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Abstract. The subgraph search problem is of fundamental importance
in the fields of information science and database management. In this
paper, we propose an index-based subgraph search method that is as
fast as the current state-of-the-art technique. The proposed method is
an extension of CodeTree, which is a supergraph search method that uses
neither enumeration nor graph mining. The extended CodeTreesub treats
graphs as graph codes and uses the prefix tree for these graph codes as an
index. This index permits the highly efficient filtering of non-solutions,
but its construction entails little computational overhead. CodeTreesub

effectively limits the number of candidate solutions so that only induced
subgraphs of graphs in databases are included in the index, thus accel-
erating the filtering step. Additionally, CodeTreesub can identify some
solutions during the filtering stage. The result is a scalable, high-speed
graph filtering and verification method. We compared the performance of
CodeTreesub with that of two non-index-based techniques on six bench-
mark datasets. The results demonstrated that the proposed method was
consistently as fast as or faster than the state-of-the-art VEQS method
in terms of query processing. This study is of particular interest because
it illustrates that index-based methods have the potential to outperform
non-index-based techniques, thereby providing enhanced query speeds
for small- and large-scale databases alike.

1 Introduction

A graph is a data structure that represents objects and the relationships among
them. For example, atoms and chemical bonds in molecules may correspond to
vertices and edges in graphs, respectively, which allows molecules to be repre-
sented as graphs. Additionally, when proteins and the interactions among them
correspond to vertices and edges, protein–protein interactions can be represented
as graphs. Many objects can be represented in the form of graphs, such as human
relational networks, hyperlink structures, and function calls in computer pro-
grams. When such objects are represented by graphs and stored in databases,
searching for some desired graphs becomes an essential technology in the field
of information science. Various graph search techniques exist, such as finding a
graph with a perfect match [5,6], a graph with a matching substructure [12,18],
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or a graph with a similar structure [16,25]. The subgraph isomorphism problem
is NP-complete; hence, solving the subgraph search problem requires the design
of efficient algorithms.

Algorithm 1: IFV Procedure
Input : query graph q and

index I
Output: solutions

S = {gi ∈ G |
q is a subgraph of gi}

1 P (q) ← Decompose q into a set
of patterns

2 Can ←
⋂

p∈P (q) lookup(I, p)
3 S ← ∅
4 for g ∈ Can do
5 if verification(g, q)=true

then
6 S ← S ∪ {g}

7 return S

Algorithm 2: vcFV Procedure
Input : set of graphs

G = {g1, g2, . . . , gn}
and query graph q

Output: solutions
S = {gi ∈ G |
q is a subgraph of gi}

1 S ← ∅
2 for gi ∈ G do
3 A ← filter(gi, q)
4 if A �= null then
5 if verification(gi, q,A)=

true then
6 S ← S ∪ {gi}

7 return S

Algorithm 1 outlines the typical indexing–filtering–verification (IFV)
method [18] for the subgraph search problem. In advance of receiving queries,
IFV constructs an index I for a set of graphs G using an enumeration tech-
nique. Given a query q, IFV decomposes q into a set of patterns P (q) and
obtains GS(p) = {gi ∈ G | p is a subgraph of gi} with lookup(I, p) for each
pattern p ∈ P (q). The intersection of sets GS(p) contains the candidate solu-
tions Can ⊆ G. For each candidate g ∈ Can and q, IFV verifies the subgraph
isomorphism problem on Line 5.

Although various IFV-based methods for solving the problem have been pro-
posed since 2000, current mainstream methods are index-free techniques such
as CFQL [18] and VEQS . In the paper in which VEQS was proposed [12], the
authors state the following:

Based on our empirical study, building an existing index and filtering
using the index incur considerable overhead without gaining higher fil-
tering power for most queries, which is already confirmed by [18]; indeed,
the state-of-the-art subgraph search algorithm CFQL [18] has shown that
existing indexing methods followed by recent preprocessing and enumera-
tion techniques are inefficient in query processing on widely-used datasets
such as PDBS, PCM, and PPI.

CFQL and VEQS are based on the vertex connectivity-based filtering–
verification (vcFV) framework, the outline of which is presented in Algorithm 2.
Given a query q, vcFV constructs an auxiliary data structure A for q and each
graph gi ∈ G. If A is not constructed, gi cannot be a solution; otherwise, vcFV
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solves the subgraph isomorphism problem for gi and q with A. Unlike Algo-
rithm 1, in Algorithm 2, the verification step uses A, which greatly reduces the
search space for the subgraph isomorphism between q and gi.

Although the use of indices has been discouraged as a tool for subgraph
search methods in recent years, there are advantages to using indices in database
searches. For example, in relational databases, balance trees are often used as
indices. The use of these trees reduces the computational complexity of searches
to O(log n), where n is the number of tuples in a database. By contrast, the com-
putational complexity of Algorithm 2 is proportional to the number of graphs.
Therefore, it is necessary to review the use of indices in graph databases. In this
paper, we propose an index-based method for the subgraph search problem. The
characteristics of the proposed CodeTreesub method are as follows:

1. non-solution graphs are filtered with high efficiency using indices,
2. indices are constructed without considerable overheads, and
3. the high speed and high filtering performance result in short search times.

2 Preliminaries

A labeled graph is represented as g = (V,E, �), where V is a set of vertices,
E ⊆ V × V is a set of edges, and � : V ∪ E → Σ is a function for assigning
labels Σ to the vertices and edges. In this paper, we express the vertices and
edges of g as V (g) and E(g), respectively. Given two graphs g = (V,E, �) and
g′ = (V ′, E′, �′), if there is an injective function φ : V → V ′ that satisfies
∀v, u ∈ V , then g is called a subgraph of g′, which is denoted by g 
 g′:

– �(v) = �′(φ(v))
– (φ(v), φ(u)) ∈ E′ if (v, u) ∈ E
– �((v, u)) = �′((φ(v), φ(u))).

Additionally, if (φ(v), φ(u)) ∈ E′ iff (v, u) ∈ E is also satisfied, then g is called an
induced subgraph of g′, which is denoted by g 
i g′. The problem of whether g 

g′ is called the subgraph isomorphism problem. This problem is NP-complete.

Given graphs G = {g1, g2, . . . , , gn} and query graph q as input, the problem
we address in this paper is to output a set of solutions S = {gi ∈ G | q 
 gi}.

We propose a method based on IFV. The basic idea of IFV-based methods
is that, if p 
 q ∧ p �
 gi, then q �
 gi [23]. To use this property, IFV computes
whether p 
 gi for various patterns p in advance and stores GS(p) = {gi ∈ G |
p 
 gi} for each p. Then, by computing Can =

⋂
p∈P GS(p) for a set of patterns

P , each of which is a subgraph of q, the graphs in G that are not solutions are
filtered out, and a set of candidates Can ⊆ G is obtained. Finally, the subgraph
isomorphism problem between g ∈ Can and q is solved. The index I holds the
set of patterns and GS(p) for each pattern p. In this paper, we discuss the design
of such an index.
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3 Related Work

Methods based on enumeration techniques [1,7,13,15,17,19] exhaustively enu-
merate all possible patterns in graphs G and store them in an index. The variety
of patterns is huge; hence, the size of the index becomes enormous and signifi-
cant amounts of memory space are required to construct the index. Therefore,
this type of method generally limits the number of patterns to simple structures
such as paths, cycles, and trees. For example, GraphGrep [17], GraphGrepSX
(GGSX) [1], GRAPES [7], and SING [15] enumerate paths from graphs G,
whereas CT-Index [13] enumerates cycles. The number of patterns is restricted
by limiting the number of vertices or edges within each pattern.

Methods based on graph mining search for subgraph patterns that occur fre-
quently in G, and construct indices from these mined patterns [3,4,20,23,24].
The support of each pattern p is defined as sup(p) = |{gi ∈ G | p 
 gi}|. For a
given threshold σ, frequent subgraph patterns in G are {p | sup(p) ≥ σ} [10]. In
addition to the support, other methods exist for selecting patterns by measur-
ing the filtering ability of the patterns. For example, methyl groups and benzene
rings are present in many organic compounds, so they are not always suitable for
proper filtering. gIndex [22] uses the discriminative ratio for selection. Mining-
based methods require thresholds to be applied to the support or discriminative
ratio. It is sometimes difficult to adjust these thresholds, which makes it nec-
essary to repeat the index construction process when they are changed, which
entails a long computation time.

Methods based on enumeration and mining are time-consuming for index
construction, which makes them ineffective for filtering. Hence, methods based on
vcFV without indexing have been proposed in recent years. CFQL [18] constructs
an auxiliary data structure called the compact path-index (CPI) between q and
gi ∈ G during the prepossessing stage, and then performs a verification step with
GraphQL [8]. CPI is a spanning tree of the query graph, and each node in the tree
has candidate vertices in gi that may correspond to the node. CPI removes false
positive candidates for the node of the query graph and can also determine the
most efficient matching order between the vertices in two graphs. By contrast,
VEQS [12] searches for matching between two graphs. It generates more compact
auxiliary data structures between q and gi than CPI. In this process, the search
space is reduced by skillfully handling the neighbor equivalence class among all
degree-one vertices in q. Additionally, VEQS checks whether two children of each
node in the search tree are equivalent using this data structure and prunes the
redundant search subspace. The index and vertex connectivity-based filtering–
verification framework [18] performs a subgraph search by applying vcFV after
filtering non-solutions with indices.

Although we address the subgraph search problem in this paper, we should
also discuss the related supergraph search problem, which attempts to find
{gi ∈ G | gi 
 q} for some given G and q, [2,9,11,14]. Methods based on
indices with enumeration and mining techniques form the bulk of supergraph
search techniques, although index-free methods have been proposed recently
[11]. Additionally, CFQL and VEQS can solve the supergraph search problem
by replacing q and gi on Lines 3 and 5 in Algorithm 2.
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Fig. 1. Relationships between the Query Graph and its Connected Subgraphs

4 Basic Concept of the Proposed Method

Next, we explain the basic concept of indexing in the proposed method.
Figure 1(a) shows an example of query graph q. All connected subgraphs Pc =
{p1, p2, . . . , p10} of g are depicted in Fig. 1(b). The graphs are connected by
arrows from pi to pj in one of the following cases:

– pi � pj ∧ |V (pi)| + 1 = |V (pj)| or
– pi � pj ∧ |E(pi)| + 1 = |E(pj)|.

After decomposing q into subgraphs, we obtain sets of graphs {gi ∈ G | p 

gi} with lookup(I, p) in Algorithm 1. By intersecting these sets, we limit the
candidate solutions to

⋂
p∈Pc

lookup(I, p) =
⋂

p∈Pc
{gi ∈ G | p 
 gi}. In the case

in which the index stores all possible connected graphs, huge amounts of time
and memory are required to construct and hold the index [19]. Therefore, it is
not practical to store the graphs in the index. Hence, for example, we assume
that p9 and p10 are not stored in the index.

To efficiently traverse an index that does not store all possible graphs, we
introduce the following lemma. We omit proofs in this paper because of the space
limitation.

Lemma 1. Given query graph q and two patterns pi and pj such that pi � pj 

q, candidate solutions for q are included in

{g ∈ G | pi 
 g} ∩ {g ∈ G | pj 
 g} = {g ∈ G | pj 
 g}. � (1)

According to Lemma 1, applying lookup(I, p) with a larger pattern results in
more effective filtering. The maximum patterns among P ′

c = P \ {p9, p10} =
{p1, p2, . . . , p8} are p6 and p8. Patterns p5 and p7, enclosed by the double-line
square, are not induced subgraphs of q. When p′ is not an induced subgraph
of q, it is possible that p′′, which contains p′ as a subgraph and is an induced
subgraph of q, will be stored in the index. In this case, according to Lemma 1,
p′′ is more effective for filtering than p′. When traversing the index for a given q,
we must consider how to efficiently reach p6 and p8 via the patterns P ′

c \{p5, p7}.
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We consider two cases and redraw Fig. 1(b). The first case is that pi � pj

for all graphs in P ′
c and |V (pi)| + 1 = |V (pj)|, as shown in the directed acyclic

graph (DAG) in Fig. 1(c). The second case is that pi � pj for all graphs in
P ′

c and |E(pi)| + 1 = |E(pj)|, as shown in the DAG in Fig. 1(d). We wish to
obtain patterns p such that p 
 q by adopting one of the DAGs as an index and
traversing the adopted DAG.

Note that the objective is to reach p6 and p8 in Fig. 1(c) or 1(d), not to visit all
nodes1. Therefore, it is desirable to visit fewer nodes so that the index traversal
is more efficient. For the case of Fig. 1(c), we can reach p6 and p8 without visiting
patterns that are not induced subgraphs of q, which enables us to reduce the
time required to traverse the index. By contrast, for Fig. 1(d), to reach p8, it
is necessary to pass through node p7, which is not an induced subgraph of q;
this increases the time taken to traverse the index. The gIndex method [22] uses
an index that is a spanning tree of the DAG in Fig. 1(d). Patterns found in
the nodes in this index are represented as a depth-first search code [21]. Note
that gIndex may visit nodes with patterns that are subgraphs of q, but are not
induced subgraphs of q. By contrast, we aim to design a method for traversing
the DAG in Fig. 1(c) without visiting patterns that are not induced subgraphs of
q. For this purpose, we use the Apriori-based connected Graph Mining (AcGM)
code [10].

5 Graph Representation and Indexing of Databases

To represent graphs, we use the AcGM code.

Definition 1 (AcGM code [10]). When the vertex IDs u1, u2, . . . , u|V | are
assigned to the vertices in a graph g = (V,E, �), the graph is represented as the
adjacent matrix, where subgraphs induced by u1, u2, . . . , ui (1 ≤ i ≤ |V |) are
connected. In the matrix, if (u, u′) ∈ E, xu,u′ = �((u, u′)); otherwise, xu,u′ = 0.
In this case, the AcGM code of g is expressed as

code(g, 〈u1, u2, . . . , u|V |〉) = s1s2 · · · s|V |,

wheresi = �(ui)x1,ix2,i · · · xi−1,i.

si (1 ≤ i ≤ |V |) is called a code fragment. �

For a given graph, multiple AcGM codes exist for the different ways of assigning
vertex IDs. We denote a set of AcGM codes that represent g by Ω(g) and a
graph represented by a code c by g(c).

For a given set of AcGM codes, we define its prefix tree as the Code Tree.

Definition 2 (Code Tree [9]). The Code Tree consists of a triplet (N,B, r),
where N is a set of nodes, B ⊂ N ×N is a set of branches, and r ∈ N is the root

1 We use the terms vertex and edge for a graph, and the terms node and branch for an
index. Additionally, we use the term CodeTree to refer to the method for the graph
search and the term Code Tree to refer to the index for the graph search.
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Fig. 2. Example of the Graph Database and Code Tree

of the tree. Each node in the Code Tree has a code fragment and set of graphs.
If a code generated by concatenating the fragments associated with the nodes on
the path from the root to node n is c and g(c) 
 gi for gi ∈ D, the set of graphs
for n contains gi. Additionally, each node with the vertex label � at depth 1 has
a set of vertices with the label � in each gi. �

We denote the code fragment and set of graphs for node n by fr(n) and
GS(n), respectively. Additionally, we denote the graph represented by the code
generated by concatenating fragments associated with nodes on the path from
the root to node n by g(n). From the Code Tree, we obtain a set of vertices
in gi at node n using Λ(n, gi). For example, for the database that consists of
four graphs in Fig. 2(a), one possible code tree is depicted in Fig. 2(b). For n2 in
Fig. 2(b), fr(n2) = Y and GS(n2) = {g1, g2}. Additionally, Λ(n2, g2) = {v1, v2}.

The Code Tree stores a set of patterns for filtering. Constructing mining-
based and enumeration-based indices for the subgraph search requires a huge
computation time and significant memory space [18]. Additionally, when the
database of graphs is updated, major reconstruction of the indices is required.
To avoid these issues, we construct our Code Tree based on the following strategy.

1. We “randomly” generate a connected induced subgraph gs
i with δ vertices

from each gi ∈ G.
2. We “randomly” generate an AcGM code ci ∈ Ω(gs

i ) of gs
i .

3. We add ci such that ci forms a path from the root of the Code Tree to node n.
4. To filter out graphs with infrequent labels, for each � ∈ Σ, we create an AcGM

code � and apply process (3) to �.

Because only one code is generated from each graph in the database, the time-
consuming processes of subgraph mining and enumeration are not required.
Despite the simplicity of our indexing method, our subgraph search technique
achieves highly efficient filtering and is comparable with VEQS in its search
processing, as will be demonstrated in evaluation experiments.

Lemma 2. The number of nodes in the Code Tree and its space complexity are
bounded by O(|G|δ) and O(|G|2δ +

∑
gi∈G |V (gi)|), respectively. �
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Algorithm 3: constructCodeTree
Input : a set of graphs G and the length δ of codes
Output: a code tree T

1 T ← ({r}, ∅, r);
2 for gi ∈ G do
3 s1s2 · · · sδ ← getCode(gi, δ);
4 addPathToTree(s1s2 · · · sδ, T );

5 for � ∈ Σ do
6 addPathToTree(�, T );

7 T ← pruningEquivalentNodes(T );
8 for gi ∈ G do
9 inclusionCheck(gi, r, 〈〉);

10 return T ;

Algorithm 4: inclusionCheck
Input : a graph gi, node n, and 〈w1, . . . , wh〉 to generate a code from gi

1 GS(n) ← GS(n) ∪ {gi};
2 if depth(n) = 1 then
3 V ′ ← {v | v ∈ V (gi), �(v) = fr(n)};
4 add “gi : V ′” in the node n;

5 if �m s.t. m is a descendant of n and gi /∈ GS(m) then
6 return;

7 C ← {(w, s) | s1 · · · shs = code(gi, 〈w1, . . . , wh, w〉) is a prefix of c, c ∈ Ω(gi)};
8 N ← children(n);
9 for (m, (w, c)) ∈ N × C do

10 if compare(fr(m), c) then
11 inclusionCheck(gi, m, 〈w1, . . . , wh, w〉);

The AcGM codes stored in the Code Tree share their prefixes; hence, the actual
number of nodes in the tree is much less than |G|δ. By contrast, the number of
patterns generated by subgraph mining or enumeration increases exponentially
with the number of vertices in graphs contained in the database. Therefore, the
index of the proposed method is very compact.

Algorithm 3 contains the pseudocode used to construct our Code Tree T .
Line 1 defines the root of T . On Line 3, a prefix of length δ (a sequence of δ
code fragments) is generated from among the AcGM codes of each graph gi ∈ G.
On Line 4, the prefix is added to the Code Tree to form a path from the root
to a node at depth δ. By repeating Lines 5–6 for |G| AcGM codes of length δ
and |Σ| codes of length 1, the Code Tree (which is our index) is constructed.
If there are two or more leaf nodes corresponding to a certain graph, Line 7 of
pruningEquivalentNodes prunes as many nodes as possible, leaving at least one.
At this moment, GS(n) is empty for each node n. Line 9 finds nodes n that satisfy
g(n) 
 gi for each graph gi ∈ G and adds gi to GS(n). Algorithm 4 generates all
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possible AcGM codes from g in a depth-first manner, starting from each vertex in
g. Each of the possible AcGM codes c is limited to that for a connected induced
subgraph (but not a connected subgraph) of g for which there exist nodes n
that satisfy g(n) 
 g(c). Generating all possible AcGM codes is equivalent to
taking a permutation of the vertices in gi. However, if the tree is compact, the
time required to generate the codes is not significant because the diversity of
the codes is limited. The procedures on Lines 5–6 of Algorithm 4 prevent the
redundant traversal of a tree that does not update GS(n). The function compare
on Line 10 is the same as that in [9].

The characteristics of the Code Tree are as follows:

1. Patterns in the Code Tree are connected induced subgraphs generated at
random from gi ∈ G. The number of patterns is |G|.

2. The patterns are included in gi ∈ G as induced subgraphs, but not as sub-
graphs. Graphs included as induced subgraphs have no fewer edges than those
included as subgraphs, which is effective for filtering according to Lemma 1.

3. Connected induced subgraphs generated at random from gi ∈ G are stored
in the Code Tree. No process for selecting the patterns is required.

4. These multiple codes represent each pattern gs
i , and one of them is selected

at random.
5. The number of nodes in the Code Tree is bounded by O(|G|δ).

6 Subgraph Search with the Code Tree

In this section, we describe a method for traversing the Code Tree to obtain
patterns contained in query q and candidate solutions Can, which corresponds
to the supergraph search problem. The problem is to output {p ∈ P | p 

q} from query q and graphs P = {p1, . . . .pm}, all of which are stored in the
index as patterns. Therefore, the pseudocode shown in Algorithm 6 is based on
the supergraph search method proposed in [9]. The first characteristics of our
proposed method are not only filtering graphs in G but also filtering nodes in
each graph in G to reduce the number of nodes in the graph before verification,
which reduces the computation time for verification. We call this node filtering.
Second, when the method visits node n that satisfies q = g(n) while traversing
the tree, the graphs in GS(n) are added to S because they are solutions. When
the number of graphs in Can has been sufficiently reduced, the computation
time for verification is greatly reduced, similar to Lindex+ [23].

Algorithms 5 and 6 contain the pseudocode for the subgraph search based
on the above characteristics. Algorithm 5 is based on Algorithm 1. On Line 3,
our method traverses the Code Tree to obtain a subset of solutions S and set of
candidate solutions Can. On Line 2, M is initialized with nodes at depth 1 in
the Code Tree. Immediately after Line 3, there are still nodes in M that were not
visited in the traversal. Vertices with labels that the nodes have are the target of
node filtering that is executed on Line 5. On Line 6, the subgraph isomorphism
problem is solved for the node-filtered graph g′

i and query graph q. Lines 10–14
of Algorithm 6 generate code fragments s for connected and induced subgraphs
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Algorithm 5: search
Input : query graph q and Code Tree T = (N, B, r)
Output: a set of solution S = {gi ∈ G | q � gi}

1 S ← ∅, Can ← G;
2 M ← children(r);
3 traverse(q, r, 〈〉, S, Can, M, true);
4 for gi ∈ Can \ S do
5 g′

i ← (V (gi) \
⋃

n∈M Λ(n, gi), E(gi) \ (V (gi) ×
⋃

n∈M Λ(n, gi)), �);
6 if verification(g′

i, q)=true then
7 S ← S ∪ {gi};

8 return S;

of q and traverse nodes m that satisfy g(m) 
 q. While traversing the Code
Tree, Line 3 filters out graphs that are not solutions. If Can becomes empty, our
method backtracks. mode is true if and only if g(n) 
i q but not if g(n) 
 q.
When our method visits node n that satisfies q = g(n) using the value of mode,
Lines 1 and 2 add graphs in GS(n) to S. Lines 6 and 7 prune the search space
without changing S and Can according to the following lemma.

Lemma 3. At node n in the Code Tree, if S �= ∅ and (Can \ S) ∩ GS(n) = ∅,
S and Can are unchanged at the descendant nodes of n. �

7 Experimental Evaluation

7.1 Experimental Settings

We compared the performance of our CodeTreesub with that of GGSX [1],
GRAPES [7], VEQS [12], and CFQL [18]. We conducted experiments on a
machine running an AMD Ryzen Treadripper 3970X 32-Core processor with
128 GB RAM. CFQL and VEQS are index-free subgraph search methods that
use filtering to construct auxiliary data structures, and then verify the subgraph
isomorphism between queries and candidate solutions. GGSX and GRAPES are
subgraph search methods based on IFV. They enumerate all paths of length
δ′ = 4 from graphs in G and then construct indices. We obtained executable
files for GGSX, GRAPES, VEQS , and CFQL that run on Linux. These were
implemented in C++. VEQS is the fastest existing subgraph search method.

We implemented our method in Java2. We used VEQS in our verification,
but its source code is not available. Thus, we did the following.

1. We obtained Can by filtering using our method.
2. We wrote the graphs in Can and the query graph to a file.
3. We measured the computation time required by VEQS for the file.

2 The executable files written in Java and the datasets for evaluation are available at
https://github.com/KG-CodeTree/CodeTree.

https://github.com/KG-CodeTree/CodeTree
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Algorithm 6: traverse
Input : query graph q, node n, 〈w1, . . . , wh〉 to induce a code from q, a set of

solutions S, a set of candidates Can, a set of nodes M , and mode
1 if mode = true ∧ depth(n) = |V (q)| then
2 S ← S ∪ GS(n);

3 Can ← Can ∩ GS(n);
4 if Can = ∅ ∨ �m s.t. m is a descendant of n and has not yet been visited then
5 return;

6 if S �= ∅ ∧ (Can \ S) ∩ GS(n) = ∅ then
7 return;

8 if depth(n) = 1 then
9 M ← M \ {n};

10 C ← {(w, s) | s1 · · · shs = code(q, 〈w1, . . . , wh, w〉) is a prefix of c, c ∈ Ω(q)};
11 N ← children(n);
12 for (m, (w, c)) ∈ N × C do
13 if compare(fr(m), c) then
14 traverse(q, m, 〈w1, . . . , wh, w〉, S, Can, M, mode ∧ (fr(m) = c));

The computation time of the proposed method is the time required for the
above process, excluding the time required for file I/O. The computation time
for verification in the proposed method includes the time required by VEQS to
construct auxiliary data structures.

Table 1. Benchmark Datasets

|G| |Σ| |V (g)| |E(g)| degree |Σ|
AIDS 40,000 62 45 47 2.09 4.4

PDBS 600 10 2,939 3,064 2.06 6.4

PCM 200 21 377 4,340 23.01 18.9

PPI 20 46 4,942 26,667 10.87 28.5

IMDB 1500 10 13 66 10.14 6.9

REDDIT 4,999 10 509 595 2.34 10.0

Query Sets: Each query graph was
generated from g ∈ G using either
a breadth-first search (BFS) or ran-
dom walk [18]. The specific proce-
dure for generating the query graph
is as follows: (1) select graph g at
random from G, (2) select vertex v
in g at random, (3) add every vertex
and edge to the query graph gener-
ated by a BFS or random walk starting from v visits, and then (4) return the
query when it has visited the predefined number of edges. Each query set QεB

(BFS) or QεR (random walk) consisted of 100 graphs, where ε ∈ {4, 8, 16, 32, 64}
represents the number of edges in each query. We call a query set in which the
number of edges is small (large) a “small (large) query set”. Because the sub-
graph search problem is NP-complete, we set a time limit of 10 min to process
one query, similar to the experiments conducted by Kim et al. [12]. If the query
could not be processed within the time limit, the query processing time (QPT)
was recorded as 10 min.
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Fig. 3. Query Processing Time on the Benchmark Datasets

Datasets: We used six benchmark datasets (AIDS, PDBM, PCM, PPI, IMDB,
and REDDIT), as applied in previous studies [12,18]. AIDS consists of chemical
compounds. PDBS consists of DNA, RNA, and protein structures. PCM and
PPI consist of graphs that represent protein–protein interactions; the graphs in
PPI are much larger than those in PCM. IMDB is a movie collaboration dataset.
REDDIT is a dataset of online discussion communities. IMDB and REDDIT do
not contain vertex labels. Thus, one of ten distinct labels was randomly assigned
to each vertex [12]. In this paper, we do not provide results for the COLLAB
dataset because most methods cannot return solutions for many of the queries
within the time limit. Table 1 presents a summary of the datasets. |V (g)| and
|E(g)| are the average numbers of vertices and edges of graphs in G, respectively.
The degree is the average degree and |Σ| is the average number of vertex labels
in a graph. VEQS cannot treat edge labels; hence, we removed edge labels from
the datasets.

7.2 Experimental Results

First, we present the results for the QPT, which reflects the core aim of this study.
Then we examine detailed results related to query processing and experimental
results related to index construction.
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Table 2. Search Precision

Dataset Query δ Search
Precision

AIDS Q4R 5 0.97

AIDS Q4B 5 0.99

PDBS Q4R 20 0.59

PDBS Q8R 20 0.16

PDBS Q16R 20 0.01

PDBS Q4B 20 0.72

PDBS Q8B 20 0.35

PDBS Q16B 20 0.01

PCM Q8R 10 0.03

Figure 3 shows the QPTs for various query
sets on each dataset. A red asterisk indicates
that some queries did not yield results within
the time limit. If the time limit was exceeded for
more than 50 of the 100 queries in each query
set, we provided no bar chart for that query set.
For each of the six datasets, there were 10 query
sets; that is, there were 6×10 = 60 test cases. In
53 of the 60 cases, the QPTs for CodeTreesub

were shorter than those for VEQS . Note that
we did not count the three cases in which both
CodeTreesub and VEQS were marked using a
red asterisk. CodeTreesub performed well for
small queries, and the two datasets AIDS and
REDDIT. The reason that CodeTreesub performed well for small queries is that
CodeTreesub found solutions while filtering. Table 2 presents the search precision
results for various datasets and query sets. The search precision is the percent-
age of solutions that the proposed method found while filtering and is defined as
1

|Q|
∑

q∈Q
|In(q)|
|S(q)| , where |In(q)| is the number of solutions found by Algorithm 6,

but not by Algorithm 5. There are no IFV methods other than CodeTreesub for
which search precision is greater than 0. The different values of δ correspond
to tuning the QPT of CodeTreesub to be shorter. When the smallest number of
vertices in the graphs in query set Q is larger than the depth δ of the Code Tree,
the search precision is always zero. We did not include such cases in Table 2. For
Q4R and Q4B in the AIDS and PDBS datasets, Algorithm 6 returned many solu-
tions. This is because there were many nodes n up to a depth of 5 in the Code
Tree and the graphs g(n) stored in the tree were very diverse. When many solu-
tions were found while filtering, the number of graphs to be verified was greatly
reduced and the computation time for verification reduced accordingly. By con-
trast, the reason that CodeTreesub performed well for the AIDS and REDDIT
datasets is that the densities of graphs in the datasets were small. CodeTreesub

selected induced subgraph of graphs in G as patterns to be registered in the
index. Because the induced subgraph had many edges, the induced subgraph fil-
tered out sparse graphs in G for a given query graph. In [12], it has already been
mentioned that CFQL and VEQS , which are methods based on vcFV, outper-
formed GGSX and GRAPES, which are methods based on IFV. For this reason,
indices were not used in [18]. However, CodeTreesub is an IFV-based method,
and CodeTreesub is as fast as or faster than VEQS or CFQL. Therefore, IFV-
based subgraph methods are not necessarily slower, and in this paper, we showed
that existing methods have room for improvement.

Figure 4 shows the filtering times for the various datasets. The filtering times
of CodeTreesub depend on the sizes of the graphs in the query sets and the
number of nodes in the Code Tree. When there were few nodes in the Code
Tree, the filtering time of CodeTreesub was small because the search space for
the queries became narrower, although CodeTreesub filtered out relatively few
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Fig. 4. Filtering Time on the Benchmark Datasets

Table 3. Constructing Indices using IFV-based Methods

δ # of nodes in

the Code Tree

Time for constructing index [s] Index size [MB]

CodeTreesub GGSX GRAPES CodeTreesub GGSX GRAPES

AIDS 5 2,558 18.0 26 12 17.1 28 39

PDBS 20 5,711 65.8 19 4 2.6 20 17

PCM 10 1,555 3.2 1340 233 0.6 312 1360

PPI 5 115 0.1 6194 936 0.4 23 664

IMDB 4 1553 0.3 57 11 0.9 29 38

REDDIT 3 674 16.3 1645 280 5.0 232 1580

graphs. As the size of the query graph increased, the filtering time of CodeTreesub

became large because the search space for the queries increased as the number
of codes generated from the queries increased. By contrast, when the size of the
query graph increased, the filtering times of CFQL and VEQS decreased. This is
because the construction of auxiliary structures involves filtering based on vertex
connectivity. Effectively, the vertices in the query have more adjacent vertices,
and non-solution graphs can be filtered earlier.

Table 3 presents several details about the construction of indices for IFV-
based methods. The different values of δ are the result of tuning the QPT of
CodeTreesub to be shorter. The number of nodes in the Code Tree depends on δ,
|G|, and the characteristics of the dataset. Compared with GGSX and GRAPES,
CodeTreesub takes less time to construct indices and requires less memory to hold
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the indices. GGSX and GRAPES enumerate all paths of a certain length from
the graph in G and store them in indices, which makes the size of their indices
larger and their construction time longer.

8 Conclusion

We proposed an index-based subgraph search method that is as fast as the
current state-of-the-art technique. CodeTreesub treats graphs as graph codes
and uses the prefix tree for these graph codes as an index. This index permits
the highly efficient filtering of non-solutions, but its construction entails little
computational overhead. CodeTreesub effectively limits the number of candidate
solutions so that only induced subgraphs of graphs in databases are included
in the index, thus accelerating the filtering step. Additionally, CodeTreesub can
identify some solutions during the filtering stage. We compared the performance
of CodeTreesub on six benchmark datasets. The results demonstrated that the
proposed method was consistently as fast as or faster than the state-of-the-art
VEQS method in terms of query processing. This study is of particular interest
because it illustrates that index-based methods have the potential to outperform
non-index-based techniques, thereby providing enhanced query speeds for small-
and large-scale databases alike.
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