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Abstract. k-nearest neighbor (kNN) search is a fundamental problem
in graph mining. This search finds the k most relevant nodes to a given
query node. The increased use of social network services and map appli-
cations due to the proliferation of mobile devices has necessitated faster
searches. Although pre-constructing an index using graphs can accel-
erate a kNN search, existing methods struggle handling dynamic graph
updates. Herein we propose an efficient index update method for dynamic
graphs that utilizes a core-tree structure to efficiently update the index
in response to dynamic changes in the graph. Our experimental analy-
sis using real-world data demonstrated that the proposed method can
construct indexes more efficiently than the state-of-the-art method.
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1 Introduction

The k nearest neighbor (kNN) search [12,13,17,21] is a fundamental graph anal-
ysis tool to understand complex networks. It finds the k nearest neighbor nodes
to a user-specified query node in a given graph. kNN searches are employed in
diverse applications [2,6]. Although they only need to perform a local search
near the query node, kNN searches struggle handling real-world networks.

Although kNN queries are useful in many applications, they have critical
drawbacks in handling real-world networks. Specifically, they require a large com-
putational time to answer kNN queries due to the size and density of the real-
world networks [15]. Historically, traditional kNN search methods are applied to
small graphs such as ego-networks and road networks [4]. These methods struggle
to quickly compute kNN with 104 nodes [21]. Recent applications based on social
networks require handling large and complex networks with 106 nodes [14,19],
compounding the high computational costs to find kNN nodes.

1.1 Existing Approaches and Challenges

Many studies have strived to overcome the aforementioned drawbacks. One app-
roach category is graph indexing methods [1,13,21]. These methods construct an
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index using graph partitioning, which enables the shortest path distances among
several nodes to be pre-computed before answering a query. Examples of graph
indexing methods are G-Tree [21] and ILBR [1]. G-Tree partitions a given graph
into disjointed subgraphs using Metis [8]. Then the index is constructed from the
shortest path distances among all node pairs in each subgraph. Similarly, ILBR
selects several landmark nodes and constructs the index from the ALT [7] val-
ues according to the shortest path distances between a node and each landmark
node. Although G-Tree and ILBR improve the computation time to answer a
kNN query, they still suffer from a large indexing time as they mainly focus on
handling planar graphs [3] with a low density. Their indices are efficient if a given
graph is sparse. However, indices in a dense graph are not computed effectively
since an exhaustive pre-computation is necessary. These methods also require
high computation costs for querying kNN since the coverages of the indices are
too small for non-planar graphs.

CT [9,10] is a state-of-the-art kNN search method using a core-tree-aware
(CT) index based on the core-tree property [5]. The core-tree property is
expressed as a graph comprised of a core and trees. The core is a small and
dense subgraph, while trees are long stretched and sparse subgraphs. On the
basis of the core-tree property, CT constructs a core-index and a tree-index by
compiling each part of the graph. Specifically, for each tree in the graph, the
tree-index stores the distances from its root node to all leaf nodes. Furthermore,
core-index has the distances among the remaining non-tree nodes. Using the two
indices, CT can realize efficient indexing and querying for a kNN search.

Although CT can efficiently perform a kNN search, it has serious drawbacks
in real-world kNN applications. CT cannot respond to node or edge updates.
However, real-world graphs are frequently updated. For example, in social net-
works, a new edge is linked if two users become friends. If a new edge is added,
CT must reconstruct the indices from scratch since it cannot update its differ-
ences. Thus, CT fails to efficiently construct the CT-index for practical use.

1.2 Our Approaches and Contributions

Our goal is to extend CT to dynamic graphs. Although the CT-index is efficient
for static graphs, the index must be reconstructed to update only a few nodes
and edges. Here, we present a novel indexing method called Dynamic CT (DCT).
The underlying idea is to update only the indices that include changed nodes.
This way the tree-index is always maintained to include only the tree structures.
To update the index, the process is classified according to whether the changed
node is included in the core-index or the tree-index. Consequently, DCT has the
following attractive characteristics:

– Efficiency: DCT achieves faster updates than CT (Sect. 4). DCT can perform
the difference computation up to 4,462 times faster than the reconstruction
of CT.

– Exactness: We theoretically verify that DCT always outputs the same
indices as CT while achieving indexing-time improvements. It can calculate
the correct kNN search results using this index.
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– Easy to deploy: DCT does not require new indices or pre-computation
processing. It achieves index updating by quickly editing the constructed
CT-index.

DCT is the first solution to realize kNN searches assuming graph updates. Our
extension not only increases the utility of a graph query using a kNN search but
also enhances the application scope of kNN searches.

2 Preliminary

We formulate the kNN querying problem in Sect. 2.1. Then we briefly explain CT,
the state-of-the-art kNN search method, in Sect. 2.2. Due to space limitations
proofs of lemmas and theorems are omitted.

2.1 Problem Definition

Here, let G = (V,E,W ) be a weighted, undirected, and connected graph, where
V,E, and W are the sets of nodes, edges, and edge-weight values, respectively.
e(u, v) ∈ E denote that two nodes u and v are linked in G. For each edge e(u, v) ∈
E, an edge-weight value w(u, v) ∈ W is always assigned, where w(u, v) ∈ N holds.
The degree of node u is denoted as deg(u).

kNN is a task to find k nearest neighbor nodes to a query node. We first
define the shortest path distance as:

Definition 1 (Shortest path distance). Let a node path u = u0 → u1 →
· · · → ui = v in G be the shortest path between the nodes u, v ∈ V . Here,
the distance of this shortest path is defined as dist(u, v) =

∑i−1
j=0(w(uj , uj+1)).

Moreover, distk(q, V ) represents the k-th smallest distance in {dist(q, v) | v ∈
V }.

By using Definition 1, we formulate the kNN query problem as:

Problem 1 (kNN query processing). Given a graph G = (V,E,W ), a query
node q ∈ V , and an integer k ∈ N, the kNN query is to find a node set Vk(q) =
{v ∈ V | dist(q, v) ≤ distk(q, V )}.

2.2 Previous Method: CT Index

We briefly present a core-tree-aware (CT) indexing method [9,10], which is the
state-of-the-art method solving Problem 1.

As mentioned in Sect. 1.1, real-world graphs often follow the core-tree prop-
erty; the graphs can be decomposed into a core and trees [5]. Using this, CT
constructs a CT index I = 〈T , C〉, where T and C are the tree-index and core-
index, respectively. CT first extracts trees from a graph and indexes them in
T . Then it stores the remaining core nodes in C. The tree-index T and the
core-index C are defined as follows:
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Definition 2 (Tree-index T ). Let T1, T2, ... be the trees in G are ri be the root
node of Ti. Then we denote Di as a set of distances between ri and each node
v ∈ Ti, i.e., Di =

⋃
v∈Ti

{dist(ri, v)}. We define the tree-index as T = (T,D),
where T and D represent the sets of Ti and Di, respectively, i.e., T = {T1, T2, ...}
and D = {D1,D2, ...}.

Definition 3 (Core-index C). Let Vc be a set of core nodes that are not
included in any tree-index. We define the core-index as C = (Vc, Ec,Wc), where
Ec = {e(u, v) ∈ E | u, v ∈ Vc}, and Wc = {dist(u, v) | e(u, v) ∈ Ec}.

Note that the shortest path between two nodes may have multiple routes. To
efficiently compute Wc, CT employs the Dijkstra algorithm to update the weight
values.

For convenience, we introduce the following notation:

Definition 4 (Label function). Given a node u, the label function fl(u) =
tree if u ∈ T holds, and fl(u) = core otherwise.

On the basis of the CT index, CT searches kNN nodes by applying the following
lemma:

Lemma 1. Given a root node ri in the tree Ti, and let dmin = min{dist(q, v)},
where v ∈ Q∪ {v | e(ri, v) ∈ Ec, v /∈ Vk(q)}. If |Vk(q)|+ |Ti| ≤ k and dmax(ri) ≤
dmin hold, then Ti ⊆ Vk(q) holds, where dmax(v) is defined as the maximum
shortest path distance from v to any node in Ti.

The Overview of CT: We explain the basic procedure of CT to efficiently
compute kNN using the CT index. CT uses a priority queue Q to calculate the
shortest path, which is similar to the Dijkstra algorithm. If q is included in the
tree-index Ti in T , it initially pushes ri into Q and core-index C. CT initially
pushes the query node q into Q. Then it repeatedly searches kNN nodes from
q using Q until it explores k nodes or reaches any root node ri in the tree Ti.
Once CT finds ri, CT checks whether Vk(q) contains all Ti. If so, CT includes
Ti in Vk(q) without searching Ti. Otherwise, CT explores Ti in the same way as
the core node.

The main feature of CT is its application of an index construction algorithm
specialized for planar graphs (e.g., traditional road networks) to more dense and
diversely structured complex networks [16,20]. However, CT is not adaptable to
dynamic graphs that exist in the real world [18] as each graph update requires
index reconstruction. Consequently, CT can incur a significant computation time
even for minor graph changes.

3 Proposed Method: Dynamic CT

Here, we propose a novel method Dynamic CT (DCT) which extends CT to
dynamic graphs. Here, we describe the concept of DCT and then provide details.
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3.1 Ideas

We propose a method to dynamically update the CT index. In general, graph
updates are represented as a collection of node or edge additions and removals.
Although we focus on designing a method that accelerates the addition and
removal of single edges, the proposed method does not lose generality because
equivalent transformations are possible to add or remove nodes. The required
processing for index updates depends on the type of transformation and the edge
location (core or tree). Specifically, edge updates can change the core/tree state.

The area of this change must be limited for efficient dynamic updates. There-
fore, we divide additions into four cases (Sect. 3.2) and removals into two cases
(Sect. 3.3). We also theoretically calculate the update range of the graph for
each case. For convenience, in the following sections, the parent node refers to
the node closest to the root node on the path to any other node in the tree.

Our ideas have two advantages. First, DCT directly calculates only the index
difference. By contrast, CT completely reconstructs the index for each graph
update. Thus, DCT efficiently constructs the index for a graph kNN . Second,
DCT always outputs the same index to CT while omitting redundant calcula-
tions. This is because DCT performs index restructuring by theoretically analyz-
ing the area of the index affected by graph updates. Consequently, the obtained
index is always the same as that constructed by CT from scratch.

3.2 Adding Nodes and Edges

We propose an algorithm that dynamically updates the CT index when nodes
and edges are added to a graph. Here, only the addition of edges is considered.
This is reasonable since adding a node is meaningless until an adjacent edge is
added and it does not need to be distinguished from an isolated node that was
already present.
The addition of an edge between nodes u and v can be classified into four cases:

Case 1. u, v ∈ Tuv:

Case 2. u ∈ Tu, and v ∈ Tv:

Case 3. u ∈ Vc, and v ∈ Tv:
In these three cases, we have the following property.

Lemma 2. In Cases 1–3, tree(s) are no longer a tree after adding an edge.

Lemma 2 indicates that the tree is no longer a tree structure when an edge is
added by constructing a cycle. Then we add a new cycle to the core-index C. In
Case 1, the cycle occurs in a tree. In Case 2, the cycle occurs across two trees. In
Case 3, the cycle occurs through the tree and the core. In every case, this new
cycle is added to the core-index C, and the tree-index T is reconstructed.

Case 4. u, v ∈ Vc:
In this case, we simply add an edge between nodes u and v since the new edge
does not affect the tree-index T .

Using Lemma 2, we design a novel algorithm that adds an edge to the CT-
index.
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Algorithm Overview: I = 〈T , C〉 is updated using a two-fold process: linking
nodes and restructuring trees. The linking step divides the cases by the location
of the edge to be added. The edge is in the core or the tree. In each case, it
calculates the cycle appearing through the tree-index and restructures to move
it to the core-index. In the restructuring step, nodes are moved from a tree to
the core. Then the node is recursively merged into its parent node for each leaf
node in the updated trees.

3.3 Removing Nodes and Edges

We also introduce an algorithm to dynamically update the CT index when nodes
and edges are removed from the given graph. Here, we consider only the removal
of edges. Similar to adding edges, removal of a node is equivalent to the removal
of all edges linked to it.

The removal of an edge between nodes u and v can be classified into two
cases:

Case 1. u, v ∈ Vc: For u, if deg(u) = 1 holds after the removal, u and only
its adjacent node w become part of the tree. In this case, u must be moved into
T . Thus, DCT performs restructuring from u as a leaf node. By performing the
same process for v, T can have the new tree that has become a tree due to the
removal of the edge. By performing the same process for v, T can become a new
tree due to edge removal.

Case 2. u, v ∈ Tuv: As mentioned in Sect. 2, we assumed the graph is connected.
Thus, we remove nodes that are no longer connected to the core from the graph.

Algorithm Overview: To update I = 〈T , C〉 in DCT, the edge is initially
removed. Then the cases are divided by the location of the edge to be removed.
The edge is either in the core or the tree. For an edge in the core, DCT restruc-
tures if deg(u) = 1 or deg(v) = 1 holds. For an edge in a tree, DCT removes a
disconnected path in the leaf side.

3.4 Complexity Analysis

Finally, we discuss the time complexity of DCT.

Theorem 1. Updating I = 〈T , C〉 after adding an edge incurs O( ¯|T |) time on
average, where ¯|T | represents the average size of trees in T .

Theorem 2. Updating I = 〈T , C〉 after removing an edge incurs
O(max(|Vc|, ¯|T |)) time on average.

From Theorems 1 and 2, DCT can efficiently update the index for graph changes.
According to [9,10], the index construction of CT requires O(|E|log|V |). Since
|V | > |Vc| and |V | > ¯|T | hold in general, our proposed method significantly
improves the computational complexity required for reconstruction compared to
the state-of-the-art method.



An Efficient Indexing Method for Dynamic Graph kNN 87

4 Experimental Evaluation

We experimentally evaluated the efficiency of DCT compared to CT [10].

Datasets: We tested five real-world social networks [11] used in previous
works [10]1. Table 1 shows the size of the datasets.

Experimental Setup: We set k = 0.01|V | as default. All experiments were
conducted on a Linux server with Intel Xeon CPU 2.60GHz and 128 GiB RAM.
All algorithms were implemented in C++ using “–O2” option. We compared the
running time for 100 random edge additions and removals each.

Table 1. Statistics of real-world datasets.

|V | |E| average degree

TV 3,892 17,262 4.4

GV 7,057 89,455 12.7

NS 27,917 206,259 7.3

AT 50,515 819,306 16.2

SP 1,632,803 22,301,964 13.7

Fig. 1. Efficiency for updating edges.

4.1 Efficiency for Updating

Figure 1 shows the indexing times to add and remove edges as m = 200. DCT
achieves significantly faster indexing for graph updates by reducing the recon-
struction cost using dynamic index updates. Furthermore, CT suffers from a
significant reconstruction time for large graphs because computations are per-
formed over the entire graph. By contrast, DCT only requires computations
within the neighborhood of the updated subgraph. Thus, the average degree of
the graph primarily affects the update time in DCT. DCT guarantees the same
results as the CT algorithm but is up to 4,462 times faster than CT.

4.2 Efficiency for Adding/Removing Edges

Figures 2 and 3 plot the index update times to add/remove only edges. DCT
effectively adds and removes edges. More time is required for edge addition
than removal due to the difference in the affected area for dynamic indexing.
Restructuring for edge removal requires merging two paths, at most, whereas
that for edge addition may involve large-scale updates that include the core and
its surrounding trees.
1 All graphs are publicly available online from http://snap.stanford.edu/data.

http://snap.stanford.edu/data
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Fig. 2. Efficiency for only adding edges. Fig. 3. Efficiency for only removing edges.

5 Conclusion

Herein a novel dynamic index update algorithm, DCT, is proposed to efficiently
compute kNN searches on large-scale complex graphs. The proposed method
limits the affected area of the index when the graph is updated, significantly
reducing the computation time to reconstruct indexes. In our experiments, the
proposed method outperforms the state-of-the-art method by up to four orders
of magnitude in terms of processing times for index construction and graph
kNN searches. Hence, the proposed method, which considers the core-tree char-
acteristics, effectively reduces the cost of a kNN search on real-world dynamic
graphs.
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