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Preface

We are pleased to present the proceedings of the DEXA 2024 conference, which show-
cased the latest advancements and research in database expert systems applications. This
collection of papers represents the cutting-edge work of scholars and practitioners from
around the world, exploring a diverse array of topics that highlight the crucial role of
databases in advanced technology and modern society.

The DEXA 2024 proceedings consist of two volumes and include papers from the
35th DEXA edition, which took place on August 26–28, 2024 in Naples (Italy).

DEXA 2024 received a total of 102 paper submissions. From these, the Program
Committee selected 27 as regular papers, resulting in an acceptance rate of 26%. Addi-
tionally, 20 papers were accepted as short papers to showcase pioneering research and
innovative projects across various disciplines. These short papers highlight early-stage
research, novel ideas, and preliminary findings, fostering meaningful discussions and
potential collaborations.

The single-blind peer review process provided evaluations of each submitted
manuscript by at least three reviewers. Their assessment not only served the purpose of
quality control for the conference but also contained valuable comments for the authors
and inspiring ideas for improvement or further research. We would like to sincerely
thank our Program Committee members and external reviewers for their critical and
motivating reviews.

Accepted papers cover a wide variety of research topics on both theoretical and
practical aspects.

The papers on Financial and Economic Data Analysis present innovative
approaches to financial policy retrieval, stock trading strategies using reinforcement
learning, and comprehensive databases for network pharmacology research. These con-
tributions reflect the growing intersection of finance, economics, and advanced data
analytics.

Papers on Graph Theory and Network Analysis delve into fast subgraph search
techniques, knowledge graph alignment, dynamic graph indexing, and enhanced navi-
gable small world searches. The studies presented in these papers offer novel solutions
for managing and interpreting large-scale graph data.

The section onDatabaseManagement andQuery Optimization features research
on improving text-to-SQL tools, deep learning-based workload encoding, hierarchi-
cal storage management, and top-k stabbing queries on weighted interval data. These
contributions aim to enhance the performance and the accuracy of database systems.

The contributions on the topic of Machine Learning and Large LanguageModels
explore pre-trained knowledge tracingmodels,machine learning on serverless platforms,
performance evaluation of large language models, and robust table-to-text generation.
These studies highlight the transformative impact of machine learning and data science
on database applications.
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The section on Recommender Systems and Personalization includes research
on collaborative filtering for patient outcomes, sequential recommendation algorithms,
context-aware recommendation systems, and category-aware sequential recommenda-
tions. These papers demonstrate the effectiveness of recommender systems in delivering
tailored user experiences.

The papers on Blockchain and Supply Chain Management discuss integrating
blockchainwith encrypted-RSANFTs and IPFS, aswell as resource-oriented approaches
for blockchain integration. These studies underscore the potential of blockchain to
revolutionize supply chain management.

The section onDataMining andKnowledge Discovery presents work on abnormal
citation group detection, semantic word grouping for text classification, and knowledge
graph management. These contributions represent advances in the field of data mining
and enhance our ability to discover meaningful patterns and relationships.

The papers on Spatiotemporal Data and Mobility Analysis address efficient
movelet extraction, humanmobility analysis, traffic flow prediction, and spatio-temporal
graphmodeling. These studies provide innovativemethods for analyzing and interpreting
spatiotemporal data.

The section onComputer Vision and Image Processing features research on video
situation monitoring, disaster image tagging, and segmentation of CNC milling sensor
data. These papers highlight the advancements in visual data analysis and their practical
applications.

The section on Data Security and Privacy includes studies on identifying personal
identifiable information in unstructured text and designing wireless signal propagation
models. These contributions address the critical challenges of maintaining data security
and protecting user privacy.

The papers on Database Indexing and Query Processing explore diverse index
tuning, fast learned cardinality estimation, diffusion pre-computation for image retrieval,
and high contention management in B-trees. These studies offer innovative solutions to
improve database indexing and query efficiency.

Finally, the section on Specialized Applications andCase Studies presents specific
applications and case studies that demonstrate the practical implementation of advanced
database technologies. Topics include epidemic prediction with spatiotemporal graph
neural networks, virtual data lake zones, protein surface classification, and legal case
retrieval representation. These papers provide valuable insights into the application of
database systems in various fields.

We extend our heartfelt gratitude to our keynote speakers: Carlo Sansone from the
University of Naples Federico II, Italy; A Min Tjoa from Vienna University of Technol-
ogy, Austria; and Toshiyuki Amagasa from the University of Tsukuba, Japan, for their
exceptional presentations at DEXA 2024 and its related conferences and workshops.
Their insights were enlightening and deeply resonated with our participants, making
their contributions one of the event’s highlights.



Preface vii

Our gratitude goes to all the authors and participants who contributed to this con-
ference. Their dedication and expertise made this event a success. We hope these pro-
ceedings inspire further research and innovation in the field of database expert systems
applications.

August 2024 Christine Strauss
Toshiyuki Amagasa

Giuseppe Manco
Gabriele Kotsis

A Min Tjoa
Ismail Khalil
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Multimodal Deep Learning in Medical Imaging

Carlo Sansone

Department of Electrical Engineering and Information Technology,
University of Naples Federico II, Italy

Abstract. In this talk, we will consider how Deep Learning (DL)
approaches can profitably exploit the presence of multiple data sources
in the medical domain.

First, the need to be able to use information from multimodal data
sources is addressed. Starting from an analysis of different multimodal
data fusion techniques, an innovative approach will be proposed that
allows the different modalities to influence each other.

However, in medical applications it is often very difficult to obtain
high quality and balanced labelled datasets due to privacy and sharing pol-
icy issues. Therefore, several applications have leveraged DL approaches
in data augmentation techniques, proposing models that can create new
realistic and synthetic samples. Consequently, a new data source can be
identified, namely a synthetic data source. In this context, a data aug-
mentation method based on deep learning, specifically designed for the
medical domain, will be presented. It exploits the biological characteris-
tics of images by implementing a physiologically-aware synthetic image
generation process.



Digital Humanism as an Enabler for a Holistic
Socio-Technical Approach to the Latest Developments

in Computer Science and Artificial Intelligence

A Min Tjoa

TU Wien (Vienna University of Technology), Austria

Abstract.The rapid development of computer science and artificial intel-
ligence (AI) has brought about transformative changes, but not without
significant ethical, social, and technical challenges. As early as 2017, Tim
Berners-Lee, the inventor of the World Wide Web, warned of the “nasty
storm” threatening the future of the web, including the proliferation of
fake news, propaganda, and increasing polarization. These issues high-
light the urgent need for a paradigm that ensures technology serves the
best interests of humanity.

This keynote will explore the foundational principles of Digital
Humanism and its role in guiding the development of computer science
and AI to align with human values and societal well-being.

In December 2023, the UnitedNations Advisory Panel onAI released
its interim report, “Governing AI for Humanity,” which highlights the
need for AI governance to address challenges and harness AI’s potential
in an inclusive way, ensuring that no one is left behind. A key measure
of AI’s success will be its contribution to achieving the SDGs.

The keynotewill illustrate howDigital Humanism can be operational-
ized to create technologies that enhance human capabilities and societal
well-being. It will highlight the need for interdisciplinary research and
development to harness the potential of computer science and AI for the
benefit of humanity.

Digital Humanism offers a vital pathway for navigating the com-
plexities of modern technological advancements. By taking a holistic
socio-technical approach, it can be ensured that developments in com-
puter science and AI are aligned with our core human values, thereby
fostering a more just, ethical, and sustainable digital future.



Deep Entity Processing in the Era of Large Language
Models: Challenges and Opportunities

Toshiyuki Amagasa

University of Tsukuba, Japan

Abstract.Handling entities has long been a critical task in data analytics
and integration,with over 80%of time and effort often devoted to data pre-
processing. Improving the performance of this task has been a persistent
challenge. Recently, transformer-based pre-trained language models and
large language models (LLMs) have emerged as key tools for entity pro-
cessing tasks such as named entity recognition (NER) and entity match-
ing. However, these models introduce new challenges, including signifi-
cant demands for computational resources and high-quality training data.
In this talk, we will review recent advances in deep entity processing and
explore the associated challenges and research opportunities.
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Abstract. Recently, Large language models (LLMs) have demonstrated
formidable capabilities, yet challenges persist in real-world applications,
particularly in aspects of hallucination, misinformation and outdated
knowledge. Retrieval-Augmented Generation (RAG) addresses these
challenges by pre-retrieving pertinent information from external knowl-
edge bases prior to utilizing LLMs for answering queries. Although RAG
has been empirically validated to enhance response accuracy and reduce
error rates, the paucity of domain-specific datasets hampers the develop-
ment of proficient retrievers, therefore becoming a bottleneck in deploy-
ing RAG pipelines within professional fields. In this work, we propose a
novel task termed stock policy retrieval and introduce the Chinese Stock
Policy Retrieval Dataset (CSPRD), comprising 700+ prospectus excerpts
annotated by seasoned experts, correlated with relevant articles from a
collection of more than 10,000 entries in our amassed Chinese policy cor-
pus. Our experiments with lexical, embedding, and fine-tuned bi-encoder
models not only attests to the efficacy of our proposed CSPRD but also
indicates considerable potential for enhancement. To capitalize on high
quality encodings, we proposed CSPR-MQA, a retrieval-oriented pre-
training paradigm that amalgamates various supervised natural language
processing (NLP) tasks into an unsupervised framework for masked
question-answering (MQA). Our CSPR-MQA model, after pre-training
on 61GB Chinese corpus and fine-tuning on CSPRD, achieves the best
performance on the CSPRD development set, with metrics including
57.9% MRR@10, 29.1% NDCG@10 and 39.3% Recall@10.

Keywords: Information Retrieval · Retrieval Augmented Generation ·
Decision Support Systems

1 Introduction

Recent years have witnessed Large language models (LLMs) such as the GPT
series [1,2] and LLama series [25], demonstrating exceptional linguistic pro-
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ficiency and knowledge understanding capabilities across various evaluation
benchmarks, which surpass several human evaluation standards [11,26].

However, these generative LLMs still face significant deficiencies in the
authenticity and accuracy of content generation. Despite the substantial achieve-
ments of LLMs in capturing language structure and emulating human writ-
ing styles, they exhibit significant limitations, particularly in handling domain-
specific or highly specialized queries [8,14]. When the required information
exceeds the scope of the models’ training data or necessitates the latest data,
LLMs might provide inaccurate answers or misinformation. Such limitations
present significant challenges in deploying generative artificial intelligence in
real-world applications, especially in specialized fields such as finance, law, and
healthcare [20].

Retrieval-Augmented Generation (RAG) has emerged as a promising solution
by merging a pre-trained retriever with a pre-trained sequence-to-sequence model
(generator), capturing knowledge in a more interpretable and modular fashion
through end-to-end fine-tuning. A typical RAG pipeline comprises a retriever
and a generator, often fulfilled by a LLM. However, the scarcity of specialized
domain datasets restricts the development of proficient, specialized retrievers,
thereby becoming a bottleneck in deploying effective and efficient RAG pipelines
in specialized domains.

In this work, we propose a new retrieval task, namely stock policy retrieval,
which requires a set of matched policy articles from a large corpus given a passage
concerning the primary business and principal products in a companys prospec-
tus. To further build a proficient policy retriever, we proposed CSPR-MQA,
an innovative retrieval-oriented pre-training paradigm that amalgamates vari-
ous supervised natural language processing (NLP) tasks into an unsupervised
framework for masked question-answering (MQA).

A qualified policy retrieval system should not only offer professional auxil-
iary services for regulatory agencies, but also provide investors with more thor-
ough information for investment decisions. However, finding policy articles that
match the given business description can be a rigorous task as there are two key
challenges. (1) Different from general commonsense retrieval [21], stock policy
retrieval needs to deal with two types of differently distributed languages [20]:
complex yet plain language for prospectuses and concise yet fragmentary lan-
guage for policies. Addressing such difference indirectly demands an almighty
system that can not only focus on key information in complex scenario but
translate concise expressions into natural language as well. (2) The prospectus
passages include vague industry identification and specific product description of
the company. However, a policy item match is not solely relied on the accordance
of industrial category, but rather on the consistency of business products.

Therefore, a large-scale policy retrieval dataset with expert annotations is
necessary to study the extent to which retrieval models can pair with the wisdom
and decision-making of professional analysts in regulatory agencies. Admittedly,
government policies and prospectuses of listed companies are publicly accessible.
However, the review process by regulatory agencies is often a black box, and the
matched policy articles of listed companies are not publicly available, which
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Fig. 1. Illustration of the policy retrieval task performed on the Chinese Stock Pol-
icy Retrieval Dataset (CSPRD), which consists of 700+ prospectus passages carefully
labeled by experienced experts with references to relevant policy articles collected by
the Shanghai Stock Exchange.

set a high barrier to collecting such datasets. To the best of our knowledge,
we are the first work to introduce a policy retrieval dataset, namely the Chinese
Stock Policy Retrieval Dataset (CSPRD), filling the blank of fact-driven retrieval
dataset in financial and stock market. The main contributions of this work are
threefold (Fig. 1):

• We introduce the Chinese Stock Policy Retrieval Dataset (CSPRD), compris-
ing a Chinese policy corpus of 10,002 articles and 709 prospectus excerpts
from 545 companies listed on Chinas Science and Technology Innovation
Board (STAR Market). CSPRD is annotated by experienced experts from
Shanghai Stock Exchange (SSE) and released bilingual in Chinese and
English1.

• We propose CSPR-MQA, an innovative retrieval-oriented pre-training para-
digm with asymmetric dual-decoder structure and asymmetric masking strat-
egy [19] to further improve the encoding ability of PLMs on our proposed
CSPRD dataset.

• We establish strong baselines on the CSPRD dataset by benchmarking several
state-of-the-art retrieval approaches, including lexical, embedding and fine-
tuning models. Our proposed CSPR-MQA is the best among the baselines by
achieving 57.9% MRR@10, 29.1% NDCG@10, 39.3% Recall@10 and 81.9%
Precision@10, which shows the effectiveness of our proposed CSPR-MQA yet
also suggests ample potential for improvement.

Our code and dataset is publicly available on GitHub2.
1 Translated by ChatGPT (gpt-3.5-turbo-16k-0613).
2 https://github.com/noewangjy/csprd dataset.

https://github.com/noewangjy/csprd_dataset
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2 Related Work

2.1 Retrieval Augmented Generation

Within the realm of LLMs, RAG stands as a model enhancement paradigm [8,
9,12,17,18], which involves integrating an information retrieval component with
a text generation model, utilizing factual information as input to the generative
large models to enhance the factuality and accuracy of their outputs. The essence
of the RAG model lies in the amalgamation of traditional generative language
models with information retrieval systems. Specifically, upon receiving an input
(such as a question or prompt), it first employs a retrieval system to find relevant
information from a large document collection. Subsequently, these documents
are used as context to aid the generative model in producing more accurate and
in-depth text. RAG processes the input and retrieves a set of documents from
given sources (e.g., Wikipedia), which are then combined with the original input
prompt as context and fed into the text generator to produce the final output.

The primary advantage of the RAG pipeline lies in its ability to integrate
the creativity of generative models with the factuality based on retrieved infor-
mation [8,9,18]. This combination offers enhanced factual accuracy, strength-
ened capabilities in specific domains and application flexibility in various sce-
narios. However, the main limitations of RAG technology are concentrated in
two aspects: (1). Proficient Retriever: it has high demands on the perfor-
mance of the retriever, which must be capable of retrieving a large volume of
relevant knowledge to ensure a high recall rate, while also minimizing false posi-
tives to ensure accuracy [15,28]; (2). Domain-specialized Corpus: most exist-
ing retrieval datasets focus on general knowledge retrieval, and common sense
question-answering datasets are often used to benchmark models [16,21]. How-
ever, research in areas like finance and economics is far from deep due to the
lack of large volumes of high-quality datasets and professional annotations [20].

This work is devoted to addressing the above limitations by proposing
enhancements to the RAG framework that focus on expanding the scope of
domain-specialized corpora and improving the proficiency of retrievers in spe-
cialized domains.

2.2 Dense Retrievers

In general, a policy retriever is a function that takes a prospectus passage as
input along with a corpus of policy articles and returns a small set of relevant
policies.

Recent advances in pre-trained language models (PLMs) have sparked
remarkable success in numerous NLP tasks [7]. Building upon PLM-based
encoders, dense retrieval [15,29] has been proven an effective paradigm for
dense retrievers [19,22], which aims to retrieve correlated passages of a given
query from a massive corpus. However, most existing retrieval datasets substan-
tially benchmark models on general commonsense retrieval [21], while specialized
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domains such as finance and economics remain unexplored due to deficiency of
large-scale high-quality datasets with expert annotations [20].

In general, a policy retriever is a function that takes a prospectus passage
as input along with a corpus of policy articles and returns a small set of rel-
evant policies. Lexical approaches have been the de facto standard for textual
retrieval for their robustness and efficiency, such as BM25 [23] and TF-IDF.
In recent years, dense retrieval methods [15,29] have been proven an effective
paradigm in open-domain question-answering, which are built upon PLMs-based
encoders. Karpukhin et al. [15] proposed DPR, which employs a bi-encoder
design with in-batch contrastive learning training. Xiong et al. [29] proposed
ANCE, a learning mechanism that selects hard training negatives globally from
the entire corpus. Furthermore, retrieval-oriented pre-training methods [19,22]
are proposed to generate better textual encoding for textual retrieval. Among
them, RocketQA [22] proposes optimized training approaches to address discrep-
ancy between training and inference. RetroMAE [19] adopt asymmetric masked
encoder-decoder design and unbalanced masking ratios during pre-training.

2.3 Specialised Financial Datasets

Recently, more and more domain-specific datasets are introduced in the NLP
community to enrich fact-driven datasets in financial tasks, such as financial
sentiment analysis [6], numerical reasoning [3] and multilingual topic classifica-
tion [13].

Some existing works focus on textual information published by enterprises.
Daudert et al. [5] introduced CoFiF dataset, which contains 2655 french reports
in span of 20 years, covering reference documents, annual, semestrial and trimes-
trial reports. The JOCo corpus [10] is composed of corporate annual and social
responsibility reports of top-ranked international companies. In terms of policy
corpus, Wilson et al. [27] created a corpus of 115 privacy policies with manual
annotations for fine-grained data practices. However, there is few attention on
the policy compliance of enterprise prospectus. To fill this blank, this work is
devoted to introducing a Chinese policy retrieval datasets with expert annota-
tions in stock market.

3 The Policy Retrieval Dataset for Stock Market
in China

In this section, we detail the process of creating the CSPRD dataset, which
includes the following five stages.

3.1 Data Collection

In June 2019, the STAR Market was officially established by SSE, where listed
companies are conform to certain incentive policy articles of Chinese govern-
ment due to the requirement of SSE. From the public information on the official
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Fig. 2. Overview of the annotation process. After data processing, the collected
prospectus passages and policy articles are fed to a mixture-of-experts (MoE) selection
system composed of unsupervised models. The Top-20 ranked policy articles for each
prospectus passage are selected as recommendation for the human annotation process.

website3 of the STAR Market, we collect the prospectuses of 767 listed compa-
nies, as well as 400+ incentive policy documents compiled by SSE (as of August,
2022). The policy documents are classified into 7 categories by SSE, including
New Generation of Science and Technology, High-end Equipment, New Materi-
als, New Energy, Environment Protection, Biomedicine and General (Fig. 2).

3.2 Data Processing

For prospectuses, we solely extract the textual information concerning key prod-
ucts and services. We conduct semantic-based keyword matching and position-
ing through file metadata, and specifically extract the text content under the
corresponding chapter title as contextual information based on reference key-
words such as main products and primary business. To improve the quality and
accuracy of chapter positioning, we extract and filter the textual chunks after
truncating the PDF files by matched chapter titles.

As for policy documents, we use regular expressions to match the policy
names and split them into policy articles by title. We manually set block words
to filter out political-relevant and financial-irrelevant articles.

3.3 Unsupervised MoE Selection

In the annotation step, each prospectus excerpt is paired with each policy article,
which is in total 7 million pairs to be scored. To significantly reduce cost of human
resources, we deploy a decision support system with a mixture of experts (MoEs)
to directly score the textual similarity of each pair of prospectus passage and
policy content.

Our MoE selection system is consisted of unsupervised models trained on
both the policy corpus and prospectus excerpts. We first adopt ERNIE-CTM
3 https://kcb.sse.com.cn/.

https://kcb.sse.com.cn/
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Fig. 3. Category distribution of the examples in CSPRD.

[32] to recognize named entities in the excerpts and only keeps the named enti-
ties with manually selected tags. Then the named entities are used to train a
word2vec model and a doc2vec model, which are used to score the textual sim-
ilarity. In addition to that, we employ a pre-trained SimBERT4 [24] to directly
score the similarity. At the rear of the system, the final score for each text pair
is the weighted sum of the scores given by word2vec (10%), doc2vec (20%)
and SimBERT (70%). As recommendation, we choose the 20 top-ranking policy
articles for each prospectus excerpt (Fig. 3).

3.4 Expert Annotation

The CSPRD is annotated by 5 experienced SSE experts, who have systematically
studied the manual QAs on the Review of Stock Issuance and Listing on the
SSE STAR Market5. During annotation, each expert is required to focus on the
primary products, main business and specific core technologies in the prospectus
excerpt and judge whether they are compliant with the specific industry and
target applications in the recommended policy articles. After cautious reading
and thorough judgement, the experts should choose one of the ternary labels
([Yes], [No], [Uncertain]). Each policy pair is independently labeled by one
expert and policy pairs labeled with [Uncertain] will be re-collected and re-
labeled through group discussion of all experts. After expert annotation, the
policy articles labeled as [Yes] are positive articles, while those labeled as [No]
are referred as hard negative ones for contrastive learning.

3.5 Dataset Release

CSPRD contains a Chinese policy corpus of 10,002 articles and 709 prospectus
examples from 545 companies listed on the STAR Market in China. CSPRD

4 https://github.com/PaddlePaddle/PaddleNLP.
5 http://www.sse.com.cn/lawandrules/sserules/tib/review/c/4729640.shtml.

https://github.com/PaddlePaddle/PaddleNLP
http://www.sse.com.cn/lawandrules/sserules/tib/review/c/4729640.shtml
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Fig. 4. Illustration of our proposed CSPR-MQA paradigm. The encoder adopts a PLM
whose input is moderately masked. The dual-decoder consists of 2 one-layer transformer
whose reference is the passage encoding from the encoder. The MLM decoder apply an
aggressive masking ratio, while the MQA only masks all the answer tokens.

is bilingual in Chinese and English: the origin language of CSPRD is simplified
Chinese, and the English version is translated by ChatGPT6 with direct prompt-
ing. The English version is for research purpose only, the translation quality has
no assurance from authors. We select 80% data of each category as the train set,
while the remaining 144 examples as the dev set (Fig. 4).

4 CSPR-MQA Pre-training

In this section, we introduce an aggressive method of masked language modeling
(MLM) namely masked question answering (MQA), which is designed to be a rig-
orous reconstruction task to further enhance encoding quality. Inspired by [19],
we propose CSPR-MQA, a novel retrieval oriented pre-training paradigm with
asymmetric dual-decoder structure and asymmetric masking strategy. CSPR-
MQA adopts a full-scale PLM as its encoder and two identical one-layer trans-
former as its dual-decoder, namely MLM decoder and MQA decoder.

4.1 Data Preprocessing

MQA aims to unify various forms of supervised NLP tasks7 into an unsupervised
form. We represent each sample as a quadruple [P , Q, C, A], where P for the
passage, Q for the query (automatically generated), C for the choices (possi-
bly empty), and A for the answer. We design customized questions for specific
supervised tasks and fixed questions for unsupervised corpus (Table 1).
6 https://openai.com/blog/chatgpt.
7 https://github.com/ningshixian/NLP-zoo.

https://openai.com/blog/chatgpt
https://github.com/ningshixian/NLP-zoo
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Table 1. Overview of preprocessed data for masked question-answering (MQA). Each
sample is formulated as a unified quadruple [P , Q, C, A], where P for the passage, Q
for the query (automatically generated), C for the choices (possibly empty), and A for
the answer.

Task Supervision Passage Query Choice Answer

CLUE-C3 Yes Joint Original Original Original

CLUE-iFLYTEK Yes Original Customized – Transferred

CLUE-tnews Yes Joint Customized – Transferred

CLUE-CMRC2018 Yes Original Original – Original

CLUE-AFQMC Yes Joint Customized Yes or No Transferred

CLUE-CMNLI Yes Joint Customized Customized Transferred

CLUE-CSL Yes Joint Customized – Joint

CLUE-DRCD Yes Original Original – Original

CLUE-CHID Yes Modified Customized – Transferred

CLUE-WSC2020 Yes Original Customized Yes or No Transferred

Dureader Yes Selected Customized – Original

News2016 No Original Customized – Joint

Wikipedia-zh No Modified Customized – Customized

4.2 Encoding

Given the passage P , we tokenize it into sequence XP with whole word masking
(WWM), where a small fraction (15%-30%) of its tokens will be replaced with
[MASK] for MLM tasks. Then we apply a BERT like PLM as encoder and we
select the [CLS] token in the last layer as the passage encoding HP .

4.3 Decoding

MLM Decoding. We first concatenate the triplet [Q, C, A] with prompts and
then tokenize it into sequence XQCA with WWM, where half of the tokens will be
replaced with [MASK] token. We adopt a one-layer Transformer with enhanced
decoding [19] as MLM Decoder, which is required to restore the aggressively
masked XQCA by referring the passage encoding HP .

MQA Decoding. We apply almost the same concatenation, tokenization and
masking as MLM Decoder, except that only the answer tokens are completely
masked. We adopt another same single-layer Transformer decoder to restore the
answer tokens XA to the question with the passage encoding HP as reference.
Such long consecutive token prediction is quite challenging, therefore, it urges
the system on higher quality encoding.

5 Experiments

In this section, we report the performance of lexical models, embedding mod-
els and fine-tuned PLMs on CSPRD dataset as baselines for future works. We
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evaluate the retrieval performance with four commonly used metrics for informa-
tion retrieval: mean reciprocal rank (MRR@10), normalized discounted cumula-
tive gain (NDCG@10), recall (R@10) and precision (P@10).

5.1 Models

Given an example pair (P,A) and a policy corpus C, where P is the prospectus
passage, A is the policy article. We define the relevance score r(P,A) for each
method below.

Lexical Methods: For lexical methods, the relevance score is defined as the
sum over the passage terms:

r(P,A) =
∑

t∈P

w(t, A) (1)

We calculate the weight with TF-IDF and BM25 [23] approaches respectively.

Embedding Methods: For embedding methods, the relevance score is defined
as the cosine similarity of the embeddings:

r(P,A) = CosineSimilarity(E(P ), E(A)) (2)

where E(·) is the embedding model.
We use the texts in CSPRD dataset to fit a word2vec (W2V-CSPRD) and

a doc2vec (D2V-CSPRD) models and test their performance on the dev set. In
addition to that, we also benchmark an open-sourced W2V embedding model
(W2V-Finance8) trained on finance texts.

Fine-Tuning Methods: The relevance score of embedding methods is defined
as the softmax score of the inner product of the encoding matrices:

r(P,A) = SoftmaxA∈C(E(P ) · E(A)T ) (3)

where E(·) is the encoding function of the fine-tuned models.
For embedding methods, we implement a bi-encoder framework with different

PLMs in size of BERTbase [7] as encoder. Our models are fine-tuned on the train
set of CSPRD with in-batch negative contrastive learning proposed in DPR [15].

Since the open-sourced RetroMAE [19] is pre-trained on English corpus, we
pre-train a RetroMAE model from scratch on ∼61GB publicly collected Chinese
corpus and then fine-tune it on the train set of CSPRD dataset. We adopt the
pre-trained Chinese BERT [4] as encoder, which was pre-trained with whole word
masking (WWM) [4] on extra ∼5.4B words of Chinese corpus. During our pre-
training, we respect the WWM strategy to keep consistency with the previous
pre-training. In the subsequent pre-training task, the model is pre-trained for 5
epochs with learning rate of 1e−4 and weight decay of 0.01. During fine-tuning,
each model is fine-tuned for 10 epochs with learning rate of 2e−5.
8 https://github.com/Embedding/Chinese-Word-Vectors.

https://github.com/Embedding/Chinese-Word-Vectors
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5.2 Evaluation Metrics

This paper employs four commonly used metrics for assessing the performance
of information retrieval and recommendation systems: Mean Reciprocal Rank
at 10 (MRR@10), Normalized Discounted Cumulative Gain at 10 (NDCG@10),
Recall at 10 (R@10), and Precision at 10 (P@10).

MRR@n (Mean Reciprocal Rank at n): MRR@n calculates the average of the
reciprocal ranks of the first relevant document for each query in a query set Q.
Here, ranki represents the rank of the first relevant document for the ith query.
If no relevant document appears within the top n results, then the contribution
of that query is zero. MRR prioritizes documents ranked higher. The formula
for calculation is:

MRR@n =
1

|Q|
|Q|∑

i=1

1
ranki

(4)

NDCG@n (Normalized Discounted Cumulative Gain at n): NDCG@n is a
metric that considers both the relevance of documents and their rank positions.
It penalizes poor ordering by diminishing the weight of documents ranked lower.
IDCG@n represents the ideal DCG@n, used to normalize the results so that
scores range between 0 and 1. The calculation formula is:

NDCG@n =
DCG@n
IDCG@n

(5)

where:

DCG@n =
n∑

i=1

2reli − 1
log2(i + 1)

(6)

Recall@n: Recall@n measures the proportion of relevant documents retrieved
within the top n results against the total number of relevant documents. It
focuses on retrieving as many relevant documents as possible. The formula for
calculation is as follows:

Recall@n =
|{relevant documents} ∩ {retrieved documents}|

|{relevant documents}| (7)

Precision@n: Precision@n measures the proportion of relevant documents
within the top n retrieved results against the total number of retrieved docu-
ments. It focuses on the accuracy of the retrieval results. The formula for calcu-
lation is as follows:

Precision@n =
|{relevant documents} ∩ {retrieved documents}|

|{retrieved documents}| (8)
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5.3 Results and Analysis

Our experiment results are shown in Table 2. As de facto standard methods, lex-
ical methods TF-IDF and BM25 show poor performance on our CSPRD dataset,
suggesting the challenge of our proposed policy retrieval task.

We discover that there is a positive correlation between policy relevance and
textual similarity of policy articles and prospectus passages. However, models
that exhibit good performance in textual similarity, without further fine-tuning,
still fail to achieve satisfactory results than fine-tuned models.

Traditional methods perform rather poorly, indicating that attempting to
address this task purely from the statistics of term frequency is quite challenging.
Large language models (LLMs) are decoder-only models, while such task requires
strong encoding capability, therefore, LLMs are not suitable for this task. For
this particular task, fine-tuning smaller models is still necessary and efficient.

Table 2. Retrieval benchmark of several approaches on CSPRD dev set. We pre-
trained RetroMAE [19] from scratch on ∼61GB Chinese corpus with Chinese BERT
[4] encoder. The models with † are fine-tuned with DPR [15] framework.

Model MRR@10 NDCG@10 Recall@10 Precision@10

TF-IDF 3.2 1.6 2.2 1.6

BM25 [23] 22.3 13.1 14.3 13.1

W2V-CSPRD 9.9 11.2 5.3 18.6

D2V-CSPRD 10.3 5.2 6.0 5.2

W2V-Finance 19.8 9.9 10.4 9.9

BERT† [4,7] 53.6 26.9 35.8 79.2

MacBERT† [4] 50.4 25.4 34.7 79.2

Mengzi† [31] 52.1 26.2 35.6 82.6

RetroMAE† [19] 54.8 27.1 35.8 79.9

CoSENT† [30] 56.1 28.5 37.5 80.6

CSPR-MQA† (Ours) 57.9 29.1 39.3 81.9

6 Limitations

As far as we are aware of, this work has the following 2 limitations:

6.1 Compromise Between Labor Costs and Decision
Comprehensiveness

This study employs three unsupervised methods to calculate the weighted scores
of text similarity for recommendation ratings, while human experts only eval-
uate whether the top 20 suggested policy entries match the paragraphs of the
prospectus. The annotation in this paper is based on the assumption that the
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relevance between a given prospectus paragraph and a given policy entry is
predicated on their text similarity. However, this assumption is made to sig-
nificantly reduce labor costs and minimize interference with human annotators
rather than based on statistical conclusions. This is because the research engaged
experts from the Shanghai Stock Exchange as full-time annotators, which incurs
higher labor costs compared to crowd-sourced annotation methods. Therefore,
for a given prospectus paragraph, there might be relevant policy entries that are
not marked. However, in real-world scenarios, such compromise on comprehen-
siveness is inevitable, as regulatory auditors are more likely to refer to textually
similar entries rather than recall all policy entries for judgment.

6.2 Limited Experiments on Pre-Trained Language Models

This study opted for the Chinese BERT series models [7] as the default pre-
trained language model encoders, and most experiments were conducted under
default settings. Despite the existence of better or larger Chinese pre-trained
language models, they have not undergone Whole Word Masking (WWM) pre-
training. This paper posits that WWM pre-training aligns with the increasing
trend from subword masking to clause masking, and even to whole sentence
masking, increasing the continuous masked token lengths. Therefore, pre-trained
language models that have undergone WWM are capable of bridging the gap
between short and long sequences of continuous masked tokens. It is noteworthy
that subsequent derivatives of BERT might yield better performance; however,
due to limited computational resources, this paper only selected the Chinese
BERT as the base model for a comprehensive set of tests.

7 Conclusion

In this paper, we introduce the Chinese Stock Policy Retrieval Dataset (CSPRD),
a compilation of over 700 prospectus passages accompanied by pertinent policy
articles meticulously annotated by experts from the Shanghai Stock Exchange.
We assessed numerous information retrieval baselines, demonstrating the utility
and promise of CSPRD dataset. In order to improve the encoding quality, we
proposed a retrieval oriented pre-training paradigm, CSPR-MQA, which achieves
significant better scores on CSPRD after pre-training by our designed masked
question-answering (MQA) task. Our work bridges a notable gap in the realm
of financial datasets for NLP and paves way for future study on policy retrieval
task.
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Abstract. The number of individuals investing in stocks has increased
due to the need for retirement asset-building and government recommen-
dations. However, many of these investors are novices, making adequate
stock trading support increasingly crucial. Existing systems for stock
trading based on reinforcement learning primarily react to SNS posts
or news that impact stock prices in short-term failing to leverage infor-
mation that impacts stock prices in the medium- to long-term, such as
earnings reports. This study proposes a reinforcement learning method
for stock trading support that integrates texts affecting stock prices in
the medium- to long-term, alongside texts impacting prices in the short-
term. Our method updates the network that extracts features from these
two types of texts, thereby acquiring strategies to assist stock trading.
When applied to learning and testing stock trading scenarios, the pro-
posed method demonstrates a higher return rate than existing methods
and index investing.

Keywords: Stock trading · Heterogeneous Text Data · Investment
Informatics · Reinforcement Learning

1 Introduction

The landscape of stock investment is witnessing a significant surge, driven by the
growing necessity for retirement asset accumulation and governmental endorse-
ments. Data from the TSE “Stock Distribution Survey” evidences a continuous
rise in the number of individual shareholders in Japan, peaking at 69.82 mil-
lion in 2022 [6]. Amidst this growth, bolstered by the Japanese government’s
expansion of tax-free investment limits for 2024, most individual investors need
essential investment knowledge, posing a challenge to efficient market participa-
tion. Surveys by the Japan Securities Dealers Association and The Investment
Trusts Association of Japan in 2023 and 2020 reveal a stark gap in financial
literacy and investment education among potential investors [7,26].

Various stock trading support systems have been studied in response to the
critical need for supporting novice and seasoned investors. Algorithmic trad-
ing, portfolio management, and order execution are some areas of stock trading
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Fig. 1. Overview of Propose Method

support [14]. In recent years, research and development of stock trading sup-
port systems using reinforcement learning has been particularly active [24,25].
However, existing research has yet to fully use information with medium- to long-
term effects on stock prices, such as earnings reports. As a result, conventional
systems have not been able to simultaneously consider events with short-term
effects on stock prices and those with medium- to long-term effects on stock
prices. For instance, Ramit et al. [24] only targets tweets and news, so it cannot
fully consider medium- to long-term effects.

In this paper, we propose a novel reinforcement learning approach for stock
trading that leverages both short-term (such as news and tweets) and medium-
to long-term textual information (such as earnings reports) to inform trading
decisions. Contrary to existing models that predominantly focus on immedi-
ate market reactions to social media posts and news, our method comprehen-
sively encompasses events with enduring impacts on stock prices. Figure 1 shows
an overview of the proposed method. The short-term and medium- to long-
term texts are encoded and used as features that constitute the environment
in DDPG [13] to learn strategies for stock trading. This dual-text strategy is
encoded within a DDPG framework, offering a sophisticated tool for learning
and executing stock trading strategies that account for a broader spectrum of
market influencers.

The remainder of this paper is organized as follows: Sect. 2 introduces related
work. Section 3 explains previous studies’ terminology, problem definition, and
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terms. Section 4 introduces the proposed method. Section 5 presents experimen-
tal results and discusses them. Section 6 concludes this paper.

2 Related Work

Stock trading support systems are characterized by a rich tapestry of method-
ologies, ranging from traditional analyses to cutting-edge reinforcement learning
techniques.

Kirihata et al. [8,9] propose a method for detecting trends to estimate finan-
cial market conditions. Patel et al. [19] propose a method for predicting stock
prices using supervised learning focusing on stock price volatility. Among the
pioneering approaches in the realm of stock trading support systems, the het-
erotopic model proposed by Baba et al. [23] stands out for its innovative use of
mixed data types. By integrating numerical data from stock prices with textual
information from news articles, their model delves into the intricate relationship
between firms’ activities and market perceptions to forecast stock price move-
ments.

The contributions of Takeda et al. [5], Lee et al. [11,12], and Liu et al.
[15,16] pivot towards social trading services, emphasizing the importance of
trader expertise and behavior in influencing trading strategies. Takeda et al. use
a matrix factorization model to recommend that traders showcase an innovative
application of machine learning to enhance social trading platforms. Similarly,
Lee et al. and Liu et al. focus on identifying expert traders through portfolio
theory, integrating traditional financial principles with contemporary computa-
tional techniques, offering a novel lens through which trader performance can be
assessed within social trading environments.

Sakaji et al. [22] focus on leveraging syntactic patterns in economic newspa-
per articles to extract causal relationships using machine learning. This approach
underscores the potential of natural language processing (NLP) in uncovering
market insights from unstructured text data. Sakai et al. [21] extend the appli-
cation of text analysis to financial statements, aiming to extract business per-
formance indicators. Their work exemplifies how textual analysis can be applied
to formal financial documents to predict company and market performance.

Filos et al. [4] and Cong et al. [17] both utilize reinforcement learning for
managing stock portfolios, incorporating market trends and stock price fluctua-
tions. These studies showcase reinforcement learning’s capacity to adapt to and
capitalize on complex market dynamics. Ramit et al. [24] and Gupta et al. [10]
further the application of reinforcement learning by analyzing market trends
through social media inputs like tweets and news. Their work demonstrates the
relevance of real-time public sentiment and news in shaping market strategies.
However, these methods use a single type of textual data as input and is insuf-
ficient to take into account diverse influences on the stock market.

This study proposes a novel reinforcement learning framework that harmo-
nizes news and social media immediacy with the depth of earnings reports and
financial disclosures. By doing so, we aim to offer a more holistic view of market
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dynamics, enabling investors to make more informed decisions grounded in a
fuller spectrum of market influencers.

3 Preliminaries

3.1 Terms

Short-term text Text that is expected to have a short-term impact on stock
prices, such as posts and news.

Medium- to long-term text Text that is expected to have medium- to long-
term effects on stock prices, such as a company’s earnings reports or economic
indicators.

Market-information observation Om Refers to Short-term text and
Medium- to long-term text in the reinforcement learning context.

Stock features p The features of stocks obtained from the Short-term text and
Medium- to long-term text.

Short-term stock features p′
s Features of stocks obtained from the Short-term

text.
Medium- to long-term stock features p′

l Features of stocks obtained from
the Medium- to long-term text.

Action Actions in the stock training include buying, selling, and holding.
Commission A generic term for trading and execution commission fee incurred

when buying or selling.
Time step τ A time step (one day in our study) is the time unit for a trading

model’s actions and updates.
Trading-account observation Oτ The balance in the trading account and the

number of positions of each stock at time step τ .
Initial assets The assets at the time of the start of a stock trading. Initial

assets consist of the balance in the trading account (cash).
Final assets The assets at the end of the trading. Final assets consist of the

balance in the trading account (cash) and the total stock holdings at that
time.

3.2 Problem Definition

The inputs to our trading model comprise a mixture of short-term texts, includ-
ing tweets and news articles, and medium- to long-term texts, such as earnings
reports, alongside stock prices. At each time step, the model evaluates these
inputs-balancing the immediate insights from short-term texts and the strategic
implications of medium- to long-term texts with the current stock prices-to deter-
mine the most advantageous trading actions. The output, a sophisticated stock
trading support strategy, evolves continuously through reinforcement learning
techniques. This dynamic adaptation ensures that the strategy remains opti-
mized for both current market conditions and future expectations.

In this study, stock trading is formulated as a reinforcement learning problem
based on the method of Ramit et al. [24]. State, action, and reward are defined
as follows.
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Fig. 2. Ramit method (adapted from [24])

State. At time τ , state sτ consists of trading-account observation Oτ and market-
information observation Om. The trading-account observation Oτ is composed
of the account balance and the number of holdings of each stock at time step τ .
Market-information observation Om consists of the short-term texts related to
each stock announced during T days backward from time step τ and the N most
recent medium- to long-term texts at time step τ .

Action. The agent takes one of three actions for each stock at time step τ : buy,
sell, or hold.

Reward. Rewards are represented as the change in value when an action is taken
in state sτ and a new state sτ+1 is reached. Let r be the reward, aτ the action
at time step τ , bτ the account balance, pτ the stock price vector of a stock,
hτ the number of stocks held, and c the transaction fee, and define the reward
r(sτ , aτ , sτ+1) as follows.

r(sτ , aτ , sτ+1) = (bτ+1 + pT
τ+1hτ+1) − (bτ + pT

τ hτ ) − cτ (1)

3.3 Base Model

Here, we explain the quantification approach of Ramit et al. [24], which serves
as the base model of our method. Hereafter, we will refer to this approach as the
Ramit method.

Model. Figure 2 shows the trading model proposed in the Ramit method. Ini-
tially, tweets (i.e., posts) and other relevant texts undergo tokenization before
being fed into a BERT-based encoder [3]. This encoder aggregates the final
hidden layer outputs across all tokens to generate an encoded embedded repre-
sentation. The significance of the timing and irregularity of tweets, as observed
by O’Hara et al. [18], is addressed by employing a Time-aware Long Short-Term
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Memory (TLSTM) model, as proposed by Baytas et al. [2], to capture the tem-
poral irregularities inherent in tweets. Acknowledging the insight by Barber et al.
[1] that not all tweets exert equal influence on market movements, Ramit method
incorporates an attention layer to highlight texts with a more pronounced effect
on stock prices. This refined output is then processed again through the TLSTM
and attention layer to derive a market feature vector pτ , representing the aggre-
gated impact of tweets over the past τ days. The market feature vector pτ is
concatenated with the trading-account observation vector Oτ to compose the
comprehensive state vector sτ = [Oτ , pτ ]. This vector sτ serves as the input to a
forward-propagating neural network, which employs a tanh activation function,
and determines the action aτ for each stock at the time step τ .

Training. Ramint method employs the Deep Deterministic Policy Gradient
(DDPG) algorithm, as elucidated by Lillicrap et al. [13], to facilitate the train-
ing. The DDPG framework is adept at handling continuous action spaces, mak-
ing it particularly suitable for stock trading models. In implementing the Ramit
method, Ramit et al. adopt a distinct separation between action execution and
performance evaluation, encapsulated by the Actor and PROFIT Critic compo-
nents, respectively. The Actor is responsible for determining actions aτ in any
given state sτ , which subsequently leads to a reward rτ and transitions the model
to the next state sτ+1. Meanwhile, the PROFIT Critic evaluates these actions
by outputting a scalar value Q(sτ , aτ ), representing the expected return from
state sτ when action aτ is taken. Transition experiences, denoted as tuples (sτ ,
aτ , sτ+1, rτ ), are accumulated in a buffer D. This repository facilitates expe-
rience replay, a crucial aspect of stabilizing the learning process. A mini-batch
B consisting of N transitions is randomly sampled from D for model updates.
This selection enables the efficient training of the network by approximating
the gradient of the expected return with respect to the Actor’s parameters and
updating the critic’s evaluation based on the temporal difference error. For each
batch B, DDPG minimizes the following loss L with respect to φ and updates
the PROFIT Critic as follows.

yτ = rτ + γQφ′
(sτ+1, μ

θ′
(sτ+1)) (2)

L = E[(yτ − Qφ(sτ , aτ ))2] (3)

yτ is the updated Q value. γ is the discount factor. θ and θ′, φ and φ′ are the
two copy parameters of the policy μ and the value function Q, respectively. The
actor is updated using the policy gradient ∇θ J via backpropagation through
time as follows.

∇θJ = E[∇aQφ(sτ , μθ(sτ ))∇θμ
θ(sτ )] (4)

4 Proposed Method

In this study, we expand the conventional scope of input data for stock trading
models by incorporating tweets and news that exert short-term influences on
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stock prices and earnings reports that have medium- to long-term effects. This
approach recognizes the multifaceted nature of market dynamics, where imme-
diate reactions to news events and the gradual assimilation of comprehensive
financial disclosures play critical roles. By proposing a model that adeptly lever-
ages this diverse spectrum of textual information, our reinforcement learning
framework is uniquely positioned to capture a more holistic view of the factors
impacting stock price movements. This integrated perspective aims to enhance
the model’s predictive accuracy and, ultimately, its trading performance. The
proposed model is shown in Fig. 3.

4.1 Encording

In the original Ramit method, the BERT model [3] was employed to tokenize
tweets on a word-by-word basis. However, this approach does not adequately cap-
ture the relational nuances and contextual coherence within larger texts, such
as earnings reports, where the inter-sentence connections are pivotal. To address
this limitation and more accurately represent the intricate relationships between
sentences in both short- and medium- to long-term texts, we adopt Sentence-
BERT [20]. This adaptation allows for the processing of entire sentences, thereby
preserving the textual context and enhancing the representation of semantic con-
nections. By inputting full sentences into SentenceBERT, we extract embedded
representations from the final hidden layer of each sentence. This unified encod-
ing method via SentenceBERT for all types of text data ensures a more coherent
and contextually aware analysis, significantly improving the model’s ability to
discern and leverage the nuances in both short-term events and longer-term
financial disclosures.

4.2 Feature Generation

This section describes our method for obtaining short-term stock features p′
s,

and medium- to long-term stock features p′
l.

Short-Term Texts. For the analysis of short-term texts, spanning back τ
days from the trading date, we continue to apply the Time-aware Long Short-
Term Memory (TLSTM) and attention mechanisms, as delineated in the Ramit
method. This approach yields the short-term market feature p′

s, analogous to
the pτ feature vector in the Ramit method, ensuring that our model captures
the transient market sentiments and information flows with improved contextual
awareness.

Medium to Long-Term Texts. In contrast to short-term texts, medium- to
long-term texts, such as earnings reports, are characterized by less frequent publi-
cation intervals. This infrequency introduces a temporal discrepancy, denoted as
Δt, between the text’s announcement date and the trading day under considera-
tion. To accurately account for the latent impact of this time difference on stock
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Fig. 3. Proposed method

prices, our model employs Time-aware Long Short-Term Memory (TLSTM) [2].
This approach adeptly captures the nuanced influence of medium- to long-term
texts on stock market behavior as it varies over time, ensuring that our analysis
reflects the temporal dynamics of the information’s market impact.

Furthermore, acknowledging the insight by Barber et al. [1] that not all
reports exert equal influence on stock valuation, we implement an attention
mechanism within the processing of medium- to long-term texts. This mech-
anism is designed to sift through the N most recent reports, identifying and
emphasizing those with the most significant implications for stock prices. By
applying this focused attention layer, we derive the medium- to long-term mar-
ket feature vector p′

l, which encapsulates the distilled essence and predictive
power of the N scrutinized reports.

4.3 Action Determination

To construct a comprehensive state representation at each time step τ , our model
aggregates the short-term stock features p′

s, medium- to long-term stock features
p′

l, and the trading-account observation vector Oτ . These components are con-
catenated to form the overall stock-level representation zτ = [Oτ , p′

s, p
′
l]. This

holistic state encapsulation ensures that a nuanced understanding of both cur-
rent market sentiments and deeper financial trends alongside the current trading-
account observation informs the decision-making process.
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Subsequently, the model employs a Multi-Layer Perceptron (MLP) with a
tanh activation function to determine the trading action aτ for each stock at
this time step. The tanh function facilitates the output of actions within a nor-
malized range, enabling precise and calibrated trading decisions responsive to
the synthesized state information. This methodology allows for the dynamic and
informed adjustment of trading strategies, grounded in a comprehensive analysis
of both short-term and medium- to long-term market influences.

We update our model by using DDPG, the same as the Ramit method, where
PROFIT Critic and Actor are updated using Eqs. (2), (3) and (4), respectively.

5 Experiment

We rigorously train and test our proposed method on 20 of the most actively
traded stocks listed on the NASDAQ, one of the leading stock exchanges in
the United States. This empirical analysis is designed to comprehensively eval-
uate our model’s performance and distinct advantages in a real-world trading
environment. We conduct a detailed analysis against existing trading support
methods to elucidate our approach’s comparative strengths. This comparison
aims to highlight our model’s unique contributions and potential improvements,
particularly regarding return on investment and risk management. Furthermore,
we undertake a series of experiments to assess the robustness and adaptability of
our proposed method under varying conditions. By altering the trading period
and the initial asset allocation, we aim to explore our model’s operational flex-
ibility. This will allow us to identify the optimal conditions and configurations
under which our method exhibits superior performance, thereby providing valu-
able insights into its practical application and effectiveness in different trading
scenarios.

5.1 Datasets

In our experimental design, we leverage a two-pronged approach to text data
integration, combining short-term and medium- to long-term textual influences
on stock market behavior. For short-term text data, we utilize tweets related
to each stock, sourced from the dataset collected by Xu et al.1, spanning from
December 2014 to December 2015. These tweets, all in English and capped at
five per stock per date, offer immediate market sentiments and reactions. The
dataset is partitioned into a training set covering December 2014 to September
2015 and a testing set, from October 2015 to December 2015, to evaluate our
model’s predictive capability over distinct temporal segments.

For medium- to long-term text data, our analysis incorporates both annual
(10-K) and quarterly (10-Q) performance reports of each stock, as filed with
the U.S. Securities and Exchange Commission2, from June 2014 to December

1 https://github.com/yumoxu/stocknet-dataset/tree/master.
2 https://www.sec.gov.

https://github.com/yumoxu/stocknet-dataset/tree/master
https://www.sec.gov
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2015. Due to the varied impact of different sections within these reports, our
focus narrows to segments likely to influence stock prices, such as Management’s
Discussion and Analysis of Financial Condition and Results of Operations. The
temporal division for this data mirrors that of the tweets, with the training
period extending from June 2014 to September 2015 and the testing phase from
April 2015 to December 2015.

The stock price data, precisely the closing price for each stock on each trading
day, is a critical component of our experimental dataset. This consistent use of
closing prices in training and testing phases ensures a standardized measure of
market response to the synthesized insights derived from our textual analysis.

5.2 Experimental Setup

Trade Conditions. In this study, we focus on a curated selection of 20 stocks
from the NASDAQ, specifically targeting those with the highest trading vol-
umes. To incorporate a realistic trading cost into our model, we have standard-
ized the commission rate across all transactions. We assume a commission rate of
0.495% of the total transaction amount, acknowledging the variability of commis-
sion structures across different brokerage services. Furthermore, our experiment
operates under the constraint that the account balance cannot become negative.
Consequently, any attempted purchase exceeding the available account balance
is automatically canceled, with the model defaulting to a ‘hold’ action for that
trading period.

Hyperparameters. In aligning our experiment with the established Ramit
method [24], we configure the market-information observation Om to retrospec-
tively include short-term texts from 7 days and a single instance of medium- to
long-term text. This temporal configuration ensures a balanced incorporation of
immediate market reactions and longer-term financial insights into our model’s
decision-making process. For the reinforcement learning model updates, like the
Ramit method, we adopt a granular approach by setting the mini-batch size to
1, facilitating real-time learning and adaptation. The buffer size is configured
at 25. Over the course of the experiment, we undertake a total of 27,200 train-
ing steps, equivalent to 100 epochs. The experiment delineates a clear temporal
framework for training and testing: the training period spans from January 1,
2015, to September 30, 2015, and the testing period is from October 1, 2015,
to December 31, 2015. In the training phase, our simulation is underpinned by
an initial asset allocation of 100,000 USD for the training phase, which provides
a standardized baseline from which to assess the model’s performance and the
effectiveness of its trading strategies.

Evaluation Metrics. We use the rate of return, Sharpe ratio, and maximum
drawdown to evaluate the test results.

The Rate of Return (ROI) represents the percentage change in the value of
an investment over a specified trading period. This metric provides a straightfor-
ward indication of the investment’s performance by quantifying the percentage
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gain or loss relative to the initial capital outlay. It is calculated by comparing
the final asset value, bf , to the initial asset value, b0, according to the formula:

ROI =
bf − b0

b0
(5)

The Sharpe ratio (SR) measures whether or not a return has been made
commensurate with the risk taken in the investment. A higher value indicates
higher investment efficiency. The trading profit from the method is Ra, and the
profit from the risk-free asset is Rf . Note that the value of Rf is set to 0 in this
experiment.

SR =
E[Ra − Rf ]
std[Ra − Rf ]

(6)

The maximum drawdown (MDD) is the maximum rate of asset decline over
the trading period, and the smaller this value is, the less risky the trade is.
The maximum drawdown MDD is expressed as follows, where bmax is the maxi-
mum amount of the asset during the trading period, and bminx is the minimum
amount.

MDD =
bmin − bmax

bmax
(7)

We compared the following methods.

– T method: Ramit method using only short-term text.
– S method: Proposed method using only medium- and long-term text.
– TSt method: Proposed method considering the time difference between the

transaction date and the mid-to the long-term text announcement date.
– TS method: Proposed method without considering the time difference

between the transaction date and the mid-to the long-term text announce-
ment date.

5.3 Experimental Results

The results with a trading period of one month and an initial asset value of
100000 USD are shown in Table 1. The descending order of performance based
on rates of return is TSt, TS, S, and T. This hierarchy underscores the superiority
of the proposed method (TSt) over the existing and other evaluated methods
in terms of generating returns. When assessing risk via maximum drawdown,
the methods rank from least to most risk as S, T, TSt, and TS. This ranking
indicates that the proposed method (TSt) is associated with the highest risk
compared to the other strategies. This observation is pivotal, reflecting the trade-
off between risk and return that the proposed method embodies. Regarding the
Sharpe ratios, the order is TSt, TS, S, and T. This suggests that the proposed
method not only yields the highest returns but also does so with a superior
risk-adjusted performance. The Sharpe ratio, a measure of the excess return per
unit of risk, highlights the efficiency of the proposed method (TSt) in balancing
higher returns against the risks incurred.
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Table 1. Experimental Results

Method ROI SR MDD

T −0.0067 ± 0.0018 −0.24 ± 0.15 −3.28 ± 0.08

S −0.0015 ± 0.0023 0.05 ± 0.17 −3.03 ± 0.08

TSt 0.0296 ± 0.0043 1.96 ± 0.25 −3.68 ± 0.11

TS 0.0275 ± 0.0039 1.95 ± 0.23 −3.37 ± 0.09

The fact that the TSt and TS methods have higher rates of return than the
T and S methods suggests that both short-term and medium- to long-term texts
impact stock prices. This suggests that using both short-term and medium- to
long-term texts in stock price forecasting leads to higher accuracy than using
either one of them. The fact that the TSt method has a higher rate of return than
the TS method suggests that the passage of time from the announcement date of
the medium- to long-term statement affects the stock price. This suggests that,
when using medium- to long-term texts in stock price forecasting, considering
the passage of time from the announcement date to the trading day at the same
time will improve accuracy.

These insights confirm that the proposed method (TSt) not only excels in
achieving higher rates of return but also demonstrates an optimized balance
between risk and reward, as evidenced by its Sharpe ratio. Although it incurs
more risk, as shown by the maximum drawdown metric, the method’s ability to
deliver higher risk-adjusted returns positions it favorably against existing and
other comparative methods.

5.4 Comparison with Index-Based Method

To evaluate the efficacy of our proposed TSt method as a trading support mech-
anism, we analyzed its performance against traditional index-based investing.
Specifically, we examined the rate of return for the TSt method, with initial
assets set at 10,000 USD and a trading period of three months. This period
commenced on October 1, 2015, with the initial date normalized to zero for ana-
lytical clarity. Figure 4 illustrates the progression of the TSt method’s rate of
return compared to the average rate of change in stock prices for the 20 stocks
under consideration. The result revealed that, by the end of the trading period,
the rate of return achieved through the proposed TSt method notably surpassed
the average rate of change in stock prices of the selected stocks. This outcome
underscores the TSt method’s superior profitability when juxtaposed with the
benchmark index investment approach.

5.5 Effects of Periods and Initial Assets

To rigorously evaluate the performance of our proposed trading method, we
conducted tests across a range of trading periods and initial asset levels. The
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Fig. 4. Comparison with Index Investment

trading periods examined include 1 week, 1 month, 2 months, and 3 months.
For each of these durations, we systematically shifted the starting date of the
trading period beginning from October 1, 2015, in one-week increments (e.g.,
to October 8, 2015, October 15, 2015, etc.). Each specific starting date within
these increments was tested, and the results were averaged to determine the per-
formance outcome for the respective trading period. Furthermore, we explored
the impact of varying initial asset amounts on the efficacy of our trading strat-
egy. The initial assets considered in our tests were 10,000 USD, 100,000 USD,
1,000,000 USD, and 10,000,000 USD. This range was chosen to simulate different
scales of investment capital and assess how well our method adapts to varying
financial contexts.

Effects of Trading Period. The results are shown in Table 2. In summary,
while longer trading periods are conducive to higher profitability, they also intro-
duce greater levels of risk, as evidenced by larger maximum drawdowns. Con-
versely, shorter trading periods, particularly the one-week timeframe, exhibit a
more favorable risk-adjusted return profile, as indicated by their Sharpe ratios.
This nuanced understanding of the trade-off between profitability and risk across
different trading durations is crucial for tailoring trading strategies to individual
risk tolerance and investment objectives.

Effects of Initial Assets. The results are shown in Table 3. The lower initial
asset sizes tend to offer higher rates of return and more favorable risk-adjusted
returns, as indicated by the Sharpe ratios. Generally, a higher initial investment
is expected to lead to a more balanced and potentially conservative strategy,
possibly affecting the maximum drawdown and Sharpe ratios.
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Table 2. Results in Different trading periods (TSt method)

Trading period ROI SR MDD

1 week 0.0071 ± 0.0009 2.91 ± 0.32 −0.35 ± 0.02

1 month 0.0296 ± 0.0043 1.95 ± 0.25 −3.68 ± 0.11

2 months 0.0756 ± 0.0463 2.64 ± 1.29 −4.38 ± 0.54

3 months 0.1364 2.87 −5.32

Table 3. Results in Different Initial Assets (TSt method)

Initial asset ROI SR MDD

10000.0 0.0457 ± 0.0059 2.37 ± 0.28 −4.23 ± 0.12

100000.0 0.0296 ± 0.0043 1.95 ± 0.25 −3.68 ± 0.11

1000000.0 0.0056 ± 0.0011 1.88 ± 0.26 −0.95 ± 0.05

10000000.0 0.0006 ± 0.0001 1.87 ± 0.26 −0.1 ± 0.0

6 Conclusion

This paper introduces a novel reinforcement learning approach that synergis-
tically integrates short-term and medium- to long-term text data to construct
more informed and robust trading models. Experimental results reveal that the
proposed method yields significantly higher returns than existing models and tra-
ditional index investment strategies. As we look to the future, this study paves
the way for further exploration into integrating even more varied data types,
potentially including non-textual information, to refine and enhance predictive
models for stock trading across different markets and strategies.
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Abstract. Network pharmacology is a research method based on bio-
logical information data and networks, which can reveal the mechanism
of action of Traditional Chinese Medicine, and then discover more active
substances with therapeutic effects. However, most of the existing TCM
databases lack the collection of TCM prescription data and in-depth
data mining and visualization for both TCM and its related information,
leading to a limited support in network pharmacology research. In this
paper we have constructed Traditional Chinese Medicine Information
Database Platform (TCMIDP) for network pharmacology research. It
is composed of TCM composition information database and Web-based
built-in TCM network pharmacology module. The TCM composition
information database collects hierarchical data which contains 4 kinds
of TCM resource entities and 6 kinds of associations. In the Web-based
TCM network pharmacology module, a visual interactive network dia-
gram displays the data entities and their associations. To mine the TCM
data in the above database, node mining and clustering analyses are pro-
vided for users to do network pharmacology research. The analyses result,
coupled with the visual interactive network diagram can help exploring
the 4 types of TCM resource entities that have key regulatory functions
in the integrated information network of TCM. TCMIDP makes a sig-
nificant contribution to data collection, data mining and visualization
analysis of TCM, and provides more valuable information support for
network pharmacology research.

Keywords: TCM database · Data mining and visualization · TCM
network pharmacology research

1 Introduction

Traditional Chinese Medicine (TCM) herbs and prescriptions are increasingly
valued for their therapeutic effects and low toxicity in modern medicine, particu-
larly in treating complex diseases like cancer [1,2]. TCM prescriptions, with their
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complex components and synergistic interactions, align with network pharma-
cology’s “multi-components, multiple targets” approach. Network pharmacology,
which analyzes the relationships between diseases and medicines using compu-
tational and data management tools, has shifted drug discovery from the “one
target, one drug” model to a “network target, multiple component therapeutics”
model [3–5]. This advancement is accelerating drug discovery and modernizing
TCM.

In recent years, there are a variety of TCM databases and drug target
databases [1,6–9]. But they lack comprehensive prescription data and cross-level
associations analysis, hindering in-depth research. Researchers require robust
TCM data support and advanced data visualization and mining techniques to
fully explore TCM complexities and uncover underlying rules and associations.

In this study, we have built a Traditional Chinese Medicine Informa-
tion Database Platform (TCMIDP, http://www.ljh-lab.cn:82/MedicineCore/),
which makes a significant contribution to data collection, data mining and visu-
alization analysis of TCM, and provides more valuable information support for
TCM network pharmacology research. Our main contributions include:

– We constructed TCM composition information database(see in Fig. 1A) which
collects 4 kinds of entity data of prescriptions, medicinal plants, compounds,
targets. Moreover, we modeled and collected 6 kinds of associations(including
3 kinds of direct associations and 3 kinds of cross-level associations) between
them. This provides a data base to assist TCM network pharmacology
research.

– We transformed the hierarchical integration data into visual network dia-
grams to visually show the data entities and their associations based on the
user’s search result. This provides a powerful tool for TCM network phar-
macology research, contributing to a deeper and more comprehensive under-
standing of the complexity of the TCM system.

– We carried out data mining based on the user’s search result and options to
provide more effective information for TCM network pharmacology research
and discover potential rules and associations of TCM.

2 Database Contents and Access

TCMIDP models key TCM entities and their associations, providing a compre-
hensive, accessible resource for understanding TCM efficacy and mechanisms.
Through hierarchical data modeling and interactive visualization, it supports
advanced research and data mining in network pharmacology.

Hierarchical Data Modeling. In TCMIDP, there are 2 key entities which
are prescription and herb, and 2 associated entities which are compound and
target. Considering that most herbs come from plants, here medicinal plant is
used to stand for herb. There are two steps in data modeling, model the entities
and construct the associations between them. The first step is to model the 4

http://www.ljh-lab.cn:82/MedicineCore/
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cology module.

entities, each with specific information attributes. The second step involves mod-
eling associations between these entities, forming a multi-level chain-associated
integration model. Direct associations exist between two entities, while indirect
associations form chain-like associations between entities. This model encom-
passes all data types and associated links relevant to modern research on TCM
efficacy and mechanisms, providing foundational data for filtering and mining
functionalities.

Database Statistics. TCMIDP contains a TCM composition information
database (see in Fig. 1A), encompassing 4 types of TCM resource entities and
6 kinds of associations (Table 1). To improve accessibility, it includes feature
ordering and details linking functions. The database comprises 3 direct associ-
ations: prescription-plant, plant-compound, and compound-target; and 3 cross-
level associations: prescription-compound, plant-target, and prescription-target,
facilitating the construction of pathways from TCM resources to the network
pharmacology system. The database table structure is shown in Fig. 2.

Result Presentation. TCMIDP uses a visual interactive network diagram(see
in Fig. 1B) to enhance data presentation and mining for TCM research. This dia-
gram, constructed using Cytoscape.js, displays hierarchical data through nodes
(prescription, plant, compound, target) and edges (associations). Users can inter-
act with the diagram by expanding network relationships, highlighting nodes and
their connections, and viewing entity data. This visualization helps users intu-
itively understand node importance, distribution patterns, and cluster roles in
biological networks, supporting effective application of network pharmacology
mining algorithms.
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Table 1. Data volume and source of TCMIDP

Item Amount Source

Prescription 182 The classic prescriptions provided by the
ECUST, School of Pharmacy

Plant 9,834 TCM3D (SIMM, CAS), TCMSP

Compound 23,133 NatureCompound (SMMU), TCM3D
(SIMM, CAS), TCMSP, PubChem

Target 4,351 Drugbank, PharmMapper

Prescription - Plant 9,297 Ingredients of a prescription

Prescription - Compound 137,967 Based on Prescription-Plant,
Plant-Compound associations

Prescription - Target 575,958 Based on Prescription - Plant - Compound -
Target association

Plant - Compound 49,805 NatureCompound (SMMU), TCM3D
(SIMM, CAS)

Plant - Target 227,293 Based on Plant - Compound, Compound -
Target associations

Compound - Target 35,383 TCMSP

3 Data Mining

Using the visual interactive network diagram and node order control method,
TCMIDP enables hierarchical data mining. By clustering plants and compounds
based on common compounds and targets, users can identify key prescriptions,
TCM components, and action targets. This aids in understanding TCM mecha-
nisms at prescription and molecular levels, advancing TCM and network pharma-
cology research. TCMIDP also provides comprehensive association data statis-
tics and allows users to download node and edge relationship data for further
analysis.

Node Order Control Method. We introduce an order control method for
visual interactive network diagrams, based on the theory that significant impact
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on a central node occurs within three degrees of separation [10]. This method
aggregates distant node information in topological networks, allowing users to
assess node importance in sub-networks with varying step lengths. The order is
relative; for example, prescription nodes interact with plant nodes at 1st order,
compound nodes at 2nd order, and target nodes at 3rd order.

Importance Calculation. The visual network diagram calculates the impor-
tance of four types of nodes using Betweenness Centrality (BC), Closeness Cen-
trality (CC), Degree Centrality (DC), and PageRank. These metrics highlight
significant nodes, ranked in descending order for easy identification of the top
nodes. The backend normalizes and returns results, displayed in a sortable table
using abbreviations BC, CC, and DC for simplicity. A counter component con-
trols the recommendation order, from first to third-order subgraphs.

Node Clustering Analysis. We proposed an algorithm to study node corre-
lation within the same hierarchical level by analyzing cross-interactions of com-
ponents, used for node clustering calculations across four data types: prescrip-
tions, plants, compounds, and targets. Higher proportions of shared components
within same-level data indicate greater similarity, such as prescriptions sharing
common plants. The algorithm employs both forward and reverse clustering:
forward clustering uses the current node and subsequent neighboring nodes for
clustering, while reverse clustering uses preceding neighboring nodes. For exam-
ple, prescriptions are clustered based on shared plants (forward), and plants
based on shared prescriptions (reverse). Visualization of clustered nodes, with
central nodes as diamonds and clustered nodes as circles, helps observe node
distribution and cross-cluster relationships (see in Fig. 1B). Distinct clustered
distributions suggest loosely integrated clusters, while non-distinct distributions
indicate associations between clusters. Here are two scenarios: If the visualized
nodes exhibit a distinct clustered distribution, it indicates that the clustering
results are not tightly integrated (see in Fig. 3A); If the visualized nodes do not
show a clustered distribution, it suggests a association between the clustering
results (see in Fig. 3B).

1 2

3
A B

Fig. 3. In Figure A, multi-cluster clustering results are not closely related, There are
no related nodes between the five clusters. In Figure B, multi-cluster clustering results
are related, cluster 1 and 2 have 3 related nodes, cluster 2 and 3 have 4 related nodes,
cluster 1 and 3 have 3 related nodes.
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4 User Evaluation

We asked some users about their experience with TCMIDP, and they believe
that TCMIDP performs well in terms of data integrity, visualization, data min-
ing capabilities, usability, and interactivity, making it a recommended research
tool. However, there are also some shortcomings, such as large data volumes
potentially causing slow loading speeds, and some users may need more detailed
operational guidance. In future development, optimizations and improvements
can be made in these areas to meet the needs of more users.

5 Conclusion

In this work, we have constructed TCMIDP, a platform that serves as a valu-
able tool for conducting TCM network pharmacology research. To address the
limitations of previous TCM databases, we constructed the TCM composition
information database and carried out in-depth data mining and visualization.
TCMIDP significantly enhances the landscape of data gathering, data mining,
and visualization analysis in the field of TCM, offering invaluable information
support for advancing TCM network pharmacology research.
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Abstract. The subgraph search problem is of fundamental importance
in the fields of information science and database management. In this
paper, we propose an index-based subgraph search method that is as
fast as the current state-of-the-art technique. The proposed method is
an extension of CodeTree, which is a supergraph search method that uses
neither enumeration nor graph mining. The extended CodeTreesub treats
graphs as graph codes and uses the prefix tree for these graph codes as an
index. This index permits the highly efficient filtering of non-solutions,
but its construction entails little computational overhead. CodeTreesub

effectively limits the number of candidate solutions so that only induced
subgraphs of graphs in databases are included in the index, thus accel-
erating the filtering step. Additionally, CodeTreesub can identify some
solutions during the filtering stage. The result is a scalable, high-speed
graph filtering and verification method. We compared the performance of
CodeTreesub with that of two non-index-based techniques on six bench-
mark datasets. The results demonstrated that the proposed method was
consistently as fast as or faster than the state-of-the-art VEQS method
in terms of query processing. This study is of particular interest because
it illustrates that index-based methods have the potential to outperform
non-index-based techniques, thereby providing enhanced query speeds
for small- and large-scale databases alike.

1 Introduction

A graph is a data structure that represents objects and the relationships among
them. For example, atoms and chemical bonds in molecules may correspond to
vertices and edges in graphs, respectively, which allows molecules to be repre-
sented as graphs. Additionally, when proteins and the interactions among them
correspond to vertices and edges, protein–protein interactions can be represented
as graphs. Many objects can be represented in the form of graphs, such as human
relational networks, hyperlink structures, and function calls in computer pro-
grams. When such objects are represented by graphs and stored in databases,
searching for some desired graphs becomes an essential technology in the field
of information science. Various graph search techniques exist, such as finding a
graph with a perfect match [5,6], a graph with a matching substructure [12,18],
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or a graph with a similar structure [16,25]. The subgraph isomorphism problem
is NP-complete; hence, solving the subgraph search problem requires the design
of efficient algorithms.

Algorithm 1: IFV Procedure
Input : query graph q and

index I
Output: solutions

S = {gi ∈ G |
q is a subgraph of gi}

1 P (q) ← Decompose q into a set
of patterns

2 Can ←
⋂

p∈P (q) lookup(I, p)
3 S ← ∅
4 for g ∈ Can do
5 if verification(g, q)=true

then
6 S ← S ∪ {g}

7 return S

Algorithm 2: vcFV Procedure
Input : set of graphs

G = {g1, g2, . . . , gn}
and query graph q

Output: solutions
S = {gi ∈ G |
q is a subgraph of gi}

1 S ← ∅
2 for gi ∈ G do
3 A ← filter(gi, q)
4 if A �= null then
5 if verification(gi, q,A)=

true then
6 S ← S ∪ {gi}

7 return S

Algorithm 1 outlines the typical indexing–filtering–verification (IFV)
method [18] for the subgraph search problem. In advance of receiving queries,
IFV constructs an index I for a set of graphs G using an enumeration tech-
nique. Given a query q, IFV decomposes q into a set of patterns P (q) and
obtains GS(p) = {gi ∈ G | p is a subgraph of gi} with lookup(I, p) for each
pattern p ∈ P (q). The intersection of sets GS(p) contains the candidate solu-
tions Can ⊆ G. For each candidate g ∈ Can and q, IFV verifies the subgraph
isomorphism problem on Line 5.

Although various IFV-based methods for solving the problem have been pro-
posed since 2000, current mainstream methods are index-free techniques such
as CFQL [18] and VEQS . In the paper in which VEQS was proposed [12], the
authors state the following:

Based on our empirical study, building an existing index and filtering
using the index incur considerable overhead without gaining higher fil-
tering power for most queries, which is already confirmed by [18]; indeed,
the state-of-the-art subgraph search algorithm CFQL [18] has shown that
existing indexing methods followed by recent preprocessing and enumera-
tion techniques are inefficient in query processing on widely-used datasets
such as PDBS, PCM, and PPI.

CFQL and VEQS are based on the vertex connectivity-based filtering–
verification (vcFV) framework, the outline of which is presented in Algorithm 2.
Given a query q, vcFV constructs an auxiliary data structure A for q and each
graph gi ∈ G. If A is not constructed, gi cannot be a solution; otherwise, vcFV
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solves the subgraph isomorphism problem for gi and q with A. Unlike Algo-
rithm 1, in Algorithm 2, the verification step uses A, which greatly reduces the
search space for the subgraph isomorphism between q and gi.

Although the use of indices has been discouraged as a tool for subgraph
search methods in recent years, there are advantages to using indices in database
searches. For example, in relational databases, balance trees are often used as
indices. The use of these trees reduces the computational complexity of searches
to O(log n), where n is the number of tuples in a database. By contrast, the com-
putational complexity of Algorithm 2 is proportional to the number of graphs.
Therefore, it is necessary to review the use of indices in graph databases. In this
paper, we propose an index-based method for the subgraph search problem. The
characteristics of the proposed CodeTreesub method are as follows:

1. non-solution graphs are filtered with high efficiency using indices,
2. indices are constructed without considerable overheads, and
3. the high speed and high filtering performance result in short search times.

2 Preliminaries

A labeled graph is represented as g = (V,E, �), where V is a set of vertices,
E ⊆ V × V is a set of edges, and � : V ∪ E → Σ is a function for assigning
labels Σ to the vertices and edges. In this paper, we express the vertices and
edges of g as V (g) and E(g), respectively. Given two graphs g = (V,E, �) and
g′ = (V ′, E′, �′), if there is an injective function φ : V → V ′ that satisfies
∀v, u ∈ V , then g is called a subgraph of g′, which is denoted by g 
 g′:

– �(v) = �′(φ(v))
– (φ(v), φ(u)) ∈ E′ if (v, u) ∈ E
– �((v, u)) = �′((φ(v), φ(u))).

Additionally, if (φ(v), φ(u)) ∈ E′ iff (v, u) ∈ E is also satisfied, then g is called an
induced subgraph of g′, which is denoted by g 
i g′. The problem of whether g 

g′ is called the subgraph isomorphism problem. This problem is NP-complete.

Given graphs G = {g1, g2, . . . , , gn} and query graph q as input, the problem
we address in this paper is to output a set of solutions S = {gi ∈ G | q 
 gi}.

We propose a method based on IFV. The basic idea of IFV-based methods
is that, if p 
 q ∧ p �
 gi, then q �
 gi [23]. To use this property, IFV computes
whether p 
 gi for various patterns p in advance and stores GS(p) = {gi ∈ G |
p 
 gi} for each p. Then, by computing Can =

⋂
p∈P GS(p) for a set of patterns

P , each of which is a subgraph of q, the graphs in G that are not solutions are
filtered out, and a set of candidates Can ⊆ G is obtained. Finally, the subgraph
isomorphism problem between g ∈ Can and q is solved. The index I holds the
set of patterns and GS(p) for each pattern p. In this paper, we discuss the design
of such an index.
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3 Related Work

Methods based on enumeration techniques [1,7,13,15,17,19] exhaustively enu-
merate all possible patterns in graphs G and store them in an index. The variety
of patterns is huge; hence, the size of the index becomes enormous and signifi-
cant amounts of memory space are required to construct the index. Therefore,
this type of method generally limits the number of patterns to simple structures
such as paths, cycles, and trees. For example, GraphGrep [17], GraphGrepSX
(GGSX) [1], GRAPES [7], and SING [15] enumerate paths from graphs G,
whereas CT-Index [13] enumerates cycles. The number of patterns is restricted
by limiting the number of vertices or edges within each pattern.

Methods based on graph mining search for subgraph patterns that occur fre-
quently in G, and construct indices from these mined patterns [3,4,20,23,24].
The support of each pattern p is defined as sup(p) = |{gi ∈ G | p 
 gi}|. For a
given threshold σ, frequent subgraph patterns in G are {p | sup(p) ≥ σ} [10]. In
addition to the support, other methods exist for selecting patterns by measur-
ing the filtering ability of the patterns. For example, methyl groups and benzene
rings are present in many organic compounds, so they are not always suitable for
proper filtering. gIndex [22] uses the discriminative ratio for selection. Mining-
based methods require thresholds to be applied to the support or discriminative
ratio. It is sometimes difficult to adjust these thresholds, which makes it nec-
essary to repeat the index construction process when they are changed, which
entails a long computation time.

Methods based on enumeration and mining are time-consuming for index
construction, which makes them ineffective for filtering. Hence, methods based on
vcFV without indexing have been proposed in recent years. CFQL [18] constructs
an auxiliary data structure called the compact path-index (CPI) between q and
gi ∈ G during the prepossessing stage, and then performs a verification step with
GraphQL [8]. CPI is a spanning tree of the query graph, and each node in the tree
has candidate vertices in gi that may correspond to the node. CPI removes false
positive candidates for the node of the query graph and can also determine the
most efficient matching order between the vertices in two graphs. By contrast,
VEQS [12] searches for matching between two graphs. It generates more compact
auxiliary data structures between q and gi than CPI. In this process, the search
space is reduced by skillfully handling the neighbor equivalence class among all
degree-one vertices in q. Additionally, VEQS checks whether two children of each
node in the search tree are equivalent using this data structure and prunes the
redundant search subspace. The index and vertex connectivity-based filtering–
verification framework [18] performs a subgraph search by applying vcFV after
filtering non-solutions with indices.

Although we address the subgraph search problem in this paper, we should
also discuss the related supergraph search problem, which attempts to find
{gi ∈ G | gi 
 q} for some given G and q, [2,9,11,14]. Methods based on
indices with enumeration and mining techniques form the bulk of supergraph
search techniques, although index-free methods have been proposed recently
[11]. Additionally, CFQL and VEQS can solve the supergraph search problem
by replacing q and gi on Lines 3 and 5 in Algorithm 2.
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Fig. 1. Relationships between the Query Graph and its Connected Subgraphs

4 Basic Concept of the Proposed Method

Next, we explain the basic concept of indexing in the proposed method.
Figure 1(a) shows an example of query graph q. All connected subgraphs Pc =
{p1, p2, . . . , p10} of g are depicted in Fig. 1(b). The graphs are connected by
arrows from pi to pj in one of the following cases:

– pi � pj ∧ |V (pi)| + 1 = |V (pj)| or
– pi � pj ∧ |E(pi)| + 1 = |E(pj)|.

After decomposing q into subgraphs, we obtain sets of graphs {gi ∈ G | p 

gi} with lookup(I, p) in Algorithm 1. By intersecting these sets, we limit the
candidate solutions to

⋂
p∈Pc

lookup(I, p) =
⋂

p∈Pc
{gi ∈ G | p 
 gi}. In the case

in which the index stores all possible connected graphs, huge amounts of time
and memory are required to construct and hold the index [19]. Therefore, it is
not practical to store the graphs in the index. Hence, for example, we assume
that p9 and p10 are not stored in the index.

To efficiently traverse an index that does not store all possible graphs, we
introduce the following lemma. We omit proofs in this paper because of the space
limitation.

Lemma 1. Given query graph q and two patterns pi and pj such that pi � pj 

q, candidate solutions for q are included in

{g ∈ G | pi 
 g} ∩ {g ∈ G | pj 
 g} = {g ∈ G | pj 
 g}. � (1)

According to Lemma 1, applying lookup(I, p) with a larger pattern results in
more effective filtering. The maximum patterns among P ′

c = P \ {p9, p10} =
{p1, p2, . . . , p8} are p6 and p8. Patterns p5 and p7, enclosed by the double-line
square, are not induced subgraphs of q. When p′ is not an induced subgraph
of q, it is possible that p′′, which contains p′ as a subgraph and is an induced
subgraph of q, will be stored in the index. In this case, according to Lemma 1,
p′′ is more effective for filtering than p′. When traversing the index for a given q,
we must consider how to efficiently reach p6 and p8 via the patterns P ′

c \{p5, p7}.
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We consider two cases and redraw Fig. 1(b). The first case is that pi � pj

for all graphs in P ′
c and |V (pi)| + 1 = |V (pj)|, as shown in the directed acyclic

graph (DAG) in Fig. 1(c). The second case is that pi � pj for all graphs in
P ′

c and |E(pi)| + 1 = |E(pj)|, as shown in the DAG in Fig. 1(d). We wish to
obtain patterns p such that p 
 q by adopting one of the DAGs as an index and
traversing the adopted DAG.

Note that the objective is to reach p6 and p8 in Fig. 1(c) or 1(d), not to visit all
nodes1. Therefore, it is desirable to visit fewer nodes so that the index traversal
is more efficient. For the case of Fig. 1(c), we can reach p6 and p8 without visiting
patterns that are not induced subgraphs of q, which enables us to reduce the
time required to traverse the index. By contrast, for Fig. 1(d), to reach p8, it
is necessary to pass through node p7, which is not an induced subgraph of q;
this increases the time taken to traverse the index. The gIndex method [22] uses
an index that is a spanning tree of the DAG in Fig. 1(d). Patterns found in
the nodes in this index are represented as a depth-first search code [21]. Note
that gIndex may visit nodes with patterns that are subgraphs of q, but are not
induced subgraphs of q. By contrast, we aim to design a method for traversing
the DAG in Fig. 1(c) without visiting patterns that are not induced subgraphs of
q. For this purpose, we use the Apriori-based connected Graph Mining (AcGM)
code [10].

5 Graph Representation and Indexing of Databases

To represent graphs, we use the AcGM code.

Definition 1 (AcGM code [10]). When the vertex IDs u1, u2, . . . , u|V | are
assigned to the vertices in a graph g = (V,E, �), the graph is represented as the
adjacent matrix, where subgraphs induced by u1, u2, . . . , ui (1 ≤ i ≤ |V |) are
connected. In the matrix, if (u, u′) ∈ E, xu,u′ = �((u, u′)); otherwise, xu,u′ = 0.
In this case, the AcGM code of g is expressed as

code(g, 〈u1, u2, . . . , u|V |〉) = s1s2 · · · s|V |,

wheresi = �(ui)x1,ix2,i · · · xi−1,i.

si (1 ≤ i ≤ |V |) is called a code fragment. �

For a given graph, multiple AcGM codes exist for the different ways of assigning
vertex IDs. We denote a set of AcGM codes that represent g by Ω(g) and a
graph represented by a code c by g(c).

For a given set of AcGM codes, we define its prefix tree as the Code Tree.

Definition 2 (Code Tree [9]). The Code Tree consists of a triplet (N,B, r),
where N is a set of nodes, B ⊂ N ×N is a set of branches, and r ∈ N is the root

1 We use the terms vertex and edge for a graph, and the terms node and branch for an
index. Additionally, we use the term CodeTree to refer to the method for the graph
search and the term Code Tree to refer to the index for the graph search.
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Fig. 2. Example of the Graph Database and Code Tree

of the tree. Each node in the Code Tree has a code fragment and set of graphs.
If a code generated by concatenating the fragments associated with the nodes on
the path from the root to node n is c and g(c) 
 gi for gi ∈ D, the set of graphs
for n contains gi. Additionally, each node with the vertex label � at depth 1 has
a set of vertices with the label � in each gi. �

We denote the code fragment and set of graphs for node n by fr(n) and
GS(n), respectively. Additionally, we denote the graph represented by the code
generated by concatenating fragments associated with nodes on the path from
the root to node n by g(n). From the Code Tree, we obtain a set of vertices
in gi at node n using Λ(n, gi). For example, for the database that consists of
four graphs in Fig. 2(a), one possible code tree is depicted in Fig. 2(b). For n2 in
Fig. 2(b), fr(n2) = Y and GS(n2) = {g1, g2}. Additionally, Λ(n2, g2) = {v1, v2}.

The Code Tree stores a set of patterns for filtering. Constructing mining-
based and enumeration-based indices for the subgraph search requires a huge
computation time and significant memory space [18]. Additionally, when the
database of graphs is updated, major reconstruction of the indices is required.
To avoid these issues, we construct our Code Tree based on the following strategy.

1. We “randomly” generate a connected induced subgraph gs
i with δ vertices

from each gi ∈ G.
2. We “randomly” generate an AcGM code ci ∈ Ω(gs

i ) of gs
i .

3. We add ci such that ci forms a path from the root of the Code Tree to node n.
4. To filter out graphs with infrequent labels, for each � ∈ Σ, we create an AcGM

code � and apply process (3) to �.

Because only one code is generated from each graph in the database, the time-
consuming processes of subgraph mining and enumeration are not required.
Despite the simplicity of our indexing method, our subgraph search technique
achieves highly efficient filtering and is comparable with VEQS in its search
processing, as will be demonstrated in evaluation experiments.

Lemma 2. The number of nodes in the Code Tree and its space complexity are
bounded by O(|G|δ) and O(|G|2δ +

∑
gi∈G |V (gi)|), respectively. �
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Algorithm 3: constructCodeTree
Input : a set of graphs G and the length δ of codes
Output: a code tree T

1 T ← ({r}, ∅, r);
2 for gi ∈ G do
3 s1s2 · · · sδ ← getCode(gi, δ);
4 addPathToTree(s1s2 · · · sδ, T );

5 for � ∈ Σ do
6 addPathToTree(�, T );

7 T ← pruningEquivalentNodes(T );
8 for gi ∈ G do
9 inclusionCheck(gi, r, 〈〉);

10 return T ;

Algorithm 4: inclusionCheck
Input : a graph gi, node n, and 〈w1, . . . , wh〉 to generate a code from gi

1 GS(n) ← GS(n) ∪ {gi};
2 if depth(n) = 1 then
3 V ′ ← {v | v ∈ V (gi), �(v) = fr(n)};
4 add “gi : V ′” in the node n;

5 if �m s.t. m is a descendant of n and gi /∈ GS(m) then
6 return;

7 C ← {(w, s) | s1 · · · shs = code(gi, 〈w1, . . . , wh, w〉) is a prefix of c, c ∈ Ω(gi)};
8 N ← children(n);
9 for (m, (w, c)) ∈ N × C do

10 if compare(fr(m), c) then
11 inclusionCheck(gi, m, 〈w1, . . . , wh, w〉);

The AcGM codes stored in the Code Tree share their prefixes; hence, the actual
number of nodes in the tree is much less than |G|δ. By contrast, the number of
patterns generated by subgraph mining or enumeration increases exponentially
with the number of vertices in graphs contained in the database. Therefore, the
index of the proposed method is very compact.

Algorithm 3 contains the pseudocode used to construct our Code Tree T .
Line 1 defines the root of T . On Line 3, a prefix of length δ (a sequence of δ
code fragments) is generated from among the AcGM codes of each graph gi ∈ G.
On Line 4, the prefix is added to the Code Tree to form a path from the root
to a node at depth δ. By repeating Lines 5–6 for |G| AcGM codes of length δ
and |Σ| codes of length 1, the Code Tree (which is our index) is constructed.
If there are two or more leaf nodes corresponding to a certain graph, Line 7 of
pruningEquivalentNodes prunes as many nodes as possible, leaving at least one.
At this moment, GS(n) is empty for each node n. Line 9 finds nodes n that satisfy
g(n) 
 gi for each graph gi ∈ G and adds gi to GS(n). Algorithm 4 generates all
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possible AcGM codes from g in a depth-first manner, starting from each vertex in
g. Each of the possible AcGM codes c is limited to that for a connected induced
subgraph (but not a connected subgraph) of g for which there exist nodes n
that satisfy g(n) 
 g(c). Generating all possible AcGM codes is equivalent to
taking a permutation of the vertices in gi. However, if the tree is compact, the
time required to generate the codes is not significant because the diversity of
the codes is limited. The procedures on Lines 5–6 of Algorithm 4 prevent the
redundant traversal of a tree that does not update GS(n). The function compare
on Line 10 is the same as that in [9].

The characteristics of the Code Tree are as follows:

1. Patterns in the Code Tree are connected induced subgraphs generated at
random from gi ∈ G. The number of patterns is |G|.

2. The patterns are included in gi ∈ G as induced subgraphs, but not as sub-
graphs. Graphs included as induced subgraphs have no fewer edges than those
included as subgraphs, which is effective for filtering according to Lemma 1.

3. Connected induced subgraphs generated at random from gi ∈ G are stored
in the Code Tree. No process for selecting the patterns is required.

4. These multiple codes represent each pattern gs
i , and one of them is selected

at random.
5. The number of nodes in the Code Tree is bounded by O(|G|δ).

6 Subgraph Search with the Code Tree

In this section, we describe a method for traversing the Code Tree to obtain
patterns contained in query q and candidate solutions Can, which corresponds
to the supergraph search problem. The problem is to output {p ∈ P | p 

q} from query q and graphs P = {p1, . . . .pm}, all of which are stored in the
index as patterns. Therefore, the pseudocode shown in Algorithm 6 is based on
the supergraph search method proposed in [9]. The first characteristics of our
proposed method are not only filtering graphs in G but also filtering nodes in
each graph in G to reduce the number of nodes in the graph before verification,
which reduces the computation time for verification. We call this node filtering.
Second, when the method visits node n that satisfies q = g(n) while traversing
the tree, the graphs in GS(n) are added to S because they are solutions. When
the number of graphs in Can has been sufficiently reduced, the computation
time for verification is greatly reduced, similar to Lindex+ [23].

Algorithms 5 and 6 contain the pseudocode for the subgraph search based
on the above characteristics. Algorithm 5 is based on Algorithm 1. On Line 3,
our method traverses the Code Tree to obtain a subset of solutions S and set of
candidate solutions Can. On Line 2, M is initialized with nodes at depth 1 in
the Code Tree. Immediately after Line 3, there are still nodes in M that were not
visited in the traversal. Vertices with labels that the nodes have are the target of
node filtering that is executed on Line 5. On Line 6, the subgraph isomorphism
problem is solved for the node-filtered graph g′

i and query graph q. Lines 10–14
of Algorithm 6 generate code fragments s for connected and induced subgraphs
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Algorithm 5: search
Input : query graph q and Code Tree T = (N, B, r)
Output: a set of solution S = {gi ∈ G | q � gi}

1 S ← ∅, Can ← G;
2 M ← children(r);
3 traverse(q, r, 〈〉, S, Can, M, true);
4 for gi ∈ Can \ S do
5 g′

i ← (V (gi) \
⋃

n∈M Λ(n, gi), E(gi) \ (V (gi) ×
⋃

n∈M Λ(n, gi)), �);
6 if verification(g′

i, q)=true then
7 S ← S ∪ {gi};

8 return S;

of q and traverse nodes m that satisfy g(m) 
 q. While traversing the Code
Tree, Line 3 filters out graphs that are not solutions. If Can becomes empty, our
method backtracks. mode is true if and only if g(n) 
i q but not if g(n) 
 q.
When our method visits node n that satisfies q = g(n) using the value of mode,
Lines 1 and 2 add graphs in GS(n) to S. Lines 6 and 7 prune the search space
without changing S and Can according to the following lemma.

Lemma 3. At node n in the Code Tree, if S �= ∅ and (Can \ S) ∩ GS(n) = ∅,
S and Can are unchanged at the descendant nodes of n. �

7 Experimental Evaluation

7.1 Experimental Settings

We compared the performance of our CodeTreesub with that of GGSX [1],
GRAPES [7], VEQS [12], and CFQL [18]. We conducted experiments on a
machine running an AMD Ryzen Treadripper 3970X 32-Core processor with
128 GB RAM. CFQL and VEQS are index-free subgraph search methods that
use filtering to construct auxiliary data structures, and then verify the subgraph
isomorphism between queries and candidate solutions. GGSX and GRAPES are
subgraph search methods based on IFV. They enumerate all paths of length
δ′ = 4 from graphs in G and then construct indices. We obtained executable
files for GGSX, GRAPES, VEQS , and CFQL that run on Linux. These were
implemented in C++. VEQS is the fastest existing subgraph search method.

We implemented our method in Java2. We used VEQS in our verification,
but its source code is not available. Thus, we did the following.

1. We obtained Can by filtering using our method.
2. We wrote the graphs in Can and the query graph to a file.
3. We measured the computation time required by VEQS for the file.

2 The executable files written in Java and the datasets for evaluation are available at
https://github.com/KG-CodeTree/CodeTree.

https://github.com/KG-CodeTree/CodeTree
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Algorithm 6: traverse
Input : query graph q, node n, 〈w1, . . . , wh〉 to induce a code from q, a set of

solutions S, a set of candidates Can, a set of nodes M , and mode
1 if mode = true ∧ depth(n) = |V (q)| then
2 S ← S ∪ GS(n);

3 Can ← Can ∩ GS(n);
4 if Can = ∅ ∨ �m s.t. m is a descendant of n and has not yet been visited then
5 return;

6 if S �= ∅ ∧ (Can \ S) ∩ GS(n) = ∅ then
7 return;

8 if depth(n) = 1 then
9 M ← M \ {n};

10 C ← {(w, s) | s1 · · · shs = code(q, 〈w1, . . . , wh, w〉) is a prefix of c, c ∈ Ω(q)};
11 N ← children(n);
12 for (m, (w, c)) ∈ N × C do
13 if compare(fr(m), c) then
14 traverse(q, m, 〈w1, . . . , wh, w〉, S, Can, M, mode ∧ (fr(m) = c));

The computation time of the proposed method is the time required for the
above process, excluding the time required for file I/O. The computation time
for verification in the proposed method includes the time required by VEQS to
construct auxiliary data structures.

Table 1. Benchmark Datasets

|G| |Σ| |V (g)| |E(g)| degree |Σ|
AIDS 40,000 62 45 47 2.09 4.4

PDBS 600 10 2,939 3,064 2.06 6.4

PCM 200 21 377 4,340 23.01 18.9

PPI 20 46 4,942 26,667 10.87 28.5

IMDB 1500 10 13 66 10.14 6.9

REDDIT 4,999 10 509 595 2.34 10.0

Query Sets: Each query graph was
generated from g ∈ G using either
a breadth-first search (BFS) or ran-
dom walk [18]. The specific proce-
dure for generating the query graph
is as follows: (1) select graph g at
random from G, (2) select vertex v
in g at random, (3) add every vertex
and edge to the query graph gener-
ated by a BFS or random walk starting from v visits, and then (4) return the
query when it has visited the predefined number of edges. Each query set QεB

(BFS) or QεR (random walk) consisted of 100 graphs, where ε ∈ {4, 8, 16, 32, 64}
represents the number of edges in each query. We call a query set in which the
number of edges is small (large) a “small (large) query set”. Because the sub-
graph search problem is NP-complete, we set a time limit of 10 min to process
one query, similar to the experiments conducted by Kim et al. [12]. If the query
could not be processed within the time limit, the query processing time (QPT)
was recorded as 10 min.
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Fig. 3. Query Processing Time on the Benchmark Datasets

Datasets: We used six benchmark datasets (AIDS, PDBM, PCM, PPI, IMDB,
and REDDIT), as applied in previous studies [12,18]. AIDS consists of chemical
compounds. PDBS consists of DNA, RNA, and protein structures. PCM and
PPI consist of graphs that represent protein–protein interactions; the graphs in
PPI are much larger than those in PCM. IMDB is a movie collaboration dataset.
REDDIT is a dataset of online discussion communities. IMDB and REDDIT do
not contain vertex labels. Thus, one of ten distinct labels was randomly assigned
to each vertex [12]. In this paper, we do not provide results for the COLLAB
dataset because most methods cannot return solutions for many of the queries
within the time limit. Table 1 presents a summary of the datasets. |V (g)| and
|E(g)| are the average numbers of vertices and edges of graphs in G, respectively.
The degree is the average degree and |Σ| is the average number of vertex labels
in a graph. VEQS cannot treat edge labels; hence, we removed edge labels from
the datasets.

7.2 Experimental Results

First, we present the results for the QPT, which reflects the core aim of this study.
Then we examine detailed results related to query processing and experimental
results related to index construction.
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Table 2. Search Precision

Dataset Query δ Search
Precision

AIDS Q4R 5 0.97

AIDS Q4B 5 0.99

PDBS Q4R 20 0.59

PDBS Q8R 20 0.16

PDBS Q16R 20 0.01

PDBS Q4B 20 0.72

PDBS Q8B 20 0.35

PDBS Q16B 20 0.01

PCM Q8R 10 0.03

Figure 3 shows the QPTs for various query
sets on each dataset. A red asterisk indicates
that some queries did not yield results within
the time limit. If the time limit was exceeded for
more than 50 of the 100 queries in each query
set, we provided no bar chart for that query set.
For each of the six datasets, there were 10 query
sets; that is, there were 6×10 = 60 test cases. In
53 of the 60 cases, the QPTs for CodeTreesub

were shorter than those for VEQS . Note that
we did not count the three cases in which both
CodeTreesub and VEQS were marked using a
red asterisk. CodeTreesub performed well for
small queries, and the two datasets AIDS and
REDDIT. The reason that CodeTreesub performed well for small queries is that
CodeTreesub found solutions while filtering. Table 2 presents the search precision
results for various datasets and query sets. The search precision is the percent-
age of solutions that the proposed method found while filtering and is defined as
1

|Q|
∑

q∈Q
|In(q)|
|S(q)| , where |In(q)| is the number of solutions found by Algorithm 6,

but not by Algorithm 5. There are no IFV methods other than CodeTreesub for
which search precision is greater than 0. The different values of δ correspond
to tuning the QPT of CodeTreesub to be shorter. When the smallest number of
vertices in the graphs in query set Q is larger than the depth δ of the Code Tree,
the search precision is always zero. We did not include such cases in Table 2. For
Q4R and Q4B in the AIDS and PDBS datasets, Algorithm 6 returned many solu-
tions. This is because there were many nodes n up to a depth of 5 in the Code
Tree and the graphs g(n) stored in the tree were very diverse. When many solu-
tions were found while filtering, the number of graphs to be verified was greatly
reduced and the computation time for verification reduced accordingly. By con-
trast, the reason that CodeTreesub performed well for the AIDS and REDDIT
datasets is that the densities of graphs in the datasets were small. CodeTreesub

selected induced subgraph of graphs in G as patterns to be registered in the
index. Because the induced subgraph had many edges, the induced subgraph fil-
tered out sparse graphs in G for a given query graph. In [12], it has already been
mentioned that CFQL and VEQS , which are methods based on vcFV, outper-
formed GGSX and GRAPES, which are methods based on IFV. For this reason,
indices were not used in [18]. However, CodeTreesub is an IFV-based method,
and CodeTreesub is as fast as or faster than VEQS or CFQL. Therefore, IFV-
based subgraph methods are not necessarily slower, and in this paper, we showed
that existing methods have room for improvement.

Figure 4 shows the filtering times for the various datasets. The filtering times
of CodeTreesub depend on the sizes of the graphs in the query sets and the
number of nodes in the Code Tree. When there were few nodes in the Code
Tree, the filtering time of CodeTreesub was small because the search space for
the queries became narrower, although CodeTreesub filtered out relatively few



56 N. Funamoto and A. Inokuchi

Fig. 4. Filtering Time on the Benchmark Datasets

Table 3. Constructing Indices using IFV-based Methods

δ # of nodes in

the Code Tree

Time for constructing index [s] Index size [MB]

CodeTreesub GGSX GRAPES CodeTreesub GGSX GRAPES

AIDS 5 2,558 18.0 26 12 17.1 28 39

PDBS 20 5,711 65.8 19 4 2.6 20 17

PCM 10 1,555 3.2 1340 233 0.6 312 1360

PPI 5 115 0.1 6194 936 0.4 23 664

IMDB 4 1553 0.3 57 11 0.9 29 38

REDDIT 3 674 16.3 1645 280 5.0 232 1580

graphs. As the size of the query graph increased, the filtering time of CodeTreesub

became large because the search space for the queries increased as the number
of codes generated from the queries increased. By contrast, when the size of the
query graph increased, the filtering times of CFQL and VEQS decreased. This is
because the construction of auxiliary structures involves filtering based on vertex
connectivity. Effectively, the vertices in the query have more adjacent vertices,
and non-solution graphs can be filtered earlier.

Table 3 presents several details about the construction of indices for IFV-
based methods. The different values of δ are the result of tuning the QPT of
CodeTreesub to be shorter. The number of nodes in the Code Tree depends on δ,
|G|, and the characteristics of the dataset. Compared with GGSX and GRAPES,
CodeTreesub takes less time to construct indices and requires less memory to hold
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the indices. GGSX and GRAPES enumerate all paths of a certain length from
the graph in G and store them in indices, which makes the size of their indices
larger and their construction time longer.

8 Conclusion

We proposed an index-based subgraph search method that is as fast as the
current state-of-the-art technique. CodeTreesub treats graphs as graph codes
and uses the prefix tree for these graph codes as an index. This index permits
the highly efficient filtering of non-solutions, but its construction entails little
computational overhead. CodeTreesub effectively limits the number of candidate
solutions so that only induced subgraphs of graphs in databases are included
in the index, thus accelerating the filtering step. Additionally, CodeTreesub can
identify some solutions during the filtering stage. We compared the performance
of CodeTreesub on six benchmark datasets. The results demonstrated that the
proposed method was consistently as fast as or faster than the state-of-the-art
VEQS method in terms of query processing. This study is of particular interest
because it illustrates that index-based methods have the potential to outperform
non-index-based techniques, thereby providing enhanced query speeds for small-
and large-scale databases alike.
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Abstract. Knowledge graphs (KGs) are dynamic structures, often
shaped by diverse user communities, leading to the emergence of alterna-
tive representations for the same concepts. These alternative definitions,
while enriching KGs with complementary information, also pose a chal-
lenge for downstream tasks by potentially impeding the completeness of
the retrieved information. This paper tackles the problem of identifying
alternative definitions of predicates within KGs. We present SYRUP, a
method designed to uncover conjunctions of predicates that encapsulate
the same semantic relationship as a given predicate but offer comple-
mentary instances. Through SYRUP, we aim to augment KG complete-
ness by harnessing these alternative representations. To assess the effec-
tiveness of SYRUP, we conduct an empirical study using a benchmark
of 60 SPARQL queries over DBpedia, comprising six distinct domains.
Our experimental results demonstrate improvements in both the com-
pleteness and correctness of query answers, with accuracy levels ranging
from 0.73 to 0.95 . Furthermore, we make SYRUP openly accessible on
GitHub (https://github.com/SDM-TIB/SYRUP/), enabling researchers
to replicate our experiments and integrate SYRUP into workflows for KG
enhancement.

Keywords: Alternative Definition · Knowledge Graph · Completeness

1 Introduction

Existing knowledge graphs (KGs), such as Wikidata [25] and DBpedia [4], are
often constructed using hybrid approaches that combine human intelligence with
computational methods. The continuous expansion of entities and properties
within these KGs significantly impacts downstream tasks, particularly query
processing and question answering. Specifically, a community-based KG is a
type of KG where multiple individuals or groups from a community collabo-
rate to contribute, curate, and update the KG. This collaborative effort aims
to ensure a diverse and comprehensive representation of information. However,
contributing communities may introduce predicates with different names refer-
ring to the same concepts, or predicates sourced from different vocabularies or
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ontologies within the KG. This heterogeneity in predicate nomenclature can lead
to issues of redundancy, inconsistency, and incompleteness within the KG. Con-
sequently, downstream tasks such as question answering may fail to retrieve com-
plete answers. Despite the significant efforts made by contributing communities,
community-based KGs have the potential to be incomplete (i.e., lacking infor-
mation about certain entities and properties) due to the decentralized nature
of their development and maintenance [2]. Furthermore, adhering to the princi-
ples of the open-world assumption (OWA), KGs may inherently be incomplete,
meaning that every missing relation between two entities is not assumed to be
false, but rather unknown. According to Suchanek et al. [22], between 69% and
99% of entities in KGs fail to include at least one predicate shared by other enti-
ties in the same class, highlighting the potential incompleteness of represented
relationships when used in downstream tasks.

Focusing on complementary information is essential for enhancing down-
stream tasks, such as prediction tasks and improving query answer complete-
ness in KGs. Incompleteness within KGs can be addressed by detecting alter-
native definitions of predicates, thereby contributing complementary instances
of these predicates. These alternative definitions play a crucial role in identify-
ing unknown positive facts within KGs. Our approach is to identify incomplete
predicates in a KG and to discover complementary conjunctions of predicates.
While existing approaches have focused on completing instances of relationships
within KGs, to our knowledge, the task of identifying the minimal set of alter-
native definitions of predicates that are complementary has not been explored.
This paper fills this gap by proposing a novel methodology that not only identi-
fies alternative definitions but also demonstrates their effectiveness in enhancing
downstream tasks and improving the completeness of query answers in KGs.

Problem Statement: This paper addresses the challenge of completing pred-
icates in KGs by detecting alternative definitions which correspond to conjunc-
tions of predicates, aiming to enhance the completeness of retrieved information.
While some alternative definitions may not be complementary and thus have no
effect on downstream tasks like query answer completeness, identifying a minimal
set of alternative definitions can enhance data retrieval for predicates, enriching
the KG with instances that would otherwise be missed.

Proposed Solution: We introduce SYRUP, an engine to identify alternative
definitions of predicates. SYRUP implements a two-fold approach that employs
a metric called Complementary Score to evaluate the impact of alternative defi-
nitions on completing predicate p(., .). Additionally, SYRUP leverages ontology
and alignment rules to pinpoint a minimal set of alternative definitions for a
predicate p(., .). By doing so, SYRUP effectively identifies alternative definitions
that can enhance the completeness of instances represented by predicate p(., .).

Evaluation: We assess SYRUP performance in the downstream task of query
processing. Based on results reported by Issa et al. [13], about the incompleteness
of DBpedia, we aim to determine if the use of alternative definitions of predi-
cates detected using alignment rules, helps to enhance answer completeness. In



Completing Predicates Based on Alignment Rules from Knowledge Graphs 61

Fig. 1. Motivating Example. 1) Small portion of Wikidata shows incompleteness
in the KG to answer the question. 2) Applying embeddings leads to retrieving
incorrect answers. 3) Crowd and LLMs are able to answer; but using crowd needs
more time and human’s effort; the accuracy of LLMs may not always be opti-
mal. Photos from Wikipedia (https://de.wikipedia.org/wiki/Neymar) and Twitter
(https://twitter.com/davilucca99), (https://twitter.com/rafabeckranr). (June 2023)

this case, we only apply the minimal set of alternative definitions during query
processing. We created 60 SPARQL queries over six domains from DBpedia (ver-
sion 2016–10). We measure the performance of SYRUP in terms of the answer
completeness and correctness compared with a gold standard created with the
help of three annotators. Empirical results show that our approach can enhance
answer completeness by increasing the accuracy from 0.73 to 0.95.

Contributions: The main contributions of this paper include: i) An approach
able to detect alternative definitions of predicates to uncover unknown posi-
tive facts in KGs. These methods are implemented in the engine SYRUP. ii)
Complementary Score, a measure to quantify how complementary alternative
definitions are. iii) An empirical evaluation to validate the effectiveness of the
proposed methods. This empirical study is conducted over sixty queries over
DBpedia.

This paper is organized into five additional sections. Section 2 motivates our
work with an example. Our approach is defined in Sect. 3 with some preliminaries
and definitions, and Sect. 4 reports and discusses the results of our empirical
study. The related works are briefly described in Sect. 5. Finally, Sect. 6 concludes
and outlines our future work.

2 Motivating Example

We motivate our work by providing an example to illustrate the incompleteness
of community-based KGs and the existence of alternative definitions of a predi-

https://de.wikipedia.org/wiki/Neymar
https://twitter.com/davilucca99
https://twitter.com/rafabeckranr
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cate p(., .) within KGs that can complete the predicate p(., .). In Fig. 1, there is a
relation as parent(.,.), i.e., wdt:P8810 in Wikidata, between Davi Lucca and
Neymar, but there is no relation between them as father(.,.), i.e., wdt:P22
in Wikidata. Consider a question: “Who is the father of Davi Lucca?”. Due
to the incompleteness of Wikidata, the question regarding the father(.,.) of
Davi Lucca returns an empty result (retrieval date, June 2023). Since predicate
parent(.,.), if and only if parent is a male parent, is an alternative definition of
predicate father(.,.), then the above question can be answered. Query answer
completeness is one of the downstream tasks that can be enhanced by discovering
alternative definitions that are complementary to a given predicate in the KG.
The state-of-the-art approaches provide different techniques to enhance answer
completeness. They address their abilities to capture the semantics of the original
KGs using embedding-based techniques. Jain et al. [14] examine whether embed-
dings are actually able to capture the semantics of the knowledge graph. They
demonstrate the weaknesses in semantic representation of embeddings. In our
motivating example (Fig. 1), embedding techniques fail to differentiate between
predicates father(.,.) and mother(.,.), as they do not take semantics into
account. Therefore, predicate mother(.,.) is considered as an equivalent for
predicate parent(.,.) and subsequently for predicate father(.,.), which is
not correct. Predicates mother(.,.) or father(.,.) can be alternative defini-
tions of predicate parent(.,.), if and only if it is female parent or male parent,
respectively.

The other state-of-the-art approach, HARE [3] exploits crowdsourcing for
enhancing the completeness of query answers. Although a crowd can answer the
question, it has uncertainty about the output of humans and takes a great deal
of time, which means more effort and money. Furthermore, applying Large Lan-
guage Models (LLMs), such as those underlying ChatGPT1, can also answer
our question; however, an LLM is expensive and may incorrectly answer ques-
tions about statements represented in encyclopedic KGs like DBpedia or Wiki-
data [7]. In this paper, we present an approach for discovering a minimal set of
alternative definitions based on alignment rules, which can help us to overcome
the incompleteness in KGs [22], and retrieve the complete answers. Thus, we
can identify that predicate parent(.,.) subsumes predicate father(.,.), i.e.,
all the pairs (X,Y ) of entities that satisfy the predicate father(.,.), should
also satisfy the predicate parent(.,.) and Y meets the condition of having
sex(.,.), i.e., wdt:P21 in Wikidata, as male. As a result, the conjunctive expres-
sion parent(X ,Y ), sex(Y ,"male"@en) can be considered as an alternative
definition of father(X ,Y ). By uncovering the alternative definition of pred-
icate father, we can determine the missing relationship between Neymar and
Davi Lucca. So, we conclude that Neymar is the father(.,.) of Davi Lucca.
The unknown positive fact in Fig. 1 that corresponds to the instantiations of the
pattern (?x, wdt:father, wd:Davi Lucca) can be predicted following the triples
(wd:Neymar, wdt:parent, wd:Davi Lucca) and (wd:Neymar, wdt:sex, ”male”@en)

1 https://chat.openai.com/.

https://chat.openai.com/


Completing Predicates Based on Alignment Rules from Knowledge Graphs 63

Fig. 2. Open-world assumption (OWA). a) All the couples who are parents do not
have child may be caused because of incomplete information. b) Using a metric and
following OWA to determine unknown true facts.

which already belong to the KG. Therefore, alternative definitions can infer miss-
ing unknown positive facts that are highly likely to be true.

3 The SYRUP Approach

In this section, we formalize the problem of completing predicates by detect-
ing alternative definitions that are complementary for the predicates that miss
instances in incomplete KGs. We propose an engine to utilize a metric to quan-
tify the complementarity of alternative definitions; this engine helps uncover
unknown positive facts within incomplete KGs and contributes to the enhance-
ment of downstream tasks. Let KG Ideal = (V,E ∪E′, L) and KG = (V,E,L)
be two KGs. KG Ideal represents an ideal KG comprising all triples from E
necessary to form a complete knowledge graph, along with unknown positive
triples within E′. The actual knowledge graph (KG) may be incomplete, encom-
passing only a subset of predicates present in KG Ideal. Notice that because
of the open-world assumption (OWA), a KG can comprise the known positive
facts; however, there may be unknown positive facts which are not in the KG.
In the following, we present the formal definitions related to our approach.

Knowledge Graphs (KGs) [11]. A knowledge graph (KG) is defined as a
directed edge-labeled graph, KG = (V,E,L), where V is a set of nodes repre-
sented as classes and entities; E is a set of positive facts such as E ⊆ V ×L×V ,
while the unknown facts correspond to (V × L × V ) − E; and L corresponds
to a set of labels. If the KG is expressed in Resource Description Framework
(RDF), t = (s, p, o) is a triple in E. Figure 1 shows part of the Wikidata for
instances of human, where nodes represent persons with their relationships. The
triple (wd:Neymar, wdt:father, wd:Davi Lucca) is one of the unknown positive
facts, i.e., unknown facts that are true and should be part of the KG.

Open-world Assumption (OWA) [19]. KGs follow the open-world assump-
tion (OWA); they may be incomplete; the definition of unknown facts is not
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precise (Fig. 2a); the unknown facts indicate that the absence of a particular
relationship between two entities does not necessarily imply that the relation-
ship is false or non-existent. Rather, it means that the KG does not contain
information about that particular relationship [11]. This is different from the
closed-world assumption (CWA), where the absence of information implies that
the information is false. Therefore, identified alternative definitions based on
alignment rules are used to consider the unknown positive facts that are possi-
ble incomplete predicates as known positive facts.

Alignment Rules. Alignment rules are logical statements that establish corre-
spondences or mappings between concepts, such as predicates, classes, or enti-
ties, either from different ontologies or within the same ontology. In our work,
we express these rules as conjunctive Horn clause rules. A Horn clause rule takes
the form: r : B(T̄ ) := H(X,Y), where B(T̄ ), Body, is a conjunction of predi-
cate facts (i.e., atoms), and H(X,Y), Head, is a predicate fact of a single atom.
A rule is considered closed when each variable appears at least twice, ensur-
ing its safety, meaning all variables, i.e., all variables X and Y appear in the
set T̄ ; Closed rules are always safe, ensuring the validity of entailments. These
Horn clause rules represent implications rather than direct equivalences between
predicates in the Body and the Head. Entailed facts of a rule r correspond
to the instantiations of the predicate fact in Head on the substitutions of the
variables in Body that are positive instantiations of the conjunction of the pred-
icates in Body. To evaluate the accuracy and completeness of these rules, we use
metrics such as Support, Standard Confidence (SC), and Partial Completeness
Assumption (PCA) confidence score, as defined in Galarraga et al. [10]. Support
(supp(r)) quantifies the number of positive entailed facts of the head. Positive
entailed facts are the entailed facts belonging to unknown positive facts. supp(r)
:= |{(X,Y ) : ∃Z1, ..., Zm : B(T̄ ) ∧ H(X,Y )}|, where Z1, ...,Zm are the variables
of the rule apart from X and Y . Standard Confidence (SC) measures the
ratio of positive predicate facts of the head that are positive entailed facts based
on a rule r. Partial Completeness Assumption (PCA) confidence score:
quantifies the completeness of a KG based on the Partial Completeness Assump-
tion. This assumption states that if a predicate p(., .) is not functional (i.e., it
can have multiple distinct values for the same subject) for each entity s, such
as if there exists an instance in a KG, then unknown true facts in the KG may
correspond to known true facts that can be deduced or predicted. These facts
are usually named heuristic-based negative edges. Thus, the PCA confidence
score corresponds to the ratio of supp(r) to the total number of all the predicate
facts made by the rule, namely PCA body size. PCA body size corresponds to the
cardinality of the union of positive predicate facts and heuristic-based negative
edges of the rule r.

PCA(r) =
supp(r)

|{(X,Y ) : ∃Z1, ..., Zm, Y ′ : B(T̄ ) ∧ H(X,Y ′)}| (1)

The value of PCA confidence is between 0.0 and 1.0. A value of 0.0 shows
that none of the entailed instantiations of predicate fact for r belongs to the KG.
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A value of 1.0 indicates that all the entailed instantiations of predicate fact for
r belong to the KG. Examples of these metrics are shown in Fig. 2b.

Alignment rules can be given as part of the ontology that defines the schema
of the KGs, or can be the result of the process of rule mining techniques or
other types of learning processes. Given a knowledge graph KG = (V,E,L), a
predicate p(., .) in L, and a set of alignment rules MR over KG where each such
alignment rule is an expression of the following particular type: conjunctive rule:
p1(., .) ∧ p2(., .) ∧ ... ∧ pn(., .) := p′(., .).

Potential Alternative Definitions of a Predicate. We consider a knowledge
graph KG = (V,E,L), a predicate p(., .) in L, and a set of alignment rules
MR over KG. A set RT of potential alternative definitions of p(., .) in KG
corresponds to all the rules that have p(., .) in the head, i.e., rules of the shape
Body := p(X,Y ) in MR. For simplicity, RT represents each of these rules r as
a set of predicates ad that correspond to the predicates in the Body of r.

Example 1. Consider the running example in Fig. 3, the rules in Fig. 3 a) cor-
respond to alignment rules that define the predicate liveIn(.,.). The set RT
of potential alternative definitions of liveIn(.,.) comprises five sets, each per
rule r including the predicates in the Body of r.

Alternative Definition of a Predicate. Given a knowledge graph KG =
(V,E,L), a predicate p(., .) in L, and RT with the potential alternative defini-
tions of p(., .) in KG. Let sim(., .) be a similarity measure and t a threshold for
sim(., .). Let ct be an integer number greater than 0. An alternative definition
of p(., .) is a set of predicates, ad in RT , where the following conditions hold:
Similar predicates, i.e., there exists at least a p′ in ad, such as sim(p′, p) ≥
t; Complementary instances, i.e., |[[p]]KG ∩ [[ad]]KG| ≤ ct, i.e., the execution
of the alignment rule whose by Body corresponds to the predicates in ad differs
from the instances of p(., .) in KG according to a given threshold ct.

Example 2. Given the running example in Fig. 3, the potential alternative def-
initions are considered as alternative definitions if at least one of the predicates
in Body is similar to the predicate liveIn(.,.) (Fig. 3 b) and if there are fewer
shared instances between the predicates in Body and the predicate liveIn(.,.)

in Head. This suggests that the predicates in Body and the predicate liveIn(.,.)

in Head represent different instances within the KG, as seen in Fig. 3 c).

Problem Definition. Given a knowledge graph KG = (V,E,L), a predicate
p(., .) in L, and the set RT be a set of potential alternative definitions of p(., .) in
KG. The problem of completing the predicate p(., .) is defined as the problem of
finding a minimal set RT ′ of alternative definition of p(., .) that maximizes the
deduction of unknown true instances of p(., .). Formally, the problem is defined
as the problem of finding a set RT ∗ of alternative definition of p(., .), such that
RT ∗ is a minimal subset of RT and satisfies the following formula:

RT ∗ = arg max
RT ′⊆RT

[RT ′]pKG
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Fig. 3. Running Example. a) Small portion of a KG with the alignment rules associated
with it. b) Similarity between at least one predicate in Body and predicate in Head
should be high. c) Overlap between instances of predicates in Body and predicate in
Head should be lower than a given threshold.

where [RT ′]pKG =
⋃

ad ∈ RT ′ [[ad]]KG − [[p]]KG.
The problem of completing the predicate p(., .) can be matched to the Min-

imum Set Cover problem, which is known to be NP-hard [17].

Proposed Solution. We propose SYRUP to identify the alternative definitions
of a predicate p(., .) in a knowledge graph KG. SYRUP is a two-fold method
composed of two main components. 1) Create the set RT ′′ of alternative def-
initions of p(., .) according to an input similarity measure sim(., .), and two
thresholds t and ct. The Complementary Score metric is utilized to evaluate
the impact of alternative definitions on completing a predicate p(., .) to increase
the number of instances that the predicate p(., .) misses representing in a KG.
2) Find the minimal subset RT ′ that corresponds to a solution to the problem
of completing the predicate p(., .). SYRUP takes as input a knowledge graph
KG, a predicate p(., .), a set MR of alignment rules for the predicate p(., .), a
similarity measure sim(., .), and two thresholds t and ct which are calculated
by 95th percentile. The output is a minimal set of alternative definitions of the
predicate p(., .) that can complete p(., .). SYRUP utilizes sim(., .), t, and ct to
compute the set of potential alternative definitions of p(., .). SYRUP resorts to
the complementary score (CompScore) to traverse the search space and identify
the sets of alternative definitions that solve the problem. SYRUP implements a
Greedy algorithm to find the minimal subset RT ′ that maximizes the deduction
of unknown true facts of p(., .). The algorithm iteratively considers alignment
rules in RT ′′ that derive a larger number of unknown true facts of p(., .), adding
rules to RT ′ accordingly. Ties are broken by randomly selecting one of the tied
rules. The algorithm terminates when all rules have been considered, returning
RT ′. The complementary score (CompScore) quantifies the overlap between the
answers of the rules added to RT ′. The metric CompScore(r) is quantifying the
complementarity of the predicate p(., .) corresponding to the Head of rules in
R = {r1, r2, ..., rn}. It is computed by evaluating the ratio of the support (supp)
of a rule r to the maximum value between the PCA body size and PCA head
size. The resulting CompScore value falls within the range of 0.0 to 1.0, where
a value close to 1.0 indicates that the predicates in the Body of a rule can effec-
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tively complete the predicate p(., .) in the Head, thus suggesting a high level
of complementarity. Conversely, a value closer to 0.0 suggests a lower level of
complementarity. This score helps identify whether the predicates in the rule set
can be considered as alternative definitions. CompScore(r) is as follows:

CompScore(r) =
supp(r)

max(|{∃Y ′ : B(T̄ ) ∧ H(X,Y ′)
︸ ︷︷ ︸

PCA body size

}|, |{∃X ′ : B(T̄ ) ∧ H(X ′, Y )
︸ ︷︷ ︸

PCA head size

}|)

(2)
As an example, consider the rule r : parent(X,Y) ∧ spouse(Z,Y) := child(Z,X)

in Fig. 2b. The CompScore(r) is equal to 2
max(3,4) = 0.5.

4 Experimental Study

We assess the performance of SYRUP and compare the observed outcomes with
respect to state-of-the-art embedding-based models and the gold standard. This
assessment is based on an ideal KG, KG Ideal, completed based on alternative
definitions existing in DBpedia in six domains: Person, Music, History, Film,
Sport, and Drug. The evaluation aims to formulate the following three research
questions: RQ1) Can SYRUP detect a minimal set of alternative definitions of
predicates using alignment rules from KGs to uncover unknown positive facts?
RQ2) Can SYRUP enhance query answer completeness over incomplete KGs
by detecting unknown positive facts? RQ3) Is SYRUP accurately completing
query answers using a minimal set of alternative definitions?

Query Benchmark and Gold Standard. We designed a benchmark of 60
queries from six different domains (i.e., Person, Music, History, Film, Sport,
and Drug) by analyzing triple patterns answerable by DBpedia (version 2016–
10). These domains were chosen due to the varying degrees of incompleteness
demonstrated by HARE [3]. We selected queries that do not return all possi-
ble correct results because of the incompleteness of DBpedia. The queries have
between 2 and 4 triple patterns. The benchmark also comprises the rewritings
of the queries resulting from executing query expansion based on the alternative
definitions of predicates used in the triple patterns of the original queries. They
are considered to evaluate whether they return complete answers by expanding
them with minimal number of alternative definitions over DBpedia. We compare
our approach to a naive approach that uses all the alternative definitions of pred-
icates in the rewriting process as a baseline. Both baseline and rewritten ones
by SYRUP can be found in GitHub2. We also established the gold standard for
query answer completeness in the benchmark through crowdsourcing; the gold-
standard answers correspond to ones obtained if the queries would have been
executed over the ideal KG of DBpedia. To achieve this, we extracted predicates
from six different DBpedia domains, which were completed by three annotators
via Google Forms. Consequently, for each query, the gold standard encompasses

2 https://github.com/SDM-TIB/SYRUP/tree/main/DBpedia.

https://github.com/SDM-TIB/SYRUP/tree/main/DBpedia
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Fig. 4. Example of expanding a SPARQL query using alternative definitions.

all entities that should be part of the answers. Forms and gold standards are
accessible at3.
Metrics. To measure the effectiveness of SYRUP, we compute the average of
Percentage of Completeness (PC) per domain. PC corresponds to the ratio of
answers produced by baseline (|[[Q]]Baseline|) to the answers of rewritten queries
by SYRUP (|[[Q]]SYRUP|), i.e., PC = |[[Q]]Baseline|

|[[Q]]SYRUP| ×100. We assess SYRUP accu-
racy based on precision and recall computed with respect to the gold standard.
Precision: The cardinality of the intersection of the correct answers retrieved
from the ideal KG and the correct answers retrieved from rewritten queries by
detected minimal set of alternative definitions divided by the number of answers
retrieved by SYRUP. Recall: The fraction of the correct answers retrieved from
the ideal KG that intersects with the correct answers retrieved from rewritten
queries by detected minimal set of alternative definitions. They are as follows:

Precision =
|[[Q]]KG Ideal ∩ [[Q]]SYRUP|

|[[Q]]SYRUP| (3)

Recall =
|[[Q]]KG Ideal ∩ [[Q]]SYRUP|

|[[Q]]KG Ideal| (4)

Query Expansion. As an application to validate SYRUP, we use the discovered
minimal set of alternative definitions of predicates based on alignment rules to
expand the queries of the DBpedia benchmark. Query expansion is a process of
rewriting another query that comprises predicates equivalent to the ones included
in the original query, but that can enhance answer completeness [24]. Without
loss of generality, assume a SPARQL query q comprises a basic graph pattern
BGPq in the WHERE clause, and BGPq is the conjunction of n triple patterns,
t1, t2, . . . , tn. Also, assume that the set P = {p1, p2, . . . , pn} corresponds to the
set of predicates in the triple patterns t1, t2, . . . , tn, such as pi is the predicate
of ti. Additionally, the set AlterP comprises pairs (pi, AlterPi) for each pi in P ,
3 https://github.com/SDM-TIB/SYRUP/tree/main/DBpedia/Gold Standard.

https://github.com/SDM-TIB/SYRUP/tree/main/DBpedia/Gold_Standard
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where AlterPi is a set of pairs (ri,j , scorei,j) and scorei,j is CompScore(ri,j) of
rule ri,j . Based on query expansion, the rewriting of q is a SPARQL query q′,
with the same SELECT clause than q and with a WHERE clause corresponding to a
graph pattern GP ′

q comprising n graph patterns gp1, . . . , gpn connected by the
SPARQL JOIN operator. Each gpi corresponds to a graph pattern composed of
the union of the basic graph patterns that correspond to the expansion of the
triple pattern ti = (si, pi, oi) using alternative definitions of pi from AlterPi.
Figure 4 illustrates the expansion of a SPARQL query based on alternative def-
initions of both predicates spouse(.,.) and father(.,.). As seen, the triple
pattern t1 is rewritten into the graph pattern gp1, comprising the UNION of two
basic graph patterns. Alternative definitions are represented with a conjunction
of triple patterns (e.g., the second basic graph pattern in gp1 ). The rewritings
of the benchmark queries are accessible at4.

Implementation. Experiments were run on a Windows 10 machine with an
Intel i7-9850H 2.6 GHz CPU and 16 GB 1333 MHz DDR3 RAM. We implemented
SYRUP and related metrics in Python 3.10. Queries were executed over a TIB
private SPARQL endpoint of DBpedia5. To detect alternative definitions, the
thresholds t and ct are set up 0.6 and 7, respectively. The alignment rules used
by SYRUP engine can be given as part of the ontology that defines the schema
of the KGs, or can be the result of the process of rule mining techniques. In this
work, the rule mining system AMIE3 [18] is applied to mine the alignment rules;
they are extracted on default settings of AMIE. We apply the PCA confidence
score and head coverage with a threshold of 0.1 and 0.01, respectively. The
maximal number of atoms per rule is 3. We sort the rules first by descending
PCA confidence score, and then by descending Standard Confidence, and look at
the top rules. SYRUP utilizes the Horn clause rules with PCA confidence lower
than 1.0. It is important to note that the PCA confidence equal to 1.0 indicates
that all the entailed instantiations of predicate fact for r already belong to the
KG. Therefore, the alternative definitions are not complementary for predicate
p(., .), and applying them to query answer completeness task has no effect at all.
As a result, these alternative definitions cannot be part of the minimal set of
alternative definitions in query rewriting to maximize the number of instances.

Precision-Recall Evaluation. We compare the accuracy of SYRUP with the
accuracy of some embedding-based techniques such as TransD [15], TransH [26],
TransE [5], ComplEx [23], and RDF2Vec [21]; these approaches only are used
to detect similar predicates in KGs, while SYRUP detects a minimal number of
alternative definitions of predicates. Embedding techniques such as TransE, com-
pute for each triple t = (s, p, o) of a KG, the translation vector from the subject
(head entity) to the object of a triple (tail entity) corresponds to the embedding
of the predicate (relation). They generate alignment results by calculating the
similarity of every property of the first matrix with every property of the sec-
ond matrix, in the embedding space using similarity measures such as Euclidean
distance, cosine similarity, etc. [8]. The precision-recall curves in Fig. 5a indi-

4 https://github.com/SDM-TIB/SYRUP/tree/main/Results.
5 https://labs.tib.eu/sdm/dbpedia/sparql.

https://github.com/SDM-TIB/SYRUP/tree/main/Results
https://labs.tib.eu/sdm/dbpedia/sparql
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cate that SYRUP outperforms the embedding techniques. For a recall from 0.3
to 0.7, SYRUP achieves very high precision. This suggests that the answers
retrieved from expanded queries by detected minimal set of alternative defini-
tions are closer to the answers retrieved from the ideal KG. Moreover, we can
observe that RDF2vec outperforms other embedding techniques such as TransD
and TransE. RDF2vec leverages the neighborhood information of entities and
properties in KGs to create embeddings [21].

Discussion of the Results. Figure 5a presents the evaluation of comput-
ing and comparing precision and recall values of SYRUP and the state-of-
the-art embedding-based approaches. The results suggest that SYRUP discov-
ers unknown positive facts using alignment rules with higher precision than
embedding-based approaches (RQ1). Furthermore, Fig. 5b–Fig. 5g compare the
number of answers obtained from original queries and the number of answers
from queries rewritten using the SYRUP query expansion technique. The com-
parison is conducted for each domain of benchmark. The average values of Per-
centage of Completeness (PC) are reported per domain. The results in Fig. 5b–
Fig. 5g indicate that the number of answers produced by SYRUP in the major-
ity of cases are higher than the answers of original queries. Also, the average
values of PC achieved with SYRUP are predominantly greater than 50% indi-
cating that SYRUP enhanced the number of answers of most of the benchmark
queries, except for the History domain. It is supported by the fact that the His-
tory domain is less complete than the other domains [3]. For some queries, e.g.,
Q9-Person, Q1-Drug, Q6-Drug, Q5-Music, Q10-Music and Q3-History, query
answers are not enhanced by SYRUP. This means that, those queries are already
complete (RQ2). The average of precision and recall of baseline and SYRUP is
shown in Table 1 and Table 2, respectively. The computed precision and recall
of the results retrieved from rewritten queries using SYRUP with respect to the
ideal KG show that in most of the domains the values of precision and recall
are high. The precision and recall values in other domains in average are higher
than 0.88 and 0.91, respectively. The baseline consistently achieves a precision
score of 1.0, as it successfully retrieves answers that exactly match those found
in the ideal KG. However, its recall value is relatively low because the baseline’s
retrieved answers are not as complete as those in the ideal KG (RQ3).

Table 1. Mean precision

Domains Baseline SYRUP

Film 1.0 0.95

Sport 1.0 0.88

Person 1.0 0.88

Drug 1.0 0.73

Music 1.0 0.95

History 1.0 0.92

Table 2. Mean recall

Domains Baseline SYRUP

Film 0.61 0.99

Sport 0.76 1.0

Person 0.76 0.91

Drug 0.66 0.93

Music 0.67 1.0

History 0.47 1.0



Completing Predicates Based on Alignment Rules from Knowledge Graphs 71

Fig. 5. (a) Experimental results of SYRUP using alignment rules and embedding-
based approach for detecting alternative definitions compared with crowdsourcing, (b-
g) Size of query answer achieved by original queries and rewritten queries using query
expansion by SYRUP per query and domain in DBpedia.

5 Related Work

Despite the availability of many well-performing approaches, there is no research
regarding identifying a minimal set of alternative definitions of predicates which
complete the instances that are missed by those predicates within KGs. To tackle
the problem of completing the instances of a given predicate, several approaches
have been employed, including syntactic and semantic methods. Acosta et al. [3]
propose a hybrid SPARQL query engine, called HARE, that exploits a micro-task
mechanism for enhancing the completeness of query answers. HARE automati-
cally identifies portions of a SPARQL query that might yield incomplete results,
and it resolves them via crowdsourcing, which may cost more effort and money.
Kalo et al. [16] provide a technique to detect synonymous relationships in large
KGs using association rule mining. Abedjan et al. [1] employed frequent item
set mining through aggregating positive and negative association rules at the
statement level to detect synonym predicates. However, none of them applied
discovered synonym predicates to complete the other predicates and increase
the number of instances of those predicates. Cheng et al. [6] propose an app-
roach leveraging vocabulary mappings to process queries over federations with
heterogeneous vocabularies. However, their experimental study introduces over-
head due to the lack of query performance optimization through the application
of rewriting rules to logical query plans. To minimize these additional over-
heads, optimizing query processing can be achieved by applying a minimal set of
alternative definitions using alignment rules. To address the problem of incom-
pleteness, researchers have proposed several techniques. Issa et al. provide an
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overview in [12], including data augmentation, entity resolution, and knowledge
graph enrichment. A study by Galárraga et al. [9] proposed an extension of the
SPARQL query language to support completeness. Purohit et al. [20] propose
a hybrid method that integrates symbolic and numerical techniques, leverag-
ing the PCA heuristic to capture implicit knowledge and enrich KGs. However,
despite the effort conducted by previous works to enhance KG completeness,
to our knowledge, no existing approaches have explored the minimal number
of alternative definitions of predicates which complete the instances missed by
predicates in KGs to achieve this goal.

6 Conclusions and Future Work

This study highlights the problem of discovering alternative definitions of pred-
icates using alignment rules to detect unknown positive facts in KGs. SYRUP
follows a two-fold approach to detect a minimal set of alternative definitions
for a predicate. The experimental results depict that SYRUP identifies alter-
native definitions capable of deriving unknown true facts. The evaluation of
SYRUP on 60 SPARQL queries over six different domains of DBpedia suggests
that SYRUP improves the answer completeness and correctness by increasing
the accuracy from 0.73 to 0.95. Expanding queries by the minimal number of
discovered alternative definitions from alignment rules is efficient whenever it is
performed with respect to the domains, e.g., Film and Music where there are
more alignment rules. In the future, we plan to apply SYRUP to enhance other
downstream tasks, e.g., prediction tasks and negative sampling. By applying
alternative definitions of predicates, we can enhance the entity’s neighborhood
while computing KG embeddings using a particular KG embedding model, espe-
cially during negative sampling. It can maximize the probability of observing
positive pairs, while minimizing the probability of observing negative pairs.
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Abstract. Hierarchical Navigable Small World (HNSW) delivers state-
of-the-art performances for approximate k-nearest neighbors (kNN) que-
ries in public benchmarks (e.g., ANN-Benchmarks). While it scales well for
large datasets, characterizing the impact of the small-world construction
strategy on the search quality is still an open issue. This paper investi-
gates how result diversification can shed light on that question by adding
a parameterless strategy to HNSW that explicitly uses local distance-
based structures to produce diversified neighbors. Accordingly, we pro-
pose (i) a new heuristic for the small-world construction based on the
Influence concept derived from ball partitioning, and (ii) an extension to
HNSW kNN searching algorithm that supports Influence-driven result
diversification (kNdN). We evaluated our approach on ANN-Benchmarks,
and results show that Influence-based partitioning of the search space
can substantially enhance the kNdN quality (Recall by proximity) with
a throughput comparable to the standard HNSW construction strategy.

Keywords: kNN · Result Diversification · HNSW · ANN

1 Introduction

The advance of deep learning-based applications has opened the opportunity to
produce large and heterogeneous datasets of vector representations from text
and images embedded in non-sparse, high-dimensional spaces [1]. Exact search
methods based on the Metric Spaces Theory typically struggle to find the k-
nearest neighbors (kNN) from a given query object due to the occurrence of
the distance concentration phenomenon within such datasets [8]. Approximate
similarity search allows more efficient data retrieval in those cases by relaxing
the constraint of exact distance-based matches. The Hierarchical Navigable Small
World (HNSW) method provides state-of-the-art performances in the execution
of approximate kNN queries in large and high-dimensional datasets [1,6]. It relies
on a hierarchical structure in which every layer is a connected graph where (i) the
number of connections for each node is limited by a construction parameter and
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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(ii) nodes are reachable within a few hops, as in a small world representation [9].
HNSW employs a greedy heuristic to select and rewire connections by adopting
a hyperplane-based criterion to skip connections to elements closer to previously
inserted neighbors, thus creating long edges based on that separation [6,7]. Then,
the HNSW kNN search algorithm relies on a best-first index traversal while
partially sorting the visited nodes in two priority queues [7]. Accordingly, HNSW
usage typically demands fine-tuning for construction (connection degree – M)
and search (size of priority queues – ef) parameters [1,9].

While this tuning task is an expected handicap, it may overshadow two rel-
evant questions involving the HNSW characterization, namely (Q1) how other
partitioning strategies affect the behavior of HNSW?, and (Q2) how does HNSW
perform when faced with more complex search criteria, such as kNN with result
diversification (kNdN)?. In this paper, we investigate those questions by coupling
a ball-partitioning strategy called Influence [4] on HNSW. This parameterless
strategy partitions the search space using a query object, indexing elements that
are Influenced by nearest neighbors into ball regions that increase monotonically
in coverage. We enforce this criterion to construct the HNSW last layer by using
incrementally inserted elements on HNSW as query objects. Then, we extend
the HNSW searching algorithm to fetch only non-Influenced neighbors as the
kNdN result set. We also implement our proposal on the nsmlib library so that
we can easily bind it to the public benchmark ANN-Benchmarks1 for comparison
with standard HNSW. An experimental comparison showed that partitioning
the search space by Influence can improve the quality of kNdN queries.

This paper is organized as follows. Section 2 presents the concepts and related
work. Section 3 discusses our implementation. Section 4 presents the experimen-
tal evaluation, while Sect. 5 provides the conclusions and future work.

2 Preliminaries and Related Work

Similarity Searching. The core of similarity searching is the distance function
(δ) used to measure the proximity between objects, such as δ = L2, which quan-
tifies the dissimilarity between dimensional vectors. The organization of dataset
distances to a fixed object defines a similarity search criterion, such as kNN.

kNN Search. The k-Nearest Neighbors (kNN) query retrieves a set of the k
closest elements from a dataset O ⊂ R

d to a reference object oq ∈ R
d. Formally,

an incremental kNN set, denoted as kNN (oq, δ, k,O) = o1, o2, ..., ok, is as follows:

o1 = oi ∈ O, ∀ oj ∈ O, δ(oi, oq) ≤ δ(oj , oq),
om=2,...,k = oi ∈ O \ ∪m−1

h=1 oh, ∀ oj ∈ O \ ∪m−1
h=1 oh, δ(oi, oq) ≤ δ(oj , oq)

Influence Set. The Influence Set of a diversified neighbor oi to a reference oq
(Ïoi,oq ) covers each entry oj of a dataset O \ {oioj} ⊆ R

d that are (i) farther
from oq than oi and (ii) more Influenced by oi than oq, i.e., Ïoi,oq = {oj | oj ∈
O \ {oi, oq}, I(oi, oj) > I(oi, oq) ∧ I(oi, oj) > I(oj , oq) ∧ I(oi, oq) 	= I(oj , oq)}.

1 Available at https://ann-benchmarks.com/.

https://ann-benchmarks.com/
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kNdN search. A kNN query with result diversification (kNdN) retrieves the k
non-Influenced and nearest elements in O ⊂ R

d to a reference object oq ∈ R
d so

that kNdN (oq, δ, k,O) = R = {o1, o2, ..., ok} is incrementally defined as follows.

o1 = oi ∈ O, ∀ oj ∈ O, δ(oi, oq) ≤ δ(oj , oq),
om=2,...,k = oi ∈ O, (∀ oj ∈ ∪m−1

h=1 oh ⇒ oi /∈ Ïoj ,oq ) ∧ (∀ og ∈ O \ ∪m−1
h=1 oh ⇒

(δ(oi, oq) ≤ δ(og, oq) ∨ ∃ oj ∈ ∪m−1
h=1 oh ⇒ og ∈ Ïoj ,oq )).

Related Work. Graph-based indexes, such as HNSW and NSG, have provided
excellent results to speed-up approximated kNN searches [3,5–7]. Graph struc-
tures are particularly suitable to solve kNN searches in high-dimensional spaces,
with HNSW delivering consistent performances in intrinsically high-dimensional
datasets [1,9]. Such indexes rely on incremental constructions to increase kNN
search performance by using Best-First search algorithms, which efficiently tra-
verse graphs whose nodes have a limited degree with a greedy, partial sorting
principle [7]. Moreover, kNN quality in concentrated datasets can be improved
through additional search criteria, such as result diversification [4,5]. In partic-
ular, the proposal in [5] showed significant kNN gains on Gabriel graphs, with
similar findings for exact searches on VP-Trees [4]. Accordingly, we explore the
HSNW potential to execute kNN queries with result diversification.

3 Material and Methods

A New Ball-partitioning-based Strategy for HNSW. The HNSW con-
struction strategy can be implemented with ball -based constraints, produc-
ing ball-tree-like partitions that are suitable to execute kNN queries with
result diversification [2]. The Influence-based partitioning is a natural candidate
to extend the HNSW hyperplane-based construction because (i) it relies on
dynamic thresholds (ball radii) induced by the query locality and (ii) the par-
titions can be efficiently scanned regarding kNN queries with result diversi-
fication [4,5]. Thus, we propose a new HNSW construction strategy (named

Fig. 1. The proposed Influence-based construction of HNSW (M = 4)
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dHNSW) that uses Influence to partition the small world. Figure 1 illustrates
the proposed approach for M = 4 and highlights the differences between HNSW
and dHNSW. We maintain the HNSW skip list rationale to the last layer entry
point and the fully connected graph generated for the first M objects. There-
after, each incremental insertion creates a link to its first neighbor. We use this
link to create an Influence region as an open ball centered at the first neighbor –
Fig. 1(c). The elements covered by that open ball are not considered for creating
new connections as they are Influenced by the first neighbor. This set of steps
repeats for the next nearest neighbor (creating a new coverage ball, dismissing
the Influenced elements) until M links are created or no valid candidates remain
– Fig. 1(d). Whenever an object has more than M connections after one insert
its links are refactored. This Influence-based strategy also creates long edges as
in the hyperplane construction, but it holds closer connections together because
Influence-driven coverage radii increase smoothly with the selection of neigh-
bors. Such behavior is suitable for spaces where slowly exiting dense areas may
yield higher Recall than quickly traversing a long edge.

A New HNSW-based Algorithm for kNdN. We extended HNSW for Influ-
ence-based space partitioning and kNdN queries. Algorithm 1 outlines the last-
layer search in dHNSW with an example in Fig. 2. It relies on two priority
queues (candidates C, the result set K) and a bitmap structure that flags evalu-
ated objects (V). The result set always includes the entry point because it is the
closest neighbor and defines the first excluded Influence region. Thus, the candi-
dates’ list is constructed by traversing the link set of every object included in the
result set. Overall, Algorithm 1 traverses at most k paths (Line 5), each requir-
ing at most M distance calculations (Line 8), and performs at most M · ∑k

r=1 r
comparisons by Influence (Line 10), bounding the complexity of distance calcu-
lation to O (kM((3 + k)/2)). Figure 1 shows a search example for object oq and
k = 3. The entry point is o4, and its set of linked elements includes o3 that tops
the list of linked neighbors.



Enriching HNSW with Result Diversification 79

Fig. 2. Example of kNdN query on dHNSW (k = 3).

Implementing dHNSWand kNdNon ANN-Benchmarks. Both dHNSW and Algo-
rithm 1 were implemented over library nsmlib integrated with ANN-Benchmarks.
While HNSW and dHNSW parameters were defined in the ANN-Benchmarks

YAML settings, the benchmark files for exact neighbors had to be replaced
because of the kNdN algorithm. Accordingly, we coupled a sequential scan to cal-
culate the exact kNdN solution as another ANN-Benchmarks Recall-driven baseline
algorithm.

4 Empirical Evaluation

We used an 11-node Linux cluster with 48 AMD Opteron 2.2 GHz processors, 94
GB RAM, and 1TB SATA disk to deploy ANN-Benchmarks, running HNSW and
dHNSW in containers. Four datasets (FASHION-MNIST, GLOVE, MNIST, SIFT) were
chosen for evaluation. The following experiments compare the performances of
HNSW and dHNSW in terms of quality (Recall = (k − ∑

oj∈K,oi∈R |δ(oq, oj) −
δ(oq, oi)|/max{δ(oq, oj), δ(oq, oi)})/k) and throughput (queries per second –
qps). The qps measure was computed as the average of five executions.

Figure 3 details the comparison between the HNSW and dHNSW regarding
the execution of kNdN queries on ANN-Benchmarks. Each point in the plot was
juxtaposed with the exact result produced by the sequential scan, according
to the parameter M employed in the graph construction. We limited M < k
in every evaluation and examined the neighborhood k = {10, 15, 20, 25} with
M ranging in {5, 10, 15, 20}. The y-axis represents the Recall value, while the
x-axis measures the average number of qps. Figure 3 shows the outputs for the
representative setup k = 25. Results indicate that dHNSW outperformed HNSW
(up to 3% in Recall) and also delivered more qps for Recalls below 0.9 in the MNIST
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Fig. 3. Comparison between dHNSW and HNSW (k = 20, five executions).

dataset. The SIFT dataset showed similar results, with dHNSW outperforming
HNSW in terms of Recall (up to 2%). Regarding GLOVE, dHNSW expressively
outperformed HNSW (up to 27%) with a higher throughput. In the case of
FASHION-MNIST, dHNSW also provided better Recall (up to 3%) than HNSW,
the Influence-based strategy being slightly slower than HNSW.

5 Conclusions

In this study, we extended HNSW as dHNSW by using a Influence-based parti-
tioning and proposed a new kNdN algorithm. A benchmark evaluation indicates
our approach outperformed HNSW regarding Recall with a comparable qps.
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Abstract. k-nearest neighbor (kNN) search is a fundamental problem
in graph mining. This search finds the k most relevant nodes to a given
query node. The increased use of social network services and map appli-
cations due to the proliferation of mobile devices has necessitated faster
searches. Although pre-constructing an index using graphs can accel-
erate a kNN search, existing methods struggle handling dynamic graph
updates. Herein we propose an efficient index update method for dynamic
graphs that utilizes a core-tree structure to efficiently update the index
in response to dynamic changes in the graph. Our experimental analy-
sis using real-world data demonstrated that the proposed method can
construct indexes more efficiently than the state-of-the-art method.

Keywords: graph algorithm · kNN search · dynamic graph

1 Introduction

The k nearest neighbor (kNN) search [12,13,17,21] is a fundamental graph anal-
ysis tool to understand complex networks. It finds the k nearest neighbor nodes
to a user-specified query node in a given graph. kNN searches are employed in
diverse applications [2,6]. Although they only need to perform a local search
near the query node, kNN searches struggle handling real-world networks.

Although kNN queries are useful in many applications, they have critical
drawbacks in handling real-world networks. Specifically, they require a large com-
putational time to answer kNN queries due to the size and density of the real-
world networks [15]. Historically, traditional kNN search methods are applied to
small graphs such as ego-networks and road networks [4]. These methods struggle
to quickly compute kNN with 104 nodes [21]. Recent applications based on social
networks require handling large and complex networks with 106 nodes [14,19],
compounding the high computational costs to find kNN nodes.

1.1 Existing Approaches and Challenges

Many studies have strived to overcome the aforementioned drawbacks. One app-
roach category is graph indexing methods [1,13,21]. These methods construct an
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. Strauss et al. (Eds.): DEXA 2024, LNCS 14910, pp. 81–89, 2024.
https://doi.org/10.1007/978-3-031-68309-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-68309-1_7&domain=pdf
http://orcid.org/0000-0002-8530-2651
https://doi.org/10.1007/978-3-031-68309-1_7


82 S. Matsugu et al.

index using graph partitioning, which enables the shortest path distances among
several nodes to be pre-computed before answering a query. Examples of graph
indexing methods are G-Tree [21] and ILBR [1]. G-Tree partitions a given graph
into disjointed subgraphs using Metis [8]. Then the index is constructed from the
shortest path distances among all node pairs in each subgraph. Similarly, ILBR
selects several landmark nodes and constructs the index from the ALT [7] val-
ues according to the shortest path distances between a node and each landmark
node. Although G-Tree and ILBR improve the computation time to answer a
kNN query, they still suffer from a large indexing time as they mainly focus on
handling planar graphs [3] with a low density. Their indices are efficient if a given
graph is sparse. However, indices in a dense graph are not computed effectively
since an exhaustive pre-computation is necessary. These methods also require
high computation costs for querying kNN since the coverages of the indices are
too small for non-planar graphs.

CT [9,10] is a state-of-the-art kNN search method using a core-tree-aware
(CT) index based on the core-tree property [5]. The core-tree property is
expressed as a graph comprised of a core and trees. The core is a small and
dense subgraph, while trees are long stretched and sparse subgraphs. On the
basis of the core-tree property, CT constructs a core-index and a tree-index by
compiling each part of the graph. Specifically, for each tree in the graph, the
tree-index stores the distances from its root node to all leaf nodes. Furthermore,
core-index has the distances among the remaining non-tree nodes. Using the two
indices, CT can realize efficient indexing and querying for a kNN search.

Although CT can efficiently perform a kNN search, it has serious drawbacks
in real-world kNN applications. CT cannot respond to node or edge updates.
However, real-world graphs are frequently updated. For example, in social net-
works, a new edge is linked if two users become friends. If a new edge is added,
CT must reconstruct the indices from scratch since it cannot update its differ-
ences. Thus, CT fails to efficiently construct the CT-index for practical use.

1.2 Our Approaches and Contributions

Our goal is to extend CT to dynamic graphs. Although the CT-index is efficient
for static graphs, the index must be reconstructed to update only a few nodes
and edges. Here, we present a novel indexing method called Dynamic CT (DCT).
The underlying idea is to update only the indices that include changed nodes.
This way the tree-index is always maintained to include only the tree structures.
To update the index, the process is classified according to whether the changed
node is included in the core-index or the tree-index. Consequently, DCT has the
following attractive characteristics:

– Efficiency: DCT achieves faster updates than CT (Sect. 4). DCT can perform
the difference computation up to 4,462 times faster than the reconstruction
of CT.

– Exactness: We theoretically verify that DCT always outputs the same
indices as CT while achieving indexing-time improvements. It can calculate
the correct kNN search results using this index.
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– Easy to deploy: DCT does not require new indices or pre-computation
processing. It achieves index updating by quickly editing the constructed
CT-index.

DCT is the first solution to realize kNN searches assuming graph updates. Our
extension not only increases the utility of a graph query using a kNN search but
also enhances the application scope of kNN searches.

2 Preliminary

We formulate the kNN querying problem in Sect. 2.1. Then we briefly explain CT,
the state-of-the-art kNN search method, in Sect. 2.2. Due to space limitations
proofs of lemmas and theorems are omitted.

2.1 Problem Definition

Here, let G = (V,E,W ) be a weighted, undirected, and connected graph, where
V,E, and W are the sets of nodes, edges, and edge-weight values, respectively.
e(u, v) ∈ E denote that two nodes u and v are linked in G. For each edge e(u, v) ∈
E, an edge-weight value w(u, v) ∈ W is always assigned, where w(u, v) ∈ N holds.
The degree of node u is denoted as deg(u).

kNN is a task to find k nearest neighbor nodes to a query node. We first
define the shortest path distance as:

Definition 1 (Shortest path distance). Let a node path u = u0 → u1 →
· · · → ui = v in G be the shortest path between the nodes u, v ∈ V . Here,
the distance of this shortest path is defined as dist(u, v) =

∑i−1
j=0(w(uj , uj+1)).

Moreover, distk(q, V ) represents the k-th smallest distance in {dist(q, v) | v ∈
V }.

By using Definition 1, we formulate the kNN query problem as:

Problem 1 (kNN query processing). Given a graph G = (V,E,W ), a query
node q ∈ V , and an integer k ∈ N, the kNN query is to find a node set Vk(q) =
{v ∈ V | dist(q, v) ≤ distk(q, V )}.

2.2 Previous Method: CT Index

We briefly present a core-tree-aware (CT) indexing method [9,10], which is the
state-of-the-art method solving Problem 1.

As mentioned in Sect. 1.1, real-world graphs often follow the core-tree prop-
erty; the graphs can be decomposed into a core and trees [5]. Using this, CT
constructs a CT index I = 〈T , C〉, where T and C are the tree-index and core-
index, respectively. CT first extracts trees from a graph and indexes them in
T . Then it stores the remaining core nodes in C. The tree-index T and the
core-index C are defined as follows:



84 S. Matsugu et al.

Definition 2 (Tree-index T ). Let T1, T2, ... be the trees in G are ri be the root
node of Ti. Then we denote Di as a set of distances between ri and each node
v ∈ Ti, i.e., Di =

⋃
v∈Ti

{dist(ri, v)}. We define the tree-index as T = (T,D),
where T and D represent the sets of Ti and Di, respectively, i.e., T = {T1, T2, ...}
and D = {D1,D2, ...}.

Definition 3 (Core-index C). Let Vc be a set of core nodes that are not
included in any tree-index. We define the core-index as C = (Vc, Ec,Wc), where
Ec = {e(u, v) ∈ E | u, v ∈ Vc}, and Wc = {dist(u, v) | e(u, v) ∈ Ec}.

Note that the shortest path between two nodes may have multiple routes. To
efficiently compute Wc, CT employs the Dijkstra algorithm to update the weight
values.

For convenience, we introduce the following notation:

Definition 4 (Label function). Given a node u, the label function fl(u) =
tree if u ∈ T holds, and fl(u) = core otherwise.

On the basis of the CT index, CT searches kNN nodes by applying the following
lemma:

Lemma 1. Given a root node ri in the tree Ti, and let dmin = min{dist(q, v)},
where v ∈ Q∪ {v | e(ri, v) ∈ Ec, v /∈ Vk(q)}. If |Vk(q)|+ |Ti| ≤ k and dmax(ri) ≤
dmin hold, then Ti ⊆ Vk(q) holds, where dmax(v) is defined as the maximum
shortest path distance from v to any node in Ti.

The Overview of CT: We explain the basic procedure of CT to efficiently
compute kNN using the CT index. CT uses a priority queue Q to calculate the
shortest path, which is similar to the Dijkstra algorithm. If q is included in the
tree-index Ti in T , it initially pushes ri into Q and core-index C. CT initially
pushes the query node q into Q. Then it repeatedly searches kNN nodes from
q using Q until it explores k nodes or reaches any root node ri in the tree Ti.
Once CT finds ri, CT checks whether Vk(q) contains all Ti. If so, CT includes
Ti in Vk(q) without searching Ti. Otherwise, CT explores Ti in the same way as
the core node.

The main feature of CT is its application of an index construction algorithm
specialized for planar graphs (e.g., traditional road networks) to more dense and
diversely structured complex networks [16,20]. However, CT is not adaptable to
dynamic graphs that exist in the real world [18] as each graph update requires
index reconstruction. Consequently, CT can incur a significant computation time
even for minor graph changes.

3 Proposed Method: Dynamic CT

Here, we propose a novel method Dynamic CT (DCT) which extends CT to
dynamic graphs. Here, we describe the concept of DCT and then provide details.
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3.1 Ideas

We propose a method to dynamically update the CT index. In general, graph
updates are represented as a collection of node or edge additions and removals.
Although we focus on designing a method that accelerates the addition and
removal of single edges, the proposed method does not lose generality because
equivalent transformations are possible to add or remove nodes. The required
processing for index updates depends on the type of transformation and the edge
location (core or tree). Specifically, edge updates can change the core/tree state.

The area of this change must be limited for efficient dynamic updates. There-
fore, we divide additions into four cases (Sect. 3.2) and removals into two cases
(Sect. 3.3). We also theoretically calculate the update range of the graph for
each case. For convenience, in the following sections, the parent node refers to
the node closest to the root node on the path to any other node in the tree.

Our ideas have two advantages. First, DCT directly calculates only the index
difference. By contrast, CT completely reconstructs the index for each graph
update. Thus, DCT efficiently constructs the index for a graph kNN . Second,
DCT always outputs the same index to CT while omitting redundant calcula-
tions. This is because DCT performs index restructuring by theoretically analyz-
ing the area of the index affected by graph updates. Consequently, the obtained
index is always the same as that constructed by CT from scratch.

3.2 Adding Nodes and Edges

We propose an algorithm that dynamically updates the CT index when nodes
and edges are added to a graph. Here, only the addition of edges is considered.
This is reasonable since adding a node is meaningless until an adjacent edge is
added and it does not need to be distinguished from an isolated node that was
already present.
The addition of an edge between nodes u and v can be classified into four cases:

Case 1. u, v ∈ Tuv:

Case 2. u ∈ Tu, and v ∈ Tv:

Case 3. u ∈ Vc, and v ∈ Tv:
In these three cases, we have the following property.

Lemma 2. In Cases 1–3, tree(s) are no longer a tree after adding an edge.

Lemma 2 indicates that the tree is no longer a tree structure when an edge is
added by constructing a cycle. Then we add a new cycle to the core-index C. In
Case 1, the cycle occurs in a tree. In Case 2, the cycle occurs across two trees. In
Case 3, the cycle occurs through the tree and the core. In every case, this new
cycle is added to the core-index C, and the tree-index T is reconstructed.

Case 4. u, v ∈ Vc:
In this case, we simply add an edge between nodes u and v since the new edge
does not affect the tree-index T .

Using Lemma 2, we design a novel algorithm that adds an edge to the CT-
index.
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Algorithm Overview: I = 〈T , C〉 is updated using a two-fold process: linking
nodes and restructuring trees. The linking step divides the cases by the location
of the edge to be added. The edge is in the core or the tree. In each case, it
calculates the cycle appearing through the tree-index and restructures to move
it to the core-index. In the restructuring step, nodes are moved from a tree to
the core. Then the node is recursively merged into its parent node for each leaf
node in the updated trees.

3.3 Removing Nodes and Edges

We also introduce an algorithm to dynamically update the CT index when nodes
and edges are removed from the given graph. Here, we consider only the removal
of edges. Similar to adding edges, removal of a node is equivalent to the removal
of all edges linked to it.

The removal of an edge between nodes u and v can be classified into two
cases:

Case 1. u, v ∈ Vc: For u, if deg(u) = 1 holds after the removal, u and only
its adjacent node w become part of the tree. In this case, u must be moved into
T . Thus, DCT performs restructuring from u as a leaf node. By performing the
same process for v, T can have the new tree that has become a tree due to the
removal of the edge. By performing the same process for v, T can become a new
tree due to edge removal.

Case 2. u, v ∈ Tuv: As mentioned in Sect. 2, we assumed the graph is connected.
Thus, we remove nodes that are no longer connected to the core from the graph.

Algorithm Overview: To update I = 〈T , C〉 in DCT, the edge is initially
removed. Then the cases are divided by the location of the edge to be removed.
The edge is either in the core or the tree. For an edge in the core, DCT restruc-
tures if deg(u) = 1 or deg(v) = 1 holds. For an edge in a tree, DCT removes a
disconnected path in the leaf side.

3.4 Complexity Analysis

Finally, we discuss the time complexity of DCT.

Theorem 1. Updating I = 〈T , C〉 after adding an edge incurs O( ¯|T |) time on
average, where ¯|T | represents the average size of trees in T .

Theorem 2. Updating I = 〈T , C〉 after removing an edge incurs
O(max(|Vc|, ¯|T |)) time on average.

From Theorems 1 and 2, DCT can efficiently update the index for graph changes.
According to [9,10], the index construction of CT requires O(|E|log|V |). Since
|V | > |Vc| and |V | > ¯|T | hold in general, our proposed method significantly
improves the computational complexity required for reconstruction compared to
the state-of-the-art method.



An Efficient Indexing Method for Dynamic Graph kNN 87

4 Experimental Evaluation

We experimentally evaluated the efficiency of DCT compared to CT [10].

Datasets: We tested five real-world social networks [11] used in previous
works [10]1. Table 1 shows the size of the datasets.

Experimental Setup: We set k = 0.01|V | as default. All experiments were
conducted on a Linux server with Intel Xeon CPU 2.60GHz and 128 GiB RAM.
All algorithms were implemented in C++ using “–O2” option. We compared the
running time for 100 random edge additions and removals each.

Table 1. Statistics of real-world datasets.

|V | |E| average degree

TV 3,892 17,262 4.4

GV 7,057 89,455 12.7

NS 27,917 206,259 7.3

AT 50,515 819,306 16.2

SP 1,632,803 22,301,964 13.7

Fig. 1. Efficiency for updating edges.

4.1 Efficiency for Updating

Figure 1 shows the indexing times to add and remove edges as m = 200. DCT
achieves significantly faster indexing for graph updates by reducing the recon-
struction cost using dynamic index updates. Furthermore, CT suffers from a
significant reconstruction time for large graphs because computations are per-
formed over the entire graph. By contrast, DCT only requires computations
within the neighborhood of the updated subgraph. Thus, the average degree of
the graph primarily affects the update time in DCT. DCT guarantees the same
results as the CT algorithm but is up to 4,462 times faster than CT.

4.2 Efficiency for Adding/Removing Edges

Figures 2 and 3 plot the index update times to add/remove only edges. DCT
effectively adds and removes edges. More time is required for edge addition
than removal due to the difference in the affected area for dynamic indexing.
Restructuring for edge removal requires merging two paths, at most, whereas
that for edge addition may involve large-scale updates that include the core and
its surrounding trees.
1 All graphs are publicly available online from http://snap.stanford.edu/data.

http://snap.stanford.edu/data
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Fig. 2. Efficiency for only adding edges. Fig. 3. Efficiency for only removing edges.

5 Conclusion

Herein a novel dynamic index update algorithm, DCT, is proposed to efficiently
compute kNN searches on large-scale complex graphs. The proposed method
limits the affected area of the index when the graph is updated, significantly
reducing the computation time to reconstruct indexes. In our experiments, the
proposed method outperforms the state-of-the-art method by up to four orders
of magnitude in terms of processing times for index construction and graph
kNN searches. Hence, the proposed method, which considers the core-tree char-
acteristics, effectively reduces the cost of a kNN search on real-world dynamic
graphs.
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Abstract. Real-world relational databases (RW-RDB) have large, com-
plex schemas often expressed in terms alien to end-users. This scenario is
challenging to LLM-based text-to-SQL tools, that is, tools that translate
Natural Language (NL) sentences into SQL queries using a Large Lan-
guage Model (LLM). Indeed, their accuracy on RW-RDBs is considerably
less than that reported for well-known synthetic benchmarks. This paper
then introduces a technique to improve the accuracy of LLM-based text-
to-SQL tools on RW-RDBs using Retrieval-Augmented Generation. The
technique consists of two steps. Using the RW-RDB schema, the first step
generates a synthetic dataset E of pairs (QN , QS), where QN is an NL
sentence and QS is the corresponding SQL translation. The core contri-
bution of the paper is an algorithm that implements this first step. Given
an input NL sentence QI , the second step retrieves pairs (QN , QS) from
E based on the similarity of QI and QN , and prompts such pairs to the
LLM to improve accuracy. To argue in favor of the proposed technique,
the paper includes experiments with an RW-RDB, which is in production
at an Energy company, and a well-known text-to-SQL prompt strategy.
It repeats the experiments with Mondial, an openly available database
with a large schema. These experiments constitute a second contribution
of the paper.

Keywords: Text-to-SQL · Retrieval-Augmented Generation · RAG ·
GPT · Large Language Models · Relational Databases

1 Introduction

Natural language (NL) interfaces to databases (NLIDBs) allow users to access
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way to construct an NLIDB is to adopt a text-to-SQL tool that translates NL
sentences to SQL queries. A text-to-SQL tool is generic (or cross-domain) if it
is designed to work with any database; by contrast, a tool is database-specific if
it is constructed for a particular database.

A large number of generic text-to-SQL tools have been constructed with rela-
tive success [1,6,7] over well-known benchmarks [9,14]. The leaderboards of these
benchmarks indicate that the best tools are currently based on Large Language
Models (LLMs) [10], that is, they are LLM-based text-to-SQL tools. However,
when applied to real-world relational databases (RW-RDBs), the performance
of such tools is significantly less than that reported on the leaderboards.

Indeed, RW-RDBs are challenging for at least four reasons:

1. The relational schema is often an inappropriate specification of the database
from the point of view of the LLM – the table and column names are often
different from the terms the users adopt to formulate their NL questions.

2. The database schema is often large, in the number of tables, columns per
table, and foreign keys – but a large schema may not fit in the prompt area,
and opens space to queries with many joins, which are difficult to synthesize.

3. The data semantics is often complex; for example, some data values may
encode enumerated domains – again, the terms the users adopt to formulate
their NL questions may have to be mapped to this internal semantics.

4. Metadata and data are often ambiguous, which influence the behavior of an
LLM-based text-to-SQL tool, leading to unexpected results.

To address these challenges, Nascimento et al. [11] argued that the text-
to-SQL task can be facilitated by providing a database specification based on
LLM-friendly views that are close to the language of the users’ questions and that
eliminate frequently used joins, and LLM-friendly data descriptions of the data
semantics. However, the LLM-friendly data descriptions were limited in [11] to
passing, in the prompt, a few tuples of each table used to process the NL question,
which is a weak solution to capture data semantics and solve ambiguities.

This paper then concentrates on the problem of constructing database-
specific LLM-based text-to-SQL tools for RW-RDBs, defined as: “Given an
RW-RDB D, construct an LLM-based text-to-SQL tool such that, given any
NL question on D, the tool translates the NL question into an equivalent SQL
query on D”.

The paper introduces a RAG-based technique, that is, a technique based on
Retrieval-Augmented Generation [8], that provides a robust strategy to construct
database-specific text-to-SQL tools for RW-RDBs, especially when it comes to
conveying the data semantics of the RW-RDB to the LLM. The RAG-based
technique consists of two steps. The first step generates a synthetic dataset E of
pairs (QN , QS), where QN is an NL sentence and QS is the corresponding SQL
translation. It is based on a technique that samples the RW-RDB and its schema
and associated documentation, and calls an LLM to create QN from the sampled
data and to translate QN into QS . Roughly, by varying how the sampling works,
the pairs in E help address all four RW-RDB challenges by providing text-to-SQL



Improving the Accuracy of Text-to-SQL Tools 95

examples, including pairs that expose data semantics. Therefore, the dataset E
is specific to the RW-RDB, but the algorithm is generic and applicable to any
RW-RDB. Given an input NL sentence QI , the second step retrieves samples
(QN , QS) from E based on the similarity of QI and QN , and prompts such
pairs to the LLM to improve accuracy. The core contribution of the paper is an
algorithm to generate a synthetic dataset E from an RW-RDB and its schema
and associated documentation.

To argue in favor of the RAG-based technique, the paper includes experi-
ments with the same RW-RDB and the same set of questions as in [11], and a
text-to-SQL prompt strategy, implemented with LangChain using GPT-3.5 and
GPT-4, which includes the RAG-based technique. The results suggest that the
RAG-based technique indeed leads to improved accuracy. Since the RW-RDB is
proprietary, the paper repeats the experiments with Mondial, an openly available
database with a large, complex relational schema. As the Mondial schema adopts
a user-friendly vocabulary, using LLM-friendly views is not required. On these
challenging databases, the proposed RAG-based technique achieved an accuracy
close to that obtained by the best strategies on the (much simpler) benchmark
databases. These experiments constitute a second contribution of the paper.

This paper is organized as follows. Section 2 covers related work. Section 3
summarizes the RW-RDB benchmark adopted and the LLM-friendly views solu-
tion. Section 4 details the RAG-based technique. Section 5 describes the experi-
ments with the RW-RDB. Section 6 summarizes the experiments with Mondial.
Finally, Sect. 7 contains the conclusions.

2 Related Work

Text-to-SQL Datasets. The Spider – Yale Semantic Parsing and Text-to-SQL
Challenge [14] defines 200 datasets, covering 138 domains, for training and test-
ing text-to-SQL tools. For each database, Spider lists 20–50 hand-written NL
questions and their SQL translations. An NL question QN , with an SQL trans-
lation QS , is classified as easy, medium, hard, and extra-hard, where the diffi-
culty is based on the number of SQL constructs of QS . The set of NL questions
introduced in Sect. 3.3 follows this classification.

Most databases in Spider have small schemas: the largest five databases have
between 16 and 25 tables, and about half of the databases have schemas with
five tables or fewer. Also, all Spider NL questions are phrased in terms used in
the database schemas. These two limitations considerably simplify the text-to-
SQL task. Therefore, the results reported in the Spider leaderboard are biased
toward databases with small schemas and NL questions written in the schema
vocabulary, which is not what one finds in real-world databases.

Spider has two interesting variations. Spider-Syn [2] is used to test how well
text-to-SQL tools handle synonym substitution, and Spider-DK [3] addresses
testing how well text-to-SQL tools deal with domain knowledge.

BIRD – BIg Bench for LaRge-scale Database Grounded Text-to-SQL Eval-
uation [9] is a large-scale cross-domain text-to-SQL benchmark in English. The
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dataset contains 12,751 text-to-SQL data pairs and 95 databases with a total
size of 33.4 GB across 37 domains. However, BIRD still does not have many
databases with large schemas: of the 73 databases in the training dataset, only
two have more than 25 tables, and, of the 11 databases used for development,
the largest one has only 13 tables.

Despite the availability of these benchmarks for text-to-SQL, and inspired
by them, Sect. 3 describes a benchmark tuned to the problem addressed in this
paper. The benchmark consists of a relational database, whose design is based
on a real-world database, three sets of LLM-friendly views, specified as proposed
in [11], and a set of 100 test NL questions, that mimic those posed by real users,
and their ground truth SQL translations.

Text-to-SQL Tools. The Spider Web site1 publishes a leaderboard with the
best-performing text-to-SQL tools. At the time of this writing, the top 5 tools
achieved an accuracy that ranged from an impressive 85.3% to 91.2% (two of
the tools are not openly documented). Four tools use GPT-4, as their names
imply. The three tools that provide detailed documentation have an elaborate
first prompt that tries to select the tables and columns that best matches the NL
question. The first prompt is, therefore, prone to failure if the database schema
induces a vocabulary which is disconnected from the NL question terms. This
failure cannot be easily fixed by even more elaborate prompts that try to match
the schema and the NL question vocabularies, as argued in [11].

The BIRD Web site2 also publishes a leaderboard. At the time of this writing,
out of the top 5 tools, two use GPT-4, one uses CodeS-15B, one CodeS-7B, and
one is not documented. The sixth and seventh tools also use GPT-4, appear in
the Spider leaderboard, and are well-documented.

Finally, LangChain3 is a generic framework that offers several predefined
strategies to build and run SQL queries based on NL prompts. Section 5.1 uses
LangChain to create a text-to-SQL prompt strategy.

Retrieval-Augmented Generation – RAG. Retrieval-Augmented Genera-
tion (RAG), introduced in [8], is a strategy to incorporate data from external
sources before proceeding to the generation phase. This process ensures that the
responses are grounded in retrieved evidence, thereby significantly enhancing the
accuracy and relevance of the output.

There is an extensive literature on RAG. Recent references include a RAG
technique for an LLM-based Text-to-SQL framework involving sample-aware
prompting and a dynamic revision chain [5]. A RAG technique is used in [13]
to retrieve the table and column descriptions to ensure that the NL question
is related to the right tables and columns. A recent survey can be found in [4],
encompassing the Naive RAG, the Advanced RAG, and the Modular RAG.

The core contribution of the paper is an algorithm that, given an RW-RDB
DR and its schema DS and associated documentation Ddoc, generates a synthetic

1 https://yale-lily.github.io/spider.
2 https://bird-bench.github.io.
3 https://python.langchain.com.

https://yale-lily.github.io/spider
https://bird-bench.github.io
https://python.langchain.com
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dataset E of pairs (QN , QS), where QN is an NL question and QS is its SQL
translation, using DR, DS and Ddoc. The synthetic dataset E is then used in an
RAG technique to improve the accuracy of a text-to-SQL strategy on DR.

3 A Real-World Benchmark for the Text-to-SQL Task

This section describes a benchmark to help investigate the text-to-SQL task over
an RW-RDB. It should be stressed that this benchmark was designed exclusively
for testing text-to-SQL tools; it was not meant for training such tools.

3.1 The Real-World Relational Database

The RW-RDB is proprietary and stores data related to the integrity management
of an energy company’s industrial assets. The relational schema contains 27
relational tables with, in total, 585 columns and 30 foreign keys (some multi-
column); the largest table has 81 columns.

Table and column names in the relational schema do not follow a specific
vocabulary. This scenario implies that end-users have difficulty understanding
the semantics of the stored data and must turn to database specialists, even if
they have access to the database documentation.

But there is a second, more challenging problem: some column values are not
end-user-friendly. Indeed, some column values, or combinations of column values,
hide semantic information that does not directly correspond to end-user terms.
To overcome this situation, database experts often create SQL functions that
contain the logic to represent the semantics hidden in the column values. Still,
end-users adopt their vocabulary to refer to these data values, such as “overdue
order” which translates to “Maintenance Order.Status = 1”; this translation
is in the database documentation, but it is not readily visible.

3.2 The Sets of Views

To avoid the effect of the internal naming convention of the RW-RDB, the bench-
mark introduces three sets of LLM-friendly views of increasing complexity:

– Conceptual schema views: a set of views that define a one-to-one mapping of
the relational schema to end users’ terms; the views basically rename tables
and columns.

– Partially extended views: a set of views that extend the conceptual schema
views with new columns that predefine joins that follow foreign keys, as well
as other selected columns.

– Fully extended views: a set of views such that each view combines several
conceptual schema views; the set may optionally include some conceptual
schema views.
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Fig. 1. The referential dependency diagram of a simplified version of the RW-RDB.

Table 1. A sample of the NL questions and their translations.

Figure 1 shows the referential dependencies diagram of a much-simplified
version of the conceptual schema views, where an arrow represents a foreign key
and points to the referenced table, as usual.

The set of partially extended views was defined by including the non-
primary key columns of the view Installation into the views Equipment,
Maintenance Order, Maintenance Request, Maintenance Recommendation,
and Maintenance Plan Item. The following statement shows the SQL code
that creates the partially extended view PE Equipment by combining the views
Installation and Equipment:
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where the Installation view has columns id (primary key), name, asset,
main hub, and business unit, and the installation id column of the
Equipment view is a foreign key to the id column of Installation.

Finally, the set of fully extended views was defined following a sim-
ilar strategy but combining two or more conceptual schema views. For
instance, view FE Installation Equipment Maintenance Request combines
views Installation, Equipment, and Maintenance Request.

3.3 The Test Questions and Their Ground Truth SQL Translations

The benchmark contains a set of 100 NL questions, L = {L1, ..., L100}, that
consider the terms and questions experts use when requesting information related
to the maintenance and integrity processes.

The ground truth SQL queries, G = {G1, ..., G100}, were manually defined
over the conceptual schema views so that the execution of Gi returns the
expected answer to the NL question Li. The use of the conceptual schema views
facilitated this manual task, since these views use a vocabulary close to that of
the NL questions.

An NL question Li is classified into simple, medium, and complex, based on
the complexity of its ground truth SQL query Gi, as in the Spider benchmark
(extra-hard questions were not considered). The set L contains 33 simple, 33
medium, and 34 complex questions.

Note that the NL question classification is anchored on the conceptual schema
views. But, since these views map one-to-one to the tables of the relational
schema, a classification anchored on the relational schema would remain the
same. The classification is maintained for the other sets of views, even knowing
that the definition of these other sets of views might simplify the translation of
some NL questions (which was one of the reasons for considering these sets of
views in the first place).

Table 1 shows some NL questions and their ground truth SQL translations.

4 The Proposed RAG-Based Technique

4.1 Generation of the Synthetic Dataset

A synthetic dataset may provide SQL examples illustrating how the database
schema is structured, how the user’s language maps to the database schema,
and how NL language constructions map to data values. This section outlines a
procedure to generate a synthetic dataset with examples of all these three types,
by exploring the database, its schema, and associated documentation.

Algorithm 1 shows a much simplified pseudo-code of the core procedure,
which generates a pair (QN , QS), where QN is a NL question and QS is the
corresponding SQL query. Very briefly, the core procedure goes as follows:
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– Step 1 (on Line 2) selects a set QA of n pairs of table/column names from
the database tables. The selection process employs a weighted random distri-
bution, which reflects the likelihood of each column of a table being chosen
by an average user.

– Step 2 (on Line 3) creates an NL question QK from QA by prompting GPT-
3.5-turbo with the following information: the column/table pairs selected in
Step 1, sample values of each column/table, and a simplified Data Defini-
tion Language (DDL) statement encompassing only the columns and tables
involved, including any join tables. In addition, the type of restriction to
be incorporated into the NL question depends on the nature of the data.
For instance, for numerical columns, restrictions may involve operations such
as summation, averaging, or finding the maximum value. Similarly, requests
might include grouped aggregations for categorical columns, among other pos-
sibilities. Lastly, the prompt includes instructions on how to formulate the
NL question by using the database vocabulary without altering the column
and table names. This is essential for the next step.

– Step 3 (on Line 4) calls GPT-4 to translate QK into an SQL query that
responds to the NL question by providing the simplified DDL statement in
the same manner as in Step 2. It is worth noting that, since QK is written
using the database vocabulary and since the DDL statement describes only
the necessary tables and columns, this translation task is relatively simple.

– Finally, Step 4 (on Line 5) calls GPT-3.5-turbo to translate QK into an
improved NL question QN , using the database documentation Ddoc, which
includes the Description of each column and table along with synonyms. Dur-
ing this step, GPT-3.5-turbo is instructed to rephrase the NL question by
translating from the database to the user’s vocabulary, preserving the origi-
nal NL question intent.

By looping Algorithm 1 over different combinations of table/column name
samples, one can generate a reasonably large dataset, containing thousands of
instances of NL questions and their corresponding SQL queries.

When n = 1, Algorithm 1 samples just one column/table pair from the
database schema. This option is interesting for capturing data value semantics,
as the following example illustrates:
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– Suppose Step 1 selects column Classification of table Maintenance Plan.
– Since Classification is a categorical column, suppose Step 2 decides to

create the filter Classification = 1, based on the samples provided in the
prompt. The NL question will then be QK = “List all instances on the Main-
tenance table which have Classification equal to 1”.

– Step 3 creates the SQL query QS

– Step 4 observes in the database documentation that users adopt Critical Plans
to refer to plans such that Classification = 1. Therefore, Step 4 generates
the improved NL question QN = “List all critical plans”.

When n > 1, Algorithm 1 samples two or more column/table pairs from the
database schema, which forces Step 3 to generate SQL queries with one or more
joins, if the sampled column/table pairs are from different tables. For example,
consider a sample with two column/table pairs (that is, n = 2):

– Suppose Step 1 selects column Description of table Maintenance Request
and column Code Name of table Installation.

– Based again on the samples provided and the nature of the columns, suppose
that Step 2 generates the following question: QK = “List the Code Name

instances from the table Installation that are equal to XPTO associated
with Description containing the word “paint” from table Installation.

– Step 3 creates the SQL query QS

– Step 4 then improves the readability of QK , generating the NL question QN

= “List all paint maintenance requests for installation XPTO”.

Note that the SQL query QS contains two joins to navigate from table
Maintenance Request to table Installation, via table Equipment, as depicted
in Fig. 1. That is, relating column Description of table Maintenance Request
and column Code Name of table Installation is somewhat more challenging.

Finally, we observe that the implementation of the core procedure is capable
of generating far more complex NL question/SQL query pairs. Without going
into the details, the following example illustrates this remark:

– Initial NL question:“How many maintenance orders from table Maintenance

Order are associated with each classification category from table
Maintenance Plan, considering only maintenance orders whose Description

contains the word ‘paint’ ?”



102 G. M. C. Coelho et al.

– Reformulated NL question: “How many maintenance orders are associated
with each maintenance plan classification, considering only maintenance
orders whose Description contains the word ‘paint’?”

– SQL query for both NL questions:

4.2 The Proposed RAG-Based Techniques

The RAG-based techniques assume that the NL questions in the synthetic
dataset have already been embedded into a vector space and indexed accord-
ingly. The critical step, question similarity selection, first obtains an embedding
EI of the input NL question. Then, it retrieves from the synthetic dataset the
top-k pairs whose NL question embeddings are similar to EI , as usual.

The experiments will consider four configurations, which test two synthetic
datasets combined or not with schema information.

The single-attribute synthetic dataset is generated by sampling just single
attributes (that is, by calling Algorithm 1 always with n = 1), whereas the multi-
attribute synthetic dataset is generated by sampling multiple attributes. There-
fore, the single-attribute syntactic dataset will contain only pairs (QN , QS),
where QN is a simple NL question and QS is a SQL query over a single table,
with no join clauses, and a WHERE clause with one filter over a single column.

Now, RAG with no schema information uses RAG to retrieve examples from
the synthetic dataset which are similar to the input NL question, and prompts
the LLM only with the retrieved examples. These experiments test whether the
synthetic dataset is sufficient to convey all the information about the database
the LLM requires for the text-to-SQL task.

By contrast, RAG with schema information uses RAG to retrieve examples
from the synthetic dataset and prompts the LLM with the retrieved examples
and the database schema. These experiments test whether the RAG-based tech-
nique adds information not conveyed by the schema, thereby leading to a better
text-to-SQL prompt strategy.

5 Experiments with an RW-RDB

5.1 Experimental Setup

Benchmark. The experiments used the RW-RDB benchmark defined in Sect. 3,
with the partially extended views, which achieved the best performance in [11].
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Performance Indicator. The experiments used the accuracy of a given text-
to-SQL strategy over the benchmark, defined as the number of correct predicted
SQL queries divided by the total number of SQL queries, as usual.

The experiments used an automated procedure to compare the predicted and
the ground truth SQL queries, entirely based on column and table values, and
not just column and table names. Therefore, a text-to-SQL tool may generate
SQL queries over the relational schema or any set of views, and the resulting
SQL queries may be compared with the ground truth SQL queries based on the
results returned. The results of the automated procedure were manually checked
to eliminate false positives and false negatives.

Setup Configurations. The experiments were based on a text-to-SQL imple-
mentation using LangChain SQLQueryChain which automatically extracts
metadata from the database, creates a prompt with the metadata and passes it
to the LLM. This chain greatly simplifies creating prompts to access databases
through views since it passes a view specification as if it were a table specifi-
cation. This strategy was adopted because it proved inexpensive and had an
accuracy compared with much more complex text-to-SQL tools [12].

The multi-attribute synthetic dataset had 46,215 pairs created on top of
the partially extended views, whereas the single-attribute synthetic dataset had
24,861 pairs. The usual cosine similarity function was adopted to compare the
user’s NL question and the NL questions in the dataset.

The experiments tested several configurations, involving different models,
strategies, and sample sizes, detailed in the next section to avoid repetition.

5.2 Results

Table 2 shows the results obtained with the different setup configurations. Col-
umn Model indicates the models used; column #Samples, the number of sam-
ples retrieved from the synthetic dataset; columns under #Correct Predicted
Queries, the number of simple, medium, or complex SQL queries correctly syn-
thesized; columns under Accuracy, the accuracy results for simple, medium, or
complex SQL queries, recalling that the benchmark had 33 simple, 33 medium,
and 34 complex NL questions. The lines of Table 2 should be read as follows:

– Lines 1 and 2 show the results when the LLM (GPT-3.5 or GPT-4) is
prompted with the relation tables. These are the baselines.

– Lines 3 and 4 show the results using the RAG technique, with the multi-
attribute synthetic dataset, and without schema information. The experi-
ments used GPT-3.5-turbo and GPT-4, and retrieved the top 15 most similar
pairs from the synthetic dataset.

– Lines 5 and 6 show the results, obtained in [11], using the LLM-friendly
partially extended views, without the RAG-based technique.

– Lines 7 and 8 show the results using the RAG-based technique, with the
multi-attribute synthetic dataset, combined with the LLM-friendly partially
extended views. The experiments used GPT-3.5-turbo-16K and GPT-4-32K,
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since the prompt turned out to be large, and retrieved the top-8 most similar
pairs from the dataset, as well as three rows for each table as samples.

– Lines 9 and 10 show the results using the same configuration as in Lines 7 and
8, except that the RAG-based technique used the single-attribute synthetic
dataset.

The rest of this section discusses the results of the setup configurations that
use the RAG-based technique in more detail.

Table 2. Results for the different setup configurations – RW-RDB.

RAG-based Technique Only. Consider first the results for the configurations
using SQLQueryChain over the partially extended views, with the RAG-based
technique using the multi-attribute synthetic dataset, but without passing any
schema information (Lines 3 and 4). GPT-3.5 and GPT-4 had relatively low
overall accuracy – 37% and 42%, respectively. GPT-4 performed better on simple
and complex queries, while GPT-3.5 performed better on medium queries. GPT-
4 correctly answered 79% of the simple queries.

In summary, the first experiment suggested that:

– The RAG-based technique provides sufficient information for the LLM to
process most of the simple NL questions.

– In more complex NL questions, the examples provided by the RAG-based
technique may not include all the necessary information.

– Without knowing the database schema, the LLM may “hallucinate” by using
tables and columns that do not exist, or using tables mentioned in the exam-
ples but that do not correspond to the user NL question.

Schema information is therefore necessary for generating more complex SQL
queries – just the RAG-based technique was insufficient.

RAG-Based Technique with LLM-friendly Partially Extended Views.
Consider now the results for the configurations using the RAG-based technique
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combined with LLM-friendly partially extended views (Lines 7–10). The best
result was obtained with the single-attribute synthetic dataset (lines 9 and 10).
GPT-4 with the top-8 samples had the best performance with a 79% accuracy;
it surpassed the previous best configuration using only the LLM-friendly par-
tially extended views (Line 6), which achieved a 74% accuracy. For simple NL
questions, this configuration achieved the best performance, with a 97% accu-
racy. For complex NL questions, it also achieved the best performance with a
68% accuracy; this represents a significant improvement over the previous best
approach for complex NL questions, which used only the LLM-friendly partially
extended views (Line 6), and achieved a 56% accuracy. However, for medium
NL questions, the configuration actually had a lower accuracy than the previous
best configuration for medium NL questions (Line 6), as well as lower than RAG
with the multi-attribute synthetic dataset (Line 8).

In summary, the second experiment suggested that the RAG-based technique:

– Allowed an LLM to understand the “vocabulary of the database schema”.
For example, in schema linking, it enabled the LLM to correctly generate
SQL queries in ambiguous NL questions such as “out of date” (out of date
= yes) and “canceled orders” (order.status = ‘Canceled’).

– Increased accuracy to 97% on simple NL questions and to 68% on complex
NL questions, whereas the previous best approach reached 91% and 56%,
respectively.

Thus, the second experiment suggested that the RAG-based technique with
the single-attribute synthetic dataset helped achieve non-trivial improvements
on previous results, obtained using only LLM-friendly partially extended views.

6 Experiments with Mondial

Benchmark. The second set of experiments used the Mondial database4 and
100 NL questions and their ground truth translations to SQL queries5, divided
into 34 simple, 33 medium, and 33 complex questions. Mondial stores geographic
data and is openly available. It has a total of 47.699 instances; the relational
schema has 46 tables, with a total of 184 columns and 49 foreign keys, some of
which are multi-column.

Performance Indicator. (Same as in Sect. 5.1).

Setup Configurations. The experiments tested two configurations based on
SQLQueryChain, using GPT-3.5-turbo-16K and GPT-4, with RAG on a multi-
attribute synthetic dataset with 60,000 pairs, created on top of the Mondial
relational schema and associated documentation.

Results. Lines 1 and 2 of Table 3 repeat the best results obtained in [12] for Mon-
dial without using RAG, taken as the baselines; Lines 3 and 4 show the results for
4 https://www.dbis.informatik.uni-goettingen.de/Mondial/.
5 Available on request.

https://www.dbis.informatik.uni-goettingen.de/Mondial/
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the two configurations with RAG. The results corroborate the findings reported
in Sect. 5.2. The RAG-based technique with GPT-4 obtained an accuracy of 86%
(Line 4), surpassing the previous best result of 78% (Line 2), obtained using C3
with GPT-4. The RAG-based technique using GPT-3.5-turbo-16K achieved an
accuracy of 72% (Line 3), surpassing all previous strategies tested, except for the
RAG-based technique with GPT-4 and C3 with GPT-4. The use of RAG sub-
stantially improved the accuracy for medium and complex NL questions. But,
for simple NL questions, the multiple similar examples confused the LLM.

Table 3. Results for the different setup configurations – Mondial.

7 Conclusions

This paper argued that a RAG-based technique provides a robust strategy to
construct database-specific text-to-SQL tools for RW-RDBs. The key step is
based on an algorithm that samples the RW-RDB schema and the associated
documentation, and calls an LLM to create NL questions and their translation to
SQL from the sampled data. By varying how the sampling works, this step gen-
erates a dataset containing pairs of NL question/SQL query that give examples
of how to create SQL queries with several joins over the RW-RDB adopted, as
well as examples that expose the semantics of the data stored in the RW-RDB.
The algorithm is generic and applicable to other RW-RDBs.

To argue in favor of the RAG-based technique, the paper included experi-
ments with the same RW-RDB and the same set of questions as in [11], and
a text-to-SQL prompt strategy, implemented with LangChain using GPT-3.5
and GPT-4, which includes the RAG-based technique. The results for the RW-
RDB suggested that the RAG-based technique improved accuracy, especially for
complex NL questions. The results for Mondial corroborated these findings.

In future work, we plan to expand the experiment to other RW-RDBs, and
with variations of the RAG-based technique, including changing the similarity
function and working with a different strategy that retrieves a diversified list of
pairs, rather than just the top-n. We also plan to expand the approach to cover
different user groups, with distinct and often contradictory vocabularies.

Acknowledgements. This work was partly funded by FAPERJ under grant E-
26/202.818/2017; by CAPES under grants 88881.310592-2018/01, 88881.134081/2016-
01, and 88882.164913/2010-01; by CNPq under grant 302303/2017-0; and by Petrobras.



Improving the Accuracy of Text-to-SQL Tools 107

References

1. Affolter, K., Stockinger, K., Bernstein, A.: A comparative survey of recent natural
language interfaces for databases. VLDB J. 28 (2019). https://doi.org/10.1007/
s00778-019-00567-8

2. Gan, Y., et al.: Towards robustness of text-to-sql models against synonym sub-
stitution. CoRR abs/2106.01065 (2021). https://doi.org/10.48550/arXiv.2106.
01065

3. Gan, Y., Chen, X., Purver, M.: Exploring underexplored limitations of cross-
domain text-to-sql generalization. In: Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing, pp. 8926–8931, January 2021.
https://doi.org/10.18653/v1/2021.emnlp-main.702

4. Gao, Y., et al.: Retrieval-augmented generation for large language models: a survey.
arXiv preprint (2024). https://doi.org/10.48550/arXiv.2312.10997

5. Guo, C., et al.: Retrieval-augmented gpt-3.5-based text-to-sql framework with
sample-aware prompting and dynamic revision chain. arXiv preprint (2023).
https://doi.org/10.48550/arXiv.2307.05074

6. Katsogiannis-Meimarakis, G., Koutrika, G.: A survey on deep learning approaches
for text-to-SQL. VLDB J. 32(4), 905–936 (2023). https://doi.org/10.1007/s00778-
022-00776-8

7. Kim, H., So, B.H., Han, W.S., Lee, H.: Natural language to SQL: where are we
today? Proc. VLDB Endow. 13(10), 1737–1750 (2020). https://doi.org/10.14778/
3401960.3401970

8. Lewis, P., et al.: Retrieval-augmented generation for knowledge-intensive NLP
tasks. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (eds.)
Advances in Neural Information Processing Systems, vol. 33, pp. 9459–9474. Cur-
ran Associates, Inc. (2020). https://api.semanticscholar.org/CorpusID:218869575

9. Li, J., et al.: Can LLM already serve as a database interface? A big bench for large-
scale database grounded text-to-SQLs. arXiv preprint (2023). https://doi.org/10.
48550/arXiv.2305.03111

10. Manning, C.D.: Human language understanding & reasoning. Daedalus 151(2),
127–138 (2022). https://doi.org/10.1162/daed a 01905

11. Nascimento, E.R., et al.: My database user is a large language model. In: Proceed-
ings of the 26th International Conference on Enterprise Information Systems, vol.
1, pp. 800–806 (2024). https://doi.org/10.5220/0012697700003690

12. Nascimento, E.R., et al.: Text-to-SQL meets the real-world. In: Proceedings of the
26th International Conference on Enterprise Information Systems, vol. 1, pp. 61–72
(2024). https://doi.org/10.5220/0012555200003690

13. Panda, S., Gozluklu, B.: Build a robust text-to-sql solution generating complex
queries, self-correcting, and querying diverse data sources. AWS Machine Learning
Blog, 28 February 2024

14. Yu, T., et al.: Spider: a large-scale human-labeled dataset for complex and cross-
domain semantic parsing and Text-to-SQL task. In: Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language Processing, pp. 3911–3921,
Oct–Nov 2018. https://doi.org/10.18653/v1/D18-1425

https://doi.org/10.1007/s00778-019-00567-8
https://doi.org/10.1007/s00778-019-00567-8
https://doi.org/10.48550/arXiv.2106.01065
https://doi.org/10.48550/arXiv.2106.01065
https://doi.org/10.18653/v1/2021.emnlp-main.702
https://doi.org/10.48550/arXiv.2312.10997
https://doi.org/10.48550/arXiv.2307.05074
https://doi.org/10.1007/s00778-022-00776-8
https://doi.org/10.1007/s00778-022-00776-8
https://doi.org/10.14778/3401960.3401970
https://doi.org/10.14778/3401960.3401970
https://api.semanticscholar.org/CorpusID:218869575
https://doi.org/10.48550/arXiv.2305.03111
https://doi.org/10.48550/arXiv.2305.03111
https://doi.org/10.1162/daed_a_01905
https://doi.org/10.5220/0012697700003690
https://doi.org/10.5220/0012555200003690
https://doi.org/10.18653/v1/D18-1425


QPSEncoder: A Database Workload
Encoder with Deep Learning

Jianwen Yang1,2, Qiuhong Zhang1,2, Jin Yan1,2(B), Zhiming Ding2,
Meiling Zhu2, and Xinjie Lv3

1 University of Chinese Academy of Sciences, Beijing, China
{yangjianwen18,zhangqiuhong22}@mails.ucas.ac.cn,

yvette.yan@mails.ucas.edu.cn
2 Institute of Software, Chinese Academy of Sciences, Beijing, China

{zhiming,meiling}@isacs.ac.cn
3 Highgo Infrastructure Software Co., Ltd., Jinan, China

xinjie@highgo.com

Abstract. Machine learning has become a prominent approach for
many database optimization problems, including cost estimation, cardi-
nality estimation, and query optimization. However, the task of feature
selection and encoding for machine learning in database tasks presents
significant challenges. Recently, some representation methods have been
proposed that utilize physical plan or SQL query as feature. However,
these methods have two limitations. Firstly, they often rely on the selec-
tion of workloads using either the physical plan or the SQL query alone,
which is not comprehensive enough to fully represent the characteristics
of the database. Secondly, early feature extraction and encoding meth-
ods are not applicable to the database workload.

To tackle these limitations, we propose PQSEncoder, a feature repre-
sentation model designed to address various database optimization chal-
lenges. In this approach, we integrate the physical plan, SQL query,
and database schema to construct the workload of the database. Fea-
ture extraction and encoding are performed for each type, followed by
feature fusion to compose the workload’s features, which can then be
used for machine learning tasks in database optimization. We incorporate
PQSEncoder into two machine learning models for database optimiza-
tion tasks, and experimental results show that PQSEncoder substantially
improves the performance of these models.

Keywords: physical plan · SQL query · database schema · AI4DB

1 Introduction

With the increasing complexity and diversity of modern database manage-
ment systems (DBMS), the optimization and maintenance of databases have
become more intricate. Consequently, there has been a growing trend of apply-
ing machine learning techniques to various database tasks, including cardinality
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. Strauss et al. (Eds.): DEXA 2024, LNCS 14910, pp. 108–123, 2024.
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estimation [5], join order selection [22], cost estimation [17], and performance
optimization [10,24]. Feature engineering plays a critical role in the training
process of machine learning models, where the workload serves as the input fea-
ture for machine learning in databases. The selection, feature extraction, and
encoding of the workload lay the foundation for effectively applying machine
learning techniques to address database tasks.

In existing database machine learning tasks, the physical plan is predomi-
nantly utilized as workload features [5,10,22,24]. Describing a sequence of oper-
ations and their corresponding costs during query execution, the physical plan
is commonly employed for machine learning models. Additionally, other fea-
tures such as the SQL query and database schema are utilized as workload
features [19]. The SQL query contains rich semantic and structural informa-
tion about the query, while the database schema provides metadata and data
distribution information.

Although current research has made strides in addressing feature engineer-
ing challenges in database machine learning, it still faces limitations. Firstly,
existing methods often select only a subset of features to represent the work-
load, which may not comprehensively and accurately characterize the database
workload. For example, aggregate operations in a physical plan may lack speci-
ficity regarding whether they involve summation, averaging, or finding the max-
imum value. Moreover, accurately extracting features for each type of work-
load remains a challenge. For instance, using a Convolutional Neural Network
(CNN) model [11,12] to encode the physical plan may struggle to capture long
path information within the tree structure effectively. Many existing models rely
on one-hot encoding to represent SQL queries [5,17]. For instance, models like
MSCN [17] use one-hot encoding to represent database tables and columns in
queries for cardinality estimation. However, this approach has limitations as it
may fail to preserve the semantic information of SQL queries.

To solve the identified challenges, this paper introduces QPSEncoder
(QUERY-PLAN-SCHEMA-ENCODER), a versatile workload encoder. QPSEn-
coder integrates physical plans, SQL queries, and database schemas to construct
comprehensive workload. The model conducts feature extraction and encoding
for each feature type individually before amalgamating the encoded features.
This unified feature representation is suitable for a variety of learning tasks.
Moreover, QPSEncoder is integrated into multiple machine learning models to
assess its efficacy in characterizing database workloads. Our key contributions
include:

1) A dynamic feature extraction algorithm is designed to extract features from
physical plans. Then utilizes tree convolutional neural networks and attention
mechanisms to encode the physical plan.

2) We develop SQLBERT, a pre-trained SQL representation model, that excels
at finding both the semantic and structural components within SQL queries,
by utilizing self-attention techniques.

3) A graph structure is created by considering the column relationships with
in the database schema and SQL query, with columns serving as vertices.
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The database schema is then encoded using a variational graph autoencoder
model.

4) Experimental validation confirms that the QPSEncoder can seamlessly inte-
grate into database tasks. It has the potential to greatly improve the effective-
ness of these machine learning methods in relation to database algorithms.

2 Related Work

To address the issue of workload characterization in database optimization tasks,
different features of the database are selected as the features of the workload,
and feature extraction and encoding are performed on these features to serve
as inputs for machine learning. Physical plan is often used as inputs for some
machine learning models, such as cardinality and cost estimation [17], index rec-
ommendation [2], query optimization [11,12], view selection [23], and join order
selection [22], etc. The Tree-RNN approach tackles the issue of adapting tree-like
physical plans by following a hierarchical tree structure. RTOS [22] and TLSTM
[17] utilize the Tree-LSTM model [18] to aggregate node information from leaf
nodes to the root node in a bottom-up manner, generating the final output as the
representation of the physical plan. However, due to their recursive nature, they
are difficult to train with large physical plan. Tree-CNN [13] is an extension of
traditional CNN [8] that allows for tree-like inputs. NEO [12] and BAO [11] use
Tree-CNN with triangle filters to slide over the tree of physical plan, capturing
the parent-child dependencies of the physical plan. However, these methods have
smaller receptive fields and cannot capture long paths of information flow from
leaf nodes to the root node. Yue Zhao proposed QueryFormer [25], a tree-based
transformer model for physical plan representation, that uses physical plan as
features to capture parent-child dependencies and long paths of information flow
in physical plan.

Other features of databases can contribute to workload characterization as
well. PreQR [25] introduces a novel pre-training SQL representation model that
utilizes SQL queries as features. The model develops a new SQL encoder employ-
ing attention mechanisms to encode query structures using automata. Addi-
tionally, it encodes the schema definition of the database using a graph struc-
ture model. Query-aware subgraphs extract SQL-related pattern information,
while attention mechanisms discern the relationship between the database graph
schema and SQL structures. This representation treats the schema structure as
a graph, with each table represented as a node and foreign key relationships as
edges. Another approach, SpiderSchemaGnn [1], constructs the database schema
as a graph structure. It then employs graph neural networks to learn represen-
tations of nodes and edges, thereby capturing comprehensive and rich database
structural information.

3 QPSEncoder Framework

We propose a general encoding framework QPSEncoder, as shown in Fig. 1. To
characterize the characteristics of a database during queries execution, we utilize
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the physical plan P , SQL query Q, and database schema S to form a workload
w represented as:

w = {Q,P, S} (1)

Firstly, we propose a dynamic feature extraction algorithm to extract fea-
tures from physical plans. The extracted features are encoded using single-node
encoding and tree-structure encoding. The encoded tree-structure feature vec-
tors are further encoded into fixed-size vector representations Pv using tree-CNN
and spatial attention models, as shown in Sect. 3.1.

Secondly, for SQL queries encoding, we design a tokenizer that is suitable
for both databases and SQL queries. We propose an SQL queries encoding
model called SQLBert. Additionally, we incorporate structural information of
SQL queries into SQLBert. Finally, the encoded SQL queries is further encoded
into a fixed-size vector representation Qv using neural networks, as described in
Sect. 3.2.

Finally, for database schema encoding, we employ a combination of static
and dynamic graphs to construct a graph structure that links the database
schema with the SQL query structures. We use the Variational graph auto-
encoders(VGAE) [7] model to extract and encode features from the constructed
graph structure, resulting in a fixed-length vector representation of the graph
structure, denoted as Sv, as described in Sect. 3.3. We then merge the three
feature vectors together to form the workload features Yv:

Yv = Concat(Pv, Qv, Sv) (2)

which serves as input for database machine learning tasks.

Fig. 1. The architecture of QPSEncoder.
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3.1 Physical Plan Encoding

The node of query physical plan typically contain information such as opera-
tors, relations, predicates, cardinality and cost estimates. We select operators
and attributes of numeric types as features for the physical plan. Other non-
numeric types are encoded using SQL queries and database schema to extract
features. For example, relations can be encoded using SQL queries and database
schema, and predicates can be encoded using SQL queries. Considering both
node information and parent-child dependencies, we categorize the physical plan
features into three types: static features, dynamic features, and parent features.
Static features include frequently used operators in the physical plan. Dynamic
features include the dynamic characteristics and resource usage of SQL queries
during execution, such as Total Cost, Plan Rows, and Shared Hit Blocks. We
select features with high level of discreteness as dynamic features, as they have
better performance. Parent features include all operators in the physical plan.

Operators are chosen as features by static features according to their usage
rate, which is defined as follows:

Fuseage(operator) = (usedCount(operator) ÷ Σd∈DΣn∈NCount(∗)) × 100%
(3)

usedCount(operator) is the number of a operator used,D is a queries dataset,
and N is a physical plan tree. Static features chose appropriate operators as static
features by adjusting the usage threshold, which is obtained by aggregating all
operators from physical plan nodes in the queries dataset.

Dynamic features evaluate the discreteness of the feature through variance,
which is calculated by computing the variance of each dynamic attribute in the
physical plan nodes, and is defined as follows:

Fvariance(element) = Σ(xi − μ(element))2 ÷ N (4)

In a queries dataset,μ(element) is the average value of a element all physical
plan nodes in the query dataset D, and N is the number of physical plan nodes in
the query dataset D. Appropriate dynamic features are chosen by adjusting the
threshold of variance. Finally, to extract the parent-child relationships of each
node in the physical plan, we form the parent features by grouping all operators
that appear in the physical plan, and encode the parent operator into the child
nodes.

We encode three types of features: parent features and static features are
encoded using one-hot encoding [15], while dynamic features are encoded as
normalized numerical values. The specific encoding algorithm is described in
Algorithm 1. For parent feature encoding, the operator of the parent node is
encoded into the parent features of the child node using one-hot encoding. The
operator type of the parent node is encoded as 1 in the child node’s parent
feature, while other operators are encoded as 0. Static features are encoded using
one-hot encoding, where if a certain node type belongs to the static features,
it is encoded as 1, and the rest of the operators are encoded as 0. Dynamic
features themselves are numerical types, and their numerical values are directly
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used as feature values. However, the significant difference between the numerical
values of dynamic features and one-hot encoding values may affect the training
of classifiers [3]. Therefore, we perform min-max normalization on the numerical
values of dynamic features to unify the values within the range of [0,1]. The three
types of features constitute a feature vector for each node, and the complete
feature vector tree is formed among the nodes through parent features.

Algorithm 1. Encoding of a physical plan.
Input: a set of static feature S, a set of dynamic feature D, a set of parent feature P ,

a plan tree N
Output: a vertex of a physical plan tree Fv
1: Initialize static features vector Sv ← [0], dynamic feature vector Dv ← [0], parent

feature vector Pv ← [0]
2: for planNode ∈ N do
3: if planNode is not root then
4: parentNode ← planNode(parentNode)
5: Pv[parentNode(nodeType)] ← 1
6: end if
7: if planNode(nodeType) ∈ S then
8: Sv[planNode(NodeType)] ← 1
9: end if
10: for element ∈ planNode do
11: if element(name) ∈ D then
12: Dv[element(name)] ← element(value)
13: end if
14: end for
15: Dv ← ‖Dv‖
16: Fnode ← Sv ⊕ Dv ⊕ Pv
17: Fv add Fnode
18: end for
19: return Fv

Obtaining a representation of the physical plan tree vector poses challenges
because existing methods have difficulty capturing all important information.
Firstly, the Tree-CNN method [11,12] uses average or dynamic pooling to aggre-
gate features from nodes. These pooling operations down sample information
in a brute-force manner, leading to information loss. We enhance the attention
given to important features by adding an attention mechanism to the classifica-
tion model. Spatial attention mechanism [20] is an attention module for CNN
that enhances the network’s focus on important features and suppresses the
influence of irrelevant features. In this way, the spatial attention mechanism
can improve the network’s ability to extract essential features and enhancing its
performance. Therefore, we integrate the spatial attention mechanism into the
tree-CNN named ATCNN.

The ATCNN sub-model architecture consists of convolutional and fully con-
nected layers. The convolutional layer comprises five tree convolutions and two
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spatial attention mechanisms. The feature tree vector first enters a layer of tree
convolution with a dimension of length 256. The convolution kernel of each tree
convolution is 3, and each layer of tree convolution undergoes layer normal-
ization before undergoing spatial feature extraction through a layer of spatial
attention mechanism. The output length of the four subsequent tree convolu-
tions are 128, 64, 32, and 16, respectively. The attention mechanism is applied
to further extract features after the last convolutional layer, and the dynamic
pooling is used to convert the tree structure into a vector of length 16.

3.2 SQL Query Encoding

Bidirectional Encoder Representations from Transformers (BERT) [4] stands as
one of the most widely used pre-trained models in natural language process-
ing (NLP). It’s a Transformer-based sentence encoder that calculates attention
weights using multiple independent attention heads, enhancing representations.
BERT is unsupervised trained on a huge corpus of text and learns rich sentence
representations that make it applicable to various NLP tasks.

We pruned and modified the BERT model. In the original BERT, tokeniza-
tion is used to handle multiple sentences as input, where each sentence is encoded
as a distinct segment. However, the SQL query consist of a single statement and
do not require segmentation. Instead, we replaced segment encoding with struc-
tural encoding specific to SQL query. Positional, structural, and token encoding
are used to create a composite embedding for every token in a SQL query. We
give an example of a SQL embedding in Fig. 2. In classification jobs, the clas-
sification token [CLS] serves as an aggregate representation of the entire token
sequence and is the first token in the SQL query. The SQL query comes to a close
with the [END] token. The composite embeddings from the three encodings are
fed into the SQLBERT module to provide a fixed-length vector representation
of the SQL query.

Fig. 2. SQLBERT model Input.

In a SQL query, the same table or column name can appear in the SELECT,
WHERE, ORDER BY, and GROUP BY structure simultaneously. While
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BERT’s positional encoding captures relative positional information between
words in input sentences, the positions of table and column names in SQL
queries vary, making positional encoding unsuitable for accurately represent-
ing the same table and column names across different positions. To address this,
we categorized SQL queries into 15 structural types (see Table 1), differentiating
between keywords, symbols, and other words, as well as table and column names
in various structures. Each structure type is encoded as depicted in Fig. 3. For
example, sB represents keywords, and sE represents table name, column name
and operator in the WHERE structure.

Table 1. Structure types of SQL queries.

SQL’s Structure Example Code

SQL START AND END [CLS], [END] 0000

KEY WORD select, update, insert, from ... 0100

SELECT STRUCTURE table, column, column alias 0201, 0202, 0203

FROM STRUCTURE table, table alias 0301, 0302

WHERE STRUCTURE table, column, operator, value 0401, 0402, 0403, 0404

HAVING STRUCTURE table, column, operator, value 0501, 0502, 0503, 0504

ORDER BY STRUCTURE table, column 0601, 0602

GROUP BY STRUCTURE table, column 0701, 0702

LIMIT STRUCTURE table, column 0801, 0802

INSERT INTO STRUCTURE table, column, value 0901, 0902, 0903

UPDATE STRUCTURE table, column, value 1001, 1002, 1003

DELETE STRUCTURE table, column, value 1101, 1102, 1103

ON STRUCTURE table, column, operator, value 1201, 1202, 1203, 1204

FUNCTION STRUCTURE count, sum.max, min... 1300

SYMBOL STRUCTURE “.”, “,”, “(”, “)”, “*” 1400

Pre-training of SQLBERT model: SQL queries contain a vast number of
database-specific terminology, is differect natural language. WordPiece [21]
embeddings are used by the BERT model to split down original words into
smaller subwords and characters. For example, the field “info type id” would
be divided into five subwords: “info”, “ ”, “type”, “ ” and “id”. To maintain
specialized terminology such as table names and column names, we created a
bespoke tokenization technique based on the structure and vocabulary of SQL
queries. In addition, as training data, we use 80,000 words of database keywords
and database metadata. Using the masked word prediction task, we train the
model by retraining it on top of a previously trained model. 15% of the input
tokens are randomly masked in this challenge, and the model is trained to pre-
dict these masked tokens. Each word is encoded into a one dimensional vector
of length 768 after the encoding transformer layer. The feature vector length is
then reduced to 16 by two fully connected layers, and an L2 normalization layer
is applied to generate a normalized vector of length 16.
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3.3 Database Schema Encoding

Existing database schema is encoded as graph structure, mostly constructed by
using tables as vertices and primary-foreign key relationships as edges [25]. This
method lacks the ability to capture dynamic information during queries and
cannot capture column correlations. We model columns and their correlations
as a graph, where vertices represent columns. Each vertex contains the primary
data and queries features corresponding to the column. We encode the features of
each vertex into a vector with 7 dimensions: table id, table size, tuple selectivity,
tuple length, whether index, average width and n distinct.

In the relationship between columns, we consider both the static relationships
in the database schema and the dynamic relationships that connect columns in
the queries. The static relationship includes two columns belonging to the same
table R1 and a primaryforeign key relationship R2, the dynamic relationship is
the columns in a query are connected through a join operation R3. The column
relationships are denoted as R = {R1, R2, R3}. The graph structure is defined
as Gs = {V,E,R}, where vi ∈ V represents a node, ei ∈ E represents an edge,
and r ∈ R represents the relationship type. E represents 3 types of edges. For
each pair of nodes vx and vy in the graph, Fig. 3 describes how to create an edge
(vx, vy, r), where r is the label of the edge.

Fig. 3. The column graph.

Most existing graph encoding algorithms directly employ graph convolutional
neural networks (GCNs) [6] for feature extraction of graph structures. However,
using GCNs for graph encoding requires the construction of labels for supervised
learning, making the training process challenging. Auto-encoders (AE) [14], on
the other hand, are unsupervised learning models used to learn efficient rep-
resentations from input data, thus reducing training difficulties and improving
model generalization. They consist of an encoder and a decoder.

The VGAE model applies Autoencoder to the graph domain. Instead of
being obtained from a deterministic GCN, node vectors are sampled from a
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multi-dimensional Gaussian distribution. Node embedding vectors are sampled
from a multi-dimensional Gaussian distribution as well. By uniquely determin-
ing a multi-dimensional Gaussian distribution through μ and δ, samples can be
drawn from it to obtain the embedding representation of nodes. The posterior
probability distribution of the embedding vectors is:

q(Z|V,E) =
N∏

i=1

q(zi|V,E) (5)

include, q(zi|V,E) = N(zi|μi, diag(δ2)), μ and δ determined by two-layer
GCNs.

The decoder reconstructs the graph by calculating the probability of edges
between two points:

q(E|Z) =
N∏

i=1

N∏

j=1

p(Eij |zi, zj) (6)

The VGAE model uses reconstruction loss and Kullback-Leibler (KL) diver-
gence loss to train the model. Reconstruction loss measures the difference
between the graph structure generated by the decoder and the original graph
structure, while KL divergence loss measures the difference between the distri-
bution of latent variables and the standard normal distribution:

L = E − q(Z|V,E)[log p(V |Z)] − KL[q(Z|V,E)‖P (Z)] (7)

Pre-training of VGAE model: We utilize the IMDB database schema and
10,000 SQL statements, with each SQL query and the database schema forming
a graph structure. The vertex matrix V and edge matrix E are obtained as
inputs for the VGAE model. Adam optimizer is used in VGAE, and the training
continues either until reaching 200 batches or achieving convergence (measured
by a decrease in training loss of less than 1% within 10 batches). Finally, encode
the two input matrices into a vector of length 16.

4 Experiments

To evaluate the effectiveness of the QPSEncoder model, we conducted experi-
ments on two machine learning tasks: cost estimation and cardinality estimation
in database. All of our work is performed on a Linux server with specific con-
figuration parameters as follows: CentOS Linux release 7.9.2009 (Core) 64-bit
Operating System, 40-core Intel(R) Xeon(R) Silver 4210R CPU @ 2.40 GHz,
and NVIDIA GeForce RTX 3080 GPU. We use PostgreSQL version 14.0 as the
database for generating physical plans. For implementing neural network models,
we employ PyTorch, and models are executed using Python 3.7 interpreter.
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4.1 Experimental Setup

Trainging Datasets. For queries cardinality and cost estimation, we employed
the IMDB dataset, where columns and tables exhibit high correlation, making
it highly challenging for all types of database tasks. The dataset consists of 22
tables interconnected through primary and foreign key relationships. We used
a subset of 10,000 queries from the real IMDB dataset as training data, The
10,000 queries are split to training and validation set with 9 : 1 ratio.

Verify Datasets. The first workload consists of predicates with numerical
attributes. We choose two of sub-workloads that only contain numerical predi-
cates: synthetic workload Scale with 500 queries, aimed at demonstrating how
the model generalizes to more joins; JOB-light, a workload derived from the
Join Order Benchmark (JOB) [9], comprising 70 queries that do not involve any
predicates on strings or disjunctions, and are limited to a maximum of four joins.

The second workload is derived from the JOB benchmark, where queries
involve complex predicates on string attributes, totaling 113 queries. The range
of join counts for the queries in the JOB workload is between 4 and 28.

Comparison Baselines. For the two estimation tasks, we used the following
four methods as baselines: (1) PostgreSQL (PG): PostgreSQL uses statistical
and cost models for cardinality and cost estimation. (2) MSCN: A CNN-based
model is used for queries-level cardinality and cost estimation [17]. (3) TLSTM:
A model based on LSTM is trained for queries cost estimation and can also be
used for queries cardinality estimation [5]. (4) QueryFormer: A tree-structured
transformer-based physical plan representation model that can be used for car-
dinality estimation and cost estimation [19].

To showcase the effectiveness of the encoding by the QPSEncoder, we employ
a very simple fully connected model as our prediction model. For each query, its
workload’s (1 * 48) encoding generated by QPSEncoder is input into a 2-layer
fully connected feature extractor, and the final prediction result is generated
using sigmoid. In physical plan encoding, the usage threshold of static features
is set to 0.6, and the variance threshold of dynamic featuresis is set to 10000000.

Evaluation Metrics. According to [16], we use the Pearson correlation coef-
ficient between predicted value and actual value on a logarithmic scale. This
measures the goodness of fit between the predicted values and the actual values.

qerror(y, ŷ) =
1
n

n∑

i=1

max(yi, ŷi)
min(yi, ŷi)

(8)

4.2 Effectiveness of QPSEncoder on Numeric Predicates.

We train the models and test them on workloads with numeric predicates only,
specifically Scale and JOB-light. The cost estimation results for JOB-light and
Scale are presented in Table 2, while the cardinality estimation results for the
same workloads are shown in Table 4. In both cost and cardinality estimation
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Table 2. Cost errors on numeric workloads.

JOB-light median 90th 95th 99th max mean

PG 26.8 332 696 2740 3020 173

MSCN 4.75 11.3 40.1 563 987 27.4

TLSTM 3.66 32.1 80.3 445 583 17

QueryFormer 1.4 20.27 50.19 176.59 379.97 12.49

PSEncoder 16.39 237.80 440.39 1254.95 1444.90 106.39

QPEncoder 7.30 110.11 307.07 799.60 1673.59 61.15

QSEncoder 10.70 121.31 158.10 452.80 690.84 41.11

QPSEncoder 2.61 18.6 28.05 106.15 108.57 8.35

scale median 90th 95th 99th max mean

PG 13.3 38.9 81.1 718 1473 35.7

MSCN 1.79 10.6 27.1 88.8 1027 8.22

TLSTM 1.58 5.51 14.4 70.1 611 5.21

QueryFormer 1.43 5.18 16.63 71.58 588.20 5.03

PSEncoder 5.74 163.97 495.08 1994.62 6474.51 107.95

QPEncoder 8.67 65.75 155.74 800.43 1562.33 43.98

QSEncoder 5.95 56.48 122.00 401.25 832.68 29.35

QPSEncoder 1.24 4.25 11.74 64.12 158.9 4.78

Table 3. Cost errors on the JOB workload.

Method median 90th 95th 99th max mean

PG 4.90 80.8 104 3577 4920 105

TLSTM 4.01 14.9 24.5 105 148 9.4

QPSEncoder 3.84 20.43 28.9 72.78 89.35 9.24

tasks, QPSEncoder demonstrates significant improvement. On the JOB-light
workload, QPSEncoder demonstrates significant improvements in both cardinal-
ity and cost estimation accuracy compared to the other four methods. It achieves
an average error reduction of 30% in cardinality estimation compared to Query-
Former and nearly 50% in cost estimation. This indicates that QPSEncoder,
by capturing query structure, statements, and database schema information,
outperforms QueryFormer, which relies solely on physical plan and statistical
information. Additionally, QPSEncoder also shows varying degrees of improve-
ment on the Scale workload, indicating that QueryFormer has the ability to
generalize and adapt to changing workloads.
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Table 4. Cardinality errors on numeric workloads.

JOB-light median 90th 95th 99th max mean

PG 7.93 164 1104 2912 3477 174

MSCN 3.82 78.4 362 927 1110 57.9

TLSTM 3.73 50.8 157 256 289 24.9

QueryFormer 2.26 38.74 225 326 373 29.50

PSEncoder 6.20 32.18 87.02 157.94 214.66 17.51

QPEncoder 2.83 29.37 108.04 447.84 493.63 25.90

QSEncoder 26.31 493.19 859.36 2334.34 3983.88 199.60

QPSEncoder 7.64 30.4 49.07 126.5 170.31 15.42

scale median 90th 95th 99th max mean

PG 2.59 200 540 1816 233863 568

MSCN 1.42 37.4 140 793 3666 35.1

TLSTM 1.43 38.8 139 469 1892 28.1

QueryFormer 1.40 39.2 128 414 1748 26.9

PSEncoder 4.73 58.00 174.87 1068.36 9303.21 62.79

QPEncoder 2.22 18.77 38.14 271.16 13809.80 55.81

QSEncoder 13.72 285.75 855.78 18832.88 81471.20 658.19

QPSEncoder 1.38 38.52 70.53 485.03 1901.76 26.26

Table 5. Cardinality errors on the JOB workload.

Method median 90th 95th 99th max mean

PG 184 8303 34204 1.06e5 6.70e5 10416

TLSTM 10.1 130 223 680 901 53.0

QPSEncoder 3.01 8.58 31.10 82.74 175.29 8.18

4.3 Effectiveness of QPSEncoder on Mixed Predicates.

We compared the PG, TLSTM, and QPSEncoder models on the JOB workload,
testing them with both string and numeric predicates. The MSCN and Query-
Former models were excluded from this comparison due to their lack of sup-
port for string predicates. The cost estimation results are presented in Table 3,
while the cardinality estimation results are shown in Table 5. Among the models,
QPSEncoder outperformed both PG and TLSTM. Unlike TLSTM, which com-
bines SQL keywords and regular predicates, QPSEncoder leverages SQLBERT
to encode query statements. It tokenizes and encodes the predicates separately,
thereby preserving both semantic and structural information of the queries.
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4.4 Effectiveness of Model Components

To observe the impact of three features, on the model, we compared QPSEn-
coder with QPEncoder (no database schema), QSEncoder (no physical plan),
and PSEncoder (no SQL query). Detailed results can be found in Table 2 and
4. In cost estimation, PSEncoder exhibits an average error reduction of almost
50% compared to QPEncoder and QSEncoder, while QPEncoder and QSEn-
coder display similar average errors. This highlights the substantial impact of
the SQL query on the model’s performance in cost estimation tasks. In cardinal-
ity estimation, QSEncoder demonstrates an average error reduction of nearly 10
times compared to QPEncoder and QSEncoder, while QPEncoder and QSEn-
coder showcase similar average errors. This underscores the significant influence
of the physical plan on the model’s performance in cardinality estimation tasks.
Across all metrics, QPSEncoder outperforms others, emphasizing the importance
of integrating all three features to more accurately represent the characteristics
of the database workload.

5 Conclusion

In this paper, we address the issue of database workload representation, a fun-
damental component for machine learning algorithms in databases. We intro-
duce QPSEncoder, a versatile encoder designed to handle three key features:
the physical plan, SQL query, and database schema. Utilizing advanced algo-
rithms, QPSEncoder extracts and encodes features from each input based on
their specific characteristics. Through extensive experiments conducted on two
machine learning tasks for databases and two real datasets, we evaluate the effec-
tiveness of QPSEncoder. The results demonstrate that QPSEncoder enhances
the performance of existing methods by providing a more efficient workload rep-
resentation.
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Abstract. One of the major research questions in large databases is
how to efficiently sample a random subset of records. This sample can
then be used to estimate query results and optimize query execution
plans and other tasks. In order to have quick access to the data, the
common practice is to create an index, which is often implemented by
using B+Trees. Existing state-of-the-art algorithms for random sampling
over B+Trees result in a significant performance overhead. This paper
proposes novel approaches for efficient random sampling over B+Trees
in very large databases. We analyze the algorithms’ correctness and use
extensive simulation study, which showcases their superior performance
compared to previous works while not affecting the quality of the random
sample.

Keywords: Large Databases · Query Processing · B+Trees · Random
Sampling

1 Introduction

A common practice for solving tasks in real-world Big-Data applications is sam-
pling a random subset of the data and using it to infer quantities of interest,
assuming it is a good representation of the features of the full data. The benefits
of working on a small sample of the data are priceless: speeding up computation
time, reducing computation costs, saving resources, etc. [Minkkinen (2004), Liu
and Zhang (2020)]. Some random sampling usage examples are data profiling
[Abedjan et al. (2015)], data analysis [Slavakis et al. (2014)], data mining [Wu
et al. (2013)], data visualization [Agrawal et al. (2015)] and machine learning
applications [Papaemmanouil et al. (2016)].

In this work, we address the task of uniform random sampling over B+Trees
[Comer (1979)], which is the primary mechanism for implementing indices in
relational database systems that allow quick data retrieval [Kudale (n.d)]. Specif-
ically, random sampling is commonly used in databases as an initial step for a
variety of tasks such as optimizing queries, choosing execution plans, estimating
aggregate query results (e.g., SUM, COUNT, or AVERAGE), and estimating
query results [Piatetsky-Shapiro and Connell (1984), Naughton and Seshadri
(1990), Hou et al. (1991), Lipton et al. (1993), Haas et al. (1994), Chaudhuri
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et al. (1998)]. While sampling could be either uniform or non-uniform, in this
paper, we study uniform sampling, where each population element has an equal
probability of inclusion in the sample, providing a representative sample of the
population as a whole.

The problem of efficient sampling from databases was extensively studied in
the past [Olken and Rotem (1989), Haas (2003), Olken and Rotem (1995), Vitter
(1985)]. In particular, the classical work of Olken [Olken and Rotem (1989)]
from the late 80 s has remained one of the prominent solutions to date. Olken’s
approach is based on performing iterative random walks from the B+Tree’s root
to its leaves and deciding whether to sample the given leaf or not according to
an “Acceptance/Rejection (A/R) Test”. By adjusting the random walk, Olken’s
approach ensures each leaf will be sampled with the same probability. Thus, the
resulting sample represents a uniform distribution of the values stored in the
tree leaves.

Though simple and elegant, as will be clearly shown in our simulation study,
Olken’s approach is not satisfying in terms of efficiency. It may be impractical
in real-world applications with very large databases [Haas (2003), Chaudhuri et
al. (1998)]. The main drawback is the need to run many iterative random walks
until a leaf is accepted to be sampled, which leads to a significant overhead.

Improvement attempts could not solve this efficiency issue, and the state-
of-the-art algorithms for B+Tree sampling are still based on the A/R method.
For example, the “Early Abort Method” [Olken and Rotem (1989)] suggested
running the Acceptance/Rejection Test in each node along the path instead of
waiting until reaching the leaf. The intuition is that a path from the root to
the leaf can be rejected without retrieving the entire path, thus speeding up the
iterations. Indeed, the expected cost of the early abort method is significantly less
than Olken’s original method [Olken and Rotem (1989)]. However, the rejections
have not vanished, and it still requires reading many more disk blocks compared
to the sample size. Assuming we are sampling 1,000 values from a specific B+Tree
of height four1, using Olken’s Theorems 1 and 2 [Olken (1993)], the expected
number of disk blocks that will be read is 64,000 for the original algorithm and
30,000 for the early abort method. While providing an improvement of 53%
compared to the original Olken’s algorithm, the early abort method still has a
significant 30x overhead for returning as few as 1,000 values.

To demonstrate the inefficiency of Olken’s algorithm, we conducted a series
of experiments on a B+Tree of 1 million values. For example, we noticed that
when sampling 10,000 rows from a B+Tree of 1 million values, Olken’s A/R test
rejected 450,000 candidates. Operating 460,000 random walks from the root to
the leaves in a B+Tree of height four means that the algorithm had to perform
around two million data accesses.
The low performance of the existing state-of-the-art algorithms causes real-world
applications running in commercial databases to prefer practical alternatives and
heuristics instead, which also tend to suffer from low performance [Haas (2003)].

1 Path’s length from the root to the leaves, with the root node being considered as
height one.
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The rest of this paper consists of the following: Sect. 2 describes related works.
In Sect. 3, we present the new algorithms. In Sect. 4, we analyze the proposed
algorithms and prove their correctness. In Sect. 5, we provide an extensive sim-
ulation study showing the superior performance of our proposed algorithms.
Lastly, Sect. 6 concludes the paper.

2 Related Work

Random sampling from databases, and in particular B+Trees, is a common
technique for solving data mining tasks such as Approximate Query Processing
(AQP) [Li and Li (2018)], Chaudhuri et al. (2017)], online aggregation [Li et al.
(2016)], Interactive Data Exploration [Papaemmanouil et al. (2016)], and more.

A straightforward approach involves performing random walks from the root
of the B+Tree to its leaves and sampling a value randomly from the leaves.
However, this intuition is wrong, as random walking does not provide an equal
probability of picking each leaf. The lack of equal probability arises due to the
differences in the number of children every non-leaf node has (practically stored
as pointers to their children).
Recall that in B+Trees, the order m defines the maximum number of direct child
nodes. Thus, the number of children of every non-leaf node is bounded by �m

2 � ≤
|children| ≤ m. In order to point to its children, a node holds (|children| − 1)
pointers.

Thus, a value X under a leaf in a path with a node with m
2 children has

a higher probability of being picked in a random walk compared to a value Y
under a path with a node with m children, preventing a uniform sampling.

To address this, Olken [Olken and Rotem (1989)] suggested the “Accep-
tance/Rejection (A/R) Algorithm”, which has remained a common practice
to this date. Although Olken’s algorithm guarantees uniform sampling, its
performance is far from satisfactory, and its running time overhead increases
as the sample size grows. The low-performance results from Olken’s Accep-
tance/Rejection procedure: most of the candidates for sampling are actually
being rejected, and thus, eventually, most of the data fetched from the disk is
not used.

The state-of-the-art algorithms for B+Trees sampling are based on the A/R
method. One of the latest works is the B+Tree Weighted Random Sampling
(BTWRS) proposed by Makawita [Makawita et al. (2002)]. However, as described
in Sect. 1 and will be shown in more detail in the simulation study in Sect. 5,
the A/R-based algorithms suffer from long running times due to the inefficient
rejection mechanism.

Several algorithms were proposed to outperform the A/R method, but they
all require additional information: Olken [Olken and Rotem (1989)] adopted
Wong’s algorithm [Wong and Easton (1980)] and suggested a method for random
sampling from Ranked B+Tree. Although it achieves better results than the A/R
method, the ranking might be expensive to maintain in a system with heavy
updates. Antoshenkov [Antoshenkov (1992)] combined both methods, sampling
over Ranked B+Tree and the A/R technique, and suggested the Pseudo-ranked
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B+Tree (PRBT) sampling algorithm. However, despite the significant advantage
made by Antoshenkov in increasing the acceptance rate of the A/R mechanism
to 50% [Antoshenkov (1992)], the method still incurs a high cost and is restricted
to specific variations of B+Trees that support essential compression and variable
leaf page blocking [Olken and Rotem (1995)]. Nevertheless, a rejection rate of
50% still results in twice the number of operations required for a given sampling
size. In contrast, our proposed method eliminates the need for any rejections.

For the general task of random sampling, regardless of the underlying data
structure, two classical algorithms are “Reservoir Sampling” [Vitter (1985)] and
“Bernoulli sampling” [Haas (2003)], which can be adopted and used for B+Tree
random sampling as well. While these are generic methods that do not utilize
the structure of a B+Tree, they do require fetching the entire database, which
might be impractical.

3 The Proposed Algorithms

This section will present novel algorithms for random sampling from databases
that will be more efficient than Olken’s and the A/R-based approaches. In Sect. 4,
we will analyze the algorithms’ correctness and prove they provide an equal
probability for every leaf to be sampled.

3.1 Random Sampling in B+Tree of Height Three

Algorithm 1 presents our proposed method for a B+Tree of height three. Instead
of Olken’s random walk with an A/R test, the proposed approach is based on
“intelligently-picked” random walks along the tree, such that each time a leaf
is visited, its value will be sampled without any rejections. Thus, for sampling
k values, the proposed algorithm will walk through exactly k paths2. Namely,
instead of performing an arbitrary random walk from the root to the leaf, our
stochastic path selection will use the fanout distribution to correct the bias
imposed by a uniform random walk (unlike Olken’s algorithms, which corrected
this bias using the A/R test). Subsequently, in each iteration in which a leaf
node is selected, the algorithm randomly chooses a record from that leaf. The
random selection at the leaf level prevents any potential bias from being induced
from the structure of the B+Tree, such as prioritizing the highest or lowest value
in a leaf.

For example, Fig. 1 shows a B+Tree of height three. Following Algorithm 1
guarantees an equal probability (1/6) of reaching every leaf.

3.2 Random Sampling in B+Tree of Height Four

We now extend Algorithm 1 to support B+Trees of height four. To this end, we
will define a new weights vector W nodes, such that the step from the root to its
2 In addition to possible paths that will be visited more than once, which is negligible

in large B+Trees.
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Algorithm 1. Weighted Sampling for B+Trees - Height three
sampled ← []

S ←
∑

node∈children(root)

fanout(node)

P ← [ fanout(node0)
S

, fanout(node1)
S

, ... fanout(noden)
S

] {Pi denotes the probability to go
from the root to nodei}
while (len(sampled) < sample size) do

1. node ← randomly choose node from children(root) according to the probabili-
ties vector P .
2. leaf ← randomly choose leaf from children(node) under uniform distribution.

3. Randomly choose a value from leaf and add it to sampled.
end while

Fig. 1. Example for a tree with height three and how step probabilities are assigned
according to Algorithm 1

children will be performed with respect to this weights vector. Afterward, since
we will reach a sub-tree of height three, we will continue walking down the tree
using Algorithm 1.

To achieve an equal probability of each leaf being selected in a B+Tree of
height four, we construct the weights vector W nodes such that each node’s
weight is the proportion between its leaves to the entire B+Tree. To maintain
the weights vector, we perform a one-time scan of the data, which requires O(n)
operations, and save a counter that holds the number of leaves found under each
node. The weights vector is calculated directly from this counter. From now on,
any B+Tree operation, which includes splitting or deleting a leaf, will require
an additional O(1) operation to update the counter. The complete method is
presented in Algorithms 2 and 3.

For instance, consider the B+Tree of height four in Fig. 2. When following
Algorithm 1 and counting the number of leaves at each sub-tree, we find seven
leaves in the left sub-tree and four in the right. Therefore, the weights vector
will be W nodes = [ 7

11 , 4
11 ]. Then, using Algorithm 1 on the left sub-tree will

associate all the leaves with the same probability of 1
7 to be sampled (denoted

by blue paths). Similarly, in the right sub-tree, each leaf will have the same
probability of 1

4 to be sampled (denoted by red paths). Therefore, using W nodes
vector as the first step, we obtain an equal probability of 1

11 for every possible
root-to-leaf path in the entire B+Tree:



Efficient Random Sampling from Very Large Databases 129

Algorithm 2. Weighted Sampling for B+Trees - Height four
sampled ← []
while (len(sampled) < sample size) do

1. node ← randomly choose node from children(root) according to the weights
vector W nodes (see Algorithm 3).
2. single sampled ← random−sampling−height−3(btree = node, sample size =
1).
3. Add single sampled to sampled.

end while

Algorithm 3. Prepare Weights Vector W nodes

for nodei ∈ children(root) do
1. leaves subtreei ←number of leaves in the sub-tree whose root is nodei.

end for
W nodes ← [ leaves subtree0

sum(leaves subtree)
, ..., leaves subtreen

sum(leaves subtree)
]

– Path selection probabilities through a blue path: 7
11 ∗ 1

7 = 1
11

– Path selection probabilities through a red path: 4
11 ∗ 1

4 = 1
11

3.3 Generalization to Any B+Tree Height

Finally, we will show how Algorithms 1 and 2 can be generalized for B+Tree
height higher than four. The main idea is that each node with more than two
steps away from the leaves (the root in a B+Tree of height four is three steps away
from the leaves) will be associated with a dedicated weights vector W nodes.
Thus, similarly to the weights vector of B+Tree of height four, for a given node α
(which is more than two steps away from the leaves), |W nodesα| = |fanout(α)|,
and W nodesαi

= leaves subtreei

leaves subtreeα
. Note that this equation is a generalization of

the one suggested in Algorithm 3, and it holds that
∑

i∈W nodesα
W nodesαi

= 1.
While this suggested generalization works in practice, its implementation

may be complex as multiple W nodes vectors need to be maintained, such that
removal or addition of a leaf needs to propagate up to the root and update all the
W nodes vectors along the way. However, from a practical point of view, we are
rarely required to maintain B+Trees of a height higher than four in real-world
database applications. Recall that the B+Tree height is equal to logm n, where
m is the order of the B+Tree, and n is the number of values. Thus, since the
height is logarithmic in the number of values, and the fact that m in modern
systems is usually in the hundreds [Graefe and Kuno (2011)], we can reach giant
B+Trees with a height of four. For instance, a B+Tree of height four, with an
order of 250 and a leaf size of 250, can store 4 billion elements.

Although the proposed Algorithms 1 and 2 yield equal probabilities at the
leaf level and not at the record level, we will show in the simulation study in
Sect. 5 that this gap is practically negligible.
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Fig. 2. Example for a B+Tree with height four and how step probabilities are assigned
according to Algorithms 2 and 3.

4 Analysis

This section will analyze the proposed algorithms and prove their correctness.

Theorem 1. For any B+Tree, the proposed algorithm provides an equal proba-
bility for every root-to-leaf path.

For that, we first provide proofs for the algorithm of B+Tree Height three and
Height four, and then we will prove the general case of any B+Tree with a height
greater than four.

Proof. Height three:
Let Path be a root-to-leaf path generated by the algorithm.
Let fij be the fanout of the node denoted by the index j, in a level number i,
such that, j is between 0 to the number of nodes in the tree in level i: 0 ≤ j ≤
nodes(leveli)
Note that level0 is the root, and thus nodes(level0) = 1 in any B+Tree

Assume a specific Path chooses node number 0 on any tree level.
Then, according to the algorithm, the probability P of choosing this root-to-

leaf Path will be:
P (Path) = f1,0

∑nodes(level1)
j=0 f1,j

∗ 1
f1,0

= 1
∑nodes(level1)

j=0 f1,j

Without loss of generality, this claim holds for any Path in the B + Tree.
We can notice that P (Path) is a fixed value, and thus the proposed algorithm
provides an equal probability for every root-to-leaf path.

Proof. Height four:
Let Path0 and Path1 be two different root-to-leaf paths in a given B+Tree of
height four.
Let fij be the fanout of the node denoted by the index j, in a level number i,
such that, j is between 0 to the number of nodes in the tree in level i: 0 ≤ j ≤
nodes(leveli). Note that since level0 is the root, then nodes(level0) = 1 in any
B+Tree. Then, since these paths also pass through level1, we can write them as
follows:

α = node in level1
β = node in level1
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Path0 = root → α → node ∈ children(α) → leaf
Path1 = root → β → node ∈ children(β) → leaf

Recall that according to Theorem 1, all the paths from nodes α and to any
leaf in this sub-B+Tree, whose root is α, have an equal probability of being
selected.

Claim: P (Path0) = P (Path1)
If α == β, then the first step of Path0 and Path1 has the same probability,

and any walk to a leaf has the same probability, which follows from Theorem 1.
If α �= β, then let P nodeα be the probability of any root-to-leaf walk, using

the suggested algorithm for B+Tree of height three, in a sub-tree whose root is
α. Respectively, P nodeβ is the probability of any root-to-leaf walk in a sub-tree
whose root is β. According to the algorithm, any walk from root to children(root)
is associated with a weight w, such that, each node ∈ children(root) has a
specific weight wi.
Thus, the algorithm has calculated weights w0, w1 such that:

P (Path0) = w0 ∗ P nodeα

P (Path1) = w1 ∗ P nodeβ

Notice that w0 ∗ P node0 = w1 ∗ P node1 according to W nodes calculation in
Algorithm 3.

We thus obtained that P (Path0) = P (Path1) for any two paths in the B+Tree.

Proof. Generalization to any B+Tree height:
We will prove that by induction on the B+Tree height.

Induction Base: B+Tree Height five.
Let Path0 and Path1 be two root-to-leaf paths, generated by the algorithm, in
a given B+Tree of height five, whose root is r. Assume α and β are the first
nodes in the paths Path1 and Path2 respectively:

Path0 = r → α → ... → leaf
Path1 = r → β → ... → leaf

Recall the weights vector W nodesr from Sect. 3.3. Thus, in path Path0, the first
step was made by choosing node α with probability leaves subtreeα

leaves subtreer
. Similarly, in

Path1, node β was chosen with probability leaves subtreeβ

leaves subtreer
.

Now, note that the remaining portion of Path0 is walking through a path
in a B+Tree height four, whose root is α. Therefore, according to Algorithm 2,
every path in this sub-tree has a uniform probability of being chosen (as was
proved above). Hence, since this sub-tree has leaves subtreeα leaves, then, every
path has a probability of 1

leaves subtreeα
for being chosen.

Equivalently, in the B+Tree height four whose root is β, every root-to-leaf
path has a similar uniform probability of being chosen, which is 1

leaves subtreeβ
.

Hence, the probabilities of selecting these paths are as follows:

P (Path0) = leaves subtreeα

leaves subtreer
∗ 1

leaves subtreeα
= 1

leaves subtreer
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P (Path1) = leaves subtreeβ

leaves subtreer
∗ 1

leaves subtreeβ
= 1

leaves subtreer

And we derive that indeed P (Path0) = P (Path1).

Induction Hypothesis: Assume that the claim holds for height= k. It means that
using the algorithm, all the leaves have an equal probability of being chosen. All
that is left is to prove for height= k + 1.

Let Path0 and Path1 be two root-to-leaf paths, generated by the algorithm,
in a given B+Tree of height k + 1, whose root is r. As in the base case, we
will use α and β to denote the first nodes in the paths Path1 and Path2,
respectively. According to the algorithm, the probability of choosing node α in
Path0 is leaves subtreeα

leaves subtreer
. Similarly, the probability of choosing node β in Path1

is leaves subtreeβ

leaves subtreer
. Based on our hypothesis, in the B+Tree of height k whose root

is α, all the leaves have an equal probability of 1
leaves subtreeα

of being chosen.
Similarly, in the B+Tree whose root is β, all the leaves have an equal probability
of 1

leaves subtreeβ
of being chosen. Therefore, we can conclude that:

P (Path0) = leaves subtreeα

leaves subtreer
∗ 1

leaves subtreeα
= 1

leaves subtreer

P (Path1) = leaves subtreeβ

leaves subtreer
∗ 1

leaves subtreeβ
= 1

leaves subtreer

And we derive that indeed P (Path0) = P (Path1) for any two paths in the
B + Tree of height k + 1, thus proving the generalized algorithm.

5 Simulation Study

In this section, we will use extensive simulations and demonstrate the supe-
rior performance of Algorithms 1 and 2 compared to the previous A/R-based
methods while not affecting the sample quality.

5.1 Experiments Framework

In this section, we will use a simulation study to compare our proposed algo-
rithms and Olken’s [Olken and Rotem (1989)] over diverse settings of B+Tree
heights (of three and four), data sizes, and sampling rates (of 0.5%, 1%, 5% and
10%). In order to examine the quality of the proposed algorithm in a complicated
and realistic scenario, we used Zipfian distributed data [Poosala (1995)], which
is considered to be a good representation of real-life applications [Makawita et
al. (2002), Kluckhohn (1950)].

In all the figures in this section, we use the following notations: H for B+Tree
height, Z for Zipfian skew factor, and D for domain size. The B+Tree was always
of an order of 250, i.e., every node has at most m = 250 children. Also, our
proposed algorithms are labeled as “distribution-oriented”.

Random sampling algorithms are examined in terms of both their efficiency
and the quality of randomness (i.e., goodness-of-fit). To verify the output sam-
ples are indeed following the full data distribution, we conducted a statistical
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comparison based on Kolmogorov-Smirnov (KS) test as was done in previous
related work [Shekelyan et al. (2022), Zhao et al. (2018)].

As previously stated in Sect. 3.3, we argue that practically, B+Trees of
heights three and four are the most common cases, even for very large databases.
In light of this, our series of experiments will examine the performance of the
algorithms for B+Trees of these heights. Moreover, one can observe that the
extensions for height four to the general case of any height are performed while
maintaining uniform probability at the leaf level. Thus, the goodness-of-fit for
the general case is anticipated to yield results similar to those obtained with a
height of four. In the following simulations, we will also investigate the impact
of conducting a uniform random walk up to the leaf level instead of the record
level. It is pertinent to note that we have deliberately chosen not to include
existing industry solutions for RDBMSs in our simulations (see Sect. 1) due to
their inefficiency, specifically the requirement for full data scans, which results
in an O(n) complexity.

Furthermore, as evidenced by our proofs in Sect. 4, it is essential to high-
light that each path has an equal probability of being selected. This probability
remains independent of the B+Tree order parameter (m.) Consequently, the
B+Tree order parameter remained consistent across all our experiments, as it is
not anticipated to impact the sample’s quality or yield differing results regarding
goodness-of-fit.

5.2 Experiments Setup

The experiments were conducted on two environments: MacBook Pro 2016
(2.0 GHz dual-core Intel Core i5 machine, with 32G RAM) and Google Colab
(free Colab plan, CPU machine). All running-time experiments were performed
on the same Google Colab environment.

5.3 Implementation Details

The B+Tree implementation were derived from the B+Trees open source3

(the “PURE PYTHON” version). To conduct comprehensive experiments, we
extended the Python library BTrees and implemented various sampling meth-
ods on it. For Olken’s algorithm, we implemented both the basic and early-abort
versions. However, since both methods should provide similar results in terms of
goodness-of-fit, we report here only the results of the early-abort version, which
is the more efficient of the two. In addition to Olken’s algorithm, we implemented
the BTWRS algorithm, as suggested in Makawita [Makawita et al. (2002)]. Over-
all, BTWRS performed similarly to Olken in goodness-of-fit. Still, its running
time performance was significantly slower, implying impractical running times:
30 s for sampling 10,000 values and up to 3 h for sampling 20,000 values. Thus,
we excluded it from the results section while publishing the entire code base
online4.
3 https://pypi.org/project/BTrees/.
4 https://github.com/idancohen88/efficient sampling.

https://pypi.org/project/BTrees/
https://github.com/idancohen88/efficient_sampling
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5.4 Results

We followed Makawita [Makawita et al. (2002)] for generating the Zipfian data
distribution and used different parameter values for the dataset size, domain size,
and skew factor. We conducted experiments over a wide variety of settings, each
illustrates a dataset with different characteristics. By changing these parameters,
we could tune the number of distinct groups and their frequency in the dataset.
Thus, the more skewed the data is, the more subsets appear with a low frequency,
such that their likelihood of being sampled decreases.

Fig. 3. Comparison of sampling results over Zipf’s data, using KS-tests for measuring
goodness-of-fit, with H = 3 and the following pairs of (D,Z) parameters (1k, 0.2),
(10K, 0.2), (10K, 0.5), (25K, 0.2), (25K, 0.5), (25k, 0.7). Each bar summarizes at least
60 experiments.

Figure 3 summarizes a series of experiments over B+Trees of height three
(specifically, 1,000,000 values), with different Zipfian parameters, such that each
specific experiment illustrates different dataset characteristics. The outcome of
every experiment shows the same trend that we can clearly see in the graph: our
algorithm provides the same performance as Olken’s in terms of goodness-of-fit.
As expected, samples of 0.5% and 1% had a relatively high KS-score. Note that
this inevitable outcome does not indicate a low algorithm quality.

Similarly, Fig. 4 summarizes experiments over B+Trees of height four and
shows that the same trends and behavior also holds for the algorithm of height
four. Also, in these experiments, Olken’s algorithm provided the same goodness-
of-fit behavior as our algorithm. Both algorithms had the highest KS-score for a
sampling of 0.5% of the data, with an average KS-score below 0.02. This score is
reasonable given the small sample size of biased and skewed data. Accordingly,
as the sample size increases, the score converges to a smaller value, around 0.005,
which is practically negligible.
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Fig. 4. Comparison of sampling results over Zipf’s data, using KS-tests for measuring
goodness-of-fit, with all the possible settings with the parameters H = 4, D = 10K,
25K, 500K and Z = 0.2, 0.5, 0.7. Each bar summarizes at least 60 experiments.

Running Times. As Olken’s algorithm and our algorithm are both stochastic
algorithms, measuring the experiments’ running time is the most effective way
to compare the algorithms’ performance.

Intuitively, the strength of our algorithms’ performance directly results from
the fact that it does not imply even a single rejection. Thus, if the algorithm
walks through a path and “touches” some nodes, these computer operations will
always lead to a sampled value. This contrasts with Olken’s algorithm, where
most paths will end with a rejection instead of a sampled value (as discussed in
Sect. 1).

In Figs. 5(a) and 5(b), the box-plots show the running times, in seconds, of
our algorithm (labeled as “distribution oriented”) and Olken’s algorithm. This
is where our algorithms’ significant advantage comes into play, which does not
use rejections and makes our algorithms run faster. For example, when sampling
0.5% of the data in a B+Tree of height three with 1,000 values, our algorithm
finished in one second, while it took Olken’s early-abort 2.33 s on average. Obvi-
ously, running times increase as the sampling size increases. Still, our algorithm
stays in the range of a few seconds, while Olkens’s reaches minutes: 20 s to
sample 100,000 with our algorithm, while Olken’s makes it in 454 s (7 min) on
average. Looking at bigger B-Trees and bigger sampling sizes, the differences
become even more significant, and we can clearly see the outperformance of our
proposed algorithms compared to Olken’s: On a B+Tree of 2 million values, our
algorithm sampled 100,000 values in 45 s on average, while Olken’s made it in
39 min.

Another compelling evidence for the differences between the algorithms’
results can be provided using Wilcoxon Rank Sum [Wilcoxon (1992)]: we com-
pared the running times under each experiment’s settings (B+Tree size and
sample size). We tested the null hypothesis that two sets of running times are
drawn from the same distribution. All the experiments rejected the null hypoth-
esis with a p-value below 0.1e−9.
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Fig. 5. Running times comparison. Each bar summarizes 25 experiments.

6 Summary and Future Work

In this paper, we studied the problem of random sampling in very large
databases, which is a significant question in database research. We proposed
a novel approach for random sampling over B+Trees, which performs an
“intelligently-picked” random walks along the tree such that each time a leaf
is visited, its value will be sampled without any rejections, unlike Olken’s and
the other previous works, which resulted in a significant performance overhead.
We proved the algorithms’ correctness and used an extensive simulation study to
show the superior performance efficiency of our proposed algorithms compared
to the existing state-of-the-art algorithms while not affecting the quality of the
random sample.

Our future research will build upon this work to propose new state-of-the-art
algorithms for efficient sampling in other database problems, such as sampling
joins’ results, sampling with “where” conditions, parallel sampling, and sampling
over distributed databases. We also plan to further study the task of random
samples’ maintenance [Jermaine et al. (2004)].
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Abstract. Sophisticated Text-to-SQL methods often face errors, such as
schema-linking errors, join errors, nested errors, and group-by errors. To
mitigate these, it’s crucial to filter out unnecessary tables and columns,
focusing the language model on relevant ones. Previous methods have
attempted to sort tables and columns based on relevance or directly
identify necessary elements, but these approaches suffer from long train-
ing times, high costs with GPT-4 tokens, or poor schema linking per-
formance. We propose a two-step schema linking method: first, generate
an initial SQL query using the full database schema; then, extract the
relevant tables and columns to form a concise schema. This method,
tested with Code Llama and GPT-4, shows optimal performance com-
pared to mainstream methods on the Spider dataset, reducing errors and
improving efficiency in SQL generation.

Keywords: Text-to-SQL · Schema Linking · Large Language Model

1 Introduction

Text-to-SQL, a system that translates natural language queries into the underly-
ing database language, enabling broader data access and usability [1]. The cross-
domain dataset for Text-to-SQL, Spider [2], followed suit. The system needs to
search databases to better understand what the user is querying [3]. Therefore,
schema linking emerged. Schema linking is a specialized form of entity link-
ing that associates phrases in a given question with column or table names in
the database schema. SLSQL [4] illustrates the crucial role of schema linking
in enhancing SQL parsing performance. Through relation-aware self-attention,
RAT-SQL [5] introduces a unified framework to tackle schema encoding and
linking challenges, learning schema and question representations jointly based
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. Strauss et al. (Eds.): DEXA 2024, LNCS 14910, pp. 139–145, 2024.
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on their alignment and schema relations. SemQL [6] presents a neural approach
for complex and cross-domain Text-to-SQL, aiming to address the lexical prob-
lem and the mismatch problem with schema linking and intermediate representa-
tion. Various fine-tuned [7] and prompting [8] Text-to-SQL methods with schema
linking module appear spontaneously. However, these methods suffer from high
training time costs and token consumption issues. We propose a novel approach:
utilizing the complete schema and the question to compose a prompt for large
language models to generate an initial SQL query, subsequently, parsing the ini-
tial SQL to extract columns and tables to form the linking schema. In summary,
our contributions are:

1. We are the first to propose extracting the linking schema from the initial SQL
and to define evaluation metrics for the schema linking module, allowing rapid
validation of its effectiveness without waiting for SQL generation.

2. Combining our schema linking with our complete Text-to-SQL approach,
using GPT-4 outperforms all zero-shot and few-shot prompt approaches,
demonstrating the significant benefits of our schema linking for the overall
Text-to-SQL task.

2 Related Work

2.1 Customized Machine Learning Fine-Tuned Methods

The traditional machine learning methods entail the concatenation of ques-
tions and database schemas into embeddings, training models to obtain soft-
max probabilities of relevance between these questions and columns. The tables
and columns with the highest probabilities are selected as linking schemas. Such
as, RESDSQL [7] selects the top 4 tables with the highest relevance. These
approaches encounter challenges such as high training time cost, and diminished
quality when applied to cross-domain datasets.

2.2 Stimulating General LLM with Prompting

The prompting method is mainly divided into two types: Few-shot prompting,
such as DIN-SQL [8], provides multiple examples within the prompt, it lever-
ages the large model’s in-context learning ability to enable the model to identify
the precise schema. Zero-shot prompting, such as C3 [9], sorts the correlation
between tables and columns from the database schema and the words in the ques-
tion, and then selects the most relevant tables and columns as linking schema.
These current prompting methods require the use of multiple complex modules
with long prompts, which incur a significant amount of expensive GPT-4 token
costs.
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3 Methodology

We seek to enhance Text-to-SQL by harnessing the power of an initial SQL
query, namely, SQL-to-Schema. Initially, we generate a preliminary SQL using
the complete database schema and then employ SQL parsing methods to extract
tables and columns, forming our linking schema. The GitHub address for our
project is: https://github.com/peking2025ys/SQL-to-Schema.

3.1 Evaluation Metrics

To assess the quality of linking schemas, we consider that a schema must include
all necessary tables and columns to generate the correct SQL. Each question
in the Spider dataset involves up to 4 tables. We define table-recall@4, where
a linking schema is considered correct if it includes all tables involved in the
gold SQL. Otherwise, it is incorrect. Since the gold SQL and DIN-SQL schema
include columns from aggregate functions like count(*), and the C3 and RES-
DSQL schemas do not, comparing columns may be unfair. Therefore, we use
table-recall@4 as one of the evaluation metrics in our experiments. Evaluating
the quality of schema linking using only table-recall@4 is insufficient. To address
this, we introduce the SQL generation module, to combine the schemas obtained
from different methods with the SQL generation module. We compare the qual-
ity of different schema linking schemes using the generated SQL We employ the
Text-to-SQL evaluation method mentioned in the Spider dataset, namely, exe-
cution accuracy [11], and supplement it as an additional evaluation metric for
subsequent experiments.

3.2 Introduction to Each Module

Initial SQL Generation. Numerous studies have investigated prompting strate-
gies for the Text-to-SQL task, conducting comprehensive comparisons of various
prompt construction strategies for databases and demonstrations across zero-
shot, single-domain, and cross-domain Text-to-SQL scenarios, such as, Din-SQL
[8], C3 [9], Dail-SQL [10]. Leveraging the insights from these prompting research
efforts, we ultimately designed the Initial SQL Generation(ISG) prompt illus-
trated in our Github page.

SQL Parse. This module is employed to extract the tables and columns labels
from the gold SQL, simultaneously used to extract columns and tables from the
SQLs of our other modules to form linking schemas.

SQL Generation. In order to further leverage the power of SQL-to-Schema,
we iteratively utilize the SQL generation and parsing modules multiple times to
enhance the quality of linking schemas and final SQLs.

Self-Consistency Voting. We conduct a vote among all generated SQL queries
for the same question, selecting the most consistent SQL as the final output for
Text-to-SQL. Our complete algorithm framework is illustrated in Fig. 1.

https://github.com/peking2025ys/SQL-to-Schema
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Fig. 1. The complete schema linking and Text-to-SQL algorithm framework.

4 Experiments and Analysis

4.1 Experiment One

When replicating the schema linking methods of DIN-SQL and C3 and imple-
menting our method with Code Llama-34B, and incorporating schemas obtained
from the RESDSQL method for comparison using table-recall@4, Our method
achieved state-of-the-art performance in this metric (Table 1).

Table 1. Table-recall@4 for different schemas

Schema recall@4 Schema recall@4

DIN-SQL 0.88 C3 0.93
RESDSQL 0.94 Ours 0.98

4.2 Experiment Two

To further validate the feasibility of SQL-to-Schema, the aforementioned linking
schemas were input into the SQL generation module. Using Code Llama-34B,
and the execution accuracy of SQLs was employed as a measure to represent
the quality of schema linking. The experimental results are presented in Table 2.
We observed that when all columns of a table in the linking schema appear
in the SELECT clause of the gold SQL, the generated final SQL tends to use
“SELECT *” which may output columns in that table that are unrelated to the
question. Additionally, some linking schemas lack necessary tables and columns,
resulting in errors in the generated SQL. Examples of these errors are illustrated
in Our Github page. Therefore, in subsequent SQL generation, we use the link-
ing schema as a reference while including the complete database schema in the
prompt. Under the same experimental conditions except for the differing link-
ing schemas, Table 2 demonstrates that the SQL-to-Schema strategy extracts
higher-quality linking schemas.
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Table 2. The results of SQL Execution Accuracy on the Spider dev dataset

Approaches EA Approaches EA

DIN-SQL schema+SQL Generation 0.723 C3 schema+SQL Generation 0.730

RESDSQL schema+SQL Generation 0.732 SQL-to-Schema+SQL Generation 0.753

4.3 Experiment Three

Since the schema linking module ultimately serves Text-to-SQL research task
in both the NLP and DB communities, we cannot solely evaluate the quality
of linking schemas and the feasibility of SQL-to-Schema from the perspective of
the schema linking module. We must also consider whether the combination of
our schema linking module and other functional modules related to Text-to-SQL
tasks can bring benefits, namely, whether the gains from schema linking can be
positively transferred to SQL generation. Therefore, we utilize GPT-4 turbo to
run all modules, generating SQLs, and compare them with the currently best-
performing fine-tuned models and zero shot and few shots prompting Text-to-
SQL methods. The omparison of Text-to-SQL experiments is shown in Table 3.

Table 3. The Comparison of Execution Accuracy in Text-to-SQL Methods

Approaches fine-tuned/prompting EA

RESDSQL fine-tuned 0.841
Dail-SQL fine-tuned + fewshot 0.824
DIN-SQL fewshot 0.742
C3 zeroshot 0.818
SCVSQL+GPT4-turbo(ours) zeroshot 0.824

When employing the SQL-to-Schema method twice, namely, SCVSQL+
GPT4-turbo, our approach surpassed all current zero shot and few shots prompt-
ing methods. The Dail-SQL method undergoes model training to select shot
examples, and its few-shot setting consumes a substantial number of expen-
sive GPT-4 tokens. In contrast, our method achieves comparable performance
with minimal token consumption, showcasing the exceptional efficiency of our
Text-to-SQL approach. While our method is only 0.019 lower than the optimal
fine-tuned method, the RESDSQL method requires days of training time and
significant GPU resources, whereas our approach only needs a multi-threaded
CPU, completing all 1034 questions in the Spider Dev dataset within 10min.

In order to further explore the upper limits of language models, for a spe-
cific problem, using our methods under the same language model, we conducted
experiments, which employed the SQL-to-Schema module 0–3 times respectively.
If a language model can correctly answer a specific question with the appropri-
ate strategy or prompt, we believe that it has the capability to solve that ques-
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tion. We recorded the maximum detection count of correct answers for the four
models. We summarizes various models alongside their respective upper limits,
with Code Llama-34B achieving 0.8288, GPT4 reaching 0.8559, and GPT4-turbo
attaining 0.8665. This tells us that language models heavily depend on prompts,
and all current prompting methods have not yet reached the upper limit of the
language model’s capabilities. There is still significant room for improvement in
the use of prompting methods in the Text-to-SQL domain.

5 Conclusion

We introduced the SQL-to-Schema method for the first time by defining table-
recall@4 and demonstrated the efficiency of this schema linking method on large
Language models. Combined with the SQL generation module, we outperformed
all prompting methods in Text-to-SQL tasks. This suggests that the approach
of extracting schema using initial SQL can bring global benefits to the Text-to-
SQL task, extending beyond the schema linking phase. It further confirms the
necessity of schema linking methods in Text-to-SQL tasks. Additionally, our SQL
generation performance indicates that when leveraging large language models,
there is no need for complex modules typically used in traditional machine learn-
ing fine-tuned methods. Simple strategies suffice for achieving excellent results.
The full potential of large Language models has not yet been fully explored, and
there is still room for exploration in schema linking or Text-to-SQL tasks.
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Abstract. This paper addresses the problem of processing top-k
weighted stabbing queries on interval data. A state-of-the-art algorithm
for this problem incurs O(n log k) time, where n is the number of inter-
vals, so it is not scalable to large n. We solve this inefficiency issue and
propose an algorithm that runs in O(

√
n logn + k) time. Furthermore,

we propose an O(log n + k) algorithm to further accelerate the search
efficiency.

Keywords: Interval data · Stabbing · Top-k query

1 Introduction

Many applications deal with interval data, where an interval is a pair of left and
right endpoints. For example, objects associated with time information (e.g.,
sales items and vehicles) are usually maintained in interval format (e.g., the left
and right endpoints are activation and termination time, respectively [2,4–6]).
In cryptocurrency and stock applications, the prices of cryptocurrencies and
stocks vary continuously, and they record minimum and maximum prices (i.e.,
an interval) every certain time [10]. It is also intuitively known that each interval
usually has a weight [1]. For instance, in the sales items and vehicles examples,
the weights can be profits and the number of passengers, respectively.

To analyze the above weighted interval data, the following example query
can be considered: Show k vehicles (e.g., trains) with the largest number of
passengers at noon yesterday. This query helps consider a train operation plan
and analyze train usage patterns for some events that occurred at a certain
time. Motivated by such an application and usefulness, we address the problem
of processing top-k weighted stabbing queries on interval data. Because a sim-
ple stabbing query does not consider weights and returns all stabbed intervals,
applications cannot control the result size. That is, they may be overwhelmed by
large result sizes, so the controllable result size (i.e., the top-k factor) is useful
for such applications.

Given a set X of n weighted intervals and a query q = (s, k) where s and k
are respectively a query value and a result size, this query retrieves k intervals

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. Strauss et al. (Eds.): DEXA 2024, LNCS 14910, pp. 146–152, 2024.
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stabbed by s with the largest1 weight among X. An interval x ∈ X is stabbed by q
iff s ∈ [x.l, x.r], where x.l and x.r are the left and right endpoints, respectively.
Because many applications deal with large sets of intervals (i.e., n is large),
an efficient algorithm for this problem is required. However, designing such an
algorithm is non-trivial and challenging.

The most straightforward algorithm is as follows. We sort the intervals ∈ X
in descending order of weight offline. Given a top-k weighted stabbing query, we
run a sequential scan of X until we access k stabbed intervals. Due to the sort
order, (i) this set of the k intervals is guaranteed to be the exact top-k result,
and (ii) this algorithm can stop the scan before accessing n intervals. However, in
the worst case, this algorithm needs to access all intervals, so it incurs O(n log k)
time. (The factor of O(log k) is required to update the intermediate top-k result.)
Another approach is to employ a state-of-the-art algorithm [9]. This algorithm
uses an interval tree [8] to find all stabbed intervals, and the top-k intervals are
found from them. Because the interval tree structure guarantees that a (non
top-k weighted) stabbing query can run in O(log n + m) time, where m is the
number of stabbed intervals, this algorithm can run in O(log n+m log k) for our
problem. At first glance, this algorithm seems sufficiently fast, but it is important
to notice that m can be as large as n (e.g., all intervals are stabbed by a query).
Therefore, this algorithm results in the same worst time as the sequential scan.

We hence have a question: For our problem, does there exist an exact algo-
rithm with less than O(n) query time (and with Õ(n) space, where Õ(·) hides
any polylog factors)? We provide a positive answer and make the following con-
tributions:

• An O(
√
n log n + k) time algorithm (Sect. 3). We first propose an algorithm

that exploits weight-based sorting and the interval tree structure. This tech-
nique provides a performance guarantee dominating that of the state-of-the-art
algorithm [9], because our algorithm runs faster than the state-of-the-art with
the same space requirement. As

√
n log n < n, we have O(

√
n log n+ k) < O(n).

• An O(log n + k) time algorithm (Sect. 4). The second algorithm improves the
search efficiency by exploiting the segment tree structure [7]. A segment tree
yields the same performance for simple stabbing queries, i.e., its time complexity
is O(log n + m), so simply applying this structure still incurs O(n log k) time in
the worst case. Nevertheless, we show that a simple modification of this structure
provides an O(k log n) time algorithm for our problem. We furthermore extend
the segment tree to reduce the time complexity from O(k log n) to O(log n+ k).
• Experiments on real datasets. We conduct experiments on two real large
datasets. Due to space limitation, their results appear in [3].

2 Preliminary

Problem Definition. We use X to denote a set of n intervals. Each interval
x ∈ X is a pair of its left and right endpoints, i.e., x = [x.l, x.r], where x.l ≤ x.r.

1 Some applications may prefer smaller weights, and our algorithms can deal with this
case.
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In addition, each interval x ∈ X has an application-dependent static weight
w(x). Given a query value s, we say that x is stabbed by s iff x.l ≤ s ≤ x.r. For
ease of presentation, we first define the stabbing query:

Definition 1 (Stabbing query). Given a stabbing query s (which is a value)
and X, this query retrieves a subset Xs of X such that Xs = {x |x ∈ X,x.l ≤
s ≤ x.r}.
This paper considers a variant of stabbing queries and addresses the problem
defined below.

Definition 2 (Top-k weighted stabbing query). Given a top-k weighted
stabbing query q = (s, k), where s and k respectively are a query value and a
result size, and X, this query retrieves k intervals with the largest weights among
Xs. (If |Xs| < k, all intervals in Xs are returned.) Ties are broken arbitrarily.

The state-of-the-art algorithm [9] requires O(log n + m log k) time, where
m = |Xs|. Theoretically, m can be as large as n, so it requires O(n log k) time
in the worst case.

Interval Tree and Segment Tree. We introduce the interval tree structure
[8], a building block of our algorithm presented in Sect. 3. Due to space limitation,
we introduce only its theoretical result.

Lemma 1. An interval tree can be built in O(n log n) time, consumes O(n)
space, and processes a stabbing query in O(log n + m) time, where m is the
number of stabbed intervals.

We next introduce the segment tree structure [7], because we use it as a
building block of our algorithm presented in Sect. 4. Again, we introduce only
its theoretical result.

Lemma 2. A segment tree can be built in O(n log n) time, consumes O(n log n)
space, and processes a stabbing query in O(log n + m) time, where m is the
number of stabbed intervals.

3 Algorithm Based on Interval Forest

This section proves the following theorem. (Missing proofs appear in the full
version of this paper [3].)

Theorem 1. For our problem, there exists an exact algorithm that needs
O(n log n) pre-processing time, O(n) space, and O(

√
n log n + k) query time.
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Main Idea. The main idea of this algorithm is to combine weight-based sorting
and the interval tree structure. Assume that the intervals in X are sorted in
descending order of weight. Now assume that X is partitioned into two disjoint
subsets X1 and X2, and note that w(x) ≥ w(x′) for all x ∈ X1 and x′ ∈ X2.
Next consider that two interval trees I1 and I2 are built, i.e., I1 (I2) is built on
X1 (X2). Given a top-k weighted stabbing query, we first use I1. If I1 returns
k stabbed intervals, we do not need to use I2, since the weights of the intervals
in I2 are less than those of the intervals in I1. Based on this observation, we
reduce the O(n log k) time of [9] to O(

√
n log n + k).

3.1 Data Structure and Construction

We sort the intervals ∈ X as above. Then, we partition X into p equal-sized
disjoint subsets, i.e., X = X1 ∪ X2 ∪ · · · ∪ Xp and Xi ∩ Xj = ∅ (i �= j). In
addition, w(x) ≥ w(x′) for all x ∈ Xi, x′ ∈ Xi+1 (i ∈ [1, p − 1]). We later show
how to specify p, which is an important factor for achieving a solid performance
guarantee. Then, we build an interval tree for each subset of X, so we have p
interval trees. Note that (i) this structure is general for arbitrary top-k weighted
stabbing queries, meaning that this pre-processing is done only once, and (ii)
Lemma 1 directly derives the following.

Corollary 1. We can build p interval trees in O(n log n) time, and they require
O(n) space in total.

3.2 Query Processing Algorithm

Our algorithm proposed in this section is denoted by IF because this algorithm
employs multiple interval trees, i.e., Interval Forest. Given a top-k weighted
stabbing query q, IF first uses the interval tree I1 on X1 and runs q on I1. IF
uses the stabbing query processing algorithm on the interval tree structure to
find stabbed intervals. Whenever IF accesses a stabbed interval, it updates the
top-k result. If the number of stabbed intervals is equal to or more than k, it is
guaranteed that we can obtain the exact top-k result from I1, so IF returns the
result. Otherwise, IF runs q on I2, and IF repeats this iteration until we have k
stabbed intervals or all interval trees are used.

Analysis. We set p = O(
√
n), so we have O(

√
n) interval trees and |Xi| =

O(
√
n) for each i ∈ [1, p]. Then, we have:

Lemma 3. IF runs in O(
√
n log n + k) time.

Proof of Theorem 1. From Corollary 1 and Lemma 3. �
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4 Algorithm Based on a Variant of Segment Tree

We next consider accelerating the search efficiency further (by sacrificing pre-
processing time and the space complexity a bit) and prove that

Theorem 2. For our problem, there exists an exact algorithm that requires
O(n log n log log n) pre-processing time, O(n log2 n) space, and O(log n+k) query
time.

Main Idea. This algorithm is designed based on the segment tree structure.
One may come up with the idea of sorting the intervals maintained in each node
of a segment tree based on weight. This idea enables access to at most k intervals
for each traversed node. As the height of the segment tree is O(log n), this idea
derives an O(k log n) time algorithm. Although this algorithm can theoretically
be faster than IF, its running time can be sensitive to k. We therefore do not
employ this approach.

Instead, we focus on the following property: the stabbing query algorithm on
the segment tree structure exploits the fact that the intervals maintained in the
traversed nodes are guaranteed to be stabbed by a given query. Then, by storing
all intervals existing in the path from the root to each node in a sorted array,
we do not need to enumerate k intervals for each traversed node2. This new idea
and the path-based auxiliary structure are specific to our problem, since simple
stabbing queries enumerate all stabbed intervals and do not consider weights.

4.1 Variant of Segment Tree and Its Construction

We first build a segment tree on X. Then, for each node u of the segment tree, we
consider the path from uroot to u. We collect all “distinct” intervals maintained
in the nodes on the path (since duplicate intervals may exist in the path), and
u stores this set of intervals in a weight-based sorted array.

After making this sorted array for each node u of the segment tree, we remove
a set of intervals initially maintained in u because we do not use it anymore.
Note that this structure is also general to arbitrary top-k weighted stabbing
queries, so this pre-processing is done only once. We analyze this pre-processing
time and the space complexity of this structure.

Lemma 4. We can build the above variant of a segment tree in
O(n log n log log n) time.

Lemma 5. The above variant of a segment tree needs O(n log2 n) space.

2 This idea is not available for the interval tree structure. This is because the interval
tree structure does not guarantee that all intervals maintained in a node are stabbed
by a given query.
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4.2 Query Processing Algorithm

Now we are ready to present our second algorithm for the top-k weighted stab-
bing queries. Thanks to our non-trivial extension of the segment tree structure,
we can design a simple and fast algorithm. This algorithm is denoted by ST-PSA
(Segment Tree with Path-based Sorted Arrays).

Let S be our variant of a segment tree on X. Given a top-k weighted stabbing
query q = (s, k), ST-PSA first runs a simple stabbing query q.s on S and obtains
the node traversed last during the stabbing. Let this node be u, and ST-PSA
uses the sorted array of u. Specifically, ST-PSA returns the first k intervals in
the array as the top-k result.

Correctness. The stabbing query algorithm on the segment tree structure guar-
antees that all intervals maintained in the traversed nodes are stabbed by a given
query. In addition, the sorted array of u stores all intervals (initially) maintained
in the path from uroot to u. From these facts, the correctness of ST-PSA is clear.

Time Complexity. We present the main result of this section below.

Lemma 6. ST-PSA runs in O(log n + k) time.

Proof of Theorem 2. From Lemmas 4–6. �

5 Conclusion

This paper addressed the problem of processing top-k weighted stabbing queries.
A state-of-the-art algorithm for this problem incurs the same time complexity
as that of a sequential scan. Motivated by this inefficiency issue, this paper
proposed two sublinear time algorithms.

Acknowledgements. This work was partially supported by AIP Acceleration
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Abstract. The storage of hot and cold data play a crucial role in
improving data access efficiency and reducing storage expenses. This
paper proposed a temperature model to quantify the real-time hotness of
data. Based on the temperature model, we proposed a hierarchical stor-
age mechanism for hot and cold data, managing dynamic data migration
among local cold database, local hot database, and remote cold database.
Experimental results show the advantages of the proposed method in
terms of hot data hit rate, hot data hit rate for key data, migration
count, and average response time. It can improve data access perfor-
mance and the satisfaction of important users, and significantly reduce
expenses.

Keywords: hot and cold data · hierarchical storage · data
temperature model · dynamic migration · remote storage

1 Introduction

In recent years, the data volume expanded rapidly and the demand for data
management and processing capabilities has steadily increased, posing unprece-
dented challenges in the storage and management of data. The Pareto Principle
shows the majority of accesses concentrate on a small portion of data over a
specific period [1], enabling us to allocate data with varying hotness to distinct
storage media for hierarchical storage. Commonly used storage devices include
Hard Disk Drive (HDD) and Solid State Drive (SSD). HDD provide economical
and substantial storage capacity solutions. Conversely, SSD offer faster read and
write speed, but come with higher price. As urban land development approaches
saturation in many developed cities, essential resources like water and electric-
ity face strain. The concepts of channel more computing and storage resources
from developed regions to less developed but resource rich regions have gained
considerable attention and development in country like China [2]. An effective
hierarchical storage strategy can optimize data access performance while con-
serving storage expenses, but it also imposes higher requirements for accurately
identifying the degree of data hotness.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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This article proposes a hierarchical storage mechanism for hot and cold data
based on temperature model (HSTM). Firstly, we construct the data temper-
ature model. Then, based on the temperature model, we propose hierarchical
storage mechanism. The main contributions of HSTM are:

– Data temperature model. Propose a model for computing temperature
based on access time, access frequency, user priority, and data priority. This
model provides a comprehensive assessment and quantification of the real-
time hotness of data.

– LSTM network based prediction. Employ Long Short Term Memory
(LSTM) networks to forecast the volume of new data, striking a balance
between the utilization of hot database space and data migration count.

– Periodic migration pattern analysis. Mine the periodic migration pattern
of data. Pre-migration of data with identifiable periodic migration patterns
can mitigate time latency of migration, further enhancing the hot data hit
rate.

– Cost-based decision for local and remote storage. When the local cold
database storage space is insufficient, migrate the data with higher benefits of
storing remotely to the remote cold database, substantially reducing storage
expenses.

2 Related Work

The predominant methods for identifying hot and cold data encompass two clas-
sical cache replacement algorithms: the Least Recently Used algorithm (LRU)
[3] and the Least Frequently Used algorithm (LFU) [4]. Various optimizations
and variations, such as LRU-K [5] and LFU-Aging [6], have been proposed to
enhance the adaptability to different scenarios.

In subsequent investigations, scholars have adopted intricate data structures
to discern between hot and cold data. HashKV proposes a distinction strategy
between hot keys and cold keys [7]. HashKV stores the hot keys in the segment
of vLog, and separates the cold key, stores in the disk then. HotRing proposed an
innovative Key-Value Store (KVS) with hotspot awareness, specifically designed
for massively concurrent access to a small portion of items [8]. Facebook identi-
fied hot and cold data based on the status of a bucket of objects instead of the
status of a single object [9].

Some algorithms have achieved commendable performance, extending beyond
the realm of data structures. Xie compared the data’s access frequency with a
pre-defined threshold [10], then determine whether the data is hot or cold.

Recent years have introduced approaches that assess data hotness through
the evaluation of data temperature values. Song have devised a temperature
calculation model that exhibits sensitivity to temporal changes, drawing upon
Newton’s Law of Cooling [11].

Most current methods designed for the identification and management of hot
and cold data rely on basic access characteristics, such as access frequency and
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time. However, these methods often neglect the opportunity to enhance impor-
tant users’ satisfaction and do not optimize methods from the perspective of
mining data access and migration patterns. Meanwhile, there is little consider-
ation given to the performance and storage cost of local and remote storage.

3 System Architecture

HSTM comprises two components: the data temperature model and the hierar-
chical storage mechanism for hot and cold data.

The initial section quantifies the real-time hotness of data. In this paper,
data stored in the hot database is categorized as hot data, while data stored
in the cold database is categorized as cold data. The subsequent section, built
upon the temperature model, manages the data dynamic migration.

3.1 Data Temperature Model

The new data are likely to access in the immediate future and thus warrants
storage in the hot database. The initial temperature value TnewData is set as the
average temperature of hot data.

Using I and Q to represent the user and data priority, where I = 1 indicates
an important user, I = 0 indicates a regular user, Q = 1 indicates key data, and
Q = 0 indicates regular data. Let Tpre and Tnew denote the temperature before
and after data access, Tnew can be formulated as follows:

Tnew = Tpre + α + β × I + γ × Q (1)

where α, β, and γ denote weights of access, user priority, and data priority.
In order to mitigate the persistent impact of short-term frequent access on

data temperature, it is necessary to periodically reduce the temperature of data.
Let Tpre and Tnew be the data temperature before and after reduction, and δ be
the temperature weakening coefficient. Tnew is the product of Tpre and δ.

3.2 Data Hierarchical Storage Mechanism

Local Hot and Cold Data Migration Management includes time-driven
and event-driven migration. Time-driven migration occurs at the end of each
period p, event-driven migration occurs in the process of each period p.

To mine the periodic migration pattern of data, when data d is migrated
from cold to hot database for the y-th time (where y ≥ 4), if the three intervals
resulting from the last four migrations are equal (the difference in period numbers
between two consecutive migrations form interval), it is inferred that data d
exhibits a periodic migration pattern.

In time-driven migration, we utilize LSTM to predict new data volume of
upcoming period e based on new data volume of previous period, then compute
the upper threshold of the current period ζ as the difference between the hot
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database storage capacity c and 0.5 times e, indicating the maximum storage
space utilized in the hot database post-migration. By means of migration, the
cold data predicted to migrate to the hot database in the next period, along with
a portion of the currently high-temperature data, is stored in the hot database.

Event-driven migration involves storing newly generated data and cold data
with increased temperature in the hot database. If the storage space in the hot
database is inadequate, hot data is evicted to the local cold database in ascending
order of temperature until sufficient storage space is adequate.

Local and Remote Data Migration Management includes two types of
event-driven migration. When the temperature of remote cold data increases, it
initiates the migration of remote cold data back to the local database. When the
utilized storage space of the local cold database exceeds 90% of the total storage
capacity, it initiates the migration of local cold data to the remote database.

We denote the benefit of storing a unit of data remotely as udy, can be
expressed as the difference between the local storage cost costL and the remote
storage cost costR, divided by the data size s, and cost is the weighted sum
of the monetary cost expCost and the latency cost dlyCost. The expCost is
calculated as the product of the data size s, the power consumption per unit of
stored data e, and the unit cost of electricity ep. The dlyCost is the sum of the
sending latency s/bindwidth(bw) and the propagation latency pd, multiplied by
the normalized data temperature T ′.

udy =
costL − costR

s
=

s × e × epdiff + θ × ( s
bwL

− s
bwR

− pdR) × T ′

s
(2)

where θ is the weight of the delay cost relative to the monetary cost, and epdiff
represents the difference in electricity cost per unit between local and remote
storage, and pdL in dlyCostL is negligible.

4 Experimentation and Analysis

This section conducts simulation experiments to compare the HSTM with the
LRU-K and LFU-Aging algorithms.

Evaluation metrics encompassed the hot data hit rate for all data, hot data
hit rate for key data, data migration count, and average access response time.

4.1 Experimental Environment and Configuration

The experiment utilized two computers to emulate local and remote storage,
each equipped with an Intel(R) Xeon(R) Gold 6132 CPU @ 2.60 GHz, 376 GB
of memory, and CentOS Linux release 7.4.1708 (Core). One computer was con-
figured with a 1.5 TB SSD and a 20 TB HDD, while the other had a 35 TB
HDD.

An initial set of one million data files, ranging in size from 1 MB to 20 MB,
were stored in the local database. Each period comprised around 1 TB hotspot
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data, with 80% being the previous period’s hotspot data, 10% from the previous
period’s non-hotspot data, and 10% newly generated data in the current period.
Each data access had an 80% probability of targeting hotspot data. The period
p was set to one day, conducting a total of 60 million accesses over 30 days.
Periodic temperature reductions occurred after the completion of each time-
driven migration.

The settings for parameters are as follows: the SSD read speed is 500 MB/s,
HDD read speed is 100 MB/s, bandwidth of long-distance link is 1G, pdR is
20 ms, ε is 4, α is 0.5, β is 0.25, γ is 0.25, δ is 0.5 and m is 8.

4.2 Experiment on Local Hot and Cold Data Migration
Management

The value of c was set as 0.8 TB, 1 TB, and 1.2 TB. The results are presented
below (Table 1).

Table 1. Experimental results of HSTM, LRU-K, and LFU-Aging.

c Metric HSTM LRU-10 LRU-15 LRU-20 LFU-Aging

(=0.25/0.75/1.25)

hit rate (%) 59/59.3/59.3 55.5 56.7 57.2 53.6

hit rate for key data (%) 72.7/75.8/76.5 65.8 66.6 66.7 68.8
0.8

migration count (millions) 3.13/2.83/2.74 4.96 2.93 2.05 56.1

average access response time (ms) 52.8/52.56/52.56 55.6 54.64 54.24 57.12

hit rate (%) 72.4/72.5/72.4 67.8 67.9 67.5 64.1

hit rate for key data (%) 87.6/89.6/90 80.6 80.4 79.8 81
1

migration count (millions) 1.87/1.64/1.56 3.54 2.09 1.48 43.56

average access response time (ms) 42.08/42/42.08 45.76 45.68 46 48.72

hit rate (%) 77.6/77.5/77.2 75.3 74.2 72.2 71.7

hit rate for key data (%) 93.1/93.3/93.4 89.9 88.4 85.7 88.6
1.2

migration count (millions) 1.25/1.24/1.23 2.68 1.62 1.29 34.46

average access response time (ms) 37.92/38/38.24 39.76 40.64 42.24 42.64

The experimental results show that HSTM exhibits an advantage in the hot
data hit rate, the hot data hit rate for key data, and the average response time.
When c surpasses the volume of hotspot data s, HSTM exhibits an advantage
in migration count. Moreover, increasing the value of the data attribute weight
parameter γ leads to a further improvement in the hot data hit rate for key data.

4.3 Experiment on Local and Remote Data Migration Management

The total storage capacities of the local cold database were set to 1 TB, 2 TB, and
3 TB, respectively. The parameter θ in (2) adjusted dynamically in each migra-
tion, ensuring that, subsequent to the data migration to the remote location, the
utilized storage space in the local cold database accounted for approximately 60%
of its total storage capacity.
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The experimental results show that compared to storing all data locally,
adopting local and remote hierarchical storage increases the average response
time from 42.08 ms to 45.66 ms, 45.5 ms and 45.24 ms when the local cold data
capacity is 1 TB, 2 TB and 3 TB, respectively. Assuming the volume of data
stored remotely is vPB, the annual cost for the long-distance link is 200,000
yuan, and the power consumption rate for storing data e is 2.5 KW/PB. The
price difference in electricity costs between local and remote locations epdiff is
0.4 yuan per KWH. The formula for calculating the annual savings in storage
costs expSavings for local and remote hierarchical storage is expressed as follows:

expSavings = 2.5 × 24 × 365 × 0.4 × v − 200000 (3)

5 Conclusion

This paper proposes a hierarchical storage mechanism for hot and cold data
based on temperature model, implementing a three-tiered data storage and man-
agement encompassing local SSD, local HDD, and remote HDD, offering advan-
tages in hot data hit rate and migration count, and reducing storage expenses.
Future research should delve deeper into data access patterns in data centers to
develop targeted data hierarchical storage strategies.

Acknowledgments. This work is supported by the National Key R&D Program of
China (NO. 2022YFB4501701).
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Abstract. Online education systems have gained increasing popular-
ity due to their capability to fully preserve users’ learning data. This
advantage enables researchers to assess learners’ mastery through their
learning trajectories, thereby facilitating personalized education and sup-
port. Knowledge tracing, an effective educational aid, simulates students’
implicit knowledge states and predicts their mastery over knowledge
based on their historical answer records. However, for newly developed
online learning platforms, the lack of sufficient historical answer data
may impede accurate prediction of students’ knowledge states, rendering
existing knowledge tracing models less effective. This paper introduces
the first pre-trained knowledge tracing model that leverages a substan-
tial amount of existing data for pre-training and a smaller dataset for
fine-tuning. Validated across several publicly available knowledge tracing
datasets, our method demonstrates significant improvement in tracing
performance on small datasets, with a maximum AUC increase of 5.07%.
Beyond incorporating small datasets, our approach of pre-training the
entire dataset has shown an enhanced AUC compared to the baseline,
marking a novel direction in knowledge tracing research. Furthermore,
the paper analyzed the outcomes of pre-training experiments with vary-
ing numbers of interactions as fine-tuning datasets, providing valuable
insights for Intelligent Tutoring Systems (ITS).

Keywords: Knowledge Tracing · Limited Data · Pre-training ·
Fine-tuning

1 Introduction

In recent years, the spread of mobile applications has transformed educational
strategies, with Intelligent Tutoring Systems (ITS) [2] and Massive Open Online
Courses (MOOCs) [23] becoming increasingly prevalent. These platforms utilize
data-driven techniques to personalize learning paths, enhancing student engage-
ment and educational access. One pivotal technique is knowledge tracing, which
predicts student mastery over time [1,7].
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Corbett et al. [5] introduced the Bayesian Knowledge Tracing (BKT) model,
combining elements from Hidden Markov Models [3], and Bayesian networks
[21] to model students’ mastery of knowledge concepts as binary variables based
on real-time feedback. The Deep Knowledge Tracing (DKT) [11] was the first
to apply recurrent neural networks to knowledge tracing tasks. It uses LSTM
models to track the dynamic changes in students’ knowledge proficiency over
time and directly learns the latent vector representation of students’ proficiency
from datasets. The task of knowledge tracing is to model students’ knowledge
mastery status based on their answer records, exercises, knowledge components
(KCs), and students’ answer, in order to predict their future answer. Despite
DKT’s progress, it fails to distinguish between different problems under the
same knowledge concept, prompting developments of models that address these
shortcomings.

To enhance the management of long-term dependencies within sequences, Sha
et al. [13] proposed an improved model that employs a stacked LSTM network,
which vertically stacks two LSTM networks and introduces a residual network
to prevent the degradation of network performance. Yang et al. [24] introduced
a decision-tree-based DKT that combines random forests and gradient boosting
for better accuracy. Zhang et al. [29] used autoencoders for feature learning, and
the qDKT model [17] focused on question-level input refinement. MANN [22]
introduced memory matrices to RNNs, enhancing DKT’s handling of extensive
interaction data. DKVMN [28] is designed with a dynamic value matrix while
retaining a static key matrix, allowing for a more precise tracking of the changes
in students’ knowledge states over time. Attention mechanisms have been inte-
grated into knowledge tracing models like SAKT [9] and AKT [6] to address
limitations in handling sparse data and limited interactions. Models such as
SAINT [4], built on the Transformer [20] framework, and its extension SAINT+
[14], incorporate features like time spent on questions to enhance knowledge trac-
ing. The RKT model [10] employs attention mechanisms to capture the decay in
students’ memory over time. Graph-based approaches like GKT [8] and GIKT
[25] model knowledge tracing as a node classification problem over time, using
graph algorithms to capture complex relationships between problems and skills.
SKT [19] focuses on the multifaceted relationships between knowledge compo-
nents, and HGKT [27] exploits hierarchical problem graphs to improve tracing.
Bi-CLKT [16] introduces a novel contrastive learning framework for a deeper
understanding of knowledge relationships.

Combating the “cold start” problem in smart education, using attention
mechanisms with Neural Turing Machines (NTM) has been effective [30]. This
approach, especially with small datasets, allows the Logic-Muse ITS to accu-
rately track students’ knowledge states by incorporating prior knowledge into
DKT. However, its effectiveness in predicting outcomes on other publicly avail-
able datasets has not been deemed satisfactory [18].

These studies focus on a deep exploration of problems and skills, but accu-
rately predicting students’ knowledge states from limited educational data based
on historical interactions (such as a few hundred or fewer) remains a challenging
task.
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The main contributions of this work are described as follows:

– This paper presents the first model that integrates knowledge tracing tasks
with a “pre-training + fine-tuning” strategy. The method involves pre-
training on data from various ITS and subsequently fine-tunes on a limited
amount of interaction data from a distinct system than the pre-training data.
The approach offers a promising solution to address the “cold start” challenge
in ITS.

– A comparative analysis of the results from varying numbers of interactions
used as fine-tuning datasets in pre-training experiments is conducted. Addi-
tionally, we assess the effectiveness of the pre-training method by employing
a comprehensive knowledge tracking dataset. Our findings demonstrate that
our proposed method outperforms alternative models.

2 Related Work

Pre-trained Models (PTMs) are models that have been pre-trained on a spe-
cific foundational task, with the aim of becoming a universal model within a
certain domain by learning a complex hierarchy of features. After being pre-
trained, these models can be retrained or fine-tuned on different but related tar-
get tasks, enhancing the performance of the target task by leveraging the param-
eters and knowledge learned from the original task, as illustrated in Fig. 1. In
recent years, various PTMs have been proposed to better acquire knowledge from
unlabeled data, with improvements in model architecture and pre-training tasks
through models such as XLNet [26], and MASS [15]. Additionally, researchers
have explored building large-scale models with billions of parameters, like the
GPT [12] series, while optimizing the computational efficiency of training PTMs.

Fig. 1. Pre-trained model framework diagram

Pre-trained models often have a good semantic representation of features, and
the portability of these learned features between different problems is a crucial
advantage of deep learning compared to many early shallow learning methods.
This advantage makes deep learning effective even for small data problems.

3 Method

To address the cold start problem, this study introduces a knowledge tracing
model based on pre-training and fine-tuning techniques, named PMKT (Pre-
trained Model for Knowledge Tracing). The PMKT model, as shown in Fig. 2,
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features a design that integrates the Transformer and BERT architectures. It
aims to effectively predict students’ knowledge states through pre-training on
large-scale student-answer interaction data. After completing the pre-training
phase, all model parameters, except those in the output layer, are transferred to
the fine-tuning stage for prediction tasks on small datasets. During this phase,
the parameters of the output layer are reset after random initialization, while
the parameters inherited from the pre-training phase are used to initialize the
knowledge tracing tasks for small-scale target datasets. This process enables the
model to further adjust to specific small sets of interaction data, adapting and
integrating knowledge state representations from different systems.

Fig. 2. Pre-trained model framework diagram

3.1 Transformer-Based Knowledge Tracing Model

The knowledge tracing model based on the Transformer architecture, aims to
predict students’ knowledge states by analyzing their complete historical perfor-
mance (Fig. 3). It focuses on the structural characteristics of the questions and
the time elapsed between solving steps. At the encoder, the student’s interaction
sequence (0, x1, x2, ..., xn−1) passes through the interaction mapping layer to
generate a high-dimensional embedding (0, e1, e2, ..., en−1). The sequence ei
and the interaction timestamp ti go through Transformer blocks to learn con-
textual dependencies, in order to learn the hidden representation sequence hi. At
the decoder, the hi sequence from the encoder, the embedded problem sequence
ei+1, and the timestamp ti+1 are processed together again through Transformer
blocks to generate the decoder’s hidden representation h∗

i+1.
The interactive mapping layer first creates an interaction-skill mapping

matrix W and a skill embedding matrix S, and calculates the embeddings of
the encoder-side input interaction xi and the decoder-side input question q

′
i:

ei = softmax(Wi.)S (1)
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Fig. 3. Pre-trained model framework diagram

Wi represents the i − th row of matrix W , indicating the weights associ-
ated with all potential skills related to the interaction xi. The softmax function
normalizes these weights. Each column of matrix S represents a vector represen-
tation of a specific potential skill. Therefore, the static representation xi of the
interaction is the weighted sum of all potential skills.

In the attention masked layer, the contextualized interaction representation
hj is calculated from the static interaction representation ej .

qj = Q · ej , kj = K · ej , vj = V · ej (2)

Aij =
qjki + b(�tj−i)√

dk
(3)

hj =
∑

i≤j

softmax(Aij)vi (4)

The masked attention layer extracts the query qj , key kj , and value vj by
multiplying the static interaction representation ej with three trainable matrices
Q, K, and V , respectively. The key and query can be interpreted as latent
skills associated with the interaction ej , while the value represents the state
of the latent skills related to ej . To calculate the attention Aij assigned to past
interaction ei, two components are considered: the degree of overlap qjki between
the latent skills of interactions ej and ei, and the temporal interval deviation
b(Δtj−i).

3.2 BERT-Based Knowledge Tracing Model

BERT, the encoder module of the Transformer, integrates its architecture with
deep knowledge tracing. The architecture, as illustrated, undergoes a training
process where the correctness ai in the interaction sequence (qi, ai) is randomly
masked, meaning ai is replaced with [MASK]. The model predicts the correct-
ness of this small, randomly masked portion of the interaction based on the
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bidirectional context within the sequence. The output module then provides
the predicted probability of correctness for each interaction in the sequence, the
model architecture is shown in Fig. 4. In the multi-head self-attention layer, each
“head” is responsible for projecting the embedding of the input matrix X into
the matrices Q, K and V . This is achieved through dot product operations with
their respective trainable projection matrices, including WQ, WK , and WV :

Q = XWQ

K = XWK

V = XWV

(5)

Fig. 4. Pre-trained model framework diagram

The intermediate dimension M for each head is M ′ = M
H . For the i − th self-

attention head, with 1 ≤ i ≤ H, the calculation can be expressed as follows:

Aij = Attention(Q,K, V ) = softmax(
QKT

√
M

)V (6)

The result Ai ∈ RT×M ′
. Then, all attention results across the H heads are

concatenated in the output layer of the multi-head self-attention module:

Z = Concat(A1, A2, ..., AH , )WO (7)

where WO ∈ RM×M is the weight matrix used to compute the final output
embedding Z ∈ RT×M from the multi-head attention module. The attention
calculation for each head can be parallelized.
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The output from the multi-head self-attention module is then fed into a
position-wise fully connected feed-forward neural network:

FFN(Z) = Max(0, ZΦ1 + b1)Φ2 + b2 (8)

where Φ1 ∈ RM×L and Φ2 ∈ RL×M are the trainable weight matrices for the
hidden layer and output layer of the FNN module, respectively. Additionally,
b1 ∈ RL and b2 ∈ RM are the bias vectors for these two layers. These trainable
weight matrices and bias vectors are set specific to each layer of the transformer
component.

To avoid potential cheating in the BERT prediction process, we divided the
data into two parts during training: one part randomly masks 15% of the answers
to enhance model performance, while the other part only masks the last answer
in the sequence. During the testing phase, we only predict the correctness of the
last masked answer.

4 Experiments

4.1 Datasets

We utilize various real datasets of ITS, summarized in Table 1.
ASSISTments datasets1: ASSISTments 2009 (ASSIST09), ASSISTments

2012 (ASSIST12), and ASSISTments 2017 (ASSIST2017) datasets are sourced
from the ASSISTments online tutoring platform for 2009, 2012, and 2017, serving
as benchmarks for knowledge tracing (KT) methods, especially the ASSIST2009
dataset over the past decade.

EdNet2: This dataset is a stratified dataset, with each subset containing
different types of student activities. It is one of the largest public datasets in the
education field.

KDDcup Datasets3: It is prepared for the 2010 data mining competition,
contain details such as exercise course hierarchy, KCs used, and student perfor-
mance. They include Algebra 2005–2006 (Algebra05), Algebra 2006–2007 (Alge-
bra06), and Bridge to Algebra 2006 (Bridge06).

Statics20114: Statics2011 (Statics11) is collected from engineering mechanics
courses in a college. The dataset comprises 335 students, 1,224 items, and 81
KCs, with an average of 568.45 responses per item. Following pre-processing,
the dataset yielded 187,445 interactions, representing a reduction of 50% from
the original dataset.

4.2 Experimental Setup

The experiments conducted in this study are categorized into eight groups, taking
into consideration the size of the dataset used for both the pre-training and fine-
tuning phases. To evaluate the performance of the pre-training approach, we ran a
1 https://sites.google.com/site/assistmentsdata/datasets.
2 https://github.com/riiid/ednet.
3 http://pslcdatashop.web.cmu.edu/KDDCup/downloads.jsp.
4 https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=507.

https://sites.google.com/site/assistmentsdata/datasets
https://github.com/riiid/ednet
http://pslcdatashop.web.cmu.edu/KDDCup/downloads.jsp
https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=507
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Table 1. Statistics of datasets

Students Questions KCs

ASSIST09 3,841 15,911 123

ASSIST12 27,405 47,104 265

ASSIST17 1,709 4,117 102

EdNet 5,000 23,169 188

Statics11 333 1,224 81

Algebra05 575 173,113 112

Algebra06 3,310 1,379 899

Bridge06 1,146 129,263 493

5-fold student stratified cross-validation on various datasets. The model’s perfor-
mance was evaluated using the Area Under the Curve (AUC), which comprehen-
sively considers the model’s accuracy and recall, balancing predictive capability
and efficiency. Specific experimental conditions are detailed in Table 2.

The subscript indicates the number of original datasets combined in the
experiment, while the superscript indicates the required platform on which the
datasets were collected; ∗ means any platform is deemed acceptable. For exam-
ple, D∗

2 means two datasets are selected for this experiment, and each dataset is
acceptable. On the other hand, Dassist

1 indicates that only one dataset can be
selected, and it must be one of these datasets collected on ASSISTments, i.e.,
ASSISTments2009, ASSISTments2012, or ASSISTments2017. E is a distinct
dataset that is not included in D. Especially, the subscript lite(n) indicates that
the dataset is a subset consisting of n (which may vary in different experiments)
interactions. Moreover, “SOTA-Model” refers to the state-of-the-art KT models,
which may be compared with the pre-trained KT models. “Nonfreezing” indi-
cates that the parameters are not frozen during the fine-tuning. It implies that
all the parameters from the pre-trained model used for training are retained.

Table 2. The experimental settings

Pre-Training Data Target data Contrast Experiment

1 D∗
1 E∗

lite(5,000) Baseline

2 D∗
2 E∗

lite(5,000) Baseline, SOTA-Model

3 Dall E∗
lite(5,000) Baseline

4 D∗
2 E∗

1 Baseline, SOTA-Model

5 Dassist
1 Eassist

lite(5,000) Baseline

D∗
1 −D∗

lite(5,000) D∗
lite(5,000) Baseline

6 D∗
1 E∗

lite(n) Baseline

7 D∗
1 E∗

lite(50|100) Baseline, SOTA-Model

8 D∗
2 , Dall E∗

lite(5,000) Baseline, Nonfreezing
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In the subsequent empirical findings, “baseline” refers to the performance
of the training on the respective dataset without the utilization of pre-training.
The bold numbers are the best performance.

4.3 Experiment Results and Analysis

Experiment 1. A comparative experiment was carried out by randomly
selecting two datasets, one for pre-training and the other for fine-tuning with
5000 interactions. As shown in Table 3, using a pre-trained model significantly
improved predictive performance compared to training only on a small-scale
dataset. The largest performance increase was 3.83%.

Table 3. Cross-Training Experiment Results with Homogeneous Data (AUC)

Model Pre-Training Fine-tuning

Algebra06 ASSIST09 EdNet

BERT Baseline 0.6261 0.5969 0.6013

Algebra06 – 0.6263 0.6280

ASSIST09 0.6372 – 0.5841

EdNet 0.6439 0.6103 –

Transformer Baseline 0.8024 0.8416 0.8677

Algebra06 – 0.8520 0.8691

ASSIST09 0.8393 – 0.8638

EdNet 0.8132 0.8283 –

Experiment 2. For pre-training, two datasets from ASSIST09, Algebra06, and
EdNet were chosen, with a small set of 5000 interactions from another dataset
used for fine-tuning. Results in Table 4, show our pre-training method boosts
knowledge tracing models’ performance on small datasets. Pre-training with
the Transformer on EdNet and ASSIST09, then fine-tuning on 5000 Algebra06
interactions, increased AUC by 5.07% over the baseline. Further experiments
confirmed pre-training’s effectiveness on small datasets, as shown in Table 5.

Table 4. The results on two datasets (AUC)

Model Pre-Training Fine-tuning

Algebra06 ASSIST09 EdNet

BERT Baseline 0.6261 0.5969 0.6013

EdNet, ASSIST09 0.6319 – –

EdNet, Algebra06 – 0.6137 –

Algebra06, ASSIST09 – – 0.6265

Transformer Baseline 0.8024 0.8416 0.8677

EdNet, ASSIST09 0.8531 – –

EdNet, Algebra06 – 0.8675 –

Algebra06, ASSIST09 – – 0.8850
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Table 5. The results from baselines (AUC)

Models Algebra06

BKT 0.5915

BKT+Forgets 0.5922

SAKT 0.6582

Experiment 3. The experiment combines datasets in pairs for pre-training
using the BERT model. The paper selected 5000 interactions from the Static2011
and ASSIST09 datasets for fine-tuning to test our method. The results, shown in
Table 6, reveal that the model pre-trained on the combined datasets significantly
surpasses the non-pre-trained model in AUC. The AUC on the ASSIST09 dataset
increased by 3.05%, and on the Static2011 dataset by 3.32%.

Table 6. The results of large-datasets (AUC)

Pre-Training Fine-tuning Baseline Ours

ASSIST12, ASSIST17,
Algebra05, Algebra06, EdNet

ASSIST09 0.5969 0.6274

ASSIST09, ASSIST12,
ASSIST17, EdNet, Spanish,
Algebra05, Algebra06

Statics11 0.7648 0.7980

Experiment 4. Based on the conclusion of Experiment 2, the paper utilized
pre-training methods to verify the results on the complete dataset. Specifically,
we randomly selected two datasets from ASSIST09, Algebra06, and EdNet for
pre-training, fine-tuned on another complete dataset, and compared our method
with other knowledge tracing models. The results are presented in Table 7.

Table 7. The results on the complete dataset (AUC)

Models Algebra06 ASSIST09 EdNet

BKT 0.6707 0.6975 0.6692

BKT+Forgets 0.6844 0.7306 0.6894

DKT 0.7925 0.7570 0.7791

SAKT 0.7637 0.7991 0.7683

Bert-based 0.7902 0.7544 0.7521

Pre-KT (Bert) 0.8093 0.7862 0.7525

Transformer-based 0.8036 0.8002 0.7690

Pre-KT (Transformer) 0.8144 0.8277 0.7815
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Experiment 5. To further investigate the effectiveness of our pre-training
technology, a series of experiments were performed, training models on vari-
ous datasets from the same ITS, as shown in Table 8. One of the ASSISTments
datasets was selected as the pre-training data, and 5000 interactions on the
other two datasets. Furthermore, additional experiments were conducted on the
same dataset, in which a random subset of 5000 interactions was used for fine-
tuning, and the remaining interactions were used for pre-training, as illustrated
in Table 9.

Table 8. The results from the similar datasets (AUC)

Model Pre-Training Fine-tuning

ASSIST09 ASSIST12 ASSIST17

BERT Baseline 0.5969 0.7609 0.6670

ASSIST09 – 0.7629 0.6593

ASSIST12 0.5662 – 0.6713

ASSIST17 0.5778 0.7652 –

Transformer Baseline 0.8416 0.7785 0.7950

ASSIST09 – 0.7829 0.7931

ASSIST12 0.8417 – 0.7994

ASSIST17 0.7936 0.7815 –

Table 9. The results from the same datasets (AUC)

Model Datasets Pre-Training
Numbers

Fine-Tuning
Numbers

Baseline Ours

BERT ASSIST09 277,072 5000 0.5645 0.5296

Algebra06 1803,534 5000 0.6347 0.6411

Transformer ASSIST09 277,072 5000 0.7404 0.7349

Algebra05 602,015 5000 0.7276 0.7323

Experiment 6. This experiment aims to investigate the impact of dataset
size on performance. Firstly, the BERT model was pretrained on the ASSIST09
dataset and subsequently fine-tuned on the EdNet dataset, which contains inter-
action sequences of different sizes. Similarly, the Transformer model was pre-
trained on the EdNet dataset and further fine-tuned on the ASSIST09 dataset.
Figure 5 shows that the number of interaction terms used for fine-tuning will
affect the results. Figure 6 displays the difference in AUC between pre-trained
and non-pre-trained models, more intuitively demonstrating that the impact
of pre-training is more pronounced when approximately 1/3 of the EdNet and
ASSIST09 datasets are selected.
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Fig. 5. Performance of different data amounts (BERT-based)

Fig. 6. Performance of different data amounts (Transformer-based)

Experiment 7. In this experiment, we pre-trained the model on the EdNet
dataset and then fine-tuned it on the ASSIST09 dataset. As shown in Table 10,
the results indicate that our proposed pre-training method also performs well on
100 interactions of the ASSIST09 dataset. Moreover, pre-training on the Alge-
bra05 dataset improved the AUC by 5.15% on 50 interactions of the ASSIST09
dataset compared to training on the small dataset alone, which can be consid-
ered a good solution to the “limited data” challenge initially identified. Further
experiments were conducted on classical knowledge tracing models using the
same 100 interactions of the ASSIST09 dataset, as shown in Table 11.

Table 10. The results on the smaller datasets (AUC)

Pre-Training Fine-tuning

ASSIST09 (200) ASSIST09 (100) ASSIST09 (50)

Baseline 0.5380 0.6064 0.6107

EdNet 0.6117 0.6395 0.6104

Baseline 0.5254 0.6185 0.6152

Algebra05 0.5549 0.6492 0.6667
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Table 11. The results of the 100 pieces of data on the baselines

Models AUC

BKT 0.5364

BKT+Forgets 0.5686

DKT 0.4736

SAKT 0.3967

Experiment 8. Parameter freezing is a valuable technique in the fine-tuning
of intricate models as it effectively reduces the number of parameters requir-
ing adjustment during the training. Two sets of experiments (Experiment 2
and Experiment 3) demonstrated significant improvements in AUC compared to
Experiments 1–7. During the fine-tuning phase, a decision was made to freeze
a portion of the training parameters, specifically limiting the training to only
two weight parameters, namely emb pid (question) and emb r (correct). The
performance of these experiments is presented in Table 12. However, based on
our experimental settings, it was observed that parameters freezing did not yield
any improvement in the experimental results.

Table 12. The results of Freezing parameter (AUC)

Model Settings Baseline Nonfreezing
parameter

Freezing
parameter

BERT Pre-Training:
ASSIST09,
ASSIST12, ASSIST17,
EdNet, Spanish,
Algebra05, Algebra06
Fine-Turning:
Statics11

0.7648 0.7980 0.7602

Transformer Pre-Training:
EdNet, ASSIST09
Fine-Turning:
Algebra06

0.8024 0.8531 0.8130

5 Conclusions and Future Work

The main topic of this article is predicting future learner responses based on
limited amounts of interaction. The knowledge tracing models are pre-trained
on one or multiple comprehensive datasets that are publicly accessible. The pre-
training models BERT and Transformer have been employed to capture features
pre-training to the knowledge states of students based on limited data. The
features obtained from the pre-training model on these datasets were utilized
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by reusing the weight parameters. Various experiments have been conducted to
arrive at the following conclusions:

– In cases where the quantity of data is restricted, pre-training techniques have
been found to be more efficacious for knowledge tracing. The AUC for all
parameters of the pre-trained model is greater than that of the fixed part
parameters.

– The Transformer model-based pre-training is a more appropriate approach
for predicting future learner responses with limited data, as opposed to the
BERT model that employs a random masking technique on the sequence.

– The source of the pre-training data and fine-tuning data, both of which orig-
inate from the same ITS, have little effect on the experimental results pre-
dicting future learner responses.

– The number of interactions used for fine-tuning has an impact on the results,
which will be more apparent when approximately 1/3 of the data from the
EdNet and ASSIST09 datasets is selected. However, further research is needed
in the future to investigate the phenomenon of a decrease in AUC value after
increasing the amount of fine-tuning data.

– The incorporation of pre-training before making predictions leads to a signifi-
cant improvement in the AUC for the entire dataset. In comparison to alterna-
tive knowledge tracing models, the knowledge tracing model that incorporates
pre-training demonstrates superior predictive performance.

Drawing from the aforementioned findings, our future research endeavors will
focus on addressing the “cold start” predicament within the realm of knowl-
edge tracing. To this end, we intend to enhance the predictive efficacy on
modest datasets by employing diverse pre-training techniques and fine-tuning
approaches to extract salient features such as questions and KCs. Furthermore,
the paper aspire to attain elevated prediction accuracies through pre-training,
even in scenarios where the data is severely restricted, for instance, with only 10
or a mere 1 data point.
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Abstract. Executing machine learning jobs on serverless platform could gain
higher performance in a simplified manner. But current solutions have not fully
utilized the flexibility of serverless computing. Thewidely usedBulk Synchronous
Parallel (BSP) mode has significant resource waste, the parameter server nodes
suffer bottleneck pressure from both networking and performance aspects. This
paper presentsChorus, amachine learning framework on serverless platformbased
on the parameter server architecture. In Chorus we propose the Lambda Syn-
chronous Parallel (LSP) model to coordinate Lambda workers. It simultaneously
utilizes functions with different resource level to collaborate and dynamically
adjusts resource allocation to maintain balance of model training. To alleviate the
bottleneck pressure on the parameter server, we build a buffer system in memory
database to exchange gradient data between the parameter server and workers.
We set up multiple buffer slots in the buffer system to alleviate network pres-
sure and design a buffer merging strategy to disperse computational pressure of
parameter server among Lambda workers. In the experiments on different ML
algorithms with different synchronous parallel models, Chorus shows outstanding
performance improvements and budget-saving capacities.

Keywords: Serverless · Machine Learning · Distributed Computing

1 Introduction

Machine learning is a foundational technology in data processing that has found extensive
application across various scientific and industrial domains, such as text analysis, search
engines, document classification, and recommendation systems. Its widespread adoption
has positioned machine learning as a core computing task in modern data centers. With
the rapid advancements in distributed computing, an increasing number of machine
learning jobs cannowbeexecuted in cloud environments.However,managingdistributed
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environments remains significantly more complex for non-computer science experts
compared to managing a single machine. Running tasks in the cloud involves challenges
such as resource allocation and worker coordination, leading to resource shortages or
wastage in many cases. These challenges impede the widespread adoption of running
machine learning jobs using distributed computing.

Recently, serverless architecture has gained significant attention as a new paradigm
in cloud services. Within a serverless architecture, users directly execute their functions
without managing the underlying cluster resources. The system handles resource provi-
sioning and scales computing power transparently, allowing users to focus solely on their
program logic. Researchers have migrated many types of tasks to serverless platform,
including data analysis [1, 2], linear algebra processing [3], video encoding [4, 5], and
code compiling [6], etc. Serverless architecture also presents an opportunity to simplify
and economize the processing of machine learning jobs. In this domain, the parame-
ter server architecture [7] is the most appropriate choice in serverless environment. In
this architecture, worker nodes operate independently without communicating to each
other in most cases. However, to ensure the correctness and efficiency of the training
process, proper coordination of worker nodes is essential, typically achieved through
the synchronous parallel model. There are three common synchronous parallel mod-
els: the Bulk Synchronous Parallel (BSP) model, Asynchronous Synchronous Parallel
(ASP) model, and Stale Synchronous Parallel (SSP) model [8], each offering distinct
advantages and trade-offs in managing distributed machine learning tasks.

Many researchers have already proposed frameworks for training machine learning
models on serverless platform [9–15]. However, we have identified several significant
issues with the existing solutions. 1) Almost all frameworks are using the BSP model,
which converges stably but lacks performance. 2) The parameter server nodes need to
exchange data with all workers and handle all model update tasks, making them very
prone to become bottlenecks of the entire system. MLLess [13] tries to solve this issue
by using Lambda functions as parameter server, but introduces redundant computation.
Lang Feng [14] solve it by gradients merging, but only supports BSP model.

To perform machine learning in serverless platform and overcome these weak-
nesses, we present Chorus, a machine learning framework in serverless computing. Cho-
rus implements the parameter server architecture and utilizes advantages of serverless
computing to make the execution more efficient and economical.

In the design of Chorus, we leverage the resource scheduling flexibility of serverless
computing to enable functions with different resource level to collaborate and dynami-
cally adjust resource allocation. This approach ensures a balanced and efficient training
process, thus saving time and budget for the uses. We build a memory buffering system
for gradient data that alleviates network pressure through amulti-buffer slot approach and
disperses the computational pressure on the parameter server through a buffer merging
strategy. We designed separate strategies for buffer reading priority and buffer merg-
ing priority to ensure that the buffering strategy does not disrupt the balance of model
training. By alleviating the bottleneck issue on the parameter server, the overall system
performance has significantly improved.
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We implement Chorus in AWS and evaluate it with different ML algorithms and
synchronous parallel models. Chorus shows significant performance improvement and
a favorable effect in budget saving.

In summary, the main contributions we make in this research are the followings:

• We propose a novel synchronous parallel model specialized for ML jobs under
serverless architecture. It accelerates model convergence without adding budget.

• We propose a memory buffer system for exchanging gradient data, and design a
buffer merging strategy along with corresponding priority algorithms. This approach
effectively addresses the bottleneck issue on parameter server while minimizing its
impact on training effectiveness.

• We implement our framework and evaluate it with different ML algorithms and syn-
chronous parallelmodels, proving our framework has a better computing performance
and budget-saving capacity.

2 Background and Motivation

In this section, we give a brief introduction of the background knowledge of our work
and explain the motivations of the innovations in Chorus.

Most ML training tasks can be abstracted to an optimization problem, that is solving
the extreme value of a target function. Gradient descent is one of the most popular
methods, it iteratively adjusts the parameter set, moving in the direction of the steepest
gradient until it reaches or gets close enough to an extreme point. The gradient descent
algorithm is easy to implement in distributed environment, a typical implementation
is the parameter server architecture with data parallel model. In this architecture, the
training set is split into shards, and workers compute the gradient of every shard and
send the result to one or several central nodes called parameter server. The parameter
server receives all gradients and updates the model. Therefore, the parameter server
nodes bear both computing and network traffic pressure, they are very prone to be the
bottleneck of the system. Alleviating this bottleneck issue is the first motivation of our
work.

To ensure model convergence and improve efficiency, each worker must be coordi-
nated properly. If the algorithm is implemented with complete equivalence, the model
can only be updated after all workers have completed one iteration, this is the Bulk Syn-
chronous Parallel (BSP) model. Figure 1(a) shows the process of BSP model. In BSP
model, all workers run synchronously, the parameter server updates model only after it
received the gradients from every worker, the period is called one epoch. BSP model
has the best and most rigorous convergence effect, but also has obvious resource waste.
To improve the performance of the training system, more parallel models are proposed.

The Asynchronous Synchronous Parallel (ASP) model removes all the waiting pro-
cedures in the training process and gives up the guarantee of model convergence. The
parameter server updates the model instantly after they receive one gradient from any
worker, and the worker starts its next iteration immediately after it gets a new parameter
set from parameter server. There is no epoch boundary in ASPmodel. Figure 1(b) shows
the synchronous process of workers in ASP model.

The ASP model improves the system resource utilization ratio significantly, but it
also affects the convergence of the algorithm. Sometimes it even makes the ML model
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unable to converge. The Stale Synchronous Parallel (SSP) model [8] is a compromise
between BSP and ASPmodel. The SSPmode introduces the concept of staleness, which
represents the iteration counts distance between the fastest and the slowest worker. The
SSPmode allows users to set a staleness threshold, ensuring that the staleness during the
training process is always kept below the threshold. In other words, SSP model blocks
the fast workers which reach the threshold and waits for the stragglers. Figure 2 shows
the synchronous process of workers in SSP model.

ledomPSA)b(ledomPSB)a(

Fig. 1. Bulk Synchronous Parallel (BSP) model.

Fig. 2. Stale Synchronous Parallel (SSP) model.

It can be deduced thatwhen the staleness threshold is set to 0, the SSPmodel degrades
to BSP model; and when the it tends toward infinity, the SSP model tends toward ASP
model. The staleness level affects model convergence significantly, especially under the
circumstancewhen the training is hard to converge. To illustrate the influence of staleness
in the training process, we implement a testing parameter server architecture with BSP,
ASP, and SSP model. We use the logistic regression algorithm and choose a relatively
high learning rate to make the convergence harder, then perform training with different
staleness thresholds. The testing results are shown in Fig. 3.

In the graph, BSP converges the fastest while ASP converges the slowest, and among
SSPmodes, the lower of staleness threshold, the faster themodel converges over iteration
(SSP-1 almost overlaps with BSP). However, lower threshold may increase the training
time because it can lead to more blocking. Therefore, we need to find a balance between
reducing blocking and accelerating convergence to improve training speed and save
budget. This is the second motivation of our work.
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Fig. 3. Comparisons of SSP model with different staleness threshold, where “SSP-n” indicates
SSP model with staleness threshold n, the x-axis is the sum of iteration numbers of each shard.

3 Lambda Synchronous Parallel (LSP) Model

The SSP model accelerates model convergence compared to ASP, but still remains some
blocking time. We make further improvements to SSP model, which is the Lambda
Synchronous Parallel (LSP) model. The LSP model is based on the SSP model and
inherits its staleness rules. Compared to SSP, during task execution, LSP dynamically
replaces the running instances of functions, thus adjusting the resource allocation of
functions. The purpose of instance replacing is to skew resource allocation towards
lagging workers. We will illustrate the mechanism of LSP through an example shown
in Fig. 4.

Fig. 4. Lambda Synchronous Parallel (LSP) model.

In this example, the staleness threshold is set to 3. Worker 3 is the most advanced in
progress in the graph, with a 3-iteration distance compared to themost laggingWorker 1,
reaching the staleness threshold.As a result,Worker3will be blocked towait forWorker1,
triggering a function instance replacement action, which includes two simultaneous
actions:

1. Close the function instance of Worker3, start a new instance with fewer allocated
resources, read training data shard, and wait for the blocking to end and then continue
with Worker3’s iteration task.

2. Start a new instance with more allocated resources than Worker1, read training data
shard of Worker1, wait for Worker1 to finish the current iteration. When it finishes,
close the instance ofWorker1, and continueWorker1’s iterationwith the new instance.
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In Fig. 4, the bigger “ ”s indicate instances with more resources, and the smaller
ones indicate instances with less resources. Theoretically, instances with more resources
shall executes faster. Therefore, in the subsequent iterations,Worker3will gradually slow
down its unnecessary running speed and saving costs. These saved costs will be allocated
to Worker1, allowing it to catch up, thus reducing the iteration progress difference
between functions, and reducing blocking time in training process. LSP only performs
instance replacement on blocked functions, and each time it replaces the fastest and
slowest function’s instances simultaneously.

Instance replacement actions come at a cost. Although serverless functions are
lightweight, starting a new function and loading training data still costly. LSP only
replaces instances for the fastest (blocked) and slowest (lagging) functions, and the
instance replacement actions always start when blocking occurs, utilizing the blocking
time for replacement and preparing new instances in advance for lagging functions, min-
imizing the impact on the performance of whole system. From the actual execution flow
of tasks, LSP is essentially the same as SSP, it only changes the time taken for each step,
so it does not affect the correctness of computations and provides the same convergence
guarantee as SSP.

The LSP mode can be formalized. We first define the shard version as an integer v.
For the i th shard, its version vi represents the iteration times of it. Then, we can define
the model or gradient version as a vector:

version = (v1, v2, . . . , vn) (1)

where n is the number of shards, and vi represents how many updates from the i th
shard are included in this model or gradient. Obviously, for a training job contains m
iterations, its model version will start from (0, 0, . . . 0) and keep increasing until reach
(m,m, . . .m). When all shard versions reach m, the job completes.

The purpose of instance replacement is to narrow the iteration gap between the
fastest worker and the slowest worker, so we set the resources allocated to a new worker
proportional to the distance between its iteration count and the average version of all
shards. Formally, for a worker in the j th iteration, assuming the model version at this
time is (v1, v2, . . . , vn), the resource quantity allocated to the new worker in the next
iteration can be expressed as:

R = r + α

(
1

n

n∑
i=1

vj − j

)
(2)

where R indicates the resource quantity of the next instance, r is the base quantity of
resources and should be constant, proportional constant α is an empirical value. In real
practice, resource R can be the memory size or CPU cores of serverless function. To
simplify the function deployment, the resource quantity should be discretized, and can
be expressed as R′ = �cR/c�. Where c represents the degree of discreteness.

During the scheduling process, instance replacements always occur in pairs. Equa-
tion (2) ensures that the reduction in resource quantity for the fastest instance is equal
to the increase in resource quantity for the slowest instance, thereby the fee rate of the
whole system is kept stable.
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4 Buffering in Parameter Server Model

The bottleneck issue in the parameter server model hinders its application in serverless
computing. This issue manifests in two aspects: network bottlenecks and performance
bottlenecks with the parameter server. We propose a buffer system to solve these two
aspects at the same time.

We utilize a in memory database service to store the ML model, and build a multi-
slot buffer space in it for the parameter server and workers to exchange gradients. The
number of slots is user-specified and fixed. If one slot is occupied, the worker can
choose another empty one. The throughput of memory database is much bigger than
few parameter nodes, it can accelerate the speed at which workers write gradient data,
but it cannot accelerate the speed at which the parameter server consumes gradient data.
Under the circumstance of massive concurrency, the buffer slot spaces will eventually be
exhausted, and the queuing of workers on the parameter server will still occur constantly.
To solve this issue, we design a buffer (gradient)merging strategy.We allow the gradients
in buffer space to be merged before being fetched by the parameter server. For a worker
which finished one iteration, if all buffer slots are occupied, the worker chooses a buffer
slot via a priority algorithm and merges its gradient data into the buffer, then read the
model parameter and proceed to its next iteration. However, buffer merging will interfere
with the order of model updates. Without proper control, the buffer merging strategy
could exacerbate the straggler problem seriously, because some gradient data may be
“forgotten” in the buffer for a long time, and encumber the convergence of the model.
To reduce this impact, we also design a buffer reading priority strategy for the parameter
server to choose the proper buffer to read and avoid training imbalance. We will detail
these two strategies below.

Buffer Reading Priority. The principle of this strategy is to always choose the “most
urgently needed” data to update themodel, and the “most urgently” is judged by the shard
which have the smallest version. This rule above can be described formally. Assuming
the model version is V = (v1, v2, . . .), and a gradient has version U = (u1, u2, . . .).
First, select all the non-zero components in U , then find the corresponding components
in model version V of each shard, form a new set V ′:

V ′ = {vx|vx ∈ V , ux �= 0} (3)

Calculate the minimum shard version in the set, record as minV = min
(
V ′).

Then, for a group of gradients U1,U2,U3 . . ., calculate each minV of them, record
as minV1,minV2,minV3, . . ., the index of selected buffer can be expressed as:

argmin
i

(minV1,minV2,minV3, . . .) (4)

This strategy ensures that the most lagging gradient data in the buffer space will be
read first, thus avoids the increasement of staleness gap.

BufferMerging Priority. First, we formally defined the version of the merged gradient
as the sum of versions of two original gradients. For instance, if we merge a gradient of
version (0, 0, 1, 0)with another gradient of version (1, 0, 1, 0), we get a new gradient of
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version (1, 0, 2, 0). When a worker just finishes one iteration and found no vacant buffer
slot left, it calculates the minV value for its new gradient and all other gradients in the
buffer slots. The gradient in the buffer whoseminV has the smallest value distance to the
new gradient will be chosen for merging. Formally, assuming gradients U1,U2,U3 . . .

are stored in buffer, and a new gradient U0 is finding a merging target. Then the index
of the chosen gradient can be expressed as:

argmin
i

(|minVi − minV0|) (5)

where i = 1, 2, 3 . . ., and minV0 indicates the minV of U0.
This strategy will make the gradients prone to cluster in buffer slots byminV , which

is the most urgently needed data by the model. Gradients have similar minV values are
prone to gather in one slot.When the parameter server reads the slot, it will get a gradient
with relatively similar shard version, thus avoid training imbalance to some extent. The
strategy also disperses the buffer merging operations across slots, avoiding conflict or
queuing, thus unleashing the power of distributed computing as much as possible. The
buffer merging strategy reduces the frequency of model updates, relieving the pressure
on the parameter server and alleviating its computational bottleneck significantly.

5 Design of Chorus

With the LSP model and buffering system, we build Chorus, a framework for machine
learning on serverless platform. We describe the design of Chorus in this section.

5.1 Architecture Overview

Chorus is built on AWS cloud, aside from the parameter server VM and serverless
functions, Chorus utilizes two extra public services in the cloud. Figure 5 shows the
system architecture of Chorus.

The system consists of four parts:

• Parameter server on EC2, a virtual machine to maintain theMLmodel and coordinate
the serverless functions through invoking and UDP messages.

• Serverless workers on AWS Lambda, stand-alone running after invoked, communi-
cate with parameter server via UDP messages.

• Memory database on ElastiCache, stores ML model, buffer space, and job configu-
rations. The parameter server and workers exchange data via it.

• Storage service on S3, holding the training data and model result.

Before the training job starts, the training data must be split into n shards, where n is
equal to the number of serverless workers and can be specified by the user. The shards
of training data are stored in storage service. The workflow initiates from the parameter
server, and the execution of a training job goes through the following steps:

Initialization: The parameter server gathers task parameters (data path, learning rate,
thread number, an initial model, etc.), store these data in memory database. Then, it
invokes n serverless functions and waits for responses from workers.
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m

Fig. 5. Architecture overview of Chorus.

Training: When the serverless functions are started, they first read the task information
and initial model from memory database. Each function reads its assigned shard and
starts gradient computation.

Writing Gradient: After each iteration, the function saves the gradient to the buffer. It
checks if there is available slot in the buffer. If yes, it writes the gradient data directly;
if not, it uses buffer merging priority algorithm to find a suitable buffer slot and merges
the gradient data into that slot. Then, it updates the task progress information in memory
database and notifies the parameter server via UDP messages. According to the current
synchronization model, it will choose to either block or continue to the next iteration.

Updating Model: When the parameter server receives a completion message from a
serverless function via UDP, it scans all available gradients from the buffer space, reads
the gradient data from a proper slot via the buffer reading priority algorithm, clears the
buffer slot and updates the model parameters. Then it continues to read the next suitable
buffer slot until all buffer slots are cleared. Based on the synchronizationmode, it decides
when to notify the serverless worker to start the next iteration.

Coordination: The parameter server checks task progress information continuously,
and controls Lambda function blocking, resuming, or instance replacement via UDP
communication, depending on the synchronization mode. This process continues until
the training is complete, and finally the model is retrieved from ElastiCache.

Since the model is stored in memory database and the workers are independent after
invoking, the only communications between parameter server and serverless workers
are the invoking signal from parameter server and the finishing message from workers.

6 Evaluation

We evaluate Chorus in this section. Testing its performance from several aspects under
different ML algorithms and comparing it to other system. Through these experiments,
we aim to address three research questions about Chorus:
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RQ1. Comparing to other synchronizationmodes, can the LSPmode reduce the blocking
time during the training process?
RQ2. Can the LSP mode accelerates the convergence of training and save budget?
RQ3. Can the buffer system of Chorus improve performance?

6.1 Methodology

We implement Chorus onAWS. Use AWSLambda to provide serverless service, an EC2
t3a.medium instance to deploy the parameter server, S3 to store the training data, and
Redis database in ElastiCache to be the memory buffer space. AWS Lambda can only
adjust the memory size of Lambda function (the vCPU cores will be changed along with
memory size automatically). We create 10 Lambda function settings with same codes
but different memory sizes, the size ranges from 768M to 3072M uniformly. All the
services used and their performance information are listed in Table 1.

Table 1. Services used in the implementation of Chorus, and their performance parameters.

Service Performance Price

EC2 VM t3a.medium $0.0376/h

ElastiCache (Redis 7) cache.t3.small $0.034/h

S3 – –

Lambda function 1 768 MB memory $0.000000004167/ms

Lambda function 2 1024 MB memory $0.000000016667/ms

… … …

All programs are coded in Python. We implement the BSP, ASP, SSP, and LSP
models, and the logistic regression and collaborative filtering algorithm.

Logistic Regression. The training of logistic regression in Chorus is implemented with
stochastic gradient descent (SGD) algorithm with mini-batches. In the experiment we
use Criteo dataset [16] which has a 11 GB file size and contains 45.8M entries. We split
the dataset into 100 shards and upload them to S3.

Collaborative Filtering. We implement collaborative filtering algorithm based on
sparse matrix decomposition and solve the decomposition with gradient descent algo-
rithm. In the experiment we use the Netflix dataset [17] which contains 480K users’
ratings over 17K films. We compress and split the dataset into 100 shards and upload
them to S3.

6.2 Lambda Synchronous Parallel (LSP) Model

Blocking Time Analysis. To answer RQ1, we first use logistic regression training task
as an example, the task is executed in BSP, ASP, SSP, and LSP modes, with a fixed
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loss function value as the endpoint, and the staleness threshold takes 3, 5 and 8 values.
The experiment records the total execution time and cumulative blocking time during
execution. The results are shown in Fig. 6.

It can be observed that the BSP mode’s running time is long, but most of its time is
spent in blocking. However, its actual running time is the shortest because BSP mode
converges most stably, reaching the target loss function value in the fewest iterations.
ASP mode experiences no blocking, yet its execution time is the longest due to its
challenging convergence. SSP and LSP outperform BSP and ASP significantly. In all
three staleness threshold configurations, LSP notably reduces system blocking time. At
a threshold of 8, LSP even eliminates blocking. However, in this case, the training pace
of workers becomes quite chaotic, leading to longer overall training time.

Convergence Analysis. To answer RQ2, we execute the training job of logistic regres-
sion with BSP, SSP, and LSP model. The staleness threshold of SSP and LSP are all
set to 5 empirically. Figure 7 shows the results in different dimensions. Notice, in SSP
and LSP model, there is boundary between epochs. So, in Fig. 7(a) and all the graphs
below, the unit “Shard iteration” of the x-axis indicates the sum of iteration numbers of
each shard. For instance, if one shard is calculated once, then count 1, if two shards are
calculated three times each, then count 6.

Figure 7(a) shows the model converging process along with shard iterations.
Although the three synchronous parallel models perform very similarly in this case,
it still can be seen that the BSP mode undoubtedly has the best stability and converges
the smoothest, while SSP and LSP have relatively weaker stability. Figure 7(b) shows
the model convergence against time. It is observed that although the BSP model con-
verges faster alongwith shard iterations, it converges slower alongwith time, because the
blocking time between iterations is considerable. By reducing the blocking time between
iterations, SSP and LSP outperform BSP, and LSP shows an even better performance
than SSP.

We proceed similar experiment with the collaborative filtering algorithm, the results
are shown in Fig. 8. In Fig. 8(a) the BSP model still converges the most stable. In
Fig. 8(b), LSP outperforms BSP and SSP, and converges faster than the other two.

We also record the costs of these two experiments. Because AWS Lambda has a
much expensive fee rate, the cost of other services is relatively ignorable, so we only
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Fig. 7. Results of training Logistic Regression model.
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Fig. 8. Results of training Collaborative Filtering model.

list the cost of AWS Lambda here, which is shown in Table 2. In the logistic regression
task, LSP respectively saves 51% and 12% costs compared to BSP and SSP, and in the
collaborative filtering task, LSP saves 41% and 26% costs respectively.

We can summarize that LSP has a better performance both on convergence speed
and economical cost.

Table 2. Costs of AWS Lambda in experiments.

BSP SSP LSP

Logistic Regression $5.64 $3.13 $2.74

Collaborative Filtering $2.92 $2.33 $1.72
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6.3 Buffering System

To answer RQ3, we perform training of logistic regression with a fixed number of
iterations. We choose the ASP model here, because ASP can give the parameter server
the most pressure, the workers submit gradients continuously, giving no break time
to the parameter server at all, the bottleneck effect would be extremely severe in this
circumstance. We choose different groups of buffer settings, and a setting of no buffer
system, the workers transmit data with parameter server directly.

Figure 9(a) shows the convergence process during training, and Fig. 9(b) shows
the total time costs of the experiments. In Fig. 9(a), the black curve is shorter because
when there is no buffer system, the gradient data are transferred serial, but the loss
value of model can only be calculated after all shards are calculated at least once.
Therefore, before the gradients of the first batch are all received, the parameter server
cannot calculate any meaningful loss value.

We can see the buffer system accelerates the training process dramatically. Evenwith
only one buffer slot, the convergence is still faster several times than training with no
buffer system. According to the experimental result in Fig. 9(b), compared to no buffer
mode, the buffer system accelerates the training job from 4.7× (slot = 1) to 8.4× (slot
= 5).

The buffering system disperses the burden of merging gradients among Lambda
functions, resulting in greater adaptability to task scaling. As the task scale increases,
users only need to expand a few buffer slots (in ElastiCache) to accommodate it, without
adding expensive VMs. Most of the computational tasks are dispersed among Lambda
functions, which are paid by usage.

(a) (b)

Fig. 9. Training results with different buffer settings.

6.4 Comparison

To answer RQ3, we selected Berkeley’s serverless machine learning system Cirrus [10]
as target. Cirrus is a typical open-source serverless framework dedicate tomachine learn-
ing, it is also implemented on AWS Lambda, which providing a relatively fair platform
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for comparison. Cirrus also uses a parameter server model, and similarly implements
logistic regression and collaborative filtering algorithms, making it easy to compare hor-
izontally. In this experiment, Cirrus’ parameter server is deployed on the same AWS
EC2 t3a.medium instance, using 100 Lambda functions for collaboration. Chorus
uses the LSP model with staleness threshold set to 5 and 10 buffer slots. Training is con-
ducted separately for the logistic regression and collaborative filtering algorithms, and
the change in loss function is recorded. The results obtained are shown in Fig. 10. From
the experimental results, Cirrus based on the BSP mode has a smoother convergence
curve, but Chorus shows a faster convergence speed, and thus result in a lower cost.

(a) Logistic Regression (b) Collaborative Filtering
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Fig. 10. Comparisons between the training results of Chorus and Cirrus

7 Conclusion

This work introduces Chorus, a distributed machine learning framework on serverless
platform. We propose the novel Lambda Synchronous Parallel (LSP) model in Chorus.
LSP is an upgrade of SSP, it adjusts resource allocation of functions dynamically during
training process, and skew the resource towards lagging workers, thus reduce blocking
time naturally, and making the model convergence faster and more economically. We
design a buffer system in Chorus, to deal with the bottleneck problem on the parameter
server. We set multiple buffer slots to save temporary gradients, the parameter server
and workers exchange data via the buffer slot, thus alleviate the network bottleneck
problem. To alleviate the computational bottleneck problem of parameter server, we
design buffer merging mechanism, and propose specific buffer merging and reading
priority algorithms to avoid training imbalance. Through the buffer system, we actually
disperse computational job of parameter server among Lambda workers, thus lighten
the burden of the parameter server significantly.

Chorus is implemented on AWS platform. In the experiments and performance
inspection from several aspects, LSP shows a better convergence efficiency than BSP
and SSP model. The buffering mechanism also shows impressive performance improve-
ments, accelerating the training job from 4.7x to 8.4x. Chorus also outperforms Cirrus
in equivalent experiments.
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Abstract. Large Language Models (LLMs) have experienced significant
advancements across various contexts. However, their impact on verti-
cal fields remains understudied and unsatisfactory due to the heightened
requirement for domain-specific expertise in these fields. English Gram-
mar Error Correction (GEC) is urgently needed in the current academic
and educational fields, which are currently full of challenges regarding
precision, adaptability, and complex grammatical mistakes. The release
of the C4 200M Synthetic Dataset and advancements in LLaMA2’s
QLoRA fine-tuning technology present an unprecedented opportunity
to examine these issues more closely. This study aims to assess the per-
formance of the LLaMA2 in the area of GEC. In this study, we imple-
mented LLaMA2 augmented with QLoRA finetune model in Spark scal-
able cluster processing environment, and we investigated model perfor-
mance under two methods, Zero-shot and Few-shot prompting, and con-
figured the parameters for text generation, including Top-p, Top-k, and
Beam search. We built an efficient and accurate scalable system, with
BLEU from 12.33 to 14.8, ROUGE from 19.33% to 25.97% and the edit-
ing distance from 4.21 to 1.89, providing a solid foundation for future
work. The code of this paper is available at LINK.

Keywords: Large Language Model · QLoRA · Grammatical Error
Correction · Spark

1 Introduction

Natural Language Processing (NLP) has witnessed substantial advancements,
highlighted by Facebook’s unveiling of the Llama series, including the original
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Fig. 1. The framework of our method.

LLaMA [1] and the more advanced LLaMA2 [2]. These models are important in
academic and professional communities due to their superior performance across
a range of applications, such as financial news analysis [3], medical diagnostics
[4], and online sexual predatory chat detection [5] (Fig. 1).

Despite the versatility of large-scale models in various scenarios, optimizing
their effectiveness for specific applications meets with many difficulties, particu-
larly in the educational industry. Text as a pivotal medium for expressing mes-
sages and communication become more and more important, driving the need
for more sophisticated English text error correction technologies. The domain of
English Grammar Error Correction (GEC), particularly with Large Language
Models (LLMs), has not been investigated rigorously. There are also many chal-
lenges in Grammar Error Correction, especially concerning precision, adaptabil-
ity, and complex grammatical mistakes.

The introduction of the C4 200M Synthetic Dataset for Grammatical Error
Correction [6], combined with advancements in LLaMA2’s QLoRA [7] fine-tuning
technology, presents an unprecedented opportunity to examine these issues more
closely. This study is propelled by such innovations and seeks to assess the per-
formance of the LLaMA2 Large Language Model in the area of GEE.

The contributions of this research are as follows.

– This study offers a highly efficient, flexible solution for English grammatical
error corrections by utilizing the Spark distributed computing platform.

– We establish a benchmark for subsequent research in this domain. This is the
first study that employs the LLaMA2 model with parameter-efficient fine-
tuning for the correction of English text errors to the best of our knowledge.

– We conduct an in-depth case analysis of English grammar correction errors to
discern the root causes of these inaccuracies. This study offers some insightful
recommendations for future model optimizations.
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2 Related Work

2.1 Grammar Error Correction

Recent research on Grammar Error Correction (GEC) has predominantly cen-
tered on its application within specific sectors. Fan et al. introduced Grammar
GPT, an open-source large language model (LLM) designed to investigate its
capabilities for correcting grammatical errors in native Chinese texts [8]. Pantazis
et al. developed RUSTASSISTANT, a tool leveraging LLMs to propose correc-
tions for Rust compilation errors [9]. Song et al. established two methodologies
utilizing LLMs to assess GPT-4’s proficiency in explaining grammar errors [10].
Christopher et al. explored both open-source and commercial language models
for grammatical error correction in texts written by English learners [11]. Maria
et al. assessed the performance of GPT-3.5 and GPT-4 in GEC tasks for Brazil-
ian Portuguese [12]. Zhang et al. employed RobustGEC to demonstrate that
contemporary GEC systems still struggle to maintain robustness amidst con-
textual disturbances [13]. However, these investigations have been constrained
by their focus on niche domains and reliance on preceding technologies, with
their scope further limited by the small sizes of their sample sets. Traditionally,
common benchmark datasets have been utilized to evaluate GEC effectiveness.

Furthermore, the GEC research landscape in recent years has shifted towards
enhancing model accuracy through the adoption of novel fine-tuning techniques
[3,5,8,9,14–16]. Thus, investigating the latest fine-tuning technologies and lever-
aging extensive benchmark GEC datasets holds substantial importance. The
unveiling of the C4 200M Synthetic Dataset for Grammatical Error Correction
[6], coupled with the advancements in Llama2’s QLoRA fine-tuning technology
[7], offers a unique opportunity to delve deeper into these challenges. Motivated
by these developments, this study aims to employ QLoRA fine-tuning technol-
ogy to evaluate the C4 dataset, marking a significant step forward in the field
of GEC.

2.2 LLaMA2 Large Language Model

LLaMA2 [2], an open-source large language model developed by the Facebook
team, whose powerful language understanding capabilities, efficient processing
speed, and excellent generalization abilities constitute its core advantages com-
parable to ChatGPT. LLaMA2 introduces advanced positional encoding called
RoPE (Rotary Position Embedding), which provides an effective way for the
model to capture the positional relationships of words in a sequence, thereby
enhancing the model’s understanding of text structure. Additionally, the model
utilizes RMSNorm and optimized SwiGLU activation functions, significantly
improving the speed and efficiency of handling large amounts of text. The struc-
tural design of LLaMA2 reflects its efficiency and flexibility in processing. In
the input stage of the model, text is first tokenized, converting natural language
into a numerical form that the model can understand. These numerical repre-
sentations are then passed through an embedding layer to transform them into
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corresponding vectors, forming the backbone of the model, which consists of
several layers of Transformer networks responsible for outputting hidden states,
i.e., hidden state vectors, carrying deep semantic information of the text. In
summary, LLaMA2, as an advanced large language model, embodies the fore-
front of current natural language processing technology in its structural design
and principles. Through its refined structure design and multi-task adaptability,
LLaMA2 can provide efficient and accurate solutions for various language pro-
cessing tasks, making it a model worth attention in the current natural language
processing field.

3 Methodology

3.1 Data Preparation

The C4 200M Synthetic Dataset for Grammatical Error Correction was utilized in
this study. This dataset contains up to 185 million sentence pairs, each consisting
of one grammatically correct sentence and one error-added sentence, suitable for
models of Grammar error correction and language understanding. This dataset
contains a diverse range of textual content, such as news articles, blog posts, etc.
This diversified content of the C4 dataset provides a wide range of linguistic con-
texts and linguistic styles for the grammar correction model. The data preprocess-
ing was implemented in the Spark Cluster computing environment to achieve scal-
able and efficient processing. The data processing stage mainly includes deleting
all irrelevant characters other than English, replacing the comma with a special
tag, and converting all characters to lowercase. These preprocessed data will be
used as training data for subsequent model fine-tuning and training.

The quality, type, and amount of data have an important impact on the accu-
racy of fine-tuning the model [17–19]. In general, optimizing the three dimensions
of quantity, quality, and diversity can not only enhance the effectiveness of model
learning but also ensure that the model can achieve the best performance in var-
ious tasks. To build high-quality datasets for fine-tuned modeling, We utilized
Locality-Sensitive Hashing (LSH) to implement the text deduplication algorithm.
In the data cleaning and deduplication phase, the introduction of Spark greatly
enhances the processing power. By converting a custom hash function into a user-
defined function (UDF) and applying it to a Spark DataFrame, parallel hash pro-
cessing is implemented on each node of the cluster. In addition, Spark effectively
identifies and removes duplicates by grouping and aggregating methods and by
calculating Hamming distances between data items in the hash bucket.

By combining the locally sensitive hashing and Spark’s distributed comput-
ing capabilities, it not only optimizes the efficiency of the algorithm side and
improves the speed of data processing, but also ensures the high quality and
diversity of the dataset. Besides, it demonstrates the importance and feasibility of
efficient and accurate data processing in the face of large-scale high-dimensional
datasets.

To improve the diversity of fine-tuning data and optimize the model training
effect, a strategy combining the BERT model, cluster analysis, and hierarchical
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random sampling is designed. We first perform text cleaning, fill truncation, word
segmentation, labeling, and encoding. Then, using the pre-trained BERT model
provided by HuggingFace, we extract the embedding vector of the text data
through the last hidden layer of the model. After average pooling, these vectors
are formed into fixed-length vectors, which can effectively capture the complex
semantic information of the input text. Next, we use PCA and t-SNE methods to
reduce the dimension of these embedding vectors and analyze the distribution of
the vectors by visual interpretation. The observed distribution shows that these
vectors can be efficiently grouped based on clustering algorithms. Moreover,
the analysis of cluster analysis results shows that sentences in the same cluster
often have similar emotions, contexts, or the same keywords, which verifies the
effectiveness of cluster classification. Finally, based on the clustering results, we
implement a stratified random sampling strategy to evenly extract samples from
each cluster and compose the final fine-tuned data set. This approach not only
ensures a representative and diverse dataset but also provides a balanced and
informative database for model fine-tuning.

3.2 Prompts and Learning Strategies

To ensure the efficiency and effectiveness of model training, we adopt a format
that mainly consists of three key components: instructions, inputs, and outputs.
Firstly, the instruction section clearly defines the operations or task constraints
that the model needs to follow, providing the context for the model to execute
the task. The subsequent input section provides specific data information cor-
responding to the instructions, supplementing the details of the instructions to
help the model understand the specific requirements of the task. Finally, the out-
put section specifies the expected results that the model should produce under
given instructions and input conditions, i.e., correct labels or answers.

In this work, we adopted Zero-shot and Few-shot learning strategies to evalu-
ate the performance and adaptability of the model under different learning con-
ditions. The Zero-shot learning strategy aims to test the model’s ability to handle
new tasks without any previous examples or guidance, relying on the model’s
generalization ability to make predictions. For this purpose, we designed exam-
ples containing descriptive task instructions and contextual inputs that aim to
evaluate the model’s understanding and task execution ability without specific
training. An example of Zero-shot learning is as follows: “Below is an instruction
that describes a task, paired with an input that provides further context. Write a
response that appropriately completes the request.”

In contrast, the few-shot learning strategy guides the model to learn how
to handle specific tasks by providing a small number of selected examples. In
this strategy, we particularly focus on the model’s ability to identify and correct
common English grammar and spelling errors. By providing a series of sentences
containing typical errors and their correct forms, the model receives direct guid-
ance on how to recognize and correct these errors. These examples cover common
grammar errors such as subject-verb disagreement, incorrect tense usage, inap-
propriate preposition usage, as well as spelling errors. An example of Few-shot



Evaluating LLaMA2 Enhanced by QLoRA Fine-Tuning for GEC 199

learning is as follows: “Please correct any grammar, spelling, or punctuation
errors in the following English sentences.”

Incorrect Correct

He never have gone to an overseas
country

He has never gone to an overseas
country

There’s many reasons why I don’t agree
with you

There are many reasons why I don’t
agree with you

She written a book about her adventures
in Asia

She wrote a book about her adventures
in Asia

The cats tail was black and white The cat’s tail was black and white

Its important to be consistent in you’re
studies

It’s important to be consistent in your
studies

Through Zero-shot learning, we assess the model’s ability to learn
autonomously when facing completely unknown tasks, while through Few-shot
learning, we test the model’s ability to adapt and learn quickly using a small
number of examples. The combination of these two learning strategies allows
us to comprehensively understand the model’s performance at different levels
of guidance, especially in terms of accuracy and efficiency in handling English
grammar and spelling errors.

3.3 Parameter Efficient Fine-Tuning via QLoRA

In the initial evaluation of this study, LLaMA2 was used directly to identify
grammatical errors in 500 sampled sentences with only 30% accuracy. Therefore,
we developed a detailed plan to download and use the pre-trained LLaMA2
model and fine-tune the data set for the specific scenario. The implementation of
this scheme will greatly improve the performance of the system and the accuracy
of error correction, and then meet the needs of users.

QLoRA is an innovative technology that combines the idea of Low-Rank Adap-
tation (LoRA) with advanced quantitative compression techniques to improve the
efficiency and effectiveness of fine-tuning large-scale pre-trained language models
(PLMS). This approach recognizes that despite the large model’s large number
of parameters, the performance of the model depends primarily on the content of
the low-rank dimension, that is, the model has a small intrinsic dimension.

Based on the inherent low-rank characteristics of the large model, the bypass
matrix is added to simulate the parameter fine-tuning of the whole model. LoRA
achieves the purpose of lightweight fine-tuning through a simple and effective
scheme. The idea of LoRA is to add a bypass next to the original PLM to do
a dimensionality reduction and then a dimensionality enhancement operation to
simulate the intrinsic rank. During training, the parameters of PLM are fixed, and
only dimensionality reduction matrix A and dimensionality increase matrix B are
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trained. While the input and output dimensions of the model remain unchanged,
the parameters of BA and PLM are superimposed when output is performed. Ini-
tialize A with a random Gaussian distribution and initialize B with a zero matrix
to ensure that the bypass matrix is still a zero matrix at the beginning of training.

In addition, Parameter Efficient fine-tuning also utilizes NF4 quantization
compression technology to describe parameters using low-dimensional video
memory according to weight distribution laws, reducing data storage require-
ments while maintaining or even better than the original accuracy during BF16
calculations. This approach not only optimizes the storage and computational
efficiency of the model but also ensures that data quality is more important than
data volume during the fine-tuning process.

By combining the fine-tuning concept of LoRA with NF4’s quantitative com-
pression technology, QLoRA fine-tuning provides a lightweight and efficient fine-
tuning solution for large models. It allows for good fine-tuning results with fewer
training resources, making it possible for various large models to be transformed
into specialized models adapted to the needs of different domains after light
fine-tuning. This fine-tuning method not only enhances the applicability of the
model, but also greatly improves the efficiency of fine-tuning, and opens up new
possibilities for the application of large models.

4 Experiments

4.1 Text Generation Settings

We first introduce the text generation settings when fine-tuning LLaMA2. We
set the temperature to 0.1 to increase the certainty of the model output; Top-p
is set to 0.75, ensuring that the model only considers words with a cumulative
probability of at least 75%; The Top-k limit is 40, allowing the model to consider
only the most likely 40 words per step. We also use a four-beam Beam search,
which helps improve the text quality. Finally, the maximum length of the gener-
ated text is set to the context length plus five. These parameters work together
to optimize the quality and relevance of the generated text.

Overall, this set of parameter configurations is designed to optimize the
LLaMA model’s performance on syntax-correcting tasks by precisely control-
ling the generation process. By adjusting the temperature, Top-p, Top-k, and
Beam search parameters, the model generates more accurate, consistent, and
high-quality syntax corrections, improving overall task efficiency and accuracy.

4.2 Parameter Settings of Training

Python
max_length = 512
device_map = "auto"
batch_size = 128
micro_batch_size = 32
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Table 1. Model evaluation index records.

LLaMA2 LLaMA2+QLoRA
(2W)

LLaMA2+QLoRA
(10W)

LLaMA2+QLoRA
(few-shot)

BLUE 12.23 14.33 14.83 14.80

ROUGE 19.33 23.02 25.32 25.97

Editing Distance 4.21 2.31 2.00 1.89

gradient_accumulation_steps = batch_size // micro_batch_size

bnb_config = BitsAndBytesConfig
(load_in_4bit=True, # load the model into memory using
4-bit precision\\
bnb_4bit_use_double_quant=True, # use double quantition
bnb_4bit_quant_type="nf4", # use NormalFloat quantition
bnb_4bit_compute_dtype=torch.bfloat16 # use hf for computing
when we need)

The parameters for the model training are as above.\\

We tried fine-tuning different data volumes, including 20000 and 100000.

4.3 Experimental Results

In the results analysis, we use three metrics to evaluate the performance of the
models on text correction tasks, including BLEU, ROUGE, and editing distance.
Table 1 lists the results.

BLEU evaluates the similarity between the generated text and the target text
(i.e., the correct answer) using an n-gram match. In the syntax error correction
task, if the model output is more similar to the correct answer, the error correc-
tion effect is better. The LLaMA2 model scores 12.23 on this metric, providing
us with a baseline.

For the ROUGE, it measures the ability of the generated text to retain the
main meaning of the original sentence. For error correction tasks, this means
that the core information of the original sentence is preserved while the error is
corrected. The original model gets 19.33% on this metric.

We also focus on editing distance, which measures the difference between
the model’s output and the correct answer. In text correction, the lower editing
distance indicates that the model makes more accurate changes and the outputs
are closer to the correct answer.

After the introduction of QLoRA technology, there was a significant improve-
ment in all indicators. After 20,000 training iterations, the BLEU score improved
to 14.33, the ROUGE score reached 23.02%, and the editing distance dropped
to 2.31. When the training iteration increased to 100,000 times, these indicators
further improved, reflecting the continuous enhancement of the model perfor-
mance.
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Table 2. Result examples.

Original Sentence At that stage, the clinical implication
with our finds is unknow

LLaMA2 At that stage, the clinical implication
with our finds are unknow

LLaMA2+QLoRA (2W+10W+few-shot) At that stage, the clinical implication of
our finds are unknow

Original Sentence Alice said that she was going to the
park the next day

LLaMA2 Alice said that she was going to the
park the next day

LLaMA2+QLoRA (2W+10W+few-shot) Alice said that she is going to the park
the next day

Original Sentence Second Claris Reflex help?

LLaMA2 Claris Reflex Help?

LLaMA2+QLoRA (2W) Claris Reflex Help?

LLaMA2+QLoRA (10W+few-shot) Will Claris Reflex Help ?

Original Sentence And when to did the new safe harbour
provisions be started?

LLaMA2 When did the new safe harbour
provisions be started?

LLaMA2+QLoRA (2W+10W+few-shot) When did the new safe harbour
provisions start?

Finally, the few-shot learning method was used to further optimize the model.
This approach helps models to adapt to specific tasks by providing a small num-
ber of concrete examples. The results show that Few-shot learning significantly
improves the model’s performance on all three key metrics, with BLEU scoring
14.80, ROUGE scoring 25.97%, and editing distance decreasing to 1.89. These
results highlight the importance of few-shot learning in improving the adapt-
ability of models to new tasks.

Table 2 shows some examples of the results. It can be seen from the model
results that the fine-tuned model can have better grammar error correction abil-
ity than the original LLaMA model, and the model’s error correction ability is
better than that of the original LLaMA model on medium-difficulty sentences.
In addition, LLaMA models that used more samples for fine-tuning and used
few-shot showed better error correction than LLaMA models with fewer samples
and zero-shot.

4.4 Error Type Analysis

To better analyze the syntax correction ability of the model, several syntax error
types are analyzed on the llama model individually. Judging from the results of
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Table 3. Description of the developed models, divided into three categories: Singular
and Plural, Article, Past Tense and Past Participle of Irregular Verb. All the models
can correct these error correction.

Singular and Plural Errors

Original Sentence: In the garden, there is many flowers that blooms during spring

LLaMA+QLoRA (2W): In the garden, there are many flowers that bloom during
spring

LLaMA+QLoRA (10W): In the garden, there are many flowers that bloom during
spring

LLaMA+QLoRA (few-shot): In the garden, there are many flowers that bloom
during spring

Article Errors

Original Sentence: She is best student in class

LLaMA+QLoRA (2W): She is the best student in class

LLaMA+QLoRA (10W): She is the best student in class

LLaMA+QLoRA (few-shot): She is the best student in class

Past Tense and Past Participle Errors of Irregular Verb

Original Sentence: He writed a letter

LLaMA+QLoRA (2W): He wrote a letter

LLaMA+QLoRA (10W): He wrote a letter

LLaMA+QLoRA (few-shot): He wrote a letter

the model, the model excels at simple error correction problems, such as singular
and plural errors, article errors, and past tense and past participle errors of
irregular verbs. All the models can correct these error corrections. Table 3 shows
some examples.

However, for moderate-difficulty error correction, such as tense errors, passive
voice errors, and preposition errors, the error correction ability of large-sample
is better than that of small-sample and zero-shot models. Table 4 lists some
examples. One possible explanation for this is that this type of error correction
is relatively rare, and the model has the corresponding learning ability. The
corresponding abilities can be effectively stimulated by few-shot.

In addition, for more difficult error correction tasks, such as non-predicate
verb errors and conversion errors between direct and indirect speech, all the
models cannot correctly modify these errors. Table 5 lists some examples. It is
believed that models can not well understand the text and what these error
types mean, these models just correct those sentences separately and ignore the
logical relationship between sentences. In the above sentences, apart from the
given errors, there is no other error in every signal sentence. Therefore, models
may not have high-level grammar knowledge, and further learning is needed.
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Table 4. Description of the developed models into Tense errors.

Tense errors

Original Sentence: When I saw him last, he told me that he looks forward to
visit his family

Llama+Qlora (2W): When I saw him last, he told me that he looks forward to
visit his family

Llama+Qlora (10W): When I saw him last, he told me that he was looking
forward to visit his family

Llama+Qlora (few-shot): When I saw him last, he told me that he looking
forward to visit his family

Correct Answer: When I saw him last, he told me that he was looking forward
to visiting his family

4.5 Performance Evaluation of Open Source Language Tools

To further evaluate the output of the model, we tried to use further open-source
language tools of Language Tool and Grammarly to analyze the output of the
model. Language Tool is an open-source syntax and spelling checking tool that
helps users check for errors and irregular usage in text. It can support many
languages, including English, German, French, Spanish, Russian, etc. It can
identify error types including grammatical errors, spelling errors, punctuation
errors, inconsistent styles, repetitive words, etc. However it cannot identify the
deep meaning and context understanding of the text.

The analysis results of Language Tool show that the Llama model based on
Lora fine-tuning can effectively reduce errors in sentences, with the best effect
on grammatical errors, but poor identification and modification of punctuation
errors. At the same time, we noticed that Language Tool does not identify errors
in the sentence well, so we used Grammarly to make further analysis of the
output of the model.

Grammarly is a popular online grammar-checking, spelling-checking, and
text-proofreading tool. It is also able to check for spelling and grammatical
errors, as well as punctuation errors, sentence structure problems, style incon-
sistency, and so on. At the same time, its spelling check is not only based on
the dictionary but also considers the context to provide more accurate advice.
Moreover, the advanced version of Grammarly identifies more complex gram-
matical problems such as passive voice, long sentence structure, etc. Therefore,
its identification results are more accurate than those of Language Tool results.

The analysis results are shown in the following figure. We can see that the
LLaMA model based on LoRA fine-tuning can effectively reduce errors in sen-
tences, with the best effect on grammatical errors, but poor identification and
modification of punctuation errors. At the same time, we noticed that there are
still errors in the correct sentences in the data.
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Table 5. Description of the developed models into two categories: Conjunction and
Conversion between direct and indirect speech.

Conjunction Errors

Original Sentence: She wanted to go to the movie, or she wanted to stay home,
and she decided to cook dinner, but she didn’t have all the ingredients, so she
went out anyway

LLaMA+QLoRA (2W): She wanted to go to the movies, or she wanted to stay
home,
and she decided to cook dinner, but she didn’t have all the ingredients, so she
went out anyway

LLaMA+QLoRA (10W): She wanted to go to the movies, or she wanted to stay
home,
and she decided to cook dinner, but she didn’t have all the ingredients, so she
went out anyway

LLaMA+QLoRA (few-shot): She wanted to go to the movies, or she wanted to
stay home,
and she decided to cook dinner, but she didn’t have all the ingredients, so she
went out anyway

Correct Answer: She couldn’t decide whether to go to the movie or stay home,
but since she didn’t have all the ingredients to cook dinner, she went out anyway

Conversion errors between direct and indirect speech

Original Sentence: She said, ’I am tired.’ He said she is tired

LLaMA+QLoRA (2W): She said, “I am tired.” He said, “You are tired.”

LLaMA+QLoRA (10W): She said, “I am tired.” He said, “You are tired.”

LLaMA+QLoRA (few-shot): She said, “I am tired.” He said, “You are tired.”

Correct Answer: She said, ‘I am tired.’ He said she was tired

5 Conclusion

In this paper, we developed an English text error correction system using Spark
and LLaMA2 models, fine-tuned with a C4 syntax correction training set. This
model effectively corrected grammatical and spelling errors in sentences, align-
ing with our expectations. Our work highlights the potential of large models in
enhancing language learning and teaching quality. By providing accurate gram-
mar error correction and real-time feedback, our system aids learners in mastering
English grammar, thereby improving language learning efficiency. However, our
model faces limitations, including dataset quality issues and hardware constraints.
Future efforts will focus on improving dataset quality, ensuring original sentence
correctness, and enhancing hardware support to boost model performance.
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Abstract. Multi-label classification studies a problem where each
instance is associated with multiple relevant labels, which leads to the
exponential growth of output space. To address this issue of high-
dimensional label space, dimensionality reduction strategy originally
applied to feature space is also used in label space, known as label
space dimensionality reduction (LSDR). One popular strategy to imple-
ment LSDR is label embedding (LE), which encodes the original high-
dimensional label vector into a low-dimensional vector linearly or non-
linearly. In this paper, We investigate the normalized cross-covariance
operator (NOCCO), which originally is a kernel-based measure of the
dependency between features and labels, whose empirical estimator is
described as a trace operation including two inverse matrices of feature
and label kernels plus a predefined regularization constant. We specifi-
cally designed an approximate and symmetric form of this operator for
linear LE, which is maximized under orthonormal constraints, resulting
in a novel eigenvalue problem for linear LE. The solution to this eigen-
value problem produces our compression matrix, and its transpose as our
recovery matrix. Our proposed novel linear LE method based on maxi-
mizing normalized cross-covariance operator is termed as LEMCCO for
short. The experiments on four benchmark data sets with more than
100 labels demonstrate that our proposed method is statistically supe-
rior to four state-of-the-art LE methods on the basis of two performance
evaluation metrics.

Keywords: Multi-label classification · Dimensionality reduction ·
Label embedding

1 Introduction

Multi-label classification (MLC), which studies a problem of associating
instances with multiple labels simultaneously [1], has garnered substantial atten-
tion in recent years due to its wide-ranging applications. However, MLC suffers
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from some challenges [11]. Apart from traditional large instance size and high-
dimensional feature space, the size of label sets grows exponentially with the
number of class labels [10], which results in a high computational burden and
even an unsatisfactory classification performance.

To deal with this situation, label space dimensionality reduction (LSDR) is
investigated, in which label embedding (LE) is a kind of representative tech-
niques. The LE transforms the original label space into an lower-dimensional
embedded space linearly or nonlinearly. In the meantime, it takes full advantage
of the correlation among all labels, identifying the hidden structure of the orig-
inal space. Correspondingly, many methods have been proposed. For example,
PLST [12] essentially conducts principal component analysis on label space. It
mainly obtains the projection matrix and decoder by performing the SVD on
the label matrix efficiently. CPLST [2] introduces the feature space informa-
tion into PLST. FaIE [9] aims to implicitly encode latent space to reduce the
risk of inappropriate use of encoding functions. ML-mLV [13] constructs a trace
ratio minimization problem as a novel label embedding criterion, which not only
includes the global label recoverability and dependency, but also exploits the
local label correlations as a local recoverability factor. LEDM [8] uses HSIC [5]
to increase the correlation between the feature space and the label space, and it
can be spread to track missing labels. ML-CCM [7] simplifies conditional covari-
ance operator with linear label kernel matrix, which is then maximized under
orthonormal constraints, resulting in an eigenvector problem.

Normalized cross-covariance operator (NOCCO) [4] is a kernel-based depen-
dence measure between features and labels, whose empirical estimator is
described as a trace operation including two inverse matrices of feature and
label kernels plus a predefined regularization constant. This measure has been
applied to object matching [16], feature extraction [15], feature selection [14]
and independence test [3]. In our work, we explore the application of NOCCO
for LE. However, due to its complex form, this measure cannot be directly con-
verted into an eigenvalue problem. So we design an approximate and symmet-
ric form of NOCCO specifically. Maximizing this new form generates a novel
eigenvalue problem for linear LE under the orthonormal projection constraint.
This novel label embedding method is referred to as the Label Embedding Algo-
rithm based on Maximizing Normalized Cross-Covariance Operator (LEMCCO).
Experiments conducted on four public datasets illustrate the effectiveness of our
proposed label embedding approach, outperforming four state-of-the-art label
embedding techniques according to two metrics.

In summary, our paper makes three main contributions: 1) designing an
approximate and symmetric form of NOCCO for LE; 2) maximizing this new
form to generate a novel eigenvalue problem for linear LE; and 3) conducting
some extensive experiments to verify the effectiveness of our method.

This paper is organized as follows. In Sect. 2, we introduce some preliminaries.
Then, our method is proposed in Sect. 3, which is validated in Sect. 4. Finally,
we end up this paper with some conclusions.
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2 Preliminaries

Let a multi-label training set of size N be

{(x1,y1), ..., (xi,yi), ..., (xN ,yN )}. (1)

For the i-th instance, its feature vector is xi = [xi1, ..., xiD]T ∈ RD, and its
binary label vector is yi = [yi1, ..., yiK ]T ∈ RK . Here, the j-th entry of yi

is set as 1 if the instance is associated with the j-th label and 0 otherwise.
For convenience of formula representation, we also define the feature and label
matrices X and Y :

X = [x1, ...,xN ]T ∈ RN×D;Y = [y1, ...,yN ]T ∈ {0, 1}N×K . (2)

The traditional MLC is to learn a classifier y = f(x) : RD → {0, 1}K ,
according to the above training set (1), which then is used to predict the binary
label vectors for unseen instances. When a proper LE method is applied to MLC,
we need to find out a label encoding operator φ and its decoding operator φ−1.
Via φ, each original label binary vector y ∈ {0, 1}K is transformed into a k-
dimensional real label vector z ∈ Rk or binary one z ∈ {0, 1}k, where k < K.
Then a proper classifier (z ∈ {0, 1}k) or regressor (z ∈ Rk) z = g(x) is trained,
which is used to estimate a predicted label ẑ for a testing instance x. According
to φ−1, we recover ẑ back to an K-dimensional binary predicted label vector ŷ.

3 The Proposed Method

The empirical estimator for NOCCO is formulated as the following trace form
[4]:

NOCCO = trace(G̃xG̃y) (3)

where G̃x and G̃y are two new proxy matrices for feature and label data as
follows:

G̃x = Ḡx(Ḡx + εI)−1

G̃y = Ḡy(Ḡy + εI)−1 (4)

where Ḡx = HGxH and Ḡy = HGyH. Here, Gx and Gy are two kernel
matrices for feature and label spaces, respectively. Additionally, H = I−uuT /N
is the centering matrix, where I is the identity matrix and u is the column vector
with all one elements. Since there exists an inverse matrix with a predefined
regularization constant ε in (4), the empirical NOCCO (3) could not be directly
used to formulate an eigenvalue problem for LE task. Therefore, we adopted
certain strategies to obtain its approximate form.

Firstly, when the original inverse matrix is replaced by the Moore-Penrose
inverse matrix Ḡ+

x and the linear kernel XXT is applied to Gx [15], The Eq. (4)
can be transformed into:

G̃m
x = HXXTH(HXXTH)+. (5)
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Algorithm 1: Pseudo-code of our LEMCCO
Training Stage:
Input:

X and Y : feature and label matrices.
Process:

Centralize feature and label matrices to obtain: X̄ and Ȳ .
Calculate their Moore-Penrose inverse matrices: X̄+ and Ȳ +.
Construct the matrix S and the constrained maximization problem.
Solve the eigenvalue problem.
Build the projection matrix P with the largest k eigenvalues.
Calculate reduced label matrix: Z = ¯Y P .
Learn a regressor: z = g(x).

Output:
P : projection matrix of size K × k.
g(x): a trained linear regressor.

Testing Stage:
Input:

x: a testing instance vector.
Process:

Calculate the k-dimensional real label vector z = g(x).
Detect a binary label vector y using round operation: round(P Tz).

Output:
y: a predicted high-dimensional binary label vector.

Let X̄ = HX, therefore the above equation can be simplified to:

G̃a
x = X̄X̄T (X̄X̄T )+ = X̄X̄T (X̄+)T X̄+ = X̄X̄+. (6)

Similarly, we substitute the linear kernel Y Y T for Gy, the approximation
form of the Eq. (4) is:

G̃a
y = Ȳ Ȳ + (7)

Based on two Eqs. (6) and (7), we can derive the approximation form of
NOCCO as:

NOCCOa = trace(X̄X̄+Ȳ Ȳ +) = trace(Ȳ +X̄X̄+Ȳ ) = trace(S) (8)

where S = Ȳ +X̄X̄+Ȳ . It is important to note that this matrix S is neither
symmetric nor positive semidefinite. Therefore, this matrix S may yield complex
eigenvalues and eigenvectors, and thus may impede the sorting of eigenvalues.
In this case, we use (S + ST )/2 to replace S to define an approximate and
symmetric form of NOCCO.

NOCCOas =
1
2
trace(S + ST ). (9)
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Table 1. The basic characteristics of the data sets

Dataset Instance Features Labels Cardinality

Bibtex 7395 1836 159 2.40

Bookmarks 87856 2150 208 2.02

Corel5k 8000 499 374 3.52

Corel16k 6932 500 153 2.87

Assuming an orthogonal projection matrix P ∈ RK×K , satisfying P TP = I,
we can transform a label vector y into another new label vector z by multiplying
it with P , i.e., Y → Y P . By substituting Y P back into the equation for
S, we can obtain an expression involving P , X, and Y , which represents the
relationship between the embedded labels and features

S = (Y P )+XX
+
(Y P ) = P T [Y

+
XX

+
Y ]P = P TSP (10)

where P−1 = P T = P+. Substituting the new expression for S into the Eq. (9),
we will obtain a novel criterion describing the dependence between the feature
space and the embedded labels.

NOCCOas =
1
2
trace(P TSP + (P TSP )T ) =

1
2
trace(P T (S + ST )P ). (11)

To address the label embedding task, we formulate the following constrained
maximization problem:

max
1
2
trace(P T (S + ST )P ), s.t. P TP = I. (12)

This problem (12) could be converted into a standard eigenvalue problem via
Lagrangian multiplier technique

1
2
(S + ST )P = ΛP (13)

where the diagonal matrix Λ consists of K real eigenvalues in descending order.
The time complexity to solve (13) is O(K3). The solution P of this problem
is composed of the k largest eigenvectors corresponding to the eigenvalues. The
matrix P directly forms the compression matrix, and the transpose of P forms
the recovery matrix. Finally, we summarize our new multilabel LE algorithm in
Algorithm 1.

4 Experiments

To validate our proposed method, we conducted experiments on four benchmark
databases using two multi-label classification evaluation metrics.
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Table 2. The number of wins for each method and metric across four data sets

Metric PLST CPLST FaIE ML-mLV LEMCCO(Ours)

Precision@1 4 10 2 4 36

Precision@3 4 12 3 6 30

Precision@5 6 12 1 7 29

DCG@3 4 11 2 7 31

DCG@5 5 10 1 7 32

Total wins 23 55 9 31 158

4.1 Benchmark Data Sets and Evaluation Metrics

We choose four public-available multi-label datasets with more than 100 labels
to assess the effectiveness of our method. The characteristics of the datasets are
shown in detail in Table 1.

Two evaluation metrics for large-scale label sets [6] are adopted as our evalu-
ation indexes: Precision@n and (DisCounted Gain) DCG@n (n = 1, 2, 3). For a
testing instance x, its ground label vector is y = [y1, ..., yi, ..., yK ]T and predicted
function values ŷ = [ŷ1, ..., ŷi, ..., ŷK ]T , these two metrics are defined as:

Precision@n =
1
n

∑

i∈rankn(ŷ)

yi;DCG@n =
1
n

∑

i∈rankn(ŷ)

yi
log2(i + 1)

(14)

where rankn(ŷ) returns the top n label indexes of ŷ. Finally, these two metrics
would be averaged over all testing instances. Additionally, we will not consider
DCG@1 since DCG@1 = Precision@1.

4.2 Compared Methods and Experimental Settings

In our experiments, we validate our method and four existing methods: PLST
[12], CPLST [2], FaIE [9] and ML-mLV [13]. Here, the linear regressor is chosen
as our baseline for all compared methods. Further, we divided the instances
into a training set and a testing set for tenfold cross validation. In order to
investigate how the reduced dimensionality affects the classification performance,
we consider different reduced proportions from 10% to 100% of original label
dimensionality K with a step 10% .

4.3 Performance Evaluation and Analysis

From Fig. 1, it can be observed that our algorithm has some disadvantages only
in lower dimensions. In most other dimensions, it outperforms other algorithms.
This is mainly due to our maximization of the dependency between feature space
and reduced label space, as well as the algorithm’s capability to simultaneously
generate the compression and recovery matrices.
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Fig. 1. Performance of the proposed LEMCCO using two metrics on the four bench-
mark data sets.

To provide a more intuitive comparison with these methods, we have also
listed the number of times our method outperformed others in Table 2. It is
found out that our LEMCCO achieve 158 wins among total 276 ones, which is
greater than those of the other approaches.

5 Conclusion

In this paper, we focus on the application of NOCCO in the task of LE. We
designed an approximate form of the original normalized cross-covariance oper-
ator that satisfies the orthogonal normalization constraint. This allowed us to
construct a new linear label embedding algorithm capable of simultaneously gen-
erating dimensionality reduction and recovery matrices. Extensive experimental
results demonstrate the superiority of our proposed method over four existing
methods. In the future, we plan to validate the effectiveness of our approach on
more benchmark datasets.
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Abstract. With the rise of large language models (LLMs) and natu-
ral language processing (NLP) methods in businesses and industries, our
research evaluates two prominent LLMs: GPT-3.5 Turbo by OpenAI and
Llama 2 by Meta. We used an automated process to generate and fine-
tune question-answer pairs, enhancing accuracy. Using established met-
rics, we quantified performance and developed a comprehensive evalua-
tion metric. Our analysis highlighted the need for further improvements
to address prevalent issues such as inaccuracies and ambiguities.

1 Introduction

LLMs like GPT-3.5 [3] by OpenAI and BERT [4] by Google, which represent
advancements in machine learning (ML), utilize deep neural networks to generate
human-like language. These models are widely used in text production, transla-
tion, and question answering. Consequently, companies leverage LLMs to build
chatbots, analyze large textual datasets, and create personalized user experiences
due to their impressive language capabilities. The increasing prevalence of LLMs
necessitates a thorough examination of their strengths and weaknesses [2]. This
study addresses accuracy concerns of LLMs by evaluating and comparing the
performance of GPT-3.5 Turbo and Llama 2. We develop a comprehensive eval-
uation framework, beginning with generating and fine-tuning question-answer
pairs, and use it to assess and compare these models.

2 Literature Review

LLMs are evaluated using various metrics to measure fluency, coherence, and rel-
evance in generated text. ROUGE [6] and BLEU [8] scores are commonly used for
this purpose. Additionally, METEOR [5] and BERT score [4] are notable metrics
for assessing linguistic elements and contextual similarity, respectively. Perplex-
ity score [7] evaluates the effectiveness of LLMs based on predictive accuracy,
while cosine similarity [10] measures the similarity between vectors, frequently
used in NLP tasks. The preliminary evaluation metrics for our framework include
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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the ROUGE score, which measures the similarity between generated and refer-
ence text; the BLEU score, which evaluates the similarity of translations; and
cosine similarity, which measures the similarity between vectors. These metrics
ensure a comprehensive assessment of LLM performance.

3 Datasets and Preprocessing

Before evaluating the LLMs’ performance, two crucial tasks were completed.
First, we created a dataset of question-answer pairs for later evaluation. Second,
the LLMs were trained and fine-tuned on our custom data to enable contextu-
alized question answering.

3.1 Dataset Construction by Question-Answer Pair Generation

A dataset of 885 questions was curated, split between Cricket World Cup 2023
[13] and Israel-Hamas War data from Wikipedia [14]. The “Cricket World Cup
’23” dataset contains 280 true/false questions and 280 one-line answers. The
“Israel-Hamas War” dataset includes 160 true/false questions and 165 one-line
answers. In total, there are 440 true/false questions and 445 one-line answers.
Each question was paraphrased using the paraphraser API for testing purposes
[15]. The sample question-answer pairs generated using ChatGPT are shown in
Table 1. The data extracted from Wikipedia was processed into JSON format,
demonstrating the model’s capacity for automated information extraction and
question generation, which streamlines dataset creation.

Table 1. Sample Question and Answers generated

Questions Answers

True/False: England played against India on 29/10/23 True

When did the ongoing armed conflict between Palestinian
militant groups and Israel begin?

17 October 2023

3.2 Fine-Tuning the LLM

Llama 2 is a collection of generative text models available in pretrained and
fine-tuned versions, with parameter sizes ranging from 7B (Billion) to 70B.
This research utilizes the 70B model of Llama 2, converted for Hugging Face
Transformers. GPT-3.5 Turbo, boasting 16,385 tokens, offers advanced language
comprehension and generation capabilities. Algorithm 1 outlines the complete
procedure for answer generation.
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Algorithm 1. Answer Generation
Require: PDF raw data
Ensure: Answer
1: Split data into chunks and convert to embeddings.
2: Store embeddings in FAISS vector store.
3: for each question do
4: Convert question to embeddings and perform semantic search.
5: Pass top result to LLM generator to generate and store answer.
6: end for
7: Export answers to an Excel sheet.

3.3 Document Parsing and Text Comprehension

We transformed unstructured documents into a structured format by extracting
text from diverse sources such as plain text and PDFs using Python and PyPDF.
Text segmentation was achieved using LangChain Recursive TextSplitter, which
segments text based on characters like periods or commas. In our framework,
text comprehension involves storing knowledge within the model and retrieving
it through Document-based Question-Answering (DocsQA). To facilitate this,
text was converted into vector representations using OpenAI’s ‘text-embedding-
ada-002’ model, stored in FAISS. Relevant text passages were identified, and
answers were formulated within that context. Query and document fragments
were embedded into vectors, and similarity searches were conducted to deter-
mine the most relevant chunks. Finally, the LLM generated answers based on
conditional word probabilities [11].

4 Methodology

After completing the question-answer dataset and fine-tuning the LLM, we devel-
oped an evaluation framework similar to KMIR [1].

Fig. 1. Flowchart to process Q/A pairs

As shown in Fig. 1, we created reference questions and answers, then com-
pared machine-generated responses to these using similarity scores. The dataset



218 S. Khetarpaul et al.

was fed into the model, its responses recorded, and ROUGE [6], BLEU [8], and
cosine similarity scores applied. A weighted sum of these scores was calculated
to detect outliers, indicating incorrect answers by the LLM. Detailed steps for
score calculation are provided in Algorithm 2.

Algorithm 2. Score Calculation
Require: LLM answers list, Human answer list
Ensure: Classification (True/False)
1: for each answer do
2: Calculate BLEU, ROUGE, and cosine similarity scores.
3: Compute final score = 0.1×BLEU + 0.4×ROUGE + 0.5×Cosine similarity
4: Push final score to list.
5: end for
6: Apply z-score outlier detection and declare threshold.
7: for each score in list do
8: Classify as True or False and push to list.
9: end for

4.1 Integrated Evaluation: BLEU, ROUGE, and Cosine Similarity

In our evaluation framework, we combine the BLEU score, ROUGE score, and
cosine similarity score into a weighted sum to reflect their relative importance
and provide a comprehensive total score for the data points.

Balancing Metric Trade-offs: The proposed evaluation weights of 0.1 for
BLEU, 0.4 for ROUGE, and 0.5 for cosine similarity are reasonable for evaluating
our models. They emphasize semantic accuracy and content coverage, balancing
meaning and informativeness with syntactic correctness.

4.2 Accuracy Assessment Through Z-Score Outlier Detection

Once we have a total weighted score for each question, we employ Z-Score out-
lier detection to identify answers with very low scores, indicating inaccuracies.
This statistical method pinpoints outliers, particularly in normally distributed
datasets, through a series of steps. We calculate the mean and standard devia-
tion of the dataset, determine the Z-scores, and classify points beyond a specific
threshold as outliers. Outliers are labeled as true for correct answers and false
for incorrect ones.

5 Observations and Results

For the evaluation of our LLM with 885 test cases, metrics such as BLEU score,
cosine similarity, and ROUGE score were employed, supported by robust outlier
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detection for enhanced reliability. The research identified errors such as halluci-
nations, under-specification, and false negatives. A Python script, utilizing the
GPT 3.5 Turbo model, classified answers as correct or incorrect.

As depicted in Fig. 2, GPT 3.5 Turbo achieved a higher answer accuracy of
70.9% compared to Llama 2, which attained an accuracy of 67.9%. This indicates
that GPT 3.5 Turbo exhibits strength in providing factually correct answers,
demonstrating a difference of 3% between the two models.

Fig. 2. Comparision of perfomance of LLMs

5.1 Classification of Errors

The errors were classified into the following categories:

1. False Negative: Correct answers marked as incorrect (8.5%).
2. Hallucination: Fabricated answers with no basis (40.6%).
3. Under-specification: Answers lacking key information (50.9%).

Table 2 shows sample test cases from our dataset. The type of data used to train
LLMs affects the errors they make. For example, training on news articles might
cause more errors due to biases and inaccuracies compared to training on more
reliable sources [9].

Table 2. Sample Question and Answers generated

Questions Answers LLM Answers Correctness Reason

True/False: The
tournament is being
hosted by India

True True Correct –

Which team secured
their place as hosts?

India India Correct –

What is the digital
rights platform for
broadcasting in India

Star Sports
and DD
Sports

Star Sports and
Disney+Hotstar

Incorrect Hallucination
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5.2 Comparison of Performance of Our Framework

Our framework was comprehensively evaluated across multiple parameters. Fol-
lowing result generation, we manually verified the model’s accuracy, categorizing
each instance as correct or incorrect. For incorrect entries, we analyzed false pos-
itives and false negatives to assess performance.

Table 3. GPT 3.5-Turbo is better at providing correct answers

Parameter Model

LLaMA2 GPT 3.5 Turbo

Answer Accuracy 67.9% 70.9%

Model Precision 99.54% 95.85%

Model Recall 93.22% 97.88%

Model F1 Score 96.28% 96.86%

Model Accuracy 92.30% 93.16%

Table 3 compares our framework on Llama 2 and GPT 3.5 Turbo models,
GPT-3.5 Turbo had a slightly higher accuracy rate (70.9% vs. 67.9%). Our
framework’s performance on GPT-3.5 Turbo outperformed Llama 2 with higher
accuracy, recall and a slightly better F1 score.

6 Conclusion and Future Directions

In this paper, we evaluated the performance of two prominent LLMs: GPT 3.5
Turbo by OpenAI and Llama by Meta. We utilized these models to generate
and fine-tune Q/A pairs on datasets related to the Cricket World Cup and the
Israel-Hamas War 2023. Metrics such as BLEU score, ROUGE score, and cosine
similarity were calculated to evaluate model performance, and a combined metric
was proposed to address score inconsistencies. Despite encountering common
LLM challenges like hallucination and false negatives, GPT 3.5 Turbo achieved
an accuracy of 70.9.

In our research, we recognize areas for future improvement in evaluation,
including exploring a wider range of metrics, refining answers for accuracy, and
involving human reviewers or experts for enhanced efficiency [12]. ChatGPT 3.5
Turbo was preferred over GPT 4 due to resource constraints and easier API
accessibility, aiding smoother integration [16]. However, evaluating LLMs faces
limitations such as incomplete representation by metrics like BLEU, ROUGE,
and perplexity, as well as scalability issues due to computational resource require-
ments. Addressing these challenges is crucial for robust LLM evaluations meeting
evolving language technology demands.
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Abstract. Generating natural language descriptions from structured
tabular data is a crucial challenge with high-impact applications across
diverse domains, including business intelligence, scientific communica-
tion, and data analytics. Traditional rule-based and machine learning
approaches have faced limitations in reusability, vocabulary coverage,
and handling complex table layouts. Recent advances in LLMs pre-
trained on vast corpora offer an opportunity to overcome these limita-
tions by leveraging their strong language understanding and generation
capabilities in a flexible learning setup. In this paper, We conduct a
comprehensive evaluation of two LLMs - GPT-3.5 and LLaMa2-7B - on
table-to-text generation across three diverse public datasets: WebNLG,
NumericNLG, and ToTTo. Our experiments investigate both zero-shot
prompting techniques and finetuning using the parameter-efficient LoRA
method. Results demonstrate GPT-3.5’s impressive capabilities, outper-
forming LLaMa2 in zero-shot settings. However, finetuning LLaMa2 on
a subset of data significantly bridges this performance gap and pro-
duces generations much closer to ground truth and comparable to SOTA
approaches. Our findings highlight LLMs’ promising potential for data-
to-text while identifying key areas for future research.

Keywords: Natural Language Generation · Table-to-Text ·
Data-to-Text · LLM · Zero-Shot · GPT-3 · LLaMa · Prompt ·
Finetuning · LoRA

1 Introduction

The table-to-text task, which involves generating natural language descriptions
from structured tabular data, is critical in diverse fields. It enables automatic
report generation in business, research finding summaries in science, and data

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. Strauss et al. (Eds.): DEXA 2024, LNCS 14910, pp. 222–227, 2024.
https://doi.org/10.1007/978-3-031-68309-1_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-68309-1_19&domain=pdf
http://orcid.org/0000-0002-5529-1007
http://orcid.org/0000-0002-2875-4133
http://orcid.org/0000-0003-4425-753X
http://orcid.org/0000-0002-4094-4810
https://doi.org/10.1007/978-3-031-68309-1_19


Large Language Models for Table-to-Text Generation 223

querying and summarization in analytics. This capability enhances understand-
ing and accessibility of information across documents like spreadsheets, PDFs,
and databases. Traditional rule-based and machine learning approaches for data-
to-text generation have faced limitations in reusability, vocabulary coverage, and
adaptability to diverse table layouts. In this paper, we propose leveraging the lat-
est advances in large language models (LLMs) like GPT-3 and LLaMa to overcome
these limitations. LLMs have demonstrated remarkable few-shot learning capabil-
ities, attributed to their pre-training on vast text corpora, enabling flexible knowl-
edge transfer to new tasks and domains. We hypothesize that with appropriate
prompting and lightweight finetuning, LLMs can facilitate highly robust and gen-
eralizable table-to-text generation across diverse layouts and domains. Our main
contributions are: (i) A comprehensive evaluation of two state-of-the-art (SOTA)
LLMs - GPT-3.5 and LLaMa2-7B - on table-to-text tasks across three public
datasets of varying complexity: WebNLG, NumericNLG, and ToTTo. (ii) System-
atic exploration of both zero-shot prompting techniques and finetuning using the
efficient Low-Rank Adaptation (LoRA) method. (iii) Demonstration of GPT-3.5’s
impressive abilities, outperforming LLaMa2 in zero-shot settings, with finetuning
significantly bridging LLaMa2’s performance gap. (iv) Achievement of competi-
tive results by LoRA-tuned LLaMa2 compared to the SOTA, despite using fewer
training data. The paper is structured as follows: Sect. 2 reviews related work,
Sect. 3 describes methods and experimental setups, Sect. 4 presents results, and
Sect. 5 concludes with insights and future directions.

2 Related Work

Researchers have explored various approaches to table-to-text generation, focus-
ing on different table representations. A common approach is to preprocess
tables to extract or highlight relevant information. For example, T5base−CoNT [1]
and Plan-then-Generate [11], utilize subtables from the ToTTo dataset, employ-
ing a process called ‘ToTTification’ to extract relevant table portions based
on highlighted cells. Other approaches, such as TASD [4] and T5template [12],
use template-based table serialization. Models like ExT5 [2], PaLM540B [6], and
T5CP [7], are tuned on specific target datasets like WebNLG [8], which contain
tables with simple structures and do not require complex table preprocessing.
In our paper, we investigate LLMs’ capabilities in table-to-text tasks across
datasets of varying complexity. We analyze their ability to handle full tables
with rich contextual information, perform zero-shot learning, and adapt with
limited training data. This work extends the understanding of LLMs’ versatility
in data-to-text applications.

3 Methods and Experiment Settings

Task. Given a structured table containing categorical, numerical, or mixed data,
the goal is to generate a natural language description that accurately and coher-
ently conveys the key information in the table. The generated text should capture
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salient facts, relationships, and insights from the tabular data, omitting irrele-
vant details, by understanding the table’s structure, content, and context to
produce a fluent, informative summary.

Datasets. Three public table-to-text datasets with varying characteristics were
used: (i) WebNLG [8] has triplet tables with concise whole-table summaries. (ii)
NumericNLG [12] contains scientific numerical tables with descriptions referenc-
ing specified rows/columns and requiring logical inference. The remaining table
content remains essential for logical inference. (iii) ToTTo [10] has extensive
tables with summaries highlighting few selected cells. The datasets statistics are
available in Table 1. A small random training subsample of 800 examples was
used. Testing employed the complete WebNLG and NumericNLG test sets, and
10% (770 examples) of the ToTTo test set.

Table 1. Table-to-Text datsets.

Dataset Domain #Documents (train/val/test) Table size (#rows, #cols) #words

WebNLG [3,8] General Purpose 13,211/1,667/1,779 14.82, 3 19.77

NumericNLG [12] Scientific Tables 1,084/136/135 8.13, 5.56 128.42

ToTTo [10] General Purpose 120,761/7,700/7,700 32.87, 5.31 14.84

Metrics. To evaluate models’ text generation from tabular data, we use: (i) n-
gram overlap metrics (BLEU, ROUGE, METEOR, TER, and PARENT) for syn-
tactic assessment against reference descriptions and input tables. (ii) Entailment-
based metrics (BERTScore, BLEURT) for semantic evaluation.

Models. Two models with contrasting dimensions and characteristics were uti-
lized: Gpt-3.5-turbo-0613, a closed 175B parameter model accessed via the Ope-
nAI API1, and the open-source LLaMa2-7B model2. LLaMa2-7B’s modest size
enables single-GPU finetuning and deployment on smaller GPUs like Google
Colab’s T4, providing a cost-effective text generation resource.

Table Formats and Prompts. During experiments, we prompted tables in three
different formats: plain text, HTML, and JSON. This paper focuses on plain text
for simplicity, as format was non-critical for the datasets considered, though com-
plex/sparse tables warrant further investigation. For WebNLG triplets, headers
labeled subject, relationship, and object were used. For NumericNLG, the input
comprised tables and associated contexts, with prompts specifying target enti-
ties/locations. ToTTo had the largest tables, and performance may decline with
size [5]. Therefore, three input formats were explored: (i) The full table with
highlighted cells encapsulated within special tokens. (ii) A reduced version elim-
inating unnecessary rows/columns, (iii) A “ToTTified” format concatenating
highlighted cells with row/column headers (SOTA preprocessing). Prompts for
GPT-3.5 and LLaMa generations are reported in Table 2.
1 https://openai.com/.
2 https://huggingface.co/meta-llama/Llama-2-7b.

https://openai.com/
https://huggingface.co/meta-llama/Llama-2-7b
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Table 2. Table-to-Text prompts

Dataset Prompt

Web-
NLG

You are given a table in one of the following formats: html, plain text, or json.\nYour job is
to use the table content to produce a short paragraph.\nThe paragraph must have the
following properties:\n- it must be a few sentences long, if you believe that a single
sentence is enough, you can use a single sentence\n- all the information in the table must
be included in the paragraph\n- it must not include information that is not available in the
table\n- it must not mention that the paragraph comes from a table
\n\nTABLE:\n{table}\n\nPARAGRAPH:\n

Numeric-
NLG

You are given a table in one of the following formats: html, plain text, or json.\nThe table
is accompanied by a context and a target list. The targets are to be found in the row
indexes.\nThe context can be in the form of table caption, title, or some other text.\nYour
job is to use the table and the context to produce a paragraph.\nThe paragraph must have
the following characteristics:\n- it must be structured in a way that allows the reader to
understand it without seeing the table\n- it can’t contain lists\n- it can only mention the
entities in the target list\n\nTABLE:\n{plain table}\n\nTARGET
LIST\n{target list}\n\nPARAGRAPH:\n

ToTTo You are given a table in one of the following formats: html, plain text, or json.\nThe table
is accompanied by a context.\nThe context is in the form of page title, table title, section
title, and a few sentences taken from the same section as the table.\nThe table has some
highlighted cells.\nYour job is to use the table and the context to produce a
paragraph.\nThe paragraph must have the following characteristics:\n- it must be
structured in a way that allows the reader to understand it without seeing the table\n- it
can’t contain lists\n- it must be only a single sentence long\n- it should focus on the
highlighted cells preceeded by <HIGHLIGHT START> and followed by
<HIGHLIGHT END>\n- it must not explicitly mention that some cells are
highlighted\n\nTABLE:\n{plain table}\n\nCONTEXT:\n page title: {page title}
\nsection title: {section title}\nsection text: {section text} \n\n\nPARAGRAPH:\n

Generation Techniques. Three main text generation approaches exist for large
language models (LLMs): zero-shot (no examples), few-shot (prompts with
few input-output examples), and fine-tuning (adjusting the pre-trained LLM’s
parameters to a specific task or domain). We employed zero-shot prompting
and fine-tuning. For fine-tuning, we utilized Parameter-Efficient Fine-Tuning
(PEFT)3 [13], which modifies only a small subset of parameters. This mitigates
the substantial computational resources typically required for fine-tuning, reduc-
ing training time and storage requirements, enabling LLM deployment on smaller
machines without compromising performance. Specifically, we applied Low-Rank
Adaptation (LoRA) [9] on a small random subset of 800 examples for training.

4 Experiments Results

This section presents the results of the automatic evaluation. Tables 3, 4, and
5 show the results on WebLG, NumericNLG, and ToTTo datasets respectively.
In zero-shot experiments (the top portion of the tables), GPT outperformed
LLaMa2 across syntactic and semantic metrics on all datasets, attributed to
GPT’s larger model size. After finetuning (the bottom portion of the tables),
the LoRA version of LLaMa2, trained on a subset, produced generations much
3 https://github.com/huggingface/peft?tab=readme-ov-file.

https://github.com/huggingface/peft?tab=readme-ov-file
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closer to ground truth and comparable to SOTA approaches. For ToTTo, table
reduction yielded better results. Despite prompts instructing models to focus
on highlighted cells, they still incorporated non-highlighted content, reducing
scores. LLaMa2, finetuned with LoRA on 10% of training data using full tables,
fell short of SOTA results. Whereas, finetuning on ToTTified tables significantly
improved scores, nearly reaching SOTA levels despite using only 10% of data.

Table 3. Results on WebNLG.

mModel BLEU R-1 R-2 R-L METEOR CHRF TER BERTScore BLEURT

GPT-3.5 34.8 69.6 44.72 54.66 40.01 66.58 74.67 94.17 70.58

LLaMa2 22.06 56.81 33.71 42.45 34.65 57.39 126.92 91.96 60.5

ExT5large [2] 35.03 – 48.17 – 36.5 – – – –

PaLM540B [6] 49.3 – – – – – – – –

T5CP [7] 55.41 – – – 42 69.8 39.1 – 63.0

LLaMa2FT 51.42 78.14 53.91 62.92 40.72 69.43 43.46 95.4 75.55

Table 4. Results on NumericNLG.

Model BLEU R-1 R-2 R-L METEOR CHRF TER PARENT BERTScore BLEURT

GPT-3.5 5.44 33.47 10.48 21.57 16.49 34.16 133.53 16.52 85.74 32.53

LLaMa2 5.23 35.26 9.74 21.59 14.82 32.59 107.32 12.49 86.32 29.22

T5template [12] 5.02 – – 30.25 20.11 – – 15.09 87.68 –

TASD [4] – – – 20.4 11.87 – – – – –

LLaMa2FT 5.71 36.47 14.18 27.08 12.48 25.91 88.11 14.44 87.55 33.62

Table 5. Results on ToTTo. The input table represents the tabular format given in
the prompt.

Model Input table BLEU R-1 R-2 R-L METEOR CHRF TER PARENT BERTScore BLEURT

GPT-3.5 Full 8.3 37.04 18.91 27.92 26.75 40.53 290.1 39.05 88.11 –0.484

LLaMa2 Full 3.6 27.12 11.24 20.68 17.53 29.75 358.13 24.11 76.93 –0.769

GPT-3.5 Reduced 16.3 54.45 30.00 41.07 33.48 – 143.697 47.38 85.58 –0.269

GPT-3.5 ToTTified 18.7 56.57 31.65 43.68 34.70 – 118.36 47.52 87.09 –0.081

LLaMa2 ToTTified 15.3 51.80 27.18 38.86 30.98 – 126.517 38.48 85.53 –0.188

LLaMa2FT Full 28.0 54.81 34.04 46.88 26.03 – 72.06 36.93 85.26 –0.218

T5base−CoNT [1] ToTTified 49.1 – – – – – – 58.9 – 0.238

Plan-then-Generate [11] ToTTified 49.2 – – – – – – 58.7 – 0.249

LLaMa2FT ToTTified 45.1 67.91 44.38 57.39 35.39 – 59.51 56.43 90.58 0.176

5 Conclusion

This work investigated leveraging LLMs for table-to-text generation across the
WebNLG, NumericNLG, and ToTTo datasets. We explored zero-shot prompting
and parameter-efficient fine-tuning approaches. In zero-shot settings, GPT-3.5
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outperformed LLaMa2, while fine-tuning LLaMa2 on a subset achieved com-
petitive SOTA results, demonstrating LLMs’ ability to generalize in a sample-
efficient manner. However, generating text from complex, large tables remains
challenging. Key future research directions include: (i) Developing improved
prompting and fine-tuning strategies to enhance factual consistency and mit-
igate hallucinations. (ii) Modeling explicit representations of table structure and
layout to better handle hierarchies and complexity. (iii) Defining and applying
controllable text generation techniques to obtain personalized summaries consid-
ering highlighted content. (iv) Integrating knowledge graphs and explainable AI
techniques to enhance reasoning capabilities and provide more interpretable and
trustworthy text generation from tabular data. By continuing advances along
these promising research avenues, we can revolutionize how structured data is
communicated through natural language.
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Abstract. This study addresses the prevalent issue of missing data in
patient-reported outcome datasets, particularly focusing on head and
neck cancer patient symptom ratings sourced from the MD Anderson
Symptom Inventory. Given that many data mining and machine learn-
ing algorithms necessitate complete datasets, the accurate imputation of
missing data as an initial step becomes crucial. In this study we propose,
for the first time, the use of collaborative filtering for imputing missing
head and neck cancer patient symptom ratings. Two configurations of
collaborative filtering, namely patient-based and symptom-based, lever-
age known ratings to infer the missing ones. Additionally, this study com-
pares the performance of collaborative filtering with alternative imputa-
tion methods such as Multiple Imputation by Chained Equations, Near-
est Neighbor Imputation, and Linear interpolation. Performance is com-
pared using Root Mean Squared Error and Mean Absolute Error metrics.
Findings demonstrate that collaborative filtering is a viable and compar-
atively superior approach for imputing missing patient symptom data.

Keywords: Head and Neck Cancer · Imputation · Collaborative
Filtering

1 Introduction

Head and neck cancer (HNC) patients often experience disease-related symptoms
and side effects during and after treatment which can affect their quality of life
and survival [16]. Researchers and physicians are therefore increasingly placing
significant attention on leveraging existing patient symptom data to personalize
care for patients and improve patient outcomes [17]. Furthermore, the exami-
nation of patient symptom data has been recognized as having the capacity to
yield fresh insights into clinical understanding to enhance diagnostic accuracy
and optimize the effective allocation of healthcare resources [15].
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The MD. Anderson Symptom Inventory (MDASI) is a validated instru-
ment to collect patient reported outcomes. The MDASI Head and Neck module
(MDASI-HN) is a 28-symptom questionnaire relevant for head and neck cancer
patients [20]. Patient responses are collected before, during, and after treatment
and similar to other longitudinal datasets that rely on patient responses or feed-
back, the MDASI-HN data often contain missing values [1,24]. This imposes
restrictions on the applicability of numerous statistical methods and machine
learning approaches in analyzing these incomplete datasets, given that these
techniques usually require complete datasets [5]. Moreover, discarding data from
patients with missing responses in order to achieve complete datasets may intro-
duce bias in parameter estimation. These patients could possess special char-
acteristics that are not representative of the broader group, thus limiting the
extent to which these analyses can be generalized [2,25]. To address this issue,
missing values are commonly imputed as an initial step.

Several techniques exist for imputation, including Multiple Imputation by
Chained Equations (MICE), K Nearest Neighbor (KNN) methods, and Linear
Interpolation (LI) [7,11,24]. Despite their effectiveness in various scenarios, these
methods may fail to capture intricate data relationships, particularly regarding
patient sensitivity which are influenced by individual tolerance levels.

Collaborative filtering, a technique successfully employed in recommendation
systems to leverage user preferences for personalized suggestions, offers a promis-
ing alternative [10]. We hence propose and evaluate the use of collaborative fil-
tering to impute missing responses in the MDASI-HN, leveraging similarities in
reported outcomes to enhance imputation accuracy.

Furthermore, we conduct experimental analyses comparing the performance
of collaborative filtering against other established methodologies. Performance
metrics used for evaluation include root mean square error and mean absolute
error.

2 Related Work

We reviewed related work in two main categories: studies on the imputation of
HNC symptom data and studies on collaborative filtering and its applications.

Imputation utilizes existing data and inherent associations to forecast specific
or range-based approximations for missing values. Over the past few years, some
studies have employed one imputation technique or the other in filling missing
values in HNC symptom data. Some of the widely used imputation techniques are
MICE, KNN and LI. MICE iteratively fills missing values in a dataset, creating
a complete set of data in each cycle, improving with each iteration until an
ultimate dataset is achieved [11,13]. Conversely, KNN leverages intrinsic patient
similarities to infer missing outcomes, while LI estimates values assuming a linear
relationship [24].

Relevant studies in this field include one focused on the impact of radiation-
induced toxicities on the quality of life for patients treated for HNC, which uti-
lized MICE to complete both physician-rated toxicities and patient-rated symp-
toms post-radiotherapy [11]. Another study on using a Long Short-Term Memory
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(LSTM) neural network to predict late-stage symptom severity demonstrated
the effectiveness of imputation techniques, including LI and MICE, for address-
ing missing data in MDASI-HN patient-reported outcomes [24]. Additionally, a
study on predicting clinical outcomes of radiotherapy in HNC patients employed
statistical, MICE, and KNN imputation methods, highlighting the superior per-
formance of MICE compared to the other techniques [7].

While these and other studies have employed various techniques to fill miss-
ing values, they primarily used these methods as pre-processing steps without
focusing on comprehensive evaluations of the imputation techniques.

Collaborative filtering (CF) methods are widely used in recommendation sys-
tems such as GroupLens, Amazon.com, Netflix, Google News, and Facebook and
excel in predicting user preferences based on collected ratings [19]. CF methods
have been proposed for data imputation as well. The auto-adaptive CF impu-
tation method, which leverages both item and user ratings to predict missing
values and validated using the MovieLens dataset, was shown to outperform
traditional imputation techniques [14]. Similarly, CF method based on rough-set
theory was applied for imputing missing values in microarray gene expression
data [23]. This CF based method outperformed KNN method over changing
rates of missing values.

These studies showed the viability of CF in imputing missing values in a
wide variety of fields. Nonetheless, to the best of our knowledge, CF has not
been applied for the imputation of MDASI-HN patient-reported outcomes data
before. Our objective is to demonstrate the effectiveness of collaborative filtering
compared to established methods in this context. We employ traditional CF
methods as a foundation, paving the way for future research on this topic using
MDASI-HN data.

3 Methodology

In this section, we begin by describing the data. Next, we introduce the collabora-
tive filtering technique and explain how we used it to fill missing patient-reported
outcomes.

3.1 MDASI-HN Data

The MDASI-HN 28 questionnaire items are categorized as follows: 13 core
MDASI items that rate general cancer symptoms, 9 HNC-specific items that
rate symptoms associated with HNC and 6 interference items that assess how
severely symptoms interfere with daily activities [20].

Each patient self-reports the 28 symptoms on a 0–10 scale with 0 indicating
“not present” and 10 indicating “as bad as you can imagine”. Patients are asked
to rate each item according to its worst severity during the previous 24 h [21].
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All HNC patients in the cohort underwent standard of care treatment (radio-
therapy with or without chemotherapy) with curative intent. The HNC patients
completed the MDASI-HN questionnaires at the following stages: baseline rat-
ings before the start of treatment, weekly evaluations spanning 7 weeks through-
out the treatment course, and additional assessments after the 6th week as well
as at the 6th, 12th, and 18th months after completion of treatment. The MDASI
questionnaires can be abstracted as a two-dimensional user-item matrix where
rows correspond to patients and columns correspond to symptoms.

We denote as Rp,i the rating for patient p and symptom i. We distinguish
between different time points, denoting as Rt

p,i, the rating provided by patient
p for symptom i at time point t. For patients with missing ratings, Rt

p,i = NA.
In addition to symptom data, the dataset also includes clinical information

of each patient such as biographic information (age, sex, change in height and
weight during treatment), disease specifics (site of tumor, new disease after pri-
mary and TNM stage) and treatment information (prior treatment at enrolment,
induction or concurrent chemotherapy, neck dissection and surgery status).

3.2 Collaborative Filtering (CF) for MDASI-HN

CF methods leverage the similarity between known preferences of the users
without requiring the use of other external information to predict unknown
preferences [10,22]. There are two variations of the CF techniques: the user-
based which leverages similarity between users and the item-based method which
exploits the similarity between items [22].

Let’s consider an example using the user-based CF approach for book recom-
mendations. The users provide book ratings to indicate their book preferences
(e.g. likes and dislikes). Given the current preferences of a user p and the pref-
erences of all other users, we are seeking to predict whether user p would like
book i. The first step is to identify users that have rated book i and select the
top k users ranked by the similarity of their preferences to the preferences of p.
The average rating from the k users is used to predict the rating user p would
give to book i. For the item-based approach, all the existing ratings for book i
are compared against the ratings for all other books user p has rated and the
top k most similar ones are used to predict the rating for book i for user p.

We adapt the user-based and item-based CF approaches to derive the CF
Patient-based and CF Symptom-based methods to predict missing symptom
ratings as explained below.

CF Patient-Based (CF-PAT) approach predicts missing ratings using known
ratings from other patients who are most similar to the given patient. The pro-
cedure to impute a missing rating for symptom i at time-point t by patient p
represented as Rt

p,i using CF-PAT imputation is as follows:
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– Find all patients Q who have known ratings for symptom i at time-point t.
– Determine the similarity, sim(p, q), between patient p and each q ∈ Q using

their common known ratings.
– Select the top k of these q, i.e. q[1], ...., q[k] patients that are most similar

to p.
– Calculate the missing rating as the average of the ratings of symptom i at

time-point t by k weighted by their similarity measure as shown in Eq. 1:

Rt
p,i =

∑
k R

t
q[k],i ∗ Sim(p, q[k])

∑
k Sim(p, q[k])

(1)

where Sim(p, q) is a patient similarity derived using a similarity metric (see
Table 1) over the common ratings between patients p and q.

CF Symptom-Based (CF-SYM) on the other hand predicts missing ratings
using known ratings from other selected symptoms or time-points rated by the
same patient. This selection is guided by the inter-symptom relationships iden-
tified across all patients. The process to impute missing rating for symptom i at
time-point t by patient p denoted as Rt

p,i is derived as follows:

– Find all symptoms J where ratings for patient p are known.
– Using a similarity metric, determine the similarity measure between symptom
i and all j ∈ J symptoms using their common known ratings among all
patients.

– Select the top k of j, i.e. j[1], ...., j[k] that are most similar to i using their
similarity measures.

– Impute the missing rating as the average ratings of the k symptoms rated by
p weighted their similarity measure to symptom i as shown in Eq. 2:

Rt
p,i =

∑
k R

∗
p,j[k] ∗ Sim(i, j[k])

∑
k Sim(i, j[k])

(2)

where Sim(i, j) is a symptom similarity derived using a similarity metric (see
Table 1) over the common ratings between symptoms i and j. The notation
R∗

p,j is used to indicate that each symptom time point is considered inde-
pendently when computing the similarity between symptoms and the most
similar time points are used for rating imputation.

In both the CF-PAT and CF-SYM configurations, the top 5 most similar
neighboring patients or symptoms are selected (i.e. k = 5). The process described
above is repeated until all missing ratings are filled.
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Table 1. CF Similarity Metrics. For Patient-based similarity, N represents the
count of shared ratings between patients p and q. The symbols R̂p and R̂q used in PCC
denote the average ratings of the shared ratings between patients p and q, respectively.
For Symptom-based similarity, N signifies the number of patients who have rated both
symptoms i and j, and R̂i and R̂j represent the averages of the common ratings between
symptoms i and j, respectively.

Patient-based Symptom-based

Euclidean
similarity

CF-PAT-EUC CF-SYM-EUC

Sim(p, q) = 1 −
√
√
√
√

N∑

i=1

(Rp,i − Rq,i)2 Sim(i, j) = 1 −
√
√
√
√

N∑

p=1

(Rp,i − Rp,j)2

Cosine
similarity

CF-PAT-COS CF-SYM-COS

Sim(p, q) =

∑N
i=1 Rp,i · Rq,i

√
∑N

i=1(Rp,i)2 · (Rq,i)2
Sim(i, j) =

∑N
p=1 Rp,i · Rp,j

√
∑N

p=1(Rp,i)2 · (Rp,j)2

Pearson
correlation
coefficient

CF-PAT-PCC CF-SYM-PCC

Sim(p, q) =

∑N
i=1(Rp,i − R̂p) · (Rq,i − R̂q)

√
∑N

i=1(Rp,i − R̂p)2 · (Rq,i − R̂q)2
Sim(i, j) =

∑N
p=1(Rp,i − R̂i) · (Rp,j − R̂j)

√
∑N

p=1(Rp,i − R̂i)2 · (Rp,j − R̂j)2

Similarity Metrics: We experimented with three commonly used similar-
ity metrics in both the CF-PAT and CF-SYM techniques [9]. These similar-
ity metrics were Euclidean similarity (EUC), the vector-based Cosine similar-
ity (COS) and the correlation-based Pearson Correlation Coefficient similarity
(PCC) [9,22].

EUC is a linear metric and has gained widespread applicability due to its
simplicity and effectiveness, particularly in the analysis of non-sparse numerical
data [9]. Meanwhile, COS approach treats sets of ratings as vectors, calculating
the cosine angle between them. This method carries the advantage of naturally
providing a normalized distance measure. PCC also measures the linear rela-
tionship between two sets of ratings, expressed as the ratio of their covariance
to the standard deviation [9,22].

Each of these similarity measures contributed uniquely to the analyses, cater-
ing to different aspects of similarity evaluation in the dataset. Table 1 provides
the different equations used to determine the various measures of similarity using
EUC, COS or PCC in the CF-PAT or CF-SYM configurations.

Note that to ensure consistency, all similarity values were normalized to range
from 0, signifying no similarity, to 1, representing the highest degree of similarity.

4 Evaluation

To assess the performance of the imputation techniques, in addition to the orig-
inal missing values, we randomly masked some known values to serve as our
ground truth data per symptom. We assumed that patients provided at least
one rating for each symptom throughout the monitoring period and hence dur-
ing the masking process, we ensured that every patient retained at least one
known rating for each symptom.
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We evaluated both the patient-based (CF-PAT) and symptom-based (CF-
SYM) versions of the collaborative filtering (CF) methods, employing the three
distinct similarity measures: Euclidean distance (EUC), Cosine similarity (COS),
and Pearson correlation coefficient (PCC). Furthermore, we explored more adap-
tations of CF-PAT, considering the different treatment stages (baseline, during
treatment, and post-treatment) independently, which we termed Per Treatment
Stage (PTS).

Also, a prerequisite for calculating the similarity was to have an arbitrary
minimum of 10 common ratings between patients or symptoms to ensure relia-
bility of the measurements.

We compared the performance of the nine CF-based methods against three
established methods: MICE, KNN imputation, and LI.

We applied the MICE technique with two different configurations: MICE with
clinical data (MICE-w-Clinical) and MICE with only ratings (MICE-Ratings).
The KNN method computed similarity between patients using Euclidean simi-
larity over the available clinical data. Additionally, the LI method filled missing
values for each patient and symptom independently, leveraging known patient
ratings for a given symptom at various time points.

4.1 Evaluation Metrics:

As is commonly used in evaluating machine learning models, we assessed impu-
tation performance using root mean squared error (RMSE) and mean absolute
error (MAE) measurements [8].

MAE is a linear error measurement, implying that all individual deviations
are assigned equal importance in determining the overall result making it a
more natural measure of average error. On the other hand, RMSE calculates the
average magnitude of squared errors and consequently assigns relatively higher
weight to larger errors making it comparatively more sensitivity [8].

RMSE and MAE over T imputation points are derived as shown in Eqs. 3
and 4 respectively:

RMSE =

√
√
√
√ 1

T

T∑

t=1

(Pt − At)2 (3)

MAE =
1
T

T∑

t=1

‖Pt − At‖ (4)

where P and A are the sets of imputed and actual/ground truth data respec-
tively. Smaller values of RMSE/MAE indicate a better performance.
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5 Experimental Results

5.1 Experimental Setup

To inject missing values in the data, random masking was performed to remove
an average of 2%-3% of the original values. All missing values were then imputed,
and using the ground truth from the masked values, the imputation methods
were evaluated using RMSE and MAE.

We repeated the experiments five times, each time randomly generating
masked versions of the dataset and reported the average evaluation metric scores
for each method.

We performed all the analyses using python 3.11 version. Python scikit learn,
numpy and pandas were used for data pre-processing and implementation of the
imputation techniques. The experiments were conducted on a MacBook Pro.

Fig. 1. RMSE of CF-SYM-PCC imputation over changing number of selected neighbors
(k).

Fig. 2. Comparison of the imputation techniques. Over the masked or ground
truth dataset, CF-SYM-PCC was the best imputation method using either (a) RMSE
or (b) MAE values.

5.2 Data Statistics

The data for the analyses encompassed a cohort of 821 patients, and Table 2
provides a breakdown of the distribution and frequency of missing symptom
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ratings among these patients, stratified based on their clinical data. To ensure
consistency and eliminate discrepancies arising from diverse measurement scales
all categorical clinical records were transformed into binary representations using
one-hot encoding, while numerical values were normalized to a range of 0 to 1
before use in the analyses [18].

Table 2. Cohort Distribution and Missing Symptom Rate Stratified By Clinical Data.

Features Categories Distribution of
Patients (%)

Rate of Missing
Ratings (%)

Biographical Data

Age <60 years 47.25 20.50

≥ 60 years 52.75 23.00

Sex Female 11.32 5.27

Male 88.68 38.10

Height change during treatment Increase 2.10 0.81

Decrease 1.06 0.59

No change 96.84 42.45

Weight change during treatment Increase 4.50 1.94

Decrease 32.28 11.95

No change 63.22 29.94

Disease Data

Site of Tumor Base of tongue 44.62 18.06

Tonsil 44.00 19.44

Others 4.37 46.41

Not specified 7.01 2.75

New disease after primary Yes 5.11 1.06

No 94.89 15.39

T-stage t0 7.08 2.56

t1 29.33 11.50

t2 37.42 15.55

t3 13.65 5.84

t4 11.88 5.63

tx 0.64 0.26

N-stage n0 12.77 6.51

n1 34.77 14.31

n2,a,b,c 49.94 40.43

n3,a 2.15 50.95

nx 0.37 0.06

M-stage 1 5.04 2.11

2 94.96 32.79

(continued)
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Table 2. (continued)

Features Categories Distribution of
Patients (%)

Rate of Missing
Ratings (%)

Treatment Data

Status at Enrollment Previously Treated 5.16 2.20

Previously Untreated 94.84 41.28

Induction Chemotherapy Yes 23.42 9.36

No 76.58 26.78

Concurrent Chemotherapy Yes 59.21 23.65

No 40.79 17.90

Neck Dissection Yes 75.27 9.46

No 24.73 24.18

Surgery at Primary Site Yes 80.22 8.28

No 19.78 25.15

The rate of missing symptoms originally in the data and average rate over
five random masks according to the treatment stages are as follows: baseline
(original: 19.66%, after masking: 21.71%), during treatment (original: 50.57%,
after masking: 53.05%) and post-treatment (original: 42.89%, after masking:
45.38%).

Fig. 3. RMSE comparison between CF-SYM-PCC and LI methods per
symptom. The best (smaller) RMSE for each symptom is represented by a thicker
bar.
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5.3 CF Techniques Comparison

Table 3 shows the RMSE and MAE results for the evaluation of the nine vari-
ations of CF techniques, sorted by MAE from best to worse. In general, the
CF-SYM techniques outperformed the CF-PAT methods. This superior perfor-
mance of CF-SYM can be attributed to several factors. Firstly, the association
between symptoms tends to be more established than that between patients as
symptoms often exhibit clearer patterns of co-occurrence [6,26]. This is further
supported by research which indicates that symptom-based models can very
effectively capture underlying disease and treatment responses [4]. Additionally,
each symptom at a given time point has more ratings from individual patients
compared to the number of ratings provided by each patient for the fewer num-
ber of symptoms. Consequently, CF-SYM leverages a larger number of ratings
for determining similarity relative to CF-PAT, resulting in a more reliable and
robust selection of high-quality neighbors or collaborators and hence better accu-
racy of the CF-SYM imputations.

In terms of the similarity metrics, PCC emerged as the optimal for CF-SYM.
As compared to the other metrics, PCC in determining similarity normalizes all
ratings by subtracting the mean of common ratings between each pair of symp-
toms. This mean normalization scales all ratings used in computing the PCC
similarity uniformly therefore making the levels of ratings comparable regard-
less of the actual numeric values. Mean scaling therefore reduces the variations
between ratings and ensures similar patterns in symptom ratings are identified
for imputation. As a result, PCC is more effective at identifying nuanced corre-
lations that might be overlooked by EUC and COS, leading to more precise and
reliable similarity assessments in CF-SYM.

Overall, the best CF method for missing value imputation was CF-SYM-
PCC under both RMSE and MAE metrics. Therefore, for the rest of this section,
we focus on the performance of CF-SYM-PCC and its comparison with other
methods.

Table 3. CF Techniques Comparison Results

CF Techniques RMSE MAE

CF-SYM-PCC 1.447 0.898

CF-SYM-EUC 1.738 0.998

CF-SYM-COS 1.739 1.023

CF-PAT-EUC-PTS 1.737 1.048

CF-PAT-EUC 1.843 1.107

CF-PAT-PCC 1.797 1.127

CF-PAT-PCC-PTS 1.813 1.171

CF-PAT-COS-PTS 1.842 1.239

CF-PAT-COS 1.842 1.239
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5.4 Effect of k on CF-SYM-PCC Imputation

Figure 1 illustrates the effect of varying the number of selected neighbors, repre-
sented by k, on the performance of the CF-SYM-PCC technique. Notably, the
optimal performance is seen for k being 4 or 5 (RMSE: 1.447), while the least
desirable performance was observed at k = 1 (RMSE: 1.767). The pattern follows
the observed behavior of KNN approaches in other works. When k values are
exceedingly small, collaboration effectiveness may be constrained. Conversely,
larger k values beyond a certain threshold can potentially distort the original
data variations and dilute the influence of genuine collaborators [3].

Therefore, for the rest of our experiments, we use k = 5 as it provided the
optimal selection of correlated symptoms for imputing a missing symptom for
this data.

Fig. 4. Box plots of the randomly selected known ratings that were masked
for evaluation per symptom. Original represents the pre-substituted ratings while
the CF-SYM-PCC and LI represent the predicted or imputed values using the respec-
tive techniques.

5.5 Comparing CF-SYM-PCC Against Other Methods

Figure 2 shows the RMSE and MAE comparison between the proposed method
(CF-SYM-PCC) and other popular imputation techniques. The results are
ordered by descending RMSE and MAE values on the vertical axis, so the best
performing method is shown at the bottom.

As can be seen, the CF-SYM-PCC technique was the best performing method
with the lowest error rates in both RMSE and MAE metrics (RMSE: 1.447,
MAE: 0.898). These results support that leveraging symptom-based collabora-
tive filtering with the Pearson correlation coefficient as the similarity measure is
an effective method for PRO data imputation.
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The simple Linear Interpolation (LI) method shows the second best com-
parative performance (RMSE: 1.734, MAE: 1.029) and it is only out-performed
by the CF-SYM-PCC method. The good performance of the LI method can be
attributed to the fact that symptom ratings are temporally correlated.

Both MICE and KNN imputation had the worst performance with the high-
est errors (MICE-w-Clinical [RMSE: 2.513, MAE:1.67]), (MICE-Ratings [RMSE:
2.505, MAE: 1.659]), and KNN Imputation (RMSE: 2.123, MAE:1.425). This
indicates that clinical features are not very effective in predicting symptom rat-
ings for these patients. There are local correlations between symptoms (e.g.
symptom clusters) that using clinical features are not exploited.

The homogeneous nature of the cohort, which received similar treatment
regimens for HNC and hence experienced similar symptoms, likely explains the
success of the CF method and the relatively limited performance of the clinical
data-based methods such as MICE-w-Clinical and KNN. The performance of the
techniques may possibly vary under diverse scenarios involving heterogeneous
cohorts.

Furthermore, given that symptom ratings often exhibit linearity, it is not sur-
prising that LI and CF-SYM-PCC, which rely heavily on a patient’s own ratings,
demonstrated relatively superior performance compared to other methodologies.

In the next section, we proceed to compare the performance of the top two
methods: LI and CF-SYM-PCC on a per symptom basis.

5.6 Comparing CF-SYM-PCC and LI Techniques Per Symptom

Figure 3 shows the RMSE for the CF-SYM-PCC and LI methods. Each column
represents a symptom with two bars. The thicker bar corresponds to the best
performing method for that symptom while the thin bar is the RMSE of the
other method included for comparison. As can be seen, CF-SYM-PCC had bet-
ter performance across all the symptoms except for memory, choke and voice.
Taste had the highest RMSE (CF-SYM-PCC: 1.909, LI: 2.209) overall, while sad-
ness had the lowest RMSE (CF-SYM-PCC: 0.960, LI: 1.072). Table 4 reports,
in addition to the overall RMSE for each symptom and both methods, the per
treatment stage RMSE for baseline, during treatment, and after treatment.

Figure 4 demonstrates the spread of both the originally masked and corre-
sponding imputed data, predicted by the CF-SYM-PCC and LI methods. The
predictions by both techniques were within the interval of symptom rating val-
ues. Also, while both techniques introduced small mean shifts, the distribution
of the imputed data is within acceptable ranges from the ground truth, as evi-
denced by the figure.
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Table 4. RMSE per symptom over treatment stages.

Symptoms Overall Baseline During Treatment Post Treatment

CF-
SYM-
PCC

LI CF-
SYM-
PCC

LI CF-
SYM-
PCC

LI CF-
SYM-
PCC

LI

Pain 1.463 1.988 1.594 2.38 1.450 2.186 1.444 1.399

Fatigue 1.542 1.861 1.966 3.235 1.446 1.691 1.604 1.767

Nausea 1.534 1.817 1.106 3.037 1.82 2.043 0.735 0.905

Sleep 1.772 2.033 1.558 2.554 1.821 1.821 1.728 2.259

Distress 1.231 1.303 1.969 1.791 1.127 1.300 1.153 1.122

SOB 1.084 1.261 1.581 2.372 0.823 0.808 1.365 1.607

Memory 1.162 1.034 1.394 0.745 1.111 0.938 1.195 1.257

Appetite 1.681 2.154 1.398 2.576 1.705 2.116 1.706 2.100

Drowsy 1.282 1.766 1.363 2.299 1.437 1.752 0.893 1.612

Drymouth 1.682 1.881 1.414 2.930 1.64 1.661 1.837 1.869

Sad 0.96 1.072 1.301 2.019 0.883 0.903 0.985 0.907

Vomit 1.382 1.425 0.707 1.087 1.549 1.672 1.184 0.938

Numb 1.182 1.208 0.845 0.787 0.862 0.859 1.559 1.618

Mucus 1.56 2.214 0.816 1.751 1.430 1.887 1.818 2.681

Swallow 1.701 1.943 2.356 2.145 1.676 1.980 1.530 1.820

Choke 1.44 1.253 1.026 0.229 1.570 1.404 1.294 1.128

Voice 1.533 1.368 1.309 1.488 1.692 1.398 1.237 1.290

Skin 1.651 2.010 1.072 0.837 1.900 2.020 1.191 2.193

Constipation 1.695 1.827 1.399 2.331 1.751 1.835 1.679 1.661

Taste 1.909 2.209 1.118 3.102 1.957 2.220 1.946 1.923

Mucositis 1.545 1.897 1.472 0.782 1.492 1.938 1.643 1.983

Teeth 1.453 1.718 1.103 1.504 1.560 1.837 1.350 1.566

General activity 1.116 1.701 1.078 1.626 1.277 1.864 0.630 1.288

Mood 1.226 1.882 1.432 2.000 1.185 1.928 1.254 1.744

Work 1.426 1.814 1.155 1.125 1.697 1.956 0.833 1.665

Relations 1.114 1.381 0.938 2.28 1.305 1.250 0.761 1.266

Walking 1.435 1.665 1.323 0.707 1.553 1.693 1.21 1.743

Enjoy 1.4 1.957 1.704 3.338 1.433 1.885 1.244 1.606

5.7 PCC Correlation Symptom Clusters

Figures 5 is a heat map showing the normalized Pearson correlation coefficients
and clustering patterns among symptoms in the CF-PCC-SYM post-imputed
dataset. The inter-symptom correlations shown in these figures are computed by
averaging the correlations across corresponding time-points for each symptom
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pair. These correlation values represent the strength of the relationship between
each pair of symptoms. The dendrograms were generated using agglomerative
hierarchical clustering and the inter symptom correlation as distance. Initially,
each symptom is placed into its own cluster and the highest correlated symp-
toms are merged first. These clusters are subsequently expanded by averaging
the distance between members and other candidate symptoms. The clustering
proceeds until all symptoms are in the same cluster.

As can be seen in the figure, there are some strong clusters. These clusters are
also evident in the pre-imputed data. These clusters are intuitive and have been
identified by prior studies [6,12,15,21,26]. For example, all interference symp-
toms {general activity, walking, work, relations, mood, and enjoy} are clustered
together along {distress and sad}. The {appetite, sleep, fatigue, drowsy} is an intu-
itive cluster, as well as {nausea, vomit} which was strengthened after imputation.
The {dry mouth and taste} cluster has also been reported previously together with
the {taste, choke, voice, mucus, swallow, pain, and mucositis} cluster [12,26].

These results show that the CF-SYM-PCC imputed MDASI-HN dataset pre-
serves certain well-established inter-symptom associations or clusters.

Fig. 5. Average Pearson Correlation Coefficient between every pair of symp-
toms (after CF imputation). The boxes around the diagonals indicate symptom
clusters identified using agglomerative hierarchical clustering. These are consistent with
prior literature in symptom cluster analysis and clinically relevant.
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6 Conclusion

Collaborative filtering is an effective approach used in recommendation systems
to leverage user preferences and recommend items that the user is likely to buy
or consume. In this work, we have demonstrated that collaborative filtering can
be applied to patient reported outcome data to provide a new and competitive
approach for imputing patient data. In our experiments using HNC MDASI-HN
data, the best performing configuration of the CF technique was the one denoted
as CF-SYM-PCC which use item-based CF and the Pearson Correlation Coeffi-
cient for symptom similarity. This CF technique had the best overall (smallest)
RMSE and MAE values among all the imputation methods considered, including
MICE, KNN imputation, and linear interpolation. Linear interpolation was the
second best performing method, and when compared on a per symptom basis,
CF-SYM-PCC outperformed Linear Interpolation for 25 out of the 28 symp-
toms. We partly attribute the excellent performance of the CF method to the
homogeneous nature of the cohort, which are all oropharyngeal cancer patients
that received similar treatment regimens and hence expected to experience sim-
ilar symptoms. Evaluating the performance of the CF techniques under diverse
scenarios involving heterogeneous cohorts is left as subject for future work.
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Abstract. The goal of a sequential recommendation system is to predict the next
itemauser is likely to purchase based on their buying history. Previous research has
considered the time intervals between purchases by analyzing patterns in the items,
but have neglected the important information at the category level. To overcome
this shortcoming, this paper presents two category-aware sequential recommen-
dationmodels which effectively integrate category information into the user’s pur-
chase sequence representation. The first model fuses item embedding with the cor-
responding category embedding, thus directly infusing category-specific details
into the representation of purchasing history, thereby enriching the insight into user
behavior. On the other hand, the dual model employs a specialized sub-network
to identify patterns within item categories, and this category-level representation
indirectly influences the item-level representation of user behavior through an
attention mechanism. The results of experiments on Amazon datasets reveal that
the inclusion of category data notably improves the hit ratio in sequential recom-
mendation. The proposedmodels outperform the baselinemodel particularly in sit-
uations involving shorter user sequences. Further, merging purchase records from
multiple product datasets across different categories during the training phases
leads to even more substantial improvements in the hit ratios.

Keywords: sequence recommendation · category-aware dual model

1 Introduction

Online shopping’s ubiquity has skyrocketed in recent years due to technological
advances, making product discovery from growing inventories a challenge. Recommen-
dation systems on e-commerce platforms have become pivotal, aiming to offer users
tailored product suggestions by analyzing past purchases and user preferences.

Sequential recommendation systems, especially those powered by deep learning
methods like CNNs [6, 9] and RNNs [1, 8], are at the forefront of this evolution. While
CNNs are good at identifying patterns within continuous purchase sequences, RNNs
stand out in handling sequential data across longer durations to provide behavior rep-
resentation of an entire sequence. Attention mechanisms in neural models can selec-
tively emphasize key items in purchase histories, boosting the accuracy of sequential
recommendations [2, 4, 5, 7]. However, a significant oversight in many of these mech-
anisms is neglecting the time intervals between sequential purchases. Recognizing this
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gap, the TiSASRec model [3] was developed, incorporating time interval data into a
transformer-based recommendation system, resulting in more nuanced predictions.

We propose that integrating item category information into the model can enhance
its understanding of purchase interval patterns between different types of products in
user behavior. For instance, products with high value or those meant for long-term use
often do not require immediate repurchasing. In such cases, the recommendation system
should suggest products from a different category that complement the user’s recent
purchase; for example, it could recommend peripherals after the user buys a laptop. On
the other hand, preference-oriented products may be repurchased in the short term based
on user preferences. Hence, the recommendation system should consider both category
information and purchase intervals between products in the user’s behavior to provide
relevant and suitable recommendations.

To address this issue, this study incorporates both item category information and time
intervals between records into a sequential recommendation system. Building upon the
TiSASRec model [3], two category-aware sequential recommendation models are pro-
posed to effectively integrate category and purchase interval information into the user’s
purchase sequence representation. The first model combines the embedding vectors of
item IDs and item categories, explicitly integrating category information into the rep-
resentation of items, thus enhancing the generation of user behavior representation. In
contrast, the dual model takes a different approach by employing two separate networks
to learn the embedding vectors of time intervals between purchases. It considers the
category and item levels in the purchase sequence individually. Subsequently, an atten-
tion mechanism is used to combine and leverage information from both levels in the
representation of user behavior.

A comparison of our models with TiSASRec using the Amazon product datasets
shows that incorporating category information effectively enhances the performance
of Top-K recommendation. Additionally, both of our proposed models demonstrate
significant improvement by merging user purchase records across various categories.

2 Method

2.1 Problem Setup

Each user’s purchase sequence is composed of a series of purchase records. Each record
details the item ID, category ID, and purchase timestamp. For ease of reference, let’s
define the sets as follows: I represents the set of item IDs, C is the set of item category
IDs, and T denotes the set of timestamps corresponding to user purchases.

A purchase record is represented by a triplet (ik , ck , tk), where ik ∈ I is the item ID,
ck ∈C is the category ID, and tk ∈ T is the purchase timestamp. This record signifies that
the user bought item ik from category ck at the time tk . The recent purchase sequence
consists of the user’s latest purchase records, sorting chronologically by their purchase
timestamps. It takes the form Su = <(i1, c1, t1), (i2, c2, t2), …, (iL, cL , tL)>. In this
sequence, every kth purchase record (where k = 1, 2, …, L) is represented as Suk =
(ik , ck , tk). Here, L denotes the total number of records in the sequence. The goal is to
predict the next potential item that user u is likely to buy for offering a recommendation.
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2.2 Category and Time Interval Aware Sequence Recommendation

Fig. 1. The model architecture of TiSASRecC .

Fig. 2. The model architecture of TiSASRecDual .

We propose two distinct model architectures: TiSASRecC and TiSASRecDual . Both
models are grounded in the foundational TiSASRec model. A self-attention mechanism
is deployed to derive the behavioral representation of the purchase sequence for each
record. The principal distinction between the models resides in their methodology for
fusing item embedding and category embedding.

For the TiSASRecC model, an immediate fusion of the embedding of item ID and
category is undertaken. Conversely, the TiSASRecDual model first establishes the behav-
ioral representation at the category level from the item categories’ purchase sequence.
After that, it employs an attention mechanism to estimate the relative importance of each
item within the purchase sequence.

Figure 1 illustrates the model architecture of TiSASRecC . This model seamlessly
integrates category information, using it as an auxiliary data source to enrich the encoding
of each item within the purchase sequence. By combining the embedding of purchase
intervals and positions within the sequence with the enhanced item embedding infused
with category embedding, the TiSASRecC model learns item-level purchase features via
its Item sequence network. A deeper dive into the details of embedding layers and the
self-attention layer in the Item Sequence Network is similar to TiSASRec model [3].
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2.3 Framework of the Dual Model

The TiSASRecDual model adopts a Dual Model framework, where the user’s purchase
sequence is learned separately for (1) the category level module and (2) the item level
module to capture user behavior features. Thesemodules are represented as the Category
sequence network and the Item sequence network, respectively. Themodel’s architecture
is illustrated in Fig. 2.

The design concept of this model is to harness user behavior patterns from both the
time intervals between categories in their purchase sequence, leading to more general-
ized representations, and the time intervals between items, resulting inmore specific per-
spectives. To achieve this, the TiSASRecDual model employs two distinct sub-networks:
Category sequence network and Item sequence network. These sub-networks work inde-
pendently to learn user behavior features at both the category and item levels. To further
consolidate user behavior representations, the model incorporates an attention mecha-
nism. The last user behavior representation Hc[L] from the category level is utilized as
the query, while the user behavior representationsHi, obtained after each item purchase,
are used as the keys and values. This process effectively calculates the fused user behav-
ior representation, creating a comprehensive and informative final representation for the
user.

3 Performance Evaluation

3.1 Dataset Preprocessing and Evaluation Matric

In our experiments, the datasets sourced from Amazon, including a rating-only prod-
uct review dataset and a product information dataset. The rating-only product review
dataset comprises users’ purchase and rating records across various product categories
on Amazon from 1998 to 2014. Each record within the dataset includes the User ID,
Item ID, Rating, and the Unix-time timestamp of the transaction. On the other hand, the
product information dataset details specifics about each product, including the Item ID,
Title, Price, Brand, and Categories.

For every user, we chronologically arrange the purchase item based on the purchase
timestamp. To determine the category information of each acquired item, we consult
the product information dataset, utilizing the Item ID to retrieve the corresponding class
hierarchy. The third-tier taxonomy of each item as its category. For example, given an
item categorized under the third-tier taxonomy “Sports & Outdoors” -> “Other Sports”
-> “Dance”, “Dance” would be identified as that item’s category.

We used five Amazon product datasets, separated into three groups based on various
types of purchased items. The first group, comprising higher-priced or longer-lifespan
items, includes cellphones and accessories (DBPhone), electronics (DBElect), and musical
instruments (DBMusic). The second group, daily necessities, includes home and kitchen
products (DBHome). The final group, preference-oriented items possible with irregular
purchasing intervals, includes clothing, shoes, and jewelry (DBCloth). We set the max-
imum length of user sequences, denoted as L, as 50. If a user’s history had fewer than
L records, we padded the sequence with empty records at the start. Table 1 displays
the statistics for each dataset, including the number of users, the number of items, the
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number of categories, the average number of purchase records per user, Sparsity, and
the average sequence length per user. During the training phase, we assigned the last
item each user purchased as the prediction target for the test data. Besides, the second-
to-last item served as the prediction target for the validation data. We constructed the
training dataset using all the other previous purchase records. Table 2 enumerates the
total number of user purchase records within the training, validation, and test datasets.

Table 1. Statistics of the product datasets

Dataset #User #Item #Category #Purchase Sparsity Avg (seg_len)

DBPhone 65,876 59,759 133 285,239 7.25 × 10–5 4.33

DBElect 247,287 143,040 164 1,557,908 4.4 × 10–5 6.3

DBMusic 8,799 13,247 72 37,924 3.25 × 10–4 4.31

DBHome 111,373 92,626 123 614,779 5.6 × 10–5 5.52

DBCloth 166,047 174,278 1,048 665,848 2.3 × 10–5 4.01

Table 2. The number of purchase records in the training, validation, and test sets.

Dataset #purchase (Train) #purchase (Validation) #purchase (Test)

DBPhone 153,489 65,875 65,875

DBElect 1,063,334 247,287 247,287

DBMusic 20,326 8,799 8,799

DBHome 392,033 111,373 111,373

DBCloth 333,754 166,047 166,047

In the following experiments, we evaluate recommendation performance using two
metrics: Hit Ratio at k (HR@k) and Normalized Discounted Cumulative Gain (NDCG).
The evaluation process involves test data that includes the correct target item and 100
randomly samplednegative samples. These items are then rankedbasedon their predicted
probabilities. In the experiments, the values of k are set as 5 and 10.

3.2 Results of Performance Evaluation

Experiment 1. In this experiment, we compare the performance of the TiSASRecC and
TiSASRecDual models against the baseline model, TiSASRec [3]. Table 3 illustrates the
average hit rates and NDCG values of the three models. The best results of the evalu-
ation metrics on each dataset are bold underlined. Except for the DBPhone dataset, the
TiSASRecC model consistently surpasses the TiSASRec model in HR@5, HR@10, and
various NDCG values across the other four product datasets. This indicates that incor-
porating product category information from purchase records can enhance the effective-
ness of the next item recommendation. Notably, while the TiSASRecDual model doesn’t
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always outperform the others, it exhibits the best performance in terms of HR@10 and
NDCG@5 on the DBMusic dataset.

Table 3. The HR and NDCG evaluation results for the three models.

Dataset TiSASRec TiSASRecC TiSASRecDual TiSASRec TiSASRecC TiSASRecDual

HR@5 HR@10

DBPhone 0.4761 0.4636 0.3640 0.5635 0.5534 0.4759

DBElect 0.5214 0.5300 0.5105 0.6295 0.6350 0.6220

DBMusic 0.2656 0.3180 0.3166 0.3619 0.4330 0.4373

DBHome 0.3663 0.3697 0.3458 0.4814 0.4853 0.4696

DBCloth 0.2968 0.3107 0.2759 0.3868 0.4033 0.3739

NDCG@5 NDCG@10

DBPhone 0.3654 0.3573 0.2661 0.2434 0.2337 0.1552

DBElect 0.4039 0.4051 0.3883 0.2671 0.2675 0.2531

DBMusic 0.1837 0.2247 0.2247 0.1035 0.1301 0.1272

DBHome 0.2573 0.2615 0.2444 0.1422 0.1449 0.1356

DBCloth 0.2147 0.2257 0.1961 0.1277 0.1352 0.1126

Table 4. The HR@10 evaluation results on the popular/unpopular category items.

Dataset Popular% Popular category items Unpopular category items

TiSASRec TiSASRecC TiSASRecDual TiSASRec TiSASRecC TiSASRecDual

DBPhone 46.93% 0.5215 0.5115 0.4128 0.5926 0.5952 0.5411

DBElect 38.19% 0.6797 0.6791 0.6695 0.6091 0.6091 0.5940

DBMusic 38.29% 0.4357 0.4960 0.4924 0.3862 0.3862 0.4011

DBHome 25.39% 0.5625 0.5593 0.5490 0.4588 0.4588 0.4426

DBCloth 45.25% 0.4148 0.4209 0.3903 0.3837 0.3837 0.3607

Experiment 2. To assess the influence of category occurrence frequency on the predic-
tion performance of the models, we label categories accounting for 10% or more of the
purchase records in a dataset as “popular categories”. We partition the test data into two
distinct groups: the first group includes items from popular categories (termed “Pop-
ular category items”), while the second group is made up of items from non-popular
categories (denoted as “Unpopular category items”). It’s important to highlight that,
even when predicting for popular categories, the models do not eliminate the chance of
predicting items from non-popular categories.

In Table 4, the proportion of popular itemswithin the test data is displayed, accompa-
nied by the HR@10 outcomes for each model across both test data groups. The findings
reveal that both the TiSASRecC and TiSASRecDual models outperform the TiSASRec



Category-Aware Sequential Recommendation 255

model when predicting items from non-popular categories. This improvement is partic-
ularly prominent in the DBMusic and DBCloth datasets. Such results demonstrate that the
two proposed models don’t merely focus on predicting items from popular categories.
Instead, they effectively leverage the patterns discerned at the category level to enhance
predictions.

Experiment 3. This experiment evaluates the potential benefits of integrating purchase
data from a secondary dataset to enhance a model’s recommendation capabilities for a
primary dataset.

Three distinct datasets were chosen for this analysis: DBElect , DBHome, and DBCloth,
each demonstrating unique characteristics of purchase interval. To distinguish the
datasets by integrating two datasets, the single datasets are labeled as sDBSingle

Elect ,DB
Single
Home ,

and DBSingle
Cloth , respectively. Furthermore, hybrid datasets combining records from one

dataset (C′) to predict items in another dataset (C) were generated, termed DBCombine
C&C′ ,

with C and C′ being any two distinct datasets from the initial three.
Table 5 details the HR@10 outcomes for the three models across the nine datasets,

emphasizing the best results in bold underline. The column “mixing %” showcases
the proportion of users present in both the merged datasets in relation to the primary
dataset. By merging dataset of various categories, Table 5 shows a consistent predic-
tion performance enhancement across all the three models. Notably, both TiSASRecC

and TiSASRecDual exhibit more substantial improvements compared toTiSASRec. The
table also highlights that, for DBSingle

Elect and DBSingle
Home datasets, TiSASRecDual realizes the

most enhancements when merging datasets. In contrast, for DBSingle
Cloth , TiSASRec

C shows
the most marked improvement drawing from results ofDBCombine

Cloth&Elect . This indicates that
by merging different datasets, both TiSASRecDual and TiSASRecC can discover patterns
across a sequence of more diverse categories and temporal intervals. Moreover, when

Table 5. The HR@10 and improving rate gained from the hybrid datasets.

Dataset mixing% TiSASRec TiSASRecC TiSASRecDual

DB
Single
Elect 0.3787 0.4060 0.3894

DBCombineElect&Cloth 25.81% 0.3992 +5.42% 0.4455 +9.73% 0.4457 +14.45%

DBCombineElect&Home 39.17% 0.4010 +5.89% 0.4260 +4.92% 0.4340 +11.44%

DB
Single
Home 0.2611 0.2616 0.2423

DBCombineHome&Cloth 47.76% 0.2890 +10.67% 0.2979 +13.87% 0.3111 +28.40%

DBCombineHome&Elect 60.96% 0.2783 +6.57% 0.3074 +17.50% 0.3154 +30.17%

DB
Single
Cloth 0.1110 0.1395 0.1309

DBCombineCloth&Elect 47.69% 0.1318 +18.73% 0.1680 20.41% 0.1512 +15.47%

DBCombineCloth&Home 48.13% 0.1114 +0.35% 0.1481 +6.14% 0.1518 +15.93%
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fusing datasets that capture long-term and short-term purchase tendencies between cat-
egories, this positions the TiSASRecDual model in a stronger vantage point to predict a
user’s next purchase item.

4 Conclusion

In this paper, we dive deep into the domain of sequential recommendation systems,
introducing two models: TiSASRecC and TiSASRecDual . These models leverage categor-
ical embeddings to enhance the representation learning of user behaviors and temporal
purchase patterns. The evaluations highlight that the TiSASRecC model, enriched with
direct categorical embeddings, is particularly adept at handling dense, long-term pur-
chase histories. On the other hand, the TiSASRecDual model, which employs a more
implicit category-driven feature extraction, stands out when dealing with sparse data or
when category purchase frequencies are relatively balanced in the dataset. Moreover, an
innovative aspect of TiSASRecDual is its capability to fuse purchase data from dual cat-
egories, enabling a more granular extraction of inter-category purchase intervals. When
benchmarked against the result that processes purchase sequences from a single-category
dataset, both of our proposed architectures exhibit significant performance gains when
applied to hybrid datasets. For future work, we suggest integrating the recommenda-
tion time as an added input. This methodology would empower the model to deliver
context-aware recommendations aligned with varying purchase times, thus addressing
the diverse preferences and needs of users.
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Abstract. Recently, it has become common knowledge that using rein-
forcement learning for a sequential recommendation, which predicts a
user’s next action, can improve recommendation performance. This is
because reinforcement learning can be used to efficiently learn behavioral
changes, which can help you better understand user behavior patterns.
Previous research has attempted to incorporate dynamic user character-
istics through Actor-Critic algorithms, but these methods are limited in
their ability to adequately learn user behavior because they learn with-
out distinguishing between past and present behavior. Therefore, in this
study, we propose a framework that incorporates the SAC algorithm, a
reinforcement learning technique, to identify correlations between users
and items in a dynamic environment where the recommender system
continuously receives the next time series of data. Our framework out-
performed from the viewpoint of the accuracy in the recommender sys-
tem compared with the existing methods, and we could confirm that
the SAC algorithm has the potential to improve the quality of the
sequential recommendations in capturing the temporal dynamics of user
interactions.

Keywords: Sequential recommendation · Reinforcement learning ·
Recommender system · Multi-task learning

1 Introduction

Recommender systems are widely used across various domains, and this research
area is evolving rapidly. These systems alleviate the burden of filtering vast
amounts of information by recommending relevant content to users, not only
on e-commerce (EC) sites but also for wayfinding and tourist attraction recom-
mendations. Understanding user behavior patterns is crucial for enhancing the
accuracy of recommender systems from various viewpoints, as analyzing these
patterns allows for the extraction of user characteristics, enabling more accurate,
personalized recommendations [11].

The widespread collection of sequential log data captures users’ behavior
sequentially and is invaluable for sequential recommender systems [8]. The char-
acteristic of the trial-and-error learning of various patterns and the rapid adapta-
tion to the new status of time series data can adapt to user preferences, providing
a recommendation mechanism based on learned behavior changes.
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In recommender systems, deep learning has gained popularity for its ability
to identify complex and non-linear relationships between users and items, pro-
viding cutting-edge performance. However, it faces challenges such as being data-
hungry, and computationally expensive [17]. Reinforcement learning addresses
these issues by allowing agents to learn from environmental rewards without
extensive training data, making it highly effective for recommender systems [1].

Reinforcement learning, especially the Actor-Critic (AC) algorithms, is gain-
ing prominence in sequential recommendations. Because AC algorithms adapt to
dynamic environments, they have been shown to learn well in complex environ-
ments such as recommender systems. They are beneficial in capturing prolonged
interactions between users and items [9]. However, applying the AC algorithms
to recommender systems can be challenging due to common issues like overes-
timating state values and the inability to update past actions. These issues can
prevent the system from adapting to changing user preferences [16]. The prob-
lem of overestimating the state values of the AC algorithm can also occur in
sequential recommendation, which is a type of recommendation [18].

To cope with these issues, we propose a framework using the Soft Actor-Critic
(SAC) algorithm [5], adjusted for the sequential recommendation framework, to
update evaluations of past actions and learn various behavioral patterns of users.
In addition, our method addresses the problem of overestimating the AC algo-
rithm by passing the output values of supervised learning models trained on
pre-collected data to the SAC algorithm to enable stable learning of the rein-
forcement learning model. In environments like EC sites, where we must consider
various factors, we utilize multi-task learning, which enables simultaneous learn-
ing of multiple tasks to enhance the performance of recommender systems. Our
framework aims to leverage the complexity of such environments to improve the
accuracy of recommendations through learning user behavior prediction tasks.

2 Related Work

To optimize the output from recommender systems, we must consider each user’s
unique behavioral patterns [15]. These systems scrutinize sequential user data to
understand individual preferences, but we must take into account many factors
to interpret these preferences accurately.

Old-fashioned methods, which categorize users by personal attributes such as
gender or age and to recommend items based on social stereotypes constructed
from these categories, cannot provide personalized recommendations [13]. There-
fore, the prior researches in this field have segmented user categorization into
more extensive categories using other factors that can be considered for person-
alization, such as the user’s personality [14].

However, previous research described above has demonstrated that such an
approach needs to be revised to personalize recommendations. Consequently,
the recommender systems that assess users’ nuanced, ongoing behavioral pat-
terns were drawn to attention. Such recommender systems offer a more precise
identification of individual preferences by analyzing user interest patterns and
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Fig. 1. Structures of the AC and SAC algorithms.

behaviors derived from their continuous behavioral data. That is to say, they
need to grasp the sequence of user actions through sequential data is essential
to interpret these continuous behavioral traits accurately. Thus, they are called
sequential recommender systems and tend to adopt reinforcement learning to
achieve this goal.

2.1 Multi-task Learning

Reinforcement learning needs help in applying the synergies of learning multi-
ple tasks together. Therefore, multi-task learning should be adopted to address
multiple prediction tasks in a recommender system [8]. Multi-task learning is
a methodology that facilitates learning common features and patterns across
tasks despite each task having different objectives. The prediction tasks in rec-
ommender systems are typically forecasting items that will be clicked (Click-
Through Rate; CTR), predicting which items will be purchased (Conversion
Rate; CVR), and estimating the conversion rate from clicks to purchases (Click-
Through Conversion Rate; CTCVR).

However, when using multi-task learning, increasing the prediction accu-
racy of one task to the detriment of another leads to task interference, a phe-
nomenon known as task overlap. Recent studies have highlighted the importance
of addressing task interference in multi-task learning applications, and advances
in gradient surgery techniques have been proposed [6].

2.2 TD3 in RMTL

Reinforcement learning enhanced Multi-Task Learning (RMTL) framework inte-
grates reinforcement learning to adjust weights within the multi-tasking system
dynamically, enhancing recommendation accuracy [10]. To solve the problem
that existing recommendation models are built based on itemized datasets and
ignore the patterns of interaction between users and items, we used the Twin
Delayed Deep Deterministic Policy Gradient (TD3) algorithm [4] to efficiently
identify user behavior features of sequential data and optimize the loss function
of multi-tasks. RMTL leverages reinforcement learning’s trial-and-error nature
and dynamic weights to address multi-tasking challenges, improving both the
multi-tasking framework and recommendation performance.

Using the TD3 algorithm, RMTL addresses task interference but struggles
with changing user preferences and diverse item attributes [2]. We have to
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develop an environment that allows for more unconstrained learning to address
the TD3 algorithm’s limitations in learning various actions within a recommen-
dation environment.

2.3 Soft Actor-Critic Algorithm

The SAC algorithm offers superior sampling efficiency and stability over other
AC algorithms by incorporating an entropy-maximizing term [5]. In an environ-
ment where a probability distribution represents the following action for a state,
the SAC algorithm selects the optimal action regardless of the current strategy.
It adopts on-policy and off-policy learning to realize high-efficiency sampling. It
also stabilizes the learning of reinforcement learning models by considering an
entropy maximization term in the objective function of the AC algorithm. By
comparing Figs. 1a and 1b, it can be observed that SAC transfers entropy from
the actor to the critic. As a result, SAC is less sensitive to hyperparameters,
ensuring stability in environments that require training with different random
seeds and less data. SAC’s learning objective is to explore new states by making
diverse choices in a broader range of environments with higher rewards. This
approach would not only mitigate the identified shortcomings of the TD3 algo-
rithm but also be supposed to enhance the overall performance and reliability
of multi-task learning frameworks in complex recommendation scenarios.

However, the AC algorithms, including SAC and TD3, tend to overestimate
values during learning, a challenge that persists despite using target networks to
stabilize predictions [3].

3 Methodology

Our methodology leverages the SAC algorithm to address the overestimation
of value predictions commonly observed in reinforcement learning-based recom-
mender systems. By integrating supervised predictions, our framework improves
the stability and accuracy of recommendations.

The key components that underpin our methodology in this study include:

– The SAC algorithm’s adaptability allows our system to respond to diverse
user needs and environmental changes effectively.

– It handles hyperparameter variations crucial for optimal performance across
different recommendation tasks and datasets.

– Our approach mitigates common overestimation issues in reinforcement learn-
ing, enhancing the learning process’s stability.

3.1 Our Framework

The integration of reinforcement learning with the recommender system begins
with the actor predicting user actions based on the current state, as shown in
Fig. 2. Our multi-task learning model, pre-trained on metrics like CTR and
CTCVR, assists in making accurate predictions.
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Fig. 2. Our framework for a multi-task recommender system using the SAC reinforce-
ment learning algorithm.

The agent chooses an action at and sends it to the environment, which sends
the values of the next state and reward to the agent. At the same time, it sends
information about the current state st, action policy at, and the next state st+1

and reward rt to the buffer memory. The actor receives the information about
the current state st and the next state st+1 from the buffer memory and sends
the respective values of the current state π(st) and the next state π(st+1) to
the critic and the target critic, respectively, based on the multi-task learning
results. The next state π(st+1) is chosen based on the predictions inferred by
the multi-task learning model, which is expected to reduce the uncertainty in
the predictions of reinforcement learning.

The critic then calculates the value based on the current state and sends a soft
update to the target critic, who calculates a value based on information about
the π(st+1) and sends the smaller value of the two target critics min(Q1, Q2)
to the critic. The critic sends this value to the actor for multi-task learning.
Repeating the above process builds learning results for various patterns in steps.

3.2 Actor

In our methodology, the actor network uses multi-task learning to generate pre-
dictions of user behavior that align with the system’s multiple goals. The actor
learns to model complex user interactions and preferences to predict actions that
maximize the expected reward over user sessions. Actors also send the results
from multi-task learning to the Critic Network and Target Critic Network, which
use them to calculate value. By leveraging the features of the multi-task that
predict the user’s next behavior, the transferred values are used to adjust the
values of the target critic to reduce overestimation.

3.3 Critic

The critic networks in our multi-task recommender system serve to evaluate the
quality of Q1 and Q2, each responsible for one aspect of the multi-task objective:
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evaluating actions concerning their CTR and CTCVR prediction performance.
These networks provide a mechanism for judging the potential long-term rewards
of actions across different user sessions and adjusting the actor’s policy toward
more profitable recommendations.

yi =ri + γ min
(
Qθ′

1
(st+1, πφ′(st+1)), Qθ′

2
(st+1, πφ′(st+1))

)

− α log πφ′(ai|st+1)
(1)

In Eq. 1, yi represents the target value for each action, incorporating the ri,
the discounted future reward from the st+1, and a penalty term according to the
policy’s entropy for action i, where i = 1, 2. The policy function πφ(s), parame-
terized by the actor random parameters φ, maps s to a distribution over possible
actions. γ is the discount factor that weights the importance of future rewards in
the calculation of the target value, and α log πφ′(ai|st+1) is the entropy adjust-
ment term for action i, penalizing low entropy (high certainty) in action selection
to encourage exploration. The entropy coefficient α is dynamically adjusted to
maintain a balance between exploration and exploitation, which is particularly
crucial in a recommender system where user preferences and item relevance may
shift over time.

L(θi) =
1
N

∑
(yi − Qθi

(st, ai))
2 (2)

In Eq. 2, L(θi) is the loss function of critic network i, measuring the discrep-
ancy between the target value yi and the predicted Q-value Qθi

(st, ai).
Through this mechanism, the critic networks guide the actor toward a policy

attuned to the dynamics of user behavior as reflected in the session data.

4 Experiments and Discussions

Our method’s objective is to leverage the features of the SAC algorithm to pro-
pose a framework for a sequential recommender system that positively influences
recommendation performance. We conducted evaluation experiments to verify
the effectiveness of this framework, focusing on the evolution of prediction per-
formance in multi-task learning of reinforcement learning and the impact of the
variation of the loss (a-loss) incurred by the actor-network undergoing multi-task
learning on the quality of recommendations. In this study, as evaluation indices,
we use Area Under the ROC Curve (AUC), which confirms the performance of
the ranking task of the recommender system, and Logloss, which is the certainty
of the prediction, to confirm the performance of the prediction task.

Incidentally, our method employs linear scalarization (LS) [7], which performs
best on validation data, to adjust for task interference in multi-task learning,
which differs from the RMTL approach. Therefore, we investigate the impact
of our method by comparing the evaluation metrics of RMTL-LS, which is a
reformulation of the existing method, RMTL, with the proposed method.
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Table 1. Results of an evaluation experiment: Bold type denotes the results of the
method with the best performance in each evaluation index.

RMTL RMTL-LS Our Method

a-loss ↓ 2.753 2.740 1.577

Table 2. As a result of the performance of the tasks used in multi-task training, which
is used as an evaluation metric for recommender systems.

RMTL RMTL-LS Our Method

CTR CVCTR CTR CVCTR CTR CVCTR

AUC ↑ 0.7263 0.7300 0.7275 0.7306 0.7318 0.7379

Logloss ↓ 0.2060 0.0486 0.2060 0.0490 0.2018 0.0481

s-Logloss ↓ 0.0842 0.0151 0.0839 0.0150 0.0840 0.0149

Using the Retailrocket recommender system dataset1 on Kaggle Web site,
which includes user behavior data from e-commerce sites, we employed an exist-
ing multi-task learning framework for recommendation systems, the Entire Space
Multi-task Model (ESMM) [12], which is specialized for CTR.

The results showed that our method not only achieved the lowest a-loss but
also enhanced prediction accuracy for individual tasks, as indicated in our results
tables (see Tables 1 and 2).

The enhancement in recommendation performance is attributed to two fac-
tors. First, the SAC algorithm’s ability to learn from a broader range of user
situations, represented by a probability distribution of next actions, allows for a
wider variety of recommendation scenarios by actively selecting diverse actions.
Second, our method of sharing the next state obtained as a result of the actor
with the target critic can mitigate overestimation, potentially reducing q-loss.

5 Conclusion

This paper proposes a framework for utilizing the SAC algorithm to enhance
recommendation accuracy in a sequential recommender system. In particular, we
tailored the SAC algorithm to develop the sequential recommender system. We
constructed a framework that shares the next state of time series data to address
the overestimation issue inherent in the AC algorithm. The primary challenge of
this research is to construct a model capable of offering novel recommendations to
users while ensuring stable learning. Our experimental evaluation indicated that
multi-task learning improved recommendation accuracy and could effectively
predict user behavior compared to the existing methods. Therefore, we confirmed

1 Retailrocket recommender system dataset, https://www.kaggle.com/datasets/retail
rocket/ecommerce-dataset, last accessed: August 5, 2024.

https://www.kaggle.com/datasets/retailrocket/ecommerce-dataset
https://www.kaggle.com/datasets/retailrocket/ecommerce-dataset
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the effectiveness of our framework with the SAC algorithm and its function of
reducing task interference.

Shortly, we would like to treat the following considerable points:

– We want to adopt our method into the broader field of recommender systems,
such as point-of-interest (POI) recommender systems that suggest the next
place for a user to visit.

– Applying the SAC algorithm tailored to recommender systems increased the
computational cost of our method. Therefore, it is necessary to develop an
efficient update method by analyzing the parts that have a high computa-
tional cost, such as updating target critics.
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Abstract. Currently, the volume of geo-referenced data is rapidly
expanding, and users frequently show interest in nearby items. Conse-
quently, Location-Aware Recommender Systems (LARS) have garnered
considerable attention from the research community in recent years.
However, these systems are not ideally suited for situations where social
distancing is crucial for people’s safety, such as during the COVID-19
pandemic. In this paper, we study this problem through a use case sce-
nario: recommending items for observation during an open-door hospital
visit. We propose an approach for Side-LARS (SocIal-Distance prEserv-
ing LARS), a trajectory and user-based collaborative filtering algorithm,
that incorporates location data, user behaviors and social distancing
constraints to provide personalized recommendations. The experimen-
tal results demonstrate the effectiveness of the proposal in maintaining
social distancing while providing personalized recommendations.

Keywords: Location-Aware Recommender Systems · Social distance ·
Implicit ratings · Synthetic dataset generation

1 Introduction

In recent years, Location-Aware Recommender Systems (LARS) have gained
attention for leveraging spatial features of users and items to generate relevant
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recommendations. Users often prefer nearby items due to the convenience of
access, making LARS a valuable extension of traditional recommender systems
and a significant subset of Context-Aware Recommender Systems (CARS) [4].

The COVID-19 pandemic has underscored the importance of social distanc-
ing, particularly in public areas like hospitals. Traditional LARS are insufficient
in scenarios where maintaining physical distance is critical. This paper intro-
duces Side-LARS (SocIal-Distance prEserving LARS), which addresses this gap
by providing location-aware recommendations that also ensure social distancing.
The proposed system offers personalized item routes, updating recommendations
based on the user’s location, item locations, and social distancing constraints.
This approach is demonstrated through a hospital use case, where the system
guides visitors via trajectories through items like informative posters and medi-
cal videos.

2 Related Work

Location-aware recommender systems (LARS) have become crucial in enhanc-
ing user experiences by incorporating geographical information, especially in
sectors like travel, hospitality, and local services. They adapt dynamically to
users’ locations and needs, improving satisfaction by offering relevant items.
Previous works [5,13] provide comprehensive reviews of LARS, analyzing vari-
ous approaches and applications. This section focuses on item trajectory recom-
mendation approaches incorporating location information, user behaviors, and
constraints for personalized recommendations in mobile environments.

Several studies leverage Location-Based Social Networks (LBSNs) where rec-
ommender systems use check-in data to identify interesting locations. For exam-
ple, CLoSe [3] suggests POI sequences using Recurrent Neural Networks (RNN)
and Long Short-Term Memory (LSTM) models. Another example is POIB-
ERT [11], which combines LSTM and BERT to predict and recommend POI
sequences, using DBSCAN for clustering regions of interest. Similarly, the app-
roach in [14] uses X-means clustering and graph embedding to recommend POI
itineraries based on users’ travel patterns.

In addition to LBSNs, some works integrate real-time location data from
GPS to recommend personalized item trajectories. For instance, POIBERT [7]
is a BERT model adapted to recommend tour itineraries based on historical POI
visit trajectories. BTRec [6] extends POIBERT by incorporating demographic
information to improve prediction accuracy. GeoSAN [9], a Geography-aware
Sequential Recommender based on a Self-Attention Network, uses geographic
information to recommend the next POI based on user preferences and locations.

The COVID-19 pandemic has highlighted the need for recommender systems
that consider social distancing and crowd-awareness. Side-CARS [8] introduces
the idea of preserving social distance in recommendations, although it does not
provide a specific solution. Recent works emphasize the importance of social
distancing in route planning [2,10], but there remains a gap in developing com-
prehensive solutions for integrating these constraints into LARS.
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3 Location-Aware Recommender Architecture

The proposed architecture is structured around a centralized system that prior-
itizes server-based computation, partitioned into three distinct layers: the View
Layer, where users engage with the items within the Environment; the Logic
Layer, which forms the computational heart of the system; and the Data Layer,
where all necessary data are stored and managed. At the core of the Logic
Layer resides the Side-LARS algorithm, a sophisticated component of the Rec-
ommendation Engine that takes real-time user locations and social distancing
into account, delivering personalized item trajectories. This system is designed
to dynamically update and adapt its recommendations as users navigate through
the space. We have defined an approach for Side-LARS based on the post-filtering
paradigm [1]. It is inspired by the approach presented in [12], which was extended
by incorporating an additional constraint for social distancing [8]. Beforehand,
it is assumed that all users are making use of the recommender system.

Fig. 1. Activity diagram presenting Side-LARS algorithm pipeline.

The algorithm begins by finding other users with similar preferences to the
target user through User-Based Collaborative Filtering (UBCF). Known ratings
provided by these similar users are considered to estimate potential ratings that
the target user might assign to different items. Based on these estimations, the
top-k items (i.e., the k items with the best-predicted ratings not yet seen by the
user) are identified as potential candidates for recommendation. If there are not
enough data for UBCF to provide results (cold start problem), then the k-nearest
points of interest are collected as candidate items, using the Nearest Point of
Interest (NPOI) strategy. In the post-filtering phase, the resulting items are then
reordered, if necessary, to minimize the distance the user will need to go through
to access those items. The shortest path passing through all those k items is
computed. After that, several circumstances could trigger a reevaluation of the
recommendation process, as shown in Fig. 1. For example, the social distancing
constraint is applied to prevent overcrowding by enforcing a minimum Euclidean
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distance threshold between the recommended item locations for different users,
being initially verified before generating the trajectory for optimization purposes.

4 Experimental Evaluation

The digital transformation initiative of the Hospital San Juan de Dios in
Zaragoza (Spain) takes a significant leap into the metaverse with the creation
of an interactive virtual hospital environment (https://virtual.hsjdzaragoza.es),
developed in collaboration with the Spanish company Imascono. This virtual
scenario mirrors a real-world use case where an open-door visit to a hospital
allows new residents or general visitors to familiarize themselves with the hospi-
tal environment, services, and facilities. During such events, visitors can explore
the hospital freely. In our work, we exploit this virtual scenario to evaluate a
proposal for Side-LARS that is suitable for its real equivalent, that is, a real
hospital where physical distances among users should be kept and overcrowded
areas need to be avoided.

For experimental evaluation, Python 3.8.16 and the recommendation algo-
rithms of the Surprise (https://surpriselib.com) library were used. We exploited
both real and synthetic datasets. We started by extracting relevant data from
Imascono’s Open Search database (https://opensearch.org), which includes
details about the virtual hospital environment. This data consists of objects (e.g.,
posters, screens), real-time user locations (geographic coordinates), and interac-
tions with objects (e.g., click, close, play, pause). The dataset has 12 columns
and 104,056 rows, covering several months from early 2022 to mid-2023, and
includes information such as 19,483 unique user IDs, 27,767 object positions,
and 93,237 recorded action timestamps.

Since this real dataset lacks explicit user interest in these objects, we use
AUTO-DataGenCARS+, a synthetic data generator for recommender systems,
to generate implicit ratings based on user behaviors and predefined rules related
to the time spent interacting with objects. We extended AUTO-DataGenCARS+
to produce these implicit ratings, which in a real scenario would be captured
using similar rules.

Figure 2 shows a heatmap of user locations in the hospital space using the
mixed real and synthetic dataset. The heatmap reveals user spatial patterns
and activity preferences over time, with yellow for low-traffic areas, pink for
high-traffic areas, and an intermediate tone for moderate traffic. High traffic
is concentrated around items near the hospital’s main entrance, indicated by
blue dots. Intense red areas may suggest user dissatisfaction due to potential
crowding, leading to unsafe distancing.

The Side-LARS approach addresses user crowding by incorporating social
distancing constraints in the recommendation process. Initially, a user-based
collaborative filtering approach with the KNNBaseline algorithm is employed to
recommend k = 5 candidate items. The KNNBaseline algorithm was chosen for
its superior performance, with precision (0.815), recall (0.9575), and F1-score

https://virtual.hsjdzaragoza.es
https://surpriselib.com
https://opensearch.org
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(0.864), compared to other KNN-based recommenders (KNNBasic, KNNWith-
Means, and KNNWithZScore) using AUTO-DataGenCARS+. Finally, the k
items recommended to users are reordered to minimize the traversed distance.

Fig. 2. Hospital visit heatmap. Fig. 3. User-item interactions.

A one-hour Side-LARS evaluation was conducted with 100 users from the
mixed real and synthetic dataset. Figure 3 shows users scattered with low density
per item, indicating that the Side-LARS algorithm helps mitigate social-distance
infringements, which is expected to lead to a more pleasant user experience.
Managing visitor distribution and maintaining personal distance is important to
ensure the comfort of users, especially where social distancing is crucial.

5 Conclusions and Future Work

In this study, we addressed the challenge of combining location-based recommen-
dations with social distancing requirements, particularly relevant in settings like
hospitals. Our innovation, the Side-LARS algorithm, provides users with smart
suggestions for maintaining safe distances. We tested Side-LARS in a realistic
model of Hospital San Juan de Dios using both real and synthetic data. This
approach helped us understand movement and interactions within the virtual
hospital. Our experimental results highlight the potential benefits of our pro-
posal to distribute users better in space, which, to our knowledge, is a novel
contribution as no other work has proposed Side-CARS or Side-LARS.

For future work, we plan to explore recommendation approaches that incor-
porate additional context variables beyond location, transitioning from Side-
LARS to more generic Side-CARS. We are also examining virus propagation
models to evaluate the practical impact of our proposals more precisely. Addi-
tionally, we intend to conduct in-depth research in other domains, such as
tourism, where our approach has promising applications.
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