1. Results on performance and stability-plasticity trade-off metrics (mean ±
std) of different approaches on the two datasets (20 tasks).

Dataset Approach AA(%) FR (%) BWT(%) FWT (%)

Permuted
MNIST

Finetuning 32.62 ± 1.60 −73.78 ± 1.84 −68.10 ± 1.68 63.51 ± 0.03

LwF 26.95 ± 1.80 −80.35 ± 2.08 −72.59 ± 1.91 62.04 ± 0.09

EWC 52.25 ± 2.46 −51.38 ± 2.83 −42.04 ± 2.67 58.12 ± 0.15

HAT 67.64 ± 1.27 −33.70 ± 1.46 −0.11 ± 0.18 32.49 ± 1.12

HAT-random 66.43 ± 1.21 −35.10 ± 1.39 −0.27 ± 0.49 31.40 ± 1.22

HAT-const-alpha 68.08 ± 1.18 −33.20 ± 1.36 −1 ∗ e−3 ± 0.00 32.92 ± 1.23

HAT-const-1 48.83 ± 4.35 −55.14 ± 5.02 −49.68 ± 4.40 62.26 ± 0.21

AdaHAT 79.90± 2.40−19.43± 2.76−14.68 ± 2.48 59.96 ± 0.09

Split
CIFAR-100

Finetuning 24.34 ± 0.73 −91.66 ± 1.32 −54.00 ± 1.00 53.10 ± 0.55

LwF 34.56 ± 0.94 −70.91 ± 2.05 −48.03 ± 1.01 57.61 ± 0.40

EWC 30.23 ± 1.61 −79.84 ± 3.13 −54.05 ± 1.28 59.20 ± 0.50

HAT 32.44 ± 1.58 −74.71 ± 3.37 −45.59 ± 1.49 53.11 ± 0.34

HAT-random 31.41 ± 1.29 −76.98 ± 2.45 −48.80 ± 1.33 52.76 ± 0.57

HAT-const-alpha 32.16 ± 2.48 −75.04 ± 5.16 −44.49 ± 2.57 51.86 ± 0.82

HAT-const-1 32.40 ± 1.40 −75.58 ± 3.08 −48.80 ± 1.72 56.30 ± 0.36

AdaHAT 38.74± 2.24−62.37± 4.64−42.11 ± 2.02 56.33 ± 0.82

scoring the importance of maintaining a balanced stability-plasticity trade-off for
optimal performance.

For baselines using HAT mechanism with other gradient adjustment strate-
gies, we observe that almost none of them outperform HAT itself, even in the case
with gradient adjustments allowed. This underscores the necessity for adjust-
ments to be guided properly; without them, performance may even decline due
to the gradient adjustment. For instance, in HAT-const-1, the allowance for full
adjustment unbalances the trade-off heavily towards plasticity (low BWT and
high FWT), which likely contributes to its poor performance.

Longer Task Sequences. To evaluate the performance of AdaHAT on longer
task sequences, we conduct experiments on Permuted MNIST comprising 50
tasks. The evolution of performance of AdaHAT and baseline approaches as
each new task arrives is shown in Fig. 3. HAT demonstrates slightly better per-
formance before 8 tasks as it maximizes stability by making parameters for pre-
vious tasks completely static. However, the performance curve of HAT reaches a
turning point at 8 tasks and then drastically drops, indicating that HAT exhausts
network capacity at this point, exactly corresponding to Fig. 1 above, where HAT
has almost run out of active parameter space. AdaHAT, on the other hand, main-
tains significant superiority over other baselines after this turning point, proving
its capability and advantage in long task sequence settings.
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Fig. 3. Average Accuracy performance of
different approaches on longer sequences
of tasks (50 tasks, Permuted MNIST).

Fig. 4. Network Capacity usage in dif-
ferent gradient adjustment strategies (50
tasks, Permuted MNIST).

Note that we still find AdaHAT behaves close to HAT before 8 tasks, showing
the effect of network sparsity information in the adjustment rate, which leverages
the stability from HAT before affecting plasticity.

Network Capacity. We plot the evolution of Network Capacity (NC) usage
against training iterations, in a specific experiment run (seed=1) on Permuted
MNIST dataset comprising 50 tasks in Fig. 4. Over long-term training, the net-
work capacity in HAT rapidly runs out. In HAT-random, HAT-const-alpha, and
HAT-const-1, the capacity eventually stabilizes at values 0.5 (the mean value of
rand(0, 1)), 10−6 (we set α to this value), and 1, respectively. AdaHAT behaves
very similarly to HAT at first, but while HAT exhausts network capacity, Ada-
HAT manages it adaptively over time through an adaptive adjustment rate,
making it converge to 0 but never reach 0. This is the key for AdaHAT to rebal-
ance the trade-off when stability starts to affect plasticity, thus addressing the
network capacity issue in HAT.

4.3 Ablation Study

To provide insights into the individual effects of the two pieces of information
incorporated into the adjustment rate of AdaHAT, we design ablation experi-
ments to analyze how each of them helps improve HAT individually by fixing
the other information as a constant value:

– AdaHAT-no-sum: To study the effect of parameter importance, we fix all
the summative attention min

(
m<t,sum

l,i ,m<t,sum
l−1,j

)
at a constant value t, so the

adjustment rate solely depends on the sparsity regularization term. Note that
we use t instead of 1 because we want to keep the same increasing magnitude
as the summative attention. In other words, AdaHAT-no-sum always treats
all previous tasks with the same high level of importance.
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– AdaHAT-no-reg: To study the effect of network sparsity, we fix the regular-
ization term R

(
Mt,M<t

)
at a constant value 0, so the adjustment rate solely

depends on the summative attention vectors. In other words, AdaHAT-no-reg
always treats the network as if it is under low network sparsity.

We conduct the ablation experiments with the same settings as the previous
experiments on longer task sequences. Results are shown in Fig. 5. Both ablated
approaches fail to outperform AdaHAT, underscoring that the guidance from
both pieces of information for the adjustment rate is crucial. However, they
both surpass HAT in long sequences of tasks, underscoring that the adaptive
adjustment mechanism itself is the key to addressing the network capacity issue
in HAT.

We observe that AdaHAT-no-reg consistently performs worse than the Ada-
HAT. AdaHAT-no-reg adjusts more aggressively from the start as if the network
capacity is insufficient, despite the network capacity being actually sufficient. It
hastily breaks stability built from HAT before affecting plasticity, leading to sig-
nificant initial performance drops, preventing it from catching up with AdaHAT
in the longer run. This demonstrates the effect of network sparsity informa-
tion leveraging the maximum benefits from HAT. Similarly, we observe that
AdaHAT-no-sum underperforms AdaHAT in the same way as AdaHAT-no-reg,
as it loses another piece of crucial information, leading to less efficient and less
targeted gradient adjustments. This demonstrates the effect of parameter impor-
tance information leveraging information support from previous tasks. Note that
an interesting observation is the performance of AdaHAT-no-sum slows dropping
down and begins to approach that of AdaHAT in the long run. This is because, in
the long run, the network has already lost sparsity and kept allocating its parts
to new tasks for a long time, making all units tend to have an equal likelihood
of being dedicated to a similar number of previous tasks, and making it increas-
ingly difficult to distinguish parameter importance. The mechanism of AdaHAT
becomes similar to AdaHAT-no-sum in the long run when the important scores
lose their meaning, leading to their behavior being rather similar.

4.4 Hyperparameters

AdaHAT introduces only one additional hyperparameter, α, which acts as an
additional regulation for the stability-plasticity trade-off by controlling the over-
all intensity of gradient adjustment. We evaluate α over a range of values:
10−7, 2 × 10−7, . . . , 9 × 10−7, 10−6, 2 × 10−6, . . . , 10−5. We conduct the hyper-
parameter experiments with the same settings as the previous experiment of
AdaHAT on the Permuted MNIST dataset shown in Table 1.

We observe from Fig. 6 that AdaHAT is optimal when α is set to 10−6 in this
20-task experiment. Increasing α to 10−5 leads to significant performance drops
as larger adjustments cause more forgetting. Conversely, smaller value of α is not
ideal as well. For instance, while α = 10−7 performs well at first, it drops instead
after 15 tasks. Thus, α = 10−6 achieves the optimal balance between stability
and plasticity. Note that 10−6 is a very small value, indicating the updates of
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Fig. 5. Average Accuracy performance of
different ablated approaches (50 tasks,
Permuted MNIST).

Fig. 6. Effect of hyperparameter α in
AdaHAT on Average Accuracy perfor-
mance (20 tasks, Permuted MNIST).

previously static parameters should be really subtle, which makes it even more
important to design a proper and well-guided adjustment rate within this limit
of small magnitude.

5 Conclusion

Catastrophic forgetting is one of the fundamental issues for deep neural net-
works, which has attracted a lot of research in continual learning. However,
several existing architecture-based approaches that use hard attention mecha-
nism to prevent the network from forgetting what it has learned in previous
tasks tend to tilt the stability-plasticity trade-off towards stability, and suffer
from the insufficient network capacity issue in long sequences of tasks. Con-
sequently, these approaches perform well with sufficient network capacity but
drastically become poor at the point the network capacity is exhausted when
learning long sequences of tasks. In this paper, we propose a novel task-based
attention mechanism, Adaptive Hard Attention to the Task (AdaHAT), which
retains the stability benefits from HAT but aims to solve the aforementioned
issues. Our experiment results show that AdaHAT outperforms several baselines
on average performance, including HAT, especially on learning long sequence of
tasks. The results on stability, plasticity and network capacity indicate that, the
way that AdaHAT manages the network capacity adaptively over time in long
sequences of tasks which balances the stability-plasticity trade-off, could be the
underlying reason for its better performance.

Our proposed adaptive parameter updating approach also shows that in the
architecture-based approaches, those masked static network parameters for pre-
vious tasks are acceptable to be updated in small magnitudes when the sequence
of tasks becomes longer and reaches the network capacity limit, but must be a
well-guided and adaptive way. The results show that two pieces of information
about previous tasks, one is parameter importance to previous tasks constructed



Adaptive Hard Attention to the Task in Task-Incremental Learning 159

from our proposed summative attention vectors, and the other is sparsity regu-
larization term reflecting the current network capacity, both play a crucial role in
the updates of those parameters, and also show the effectiveness and advantage of
the adaptive way we incorporate them into a single adjustment rate. We believe
more subtle information about previous tasks can be explored and exploited to
help balance the stability-plasticity trade-off. We leave this for future work.
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Abstract. This work addresses integrating probabilistic propositional
logic constraints into the distribution encoded by a probabilistic circuit
(PC). PCs are a class of tractable models that allow efficient compu-
tations (such as conditional and marginal probabilities) while achieving
state-of-the-art performance in some domains. The proposed approach
takes both a PC and constraints as inputs, and outputs a new PC that
satisfies the constraints. This is done efficiently via convex optimization
without the need to retrain the entire model. Empirical evaluations indi-
cate that the combination of constraints and PCs can have multiple use
cases, including the improvement of model performance under scarce or
incomplete data, as well as the enforcement of machine learning fair-
ness measures into the model without compromising model fitness. We
believe that these ideas will open possibilities for multiple other applica-
tions involving the combination of logics and deep probabilistic models.

Keywords: Probabilistic Circuits · Probabilistic Logic · Graphical
Models

1 Introduction

Learning the underlying distribution of data has always been an integral part
of many machine learning tasks, and generative probabilistic models are typi-
cally used to learn such distributions; Methods like VAEs [16] and GANs [10]
can learn very complex, high dimensional distributions; however, they provide
limited access to the learned distribution in the sense that many inferences (e.g.
marginalization and conditioning) are practically intractable in the learned struc-
tures. On the other side of the spectrum, we have tractable probabilistic models,
which provide better access to the learned distribution (and thus allow for a
wider range of exact inferences) by trading off some fitting power.

Probabilistic Circuits (PCs) are tractable models that use a graph-based
representation to encode high-dimensional distributions [17]. Besides being
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tractable, another advantage of PCs is that their graph-based representation
allows them to process various inferences in polynomial time [34]. Learning a
PC from data D is defined as specifying a PC that represents the probability
distribution underlying D. This active line of research has seen several meaning-
ful proposals in the past few years [1,6–8,13,14,19–21,23,25,27,30–33,35,36],
but remains nevertheless open, given the difficulty of the task which involves
both structure and parameter learning.

We address here the issue of enhancing a PC learned from data by using addi-
tional information and/or learning goals. To this end, we propose an approach
for combining the PC with probabilistic propositional logic (PPL) [4,11] con-
straints. More specifically, the approach takes a learned PC and updates (some
of) its parameters in order to enforce the PPL constraints globally in the repre-
sented distribution. Our strategy can be seen as a “post-learning” method, which
gives the advantages of versatility (existing models need not be retrained) as well
as modularity: one may train a PC using any algorithm, as long as the result-
ing network keeps dependent variables (which may appear together in the same
PPL constraint) together within the model; that is, they cannot appear factor-
ized in the graph (further details are given in Sect. 3). This allows to build convex
optimization problems (more precisely, constrained KL-divergence solvers) over
parts of the distribution encoded in the PC so as to improve the corresponding
model parameters via an efficient tractable method. On another note, being a
post-learning method allows our approach to be considered as a form of belief
revision for learned PCs. It is worth mentioning that a method to learn the
structure and parameters of PCs with domain constraints is also proposed in
[15], however with important differences. The learning method in [15] is data-
driven (sample-based) and hence it is not applicable as a post-learning process;
the constraints are limited to linear functions of conditional probabilities, and
the proposed method is only tractable for deterministic PCs.

The benefits of having user-specified constraints are multi-fold. In order to
illustrate them, we employ PPL constraints in a few (non-exhaustive) scenarios:
(1) we improve the quality of models by enforcing that the yielded model matches
the empirical marginal distributions under situations of (a) scarce data or (b)
missing data; (2) we enforce fairness constraints into the model while at the same
time avoiding a decrease in fitness. Overall, the experiments indicate that using
PPL constraints often yields a better model (without compromising efficiency
or accuracy), which is likely possible because of typical over-parameterizations
that current large machine learning models impose. We emphasize that these
applications of constraints are only a few examples of possible use, as we believe
there are many other possibilities ahead to be tried.

2 Probabilistic Circuits

Probabilistic circuits (PCs) are a family of distribution representations facili-
tating many exact and efficient inference routines (see [2] for a nice introduc-
tion). A PC encodes a probabilistic model over a collection of variables X; it
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is structured as a rooted directed acyclic graph G, containing three types of
nodes: (i) distribution nodes, (ii) sum nodes, and (iii) product nodes. Distribu-
tion nodes are the leaves of the graph G, while sum and product nodes are the
internal nodes. Each distribution node (leaf) v computes a probability distri-
bution over some subset X′ ⊆ X, i.e. an integrable function pv(x′) : X ′ → R

+

from the sample space of X′ to the non-negative real numbers. The scope of v
is the set of variables sc(v) := X′ over which the leaf computes a distribution.
The scope of any internal node v (sum or product) is recursively defined as
sc(v) = ∪u∈ch(v) sc(u), where ch(v) is the set containing the children of v. Sum
nodes compute convex combinations over their children, i.e. if v is a sum node,
then v computes v(x) =

∑
u∈ch(v) wv,uu(x), where wv,u ≥ 0. In a normalized

PC, we have
∑

u∈ch(v) wv,u = 1. Product nodes compute the product over their
children, i.e. if v is a product node, then v(x) =

∏
u∈ch(v) u(x). The support of

a node is the region where its associated function is strictly positive.
The main feature of PCs is that they facilitate a wide range of tractable

inference routines, which go hand in hand with certain structural properties
[2,5]: (i) a sum node v is called smooth if its children have all the same scope:
sc(u) = sc(u′), for any u, u′ ∈ ch(v); (ii) a product node v is called decom-
posable if its children have non-overlapping scopes: sc(u) ∩ sc(u′) = ∅, for any
u, u′ ∈ ch(v), u 	= u′; (iii) a node is consistent if its support is non-empty. A
PC is smooth (respectively decomposable) if all its sum (respectively product)
nodes are smooth (respectively decomposable). A PC is consistent if all its nodes
are consistent. The distribution p(sc(v)) represented by a node v in the PC is
the function computed by the rules of the previous paragraph, and can be eval-
uated with a feed-forward pass. In order to ensure the tractability of queries,
we can rely on smoothness and decomposability, but we also need leaf distribu-
tion nodes to compute inferences efficiently. This is a reason for many proposed
PCs in the literature to assume that leaf nodes are univariate with some known
distribution, such as Bernoulli, categorical, Gaussian, etc. Now, assume that we
wish to compute a marginal query, that is, to evaluate the probability value over
Xo ⊂ X for evidence Xo = xo, while marginalising X¬o = X \ Xo. In smooth
and decomposable PCs, this task reduces to performing marginalization at the
leaves [28]: for each leaf v, one marginalizes sc(v)∩X¬o, and evaluates it for the
values corresponding to sc(v) ∩ Xo. The desired marginal pXo

(xo) results from
evaluating internal nodes as in computing the complete distribution. Smoothness
and consistency are sufficient to guarantee that the function of a PC represents
a distribution. We also assume PCs are normalized (Fig. 1).

An important feature of normalized valid PCs is their interpretation as hier-
archical, discrete mixture models [26,38]:

p(x) =
∑

z

p(x|z)p(z) =
∑

z

pz(x)p(z), (1)

where Z is a discrete latent vector, which originates from the sum nodes of the
structure. The number of states of Z, and thus of represented mixture com-
ponents p(x|z), grows exponentially in the depth of the PC [24,38]. While we
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Fig. 1. Example of PC with variables X1, . . . , X3. Sum nodes are in blue, product
nodes in green, distribution leaf nodes in salmon. In this example, all leaf nodes are
univariate. Subscriptions on each p in the figure are used to indicate that those are
different leaf distributions (even if sometimes over the same variable). (Color figure
online)

use this notation here and throughout the paper, we do not run computations
directly in this formulation, but instead we make use of the graphical structure
of the PC in order to perform efficient tractable inference, as usual for PCs.

3 Probabilistic Circuits with Constraints

We assume that a normalized valid PC has been produced (learned from data,
designed by a human, etc.) over a domain with variables X. Such a PC induces a
joint distribution p(X). The goal is to enforce some (linear) probabilistic propo-
sitional logic (PPL) constraints upon p. We work with constraints of the form:

∑

ic

τic
· p(Fic

) ≤ αc, (2)

where each Fic
is a propositional logic formula defined over Boolean variables

Xc = {Xjc
}∀jc

⊆ X, τic
, αc are real numbers, jc (and ic) are indexes of variables

(terms) of the constraint c, and c ∈ C is an index over a set of PPL constraints.
We assume that constraints are placed in buckets B (mathematically a bucket
can be simply an index set indicating the constraints it contains) such that
XB1 ∩ XB2 = ∅ for all distinct buckets B1, B2, where XB = ∪c∈BXc is the
union of all variables appearing in a constraint inside bucket B. If any Xc1 and
Xc2 of two constraints are not disjoint, then we put them together into the same
bucket, so as to ensure that buckets have mutually exclusive sets of variables.

The constraints in each bucket B may obviously create dependencies among
the variables XB . In order to avoid inconsistencies between such dependencies
and those arising from the graph structure of the PC, we require that the vari-
ables in a bucket appear together in nodes of the model, that is, for any v,B,
X ∈ XB ∩ sc(v) ⇒ XB ⊆ sc(v). Therefore, Eq. (1) can be recast as

p(X) =
∑

z

p(z)
∏

B

pz(XB)
∏

Xi∈X\∪XB

pz(Xi), (3)
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where pz(XB) is a categorical distribution—note that notations pz(XB) and
pz(Xi) employ a slight abuse, as the function itself is “aware” of the indexes of
the variables in their arguments and may vary accordingly, for example, pz(Xi)
is also a function of i and not only of Xi; the same abuse holds elsewhere, for
example in Expression (2). Equation (3) basically decomposes pz(x) of Eq. (1)
into components that involve PPL variables (which remain together) and the
other variables, which are assumed to be represented by univariate leaf-node
distributions.

For ease of exposure, but also for the sake of compatibility with software that
only deals with univariate leaf distributions, one can replace categorical distri-
butions in leaf nodes with new sub-PCs. If one assumes independence among
scope variables, then a product node with univariate leaf nodes suffices. If one
wants to fully exploit the categorical distribution node, then a sum node with
one child per parameter of the categorical distribution can be used. Figure 2 gives
an example of dealing with a categorical “joint” distribution over two Boolean
variables X1,X2. Figure 2a shows the independent case, while Fig. 2b shows the
joint approach to represent the distribution for X1 and X2 (note that Fig. 2b
shows an example model of a fully parametrized distribution, and the structure
can easily be altered with any other fully parametrized model, including for
example lookup tables). The reader may have already noticed that large buckets
of constraints will force the model to keep together many variables, which can
be problematic as the number of parameters of the categorical joint distribution
of all variables in a bucket B will grow exponentially in |XB | (as in Fig. 2b, all
possible configurations of XB would be listed). We will discuss this later, and
ask the reader to assume that buckets (or equivalently scopes of leaf distribution
nodes) are not large.

Fig. 2. Leaf distribution replacement structures that can be used to represent the
parameters of a categorical variable for a bucket B with XB = {X1, X2}.

Given a PC representing p(X) and PPL constraints, we aim to find an effi-
cient approach to discover a new PC inducing a distribution q∗(X) that is close
to p(X) while respecting the PPL constraints:
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q∗(X) = argmin
q(X)

L(p(X), q(X))

s.t. ∀B,∀c ∈ B :
∑

ic

τic
· q(Fic

) ≤ α′
c, , q(X) ∈ P(X) ,

(4)

where L measures the discrepancy between two distributions, P(X) denotes a
set of probability distributions over X that can be represented by a PC, and B
are buckets of PPL constraints. Optimization (4) is impractical, as it amounts
to solving a complex optimization problem to search over P(X), even if L is
simple enough (a nonlinear optimization with nonlinear constraints). We aim
to simplify this generic optimization, so that it can be done efficiently and in
a tractable manner, while still attaining good results in practice. Therefore, we
exploit the PC on which p(X) was estimated, in order to constraint the search
space of q(X): we enforce q(X) to have a shape similar to p(X), i.e.

q(X) =
∑

z

p(z)
∏

B

qz(XB)
∏

Xi∈X\∪XB

pz(Xi), (5)

that is, only
∏

B qz(XB) will differ from the specification of p(X). Plainly put,
we only refine the distributions in the leaf nodes of the PC. Moreover, we use
the Kullback-Leibler divergence L(p(X), q(X)) = H(p(X), q(X)) − H(p(X)) as
discrepancy measure, where H(·) is the entropy and H(·, ·) the cross entropy.
Clearly, we can focus on the cross entropy only, as the second term does not
contain q(X). Our first result is an upper bound on the cross entropy which
allows us to run the optimization efficiently. The bound on the cross-entropy
establishes an upper bound on the KL-divergence between p(X) and q(X).

Theorem 1. Assume a PC representing a distribution p(X) as in Eq. (3) and
PPL constraints as in Eq. (2) (placed in disjoint buckets B) are given. Assume
that q(X) is a distribution induced by a PC with form as in Eq. (5). Then,
H(p(X), q(X)) ≤ ∑

B Ez[H(pz(XB), qz(XB))] + H(p(X′, Z)), where X′ are the
variables not appearing in constraints.

Proof. Note that we are particularly interested in terms with parameters in q(X),
as they will be optimized later. First, recall that

− H(p(X), q(X)) =
∑

x

p(x) log q(x) , (6)

and for any configuration x of X and for any arbitrary z0 ∈ Z, we have:

q(x) =
∑

z

p(z)p′
z(x

′)
∏

B

qz(xB) ≥ p(z0)p′
z0
(x′)

∏

B

qz0(xB) , (7)

which holds because all terms are non-negative, where X′ = X \∪XB (variables
not in any constraint), and p′

z(X
′) =

∏
Xi∈X′ pz(Xi), for given z. By substituting

(7) into (6), we can establish a lower bound on the negative cross-entropy term:
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−H(p(X), q(X)) ≥
∑

x

p(x) log[p(z0)p′
z0
(x′)

∏

B

qz0(xB)] (8)

=
∑

x

∑

z

p(z)p′
z(x

′)
∏

β

pz(xβ) log[p(z)p′
z(x

′)
∏

B

qz(xB)], (9)

with the arbitrary z0 ∈ Z in Expression (8) being chosen to be equal to z for
each of the elements in the summation over z, thus resulting in Expression (9).
Then, we can split Expression (9) into two parts (using the log of products as
sum of logs), where only the second term depends on q(X):

−H(p(X), q(X)) ≥
∑

x

∑

z

p(z)p′
z(x

′)
∏

β

pz(xβ) log[p(z)p′
z(x

′)]

+
∑

x

∑

z

p(z)p′
z(x

′)
∏

β

pz(xβ) log[
∏

B

qz(xB)].(10)

The first term in the RHS of Expression (10) can be reduced to −H(p(X′, Z));
it does not depend on q(X), and will consequently not be analyzed further. The
second term in the RHS can be manipulated as

=
∑

B

∑

x

∑

z

p(z)p′
z(x

′)
∏

β

pz(xβ) log qz(xB)

=
∑

B

∑

xBt∀t

∑

x′

∑

z

p(z)p′
z(x

′)
∏

β

pz(xβ) log qz(xB)

=
∑

B

∑

z

p(z)
∑

xBt∀t

∏

β

pz(xβ) log qz(xB)
∑

x′
p′

z(x
′)

=
∑

B

∑

z

p(z)
∑

xBt∀t

∏

β

pz(xβ) log qz(xB)

=
∑

B

∑

z

p(z)
∑

xB

pz(xB) log qz(xB)
∑

xBt∀t,Bt �=B

∏

β �=B

pz(xβ)

=
∑

B

∑

z

p(z)
∑

xB

pz(xB) log qz(xB)
∏

β �=B

∑

xβ

pz(xβ)

=
∑

B

∑

z

p(z)
∑

xB

pz(xB) log qz(xB)

= −
∑

B

Ez[H(pz(XB), qz(XB))]. (11)

Hence, −H(p(X), q(X)) ≥ −H(p(X′, Z))−∑
B Ez[H(pz(XB), qz(XB))], and the

result follows. ��
Thus, we can adapt the PC at hand using the specified constraints by min-

imizing the upper bound on the desired discrepancy, leaving aside the term
H(p(X′, Z)) which does not involve q(X):
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q∗(X) = argmin
q(X)

∑

B

Ez[H(pz(XB), qz(XB))]

s.t. ∀B,∀c ∈ B :
∑

ic

τic
· q(Fic

) ≤ αc , q(X) ∈ P(X) ,
(12)

Theorem 2 sheds light on the complexity of the procedure; it is based on consid-
erably mild assumptions, as long as buckets do not involve too many variables.

Theorem 2. Given the same inputs as Theorem 1, and assuming |XB | ≤ k for
all buckets B, the solution q∗ to the optimization in Optimization (12) can be
found in polynomial time in the input size (while possibly exponential in k).

Proof. The objective function is a sum over buckets containing (mutually) dis-
joint sets of variables, so we can solve Optimization (12) by solving separate
optimizations for each bucket B:

∀B : q∗(XB) = argmin
q(XB)

−
∑

z

p(z)
∑

xB

pz(xB) log qz(xB)

s.t. ∀c ∈ B :
∑

ic

τic
· q(Fic

) ≤ αc , q(XB) ∈ P(XB) .
(13)

(Note the abuse of notation here, as q∗(XB) is used to indicate the parameters
of model q∗(X) that are associated with leaf nodes containing variables XB .)
Optimization (13) can be solved for each B using convex optimization solvers,
which run in polynomial time in the size of their inputs (and can be very efficient
in practice). The values pz(xB) and p(z) are fixed during the optimization and
can be obtained directly from the PC model representing p(X).

Assuming that qz(xB) is parameterized using values θz,xB
representing a

categorical distribution over XB conditional to Z = z (same structure as in
Fig. 2b), we obtain Optimization (14) for each bucket B. Note that in Optimiza-
tion (14), each PPL formula Fic

is written down as the sum of the worlds that
satisfy the formula (we can query Fic

(xB) to see if each xB satisfies Fic
, assum-

ing Fic
= 1 if so, and zero otherwise). Optimization (14) also connects the local

parameters θz,xB
with the marginal value of the candidate PC for xB, that is,

q(xB) =
∑

z p(z)θz,xB
, which appears in the last expression of the optimization

problem: thus, the imposed constraint is a global constraint in the joint model
q(X), and not simply a local constraint in the local parameters. Note also that
p(z) = q(z) (by assumption from Expression (5)).

∀B : q∗(XB) = argmin
θz,xB

: ∀z,xB

−
∑

z

p(z)
∑

xB

pz(xB) log θz,xB
,

s.t.

∀z,xB : θz,xB
≥ 0 , ∀z : 1 =

∑

xB

θz,xB
,

∀c ∈ B :
∑

ic

τic
·
(

∑

xB

Fic
(xB)(

∑

z

p(z)θz,xB
)

)

≤ αc .

(14)
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Optimization (14), and hence Optimizations (4) and (13), will have a feasible
solution so long as the set of PPL constraints has a feasible solution. This can
be checked using linear programming using the constraints in Optimization (14).
Therefore, it can be checked in polynomial time if the user provided an infea-
sible set of constraints. The number of buckets is bounded by the number of
constraints C, which therefore also bounds the number of optimization calls.
The optimization for bucket B has O(|Z| · |XB |) variables and O(C · |XB |) con-
straints (those are all very loose bounds), which is asymptotically bounded by the
PC size plus constraints’ size (that is, the input size), and convex optimization
can be solved in polynomial time in the number of variables and constraints. ��

4 Experiments

Fig. 3. LearnSPN vs. (constrained) PPL-LSPN trained on scarce datasets.

Fig. 4. RAT-SPN vs. (constrained) PPL-RSPN trained on scarce datasets.

We conduct a series of experiments to illustrate how constrained optimization
can be utilized to shape a desirable performance or behavior in PCs. For the
sake of this illustration, we focus on two use cases of constraints, namely (i)
constraints over marginals of the distribution, and (ii) constraints for enforcing
fairness in distributions.
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Fig. 5. Sum of quadratic differences on marginal parameters between the models with
and without marginal constraints, when trained on scarce data. Constraints clearly
refine the model more strongly for RAT-SPNs than for LearnSPN. Standard RAT-
SPN marginals are very far from matching the empirical marginal distributions (data
not shown).

The idea behind constraints on marginals is to adjust a probabilistic model
to match the empirical marginals of X on data D. Typically, it is easier to accu-
rately learn the marginal distributions over single variables rather than the whole
joint distribution, in particular in cases when D is scarce and/or incomplete. In
Sects. 4.1 and 4.2 we explore how the use of constraints on empirical marginals
affects the performance/behavior of learned PCs.

In Sect. 4.3, we investigate the impact of applying our method to a variety
of fairness-specific classification tasks by adding fairness in the form of PPL
constraints into PCs. Most common PC learning methods are not known to be
inherently compatible with fairness, and being able to apply fairness constraints
to PCs opens the door to utilizing these probabilistic models in areas where
fairness is a priority, thus extending their domain of applicability.

Throughout the experiments, we utilize both LearnSPN [8] and RAT-SPN
[29] for learning baseline PC models (one could also handcraft a PC for a pur-
pose and use it with our approach, as we are not bound by the way the PC was
obtained). We use the original implementation of RAT-SPN1, and the imple-
mentation of [3]2 for LearnSPN. For LearnSPN, statistical test significance and
the Laplace smoothing parameter are set to 0.01 over all experiments. For RAT-
SPN, hyperparameters that correspond to the region graph structure are set as
follows: the number of recursive splits is 10, the depth of each recursive split is 2,
the number of input distributions in each partition is 8, and the number of sum
nodes per partition is 8; all the other hyperparameters are set to their defaults.
For each experiment, RAT-SPN is trained for 20 epochs.

4.1 Scarce Datasets

We carry out this experiment on three different binary datasets, namely NLTCS,
MSNBC, and Jester [22]. Our goal is to illustrate how additional information
1 https://github.com/cambridge-mlg/RAT-SPN.
2 https://github.com/AlCorreia/GeFs.

https://github.com/cambridge-mlg/RAT-SPN
https://github.com/AlCorreia/GeFs


Probabilistic Circuits with Constraints via Convex Optimization 171

Fig. 6. LearnSPN vs. (constrained) PPL-LSPN trained on datasets with MCAR miss-
ing values. Test log-likelihood measures the joint fitness, while quadratic error shows
the quality of the marginals of the model with respect to the marginals of test data,
with clear superior accuracy after constraints are imposed.

pertaining to the empirical marginal distributions can be incorporated into the
PC so as to compensate for data scarcity. In order to simulate scarce data, we
randomly subsample each dataset with a varying number of data instances. We
use this subsample to train the PC model using LearnSPN and RAT-SPN. We
then improve the model using the procedure described above so as to match the
empirical marginal distributions: we add PPL constraints of the form p(Xi =
1) = αi for every variable Xi, which we enforce globally into the model. The test
log-likelihood results are given in Figs. 3 and 4. The enhanced models obtained
by applying the constrained optimization are called PPL-LSPN (variant of the
LearnSPN baseline), and PPL-RSPN (variant of RAT-SPN).

As can be seen, PPL-LSPN (Fig. 3) and PPL-RSPN (Fig. 4) slightly out-
perform LearnSPN (resp. RAT-SPN) as the training data become scarcer. This
performance gain (in terms of testing data log-likelihood) is not similar across
all datasets, which we attribute to the relative amount of information captured
by the marginals. Arguably, in smaller datasets (in terms of the number of sam-
ples), matching marginals should lead to larger performance gains, as marginals
encode a relatively larger amount of information. More importantly, matching
marginals did not harm joint accuracy.

We argue that marginal matching is even more advantageous to PPL-RSPN
compared to PPL-LSPN, as the learned marginals are far more erroneous in the
case of RAT-SPN. Figure 5 displays the increase in quadratic error induced by
not matching marginals, for both LearnSPN and RAT-SPN. Clearly, a large gap
can be observed between LearnSPN and RAT-SPN on scarce data. Somewhat to
our surprise, estimated marginals in RAT-SPN are far off (also when compared
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to LearnSPN), making that model useless for marginal inference unless the con-
straints are imposed. Hence, and in particular for RAT-SPN, matching marginals
leads to a strong improvement on the marginals themselves while (only but still)
slightly improving the test joint likelihood.

4.2 Experiments with Missing Values

We again use the three binary datasets above (NLCTS, MSNBC, and Jester).
In order to simulate missing data, we train the baseline PC (via LearnSPN) in a
missing completely at random (MCAR) setting, by removing entries completely
at random from the data tables. After the models are trained, we enhance the
learned distribution to match the training data marginals using the proposed
approach. Note that the current implementation of RAT-SPN mimics the effect
of missing data with dropout layers (which is different from learning in presence
of missing values); as well, the original version of RAT-SPN is not equipped to
deal with missing data at training time, but can be easily tweaked for that pur-
pose. We therefore focus these experiments on models trained with LearnSPN.

Results with MCAR data are summarized in Fig. 6. The top plots show the
joint testing data log-likelihood, while the bottom plots show the difference in
the testing data marginal distributions (whose gains are very clear). We can
see that in every experiment, as the proportion of missing values increases, the
PC enhanced using constraints outperforms the base model, which suggests that
marginal matching can be considered as an effective way to deal with missing
data, potentially as an alternative to data imputation.

4.3 Fairness Experiments

We investigate the impact of imposing fairness constraints in PCs. For each
experiment, we assume variables X which comprise a binary class/target vari-
able Y ∈ X and a binary protected attribute X ′ ∈ X,X ′ 	= Y . Our objective
is to improve the distribution learned via a PC towards fairness for the pro-
tected attribute when predicting class labels. We consider statistical parity as
our measure of fairness (we use this as an example; we will not debate on fairness
measures, since it is not the main focus of the paper). The corresponding fairness
constraint is p(y = 1|x′ = 1) = p(y = 1|x′ = 0). It is clear that this constraint is
not of the form

∑
i τi ·p(Fi) ≤ α. It would actually induce a non-linear constraint

and the convex optimization could not be directly applied. However, we can lift
the optimization problem to a higher dimension by including a new unknown
β where we take p(y = 1|x′ = 1) = p(y = 1|x′ = 0) = β. This latter can be
decomposed into two separate linear constraints in the desired form:
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p((y = 1) ∧ (x′ = 1)) − β · p(x′ = 1) = 0,
p((y = 1) ∧ (x′ = 0)) − β · p(x′ = 0) = 0;

(15)

and as long as β is fixed, the optimization can be carried out to impose the
constraints in Eq. (15) to a learned PC using the proposed approach. In order
to solve for β, we simply carry out an exhaustive search over candidate values
between 0 and 1, retaining the best based on the performance of each resulting
PC (obviously, this search procedure is reasonable for a single unknown β, or at
most a few; otherwise, a smarter strategy would be required).

We consider six different classification datasets commonly used in fairness-
aware machine learning, namely Adult, German Credit, Bank Marketing, Dutch
Census, Credit Card Clients, and Law School [18]. As in Sect. 4.1, we refer to
the variants as PPL-LSPN (for LearnSPN) and PPL-RSPN (for RAT-SPN).
The details regarding the pre-processing of each dataset are provided in the
appendix. The results are displayed in Tables 1 and 2. Not only PPL-LSPN and
PPL-RSPN are able to achieve a “fair” distribution w.r.t the protected attribute,
but they also manage to do so without losing much of their representation power
compared to LearnSPN or RAT-SPN, that is, the test likelihood and 0-1 accuracy
are barely affected while statistical parity is enforced by the use of constraints.
We stress out that our procedure being a post-processing of the PC at hand,
models already trained and potentially in use in applications could be enhanced
without the need of re-training from scratch.

Table 1. Classification with LearnSPN vs. PPL-LSPN enforcing statistical parity via
constraints.

Dataset Protected
Attribute

Method Test LL Accuracy Statistical
Parity

Adult Sex LearnSPN −13.614 0.8256 0.1754
PPL-LSPN−13.764 0.7946 0.0

German Sex LearnSPN −22.802 0.6993 −0.0171
Credit PPL-LSPN−23.075 0.704 0.0
Bank Marital LearnSPN −16.448 0.8957 −0.0305
Marketing Status PPL-LSPN−16.493 0.8949 0.0
Dutch Sex LearnSPN −9.801 0.8141 0.2520
Census PPL-LSPN−9.947 0.7359 0.0
Cr. Card Sex LearnSPN −22.505 0.8164 0.0185
Clients PPL-LSPN−22.539 0.8035 0.0
Law Race LearnSPN −11.800 0.9076 −0.3012
School PPL-LSPN−11.845 0.9013 0.0
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Table 2. Classification with RAT-SPN vs. PPL-RSPN enforcing statistical parity via
constraints.

Dataset Protected
Attribute

Method Test LL Accuracy Statistical
Parity

Adult Sex RAT-SPN −7.767 0.8193 0.2000
PPL-RSPN−7.796 0.8148 0.0

German Sex RAT-SPN −28.752 0.745 −0.0309
Credit PPL-RSPN−28.756 0.745 0.0
Bank Marital RAT-SPN −13.736 0.8820 −0.0388
Marketing Status PPL-RSPN−13.739 0.8788 0.0
Dutch Sex RAT-SPN −12.880 0.7888 0.2620
Census PPL-RSPN−12.923 0.7629 0.0
Cr. Card Sex RAT-SPN −3.998 0.7838 0.0053
Clients PPL-RSPN−3.998 0.7838 0.0
Law Race RAT-SPN −7.274 0.9050 −0.2054
School PPL-RSPN−7.294 0.9034 0.0

5 Conclusions and Future Work

We introduce a novel approach that allows to incorporate probabilistic propo-
sitional logic (PPL) constraints into a (pre-trained) probabilistic circuit (PC),
so that the distribution encoded by the PC respects the constraints. We explain
our design choices which allow for achieving tractable learning and inferences
while ensuring that PPL constraints are satisfied. We also develop theoretical
foundations that explain the feasibility of the optimization and how to reach an
optimal solution in computationally tractable (polynomial) time. Experiments
illustrate how we can take PCs and enhance them into better PCs that can
be applied to practical scenarios, for example by applying fairness measures to
the learned distribution and by (arguably) better handling missing values in the
training data. The supplementary materials, which include details regarding the
discretization process of datasets, can be accessed through the arXiv version [9].

We make space for a couple of reflections. The goal of this research is to
enhance machine learning models with probabilistic logic assessments, in the
same spirit as neurosymbolic AI. We found out that PC models are already
over-parameterized: thus, one can better tune the parameters in order to satisfy
external constraints. The first obvious idea is to do so via some variation of
Expectation-Maximization or gradient methods, putting violation of constraints
as (strong) penalties. However, it is not guaranteed that constraints are fully
enforced; we therefore see that avenue as a great direction to investigate, even
though the solution is likely to differ from the one described here. We managed
to find a way to improve PCs a posteriori (without retraining) and efficiently
(the optimization can run exactly and fast with modern convex optimization
solvers). This choice comes at the expense of being able to only change the
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parameters of leaf distribution nodes; this—quite surprisingly—turns out to be
enough to precisely enforce the constraints globally on the joint distribution
while not losing model fitness. Moreover, we have no intention to claim that
we are (or not) obtaining state-of-the-art results. This is an investigation of
the combination of constraints into circuits, which we consider overall successful
(but obviously not without limitations). We see many possibilities with that. We
are aware that the bucket size limitation is a serious complication, but creative
experiments show that there may be many interesting problems to solve even
under such limitation. Moreover, we know that the limitation can be mitigated
by using some smarter parametrization of the local distributions: this direction
is definitely worthwhile, although it may lead to a decrease in accuracy and will
likely not provide the same guarantees as we currently have.

Beyond these research directions, the paper opens doors for future work, as
the desire to combine probabilistic logic constraints and deep machine learning
methods is immense. Possible immediate avenues include extending the appli-
cability of constraints on continuous and mixed variables, applying constraints
to new tasks such as other forms of fairness measures (for instance, equalized
odds [12]) in order to improve already learned PCs, improving the trade-off
between accuracy and efficiency by using different optimizers, considering exten-
sions beyond consistent and valid PCs, and utilizing constrained PCs to guide
and tune intractable models (similar to [37], but with the added benefit of includ-
ing arbitrary constraints to the PC), to name but a few.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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Abstract. Federated learning (FL) enables clients to collaboratively
train machine learning models under the coordination of a server in a
privacy-preserving manner. One of the main challenges in FL is that
the server may not receive local updates from each client in each round
due to client resource limitations and intermittent network connectiv-
ity. The existence of unavailable clients severely deteriorates the over-
all FL performance. In this paper, we propose FedAR, a novel client
update Approximation and Rectification algorithm for FL to address
the client unavailability issue. FedAR can get all clients involved in the
global model update to achieve a high-quality global model on the server,
which also furnishes accurate predictions for each client. To this end, the
server uses the latest update from each client as a surrogate for its current
update. It then assigns a different weight to each client’s surrogate update
to derive the global model, in order to guarantee contributions from both
available and unavailable clients. Our theoretical analysis proves that
FedAR achieves optimal convergence rates on non-IID datasets for both
convex and non-convex smooth loss functions. Extensive empirical stud-
ies show that FedAR comprehensively outperforms state-of-the-art FL
baselines including FedAvg, MIFA, FedVARP and Scaffold in terms of
the training loss, test accuracy, and bias mitigation. Moreover, FedAR
also depicts impressive performance in the presence of a large number of
clients with severe client unavailability.

Keywords: Federated learning · Client selection · Bias mitigation

1 Introduction

Federated learning (FL) allows multiple clients to collaboratively learn a pow-
erful global machine learning model without sharing the training data with the
server. As a privacy-preserving and communication-efficient distributed learning
framework, FL has garnered substantial research attention and has surged as a
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key enabler of distributed intelligence in many real-world applications, such as
next-word prediction on mobile keyboards [11] and medical record analysis in
digital health [4]. In the vanilla FL algorithm, known as FedAvg [21], the server
distributes the current global model to all the clients in each round, which serves
as the basis for running several steps of stochastic gradient descent (SGD) on
the local data for each client. The local updates are then sent back to the server
to update the global model. This process is iterated until the global model con-
verges.

In FL, clients can be diverse, ranging from medical wearables and IoT devices
to smartphones [38]. Many of these clients operate as low-power devices and com-
municate over wireless networks. This presents a challenge to FedAvg, as clients
may abort training midway due to issues like low battery levels or incoming calls
[2,10,15,21]. As a result, clients may fail to return their trained local updates to
the server, especially when the communication from the clients to the server is
hampered by poor channel quality and intermittent connectivity [33–37,39] (also
referred to as unavailable / non-participating clients or the partial client partic-
ipation problem). In FedAvg, the inability to receive local updates from unavail-
able clients can cause a serious delay and it can even discard these updates when
deriving the global model to maintain learning efficiency [26,31,32,41]. Miss-
ing the expected local updates introduces an undesired bias against unavailable
clients [1,31]. This will result in the global model overfitting the characteristics
of consistently available clients, thereby diminishing its performance for clients
that participate less frequently and reducing its overall generalization capability
[5,12,13,22,40].

The primary goal of this paper is to develop and validate an efficient FL
algorithm termed Federated Learning with local update Approximation and
Rectification (FedAR), which addresses the partial client participation prob-
lem. We first study the contributions of the latest observed local updates from
unavailable clients to the global update. Our observation reveals that unavail-
able clients with varying inactive rounds exert diverse positive influences on the
global update. Motivated by this insight, we propose a novel server-side aggre-
gation strategy that incorporates local updates from unavailable clients in the
global update. More importantly, our framework does not require any additional
computation at the clients or introduce any extra communication between the
clients and the server. FedAR utilizes the latest update from each client observed
by the server as a surrogate of its current update, which is then used in updat-
ing the global model. Moreover, we devise an innovative weighting scheme to
accommodate the variable influence on the global model from local updates of
clients with differing inactive rounds. We slightly magnify the contributions from
unavailable clients (based on the number of inactive rounds) in addition to the
contributions from the available clients, to update the global model. To achieve
this, we design the weight as a mildly increasing function of the number of inac-
tive rounds of each client. This strategy enables the server to include the local
data distribution information from unavailable clients in updating the global
model, thereby circumventing the bias against these clients. Lastly, unlike tradi-
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tional FL, FedAR does not assume that the server is aware of the total number of
clients in advance. Instead, it dynamically counts the number of clients who get
involved in the global model update, which better reflects real-world application
scenarios. In light of the above discussion, we summarize our key contributions
in this paper as follows:

– We propose FedAR, a novel FL algorithm that addresses the client unavail-
ability issue. FedAR unevenly weighs the contributions from both available
and unavailable clients in the global model update based on the number of
their inactive rounds. Moreover, FedAR does not necessitate any additional
computation at the clients, nor does it demand any extra communication
between the clients and the server. It does not require all clients to partici-
pate in FL in the first round either.

– We theoretically provide a convergence guarantee for FedAR for both convex
and non-convex smooth loss functions on non-IID datasets across clients.

– We evaluate the performance of FedAR on three real-world datasets MNIST,
CIFAR-10, and SVHN. Compared to the vanilla and the state-of-the-art FL
baselines, FedAvg, MIFA, FedVARP, and Scaffold, FedAR can achieve a 75%
improvement in test accuracy and a 50% reduction in training loss in the best
case. Moreover, we empirically show that FedAR can better mitigate the bias
against unavailable clients, as evidenced by the observation that the derived
global model generates more accurate predictions for clients who have been
intermittently inactive during the training process. FedAR also demonstrates
impressive performance in the presence of a large number of clients with severe
client unavailability.

2 Related Work

One of the main challenges of the vanilla FL algorithm, FedAvg, is the intermit-
tent unavailability of clients. Specifically, the server will not update the global
model until receiving local updates from all clients, which results in consider-
able training delay in the presence of client unavailability. Client sampling can
be used as a remedy to this issue, where some clients are selected to partici-
pate in the global model update. The common client sample strategies include
random sampling, significant sampling, and cluster sampling. Random sampling
[21] selects clients at random whereas importance sampling [6,7,20] selects the
most valuable clients in terms of data quantity, communication time, and local
training results. In cluster sampling [3,8,9], clients are first divided into groups
based on sample size, model similarity etc.; the clients in each group are then
selected for global update. All these sampling strategies engage only available
clients but ignore unavailable clients in the global update. Consequently, the
global model biases towards the available clients that are selected repetitively
[23], which would undermine the FL performance.

A body of research addresses the client unavailability issue by incorporat-
ing stale updates from unavailable clients into the training process, such as the
Memory-augmented Impatient Federated Averaging (MIFA) algorithm [10] and
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the Federated VAriance Reduction for Partial Client Participation (FedVARP)
algorithm [14]. Their major differences with FedAR are listed in Table 1. In
particular, seeking to maximize non-IID data coverage, MIFA gives equal weigh-
tage to updates from both available and unavailable clients, making it a biased
scheme. Even worse, MIFA requires all clients to participate in the first training
round, which is an unrealistic assumption. FedVARP allocates higher weights to
the updates from available clients than to the updates from unavailable clients.
It also attempts to reduce the variance to available clients caused by the par-
tial client partition, which, however, is not empirically demonstrated. Similar
to both MIFA and FedVARP, the FedAR algorithm reuses the latest observed
update for each client as an approximation of its current update. Different from
MIFA, FedAR formulates a novel weighting scheme to efficiently involve unavail-
able clients with various inactive rounds in the global model update. Moreover,
FedAR does not require all clients to participate in FL in the first training round.
Motivated by [30], FedAR assigns higher weights to the updates of the unavail-
able clients with a larger number of inactive rounds, i.e., we amplify the local
updates from unavailable clients, which is contrary to FedVARP. Our experi-
mental results show the efficacy of FedAR in terms of overall convergence, test
accuracy and bias mitigation, compared to relevant baselines.

Table 1. Comparison of FedAR with MIFA and FedVARP

MIFA FedVARP FedAR

Enhance the FL efficiency with uncertain availability of clients

Issue
addressed

maximize
data coverage

reduce variance of
available local
updates

reduce bias against
unavailable local updates

Rationale on
local updates

all have the
same contribution

available ones have
higher
contributions

unavailable ones can also
have contributions

Solution allocate the same
weight
to all local updates

allocate higher
weights
to available local
updates

allocate higher weights to unavail-
able
local updates with higher
contributions

All clients
assumption

must respond in
the first round

not necessarily respond in the first round

3 Problem Setup

We consider that a set of clients N = {1, 2, · · · , N} with restricted power and
computational resources collaborate with a server to execute FL over T rounds.
The datasets for local training are subject to non-IID distributions. The clients
and the server iteratively communicate over wireless networks to obtain a global
model w aiming at minimizing the global loss function:

min f(w) =
1
N

∑N

i=1
fi(w), (1)

where fi(w) is the loss function for client i.
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Fig. 1. Contribution of each client to the global model. “stale i” denotes that Client 0
has been inactive for the last i rounds. “fresh” denotes that all the clients are active for
all the 9 rounds. A high staleness level indicates more inactive rounds

3.1 Basic Algorithm of FL

We begin by recalling the vanilla FL setting in FedAvg. In round t − 1,
t ∈ {1, · · · , T}, the server broadcasts the global model wt−1 to all the clients.
Each client i ∈ N uses its own private dataset to execute K steps of Stochastic
Gradient Descent (SGD) for the local update. For each step k ∈ K:

wi
t,k+1 = wi

t−1,k − ηt−1∇fi(wi
t−1,k), (2)

where η is the local learning rate and ∇fi(·) represents the gradient. Each client
then sends back its local update to the server; the server aggregates all the client
updates to derive the global model as:

wt =
1
N

∑N

i=1
wi

t,K . (3)

Problem in FedAvg. Practically, due to the limited resources of each client
and the intermittent network connectivity, the server may not receive the local
updates wi

t,K from all the clients; these clients are called unavailable / non-
participating clients. Due to this, FedAvg delays or even aborts the local updates
from unavailable clients during the global update, causing an undesirable bias
against these unavailable clients. However, the local updates from the unavail-
able clients also contain valuable information, which can be useful in global
model updates. We conduct a toy experiment on a simple, restricted setup to
demonstrate this idea and provide motivation for our approach.
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3.2 Motivation

Let us assume a standard FL setting where 5 clients (numbered 0 through 4)
collaborate with a central server on a classification task using the CIFAR-10
dataset [17]. The server and clients execute a total of 9 rounds of communication.
We conduct 7 different experiments, as shown by the vertical bars in Fig. 1. In all
the experiments, client 1 to client 4 are always available across all the 9 rounds
of communication. Client 0, conversely, becomes inactive after a certain number
of rounds in each experiment. In Fig. 1, the term “stale i” refers to client 0 being
active for the initial 9− i rounds and then inactive for the subsequent i rounds.
For instance, “stale 3” indicates that client 0 is active from rounds 1 to 6 but
inactive during rounds 7 to 9. In this case, we aggregate the most recent local
updates (from the 9th round) for clients 1 to 4 and the local update from the
6th round for client 0 (last active round) to update the global model. “fresh”
denotes the case where all the 5 clients were available across all the 9 rounds
of communication. After the 9th round, we use the Shapley Value (SV) [25] to
quantify the contribution of each local update to the global model. Shapley value
is a classical concept in cooperative game theory, and it is extensively used to
evaluate client contributions in FL [27–29]. We compute each client’s SV based
on the global model’s test accuracy, which is obtained by different combinations
of the local client updates for the different experiments. We sum up all the SV
and represent the contribution of client 0 and clients 1 to 4 as a percentage; the
larger the value, the greater the contribution. From Fig. 1, it can be observed
that as the staleness level of client 0 increases (larger number of inactive rounds),
its contribution to the global model (height of the gray bar) decreases. At stale
6, the contribution of client 0 is negative, meaning that its local update has an
adverse effect on the global model. Based on the above toy experiment, we draw
the following conclusions:

– The stale local updates from unavailable clients can still contribute to the
global model (as evident from the gray bars in stale 1 through stale 5).

– The contribution of the stale local updates decreases with increasing staleness
level, suggesting it may be necessary to assign higher weights (during the
global update) to stale local updates with more inactive rounds.

– An excessively high staleness level is detrimental to the performance of the
global model. In the global update, it may not be necessary to include these
local updates.

Given these observations, we propose our FedAR algorithm, as detailed
below.
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4 FedAR Algorithm

FedAR is designed as a simple and effective algorithm by involving local updates
of unavailable clients in the global model update on the server. In addition, given
that a client’s unavailability leads to decreased contributions, we assign weights
to different local updates accordingly. Our goal is to enhance FL performance by
efficiently involving updates from all clients in the global model update. Specif-
ically, FedAR consists of two components: local update approximation and local
update rectification. In each round, the server sets a maximum waiting time for
the local updates from all clients. When the maximum waiting time is reached,
the server estimates the local updates that would be obtained from the unavail-
able clients. The weighted average over all the local updates is then performed
to derive the global model for the next round. We describe our system in detail
next.

Local Update Approximation. To approximate the local updates, the server
maintains an update-matrix G[t] = [G1[t]; · · · ;Gi[t]; · · · ;GN [t]] saving its most
recent observed local updates from all clients. Initially, G[0] is a zero matrix.
In round t, Gi[t] will only be replaced if the server obtains the client i’s local
update wi

t,K . Otherwise, Gi[t] will not change. Let A(t) ⊂ N represent the set of
available clients whose updates are successfully received by the server in round
t. Mathematically, we have,

Gi[t] =

{
1
ηt
(wt − wi

t,K) if client i ∈ A(t)
Gi[t − 1] otherwise.

(4)

FedAR uses Gi[t] ∈ G[t] as the estimates for local updates while deriving
the global model. The global model is thus able to include the data distribution
from the unavailable clients, which will help mitigate the bias against them.

Local Update Rectification. Figure 1 shows that stale local updates with
different inactive rounds have various contributions to the global model, inspiring
us to weigh local updates during the global update. We propose to assign weights
to local updates based on the number of their inactive rounds, and by doing so,
we expect to enhance the contributions from unavailable clients and further
mitigate the bias.

Formally, the server maintains an update-array τ(t − 1) = [τ(1, t −
1), · · · , τ(i, t−1), · · · , τ(N, t−1)] to record the number of inactive rounds for all
clients. τ(0) is initialized as a zero array. In round t, if the update from client i is
received, the server resets τ(i, t) to 0. Otherwise, the server increases τ(i, t − 1)
by 1 to get τ(i, t). We express τ(i, t) as:

τ(i, t) =

{
0 if client i ∈ A(t)
τ(i, t − 1) + 1 otherwise.

(5)
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Based on τ(i, t), we design a weight function ψi,t to quantify the contribution
from client i to the global update. The general expression of ψi,t is given as:

ψi,t =

{
0 if τ(i, t) ≥ g(t)
min([τ(i, t) + 1]ρ, 2) otherwise.

(6)

If the client i is available at round t, i.e., τ(i, t) = 0, we have ψi,t = 1, which aligns
with FedAvg. We introduce g(t) to prevent local updates with many inactive
rounds from negatively impacting the global model and to remove such updates
from the current global update. g(t), as a function of round t, is different based on
whether we are optimizing a convex loss function or a non-convex loss function.
We will discuss it in more detail in Sect. 5 (Theoretical Analysis).

Since unavailable clients with more inactive rounds contribute less to the
global update, we assign them higher weights to increase their contributions,
as shown in Eq. (6). However, an extremely high weight ψi,t will cause the
unavailable clients to dominate the global model update, which would induce bias
against available clients. We therefore introduce the hyperparameter ρ ∈ [0, 1]
in Eq. (6) to restrict the growth of ψi,t. We also set the maximum value of ψi,t

(ψmax) to 2 to guarantee the convergence of FedAR. Please refer to the Appendix
for more details on the convergence analysis.

Global Model Update. Clients arbitrarily participate in global model update
in each round due to their limited resources and intermittent network connec-
tivity. Hence, the server does not know the exact number of clients in advance;
instead, it dynamically counts the clients that contribute to the global model
update, i.e. those clients that are either available or unavailable but not too
stale. Suppose there are Nt contributing clients in round t. With Gi[t] and ψi,t,
FedAR updates the global model as follows:

wt+1 = wt − ηt

Nt

∑N

i=1
Gi[t]ψi,t. (7)

Combined with Eq. (4), Eq. (7) ensures that the update matrix Gi[t] always
reflects the most recent client updates, while being able to reasonably consider
the contributions of all clients when the global model is updated. In addition,
although Eq. (7) seems to have all clients in the global model update, some clients
do not get involved. They are either the clients that have never participated in
FL, i.e., Gi[t] = 0, or the clients that have been inactive for many rounds, i.e.,
ψi,t = 0. Hence, Eq. (7) aligns with our idea of engaging only the contributing
clients in the global model update.

Algorithm 1 shows the details of FedAR. We use the “temporary client set
E” to include the clients that have ever participated in the global model update
in Line 3. Initially, Nt is the number of clients in E . When the client i has been
inactive for many rounds, i.e., ψi,t = 0, it will be excluded from the global model
update, i.e., Nt = Nt−1 in Line 11. Ultimately, Nt counts the contributing clients
as in Eq. (7).
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Algorithm 1: FedAR
Input: initial w0, learning rate ηt, local step K, total round number T , total client
number N
Output: The derived global model wT

Server executes:
1: Initialize ψi,1 = 1, τ(i, 1) = 0, and Gi[0] = 0, ∀i, temporary client set E
2: for t=1,2, · · · , T do
3: E ← E ∪ {new active client}, Nt = |E|.
4: for i=1,2 · · · , N in parallel do
5: if client i is available then
6: Gi[t] ← DeviceUpdate(i,wt)
7: τ(i, t) = 0
8: else
9: τ(i, t) = τ(i, t) + 1

10: end ifCalculate the ψi,t by Eq. (6)
11: if ψi,t = 0 then
12: Nt = Nt − 1
13: end if
14: end for
15: wt+1 ← wt − ηt

Nt

∑N
i=1 Gi[t]ψi,t

16: end for
DeviceUpdate(i,wt):
1: wi

t,0 ← wt

2: for k = 0,1,· · · , K − 1 do
3: wi

t,k+1 ← wi
t,k − ηt∇fi(w

i
t,k)

4: end for
5: Return 1

ηt
(wt − wi

t,K)

Regarding privacy enhancements in FL, FedAvg suggests that Differential
Privacy (DP) can improve data privacy performance. However, our work is not
primarily focused on privacy protection, and as such, an in-depth examination
of this topic will not be included in our current research.

5 Theoretical Analysis of FedAR

In this section, we analyze the convergence of the proposed FedAR for convex
and non-convex smooth loss functions.

5.1 Convex Loss Function

To analyze the convergence of FedAR for a convex loss function, we make the
following assumptions regarding fi(w), i = 1, 2, · · · , N .

Assumption 1: L-smoothness. The loss function fi(w) is L-smooth. That is:
for all x, y ∈ R, f(x) − f(y) ≤ 〈∇f(y), x − y〉 + L

2 ‖y − x‖2 with L > 0.
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Assumption 2: μ-strong convex. The loss function fi(w) is μ-strong convex.
That is: for all x, y ∈ R, f(x) − f(y) ≥ 〈∇f(y), x − y〉 + μ

2 ‖y − x‖2 with μ > 0.

Assumption 3: Variance bound. The variance of the unbiased estimator of
∇fi(w) in round t is upper bounded, where E{‖∇̃fi(w) − ∇fi(w)ψi,t‖2} ≤ σ2.

Theorem 1: Suppose the objective loss function fi(w) satisfies Assumptions
1 to 3, τmax ≤ g(t). By setting the learning rate ηt = 4

μ(t+a) and constant
a = 100(L

μ )
1.5, after T rounds, FedAR satisfies:

E[f(wT )] − f(w∗)=O(
σ2(1 + τT )

μKNT
)

+ O(
F + ‖w1 − w∗‖2 + τ2

maxLσ2Nψmax

Kμ3T 2
),

where τmax is the maximum number of τ(i, t) over all clients and rounds.
g(t) = t0 + 1

b t for a constant t0 > 0 and b > 2, F = LKND + L(K − 1)2 ·
(DN2 + σ2

K ), wT =
∑T

t=1(t+a−1)(t+a−2)wt

WT
, WT =

∑T
t=1(t + a − 1)(t + a − 2),

τT = 1
N(T−1)

∑T−1
t=1

∑N
i=1 τ(i, t), and D = 1

N

∑N
i=1 ‖∇fi(w∗)‖2.

Remark 1: In Theorem 1, both the first and the second terms tend to zero as
T increases, indicating that FedAR converges at the rate of O(1/T ). The first
term’s convergence is related to the average inactive round number τT . We can
find that too high a value of τT will negatively impact convergence, which is
consistent with our observation in Sect. 3.2 (Motivation). Also, convergence is
adversely affected when most clients remain unavailable for a long time, i.e., a
large τT . Besides, we observe that weight function ψ has a relatively negligible
effect on the convergence rate. This can be attributed to our restriction on ψ in
Eq. (6) to prevent it from becoming excessively large with an increase of τ . This
is because a larger ψ could lead to the dominance of clients with more inactive
rounds during the global model update.

5.2 Non-convex Loss Function

To analyze the convergence of FedAR for a non-convex smooth loss function, we
make the following assumptions regarding fi(w), i = 1, 2, · · · , N .

Assumption 4: Hessian Lipschitz. The Hessian of a twice differentiable func-
tion f : Rd → R is λ-Lipschitz continuous if

∥∥∇2f(x) − ∇2f(x)
∥∥ ≤ λ ‖x − y‖ for

all x, y.

Assumption 5: Gradient noise. The noise of the local stochastic gradients
in round t is upper bounded by a constant δ:

∥∥∥∇̃fi(w) − ∇fi(w)
∥∥∥ ≤ δ.

Assumption 6: Gradient dissimilarity. ∃ α > 0 and βi > 0: ‖∇fi(w)‖2 ≤
α ‖∇fi(w)‖2 + βi > 0 and we define β = 1

N

∑N
i=1 βi.
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Assumption 7: There exists a constant vi such that τ(i, t) ≤ vi for ∀i ∈ N ,
and define v = 1

N

∑N
i=1 vi, vmax = maxi∈N vi.

Theorem 2: Suppose Assumptions 1 to 7 hold, set learning rate η =
√

N
KTL(1+v)

,

T ≥ max{32αLNK, 16LN5K,
8KNv2

max(L
2+λδN2)

L }, and τmax ≤ g(t). After T
rounds, FedAR satisfies:

E[‖∇f(wT )‖2] ≤ O(R

√
L(1 + v)
TKN

(f(w1) − f∗ + σ2)

+
ασ2vLKN2ψmax

T
+

σ2λδNψmax

LT
+

F1

T
),

where g(t) = 1
4

√
L

(L2+βλN)KN × max{√t,
√

t0} for a constant t0 > 0,

F1 = (α+1)(LKNσ2v+LKNσvmax

√
β + σ2

KN )+ (L2+λδN2)σvmax

L +(K−1)(2β+
σ2

K ), and R = 8ψ2
max

4ψ2
max−1 .

Remark 2: In Theorem 2, the convergence of FedAR for a non-convex smooth
loss function is dominated by the first term, which converges at the rate of
O(

√
1/T ). This dominant term is mainly influenced by the initial errorf(w1) −

f∗, the variance bound σ, and the average upper bound of inactive round num-
ber across clients v. In addition, we observe that weight function ψ appears in
the dominant term through the parameter R. Regardless of how ψ changes, the
value of R tends towards a constant, and thus the impact produced by ψ is not
significant. Compared to ψ, τ and N have a greater influence on the convergence
via impacting the dominant term. We can draw similar conclusions as Theorem
1: as more clients continue to join the FL, more rounds are required to achieve
convergence. Meanwhile, the fact that τmax is a major variable affecting conver-
gence aligns with our initial observations in Sect. 3.2 (Motivation); that is, the
local updates with more inactive rounds negatively impact the global model’s
performance and further prevent the global model from converging. Thus, there
must exist a critical value g(t) as we express in Eq. (6) to exclude those clients
from the global update to ensure the model convergence, i.e.,. the clients whose
inactive round number exceeds g(t) will not be considered.

Please refer to our Appendix for the proof of Theorem 1 and Theorem 2, as
well as Remark 3 on Theorem 2.

6 Experiments and Evaluations

In this section, we evaluate the performance of FedAR by conducting extensive
experiments on a desktop with the GeForce RTX 3060 graphic card.
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6.1 Experimental Setup

System Settings. We conduct the FL experiments with one server and 100
clients. Let pi denote the probability that client i is available during any given
round. The availability of all clients is independent, with a minimum probability
of pmin, indicating that the client availability probability varies from pmin to 1.
This is a practical setting given that clients have their unique resource constraints
and face distinct wireless environments. We examine both the challenging and
mild client unavailability, where pmin = 0.1 and 0.5, respectively. In summary,
most clients are inactive for 5 - 20 rounds, with a few clients being inactive for
more than 40 rounds.

Data and Model. We evaluate FedAR on three real-world datasets: MNIST
[18], CIFAR-10 [17], and SVHN [24]. To ensure non-IID data distribution among
all clients, we assume all datasets to be evenly distributed on all clients, and
each client to contain only two classes of data. We use the logistic regression for
MNIST, Lenet-5 for CIFAR-10, and Resnet-18 for SVHN as the local models.
We set all experiments’ initial local learning rate as η0 = 0.1, local training step
as K = 5, local batch size as 64, and hyperparameter as ρ = 0.1. We set weight
decay as 0.001 during the local SGD.

Baselines. We compare FedAR with recent FL baselines: (1) MIFA [10]. It
assigns the same weight to both available and unavailable clients; (2) FedVARP
[14]. It assigns higher weights to available clients’ updates, while the weights
for unavailable clients remain unchanged; (3) FedAvg-IS. It engages only avail-
able clients in global update using the FedAvg algorithm. The local updates are
weighted by clients’ availability probabilities; (4) FedAvg (S=50). It involves at
most half of available clients in the global update with the FedAvg algorithm.
Given 100 clients, at most 50 clients join the global update; and (5) Scaffold [16].
It is a FL algorithm designed to improve the quality of global model updates
by applying personalized control variate adjustments to each client; it does not
consider client unavailability.

6.2 Experimental Results

1 Overall Convergence Performance. We evaluate the convergence perfor-
mance of FedAR on different datasets in both the challenging and mild settings
in Fig. 2. We find that FedAR has a similar convergence speed as FedAvg-IS,
MIFA, and FedVARP. Notably, on CIFAR and SVHN datasets, the convergence
speed of FedAR is markedly superior to that of Scaffold. This observation is
consistent with our theoretical analysis that our designed weight function ψ has
negligible negative impacts on convergence.

When pmin = 0.1, Fig. 2a shows that FedAR on CIFAR-10 reduces the train-
ing loss to 1.5 and attains the highest test accuracy of 44%, an enhancement

1 For clear observation, we recommend viewing all figures about experimental results
in color.
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Fig. 2. Convergence, training loss and test accuracy performance

of over 3% compared to baseline algorithms. Figure 2c shows that FedAR is the
only algorithm achieving a training loss below 1 and a test accuracy over 70%
on SVHN. When more clients are available, i.e., pmin = 0.5, FedAR in Fig. 2b
greatly boosts the test accuracy to 46% on CIFAR-10. Additionally, we find
that FedAR consistently reaches a test accuracy of around 70% in most training
rounds on SVHN, and outperforms all the baselines.

Table 2. P-Value analysis of FedAR performance

Dataset Baselines
FedVARP MIFA Scaffold FedAve(s=50) FedAve-IS

Cifar10;p=0.1 1.15*10−163 1.15*10−194 1.87*10−194 1.53*10−110 4.36*10−180

Cifar10;p=0.5 0.0 0.0 1.38*10−246 3.46*10−316 2.02*10−285

SVHN;p=0.1 0.00029 1.49*10−54 5.72*10−35 1.63*10−60 4.77*10−45

SVHN;p=0.5 1.34*10−52 5.91*10−111 1.71*10−81 2.25*10−77 1.96*10−116

We also conduct statistical tests of significance using paired t-test to assess
whether the improvement in performance achieved by FedAR is statistically
significant. We compare the test accuracy of FedAR against each of the baselines
individually for both CIFAR-10 and SVHN, and for pmin = 0.1 and pmin = 0.5.
The results are illustrated in Table 2; each entry in the table denotes the p-value
of the paired t-test between FedAR and the corresponding baseline (denoted in
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Fig. 3. Accuracy distributions

the columns) for the corresponding dataset (denoted in the rows). From the table,
we find that the improvement in performance achieved by FedAR is statistically
significant (p < 0.001) compared to all the baselines, consistently for both the
datasets and both values of pmin. These results further corroborate the promise
and potential of FedAR. FedAR also shows superior performance on the MNIST
dataset with lower training losses and higher test accuracy upon convergence,
as elaborated in the Appendix.

Bias Mitigation. We study the bias mitigation performance of FedAR on
CIFAR-10 in the challenging setting, where pmin = 0.1. Specifically, the global
model is used to make predictions for each client after convergence, and we study
the consistency of the prediction accuracies across all clients. In addition to MIFA
and FedVARP, we compare FedAR with the ideal situation of FedAvg, where all
the clients are continuous available throughout the entire training process.

Table 3. Accuracy statistics

ALGO Mean
(%)

Var Worst 10%
(%)

Best 10%
(%)

FedAR 40.9±18.1 325 20.8±4.5 67.7±8.7
MIFA 34.0±13.6 182.5 19.7±4.2 53.8±8.8
FedVARP 41.3±20.7 432.5 19.4±2.6 73.9±11.6
FedAvg 41.0±18.0 321.6 21.2±4.3 69.5±12.6
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Table 3 depicts the statistics (mean ± std and variance) of the prediction
accuracy across clients. In addition, we record the prediction accuracy of the
worst 10% clients and the best 10% clients, denoted by “Worst 10%” and “Best
10%” respectively [19]. From Table 3, we observe that the “Mean”, “Worst 10%”,
and “Best 10%” prediction accuracy of FedAR closely align with FedAvg. This
suggests that the performance of FedAR is comparable to the ideal situation of
full client availability. Furthermore, FedAR achieves an average accuracy approx-
imately 6% higher than MIFA, which requires all the clients to participate in
the first training round. Although the average prediction accuracy of FedVARP
is marginally higher than FedAR, it exhibits a considerably higher variance of
432.5, over 100 more than FedAR. Such a high variance indicates a significant
variation in prediction accuracy across different clients in FedVARP.

To more intuitively evaluate the bias mitigation performance, we visually
depict the distribution of the number of clients and its Probability Density
Function (PDF) of prediction accuracy in Fig. 3. Compared to MIFA, FedAR
enables a larger number of clients to achieve a prediction accuracy of 40% or
higher. Additionally, within the accuracy interval between 25% and 65%, the
PDF curve of FedAR surpasses that of FedVARP. Outside this interval, PDF
curve of FedAR falls below that of FedVARP. This pattern indicates that the pre-
diction accuracies in FedAR are more centralized around the mean value (40%).
This explains the high variance values of FedVARP in Table 3. Furthermore, the
PDF curve of FedAR almost coincides with that of FedAvg. This indicates that
even under the challenging client unavailability (pmin = 0.1), FedAR maintains
prediction accuracy distribution similar to the ideal full client availability situ-
ation. Both Table. 3 and Fig. 3 confirm that FedAR can effectively mitigate the
bias despite severe client unavailability.

Fig. 4. Effect of pmin
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Hyperparameter Evaluation. We study the effect of hyperparameters under
the challenging setting of pmin = 0.1 on CIFAR-10. Please refer to our Appendix
for the performance analysis on SVHN and the evaluation for ρ value in Eq. (6).

Minimum Client Participation Probability pmin. We evaluate FedAR under var-
ious client participation probability, i.e., pmin spanning from 0.1 to 0.5. We
exclude FedAvg (S=50) due to its notably inferior performance compared to
other baselines. As shown in Fig. 4, FedAR consistently outperforms all the base-
lines for every pmin. Additionally, we note a marginal enhancement in FedAR’s
performance as pmin increases. When pmin = 0.5, FedAR achieves an accuracy
of 47% whereas the accuracy of all the baselines is below 45%. This is because a
higher participation probability reduces the average number of inactive rounds,
thus positively impacting the FL performance.

Fig. 5. Effect of N

Number of Clients N . We evaluate FedAR with varying numbers of clients from
80 to 120. As shown in Fig. 5, as N increases, all algorithms show an increasing
trend in training loss and a decreasing trend in test accuracy, among which
FedAR achieves the best performance. Specifically, FedAR marginally increases
the training loss only from 1.5 to 1.6 when N is increased from 80 to 120. The
lowest accuracy of FedAR is 43% in the case of N = 110. In contrast, the
performance of other baselines degrades significantly with the increase in the
number of clients. Except for FedVARP, the test accuracy of the rest of the
baselines has fallen below 40%. The surge in the number of clients inherently
leads to a rise in unavailable clients, posing challenges across all algorithms.
This suggests that FedAR is more adept at handling a large number of clients,
making it ideal for large-scale FL, especially in the presence of significant client
unavailability.
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7 Conclusion

In this paper, we propose a novel FL algorithm, FedAR, to address the client
unavailability. We found that clients with different numbers of inactive rounds
have diverse contributions to the current global update. Based on this observa-
tion, we design a novel weighting strategy that not only engages the unavailable
clients in the global model update, but also quantifies their contributions based
on the number of their inactive rounds. We theoretically prove the convergence of
FedAR for both convex and non-convex smooth loss functions with non-IID data
across clients. Our experimental results demonstrate that FedAR significantly
outperforms competing FL baselines FedAvg, MIFA, FedVARP and Scaffold with
respect to the training loss, the test accuracy, and the bias mitigation. FedAR
further demonstrates remarkable performance and surpasses those baselines in
large-scale FL with severe client unavailability. As part of future work, we will
study the performance of FedAR under other practical challenges such as missing
data and class imbalance across clients.
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Abstract. Large language models (LLMs) can be augmented by inter-
acting with external tools and knowledge bases, allowing them to over-
come some of their known limitations, such as not having access to up-
to-date information or struggling to solve math problems, thereby going
beyond the knowledge and capabilities obtained during pre-training.
Recent prompting techniques have enabled tool-augmented LLMs to
combine reasoning and action to solve complex problems with the help
of tools. This is essential for allowing LLMs to strategically determine
the timing and nature of tool-calling actions in order to enhance their
decision-making process and improve their outputs. However, the reliance
of current prompting techniques on a single reasoning path or their lim-
ited ability to adjust plans within that path can adversely impact the
performance of tool-augmented LLMs. In this paper, we introduce a novel
prompting method, whereby an LLM agent selects and executes one
among multiple candidate strategies. We assess the effectiveness of our
method on three question answering datasets, on which it outperforms
state-of-the-art methods like ReWOO, while also being a competitive and
more cost-efficient alternative to ReAct. We also investigate the impact
of selecting a reasoning trajectory from different strategy pool sizes, fur-
ther highlighting the risks in only considering a single strategy.

Keywords: Large language models · Tool-augmented language
models · Chain-of-thought prompting · Question answering

1 Introduction

The advanced capabilities of large language models (LLMs) [9] have extended
their utility beyond mere language generation tasks, paving the way for their
application as autonomous agents to make decisions across diverse environments
[4,8]. Reasoning is crucial for autonomous agents in their the decision-making
processes, particularly in scenarios involving tool usage to determine the appro-
priate timing and selection of tools for completing complex tasks. The Chain-
of-Thought (CoT) prompting paradigm has become a prominent method for
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enhancing the reasoning abilities of LLMs. By prompting LLMs to generate inter-
mediate reasoning steps prior to delivering a final answer, CoT has significantly
improved their performance in tasks requiring arithmetic, commonsense, and
symbolic reasoning [13]. Recent prompting strategies like ReAct [17] and ReWOO
[14] are two state-of-the-art (SOTA) methods that apply the CoT paradigm
with tool-augmented LLMs (TA-LLMs). When tackling tasks with TA-LLMs,
ReAct enhances the dynamism of CoT by generating reasoning thoughts based
on environmental observations (observation-dependent reasoning) before decid-
ing which tool to utilize in each step. Conversely, ReWOO transforms the inter-
mediate reasoning steps of CoT into actionable plans (foreseeable reasoning),
strategically determining the sequence of tool usage. The development of TA-
LLMs has allowed some of the limitations of traditional LLMs to be addressed,
such as restricted access to knowledge obtained during pre-training [6] and a
tendency to hallucinate [5]. Unlike Retrieval-Augmented Generation (RAG) [7],
which aims to reduce LLM hallucination by acquiring knowledge from a static
external knowledge base that is indexed offline, TA-LLMs operate entirely online.
They leverage external tools, such as software APIs, to access up-to-date infor-
mation, offering greater flexibility by enabling the resolution of more complex
problems through sophisticated API calls.

A limitation of current prompting techniques for TA-LLMs is that they either
rely on a single reasoning path or can only adjust plans within the same reasoning
trajectory. Since no individual reasoning path is infallible and can result in incor-
rect model output, not taking into consideration multiple reasoning trajectories
may impede the performance of TA-LLMs. Hence, we introduce a novel prompt-
ing method named ReMSV (Reasoning with Multiple Strategies and Voting)
that generates and considers multiple reasoning trajectories before deciding on a
course of action, including which tools to use. Specifically, building on the ReWOO
framework, we design a process that incorporates the roles of Director, Voter,
Worker, and Solver to generate multiple candidate reasoning trajectories, selects
the trajectory with the most votes, and then executes the chosen reasoning tra-
jectory to solve a given task. To assess the effectiveness of our method, we use
several benchmark datasets, namely HotpotQA [15], GSM4K [2], and PhysicsQA
[1]. ReMSV obtains a superior performance, surpassing ReAct in HotpotQA and
PhysicsQA, while consistently outperforming ReWOO across all three benchmarks.
Significantly, on the HotpotQA dataset, ReMSV achieves a relative improvement
of 34.5% and 9.1% in comparison to ReAct and ReWOO, respectively. In addition,
compared to ReAct, ReMSV provides a more cost-efficient alternative that con-
sumes significantly fewer tokens, e.g., 200% fewer in the HotpotQA benchmark.
We also carry out experiments to investigate the influence of considering multiple
reasoning trajectories, underscoring the efficacy of our approach. To summarize,
our key contributions are as follows:

– We present a prompting method called ReMSV that considers multiple reason-
ing trajectories. By selecting one among multiple sampled strategies through
voting, our method not only consistently surpasses ReWOO but also generally
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outperforms ReAct, showcasing its effectiveness compared to current SOTA
prompting strategies.

– We further analyze the proposed multi-strategy mechanism, both mathemat-
ically and empirically, showing that although ReMSV comes with a slightly
higher cost compared to ReWOO, it is more cost-effective in terms of token
consumption than ReAct, making it a viable alternative that improves per-
formance at a slightly higher cost compared to ReWOO.

2 Related Work

Historically, the study of autonomous agents that can use external tools has
primarily centered on reinforcement learning techniques. For example, WebGPT
[8], which was designed to interact with web browsers to respond to complex
questions, relies heavily on costly human feedback for its reinforcement learn-
ing process. Similarly, SimpleTOD [4], a task-focused dialogue system, requires
extensive datasets derived from human feedback for its policy training. Prior
to the introduction of CoT [13], reasoning capability was viewed as a primary
constraint of LLMs that could not be addressed merely by scaling and enlarging
the model size [10]. With few-shot in-context learning, CoT unlocks the rea-
soning capabilities of LLMs by incorporating sequential intermediary reasoning
steps before producing the final result. Recently proposed prompting strategies
[11,14,17] combine the reasoning and action capabilities of LLMs by converting
the static intermediary reasoning phases into actionable plans that engage with
the environment. Among these prompting strategies, ReAct [17] and ReWOO [14]
are two approaches that achieve SOTA performance results in challenges that
require several reasoning steps to conclude a final response. Specifically, ReAct
[17] introduced an (Obs, Thought, Action) prompting technique, which consis-
tently produces a Thought (verbal reasoning) based on environmental observa-
tions prior to executing task-specific actions. This method seamlessly connects
the reasoning of an LLM with its actions, allowing it to interweave reasoning
trajectories with tool-calling actions. Despite its remarkable performance, ReAct
continuously generates observations and loops them back into the LLMs as con-
text to generate the next (thought, action) pair. This leads to high token con-
sumption, which can significantly increase cost and energy consumption. ReWOO
utilizes the foreseeable reasoning capabilities of TA-LLMs to sketch a strategy
for decomposing the problem into reasoning and actionable plans, without need-
ing to resort to explicit observations. By compartmentalizing step-wise reasoning
and tool-calling actions into distinct modules, it not only matches the perfor-
mance of ReAct but also boasts a 5-fold increase in token efficiency.

A common limitation of both ReAct and ReWOO is their inability to account
for multiple reasoning trajectories. Researchers have also explored the use of
multi-reasoning trajectories with LLMs, such as self-consistency (SC) [12] and
Tree-of-Thoughts (ToT) [16]. However, these methods were originally proposed
to improve CoT in scenarios not involving tool calling. Moreover, these prompt-
ing strategies are computationally expensive and result in a substantial cost due
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to the necessity of executing each sampled reasoning trajectory. Our proposed
method aims to combine the advantages of considering multiple reasoning tra-
jectories with a cost-effective approach that avoids executing every trajectory.
To achieve this, we are introducing a new method named ReMSV.

3 Methods

In this section, we formalize the problem and introduce the main components of
the proposed method, ReMSV. Unlike ReAct and ReWOO, ReMSV considers multiple
reasoning trajectories before deciding on a course of action involving tool-calling
operations. Specifically, building on the ReWOO framework, we formulate a pro-
cedure that integrates the functions of Director, Voter, Worker, and Solver.
Specifically, Director creates several potential reasoning trajectories/strategies1,
Voter reflects on which strategy is the best before deciding on which one to
execute, and Worker subsequently executes the selected strategy. Compared to
our approach, ReWOO only considers a single reasoning path, which could result
in an erroneous strategy formulation.

Figure 1 illustrates the differences between ReAct, ReWOO, and ReMSV. More-
over, unlike SC that executes all (n) strategies and combines the outcomes
through aggregation, leading to costs n times higher than ReWOO, our method
solely executes the voted strategy after reflection, resulting in a more cost-
efficient approach. Please note that SC has not been applied to tool-calling sce-
narios in any previous studies, primarily due to its high cost. In this study, we
only estimate the cost and performance of SC in Sects. 6.1 and 6.2.

3.1 Problem Formulation

We explore the use of an LLM as an autonomous agent for handling tasks in
text-based settings using external tools. Initially, the agent is equipped with the
permissible actions A in the environment and a textual task directive g ∈ G
from the task space G. To accomplish the task g, the LLM navigates through
a generated sequence of policies [p0, p1, · · · , pn] to execute tool-calls. At time
step t, the agent adheres to policy p = π(at|ct) to perform an action, where ct
is a trajectory context which contains observations O from the environment or
evidence E from the tool-call executions in prior steps. Current SOTA methods,
such as ReAct, first generate an initial policy based on the initial observation of
the environment p0 = π(a1|g, o1), and formulate subsequent action policies by
reasoning over the environmental observation at each step in an ad-hoc fashion,
i.e. it lacks an overarching strategy for solving the problem. However, when
scrutinizing how humans navigate and solve complex problems, we frequently
choose a course of action from several viable alternative strategies. We design
a similar framework which consists of the essential components Director, Voter,
Worker and Solver, described below and illustrated in Fig. 2.

1 In this paper, we use the terms reasoning trajectory and strategy interchangeably.
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Fig. 1. A comparison of prompting techniques based on a single reasoning trajectory
(ReAct, ReWOO) and multiple reasoning trajectories (ReMSV).

3.2 Method Components

Below, we describe the main components of the proposed method ReMSV, namely
Director, Voter, Worker, and Solver.

Director: Strategy Making and Sampling. To produce n strategies, an
LLM initially receives several pre-defined explicit CoT exemplars, illustrating the
structure of a strategy [(Plan1, E1), (Plan2, E2), · · · , (Plann, En)], which involves
a series of step-by-step plans to tackle the problem. Specifically, for each step
(Plant, Et) of a strategy, it contains an instruction Plant indicating the corre-
sponding action at as well as a marking token (Et) to store the execution result
of action at, which, in turn, provides context for subsequent steps. Then, akin
to the SC [12] method, we sample a variety of candidate outputs from the LLM,
thereby creating a diverse collection of potential strategies.

Voter: Strategy Evaluation and Voting. Motivated by ToT [16], we incor-
porate a Voter component to assess various strategies created by the Director,
utilizing a straightforward zero-shot voting prompt (“Analyze the strategies and
conclude the most promising one to solve the problem”). We sample n candi-
dates from the voting outputs and choose the strategy with the highest number
of votes as the concluding strategy to be executed. We opt for multiple rounds (5)
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of voting instead of a single vote to enhance the robustness and generalizability
of the voting procedure.

Worker and Solver: Strategy Execution. We use the ReWOO framework
to implement the selected strategy following the voting process. Specifically,
Workers adhere to the plans at each step (Plant, Et) in the strategy to execute
tool-calls from the action space A, and the execution result will substitute the
marking token Et, acting as observations or evidence. The Solver compiles all
plans and observations to produce the final output.

Fig. 2. The workflow of ReMSV. The question is: Maddy is in college for 8 semesters.
She needs 120 credits to graduate. If each class is 3 credits, how many classes does
she need to take per semester? The Director generates multiple candidate strategies,
from which the Voter selects one, the Worker executes the tool-calls, and the Solver
compiles all plans and observations to produce the final output.

4 Token Consumption Estimation

In order to compare our proposed method, ReMSV, to ReAct and ReWOO in terms
of cost efficiency, we conduct a mathematical analysis to estimate their token
consumption. Let N(p) denote the tokens for a text p. Suppose a TA-LLM
addressing a question Q requires k steps of reasoning to arrive at the correct
answer. Initially, the TA-LLM is provided with a context prompt C and several
in-context learning examples I. In the process of using the ReAct prompting
approach, the TA-LLM persistently produces observations O, which are then
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fed back into the TA-LLM as context to create subsequent pairs of thoughts (T )
and actions (A). The token consumption of ReAct can be calculated as:

TokenReAct = N(C + I + Q) +
k−1∑

i=1

N(C + I + Q +
i∑

j=1

(Tj + Aj + Oj)) (1)

= kN(C + I + Q) +
k−1∑

i=1

(k − i)N(Ti + Ai + Oi) (2)

ReWOO leverages the foreseeable reasoning abilities of TA-LLMs to outline a
strategy for breaking down the problem into actionable plans and evidences
(Plann, En), eliminating the need for explicit observations. The token consump-
tion of ReWOO is:

TokenReWOO = N(Cplanner + I + Q) + N(Csolver + Q +
k∑

i=1

(Pi + Ei)) (3)

≈ 2N(C + Q) + NI +
k∑

i=1

N(Pi + Ei) (4)

ReMSV adds two additional components, Director and Voter, to sample and
vote for m strategies. The token consumption of ReMSV can be calculated as:

TokenReMSV = N(CDirector + I + Q) + m

k∑

i=1

N(Pi + Ei) + N(CVoter + Q) (5)

+ N(Csolver + Q +
k∑

i=1

(Pi + Ei)) (6)

≈ 3N(C + Q) + N(I) + (m + 1)
k∑

i=1

N(Pi + Ei) (7)

As indicated by the formulas above, TokenReAct scales linearly with the size of
(C, I,Q) by a factor of k and quadratically with the size of (Ti,Ai,Oi) in terms of
k. On the other hand, TokenReWOO increases linearly with the size of (C, I,Q) due
to constant factors and linearly with the size of (Pi + Ei). Similarly, TokenReMSV

also grows linearly with the size of (C, I,Q), albeit with a slightly larger constant
factor, and linearly with the size of (Pi + Ei), multiplied by a factor of m. The
analysis indicates that with ReAct, token consumption escalates substantially as
the number of reasoning steps grows. In contrast, ReWOO and ReMSV do not suffer
from this issue, maintaining efficiency in token usage regardless of the increase
in reasoning steps. Nevertheless, ReMSV will consume more tokens than ReWOO
due to sampling m multiple strategies. We also empirically evaluate actual token
consumption in the results Sect. 6.
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5 Experiments

We evaluate our approach against SOTA methods ReAct and ReWOO using ques-
tion answering (QA) datasets related to general knowledge and arithmetic rea-
soning that require multiple reasoning steps.

5.1 Benchmarks

The following three datasets are used to evaluate our approach.

– HotpotQA is a dataset that comprises multi-hop reasoning questions, which,
based on Wikipedia, require the identification and analysis across various
supporting documents to generate an answer [15].

– GSM8K is a dataset featuring linguistically varied school math word prob-
lems, crafted by human problem composers. Solving these problems typically
involves a series of elementary calculations employing basic arithmetic oper-
ations (+ − ×÷) to obtain the final answer [2].

– PhysicsQA focuses on high school physics questions that test knowledge in
areas such as Newton’s second law, force identification, kinematics, and so
forth [1].

5.2 Baselines

The following SOTA methods, which allow LLMs to engage with external tools,
serve as baselines.

– ReAct [17] represents a prompting strategy that combines reasoning and
actions to resolve language reasoning and decision-making tasks by inter-
acting with the external environment. Specifically, it uses a (Thought, Act,
Obs) prompting approach to adjust action plans according to the external
environment.

– ReWOO [14] is designed with a Plan - Work - Solve strategy to leverage the
foreseeable reasoning capabilities of LLMs without relying on explicit obser-
vations.

5.3 Action Space

We have designed the task-specific action space for TA-LLMs to interact with
the following APIs. Considering the various characteristics of the benchmark
datasets, action spaces are configured differently as shown in Table 1.

– LLM-Tool. Considering that the term “tools” in this context specifically refers
to external tools, we employ LLM-tool, a separate LLM2 that can process
language reasoning tasks, which is consistent with the experiment setting of
the ReWOO paper [14].

2 GPT-3.5-Turbo is used in our experiment.
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– Wikipedia Search. The search API for Wikipedia3 pages to query knowledge
from Wikipedia’s database.

– Google Search. The search API from Google SERP4 service to query knowl-
edge from the Internet.

– WolframAlpha. The complex mathematical computation result from Wolfra-
mAlpha5.

– Calculator. A simple calculator6 to perform basic arithmetic operations.

Table 1. Action space configurations for different benchmark datasets

Dataset No. Tools Action Space

HotpotQA 2 LLM-tool, Wiki
GSM8K 3 LLM-tool, WolframAlpha, Calculator
PhysicsQA 5 LLM-tool, WolframAlpha, Calculator, Wiki, Google

5.4 Evaluation Metrics

Evaluation metrics commonly used to assess QA performance of LLMs [3,13,
14,17], including exact match (EM), character-level F1 scores, and accuracy, are
used in this study.

– EM. The model’s prediction is checked whether it precisely matches the correct
answer in the reference data. If it does, the score is 1 (100%); if not, it is
0 (0%). EM scores are not presented for GSM8K and PhysicsQA because
the inclusion of strings alongside numbers interferes with accurate matching,
struggling to accurately represent true performance.

– F1. The character-level F1-score evaluates how accurately the model predicts
individual characters compared to the ground truth, with a score of 1 indi-
cating perfect accuracy.

– Accuracy. Since the output of LLMs vary syntactically, accuracy is deter-
mined by using GPT-4 to evaluate the predictions against the ground truth,
giving a binary score of 1 or 0.

– Token Consumption. We calculate the average token consumption per ques-
tion, incorporating both prompting tokens and text completion tokens, to
assess the cost-effectiveness of each prompting strategy.

3 https://www.mediawiki.org/wiki/API.
4 https://serpapi.com/search-api.
5 https://products.wolframalpha.com/api.
6 https://js.langchain.com/docs/api/tools_calculator/.

https://www.mediawiki.org/wiki/API
https://serpapi.com/search-api
https://products.wolframalpha.com/api
https://js.langchain.com/docs/api/tools_calculator/
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5.5 Experimental Setup

For both the baselines and our method, CoT exemplars are employed to assist the
LLM in generating strategies for executing tool-calls. The same task-dependent
exemplar questions (released by ReAct, ReWOO) were utilized across the three
datasets for both the baseline methods and our approach to ensure fair com-
parisons. Specifically, for HotpotQA, six exemplars (six-shot) are used. While
for GSM8K and PhysicsQA, one exemplar (one-shot) is used, which is consis-
tent with the experiment settings in the ReWOO paper [14]. For the LLM-Agent,
we employ GPT-3.5-Turbo7 as the base model. Considering the cost, we assess
the benchmark performance of our method and the baselines by utilizing 500
randomly chosen samples from HotpotQA, GSM8K, and all examples (57) from
PhysicsQA. We sample 3 strategies when conducting the general benchmarking
experiment. Subsequently, we conduct additional experiments to investigate the
effects of varying strategy counts (from 2 to 5) and to evaluate the efficiency
of individual strategies using 50 randomly sampled questions from HotpotQA,
GSM8K and PhysicsQA.

6 Results

We present the results of our experiments in three parts. First, we benchmark
our proposed method on three QA datasets vs. the baseline methods. We then
investigate the impact of the multi-strategy mechanism in an attempt to explain
why the proposed method outperforms the baselines. Finally, we conduct an
error analysis to identify situations in which the proposed method fails and how.

6.1 Benchmarking Prompting Methods

Table 2 presents the experimental results of the baselines and our method on Hot-
potQA, GSM8K, and PhysicsQA. Our approach outperforms ReAct on HotpotQA
and PhysicsQA, while consistently outperforming ReWOO on all three datasets.

Notably, our approach delivers the best performance on HotpotQA with an
accuracy of 54.6, achieving a relative improvement of 44.4% and 4.5% in accu-
racy, 38.6% and 9.6% in F1, and 34.5% and 9.1% in EM when compared to
ReAct and ReWOO, respectively. ReAct yields the best results in GSM8K, with our
method securing the second-highest performance. Our approach consistently out-
performs ReWOO across all three benchmark datasets, demonstrating that incor-
porating the multi-strategy mechanism enhances overall performance. Regarding
token costs, ReMSV is shown to be more cost-effective in terms of token consump-
tion than ReAct, although it does use more tokens than ReWOO. More precisely,
ReMSV uses roughly 50% more tokens than ReWOO across the benchmarks. How-
ever, it uses significantly fewer tokens compared to ReAct. In particular, ReMSV
requires over 200% fewer tokens than ReAct in benchmarks such as HotpotQA.
This result is in line with the cost estimations detailed in Sect. 4 that showed
7 https://platform.openai.com/docs/models/gpt-3-5. access on 1st, Sep, 2023.

https://platform.openai.com/docs/models/gpt-3-5
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that ReMSV and ReWOO scale well for complex problems requiring many reasoning
steps. Moreover, employing SC, which executes all strategies, would lead to an
estimated cost that is threefold higher than ReWOO and almost double that of
ReMSV.

Table 2. Predictive performance of ReAct, ReWOO, and ReMSV across three QA datasets.
The best performance is marked in bold, while the second best results are underlined.
We also report the average number of reasoning steps for each benchmark.

Dataset Method Acc F1 EM # Tokens Steps

HotpotQA ReAct 37.8 33.7 28.4 6,771 5.4
ReWOO 52.2 42.6 35.0 1,447 4.1
ReMSV 54.6 46.7 38.2 2,194 4.3

GSM8K ReAct 65.2 35.8 N/A 1,662 3.2
ReWOO 59.4 28.9 N/A 759 3.5
ReMSV 62.6 29.6 N/A 1,359 3.2

PhysicsQA ReAct 32.0 11.0 N/A 2,252 2.8
ReWOO 35.0 12.0 N/A 908 3.0
ReMSV 36.0 13.0 N/A 1,548 2.9

6.2 Impact of the Multi-strategy Mechanism

We conduct further experiments to explore the impact of the multi-strategy
mechanism, particularly in terms of the size of the strategy pool and the effec-
tiveness of individual strategies. These experiments are described below.

Effect of Strategy Pool Size. To explore the impact of varying the number
of strategies created by the Director, we conducted an experiment on HotpotQA
using the same 500 samples, varying the strategy pool size from two to five.
Table 3 demonstrates that, in general, our method, employing between two to
five strategies, surpasses ReWOO, which relies on executing a single strategy. We
also observe that our method yields improved results when choosing either 3 or
4 strategies. This suggests that with too few strategies (i.e. one or two), there
is a risk that a more optimal strategy might be overlooked. Conversely, with
an excessive number of strategies (like five), the likelihood increases that a sub-
optimal strategy might be chosen given the quality of the Voter. We intend to
further validate this in future work.

Efficacy of Individual Strategies. We conduct an experiment using a subset
of 50 examples from each of HotpotQA, GSM8K and PhysicsQA to explore the
performance of each individual strategy in the strategy pool, i.e. if they were
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Table 3. Results when considering
different numbers of strategies (STs).
The best performance is highlighted
in bold while the second best perfor-
mance is underlined. Note that ReWOO
corresponds to considering only a single
strategy.

Method No. STs Acc F1 EM

ReWOO 1 52.2 42.6 35.0
ReMSV 2 52.2 43.1 34.6

3 54.6 46.7 38.2
4 54.8 46.4 38.0
5 53.4 44.7 36.0

Table 4. Performance for selected and
not selected strategies. The best perfor-
mance is marked in bold, while runner-
up performance is underlined. The aver-
age outcome for not selected and all
strategies is given for comparison.

Method Acc. F1

1st ST (ReWOO) 46.0 27.2
Selected ST (ReMSV) 50.0 30.5
Not selected STs 47.6 29.9
Avg. all STs 48.9 30.2

to be executed, as well as the effectiveness of the voting mechanism. To provide
a comprehensive comparison between ReMSV and ReWOO, we present the aver-
age performance metrics across three datasets, focusing on the shared metrics
Accuracy and F1. In line with the results in Table 2, Table 4 shows that our
approach using the selected strategy outperforms ReWOO, which essentially cor-
responds to selecting the first generated strategy. Additionally, the performance
of the selected strategy also generally achieves superior performance to the aver-
age of the strategies that were not selected. From the data presented in Table 2
and Table 4, it is evident that ReMSV consistently surpasses ReWOO. Notably, the
average results from the strategies that were not selected are also on par with or
exceed the performance of ReWOO, which suggests that ReMSV effectively reduces
the risk of executing sub-optimal strategies due to greedy sampling. Further-
more, the average results of both selected and non-selected strategies fall short
of ReMSV, indicating that ReMSV would also outperform SC, which aggregates all
executed strategies. Together with the cost estimation for SC in Sect. 6.1, with-
out resorting to executing all strategies, ReMSV not only is able to surpass the
performance of methods based on single trajectories, but also proves to be more
cost-effective in terms of token consumption compared to SC. Figure 3 illustrates
an instance where the single reasoning trajectory selection of ReWOO leads to an
erroneous strategy implementation, yielding an incorrect prediction. Conversely,
in this scenario, ReMSV casts votes across the sampled strategies and chooses one
that ultimately produces the correct prediction.

6.3 Error Analysis

To gain insights into when and why our proposed method fails to produce the
correct prediction, we conduct an error analysis on the incorrect predictions gen-
erated by ReMSV. We summarize the statistics of different sources of failure for
these incorrect predictions in Table 5. Out of the 50 experimental examples in
each dataset, ReMSV produces 21 incorrect predictions for HotpotQA and GSM8K,
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Fig. 3. An example from GSM8K illustrating different sampled strategies: the not
selected strategies are colored in blue, while the selected strategy is colored in orange.
(Color figure online)

Table 5. Director failure indicates that the strategy pools contains no successful strat-
egy. Worker failure indicates that the wrong prediction is due to a failed strategy exe-
cution, resulting in an inability to produce a valid answer. Voter failure indicates that
an unsuccessful strategy is selected when there is at least one successful strategy in the
strategy pool. Note that there can be more than one source of failure.

HotpotQA GSM8K PhysicsQA

Incorrect predictions 21 21 33
- Director failure 17 12 29
- Voter failure 2 2 1
- Worker failure 4 9 13

and 33 for PhysicsQA. Most incorrect predictions stem from Director failures,
indicating that none of the generated strategies in the strategy pool leads to
a correct prediction. This suggests that there is potential for improvement in
the generation of strategies, although it could also mean that these particular
questions are challenging to decompose based on the foreseeable reasoning capa-
bilities of current LLMs. Specifically, ReMSV tends to incur more Director failures
on HotpotQA and PhysicsQA than on GSM8K. Conversely, Worker failures occur
more frequently in GSM8K and PhysicsQA than in HotpotQA. These findings
suggest that for HotpotQA and PhysicsQA, ReMSV more often generates unsuc-
cessful strategies, whereas in GSM8K and PhysicsQA – where more tools are
utilized – ensuring the proper functioning of tool calls is critical. We also report
Voter failures, where, across all benchmarks, only 1 or 2 failures are due to not
selecting a successful strategy, indicating that, compared to other components



210 Y. Wu and A. Henriksson

in ReMSV, the Voter performs more robustly. The overall error analysis implies
that there is room for task-specific enhancements in future work. For instance,
enhancing the sampling quality for tasks such as HotpotQA and PhysicsQA, or
improving the stability of tool calling for tasks like GSM8K and PhysicsQA,
could lead to significant improvements.

7 Discussion

In this section, we discuss the results of our experiments, focusing especially
on the pros and cons of prompting techniques based on observation-dependent
reasoning vs. foreseeable reasoning and single vs. multiple reasoning trajectories.
We also discuss possible directions for future work.

7.1 Observation-Dependent Reasoning Vs. Foreseeable Reasoning

Prompting strategies based on observation-dependent reasoning, such as ReAct,
continuously observe the environment – here in the form of tool-calling output –
and relay these observations back to the LLM to formulate relevant reasoning and
action plans. Such prompting strategies are highly responsive to environmental
changes and devise action plans in an ad-hoc, dynamic manner. Consequently,
while such prompting strategies perform well and allow an LLM to interact with
external tools to solve complex reasoning problems, they tend to incur a rela-
tively high cost by requiring more interactions with the LLM-Agent and hence
a higher token consumption since the observation in each iteration is fed to the
LLM to generate the next thought and action. Prompting methods based on fore-
seeable reasoning, like ReWOO and ReMSV, instead devise a strategy up-front that
includes both reasoning and action plans, negating the necessity to continuously
provide observations and interacting with the LLM-Agent. Therefore, prompting
strategies based on foreseeable reasoning are more cost-effective and can play a
crucial role in the development of efficient TA-LLMs. ReWOO and ReMSV, which
both rely on the foreseeable reasoning capabilities of LLMs, perform on par with
or outperform ReAct, which is based on observation-dependent reasoning. The
results on GSM8K show, however, that in some situations, ReAct leads to better
performance. One possible explanation could be that certain problems are not
readily decomposable up-front without first obtaining more information through
tool-calls. Such problems may require dynamic reasoning and are perhaps beyond
the foreseeable reasoning capabilities of current LLMs.

7.2 Single Vs. Multiple Reasoning Trajectories

Both ReAct and ReWOO rely on a single reasoning trajectory, which might mis-
guide the TA-LLMs into producing incorrect predictions. Prompting methods
based on multiple reasoning trajectories, like ToT, on the other hand, are com-
putationally expensive and incur a relatively high cost by needing to execute each
sampled reasoning trajectory. ReMSV is a prompting method that aims to combine
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the advantages of prompting methods based on single and multiple reasoning
trajectories, respectively. It does so by generating and taking into consideration
multiple reasoning trajectories, while operating in a cost-efficient manner by only
selecting – based on LLM voting – and executing a single reasoning trajectory.
Its cost-effectiveness stems also from leveraging the economical attributes of the
foreseeable reasoning capabilities of LLMs, i.e. by generating strategies up-front
rather than in an ad-hoc and dynamic fashion. The experiments demonstrate
that ReMSV surpasses ReAct on HotpotQA and PhysicsQA, and consistently out-
performs ReWOO across all three datasets. This clearly validates the efficacy of
incorporating multiple reasoning trajectories, albeit in a cost-efficient manner.
While ReMSV exploits the cost-efficient properties of ReWOO, there is a slightly
higher cost of ReMSV that stems from generating a pool of strategies. However,
as the experimental results show, it leads to improved predictive performance.
Generally speaking, there is a likely trade-off to be made between the cost-
efficiency of prompting based on single reasoning trajectories and the predictive
performance of prompting based on multiple reasoning trajectories. While ReMSV
attempts to strike a good balance in this regard, it may be possible to obtain
higher predictive performance at a higher cost. One alternative in this direction
is to execute all generated strategies and aggregate the results in a late fusion
fashion. Although we did not fully evaluate this approach, the results in Table 4
indicate that this method would, in fact, not lead to higher predictive perfor-
mance since the predictive performance of the selected strategy is higher than
the average of the strategies that were not selected, as well as the average of
all generated strategies. That said, there is certainly room for developing more
sophisticated ensemble methods in this context.

8 Conclusions, Future Work, and Ethical Statement

In this paper, we propose a new prompting method, ReMSV, that leverages the
foreseeable reasoning capabilities of LLMs to generate multiple strategies up-
front, one of which is selected through LLM voting and strategically executed.
ReMSV is benchmarked on three question-answering datasets and, overall, sur-
passes SOTA methods such as ReAct and ReWOO, and offers a more cost-effective
solution compared to ReAct.

The present multi-reasoning trajectories of ReMSV operate solely on the strat-
egy level. A compelling direction for future research could be to implement plan
sampling at each reasoning step within the strategy to generate more diverse and
better strategies. By generating more accurate and diverse strategies, ensemble
methods are also more likely to be successful. Another avenue for future research
might be to enhance the voting process. One possibility for improving the voting
could be to incorporate few-shot learning into the voting mechanism to render
it more task-aware.

Allowing LLMs to communicate with external environments can introduce
certain dangers, such as potential data breaches or the generation of harmful
actions. To mitigate these concerns in our experiments, we have imposed bound-
aries on interactions, restricting them to specific action spaces like Wikipedia and
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WolframAlpha and confining the task to question answering on public bench-
marks that does not access private or confidential information.
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(NAISS), partially funded by the Swedish Research Council through grant agreement
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Abstract. Spatial interference (SI) occurs when the treatment at one
location affects the outcomes at other locations. Accounting for spa-
tial interference in spatiotemporal settings poses further challenges as
interference violates the stable unit treatment value assumption, mak-
ing it infeasible for standard causal inference methods to quantify the
effects of time-varying treatment at spatially varying outcomes. In this
paper, we first formalize the concept of spatial interference in the case of
time-varying treatment assignments by extending the potential outcome
framework under the assumption of no unmeasured confounding. We
then propose our deep learning based potential outcome model for spa-
tiotemporal causal inference. We utilize latent factor modeling to reduce
the bias due to time-varying confounding while leveraging the power of
U-Net architecture to capture global and local spatial interference in data
over time. Our causal estimators are an extension of average treatment
effect (ATE) for estimating direct (DATE) and indirect effects (IATE) of
spatial interference on treated and untreated data. Being the first of its
kind deep learning based spatiotemporal causal inference technique, our
approach shows advantages over several baseline methods based on the
experiment results on two synthetic datasets, with and without spatial
interference. Our results on real-world climate dataset also align with
domain knowledge, further demonstrating the effectiveness of our pro-
posed method.

Keywords: Spatiotemporal Causal Inference · Deep Learning ·
Spatial Interference

1 Introduction

Quantifying the effects of an entity, process or state, referred as the cause, on
another entity, process or state, referred as the outcome, is an active research
area with wide applications in epidemiology, economics, political and environ-
mental science [29,40]. In many real-world scenarios, the effect of a treatment or
intervention is not static but evolves dynamically over space and time, present-
ing a challenge for accurate estimation of time-varying treatment effects under
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
A. Bifet et al. (Eds.): ECML PKDD 2024, LNAI 14943, pp. 213–230, 2024.
https://doi.org/10.1007/978-3-031-70352-2_13
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spatial interference. The concept of spatial interference stems from spatial statis-
tics where interventions or events at one location not only impact outcomes at
that specific location but also propagate to neighboring or distant locations [30].
This spatial dependency violates the assumptions of independence and stable
unit treatment value (SUTVA) [18], underlying many conventional causal infer-
ence techniques, which restricts every unit in the data to have treatment applied
to only its own outcome. When spatial interference is present, the treatment at
one unit spills over and influences the outcome of neighboring units. Oftentimes,
spatial interference is confused with spatial confounding. Confounding occurs
when the past values of some covariates influence the current values of treat-
ment and outcome leading to spurious correlations and biases in the outcome
values. We refer to such covariates as confounders [28]. In Fig. 1, we illustrate
four possible spatial and temporal interactions in data at two locations s1 and s2
over timesteps t and t−1. Here, X is the treatment variable, Z is a covariate, and
Y is the outcome. In this paper, we present the phenomenon in Fig. 1d, i.e., how
time-varying treatment affects potential outcome in the presence of time-varying
confounding and spatial interference. Though the real-world observational data
comprises intricate complexities of both spatial and temporal confounding, we
limit our scope to observed temporal confounders, whereas identifying confound-
edness in space or through unobserved confounders is beyond the scope of this
paper.

We rely our work on three major arguments. (1) Traditional linear models
used for estimating causal effects rely heavily on strong parametric assumptions.
Conversely, neural networks, being nearly non-parametric in nature, offer the
advantage of capturing the diverse treatment effects observed across individual
units while minimizing bias [20]. (2) Even though causal effect estimation in
temporal and spatial settings have been investigated previously (see Sect. 5),
there exists limited work that handles both of these tasks simultaneously. (3) We
further argue propensity score based techniques are computationally expensive
and unable to handle continuous time-varying treatments [2,4].

Our Contributions. (1) We extend the potential outcome framework to spa-
tiotemporal setting by introducing STCINet: a spatiotemporal causal inference
network based on U-Net architecture with double attention to learn causal rela-
tions with spatially interfering treatments. (2) We propose an autoencoder based
factor model to reduce the time-varying confounding effect of spatial data by
adapting the factor model introduced in [3] and extending it to spatiotemporal
domain. (3) We establish the case of spatial interference in time-varying data by
evaluating our method on synthetic datasets based on diffusion phenomenon. (4)
We establish a promising research direction for spatiotemporal causal inference
in climate science by quantifying the direct and indirect effects of atmospheric
processes on Arctic sea ice melt. Our implementation code can be accessed on
GitHub.1

The rest of the paper is organized as follows. Section 2 enlists the causal
assumptions and notations followed throughout this paper. Section 3 explains the
1 https://tinyurl.com/stcinet.

https://tinyurl.com/stcinet
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overall architecture and individual modules of our proposed method. Section 4
mentions the data generation process, experimental configurations, evaluation
methods and empirical results of our model on synthetic and real world data.
Section 5 highlights the related work in causal inference. Lastly, we conclude our
paper in Sect. 6 and mention some potential extensions of this work.

Fig. 1. Different scenarios of causation (black), confounding (blue) and interference
(red) in spatiotemporal data. (a) No confounding, no interference, only temporal cau-
sation; (b) No interference, only temporal confounding and temporal causation; (c) No
temporal confounding, only spatial interference and temporal causation; (d) Temporal
confounding, spatial interference, temporal causation. (Color figure online)

2 Preliminaries

2.1 Notations and Definitions

Given spatiotemporal data over N × M region and spanning over T timesteps,
Xt = Xt

i,j∈[N,M ] represents the treatment variable at timestep t ∈ T , Zt =
Zt
i,j∈[N,M ] represents a set of time-varying covariates and Y t = Y t

i,j∈[N,M ] rep-
resents the outcome, such that at every location {Xt

i,j , Z
t
i,j , Y

t
i,j} ∈ R. When

intervened on the value of treatment X, the corresponding updated value for the
same (i, j) location is represented by X̂i,j , where X̂i,j = update factor × Xi,j .
At any given time t, Yi,j(X̂i,j) is the potential outcome under intervened treat-
ment X̂, and Yi,j(Xi,j) is the potential outcome under un-intervened treatment
X (also called placebo effect). Further, at any given timestep t, X̄t represents
the set of historic values of X and Z̄t represents the set of historic values of Z,
such that X̄t = (X1,X2,X3, ...,Xt−1) and Z̄t = (Z1, Z2, Z3, ..., Zt−1).

Outcome under no Spatial Interference (Fig.1a). Assuming Y t+l to be
dependent on Xt and an unknown noise term εy, a simple case of data-generation
process under no spatial interference and only time-varying lagged dependence
can be given by Y t+l

i,j = βXt
i,j + εy , where Xt

i,j = γZt
i,j + εx. Here, β and γ

represent the causal coefficients of X and Z and l is the temporal lag.



216 S. Ali et al.

Outcome under Spatial Interference (Fig.1c). Next, we assume that the
outcome Y at every location is also influenced by the treatment applied at neigh-
boring locations. The data-generation process will now comprise spatial interfer-
ence and time-varying lagged dependence, given by Y t+l

i,j = β1X
t
i,j + β2X̃

t + εy,
where, X̃ represents mean of m neighborhood values of Xt

i,j at any given
timestep, such that X̃ = M(X(i−m,j−m),...(i+m,j+m)), excluding Xt

i,j itself in
the mean computation. Here, β2 represents the causal coefficient of X̃.

Outcome under Spatial Interference and Temporal Confounding
(Fig.1d). Here, we extend the data-generation process to settings where Z
is the confounder, i.e., both X and Y are dependent on Z, given by Y t+l

i,j =
β1X

t
i,j + β2X̃

t + β3Z
t
i,j + εy, and Xt

i,j = γZt
i,j + εx.

Under the setting of spatial interference and temporal confounding, we
present three different metrics for estimating the causal effects of X on Y in
the presence of confounder Z; (1) in the treated sub-region, (2) in the untreated
sub-region where spillover is observed and (3) finally in the overall spatial region
of a given dataset.

Definition 1: Direct (Spatial) Average Treatment Effect [35]. Given
observed X and intervened X̂, referring to time-varying treatment values, at
time-step t and a spatial location s ∈ S, such that S ⊂ N × M , the direct treat-
ment effect τdate refers to the difference in potential outcomes Y under X̂ and
X, observed directly on the treated location s. The direct average treatment
effect τdate is given by:

τdate =
Σs∈S(Ys(X̂s, Z) − Ys(Xs, Z))

|S| (1)

Definition 2: Indirect (Spatial) Average Treatment Effect [22]. The indi-
rect spatial treatment effect τiate refers to the difference in potential outcomes
under X̂ and X, observed on the untreated region s′ ∈ S

′, such that S
′ ⊂ N ×M

and s′ �= s, where s refers to the treated region. The indirect average treatment
effect τiate is given by:

τiate =
Σs′∈S′(Ys′(X̂s, Z) − Ys′(Xs, Z))

|S′| (2)

Definition 3: Lagged Average Treatment Effect [2]. Combining the net
effect of direct and indirect treatment over the entire region N = N × M , the
overall average treatment effect τlate at a temporal lag of l is given by:

τlate =
Σk∈N(Y t+l

k (X̂t
k, Z

t
k) − Y t+l

k (Xk, Zk))
|N| (3)

2.2 Assumptions

Extending our understanding developed in Sect. 2.1, we assume that the outcome
is generated by treatment, covariates and noise, given by Y = �(X,Z) + εy,
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where � is an unknown and non-linear function. Further, the following assump-
tions hold for the method and experiments proposed in the remaining paper:

Assumption 1: No Unmeasured Confounding [13]. We assume there is
no unmeasured or unobserved confounding other than the confounding caused
by observed covariates Z. Further, the confounding is only limited to temporal
scale such that Y t

i,j = �(X,Zt
i,j , Z̄i,j) and Y t

i,j �= �(X,Zt
i′,j′ , Z̄i′,j′) where (i, j) �=

(i′, j′).

Assumption 2: Consistency [6]. If the historic values of treatment are X̄t =
x̄t, then the potential outcome under the treatment is the same as the observed
(factual) outcome Y (x̄t) = Y .

Assumption 3: SUNTVA. We replace the stable unit treatment value
assumption with its variant - Stable Unit Neighborhood Treatment Value
Assumption (SUNTVA), introduced by [9], to accommodate spatial interference.
Under SUNTVA, for each location s, there exist a neighborhood Ms, such that
the outcome is influenced by Xs as well as by the neighborhood of treatment
XMs, such that Ys = Ys(Xs,XMs).

In addition, we assume positivity [33], such that at each timestep t, each
treatment has a non-zero probability of being assigned to the outcome in the
treated region. Since we refer to a spatiotemporal setting, we relax the spatial
subscript (i, j) moving forward, to mention the time-varying aspect of data,
implying Y t

i,j −→ Y t unless specified otherwise.

3 Spatio-Temporal Causal Inference Network (STCINet)

Fig. 2. Overall architecture of proposed spatiotemporal causal inference network
(STCINet).

Here, we present our proposed technique to perform causal inference under
time-varying confounding and spatial interference. The overall architecture is
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given in Fig. 2, where we first divide the spatiotemporal data into current data
(Xt, Zt) and history data (X̄t−1, Z̄t−1). The current data passes through a Con-
volutional Long Short Term Memory (ConvLSTM) layer, to learn the lagged
representation of treatment and covariates, whereas the historic data is fed to
the Latent Factor Model (LFM), through which the uncorrelated latent repre-
sentations of treatment and covariates are learned, assuming the covariates also
comprise some observed confounders. We employ the LFM technique as opposed
to the propensity score weighting (IPTW) [31] owing to the promising results
of factor models observed in recent literature [3,4]. The latent representation
for φt is then combined with the output of ConvLSTM. This combined set of
features is fed as the input to a U-Net based model. With the aid of attention
gating, the custom U-Net model learns the local and global spatial variations in
data, occurring in response to the treatment application, and finally, the U-Net
predicts the future values of outcome Y t+l after a lag of l timestep. At test time,
the trained model is fed treated (intervened) and untreated (observed) values
of treatment variable to estimate direct, indirect and overall causal effects using
the metrics of τdate, τiate and τlate. Below, we explain the functionality of each
of these modules in detail.

3.1 Latent Factor Model for Temporal Confounding

Latent factor models are designed to uncover the hidden structure or under-
lying factors that influence the observed data [10]. Latent variables are not
directly measured or observed but are inferred from the observed data pat-
terns. To observe the sole influence of current treatment on the future outcome,
in the presence of time-varying confounders, we propose a latent factor model
(LFM), inspired by [3] that learns the distribution of treatment and covariates
over time and de-correlates the entangled relationship so the outcome becomes
independent of the confoundedness, i.e., Y t ⊥ Z̄t−1|Xt. Our implementation of
the latent factor model is given in Fig. 3b, where we design an autoencoder based
model that takes in historic spatiotemporal values of treatment and covariates
just before the timestep where treatment is applied, i.e., t − 1.

The encoder part of the LFM comprise of one ConvLSTM layer, one 2D
convolution (CNN) layer followed by dropout and the second 2D CNN layer
followed by batch normalization. While the purpose of ConvLSTM and CNN
layers is to learn the time-varying spatial features of historic data, dropout and
normalization is applied to reduce overfitting and improve the generalization of
the encoder. The output of the encoder is given by φt = Enc((X̄t−1, Z̄t−1)).

The decoder comprise of one fully connected layer with ReLU activation and
the second fully connected layer with linear activation. Finally, we reshape the
outcome back the dimensions of X and Z. We use the Mean Squared Error
(MSE) as the reconstruction loss for the decoder. The reconstructed output of
the decoder is given by (X̂t−1, Ẑt−1) = Dec(φt).



Estimating Direct and Indirect Causal Effects 219

Fig. 3. Sub-modules of STCINet: (a) Attention gating mechanism to identify patterns
of spatial interference, (b) Latent factor model for deconfounding covariate and treat-
ment history.

3.2 Double Attention Mechanism

Attention mechanism allows the model to selectively focus on different parts of
the input by assigning attention weights to each element in the input based on
its contribution in predicting the outcome [37]. The selective focus helps the
model to ignore less important parts of the input thereby improving the model’s
predictive performance. Attention mechanism has previously shown promising
contribution in causal discovery problems [24], whereas employing attention in U-
Net has shown to increase model’s sensitivity to local and global variations [25].
In our model, we apply attention at two stages; (i) in the STCINet downsampling
block and (ii) in the STCINet upsampling block. We refer to the overall role of
attention as double attention mechanism for STCINet.

Spatial Attention. Spatial attention is added to the downsampling part of
STCINet, where our goal is to enable the model to selectively attend to specific
spatial regions that are most affected by treatment assignment. This is done
by performing max pooling and average pooling separately on the output of
downsampling blocks. Both the pooling outcomes are concatenated and passed
through sigmoid activation to get per pixel attention weights. These weights are
applied to the downsampling block’s output by element-wise tensor multiplica-
tion.

Attention Gating. In the STCINet upsampling block, we incorporate the
attention-gating (AG) mechanism introduced by [19] for our spatial interference
task. As shown in Fig. 3a, our AG module takes in two inputs, x and g, referring
to the input and the gating signal, respectively. The key idea is to assign weights
to local regions within x that align with the location of global features in gating
signal g. Here, spatial regions are selected by analysing the contextual informa-
tion provided by the gating signal g which is collected from a coarser scale. In
case of STCINet, g represent the skip-connection from the downsampling blocks
whereas x represents the upsampled output from the previous upsampling layer.
Both the inputs first pass through 2D CNN layers, to align their depth (fil-
ters) and dimensions (height, width). We then perform element-wise addition of
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the transformed inputs, followed by ReLU activation and 1 × 1 2D convolution,
to reduce the number of trainable parameters in gating operation. Finally, we
use sigmoid activation to retrieve attention coefficients α ∈ [0, 1] and upsample
them back to the original dimension of x. The output of the attention gate is the
element-wise product of attention coefficients and original input x, given by x̂.
Through attention gating, we filter out the noise while retaining global patterns
of spatial variations.

3.3 U-Net for Spatial Interference

Our proposed potential outcome prediction model is based on a U-Net architec-
ture [32]. It comprises three modules: downsampling blocks, upsampling blocks
and a bottleneck block that acts as a bridge between the two. What distin-
guishes a U-Net architecture from a transformer based model is the use of skip
connections between different upsampling and downsampling layers. In case of
STCINet, these skip connections help retain the causal context in data.

Downsample Block. Our STCINet comprises two downsampling blocks. Each
block consists of two 2D CNN layers, followed by a spatial attention layer, batch
normalization layer and a 2D max pooling layer. The second block follows the
same architecture with the difference of input shape. In every successive layer of
the downsampler, we increment the output channels by a multiplicative factor
of 2, as shown in Fig. 2. All CNN layers use the same 3 × 3 kernel size filters.
The ReLU activation function is used in all the downsampling layers. This part
of our model helps learn low-level spatiotemporal dependencies in the data and
identifies patterns needed for predicting spatial maps.

Upsample Block. This block learns from the low-level (downsampled) features
and helps reconstruct the spatial map in the same dimension as the input but
at a future timestep. Similar to the downsampler, the upsampler comprises two
upsampling blocks. Every block comprises a 2 × 2 upsampling layer using the
nearest interpolation method and a 2×2 kernel size filter. Just before the the skip
connection is built, we concatenate the output of each upsampling block with
the feature map generated by the corresponding downsampling block and pass
it to the attention gate, as shown in Fig. 2. The output from attention gate is
further concatenated with the output from the previous layer and finally passed
through three 2D CNN layers. The output channel size of every CNN layer is
reduced by a factor of 2 in order to regain the initial input dimension. Finally,
a 1 × 1 convolution with linear activation is applied to the upsampler’s output
to generate the predicted spatial map.

Custom Weighted Loss. To jointly train the LFM module with the U-Net
module, we customize the overall objective function to be a weighted sum of
the two losses from LFM and U-Net. We further multiply the outcome of this
custom loss with a N × M weight map W. This element-wise multiplication is
done to give treated units higher weightage than non-treated units. The purpose
of subregion weighting is to help the model focus on treated areas irrespective
of their overall spread. Our custom-loss function is given in Eq. 4:
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Ltot = W � (λ1Llfm + λ2Lunet) (4)

where, Llfm =
ΣN((X,Z) − φ̂)2

|N| , Lunet =
ΣN(Y − Ŷ )2

|N|
λ1 and λ2 are hyperparameters to give weightage to the losses from LFM and
U-Net, and λ1 + λ2 = 1.

Treatment Effect Estimation. Once the STCINet model is trained using
custom loss, the trained model is used to make factual and counterfactual pre-
dictions by feeding observed and intervened treatment values to the model. The
corresponding outcome predictions are used for estimating direct, indirect and
lagged averaged treatment effects using the metrics defined in Sect. 2.1.

4 Experiments

4.1 Synthetic Dataset

To test our method for tracking information flow in spatiotemporal data, we
generate two variants of synthetic datasets to mimic a dominant physical process
found in many geo-science applications, that is, diffusion. Diffusion is a physical
process that describes the movement of particles or substances from regions of
higher concentration to regions of lower concentration. Following this concept, we
generate three spatiotemporal variables X,Y and Z. Where Z is an independent
variable with spatial and temporal autocorrelations. X is dependent on Z and Y
is dependent on both X and Z. The synthetic data is generated in Python using
NumPy and SciPy libraries. The detailed description of our data generation
process is given at GitHub2. We utilize the causal coefficients α, β, and γ to
incorporate causal influence in these variables. All diffusion coefficients (Dx, Dy,
Dz) are set to 0.01. We keep the temporal lag as 1 for all temporal dependencies,
whereas the time step size (dt) is 0.1.

To model the spatial diffusion of each variable in the dataset, we perform a
Laplacian operation ∇2 on each of them. Further, we employ a time-stepping
loop to iteratively update the variables over multiple time steps. At each time
step, the Laplacian of X, Y , and Z is computed to model diffusion. The variables
are then updated using their respective diffusion equations, incorporating time
lags and dependencies between variables. For each time step t from 1 to T , we
update the variables using following equations:

Zt
i,j = Zt−1

i,j + dt × (
Dz × ∇2Z

)
(5)

Xt
i,j = Xt−1

i,j + dt × (
Dx × ∇2X + α × ∇2Zt−1

i,j

)
(6)

Y t
i,j = Y t−1

i,j + dt × (
Dy × ∇2Y + β × ∇2Zt−1

i,j + γ × ∇2Xt−1
i,j

)
(7)

We intervene on the treatment variable X by applying an update factor =
0.6 to a specific sub-region i = [10 : 15], j = [10 : 15] of X at time step t to create
2 https://tinyurl.com/stcinet.

https://tinyurl.com/stcinet
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the intervened scenario. The corresponding counterfactual outcome values Ŷ are
then generated by:

Ŷ t
i,j = Ŷ t−1

i,j + dt × (Dy × ∇2Ŷ + β × ∇2Zt−1
i,j + γ × ∇2X̂t−1

i,j ) (8)

To incorporate a spillover effect of X on the untreated regions, we add the
mean of the per-pixel neighborhood of X (excluding the pixel itself) in Y . A
visualization of our synthetically generated data at different timesteps is given
in Fig. 4.

Fig. 4. Potential outcome variable Y at timesteps 10, 100, 1000, 2000 and 4000. Top
row: Outcome under no intervention at different timesteps. Middle row: Intervened
outcome at different timesteps. Bottom row: Spillover effects at different timesteps,
which is the difference in intervened outcomes with and without the spatial interference.

4.2 Evaluation Metrics

We provide the average treatment effect estimations for both synthetic and real-
world datasets by reporting the Rooted Precision in Estimation of Heterogeneous
Treatment (PEHE) scores based on the treatment effect metrics defined in Eqs. 1,
2, 3. This metric is commonly used in machine learning literature for calculating
the average error across the predicted ATEs [14]. Additionally, we report the
Root Mean Squared Error (RMSE) to evaluate the model’s predictive perfor-
mance. Both PEHE and RMSE can only be calculated for synthetic data which
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has ground truth information. Since it is a spatiotemporal 3D dataset, we cus-
tomized the RMSE and PEHE metrics for our spatiotemporal models evaluation
and report their respective error ε using the following formulae:

εRMSE =

√√
√
√ΣIΣJ

(
Y [i, j] − Ŷ [i, j]

)2

|N| ,
√

εPEHE =

√√
√
√ΣIΣJ

(
τ [i, j] − τ̂ [i, j]

)2

|N|
where τ is the average treatment effect.

4.3 Experimental Setup

All our experiments are performed using the Amazon Web Services (AWS) cloud-
based Elastic Compute Cloud (EC2) accelerated computing instances with high
frequency 2.5 GHz (base) Intel Xeon Scalable Processor, 32 vCPUs and 64 GBs
of GPU memory. Our STCINet model is trained using Keras Functional API
with a Tensorflow backend and has around 293,000 trainable parameters. We
trained our model using Adam optimizer with exponential decay of e−0.1 in the
learning rate after 10 epochs. The model was trained on 60 epochs with an early
stopping criteria and batch size of 64 for all experiments. After hyperparameter
tuning, we found the best performance with loss weightages as λ1 = 0.25 and
λ2 = 0.75. The dataset is not split into training and test sets as our goal is to
get outcome predictions on intervened treatment variables which automatically
fulfills the unseen data requirement at test time.

4.4 Ablation Study

We test the performance of multiple variants of our proposed method on the syn-
thetic datasets to identify the optimal configurations for spatiotemporal causal
inference under spatial interference and temporal confounding. These variants
and their corresponding ATE and PEHE scores are given in Table 1 for data
with and without spatial interference. Here, STCINet† refers to our predic-
tive model without the LFM or attention modules, STCINet − NA refers to
the spatiotemporal causal inference model with no attention (NA) mechanism,
STCINet−SA refers to the spatiotemporal causal inference model with spatial
attention (SA) mechanism, STCINet − AG refers to the spatiotemporal causal
inference model with attention gating (AG) mechanism and STCINet refers
to the spatiotemporal causal inference model with LFM , spatial attention and
attention gating mechanism.

Observing the results on data with spatial interference in Table 1, we see that
STCINet† yields lower PEHE error than STCINet for direct effect estimation
(DATE). The exception of STCINet† can be attributed to the fact that direct
treatment effect is only estimated on the treated region where spillovers are easy
to capture or non-existent, therefore we see the simplest variant performing the
best on it. In case of no spatial interference, we observe that STCINet gives the
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lowest (best) PEHE error on direct, indirect and overall lagged treatment effects
as compared to all its variants. It is also interesting to note that STCINet−SA
yields the second best results for IATE and LATE errors, in capturing treatment
effects in the absence of spillover or interference, demonstrating the potential
of spatial attention. We discuss the comparison with state-of-the-art (SOTA)
methods in the next section.

Table 1. Related work comparison and ablation study of our proposed model on the
synthetic data without and with spatial interference. Bold −→ best results, underline
−→ second best results.

Model DATE(
√

εPEHE) IATE(
√

εPEHE) LATE(
√

εPEHE) εRMSE

Data without Spatial Interference

Deconfounder [4] 1.8658 0.2008 0.3890 3.1450

G-Net [21] 1.3136 0.0365 0.0785 2.0510

Weather2Vec [35] 1.1575 0.0333 0.0784 0.1640

STCINet† 1.3129 0.0365 0.0785 0.1660

STCINet-NA 1.3120 0.0363 0.0783 0.1730

STCINet-SA 1.2877 0.0337 0.0752 0.2200

STCINet-AG 1.3140 0.0364 0.0785 0.1270

STCINet 1.2665 0.0337 0.0744 0.1690

Data with Spatial Interference

Deconfounder [4] 2.6580 0.2969 0.5599 6.4580

G-Net [21] 1.4123 0.0382 0.0940 6.7750

Weather2Vec [35] 0.5103 0.0606 0.0863 0.3320

STCINet† 1.1959 0.0311 0.0693 0.2930

STCINet-NA 1.6182 0.0454 0.0971 0.2390

STCINet-SA 1.6178 0.0448 0.0970 1.2790

STCINet-AG 1.6179 0.0453 0.0972 0.6250

STCINet 1.5264 0.0249 0.0684 0.2790

4.5 Comparison with Baseline Methods

Here, we compare STCINet with three state-of-the-art methods as our baselines,
which are divided into the following two categories.

Temporal Deconfounding Methods. These methods perform causal infer-
ence on time-series data in the presence of time-varying confounders. We consider
two such works, (i) Latent factor model modified for single treatment (Decon-
founder) [4] and (ii) Deep learning based inverse propensity score method (G-
Net) [21] for calculating effects of time-varying continuous treatment. By reduc-
ing the spatial dimension, we apply these methods on our synthetic datasets.
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Spatial Causal Inference Method. Here, we consider a recent spatial causal
inference method (Weather2vec) introduced for non-local spatial confounding.
We consider the Weather2vec-AVG variant (see details in [35]) that can capture
immediate neighborhood interference on the treated regions. To implement this
spatial method, we reduce the temporal dimension by considering all data as
independent samples irrespective of their temporal sequence. We present the
results from these baselines in Table 1.

In case of direct treatment effect estimation (DATE) for both synthetic
datasets, we notice Weather2Vec gives the lowest PEHE error which shows its
potential of estimating interference effects on the treated region, however, the
method fails to capture the interference on untreated region on data with spa-
tial interference, quantified by indirect treatment effects (IATE). This shows the
inability of Weather2Vec to capture spatial interference or spillover effects, fur-
ther highlighting the significance of STCINet for overcoming the limitation of
Weather2Vec. In case of IATE on data without spatial interference, we see a
marginal difference in STCINet’s and Weather2Vec results. Here it is important
to note that this data does not possess spatial interference making it viable for
Weather2Vec to have good estimations. Overall, our model yields lowest PEHE
error for both datasets in case of lagged average treatment effect (LATE), that
accounts for temporal lag in effect estimation over the entire spatial region. It
is also interesting to see that G-Net’s performance, despite being a time-series
method, is comparable to our model, however, Deconfounder performs poorly in
all scenarios yielding the worst performance overall.

4.6 Case Study on Real-World Arctic Data

Here, we present a case study on real-world Arctic data where we estimate the
causal influence of atmospheric processes on the Pan-Arctic sea ice concentra-
tions (SIC), which have seen a continuous decline since 1979. This accelerated
ice loss is prominently visible in Summers (JJA - June, July, August) where the
minimum sea ice has reduced by more than 50% of what it was in 1979 [15].
While identifying the true causes of ice melt is a complex task due to multiple
thermodynamic feedbacks, a recent study suggests that one of the drivers of
early melt in two Arctic sub-regions, namely East Siberian Sea and Laptav Sea,
is the increase of downward longwave radiations (LWDN), with high ice melt
observed in 1990 and 2003 [16]. Another study suggests that the sum of sensible
and latent heat flux (HFX) plays an important role in Arctic’s energy budget
and has bidirectional causal links with LWDN and SIC [17]. Using STCINet
and the data provided by [17], we estimate the effect of these regional LWDN
radiations on SIC on both regional and Pan-Arctic level at a lead time of one
month. We include HFX, considering it a potential confounder in our study.
The region of interest for applying treatment are the Laptav and East Siberian
seas, as shown in Fig. 5a. We set update factor (see details in Sect. 2.1) to be
−0.05 for LWDN as our intervened treatment, which implies 5% reduction in
original LWDN values. Our trained STCINet model predicts an average of 4%
annual increase and a 44% summer (JJA) increase in SIC in the Laptav and



226 S. Ali et al.

East Siberian seas if LWDN values were reduced by 5% in that region. The
direct treatment effect is visible in Fig. 5b where we see a 42-year average differ-
ence (increase) in Laptav and East Siberian SIC. Our findings not only align with
literature on the negative role of longwave radiations on sea ice melt, but also
quantify the relations by estimating the direct and lagged average causal effects.
More importantly, our model is able to capture the anomalous behavior in 1990
(Fig. 5c) and 2003 (Fig. 5d) where we observe that the effects of LWDN are not
just restrained to the region of interest, but also spatially interfere with other
Pan-Arctic regions influencing regional SIC [16]. Through this case study, we
demonstrate the potential of STCINet to provide insights into complex spatial
and temporal relations of atmosphere and the ocean.

Fig. 5. Case study on climate data when longwave radiations are reduced by 5%. (a)
Region of applying treatment, (b) Lagged Average treatment effect (LATE) on Summer
SIC for 1979-2021, (c) LATE on Summer SIC for 1990, (d) LATE on Summer SIC for
2003.

5 Related Work

The existing work in spatiotemporal causal inference is still foundational with
much focus on the theoretical aspects. Wang et al. proposed causal inference
framework for panel data with spatial and temporal interference under stable
unit (SUTVA) assumption [38]. Papadogeorgou et al. extended the potential
outcome framework for point-process treatment and stochastic intervention [26].
Christiansen et al. proposed a non-parametric hypothesis test to develop causal
models for multivariate spatiotemporal data [5]. Owing to the intricate nature
of spatiotemporal causal variations, the problem is often broken down to either
time-series by fixing a region of interest, or spatial causal inference in time-
invariant settings [8,34]. Here, we present the relevant literature in both domains.

Causal inference with Temporal Confounding. The challenge of confound-
ing bias in time-series causal inference has received attention in recent literature.
Notably, the techniques such as instrumental variables [36], propensity score
matching [31], and recurrent neural networks [4,23] address confounding when
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estimating causal effects of time-invarying treatments. Few studies have explic-
itly addressed the joint challenge of estimating time-varying treatment effects
while accounting for confounding bias in time-series data. Bica et al. attempted
to bridge this gap, exploring methodologies that integrate time-series analy-
sis with causal inference frameworks to disentangle multi-treatment effects from
confounders in dynamic systems [4]. Their work struggles with single-cause treat-
ment effect estimation. Recently, G-Net was proposed to tackle confounding of
time-varying treatment using Long Short Term Memory (LSTM) model [21].
These methods majorly work on binary treatments and there remains a notable
gap in methodologies capable of effectively addressing both time-varying treat-
ment effects and confounding bias in time-series data due to the strong ignora-
bility condition.

Causal inference for Spatial Interference. Most of the existing methods
for spatial causal inference are basically spatial statistical techniques to study
the interactions between spatial units in the presence of spatial confounding,
spatial interference, or both [1,29]. For instance, Graham et al. used Poisson
regression with spatial predictors to model spatial confounding and interference,
but their approach does not focus on quantifying causal relations in data [12].
Reich et al. and Giffin et al. both explored the utilization of spatial structure
and generalized propensity scores to accommodate unmeasured confounding and
interference [11,29]. Wang et al. introduced a design-oriented framework for spa-
tial experiments involving interference [39], while they later extended this to
encompass spillover effects in panel data [38]. In fact, Di et al. first introduced
a spatial hierarchical Difference-in-Differences model for policy evaluation [7],
which Wang et al. delved further into design-based inference for spatial exper-
iments considering unknown interference [39]. Most recently, Papadogeorgou et
al. suggested a parametric method that concurrently tackles interference and bias
arising from local and neighborhood unmeasured spatial confounding [27]. These
spatial methods are majorly an extension of difference-in-difference technique,
which is inapplicable in time-varying domain, or propensity score methods which
are computationally expensive methods and infeasible for continuous treatment
effects estimation.

Overall, there are several limitations of existing methods making them infea-
sible to offer generalized solutions for spatiotemporal data. Some of the limita-
tions include: (i) limiting work to specific applications, for instance, point pro-
cess or panel data, (ii) mistaking spatial confounding with spatial interference,
(iii) limiting scope to binary treatments, and (iv) inability to handle continuous
or time-varying treatment assignment on spatial data. Our proposed STCINet
model overcomes these limitations offering a state-of-the-art technique to per-
form causal inference on spatiotemporal data.

6 Conclusion

In this paper, we presented our deep learning based potential outcome model
for spatiotemporal causal inference. We utilized latent factor modeling to reduce
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the bias due to time-varying confounding while leveraging the power of U-Net
architecture and attention mechanism for capturing global and local spatial inter-
ference in data over time. Through empirical study on two synthetic datasets, we
compared our method with state-of-the-art spatial and temporal inference meth-
ods to quantify direct (DATE), indirect (IATE), and lagged effects (LATE) on
spatiotemporal data. We further provided a case study on real-world climate
dataset and demonstrated the effectiveness of our proposed approach on quanti-
fying the direct (sub-regional) and indirect (regional) effects of longwave radia-
tions on sea ice concentration, paving paths for atmospheric scientists to adopt
data driven methods to unravel important climate patterns. In the future, we
would extend our work to estimate spatiotemporal causal inference in the pres-
ence of latent and spatially varying confounders.
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Abstract. While Hyperbolic Graph Neural Network (HGNN) has
recently emerged as a powerful tool dealing with hierarchical graph data,
the limitations of scalability and efficiency hinder itself from generalizing
to deep models. In this paper, by envisioning depth as a continuous-time
embedding evolution, we decouple the HGNN and reframe the infor-
mation propagation as a partial differential equation, letting node-wise
attention undertake the role of diffusivity within the Hyperbolic Neural
PDE (HPDE). By introducing theoretical principles e.g., field and flow,
gradient, divergence, and diffusivity on a non-Euclidean manifold for
HPDE integration, we discuss both implicit and explicit discretization
schemes to formulate numerical HPDE solvers. Further, we propose the
Hyperbolic Graph Diffusion Equation (HGDE) – a flexible vector flow
function that can be integrated to obtain expressive hyperbolic node
embeddings. By analyzing potential energy decay of embeddings, we
demonstrate that HGDE is capable of modeling both low- and high-order
proximity with the benefit of local-global diffusivity functions. Experi-
ments on node classification and link prediction and image-text classifi-
cation tasks verify the superiority of the proposed method, which consis-
tently outperforms various competitive models by a significant margin.

Keywords: Continuous GNN · Hyperbolic Space · Neural ODE

1 Introduction

Graphs play a vital role in various disciplines, including social network analysis
[12], bioinformatics [48], and computer vision [37]. The advent of Graph Neural
Networks (GNNs, [23]) has significantly enhanced the analysis of these structures
to capture complex relationships between nodes in a graph. However, traditional
GNNs operate within the borders of Euclidean space, which may not be suffi-
ciently expressive for data with inherent hierarchical or complex structures. To
improve, this paper delves into the realm of hyperbolic geometry, a Riemannian
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manifold demonstrated to be particularly effective for embedding hierarchical
data [16,18]. We focus on the development of HGNNs [6], which leverage the
unique properties of hyperbolic space to enhance the embedding of GNNs.

The principal challenge confronted by HGNNs is their architectural design,
which primarily consists of combinations of aggregation and transformation
within layers. This fusion presents a unique problem, particularly the difficulty of
training attention weights and manifold parameters (e.g., curvature of the hyper-
bolic manifold) layer-wise in a deeply layered scheme. With such challenge, we
pose our initial questions: Q1: Considering hyperbolic space slows down layer-
wise attention and propagation [11,25], how to develop a deeply-layered atten-
tive HGNN? Q2: How to incorporate high-order info to benefit a deeply layered
scheme? Q3: Deep GNNs suffer from embedding smoothing, how should the node
smoothness be measured when there is no defined metric for hyperbolic smooth-
ness. And how to tackle over-smoothing within hyperbolic manifold constraints?

Motivated by above questions, in this paper, we propose to decouple the func-
tions within layers of HGNNs so as to deal with each of them separately. Unlike
traditional decoupling-GNN approaches [15,35] that aggregate all information
from the neighbors, we view information propagation as a distillation process,
such that unimportant information is filtered out and significant information is
weighted and contributes to the continuous variation of embeddings. More explic-
itly, by letting the transformation layer manifest as an encoder-decoder scheme,
the aggregation layer is re-envisioned to solve the partial differential equation
(Neural ODE/PDE, [8]) - essentially, the graph diffusion equation [4] in hyper-
bolic space, which essentially simulates an infinitely deep HGNN with single layer
parameters. In specific, in response to Q1, we consider the PDE reformulation
and developed Hyperbolic-PDE (HPDE) solvers, which only leverage single-layer
parameters. To answer Q2, we formulate the Hyperbolic Graph Diffusion Equa-
tion (HGDE), a low-high order vector flow function that can be integrated by
HPDE. Tackling Q3, we firstly introduce the hyperbolic adaptation of Dirichelet
energy and augmented HGDE with a hyperbolic residual, powered by Poincaré
midpoint. Deconstructions above introduce extensive mathematical principles,
including for instance: manifold vector field, flow, gradient, divergence, diffusiv-
ity, numerical HPDE solvers and hyperbolic residuals for bounding embedding
energy decay. Through these concepts, we open new pathways to fully exploit the
unique potential of hyperbolic space in the contextual analysis of graph-based
data. In summary, the contributions of this paper are listed as follows.

(I) We present the geometric intuition for designing projective numerical
integration methods that solve hyperbolic ODE/PDE, and examine the connec-
tion to Riemannian gradient descent methods. Focusing on fixed-grid solvers, we
derive both hyperbolic generalizations of explicit schemes (Euler, Runge-Kutta)
and implicit schemes (Adams-Moulton).

(II) We formulate the HGDE, which acts as the vector flow of the HPDE,
and thereby induces concepts such as gradient, divergence and diffusivity within
HGDE. The proposed framework is flexible and efficient for generating expressive
(endowed by the depth) hyperbolic graph embeddings.
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(III) We instantiate the diffusivity function as a mixed-order multi-head
attention to account for both homophilic (local) and heterophilic (global) rela-
tions. Besides, we introduce hyperbolic residual technique to benefit the opti-
mization and prevent over-smoothing.

Through extensive experiments and comparison with the state-of-the-art
on multiple real-world datasets, we show that HGDE framework can not only
learn comparably high-quality node embeddings as Euclidean models on non-
hierarchical datasets, but outperform all compared hyperbolic models variants
on highly-hierarchical datasets with improved efficiency and accuracy. The code
and appendix can be found in https://github.com/ljxw88/HyperbolicGDE.

2 Preliminaries

Riemannian Geometry and Hyperbolic Space. A Riemannian manifold M
of n-dimension is a topological space associated with a metric tensor g, denoted
as (M, g), which extends curved surfaces to higher dimensions and can be locally
approximated by R

n. At any point x ∈ M, the tangent space TxM ∼= R
n rep-

resents the first-order approximation of a small perturbation around x, isomor-
phic to Euclidean space. The Riemannian metric g on the manifold determines a
smoothly varying positive definite inner product on the tangent space, enabling
the definition of diverse properties e.g. geodesic length, angles, and curvature.

The hyperbolic space H
n is a smooth Riemannian manifold with a constant

negative sectional curvature κ < 0. Its coordinates can be represented via various
isometric models. [3] established the equivalence of hyperbolic and Euclidean
geometry through the utilization of the n-dimensional Poincaré ball model, which
equips an open ball Dn

κ = (Dn
κ , gD), with point set Dn

κ = {x ∈ R
n : ‖x‖ < − 1

κ}
and Riemannian metric gDx = (λκ

x)
2In, where the conformal factor λκ

x = 2
1+κ‖x‖2 .

The Poincaré metric tensor induces various geometric properties e.g. distances
dκ
D
(x,y), inner products 〈u,v〉κ

x, geodesics γx→y(t) and more [26]. Geodesics also
induce the definition of exponential and logarithmic maps [13]. At point x ∈ D

n
κ,

the exponential map expκ
x : TxD

n
κ → D

n
κ essentially maps a small perturbation of

x by v ∈ TxD
n
κ to expκ

x(v) ∈ D
n
κ, so that t ∈ [0, 1] : expκ

x(tv) is the geodesic from
x to expκ

x(v). The logarithmic map logκ
x : Dn

κ → TxD
n
κ is defined as the inverse

of expκ
x. Finally, the parallel transport PT x→y : TxD

n
κ → TyD

n
κ moves a tangent

vector v ∈ TxD
n
κ along the geodesic to TyD

n
κ while preserving the metric tensor.

For closed-form expression of above operations, please refer to Appendix B.

Diffusion Equations. The process of generating representations of individual
data points through information flows can be characterized by an an-isotropic
diffusion process, a concept borrowed from physics used to describe heat diffusion
on Riemannian manifold. Denote the manifold as M, and let z(t) denote a family
of functions on M × [0,∞) and z(u, t) be the density at location u ∈ M and
times t. The general framework of diffusion equations is expressed as a PDE

https://github.com/ljxw88/HyperbolicGDE
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Fig. 1. (a–c) Illustration of various numerical integration methods with comparison to
RGD. In each time-step, an explicit scheme calibrates the vector field within only the
tangent space of time t, while an implicit scheme requires multiple tangent spaces to
estimate future slopes, thus requiring parallel transport for aligning the directions of
vectors in different spaces. (d) Illustration of hyperbolic interpolation method.

∂z(u, t)/∂t = div(a(z(u, t))∇z(u, t)), t > 0 (1)

where a(·) defines the diffusivity function controlling the diffusion strength
between any location pair at time t. The gradient operator ∇ : M → T M
describes the steepest change at point u ∈ M. div(·) : T M → M is the diver-
gence operator that summarizes the flow of the diffusivity-scaled vector field
(a(·)∇). Equation (1) can be physically viewed as a variation of heat based on
time at the location i, identical to the heat that flows through that point from
the surrounding areas.

Graph Diffusion Equation. Let G = (V, E) denote an undirected graph with
the node set V and the edge set E . Let x = {xi ∈ R

d}|V|
i=1 be the node features

and z(t) be node embeddings at time t. Process Eq. (1) can be re-written as

∂zi(t)/∂t = div(A(z(t))∇zi(t)), (2)

where A is generally realised by a time-independent n×n attention matrix [4,5],
consistent with the flow of heat flux in/out node i. The formulation of Eq. (2)
as a PDE allows leveraging vast existing numerical integration methods to solve
the continuous dynamics.

3 Hyperbolic Numerical Integrators

Consider the continuous form of ODE/PDE specified by a neural network param-
eterized by θ, expressed as

dh(t)/dt = fθ(h(t), t), h(0) = h0 (3)

where the time step t = [0, T ]. Equation (3) essentially tells that the rate of
change of h(t) ∈ R

n at each time step is given by the vector field fθ : Rn ×R →
R

n. Equation (3) is integrated to obtain h(T ). In our context, we are interested
in formulating a PDE recipe that is aware of hyperbolic geometry.
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Definition 1. A time-dependent manifold vector field is a mapping X : M×
R → T M, which assigns each point in M at t a tangent vector. The particle’s
time-evolution according to X is then given by the following PDE

dh(t)/dt = Xθ(h(t), t). (4)

Definition 2. A vector flow is a mapping generated by vector field, i.e.
F ≡ π(X ), where π : M → M is a smooth projection of vector field to manifold
of their local coordinates. Vice versa, if π is a diffeomorphism, then X ≡ π−1(F).

In hyperbolic geometry, where π and π−1 are properly defined exp and log maps,
our concern lies in the particle’s location on the manifold subsequent to integra-
tion, i.e. integrate through the path defined by flow F . This can be achieved via
the spirit of projective method [17]. In the following, we derive numerical solvers
for estimating the integral of field X or flow F w.r.t. time t using, respectively,
the explicit and implicit schemes.

3.1 Hyperbolic Projective Explicit Scheme

In an explicit scheme, the state at the next time step is computed directly
from the current state and its derivatives. In this part, we derive the hyperbolic
generalization of the explicit scheme. To illustrate high-level ideas, we introduce
both single step method and multi-step method. We also discuss the geometric
intuition and strong analogy between one-step explicit scheme and Riemannian
gradient descent (RGD).

H-Explicit Euler (HEuler). Consider a small time step τ . Iteratively, we seek
an approximation for h(t + τ) based on h(t) and vector field f(·). In Euclidean
space, the explicit Euler method is written as

h(t + τ) ≈ h(t) + τfθ(h(t), t), (5)

which is a discrete version of Eq. (3). Similarly in hyperbolic space, we discretize
Eq. (4), and have the stepping function formulated as

hHEuler(t + τ) = expκ
h(t)(τXHEuler(t)), (6)

where the vector field X gives the direction at time t according to flow Fκ
θ

XHEuler(t) = logκ
h(t)(Fκ

θ (h(t), t)) ∈ Th(t)D
n
κ. (7)

Geometric Intuition. The equation in Eq. (5) signifies a transition from h(t) in
the direction of f by a distance proportional to τ . In hyperbolic space, where
h(t) ∈ D

n
κ and we presume X κ : Dn

κ → T D
n
κ, the transition follows the geodesic

dictated by the direction of X κ. Recall the definition of exponential map: given
x ∈ Dκ, expκ

x(v) takes v ∈ TxDκ and returns a point in Dκ reached by moving
from x along the geodesic determined by the tangent vector v. Thus Eqs. (6–7)
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can be essentially viewed as a geometric transportation of points on manifold
along the curve defined by F .

Connection to RGD. As visualized in Fig. 1(a), the explicit Euler can be viewed
as reversed RGD, where the direction XHEuler(t) plays similar role as the Rie-
mannian gradient gt at h(t). Similar to RGD, when (M, ρ) is Euclidean space
(Rn, In), then Eq. (6) converges to Eq. (5) since we have expκ

h(v)
κ→0−−−→ h + v.

This property is useful on developing higher-order integrators.

H-Runge-Kutta (HRK). With a similar geometric intuition, we derive the
hyperbolic extension of the Runge-Kutta method. Define the s-order HRK step-
ping function

hHRK(t + τ) = expκ
h(t)(τXHRK(t)), (8)

where the vector field is estimated by

XHRK(t) =

(
s∑

i=1

φi logκ
h(t)(ki)

)
/

s∑
i=1

φi. (9)

In Eq. (9), k denotes the vector flow functions, {φi} are coefficients determined
by the order. Specifically for 4th order Runge-Kutta (HRK4), we have {φ1...4} =
{1, 3, 3, 1} derived from Taylor series expansion as in [8]. The vector flows k1...4

are respectively formulated by

k1 = hHEuler(t + τ), (Eq. (6)) (10)
k2 = Fκ

θ (exp
κ
h(t)(τXk2), t + τ/3), where Xk2 = logκ

h(t)(k1)/3.

k3 = Fκ
θ (exp

κ
h(t)(τXk3), t + 2τ/3), where Xk3 = logκ

h(t)(k2) − logκ
h(t)(k1)/3.

k4 = Fκ
θ (exp

κ
h(t)(τXk4), t + τ), where Xk4 = logκ

h(t)(k1) − logκ
h(t)(k2) + logκ

h(t)(k3).

As illustrated in Fig. 1(b), this method approximates the solution to the PDE
within a small interval, considering not only the derivative at the initial time (as
in Eq. (5)), but also at intermediate points and the end of the interval.

3.2 Hyperbolic Projective Implicit Scheme

In an implicit scheme, the state of the next iteration is computed by incorporat-
ing its own value. This requires solving a linear system to obtain h(t+ τ) based
on h(t). In below, we illustrate a hyperbolic generalization of the implicit solver.

H-Implicit Adams-Moulton (HAM). Adams numerical integration methods
are introduced as families of multi-step methods. With order s = 0, Adams
methods are identical to the Euler’s method. Principally, there are two types
of Adams methods, namely, Adams-Bashforth (explicit) and Adams-Moulton
(implicit). Our emphasis is on the latter.

The implicit nature of AM requires the initialization of first several steps
with a different method. We use the hyperbolic Runge-Kutta (Eq. (8)) for ini-
tialization. With the input h(t) ∈ D

n
κ and flow Fκ, define the warm up
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hHAM(iτ) = hHRK4(iτ), 0 ≤ i < smin (11)

where smin is the min order. During the whole warm up process, we maintain a
queue q of tangent vectors and the points spanning the tangent space. In each
time step of Eq. (11), we push [q0 = XRK4(iτ), q1 = h(iτ)] to the head of q.
When len(q) ≥ smin, we start the time-stepping

hHAM(t + τ) = expκ
h(t)(τXHAM(t)), (12)

where the vector field is expressed as

XHAM(t) =φ0PT h(t+τ)→h(t)(log
κ
h(t+τ)(Fκ

θ (h(t + τ), t + τ)))

+
s∑

i=1

φiPT qi,1→h(t)(qi,0). (13)

The order s = min(len(q), smax), {φi} are coefficients determined by the order,
which are typically within a pre-defined look-up table. As illustrated in Fig. 1(c),
since the reference point h(t)’s stored in q are different, the parallel transport PT
is leveraged for aligning tangent spaces for different slopes. When hHAM(t + τ)
is accepted as converged, [logκ

h(t)(hHAM(t+ τ)),h(t)] is pushed to q for the next
iteration and the last element is popped if len(q) reaches smax. We refer readers
to Appendix C for detailed explanation of the algorithms.

3.3 Interpolation on Curved Space

Fixed grid PDE solvers typically use their own internal step sizes τ to advance
the solution of the PDE. For certain time step t, given h(t) and h(t + τ), we
may want to obtain the solution at time point t + δ where 0 < δ < τ . Since δ
does not lie on the grid defined by {0, τ}, interpolation methods are invoked to
estimate h(t+ δ). For hyperbolic geometry that h ∈ D

n
κ, define the interpolation

h(t + δ) = expκ
h(t)

(
δ logκ

h(t)(h(t + τ))/τ
)

. (14)

Proposition 1 (Proved in Appendix D). For any step size 0 < δ < τ , the
interpolation h(t + δ) via Eq. (14) is on the geodesic between h(t) and h(t + τ)
on the manifold, and dκ

D
(h(t),h(t+δ))

dκ
D
(h(t),h(t+τ)) = δ

τ where dκ
D

is the geodesic length.

4 Diffusing Graphs in Hyperbolic Space

4.1 Hyperbolic Graph Diffusion Equation

We study the diffusion process of graphs with node representation residing in
hyperbolic geometry. Given the diffusion time t ∈ [0, T ], embedding space D

d
κt

with learnable curvature κt at time t, node embedding z∗(t) ∈ D
d
κt

and C(·)
being the correlated coordinates of certain node, we formulate the vector flow
Fκ

θ of the ith representation as
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Fig. 2. Schematic of HGDE. (a) The pipeline of our method includes hyperbolic pro-
jection, feature transformation, and HPDE block that integrates the GDE. After that,
a decoder is applied to the embeddings for specific downstream tasks. (b) The visual-
ization of the diffusion process within the HPDE block: first, map local gradients of
zi onto the tangent space, calculate the diffusivity, and diverge to obtain the vector
flow (green arrow), then perform one-step integration on the manifold with the guid-
ance of continuous curvature diffusion. (c) The details of attention-powered local-global
diffusivity function. (Color figure online)

expκt

zi(t)

(
σ

[ ∑
j∈C(i)︸ ︷︷ ︸

divergence

a(zi(t), zj(t))︸ ︷︷ ︸
diffusivity

logκt

zi(t)
(zj(t))︸ ︷︷ ︸

gradient

])
, (15)

where σ can be either identity/non-linear activation. With initial state encoded
by learnable feature transformation ψ, i.e. z(0) = ψ(x) ∈ D

d
κ, the final state

can be numerically estimated by our proposed HPDE integrators, i.e. zi(T ) =
HPDESolve(zi(0),

∂zi(t)
∂t , 0, T ). In matrix form, the vector flow is expressed as

Fκ
θ (z(t), t) = expκt

z(t)

(
σ
[
S(z(t))∇z(t)

])
, (16)

where S(z(t)) = (a(zi(t), zj(t))) is a normalized |V| × |V| similarity matrix, and
∇z(t))i,j := logκt

zi(t)
(zj(t). In below, we discuss the key ingredients of Eq. (15, 16).

Gradient. The gradient of a function z(u, t) at location u in a discrete space can
be approximated as the difference between the function values at neighboring
points. In graph space, let zi and {zj}j∈C(i), respectively, denote the target
node and the correlated positions of i that can be modeled by edge connectivity
or self-attention. The graph diffusion process [4,5] treats nodes as Euclidean
representations, such that the analogy of gradient operator (∇z(t))i,j : Rd → R

d

is expressed as zj(t)− zi(t). However, when nodes are embedded in Riemannian
manifolds, the gradient of a node is no longer the difference between itself and
neighboring points. Instead, we take vectors in the tangent space at zi that are
obtained by taking the derivative of z in all possible directions, i.e. (∇z(t))i,j :
D

d
κ → T D

d
κ that can be formulated as logκ

zi(t)(zj(t)). One recovers the discrete
Euclidean gradient as the curvature κ → 0.

Diffusivity. The diffusivity scales the gradient, with either isotropic or
anisotropic behavior. For graph diffusion, the isotropic formula is presented
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by the normalized adjacency matrix [23], where ai,j = 1√
didj

iff. (i, j) ∈ E and

d is the degree.
Alternatively, the anisotropic approach incorporates the attention mech-

anism [33] to account for the asymmetric relationship between pairs of nodes.
This paper considers local, global and local-global schemes based on structure
information. Define the schemes

⎧
⎪⎪⎨

⎪⎪⎩

aldiff
i,j = normalizej∈N (i)

(
fθ

(
zi(t), zj(t)

))
(local scheme)

agdiff
i,j = βnormalizej∈V

(
gφ

(
zi(t), zj(t)

))
+ 1−β√

didj
(global scheme)

algdiff
i,j = βnormalizej∈V

(
gφ

(
zi(t), zj(t)

))
+ (1 − β)aldiff

i,j (local-global scheme)

where fθ/gφ are learnable functions that compute the diffusivity weight between
node pair (i, j) ∈ E . β can be constant or trainable parameters that adjust the
emphasis on homophilic (local attention) and heterophilic (high-order, global
attention) relations. In comparison, the local attention scheme implicitly incor-
porates the graph information since only neighboring elements are considered
based on N (i). Whereas for global attention, it neglects the graph topology and
hence requires manual incorporation.

Low-Order Local Diffusivity. A straightforward approach is to leverage the for-
mula of graph attention [34], which is extended to the hyperbolic space by [6],
where the weights are calculated tacitly in the tangent space. An alternative
method to consider is the Oliver-Ricci Curvature (ORC) [27] attention, intro-
duced in [38,40] to drive message propagation. This approach is not limited by
the non-Euclidean property of node feature, as it computes attention weight via
the ORC value derived from the graph topology, thus allowing adoption without
leveraging tangent space.

High-Order Global Diffusivity. Propagation of high-order node pairs results in
exponentially increasing complexity compared to fθ. [36,42] introduced a series
of scalable and efficient node-level transformers. With a similar notion in the
hyperbolic space, we first project the embeddings onto the tangent space of the
origin. Subsequently, the weights can be obtained using existing graph trans-
former architectures. We adopt energy-constrained transformers [36] with a sig-
moid kernel, which performs well in most scenarios.

* Figure 2(c) presents the high-level schematic of diffuse. The implementation
and algorithmic details are delegated to Appendix C.

Divergence. For simplicity, we assume any xi ∈ R
d to be scalar-valued.

The divergence at a point zi is a measure of how much the vector field
X = {∇z(t))i,j}j∈C(i) is expanding or contracting at zi. In a Euclidean space,
the divergence would indeed be the sum of the components of the gradient, i.e.,
divi =

∑
j(∇z(t))i,j , producing a scalar (with dimensionality Tzi

D
d ∼= R

d). In
our context, we are interested in how zi is varied in the manifold rather than in
the tangent space; thus an exponential map is applied to the sum of gradients on
Tzi

D
d, giving divi = expzi(t)(

∑
j ai,j(∇z(t))i,j). This also satisfies the form of

Fκ
θ in Definition 2, and thus can be numerically integrated through HPDESolve.
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Continuous Curvature Diffusion. Equation (16) implicitly guides the mani-
fold towards its optimal geometry for embedding z(t) as the manifold parameter
κt also accumulates and is updated during backpropagation. Similar to the atten-
tion parameters θ, we let κ be time independent based on the assumption that
limτ→0

κt+τ −κt

τ = 0.

4.2 Convergence of Dirichlet Energy

Definition 3 Given the node embedding {zi ∈ D
d
κ}|V|

i=1, the hyperbolic Dirichlet
energy is defined as

fκ
DE(z) =

1
2

∑
(i,j)∈E dκ

D

(
expκ

o

(
logκ

o(zi)√
1+di

)
, expκ

o

(
logκ

o(zj)√
1+dj

))2

, (17)

where di/j denotes the node degree of node i/j. The distance dκ
D
(x,y) between

two points x,y ∈ D is the geodesic length; we detail the closed form expression
in Appendix B.

Definition 3 introduces a node-similarity measure to quantify over-smoothness in
hyperbolic space. fκ

DE of node representation can be viewed as the weighted sum
of distance between normalized node pairs. [25, Prop. 4] proved that hyperbolic
energy fκ

DE diminishes after message passing, and multiple aggregations result
in converging towards zero energy, indicating reduced embedding expressiveness
that could potentially cause over-smoothing. Also as proved in [43, Prop. 2]
that over-smoothing is an intrinsic property of first-order continuous GNN. In
a continuous diffusion process, where each iteration can be viewed as a layer
in HGNNs, as supported by Fig. 3, we also observe a convergence of hyperbolic
Dirichlet energy of z(t) w.r.t. time t.

Residual-Empowered Flow. Empirically, studies in multi-layer GNNs [15,24]
demonstrated the efficacy of adding residual connections to the initial layer. It is
also claimed in [45] that using residual connections for both initial and previous
layers can prevent the Dirichlet energy from reaching a lower energy limit, thus
avoiding over-smoothing. Building upon these studies, we define the hyperbolic
residual empowered vector flow

Fκ
θ (z(t), t) = μκ

D

(
{ż(t), z(t), z(0)}; {η}J

j=1

)
, (18)

where ż(t) = expκt

z(t)

(
σ
[
S(z(t))∇z(t)

])
is the manifold dynamic as in Eq. (16).

{η}J
j=1 are the weight coefficients. μκ

D
is the node-wise hyperbolic averaging. We

instantiate it via Möbius Gyromidpoint [32] for its trade-off between computa-
tional cost and precision. Define

μκ
D
({z}J

j=1; {η}J
j=1) =

⎛
⎝1
2

⊗κ

⎛
⎝

∑
j ηjλ

κ

z
(j)
i

z(j)
i∑

j |ηj |(λκ

z
(j)
i

− 1)

⎞
⎠

⎞
⎠

|V|

i=1

. (19)
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This operation ensures the point set constraint of D for the residual flow. We
recover the arithmetic mean as κ → 0. During diffusion, Eq. (18) retains at least a
portion of the initial and prior embeddings. Since the initial embedding possesses
high energy, the residual connection mitigates energy degradation and retains
the energy of the final iteration at the same level as the preceding iterations.

5 Empirical Results

5.1 Experiment Setup

Datasets. Under homophilic setting, we consider 5 datasets for node classifica-
tion and link prediction: Disease, Airport (transductive datasets, provided in
[6] to investigate the tree-likeness modeling), PubMed, CiteSeer and Cora
( [39] widely used citation networks), which are summarized in the table in
Appendix A. Additionally, we report the Gromov’s hyperbolicity δ given by [16]
for each dataset. A graph is more hyperbolic as δ → 0 and is a tree when δ = 0.

For heterophilic datasets, we evaluate node classification on three heterophilic
graphs, respectively, Cornell, Texas and Wisconsin [29] from the WebKB
dataset (webpage networks). Detailed statistics are summarized in Appendix A.
We use the original fixed 10 split datasets. In addition, we report the homophily
level H of each dataset, a sufficiently low H ≤ 0.3 means that the dataset is
more heterophilic when most of neighbours are not in the same class.

Baselines. We compare our models to (1) Euclidean-hyperbolic baselines, (2)
discrete-continuous depth baselines and (3) heterophilic relationship baselines.
For (1), we compare against feature-based models, Euclidean, and hyperbolic
graph-based models. Feature-based models: without using graph structure, we
feed node feature directly to MLP and HNN [14]; Euclidean graph-based models:
GCN [23], GAT [34], GraphSAGE [19], and SGC [35]; Hyperbolic graph-based
models: HGCN [6], κGCN [1], LGCN [44] and HyboNet [10]. For (2), we compare
our models on citation networks with the discrete-continuous depth models.
Discrete depth: GCNII [7], C-DropEdge [20]; Discrete-decouple: HyLa-SGC [41];
Continuous depth: GDE [30], GRAND and BLEND [4,5]. For (3), we compare
to the prevalent GNNs: GCN, GAT, HGCN, HyboNet, and those optimized for
heterophilic relationships: H2GCN [46], GCNII, GraphSAGE and GraphCON
[31]. The test results are partially derived from the above works. For fairness,
we compare to models with no more than 16 layers/iterations. Please refer to
Appendix A for more details regarding the compared baselines. We detail the
parameter settings for model and evaluation metric in Appendix C.

5.2 Experiment Results

Euclidean-Hyperbolic Baselines. We investigate our methods with different
solvers with τ = 1, i.e. HGDE-E (multi-step explicit integrator, HRK4) and
HGDE-I (multi-step implicit integrator, HAM). The experimental results are
summarized in Tables 1 and 2. (1) Our proposed models outperform previous
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Table 1. Test accuracy (%) for node classification task.

Dataset Disease Airport PubMed CiteSeer Cora

δ 0 1 3.5 5 11

MLP 32.5±1.1 60.9±3.4 72.4±0.2 59.5±0.9 51.6±1.3

HNN 45.5±3.3 80.6±0.5 69.9±0.4 59.5±1.2 54.7±0.6

GCN 69.7±0.4 81.6±0.6 78.1±0.4 70.3±0.4 81.5±0.5

GAT 70.4±0.4 82.7±0.4 78.2±0.4 71.6±0.8 83.0±0.5

SAGE 69.1±0.6 82.2±0.5 77.5±2.4 67.5±0.7 79.9±2.5

SGC 69.5±0.2 80.6±0.2 78.8±0.2 71.4±0.8 81.3±0.5

HGCN 82.8±0.8 89.2±1.3 80.3±0.3 68.0±0.6 79.9±0.2

κGCN 82.1±1.1 84.4±0.4 78.3±0.6 71.1±0.6 80.8±0.6

LGCN 84.4±0.8 90.9±1.0 78.8±0.5 71.1±0.3 83.3±0.5

HyboNet 96.0±1.0 90.9±1.4 78.0±1.0 69.8±0.6 80.2±1.3

HGDE-E 92.1±1.6 95.1±0.4 81.2±0.5 74.1±0.5 84.4±0.7

HGDE-I 90.9±2.5 93.9±0.8 81.0±0.3 73.5±0.7 84.0±0.4

Table 2. Test ROC AUC (%) results for link prediction task.

Dataset Disease Airport PubMed CiteSeer Cora

δ 0 1 3.5 5 11

MLP 69.9±3.4 68.9±0.5 83.3±0.6 93.7±0.6 83.3±0.6

HNN 70.2±0.1 80.6±0.5 94.7±0.1 93.3±0.5 90.9±0.4

GCN 64.7±0.5 89.3±0.4 89.6±3.7 82.6±1.9 90.5±0.2

GAT 69.8±0.3 90.9±0.2 91.5±1.8 86.5±1.5 93.2±0.2

SAGE 65.9±0.3 90.4±0.5 86.2±0.8 92.1±0.4 85.5±0.5

SGC 65.1±0.2 89.8±0.3 94.1±0.1 91.4±1.7 91.5±0.2

HGCN 91.2±0.6 96.4±0.1 95.1±0.1 96.6±0.1 93.8±0.1

κGCN 92.0±0.5 92.5±0.5 94.9±0.3 95.1±0.6 92.6±0.4

LGCN 96.6±0.6 96.0±0.6 96.6±0.1 95.8±0.4 93.6±0.4

HyboNet 96.8±0.4 97.3±0.3 95.8±0.2 96.7±0.8 93.6±0.3

HGDE-E 96.2±0.5 98.2±0.2 96.6±0.2 96.7±0.7 94.1±0.4

HGDE-I 95.6±0.5 97.6±0.5 96.2±0.7 96.4±0.7 94.5±0.8

Euclidean and hyperbolic models in four out of five datasets, suggesting that
graph learning in hyperbolic space through topological diffusion is beneficial.
(2) Hyperbolic models typically exhibit poor performance on datasets that are
less hyperbolic (e.g., Cora), while our method surprisingly exceeds Euclidean
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Table 3. Discrete-continuous depth GNN comparison.

Type Model Cora CiteSeer PubMed

GCNII 84.6±0.8 72.9±0.5 80.2±0.4Discrete
C-DropEdge 82.6±0.9 71.0±1.0 77.8±1.0

Decouple
(Hyp PosEnc)

HyLa-SGC 82.5±0.5 72.6±1.0 80.3±0.9

GDE 83.8±0.5 72.5±0.5 79.9±0.3Continuous
GRAND 82.9±0.7 73.6±0.3 81.0±0.4

Continuous
(Hyp PosEnc)

BLEND 84.2±0.6 74.4±0.7 80.7±0.7

HGDE(4) 83.4±0.5 73.0±0.3 80.2±0.6

HGDE(8) 83.7±0.6 73.5±0.7 80.8±0.4

HGDE(12) 84.2±0.6 74.1±0.5 81.2±0.5

Continuous
(Hyp Embed)

HGDE(16) 84.4±0.7 73.8±0.7 80.9±0.3

Table 4. Heterophilic relationship GNN comparison.

Texas Wisconsin Cornell
Type H 0.11 0.21 0.30

GCN 55.1±5.2 51.8±3.1 60.5±5.3Euclidean
GAT 52.2±6.6 49.4±4.1 61.9±5.1

HGCN 55.7±6.3 48.1±6.1 62.1±3.7Hyperbolic
HyboNet 60.0±4.1 51.2±3.3 62.3±3.5

H2GCN 84.9±7.2 87.7±5.0 82.7±5.3

GCNII 77.6±3.8 80.4±3.4 77.9±3.8

SAGE 82.4±6.1 81.2±5.6 76.0±5.0

High-Order
GNNs

GraphCON 85.4±4.2 87.8±3.3 84.3±4.8

Ours HGDE 85.9±2.8 86.2±2.4 85.0±5.3

GAT on datasets with lower δ, indicating the necessity of curvature diffusion in
adapting to datasets with scarce hierarchical structures and modeling long-term
dependency via the local-global diffusivity function. (3) HGDE and other hyper-
bolic models achieve superior performance compared to Euclidean counterparts
in link prediction due to the larger embedding space in hyperbolic geometry,
which better preserves structural dependencies and allows for improved node
arrangement. (4) HGDE-E generally outperforms HGDE-I with lower memory
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Table 5. Evaluation on image (CIFAR/STL) and text (20News) classification (Left)
and Memory & Runtime comparison (Right). � indicate OOM.

Dataset MLP LabelProp ManiReg GCN-kNN GAT-kNN DenseGAT GLCN HGDE

CIFAR

100 labels 65.9±1.3 66.2 67.0±1.9 66.7±1.5 66.0±2.1 � 66.6±1.4 68.9±2.1

500 labels 73.2±0.4 70.6 72.61±.2 72.9±0.4 72.4±0.5 � 72.7±0.5 74.0±1.8

1000 labels 75.4±0.6 71.9 74.3±0.4 74.7±0.5 74.1±0.5 � 74.7±0.3 76.3±0.9

STL

100 labels 66.2±1.4 65.2 66.5±1.9 66.9±0.5 66.5±0.8 � 66.4±0.8 66.9±1.3

500 labels 73.0±0.8 71.8 72.5±0.5 72.1±0.8 72.0±0.8 � 72.4±1.3 72.5±0.2

1000 labels 75.0±0.8 72.7 74.2±0.5 73.7±0.4 73.9±0.6 � 74.3±0.7 75.1±0.6

20News

1000 labels 54.1±0.9 55.9 56.3±1.2 56.1±0.6 55.2±0.8 54.6±0.2 56.2±0.8 56.3±0.9

2000 labels 57.8±0.9 57.6 60.0±0.8 60.6±1.3 59.1±2.2 59.3±1.4 60.2±0.7 61.0±1.0

4000 labels 62.4±0.6 59.5 63.6±0.7 64.3±1.0 62.9±0.7 62.4±1.0 64.1±0.8 64.1±0.8

T/τ Model (with Att) Memory (×106) Runtime (ms)

2

HGCN 4045 9.25
HGCN (LocalAtt) 4246 1310.31
LGCN 4630 16.64
HyboNet 4368 14.90
HGDE 62 13.66

4

HGCN 10255 29.77
HGCN (LocalAtt) 10578 4086.08
LGCN 12675 40.88
HyboNet 11931 35.23
HGDE 73 20.28

8

HGCN 22674 67.24
HGCN (LocalAtt) OOM �

LGCN 23712 160.75
HyboNet 23403 122.55
HGDE 112 34.11

16
All Baselines OOM �

HGDE 188 61.95

consumption and better precision, indicating that a larger τ may be necessary for
implicit solvers. To align with multi-layer GNN schema (step-size is analogous
to depth), we employ HGDE with HRK4 (τ = 1) for further evaluation.

Discrete-Continuous Depth Baselines. In Table 3, we compare our mod-
els with discrete and continuous-depth baselines. We observe that our method
with T ∈ [12, 16] achieves competitive results with the state-of-the-art models.
Notably, HGDE models consistently outperform discrete models and continu-
ous models with Euclidean embeddings, highlighting the benefits of utilizing
hyperbolic embeddings in a continuous-depth framework. Compared to posi-
tion encoding approaches (e.g., HyLa, BLEND), HGDE exhibits superior per-
formance, indicating the feasibility of using hyperbolic space embeddings directly
over initial position encoding. Interestingly, we find HGDE models performs bet-
ter when increasing T up to 12, but slightly worse at T = 16. This may due to
the capacity of Poincaré ball or potential over-smoothing. Overall, the results
underscore the effectiveness of the proposed HGDE models in harnessing the
power of hyperbolic space for graph data modeling.
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Heterophilic Relationship Baselines. We show that HGDE is also capable in
managing heterophilic relationship. In Table 4, HGDE achieves the highest scores
on the Texas and Cornell and a competitive score on Wisconsin. This shows
that hyperbolic space is beneficial in learning hierarchical heterophilic relation-
ships. It also reflects the flexibility of HGDE as a hyperbolic vector flow for
embedding high-order structures, with our model, powered by HPDE, outper-
forming other baselines on average.

Image and Text Classification. We follow the experiment setup in [36] and
conduct additional experiments on the CIFAR, STL, and 20News datasets to
evaluate HGDE in multiple scenarios with limited label rates. We employ the
SimCLR [9] extracted embedding as provided in [36] for image classification.
For the pre-processed 20News [28] for text classification, we take 10 topics and
regard words with TF-IDF > 5 as features. For graph-based models, we use
kNN to construct a graph over input features. For HGDE (hyperbolic), we map
the initial feature to Dκ via expκ

o(·) before the embedding process. As depicted
in Table 5(Left), HGDE consistently surpasses its opponents, including MLP,
LabelProp [47], ManiReg [2], GCN-kNN, GAT-kNN, DenseGAT, and GLCN
[21]. Across all datasets, HGDE outperforms the Euclidean models, underscor-
ing its proficiency in understanding the potential hierarchical structure of image
embeddings [22] and text embeddings. Furthermore, HGDE exhibits good per-
formance compared to static graph-based baselines e.g., GAT-kNN and GLCN,
which underlines the distinct advantage of the evolving diffusivity mechanism in
understanding the potential hierarchical structure of image/text embeddings.

5.3 Ablation Study

Efficacy of Hyperbolic Residual. Figure 3 visualizes the convergence of
hyperbolic energy through iterations. We observe that, without residuals, the
averaged energy rapidly decreases to near-zero values, supporting the hypoth-
esis that, without residual connections, the embedding can evolve to an overly
smoothed state that is potentially low in expressiveness. However, with hyper-
bolic residuals, for all three integrators, the average energy decreases over the
first few iterations and then appears to stabilize around a certain value above
zero. This behavior is consistent across both datasets, suggesting that the system
is able to converge to a stable state with non-zero energy (Fig. 4).

Efficacy of Diffusivity Function. Figure 5 visualizes sampled node embed-
dings and their edge diffusivity on Cora. The blue edges are inherently deter-
mined by the graph structure. Red ones are determined by global attention,
showing that algdiff accounts for high-order relations. The bar graph shows the
average accuracy on various datasets produced by HGDE with different diffu-
sivity functions. We find that anisotropic approaches generally outperform the
isotropic approach, suggesting the necessity of directional information in the dif-
fusion process. Although the performance degrades on CiteSeer when using
algdiff , there are significant improvements on other graphs, certifying the benefit
of higher-order proximity induced by local-global diffusivity.
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Fig. 3. Hyperbolic Dirichlet energy fκ
DE(·) variation

through t on Cora (left) and CiteSeer (right).
Models are compared with different integrators w
or w/o hyperbolic residual.

Fig. 4. Averaged node classification performance
comparison of models with different diffusivity func-
tions on various datasets.

Fig. 5. Cora diffusivity (400
node sampled from D

2
κ embed-

dings) produced by aldiff (left)
and algdiff (right), blue and red
lines denote local and global
attention; bolder lines indicate
more attentiveness. (Color figure
online)

Parameter Efficiency. In Table 5 (Right), we provide an additional compari-
son of peak GPU memory usage and per-epoch running time on the Cora. We
tested HGDE-E where all models have a 16 hidden dim. Our model significantly
outperforms the other baselines in both training time (for ≥ 4 layers) and mem-
ory consumption. The memory reduction is primarily due to the utilization of
sparse attention, and the advantages of a weight-tied network (requiring only
single-layer parameters) as a nature of HPDE. The training time efficiency is
achieved by eliminating layer-wise feature transformation, implementing weight-
tying, and applying scattered-agg for hyperbolic representation.

6 Conclusion

We developed multiple numerical integrators for HPDE, and proposed the first
hyperbolic continuous-time embedding diffusion framework – HGDE. Being
capable of capturing both low and high order proximity, HGDE outperforms
both Euclidean and hyperbolic baselines on various datasets. The effectiveness
of HGDE was further validated by the ablation studies on hyperbolic energy
and diffusivity functions. The superiority of HGDE underscores the potential of
developing PDE-based non-Euclidean models.

Limitation. While HGDE presents strong performance in modeling graph data,
hyperbolic spaces may not always be optimal, particularly for data without clear
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hierarchical structures. For instance, HGDE is difficult to beat natural Euclidean
deep models (e.g. GCNII) on the non-hierarchical Cora. Moreover, a higher
memory complexity and lower training time only tells the efficiency rather than
scalability of HGDE, since our models are evaluated with fixed number of param-
eters (which is natural for ODE-based models), increasing T is not necessarily
scaling up. Future work include addressing these limitations and exploring the
scalability and generalizability of HGDE in diverse real-world settings.
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Abstract. Graph Neural Networks (GNNs) have superior capability in
learning graph data. Full-graph GNN training generally has high accu-
racy, however, it suffers from large peak memory usage and encounters
the Out-of-Memory problem when handling large graphs. To address
this memory problem, a popular solution is mini-batch GNN train-
ing. However, mini-batch GNN training increases the training variance
and sacrifices the model accuracy. In this paper, we propose a new
memory-efficient GNN training method using spanning subgraph, called
SpanGNN. SpanGNN trains GNN models over a sequence of spanning
subgraphs, which are constructed from empty structure. To overcome
the excessive peak memory consumption problem, SpanGNN selects a
set of edges from the original graph to incrementally update the span-
ning subgraph between every epoch. To ensure the model accuracy, we
introduce two types of edge sampling strategies (i.e., variance-reduced
and noise-reduced), and help SpanGNN select high-quality edges for
the GNN learning. We conduct experiments with SpanGNN on widely
used datasets, demonstrating SpanGNN’s advantages in the model per-
formance and low peak memory usage.

1 Introduction

Graph Neural Networks (GNNs) achieve the state-of-the-art performance on
graph learning tasks, such as node classification [16,19,27], link prediction [23,39]
and graph classification [9,37]. They have been widely used in various domains,
like social network analysis [10,26], recommendation [17,34,35], healthcare [1,7],
short-term load forecasting [25] and bio-informatics [11,21]. Most of GNNs [16,
19,27,36] follow the message passing paradigm [13], which exploits graph topol-
ogy and node/edge features simultaneously. In this paradigm, the edge related
memory consumption predominantly influences the amount of peak GPU mem-
ory [30]. The edge calculation of GNNs involves four operations, which are collec-
tion, messaging, aggregation, and feature updating. The four operations require
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the storage of intermediate results (e.g., the updated embedding of edge fea-
ture and the aggregation of feature embedding), which are used for the gradient
calculation in the subsequent backward propagation process. According to the
existing empirical studies [30], the peak memory consumption can be up to 100
times of the size of dataset itself. As a result, the high memory usage of the edge
calculation restricts the GNNs scaling to large graphs.

Since the edge calculation is the main factor of high memory usage, an intu-
itive idea is to reduce the number of edges for training. Sampling is a standard
technique to generate graphs with few edges. It has been well studied in the mini-
batch training. Many works [6,8,16,37,38] use various sampling techniques to
create mini-batches, which are subgraphs rooted from a limited number of target
nodes. Although mini-batch training is scalable and memory-efficient, it brings
in non-negligible training variance and heavily compromises model accuracy.
Full-graph GNN training is more accurate than mini-batch training [18]. How-
ever, the existing complex sampling methods cannot be efficiently adopted to the
full-graph GNN training. The sampling step is time-consuming and becomes the
efficiency bottleneck for GNN training on large graphs [30]. Unlike the sampling
technique, DropEdge [22] randomly drops edges of the original graph during
the full-graph training. It not only reduces the size of peak memory, but also is
scalable to large graphs. Nonetheless, DropEdge also suffers from a prominent
model accuracy loss as the edge drop ratio increases, especially on large graphs.
This limitation arises because DropEdge treats all edges equally and ignores the
inherent structure of the original graph. Therefore, how to develop a memory-
efficient and accurate full-graph GNN learning method remains unsolved.

In this paper, we propose SpanGNN to achieve memory-efficient full-graph
GNN training while guaranteeing the model accuracy. First, SpanGNN trains
GNN models across a sequence of spanning subgraphs, which are constructed
from empty structure. Each spanning subgraph contains significantly fewer edges
than those present in the original graphs, thus effectively reducing the peak
memory footprint. Furthermore, in each training epoch, SpanGNN selects a set
of edges from the original graph to incrementally update the spanning subgraph
that used in the previous epoch. Meanwhile, the updated spanning graph always
satisfies the sparsity constraint defined by the edge ratio α (See the definition in
Sect. 2.2). Second, to guarantee the model accuracy and training efficiency, we
propose a fast quality-aware edge selection method for SpanGNN. We analyze
the training variance and gradient noise that inherent in the spanning subgraph
training framework, and propose variance-reduced sampling and gradient-noise
reduced sampling strategies, respectively, to help SpanGNN selects a set of high-
quality edges and guarantee the model accuracy. However, it is expensive to
directly apply the above two sampling strategies over large graphs, we introduce
a two-step sampling method to speed up the edge selection process. Extensive
experiments demonstrate that SpanGNN is capable of saving over 40% of GPU
memory usage without compromising training performance.
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Our main contributions are summarized as follows:

– We propose SpanGNN that supports memory-efficient and accurate full-graph
GNN training on large graphs. The new method reduces the peak memory
usage significantly during the training, meanwhile achieving high model accu-
racy.

– We introduce a fast quality-aware edge selection method to alleviate the neg-
ative impacts caused by spanning subgraph training and ensure training effi-
ciency.

– We analyze the connection between SpanGNN and curriculum learning [3].
With the help of quality-aware edge selection, SpanGNN selects edges that
are highly beneficial to the learning in priority, and then gradually uses edges
with low benefits.

– Experimental results on widely used datasets demonstrate that SpanGNN
reduces peak memory usage effectively while guaranteeing that the model
accuracy is almost equivalent to the one of full graph training.

2 Preliminary

2.1 Graph Neural Networks

The general matrix formulation of GNN models is as follows:

Z(l) = PH(l−1)W (l−1), (1)

H(l) = σ(Z(l)), (2)

where Z(l), H(l), and W (l) represent the intermediate embedding matrix, feature
embedding matrix and trainable weight matrix at l-th layer, respectively. σ is
a non-linear activation function, like ReLu. P is the propagation matrix that is
transformed from the graph adjacency matrix.

During the backward propagation, the gradient of the loss with respect to
W (l−1) is as follows:

∇W (l−1)L =
∂L

∂W (l−1)
= (H(l−1))T PT δ(l), (3)

where δ(l) denotes the gradient of the loss with respect to Z(l). Then, W (l−1) is
updated as follows:

W (l−1) = W (l−1) − η∇W (l−1)L, (4)

where η denotes the learning rate of training.

2.2 Spanning Subgraph GNN Training

Given a graph G = (V,E), a spanning subgraph Gs = (Vs, Es) generated from
G is a subgraph with vertex set V , i.e., Vs = V and Es ⊂ E [32]. We define edge
ratio α between Gs and G is |Es|

|E| . α represents the degree of edge reduction of a
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spanning subgraph against the corresponding original graph. The smaller α is,
the more edges are deleted, and less memory is demanded for training over the
spanning subgraph.

Spanning subgraph GNN training make GNNs only propagation along the
subgraph Gs. Therefore, the key GNN operations (Eqs. 1-3) are rewritten as:

Z̃(l) = P̃H(l−1)W (l−1), (5)

H̃(l) = σ(Z̃(l)), (6)

∇W (l−1)L̃ =
∂L̃

∂W (l−1)
= (H̃(l−1))T P̃T δ̃(l), (7)

where P̃ is the propagation matrix that is transformed from the spanning sub-
graph. Spanning subgraph GNN training results in approximated node embed-
ding matrix H̃(l) and the approximated embedding gradients δ̃(l). The model
accuracy is affected by these approximated intermediate results as well. We will
discuss the main factors that influence the model accuracy in Sect. 4.

3 SpanGNN: Memory-Efficient Full-Graph GNN
Learning

Fig. 1. The framework of SpanGNN.

Figure 1 illustrates the overview of SpanGNN. It starts with an empty span-
ning subgraph GT0 and progressively includes more edges during the training.
For every training epoch Ti, SpanGNN selects a set of edges from the original
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graph G, updates the spanning subgraph GTi−1 with the selected edge set, and
generates a new spanning subgraph GTi

. Furthermore, to limit the peak memory
usage, SpanGNN guarantees that, in each training epoch, the edge ratio |ETi

|
|E|

does not exceed αup, which is preset by users. According to the definition of edge
ratio, the parameter αup implies the upper bound of peak memory usage during
the training. Therefore, SpanGNN is able to control the maximal size of peak
memory flexibly and is memory-efficient. The pseudocode of the framework is
shown in Sect. 2.2 of our technical report [15].

Edge Selection. Edges in the graph contribute differently to the GNN training,
so it is important to pick out the most beneficial edges for the training to guar-
antee the model accuracy. Weighted sampling is a standard approach to select
important edges in priority. In this paper, we analyze two types of factors that
influence the model accuracy and propose quality-aware edge selection approach
in Sect. 4. The new edge selection approach adopts variance-reduced sampling
strategy and gradient-noise reduced sampling strategy to select high-quality
edges. However, directly sampling from the entire graph with non-uniform prob-
ability distribution is time-consuming. We further introduce the two-step edge
sampling method to speed up the edge selection. In addition, using the quality-
aware edge selection approach, the training process of SpanGNN aligns with the
principles of curriculum learning (discussed in Sect. 5), therefore, SpanGNN has
high accuracy.

Graph Update. In order to continuously satisfy the edge ratio constraint (i.e.,
|GTi

|
|G| ≤ αup), we introduce an edge drop step in the graph update. In each train-

ing epoch Ti, if SpanGNN detects that the new spanning subgraph will violate
the edge ratio constraint, it first randomly drops a set of edges in GTi−1 , then
adds the selected edge set to the subgraph GTi−1 ; otherwise, the selected edge set
is directly added into the subgraph GTi−1 . The edge drop step helps SpanGNN
ensure the memory-efficiency. More importantly, it improves the diversity of the
trained spanning subgraphs and enhances the model accuracy as well.

4 Fast Quality-Aware Edge Selection

In this section, we first introduce two types of edge sampling strategies, which are
variance-reduced sampling strategy and gradient noise-reduced sampling strat-
egy. Then, we introduce the two-step edge sampling method that optimizes the
efficiency of edge selection over large graphs.

4.1 Variance-Minimized Sampling Strategy

The Variance of Aggregated Embedding. Since the edges are probability
selected in SpanGNN, the spanning subgraph can be treated as a sampled sub-
graph from the original graph, and the variance of aggregated embeddings in
SpanGNN affects the model accuracy and should not be ignored. Similar to the
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existing works [38], the unbiased estimator of aggregated embeddings without
activation and the variance of embeddings estimator can be defined as:

ξ =
∑

(l)

∑

e

b
(l)
e

pe
1(l)

e (8)

V ar(ξ) =
∑

e

(
∑

l b
(l)
e )2

pe
−

∑

e

(
∑

l

b(l)e )2, (9)

where pe denotes the probability of an edge to be sampled, b
(l)
e = Pv,ux̃

(l−1)
u +

Pu,vx̃
(l−1)
v , P is the propagation matrix (e.g., the normalized adjacency matrix

in GCN), x̃ is feature matrix after linear operation, and 1e = 1 if e is in Es.

Variance Minimization. To minimize the variance of the aggregated embed-
dings estimator, we follow the strategy used in GraphSAINT [38]. By using the
Cauchy-Schwarz inequality, the variance of aggregated embeddings is minimized
when pe ∝ |∑l b

(l)
e |, which can be simplified as:

pe ∝ Pv,u + Pu,v =
1

deg(u)
+

1
deg(v)

. (10)

The probability pe defined in Eq. 10 interprets that if two nodes u, v are
connected and they have few neighbors, then edge between u and v are more
likely to be sampled and to reduce the variance. In other words, such edges will
contain more information for the nodes, which is more conducive to the training
of the node.

4.2 Gradient Noise-Reduced Sampling Strategy

The Noise of Gradient. As mentioned before, with the spanning subgraphs,
the final learned embeddings change compared to the exact ones. Therefore,
the results of loss function and gradient change as well. We define the noise of
gradient as the change between ∇W (l−1)Ls that is calculated by original graph
training and spanning subgraph training. We formulate the noise of gradient as
below:

Gnoise = ∇W (l−1)L̃ − ∇W (l−1)L. (11)

Gradient Noise Reduction. The noise of gradient slows down the convergence
and affects the model accuracy. To solve the problem, we derive a probability
distribution for edge sampling that can reduce the upper bound of gradient noise.
The probability of an edge e(u, v) is formulated as:

pv,u =
‖P∗,u‖2∑

(v,u)∈E ‖P∗,u‖2
, (12)
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where P∗,u denotes the vector of nodeu’s propagation matrix.. The larger the
sampling probability of the edge, the smaller the gradient noise in the training
process.

Next, we theoretically analyze the above probability and dig into the upper
bound of the expected gradient noise, which is summarized in Theorem 1.

Theorem 1. Upper bound of the expected gradient noise. Given the
square of Frobenius norm ‖P‖2F ,

∥∥H(l)
∥∥2

F
,
∥∥δ(l)

∥∥2

F
are bounded by some constants

B, C, D and the L2-norm
∥∥H(l)W (l)

∥∥ is bounded by constant ξ. Assume that the
activation function σ is ρσ−Lipschitz and the gradient ∇Z(l)L is ρZ−Lipschitz,
then we have:

E
[‖Gnoise‖2

F

] ≤ (2BDρσ + 4BCρZ)E

[∥
∥
∥Z̃(l) − Z(l)

∥
∥
∥
2

F

]
+ 4BCD. (13)

According to E.q. 13, the upper bound of the expected gradient noise is

decided by
∥∥∥Z̃(l) − Z(l)

∥∥∥
2

F
, i.e., the expected value of the difference of the hidden

layer embedding. We further analyze the upper bound of of this difference.

Theorem 2. Upper bound of the expected hidden embeddings’ differ-
ence. Given the entire edge set E and the selected edge subset Es, we derive the
following inequation:

EEs

[∥∥∥Z̃V,∗ − ZV,∗
∥∥∥
2

F

]
≤ 1

|Es|
∑

(v,u)∈E

1
p(v,u)

‖P∗,u‖22 ξ2. (14)

The detailed proof of the above two theorems are presented in Sect. 4.2 of
our technical report [15]. As illustrated in E.q. 14, we find the upper bound of
hidden embeddings’ difference is related to edge sampling probability pv,u. By
combining Eq. 13 and removing the constants that are hard to calculate, we can
formulate a gradient noise optimization problem and minimize the value of the
noise by using the following constraint:

s.t.
∑

(v,u)∈E

p(v,u) = 1 (15)

Based on E.q. 14 and Eq. 15, by using the Lagrange function, we derive the
edge sampling probability as defined in E.q. 12, and the probability can reduce
the gradient noise in the spanning subgraph training.

4.3 Two-Step Edge Sampling Method

The probabilities defined by Eqs. 10 and 12 are non-uniform. It is a challenge
to fast sample non-uniform distribution in large sample space [24]. An efficient
sampling method, Alias sampling [28], requires massive memory and entails the
high cost of building data structures. In this paper, we propose a simple but
effective approximate sampling method – two-step edge sampling to speed up
the quality-aware edge selection process.
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In the first step, SpanGNN reduces the sample space by randomly sampling
an edge set, denoted as et, in iteration Tt. This step confines the final selected
edges focusing on the edge set et rather than the entire edge set E. In the second
step, SpanGNN samples e

′
t from the edge set et according to the probability

defined by E.q. 10 and 12. The pseudocode of quality-aware edge selection with
two-step sampling is given in Sect. 4.3 of our technical report [15]. Additionally,
we show more details about parameter sensitive analysis of two-step sampling
in Sect. 6.6 of our technical report [15].

Here, we discuss the advantages of two-step sampling with a memory-efficient
non-uniform sampling method, which first constructs a cumulative probabil-
ity array, then uses random numbers to select elements. The time complex-
ity entailed by the first step of random sampling from the entire edge set is
O(|e|). The time complexity of the second step of weighted sampling is about
O(|e| + |e′ |log(|e|)). Therefore, the total time complexity of the two-step sam-
pling is O(|e|) + O(|e′ |log(|e|)). However, if we directly sample |e′ | edges from
entire edge set, the time complexity is O(|E| + |e′ |log(|E|)). In practice, |e| is
typically several to ten times |e′ |, while |E| can be up to a hundred times larger
than |e|. Therefore, the time cost of the two-step sampling is lower than that of
direct sampling.

5 Connection to Curriculum Learning

In this section, we analyze the connection between SpanGNN and curriculum
learning. To our knowledge, curriculum learning increases the robustness of the
learned model against noisy training samples by training samples from easy to
hard. An intuitive explanation is that curriculum learning spends less time with
the harder (noisy) samples to achieve better robustness.

SpanGNN incorporates the principles of curriculum learning by constructing
different graph structures (i.e., spanning subgraphs) during the learning process.
SpanGNN not only mirrors the educational strategy of progressing from easy to
hard lessons, but also aligns with the model’s need to first grasp fundamental
concepts before tackling more challenging tasks. The detailed discussion is as
follows.

First, in SpanGNN, the empty graph at the beginning can be regarded as
the simplest ‘course’. In the training process, edges are gradually added to the
graph. This progressive learning process helps the model master basic structural
information first, and then learn more complex graph structures, which helps
the model to learn more robust and avoid overfitting.

Second, through the Quality-aware Edge Selection, we prioritize edges that
are more significant for model training, to help minimize feature variance and
reduce gradient noise. Edges with smaller feature variance mean that the aggre-
gated features are more consistent. Also, edges with less gradient noise mean
that they can help the model learn more stable. This is similar to the ‘from easy
to hard’ in curriculum learning, where we initially learn the data that will be
more beneficial for subsequent learning.
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6 Experimental Studies

In this section, we start with the descriptions of experimental settings, which
cover the datasets and configurations used in the experiments. Then, we evaluate
the performance of SpanGNN by comparing it with full-graph training methods,
conduct ablation studies to verify the effectiveness of the proposed techniques,
and study the efficiency of SpanGNN. Finally, we also compare SpanGNN with
mini-batch training methods to demonstrate that generally SpanGNN is able to
achieve high accuracy. In addition, due to the limited space, we put the results
of parameter sensitivity in Sect. 6.6 of our technical report [15].

6.1 Experimental Setups

Table 1. Dataset statistics

Dataset Dataset attributions
name #Nodes #Edges Features Classes

Ogbn-proteins 132,534 79,122,504 8 112
Reddit 232,965 114,615,892 602 41
Amazon 1,598,960 264,339,468 200 107
Ogbn-products 2,449,029 126,167,053 100 47

Environments and Datasets. We implemented SpanGNN with PyTorch 2.0.1,
and the code is released1. We evaluate the performance of SpanGNN using two
common GNN models including GCN [19] and SAGE [16] with the mean aggre-
gator. All experiments are conducted on NVIDIA RTX A6000. We use four large
graph datasets. Table 1 lists the summary of the datasets.

Performance Metrics and Evaluation Protocol. Accuracy is used to mea-
sure the effectiveness of SpanGNN on Reddit and Ogbn-products datasets, F1-
score is used on Amazon, and AUC-ROC is used on Ogbn-proteins. All perfor-
mance metrics are calculated on the validation set and the results are the average
of three times experiments. Furthermore, we conduct experiments under different
edge ratios to verify the memory-efficiency of SpanGNN.

Baselines. 1) Full-graph. It is a naive full-graph training method, but con-
sumes heavy GPU memory. 2) DropEdge. It has good scalability for training on
large graphs. 3) GraphSAGE, ClusterGCN and GraphSAINT are selected
as the representations of the mini-batch training.

Additionally, SpanGNN equipped with variance-minimized sampling and gra-
dient noise-reduced sampling respectively are denoted by SpanGNN-F and
SpanGNN-G.
1 https://github.com/guxizhi/SpanGNN.

https://github.com/guxizhi/SpanGNN
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Fig. 2. The performance of the training methods on GCN (Up-side) and SAGE (Down-
side) with various edge ratios.

6.2 Performance of SpanGNN

Comparison of Model Accuracy. Figure. 2 illustrates the model accuracy
of SpanGNN, Full-graph and DropEdge on GCN and SAGE with various edge
ratios αup, which are set from 0.3 to 0.7. We see that SpanGNN-F’s performance
is similar to or even better than Full-graph. For example, on Reddit, the accuracy
of SpanGNN-F is higher than the one of Full-graph with SAGE, regardless of αup.
On Ogbn-proteins, as αup gets larger, the AUC-ROC of SpanGNN-F gradually
exceeds the one of Full-graph. The exception is on Amazon, where SpanGNN-
G is better than SpanGNN-F as αup gets larger. This is because SpanGNN-F’s
sampling probability on Amazon is extremely skewed, and it is caused by the fact
that few edges are connected by two low-degree nodes. These minority edges are
given larger weight during selection, causing them to be selected repeatedly in
every edge selection. It is hard to obtain enough edges for the spanning subgraph
(i.e., the edge ratio of a spanning subgraph is hard to reach αup) and results in a
decrease of F1-score. This problem also reduces the size of peak memory usage.
In Fig. 3, we see that the peak memory usage of SpanGNN-F is stable with
respect to different edge ratios on Amazon.

Compared to SpanGNN, DropEdge suffers from the decrease in model perfor-
mance more seriously. On Reddit, DropEdge losses the accuracy by up to 1.5%
on GCN and by up to 0.8% on SAGE. Even worse, DropEdge severely damages
the model’s F1-score on Amazon by more than 25%. Overall, SpanGNN is better
at ensuring model’s performance compared to DropEdge.

Comparison of Peak Memory Usage. Here we compare the peak memory
usage among SpanGNN, Full-graph, DropeEdge. As shown in Fig. 3, we see that
reducing the number of edges effectively reduces the size of peak memory by
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Fig. 3. Peak Memory Usage on GCN(Up-side) and SAGE(Down-side).

comparing SpanGNN and Full-graph. There is no significant difference between
SpanGNN and DropEdge, since they drop the same size of edges. In addition,
the percentage of peak memory saved is also independent of the model. By using
only 30% edges, SpanGNN and DropEdge can reduce the peak memory usage by
42%, 25% and 47% on Reddit, Ogbn-products and Ogbn-proteins, respectively.
Note that on Amazon, due to the actual edge ratio cannot achieve αup, which
is discussed in the “Comparison of model accuracy”, SpanGNN-F has less peak
memory overhead.

Fig. 4. Ablation studies on GCN(Up-side) and SAGE(Down-side)
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6.3 Ablation Studies

Effectiveness of the Framework. In order to verify the effectiveness of the
principles of curriculum learning used by SpanGNN, we compare the model
accuracy between SpanGNN and SpanGNN w/o EE. Instead of the empty graph,
SpanGNN w/o EE is initialized by the graph with αup|G| edges, which are
selected by quality-aware edge selection. The results are shown in Fig. 4.

The results indicate that SpanGNN improves the model performance on var-
ious datasets by adopting the curriculum learning principles. On Ogbn-proteins,
it is clear that SpanGNN outperforms SpanGNN w/o EE and the improvement
is around 0.2%. On other datasets, depending on the based model and the value
of αup, SpanGNN is generally better than or equal to SpanGNN w/o EE.

Effectiveness of Quality-Aware Edge Selection. In order to verify the effec-
tiveness of variance-minimized sampling and gradient noise-reduced sampling
strategies, we compare the model performance among SpanGNN-G, SpanGNN-
F, and SpanGNN w/o QA. Here SpanGNN w/o QA applies random sampling
instead of quality-aware sampling. The results are shown in Fig. 4.

Generally, SpanGNN-G and SpanGNN-F have better performance than
SpanGNN w/o QA. The advantage can reach 1.5% on Reddit and even more
than 20% on Amazon. In certain cases, SpanGNN w/o QA might outperform
SpanGNN. As discussed in the “Comparison of model accuracy”, on Amazon,
the spanning subgraph in SpanGNN is easy to contain fewer edges than the
required ones defined by αup because of the skewed sampling probability. How-
ever, SpanGNN w/o QA can successfully reach αup, and contain sufficient edges.
Therefore, SpanGNN does not always perform better than SpanGNN w/o QA
on SAGE. Overall, we conclude that the variance-minimized sampling and the
gradient noise-reduced sampling generally plays important roles in improving
performance of SpanGNN.

Fig. 5. The average time cost of generating spanning subgraphs.
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6.4 Efficiency of SpanGNN

In this section, we demonstrate the efficiency of SpanGNN by comparing the
average time cost of generating spanning subgraphs. Figure 5 illustrates the
results of SpanGNN, SpanGNN w/o EE, DropEdge and direct sampling from
the entire graph based on quality-aware edge selection (DS). To guarantee the
fairness of the comparison, all methods have the same edge ratio (i.e., αup = 0.3).

As we can see, SpanGNN is more efficient than other frameworks, and inte-
grating curriculum learning principle does not destroy the execution efficiency.
Specifically, compared to DropEdge, SpanGNN speeds up from 1.95x to 5.65x
on different datasets. As analyzed in Sect. 4.3, the time complexity of generat-
ing spanning subgraphs in SpanGNN is proportional to the number of first-step
sampling edges e. Due to dropping a lot of edges each iteration (i.e., αup = 0.3),
DropEdge entails much more time cost than SpanGNN. When compared to DS,
SpanGNN speeds up from 26.99x to 132.08x. This is because the time complex-
ity of DS is proportional to the number of edges in the entire graphs, which can
reach hundreds of times that of e.

Table 2. The comparison of model performance with mini-batch training methods.
Note that SpanGNN’s results are determined by taking the best one among different
edge ratios.

GNN Model Reddit Ogbn-products Amazon Ogbn-proteins
Acc Acc F1-score AUC-ROC

GCN SpanGNN-G 95.26 91.50 47.79 87.11
SpanGNN-F 95.46 91.68 46.78 87.19
GraphSAGE 91.99 90.18 28.73 71.31
ClusterGCN 92.05 89.94 46.86 79.30
GraphSAINT96.53 90.14 7.50 80.12

SAGE SpanGNN-G 96.51 91.33 76.29 90.36
SpanGNN-F 96.62 91.90 76.26 90.49
GraphSAGE 94.55 90.57 72.99 82.35
ClusterGCN 94.74 90.55 77.43 83.54
GraphSAINT97.46 90.15 75.21 85.35

6.5 Performance of SpanGNN Compared to Mini-batch Training

In this section, we compare SpanGNN with different mini-batch training meth-
ods in terms of model performance. The memory usages of mini-batch training
is related to the batch size, and it is more flexible than SpanGNN in terms
of memory consumption. However, as shown in Table 2, generally SpanGNN
achieves better performance than the mini-batch methods. On Ogbn-products
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and Ogbn-proteins, SpanGNN always outperforms the mini-batch methods and
its improvements can achieve 1.7% and 7.0% respectively. On other datasets,
SpanGNN is either the best one or the second best but very close to the best
one. Therefore, compared to the mini-batch training, SpanGNN achieves high
model performance.

7 Related Work

7.1 Memory-Efficient Graph Neural Networks

Mini-batch training is an effective approach to reduce the memory consumption.
Existing works do a lot of exploration on sampling methods with mini-batch
training approach. The works [5,16] apply node-level sampling to select a set of
nodes in neighbors. In this way, it reduce the number of each node’s neighbors in
the phase of aggregation. However, it can not resolve the problem of ‘neighbor
explosion’ when GNNs goes deeper. The works [8,42] apply layer-level sampling
to select a fixed number of nodes in each GNN layer. Since this type of sam-
pling methods use fixed number of nodes in the each layer, it can alleviate the
‘neighbor explosion’. However, FastGCN [8] suffers from unbalanced receptive
fields. LADIES [42] tracks each node’s neighbors in the previous layer and cal-
culates an importance estimator, but causes much overhead. The works [6,38]
apply subgraph-level sampling to limit the aggregation field to a subgraph. Clus-
terGCN [6] partitions the graph into a set of clusters and then randomly com-
bines partitions to be a mini-batch. GraphSAINT [38] directly forms subgraphs
with overlapping nodes among mini-batches. However, compared to Full-graph
training, mini-batch training incurs information loss.

Even though almost no work explicitly discusses using spanning subgraph to
reduce peak memory usage during GNNs training, there exist some close works.
DropEdge [22] randomly removes a certain percentage of edges from the original
input graph in each epoch. It alleviates the problem of over-smoothness [2,14]
and over-fitting and can be considered as a strategy that uses spanning subgraph.
TADropEdge [12] additionally considers the factors of graph structure. They ana-
lyze the graph connectivity and gives larger weight to keep inter-cluster edges
in GNNs training. NeuralSparse [41] applies a deep neural network to learn how
to sparse graphs with the feedback of downstream prediction tasks. It improves
generalization ability by removing potentially task-irrelevant edges. SGCN [20]
also considers sparsification as an optimization problem and applies ADMM-
based solution to solve it. But these works focus on improving the prediction
results, overlooking the problem of peak memory usage. In addition, some other
works directly delete or change the structure of GNNs model. SGC [33] reduces
redundant calculations by deleting the non-linear activation function between
GCN layers. PPRGo [4], by calculating the influence matrix, avoids the over-
head of collecting multi-hop neighbors. However, they fundamentally change the
characteristics of GNNs, and cannot directly be applied to existing models.
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7.2 Curriculum Learning on GNN

Recently, curriculum learning is introduced into GNNs training and achieves
performance improvement in GNN models. CurGraph [29] introduces curriculum
learning to train GNNs with graphs in ascending order of difficulty. This method
uses the informax technique for graph-level embeddings and a neural density
estimator to model the embedding distributions. After calculating the difficulty
scores of graphs, it first exposes GNN models to easy graphs and moves on
to harder ones. They focus on the prediction of graphs. CLnode [31] defines
the difficulty of samples at the level of the node and applies various pacing
functions to train GNNs from easy-to-hard. It measures nodes’ difficulty from the
perspective of neighborhoods and features. RCL [40] considers that connections
of nodes significantly affect the curriculum learning. It distinguishes the level of
difficulty for edges and gradually incorporates more information at the level of
edges. However, neither CLnode nor RCL takes the memory usage into account,
and they need to train GNNs on the entire graphs. Differently, our work sets an
upper bound of the number of edges and designs difficulty scoring function by
fully considering the impact of the spanning subgraph.

8 Conclusion

In this paper, we proposed SpanGNN that carries out GNNs training on large-
scale graphs efficiently by using spanning subgraphs and integrating the princi-
ples of curriculum learning. SpanGNN consists of two main components to limit
the memory overhead and ensure the model performance. Quality-aware edge
selection samples beneficial edges for spanning subgraph GNN training and fol-
lows the manner of curriculum learning to add edges for training. Graph update
determines the size of the spanning subgraph at each epoch to control the peak
memory. Overall, we provide an efficient large-scale GNN training method that
can reduce memory overhead and maintain the model performance.
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Abstract. Lung-infected area segmentation is crucial for assessing the
severity of lung diseases. However, existing image-text multi-modal meth-
ods typically rely on labour-intensive annotations for model training,
posing challenges regarding time and expertise. To address this issue,
we propose a novel attribute knowledge guided framework for unsuper-
vised lung-infected area segmentation (AKGNet), which achieves seg-
mentation solely based on image-text data without any mask annota-
tion. AKGNet conducts text attribute knowledge learning, attribute-
image cross-attention fusion, and high-confidence based pseudo-label
exploration simultaneously. It learns statistical information and captures
spatial correlations between image and text attributes in the embedding
space, iteratively refining the mask to enhance segmentation. Specifically,
we introduce a text attribute knowledge learning module by extracting
attribute knowledge and deploying it for feature representation learning,
enabling the model to learn statistical information and adapt to differ-
ent attributes. Moreover, we devise an attribute-image cross-attention
module by exploiting the correlations between attributes and images in
the embedding space to capture spatial dependency information, thus
selectively focusing on relevant regions. Finally, a self-training mask
improvement process is employed by generating pseudo-labels using high-
confidence predictions and enhancing the mask and segmentation iter-
atively. Experimental results on a benchmark medical image dataset
demonstrate the superior performance of our proposed method compared
to state-of-the-art segmentation techniques in unsupervised scenarios.

Keywords: Image-Text Model · Unsupervised Medical Image
Segmentation

1 Introduction

Medical image analysis is crucial for diagnosing lung diseases, particularly pneu-
monia and tuberculosis [2,8,23]. A fundamental task within this domain is lung-
infected region segmentation, aimed at identifying infected regions in medical
images [10,17]. With the advancements in deep neural networks, many fully-
supervised medical image segmentation methods have emerged, often relying on
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
A. Bifet et al. (Eds.): ECML PKDD 2024, LNAI 14943, pp. 267–283, 2024.
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Fig. 1. Illustration of the proposed framework. (a) Existing methods require mask
annotations to train the model to achieve image-text lung infection region segmenta-
tion. (b) Our proposed AKGNet achieves image-text based unsupervised lung infection
region segmentation without mask annotation by mining valuable text attribute knowl-
edge and exploiting statistical information.

densely-labeled masks for model training [4,22]. Additionally, some approaches
utilize image-text pairs to develop more expressive image-text models, thus
enhancing segmentation performance in the medical domain [14].

While existing fully supervised methods have shown progress, they typically
depend on manual annotations for model training, which involves meticulous
delineation of infected regions by domain experts [25]. In light of this, this paper
investigates an untouched task: image-text based unsupervised lung-infected area
segmentation, aiming to effectively achieve lung-infected area segmentation with-
out mask annotations by autonomously learning feature representations from
existing medical images and text data, thereby capturing implicit relationships.
The challenges in image-text based unsupervised lung-infected area segmenta-
tion can be summarized in two aspects: (1) The absence of mask annotations
deprives the model of a direct and reliable training target, which is particularly
challenging for complex and heterogeneous lung infections. It is inappropriate to
directly train existing fully-supervised models with automated coarse masks as
training targets, as they ignore valuable knowledge in text data and are prone to
noise from the coarse masks. (2) Redundant information in textual descriptions
may hinder proper model training, while integrating textual and image informa-
tion in an unsupervised manner introduces additional difficulties. Drawing from
human cognitive science, humans can extract regularities from the environment
over time [24]. We observe that text descriptions contain valuable text attribute
knowledge, which can significantly enhance the understanding and interpreta-
tion of visual data. The text attribute knowledge encompasses critical details
such as pathological findings and clinical observations, which can provide addi-
tional statistical information for segmentation model learning [15]. Motivated
by this observation, we propose to address the challenges mentioned above for
unsupervised segmentation by extracting and leveraging valuable text attribute
knowledge from textual descriptions to enhance segmentation.
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In this paper, we propose a novel framework, AKGNet, for segmenting lung-
infected areas based on image-text data without mask annotations, as shown in
Fig. 1. AKGNet can leverage text attribute knowledge to learn statistical infor-
mation, facilitate attribute-image cross-attention to capture spatial correlations
between image and text attributes, and iteratively refine masks by exploring
high-confidence based pseudo-labels. Specifically, we introduce a text attribute
knowledge learning module that extracts attribute knowledge and integrates it
into feature representations. It acquires useful statistical information that adapts
to various attributes by deploying attribute classifiers using mask-guided features
and attribute targets. Moreover, we develop an attribute-image cross-attention
module that exploits correlations between attributes and images in the embed-
ding space. This captures useful spatial dependency information, enabling the
model to selectively focus on relevant regions while filtering out irrelevant areas.
Furthermore, a self-training mask refinement process is utilized to improve the
produced masks by generating pseudo-labels from high-confidence predictions.
This iterative approach enhances segmentation results through a proposed self-
training loss. The unsupervised segmentation loss, derived from generated coarse
masks, is integrated with the other losses to jointly optimize AKGNet. The main
contributions of our paper can be summarized as follows:

– We propose a novel AKGNet for unsupervised lung-infected area segmenta-
tion based on image-text data without mask annotations.

– AKGNet enables simultaneous learning of text attribute knowledge, cross-
attention fusion between attributes and images, and exploration of high-
confidence pseudo-labels. It efficiently captures statistical information and
spatial correlations between image and text attributes in the embedding
space, iteratively refining the masks to improve segmentation.

– Experimental results on a benchmark medical image dataset show that the
proposed AKGNet can effectively perform unsupervised lung-infected area
segmentation.

2 Related Work

2.1 Medical Image Segmentation

Medical image segmentation aims to assign specific labels to each pixel within
an image, encompassing organ classification and lesion area delineation. Existing
segmentation models typically deploy two types of architectures: Convolutional
Neural Networks (CNN) and Transformer architectures [4,13,18,22,26]. UNet
[22] is a widely used CNN-based model known for its efficient encoder-decoder
structure and effective segmentation results. Additionally, models incorporating
attention mechanisms [9,21,30] and denser connections [31] based on UNet have
shown promise in improving medical image segmentation. Inspired by the suc-
cess of natural scene segmentation, transformer-based methods employ global
attention mechanisms like self-attention and trans-attention to capture medi-
cal image characteristics [3,7,26]. Some methods combine CNN and transformer
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structures to leverage global and local semantic information [4,13]. While previ-
ous approaches focus solely on image data and require dense labeling, our work
concentrates on image-text based unsupervised lung-infected area segmentation.

2.2 Vision-Language Based Segmentation

Recently, vision-language models have made significant strides in multi-modal
visual recognition tasks [20,29]. The CLIP model [20] notably stands out, uti-
lizing extensive text-image pairs to train its transformer-based image and text
encoders. This training process maximizes the similarity between positive image
and text embeddings while minimizing the similarity of embeddings from neg-
ative pairs. Moreover, various vision-language models have been proposed to
enhance natural and medical image segmentation by incorporating text descrip-
tions as prompt information [19]. Referring image segmentation methods add
decoders on top of the pre-trained image and text encoders to integrate vision
and language information, facilitating segmentation [16,27]. Similarly, image-
text based medical image segmentation methods utilize textual descriptions as
a reference to fuse visual and linguistic information through hybrid CNN and
transformer architectures [12,14]. However, these methods rely on mask annota-
tion information and do not fully exploit valuable textual descriptions. In con-
trast, our proposed method achieves image-text based medical image segmen-
tation without mask annotations, leveraging text attribute information mined
from text descriptions.

3 Method

In this section we introduce the proposed AKGNet framework for unsupervised
segmentation of lung-infected areas. We first provide an overview of the archi-
tecture of AKGNet in Sect. 3.1, followed by the coarse mask generation process
detailed in Sect. 3.2. Next, we describe the proposed text attribute knowledge
learning module in Sect. 3.3 and present the attribute-image cross-attention mod-
ule in Sect. 3.4. Subsequently, the self-training mask refining process is presented
in Sect. 3.5. Finally, we outline the overall loss function utilized for training
AKGNet in Sect. 3.6.

3.1 Overall Framework

For unsupervised segmentation of lung-infected areas, our objective is to train a
robust segmentation model using a limited set of N image-text pairs, denoted as
D = {(In, Tn)}Nn=1, where In ∈ R

1×H×W represents the n-th input image, and
Tn denotes the corresponding input textual description. Here H and W denote
the height and width of the input image, respectively.

The overall architecture of the proposed AKGNet is illustrated in Fig. 2.
AKGNet comprises an image encoder fI : R1×H×W → R

c×h×w, M attribute
classifiers {em : R

c×h×w → R
am}Mm=1, a text attribute encoder fA : W

L →
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Fig. 2. An overview of the proposed AKGNet. First, a coarse mask is generated. Next,
text attribute knowledge is extracted from text descriptions to construct the training
targets for the text attribute classifiers. Then, the mask-guided image features extracted
from the image encoder are fed into the classifiers to compute La. The attribute-
image fusion features generated by the AICA module are fed into the image decoder to
generate a prediction mask, which is used to compute Lc with the coarse mask. Finally,
the self-training mask refining process is implemented by computing Lst.

R
d×L, a text attribute projection head fproj : Rd×L → R

c×L, and an image
decoder gI : R

c×h×w → R
1×H×W . Here, c, h, and w denote the number of

channels, height, and width of feature embeddings, respectively; W denotes the
word dictionary space, L denotes the maximum number of words of the combined
text attribute values A extracted for each image, and d represents the dimension
of the attribute embedding; M denotes the number of text attributes, em refers to
the m-th auxiliary attribute classifier, and am indicates the number of categories
for the m-th auxiliary classifier. The image embedding and attribute embedding
are denoted as xI = fI(I) and xA = fA(A), respectively. The output of the
decoder is used to produce the predicted segmentation mask P .

AKGNet first generates coarse masks of lung-infected areas by using an unsu-
pervised lung saliency detection model, providing estimations for the infected
region. Next, the text attribute knowledge learning (TAKL) module is employed
to acquire statistical information and adapt to various attributes by extract-
ing attribute knowledge and deploying it to learn feature representations. Then,
the attribute-image cross-attention (AICA) module is used to capture spatial
dependency information by exploiting the correlations between attributes and
images in the embedding space. Furthermore, a self-training process is uti-
lized to improve the segmentation mask by generating pseudo-labels from high-
confidence predictions and hence enhance the segmentation model.
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3.2 Coarse Mask Generation

Given that the infected region typically resides within the interior of the lungs,
we generate a coarse mask that specifically targets the lung region. This pro-
vides an unsupervised indication of the potential presence of the infected area.
Specifically, given an input image I, we utilize an unsupervised lung saliency
detection model Nsal [1] to produce a coarse mask Ŷ ∈ R

1×H×W as follows:

Ŷ = 1[σ(Nsal(I)) > τ ]. (1)

Here, τ denotes a predefined threshold for generating a binary coarse mask,
σ(·) represents the sigmoid function, and 1[·] denotes the indicator function.
As a result, the training dataset D is expanded to D = {(In, Tn, Ŷ n)}Nn=1,
containing image-text pairs as inputs, along with a coarse mask serving as the
coarse segmentation target.

3.3 Text Attribute Knowledge Learning Module

Although the coarse mask estimates potential infection areas, it lacks precise
supervisory information and may contain noise. Despite the availability of fully-
supervised language-driven medical image segmentation methods that leverage
textual descriptions to enhance segmentation through multi-modal learning, they
often underutilize the valuable text attribute information within these descrip-
tions. Therefore, we introduce a text attribute knowledge learning (TAKL) mod-
ule to extract text attribute knowledge from textual descriptions and perform
attribute classification. It computes an attribute classification loss by leveraging
mask-guided image features and attribute category targets. This module can
effectively integrate attribute knowledge into the image feature representation
learning, exploiting the underlying statistical information.

Attribute Knowledge Extraction. Initially, we extract the text attributes
A from the textual description T . This attribute information from the training
set is then utilized to establish the categories for the attributes, which serve
as the training targets for the attribute classifiers. Specifically, for a textual
description ‘Bilateral pulmonary infection, three infected areas, middle lower left
lung and upper middle right lung’, we first split it into three parts according to
commas to obtain {‘Bilateral pulmonary infection’,‘three infected areas’,‘middle
lower left lung and upper middle right lung’}. It consists of descriptions for four
attributes: unilateral/bilateral infection, number of infected areas, and the loca-
tion of the infection within the lung (left or right). For each textual description
T , we use its four attribute values to form the corresponding attribute descrip-
tion A; e.g.‘Bilateral pulmonary infection, three infected areas, middle lower left
lung and upper middle lower right lung’ → ‘Bilateral, three, middle lower, upper
middle’. We construct M sets of attribute categories {Cm}Mm=1 based on the
attribute values extracted from the training set. These text attributes, their
IDs and values are summarized in Table 1. Consequently, the augmented dataset
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Table 1. Attribute knowledge from the Qata-COV19 dataset. Attribute ID: the ID of
the attribute (M=4 in total). Text Attribute Meaning: the meaning of the attribute.
Text Attribute Values: the set of constituent elements of the attribute. Different
attribute IDs are used to construct different classifiers, while different attribute values
are used to construct the categories of the corresponding classifiers.

Attribute ID Text Attribute Meaning Text Attribute Values

m = 1 unilateral or bilateral of lung infection unilateral, bilateral
m = 2 number of infected areas one, two, three, four, five, six
m=3 location of the infected area

in the left part
all, upper, middle, lower,
upper middle, middle lower, no

m = 4 location of the infected area
in the right part

all, upper, middle, lower,
upper middle, middle lower, no

D = {(In, Ŷ n, An, {Cn
m}Mm=1)}Nn=1 includes attribute values and attribute cat-

egory information, wherein An supplants Tn in each sample, offering a more
nuanced representation. Here, Cn

m denotes the category value for the m-th
attribute of the n-th sample.

Mask-Guided Attribute Knowledge Classification. After obtaining the
attribute category values as prediction targets, a conventional approach involves
classifying the intermediate image features produced by the segmentation model.
However, this method solely focuses on the image encoder, overlooking the image
decoder responsible for mask generation. Hence, we propose to perform mask-
guided attribute knowledge classification. This technique utilizes the generated
prediction masks to isolate foreground regions within the intermediate features,
which are then employed for attribute knowledge classification.

Specifically, given an input image I and the corresponding text attribute
value description A, we initially generate the image embedding xI ∈ R

c×h×w and
the prediction mask P ∈ R

1×H×W as previously described. Next, we produce the
masked image feature embedding xMI ∈ R

c×h×w, which encapsulates features
pertinent to the foreground of the input image, as follows:

xMI = xI1[σ(P ) > α]. (2)

Here, α denotes a predefined threshold for generating a binary prediction mask.
Therefore, the mask-guided attribute classification loss is defined as follows:

La =
M∑

m=1

Lce(em(xMI), Cm), (3)

where Lce represents the cross-entropy loss function and {em}Mm=1 denotes the
M attribute classifiers.

This module extracts valuable attribute knowledge from textual descriptions,
which can be deployed to assist feature representation learning through auxiliary
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attribute classifications. Moreover, the proposed La leverages both the prediction
masks and the intermediate features. By enhancing the model’s ability to adapt
to diverse informative attributes, it fosters the segmentation model’s acquisition
of statistical information directly pertinent to the segmentation task.

3.4 Attribute-Image Cross-Attention Module

For unsupervised lung-infected area segmentation, it is critical to effectively
exploit the image and attribute correlations to enable the model to focus on
relevant regions and ignore irrelevant regions [11]. To this end, we introduce
the attribute-image cross-attention (AICA) module to compute the correlations
between attributes and images in the embedding space. It aims to effectively
capture spatial dependency information, allowing the model to selective focus
on relevant regions while filtering out irrelevant areas.

The AICA module takes the image embedding xI and the attribute embed-
ding xA as input, generating the attribute-image fusion feature xAI ∈ R

c×h×w

as output. We first pass the attribute embedding xA through the text attribute
projection head fproj to align the embedding dimension d with the channel
dimension c of the image features. Then we utilize a learnable parameter matrix
γ ∈ R

L×(hw) to yield the projected attribute embedding xproA ∈ R
c×h×w as

follows:
xproA = Reshape(fproj(xA) × γ), (4)

where γ transforms the output of fproj into the same size as xI , and the reshape
operation rearranges the features into a tensor with dimension c × h × w.

Next, we calculate the pairwise dot product between the transformed image
embeddings and attribute embeddings to obtain a spatial attention map S ∈
R

hw×hw:
S = softmax(φ(xI)T θ(xproA)), (5)

where softmax(·) represents the softmax function; φ and θ represent two trans-
formation functions, implemented using two 1×1 convolution layers followed by
a reshaping operation (i.e., c × h × w → c × hw). Meanwhile, we utilize another
transformation function, ϕ (a 1×1 convolution layer followed by a reshaping
operation), on the projected attribute embedding xproA and conduct a matrix
multiplication operation between it and the transpose of S. Finally, we scale it by
a learnable parameter β and conduct an element-wise summation with the image
embedding xI to produce the attribute-image fusion feature xAI ∈ R

c×h×w:

xAI = βS ϕ(xproA) + xI . (6)

xAI serves as input to the image decoder gI for generating the predicted seg-
mentation mask P . In this scenario, the attribute-image fusion features enable a
comprehensive contextual understanding by merging spatial details from medi-
cal images with semantic cues from textual descriptions. This fusion equips the
model to leverage complementary insights from both modalities, thus improving
segmentation accuracy and efficiently capturing infected areas in medical images.
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3.5 Self-training Mask Refinement

While the aforementioned modules leverage text attribute knowledge to assist
in model training, the resulting segmentation masks may still lack precision.
Unsupervised segmentation of lung infection regions poses challenges due to the
missing of ground-truth labels and the necessity to enhance segmentation accu-
racy. Thus, we introduce a self-training mask refinement process to enhance the
predicted masks by generating pseudo-labels from high-confidence predictions.
Through this process, the model iteratively enhances its segmentation perfor-
mance, gradually learning from its predictions and adjusting to data intricacies.

Specifically, we select high-probability predictions from the prediction mask
P and filter out low-probability ones to obtain credible self-training pseudo-labels
Ȳ ∈ R

1×H×W :
Ȳ = 1[σ(P ) > δ]. (7)

Here, δ represents a predefined threshold to discard noisy pseudo-labels. Sub-
sequently, we formulate a self-training segmentation loss based on these refined
pseudo-labels and prediction masks:

Lst = Lseg(P, Ȳ ). (8)

Lseg denotes the loss function commonly used in medical image segmentation,
consisting of the cross-entropy loss function and the Dice loss function:

Lseg(P, Y ) =
1
2

∗ Lce(P, Y ) +
1
2

∗ Ldice(P, Y ), (9)

where P indicates the prediction mask, and Y indicates the target labels. With
the proposed self-training segmentation loss Lst, the model iteratively enhances
its segmentation performance by updating based on high-confidence pseudo-
labels, leading to more refined segmentation masks. Furthermore, this iterative
refinement strategy effectively guides the model’s attention to complex areas
where confident predictions can be made, facilitating the convergence of seg-
mentation masks towards improved accuracy.

3.6 Loss Function

The overall loss function on each sample for training the proposed unsupervised
AKGNet framework contains three terms:

Ltotal = λcLc + λa ∗ La + λst ∗ Lst, (10)

where λc, λa and λst are hyperparameters controlling the trade-off between dif-
ferent loss components. Here Lc represents a coarse segmentation loss calculated
from the coarse masks in Sect. 3.2:

Lc = Lseg(P, Ŷ ). (11)

La indicates the attribute classification loss defined in Eq. (3), and Lst is the
self-training segmentation loss defined in Eq. (8). During training, the weights
of the attribute encoder are fixed to pre-trained initial values, while the weights
of the other components are updated.
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4 Experimental Results

4.1 Experimental Settings

Datasets and Evaluation Metrics. Our proposed framework is evaluated
using the QaTa-COV19 dataset [5,14], which consists of lung X-ray images paired
with corresponding textual descriptions. The images are compiled by researchers
from Qatar University and Tampere University, while textual descriptions are
provided by Li et al. [14]. Following [14], we allocate 5716 samples for train-
ing, 1429 for validation, and 2113 for testing. We rectify errors in the textual
descriptions, including spelling mistakes. We employ the Dice coefficient and
Jaccard coefficient to evaluate the segmentation performance of our framework.
The Dice coefficient measures twice the intersection over the sum of the sizes
of the segment, while the Jaccard coefficient considers the intersection over the
union of the segments. In addition, Param(M) and Flops(G) are used to evalu-
ate the model size and computational complexity, respectively, with Param(M)
indicating the number of parameters in millions and Flops(G) representing the
number of floating-point operations per second in billions.

Implementation Details. We use the encoder and decoder of UNet [22], which
is widely used in medical image segmentation, as our image encoder and decoder.
The BERT-embedding model [6] is employed as the attribute encoder. The text
attribute projection head is a one-dimensional convolutional layer with a ker-
nel size 3. The weights of the attribute encoder are initialized with pre-trained
BERT models [6], while those of other components are randomly initialized. The
number of attribute classifiers, denoted as M , is set to 4. Each attribute clas-
sifier comprises two fully connected layers with intermediate ReLU functions,
and average pooling is conducted on the features before they are fed into the
fully connected layers. We adopt the unsupervised lung saliency detection model
[1], represented as Nsal, for extracting coarse masks. The input image size is
224×224, with random rotation and flipping. We employ the Adam optimizer
with a learning rate 1e-4 and set the batch size to 12. τ and α are set to 0.5,
while δ is set to 0.7. λc λa and λst are set to 1.0, 0.9 and 0.3, respectively.

4.2 Comparison Results

We initially compared AKGNet with two state-of-the-art medical image seg-
mentation methods, UNet [22] and LViT [14], on the QaTa-COV19 dataset
under the same experimental setup of image-text unsupervised segmentation
for inductive scenarios. These methods were re-implemented and trained under
identical settings as AKGNet, utilizing the generated coarse masks. Additionally,
we conducted a comparison in a fully supervised experimental setup involving
LAVT [28] and LViT [14] with textual descriptions and UNet [22] without tex-
tual descriptions. The comparison results, summarized in Table 2, indicate that
our proposed AKGNet outperforms the other methods in the same unsuper-
vised scenarios. It achieves a Dice value of 53.8 and a Jaccard value of 41.8
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Table 2. Quantitative comparison results on the QaTa-COV19 dataset. We report the
results in terms of Dice and Jaccard. We also report the number of model parameters
(Param) and the computational complexity (Flops). GT denotes using ground-truth
masks as training targets for Lc. CM denotes using the generated coarse masks as the
training target for Lc. AKGNet-T represents our transductive results, while AKGNet-I
represents our inductive results.

Method Text Mask Label ratio Param (M) Flops (G) Dice (%)↑ Jaccard (%)↑
UNet [22] × GT 100% 14.8 50.3 79.0 69.5
LAVT [28]

√
GT 100% 118.6 83.8 79.3 69.9

LViT [14]
√

GT 100% 29.7 54.1 83.6 75.1
UNet [22] × CM 0% 14.8 50.3 45.1 32.5
LViT [14]

√
CM 0% 29.7 54.1 49.6 37.3

AKGNet-T
√

CM 0% 16.8 50.7 53.8 41.8
AKGNet-I

√
CM 0% 16.8 50.7 55.5 43.7

under the transductive setting, where only testing data is used for unsupervised
training, and yields a Dice value of 55.5 and a Jaccard value of 43.7 under the
inductive setting. Although LViT incorporates textual descriptive information
and employs a hybrid CNN and transformer structure, its results are inferior
to ours, accompanied by higher parameter count and computational complex-
ity. These results show that our proposed AKGNet is able to achieve the best
segmentation results in unsupervised experimental scenarios while taking into
account less computational overhead.

4.3 Ablation Studies

Impact of Different Components. We summarize the impact of different
components on the performance in terms of Dice and Jaccard values in Table 3.
We initially directly use the generated coarse masks as the segmentation results,
yielding a Dice value of 35.2. In the inductive scenario, the experimental result
improves to a Dice value of 44.1 when utilizing the coarse masks as targets to
train the segmentation model. Further enhancements are observed when incorpo-
rating auxiliary La or incorporating the AICA module, resulting in Dice values
of 48.6 and 49.2, respectively. Moreover, the performance increases to 50.3 when
text attributes instead of the original text descriptions are used as the input
to the text attribute encoder. The model achieves an even better segmentation
result with a Dice value of 52.9 when La is excluded, and Lst is added. Ulti-
mately, our full model achieves the highest performance, reaching a Dice value
of 55.5. Similar trends are observed in the transductive scenario and in terms of
Jaccard values. These findings underscore the effectiveness of the various com-
ponents integrated in AKGNet.
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Table 3. Ablation study on the QaTa-COV19 dataset in terms of Dice and Jaccard.
Lc: using the proposed coarse segmentation loss. La: using the proposed attribute
classification loss. Lst: using the proposed self-training segmentation loss. CM: using
the generated coarse masks as the training target for Lc. ArT: using extracted text
attributes (

√
) instead of the original text descriptions (−) as input to the text attribute

encoder. AICA: using the proposed attribute-image cross-attention module.

CM Lc La ArT AICA Lst Transductive Inductive
Dice↑ Jaccard↑ Dice↑ Jaccard↑

√
– – – – – 35.2 23.9 – –√ √

– – – - 45.1 32.5 44.1 31.6√ √ √
– – – 47.6 34.6 48.6 36.0√ √ √
–

√
– 48.9 36.2 49.2 36.8√ √ √ √ √
– 49.7 38.8 50.3 39.4√ √

–
√ √ √

51.6 39.2 52.9 40.7√ √ √ √ √ √
53.8 41.8 55.5 43.7

Impact of Different Attributes in La . We summarize the impact of differ-
ent attributes in La on the performance for the transductive scenario in terms
of Dice value in Fig. 3 (a). The experimental results demonstrate that consid-
ering all attributes yields the best performance, achieving a Dice value of 53.8.
Removing the classification loss for any individual attributes leads the model to
disregard crucial statistical information during training, resulting in decreased
segmentation accuracy. When omitting the first attribute (unilateral/bilateral)
or the second attribute (number), the Dice values decrease from 53.8 to 52.7 and
52.1, respectively. Similarly, ignoring the information on the left or right position
(third and fourth attributes) also results in performance reduction. Furthermore,
when both information on the left and right positions are ignored, the model’s
performance further decreases to a Dice value of 51.3. These experimental results
underscore the importance of simultaneously exploiting classifiers for multiple
attributes to learn statistical information for assisting the segmentation task.

Impact of Using Mask-Guided Intermediate Features or Original
Intermediate Features. We summarize the impact of using mask-guided inter-
mediate features or original intermediate features as the attribute classifiers’
inputs in the transductive scenario in terms of Dice value in Fig. 3 (b). Utiliz-
ing the mask-guided features yields significantly better results than using the
original features, with an improvement of 1.1% in terms of Dice value. This
improvement can be attributed to the fact that using mask-guided features is
directly relevant to the segmentation task, and employing the prediction mask
as guidance enables both the image encoder and image decoder to be trained
effectively, allowing the model to generate better prediction masks while learning
attribute statistics. Importantly, our proposed architecture can achieve promis-
ing results using either of these two strategies, underscoring the effectiveness of
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Fig. 3. Ablation study on the (a) impact of different attributes in La; (b) impact of
using mask-guided intermediate features or original intermediate features; (c) impact
of the threshold in self-training δ. We report the Dice values.

Fig. 4. Hyperparameter analysis: (a) λc;(b) λa;(c) λst. We report the Dice values.

our proposed method, which does not rely solely on features guided by prediction
masks.

Impact of Threshold δ in Self-training. We summarize the impact of the
threshold in self-training, denoted as δ, in the transductive scenario in terms
of Dice value in Fig. 3 (c). This parameter governs the confidence level in the
self-training process for obtaining high-confidence pseudo-labels, where larger
values indicate that the prediction masks are filtered through higher confidence
to obtain pseudo-labels. We tested a set of different δ values. Experimental results
reveal that the best performance is achieved when the δ value is set to 0.7,
yielding a Dice value of 53.8. Deviation from this value, either by increasing
or decreasing it, leads to a decrease in experimental results. This is because
excessively high confidence levels result in too few pseudo-labels, while overly
low confidence levels introduce too much noise in the pseudo-labels, both of
which are detrimental to achieving optimal results through self-training.

Impact of Hyperparameter Values. We summarize the impact of the
weights of different loss terms, i.e., the values of hyperparameters {λc, λa, λst},
on the segmentation performance in the transductive scenario in terms of Dice
value in Fig. 4. When adjusting one weight, all other weights remain fixed. Firstly,
concerning the weight of the coarse segmentation loss Lc (Fig. 4 (a)), the best
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Fig. 5. Visualization examples of different methods under the image-text unsupervised
segmentation experimental scenario. The left two columns present input images and
ground-truths. The remaining three columns present the segmentation results of UNet,
LViT, and our proposed AKGNet.

result is obtained when λc is set to 1.0, yielding a Dice value of 53.8. The results
progressively deteriorate as the weight is reduced, indicating its crucial role in
providing the model with a task-related training objective. Conversely, increas-
ing λc leads to decreased segmentation effectiveness, suggesting that excessive
noise within Lc could have an adverse impact. Secondly, for the attribute classi-
fication loss La (Fig. 4 (b)), the model achieves its best results when λa is set to
0.9. Conversely, reducing or increasing this weight may cause the model to disre-
gard statistical information or overly focus on categorical information, resulting
in inferior outcomes. Finally, concerning the self-training segmentation loss Lst

(Fig. 4 (c)), the optimal result is obtained when λst is set to 0.3. Setting λst to a
larger value (e.g., 0.9) slightly degrades the result, suggesting that an excessively
large weight during self-training could overly bias the model towards current pre-
dictions, diminishing its efficacy. Conversely, reducing it to 0.1 diminishes the
extent to which the model undergoes self-training.

4.4 Qualitative Evaluation Results

To further illustrate the effectiveness of AKGNet, we present qualitative results
in Fig. 5, comparing our framework with the state-of-the-art methods under
unsupervised settings on the QaTa-COV19 dataset. Visualizations reveal that
AKGNet outperforms other methods, particularly in scenarios with asymmetric
infected regions or when these regions are near the image edge. UNet, when used
without textual guidance, tends to produce numerous mis-segmentations. While
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LViT utilizes textual description information, its performance in unsupervised
scenarios falls short compared to AKGNet.

5 Conclusion

In this paper, we introduced a novel AKGNet framework for image-text based
unsupervised lung-infected areas segmentation. AKGNet uses a text attribute
knowledge learning module to exploit text attribute knowledge and learn sta-
tistical information by facilitating model adaptation to various text attributes.
Additionally, an image-attribute cross-attention module is used to capture spa-
tial dependencies between images and text attributes by exploiting their corre-
lations in the embedding space. Furthermore, a self-training mask refinement
process is employed to accelerate model convergence towards refined masks.
Experimental results demonstrate the effectiveness of the proposed framework,
surpassing existing segmentation methods in unsupervised scenarios.
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Abstract. Generative models have been widely used in time series
anomaly detection, effectively identifying abnormal states within the
data. Among these, diffusion models stand out for their powerful gener-
ative capabilities and have been increasingly applied to anomaly detec-
tion tasks, showcasing advantages in handling complex time series data.
However, existing approaches employ diffusion models directly in the
numerical space, which leads to several limitations, particularly in fail-
ing to reconstruct normal time series. To address these issues, we propose
NGLS-Diff, an innovative approach that uses a diffusion model within a
normal gathering latent space to enhance anomaly detection capabilities.
This method introduces a novel latent space that captures the distribu-
tions of normal temporal patterns, thus rectifying the drawbacks of pre-
vious diffusion models. By operating the diffusion process in the normal
gathering latent space, our approach significantly enhances the model’s
ability to detect anomalies within normal time series data. Extensive
experiments conducted on four real-world datasets demonstrate the sig-
nificant performance improvements of our NGLS-Diff compared to vari-
ous methods, validating its effectiveness in time series anomaly detection.

Keywords: Time Series Anomaly Detection · Diffusion Model ·
Representation Learning

1 Introduction

Recently, diverse equipment and technologies continuously produce extensive
data monitored by sensors across areas such as industrial machinery and space
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exploration [8,11,36]. Identifying anomalies within these vast datasets is critical
for ensuring security, preventing financial losses, and sustaining efficiency [4].
The core challenge of current research lies in identifying rare anomalies amidst
a vast amount of normal data. Consequently, there is a growing emphasis on
developing unsupervised methods that can effectively handle time complexities
and distinguish anomalies from normal data points.

Effectively detecting time series anomalies requires learning the normal tem-
poral patterns from complex time distributions [51]. Abnormal time patterns
are characterized by uncertainty and infrequency [7]. Conversely, normal pat-
terns exhibit periodicity and occur more frequently. The conventional methods
for detecting time series anomalies involve reconstructing the time series using
generative models [3,10,22], where anomalies are identified by examining the dis-
crepancies before and after reconstruction at various time points [6]. In search
of more robust and accurate methods, researchers have already begun exploring
advanced generative techniques applied to time series anomaly detection tasks.

Recently, diffusion models [13] have garnered widespread attention in the
anomaly detection community [14,25]. Diffusion models distinguish themselves
from other generative models for anomaly detection in time series data due
to their stable training and robustness. Some researchers have begun exploring
approaches based on diffusion models to tackle time-series anomaly detection
tasks. Diffusion models demonstrate impressive data generation capabilities in
time series anomaly detection, producing samples that closely resemble real data,
thereby enhancing the accuracy of anomaly detection. However, due to the latent
variables generated by the diffusion model lack of semantic information [18,33],
using them for time series anomaly detection in numerical space may lead to
two key challenges: (1) Direct reconstruction in numerical space may encounter
obstacles because the diffusion model cannot learn the underlying features of the
time series; (2) Models operating in numerical space are often more susceptible
to outliers in the data, which degrades the quality of anomaly detection.

To handle the above challenges, we introduce a distinctive methodology that
employs diffusion models within a specialized latent space tailored for time series
anomaly detection. The diffusion model exhibits stronger generative capabilities
in latent space [37] but has not been studied for detecting time series anomalies.
Additionally, latent space analysis of time series effectively extracts crucial tem-
poral features, simplifying the data’s structure and reducing its complexity [30].
Inspired by [12] and [47], we adeptly identify the spatial distribution of nor-
mal patterns that commonly occur across multiple time series patches. Utilizing
latent states sampled from the distribution of normal patterns as input enhances
the generative capability of the diffusion model. It also minimizes the disruptions
caused by time series abnormal patterns during the generation process.

In this paper, we develop a novel time series anomaly detector, NGLS-Diff,
which leverages a normal gathering latent space for learning normal tempo-
ral patterns and then conducts diffusion model generation operations within
it. The latent space, specifically designed for normal pattern gathering, priori-
tizes learning potential representations of time series’ normal patterns that occur
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more frequently across multiple patches. To preserve the long-term dependencies
and global characteristics of normal patterns, the latent space captures shared
features among these types of latent states. Utilizing information from normal
patterns assists the diffusion model in reconstructing time series within the struc-
tural latent space, thereby facilitating anomaly detection.

The main contributions of this work are summarized as follows:

– We employ the diffusion model to reconstruct time series within a latent
space tailored for gathering normal patterns, thereby enhancing time series
anomaly detection. To our knowledge, this is the first work to utilize the
diffusion model in latent spaces, rather than conventional numerical spaces,
for identifying time series anomalies.

– We introduce a novel normal gathering latent space, which is designed for
learning the distribution of normal temporal patterns. The latent space can
mitigate the interference of abnormal patterns in the generation process.

– We conduct extensive experiments on four real-world benchmark datasets
to demonstrate that the NGLS-Diff significantly outperforms current
state-of-the-art methods. We also conduct ablation studies to ana-
lyze the contribution of NGLS-Diff’s components. Code is available at
https://github.com/h-jiashu/NGLS-Diff.

2 Related Work

2.1 Time Series Anomaly Detection

In the early days, time series anomaly detection primarily relied on statistical
methods, such as ARIMA models [29], exponential smoothing [9], the three-
sigma rule [34], and so on. With the rise of machine learning, researchers began
to employ machine learning techniques for time series anomaly detection tasks,
such as One-Class SVM [44], Isolation Forest [24], Opprentice [23], and so on.

Nowadays, deep learning has become the common approach. The deep learn-
ing models for time series anomaly detection can mainly be categorized into
two types: prediction-based and reconstruction-based. Prediction-based models
compare the predicted time series with the actual values to determine anoma-
lies. Malhotra et al. [26] utilized stacked LSTM networks to detect anomalies
in time series data. Li et al. [19] extracted anomalies from the prediction error
sequence using a dynamic thresholding method. Jhin et al. [17] utilized a neural
network based on neural controlled differential equations, which not only detects
anomalies but also predicts the occurrence of anomalies in advance.

Reconstruction-based models determine anomalies by reconstructing time
series data and comparing the differences between the original and reconstructed
sequences. OmniAnomaly [41] utilizes the temporal dependency and random-
ness of multivariate time series to model the series, thereby performing anomaly
detection. USAD [2] generates time series data by adversarially training two
autoencoders. Interfusion [21] captures inter-metric and temporal dependencies
in multivariate time series using hierarchical Variational AutoEncoder, enabling

https://github.com/h-jiashu/NGLS-Diff
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precise anomaly detection and interpretation. Anomaly Transformer [48] detects
anomalies based on the differences in associations between normal points and
abnormal points. DCdetector [50] distinguishes anomalies by comparing the
results of different reconstruction methods, achieving state-of-the-art results.
Compared to conventional reconstruction models, our model focuses on learning
the distribution of normal temporal patterns rather than representing the whole
information of the time series.

2.2 Diffusion Model for Time Series Analysis

The currently popular and powerful generative model based on the diffusion
model was initially proposed by Ho and Jain [13]. Song et al. [40] introduced
the Diffusion Denoising Implicit Model (DDIM), significantly accelerating the
sampling efficiency of the diffusion model.

Although the diffusion model was initially applied to content generation
in the computer vision field, its robust generative capability has led to its
widespread adoption in time series analysis. D3VAE [20] enhances and optimizes
time series forecasting by integrating a Bidirectional Variational Auto-Encoder
equipped with diffusion, denoise, and disentanglement features; Rasul et al. [35]
proposed a multivariate probabilistic time series forecasting model that inte-
grates a diffusion model, sampling by estimating the data distribution gradient
at each time step.

In recent years, many models using the diffusion model for time series
anomaly detection tasks have emerged. Wang et al. [43] address drift from non-
stationary environments through dynamic decomposition and reconstruction,
effectively handling anomalies in long-period multivariate time series using data-
time mix attention and noise diffusion. DiffAD [45] uses a density ratio-based
strategy and interpolation combined with diffusion mode for data generation
to perform anomaly detection; D3R [43] combines dynamic decomposition with
diffusion model to address the drift issue in anomaly detection. Differing from
other diffusion models, in NGLS-Diff, the diffusion model utilizes temporal latent
states from the normal gathering latent space rather than numerical values.

3 Problem Formulation

The task of multivariate time series anomaly detection is conducted on time
series X1:T ∈ RT×D generated by multiple sensors, where T represents the length
of the time series, and D represents the number of dimensions. The task aims
to detect outliers in multivariate time series.

Our approach NGLS-Diff belongs to the reconstruction-based anomaly detec-
tion category. It employs an unsupervised learning approach to learn the rep-
resentation of multivariate time series. The model processes this information to
produce reconstructed outcomes, represented as X̂. Anomaly detection is sub-
sequently conducted by point-wise comparison between the original series (X)
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Fig. 1. (a) NGLS-Diff workflow. (b) Normal gathering latent space architecture.

and the reconstructed series (X̂) across the time dimension. Anomalies are iden-
tified based on the significant deviations between X and X̂, thereby determin-
ing the anomaly detection outcomes. Hence, the essence of effective time series
anomaly detection depends on highlighting discrepancies between original and
reconstructed data at specific anomalous instances.

4 Methodology

4.1 Overview

The workflow of NGLS-Diff is shown in Fig. 1(a). NGLS-Diff primarily consists
of three parts: the autoencoder (AE), the normal gathering module, and the
diffusion model. Firstly, the encoder within the AE maps time series data from
the numerical space to a latent space, facilitating feature extraction from the time
series information. Secondly, the normal gathering module extracts normal time
series patterns from the latent space and constructs the normal gathering latent
space. Thirdly, the diffusion model employs latent states in normal gathering
latent space for reconstruction purposes. Finally, the reconstructed latent states
are mapped back to the numerical space through the AE’s decoder.

4.2 Autoencoder

Autoencoder’s encoder maps the original time series to a basic latent space using
several linear layers. We use x to represent time series in the basic latent space:

x = Encoder(X) (1)
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where the shape of x is T × d and d represents the feature dimension of the
time series in the latent space. We compress the feature dimensions of the time
series while keeping the time dimension unchanged. At the end of the model, the
decoder in AE is used to map the time latent state back to the numerical space.

4.3 Normal Gathering Latent Space

Normal gathering latent space learns the distribution of normal patterns for time
series and provides temporal hidden states for the diffusion model’s reconstruc-
tion processes. Normal temporal patterns can be represented by three aspects:
shape, location, and global characteristics. Therefore, as shown in Fig. 1(b), there
are three learning parts included in the normal gathering latent space: Position
Distribution Learning, Shape Distribution Learning, and Commonality
Feature Learning.

The latent space learns the distribution of normal temporal patterns from
the output of the Encoder. Additionally, because time series patches can reflect
richer local semantic information, we divide x into long non-overlapping patches
{xi}. Each patch xi with a shape of lp × d, where lp is the length of each patch.
And {xi} has np patches. Since there may be multiple normal temporal patterns
in time series, we have set up a multi-layer latent space network, with each
layer learning a distinct normal temporal pattern independently. We use the
superscript p to represent "pattern", and the subscript p to represent "patch".

Position Distribution Learning. The strength of a normal temporal pat-
tern’s performance may vary in different positions of the time series. Latent
Space needs to learn the position distribution of normal patterns to express the
performance at different patches in the time series. The posterior distribution of
normal patterns p is Q(zp

pos|x). We use a temporal convolutional neural network
(CNN) to compress the time dimension of the patch to 1 to represent the patch
position. Thus, the distribution of normal pattern positions is equivalent to the
probability of normal patterns occurring on each patch:

yi = CNN(xi), (2)

ẑp
pos ∼ Q(zp

pos|{yi}), (3)

where yi represents the learned representation for the i-th patch and the shape
of yi is 1 × d. ẑp

pos is the sample of distribution. The range of ẑp
pos is (0, 1), and

ẑp
pos follows a Relaxed Bernoulli distribution.

We can view zp
pos as the distribution of weights for normal pattern p on the

patches. Therefore, we can calculate the probability of the normal pattern:

pp = Prob(ẑp
pos), r

p = Resample(ẑp
pos), (4)

where pp indicates the probability values of pattern p distributed across the
patch, interpreted as pattern weights. rp facilitates reparameterized sampling in
variational inference.



290 J. Han et al.

Shape Distribution Learning. Learning the distribution of normal patterns
requires latent space to control the shape of normal patterns. The normal gath-
ering latent space needs to learn the distribution of shapes exhibited by normal
patterns on each patch. The posterior distribution of the normal pattern p on
the time series is denoted as Qpattern(p|x). Following the VAE approach, we
compute the mean and variance of the distribution of pattern p:

μp
shape = Φp

μ(x), σ
p
shape = Φp

σ(x), (5)

where Φp
μ and Φp

σ represent the neural network formed by the linear layer and
activation function. Combining the weight coefficients pp learned in the Position
Distribution Learning, we can obtain the μweighted and σweighted for each patch,
where μweighted = pp × μp

shape and σweighted = pp × σp
shape. We sample ε from

the distribution of standard pattern shapes and then transform it to obtain a
sample z in the latent space:

ẑp
shape = μweighted + σweighted � ε, (6)

where ε ∼ N(0, 1). The weighted result w-ẑp
shape is obtained by multiplying rp

with ẑp
shape.

Commonality Feature Learning. The Commonality Feature Module is used
to learn the common characteristics of normal patterns across various patches.
Common characteristics enable the normal gathering latent space to capture the
overall pattern of the normal patterns, which is crucial for understanding the
global behavior and long-term dependencies of the sequence.

We concatenate {xi} along the feature dimension and utilize a linear layer
to learn a shared normal pattern latent state zp

com with dimensions np × dc,
where dc is the channel demison of zp

com. The obtained common latent state is
duplicated n times and concatenated along the channel dimension of w-ẑp

shape.
Finally, a convolutional neural network is used to integrate the commonalities
and characteristics of normal patterns contained in each patch:

zp = CNN
(
Concat(w-ẑp

shape, z
p
com)

)
. (7)

After completing the learning for each normal pattern, latent space needs
to process the distribution of each normal pattern synchronously. We obtain
the distribution of all normal patterns on the time series, denoted as z =
[zp0 , zp1 , ..., zpn ]. After concatenating the learned latent states for different nor-
mal patterns along the channel dimension, we use a Multi-Layer Perceptron
(MLP) for fusion. In the normal gathering latent space, the representation of
the time series hidden states is as follows:

z = MLP
(
Concat([zpi ])

)
. (8)
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4.4 Diffusion Model

We use the Differentiable Diffusion Implicit Models (DDIM) [40] to perform
diffusion operations on the normal pattern hidden states. DDIM is a variant of
the diffusion model that has a more faithful reconstruction error through inverse
sampling. DDIM is primarily composed of a forward diffusion process and a
denoising process.

During the training phase, the diffusion incrementally process adds Gaussian
noise to this latent state z over a series of steps τ = 1, 2, ...T :

zτ =
√

ατzτ−1 +
√
1 − ατ ετ , (9)

where zτ is the state of z at step τ , ετ is a sample from a standard Gaussian
distribution, and ατ are coefficients that control the amount of noise added at
each step.

The sampling phase, which is learned by the model, aims to reconstruct
the original latent state z0 from the noisy image zT . This involves learning a
parameterized function εθ that predicts the noise added at each step. The reverse
process can be described as:

zτ−1 =
√

ατ−1

(zτ −√
1 − ατ εθ(zτ , τ)√

αt

)
+

√
1 − ατ−1 − σ2

τ εθ(zτ , τ) + στ ετ . (10)

DDIM can be considered as the Euler integration of a specific ordinary dif-
ferential equation. Referring to the DDIM reconstruction methodology, in the
sampling stage, we initially use inverse sampling to derive zτ from z0, and then
progressively sample back to obtain the reconstructed z̃0. Leveraging DDIM’s
low reconstruction error, we can more accurately reconstruct the normal patterns
of the time series.

The output of the diffusion model is then mapped back to the numerical
space through the Decoder:

X̂ = Decoder(z̃) (11)

4.5 Objective Function

The normal gathering latent space module is trained by maximizing the Evidence
Lower Bound (ELBO). In this module, we model the distribution of normal
patterns through two distinct approaches: the position distribution follows a
Relaxed Bernoulli distribution, while the shape distribution adheres to a normal
distribution. Thus, the ELBO is given by:

LNGLS = −Ezp∼QP,S(z|x)[G(x|zp)] +KL

[
QP,S(z|x)||p(z|x)

]
, (12)

where G(x|zp) represents the conditional distribution of x given the latent states
zp. The KL-divergence term is further decomposed based on the distribution
types assumed for position and shape:
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KL

[
QP,S(z|x)||p(z|x)

]
=KL

[
QP (zpos|x)||RelBern(zpos)

]

+KL

[
QS(zshape|x)||N (0, 1)

]
,

(13)

where QP (zpos|x) and QS(zshape|x) are the posterior distributions of position
and shape for normal patterns, respectively.

The Diffusion model’s training is defined by the following loss function:

LDiffusion = Et,z0,ε

[
||ε − εθ(zt, t)||2

]
, (14)

where θ denotes the model parameters, z0 represents the initial latent states
generated by normal gathering latent space, ε is a noise vector sampled from the
standard normal distribution, t indicates the time step and zt is the noisy latent
state at time t.

The comprehensive loss function, integrating both the normal gathering
latent space and diffusion model components, is formulated as:

L = LNGLS + LDiffusion. (15)

This loss function enables the simultaneous training and optimization of both
model components within the NGLS-Diff framework.

Anomaly Score. We use mean-square error to calculate the anomaly score:
AnomalyScore = MSE(X, X̂). Subsequently, we label the time points with the
top-k highest scores as anomalies, setting the corresponding label y = 1.

5 Experiments

5.1 Experimental Setup

To verify the performance of the proposed method, we evaluate it on four real-
world datasets, comparing it against fourteen baseline methods.

Datasets. The used datasets are presented as follows:

– SWaT [27]: Secure water treatment dataset, a 51-dimensional sensor-based
dataset, originates from critical infrastructure systems.

– SMAP [16]: Soil moisture active passive satellite dataset, sourced from
NASA, presents soil samples and telemetry information.

– MSL [16]: Mars science laboratory, provided by NASA, captures sensor and
actuator data from the Mars rover.

– PSM [1]: Pooled server metrics dataset, from eBay Server Machines.
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Baselines. We perform extensive comparisons between our model and a diverse
set of fourteen baseline methods, categorized as follows:

– Classic Methods: OCSVM [42], Isolation Forest (I.F) [24].
– Autoregression-Based Model: LSTM [16].
– Density-Estimation Models: MMPCACD [49], LOF [5], DAGMM [53],

THOC [39].
– Clustering-Based Method: Deep-SVDD [38].
– Reconstruction-Based Models: BeatGAN [52], LSTM-VAE [32], Omni-

Anomaly [41], Interfusion [21], Anomaly Transformer (A.T) [48], DCdetec-
tor [50].

Implementation Details. To ensure a fair comparison, we follow the widely-
adopted non-overlapped sliding windows protocol [39] and fix the sliding window
size to 100 for all datasets [48]. The input to latent space is the time series latent
states processed by a proposed encoder constructed using 3 linear layers, with
the number of latent states as 32. The dimension of the shared latent state is
defined as 10. For the diffusion model, the schedule is set to ‘linear’ mode with a
time step of 100. We employ the Adam optimizer with an initial learning rate of
0.01. All experiments are conducted on a single NVIDIA 4090 GPU in PyTorch.

Evaluation Criteria. We use adjusted evaluation methods widely recognized
in recent studies, notably the point adjustment method [39,41,46]. This approach
considers all timestamps in an anomalous segment as correctly detected if any
point within it is identified as an anomaly, better reflecting the model’s ability to
detect contextual and collective anomalies. This adjusted evaluation is crucial for
real-world applications, where anomalies are not isolated but occur over periods
or in patterns. It allows for a more realistic assessment of a model’s performance
in handling the intricacies of time series data, focusing on the recognition and
understanding of anomaly dynamics.

Following the evaluation method of DCdetector [50], we employ additional
evaluation metrics beyond traditional F1-score for evaluating time series anomaly
detection: the affiliation precision/recall pair [15] and Volume Under the Sur-
face (VUS) [31]. The affiliation metrics improve traditional precision and recall
by focusing on the relationship between true events and predictions, enhancing
clarity and resistance to manipulation. Aff-P and Aff-R denote affiliation-based
precision and recall metrics, respectively. On the other hand, VUS refines AUC
measures to assess time series anomalies more effectively, being independent of
any threshold. This includes Range-AUC-ROC and Range-AUC-PR (RAR and
RAP), alongside the volumes under the ROC and PR curves (VROC and VRR),
offering a more comprehensive evaluation framework.

5.2 Main Results

We conducted a comparative analysis of our model, NGLS-Diff, against 14 mod-
els using four real-world datasets. The results are reported in Table 1, where a
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Table 1. Quantitative evaluation results on multiple datasets. The best results are
highlighted in bold, and the second-best results are underlined.

Dataset SWaT MSL SMAP PSM

Method/Metric Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1
OCSVM [42] 0.4528 0.5035 0.4768 0.5924 0.8649 0.7031 0.5284 0.6129 0.5675 0.6315 0.7828 0.6990

I.F [24] 0.4871 0.4423 0.4636 0.5562 0.8497 0.6723 0.5633 0.5612 0.5622 0.7931 0.9220 0.8527
LSTM [16] 0.8476 0.8522 0.8498 0.8459 0.8570 0.8514 0.8740 0.8132 0.8425 0.7649 0.9019 0.8277

MMPCACD [49] 0.8325 0.6937 0.7567 0.8361 0.6323 0.7200 0.8527 0.7956 0.8231 0.7724 0.7812 0.7767
LOF [5] 0.7141 0.6723 0.6925 0.4920 0.8471 0.6224 0.5783 0.5746 0.5764 0.5764 0.8935 0.7007

DAGMM [53] 0.9041 0.5694 0.6987 0.8856 0.6475 0.7480 0.8752 0.5748 0.6938 0.9311 0.7157 0.8093
THOC [39] 0.8274 0.8590 0.8429 0.8949 0.9124 0.9035 0.9237 0.9022 0.9128 0.8855 0.9293 0.9068

Deep-SVDD [38] 0.8063 0.8641 0.8341 0.9052 0.7941 0.8460 0.8837 0.5849 0.7039 0.9501 0.8789 0.9131
BeatGAN [52] 0.6592 0.8627 0.7473 0.9083 0.8524 0.8794 0.9013 0.5825 0.7076 0.9011 0.9247 0.9127

LSTM-VAE [32] 0.7740 0.9122 0.8374 0.8211 0.8107 0.8158 0.9175 0.7032 0.7961 0.7629 0.9148 0.8319
OmniAnomay [41] 0.8256 0.8643 0.8445 0.9130 0.8769 0.8945 0.9356 0.8421 0.8863 0.9002 0.7832 0.8376

Interfusion [21] 0.8199 0.8578 0.8384 0.8030 0.9317 0.8625 0.8767 0.9027 0.8895 0.8199 0.9512 0.8806
A.T [48] 0.9410 0.9797 0.9599 0.9198 0.9629 0.9409 0.9362 0.9947 0.9646 0.9734 0.9770 0.9752

DCdetector [50] 0.9309 0.9996 0.9641 0.9202 0.9466 0.9332 0.9436 0.9888 0.9657 0.9710 0.9809 0.9759
NGLS-Diff(Ours) 0.9752 0.96650.9708 0.9081 0.99570.9499 0.9530 0.98420.9684 0.9698 0.99120.9804

higher F1 score indicates better overall performance. As expected, our proposed
NGLS-Diff outperforms all baselines by considerable margins, demonstrating
its effectiveness in time series anomaly detection. Classic methods obtain rel-
atively low scores, suggesting that classic methods are not effective for com-
plex anomaly detection tasks. There is a large variance in performance among
density-estimation models. Generally, the reconstruction-based methods perform
the best. Moreover, the Anomaly Transformer and DCdetector approaches yield
remarkable detection performance. Overall, NGLS-Diff consistently achieves the
highest performance, underscoring its superior anomaly detection capabilities.

To verify the robustness of our model under different metrics, we compared
our model with two strong baselines (Anomaly Transformer and DCdetector)
using the new metrics [50]. The comparison results are shown in Table 2. As can
be seen, NGLS-Diff generally achieves the best performance scores of the six
measure metrics, which comprehensively validates its effectiveness.

5.3 Results of Normal Gathering Latent Space

In this section, we investigate the efficacy of the normal gathering latent space
in NGLS-Diff. We set up three comparison schemes: the conventional DDIM
model, the AE-DDIM model, and the NGLS model. The conventional DDIM
model reconstructs time series directly in the original numerical space, while AE-
DDIM establishes a latent space using an autoencoder without normal gathering.
NGLS incorporates normal gathering latent space and directly uses a decoder to
map potential states from latent space back to the numerical space, excluding
the DDIM diffusion process.

The experimental results are presented in Table 3. As observed, NGLS-Diff
achieved a 20.57% average improvement compared to DDIM, indicating that
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Table 2. Results across multiple metrics. The best results are highlighted in bold, and
the second-best results are underlined.

Dataset Method Aff-P Aff-R RAR RAP VROC VPR

SWaT
A.T 0.6401 0.9390 0.9443 0.9257 0.9451 0.9263

DCdetector 0.5248 0.9804 0.9672 0.9413 0.9708 0.9444
NGLS-Diff 0.6064 0.98390.98010.94420.9756 0.9402

MSL
A.T 0.5241 0.9593 0.9016 0.8801 0.8862 0.8667

DCdetector 0.5095 0.9671 0.9015 0.8803 0.8788 0.8604
NGLS-Diff 0.56050.97610.91540.88230.91580.8828

SMAP
A.T 0.5122 0.9891 0.9642 0.9451 0.9586 0.9369

DCdetector 0.5149 0.9852 0.9590 0.9404 0.9386 0.9227
NGLS-Diff 0.51570.98970.96810.94520.95880.9372

PSM
A.T 0.5584 0.8196 0.9162 0.9327 0.8944 0.9169

DCdetector 0.5414 0.8003 0.9094 0.9246 0.8651 0.8915
NGLS-Diff 0.57840.87020.94040.94850.90550.9236

Table 3. Efficacy of latent space. The best results are highlighted in bold, and the
second-best results are indicated with an underline.

Dataset SWaT MSL SMAP PSM

Method/MetricPrecision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1
DDIM 0.7006 0.9600 0.8100 0.7836 0.5049 0.6141 0.8675 0.5628 0.6826 0.9690 0.9127 0.9400

AE-DDIM 0.9477 0.8274 0.8834 0.8894 0.9121 0.9006 0.9016 0.9351 0.9180 0.9718 0.9298 0.9503
NGLS 0.9572 0.8078 0.8761 0.8764 0.8827 0.8795 0.8601 0.8057 0.8320 0.9897 0.9072 0.9466

NGLS-Diff 0.9752 0.96650.9708 0.9081 0.99570.9499 0.9530 0.98420.9684 0.9698 0.99120.9804

DDIM’s performance in the latent space is superior to the numerical space for
anomaly detection. NGLS-Diff demonstrated a 5.43% average improvement over
AE-DDIM, providing evidence that NGLS-Diff creates a latent space suitable
for time series anomaly detection tasks within the framework of DDIM.

5.4 Ablation Study

To verify the effectiveness of each module in NGLS-Diff, we conduct ablation
studies. We further evaluate NGLS-Diff with its variants by removing each part
in NGLS-Diff: (1)w/o SD: Removes the shape distribution learning module.
(2)w/o PD: Removes the position distribution learning module. (3)w/o CF:
Removes the commonality feature learning module. The results are summarized
in Table 4.

As expected, each module in the latent space construction process con-
tributed to NGLS-Diff’s effectiveness. The shape learning module had the most
significant impact, highlighting the importance of capturing the shape charac-
teristics of normal patterns within the latent space. Conversely, the position
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Table 4. Ablation results (F1-score) of NGLS-Diff on benchmark datasets.

Dataset SWaT MSL SMAP PSM

w/o SD 0.90120.9186 0.8153 0.9266
w/o PD 0.94250.9371 0.8558 0.9674
w/o CF 0.93720.9226 0.8046 0.9521

NGLS-Diff0.97080.9499 0.9684 0.9804

distribution module had a smaller influence, suggesting that the intensity of
normal patterns across different patches is relatively consistent over time. The
commonality feature module also provided a notable improvement in the model’s
performance, indicating that there are evident commonalities and characteristics
among the same type of normal patterns across different patches. These findings
confirm the effectiveness and essential nature of each module in NGLS-Diff.

5.5 Analysis and Discussion

Fig. 2. Sensitivity Analysis of Key Hyperparameters in NGLS-Diff.

Parameter Sensitivity Analysis. This section primarily focuses on the study
of NGLS-Diff’s sensitivity to two hyperparameters: pattern number and patch
length. Figure 2 shows the effects of varying the pattern number and patch length
on the F1 score. Pattern number denotes the number of normal pattern types
NGLS-Diff is expected to identify. The pattern number affects the dimensions
of some vectors in NGLS-Diff’s construction. From Fig. 2(a), we can observe
that there exists an optimal value for the pattern number, and this optimal
value would vary for different datasets. A pattern number set to 1, implying no
differentiation among normal patterns, results in reduced NGLS-Diff efficiency.



NGLS-Diff 297

Fig. 3. Visualization of Multivariate Time Series After UMAP. Orange Points are
anomaly time points. Blue Points are normal time points. (Color figure online)

Patch length is a parameter used to slice the initial latent states of time series in
the latent space and determines the length and the number of time series patches.
Different patch lengths affect the amount of contextual information included in
the patches. Based on Fig. 2(b), for most datasets, a patch length of 10 results
in the optimal F1 score.

Visualization. To further investigate the mechanism of latent space, we visu-
alize the input data and the latent states (i.e., the output of normal gathering
latent space) by UMAP [28] dimensionality reduction. Figure 3(a) illustrates
the reduced two-dimensionality representation of the original multivariate time
series. In this representation, normal and anomalous time points are mixed,
making them indistinguishable in the original numerical space. In Fig. 3(b), the
reduced dimensionality representation of the time series in the normal gathering
latent space constructed by latent space shows a clear boundary between normal
and anomalous time points. This observation confirms that the NGLS effectively
discerns the distribution of normal patterns and characteristics hidden within.
These insights remain obscured in the original data space but are distinct in
the latent space, enabling effective differentiation between normal and abnormal
patterns. Such clear numerical distinctions support the diffusion model in more
accurately reconstructing time series using normal patterns, thus bolstering its
anomaly detection capabilities.
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6 Conclusion

For time series anomaly detection, existing diffusion-based methods reconstruct
time series in the original numerical space, which can be problematic due to
insufficient temporal semantics and outlier interference. To enhance the gen-
erative capability of the diffusion model, we propose NGLS-Diff, which uses a
normal gathering latent space for normal pattern learning. By fusing positional
distribution, shape distribution, and common characteristics of normal tempo-
ral patterns, NGLS-Diff gathers normal patterns, avoids anomalous influences,
and enhances time series reconstruction. Extensive experiments conducted on
multiple real-world datasets demonstrate the performance improvement of this
proposed solution compared to various strong baselines.
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Abstract. Multivariate time series forecasting is critical in finance and
meteorology, influencing decision-making. Though effective in captur-
ing long-range dependencies in natural language processing, traditional
Transformer models face challenges when applied to time series data,
including computational inefficiency and the loss of positional encoding
effects. Time-Series Mixer (TSMixer) addresses these issues by efficiently
blending the temporal and feature dimensions in multivariate time series
data, thereby facilitating sequential dependent feature extraction. How-
ever, the current feature mixing in TSMixer applies a common multi-
layer perception across all time steps, leading to time-invariant, non-
adaptive feature exchange that does not allow for accurate extraction of
historical information. Therefore, we propose incorporating adaptive fre-
quency components and event proximity as additional information vec-
tors into the Feature Mixing component of TSMixer to improve its capac-
ity to interpret complex feature interrelations. Our research validates the
effectiveness of these enhancements through experiments with various
real-world multivariate time series datasets, including weather and traf-
fic data, emphasizing its potential across different scenarios. Codes are
available at https://github.com/rikuter67/FAM-EPAM.

Keywords: Multivariate Time Series · TSMixer · Time Series
Forecasting

1 Introduction

Time series forecasting is indispensable across various sectors, shaping crucial
decision-making processes. Traditional methods, such as ARIMA [4,5], rely on
predefined models to capture trends and cycles of historical series. While they are
effective for stationary series, their fixed structure and inability to capture the
dynamic dependencies among multiple features would result in poor performance
with real-world data.

Deep neural networks with recurrent architectures, i.e., RNNs [12,15], and
memory cells, i.e., LSTMs [7,10], enable to capture dynamic and temporal depen-
dencies by encoding significant information into latent vectors extracted from
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
A. Bifet et al. (Eds.): ECML PKDD 2024, LNAI 14943, pp. 301–316, 2024.
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historical series. However, RNNs with a one-step recurrent connection face lim-
itations on long-term dependencies due to gradient vanishing and exploding
issues. While LSTMs with gates and cells can capture longer-term dependencies,
their effectiveness is still constrained due to the finite capacity of the memory
cells and the complexity of their computational processes.

Transformers [11,14,16,18] introduce an attention mechanism, e.g., self-
attention, which allows the model to directly encode important information into
the sequence vectors themselves based on the relationship, e.g., co-occurrence
within the sequence. This mechanism enables models to process sequences in
parallel and provides an enhanced capacity to capture complex and long-term
dependencies. However, the inherent permutation invariance of the attention
mechanisms poses significant challenges for processing time series data despite
the success in natural language processing, which employs a heuristic extension,
called positional encoding, to add information about the order of time steps.

In light of this, recent studies have suggested the potential of linear models,
which are inherently sensitive to the order of the inputs, for sequential data [17].
Among linear models, the TSMixer (Time-Series Mixer) [6] model employs
repeated MLPs (Multi-layer perceptions) to mix time and feature information
alternately, encoding useful information into sequence vectors from complex mul-
tivariate time series data. However, TSMixer’s feature mixing approach uses a
common MLP across all time steps, leading to time-invariant, non-adaptive fea-
ture mixing, hindering the accurate extraction of historical information.

To address this issue, we propose enhancements to the Feature Mixing com-
ponent of TSMixer. Firstly, we propose a Frequency-Aware Mixer (FAM), which
adds an adaptive frequency component of each feature to the feature-mixing,
enabling the adjustment of the strength of feature mixing based on the adaptive
time cycles. Secondly, we propose an Event Proximity-Aware Mixer (EPAM),
which adds the proximity to the principal observation (event) as an additional
component of the feature mixing, enabling the strength of the feature mixing to
be adjusted based on the relation to the representative events. These enhance-
ments will enable the model to more accurately grasp the complex interrelations
among features.

The main contributions of this paper are summarized as follows:

1. We propose to enhance the Feature Mixing component of TSMixer, the
state-of-the-art multivariate time-series forecasting method, to allow for time-
dependent and adaptive mixing by introducing principal frequency compo-
nents, called Frequency-Aware Mixer (FAM) and the distance to principal
time-step, called Event Proximity-Aware Mixer (EPAM) as additional infor-
mation vectors.

2. We demonstrate the effectiveness of the proposed method over existing state-
of-the-art multivariate time-series forecasting methods through extensive
comparative experiments on various real-world datasets.

After this introductory section, the rest of this paper is organized as follows.
Section 2 describes the formulation and reviews related works. Section 3 details
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Fig. 1. Illustration of the time series forecasting process based on the formulation
using weather-related multivariate data. fθ (·) transforms L-step of observations X−t

to generate T -step future observations ̂Xt+, which is then evaluated against the ground
truth Xt+ using the loss function L(·, ·) to compute the discrepancy. Multivariate data
are adapted from [8].

the proposed method. Section 4 describes the experimental evaluation and dis-
cussion; Sect. 6 presents the conclusion.

2 Formulation and Related Works

This section formulates the problem of multivariate time series forecasting and
reviews its related works.

2.1 Formulation

Let Xtc denote the c-th observation at time t and : denote all elements at the
corresponding axis. Let X−t ∈ R

L×C be L-step history of observations where
X−t

t: ∈ R
1×C be a vector of C observations at time step t and X−t

:c ∈ R
L×1 be

a vector of the c-th observation over L-step. Meanwhile, let Xt+ ∈ R
T×C be

T -step future observations starting from the next step of X−t as follows:

X−t =
[
Xt−L+1:, . . . , Xt−1:,Xt:

]
,

Xt+ =
[
Xt+1:,Xt+2: . . . , Xt+T :

]
. (1)

The task of multivariate time-series forecasting is to obtain a model f(·) to
predict future observations Xt+ given its history X−t as follows:

X̂t+ = fθ (X−t), (2)
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Parameter θ of the model is tuned to minimize the loss function L(·) averaged
over training data Dtr as follows:

min
θ

1
|Dtr|

|Dtr|∑

t=L

L(
Xt+, fθ (X−t)

)
, (3)

where Dtr is defined as follows:

Dtr ≡
{(

X−t,Xt+
)}Ntr−T

t=L
, (4)

where Ntr is the number of steps in the training sequence. Similarly, the valida-
tion and test data are defined as follows:

Dval ≡
{(

X−t,Xt+
)}Ntr+Nval−T

t=Ntr

,

Dte ≡
{(

X−t,Xt+
)}Ntr+Nval+Nte−T

t=Ntr+Nval

, (5)

where Nval and Nte are the numbers of steps in the validation and test
sequence, respectively—there is no overlap between training, validation, and
test sequences. As Fig. 1 illustrates the formulation overview.

2.2 Attention Mechanisms in Time Series Forecasting

Attention mechanisms have been applied to time series forecasting [11,14,16,18],
enabling models to dynamically encode important information into the sequence
vectors X−t based on the relationships between observation vectors at different
time steps. More specifically, in the attention mechanism, affinity weight W att ∈
R

L×L is computed based on the similarity between query vectors Q ∈ R
L×C and

key vectors K ∈ R
L×C . Next, query Q is transformed through an interpolation

of value vectors V ∈ R
L×C , as follows:

W att = softmax
( (QWQ) (KWK)�

√
C

)
,

Q′ = Attention(Q,K, V ) = W att(V WV ), (6)

where WQ,WK , and WV ∈ R
C×C are trainable linear projection matrices. This

weight W att captures the dependencies across the time series, making attention
mechanisms particularly useful for identifying intricate temporal relationships.

There are several extensions to overcome the limitation of Transformer for
multivariate time-series forecasting, such as Autoformer [16], Informer [18], and
PatchPST [11]. Autoformer incorporates an autocorrelation mechanism to cap-
ture long-term dependency and a deep decomposition architecture that sequen-
tially decomposes the time series data into trend, seasonal, and random compo-
nents during forecasting. Informer introduces ProbSparse self-attention, which
probabilistically selects important queries with higher attention scores to reduce
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Fig. 2. Architecture of TSMixer, consisting of N repeated mixer layers and a temporal
projection. Note that time and feature-mixing MLPs in each mixer layer are shared
across all features and all time steps.

computational complexity enabling the efficient capture of long-term depen-
dency. PatchTST divides the time series into patch chunks treated as time steps
in the attention mechanism and applies single embedding and attention mech-
anism individually to each multivariate series, enabling efficient multivariate
time-series forecasting.

However, due to the attention mechanisms’ inherent permutation invariance
property, Transformer models face challenges when directly applied to time series
data, where the order of time steps critically impacts forecasting accuracy. Cur-
rently, Transformer models attempt to address this issue through positional
encoding, which aims to inject sequence information into the model. Yet, there
is a concern that the effect of positional encoding may diminish as the attention
mechanism is applied repeatedly.

2.3 TSMixer: An All-MLP Architecture for Time Series Forecasting

Recent research [17] has highlighted that simple linear models can be highly effec-
tive for time series forecasting, surpassing Transformer-based models, i.e., Auto-
former [16], Informer [18] and FEDformer [19]. As illustrated in Fig. 2, TSMixer
applies MLPs alternatively in time and feature domains. TSMixer consists of
three main components: Time-mixer, Feature-mixer, and Temporal Projection
as follows:
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Time-Mixer encodes temporal information, e.g., long-term dependencies, into
the history X−t by blending across the time direction X−t

:c as follows:

TM(X−t
:c ) = Drop

(
σ
(
(X−t

:c )�WTM + bTM

))
,

X−t
:c ← Norm

(
X−t

:c + TM(X−t
:c )�

)
, (7)

where WTM ∈ R
L×L and bTM ∈ R

1×L are trainable weight and bias, respectively.
σ(·), Drop(·), and Norm(·) represent an activation function, i.e., ReLU, a dropout
operation, and a normalization operation, i.e., 2D batch normalization applied
over the L×C plane along the batch dimension, respectively. Note that the same
time-mixing MLPs are shared across all types of features.

Feature-Mixer encodes information regarding the relationship among differ-
ent observations, e.g., co-occurrence of observations, into the history X−t by
blending across the feature direction X−t

t: as follows:

Ut: = Drop
(
σ
(
X−t

t: WFM1 + bFM1

))
, FM(X−t

t: ) = Drop
(
Ut:WFM2 + bFM2

)
,

X−t
t: ← Norm

(
X−t

t: + FM(X−t
t: )

)
, (8)

where WFM1 ∈ R
C×H and WFM2 ∈ R

H×C are trainable weights, and bFM1 ∈
R

1×H and bFM2 ∈ R
1×C are trainable biases. U ∈ R

L×H represents the hidden
variables with the the number H of nodes. Note that the same feature-mixing
MLPs are shared across all time steps.

Temporal Projection compresses the L-step history X−t
:c to the length of

future prediction period, i.e., T -step, using a fully-connected layer as follows:

X̂t+
:c =

(
(X−t

:c )�WTP + bTP

)�
, (9)

where X−t represents the output of the Mixer Layer, WTP ∈ R
L×T and bTP ∈

R
1×T are trainable weight and bias.

The permutation-sensitive properties of the time-mixing MLPs in TSMixer
empower the model to effectively capture the dynamic relationships among
observations along the time direction, enhancing the prediction performance
for multivariate time series data. On the other hand, a limitation exists in the
feature-mixing MLPs where the same MLPs are used across time direction, and
thus, the identical transformation is applied to vector X−t

t: regardless of position
in the sequence. This permutation-invariant feature mixing avoids capturing sig-
nificant relationships between observations, e.g., co-occurrence of observations
related to trend and seasonal cycles, and potentially degrades the prediction
performance.
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Fig. 3. Architecture of frequency-aware mixer (FAM), a permutation-sensitive exten-
sion of Feature Mixing MLPs in TSMixer (in Fig. 2). A matrix Sfre ∈ R

L×K contains
K different waveforms along the time axis, linearly integrated by weight Wfre.

3 Proposed Method

To allow for time-dependent and adaptive feature mixing, we propose to
enhance the feature mixing by introducing principal frequency components,
called Frequency-Aware Mixer (FAM), and the distance to the principal time
step, called Event Proximity-Aware Mixer (EPAM), as additional information
vectors.

3.1 Frequency-Aware Mixer (FAM)

We propose Frequency-Aware Mixer (FAM) which incorporates an adaptive fre-
quency component into the first layer of feature-mixing MLPs (in Eq. 8 and
Fig. 2) as depicted in Fig. 4 and as follows:

Ut: = Drop
(
σ
(
X−t

t: WFM1 + Sfre
t: Wfre + bFM1

))
,

Sfre
tk = ak cos

(
2πpk
Ntr

t

)
+ bk sin

(
2πpk
Ntr

t

)
, k = 1, 2, . . . ,K, (10)

where the frequency component Sfre
t: Wfre is a linear integration of K different

waveforms along time-axis, Sfre ∈ R
L×K using weight Wfre ∈ R

K×H . ak, bk, and
pk are trainable parameters tuning the amplitude of cos and sin waves and the
frequency for the k-th waveform, respectively.

To prepare initial waveforms Sfre
t: representing training time-series data Dtr,

we apply a Fourier transform to the sequence [X0c,X1c, . . . , X(Ntr−1)c] of each
observation c and extract Ntr/2 waves. Among the waves whose periods do not
exceed the history length L, we select m waves with the largest power spectra
and set their amplitudes and frequencies as the initial values of a, b, and p for
each observation c—there are total K = mC waves.

The feature-mixing in FAM is sensitive to permutations as the frequency
components may vary with the time-step t. This allows for flexible feature mixing
based on the inherent periodic characteristics of time series, e.g., seasonality,
trend cycles, and cyclical cycles. This could potentially enhance the capacity
of the model to capture the temporal dynamics of the data and improve the
prediction performance.
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Fig. 4. Architecture of event proximity-aware mixer (EPAM), a temporal
characteristics-sensitive extension of Feature Mixing MLPs in TSMixer (in Fig. 2). A
matrix Spro ∈ R

L×R contains R different representative observations (events) along
the time axis, linearly integrated by weight Wpro.

3.2 Event Proximity-Aware Mixer (EPAM)

We propose Event Proximity-Aware Mixer (EPAM) which incorporates an adap-
tive proximity component into the first layer of feature-mixing MLPs (in Eq. 8
and Fig. 2) as depicted in Fig. 4 and as follows:

Ut: = Drop
(
σ
(
X−t

t: WFM1 + Spro
t: Wpro + bFM1

))
,

Spro
t: = X−t

t: Xrep, (11)

where the proximity component Spro
t: Wpro is a linear integration of proximities

to R different representative observations (events), Spro ∈ R
L×R, using weight

Wpro ∈ R
R×H . Xrep ∈ R

C×R is a set of R representative observation vectors
and Spro

t: is the inner product (similarity) between an observation vector X−t
t: at

time-step t and representative vectors Xrep.
To prepare representative vectors Xrep, we apply a clustering method, e.g.,

k-means, into C-dimensional vectors across all training time steps, {Xt:}Ntr−1
t=0

and set R cluster centroids as Xrep.
The feature mixing in EPAM is also sensitive to permutations as the prox-

imity components may vary with the time-step t. This allows for flexible feature
mixing based on the natural variability of time series due to the occurrence of
various types of events, e.g., holiday and weather events, etc., potentially enhanc-
ing the capacity of the model to capture the fluctuation pattern of the data and
improve the prediction performance.

3.3 Entire Architecture and Training

The architecture of the proposed method, i.e., fθ (X−t), is a variant of TSMixer
depicted in Fig. 2 where its feature mixer component is replaced with our pro-
posed permutation-sensitive feature mixier: FAM (in Fig. 3 or TPAM (in Fig. 4.
We refer to the combination of TSMixer with our proposed feature mixers as
TSMixer + FAM and TSMixer + TPAM, respectively.
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For training the entire architecture, we used mean squared error (MSE) as
the loss function L(·) in Eq. 3 as follows:

L(Xt+, fθ (X−t)) =
1

TC

∥
∥Xt+ − fθ (X−t)

∥
∥2

F
, (12)

where ‖ · ‖F is Frobenius norm.
We use early stopping with 5-epoch patience based on the validation loss

computed using the validation data described in Table 1 and select the best
model with the minimum validation loss.

4 Experimental Evaluation

In this section, we show the effectiveness of the proposed method through exper-
iments on seven popular multivariate long-term forecasting benchmarks such as
weather, electricity, and traffic.

4.1 Setting and Comparative Methods

We set the length of history observations as L = 512 following the work [11],
and the length of future prediction observations as T ∈ {96, 192, 336, 720}.

We compared the performance of prediction with the state-of-the-art multi-
variate time series forecasting methods: Transformer-based and MLP-mixer-
based models as follows:

– Transformer-based models: we used codes with default settings provided in
following githubs:

• Autoformer [16]: https://github.com/thuml/Autoformer
• Informer [18]: https://github.com/zhouhaoyi/Informer2020
• PatchTST [11]: https://github.com/yuqinie98/PatchTST

– MLP-mixer-based models:
• TSMixer [6]: we used the basic version of TSMixer provided

in the github https://github.com/google-research/google-research/tree/
master/tsmixer and settings described in the work [6].

• TMix-Only: we eliminated the feature mixer component (in Fig. 2) from
the above TSMixer following the work [6].

• TSMixer + FAM (proposed method, Sect. 3.1): we set the number of
waves for each observation type as m = 3 for datasets with fewer obser-
vation types, i.e., ETT and Weather, and m = 1 for datasets with more
types, i.e., Electricity and Traffic. We utilized numpy.fft.rfft function
for the implementation of Fourier transform. Other settings are same
as TSMixer. In addition, we applied reversible instance normalization
(RevIN) into the each input X−t and output X̂t+ of the model [9].

• TSMixer + EPAM (proposed method in Sect. 3.2): we set the number of
representative observations as R = 5. We utilized sklearn.cluster module
for k-means clustering. Other settings are same as TSMixer + FAM.

https://github.com/thuml/Autoformer
https://github.com/zhouhaoyi/Informer2020
https://github.com/yuqinie98/PatchTST
https://github.com/google-research/google-research/tree/master/tsmixer
https://github.com/google-research/google-research/tree/master/tsmixer
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Table 1. Details of the datasets used in the experiments

ETTh1/h2 ETTm1/m2 Weather Electricity Traffic

No. of obs. C 7 7 21 321 862

Time steps 17,420 69,680 52,696 26,304 17,544

Time cycle 1 h 15 min 10 min 1 h 1 h

Data split train:valid:test 12:4:4 [month] 70:10:20 [%]

4.2 Datasets

We used seven real-world multi-variate time series datasets: ETT [13],
Weather [3], Electricity [2], and Traffic [1], provided by the work of Auto-
former [16] in https://github.com/thuml/Autoformer.

More specifically, Electricity Transformer Temperature (ETT) datasets con-
tain two-year sequences of loads and oil temperature collected from electricity
transformers every 1 h and 15 min. Weather dataset contains one-year sequences
of 21 meteorological indicators, such as air temperature and humidity, recorded
every 10 min. Electricity dataset contains three-year sequences of electricity con-
sumption of 321 customers, collected every hour. Finally, Traffic dataset contains
two-year sequences of road occupancy rates at 862 different places, recorded
every hour. Table 1 summarizes the details of the datasets.

As a preprocessing step for the data, we divided the sequences from each
dataset into training, validation, and test subsequences, as described in Table 1.
We then calculated the mean and standard deviation for each subsequence
[X0c,X1c, . . .] for each observation c and sed these values to normalize the corre-
sponding subsequences. Then, we used these normalized subsequences as training
Dtr (in Eq. 4), validation Dval, test Dte (in Eq. 5) data.

4.3 Result

The experimental results are shown in Table 2. The performance is measured
using MSE of test data Dte as follows:

MSE(Dte) =
1

TC|Dte|
∑

(X−t,Xt+)∈Dte

∥
∥Xt+ − fθ (X−t)

∥
∥2

F
. (13)

In principle, multivariate models that simultaneously consider the relationships
between time and features are expected to offer higher flexibility and perfor-
mance in time series forecasting compared to univariate models, which only
independently consider the time series of individual features. However, Table 2
demonstrates that the performance of Autoformer and Informer in multivariate
models is inferior to that of the univariate model. Furthermore, the performance
of TSMixer is equivalent to that of TMix-Only, which lacks a feature mixer, indi-
cating that the co-occurrences in feature direction provided by a feature mixer,
are not necessarily important for prediction, as reported in the work [6].

https://github.com/thuml/Autoformer
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Table 2. Performance comparison in multivariate time series forecasting. The per-
formance is measured using the MSE computed from each test data Dte (in Eq. 13).
Those performance surpassing TSMixer is indicated in red among multivariate models.
In addition, the best performance among all models is indicated in bold.

Dataset Univariate Model Multivariate Model

Model TMix-Only PatchTST Autoformer Informer TSMixer +FAM +EPAM

ETTh1

96 0.3643 0.3721 0.6110 0.8437 0.3645 0.3644 0.3626

192 0.3995 0.4106 0.5105 0.9920 0.4011 0.4010 0.3948

336 0.4231 0.4216 0.5767 1.3062 0.4249 0.4245 0.4104

720 0.4543 0.4473 0.6887 1.3983 0.4562 0.4535 0.4342

ETTh2

96 0.2698 0.2749 0.4826 0.3512 0.2730 0.2707 0.2734

192 0.3366 0.3385 0.5602 0.3805 0.3386 0.3347 0.3344

336 0.3602 0.3302 0.7877 0.3832 0.3631 0.3639 0.3654

720 0.4229 0.3839 0.9875 0.6024 0.4219 0.4269 0.4520

ETTm1

96 0.2879 0.2909 0.4769 0.6620 0.2861 0.2858 0.2852

192 0.3256 0.3349 0.5854 0.7321 0.3266 0.3254 0.3326

3360.3561 0.3636 0.6663 0.6024 0.3568 0.3587 0.3691

7200.4160 0.4166 0.6939 0.6474 0.4167 0.4202 0.4192

ETTm2

96 0.1678 0.1652 0.2866 0.3290 0.1677 0.1654 0.1962

1920.2184 0.2226 0.3288 0.6741 0.2185 0.2222 0.2299

336 0.2817 0.2735 0.3809 0.8493 0.2815 0.2782 0.2953

720 0.4015 0.3593 0.4683 0.9752 0.4175 0.4074 0.5512

Weather

96 0.1491 0.1482 0.3799 0.4160 0.1489 0.1474 0.1480

1920.1888 0.1938 0.3174 0.7115 0.1894 0.1897 0.1913

336 0.2396 0.2468 0.3487 0.9766 0.2370 0.2429 0.2363

720 0.3148 0.3136 0.3888 1.1191 0.3124 0.3219 0.3087

Electricity

96 0.1307 0.1289 0.2265 0.3316 0.1300 0.1288 0.1290

192 0.1497 0.1468 0.2203 0.3574 0.1487 0.1491 0.1460

336 0.1636 0.1659 0.2203 0.3848 0.1633 0.1633 0.1604

720 0.1940 0.1997 0.2441 0.4170 0.1948 0.1939 0.1925

Traffic

96 0.3795 0.4104 0.6804 1.2582 0.3798 0.3758 0.3791

192 0.3979 0.4125 0.6732 1.3366 0.3982 0.3936 0.3959

336 0.4152 0.4232 0.7119 1.4528 0.4147 0.4085 0.4171

720 0.4509 0.4614 0.7401 1.4859 0.4497 0.4487 0.4498

On the other hand, Table 2 shows that the proposed methods, TSMixer+
FAM and TSMixer+EPAM, which enhance the feature-mixer with permutation
sensitivity, outperform TSMixer in various datasets and future prediction steps,
i.e., T . This indicates the potential of the proposed methods for permutation-
dependent feature mixing in adaptively modeling relationships between features
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and reveals the potential importance of feature mixing in multivariate time series
forecasting.

Table 3. Comparison of parameter counts and averaged inference time per instance,
measured using the test data Dte in Traffic dataset.

Traffic

Model # of params Average inference time (ms)

TMix-Only 903,292 1.557

TSMixer 1,795,112 1.838

+FAM 2,245,948 3.769

+EPAM 1,797,722 1.831

Table 3 presents a comparison of parameter counts and the average time per
inference, measured using the test data Dte in Traffic dataset with the most types
of observations as shown in Table 1. As the table shows, multivariate models tend
to have larger parameters as the number of observations C increases compared
to univariate models. Furthermore, in the case of the TSMixer+FAM, model,
datasets with a large number of observations result in a significantly higher
number of extracted frequencies K (in Eq. 10), leading to a much longer inference
time compared to other models. In the future, it will be necessary to adopt
strategies such as feature grouping to reduce the number of additional vectors
while maintaining predictive accuracy.

4.4 Analysis

In addition, Fig. 5 depicts examples of forecasts by TSMixer, FAM, and EPAM,
for T (Temperature), WV (Wind Velocity), rain(precipitation), SWDR (Short
Wave Downward Radiation), and CO2 (CO2 concentration) of Weather dataset
with forecasting length T = 720—the history X−t

:c and ground truth Xt+
:c (Eq. 1)

in blue and the prediction X̂t+
:c (in Eq. 2) in orange.

Figure 5 shows that compared to TSMixer, TSMixer+FAM is able to more
closely follow the true values with its periodic predictions such as in WV
and CO2. This outcome underscores the impact of FAM’s dynamic frequency-
dependent feature mixing, which is further enhanced by the incorporation of
additional frequency information into the feature mixing process. Therefore, in
fields such as multivariate time series forecasting involving frequency compo-
nents, like temporal traffic patterns, FAM’s ability to accurately track waveforms
is considered effective.

Similarly, EPAM is able to more closely follow the true values with its finer-
grained predictions. This fine-grained prediction reflects the impact of EPAM’s
approach of integrating distance information between major events and each
historical point into the feature mixing. Therefore, in multivariate time series
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Fig. 5. Examples of ground truth (in blue) and prediction (in orange) by TSMixer,
+FAM, and +EPAM models, for T (Temperature), RH (Relative Humidity), WV
(Wind Velocity), SWDR (Short Wave Downward Radiation), and CO2 (CO2 con-
centration) variables in the test data Dtr of Weather dataset with forecasting length
T = 720. The history length L is fixed at 512 for all experiments, and the grey verti-
cal line indicates the boundary date between the history and the future. (Color figure
online)

forecasting involving rapid changes within short periods, such as Electricity data,
EPAM’s ability to make detailed adjustments is considered effective.

From these observations, it is clear that in the domain of multivariate time
series data with complex inter-feature relationships, the proposed method can
enhance the ability to utilize the relationships between features for more accurate
forecasting.
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Fig. 6. Examples of ground truth (in blue) and prediction (in orange) for Oil Tem-
perature (OT) variable in the test data Dtr of ETTh1 dataset. Each row and column
corresponds to a different model and forecast length T ∈ {96, 192, 336, 720}. The his-
tory length L is fixed at 512 for all experiments, and the grey vertical line indicates
the boundary date between the history and the future. (Color figure online)

To further analyze the effectiveness of the proposed method, we visualized
the experimental results for different forecasting lengths across all comparison
methods. Fig. 6 depicts examples of forecasts for Oil Temperature (OT) variable
of ETTh1 dataset with forecasting length T ∈ {96, 192, 336, 720}—the history
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X−t
:c and ground truth Xt+

:c (Eq. 1) in blue and the prediction X̂t+
:c (in Eq. 2)

in orange, where c corresponds to OT.
In contrast to nonlinear multivariate models, i.e., Autoformer and Informer,

which increasingly diverge from the ground truth as the forecast horizon extends,
TSMixer-based models are capable of delivering forecasts that are on par with
univariate models across various forecast lengths, T . Furthermore, compared to
TSMixer, FAM tends to predict with more periodic trends, while EPAM tends
to predict with finer amplitudes. This likely occurs because the models have
effectively adjusted the mixing features based on the overall frequency of the
training data and the proximity to representative events. Consequently, these
models not only capture the temporal mixing of information but also extract
useful information through feature mixing.

5 Conclusion

In this study, we enhance feature mixing in the TSMixer model for multivariate
time series forecasting by introducing principal frequency components through
the Frequency-Aware Mixer (FAM) and incorporating distances to principal time
steps with the Event Proximity-Aware Mixer (EPAM). These proposed methods
enable time-dependent and adaptive feature mixing, demonstrating the utility of
permutation-dependent feature mixing for dynamically capturing the relation-
ships between features. Experimental results across various real-world datasets
indicate the potential of the proposed methods for permutation-dependent fea-
ture mixing in adaptively modeling relationships between features and reveal the
importance of feature mixing in multivariate time series forecasting.

Disclosure of Interests. The authors have no competing interests to declare that

are relevant to the content of this article.

References

1. California Department of Transportation. https://pems.dot.ca.gov/. Accessed 23
Mar 2023

2. ElectricityLoadDiagrams. https://archive.ics.uci.edu/ml/datasets/
ElectricityLoadDiagrams20112014. Accessed 23 Mar 2023

3. Max-Planck-Institut für Biogeochemie - Wetterdaten. https://www.bgc-jena.mpg.
de/wetter/. Accessed 23 Mar 2023

4. Box, G.E.P., Jenkins, G.M.: Time Series Analysis, Forecasting and Control (1970)
5. Box, G.E., Jenkins, G.M.: Some recent advances in forecasting and control (1968)
6. Chen, S.A., Li, C.L., Yoder, N.C., Arık, S.O., Pfister, T.: Tsmixer: an all-mlp

architecture for time series forecasting (2023). https://arxiv.org/abs/2303.06053
7. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. (1997)
8. Khabbazan, S., et al.: Crop monitoring using sentinel-1 data: a case study from

The Netherlands (2019)
9. Kim, T., Kim, J., Tae, Y., Park, C., Choi, J.H., Choo, J.: Reversible instance

normalization for accurate time-series forecasting against distribution shift (2022).
https://openreview.net/forum?id=cGDAkQo1C0p

https://pems.dot.ca.gov/
https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
https://www.bgc-jena.mpg.de/wetter/
https://www.bgc-jena.mpg.de/wetter/
https://arxiv.org/abs/2303.06053
https://openreview.net/forum?id=cGDAkQo1C0p


316 R. Yamazono and H. Hachiya

10. Lai, G., Chang, W.C., Yang, Y., Liu, H.: Modeling long- and short-term temporal
patterns with deep neural networks. In: SIGIR (2018)

11. Nie, Y., Nguyen, N.H., Sinthong, P., Kalagnanam, J.: A time series is worth 64
words: long-term forecasting with transformers. In: International Conference on
Learning Representations (2023)

12. Rangapuram, S.S., Seeger, M.W., Gasthaus, J., Stella, L., Wang, Y., Januschowski,
T.: Deep state space models for time series forecasting. Adv. Neural Inf. Process.
Syst. 31 (2018)

13. THUML: ETDataset: GitHub Repository. https://github.com/zhouhaoyi/
ETDataset (2023). Accessed 22 Mar 2023

14. Vaswani, A., et al.: Attention is all you need. Adv. Neural Inf. Pro-
cess. Syst. 30 (2017). https://proceedings.neurips.cc/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

15. Wen, R., Torkkola, K., Narayanaswamy, B., Madeka, D.: A multi-horizon quantile
recurrent forecaster. In: NeurIPS (2017)

16. Wu, H., Xu, J., Wang, J., Long, M.: Autoformer: decomposition transformers with
auto-correlation for long-term series forecasting. Adv. Neural Inf. Process. Syst.
(2021)

17. Zeng, A., Chen, M., Zhang, L., Xu, Q.: Are transformers effective for time series
forecasting? (2022). https://arxiv.org/abs/2205.08459

18. Zhou, H., et al.: Informer: beyond efficient transformer for long sequence time-
series forecasting. In: Proceedings of the AAAI Conference on Artificial Intelligence
(2021). https://doi.org/10.48550/arXiv.2012.07436

19. Zhou, T., Ma, Z., Wen, Q., Wang, X., Sun, L., Jin, R.: Fedformer: frequency
enhanced decomposed transformer for long-term series forecasting (2022)

https://github.com/zhouhaoyi/ETDataset
https://github.com/zhouhaoyi/ETDataset
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/abs/2205.08459
https://doi.org/10.48550/arXiv.2012.07436


Prior Bilinear-Based Models for
Knowledge Graph Completion

Jiayi Li1,2, Ruilin Luo1, Jiaqi Sun3, Jing Xiao4, and Yujiu Yang1(B)

1 Tsinghua University, Beijing, China
{lijy20,lrl23}@mails.tsinghua.edu.cn, yang.yujiu@sz.tsinghua.edu.cn

2 Baidu Inc., Beijing, China
3 Carnegie Mellon University, Pittsburgh, PA, USA

jiaqisun@andrew.cmu.edu
4 Ping An Technology (Shenzhen) Co., Ltd., Shenzhen, China

XIAOJING661@pingan.com.cn

Abstract. Bilinear-based models are powerful and widely used
approaches for Knowledge Graphs Completion (KGC). Despite the con-
siderable progress achieved by bilinear-based models, prior research has
predominantly focused on posterior properties, such as symmetry pat-
terns, while neglecting the consideration of prior properties. In this
paper, we identify a prior property known as ”the law of identity” that
eludes capture by bilinear-based models, thus impeding their compre-
hensive modeling of Knowledge Graph (KG) characteristics. To over-
come this limitation, we propose a novel solution named Unit Ball
Bilinear Model (UniBi). UniBi not only attains theoretical superior-
ity but also enhances interpretability and performance by minimizing
ineffective learning through minimal constraints. Experimental results
demonstrate that UniBi effectively models the prior property while val-
idating its interpretability and performance.

Keywords: Identity in KG · Bilinear-based model · Knowledge graph
completion

1 Introduction

Knowledge Graphs (KGs) store human knowledge in the form of triple (h, r, t),
which represents a relation r between a head entity h and a tail entity t [13].
KGs benefit a lot of downstream tasks and applications, e.g., recommender sys-
tem [41], dialogue system [10] and question answering [23]. Since actual KGs
are usually incomplete, researchers are interested in predicting missing links to
complete them, termed Knowledge Graph Completion (KGC).

We assume that a Knowledge Graph (KG) is a set of facts about sets of
entities E and relations R. Each fact is stored by a triple (ei, rj , ek) ∈ E ×R×E
where ei and rj denote the i -th entity and the j -th relation, respectively. To
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address the challenge of KGC, Knowledge Graph Embedding (KGE) emerges as
a common solution, completing KGs by learning low-dimensional representations
of entities and relations through a score function s : E × R × E → R.

As a prominent category within Knowledge Graph Embedding (KGE),
bilinear-based models have demonstrated remarkable advances [11,18,25,29].
However, existing works in this category primarily concentrate on posterior
properties, which are derived from evidence in triples, such as relational pat-
terns [18,36] and complex relations [9,27]. Here, a critical question arises: Does
a prior property exist?

Fig. 1. The flaws of bilinear-based models and our solution in terms of modeling the
uniqueness of identity. (a) Identity matrix fails to model identity. (b) Scaled identity
matrix could also model identity. (c) An illustration of UniBi. All entities are embedded
in the unit sphere and stay in the unit ball after relation-specific transformations.

Our assertion is affirmative, pointing to the law of identity in Logic [31].
According to this law, everything is identical to itself. In the context of Knowl-
edge Graphs (KGs), this principle implies that not only should the representa-
tions of entities differ, but also the representation of identity must be unique,
allowing its determination without reliance on any facts or a priori. However, we
observe that the uniqueness of identity has eluded capture in previous bilinear-
based models, hindering their ability to fully encapsulate the properties of KGs.

To articulate the problem more precisely, we introduce some notation. In a
model with a score function denoted as s(h, r, t), the capacity to capture the
uniqueness of identity implies that ∀h �= t, s(h, r, h) > s(h, r, t) holds if and only
if r represents identity, and its universal representation is distinctive. Addition-
ally, the score function s(·) in bilinear-based models is represented as h�Rt,
where h,R, t are the representations of h, r, and t.

In terms of achieving such uniqueness, bilinear-based models exhibit two
flaws. Firstly, as depicted in Fig. 1(a), e�

1 Ie1 < e�
1 Ie2, indicating that the rela-

tion matrices themselves do not perfectly model identity. Secondly, as illustrated
in Fig. 1(b), even if a matrix, such as I, does model identity, its scaled counter-
part kI can also represent identity, thereby compromising uniqueness.

Capturing this property necessitates constraints on both entities and rela-
tions, which might reduce expressiveness. However, we mitigate this cost by
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minimizing constraints, one per entity or relation, while modeling the desired
property. Specifically, we normalize the vectors of entities and the spectral radius
of relation matrices to 1. Given that the model captures entities within a unit
ball, as shown in Fig. 1(c), we coin the model as the Unit Ball Bilinear Model
(UniBi). Apart from its theoretical superiority, UniBi demonstrates increased
power and interpretability. Achieving unique identity modeling requires nor-
malizing scales that contain minimal useful knowledge. On the one hand, scale
normalization prevents ineffective learning on scales, enabling UniBi to focus
more on useful knowledge. On the other hand, it elucidates the relationship
between the complexity of relations and the singular values in the matrices used
to represent them.

We extensively validate the performance of our UniBi model on four datasets:
WN18RR, FB15k-237, YAGO3-10-DR [21], and ogbl-biokg. Our results exhibit
an advantage over previous structure-based models in terms of metrics such as
MRR and Hits@1.

2 Related Work

Previous work mainly handle two kind of posterior properties, namely relational
patterns and complex relations. On the one hand, relational patterns are the
intrinsic properties of relations, and is formally introduced by ComplEx [29].
Base on this, RotatE [26] proposes composition pattern, Analogy [18] intro-
duces analogy pattern, or commutative pattern, and Dihedral [36] adds non-
commutative pattern. On the other hand, complex relations are the extrinsic
properties of relation, and is introduced in TransH [35] to denote the relations
that are not 1-1, or 1-N, N-1, N-N.

Distance based models choose Euclidean distance for their score functions.
TransE [4] inspired by Word2Vec [22] in Natural Language Processing proposes
the first distance based model, which uses translation as the linear transforma-
tion s(h, r, t) = −‖h + r − t‖. TransH [17] and TransR [17] find that TransE
difficult to handle complex relations and thus apply linear projections before
translation. Apart from translation, RotatE [26] first introduces rotation as the
transformation. RotE [5] further combines translation and rotation. Some works
also introduce hyperbolic spaces [2,5,33].

Beyond posterior properties, previous work of KGE can be roughly divided
into the following three categories: distance, bilinear and others.

In contrast, bilinear based models have score functions in the bilinear form
s(h, r, t) = h�Rt. RESCAL [25] is the first bilinear based model whose rela-
tion matrices are unconstrained. Although RESCAL is expressive, it contains
too many parameters and tends to overfitting. DistMult [38] simplifies these
matrices into diagonal ones. ComplEx [29] further introduces complex values
to model the skew-symmetry pattern. STaR [16] integrate scaling, the combi-
nation of translation and rotation. Analogy [18] uses block-diagonal to model
the analogical pattern and subsumes DistMult, ComplEx, and HolE [24]. More-
over, QuatE [42] extends complex values to quaternion and GeomE [37] utilizes
geometric algebra to subsume all these models.
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With the rapid development of language models, many methods that focus
on text and attribute information [20,32,34,39] have also been proposed.

3 Methodology

3.1 Preliminary

We utilize Ê and R̂ to denote the set of all possible representations of entities and
relations. And we use e ∈ Ê and R ∈ R̂ to denote the embedding vector of the
entity e and the transformation matrix specific to the relation R. Furthermore,
we use ‖ · ‖ to denote the L2 norm of the vectors, ‖ · ‖F and ρ(·) to represent the
Frobenius norm and the spectral radius of a matrix.

In this paper, we focus on n-dimensional real space R
n, which means Ê ⊆ R

n

and R̂ ⊆ R
n×n. We also consider real vector spaces whose vectors are complex

C
n or hypercomplex space H

n, since they are isomorphic to R
2n or R

4n.

3.2 Prior Property and Identity Relation

The law of identity, expressed as ∀x, x = x, prompts us to examine how entities
and the identity relation, denoted as x and =, are embedded. Given that the
embedding of identity should be specified a priori, we establish the following
equivalent definition:

Definition 1. A KG model can model the law of identity, which means that the
embeddings of entities are different, and the embeddings of the identity relation
are unique.

While the differences in entity embeddings are effortlessly addressed, bilinear-
based models struggle to capture the uniqueness of identity. We illustrate two
cases where bilinear-based models fall short. Firstly, as depicted in Fig. 1(a),
e�
1 Ie1 < e�

1 Ie2, revealing that the matrix of a relation alone does not guaran-
tee effective modeling of identity. Secondly, as demonstrated in Fig. 1(b), even
if a matrix, such as I, does model identity, its scaled counterpart kI where
k > 0, k �= 1 can also represent identity, contradicting the quantification of
uniqueness. Consequently, we introduce a formal definition, building upon Def-
inition 1, to explore modifications to bilinear-based models for capturing this
uniqueness and adhering to the law of identity.

Definition 2. A bilinear model can model the law of identity means:

∃! R ∈ R̂,∀h, t ∈ Ê,h �= t, h�Rh > h�Rt, (1)

where ∃! is the uniqueness quantification.
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3.3 Unit Ball Bilinear Model

From the examples above, it is evident that modeling the law of identity neces-
sitates constraints on both entities and relations, potentially reducing expres-
siveness. To address this trade-off, we strategically minimize the impact of con-
straints by imposing them minimally, with one constraint per entity or rela-
tion, while still capturing the desired property. Specifically, entity embeddings
and the spectral radius of relation matrices are normalized to 1, defined as
Ê = e, |, |e| = 1, e ∈ R

n and R̂ = R, |, ρ(R) = 1,R ∈ R
n×n. The proposed model

is named Unit Ball Bilinear Model (UniBi), reflecting its capability to capture
entities within a unit ball, as illustrated in Fig. 1(c). The score function of UniBi
is expressed as:

s(h, r, t) = h�Rt, ‖h‖, ‖t‖ = 1, ρ(R) = 1. (2)

We then have the following theorem.

Theorem 1. UniBi is capable of modeling the law of identity in terms of
definition 2.

Proof. On the one hand, if R = I, it is easy to have ∀h, t ∈ Ê,h �= t that
h�Ih > h�It from the property of cosine.

On the other hand, ∀R ∈ R̂,R �= I, we can always give a counterexam-
ple. Using singular value decomposition (SVD), we have R = UΣV�, where
Σ = Diag[σ1, . . . , σn] with σi ≥ 0 and U, V are orthogonal matrices. Since
ρ(R) = 1, we have σmax = max(σi) = 1.

Besides, we notice that since U, V are orthogonal matrices that do not change
the norm of vectors, we have ‖h�U‖ = ‖V�t‖ = 1 and use ĥ and t̂ to denote
U�h and V�t for mathematical simplicity. We consider three scenarios and
discuss them separately.

(1) If all singular values of R are equivalent, we have Σ = I, and we have:

s(h, r, t) = h�UΣV�t = ĥ�It̂ = ĥ�t̂. (3)

It is easy to notice that the above equation just goes back to the cosine function,
and it has the maximum value when ĥ = t̂ and U�h = V�t. If UV� = I, this
contradicts the assumption that R �= I. If UV� �= I, then we have h �= t, since
h = (U�)−1

V�t = UV�t. It means h�Rh < h�Rt in this situation.
(2) If not all singular values of R are equivalent and U = V, there ∃i, j ∈

1, . . . , n that σi �= σj . It may be assumed that σi > σj . Then we take ∀h ∈ Ê

that has ĥj = ( σi

σj
− ε)ĥi where ε ∈ (0, σi

σj
− 1). Then we take

t̂k =

⎧
⎪⎨

⎪⎩

ĥk, k �= i, j,

ĥj , k = i,

ĥi, k = j.

(4)
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It is easy to notice that ĥ = U�h, t̂ = U�t and h �= t, then we have

h�Rt = h�UΣU�t

= ĥ�Σt̂

= σiĥit̂i + σjĥj t̂j +
∑

k �=i,j

σkĥk t̂k

= σiĥiĥj + σjĥjĥi +
∑

k �=i,j

σkĥ2
k,

(5)

similarly, we have

h�Rh = h�UΣU�h = ĥ�Σĥ = σiĥ2
i + σjĥ2

j +
∑

k �=i,j

σkĥ2
k. (6)

Then, we use Eq. 6 minus Eq. 5, and we have

h�Rh − h�Rt

=

⎛

⎝σiĥ2
i + σjĥ2

j +
∑

k �=i,j

σkĥ2
k

⎞

⎠ −
⎛

⎝σiĥiĥj + σjĥjĥi +
∑

k �=i,j

σkĥ2
k

⎞

⎠

=σi(ĥ2
i − ĥiĥj) + σj(ĥ2

j − ĥiĥj)

=σiĥi(ĥi − ĥj) − σjĥj(ĥi − ĥj)

=(σiĥi − σjĥj)(ĥi − ĥj)

=
(

σiĥi − σj(
σi

σj
− ε)ĥi

) (

ĥi − (
σi

σj
− ε)ĥi

)

=
(
σiĥi − σiĥi + εσjĥi

)(

1 − σi

σj
+ ε

)

ĥi

=εσjĥ2
i (1 − σi

σj
+ ε)

<0,

(7)

which means that h�Rh < h�Rt in this case.
(3) If not all singular values of R are equivalent and U �= V, there exists

k ∈ 1, . . . , n such that σk = σmax = 1 since ρ(R) = 1. Then, we take the
following.

ĥi = t̂i =

{
1, i = k,

0, i �= k.
(8)

It should be noted that ĥ = t̂ and h �= t since U �= V. Then, we have

h�Rt = h�UΣV�t = ĥ�Σt̂ = σk = 1. (9)

Since UniBi is bounded by [−1, 1], we have h�Rh ≤ 1 = h�Rt, which means
that s(h, r, h) > s(h, r, t) does not always hold.
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In summary, we can conclude that UniBi has h �= t, h�Rh > h�Rt iff.
R = I, which means that UniBi can model identity uniquely. Considering that
entities are embedded differently, we conclude that UniBi can model the law of
identity in terms of definition 2.

Although the proposed model has been proven to model the law of identity,
it still has a practical disadvantage since it is difficult to directly represent all
matrices whose spectral radius is 1. In addition, it is also time-consuming to
calculate the spectral radius ρ(·) via singular values decomposition (SVD). To
avoid unnecessary decomposition, we divide a relation matrix into three parts
R = RhΣRt where Rh,Rt are orthogonal matrices and Σ = Diag[σ1, . . . , σn]
is a positive semidefinite diagonal matrix. We maintain the independence of
these three components during training. Therefore, it becomes simple to obtain
matrices whose spectral radius is 1, that is, RhΣRt

σmax
. We transform the score

function Eq. 2 into the following form.

s(h, r, t) =
h�RhΣRtt
σmax‖h‖‖t‖ , (10)

where σmax is the maximum among σi.
In addition, we find that the calculation of the orthogonal matrix is still

time-consuming [27]. To this end, we only consider the diagonal orthogonal block
matrix, where each block is a low-dimensional orthogonal matrix. Specifically,
we use k-dimensional rotation matrices to build Rh and Rt. Taking Rh as an
example Rh = Diag[SO(k)1, . . . ,SO(k)n

k
], where SO(k)i denotes the i-th spe-

cial orthogonal matrix, that is, the rotation matrix.
The rotation matrix only represents the orthogonal matrices whose determi-

nants are 1 and does not represent the ones whose determinants are −1. To this
end, we introduce two diagonal sign matrices of n-th order Sh,St ∈ S where

S = {S | Sij =

{
±1, if i = j,

0, if i �= j.
}. (11)

Thus, we could rewrite the score function Eq. 10 to

s(h, r, t) =
h�RhShΣStRtt

σmax‖h‖‖t‖ . (12)

However, the sign matrix Sh and St are discrete. To address this problem,
we notice that Sh, Σ, St can be merged into a matrix Ξ that

Ξij =

{
sisjσi, if i = j,

0 if i �= j.
(13)

where si = (Sh)ii, sj = (St)jj , i, j = 1, . . . , n and Ξ = Diag[ξ1, . . . , ξn]. Thus,
we incorporate the discrete matrices Sh,St into the continuous matrix Ξ.

s(h, r, t) =
h�RhΞRtt
|ξmax|‖h‖‖t‖ , (14)

where |ξmax| is the maximum among |ξi|.
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4 Experiments

4.1 Experiment Setup

Table 1. Statistics of the benchmark datasets.

Dataset |E| |R| Training Validation Test

WN18RR 40,943 11 86,835 3,034 3,134

FB15k-237 14,541 237 272,115 17,535 20,466

YAGO3-10-DR 122,873 36 732,556 3,390 3,359

ogbl-biokg 93773 51 4762678 162886 162870

Dataset. We evaluate our models on four widely adopted benchmarks:
WN18RR [8], FB15k-237 [28], YAGO3-10-DR [1], and ogbl-biokg [12]. The first
three datasets involve removing reciprocal triples to address data leakage issues
in WN18, FB15K, and YAGO3-10, respectively. The ogbl-biokg is a KG encom-
passing a substantial volume of biomedical data sourced from the Open Graph
Benchmark. Comprehensive statistics for these datasets are provided in Table 1.
Baseline Models. In this context, we explore two specific variants of UniBi:
UniBi-O(2) and UniBi-O(3), employing rotation matrices in 2 and 3 dimensions
to construct the orthogonal matrix. Specifically, we utilize the unit complex
value and the unit quaternion to model 2D and 3D rotations, employing 2 × 2
and 4×4 matrices, respectively. UniBi is systematically compared against several
bilinear models, including RESCAL [25], CP [11], ComplEx [29], and QuatE [42].
Additionally, it is juxtaposed with other models such as RotatE [26], MurE [2],
RotE [5], Turcker [3], ConvE [8], PairRE [6], and TripleRE [40].
Metrics. For our evaluation, we employ Mean Reciprocal Rank (MRR) and
Hits@k (k = 1, 3, 10) as the key metrics. MRR provides the average inverse rank
of correct entities, offering resilience to outliers. Hits@k signifies the proportion
of correct entities ranked above k.

4.2 Optimization

We adopt the reciprocal setting [15], which creates a reciprocal relation r′ for
each r and a new triple (ek, r′

j , ei) for each (ei, rj , ek) ∈ K. Instead of using Cross
Entropy directly [15,42,43], we add an extra scalar γ > 0 before the softmax
function. Since UniBi is bounded, it brings an upper bound to loss that makes
the model difficult to optimize, as discussed by [30].

L = −
∑

(h,r,t)∈Ktrain

log
(

exp(γ · s(h, r, t))
∑

t′∈E exp(γ · s(h, r, t′))

)

+ λ · Reg(h, r, t) (15)

where Reg(h, r, t) is the regularization term and λ > 0 is its factor. Specifi-
cally, we only take Reg(h, r, t) as DURA [43] in experiments since it significantly
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outperforms other regularization terms. In addition, γ is set to 1 for previous
methods and greater than 1 for UniBi. And we set the dimension n to 500.

Table 2. Hyperparameters found by grid search. λ is the regularization coefficient, γ
is the scaling factor, b is the batch size.

WN18RR FB15K237 YAGO3-10-DR ogbl-biokg

Model λ γ b λ γ b λ γ b λ γ b

CP 1e-1 1 100 5e-2 1 100 5e-3 1 1000 5e-3 1 500

ComplEx 1e-1 1 100 5e-2 1 100 1e-2 1 1000 1e-3 1 500

RESCAL 1e-1 1 1000 5e-2 1 1000 5e-2 1 1000 5e-3 1 500

UniBi-O(2) 2 20 100 2 25 1000 1.5 30 1000 5e-3 1 500

UniBi-O(3) 2 15 100 1.5 20 1000 1.5 30 1000 5e-3 1 500

5 Implementation Details

We fix the dimension of all models except RESCAL on WN18RR to 500, while
RESCAL on WN18RR is set to 256 following [43]. We choose Adam [14] as the
optimizer and fix the learning rate at 1e − 3. We set the maximum epochs to
200 and apply the early stopping strategy.

We set the scaling factor γ to 1 for all models except UniBi. And we search
γ from {1, 5, 10, 15, 20, 25, 30} for UniBi. For the factor for regularization λ we
search {1, 5e− 1, 1e− 1, 5e− 2, 1e− 2, 5e− 3, 1e− 3} for all models except UniBi
and {0.5, 1, 1.5, 2, 2.5, 3} for it. The search results are listed in the Table2. We
search for the batch size from {100, 1000}. In addition, we implemented all the
experiments in PyTorch with a single NVIDIA GeForce RTX 2080Ti graphics
card for FB15k-237, WN18RR and YAGO-3-10DR.

For the experiments in Sect. 6.1, we set γ for UniBi without DURA in
Sect. 6.1 to 10, 15, 25 for WN18RR, FB15k-237, and YAGO3-10-DR for UniBi,
respectively. For the experiments on the ogbl-biokg dataset. We choose Ada-
grad [19] as the optimizer following [7]. We fix the learning rate at 1e-2, γ at 1,
and batch size at 500. And we search λ from {1e−3, 5e−3, 1e−2}. Additionally,
we search for the embedding size from {1000, 2000, 3000} for UniBi and other
reproducible models. All experiments on ogbl-biokg can be run with a single
NVIDIA GeForce RTX 4090 graphics card.

5.1 Main Results

In this section, we illustrate how constraints contribute to the improved perfor-
mance of UniBi. We primarily compare our model with previous state-of-the-
art (SOTA) models, including CP [11], ComplEx [29] and RESCAL [25], using
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Table 3. Evaluation results on WN18RR and FB15k-237 datasets. We reimplement
RotE, CP, RESCAL, and ComplEx with n = 500 and denoted by †, while we take other
results from original papers. We also implement the results of PairRE and TripleRE
on WN18RR. The best results are in bold while the seconds are underlined.

FB15k-237 WN18RR

Model MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

CP† [11] 0.361 0.266 0.387 0.551 0.457 0.414 0.469 0.549

RESCAL† [25] 0.364 0.272 0.396 0.547 0.495 0.452 0.491 0.575

DistMult [38] 0.241 0.155 0.263 0.419 0.430 0.390 0.440 0.490

ComplEx† [29] 0.363 0.269 0.390 0.552 0.487 0.445 0.497 0.571

ConvE [8] 0.325 0.237 0.356 0.501 0.430 0.400 0.440 0.520

QuatE [42] 0.348 0.248 0.382 0.550 0.488 0.438 0.508 0.582

RotatE [26] 0.338 0.241 0.375 0.533 0.476 0.428 0.492 0.571

MurP [2] 0.335 0.243 0.367 0.518 0.481 0.440 0.495 0.566

TuckER [3] 0.358 0.266 0.394 0.544 0.470 0.443 0.482 0.526

RotE [5] 0.346 0.251 0.381 0.538 0.494 0.446 0.512 0.585

PairRE [6] 0.351 0.256 0.387 0.544 0.461 0.417 0.479 0.553

TripleRE [40] 0.351 0.251 0.392 0.552 0.473 0.433 0.491 0.562

UniBi-O(2) 0.370 0.274 0.406 0.561 0.487 0.460 0.502 0.566

UniBi-O(3) 0.369 0.274 0.407 0.561 0.492 0.452 0.505 0.571

DURA regularization. Although these models have been implemented by [43],
the dimensions of CP and ComplEx are excessively high and have not been
tested on YAGO3-10-DR. Thus, we re-implement them in this paper for a fair
comparison. We also re-implement some other advanced models, such as RotE,
PairRE and TripleRE.

As shown in Table. 3, UniBi achieves comparable results to previous bilinear-
based models. UniBi is only slightly and justifiably below RESCAL on WN18RR
since RESCAL needs require much more time and space. Additionally, as demon-
strated in Table. 4, UniBi achieves the highest or second highest performance in
all metrics on the YAGO3-10-DR and large-scale ogbl-biokg1.

1 Without considering ensemble learning and exogenous constraints, we achieved the
best performance on OGB-biokg.
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Table 4. Evaluation results on ogbl-biokg and YAGO3-10-DR datasets. We take the
results of PairRE and TripleRE on ogbl-biokg from OGB leaderboard and reimplement
other models. For YAGO3-10-DR, we take the results of models denoted by ‡ from [1].
The best results are in bold while the seconds are underlined.

ogbl-biokg YAGO3-10-DR

Model MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

CP [11] 0.838 0.774 0.883 0.951 0.241 0.175 0.253 0.370

RESCAL [25] 0.817 0.745 0.868 0.946 0.233 0.168 0.243 0.360

DistMult‡ [38] 0.825 0.756 0.874 0.948 0.192 0.133 0.208 0.307

ComplEx‡ [29] 0.846 0.787 0.887 0.952 0.238 0.174 0.253 0.360

ConvE‡ [8] - - - - 0.204 0.147 0.216 0.315

QuatE [42] 0.820 0.748 0.873 0.947 0.229 0.166 0.248 0.351

RotatE‡ [26] 0.815 0.743 0.868 0.943 0.216 0.160 0.229 0.324

MurP [2] - - - - 0.201 0.146 0.214 0.308

TuckER‡ [3] 0.817 0.745 0.870 0.946 0.207 0.148 0.221 0.320

RotE [5] - - - - 0.215 0.157 0.227 0.326

PairRE [6] 0.817 0.743 0.872 0.947 0.210 0.159 0.239 0.348

TripleRE [40] 0.835 0.768 0.885 0.952 0.204 0.154 0.233 0.346

UniBi-O(2) 0.852 0.794 0.895 0.954 0.247 0.179 0.268 0.376

UniBi-O(3) 0.856 0.798 0.897 0.956 0.246 0.180 0.264 0.377

Fig. 2. Why learning on the scales are ineffective. We test RESCAL with 3 setting a) no
regularization, b) use Frobenius norm as regularization, c) use DURA as regularization.
We use index rather than name to denote different relations for simplicity. And we
notice that 1) non-convergence exists in every case, 2) the better the result, the more
the scales converge, 3) Regularization cannot stop the fluctuation of scales. (Better
view in color, zoom in, note the difference in the vertical coordinates.)

6 Further Analysis

6.1 UniBi Prevents Ineffective Learning

Here, we demonstrate that ineffective learning does exist, which means the scale
is not only redundant but also harmful. As shown in Fig. 2, we take RESCAL
as an example to show this phenomenon. We notice that 1) non-convergence



328 J. Li et al.

Fig. 3. UniBi benefits from preventing ineffective learning. (a) UniBi less relies on
regularization and other models are not. (b) Neither entity constraint (EC) nor relation
constraint (RC) alone stops the sliding of performance.

exists in every case, 2) the better the result, the more the scales converge, and
3) regularization cannot stop the fluctuation of scales.

We believe that these cases illustrate, on the one hand, the positive corre-
lation between the constraint scale and the effect, on the other hand, the mere
constraint cannot eliminate fluctuations that may interfere with the model learn-
ing. Therefore, we think scale is harmful and learning about it is ineffective, and
we need a hard constraint rather than a regularization term to prevent this
completely.

We further verify that the superiority of UniBi stems from its ability to pre-
vent ineffective learning. We conduct further comparisons without regularization.
In addition, we also adopt EC (entity constraint) and RC (relation constraint)
to study the effect of both constraints. All experiments are implemented on
WN18RR.

On the one hand, as shown in Fig. 3(a), when the regularization term is
removed, UniBi’s performance decreases slightly while other models’ perfor-
mance decreases significantly. This indicates that UniBi’s learning is less depen-
dent on extra regularization, as it effectively prevents ineffective learning. On the
other hand, we illustrate the MRR metric of UniBi and its ablation models on the
validation set as the epoch grows in Fig. 3(b). On the other hand, as illustrated
in Fig. 3(b), we observe the MRR metric of UniBi and its ablation models on the
validation set as epochs increase. It is evident that either constraint alleviates
overfitting to some extent but fails to prevent the downward sliding trend due to
the unconstrained part potentially diverging in scale. Thus, both constraints are
indispensable for preventing ineffective learning and improving the performance
of UniBi.

6.2 Prior Property Modeling

In this section, we demonstrate that UniBi can effectively model the law of
identity, a capability lacking in previous models. Additionally, we emphasize
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Fig. 4. UniBi is capable to uniquely model identity. (a) the imbalance degree (Δ) of
UniBi converges to 0 while others diverge. (b) The errors between different matrices
modeling identity converge to 0 on different datasets. (c) Both entity constrain (EC)
and relation constrain (RC) are indispensable for UniBi to model identity.

the indispensability of constraints on both entity and relation embeddings. To
achieve this, we augment benchmarks by explicitly introducing identity as a new
relation, utilizing its corresponding matrix to assess the modeling of unique-
ness. Given the distinct nature of entities, embodying the law implies capturing
the uniqueness of the identity relation. This necessitates the convergence of the
matrix associated with the identity relation to either the identity matrix I or a
scaled variant. For evaluation purposes, we introduce a novel metric, the imbal-
ance degree,

Δ = (
∑

i

σi

σmax
− 1)2 (16)

providing a quantitative measure of convergence and uniqueness modeling.
We first compare UniBi with CP [11] and RESCAL [25], representing the

least and most expressive bilinear models on FB15k-237. Additionally, we apply
DURA [43] to these models to investigate their ability to adhere to the law
of identity under extra regularization. As depicted in Fig. 4(a), the imbalance
degree Δ of UniBi converges to 0, while others fail. This observation verifies
UniBi’s unique capability to model identity distinctly. Furthermore, although
the imbalance of other models decreases to some extent when using DURA, they
still fall short of achieving a unique representation of identity. To demonstrate
UniBi’s ability to converge uniquely to identity, we employ two matrices, R1 and
R2, to model it independently. As illustrated in Fig. 4(b), the error between R1

and R2 also converges to 0, indicating their convergence to I.
We proceed with an ablation study to ascertain the necessity of both the

entity constraint (EC) and the relation constraint (RC) for the unique modeling
of identity. The experiments reveal that employing either constraint in isolation
is insufficient to capture the uniqueness of identity, as depicted in Fig.4(c). This
finding validates the identified issues illustrated in Fig.1(a) and Fig. 1(b).



330 J. Li et al.

6.3 Interpretability

In addition to enhancing performance, scale normalization proves instrumen-
tal in comprehending intricate relations. We define complex relations based on
whether the head per tail of a relation (hptr) or the tail per head of a relation
(tphr) exceeds a specified threshold of 1.5 [35]. Subsequently, relations are cate-
gorized into four types: 1-1, 1-N, N-1, and N-N. However, we contend that this
categorization is overly coarse-grained and propose a more refined, continuous
metric for complexity. To illustrate this notion effectively, we provide an example
in Fig. 5, along with the complexity definition.

Fig. 5. A toy example to show how to calculate complexity.

Definition 3. The complexity of a relation is the sum of its hptr and tphr.

Fig. 6. The imbalance degree (Δ) and complexity (# hptr + # tphr) of relations in
WN18RR, FB15k-237 and YAGO3-10-DR respectively. Two metrics are highly corre-
lated, and the imbalance of a relation (Δr) and the imbalance of its reciprocal one
(Δr′) are very close.

Intuitively, the handling of complex relations involves aggregating entities
through projection [17,35]. This suggests that the higher the complexity of a
relation, the more pronounced its aggregation effect, and conversely, a lower
complexity implies a weaker aggregation effect.

We observe that the aggregation effect can be effectively characterized by the
relative ratio, or imbalance degree, of singular values in the matrices of relations.
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For any relation matrix R = UΣV�, where both U and V are isometry, the
singular values of the scaling matrix Σ exclusively contribute to the aggregation
phenomenon.

Furthermore, the singular values of UniBi are constrained to be less than
or equal to 1, as the spectral radius. This observation establishes a promising
correlation between the singular values of our model and the aggregation, thereby
indicating the complexity. Hence, we can utilize singular values to represent the
complexity of relations, enhancing the interpretability of UniBi. It is noteworthy
that this interpretability extends to other bilinear-based models, provided they
normalize the spectral radius of their relation matrix, akin to UniBi.

To substantiate this assertion, we examine the relationship between singular
values and the complexity of each relation across three benchmarks, where com-
plexity is computed following Definition 3. Additionally, we gauge the singular
values of a relation using the imbalance degree Δ. To distinguish between Δ
for a relation r and its reciprocal relation r′, we denote them as Δr and Δr′

respectively.
As illustrated in Fig. 6, we observe a correlation between singular values and

the complexity of a relation. Notably, Δr and Δr′ remain closely aligned even
in cases of unbalanced relations (1-N or N-1), highlighting that complexity is
managed through aggregation, irrespective of direction.

6.4 Comparison in Modeling Identity

Table 5. Ablation of incorporation of identity triples (it) on WN18RR dataset. The
original version excludes identity triples.

Methods WN18RR

MRR Hits@1

CP 0.457 0.414

CP (w/ it) 0.442 0.403

ComplEx 0.487 0.445

Complex (w/ it) 0.471 0.435

RESCAL 0.495 0.452

RESCAL (w/ it) 0.480 0.438

Perhaps the simplest and most direct approach to modeling the identity attribute
is directly constructing triples for the identity relation in the training set. We
select CP, ComplEx, and RESCAL for the ablation study on the WN18RR
dataset. The results are demonstrated in Table. 5. The results are demonstrated
in Table. 5, indicate that directly adding identity triples to the training set
generally leads to decreased performance. This decline can be attributed to the
fact that learning about identity alone does not contribute to the performance of
other relations and may even be detrimental to the overall results. Furthermore,
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the number of identity triples significantly surpasses that of other relations. For
instance, on the WN18RR and FB15k-237 datasets, the average number of triples
assigned to each relation in the training set is 7894 and 1148, respectively. In
contrast, the number of identity triples equals the number of entities, amounting
to 40493 and 14514, respectively. This substantial difference introduces bias into
the model’s learning process regarding other relations.

7 Conclusion

In this paper, we introduce a novel perspective, termed prior property, for ana-
lyzing and modeling Knowledge Graphs (KGs), extending beyond traditional
posterior properties. Notably, we observe that existing bilinear-based models
struggle to capture this property, prompting us to propose UniBi as a vali-
dated solution. Specifically, UniBi applies well-designed normalization on the
embeddings of entities and relations with minimal constraints. UniBi not only
addresses the challenges posed by the law of identity but also brings forth addi-
tional advantages through normalization. Firstly, the normalization safeguards
against ineffective learning, thereby enhancing overall model performance. Sec-
ondly, it unveils a noteworthy insight: the relative ratio of singular values corre-
sponds to the complexity of relations, significantly improving interpretability.

In summary, we believe the question of prior property and the paradigm of
UniBi can provide interesting and useful directions for the studies of bilinear-
based models.
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Abstract. Keyphrase generation aims to automatically derive a set of
phrases from a given document. Recently, automated keyphrase genera-
tion has gained prominence as a focal point of research in both industry
and academia, showcasing notable advancements in performance. This
paper aims to employ a Large Language Model (LLM) for a more compre-
hensive extraction of keyphrases from documents. We observe that many
article authors adhere to a four-step process when selecting keyphrases
for a document. Initially, they extract keyphrases directly from the doc-
ument. In addition, some authors will also choose hypernyms of the
keyphrases selected in the previous stage as new extended keyphrases.
Subsequently, these authors obtain keyphrases from documents with sim-
ilar topics, opting for the most appropriate ones to include. Finally, the
authors organize the keyphrases obtained from the extraction, extension,
and retrieval steps, discerning the final keyphrases through a ranking pro-
cess. Motivated by these observations, we introduce a zero-shot learning
approach for keyphrase generation using the LLM, which includes four
parts. The extractor, extender, and retriever components are responsible
for recalling candidate keyphrases, while the ranker component is tasked
with ranking them. Experimental results demonstrate the effectiveness of
our approach on various datasets. Moreover, ablation experiments shed
light on the impact of each module on the model’s final performance.

Keywords: Keyphrases Generation · Zero-shot Learning · Large
Language Model

1 Introduction

Keyphrase generation endeavors to automatically produce a collection of
phrases derived from a given document. Typically, keyphrases are composed
of multiple words, serving to succinctly encapsulate the primary content of the
document and highlight noteworthy topics or information. Readers can gain a
general understanding of document content by utilizing keyphrases without the
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Fig. 1. Example of the article authors’ main steps for generating keyphrases. The
orange color indicates keyphrases retrieved from similar documents, and the green
color indicates keyphrases extracted from the source document, and the blue color
indicates keyphrases extended by LLM.

need for detailed reading. Furthermore, these keyphrases can be applied in var-
ious downstream tasks, including information retrieval [16], text summarization
[33], and document classification [14]. Recently, the automated generation of
keyphrases has become a significant area of research attention in both indus-
try and academia. Following the accessibility of text data in previous researches
[7,8,19,34], a wide range of datasets derived from scientific articles is commonly
employed as benchmarks in keyphrase generation. Therefore, our study specifi-
cally concentrates on the generation of keyphrases from scientific articles.

Previous researches in keyphrase generation mainly include two types of
methods: Extraction and Generation. The extraction methods [4–6,20]
mainly used graph algorithms or neural networks to extract keyphrases from
documents. These methods are limited to identifying only the keyphrases that
are explicitly present in the document (in this paper, we call them present
keyphrases). In contrast, the generation methods [8,9,19,34] mainly adopted
sequence-to-sequence [29] (seq2seq) structure, these methods enable the gener-
ation of not only the keyphrases present in the document but also those absent
ones (in this paper, we call it absent keyphrases), thus offering a more com-
prehensive range of keyphrases, and the generation methods have shown note-
worthy advancements in performance. However, these methods necessitate an
extensive number of document-keyphrase pairs for supervised training, acquir-
ing such data is costly and labor-intensive [25]. Recently, LLMs, exemplified by
ChatGPT, have exhibited remarkable performance across a diverse array of nat-
ural language tasks. They have achieved comparable or superior results when in
contrast with their supervised counterparts potentially trained with millions of
labeled examples, even in zero-shot setting [23]. [26] have conducted a prelimi-
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nary evaluation of ChatGPT for the keyphrase generation task, they discovered
that ChatGPT still faces challenges, particularly when it comes to generating
absent keyphrases. This is mainly because many keyphrases of the document are
abstract concepts, and LLMs cannot well understand these concepts from the
document itself.

This paper aims to employ LLM for a more comprehensive generation
of keyphrases from documents by zero-shot learning. We observe that article
authors typically follow a four-step process (Extraction, Extension, Retrieval,
and Ranking) when choosing keyphrases, as depicted in Fig. 1. First, they extract
keyphrases from the document. At this stage, the keyphrases primarily consist of
phrases present in the text. Then, some authors may choose hypernyms and syn-
onyms of the keyphrases selected in the extraction stage as new keyphrases. This
step is called Extension. For example, Natural Language Processing is a hyper-
nym of Aspect sentiment Quadruple Extraction. In addition, article authors will
also tend to refer some documents with similar contents in the same domain,
and select the most suitable keyphrases to incorporate. During this phase, the
identified keyphrases predominantly manifest as absent keyphrases. Ultimately,
authors proceed to organize the keyphrases obtained from the previous steps
and discern the final keyphrases through a ranking process.

Motivated by these observations, we propose a zero-shot learning approach
with LLM for keyphrase generation, which includes four parts: Extractor,
Extender, Retriever and Ranker. (1) The extractor is employed to directly
extract possible keyphrases from the document, these keyphrases are called
extracted candidate keyphrases. (2) The extender aims to obtain hyper-
nyms and synonyms of extracted keyphrases, which is denoted as extended
candidate keyphrases. (3) The retriever is tasked with obtaining keyphrases
from documents similar to the current one, denoted as retrieved candidate
keyphrases. (4) A novel ranker based on LLM is used to rank all candidate
keyphrases and generate final document keyphrases.

Notably, each part is grounded in the zero-shot learning of LLM, thus elim-
inating the need for labeled data. Our contributions can be summarized into
multiple aspects:

– Inspired by human behavior, we present a novel approach with LLM
for keyphrase generation, which comprises four components. This method
enhances keyphrase recall through a three-step process involving extraction,
extension and retrieval followed by the application of a ranker to select the
most pertinent keyphrases.

– In ranker, we propose a novel multi-turn selecting method based on LLM,
which greatly improves the performance of ranking.

– We conduct experiments on four datasets and the experimental results show
that our method outperforms all unsupervised methods as well as most super-
vised methods. While, the ablation experiment also shows the performance
improvement brought by each component.
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2 Related Work

2.1 Keyphrase Extraction

Many previous works were devoted to extracting keyphrases from documents,
and most of them were unsupervised methods [2,4–6,20].

Specifically, these methods mainly included 2 main steps: extraction and
ranking. For example, [4,5,20] used graph-based extraction and ranking meth-
ods. Recently, [6] rested on statistical text features extracted from single docu-
ments to select the most relevant keywords in a text.

In addition to unsupervised extraction methods, some research in recent
years used supervised methods to complete keyphrases extraction tasks. [1] was
approached as a sequence annotation task, where keyphrases in the document
were annotated to train a neural network for keyphrase extraction. As pre-
trained models have achieved great improvements in many tasks. Recently, some
researchers [21,27] have tried to use pre-trained models for keyphrase extraction.
Although yielding favorable results, these methods encountered limitations in
extracting absent keyphrases.

2.2 Keyphrase Generation

[19] pioneered a novel method for simultaneously generating present and absent
keyphrases by integrating a sequence-to-sequence framework [29] with a copying
mechanism [11]. This approach laid the foundation for many subsequent stud-
ies. For example, [8] considered that many studies neglect correlations among
keyphrases, resulting in duplication and coverage issues, so they used coverage
mechanisms and review mechanisms to address this problem. [34] introduced
a dual copy mechanism to copy OOV words and seed words from the source
text for keyphrase generation. [9] believed that titles play a very important role
in keyphrase extraction, they proposed the title-guided network (TG-Net) for
automatic keyphrase generation based on the encoder-decoder architecture. [7]
introduced reinforcement learning based on a sequence-to-sequence architecture
to encourage the generation of both sufficient and accurate keyphrases. Generally
speaking, the seq2seq architecture is sensitive to the order of output keyphrases,
but in practice, the output order of keyphrases does not affect its correctness,
[35] proposed a novel model that utilized a fixed set of learned control codes as
conditions to generate a set of keyphrases in parallel.

Besides the use of the seq2seq architecture, the research [30] in recent years
has also used Adversarial Generation Networks (GAN) to generate keyphrases.
Moreover, the emergence of ChatGPT has recently garnered significant atten-
tion from the computational linguistics community. [26] conducted a preliminary
evaluation of ChatGPT for keyphrase generation to demonstrate its capabilities
as a keyphrase generator.
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Fig. 2. Our approach for generating keyphrases.

3 Methodology

The keyphrase generation task is to generate a set of keyphrase Px from the
document x. Px contains |Px| keyphrases and denotes as Px = {px,i}|Px|

i=1 , where
px,i is one of Px.

Our method mainly consists of four parts: Extractor, Extender,
Retriever, and Ranker, as shown in Fig. 2. Given a document x, we first use
the extractor to obtain the extracted candidate keyphrases Pe

x = {pex,i}
|Pe

x|
i=1 .

Then, an extender is used to obtain hypernyms and synonyms of Pe
x, denoted

as extended candidate keyphrases Pd
x = {pdx,i}

|Pd
x |

i=1 . Next, the retriever is respon-
sible for finding similar documents of x from the document database1 D and
obtaining retrieved candidate keyphrases Pr

x = {prx,i}
|Pr|
i=1 . Finally, we design an

LLM-based ranker to rank candidate keyphrases obtained by previous steps to
get the final keyphrases Px.

3.1 Extractor

As previously discussed, authors commence the selection of keyphrases by
extracting pertinent central phrases from the document. Aligned with this app-
roach, we construct an extractor based on LLM. After inputting document x

1 In this paper, we use the KP20k training data as the document dataset, we removed
the labels for all data. KP20k dataset contains 509,818 training samples. Each sample
from these datasets consists of the title, abstract, and keyphrases of a scientific
article. Dataset is available at https://huggingface.co/datasets/taln-ls2n/kp20k.

https://huggingface.co/datasets/taln-ls2n/kp20k
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and prompt, we use LLM to extract keyphrases, which are denoted as:

Pe
x = LLM(x, T P1), (1)

where T P1 is a prompt for LLM, which is shown in Table 1. Pe
x is extracted can-

didate keyphrases, which mainly include present keyphrases and a small amount
of absent keyphrases.

3.2 Extender

Through extraction, we have obtained the extracted candidate keyphrases Pe
x,

and then we expand the keyphrases in Pe
x. As mentioned above, some authors

will choose keyphrases that are hypernyms or synonyms of extracted keyphrases.
Motivated by this observation, we use LLM to obtain the hyponyms or synonyms
of kephrases in Pe

x, which is denoted as Pd
x :

Pd
x = LLM(x,Pe

x, T P2), (2)

where T P2 is a prompt for LLM, which is shown in Table 1.

Table 1. Three prompts are designed for chatting with LLM, where [DOCUMENT],
[CANDIDATE], and [CHOSEN_NUM] are the filled contents.

NamePrompts

T P1 Generate present and absent keywords from the following provided
target document: [DOCUMENT] Each noun keyword should
comprise 1 to 4 words. Ensure that these keywords are closely
related to the content of the target document.

T P2 You are a hypernym and synonym keywords extender. Your task
involves analyzing two sets of text: A target document, provided as:
[DOCUMENT]. A set of keywords extracted from the document,
provided as: [CANDIDATE]. Your task is to extend as many as
possible common hypernym and synonym keywords of the extracted
keywords that are not explicitly mentioned in the document text and
not in the extracted keywords but closely align with its topic.

T P3 You are presented with a set of candidate phrases: [CANDIDATE]
and a target document: [DOCUMENT]. Your objective is to
carefully select [CHOSEN_NUM] phrases from the candidate set
that exhibit high relevance to the provided target document.

3.3 Retriever

Authors will also tend to consult keyphrases from other documents with similar
content, selecting pertinent ones to incorporate as their own. Most of these are
synonyms of extracted candidate keyphrases. Given this, we built a retriever
to fetch similar documents of x and obtain the keyphrases in these documents
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Algorithm 1. Extracting keyphrases from retrieval documents
Input: input document x, document dataset D, top k keyphrases, similarity threshold
t
Output: Pr

x

1: x ← Encoder(x) � In this paper, we use a pre-trained sentence transformer as
our encoder. https://huggingface.co/sentence-transformers.

2: for d in D do
3: d ← Encoder(d)
4: sim ← cosine(x,d)
5: if sim > t then
6: keyphrases ← LLM(d, T P1) � Extracting by equation (1).
7: for k in keyphrases do
8: SPr

x[k] ← SPr
x[k] + 1

9: end for
10: end if
11: end for
12: Pr

x = Top(SPr
x, k) � Selecting top k candidate keyphrases.

by Eq. (1). Intuitively, the significance of a keyphrase can be inferred from its
frequency of occurrence in these similar documents. Therefore, we obtain the
keyphrases while concurrently tallying the frequency of their occurrences and
output a pair SPr

x = {(prx,i, trx,i)}
|SPr

x|
i=1 , where prx,i is ith keyphrase, and trx,i is

the number of prx,i occurrences. Finally, we select the top k keyphrases from SPr
x

that appear most frequently as retrieved candidate keyphrases Pr
x. The specific

algorithm is shown in Algorithm 1.

3.4 Ranker

Nowadays, ranking models based on LLM have been widely used in recommen-
dation systems [23,28], which mainly include two types: point-wise and list-wise
approaches, and neither of them has yielded optimal results [12]. In contrast
to the previous ones, in this paper, we introduce a relevance rating founded on
multi-turn selection to assess the relevance of candidate keyphrases and docu-
ments. Finally, this relevance rating is utilized for ranking purposes, ultimately
determining the final keyphrases Px.

The essence of the ranking process lies in utilizing LLM to obtain a relevance
rating between the candidate keyphrase and the given document. Due to a single
rating lacking objectivity and accuracy when using LLM, we propose a multi-
turn selection approach based on LLM for relevance rating, details in Algorithm
2. We let LLM perform r turns selection, in each turn, LLM is tasked with
selecting different numbers of keyphrases that are most relevant and irrelevant
to x from the candidate set. Additionally, absent keyphrases typically represent
broad and abstract terms, whereas present keyphrases are directly extracted from
the document. LLM, consequently tends to focus more on present keyphrases.
For a fair comparison, we separately evaluate absent and present keyphrases and
subsequently aggregate the rating for the final ranking.

https://huggingface.co/sentence-transformers.
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Algorithm 2. Relevance rating algorithm
Input: document x, candidate phrases Pp/a

x (the superscript p/a denotes the Pp
x or

Pa
x ), rank prompt T P3, number of turns r, reward factor λ, penalty factor θ

Output: phrase-rating pair SPp/a
x

1: for i in r do
2: Shuffle(Pp/a

x ) � Shuffle the order of candidate keyphrases.
3: RelevancePhraseList ← LLM(x, Pp/a

x , chosen_num, T P3) � Each turn, we
vary sample numbers chosen_num.

4: UnrelevancePhraseList ← LLM(x, Pp/a
x , chosen_num, T P3) � Selecting the

irrelevant keyphrases, where we replace "relevance" in T P3 with "irrelevance".
5: for phrase in RelevancePhraseList do
6: SPp/a

x [phrase] ← SPp/a
x [phrase] + λ

7: end for
8: for phrase in UnrelevancePhraseList do
9: SPp/a

x [phrase] ← SPp/a
x [phrase] − θ � λ and θ are reward factor and

penalty factor.
10: end for
11: end for
12: for phrase in SPp/a

x do
13: SPp/a

x [phrase] ← SPp/a
x [phrase]/sum(SPp/a

x )
14: end for

Specifically, we first combine extracted candidate keyphrases Pe
x, retrieved

candidate keyphrases Pr
x and extended candidate keyphrases Pd

x into a new
set Pred

x . Then, we split Pred
x into two sets Pp

x and Pa
x according to whether

it appears in x. Next, we calculate relevance rating Pp
x and Pa

x separately by
Algorithm 2, output phrase-rating pairs SPp

x = {(ppx,i, s
p
x,i)}

|SPp
x|

i=1 and SPa
x =

{(pax,i, sax,i)}
|SPa

x|
i=1 , where p

p/a
x,i is ith keyphrase, and s

p/a
x,i is the relevance rating

of p
p/a
x,i . Further, we softly merge the two paris and take the top k keyphrases

with the highest relevance rating as the final outputs Px, which is computed by:

Px = Top(SPx, k), SPx = α � SPp
x ∪ β � SPa

x, (3)

where � represents the weights α and β multiplied by all values of SPp
x and

SPa
x, which is expressed as:

α � SPp
x = {(ppx,i, α · tpx,i)}

|SPp
x|

i=1 , β � SPa
x = {(pax,i, β · tax,i)}

|SPa
x|

i=1 . (4)

Generally speaking, the number of present keyphrases in the document is greater
than the absent keyphrases, to ensure better output performance. In Equation
(4), we adjust the weight of the absent and present keyphrases through hyper-
parameter α, β. For example, if we want more keyphrases from SPp

x, we can
increase the value of α.



A Zero-Shot Learning Approach to Keyphrase Generation 343

4 Experimental Setup

4.1 Datasets

Table 2. Statistics of the testing set on four datasets. #SAM: the average number of
samples, avg.#KP: the number of keyphrases, |KP|: the average length of keyphrase,
%AKP: the proportion of absent keyphrases.

Dataset #SAM avg.#KP |KP| %AKP

NUS 211 10.81 2.22 45.36
Krapivin 400 5.83 2.21 44.33
SemEval 100 14.43 2.38 55.61
Inspec 500 9.79 2.48 26.42

We perform experiments with four datasets comprised of scientific articles,
including NUS [22], Krapivin [18], Semeval [17] and Inspec [13]. Each one com-
prises a title, an abstract, and a set of keyphrases. The test dataset statistics are
shown in Table 2.

In contrast to prior studies [7,8,19,34], our approach is rooted in the LLM-
based zero-shot learning method, eliminating the necessity of training data for
the model.

4.2 Baselines

We choose three categories of baselines for comparative analysis: unsupervised
methods, supervised methods, and LLMs-based zero-shot learning methods.

– Unsupervised methods: Yake [6] is resting on statistical text features
extracted from single documents to select the most relevant keyphrase of a
document. TopicRank [5] and TextRank [20] are graph-based extraction
and ranking methods.

– Supervised methods: We choose the model cat2seq [19] based on seq2seq
which is the first model to generate present and absent keyphrases. The
model cat2seqTG-2RF [7] is introducing reinforcement learning based on
a sequence-to-sequence architecture to encourage the generation of both suf-
ficient and accurate keyphrases. The adversarial generative network model
GANMR [30] and the transformer-based model ONE2SET [35], which are
utilizing a fixed set of learned control codes as conditions to generate a set of
keyphrases in parallel.

– LLM-based zero-shot learning methods: We select the latest large mod-
els (ChatGPT2, Vicuna7B [10] and Mistral7B [15]) as our baselines. In
these baselines, we obtain the keyphrases of the document directly extract
through the prompt. For a fair comparison, all LLMs use the same prompt
T P1.

2 https://chat.openai.com/.

https://chat.openai.com/
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4.3 Implementation Details

In this paper, we choose Openchat 7B [31], a fine-tuned model based on Mis-
tral 7B [15], to build our extractor, extender, retriever, and ranker. Openchat3
learns from mixed-quality data without preference labels, delivering exceptional
performance on par with ChatGPT, even with a 7B model which can be run on
a consumer GPU4

Extractor and Extender. We fill the source document into the T P1, and
make a query to the LLM to get the extracted keyphrases. We then put them
together with the source document into T P2, and make a query to LLM to get
the extended keyphrases.

Retriever. We utilize the training data (excluding labels) of KP20K [19] as the
document database D. A Sentence-Transformer [24] is used to map each docu-
ment in D to a 768 dimensional representation, and then insert it into the vector
database Milvus [32] along with original document. When a source document
is provided, firstly, we convert it to a vector with Sentence-Transformer, then,
retrieve similar documents above a threshold t in Milvus. In this paper, the t is
set to 0.8. In particular, we use a filtering mechanism to prevent the retrieval
of identical documents. After getting similar documents, we use the extractor
to get the keyphrases from all similar documents, respectively. By counting the
frequency of these keyphrases and ranking them, we choose the top k = 10 as
the final retrieved keyphrases.

Considering the absence of retrieved similar documents in some cases, we
design a polish mechanism5 that using LLM to rewrite the source document,
thus the similar documents generated.

Ranker. In the experiment, we prompt LLM for multiple turns with randomly
shuffled candidate keyphrases and varying sample numbers to select the most or
least relevant phrases (we use Table 1 T P3 as positive prompt, and we replace
“relevance” in T P3 with “irrelevance” as negative prompt). When a keyphrase is
deemed relevant, its rating will be augmented by a reward factor. Conversely, a
penalty factor will be applied if the LLM considers it irrelevant. In this paper,
number of turns r, reward factor λ, and penalty factor θ are 5, 1.0, and 0.5,
respectively. Finally, α and β are introduced to adjust the weights for present
3 https://github.com/imoneoi/openchat.
4 Our code is available at https://github.com/sygogo/Zero-Shot-Learning-Keyphrase-

Generator.
5 The prompt for polishing documents: “Below is a paragraph from an academic paper.

Polish the writing to meet the academic style, and improve the spelling, grammar,
clarity, concision and overall readability. When necessary, rewrite the whole sentence.
Paragraph: [DOCUMENT] Note that you should use synonyms or hypernym phrases
to replace something in the text. Try your best to use a variety of expressions. Please
response the answer directly without any other irrelevant words”.

https://github.com/imoneoi/openchat
https://github.com/sygogo/Zero-Shot-Learning-Keyphrase-Generator
https://github.com/sygogo/Zero-Shot-Learning-Keyphrase-Generator
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and absent keyphrases. For example, on Krapivin dataset, α and β are 10.0 and
1.0, respectively.

4.4 Evaluation Metrics

In alignment with prior studies [19,34–36], we employ macro-averaged F1@5,
F1@M and Recall@O metrics for the prediction of both present and absent
keyphrases. When using F1@5, blank keyphrases are added to make the
keyphrase number reach five if the prediction number is less than five. In F1@M,
M denotes the number of ground truth keyphrases. In F1@O, O denotes the
number of predicted keyphrases. In this case, O = |Px| and we simply take all
the predicted phrases for evaluation without truncation.

We employ the Porter Stemmer6 to ascertain the identity of two keyphrases,
subsequently eliminating any duplicated keyphrases post-stemming.

Table 3. * represents the baseline of our implementation by PKE [3]. † denotes zero-
shot learning methods. We highlight the best performance among zero-shot learning
methods in bold.

Present Keyphrases Generation

Models NUS Krapivin SemEval Inspec

F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M

Yake* 0.222 0.234 0.189 0.179 0.200 0.204 0.183 0.186

TopicRank* 0.222 0.214 0.162 0.157 0.194 0.206 0.277 0.299

TextRank* 0.090 0.123 0.117 0.113 0.087 0.148 0.326 0.369

CatSeq 0.323 0.397 0.269 0.354 0.242 0.283 0.225 0.262

CatSeqTG+RF 0.375 0.433 0.300 0.369 0.287 0.329 0.253 0.301

GAMmr 0.348 0.417 0.288 0.369 – – 0.258 0.299

ONE2SET 0.406 0.450 0.326 0.364 0.331 0.357 0.285 0.324

ChatGPT† 0.196 0.248 0.222 0.211 0.168 0.242 0.334 0.384

Mistral7B † 0.211 0.255 0.223 0.212 0.173 0.246 0.305 0.373

Vicuna7B† 0.184 0.225 0.222 0.220 0.128 0.191 0.253 0.317

Ours 0.291 0.268 0.253 0.243 0.256 0.253 0.413 0.415

Absent Keyphrases Generation

Models NUS Krapivin SemEval Inspec

F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M

CatSeq 0.016 0.028 0.018 0.036 0.016 0.028 0.004 0.008

CatSeqTG+RF 0.019 0.031 0.030 0.053 0.021 0.030 0.012 0.021

GAMmr 0.026 0.038 0.042 0.057 – – 0.013 0.019

ONE2SET 0.042 0.060 0.047 0.073 0.026 0.034 0.021 0.034

ChatGPT † 0 0 0.002 0.002 0.002 0.001 0.005 0.005

Mistral7B † 0 0.002 0.005 0.005 0.006 0.005 0.009 0.012

Vicuna7B † 0.002 0.006 0.003 0.002 0 0.001 0.004 0.005

Ours 0.002 0.012 0.005 0.005 0.003 0.009 0.004 0.012

6 https://www.nltk.org/howto/stem.html.

https://www.nltk.org/howto/stem.html
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5 Results and Analysis

5.1 Present and Absent Keyphrase Generation

Table 3 presents the performance of various models in generating both present
and absent keyphrases across different datasets. In the prediction of present
keyphrases, compared to unsupervised methods, our model achieves substantial
improvements on each dataset. On the other hand, among the LLM-based zero-
shot learning methods (including ChatGPT, Mistral7B, and Vicuna7B), we also
obtain the best results on four datasets. Overall, the gap between our method
and supervised methods in the present keyphrases prediction task is not obvious,
and on some datasets, it even exceeds all supervised methods.

In the task of predicting absent keyphrases, unsupervised methods cannot
extract absent keyphrases, so we only compare with supervised methods and
LLM-based zero-shot learning methods. The generation of absent keyphrases
proves to be a highly challenging task, leading to suboptimal performance across
all models. Our model exhibits superior performance when compared to zero-shot
learning methods across all datasets. Nevertheless, it is essential to acknowledge
that our model still experiences a substantial performance gap when compared
to supervised models in this challenging task.

In summary, our method surpasses all unsupervised and partially supervised
models, outperforming zero-shot learning methods based on LLMs across most
of datasets. Compared with generating present keyphrases, generating absent
keyphrases is more challenging. Experiments have proved that we have achieved
better results compared to zero-shot learning methods in the task of generating
absent keyphrases.

5.2 Ablation Study

Fig. 3. The Recall@O of the extractor, extender and retriever on different datasets.
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Effect of Extractor, Extender and Retriever. We believe that the main
aim of extractor, extender, and retriever is to recall keyphrases as much as
possible and provide high-quality candidate phrases for subsequent ranking.
The results of the ablation experiment are depicted in Fig. 3, revealing that
all three components successfully have recalled a substantial number of candi-
date keyphrases. Notably, the extractor demonstrates exceptional performance
by recalling more than half of the present keyphrases across the majority of
datasets. Our observations further highlight the extractor’s proficiency in recall-
ing present keyphrases, while the retriever and extender exhibit greater efficacy
in recalling absent keyphrases. This result aligns seamlessly with our overarch-
ing goal of acquiring a diverse spectrum of candidate keyphrases through the
collaborative synergy of the extractor, extender, and retriever.

Table 4. The impact of the ranker on keyphrases generation.

Present Keyphrase Generation

Models NUS Krapivin SemEval Inspec
F@5 F@M F@5 F@M F@5 F@M F@5 F@M

w/o Ranker 0.145 0.191 0.141 0.152 0.114 0.182 0.189 0.248
Ours 0.291 0.268 0.253 0.243 0.256 0.253 0.413 0.415

Absent Keyphrase Generation
Models NUS Krapivin SemEval Inspec

F@5 F@M F@5 F@M F@5 F@M F@5 F@M
w/o Ranker 0.016 0.015 0.006 0.006 0.006 0.013 0.018 0.015
Ours 0.002 0.012 0.005 0.005 0.003 0.009 0.004 0.012

Effect of Ranker. The primary role of the ranker is to prioritize the keyphrases
obtained by extractor, extender and retriever according to their relevance to the
source document. In this section, we compare the results before and after rank-
ing, as shown in Table 4. F@5 and F@M metric for each dataset exhibits signifi-
cant enhancement after the ranking process, particularly in the realm of present
keyphrase prediction. However, in the absent keyphrases generation task, the
effect after ranking has not been greatly improved, and some datasets have also
declined to a certain extent. This is mainly because there are very few absent
keyphrases candidates in the recall stage, so the ranker ranks more relevant
present keyphrases to the front. Therefore, the performance of present keyphrases
generation is greatly improved and the performance of absent keyphrases gener-
ation is reduced.

Effect of Multi-turn Selection Approach. In ranker, we first let LLM select
multiple turns from the candidate keyphrases to confirm the relevance rating of
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Table 5. The impact of different ranker strategies on present keyphrase generation.
w/o MS means the multi-turn selection approach is not used in the model, namely
r = 1. w/o IRQ denotes that each turn of selection in the ranker only picks the most
relevant keyphrases, but the most irrelevant keyphrases are not considered.

NUS SemEval
P@5 R@5 F1@5P@MR@MF1@M P@5 R@5 F1@5P@MR@MF1@M

w/o MS 0.2760.2690.272 0.201 0.369 0.260 0.2340.1900.210 0.163 0.369 0.226
w/o IRQ 0.1760.1670.171 0.162 0.295 0.209 0.1640.1390.150 0.135 0.308 0.187
Ours 0.2970.2860.291 0.208 0.376 0.268 0.2800.2360.256 0.181 0.418 0.253

Krapivin Inspec
P@5 R@5 F1@5P@MR@MF1@M P@5 R@5 F1@5P@MR@MF1@M

w/o MS 0.0980.1480.117 0.106 0.171 0.131 0.4510.3750.410 0.379 0.524 0.440
w/o IRQ 0.1470.2380.182 0.141 0.243 0.178 0.2670.2250.244 0.253 0.348 0.293
Ours 0.2070.3280.254 0.193 0.329 0.243 0.4540.3790.413 0.358 0.493 0.415

the keyphrases and source document. To verify the effectiveness of multi-turn
selection, we conduct an ablation experiment to compare the ranking effects of
selecting different numbers of turn r. In experiments, we set r = 1 and r =
5. The present keyphrases generation results are shown in Table 5. It can be
seen that after multi-turn selection, the model can obtain better results. On
each dataset, recall and precision increase significantly through the multi-turn
selection approach.

Effect of Prompt in Ranker. In each turn, LLM is tasked with selecting a list
of keyphrases that are most relevant and irrelevant to the source document from
the candidates. The purpose of asking questions from both relevant and irrelevant
aspects is that LLM can evaluate the relevance of candidate keyphrases from
two perspectives. To verify the impact of questioning from two perspectives on
ranking performance, we conduct an ablation experiment. In Table 5, we report
the ranking results after removing irrelevant prompts, it can be seen that the
effect of rating from only one aspect is far lower than the effect of ranking from
two aspects.

6 Conclusion

In this paper, we propose a zero-shot learning approach to keyphrase gener-
ation with LLM, including four parts. Extractor, extender, and retriever are
responsible for recalling candidate keyphrases, and the ranker is responsible for
ranking them. Experiments show that our method surpasses ChatGPT and unsu-
pervised methods in most datasets, and even surpasses supervised methods in
some datasets and achieves good results. In addition, ablation experiments also
demonstrate the impact of each module on the final performance.
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However, our approach also has some limitations. The prompt has a great
impact on the effect of our method. In addition, we have not yet reached the
performance of supervised models in some datasets.
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Abstract. Graph Neural Networks (GNNs) have been widely employed
for feature representation learning in molecular graphs. Therefore, it is
crucial to enhance the expressiveness of feature representation to ensure
the effectiveness of GNNs. However, a significant portion of current
research primarily focuses on the structural features within individual
molecules, often overlooking the structural similarity between molecules,
which is a crucial aspect encapsulating rich information on the relation-
ship between molecular properties and structural characteristics. Thus,
these approaches fail to capture the rich semantic information at the
molecular structure level. To bridge this gap, we introduce the Molec-
ular Structural Similarity Motif GNN (MSSM-GNN), a novel
molecular graph representation learning method that can capture struc-
tural similarity information among molecules from a global perspective.
In particular, we propose a specially designed graph that leverages graph
kernel algorithms to represent the similarity between molecules quanti-
tatively. Subsequently, we employ GNNs to learn feature representations
from molecular graphs, aiming to enhance the accuracy of property pre-
diction by incorporating additional molecular representation informa-
tion. Finally, through a series of experiments conducted on both small-
scale and large-scale molecular datasets, we demonstrate that our model
consistently outperforms eleven state-of-the-art baselines. The codes are
available at https://github.com/yaoyao-yaoyao-cell/MSSM-GNN.
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1 Introduction

Molecular Representation Learning, a critical discipline in bioinformatics and
computational chemistry, has witnessed significant advancements in recent years
[11,22,33]. Accurate prediction of molecular properties and activities is essential
for drug discovery [17], toxicity assessment [46], and other biochemical appli-
cations [30]. Nowadays, molecular representation learning has been widely inte-
grated with Graph Neural Networks (GNNs), which are powerful tools for pro-
cessing graph data and have been successfully applied in the molecular domain
[4,15,45]. However, most existing GNNs use the basic molecular graphs topol-
ogy to obtain structural information through neighborhood feature aggregation
and pooling methods [12,21,23]. This leads them to overlook the comprehensive
chemical semantics.

To address this challenge, several emerging approaches have been proposed
around molecular graphs. Specifically, some approaches [37,45] take only the
atom-level or motif-level information in heterogeneous molecular graphs as
GNNs’ input to recognize common subgraphs with special meanings. By identi-
fying the significance of ring compounds in molecular structures, Zhu et al. [48]
propose the Ring-Enhanced Graph Neural Network (O-GNN). Alternatively,
other methods [13,18,43] represent the molecular using motif-aware models that
consider properties of domain-specific motifs. Furthermore, there exists a mul-
titude of techniques [1,25,44] that center their focus on studying the relations
among substructures to recognize critical patterns hidden in motifs and improve
the reliability of molecular property prediction.

Despite the considerable progress compared to traditional GNNs, most recent
studies focus only on the message passing within individual molecules. The rela-
tionships between molecular structures are often ignored, which may result in
the partial loss of semantic information. Moreover, the functions and proper-
ties of chemical molecules largely depend on their structures [42]. For instance,
consider examples illustrated in Fig. 1. Molecules with similar structures often
have similar properties. Therefore, we need to take specific measures to represent
the structural similarity between molecules, which can benefit downstream tasks
such as molecular property prediction.

Based on the above-mentioned considerations, we design a Molecular
Structural Similarity Motif (MSSM) graph that empowers GNNs to capture the
rich structural and semantic information from inter-molecule. The design starts
by constructing a nested motif dictionary to re-represent molecular graphs. In
light of the diverse node types present in motif-based molecular graphs, we pro-
pose a Mahalanobis Weisfeiler-Lehman Shortest-Path (MWLSP) graph kernel.
This kernel is designed to assess structural similarity from both the perspectives
of length and position. It overcomes the limitation of the shortest path graph
kernel [2], which only retains connectivity information. By leveraging label infor-
mation from different nodes and their neighbors, it provides a more granular
representation of the graph, enhancing its expressiveness.

In this work, we propose a method that effectively considers inter-molecule
structural similarity from a global perspective without sacrificing information
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Fig. 1. Examples of molecules with similar structures often exhibit similar properties,
a phenomenon observed in biological and chemical domains.

in individual molecules. The method consists of the following major compo-
nents: Firstly, it extracts motifs from molecules to create the motif dictionary
and represents each molecule by utilizing the dictionary. Secondly, it uses our
proposed Molecular Structural Similarity Motif (MSSM) graph to exploit rich
semantic information from graph motifs. Finally, it applies GNNs to learn com-
positional and structural feature representation for each molecular graph and
their similarities based on the MSSM graph. The experimental results show that
our model can significantly outperform other state-of-the-art GNN models on
various molecular property prediction datasets.

To summarize, our contributions are as follows:

– Considering the actual molecule structure, we designed a novel molecular
graph representation method to represent motif structural information.

– To improve the accuracy of GNNs in molecular property prediction tasks, we
design a MSSM graph by employing the MWLSP graph kernel. It quantifies
the similarity between molecules through graph kernel scores and obtains a
more comprehensive semantic representation at the structural level.

– We show in the experiments that our model empirically outperforms state-
of-the-art baselines on several benchmarks of real-world molecule datasets.

2 Related Work

2.1 Motifs in Molecular Graphs

Motif refers to the basic structure that constitutes any characteristic sequence. It
can be viewed as a subgraph with a specific meaning in the molecular graph. For
example, the edges in a molecular graph represent chemical bonds, and the rings
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represent the molecular ring structure. Several algorithms have been introduced
to leverage motifs in different applications, including contrastive learning [32],
self-supervised pretraining [47], generation [19] and drug-drug interaction pre-
diction [17]. The motif extraction techniques used in the above methods, whether
relying on exact counting [5] or sampling and statistical estimation [36], have not
utilized the structural similarities among motifs to enhance the expressiveness
of molecular graphs.

2.2 Molecular Graph Representation Learning

DL has been widely applied to predict molecular properties. Molecules are usu-
ally represented as 1D sequences, including amino acid sequences, SMILES [41]
and 2D graphs [11]. Wu et al. [38] proposed a new molecular joint represen-
tation learning framework, MMSG, based on multi-modal molecular informa-
tion (from SMILES and graphs). However, these approaches cannot capture
the rich information in subgraphs or graph motifs. A few works based on
GNNs have been reported to leverage motif-level information. Specifically, some
approaches [37,45,48] introduced the molecular graph representation learning
method by constructing heterogeneous motif graphs from extracting different
types of motifs. Alternatively, other methods [26,48] decomposed each training
molecule into fragments by breaking bonds and rings in compounds to design
novel GNN variants. Although these methods obtain more expressive molecular
graphs, the challenge in motif-based approaches mainly comes from the difficulty
in efficiently measuring similarities between input graphs. While existing graph
kernel methods [2,7,14,31] can calculate scores by comparing different substruc-
tures of graphs to complete the measurement, there is currently no comparison
method for motif-based molecular graphs. Therefore, our method focuses on
learning motif structural information in the representation.

3 Methods

In this section, we propose a novel method to construct a Molecular Structural
Similarity Motif Graph Neural Network (MSSM-GNN) (Illustrated in Fig. 2)
which takes the MSSM graph as input.

Generally, the framework of the method consists of three parts: (i) Molecular
graph representation; (ii) MSSM graph construction based on graph kernel; (iii)
MSSM-GNN construction. Below, we explain in more detail about these parts.

3.1 Molecular Graph Representation

In molecular graphs, motifs are subgraphs that appear repeatedly and are sta-
tistically significant. Therefore, we propose a novel molecular graph represen-
tation method based on chemical domain knowledge and BRICS1 algorithm to

1 Breaking retrosynthetically interesting chemical substructures [10].
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Fig. 2. The framework of our proposed Molecular Structural Similarity Motif Graph
Neural Network.

represent molecular structural information better. It considers both the inter-
nal atomic structure and the overall impact of special functional groups in the
molecule. Its main process consists of the following two steps: (i) Motif Dictio-
nary; (ii) Molecular Graph Re-representation.

Motif Dictionary. Let G = (V,E) denote a molecular graph, where V is a set
of atoms, E ⊆ V × V is a set of bonds between atoms. Generally, we denote
a motif of the molecule G by M =< V̂ , Ê >, where V̂ is a subset of V and
Ê is the subset of E corresponding to V̂ , which includes all edges connecting
nodes in V̂ . Due to the impact of ring, bond, and functional group structures
on a molecule’s stability, mechanical properties, and reactivity [42], we extract
these structures as three distinct types of motifs from G. This extraction aims to
establish a correlation between molecular structure and properties, facilitating
a targeted capture of diverse chemical features within the molecule. It considers
important structural components within the molecule as much as possible and
can be extended to different types of molecules, making it a general approach.

To systematically organize and store the extracted motif information, we
construct a motif dictionary D by preprocessing all molecules in the dataset,
as outlined in step 1© of Fig. 2(a). The D contains molecular identifiers as outer
keys, each associated with nested dictionaries. These inner dictionaries categorize
structural motif types with corresponding lists of extracted labels. We define the
label l(M) as the type of M. The example in Fig. 2(a) illustrates that ring type
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Piperazine2 can be expressed as l(MR1). This organization efficiently stores and
retrieves structural information within each molecule.

Molecular Graph Re-representation. Based on the motif dictionary, we
traverse the structure type and their corresponding motif lists for each molecule
within it. This process aims to re-represent the molecular graph by estab-
lishing connections between the motifs in molecules. We defined the graph as
GM = (V, E), where V and E denote a set of motifs and a set of adjacency rela-
tionship between motifs of the molecule, respectively. In the GM, a motif M is
associated with a label l(M) and adjacent motifs are connected by edges. As
illustrated in step 2©, for the drug molecule vardenafil, we can use the proposed
algorithm to construct a GM from motifs out of the D.

3.2 MSSM Graph Construction Based on Graph Kernel

Through the above method, we obtain a re-representation molecular graph GM.
To provide GNN with more information, we will construct a Molecular Structural
Similarity Motif (MSSM) graph in step 3©. In the MSSM graph, each node rep-
resents a GM, and the edge represents two nodes GM1 and GM2 with structural
similarity. We calculate the similarity between two GM by utilizing Mahalanobis
Weisfeiler-Lehman Shortest-Path(MWLSP) graph kernel.

The fundamental idea of the graph kernel is to measure the similarity via the
comparison of GM’ substructures. The kernel we proposed retains expressivity
and is still computable in polynomial time.

As depicted in Fig. 2, MWLSP graph kernel takes GM1 , GM2 as input, and
its main process consists of the following steps: (i) Preprocess Input; (ii) Per-
form MWLSP Graph Kernel Computation; (iii) Comparison Scores of Graph-
substructures. We give a pseudocode description of the MWLSP Graph Kernel
in Algorithm 1.

Preprocess Input. In line 2, we utilize Floyd-transformation (For detailed
explanation, see Appendix A.1) Ft(GM) to convert graphs GM1 and GM2 into
graphs GF1 and GF2, respectively. Ft(GM) generates the shortest path between
all nodes in GM. The shortest path between the vertex v and u is represented as
(v, u). The (v, u) is the shortest path among all paths between two nodes. GF1

and GF2 contain all the information regarding the shortest path substructure
partitions in GM1 and GM2 , respectively. Specifically, GF1 has the same vertices
as GM1 , and the edge (v, u) in GF1 represents detailed information about the
shortest path in GM1 .

GF1 = Ft(GM1) GF2 = Ft(GM2) (1)

2 A six-membered ring compound containing two nitrogen atoms.
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Perform MWLSP Graph Kernel Computation. Kmwlsp(GF1,GF2) will
compute the similarity between two graphs, GM1 and GM2 , by summing up
k(e1, e2) i.e., the comparison scores between substructures e1 and e2 in line 3–7.
E′

1 is the set of all edges in GF1 and e1 is one of the edges in E′
1. e1 represents

a shortest path substructure in GM1 , and similarly for e2.

Kmwlsp(GF1,GF2) =
∑

e1∈E′
1

∑

e2∈E′
2

k(e1, e2) (2)

Algorithm 1: MWLSP Graph Kernel Calculation
Data: Graphs GM1 = (V1, E1), GM2 = (V2, E2), c, H
Result: Kernel Score Kmwlsp

1 Function MWLSPGraphKernel(GM1 , GM2 , c, H):
2 GF1 ← Ft(GM1) GF2 ← Ft(GM2);
3 kernel_score ← 0;
4 for e1 in E(GF1) do
5 for e2 in E(GF2) do
6 kernel_score += k(e1, e2, c,H);

7 return kernel_score;

8 Function LengthSim(e1, e2, c):
9 sim1 ← max(0, c − |length(e1) − length(e2)|);

10 return sim1;

11 Function PositionSim(e1, e2, H):
12 Initialize labels L1 and L2 based on e1 and e2;
13 for h in [0, H] do
14 for u in V (e1) do
15 nbrs_sorted ← sort(labels of neighbors of u lexicographically)

16 L(h+1)(u) ← hash(Lh(u), nbrs_sorted)

17 for v in V (e2) do
18 Calculate L(h+1)(v) using the same method as above.

19 Calculate the Mahalanobis distance D(h)(u, v) between

20 L(h)(u) and L(h)(v) at the h-th iteration.

21 Sum D(u, v) across all final iteration yields sim2

22 return sim2;

23 Function k(e1, e2, c, H):
24 sim1 ← LengthSim(e1, e2, c) sim2 ← PositionSim(e1, e2, H);
25 return sim1 × sim2;

Proposition 1. Let n be the average number of nodes and d be the dimension-
ality of the features. Each node is associated with a d-dimensional feature vector.
The time complexity for the kernel given by Eq. 2 is O(n3 + n4 ∗ (1 +Hnd3)).

The proof is given in the Appendix B.
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Comparison Scores of Graph-Substructures. For k(e1, e2), we will cal-
culate the similarity of substructures from two aspects: length and position.
The calculation formulas are respectively sim1(e1, e2) and sim2(e1, e2). For the
aspect of length, sim1(e1, e2) utilizes the Brownian bridge [6] to assess the sim-
ilarity between e1 and e2 in line 8–10. It returns the largest value when two
edges have identical lengths and 0 when the edges differ in length by more than
a hyperparameter c. Furthermore, we can change the c to control the similarity
threshold, thus adjusting the filtering criteria.

sim1(e1, e2) = max(0, c − |length(e1) − length(e2)|) (3)

For the aspect of positional information, sim2(e1, e2) establishes a Weisfeiler-
Lehman(WL) propagation scheme [31] on the graphs, iteratively comparing
labels on the nodes and their neighbors via Mahalanobis Distance(MD) [8].

Specifically, we let h be the current WL iteration which ranges from 0
to H(H is the total number of iterations). Lh(u) is a set of node labels,
representing the positional information of node u at the current iteration h.
N h(u) = {Lh(uleft), Lh(uright)} represents the positional information of u’s
neighboring nodes at the current iteration h. In the shortest path graph, uleft

and uright are the only two neighbor nodes of u. The scheme primarily consists
of several steps, described in line 11–22:

Firstly, we compare two paths, e1 and e2, by utilizing the motif labels to
initialize the sets of all node labels on these paths in line 12.

L 0(u) = l(u) (4)

Next, if identical node labels exist, further iterative evaluation is conducted.
We define the iterative rule with the hash function: in each iteration, the posi-
tional information of u includes one more iteration of node connectivity com-
pared to the previous iteration. By inputting the positional information of the
current iteration’s node u, i.e., Lh(u) and its neighboring nodes, i.e., N h(u),
we use Eq. 5 to compute Lh+1(u), i.e., the positional information of u in the
next iteration h + 1. And sort(·) sorts the labels lexicographically. The specific
execution process is shown in line 13–18.

Lh+1(u) = hash(Lh(u), sort((Lh(v1), ..., Lh(v|N (u)|)))),

vj ∈ N h(u)), j ∈ {1, ..., |N (u)|}. (5)

Through the aforementioned process, we can represent the positional infor-
mation of all nodes in e1 and e2 by utilizing Lh(u). Furthermore, in line 20, we
use MD (Please see Appendix A.2 for explanation) to measure the similarity
between nodes. D h(u, v) denotes the MD between the Lh(u) and Lh(v) at a spe-
cific iteration h. M h is the covariance matrix Cov(Lh(u), Lh(v)). The utilization
of MD considers the diverse distribution characteristics of nodes belonging to dif-
ferent types in the heterogeneous feature space. In the context of GM, distinct
types of motifs may correspond to varied structures or properties. Therefore, we
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can quantify the similarity between motifs based on the distribution character-
istics of each motif type.

D h(u, v) =
√
(Lh(u) − Lh(v))TM h(Lh(u) − Lh(v)) (6)

Finally, we cumulatively aggregate the MD from the 0-th to the H-th itera-
tion in line 21. Through a weighted synthesis, we calculate the relational simi-
larity between u and v, considering positional information across all iterations.
Therefore, we can calculate the similarity score sim2(e1, e2) by comparing the
position similarity relationships among all nodes in e1 and e2.

sim2(e1, e2) =
∑

u∈V (e1)

∑

v∈V (e2)

exp

(
−1
2

H∑

h=0

D h(u, v)

)
(7)

For the above iterative process, we set two termination conditions:

(i) There is no intersection in the positional information of all nodes in e1 and
e2 within the current iteration. This condition implies that, in the next
iteration, the positional information of nodes for e1 and e2 is dissimilar, so
we can terminate early.

(ii) We have calculated the positional information for all iterations in e1 and
e2, and the total number of iterations will not exceed min(|length(e1),
length(e2)|).

In summary, the comparison score of the graph substructure can be obtained
by multiplying the similarities of the above two parts in line 23–25.

k(e1, e2) = sim1(e1, e2) ∗ sim2(e1, e2) (8)

MSSM Graph Construction. We can construct the MSSM graph based on
the similarity calculation result of the above MWLSP graph kernel. Since the
structural similarity analysis of molecules often does not require very precise
numerical values, it focuses on the relative similarity between molecules. To
reduce the complexity of the comparison, we simplify the kernel score to an
integer range of [0, 3] by dividing it by the maximum achievable value:

S(Ft(GMi), F t(GMj)) =
⌊

3 · Kmwlsp(Ft(GMi), F t(GMj))
max(Kmwlsp(Ft(GMi), F t(GMj)))

⌋
(9)

where �x� represents rounding x down to the nearest integer.
Considering the above possible calculation results, we use the similarity score

S(Ft(GMi), F t(GMj)) to represent the corresponding edge weight value Aij and
formally establish detailed measurement standard Simij as follows:

Simij =

⎧
⎪⎪⎨

⎪⎪⎩

V ery High Similarity ifAij = 3,
Relatively High Similarity ifAij = 2,
Average Similarity ifAij = 1,
Dissimilar ifAij = 0

(10)
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where if Aij > 0, GMi and GMj have a similar relationship, and a connecting
edge with corresponding weight value needs to be established; otherwise, there
is no need to perform connection processing. Figure 2(b) provides an example of
MSSM graph construction.

3.3 MSSM-GNN Construction

In this part, we build an MSSM-GNN to learn graph structural feature repre-
sentations of the MSSM graph. In graph learning, the input MSSM graphs can
be denoted as GMSSM = (VMSSM , EMSSM ), where VMSSM is the node set of
GM, and EMSSM is the edge set of similarity relationship between two GM. And
we use y ∈ Y as the node-level property label for GMi

, where Y represents the
label space.

For graph property prediction, a predictor with the encoder-decoder archi-
tecture is trained to encode GMSSM into a node representation vector in the
latent space and decode the representation to predict ŷ. Specifically, we fed the
MSSM graph data into GNN to acquire ŷ (corresponds to step 4©):

ŷ = GNN(GMSSM ) ∈ Y. (11)

The loss function used in our model is the label prediction loss. The label
prediction loss function Lpred is derived similarly to existing methods:

Lpred = CE(ŷ, y). (12)

where ŷ represents the predicted value, y is the ground truth, and CE represents
the Cross-Entropy loss function used in classification tasks.

In this way, we can get a more comprehensive feature representation of the
entire GMSSM . It contains all the information on the connected motifs, retaining
the atomic structure relationships and connections within the original motifs.
Therefore, we can get a more accurate prediction of molecular properties based
on the MSSM-GNN. The process is illustrated in Fig. 2(c).

4 Experiments

In this section, we investigate how our proposed method improves GNN per-
formance on molecular property tasks. In our investigations, we raise the fol-
lowing questions: Q1: Compared with state-of-the-art baselines, how effective
is MSSM-GNN in improving the accuracy of molecular prediction on common
bioinformatics graph benchmark datasets? Q2: If experiments are conducted
on real-world datasets, will MSSM-GNN still have an effect? Q3: Does feature
learning of similarities between molecules play a more critical role in MSSM-
GNN? Q4: What impact will the setting of the similarity threshold on different
datasets have on the final classification results?

In response to the above problems, we conducted a series of experimental
studies. Some basic settings of experiments and analysis of results are as follows:
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4.1 Experimental Settings

Datasets. To verify whether MSSM-GNN provides more information conducive
to accurate classification, we evaluate our model on five popular bioinformatics
graph benchmark datasets from TUDataset [27], which includes four molecu-
lar datasets PTC [34], MUTAG [9], NCI1 [35], MUTAGENICITY [20] and one
protein dataset PROTEINS [3].

Table 1. Graph classification accuracy (%) on various TUDataset graph classification
tasks. The best performers on each dataset are shown in bold.

Methods PTC NCI1 MUTAG PROTEINS MUTAGENICITY

DGCNN 58.6 ± 2.5 74.4 ± 0.5 85.8 ± 1.7 75.5 ± 0.9 72.3 ± 2.6
GCN 64.2 ± 4.3 80.2 ± 2.0 85.6 ± 5.8 76.0 ± 3.2 79.8 ± 1.6
GIN 64.6 ± 7.0 82.7 ± 1.7 89.4 ± 5.6 76.2 ± 2.8 82.0 ± 0.3
PatchySAN 60.0 ± 4.8 78.6 ± 1.9 92.6 ± ± 4.2 75.9 ± 2.8 77.9 ± 1.3
GraphSAGE 63.9 ± 7.7 77.7 ± 1.5 85.1 ± 7.6 75.9 ± 3.2 78.8 ± 1.2
PPGN 66.2 ± 6.5 83.2 ± 1.1 90.6 ± 8.7 77.2±4.7 78.6 ± 0.9
WEGL 64.6 ± 7.4 76.8 ± 1.7 88.3 ± 5.1 76.1 ± 3.3 80.8 ± 0.4
CapsGNN 71.2 ± 1.9 78.4 ± 1.6 86.7 ± 6.9 76.3 ± 4.6 79.5 ± 0.7
GSN 68.2 ± 7.2 83.5 ± 2.3 90.6 ± 7.5 76.6 ± 5.0 81.0 ± 1.5
HM-GNN 78.5 ± 2.6 83.6 ± 1.5 96.3 ± 2.8 79.9 ± 3.1 83.0 ± 1.1
GPNN 78.2 ± 1.2 83.1 ± 0.3 92.6 ± 1.8 76.8 ± 3.9 83.0 ± 0.4
OURS 81.1±1.7 85.5±0.3 97.3±2.6 83.3±0.4 84.0±0.5

Baselines. We compare our model with eleven state-of-the-art GNN models
for molecular property tasks: Deep Graph CNN (DGCNN) [29], GCN [21], GIN
[40], PATCHYSAN [28], GraphSAGE [14], Provably Powerful Graph Networks
(PPGN) [24], Wasserstein Embedding for Graph Learning (WEGL) [22], Capsule
Graph Neural Network (CapsGNN) [39], GSN [4], HM-GNN [45], GPNN [15].

4.2 Performance Evaluation on Molecular Graph Datasets

To learn graph feature representations in our molecular structural similarity
motif graphs, 3 GNN layers are applied. For a fair comparison, we evaluate all
baselines using the experiment settings provided by [45]. The hyper-parameters
we tune for each dataset are (1) the learning rate∈ 0.01, 0.05; (2) the number of
hidden units∈ 16, 64, 1024; (3) the dropout ratio∈ 0.2, 0.5. We set the verification
method as the mean and standard deviation of the seven best validation accu-
racies from ten folds. We compare MSSM-GNN with the baseline approaches on
the abovementioned dataset to answer Q1. The comparison results are summa-
rized in Table 1. We make the following observations:
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MSSM-GNN significantly outperforms baseline models on all five datasets for
molecular prediction. Among them, on the PROTEINS dataset, the accuracy of
MSSM-GNN increased by 3.4% compared with the best method. The superior
performances on five molecular datasets demonstrate that motif substructures
extracted from the motif dictionary, along with the calculated similarity relation-
ships between molecular nodes based on it, facilitate GNNs in learning improved
motif-level and molecular-level feature representations of molecular graphs.

Table 2. Graph Classification Results (%) on Open Graph Benchmark datasets.

Methods ogbg-molhiv ogbn-proteins ogbg-moltoxcast ogbg-molpcba

GCN 75.99 ± 1.19 72.51 ± 0.35 61.13 ± 0.47 24.24 ± 0.34
GIN 77.07 ± 1.49 77.68 ± 0.20 62.19 ± 0.36 27.03 ± 0.23
GSN 77.90 ± 0.10 85.80 ± 0.28 62.61 ± 0.45 27.00 ± 0.70
PNA 79.05 ± 1.32 86.82 ± 0.18 63.47 ± 0.67 25.70 ± 0.60
HM-GNN 79.03 ± 0.92 86.42 ± 0.08 64.38 ± 0.39 28.70 ± 0.26
GPNN 77.70 ± 2.30 87.74 ± 0.13 65.22 ± 0.47 28.90 ± 0.91
OURS 79.70±0.03 89.17±0.07 66.57±1.00 30.07±0.37

4.3 Performance Evaluation on Large-Scale Real-World Datasets

To answer Q2, we evaluate our model on four large-scale real-world datasets
from the Open Graph Benchmark (OGB) [16]. They are two binary classification
datasets– ogbg-molhiv, ogbn-proteins and two multiclass classification datasets–
ogbg-molt oxcast, ogbg-molpcba.

In this part, we compare our model with GIN, GCN, GSN, PNA, HM-GNN
and GPNN. Except that the hyperparameters we tuned for each dataset var-
ied as (1) learning rate ∈ 0.01, 0.001; (2) number of hidden units ∈ 10, 16; (3)
dropout rate ∈ 0.5, 0.7, 0.9; (4) the batch size ∈ 128, 5000, 28000, others are the
same as above experiment. Table 2 shows the AP results on Ogbg-molpcba and
ROC-AUC results on the other three datasets. We observe: our method is signif-
icantly better than the other compared methods by obvious margins. The results
prove our model’s superior generalization ability on real-world datasets, which is
crucial for its potential applications in various domains, including drug discovery,
bioinformatics, and chemical safety assessment.

4.4 Ablation Study

To address Q3, we conducted ablation experiments on different components of
MSSM-GNN, focusing on the motif-based molecular graph representation and
the similarity calculation. The corresponding conclusions are as follows:
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Effect of Motif-Dictionary Representation. As shown in Table 3, com-
paring task performance before and after removing the motif dictionary mod-
ule yields the following observations: Performance on three graph classification
datasets benefits from the module, resulting in accuracy improvements ranging
from 0.8% to 2.8%. These improvements could potentially be attributed to the
module’s effective learning of valuable information about the molecule’s sub-
structure.

Table 3. Ablation studies of the motif dictionary and measurement of length and
position similarity.

Datasets PTC_MR PTC_FR MUTAG PROTEINS

MSSM-GNN 81.1±1.7 80.9±1.5 97.3±2.6 83.3±0.4
w/o motif dictionary 78.3 ± 1.1 78.6 ± 1.4 96.5 ± 2.7 82.5 ± 1.2
w/o length similarity 77.9 ± 1.5 78.3 ± 1.1 94.6 ± 0.2 81.2 ± 0.9
w/ edit distance 77.1 ± 2.9 78.2 ± 1.7 93.1 ± 0.6 80.8 ± 0.4

Effect of Length-Similarity Calculation. As shown in Table 3, we observe
a significant drop in performance when the length-similarity calculation is not
included, amounting to an absolute drop of 2.1%–3.2%. These observations con-
firm that evaluating path structures from a length perspective indeed facilitates
the learning of the global information and inherent connectivity relationships
among motif-level substructures, thereby contributing to representing graph
information more comprehensively.

Effect of Position-Similarity Calculation. In MSSM-GNN, the location
similarity calculation method we designed is MWL. By replacing MWL with
edit distance, we examined the impact of the graph similarity metric. As Table 3
shows, MWL offers advantages over edit distance. MWL not only quantifies
structural similarity but also incorporates the type and position information
of different nodes in graph modeling, thereby effectively representing the real
molecular graph structure. Meanwhile, MWL becomes particularly advantageous
for larger-scale graph datasets, offering significant enhancements by extracting
richer structural information. For example, our model enhances PROTEINS
more than MUTAG.

4.5 Sensitive Analysis

In this part, to explore Q4, we further evaluate the hyperparameter c that we
introduced in our proposed similarity calculation formula. We modify the value
of hyperparameter c that controls the similarity threshold and observe how the
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performance changes. We perform such experiments on multiple datasets. The
results are shown in Fig. 3.

As observed, the performance peaks when the value of c is 2 across all three
datasets. With the increase in c, the impact of the similarity threshold on training
also becomes more pronounced. It is evident that the performance of MSSM-
GNN decreases as c increases from 2 to 6, indicating that the c indeed influences
the representation learning capabilities of MSSM-GNN. We believe that c assists
in filtering out samples with low similarity, emphasizing those contributing more
significantly to the training, thereby enhancing overall performance.

Fig. 3. Performance of MSSM-GNN on three different datasets with varying hyperpa-
rameters c.

5 Conclusions

This paper proposes an effective model for molecular graph representation learn-
ing, Molecular Structural Similarity Motif GNN (MSSM-GNN). We explicitly
incorporate the similarity representations between molecules into GNN and
jointly update them with motif representations. Specifically, we connect two
molecules through edge weights calculated by a novel MWLSP graph kernel,
enabling message passing between molecular graphs. We use the GNN model to
learn the MSSM graph and get the motif-level and molecule-level graph embed-
ding. Experiments demonstrate the superiority of our model in various datasets,
which beats a group of baseline algorithms.
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Abstract. Researchers continue to focus on privacy-preserving truth
discovery and achieve certain results with the increasingly popular trend
of privacy protection. However, the common existence of copiers among
workers is overlooked in existing privacy-preserving truth discovery,
which causes decreased accuracy. Since methods based on encryption
or perturbation may easily introduce noise and lose correlation between
original data, it is challenging to detect copiers on privacy-preserving
data. To address this challenge, in this paper, we propose an anti-copy
iterative model based on lightweight homomorphic encryption, called
CAPP-TD. First, we propose a lightweight privacy protection mechanism
based on Paillier homomorphic encryption that preserves the correlation
of privacy data. Compared with traditional homomorphic encryption-
based algorithms, it requires less communication and computation over-
head to perform truth discovery with copy detection. We then propose
an iterative truth discovery method that can efficiently detect copy rela-
tionships in encrypted data and exclude copiers from truth inference
to improve accuracy. Experimental results on both real-world and syn-
thetic datasets and thorough security analysis demonstrate that CAPP-
TD protects crowdsourcing systems from adversaries and enables highly
accurate truth discovery.

Keywords: Crowdsourcing · Truth discovery · Copy detection ·
Privacy preserving

1 Introduction

Recently, the rapid development and widespread application of crowdsourcing
technology have brought about privacy concerns. Malicious workers or unregu-
lated third-party crowdsourcing servers may collect workers’ personal informa-
tion for profit. Malicious data requesters may attempt to attack crowdsourc-
ing servers to obtain other requesters’ task data [8,9]. To protect data privacy,
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researchers have focused on privacy-preserving truth discovery algorithms and
made some progress [2,13–15]. These approaches leverage techniques like differ-
ential privacy [13,14], anonymization [2], and homomorphic encryption [15,16].
However, to our knowledge, these works have overlooked the existence of copiers.
Crowdsourcing workers are driven by financial incentives, leading some to blindly
copy answers to complete as many tasks as possible and get paid more. Copiers
may directly copy answers from other workers while sitting together. Some work-
ers may share their answers to help their friends to earn more. Moreover, mali-
cious workers may collude and deliberately submit wrong answers to manipulate
the final aggregated answers, such as Sybil attack [1]. These prevalent behaviors
occur offline in crowdsourcing systems, making it challenging for the server to
identify which workers have made real efforts. If these copiers happen to copy
incorrect answers, the crowdsourcing server may wrongly identify them as the
truth, misleading the data requesters and resulting in substantial financial losses
or personal harm.

As an example, given a symptom description, workers need to choose an
answer as the most likely diagnosis from five options, including A. Cardiogenic
asthma, B. Chronic mouth-breathing bronchitis, C. Bronchial asthma, D. Spon-
taneous pneumothorax, E. hypersensitivity pneumonitis. The ground truth is
bronchial asthma. Because cardiogenic asthma is similar to bronchial asthma,
workers may mistake bronchial asthma for cardiogenic asthma. If copiers hap-
pen to copy the cardiogenic asthma answer, it can lead to a significant increase
in the number of cardiogenic asthma supporters, ultimately treating it as the
truth. Hence, copy detection is crucial for crowdsourcing servers. It can avoid the
waste of rewards, ensure that workers are paid fairly, discourage opportunistic
behavior, and penalize lazy copiers. Moreover, it could improve the accuracy of
answer aggregation and prevent data requesters from being misled by incorrect
answers. Several traditional truth discovery methods take the existence of copiers
into consideration [10–12,19,20]. However, these methods operate on plaintext
without addressing privacy protection concerns. Continuing with the previous
example, the workers who answer these questions are typically sufferers of these
diseases. They willingly share their experiences to assist doctors in improving
diagnoses. However, it is crucial to ensure that their private information remains
confidential and is not misused for harassment or any other unauthorized pur-
poses.

To conduct privacy-preserving truth discovery while considering the exis-
tence of copiers, we are facing with three challenges: i) The privacy protection
mechanism should maintain data correlation while ensuring the desensitization
of sensitive information. Perturbation may blur the clues in the original plaintext
that can be utilized for copy detection, enabling copiers to conceal their behavior.
Anonymization directly exposes the plaintext to the malicious workers. ii) Given
the large volume of data and the limited effective duration in crowdsourcing,
the privacy-preserving truth discovery framework must be lightweight. Though
the simple application of homomorphic encryption can effectively preserve data
correlation, it leads to increased computing and communication costs. iii) Tra-
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ditional truth discovery methods with copy detection are designed for plaintext
and are not easily applicable to ciphertext scenarios. Developing a novel copy
detection approach tailored to privacy-preserving truth discovery in crowdsourc-
ing scenarios is significant.

To tackle the above challenges, we propose a privacy-preserving truth discov-
ery framework called Copy-Aware Privacy-Preserving Truth Discovery (CAPP-
TD) that takes into account the presence of copiers. For challenge i and ii, we pro-
pose a lightweight privacy protection mechanism based on Paillier homomorphic
encryption that can preserve data correlation. Unlike traditional homomorphic
encryption-based mechanisms, our mechanism only requires three encryption and
decryption operations and two communications between servers to perform truth
discovery with copy detection. For challenge iii, we propose an iterative truth
discovery model based on copy detection in ciphertext scenarios. Our model first
calculates the answer consistency group based on the similarity matrices. Then,
it infers the estimated truth by considering the answer consistency groups and
worker weights. During this process, copiers are identified and eliminated based
on the similarity matrices and worker weights. Lastly, the worker weights are
updated based on the estimated truth. In summary, our main contributions are
as follows:

• We propose a lightweight privacy protection mechanism based on Pail-
lier homomorphic encryption that can preserve data correlation. Compared
with other homomorphic encryption mechanisms, this mechanism supports
more secure truth discovery based on similarity matrices from the encrypted
answers;

• We proposed the CAPP-TD framework, which enables truth discovery with
copy detection in privacy-preserving crowdsourcing and eliminates copier
answers to improve aggregation accuracy. To the best of our knowledge, this
is the first work that conducts copy detection in crowdsourcing with privacy
protection;

• We conducted extensive experiments on both real-world and synthetic
datasets as well as thorough security analysis. The experimental results
demonstrate the effectiveness, accuracy, and practicality of our proposed
framework.

2 Related Work

Yin et al. [2] first formally defined the truth discovery problem and proposed
the TruthFinder model, which uses Bayesian distribution to iteratively evaluate
source weights and truth. Since then, a large number of truth discovery methods
have been proposed [5]. Li et al. proposed the CRH [5] model, which uses an opti-
mization model to process heterogeneous data. Truth discovery has subsequently
been widely cited in crowdsourcing [17,18] to obtain accurate estimated truth.
Revolt [18] exploits disagreements in the crowd to identify ambiguous concepts,
thereby improving aggregation accuracy; Wu et al. [17] proposed the TILCC
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model, aiming to improve the quality of integrated labels for single-choice classi-
fication problems in crowdsourcing labeling tasks. However, none of these works
take into account the privacy-preserving issues existing in crowdsourcing.

With the rapid development of crowdsourcing platforms, people are increas-
ingly concerned about privacy issues. Li et al. [6] proposed that workers can
use the parameters they provide to generate noise samples based on exponen-
tial distribution, and then add this unique noise to the data to form Gaussian
distribution noise, thereby completing the data aggregation process; Pang et
al. [7] improved the personalized classification based on privacy protection, and
achieved high-precision truth discovery by adjusting the privacy level while pro-
tecting privacy; Sun et al. [8] considered the problem of providing personalized
rewards to workers according to their privacy needs to satisfy the privacy pref-
erences of different workers; Tang et al. [2] solved the user privacy problem
through anonymization method and proposed a perturbation method to prevent
data from being obtained by malicious third parties. Homomorphic encryption is
introduced into the field of truth discovery as a traditional encryption mode. It
does not modify the workers’ answers, but directly transfers the workers’ answers
from the plaintext domain to the ciphertext domain, and then performs truth
aggregation and weight update according to different homomorphic encryption
algorithms. Ding et al. [9] adopted an architecture of central servers and multiple
edge servers, considered the impact of the distance between tasks and workers on
answers, and proposed a secure payment mechanism; Although these methods
can achieve a certain degree of conflict resolution while preserving privacy, none
of them consider the dependencies between workers.

Some works considered source correlation in crowdsourcing. Dong et al. [12]
proposed methods to consider source correlation in truth discovery scenarios,
believing that there may be dependencies between sources that always provide
the same wrong answer; Jiang et al. [10] comprehensively considered the copy
and incentive mechanism in crowdsourcing, and the detected copiers may not
receive rewards. Wang et al. [11] focused on copiers and multi-valued objects,
and proposed a comprehensive Bayesian method with fine-grained copy detec-
tion; Li et al. [19] proposed a method for copy detection taking into account
the scale of big data and the number of sources. Chen et al. [20] proposed the
CONAN method for maximizing the use of copier’ answers to enhance aggrega-
tion accuracy. However, none of the works considered the case where the data
was encrypted or perturbed.

3 Problem Statement

3.1 System Model

In this paper, we attempt to implement truth discovery with copy detection in
privacy-preserving single-choice crowdsourcing tasks. Single-choice task contains
a question and a set of candidate choices and asks workers to select a single choice
out of the candidate choices, which is very common in crowdsourcing, such as
disease identification, dog breed classification and sentiment analysis, etc. There
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Fig. 1. Workflow of CAPP-TD.

are four entities involved in this work: the key distributor, the data requester,
the worker and the crowdsourcing server. The key distributor generates a pair of
Paillier homomorphic keys (pw, sw) for each worker, where pw is the public key
and sw is the private key. It is responsible for key distribution and data decryp-
tion. The data requesters post tasks t ∈ T to the crowdsourcing server. Their goal
is to obtain the estimated truth o∗

t ∈ O∗, minimizing the distance between O∗

and the ground truth Ȯ. The workers w ∈ W work on the tasks assigned to them,
their answer set is denoted as O. Given a specific worker w, owt ∈ O represents his
answer on task t, rw represents his weight. The workers encrypt their answers as
ôwt ∈ Ô and upload them to the crowdsourcing server. The crowdsourcing server
is responsible for task assignment, worker weight estimation, copy detection and
truth calculation. For the sake of approach demonstration, we also denote the set
of tasks assigned to worker w as Tw, the set of workers assigned task t as Wt, the
potential copier set of worker w as Pw = {w′|Tw′ ∩ Tw �= ∅} (when two workers
are assigned the same task, it is possible for one worker to copy from another
worker). The workflow of our framework is presented as follows (as shown in
Fig. 1):

Step 1 : The key distributor runs the Paillier homomorphic encryption algo-
rithm to generate the key pair (pw, sw) and broadcasts the public key to workers
and sends the private key to data requesters over a security channel;

Step 2 : The data requester posts the crowdsourcing tasks to the crowdsourc-
ing server.

Step 3 : Crowdsourcing server assigns tasks Tw to each worker;
Step 4 : Each worker completes his tasks to generate the answer set Ow and

encrypts Ow as Ôw with a public key pw and then uploads it to the crowdsourcing
server;

Step 5 : The crowdsourcing server constructs a correlation matrix Ĉw
|Tw|×|Pw|

(see Sect. 4.1) for each worker, and sends each matrix to its corresponding worker.
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Step 6 : Each worker performs an additive homomorphism calculation based
on correlation matrix Ĉw

|Tw|×|Pw| to construct similarity matrix Ŝw
|Tw|×|Pw| (see

Sect. 4.1), and sends Ŝw
|Tw|×|Pw| to the key distributor (Table 1);

Table 1. Notations used in this paper

Notations Definition

t, T A task (resp., set of all tasks)
owt , O Worker w’s answer on task t (resp., set of all answers)
ôwt , Ô Worker w’s encrypted answer on task t (resp., set of all encrypted answers)
ȯt, Ȯ Ground truth of task t (resp., set of all ground truth)
o∗
t , O

∗ Estimated truth of task t (resp., set of all estimated truth)
ô∗
t , Ô

∗ Encrypted estimated truth of task t (resp., set of encrypted estimated truth)
w,W A worker (resp., set of all workers)
(pw, sw) A pair of Paillier homomorphic keys for worker w, pw/sw is the public/private key
Tw The set of tasks assigned to worker w

Wt The set of workers assigned task t

Pw The potential copier set of worker w

rw Weight of worker w

Ĉw
|Tw|×|Pw| Correlation matrix of worker w

Ŝw
|Tw|×|Pw| Similarity matrix of worker w

Sw
|Tw|×|Pw| Decrypted similarity matrix of worker w

Al
t Answer consistency group of task t constructed in l-th iteration

A∗
t Correct answer consistency group

Aw The set of answer consistency group that contains worker w

Step 7 : The key distributor decrypts Ŝw
|Tw|×|Pw| with sw and sends Sw

|Tw|×|Pw|
to the crowdsourcing server;

Step 8 : The crowdsourcing server performs truth discovery with copy detec-
tion (see Sect. 4.3). Specifically, it iteratively updates worker weights, removes
copiers, and estimates truth until satisfying the convergence criteria.

Step 9 : The crowdsourcing server sends the encrypted aggregation result
ô∗
t ∈ Ô∗ to the data requester, who then uses the private key sw to decrypt the

aggregation result o∗
t ∈ O∗.

3.2 Security Model and Design Goals

In this section, we introduce the security model and design goals of our frame-
work. All entities in our framework are assumed to be semi-honest, meaning
they adhere to the framework but may be curious about the privacy data of
others, which aligns with the existing work. For the crowdsourcing server values
its reputation, it cannot collude with other entities. Furthermore, following [15],
we give economic incentives to the key distributor to prevent it from colluding.
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The main threats to the framework may include as follows: Semi-honest enti-
ties within the framework may attempt to decrypt the ciphertext and obtain
the privacy information; Copiers may undermine the final estimated truth by
blindly copying other workers’ answers or engaging in Sybil attack to subvert
the answers. External adversary has the capability to eavesdrop on the commu-
nication channel, acquiring answers from workers or even the estimated truth by
the crowdsourcing server, then exploit this information for financial motives.

To effectively detect copiers while preserving privacy in truth discovery, our
research focuses on the following design goals: Privacy preservation: protect the
privacy of workers and the estimated truth by allowing only the data requester to
access the estimated truth. Accuracy : with the help of the key distributor, crowd-
sourcing server enables to evaluate worker dependencies and punishes copiers to
improve the accuracy of truth discovery. Efficiency : keep computation and com-
munication costs acceptable.

4 The Design of CAPP-TD

4.1 Privacy Protection Mechanism

Existing privacy protection mechanism based on homomorphic encryption
requires encryption and decryption operations with a time complexity of O(n),
along with the same cost of communications between servers during the pro-
cess, which causes significant computation and communication overhead, and
provides more attack opportunities for the adversary. In contrast, our privacy
protection mechanism performs encryption and decryption operations only three
times, i.e., the time complexity of O(1). No encryption and decryption opera-
tions are needed in the truth discovery process. This highly reduces computation
and communication costs, as well as the possibility of hijacking by the adversary.
Our proposed privacy protection mechanism satisfies all possible threats in the
security model. Detailed security analysis can be found in Sect. 6.

In our proposed privacy protection mechanism, firstly, the key publisher uses
Paillier homomorphic encryption to generate a key pair (pw, sw) for each worker.
The key distributor then broadcasts the public key pw to each worker and trans-
mits the private key sw to the data requesters through a secure channel. After
tasks are uploaded by data requesters and allocated to workers by crowdsourcing
server, each worker provides answers to task set Tw and encrypts the answers
with the public key pw.

Based on the encrypted answer set Ô uploaded by all workers, the crowd-
sourcing server constructs the potential copier set Pw, which includes all workers
who have done at least one of the same tasks as worker w. Then, the crowdsourc-
ing server constructs a correlation matrix Ĉw

|Tw|×|Pw| for each worker, where each
row represents a task t ∈ Tw, each column represents a worker w′ ∈ Pw, each
element ĉw,w′

t is the encrypted answer ôw
′

t = E(ow
′

t ) provided by w′ on t. E(·) is
the encrypt function and D(·) is the decrypt function. In our problem setting,
workers are not assumed to answer all tasks in T . Therefore, in Ĉw

|Tw|×|Pw|, there
may be missing values. In such case, we use -1 to fill in the missing elements.
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The crowdsourcing server then sends each correlation matrix Ĉw
|Tw|×|Pw|

to the corresponding worker w. Each worker constructs a similarity matrix
Ŝw

|Tw|×|Pw| individually based on Ĉw
|Tw|×|Pw| and Ow by applying additive homo-

morphic calculations. In Ŝw
|Tw|×|Pw|, each element ŝw,w′

t is calculated by:

ŝw,w′
t =

⎧
⎨

⎩
ĉw,w′

1
owt

t = E(ow
′

t )
1

owt , if ĉw,w′
t �= −1

−1, if ĉw,w′
t = −1.

(1)

After the computation, each worker w uploads similarity matrix Ŝw
|Tw|×|Pw|

to the key distributor. The key distributor decrypts Ŝw
|Tw|×|Pw| to obtain a cor-

responding decrypted similarity matrix Sw
|Tw|×|Pw| by using the private key sw.

In particular, each element sw,w′
t in Sw

|Tw|×|Pw| is calculated by:

sw,w′
t = (D(E(ow

′
t )

1
owt ) =

⎧
⎪⎪⎨

⎪⎪⎩

1, if
ow

′
t

owt
= 1

0, if
ow

′
t

owt
�= 1

−1, if ŝw
′

t = −1.

(2)

Therefore, each element sw,w′
t represents the correlation between worker w

and w′ on task t. Specifically, if sw,w′
t = 1, there may be a copy relation between

worker w and w′ on task t, because they select the same answer on this task.
Otherwise, worker w and w′ are independent in task t. In this way, our privacy-
preserving mechanism preserves data correlation by capturing whether any pair
of workers choose the same answer on their mutual task.

The key distributor then sends the decrypted similarity matrix Sw
|Tw|×|Pw|

to the crowdsourcing server to help run truth discovery with copy detection.
After the convergence criterion is satisfied, the crowdsourcing server sends the
encrypted estimated truth Ô∗ to data requesters, while data requesters use pri-
vate key sw to obtain the final decrypted estimated truth O∗.

4.2 Copy Detection

Our copy detection method operates on the principle that if two workers con-
sistently make the same mistakes, there may exist a copy relationship between
them. However, unlike previous works that rely on probability-based theory, our
method utilizes algebraic operations, which can be performed in decrypted data.

The crowdsourcing server constructs answer consistency groups for each task
based on decrypted similarity matrices, i.e., workers who do the same answer
are assigned to the same group. Specifically, we apply iterative method to con-
struct answer consistency group. Because the server does not know the plaintext
answers of each worker, we use the iteration round number to mark the answers
chosen by the worker groups. We use Al

t to depict the answer consistency group
constructed in l-th iteration for task t. For each task t ∈ T , we construct a dictio-
nary, denoted as Dt =

{
Al

t : ôwt
}
, to preserve the mapping relationship between
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each answer consistency group Al
t and the answer ôwt selected by Al

t. In the l-th
iteration, if Wt �= ∅, the crowdsourcing server selects a worker w ∈ Wt, checks
each element in t-th row in Sw

|Tw|×|Pw|. If sw,w′
t = 1, add w′ to Al

t and remove w′

from Wt. After all elements in t-th row are traversed, we add
{
Al

t : ôwt
}

to Dt.
The server iteratively repeats the above operations until Wt = ∅. Say it takes
L iterations to complete the answer consistency group construction for task t,
then L groups have been constructed, and there are L pairs of

{
Al

t : ôwt
}

in Dt.
To better fit our situation, the above principle is modified: for two workers,

if they appear in multiple mutual answer consistency groups, and most of these
groups choose wrong answers, there may exist a copy relationship between them.
Based on this, we first determine whether two workers are independent by calcu-
lating the proportion of mutual tasks they make. We believe that if two workers
rarely finish the same tasks, they are likely to be independent. Obviously, copiers
can not copy from someone who completes different tasks. For each worker pair
(w,w′), we introduce a metric denoted as IS(w,w′), to measure whether worker
w′ and w are independent of each other, which is calculated as follows:

IS(w,w′) =
|Tw ∩ Tw′ |

min(|Tw|, |Tw′ |) . (3)

Given a predefined threshold ε, if IS(w,w′) < ε, we consider that w and w′

are independent of each other. Then, we remove w′ from Pw and w from Pw′ ,
because w′ (resp., w) is no longer a potential copier of w (resp., w′). Conversely, if
IS(w,w′) > ε, it is likely that w (resp., w′) is a copier candidate of w′ (resp., w).
After traversing all worker pairs, each worker’s potential copied worker set Pw

is updated. By introducing IS(w,w′), we can avoid further dependency analysis
for independent workers, therefore reducing the time and space overhead of the
entire copy detection. We need to further measure whether the two workers
always make the same mistakes. So, for each w′ remains in Pw, we introduce a
metric, denoted as DS(w,w′), to measure the actual copy relationship between
w and w′, which is calculated as follows:

DS(w,w′) =

∑
Al′′

t ∈Aw∩Aw′ f(v(Dt[Al′′
t ]))

min(
∑

Al
t∈Awf(v(Dt[Al

t])),
∑

Al′
t ∈Aw′ f(v(Dt[Al′

t ])))
, (4)

f(v(Dt[Al
t])) = lg(1 − v(Dt[Al

t]) + v(Dt[A∗
t ])), (5)

where Dt[Al
t] depicts the encrypted answer selected by Al

t, A∗
t is the correct

answer consistency group, v(·) is a function calculates the answer veracity, which
we will describe in Sect. 4.3, f(·) is a mapping function. It is clear that if
v(Dt[Al

t]) = v(Dt[A∗
t ]), worker w and w′ are correct on task t, so the task t

is no longer a proof of the existence of a copy relationship between w and w′.
Correspondingly, when v(Dt[Al

t]) < v(Dt[A∗
t ]), worker w and w′ make the same

wrong answer on task t, so it can be a proof of the existence of copy relationship
between w and w′. In this case, the smaller v(Dt[Al

t]) is, the greater the distance
between this answer consistency group and the correct answer consistency group.
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In this way, DS(w,w′) can measure how frequently worker w and w′ make the
same mistake and the severity of this mistake.

Here, we introduce another predefined parameter σ, if DS(w,w′) > σ, the
crowdsourcing server confirms a copy relationship between w and w′, then it
compares rw with rw′ (we will describe worker weight calculation in Sect. 4.3).
If rw < rw′ , w is regarded as the copier, we remove w′ from Pw. Otherwise, w′

is the copier, we remove w from Pw′ . After all workers’ potential copier sets Pw

are updated, we penalize the weight of each copier w′ by the following equation:

rw = rw +
∑

w′∈Pw
rw′ · (−lg(DS(w,w′))), (6)

Note that it is possible for the estimated truth in the process to change
along with iteration. It is also possible for the correct answer consistency group
to change with iteration. Therefore, in CAPP-TD, IS(w,w′) only performs one
operation while DS(w,w′) performs operations along with the iteration process.

4.3 Truth Discovery with Copy Detection

To enhance security and defend against adversary attacks in truth discovery, we
propose a truth discovery method based on encrypted data. Our truth discovery
method with copy detection comprises three components: worker weight update,
copy detection, and encrypted truth inference. These components are iteratively
executed until the convergence criterion is met.

Worker Weight Update: With fixed encrypted truth, we can identify which
answer consistency group is the correct answer consistency group. rw, is updated
according to the number of correct answer consistency groups he or she is in.

rw = − log

∑
Al

t∈Aw 1(Dt[Al
t],Dt[A∗

t ])
∑

w′∈W

∑
Al

t∈Aw′ 1(Dt[Al
t],Dt[A∗

t ])
, (7)

among them, 1 is an Index function, which can be expressed as follows:

1((Al
t, A

∗
t )) =

{
0, if Dt[Al

t] �= Dt[A∗
t ]

1, if Dt[Al
t] = Dt[A∗

t ].
, (8)

Encrypted Truth Inference: Based on fixed worker weights, the veracity of
each answer is estimated by applying the following equation:

v(Dt[Al
t]) =

∑
w∈Al

t
rw

∑
w′∈Wt

rw′
. (9)

Then for each task, we calculate v(Dt[Al
t]) for each l ∈ L, and choose the

answer consistency group with the highest v(Dt[Al
t]) as the correct answer

consistency group of task t. When the convergence criterion is met, we set
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the encrypted answer of the correct answer consistency group Dt[A∗
t ] as the

encrypted estimated truth Ô∗.

Dt[A∗
t ] = argmax

l∈L
v(Dt[Al

t]), (10)

5 Experiment

5.1 Experimental Setup

We extensively experimented on two real-world datasets of AMT and a synthetic
dataset to evaluate our proposed framework. All experiments were implemented
and performed using Python version 3.9 on an AMD Ryzen 5 5600U CPU. We
designated the lower-weighted worker in a pair with a copy relationship as the
copier during the experiment.

Dataset: we used two public real-world crowdsourcing datasets1, named NLP
[3] and DOG [4], both were collected from AMT. Since the dataset is from real-
world, there is a certain percentage of copiers naturally, which we will demon-
strate in our experiments. NLP : the dataset comprises 1,000 tweets treated as
tasks. Each tweet is evaluated by 20 workers in a crowdsourcing survey to deter-
mine its sentiment (positive or negative). This binary task involves 85

Table 2. Experimental result on two datasets.

DatasetPPTD CRH MV TF Cosines

NLP 0.933 0.952 0.912 0.952 0.722

DOG 0.821 0.827 0.815 0.831 0.63

DatasetBayes AL Sums G-LCACAPP-TD

NLP 0.95 0.944 0.946 0.923 0.956

DOG 0.82 0.826 0.828 0.83 0.839

workers and results in 20,000 records. DOG : the dataset consists of 807 tasks
assigned to 109 workers. Each task involves identifying a specific dog breed from
four given options. Each task is answered by 10 workers. Overall, the dataset
contains 8,070 records. Then, We followed the Sybil attack [1] to inject malicious
copiers into the NLP dataset to evaluate the capabilities of the algorithm, this
synthetic dataset is called NLP-S.

Baseline Methods: In our experiments, since the novel scenario we address
cannot use existing methods for copy detection, we utilized CAPP-TD with-
out the copy detection module (PPTD) as the baseline method. Additionally,

1 Due to economic and ethical reasons, we were unable to find datasets with private
content, so we used these datasets for simulation.
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we included CRH [5], TruthFinder [2] (TF), Cosines, Bayes, AverageLog (AL),
Sums, GuessLCA [21] (G-LCA), Majority Voting (MV) as baseline methods.

Evaluation Metrics: Accuracy (accu): We used accuracy as the evaluation
criterion. In the case of single-choice tasks, accuracy is defined as the ratio
of estimated truth to ground truth. Calculation cost : We evaluated the time
required for each module to run once and the number of iterations required for
the framework to converge.

5.2 Comparative Studies

We conducted experiments to demonstrate the performance of CAPP-TD. We
demonstrated the presence of copiers in the dataset and evaluated the effective-
ness of our copy detection module. The average results from 10 experiments
using two real-world datasets are presented in Table 2.

In comparing other methods on the two datasets, we found that PPTD is
not the best, but CAPP-TD achieves the highest accuracy among all baseline
methods. Firstly, this highlights copy relationships between workers are preva-
lent in the real world as the accuracy improved after incorporating the copy
detection module. Secondly, our method outperformed other methods, which
demonstrates that our approach preserves worker privacy, excludes copiers, and
enhances accuracy. Lastly, it is worth noting that regardless of the algorithms
used, the accuracy on the DOG dataset was generally lower than that on the
NLP dataset, as shown in Table 2. This disparity was attributed to the sparsity
of the DOG dataset, which is not our concern in this work, more attention will
be paid in future work.

Fig. 2. Parameter impact on two real-world datasets.

5.3 Impact of Different Concerns

Accuracy Experiments: To analyze the impact of hyperparameters σ and ε
on CAPP-TD compared to PPTD, we used PPTD as the baseline method. Each
set of parameter settings ran 10 times, and the average was used as a result
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to ensure reliability. The experimental results shown in Fig. 2(a) and Fig. 2(b)
represent NLP dataset and DOG dataset respectively.

Impact of ε: The variety of ε determines the proportion of worker relation-
ships used for similarity calculation in determining copy relationships. When
ε = 0, it meant that all relationships were included, which was unreasonable
since not all workers have copy relationships. Setting ε served as a screening
step to optimize the time complexity of the algorithm.

CAPP-TD exhibited better accuracy than PPTD when ε ranged from 0 to
0.6. However, accuracy decreased as ε increased. This is because the algorithm
considers fewer worker relationships during the similarity calculation, potentially
excluding copy evidence and leading to incorrect penalization of certain workers.
When ε was between 0.8 and 1.0, the results were similar to PPTD, indicating
that an excessively high value of ε caused CAPP-TD to perform similarly to
PPTD. Therefore, selecting an appropriate ε value is crucial for balancing accu-
racy and efficiency in practical applications.

Impact of σ: The diversity of σ determined the level of penalty imposed on
workers identified as copiers. σ = 0 means all copiers are penalized, while σ = 1
means no copiers are penalized.

By analyzing Fig. 2(a) and Fig. 2(b), we observed the impact of different σ
on the accuracy of CAPP-TD. In NLP dataset (Fig. 2(a)), CAPP-TD improved
accuracy compared to PPTD when σ ranged from 0 to 0.5, with the highest
improvement at σ = 0.2. In DOG dataset (Fig. 2(b)), when σ = 0, the results
were lower than the baseline due to data sparsity, resulting in unfair penalization
of workers. Copy detection has a positive impact on accuracy for σ ranging from
0.1 to 0.2. However, as σ increased to 0.3 or higher, accuracy gradually decreased
until it degraded to PPTD. Overall, CAPP-TD exhibited less fluctuation in
accuracy on both datasets, highlighting its robustness to parameter variations.
In the evaluation of copy detection, we set the parameters as ε = 0.1 and σ = 0.2
for the best performance in most experiments.

Table 3. Results with varying proportion of copiers.

Percentage of injection (%) 0 5 15 25 35 45 55

CRH 0.952 0.953 0.95 0.901 0.626 0.471 0.121

MV 0.912 0.906 0.877 0.735 0.659 0.453 0.121

TF 0.952 0.952 0.948 0.889 0.762 0.525 0.121

Cosines 0.722 0.722 0.721 0.708 0.665 0.552 0.272

Bayes 0.95 0.952 0.946 0.943 0.577 0.121 0.121

AL 0.944 0.947 0.936 0.797 0.595 0.46 0.121

Sums 0.946 0.95 0.938 0.849 0.626 0.471 0.121

G-LCA 0.923 0.919 0.919 0.791 0.601 0.467 0.121

CAPP-TD 0.945 0.942 0.9320.926 0.752 0.655 0.201
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Evaluation of Copy Detection: The evaluation results are presented in
Table 3. We tested the resilience of CAPP-TD to malicious copiers using NLP-S
dataset, with copiers injected in proportion to the total number of workers. Due
to the space limit, we do not present the results of other datasets which are
similar to the above.

Table 3 shows that CAPP-TD demonstrated strong resistance to high per-
centages of copier injection compared to other methods, emphasizing the effec-
tiveness and efficiency of our proposed copy detection module. At low injection
ratios, the accuracy of CAPP-TD can also be on average. In contrast, Cosines,
despite showing slight effectiveness at a 55% injection ratio, performed signifi-
cantly lower than the other methods overall, rendering it an ineffective solution
to the malicious copiers problem.

Table 4. Comparison of time cost experimental results (in seconds).

Module CAPP-TD PPTD

Encryption/Decryption module 0.09 0.09
Truth estimation Module 2.097 2.402
Weight update module 0.083 0.062
Copy detection module 0.302 None

It’s worth noting that some methods show a slight increase in accuracy with a
low percentage of copier injection. This suggests that better accuracy is achieved
because copiers tend to copy high-quality workers, leading to a higher percentage
of correct answers. This finding is also supported by research in [20].

Time Overhead: Experiments were conducted on the NLP dataset to compare
CAPP-TD and PPTD. The results in Table 4 are the average values from 20
repeated runs. The results of the Dog dataset are similar. Figure 3 illustrates
the evolution of the accuracy of CAPP-TD and PPTD after 20 rounds of running.

Table 4 shows no change of runtime in encryption and decryption with the
copy detection module introduced. The copy detection module speeds up the
truth estimation module by reducing the reliability of incorrect answer consis-
tency groups when a copier is detected. However, weight updates take slightly
longer due to considering copy relationships in the worker update module.
Figure 3 shows that PPTD reached convergence with about 4 rounds on both
datasets, while CAPP-TD required 6 more rounds on NLP dataset and 7 more
rounds on DOG dataset to reach convergence, but the accuracy of convergence
improved compared to PPTD. It can be seen that the addition of the copy detec-
tion module does not have much of an impact on the framework time overheads.
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Fig. 3. Number of iteration rounds of the algorithm on two real-world datasets.

6 Security Analysis

Under the premise that the private key is transmitted through a secure channel,
we can prove that our framework protects the privacy of users and estimated
truth. The proof is as follows:

i) In CAPP-TD, the decrypted similarity matrix contains only 0, 1, and −1,
which only shows the correlation of the workers on the tasks, and cannot be
analyzed from this to find out what the specific answers are. Similarly, the
answer consistency group contains only workers who have answered the same
task, and it cannot be analyzed from this what the specific answers made
by these workers are. These two data structures are the only plaintext in the
framework. This proves that we do not leak user answers or user privacy while
extracting data correlations from encrypted data.

ii) In CAPP-TD, the semi-honest assumption allows entities in the framework to
derive private information from the information they have, while our design
ensures that all entities cannot derive. Our encryption algorithm is shown
[22] to be incapable of leaking arbitrary information in the plaintext from the
ciphertext, so workers and crowdsourcing server that have no secret keys get
no private information. The data requester and the key distributor who has
the secret key can only obtain the final estimated truth and the encrypted
similarity matrix, respectively. Neither can obtain any privacy information
through the information they possess. The key distributor is usually consid-
ered to be a trusted third party, typically a government agency. The data
requester is usually a research organization that only needs the estimated
truth. Both entities are considered to be trusted in most existing works. In
this paper, we relax the restrictions on the assumptions about these two enti-
ties, thus allowing our framework to be adapted to broader scenarios.

iii) CAPP-TD is resistant to adversaries, malicious copiers and blind copiers.
The adversary, even if it intercepts all the information except the secret key,
because of the Indistinguishability under chosen-plaintext attack (IND-CPA)
of the encryption mechanism we employ, cannot derive the private informa-
tion and the estimated truth. Malicious copiers are thought to follow the
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Sybil attack to join forces to deliberately submit incorrect answers for some
tasks while disguising themselves by answering randomly in other tasks. Blind
copiers attempt to copy the answers of normal workers for financial gain, they
naturally exist in the datasets. We have shown in our experiments that our
method can find and eliminate all types of copiers, thereby improving accu-
racy.

7 Conclusion

To conduct copy-aware truth discovery in privacy-preserving crowdsourcing, we
propose an anti-copy iterative model based on lightweight homomorphic encryp-
tion, called CAPP-TD. Firstly, we design a lightweight privacy-preserving mech-
anism utilizing Paillier homomorphic encryption. This mechanism preserves data
correlation while minimizing communication and computation overhead. Sub-
sequently, we propose an iterative truth discovery method capable of detecting
copy relationships in encrypted data and excluding copiers during the truth infer-
ence process, leading to improved accuracy. To the best of our knowledge, CAPP-
TD is the first copy-aware truth discovery under privacy-preserving crowdsourc-
ing framework. We extensively evaluated CAPP-TD on real-world datasets focus-
ing on single-choice tasks. The experiments confirmed the effectiveness, accuracy,
and practicality of CAPP-TD.
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Abstract. The surge of ubiquitous data underscores the need for Fed-
erated learning (FL), which allows distributed data entities to learn
a global model orchestrally without revealing their private local data,
ensuring the privacy and security of users. However, the performance of
the trained global model on individual clients is impaired by the heteroge-
neous nature of the client’s local data, exposed as the performance unfair-
ness in FL. Such unfairness issues grab the research community’s atten-
tion and a few recent works embark upon fair solutions via reweighting
clients during aggregation but overlooking the impact of client selection
for aggregation. To fill this gap, in this paper, a Fairness Compensation-
based FL scheme (FCFL) is proposed to alleviate the unfairness amongst
clients. In particular, the unfairness of each client during the FL train-
ing process is estimated as the accuracy difference between local perfor-
mance and global performance, and accumulated queues are calculated
for the cumulative unfairness value in each round. In addition, a fair-
ness compensation FL method is devised, which can select participating
clients dynamically and adjust the aggregation weights adaptively in each
round to guarantee fairness in the training process. Specifically, the pro-
posed FCFL scheme is a flexible framework with tunable parameters and
the FedAvg algorithm is its special case when α = 0. Finally, intensive
experiments are conducted on three benchmark datasets with different
settings, demonstrating that the FCFL outperforms the state-of-the-art
baselines by improving the fairness metric up to 30.4% while maintain-
ing a competitive accuracy performance. The source code is available at
https://github.com/wlffffff/FCFL.

Keywords: Federated learning · Performance fairness · Data
heterogeneity · Client selection · Weighting strategy

1 Introduction

The advancement of Artificial Intelligence (AI) is driven by the ubiquitous data
generated from a wealth of devices, however, conventional machine learning typ-
ically adopts a centralized mode in data collection and training, which poses
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significant challenges in multiple faucets. Firstly, uploading large amounts of
data incurs communication and storage costs [14,27] of burdened infrastructure.
Secondly, with the ever-increasing privacy and security concerns [26], it is hard
to convince unwilling data owners to share their raw data with an untrusted ser-
vice provider under this centralized paradigm [24]. Besides, pressing regulations
and laws are enforced by many governments on private data with stricter data
management and stewardship, such as the General Data Protection Regulations
(GDPR) from the European Union and Personal Information Protection and
Electronic Documents Act (PIPEDA) from Canada. To solve this dilemma, Fed-
erated Learning (FL), as a promising solution is proposed by Google recently [15].
FL is a distributed machine learning paradigm consisting of a server and mul-
tiple clients, which can learn a global model on the server side without access
to clients’ local private data. Since the original data is kept locally rather than
being sent to a remote server, the challenges of communication, storage, and
privacy are somehow mitigated by FL, and thus broad application scenarios are
fertilized, including medical images [9], recommendation systems [22], and the
Internet of Things (IoT) [25].

Yet, FL is not the silver bullet, and some issues have emerged in recent years.
In this paper, we study the fairness aspect of FL, which is one of the major con-
cerns of FL that impedes the realistic application. As illustrated in Fig. 1, since
the global model is trained based on unknown local datasets of clients, where
divergence may exist amongst client local data and model. Therefore the per-
formance of the global model may vary across the diverse clients, causing unfair
performance (e.g., accuracy) as shown on the right side of Fig. 1. Specifically,
though the global model performs well on average, such unfairness is manifested
in those clients (referred to as vulnerable clients) who receive lower accuracy due
to biased client selection or minority in data representations.

Fig. 1. (Left): Example of horizontal FL. (Right): Performance fairness of FL.

To alleviate unfairness in FL, AFL is proposed by Mohri et al. [16] to optimize
the worst-performing client by minimax optimization. Inspired by fair resource
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allocation in wireless networks, Li et al. [11] presented the q-FedAvg method,
which introduces a parameter q to reweight the loss of different clients. Zhao
et al. [30] proposed DRFL, which dynamically adjusts the weight assigned to
each client and is more flexible in parameter tuning. Although these works can
alleviate unfairness by adjusting weights, they often ignore the impact of client
selection in fairness. In addition, the client selection in existing methods is either
randomly done [10,15] or based on the local data amount [8,28], which may lead
to poor local performance of the global model. Therefore, it is a challenge to
design a fair FL scheme that handles client selection without incurring a negative
impact on the client side.

In this work, we propose the Fairness Compensation-based FL (FCFL)
to alleviate unfairness in FL. In each training round, the server updates the
unfairness queue of each client, where the queues are utilized for client selec-
tion and aggregation reweighting based on cumulative unfairness value. To our
best knowledge, this is the first work to harness fair client selection to achieve
performance fairness of FL. The contributions of this paper are summarized as
follows:

– The accumulated unfairness of clients is defined during the process of FL and
unfairness queues are maintained to measure if a client is treated fairly.

– Based on the accumulated unfairness queues, a fairness compensation method
FCFL is designed to balance the client selection and aggregation reweighting,
which can improve the fairness of FL.

– Evaluations on three datasets are conducted to confirm the advantages of
our method and compare it with state-of-the-art methods. The experimental
results demonstrate the fairness and effectiveness of our proposed FCFL.

The rest of the paper is organized as follows. The related work on the fairness
of FL is discussed in Sect. 2. Then, the proposed FCFL method is detailed in
Sect. 3 with descriptions of client selection and aggregation reweighting. Empir-
ical evaluation is presented in Sect. 4, and finally Sect. 5 concludes the paper.

2 Related Work

Fairness in FL can be divided into collaborative fairness [13,29], group fairness [3,
4], selection fairness [7,18], and performance fairness [11], as per different fairness
goals. In particular, collaborative fairness means that clients should be rewarded
in proportion to their contributions; group fairness aims to minimize disparities
among different groups based on sensitive attributes (e.g., gender and race);
selection fairness ensures that each client has a fair chance of being selected to
participate in training; and performance fairness seeks to reduce the variance of
global model accuracy across clients. This paper mainly focuses on performance
fairness. For a comprehensive review of the fairness in FL, please refer to the
survey paper [19] by Shi et al.
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Table 1. Related work on performance fairness of FL.

References Method Dataset

AFL (2019) [16] Minimax optimization Fashion MNIST; Adult; Cornell

movie; PTB

q-FedAvg (2019) [11] Reweighting Synthetic; Vehicle; Sent 140;

Shakespeare

FedGini (2023) [12] Objective function Synthetic; CIFAR-10; Sent 140

DRFL (2022) [30] Reweighting Synthetic; Fashion MNIST; Adult

Ada-FFL (2023) [2] Reweighting Synthetic; Vehicle; Sent 140

FedFa (2022) [8] Reweighting MNIST; FEMNIST; Synthetic;

Sent 140; Shakespeare

PG-FFL (2022) [21] Reweighting Fashion MNIST; CIFAR-10;

CIFAR-100

FedFV (2021) [23] Gradient projection MNIST; Fashion MNIST;

CIFAR-10

GIFAIR (2023) [28] Reweighting; Objective

function

FEMNIST; Shakespeare;

FedMGDA (2022) [6] Multi-objective

optimization

Fashion MNIST; CIFAR-10;

Shakespeare; Adult

FedMDFG (2023) [17] Multi-objective

optimization

MNIST; Fashion MNIST;

CIFAR-10; CIFAR-100

FairWire+ (2024) [5] Multi-objective

optimization

CIFAR-10; CIFAR-100;

FEMNIST

2.1 Performance Fairness in FL

The vanilla FedAvg algorithm aggregates client local models by calculating a
weighted average based on the amount of training data [15], therefore causing
significant differences in model accuracy due to the data heterogeneity of differ-
ent clients. As countermeasures, AFL [16] is the first approach to improve the
fairness of FL, which used minimax optimization to maximize the performance of
the worst-performing device. However, this method cannot guarantee generaliza-
tion in large-scale settings. To improve the scalability of AFL, researchers have
proposed the q-FedAvg [11] method by introducing the parameter q for clients
reweighting to achieve better fairness. Since q-FedAvg, performance fairness has
become a pivotal problem in FL, and many methods have been proposed to
improve the fairness of q-FedAvg, including designing novel objective functions,
reweighting, eliminating gradient conflicts, and multi-objective optimization.
Designing Novel Objective Functions. FedGini [12] modified the objective
function to improve fairness by introducing a Gini penalty term. GIFAIR [28]
achieved fairness by introducing a regularization term to penalize loss differences
among client groups. Ada-FFL [2] improved the objective function of q-FedAvg
by introducing regularized local loss terms and Frobenius distance to design an
adaptive fair FL.
Reweighting. FedFa [8] combined the training accuracy and frequency to design
an appropriate weight selection algorithm and adopted double momentum gradi-
ent optimization to accelerate the model’s convergence. PG-FFL [21] used rein-
forcement learning to achieve reweighting, and automatically learned strategies
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through a reward function constructed based on Gini coefficients and accuracy.
Building on the q-FedAvg method, DRFL [30] proposed a novel approach, which
can dynamically adjust the weight assigned to clients. The regularization term
in GIFAIR [28] can also be viewed as a dynamic client reweighting technique
that can adaptively assign higher weights to clients with poor performance.
Eliminating Gradient Conflicts. Researchers have found that conflicting gra-
dients are one of the reasons for unfairness in FL. To address this issue, FedFV
[23] first used cosine similarity to detect gradient conflicts, and then iteratively
eliminated conflicts by modifying the direction and magnitude of gradients,
thereby improving the fairness of FL.
Multi-objective Optimization. FedMGDA [6] pioneered the formalization of
FL into multi-objective optimization and proposed a novel fair FL scheme using
a multiple gradient descent algorithm. Under the guidance of multi-objective
optimization, FedMDFG [17] and FairWire+ [5] are also proposed. FedMDFG
can find a fair descent direction by adding a fair-driven objective, and the line
search strategy can ensure an appropriate step size. These two major designs
guarantee the fairness and robustness of the scheme. FairWire+ considered the
inherent noise induced by wireless channels and designed an algorithm based on
noisy gradients, which can find a common descent direction for all clients. We
summarize the current fair FL for performance fairness in Table 1.

2.2 Client Selection in FL

Although the above methods can relieve unfairness through various approaches,
they ignore the possible impact of client selection on the fairness of FL. Client
selection is also an important research topic, which can achieve different goals.
For instance, Power-of-Choice [1] identified clients with the highest loss in each
round and included them in training to boost model performance. GreedyFed
[20] selected clients with the highest contribution based on the Shapley value,
improving model accuracy and convergence speed. By utilizing Lyapunov opti-
mization, FairFedCS [18] achieved better selection fairness. In this vein, we aim
to study how client selection can improve performance fairness in this work.

3 Fairness Compensation Federated Learning (FCFL)

In this section, we present the original fair FL method, FCFL, with problem
setting, proposed algorithms, and analysis.

3.1 Problem Setting

As shown in Fig. 1, general FL has the following three steps: (1) client selection,
(2) local training, and (3) weighted aggregation. Since the distribution of local
datasets is different, the performance of the global model varies notably across
different clients. This phenomenon is referred to as performance fairness. To be
precise, the fairness of the global model can be defined as follows.
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Definition 1. (Fairness of performance distribution [11]). A model θ1 is said
to be fairer than θ2 if the accuracy of θ1 on the N clients {a1, a2, ..., aN} is more
uniform than that of θ2 on the N clients.

In this work, we use the variance of the accuracy on all clients as a measure of
fairness, and the goal of our work is to reduce the variance while maintaining a
similar average accuracy of the global model. To achieve this goal, client selection
is a crucial aspect but is overlooked by most existing works. Intuitively, FL
selects clients to participate in training based on the amount of local data [8,28],
which leads to the global model being biased towards clients with more data. We
visualize this issue on the MNIST dataset and the CNN model in Fig. 2. Here,
the Dirichlet function is used to partition the dataset into 20 clients, where 2
clients are selected for each training round. Figure 2(a) shows the distribution of
local data for each client, and it can be seen that the amount and classes of data
on each client differ significantly (such as clients 3, 10, 13), which simulates the
data distribution in real-world scenarios. Using the data amount-based client
selection method will reduce the selected times of these vulnerable clients in
training (as can be seen from the green bin in Fig. 2(b)). Random selection has
an equal chance of selecting each client, but it produces a poor performance of
the global model on vulnerable clients. Our unfairness-based selection prioritizes
the selection of vulnerable clients and finally can achieve performance fairness.
Taking client 3 as an example, it is rarely selected in the amount-based method
due to the limited local data, while our unfairness-selection method selects clients
based on unfairness in each round, with client 3 being selected significantly
more frequently. Note that unfairness-based selection selects clients based on
cumulative unfairness, so it may be possible for vulnerable clients to have fewer
choices than random ones. However, our proposed weight allocation based on
cumulative unfairness will give vulnerable clients more weight, thereby improving
the fairness of the scheme.

3.2 Overview of FCFL

To achieve the goal of fairness, we first investigate the reasons for performance
fairness in FL. As demonstrated above, due to the data heterogeneity, some
vulnerable clients cannot be selected fairly, such as client 3 in Fig. 2(b). To
alleviate unfairness, an intuitive approach is to compensate for these vulnerable
clients based on their unfairness level. To maintain the clients’ computation cost,
we focus on improving the selection ratio and assigning more aggregation weights
for vulnerable clients. Based on this idea, we propose FCFL which considers both
client selection and aggregation reweighting in the FL progress. The framework
of FCFL is depicted in Fig. 3. In each training round, all clients first upload the
local performance (i.e., the accuracy of the global model on local clients) to the
server, and then the server updates the accumulated unfairness queue to select
clients and calculate aggregation weights. Next, the selected clients perform local
training and upload the local model and accuracy. Finally, the server completes
the aggregation and estimates the global performance for the next round of FL
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training. Comprehensive explanations of this approach will be provided in the
subsequent sections.

Fig. 2. The impact of data distribution on client selection methods.

3.3 Accumulated Unfairness Queues

In FL, performance fairness is evaluated by the accuracy differences of the global
model on different local clients. However, the global model is not available during
the training process until aggregation is performed. Therefore, to approximate
the unfairness of clients in training rounds, the unfairness level is measured by
the difference between the estimated global model accuracy and evaluated local
accuracy, which can be calculated as follows.

ufti =

{
Ãcc

t − Accti, if Ãcc
t
> Accti

0, otherwise
(1)

where Accti represents the evaluated local accuracy of client i in round t and

Ãcc
t
=

∑m
i=1 ωt

iÃcc
t

i is the estimated global model accuracy in round t, in which

Ãcc
t

i denotes the local training accuracy of client i in round t and m is the
number of selected clients. In this paper, we assume that the server does not
have access to validation data, which is realistic in the actual applications, so
the performance of the global model can only be obtained through estimation.
ufti is the unfairness level of the client i in round t, which is a cumulative value
that reflects whether the client i has been treated fairly or not so far and indicates
the priority of each client to be selected for training by the FCFL algorithm.

To track the cumulative unfairness of all clients during training, we introduce
a queue Qi(t) to store the unfairness value of each client i in round t as described
in the following formula. The intuition of this queue is to track the cumulative
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Fig. 3. The framework of FCFL.

unfairness of each participant, providing a basis for subsequent client selection
and weight allocation.

Qi(t) = max
{
Qi(t − 1) + αufti − ωt

i · 1[xi(t−1)=1], 0
}

, (2)

where xi(t−1) ∈ {0, 1} indicates whether client i has been selected in the (t−1)-
th round (1=yes, 0=no). 1[condition] is an indicator function, which equals 1 if
[condition] is true and 0 if not. α is a hyper-parameter that controls fairness.
The design rationale of Qi(t) are as follows to facilitate vulnerable clients:

– For clients with low-accuracy, Qi(t) is a cumulative value that reflects the
overall unfairness level in each round.

– For clients who are not selected, the indicator function 1[condition] is 0,
providing more unfairness increment by αufti.

– For clients with small weight, the cumulative unfairness value will have a
small penalty −ωt

i , resulting in a relatively high Qi(t).

Specifically, a client who has not been treated fairly (low-accuracy, not
selected, or small weight) will have a higher Qi(t), and our FCFL algorithm
will compensate these clients based on Qi(t) by client selection and aggregation
reweighting later.

3.4 Client Selection and Aggregation Reweighting

Client selection is the first crucial step towards fair FL. After updating the
accumulated unfairness queue, the server can select the top-m clients with the
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highest Qi(t) from the overall clients set N to perform local training. This step
guarantees that the vulnerable clients with higher cumulative unfairness level
will secure their chance to be selected by the FL system. After client selection
and local training, the other crucial step is to allocate more weight for these
clients to improve their contribution in aggregation. The adjusted aggregation
weight is calculated as follows:

ωt+1
i =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ni∑m
i=1 ni

, if Q1(t) = ... = Qm(t) = 0

Qi(t)∑m
i=1 Qi(t)

, otherwise

(3)

where ni is the data amount of client i and Qi(t) is the cumulative unfairness
value. When the cumulative unfairness of all selected clients is 0, the aggregation
weight is proportional to the local data amount, which is used to initialize weight
in the beginning. Otherwise, the higher the client’s unfairness value, the higher
the aggregation weight it gets, which ensures that vulnerable clients have a
greater influence on the aggregated global model.
Remark. It is important to note that selecting clients based solely on unfair-
ness may lead to the global model being biased towards vulnerable clients with
rare datasets, which can be another form of unfairness and ultimately lead to
a decrease in the average accuracy of the global model across all clients. To
address this problem, we introduce a hyper-parameter r to balance the two kinds
of unfairness. This is achieved by using a random selection method to select a
portion of r clients and using our client selection method to select the remaining.
By doing so, our FCFL can proactively improve fairness while ensuring global
accuracy. The influence of the hyper-parameter r is evaluated as well in Sect. 4.4.

The process of the proposed FCFL is illustrated in Algorithm 1. In each
round, our FCFL selects a set of clients St to participate in the training through
an additional communication round and determines the aggregation weights
based on the unfairness queues. For each client, multiple training steps are
performed, and then the updated parameters and local training accuracy are
uploaded to the server. Finally, the server aggregates the parameters and esti-
mates the performance of the global model. Note that in 0-th round, since
{Qi(t) = 0|i ∈ N } is initialized fairly, selecting the top-m clients becomes a
random selection method, and the aggregation weight is proportional to the
amount of data.
Remark. The FedAvg algorithm can be seen as a special case of our FCFL.
When α in Eq. (2) is 0, the cumulative unfairness value of all clients Qi(t) is 0
in every round. Hence, client selection is random and the aggregation weight is
proportional to the amount of data. As α increases, the unfairness ufti imposes
more influence in Qi(t), which will have a higher chance of being selected and
receiving higher aggregation weights, thus improving the fairness of FL.
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Algorithm 1. Fairness Compensation Federated Learning (FCFL)
Input: clients set N; communication rounds T ; local epochs E; learning rate η
Output: global model θT+1

Server executes:
initialize global model θ0

for each round t = 0, 1, 2..., T do
distribute global model θt to all clients
all client evaluate θt and upload local accuracy {Accti|i ∈N } to the server
if t == 0 then

initialize unfairness queues: Q1(0)=Q2(0)=...=QN (0)=0
select m clients to constitute subset St according to the selection method
initialize the aggregation weight wt+1

i = ni/
∑m

i=1 ni, i ∈ St

else
calculate the unfairness of all clients via Eq. (1)
update the accumulated unfairness queue via Eq. (2)
select m clients to constitute subset St according to the selection method
calculate the aggregation weight via Eq. (3):

end if
for each client i ∈ St do

θt+1
i , Ãcc

t+1

i ← ClientUpdate(i, θt)
end for
update global model parameters:

θt+1 =
∑m

i=1 ωt+1
i θt+1

i

estimate global performance:

Ãcc
t+1

=
∑m

i=1 ωt+1
i Ãcc

t+1

i

end for
ClientUpdate(i, θt): // Run on client i

client i ∈ St updates θt for E epochs with step size η to obtain θt+1
i

client i ∈ St evaluates θt+1
i on local datasets to obtain Ãcc

t+1

i

client sends θt+1
i and Ãcc

t+1

i to the server

3.5 Analysis of Communication and Computation Overhead

The major bottlenecks of FL are the communication cost between server and
edge devices [8] as well as the local client computation power. Compared with
the FedAvg algorithm, our FCFL does not introduce too much communication
overhead as analyzed below. In Algorithm 1, although we have additional com-
munication from clients, the client only needs to upload the local accuracy Accti
once, which costs 8 more bits per round. This communication is necessary to
calculate the unfairness queue and select clients to participate in training. After
local training on the client, each client i ∈ St sends θt+1

i and Ãcc
t+1

i Ãcc
t+1

i to the

server, where the accuracy Ãcc
t+1

k is an extra cost for communication but with
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small size. Overall, our FCFL only involves a few more bits of communication
cost per round.

We then analyze the computation overhead of FCFL. On the client side,
client devices require additional accuracy calculations (evaluating the perfor-
mance of the global model on local datasets), and the remaining calculations are
the same as in FedAvg. To save local computation cost, instead of evaluating the
Ãcc

t+1

k by going through the entire local dataset, we can use mini-batch samples
from the local dataset to obtain an estimated accuracy. On the server side, the
calculation of unfairness, cumulative unfairness, aggregated weights, and global
performance estimation can be completed through simple arithmetic operations
within O(N ). Considering that the server typically has high computing power,
such computational cost is negligible and will not impact the bottleneck to FCFL.
Empirical results of FCFL’s efficiency are presented in Sect. 4.3.

4 Experiments

In this section, the performance of FCFL is compared with other methods
for different perspectives, including fairness 4.2, efficiency 4.3, and hyper-
parameter 4.4. In addition, we conduct ablation experiments in Sect. 4.5 to verify
the impact of our client selection and reweighting methods.

4.1 Experimental Settings

All experiments are conducted on three public datasets: MNIST and CIFAR-10
with 100 local clients, and Shakespeare with 31 local clients. We only consider
non-IID scenarios since heterogeneous non-IID data distribution is the reason
for performance fairness. To simulate this scenario, we design three settings to
allocate data to the clients. (1) We sort all data samples based on labels and then
split them into 200 shards, where each client randomly picks 2 shards without
replacement. (2) We utilize the Dirichlet function to set different levels of non-
IID local clients [23]. (3) In The Complete Works of William Shakespeare [15],
each speaking role in each play is treated as a device, We subsample 31 speaking
roles following the setting in [11]. We randomly divide the data for each local
client into 8 : 2 for training and testing, respectively.
Training. Three models, MLP, CNN, and RNN, are adopted for the experi-
ments. For MNIST, we use a CNN which contains two convolutions and maxi-
mum pooling. We use an MLP which contains a hidden layer on CIFAR-10. For
Shakespeare, we use an RNN model which contains an embedding layer and an
LSTM layer. All the code is implemented in PyTorch to simulate a federated
network with 1 server and several clients, where 10% of clients are selected for
training in each round. The local batch size is 64, the local epoch is 1, the server’s
momentum factor is 0.5, and the number of communication rounds for MNIST
and CIFAR-10 is 2000 and for Shakespeare is 500. Note that a communication
round refers to the process of completing a model update through interaction
between the server and the clients.
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Baselines. We compare FCFL with the classic method FedAvg [15] and various
state-of-the-art fairness methods in FL, including q-FedAvg [11], FedFa [8], and
GIFAIR [28]. Based on the code provided by their authors, we directly rewrite
the code for comparison. The presented results are averaged from 5 runs with
different random seeds.

4.2 Fairness of FCFL

We compare the proposed FCFL with four FL algorithms, FedAvg, q-FedAvg,
FedFa, and GIFAIR to verify the fairness of our method. The value of q in q-
FedAvg is set to {0.1, 0.2, 0.5, 1.0, 2.0, 5.0}, the value of accuracy weight and fre-
quency weight in FedFa is set to {(0.4, 0.6), (0.5, 0.5), (0.6, 0.4)}, and the param-
eter λ in GIFAIR is set to {0.3, 0.5, 0.7}. We take the best performance of each
method for the comparison. The derived variance and accuracy are displayed
in Table 2, from which we can see that our FCFL method produces the low-
est variance of 11.03 on MNIST, 114.59 on CIFAR-10, and 67.48 on Shake-
speare. Moreover, taking the CIFAR-10 dataset as an example, compared with q-
FedAvg(q=2.0), FedFa, and GIFAIR, our FCFL reduces the variance by 23.4%,
30.4%, 27.7%, respectively. Similar variance reductions can also be seen on the
MNIST and Shakespeare datasets. Since variance is an important metric of fair-
ness, it indicates that our FCFL can achieve the fairest performance among all
baselines. In addition, the accuracy of the worst 10% client of FCFL is signifi-
cantly higher than other experiments. In the CIFAR-10 dataset, compared with
the second-best method q-FedAvg (q = 2.0) in baselines, the worst 10% per-
formance is increased from 24.98 to 28.03. Similarly, in the MNIST dataset,
the worst 10% performance increased from 88.63 to 89.17, and in Shakespeare,
the worst 10% performance increased from 37.92 to 38.55. This confirms our
FCFL has shown great improvement in protecting unfairly treated clients. As for
the global average accuracy, our FCFL can reach 96.06%, 46.12%, and 50.55%
in MNIST, CIFAR-10, and Shakespeare respectively, which is very competitive
(around 1% difference) to other baselines. In the best 10% accuracy, our FCFL
method is a bit lower than some baselines since we emphasize more focus on
vulnerable clients and deliver much better fairness.

To summarize, the FCFL method can achieve better fairness in FL while
maintaining competitive average accuracy in most cases, which will attract more
minority clients to participate in FL, thereby expanding FL applications.

4.3 Efficiency of FCFL

We also record the trend of loss value and the test accuracy of the global model
for each round in the MNIST and CIFAR-10 datasets and plot them in Fig. 4. As
depicted in Fig. 4(a), the loss of proposed FCFL reduces fast as the communica-
tion round increases, which affirms that FCFL can converge as fast as FedAvg,
FedFa, and GIFAIR, and is significantly faster than q-FedAvg. In Fig. 4(b), the
test accuracy of FCFL increases rapidly and reaches a convergence value after
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Table 2. Statistics of the test accuracy distribution on different datasets.

Dataset Method AccuracyBest 10%Worst 10%Variance

MNIST

FedAvg 95.96 100.00 87.47 15.06

q-FedAvg—q=0.2 96.09 100.00 88.40 12.58

FedFa—α=0.6,β=0.4 96.23 100.00 88.37 12.61

GIFAIR—λ=0.5 96.12 100.00 88.63 12.72

FCFL—α=0.3,r=0.4 96.06 100.00 89.17 11.03

CIFAR-10

FedAvg 46.35 68.67 20.16 178.93

q-FedAvg—q=2.0 47.14 66.81 24.98 149.50

FedFa—α=0.6,β=0.4 46.64 68.10 23.19 164.68

GIFAIR—λ=0.5 46.61 67.02 23.18 158.36

FCFL—α=0.3,r=0.6 46.12 65.39 28.03 114.59

Shakespeare

FedAvg 49.16 70.65 35.34 89.87

q-FedAvg—q=2.0 50.24 69.77 37.92 75.99

FedFa—α=0.5,β=0.5 49.03 69.06 36.23 79.54

GIFAIR—λ=0.3 50.01 68.50 36.24 78.25

FCFL—α=0.1,r=0.6 50.55 68.74 38.55 67.48

1000 rounds. Similar results can be observed from the CIFAR-10 dataset, which
states that our FCFL method has a reasonable convergence speed.

To further validate the efficiency of our FCFL, we compare the time cost for
one communication round in different datasets and models. The statistics are
presented in Table 3. From Table 3, it can be seen that FCFL does not introduce
too much time cost. In some cases, it can achieve the same time efficiency as
FedFa and q-FedAvg. Therefore, although FCFL adds one more communication,
it does not consume too much time and thus can maintain time efficiency while
improving fairness.

4.4 Effect of Hyper-parameter r

To investigate the impact of the client selection ratio r on our FCFL method,
the average accuracy and variance are plotted in Fig. 5 for both datasets. The
range of r is [0, 1], representing the ratio of clients selected by the random selec-
tion method. Theoretically, increasing r will lead to an increase in accuracy,
since greater randomness allows the global model to extract data from more
clients; More randomly selected clients cause the system to ignore vulnerable
clients, increasing variance among all clients. Due to the simplicity of the MNIST
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Fig. 4. The training loss (left) and test accuracy (right) of FCFL.

dataset, the performance distribution for each client is uniform, and the aver-
age precision and variance do not show significant changes with the parameter
r in Fig. 5(a). In contrast, the analysis is reflected in Fig. 5(b) more obviously,
where the average accuracy and variance increase along with r, which confirms
that enlarging the random ratio r of selected clients will derive higher accuracy
and variance of FL system. In our experiments, the parameter r is tuned by grid
search, and r = 0.6 is selected as the best value that can reach a perfect trade-off
between accuracy and variance (i.e., fairness).

4.5 Ablation Experiments

A series of ablation experiments are conducted on CIFAR-10 to validate our
proposed techniques. We compare FCFL with its two variants: (i) FCFL|RS,
replacing unfairness-based selection with random selection; and (ii) FCFL|DAR,
replacing unfairness-based reweighting with data amount reweighting. The com-
parison results are presented in Table 4, which demonstrates that the complete
FCFL can effectively balance fairness and performance compared to the two
variants. Specifically, when comparing FCFL and FCFL|RS, it can be seen that
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Table 3. The running time of one communication round.

Method

Time(s) Setting
MNIST(MLP)MNIST(CNN)CIFAR-10(MLP)CIFAR-10(CNN)

FedAvg 0.87 1.91 0.89 1.84

q-FedAvg 0.95 1.99 0.96 1.90

FedFa 1.03 2.01 0.96 1.91

GIFAIR 0.88 1.90 0.88 1.85

FCFL 0.94 2.01 0.96 1.95

Fig. 5. Analysis of the parameter r on (a) MNIST, and (b) CIFAR-10.

unfairness-based selection can significantly improve the worst 10% performance,
and reduce variance from 151.31 to 114.59. This improvement indicates that
unfairness-based client selection can solve the unfairness issue effectively. Com-
pared with FCFL|DAR, although the variance is reduced much by FCFL|DAR,
it is achieved by sacrificing global accuracy and the best 10% accuracy, which
states that our unfairness-based reweighting can improve accuracy effectively.
The results of the ablation study indicate that the proposed FCFL takes advan-
tage of both client selection and reweighting strategy, providing a well-justified
fairness and performance in FL.

Table 4. Ablation studies of FCFL on CIFAR-10.

Method Accuracy Best 10% Worst 10% Variance

FCFL 46.12 65.39 28.03 114.59

FCFL|RS 46.06 65.60 22.91 151.31

FCFL|DAR 43.56 61.00 26.57 96.31

5 Conclusion

The performance fairness problem of FL is investigated in this work, where we
propose FCFL, a fairness compensation-based FL algorithm to improve fairness
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on vulnerable clients. The proposed FCFL considers both client selection and
aggregation reweighting to compensate for unfairly treated clients by adopting
accumulated unfairness queues. Through intensive experiments and comparison
with the existing baselines, the proposed FCFL is demonstrated to improve fair-
ness by 30.4% with high efficiency. In future work, we will extend the study
on how to estimate unfairness accurately with approximate global performance
and how to select hyper-parameters adaptively to improve overall performance.
Furthermore, combining this approach with selection fairness would be an inter-
esting idea in our future investigation.
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Abstract. Plenty of time series classification methods have been pro-
posed in the past. Most methods utilize the labeled time series instances
to build classifiers, ignoring the explicit domain knowledge. However, in
real-world applications, practitioners may identify domain characteris-
tics of the time series, and build the heuristic relationship between the
class labels of the time series and these domain characteristics. In this
paper, we investigate the possibility of incorporating the domain knowl-
edge into time series classification for possible performance improve-
ment. To this end, we propose a Modified Minimum Description Length
(MMDL)-based data augmentation method to inject domain knowledge
into time series classification. Based on the type of domain knowledge,
the proposed method applies the MMDL shapes or residuals to augment
the training data. Experimental results demonstrate that the proposed
method consistently improves the classification accuracy across all tested
datasets and achieves better results than other time series data augmen-
tation methods.

Keywords: Time series classification · Data augmentation · Minimum
description length

1 Introduction

Over the last two decades, time series classification has been considered as one
of the most challenging problems in the field of data mining [12,48], drawing
significant attention from both academic and industrial communities. Plenty of
methods for time series classification have been proposed [22,32–34,36]. Most
of these methods only leverage labeled time series datasets to train classifiers
that can predict the class labels of unseen time series instances. However, in
real-world applications, domain experts often possess knowledge about specific
characteristics of the time series that may influence their class labels. Therefore,
incorporating such domain knowledge into time series classification may improve
the classification performance.
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Fig. 1. Examples of a sudden drop situation requiring alerting (left) and a rise-and-fall
situation without requiring alerting (right).

Figure 1 (left)1 illustrates a real-world example of detecting system anomalies
using time series data. A typical alarm rule is applied to determine whether the
value of a time series drops by a certain percentage in a certain time. If this
condition is met, an alarm is triggered to indicate a potential anomaly in the
system. However, a common situation can lead to false alarms, as shown in Fig. 1
(right), where the value of the time series rises before falling. The alarm rule is
triggered when the fall occurs. In practice, the rise-and-fall situation is normal
and should not trigger an alarm.

To reduce the number of false alarms triggered by the aforementioned alarm
rule, we need a time series classifier to identify the rise-and-fall situation. When
the time series is classified as rise-and-fall, no alarm will be triggered. In this time
series classification problem, we have the crucial domain knowledge that 1) the
class labels are solely determined by the overall shape of the time series: the
rise-and-fall situation presents an upside-down U or V shape while the others
do not; 2) the local details in the time series do not affect the class labels.
The later section of the paper shows that incorporating this knowledge into a
state-of-the-art time series classifier [10] boosts its average classification accuracy
from 0.765 to 0.825 on this problem.

Conversely, we also encounter real-world situations where the overall shapes
of time series have no influence on their class labels. For example, there are two
common types of alarm rules used to detect system anomalies using time series
data: the percentage-rule and the value-rule. The alarm rule used in the rise-
and-fall situation is a percentage-rule. In the case of the value-rule, an alarm is
triggered if the value of a time series falls below or rises above a certain threshold
value. Figure 2 (See footnote 1) shows examples that fit these two types of rules
respectively. The time series in Fig. 2 (left) oscillates quite dramatically, making
it inappropriate to apply the percentage rule. Instead, a bottom value as the
threshold value for the alarm would be more suitable in this case. For the time

1 The time series come from actual online monitored metrics in Ant Group. The
series are standardized and the actual meaning is anonymized for confidentiality.
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Fig. 2. Examples of a fast-change situation that should apply the value-rule (left) and
a slow-change situation that needs the percentage-rule (right).

series in Fig. 2 (right), its value changes quite slowly, making it feasible to use a
percentage-rule to capture the possible anomaly. Establishing a specific threshold
value for the time series is not practical in this situation, as the value of the time
series slowly fluctuates within a wide range.

This rule type determination can be formulated as a time series classification
problem. The time series with the percentage-rule have a smooth texture, while
those with the value-rule are analogous to rough surfaces. Additionally, the time
series with the percentage-rule may have very different overall shapes, as long as
their values change slowly and smoothly. Therefore, when handling this problem,
it is important to consider the domain knowledge that 1) the overall shapes of
the time series do not impact the class labels; 2) the class labels are solely
determined by the texture or local details of the time series. As shown in later
sections, incorporating this domain knowledge into time series classification can
increase the average classification accuracy from 0.858 to 0.903 on this problem.

The above insights demonstrate the significance of leveraging domain knowl-
edge to enhance the accuracy of time series classification in real-world applica-
tions. To incorporate the domain knowledge into existing time series classification
methods, we propose a Modified Minimum Description Length (MMDL)-based
time series data augmentation method. For each instance in the training set, one
augmented instance is created which has the same class label as the original one.
Specifically, the method utilizes either the MMDL shape or the MMDL resid-
ual to augment the training set based on the type of domain knowledge. When
instances with the MMDL shape are added to the training set, classifiers will
prioritize the overall shapes of the time series and pay less attention to the local
details. Conversely, adding instances with the MMDL residual to the training
set will lead classifiers to ignore the overall shapes of the time series and focus
more on the local details.

We compare the proposed method with other time series data augmenta-
tion methods using both our domain-specific datasets and widely-used bench-
mark datasets. The results demonstrate that the proposed method consistently
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improves the classification accuracy across all tested datasets and achieves better
results than other compared methods.

The rest of the paper is organized as follows. Section 2 gives the background
and related work. Section 3 details the proposed method of incorporating domain
knowledge and data augmentation. Section 4 provides the experimental evalua-
tion and comparison with other methods. Finally, Sect. 5 concludes the paper.

2 Background and Related Work

2.1 Time Series Classification

The time series classification problem differs from the general classification prob-
lems in that the time series data values have temporal correlation and the shapes
of the series have a large impact on the determination of the class labels. So
directly applying the standard machine learning methods to the time series
data may not generate satisfactory results. Hence many time series classifica-
tion approaches first transform the raw time series into flat features or repre-
sentations and then apply the standard machine learning methods to the newly
transformed features or representations to receive the class label prediction.

Based on the representations that the methods utilized, the state-of-the-
art time series classification approaches can be categorized into distance-based,
feature-based, interval-based, shapelet-based, dictionary-based, convolution-
based, deep-learning-based, and hybrid approaches [36].

The distance-based methods [33,35] apply a certain distance measure to
quantify the similarity between the time series instances. Most methods in this
category combine the distance measures with the one-nearest neighbor classifiers
to perform the tasks. The one-nearest-neighbor classifier with the Dynamic Time
Warp (DTW) [43] is widely regarded as a baseline in literature.

The feature-based methods [6,34] extract global statistical measures from
time series as representations, and the interval-based approaches [3,11] derive
features from interval statistics. Shapelets are the snippets in the time series that
can be used to best distinguish different classes [51]. The shapelet-based methods
either embed the shapelet in a decision tree fashion [38,40] or use the distances
from the time series instances to the shapelets as transformed representations for
classification [20,22].

The dictionary-based methods [32,44] first apply a sliding window to extract
all the sub-series from the time series data and then transform the sub-series
into symbols. Histograms of the symbols are built as the classification represen-
tations. The convolution-based methods [9,10] adopt 1-dimension random-value
kernels to perform convolution on the time series to generate features for classifi-
cation. The deep-learning-based algorithms [18,24] apply neural networks on the
raw time series data and the hybrid methods combine approaches from different
categories together.
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2.2 Time Series Data Augmentation

Data augmentation serves to increase the dataset size by generating new data
instances from the original data, which aims to improve the task performance
with the augmented dataset. Existing data augmentation methods for time
series classification can be categorized into transformation-based, pattern-based,
generative-based, decomposition-based, and automated methods [16].

Many transformation-based techniques apply straightforward operations on
the time series data to create new instances. Example transformation opera-
tions are jittering, rotation, scaling, magnitude-warping, permutation, and so
on [46]. The transformation can be carried out in time domain [29,41], frequency
domain [19,49], or both [30].

The pattern-based methods [1,26] work by extracting and utilizing specific
patterns or components in the time series to generate synthetic data. The com-
ponents can be from the time realm [15,25] or the frequency realm [7,39]. The
generative-based approaches first fit the generative models using the avail-
able training instances, then create new augmented instances using these mod-
els. Based on the type of the generative model, this category can be fur-
ther divided into statistical-model-based methods [4,27] and deep-learning-based
methods [37,50].

The decomposition-based approaches [31,47] decompose the time series into
different components and augment each component separately. Then the compo-
nents are assembled to form new synthetic instances. As for the automated data
augment methods [5,14], adaptive augmentation strategies are used to form an
optimal data augmentation process according to the data at hand.

The proposed method differs from the above techniques in that it takes
advantage of the generalized domain knowledge to guarantee the correctness
of the augmented instances’ class labels.

2.3 Minimum Description Length

The MDL principle [21] is a theory for model selection and can be summa-
rized as “Choose the model that gives the shortest description of data” [42]. In
the realm of time series, this principle is used to find the intrinsic cardinal-
ity and dimensionality [23], to discover the intrinsic patterns [45], or to perform
semi-supervised classification [2]. In these applications, the description length is
defined as following [23]:

DL(T,M) = DL(M) + DL(T |M) (1)

where DL(T,M) is the description length of the time series T given the model
M . DL(M) is the number of bits needed to be used to store the model. DL(T |M)
is the number of bits required to be utilized to rebuild the time series T given the
model M . DL(T |M) is calculated as DL(T −M), where T −M denotes the dif-
ference between the time series T and model M , i.e., one can store the difference
values between the model values and the real series values. The difference values
vector is encoded using Huffman coding and the coding length is DL(T − M).
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The idea behind MDL is to balance the model complexity (first term in
Eq. 1, called model cost) and the model fidelity (second term in the equation,
known as correction cost). The model that has the minimum description length
is considered as the best model or representation for the data according to the
principle.

3 The Proposed Method

The idea behind the proposed method is to incorporate the domain knowledge
into the time series classification process to enhance its accuracy. Experience
inspires us to generalize our domain knowledge in many situations into two
types. Type 1 indicates the case where the class labels of the time series are
solely determined by the overall shapes of the time series and are not affected
by the local details. Type 2 is the case where only the texture of the time series
decides the class labels and the shapes of the time series do not influence the
class labels. Examples of these two types have been shown in Sect. 1.

If the domain knowledge is Type 1, the proposed method will extract the
essential shapes of the training series and add back them to the training set
for the following classification. It is safe to assign the shape instances the same
class labels as their respective original time series. These augmented series can
guide the classifiers to focus more on the overall shapes of the time series and
ignore the local details, thus helping to improve the final classification results.

On the other hand, if the domain knowledge is Type 2, the difference between
the training series and their respective essential shapes will be used to augment
the training set. The residual is used to create the pure texture series, which has
the same class labels as the original series. Adding these residual series to the
training set can lead the classifiers to ignore the shapes and focus more on the
local texture of the series.

To extract the essential shapes from the time series objectively and in the
hope of not adding extra parameters to tune, we adapt the MDL method in
the process. Regarding the shapes as models to approximate the time series, the
modified MDL procedure could generate proper shapes to capture the overall
outline of the time series and ignore the local details.

Algorithm 1 gives the pseudo-code for the proposed method. The input of
the algorithm is the time series data set D and the domain knowledge type P
(1 stands for Type 1 and 2 for Type 2 respectively). The algorithm returns the
augmented dataset A as output.

In Line 1–2, each instance I is taken out from D and the time series and class
labels are assigned to T and C respectively. Line 3 transforms the time series
T into segments denoted as Segs. In our implementation, every consecutive 3
points are combined to become a segment (So the series indices for the segments
are [0 − 2], [3 − 5], [6 − 8], . . .). The mean value of the time series values in each
segment is the respective segment value.

In Line 4, the segment values are discretized to a cardinality of 256. Previous
research [23] suggests that using the 256-cardinality version in fact does not
have much difference from using the original data on classification tasks.
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Algorithm 1. MMDL-based Data Augmentation
Input:

D: time series dataset
P : domain knowledge type

Output:
A: augmented dataset

1: for each I ∈ D do
2: [T,C] = I
3: Segs = SeriesToSeg(T )
4: Segs = Discretization(Segs, 256)
5: segsLen = length(Segs)
6: bestCost = inf
7: BestModel = Segs
8: for numSeg = segLen − 1 to 1 do
9: Segs = MergeSegs(Segs)

10: modelCost = ModelCost(segLen, numSeg)
11: correctCost = CorrectCost(T, Segs)
12: totalCost = modelCost + correctCost
13: if totalCost < bestCost then
14: bestCost = totalCost
15: BestModel = Segs
16: end if
17: end for
18: Shape = SegToSeries(BestModel)
19: if P == 1 then
20: A.add([Shape, C])
21: else if P == 2 then
22: A.add([T − Shape, C])
23: end if
24: end for

Line 5 receives the number of segments in Segs and Line 6–7 initialize the
best total cost and best model. Here, the segments with their respective values
are regarded as the model to approximate the original time series.

Line 8–17 find the best model under the MDL principle. In Line 8–9, each
time two nearby segments are selected to merge. The series indices of the two
segments are merged together and the larger one of the two segment values
become the new value of the merged segment. All the nearby segment pairs
in Segs are checked and the pair that generates the minimum merge-error is
selected to merge. The merge-error is calculated as |DV | × LIS, where DV is
the difference between the two segment values and LIS denotes the length of
indices of the segment with the smaller segment value.

Line 10 calculates the model cost for the current Segs. The model cost
modelCost can be received using the following equation:

modelCost = (log2(256) + �log2(segLen)�) × numSeg (2)



410 X. Li et al.

For each of the num seg segments, the number of bits that one needs to use to
represent the possible 256 segment values are log2(256). �log2(segLen)� is used
to represent the information needed to record the positions of the segments.

Line 11 delivers the correction cost for Segs. Previous works surveyed in
Sect. 2 use the Huffman coding length of the difference vector between the origi-
nal time series values and the model predicting values as the correction cost. We
modified the MDL procedure by proposing a different method to calculate the
correction cost as displayed in the following equation:

correctCost =
∑

log2(1 + |T − SegToSeries(Segs)|) (3)

Essentially the method encodes each element of the difference vector (T −
SegsToSeries(Segs)) individually and sums up the overall bits as the correction
cost.

The idea is to encourage the algorithm to find models that have segment
values approximate to the original time series values. For example, two difference
vectors [0, 0, 0, 1, 1, 1] and [0, 0, 0, 3, 3, 3] have the same Huffman coding length,
while the first one has a smaller correction cost according to Eq. 3 and is thus
more preferred.

During the loop, Line 13–16 find the best segment model for the given data,
and Line 18 transforms the segments to series values as the shape of the original
series. If the case is Type 1, then the shape will be added to the output dataset
(Line 19–20). If the situation is Type 2, then the residual series (difference vec-
tor) between the original series and the shape series will instead go into the
augmented dataset C (Line 21–22).

Figures 3 and 4 show the augmented instances for the examples of the two
types introduced in Sect. 1 respectively.

Note that the proposed method is designed to incorporate the generalized
domain knowledge into the classification process so it is suitable for the situa-
tions where the domain knowledge is available. Also, the two types of domain
knowledge do not cover all the possible situations. For example, there are situa-
tions where both the overall shapes and the local details of the series may have
an impact on the class labels. In these cases, other data augmentation methods
surveyed in Sect. 2 can be used to enhance the classification performance.

4 Experimental Evaluation

4.1 Experimental Setup

To evaluate the effectiveness of the proposed method, we conduct experiments
on four scenarios. Among these, two are derived from our domain of expertise
(i.e., false alarm elimination and alarm rule type selection), while the other two
are from widely-used benchmark datasets (i.e., signal type classification and
appliance recognition). There are some other datasets available, but we are not
very familiar with their underlying mechanism, and not sure if the class labels
are mainly affected by the overall shapes or local details or both, so we choose to
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Fig. 3. Augmented instances for the rise-and-fall situation.

Fig. 4. Augmented instances for the slow-change situation.

focus on the cases where we have domain knowledge. The mechanism behind the
tested scenarios will be analyzed and the labeling of the classes will be discussed.

We compare the proposed method (denoted as MMDL) with all the evaluated
time series data augmentation methods in a recent survey [16], which include
Jittering [46], Rotation [46], Scaling [46], Magnitude Warping [46], Permuta-
tion [46], Random Permutation [46], Time Warping [46], Window Slicing [29],
Window Warping [29], SPAWNER [26], wDBA [15], RGW [25], RGWs [25],
DGW [25], DGWs [25], and TimeGAN [52]. We also include the version using
the original MDL procedure (denoted as MDL) in the comparison.

Middlehurst et al. [36] conducts an extensive experimental evaluation on
the time series classification methods including all the categories surveyed in
Sect. 2. The results indicate that Hydra-MultiROCKET [10] is one of the best
methods both in terms of accuracy and speed. Thus, we adopt this classifier to
work with the data augmentation methods under comparison.

The dataset for each scenario contains a training set and a testing set. The
data augmentation methods will be applied on the training set to generate new
data instances. The new instances are combined with the training set to form
an augmented set. The Hydra-MultiROCKET classifier will be trained on the
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augmented set and predict the class labels of the instances in the testing set.
The only parameter for the proposed method is the domain knowledge type,
which will be set according to the domain knowledge in each scenario. The data
augmentation methods under comparison and the classifiers will use the default
parameter settings. All the reported accuracy results are the average values of
ten different runs with different random seeds. The source code of the proposed
method and our domain-specific datasets are available online2.

4.2 False Alarm Elimination

As introduced in Sect. 1, we need to distinguish between the time series that
contain drops caused by system anomalies and those that belong to the rise-
and-fall situation. The latter will also trigger the alarm rule to produce false
alarms. Thus, a time series classifier is used to judge the type of the time series.
If the type belongs to the rise-and-fall situation, no alarm will be triggered.
Examples of these two types of time series have been shown in Fig. 1.

From the analysis, one learns that the class labels are determined solely by
the overall shape of the time series. The rise-and-fall series contain an upside-
down U or V shape while the series from the other class does not. The local
details do not affect the class labels. Thus, the domain knowledge type of the
proposed method in this application is set to 1.

The RiseFall dataset contains the time series we collected in this scenario. It
contains 75 time series of length 60 and their respective class labels. Class label
0 denotes the rise-and-fall instances and class label 1 indicates the instances
that should be alarmed. There are 45 instances in the class label 0 and the rest
are in the class label 1. The series are standardized to have zero mean and one
standard deviation. We randomly select one third of the instances to form the
training set and the remains become the testing set.

The proposed method as well as the compared methods are run on this
dataset, and the results are listed in Table 1. The table shows the average clas-
sification accuracy and the ranks of MMDL and the compared methods on the
testing set. The None method in the table denotes the results without data
augmentation. Comparing the results between None and MMDL, one observes
that MMDL improves the average classification accuracy from 0.765 to 0.825.
Also, MDL has a higher test accuracy than None, but are inferior to MMDL.
Furthermore, from the rank columns one observes that MDL achieves the best
classification accuracy among the methods under comparison in this scenario.
These results demonstrate the effectiveness of the proposed method.

2 https://github.com/alipay/MMDL-based-Data-Augmentation-with-Domain-
Knowledge-for-Time-Series-Classification.

https://github.com/alipay/MMDL-based-Data-Augmentation-with-Domain-Knowledge-for-Time-Series-Classification
https://github.com/alipay/MMDL-based-Data-Augmentation-with-Domain-Knowledge-for-Time-Series-Classification
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Table 1. Experimental results on the RiseFall dataset

Method Acc. RankMethod Acc. RankMethod Acc. Rank

dgw 0.767 12 rgws 0.747 16 windowwarp0.769 10

dgws 0.784 4 rotation 0.755 15 timeGAN 0.725 18

jitter 0.780 7 scaling 0.771 9 None 0.765 13

magwarp 0.765 13 spawner 0.780 7 MDL 0.784 4

permutation 0.792 3 timewarp 0.696 19 MMDL 0.825 1

randomperm0.806 2 wdba 0.782 6

rgw 0.743 17 windowslice0.769 10

4.3 Alarm Rule Type Selection

There are two common types of alarm rules for different kinds of time series:
the percentage-rule and the value-rule, as introduced in Sect. 1. The percentage-
rule is fit for the slowly changing time series with smooth texture, while the
value-rule is proper for the time series with sudden changes with rough surfaces.
Figure 2 gives two examples suitable for the two types of alarm rules respectively.
We utilize a time series classifier to select the type of alarm rules automatically
according to the time series.

From the analysis, one can see that the overall shapes of the series do not
influence the class labels, while the class labels are solely determined by the
texture of the series. Thus, the domain knowledge type of the proposed method
is set to 2.

The RuleTypes dataset contains the time series instances we collected in this
scenario. There are 239 time series instances of length 1440 with their respective
class labels. Class label 1 denotes the percentage-rule and class label 0 indi-
cates the value-rule. 140 out of the 239 instances are in class label 0 and the rest
fall in class label 1. One third of the instances are randomly selected to form the
training set and the rest become the testing set.

Table 2 shows the experimental results of MMDL and compared methods on
this dataset. One observes that MMDL improves the average classification accu-
racy from 0.858 to 0.903, which is also the best result among the methods under
comparison. These results demonstrate the effectiveness of the proposed methods.

4.4 Signal Type Classification

In this scenario, we evaluate MMDL and the methods under comparison on
the Mallat dataset from the UCR time series classification archive [8]. The
Mallat dataset contains 55 signal instances in the training set and 2345 sig-
nal instances in the testing set. There are 8 different classes (Class 1–8) in this
dataset and Fig. 5 shows the example instances for each class respectively.

The instances between different classes have different overall shapes. For
instance, the instance belonging to Class 2 has a sunken area in the rightmost
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Table 2. Experimental results on the RuleTypes dataset

Method Acc. RankMethod Acc. RankMethod Acc. Rank

dgw 0.851 17 rgws 0.865 9 windowwarp0.856 15

dgws 0.858 12 rotation 0.837 19 timeGAN 0.857 14

jitter 0.875 6 scaling 0.866 8 None 0.858 12

magwarp 0.868 7 spawner 0.853 16 MDL 0.893 2

permutation 0.880 4 timewarp 0.842 18 MMDL 0.903 1

randomperm0.876 5 wdba 0.860 11

rgw 0.892 3 windowslice0.864 10

Fig. 5. Example instances of different classes from the Mallat dataset.

part of the series, which is not present in the instance of Class 1. Additionally,
the instances inside the same class have the same overall shape and differ in
local details. So, in this case, we set the domain knowledge type of the proposed
method to 1.

The experimental results on the Mallat dataset are given in Table 3. One
observes that the proposed method achieves the best result among all the com-
pared methods.

4.5 Appliance Recognition

In this scenario, we evaluate MMDL and the compared methods on the ACSF1
dataset from the UCR time series archive [8], which contains the power con-
sumption record of different classes of appliances. The classes correspond to 10
categories of home appliances: mobile phones (via chargers), coffee machines,
computer stations (including monitor), fridges and freezers, Hi-Fi systems (CD
players), lamps (CFL), laptops (via chargers), microwave oven, printers, and
televisions (LCD or LED) [17]. There are 100 instances in the training set and
100 instances in the testing set. Figure 6 and Fig. 7 depict the example instances
from each of the 10 classes.
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Table 3. Experimental results on the Mallat dataset

Method Acc. RankMethod Acc. RankMethod Acc. Rank

dgw 0.933 5 rgws 0.923 12 windowwarp0.912 17

dgws 0.915 13 rotation 0.936 4 timeGAN 0.884 19

jitter 0.937 3 scaling 0.924 10 None 0.927 8

magwarp 0.913 16 spawner 0.923 11 MDL 0.911 18

permutation 0.913 15 timewarp 0.937 2 MMDL 0.941 1

randomperm0.914 14 wdba 0.932 7

rgw 0.925 9 windowslice0.933 6

Fig. 6. Example instances of Class 0–4 from the ACSF1 dataset.

From the data one can see that the instances from different classes have
the same oscillating outlines. The difference between the classes lies in the local
details, as demonstrated in the zoomed-in zone in the given figures. Thus, the
domain knowledge type of the proposed method is set to 2.

Table 4 lists the experimental results on the ACSF1 dataset. One can observe
that the proposed method also manages to improve the average classification
accuracy and is the second-best method among the compared methods.
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Fig. 7. Example instances of Class 5-9 from the ACSF1 dataset.

Table 4. Experimental results on the ACSF1 dataset

Method Acc. RankMethod Acc. RankMethod Acc. Rank

dgw 0.885 11 rgws 0.888 9 windowwarp0.877 17

dgws 0.884 12 rotation 0.904 6 timeGAN 0.880 15

jitter 0.875 19 scaling 0.884 12 None 0.892 8

magwarp 0.899 7 spawner 0.876 18 MDL 0.910 2

permutation 0.907 4 timewarp 0.881 14 MMDL 0.910 2

randomperm0.915 1 wdba 0.906 5

rgw 0.886 10 windowslice0.880 15

Figure 8 gives a summary of the average rank of the compared methods. The
horizontal bar lengths stand for the average rank of the respective data augmen-
tation methods on the four scenarios, and the methods are sorted in ascending
order based on the average rank. One can see that the proposed MMDL-based
method achieves the best overall performance among the compared methods on
the four scenarios. MMDL has better or equal results on all the tested cases than
MDL, demonstrating the effectiveness of the proposed correction cost calculation
method on the tested scenarios.
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Fig. 8. Average rank of the compared methods.

5 Conclusion and Future Work

This paper presents a data augmentation method to incorporate domain knowl-
edge into the time series classification process to enhance the classification accu-
racy. The proposed method uses an MMDL-based procedure to extract the essen-
tial shapes of the time series data. According to the type of domain knowledge,
either the shapes or the residual of the shapes will be used to augment the train-
ing data. Experimental evaluation demonstrates that the proposed method con-
sistently improves the classification accuracy across all tested cases and achieves
better results than other time series data augmentation methods.

The experimental evaluation adopts Hydra-MultiROCKET [10] as the clas-
sifier. Combining other classifiers with the proposed method could be a future
research direction. Applying other techniques like APCA [28] and DFT [13]
to extract the shapes of time series in the procedure could be another future
research direction.

Acknowledgments. Ying Li and Yifan Wu were supported by Ant Group Research
Fund.



418 X. Li et al.

References

1. Aboussalah, A.M., Kwon, M., Patel, R.G., Chi, C., Lee, C.G.: Recursive time
series data augmentation. In: The Eleventh International Conference on Learning
Representations (2022)

2. Begum, N., Hu, B., Rakthanmanon, T., Keogh, E.: A minimum description length
technique for semi-supervised time series classification. Integration of reusable sys-
tems, pp. 171–192 (2014)

3. Cabello, N., Naghizade, E., Qi, J., Kulik, L.: Fast, accurate and interpretable time
series classification through randomization. arXiv preprint arXiv:2105.14876 (2021)

4. Cao, H., Tan, V.Y., Pang, J.Z.: A parsimonious mixture of gaussian trees model
for oversampling in imbalanced and multimodal time-series classification. IEEE
Trans. Neural Networks Learn. Syst. 25(12), 2226–2239 (2014)

5. Cheung, T.H., Yeung, D.Y.: Modals: modality-agnostic automated data augmenta-
tion in the latent space. In: International Conference on Learning Representations
(2020)

6. Christ, M., Braun, N., Neuffer, J., Kempa-Liehr, A.W.: Time series feature extrac-
tion on basis of scalable hypothesis tests (tsfresh-a python package). Neurocom-
puting 307, 72–77 (2018)

7. Cui, X., Goel, V., Kingsbury, B.: Data augmentation for deep neural network
acoustic modeling. IEEE/ACM Trans. Audio Speech Lang. Process. 23(9), 1469–
1477 (2015)

8. Dau, H.A., et al.: The ucr time series classification archive, October 2018. https://
www.cs.ucr.edu/∼eamonn/time series data 2018/

9. Dempster, A., Petitjean, F., Webb, G.I.: Rocket: exceptionally fast and accurate
time series classification using random convolutional kernels. Data Min. Knowl.
Disc. 34(5), 1454–1495 (2020)

10. Dempster, A., Schmidt, D.F., Webb, G.I.: Hydra: competing convolutional ker-
nels for fast and accurate time series classification. Data Mining and Knowledge
Discovery, pp. 1–27 (2023)

11. Deng, H., Runger, G., Tuv, E., Vladimir, M.: A time series forest for classification
and feature extraction. Inf. Sci. 239, 142–153 (2013)

12. Esling, P., Agon, C.: Time-series data mining. ACM Comput. Surv. (CSUR) 45(1),
1–34 (2012)

13. Faloutsos, C., Ranganathan, M., Manolopoulos, Y.: Fast subsequence matching in
time-series databases. ACM SIGMOD Rec. 23(2), 419–429 (1994)

14. Fons, E., Dawson, P., Zeng, X.j., Keane, J., Iosifidis, A.: Adaptive weighting scheme
for automatic time-series data augmentation. arXiv preprint arXiv:2102.08310
(2021)

15. Forestier, G., Petitjean, F., Dau, H.A., Webb, G.I., Keogh, E.: Generating synthetic
time series to augment sparse datasets. In: 2017 IEEE International Conference on
Data Mining (ICDM), pp. 865–870. IEEE (2017)

16. Gao, Z., Li, L., Xu, T.: Data augmentation for time-series classification: an exten-
sive empirical study and comprehensive survey. arXiv preprint arXiv:2310.10060
(2023)

17. Gisler, C., Ridi, A., Zufferey, D., Abou Khaled, O., Hennebert, J.: Appliance con-
sumption signature database and recognition test protocols. In: 2013 8th Interna-
tional Workshop on Systems, Signal Processing and their Applications (WoSSPA),
pp. 336–341. IEEE (2013)

http://arxiv.org/abs/2105.14876
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
http://arxiv.org/abs/2102.08310
http://arxiv.org/abs/2310.10060


MMDL-Based Data Augmentation with Domain Knowledge 419

18. Gong, X., Si, Y.W., Tian, Y., Lin, C., Zhang, X., Liu, X.: Kdctime: knowledge
distillation with calibration on inceptiontime for time-series classification. Inf. Sci.
613, 184–203 (2022)

19. Goubeaud, M., Gmyrek, N., Ghorban, F., Schelkes, L., Kummert, A.: Random
noise boxes: data augmentation for spectrograms. In: 2021 IEEE International
Conference on Progress in Informatics and Computing (PIC), pp. 24–28. IEEE
(2021)

20. Guillaume, A., Vrain, C., Elloumi, W.: Random dilated shapelet transform: a new
approach for time series shapelets. In: International Conference on Pattern Recog-
nition and Artificial Intelligence, pp. 653–664. Springer, Cham (2022). https://doi.
org/10.1007/978-3-031-09037-0 53

21. Hansen, M.H., Yu, B.: Model selection and the principle of minimum description
length. J. Am. Stat. Assoc. 96(454), 746–774 (2001)

22. Hills, J., Lines, J., Baranauskas, E., Mapp, J., Bagnall, A.: Classification of time
series by shapelet transformation. Data Min. Knowl. Disc. 28, 851–881 (2014)

23. Hu, B., Rakthanmanon, T., Hao, Y., Evans, S., Lonardi, S., Keogh, E.: Discovering
the intrinsic cardinality and dimensionality of time series using mdl. In: 2011 IEEE
11th International Conference on Data Mining, pp. 1086–1091. IEEE (2011)

24. Ismail Fawaz, H., Lucas, B., Forestier, G., Pelletier, C., Schmidt, D.F., Weber,
J., Webb, G.I., Idoumghar, L., Muller, P.A., Petitjean, F.: Inceptiontime: Finding
alexnet for time series classification. Data Min. Knowl. Disc. 34(6), 1936–1962
(2020)

25. Iwana, B.K., Uchida, S.: Time series data augmentation for neural networks by time
warping with a discriminative teacher. In: 2020 25th International Conference on
Pattern Recognition (ICPR), pp. 3558–3565. IEEE (2021)

26. Kamycki, K., Kapuscinski, T., Oszust, M.: Data augmentation with suboptimal
warping for time-series classification. Sensors 20(1), 98 (2019)

27. Kang, Y., Hyndman, R.J., Li, F.: Gratis: generating time series with diverse and
controllable characteristics. Stat. Anal. Data Mining ASA Data Sci. J. 13(4), 354–
376 (2020)

28. Keogh, E., Chakrabarti, K., Pazzani, M., Mehrotra, S.: Locally adaptive dimen-
sionality reduction for indexing large time series databases. In: Proceedings of the
2001 ACM SIGMOD international conference on Management of data. pp. 151–162
(2001)

29. Le Guennec, A., Malinowski, S., Tavenard, R.: Data augmentation for time series
classification using convolutional neural networks. In: ECML/PKDD workshop on
advanced analytics and learning on temporal data (2016)

30. Lee, T.E.K., Kuah, Y., Leo, K.H., Sanei, S., Chew, E., Zhao, L.: Surrogate reha-
bilitative time series data for image-based deep learning. In: 2019 27th European
Signal Processing Conference (EUSIPCO), pp. 1–5. IEEE (2019)

31. Li, C., Yang, H., Cheng, L., Huang, F.: A time-series augmentation method based
on empirical mode decomposition and integrated lstm neural network. In: 2022
44th Annual International Conference of the IEEE Engineering in Medicine &
Biology Society (EMBC), pp. 333–336. IEEE (2022)

32. Lin, J., Khade, R., Li, Y.: Rotation-invariant similarity in time series using bag-
of-patterns representation. J. Intell. Inf. Syst. 39, 287–315 (2012)

33. Lines, J., Bagnall, A.: Time series classification with ensembles of elastic distance
measures. Data Min. Knowl. Disc. 29, 565–592 (2015)

34. Lubba, C.H., Sethi, S.S., Knaute, P., Schultz, S.R., Fulcher, B.D., Jones, N.S.:
catch22: canonical time-series characteristics: Selected through highly comparative
time-series analysis. Data Min. Knowl. Disc. 33(6), 1821–1852 (2019)

https://doi.org/10.1007/978-3-031-09037-0_53
https://doi.org/10.1007/978-3-031-09037-0_53


420 X. Li et al.

35. Lucas, B., et al.: Proximity forest: an effective and scalable distance-based classifier
for time series. Data Min. Knowl. Disc. 33(3), 607–635 (2019)
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Abstract. We propose FALCUN, a novel deep batch active learning
method that is label- and time-efficient. Our proposed acquisition uses
a natural, self-adjusting balance of uncertainty and diversity: It slowly
transitions from emphasizing uncertain instances at the decision bound-
ary to emphasizing batch diversity. In contrast, established deep active
learning methods often have a fixed weighting of uncertainty and diver-
sity, limiting their effectiveness over diverse data sets exhibiting different
characteristics. Moreover, to increase diversity, most methods demand
intensive search through a deep neural network’s high-dimensional latent
embedding space. This leads to high acquisition times when experts are
idle while waiting for the next batch for annotation. We overcome this
structural problem by exclusively operating on the low-dimensional prob-
ability space, yielding much faster acquisition times without sacrificing
label efficiency. In extensive experiments, we show FALCUN’s suitability
for diverse use cases, including medical images and tabular data. Com-
pared to state-of-the-art methods like BADGE, CLUE, and AlfaMix,
FALCUN consistently excels in quality and speed: while FALCUN is
among the fastest methods, it has the highest average label efficiency.

Keywords: Deep Active Learning · Supervised Learning · Diversity
and Uncertainty Sampling

1 Introduction

Deep neural networks have proven their worth in various fields and are widely
used for solving complex tasks. Their great success depends largely on the avail-
ability of labeled data. However, while large volumes of unlabeled data are often
easily accessible, the labeling process remains time-consuming and costly, par-
ticularly in domains like medicine and industry, where experts are essential.

Active learning (AL) strategies mitigate annotation efforts by iteratively
selecting and labeling the most informative instances to enhance model per-
formance. However, the batch setting in deep AL, where multiple instances are
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Fig. 1. Each simplex illustrates the probability space of a three-class subset of MNIST.
The highest probabilities are in the corners (implied by darker colors). Small black and
white dots are objects in L and U , respectively. Red dots are instances selected by an
AL method. FALCUN acquires objects very fast and returns a meaningful selection:
gray borders imply worse quality than FALCUN.

sent to the annotator simultaneously to meet the higher data demands of deep
learning and reduce re-training times, poses new challenges [2]. Specifically, the
question of how to select the most informative instances while minimizing redun-
dancy is an ongoing research topic.

To assess diversity and uncertainty, established approaches often treat the
probability and latent spaces separately [14,15], requiring an additional step to
merge the extracted information into a coherent acquisition. However, achiev-
ing a smooth combination of these disparate aspects can be difficult, poten-
tially overemphasizing either uncertainty or diversity. Furthermore, a subsequent
combination may rely on additional parameters [25] that are hard to select in
advance. As a result, such methods might not outperform random sampling
consistently, which is crucial for active learning approaches. Lastly, merging
information from distinct spaces may result in highly complex methodologies,
undermining their practical applicability in active learning contexts.

Moreover, using the latent representations of a deep neural network to mea-
sure diversity [2,15,18,25] can be computationally intensive due to the high
dimensionality of learned features. E.g., the dimensionality of the last hid-
den layer for commonly used architectures (see [2,10,14]) is 512 in ResNet18,
2048 in ResNet50, and 4096 in VGG16. Thus, searching the feature space can be
very time-intensive, leading to acquisition times of up to several days. Starting
the labeling process on multiple days instead of requiring only one session can
drive up costs immensely, e.g., if domain experts or laboratory equipment are
required. Unnecessarily long computation times are also prohibitive from an
ecological point of view.

We address these challenges and propose FALCUN (Fast Active Learning by
Contrastive UNcertainty). As illustrated in Fig. 1, FALCUN queries instances
that yield high-quality results for deep learning while also being faster than com-
parative methods. Our method exclusively operates on the output probabilities
to calculate uncertainty and batch diversity. In a unified and coherent acqui-
sition, FALCUN begins by proposing instances around the decision boundary
and gradually shifts focus to diverse areas as regions of high uncertainty are
increasingly explored.
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The main benefits of FALCUN are:

– Label efficiency and robustness: Across varying datasets, AL settings, and
model architectures, FALCUN is always among the most label-efficient meth-
ods. Among all experiments, FALCUN outperforms random sampling most
often (> 70%) while never performing statistically worse.

– Speed and scalability: Among competitors reaching similar accuracy, FAL-
CUN is the fastest. FALCUN is more scalable than methods operating on the
latent embeddings of a neural network.

– Diversity: Even on high-redundancy data sets, FALCUN finds a diverse set
of instances.

– Explainability and simplicity: FALCUN is easy to understand and imple-
ment and, therefore, attractive for practitioners and researchers. Our code is
available under https://github.com/sobermeier/falcun.

2 Related Work

AL techniques can be grouped into the following categories.
Uncertainty-based methods estimate the informativeness of an instance based

on the model’s predictive ambiguity. Common uncertainty estimates are margin
uncertainty [16], entropy [20] or least confidence [19]. Labeling such instances
should help to effectively refine the decision boundary and enhance generaliza-
tion performance if included in the training [19]. Uncertainty-based sampling is
widely used for its simplicity and effectiveness, especially when querying sin-
gle instances or small batches at once. However, in the batch setting common
for deep AL, where multiple instances are queried simultaneously, simple rank-
based techniques become less label-efficient since they tend to select redundant
instances. E.g., in Fig. 1, Entropy [22] as a non-diversity aware method selects
highly repetitive instances.

Query-by-committee (OBC) refers to using a committee of classifiers and cal-
culating statistical information over the varying outputs [4]. Due to the need for
multiple classifiers, QBC approaches have a computational overhead and are less
attractive for deep neural networks and big datasets. Deep Bayesian AL meth-
ods can be seen as a more elegant way to imitate a QBC. By using stochasticity
in the prediction of a network, diverse outputs can be produced and used to
calculate variations in the differing predictions for the same input. For instance,
BALD [5] uses Monte-Carlo Dropout over multiple inference steps and calculates
mutual information to assess the worthiness of an object. Still, such an approach
requires multiple forward passes, which do not scale well to large unlabeled pools.
Moreover, QBC methods also suffer from problems similar to uncertainty-based
sampling in batch-setting.

Diversity-based techniques [18,21] minimize the information overlap within
a batch. KCenterGreedy [18] iteratively selects the sample with the largest
minimum distance to any labeled instance in the latent space to achieve decent
coverage over the data space. However, only focusing on coverage can lead to
selecting outliers or uninteresting instances that do not improve the performance.

https://github.com/sobermeier/falcun
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Lastly, hybrid approaches [2,10,15] combine paradigms to overcome the chal-
lenges of solely uncertainty or diversity-based methods. Many methods perform a
thorough search in the latent feature space to determine a sufficiently diverse set.
E.g., BADGE [2] performs k-Means++ sampling on so-called gradient embed-
dings where large gradients indicate uncertainty. However, these gradient embed-
dings depend on the number of classes and the hidden dimensionality of the
penultimate layer and thus get very high-dimensional. Other methods perform
weighted k-Means clustering on the latent representations [15,25] where the
weights are an uncertainty estimate and select the most central point from each
cluster for annotation. Due to the repeated clustering, these methods are also
computationally expensive.

AlfaMix [14] also performs k-means clustering on latent representations. In
contrast to other methods, only clusters on a candidate pool determined by
interpolating features in the latent space are considered. Depending on the size
of the candidate pool, this increases the computational efficiency. However, as
shown in Fig. 1, AlfaMix has a strong emphasis on the decision boundary, which
can be problematic for highly repetitive datasets.

CDAL [1] uses a similar approach as KCenterGreedy but works on the out-
put probabilities. It selects instances where the predicted probability is furthest
away from already labeled instances. However, a problem is that some concepts
in the data might be harder to learn than others. If instances get labeled, but
the model needs more information in such a region, CDAL would not choose
instances in the region. Task-specific hard-to-learn concepts might be ignored.

BatchBALD [10] extends BALD to the batch-setting, but has exponential
time-complexity [17], making it unsuitable for our setting. Sampling from the
power distribution of an uncertainty score [3,9] instead of a deterministic top k
selection to increase diversity is a faster alternative. However, finding the optimal
power value is hard. Small values are close to random sampling and too large
values lead to a redundant selection. Thus, these methods are highly dependent
on a good parameter choice.

In contrast, FALCUN uses the powering method to stay close to the original
distribution instead of increasing diversity in general: it uses a dedicated diversity
mechanism to be robust against parameter selection.

In summary, the main direction of deep AL research focuses on hybrid meth-
ods in the practically relevant batch setting, finding a set of informative instances
with small information overlap. However, how to best combine uncertainty and
diversity is an ongoing challenge.

3 Methodology of FALCUN

3.1 Notation

Our task is multi-class classification on an input space X of size N and a set
of labels Y = {1, . . . , C} for C classes. We consider pool-based AL, where a
small initial labeled set L ⊂ X is uniformly drawn from the unlabeled data
distribution. The remaining data objects belong to the unlabeled set U = X \L of
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Fig. 2. FALCUN selects diverse and uncertain instances (colored circles) in the proba-
bility space (see 3-class simplex on the right). In the latent space on the left, they cover
the most informative regions (yellow) while being highly diverse and stemming from
different clusters. Red, white, blue imply ground truth classes. (Color figure online)

size Nu. At each AL round, Q samples are selected for annotation and retraining
of the model. A classification model f(x; θ) → RC with parameters θ maps a
given input x ∈ X to a C-dimensional vector. Correspondingly, f(x; θ−1) → RD

denotes the D-dimensional latent representation w.r.t. the penultimate layer of
the classifier. The softmax function applied on the model output given by f(x; θ)
for an object x returns the output probability vector p(x) ∈ [0, 1]C . We use a
standard cross-entropy loss to optimize the parameters over the labeled pool,
denoted by EL[lce(f(x; θ), y)].

3.2 Overview

Figure 2 gives an overview of FALCUN. Instead of exploiting the latent space
for diversity and the probability space for uncertainty independently, FALCUN
directly uses the probabilities to select diverse and uncertain instances. The
original data inputs (left) are forwarded through the network. The second and
third columns visualize the latent and the probability space in a 2D t-SNE
visualization. The colors indicate uncertainty, with yellow, lighter regions indi-
cating higher uncertainty. On the right, the 3-dimensional simplex S is given by
S = {(p1, p2, p3)|pi ≥ 0, p1 + p2 + p3 = 1}, where p1, p2, p3 denote the poste-
rior probability for classes 1, 2, and 3, respectively. The corners indicate a high
confidence for a certain class, as reflected by a darker color. The center corre-
sponds to a uniform posterior distribution over all classes. Small black and white
dots indicate objects in L and U, respectively. Larger blue, red, and white circles
indicate instances selected by FALCUN: they are prevalently in very informative
regions in the latent space while being highly diverse.

3.3 Acquisition

Uncertainty Component. For uncertainty, we use the margin uncertainty, i.e.,
the difference between the probabilities of its two most probable classes:

u(x) := 1 − (p(x)[c1] − p(x)[c2]) ∈ [0, 1], (1)
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Fig. 3. Uncertainty Considerations (Left): In contrast to least confidence and
entropy, the margin estimate focuses on the class boundaries between all class pairs,
covering a more diverse spectrum. Diversity Considerations (Middle): Maximizing
diversity in the probability space automatically covers diverse and uncertain regions,
whereas using latent features for diversity makes a harmonic combination with uncer-
tainty harder. Final (Right): FALCUN prefers instances at the decision boundary
with a smooth transition to diverse regions.

where 0 ≤ u(x) ≤ 1. Margin is a common choice for uncertainty [3,8,16] and nat-
urally captures class boundaries. As illustrated in Fig. 3, margin (C) emphasizes
diverse regions to be of equal interest and naturally captures more dissimilar
concepts than comparable other uncertainty estimates such as entropy (A) or
least confidence (B) [19]. The reason is that the margin’s extremal function has
no global optimum, but its optima lie on the pairwise class boundaries in the
probability space. Thus, margin uncertainty is powerful [3,8,25] and allows an
intuitive combination with diversity, as we show in the following.

Diversity Component. To estimate diversity, we follow a similar notion as [1],
measuring class-wise, contextual diversity in the probability space rather than
feature-wise diversity in the possibly very high-dimensional embedding space
where we might run into curse-of-dimensionality issues or computational over-
head. More precisely, we measure the distances between two instances x1 and x2

based on their probabilities using the L1 norm || · ||1:

dist(p(x1),p(x2)) := ||p(x1) − p(x2)||1 =
C∑

i=1

|pi(x1) − pi(x2)| (2)

Calculating distance in the probability space accelerates computation without
neglecting generalization performance [6]. Moreover, maximizing diversity in the
probability space as visualized in Fig. 3 - D, automatically covers diverse and
uncertain regions. In contrast, using latent features for diversity makes a har-
monic combination with uncertainty harder, potentially resulting in suboptimal
coverage of the probability space (see Fig. 3 E and G).

However, without careful initialization, which is hard when the query batch
is still empty, maximizing diversity in the probability space also targets uninfor-
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Algorithm 1. Our AL Algorithm FALCUN
Input: Unlabeled data pool U , initially labeled data pool L, number of acquisition
rounds R, query-size Q, model f(x; θ), relevance factor γ

1: Train initial weights θ0 on L by minimizing EL[lce(f(x; θ), y)]
2: for r = 1, 2, . . . , R do
3: Initialize empty query set: Q = {}
4: ∀x ∈ U : Compute class probabilities p(x)
5: ∀x ∈ U : Initialize u(x) and d(x) with Equations (1) and (3)
6: for q = 1, . . . , Q do
7: ∀x ∈ U : Calculate relevance score r(x) with Equation (5)
8: Sample according to Equation (6)
9: Q = Q ∪ xq

10: ∀x ∈ U : Update diversity values d(x) using Equation (4)
11: end for
12: Receive new labels from oracle for instances in Q
13: L = L ∪ Q, U = U \ Q
14: Train new model θr from scratch on L by minimizing EL[lce(f(x; θ), y)]
15: end for
16: return Final parameters θR obtained in round R

mative samples in the class corners. A good starting point is to focus on instances
that provide different context-specific information to already well-distinguishable
concepts. This can be seen as a way of diversity to the confident class corners
in the simplex. The margin estimate gives us a good starting point for such
diversity. Instances that receive the highest scores are (1) farthest away from
the highly confident corners and (2) close to other classes. Without the second
proximity consideration, focusing solely on maximizing distance to corners could
bias towards the central region where all classes are equally probable (Revisit
A, B, and C in Fig. 3). Margin uncertainty is high for instances from concepts
that are diverse from concepts that the model can already classify confidently
and, thus, naturally incorporates a diversity aspect.

Further details on the correlation between margin uncertainty and the dis-
tance to confident classes can be found in the supplementary material. Thus,
we initialize the diversity score with the pre-calculated margin uncertainty and
iteratively update it with each selected sample xq:

d′
init(x) := u(x) (3) d′(x) ← min(d′(x), dist(p(x),p(xq)) (4)

As diversity values can only decrease, the initialization in Eq. (3) ensures
that the closer objects are to the confident corners, the less likely they will be
selected. By updating the diversity score using Eq. (4), instances near objects
in the current query batch receive lower scores and are less likely to be selected.
Finally, we linearly normalize the values to [0, 1] to align them with the uncer-
tainty scores using min-max-normalization.
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Final Relevance Score. For every point x, we calculate a relevance score 0 ≤
r(x) ≤ 2, which changes over the course of each AL round. We combine the
uncertainty and the diversity component by defining r(x) as the sum of the
uncertainty u(x) and the normalized adaptive diversity score d(x):

r(x) := u(x) + d(x). (5)

Note that the values in u(x) are static within one acquisition, but the diver-
sity scores d(x) are updated with every chosen query instance. Thus, the diver-
sity slightly overshadows when the regions with the highest uncertainty are
exhausted. When there is decent coverage in the probability space and diver-
sity scores denote a uniform distribution, the focus is more on uncertainty.
Hence, there is always a natural balance between uncertain and diverse selection
depending on the current query batch. We choose x as the next query sample
xq with probability

xq ∼ r(x)γ

∑
x∈U r(x)γ

, (6)

where γ is a parameter that controls the influence of the relevance scores. γ = 0
corresponds to a uniform selection, and larger values for γ result in a stronger
focus on the calculated relevance scores getting more and more deterministic
(rich values get richer). Thus, γ controls the trade-off between exploration (more
randomness) and exploitation (more focus on larger values in r(x)). See also
Fig. 4, which shows the selection probabilities of points depending on their rel-
evance scores for different values of γ. Note that we do not need γ to ensure
diversity as in [3]. We use it to reduce the risk of an overly biased selection. We
analyze the effect of γ and show the importance of a dedicated diversity scheme
in our ablation study in Fig. 13. By combining uncertainty and diversity with our
initialization, we can exploit the probability space in a harmonic way as shown
in Fig. 3 F. One AL round stops when the batch Q contains B samples and
returns the query batch Q, which will be sent to the oracle for annotation. The
pseudo-code is shown in Algorithm 1.

Fig. 4. Selection probability of an instance x for different γ values as a function of its
relevance score r(x).
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Table 1. Data set properties: number of
points N , number of classes C, and number
of input features F .

Type Data set N C F

Im
a
g
e

(G
ra
y
)

MNIST 60,000 10 28x28

RMNIST 60,000 10 28x28

FashionMNIST 60,000 10 28x28

EMNIST 131,600 47 28x28

Im
a
g
e

(C
o
lo
r)

SVHN 73,257 10 32x32x3

BloodMNIST 11,959 8 28x28x3

DermaMNIST 7,007 7 28x28x3

CIFAR10 60,000 10 28x28x3

T
a
b
u
la
r OpenML-6 16,000 26 17

OpenML-156 800,000 5 11

OpenML-155 829,201 10 11

Fig. 5. Exemplary images of the two
medical datasets.

4 Experiments

We evaluate the effectiveness of established AL methods and FALCUN regard-
ing quality and acquisition runtime in isolation as well as in combination to get
a complete picture. We use a broad range of datasets including grayscale images
(MNIST [12], FashionMNIST [23], and EMNIST), colored images (CIFAR10 [11],
SVHN [13], BloodMNIST, DermaMNIST [24]), and tabular datasets from the
OpenML benchmark1 suite (Ids: 6, 155, 156). BloodMNIST and DermaM-
NIST are challenging medical image datasets showcasing a task where labeling
experts are limited and costly. Figure 5 shows some examples. Within a class,
images can be very similar, s.t. their information is redundant. A good AL strat-
egy should avoid selecting such repetitive instances to optimize label efficiency.
To further assess the capabilities to sample a diverse subset, we include redun-
dant versions of MNIST named RMNIST containing duplicate images (compara-
ble to [10]). We randomly keep 10% unique original images and fill the rest with
duplicated versions with added Gaussian noise. We vary the redundancy ratio in
an extra experiment. Table 1 summarizes the data properties. For grayscale data
we use a LeNet, a learning rate of 0.01 and train for 20 epochs. For colored data
we use pre-trained Resnet18, and ResNet50, a learning rate of 0.001 and stop
when a training accuracy of 99% is reached. We investigate whether the results
are similar without pre-trained weights and when initializing the model with the
weights from the previous round as proposed in [14]. For tabular data we use a
simple multi-layer-perceptron (MLP) with two layers as proposed in [2] (hidden

1 https://www.openml.org/.

https://www.openml.org/
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Fig. 6. Average test accuracy vs labeling budget for all active learning methods eval-
uated on greyscale (a, d), RGB (b, e) and tabular data (c, f).

dimensionality 1024), a learning rate of 0.0001 and use early stopping when a
training accuracy of 99% is reached. We use an Adam optimizer. All experi-
ments are performed five times with different seeds. We compare to state-of-the-
art hybrid methods: BADGE [2], CDAL [1], CLUE [15], and AlfaMix [14].
We include a diversity baseline: KCenterGreedy [18], an uncertainty base-
line: entropy sampling [19], and the passive baseline random sampling. For
FALCUN, we set γ = 10. Further details are given in the publicly available code
base.

4.1 Label Efficiency

Figure 6 shows the learning curves of diverse architectures and query sizes for
evaluated datasets. The x-axis depicts the labeling budget, and the y-axis gives
the average accuracy for varying AL methods. We see that FALCUN is among the
best-performing methods for varying query sizes, data types, and model archi-
tectures. FALCUN also yields the strongest results on the tabular data: in con-
trast to all other competitors, it consistently outperforms random sampling on
the Openml-156 dataset. Note that the ranking of the best-performing meth-
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Table 2. Avg. Accuracy on CIFAR10 with varying architectures and settings. BB =
backbone model, P = Pre-trained weights are used, Ctl = Continual setting where
weights are not reset after each AL round, B=Labeling budget. FALCUN has most
often best (bold) or second best performance (underlined).

BB CtlP B CLUEBADGECDALAlfaMixRandomFALCUN

Resnet50 �6000 71.7 72.1 71.9 71.8 71.3 72.3

�10000 74.5 75.3 75.5 75.6 74.0 76.0

� 6000 52.0 51.9 51.4 51.6 51.1 52.0

� 10000 57.5 58.6 59.3 58.3 57.4 58.5

Resnet18 �6000 70.1 69.9 69.8 69.9 69.4 70.2

�10000 73.6 74.0 73.5 73.6 72.3 73.5

� 6000 54.8 55.6 55.2 55.8 54.7 55.9

� 10000 60.5 60.7 61.0 60.5 59.2 60.9

Table 3. Avg. Accuracy on CIFAR10 with pre-trained Resnet50 using initial pool sizes
(I) and query sizes (QS). We report budgets (B) after the first and last acquisition.
FALCUN performs well with varying AL settings.

I QS B CLUEBADGECDALAlfaMixRandomFALCUN

100010002000 63.4 63.4 63.4 62.9 63.2 63.7

10000 74.5 75.3 75.5 75.6 74.0 76.0

200020004000 68.4 68.4 68.5 69.3 69.5 68.8

10000 74.9 75.3 75.0 75.7 71.7 75.0

5000500010000 74.6 75.0 74.2 75.0 74.0 75.3

20000 78.6 78.8 79.3 79.3 76.9 79.3

5000750012500 75.2 75.9 75.2 76.4 75.1 76.4

22500 78.0 79.6 79.8 79.3 77.9 79.6

ods is not the same over varying settings. E.g., Entropy, an only uncertainty-
based technique, yields good results on BloodMNIST but underperforms on cer-
tain other datasets such as EMNIST, RMNIST or Openml-156. In contrast,
KCenterGreedy, a solely diversity-based approach, only yields fairly good results
on the highly redundant dataset RMNIST but performs poorly on Openml-156.
Not surprisingly, some datasets and settings benefit more from uncertainty, and
others might work better with diversity. Table 2 show results on CIFAR10 when
varying the backbone (BB), using pre-training or not (P) and using continual
training instead of starting from scratch after every AL round (Ctl) for vary-
ing budgets (B). Most often, FALCUN yields best or second best results. Table 3
shows results when varying the initial pool size (I) and query size (QS) for differ-
ent Budgets (B). Again, FALCUN yields best or second best results frequently.
All in all, FALCUN is robust across varying settings.
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Dealing with Redundancy. We especially want to emphasize that though only
operating on the output probabilities, FALCUN’s success is not diminished on
RMNIST. Figure 8 shows how the performance of all AL methods drops for
varying redundancy ratios of the RMNIST dataset. Besides Entropy sampling,
AlfaMix’s quality decreases rapidly for highly redundant datasets. We hypoth-
esize this is due to oversampling the decision boundary, as visualized in Fig. 1.
We provide all learning curves in the supplementary materials.

Fig. 7. Dueling matrix: The last col-
umn gives the percentage of wins of
the respective method. The last row
gives the percentage of losses.

Fig. 8. Final average test accuracy for
varying redundancy ratios.

Dueling Matrix Over All Experiments. Designing a robust method is hard when
the characteristics of a dataset are unknown in advance. Moreover, in AL, it is
hard to compare all learning curves from all experiments, and sometimes, a clear
winner is hard to find. Hence, similar to previous works [2,7,14], we provide a
dueling matrix for a comprehensive analysis of the methods’ overall performance.
The column-wise entries in the matrix in Fig. 7 show the amount of losses, and
the row-wise entries indicate the amount of wins against each other method (in
%). A win means that for a specific experimental setting, i.e., a specific dataset,
acquisition round, query size, and model architecture, comparing the results of
5 runs, a method has statistically better accuracy than the other method (with
p-value=0.05).

A loss is defined analogously. Losses and wins do not necessarily sum up
to 100% as the two methods can perform comparably well with no statistical
difference. When discussing the quality of an AL method, it is hence important
to evaluate the wins and losses. The bottom row and the rightmost column
denote the average losses and wins over all experiments compared to all other AL
methods. FALCUN is consistently strong over a wide range of datasets, as the
dueling matrix in Fig. 7 shows. FALCUN has the most wins (highest numbers in
every column) compared to every other method and the most wins over random
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Fig. 9. Average cumulated acquisition times (y-axis) on a log-scale vs. annotated sam-
ples (x-axis) over varying unlabeled pool sizes N (first row), query sizes Q (second
row), and dimensionality of the penultimate layer D (third row).

sampling. Simultaneously, it has the fewest losses. Only FALCUN is never worse
than random sampling, one of the most important criteria for successful AL
methods.

4.2 Query Time Efficiency

The training for the grayscale image datasets and tabular datasets is arguably
fast (around 1 min for the last AL round). For the colored image data, training
takes around 75 min in the last round. In such situations, the limiting factor for
the overall runtime is the query time. We systematically analyzed the scalability
of all tested methods by varying dataset size, query size, and hidden dimen-
sionality of the multilayer perceptron evaluated for the largest of all datasets
(i.e., Openml-156). We stopped each experiment after ten days (e.g. CLUE).
The results are shown in Fig. 9. FALCUN denotes fast and robust runtimes over
varying settings, being comparably fast as CDAL and particularly robust to vary-
ing hidden dimensinoality. We summarize these extensive experiments by giving
the smallest and largest average query times among the scalability analysis in
Table 4. Moreover we provide runtime complexities for all methods. Note that the
runtime complexity of our acquisition is dependent on the size of the unlabeled
pool, the query size, and the number of classes (O(Q·Nu ·C)) but not on the hid-
den dimensionality D. BADGE, one of the strongest competitors regarding label
efficiency, has a worse runtime complexity with O(Q ·Nu ·C) ∈ O(Q ·Nu ·C ·D).
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Table 4. Time Complexity w.r.t. query size Q, Dimensionality of latent features D,
unlabeled pool size Nu, number of classes C, labeled pool size Nl, number of cluster
rounds i, and a method-specific candidate pool in AlfaMix Ncp with Ncp ≤ Nu., final
min. and max. average cumulated query time among the scalability analysis.

AL Strategy Time Complexity min max

Entropy O(Nu) 1.8 sec 21min

CDAL O(Nl · Nu · C + Q · Nu) 1 min 80min

FALCUN O(Q · Nu · C) 1.5 min 97min

AlfaMix O(Q · Ncp · i · D) 7.3 min 175min

KCenterGreedyO(Nl · Nu · D + Q · Nu)11.8 min25 h

BADGE O(Q · Nu · C · D) 31.5 min208 h

CLUE O(Q · Nu · i · D) 92 min >227 h

That leads to multiple times higher run times compared to FALCUN (208hrs in
the worst case for BADGE vs 97minutes for FALCUN). CDAL, followed closely
by FALCUN, is the fastest among all tested methods. In the fastest setting,
when the unlabeled pool contains 20,000 objects, FALCUN is only half a minute
slower than CDAL. In the most challenging setting with a latent dimension of
4096, FALCUN is only 17% slower.

Fig. 10. Runtimes (black bars, smaller is better) and improvement over random sam-
pling in average test accuracies (colored bars, larger is better) for all acquisition
rounds for tabular data (Openml-155 and Openml-156) and grayscale data (RMNIST,
EMNIST).

Considering quality and runtime together, Fig. 10 shows the improvement
over random sampling in terms of average accuracy per method (colored bars)
and the corresponding query time in minutes in a certain acquisition round
(black thin bars) for all tested methods. Large accuracy bars are better whereas
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smaller time bars are better. FALCUN (red bars) has strong performance on all
datasets and never has worse average accuracy than random sampling (i.e., val-
ues smaller than zero). CLUE and especially BADGE perform on par in some
settings, but their query times are much higher, in some cases up to > 200 hours.
AlfaMix is fast and has good quality on Openml-155 and decent performance on
EMNIST. However, AlfaMix is prone to duplicates: it performs even worse
than random sampling on RMNIST in many acquisition rounds. CDAL is quite
fast but performs worse than random sampling more often, especially for small
budgets on EMNIST and Openml-156. Entropy is fast, but not label-efficient.
KCenterGreedy is fast for smaller datasets (e.g., RMNIST and EMNIST) but
does not scale well to larger datasets (see Openml-156) and is only comparably
label-efficient for the redundant dataset RMNIST because it has the strongest
emphasis on maximizing diversity. FALCUN has a robust performance across all
datasets and low query times (never above 10 min).

Fig. 11. Exemplary course of rele-
vance scores r(x) and their dependency
of selected queries (red) on 3-class
MNIST, t-SNE visualization. (Color
figure online)

Fig. 12. Hue in the t-SNE visual-
izations indicates the predictive accu-
racy of the model on the respec-
tive class. Initially sampled objects
are blue, samples chosen by FAL-
CUN in the first acquisition round are
red. FALCUN selects diverse instances
favoring classes that are harder to
distinguish by the current model:
“darker” classes contain more red dots.
(Color figure online)

4.3 Qualitative Evaluation

Figure 11 illustrates the selection of instances and the course of FALCUN’s rel-
evance scores r(x) over one acquisition round on a 3-class MNIST task (also
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used for the visualization in Fig. 2) for better interpretability. Yellow regions
indicate a high relevance score promoting regions of high interest. Initially, all
instances with high uncertainty, primarily located at the decision boundary,
receive higher scores (see Fig. 11a). The score in the surrounding of the selected
instance (red circle) gets darker as the objects located close to it receive a smaller
diversity score (see Fig. 11b). In the first iterations, uncertain, but still diverse
instances are preferred. In Fig. 11d we derive a diverse set located in all three
clusters mainly consisting of objects from uncertain areas.

In Fig. 12, we analyze FALCUN’s selection on Openml-156 (Fig. 12a) and
BloodMNIST (Fig. 12b). It effectively finds instances majorly located in regions
where the classifier has more confusion (darker areas) while still enhancing diver-
sity and not oversampling certain regions. E.g., on the right, most instances
are chosen from the two most uncertain classes (∼ 55% accuracy). In contrast,
only two objects are selected from the most confident class where the model
already achieves ∼ 99% accuracy.

Fig. 13. Ablation Study on RMNIST (top row) and BloodMNIST (bottom row).

4.4 Ablation

Effect of γ. In Figs. 13a and 13d, we vary γ, where smaller values lean towards
uniform selection and larger values lean towards deterministic selection, includ-
ing a completely deterministic selection (det.). While a random selection (γ = 0,
blue line) is always worst, we see that the exact choice of γ does not largely
affect the performance. Having a value between 5 and 20 yields very robust
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and consistent results. A deterministic selection seems similarly strong despite
a few fluctuations. However, we argue that we should stick to our probabilistic
selection so as not to end up in a failure mode due to highly biased selection.

Effect of Scores. Figures 13b and 13e show the results when switching off
either the uncertainty or the diversity component to calculate the final relevance
score. For RMNIST, considering uncertainty without diversity yields the worst
results. Hence, powering similar to [3] without a dedicated diversity function is
less effective for highly redundant datasets. BloodMNIST benefit more from
uncertainty than from diversity. In general, our experiments show that some-
times uncertainty and sometimes diversity are more important. However, know-
ing which type is needed in a real-world scenario is notoriously hard when there
is almost no information. In contrast, our combined score is always among the
best, and due to the robustness across datasets, it is a highly attractive choice.

Effect of Diversity Features. Lastly, we investigate the performance when calcu-
lating diversity on the latent embeddings instead of the final output probabili-
ties. As a simple baseline we also perform PCA on the latent features and use
the result as input for the diversity component (see Figs. 13c and 13f). Inter-
estingly, using latent features is worst in many situations. We assume this is
due to curse-of-dimensionality issues. Furthermore, using the probability vector
is almost always the best method. We hypothesize that using the probability
space for uncertainty and diversity leads to a more harmonized selection. Our
diversity in the probability space also indirectly covers uncertain regions, and
the margin uncertainty function indirectly covers diverse concepts. Combining
two isolated scores can be tricky since it could unintentionally set a too strong
focus on one or the other component.

5 Conclusion

We introduced FALCUN, a novel deep AL method that employs a natural tran-
sition from emphasizing uncertain instances at the decision boundary towards
enhancing more batch diversity. This natural balance ensures robust label effi-
ciency on varying datasets, query sizes, and architectures, even on highly redun-
dant datasets. As FALCUN only operates on the output probability vectors, it
achieves faster acquisition times than many established methods performing a
search through the high-dimensional embedding space of a neural network.
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Abstract. Semi-supervised domain adaptation methods leverage infor-
mation from a source labelled domain with the goal of generalizing over
a scarcely labelled target domain. While this setting already poses chal-
lenges due to potential distribution shifts between domains, an even more
complex scenario arises when source and target data differs in modality
representation (e.g. they are acquired by sensors with different charac-
teristics). For instance, in remote sensing, images may be collected via
various acquisition modes (e.g. optical or radar), different spectral char-
acteristics (e.g. RGB or multi-spectral) and spatial resolutions. Such a
setting is denoted as Semi-Supervised Heterogeneous Domain Adapta-
tion (SSHDA) and it exhibits an even more severe distribution shift due
to modality heterogeneity across domains.

To cope with the challenging SSHDA setting, here we introduce
SHeDD (Semi-supervised Heterogeneous Domain Adaptation via Disen-
tanglement) an end-to-end neural framework tailored to learning a target
domain classifier by leveraging both labelled and unlabelled data from
heterogeneous data sources. SHeDD is designed to effectively disentangle
domain-invariant representations, relevant for the downstream task, from
domain-specific information, that can hinder the cross-modality transfer.
Additionally, SHeDD adopts an augmentation-based consistency regu-
larization mechanism that takes advantages of reliable pseudo-labels on
the unlabelled target samples to further boost its generalization abil-
ity on the target domain. Empirical evaluations on two remote sens-
ing benchmarks, encompassing heterogeneous data in terms of acqui-
sition modes and spectral/spatial resolutions, demonstrate the quality
of SHeDD compared to both baseline and state-of-the-art competing
approaches. Our code is publicly available here.
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1 Introduction

When it comes to real-world applications of machine learning, disposing of a
vast amount of labelled samples remains a major issue in many domains, espe-
cially those featured by costly and time-consuming labelling processes. Con-
sequently, make value of already available data, covering similar downstream
tasks, is of paramount importance to enhance the classification performances on
target domains where labelled data are scarce. Nonetheless, this process is not
straightforward due to potential differences or shifts in their underlying data
distributions between a rich source labelled domain and the target one [26]. To
cope with data distribution shifts between source and target domains, Domain
Adaptation (DA) techniques have been proposed [21]. The main objective of
this family of machine learning methods is to learn a classification model across
different domains, generally sharing the same set of classes, with the aim to
transfer information from a source to a target one.

Many research efforts have focused on addressing situations wherein the tar-
get domain lacks completely of associated labels, while only the source domain
disposes of labelled information [21]. This scenario is commonly referred as
Unsupervised Domain Adaptation (UDA). However, a more practical assump-
tion for real-world applications is to have access to a small amount of labelled
information from the target domain, enabling the simultaneous exploitation of
abundant labelled samples from the source domain and limited labelled samples
from the target domain. Such a setting is generally termed as Semi-Supervised
Domain Adaptation [15], and existing literature has highlighted that directly
using UDA approaches fails to exploit the label information associated with the
target domain, thus requiring tailored solutions for this setting [16].

Nevertheless, most of the aforementioned research strategies rely on the
strong assumption that data coming from source and target domains share a sim-
ilar (homogeneous) data modality representation. However, in real-world appli-
cations data can be collected by means of heterogeneous sensors, as it is the
case for remote sensing imagery exhibiting differences in acquisition modes (e.g.
optical and radar), spectral characteristics (RGB, multi-/hyper-spectral), and
spatial resolution. Consequently, it is increasingly common to encounter label-
abundant source domains and label-scarce target domains that are heterogeneous
in terms of data modality representation, further exacerbating potential data
distribution shifts between domains. To address this challenging scenario, Semi-
Supervised Heterogeneous Domain Adaptation (SSHDA) methods are gaining
increasing attention within the research community [2]. However, the majority
of the proposed approaches rely on pre-trained deep learning models that are
only available for standard modalities (e.g. RGB imagery, text data), limiting
their applicability in scenarios involving non-standard sensor data, such as those
used in the medical [3] and remote sensing [13] fields.

With the aim to address the challenging SSHDA setting, in this research
work we introduce a new end-to-end deep learning framework especially tailored
to learn a target domain classifier by leveraging both labelled and unlabelled
data from heterogeneous data sources. Our framework, SHeDD (Semi-supervised
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Heterogeneous Domain Adaptation via Disentanglement), tackles data modality
heterogeneity by extracting, via a feature disentanglement approach, domain-
invariant representations, relevant for the downstream task, and domain-specific
information, that can prevent cross-modality transfer. To this end, invariant and
domain specific features are enforced to be orthogonal to each other with the lat-
ter carrying domain-discriminant information. Furthermore, SHeDD harnesses
unlabelled target data to enhance its generalization ability, aiming to trans-
fer discriminative information from the labelled source domain to the scarcely-
labelled target domain. This last point is achieved via consistency learning where
confident pseudo-labels are derived on the target domain by the classification
model and subsequently exploited in the training process. Empirical evaluations
on two remote sensing benchmarks, encompassing heterogeneous data domains
in terms of acquisition modes and spectral/spatial characteristics/resolutions,
clearly demonstrate the quality of SHeDD compared to both baseline and state-
of-the-art competing methods.

This paper is organized as follows: related works are discussed in Sect. 2; the
proposed method is described Sect. 3; experimental results are presented and
discussed in Sect. 4, followed by concluding remarks in Sect. 5.

2 Related Works

Domain adaption [21] (DA) methods belong to the family of transfer learning
approaches [26] which have the main objective to transfer a model trained on a
labelled source domain to a target domain. When the target domain is completely
unlabelled, Unsupervised Domain Adaptation (UDA) strategies are designed in
order to align domains through data transformation and/or extract domain-
invariant features to reduce the distribution gap between the labelled source
and the unlabelled target domain [10].

When, for the target domain, a limited amount of labelled samples are avail-
able, Semi Supervised Domain Adaptation (SSDA) strategies have been pro-
posed to combine both labelled (source and target) with unlabelled (target) infor-
mation [5,8,9,14,16,22–24]. In [16], a framework based on Minimax Entropy is
introduced to exploit the available target supervision. The same research work
clearly illustrates that directly use UDA methods performs poorly when small
amount of labeled samples are accessible from the target domain, thus empha-
sizing the need to design specialized approaches for the SSDA setting. In [14],
an adversarial learning paradigm is leveraged in order to obtain two contra-
dictory classifiers (source and target), enforcing well-scattered source features
and compact target features respectively. A slightly different approach is pro-
posed in [8], where a cross-domain adaptive clustering algorithm is presented to
achieve cluster-wise feature alignment across domains, still employing an adver-
sarial learning strategy. In [5], additional adversarial examples are introduced
to fill the gap between domains and model robustness. The work in [23] decom-
poses SSDA into an SSL problem within the target domain coupled with an
inter-domain UDA problem, then optimizes both tasks simultaneously using co-
training. Moving away from the adversarial paradigm, [17] proposes a contrastive
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learning framework operating both at a class level to reduce inter-domain gap
and at the instance level with strong augmentations to minimize intra-domain
discrepancy. Mitigating discrepancy within the target domain is also the main
goal in [6], which proposes a feature alignment approach for achieving it.

Despite the effectiveness demonstrated by these methods, they are especially
designed for managing homogeneous domains since they capitalize on the fact
that source and the target domains share a similar modality representation (e.g.,
both involving RGB images). Therefore, the direct extension of these approaches
to handle a heterogeneous setting, where source and target data differ in modality
representation, is challenging.

In recent years, research efforts have been devoted towards addressing DA in
an heterogeneous setting [1]. These efforts primarily focus on aligning the source
and target domains through heterogeneous feature transformations. For instance,
[25] learns feature transformations to map source and target data into a com-
mon latent space, where both marginal and class-conditional distributions are
matched. In addition, self-training via pseudo labelling is used to update the tar-
get label set. Another approach proposed in [2] introduces a joint mean embed-
ding alignment method where a neural network based approach aligns source and
target data distribution via domain discrepancy minimization. However, these
methods rely on features derived either through hand-crafted processes or from
modality/domain specific pre-trained models (e.g. RGB pre-trained model) thus
lacking end-to-end behaviour. Such reliance can prevent their applicability in
scenarios involving data beyond the standard RGB (three channels) format.
Recently, [12] has introduced an end-to-end SSHDA method, addressing the
aforementioned limitations. This method adopts per-domain encoders sequen-
tially connected to a shared backbone, with a classification head used for the
final decision. During training, the neural network is optimized for simultane-
ously classifying and align the embedding representations coming from the dif-
ferent heterogeneous domains with standard cross entropy and domain critic
discrimination based on wasserstein distance, respectively.

In this work we propose a different framework for SSHDA based on fea-
ture disentanglement, intended as the capacity of a network to identify domain-
invariant representations, relevant for the downstream task, by explicitly seeking
in parallel to isolate domain-specific information which may hinder the cross-
modality transfer.

3 Proposed Method

The proposed architecture, summarized in Fig. 1, is given by two independent
encoder branches with specialized backbones (one dedicated to the source data
modality and another to the target data), followed by two parallel classifiers (a
task classifier and a domain classifier).

A given input data x is firstly encoded by its matching backbone and the
obtained embedding vector z = g(x) ∈ R

2D is then split into two equal parts:
zspe ∈ R

D and zinv ∈ R
D. While the former vector is fed into the domain
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Fig. 1. Schematic view of the proposed method architecture with a separate encoder
for each of the data modalities (source and target). Feature disentanglement enables
domain-specific and domain-invariant information to be encoded separately into
each half of the generated embedding vectors (depicted in orange and green respec-
tively). The domain-invariant information (zinv) is used by the task classifier, while the
domain classifier receives the domain-specific portion of the embedding vector (zspe). At
inference time, only the bottom part of the architecture is used, the top part being
instrumental in the training stage to enable the feature disentanglement procedure.
(Color figure online)

classifier fd, a binary classifier that tries to predict from which branch (source
or target) the sample originates, the latter one is sent to the task classifier fcl

that outputs class probabilities ŷ = fcl(zinv) ∈ R
C for the C existing classes.

At training time, guided by the losses described in Sect. 3.2, the weights of
these four modules —source and target encoders, task and domain classifiers—
are optimized on the available supporting data composed of the following sets:

S := {(xs, ys)(i)}Ns
i=1 labelled source data.

T := {(xt, yt)(i)}Nt
i=1 labelled target data.

U := {x(i)
u }Nu

i=1 unlabelled target data.

From each unlabeled target sample xu, we generate a corresponding augmented
counterpart (see details in Sect. 3.2) denoted xû that form the set below:

Û := {x(i)
û }Nu

i=1 augmented unlabelled target data.

where we denote Ns, Nt and Nu the corresponding dataset sizes.
At inference time, only the target encoder is retained. Similarly, only the

task classifier is required. The two dropped modules, however, are crucial as
supporting elements during training in order to fully guide the network’s abil-
ity to effectively disentangle domain-invariant from domain-specific information.
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This ability, acquired during training and carried over to inference time in the
two retained modules, helps enhancing the generalization capabilities of the final
network.

3.1 Training Losses

In case of a labeled training sample, from either source or target domain, the
output of the task classifier fcl(zinv) is compared to its ground-truth annotation
y in the following cross-entropy classification loss:

Lcl = CE
(
fcl(zinv), y

)
. (1)

Because the provenance domain ydom ∈ {s, t} of any given data sample is
always known (even for unlabeled target samples), the domain classifier predic-
tion fd(zspe) can be systematically taken into account in the following cross-
entropy loss:

Ldom = CE (fd(zspe), ydom) . (2)

To further enforce disentanglement between domain-invariant and domain-
specific information, we enforce orthogonality between the two embedding types
for any given input sample (source and target, labelled and unlabelled):

L⊥ =
〈zinv, zspe〉

‖zinv‖2‖zspe‖2 . (3)

To fully exploit the available target unlabelled data (set U), for each sample
xu ∈ U we first generate an associated augmented sample xû = Augment(xu)
(see details in Sect. 3.2) and then employ an unsupervised loss à la FixMatch
[18] that enforces consistency between predictions obtained from the unlabeled
sample xu and its augmentation xû via pseudo-labelling procedure:

Lpl = mτ
u CE(f(zinv

û ), yû) (4)

where pseudo-labels yû := argmax(fcl(zinv
u )), given by the classifier predictions

on the unlabelled target data xu ∈ U , are used as ground-truth for the corre-
sponding augmentation xû. Only a subset of the pseudo-labels (those with higher
confidence) are retained. This is expressed through the multiplying binary factor

mτ
u := 1(max(fcl(zinv

u )) > τ) (5)

where τ ∈ [0, 1] is a scalar hyper-parameter denoting the confidence threshold
and 1(condition) denotes the indicator function, which is equal to 1 if condition
holds and 0 otherwise.

3.2 Training Procedure

The proposed training scheme is summarized in Fig. 2, where we show the
different input data paths through the network during training as well as the
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Fig. 2. Schematic view of the data flow during the training phase. The four proposed
loss terms (framed in grey) are illustrated with their corresponding inputs. (Color figure
online)

inputs used by each of the four proposed losses. A more detailed and formalized
description of the training procedure is given in Algorithm 1.

For each epoch, we go through the source dataset sequentially (as it is usually
the dataset with the highest number of samples Ns > Nu > Nt). This is done
by batches in practice, even if in Algorithm 1 we illustrate the sample-wise case
(unitary batch) for simplicity1. At each iteration, we sample uniformly at ran-
dom the same number of samples (batch size) from the set labeled and unlabeled
target data —lines 4 and 5. Each sample is then passed through their matching
encoder at lines 6–9 (note that the target encoder gt is used not only for the
labeled target samples xt with matching subscript, but also for the unlabeled
samples xu and xû). Finally, in lines 10–16, each of the loss terms defined in
the previous section are computed with respect to the all relevant input data
and, subsequently (line 17), backpropagated through the entire architecture to
update its composing modules (gs, gt, fcl, fd) weights.

For convenience, we introduce superscripts on a loss term, say LV , to specify
its application on input data coming from a certain dataset V ∈ {S, T, U, Û}
(or several datasets in case of multiple superscripts). For instance, we denote

1 The generic minibatch version of Algorithm 1 is obtained simply by additionally
averaging each of the loss terms over the batch dimension.
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Algorithm 1. SHeDD Train procedure
Require: Datasets S, T , U ; Pseudo-labeling threshold τ .
1: for epoch ∈ {1, . . . , Nep} do
2: for all (xs, ys) ∈ S do
3: (xt, yt) ∼ U(T )
4: xu ∼ U(U)
5: xû = Augment(xu)
6: zinv

s , zspe
s = gs(xs)

7: zinv
t , zspe

t = gt(xt)
8: zinv

u , zspe
u = gt(xu)

9: zinv
û , zspe

û = gt(xû)
10: LS,T

cl = 1
2

∑
v∈{s,t} CE(fcl(zinv

v ), yv)

11: LS,T
dom = 1

2

∑
v∈{s,t} CE(fd(zspe

v ), v)

12: LU,Û
dom = 1

2

∑
v∈{u,û} CE(fd(zspe

v ), t)

13: LS,T
⊥ = 1

2

∑
v∈{s,t}

〈zinv
v ,zspe

v 〉
||zinv

v ||2||zspe
v ||2

14: LU,Û
⊥ = 1

2

∑
v∈{u,û}

〈zinv
v ,zspe

v 〉
||zinv

v ||2||zspe
v ||2

15: yû,mτ
u = PseudoLabel(fcl(zinv

u ), τ ) // cf. equations (4) and (5)
16: LÛ

pl = mτ
u · CE(fcl(zinv

û ), yû)
17: Update weights of (gs, gt, fcl, fd) by back-propagating the loss:

LS,T
cl + LS,T

dom + LU,Û
dom + LS,T

⊥ + LU,Û
⊥ + LÛ

pl

18: end for
19: end for
20: return gT , fcl

by LS,T
cl the classification loss defined in Eq. (1) applied on (and averaged over)

samples from labeled source and target datasets. This notation has the merit of
making more explicit to which dataset each loss applies and will prove particu-
larly useful for our ablation analysis in Table 6.

Hence, while the classification loss Lcl naturally applies only to labelled data
(S, T ), the domain classification Ldom and orthogonality L⊥ losses can be eval-
uated for both labeled (S, T ) and unlabelled data (U , Û). Finally, the Fix-
Match loss Lpl applies to the augmented unsupervised data (Û) while leveraging
pseudo-labels obtained for the corresponding non-augmented samples (in U).
These multiple data paths involved in the proposed training scheme are summa-
rized in Fig. 2. In the figure, we replicate the encoder and classification modules
to properly outline each separate data flow, but we emphasize that these modules
are characterized by an unique set of shared weights.

Data Augmentation: The employed augmentation operation Augment(·) (line
5 in Algorithm 1) consists of a series of possible transformations with 50% of
occurrence probability each, among the following: horizontal flip; vertical flip;
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rotation with random angle on the set {0◦, 90◦, 180◦, 270◦}; color jitter (random
changes in the image brightness, contrast, saturation and hue)2.

4 Experiments

In order to assess the performance of SHeDD , we consider two different bench-
marks covering heterogeneous data coming from the remote sensing field.

Table 1. Benchmark statistics and description. Each benchmark covers two heteroge-
neous domains. EuroSat-MS-SAR involves MS and SAR images, both with a spatial
resolution of 10 m, for a classification task with 10 classes. RESISC45-Euro includes
RGB and MS images, with varying spatial resolutions, for a classification task with 8
classes. The Volume column reports per-domain statistics in the format (# images)
× (# channels) × (image height) × (image width).

Benchmark Volume Modality Spatial Res. # Classes

RESISC45-Euro 5 600×3×256×256 RGB 0.2 m–30 m 8

24 000×13×64×64 MS 10 m

EuroSat-MS-SAR 27 000×13×64×64 MS 10 m 10

27 000×2×64×64 SAR 10 m

As our first dataset, we adopt the RESISC45-Euro benchmark previously
introduced in [12]. This dataset contains 5 600 RGB images at different spa-
tial resolutions and 24 000 multispectral (MS) images, with 13 channels, span-
ning eight different land cover classes. Here, the heterogeneity is related to
domains covering imagery with different spatial and spectral resolutions. As
our second dataset, we use the EuroSat-MS-SAR benchmark [20]. This dataset
contains 54 000 pairs of MS and synthetic aperture radar (SAR) images, with
13 and 2 channels respectively. With the aim to avoid possible data biases and
spurious correlations, for each sample of the dataset we only retain one of the
two modalities. This leads to a benchmark including 27 000 MS and 27 000 SAR
unaligned images over the set of ten land cover classes. Here, the heterogeneity
corresponds to imagery collected via different acquisition modes (optical and
radar). Details about benchmarks are reported in Table 1. For each benchmark
we set up two transfer tasks where each transfer task is denoted as (Ds → Dt)
where the right arrow indicates the transfer direction from the fully labelled
source domain (Ds) to the scarce labelled target domain (Dt).

Considering the competing approaches, we include in our experimental eval-
uation a fully supervised baseline that only exploits available target labelled
data, referred as Target Only. As a state-of-the-art semi-supervised framework
that exploits both labelled and unlabelled target samples in order to leverage
2 For this transformation, we used the PyTorch implementation
torchvision.transforms.ColorJitter() with default parameters.
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the full amount of available target data, here we adopt the well-known FixMatch
framework [18]. Finally, according to SSHDA literature, we include the SS-HIDA
approach recently introduced in [12].

For all the competing approaches, as well as our proposed SHeDD , to set up
a fair comparison, we adopt the same backbone architecture, ResNet-18 [4]. In
the particular case of our proposed SHeDD , the final fully-connected layer (with
softmax activation) of ResNet-18 is employed as our task classifier module and
the same structure is used for the domain classifier. For FixMatch and SHeDD
we fix the pseudo-labeling threshold τ to 0.95 and we use as weak augmentation
the identity function and as strong augmentation a random combination of geo-
metrical (flipping and rotation) and radiometric (color jitter) transformations.
For the SS-HIDA, according to the original work, we used half of the backbone
network as specific per-domain encoder and the rest of the backbone as shared
encoder. For all the competing approaches we adopt a number of training epochs
equal to 300, a batch size of 128, AdamW [11] as parameter optimizer with a
learning rate of 10−4 Additionally, based on recent literature [7], for all the meth-
ods we adopted an exponential moving average (EMA) of the weight parameters,
with momentum equals to 0.95, since we experimentally observed that all the
approaches took advantage from it.

For the experimental assessment, we set up two different transfer tasks for
each benchmark, considering each of the available domains firstly as source and
then as target. While for the source domain all the available data are labelled,
for the target domain we varied the amount of available supervision, ranging
in the set {25, 50, 100, 200} samples per class. This means that, for instance,
if the supervision value is equal to 25, then 25 labelled samples are accessible
per class for the target domain. The rest of the target samples constitute the
test set, which is also assumed to be available at training time as additional
unlabelled target data. The assessment of the models performance, on the test
set, is done considering the weighted F1-Score, subsequently referred simply as
F1-Score. We repeat each experiment five times and report average and standard
deviation results.

All the methods are implemented in Pytorch and available here. Experiments
are carried out on a workstation equipped with an Intel(R) Xeon(R) Gold 6226R
CPU @ 2.90GHz, with 377Gb of RAM and four RTX3090 GPU. All the methods
require only one GPU for training.

4.1 Results

Tables 2, 3, 4 and 5 report the results of all the competing methods, in
terms of F1-Score, varying the amount of labelled target sample in the set
{25, 50, 100, 200} for the RESISC45-Euro and EuroSat-MS-SAR benchmarks,
respectively.

Concerning the RESISC45-Euro benchmark, we evaluate two transfer tasks:
(RGB → MS) and (MS → RGB). Here, the two domains differ in terms of
radiometric content (imagery with 3 or 13 channels) and spatial resolution as
outlined in Table 1. For the first transfer task (RGB → MS) the results are

https://github.com/tanodino/SSHDA/tree/main
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presented in Table 2. Notably, SHeDD systematically outperforms all the com-
peting approaches. Although SS-HIDA also exhibits improvements over baseline
approaches, it achieves lower performances compared to our method.

In the second transfer task (MS → RGB), as illustrated in Table 3, our
method continues to outperform competing approaches in the majority of cases,
exception made for the case with 200 labelled target samples per class where
our proposed approach, nonetheless, still achieves comparable performance to
SS-HIDA. Generally, the use of the source data clearly enables our framework
to achieve a gain of over 2 points in terms of F1-Score, regardless of the amount
of target labelled samples, compared to strategies relying solely on target infor-
mation (Target Only and FixMatch).

Table 2. Average and standard deviation F1-Score results, over 5 runs, on RESISC45-
Euro with RGB as source and MS as target domain (RGB → MS) varying the amount
of per-class target supervision in the range {25, 50, 100, 200}.

Method 25 50 100 200

Target Only 79.48 ± 1.34 85.05 ± 1.01 88.99 ± 0.77 92.34 ± 0.52

FixMatch 81.74 ± 1.38 85.60 ± 0.37 89.37 ± 0.55 92.57 ± 0.79

SS-HIDA 82.29 ± 0.68 88.81 ± 0.95 91.64 ± 1.67 93.59 ± 1.39

SHeDD 84.06 ± 0.73 89.12 ± 0.84 92.84 ± 0.18 95.29 ± 0.38

Table 3. Average and standard deviation F1-Score results, over 5 runs, on RESISC45-
Euro with MS as source and RGB as target domain (MS → RGB) varying the amount
of per-class target supervision in the range {25, 50, 100, 200}.

Method 25 50 100 200

Target Only 75.19 ± 1.67 82.52 ± 0.91 87.45 ± 0.82 91.74 ± 0.65

FixMatch 77.17 ± 1.29 82.80 ± 0.81 87.86 ± 0.56 91.93 ± 0.53

SS-HIDA 79.78 ± 1.06 85.00 ± 1.07 89.56 ± 2.34 93.83 ± 0.18

SHeDD 81.72 ± 1.93 86.65 ± 0.82 91.00 ± 0.55 93.79 ± 0.32

Regarding the EuroSat-MS-SAR benchmark, we consider the transfer tasks:
(MS → SAR) and (SAR → MS). Here, the two domains differ in terms of acqui-
sition modes (Optical vs. Radar), thus providing a more challenging transfer
scenario in term of source/target domain heterogeneity. The results for the first
transfer task (MS → SAR) are reported in Table 4 while the results for the second
transfer task (SAR → MS) are outlined in Table 5. Irrespective of the amount
of labeled samples in the target domain, SHeDD consistently outperforms all
the competing approaches by a notable margin. Differences are generally more
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Table 4. Average and standard deviation F1-Score results, over 5 runs, on EuroSat-
MS-SAR with MS as source and SAR as target domain (MS → SAR) varying the
amount of per-class target supervision in the range {25, 50, 100, 200}.

Method 25 50 100 200

Target Only 60.08 ± 1.25 62.52 ± 0.38 64.93 ± 0.31 67.80 ± 0.65

FixMatch 59.07 ± 1.29 64.45 ± 0.35 67.26 ± 0.95 70.38 ± 0.59

SS-HIDA 60.24 ± 1.65 62.96 ± 0.86 66.63 ± 1.00 70.40 ± 0.87

SHeDD 63.66 ± 1.53 67.91 ± 1.83 70.64 ± 1.50 73.97 ± 0.67

Table 5. Average and standard deviation F1-Score results, over 5 runs, on EuroSat-
MS-SAR with SAR as source and MS as target domain (SAR → MS) varying the
amount of per-class target supervision in the range {25, 50, 100, 200}.

Method 25 50 100 200

Target Only 75.85 ± 0.28 82.94 ± 0.45 87.08 ± 0.83 90.92 ± 0.23

FixMatch 76.87 ± 1.32 83.25 ± 0.65 87.67 ± 0.57 91.74 ± 0.39

SS-HIDA 76.49 ± 0.81 80.52 ± 1.49 85.33 ± 0.73 89.38 ± 0.52

82.30 ± 1.12 88.16 ± 0.85 91.67 ± 0.23 94.52 ± 0.14

pronounced for low amount of target labelled samples. For instance, when only
25 target labeled samples per-class are considered for the transfer task (SAR
→ MS), SHeDD demonstrates nearly a 6-point increase in F1-Score over the
second-best competitor.

It is worth noting that, differently from the case of RESISC45-Euro bench-
mark, here SS-HIDA only performs on-pair with the baseline methods (Tar-
get Only and FixMatch). This point can be partly related to the architectural
structure of SS-HIDA. While SHeDD employs distinct per-domain encoders,
SS-HIDA shared a portion of its encoder between the two domains.

If on the one hand this architectural choice can prove advantageous in sce-
narios where domains exhibit a limited degree of heterogeneity (e.g. transferring
between RGB and MS data, where one modality can be considered as a subset or
superset of the other), on the other hand it may hinder transfer performance in
more challenging scenarios characterized by a high degree of heterogeneity, as for
the EuroSat-MS-SAR benchmark. Consequently, it may fail to establish an effec-
tive strategy for general heterogeneous domain adaptation. This result further
supports the flexibility of our method in modeling a wide range of heterogeneous
data transfer scenarios owing to its inherent structural design.

Ablation Analysis: Table 6 reports the ablation analysis of SHeDD on the
EuroSat-MS-SAR benchmark where MS images serve as source domain and SAR
images as target domain. Here we consider the case in which 50 labelled sam-
ples per class are available from the target domain. Six different ablations were
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devised from the complete model to comprehensively assess the various com-
ponents upon which SHeDD relies. Firstly, we observe a clear positive impact
of enforcing disentanglement between domain-invariant and domain-specific fea-
tures (LS,T

⊥ and LS,T
dom) over the scenario where only the supervised classification

loss is optimized (Abla1 vs Abla2). Secondly, we can underline that the use of
unlabelled target data, through the LU,Û

⊥ , LU,Û
dom and LÛ

pl losses, systematically
enhances the performances compared to using the labelled information alone
(Abla1, Abla2 vs Abla3, Abla4, Abla5 and Abla6). Thirdly, the highest perfor-
mances are generally attained when consistency regularization, through pseudo-
labelling, is considered (Abla4, Abla5 and Abla6). Fourthly, when either LU,Û

⊥
and LU,Û

dom or LÛ
pl are employed separately (Abla3 and Abla4), performances are

still far from the ones achieved by the whole framework. This indicates that the
combined use of these three losses, to leverage unlabelled target data, synergisti-
cally enhances the final outcome. Finally, the performed ablations indicate that
SHeDD clearly benefits from all the components it is built on, thus exhibiting
the best performance overall in terms of F1-Score.

Table 6. Ablation study of SHeDD on the EuroSat-MS-SAR benchmark with MS as
source and SAR as target domain when 50 samples per class are considered as labelled
target data. F1-Score results, in terms of mean and standard deviation over 5 runs, are
reported.

AblationLS,T
clf LS,T

⊥ LS,T
dom LU,Û

⊥ LU,Û
dom LÛ

pl F1-score

Abla1 � 63.84 ± 0.34

Abla2 � � � 64.58 ± 0.85

Abla3 � � � � � 65.04 ± 0.74

Abla4 � � � � 66.00 ± 0.87

Abla5 � � � � 66.54 ± 0.77

Abla6 � � � � 67.47 ± 1.63

SHeDD � � � � � � 67.91 ± 1.83

Visual Inspection of Learnt Representations: Figure 3 visually depicts
the internal representation learnt by the different competing methods on the
RESISC45-Euro benchmark for the transfer task (RGB → MS) when only 25
labelled samples per class for the target domain are considered. To this end, we
randomly chose 50 samples per class on the target domain and we extracted the
corresponding feature representation per method, that is, the embedding vec-
tor used as input to the classifier module —in the case our proposed app-
roach, notably, the domain-invariant embeddings zinv are used. Subsequently,
we applied t-SNE [19] to reduce the feature dimensionality for visualisation pur-
poses.
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Fig. 3. Visualization of the embeddings extracted from the different competing
approaches: (a) Target Only (b) FixMatch (c) SS-HIDA and (d) SHeDD when trained
on the RESISC45-Euro benchmark with RGB as source and MS as target domain (RGB
→ MS) and only 25 labelled samples per class are considered for the target domain.
For this visual inspection, 50 random samples per class from the test set (coming from
the target domain) are sampled. The two dimensional representation is obtained via
the T-SNE algorithm [19].
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When only a limited amount of labelled target data is employed to learn the
underlying classification models, as for Target Only and FixMatch methods, the
2D spatial arrangement of the generated embeddings demonstrates evident visual
cluttering, with samples coming from different classes overlapping. Although this
phenomenon is partially alleviated on SS-HIDA embeddings, the resulting man-
ifold still struggles to accurately recover the underlying eight-cluster structure.
In contrast, SHeDD produces embeddings that depict a more distinct class-
aware manifold, visually aligning better with the underlying data distribution
compared to competing approaches.

Overall, the visualisation of internal features representation confirms the
quantitative findings we previously discussed.

5 Conclusions and Perspectives

In this paper we have presented SHeDD , a deep learning based framework to
cope with the challenging scenario of semi-supervised domain adaptation when
source and target data are heterogeneous in terms of modality representation.
Our end-to-end framework has the objective to learn a target domain classifier by
leveraging labelled and unlabelled data from both source and target domain via
consistency regularized pseudo-labelling and disentanglement learning. While
the former mechanism allows to fully leverage the available unlabelled data, the
latter allows to simultaneously extract domain-invariant representations, rele-
vant for the downstream task, while retrieving domain-specific information, that
can hinder the cross-modality transfer.

The evaluation on two real-world benchmarks, spanning different degrees
of source/target domain heterogeneity, has demonstrated the effectiveness of
SHeDD compared to baselines and recent competing approaches.

While the proposed experimental evaluation clearly demonstrates the effec-
tiveness of SHeDD on challenging remote sensing benchmarks, further assess-
ment on general computer vision tasks involving heterogeneous data sources,
such as RGB/Depth, RGB/Thermal, or RGB/LIDAR data, still represents a
concrete opportunity. Additional evaluations on these benchmarks could further
emphasize the value of SHeDD in the broader field of computer vision.

In the short term, we aim to enhance the quality of SHeDD by drawing inspi-
ration from recent semi-supervised learning strategies, such as FlexMatch, and
by exploring the impact of various augmentation techniques on consistency regu-
larization and pseudo-labeling to improve the model’s performance in data-scarce
environments. In the medium term, we plan to extend our framework towards
a multi-source domain adaptation setting, enabling the use of multiple hetero-
geneous domains as source data. This could lead to a more robust classifier and
potentially improved performance on the target domain. Additionally, further
exploration could involve adapting the proposed framework to more structured
classification tasks, such as semantic segmentation or object recognition, where
data spanning heterogeneous modalities are abundant.
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