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Abstract. Among the various aspects of the Unified Modeling Lan-
guage, state machines are utilized to model the dynamic behavior of
reactive systems. In this paper we present a platform where we transform
a state machine into a declarative model, implemented as a database of
clauses in Prolog. To tackle the complexity of composite states, we pro-
pose an algorithm for flattening the state machine’s representation. Both
initial and flattened declarative models allow for querying on the qual-
ity attributes, the behavior and the well-formedness of the underlying
machine. To complement the query-based analysis, we present a sim-
ulation process and we describe its automation and tool support. We
demonstrate the analysis through a case study. The approach can assist
software developers while performing validation of requirements.

Keywords: UML state machines · Model transformation · Declarative
modeling · Simulation · Automation

1 Introduction and Motivation

Originally introduced by Gill in 1962 [7] and later proposed by Harel in 1987 [8]
as a significant extension over traditional finite state machines, statecharts are
a visual formalism for modeling the dynamic behavior of components at various
levels of abstraction. The Unified Modeling Language (UML), an industrial de
facto standard that supports software modeling, adopted Harel’s statecharts
in its specification and extended them. This study is based on the extended
statechart model, referred to in the literature as “UML state machine” (or “UML
statechart”). A state machine can model the behavior of a reactive system at
any level of abstraction. In this study, we define a declarative representation
of a state machine, and construct a platform to analyze the machine through
queries and simulation. The objective is to assist in the validation of system
requirements captured by the machine and the methodology entails the study
of quality attributes, behavior and well-formedness of the machine as well as
simulation.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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A declarative model is a powerful and intuitive way to represent state
machines, offering numerous advantages in terms of maintainability, scalabil-
ity, and analysis. In fact, declarative representation expresses the behavior and
transitions of the state machine using logical clauses and rules. This model can
be implemented in Prolog, which provides capabilities like pattern matching
and backtracking, making it well-suited for modeling complex behavior in state
machines [16]. Sheng et al. [15] present a Prolog-based consistency checking for
UML class diagrams and object diagrams. They formalize the elements of the
model and then convert the model into Prolog facts along with some consis-
tency rules that enable querying of the properties, elements, and subsequent
parts of the model. Similarly, Khai et al. [12] propose a Prolog-based approach
for consistency checking of class and sequence diagrams. State machines are
widely utilized in software testing to evaluate performance and quality against
predefined requirements. Hashim and Dawood [11] conduct a review of test case
generation methods that use UML statecharts. Chen and Lin [3] propose a test
case generation strategy that enhances efficiency and guarantees high test cover-
age and accuracy. Aktaş and Ovatman [1] discuss statechart anti-patterns which
may occur in software development process.

Using a declarative model, the static behavior of a system can be studied and
the system requirements can be validated. Additionally, statecharts are a widely-
used notation for representing the dynamic and executable behavior of complex
systems [5]. This highlights the significance of having tools for visualizing and
simulating statecharts. Mens et al. [13] introduce a technique to improve stat-
echart design using specialized tools including a modular Python library called
Sismic [5]. Van Mierlo and Vangheluwe [17] present an approach for modeling,
simulating, testing, and deploying statecharts. Balasubramanian et al. [2] intro-
duce Polyglot, a framework for analyzing models described using multiple state-
chart formalisms. Their approach involves translating the structure and behavior
of statechart models into Java and analyzing them using pluggable semantics.
Modeling state machines with nested composite states and flattening the model
has been a challenge. One major issue is the potential occurrence of unwanted
non-determinism which has also been studied in the literature [9,10], and [17].
E. V. and Samuel [6] describe a technique to transform hierarchical, concurrent,
and history states into Java code using a design pattern-based methodology.

We structure the remainder of this paper as follows: We provide a background
to the mathematical specification of a state machine in Sect. 2. We present an
overview of our approach and the case study in Sect. 3. We present our initial
declarative model in Sect. 4 and describe our query system in Sect. 6. We present
our flattened declarative model in Sect. 5; and the simulation process in Sect. 7,
together with a discussion on the results of a given scenario. We finally present
our conclusion.

2 Background and Assumptions

UML 2.5.1 [14] provides numerous complex features, such as composite and
nested states; entry and exit pseudostates; entry, exit, and do state behavior;
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as well as implicit region completion transitions. These features lead to a com-
plex behavioral analysis. We simplify the machine by converting it into a mod-
ified Extended Finite State Machine EXTENDED FINITE STATE MACHINE
(EFSM), as specified in the subsequent section. Moreover, the standard UML
does not allow ε-transitions. An ε-transition is a transition whose event and guard
are empty. Observe that ε-transitions are only allowed in pseudostates (i.e. entry
and exit), as well as region completion (i.e. in the case of the completion of a do
behavior, or reaching a final substate).

2.1 Modified Extended Finite State Machine (EFSM)

The EFSM is formally defined as a 7-tuple [4]. Our definition of EFSMs adapts
this 7-tuple, with a slight modification on the inputs of the transition. An EFSM
M , is defined as a 7-tuple (Q,Σ1, Σ2, q0, V, Γ, Λ), where

Q is a finite set of states,
Σ1 = {ei : i ∈ Z}, is a non-empty finite set of events,
Σ2 = {ai : i ∈ Z}, is a finite set of actions,
q0 ∈ Q is the starting state,
V = {vi : i ∈ Z} is a finite set of mutable global variables,
Γ = {gi : i ∈ Z} is a finite set of guards,

Λ = {λ : q
ei[gi]/ai−−−−−→ q′, i ∈ Z}, is a finite set of deterministic transitions

defined on Q ×
◦

Σ1 ×
◦
Γ → Q ×

◦
Σ2, where

◦
Σ1 = {ε} ∪ Σ1,

◦
Γ = {ε} ∪ Γ ,

◦
Σ2 = {ε} ∪ Σ2, ε denotes null, q, q′ ∈ Q, e ∈

◦
Σ1, gi ∈

◦
Γ , and ai ∈

◦
Σ2 are all

bindable string literals.

A guarded ε-transition is represented by λ : q
ei[gi]/ai−−−−−→ q′ where ei = ε. In

the case where g = ε, the transition is referred to as ε-transition. In order for Λ
to be deterministic, for every state q ∈ Q, at most one possible transition must

exist. In other words, ∀q∀λi : q
ei[gi]/ai−−−−−→ q′, the satisfiability of (ei, gi) must

be exclusive. While this property holds for all EFSMs, we enforce the following
restrictions:

1. If state q has an outgoing ε-transition, no other outgoing transitions are
allowed on q.

2. If state q has an outgoing guarded ε-transition, only other guarded ε-
transitions are allowed on the state. Let {gi} be the set of all guards for
all guarded ε-transitions on state q. i) ∪gi = True; ii) ∀i∀j �= i (¬(gi ∧ gj)).

3 Overview of the Approach and Case Study

An overview of our approach is illustrated in the UML activity diagram of Fig. 1,
and the various aspects of the diagram will be discussed in the subsequent sec-
tions through a case study that models an alarm system, shown in Fig. 2 and
Fig. 3.
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Fig. 1. UML activity diagram of the approach.

4 Transformation of the State Machine into a Declarative
Model

The first part of this task is to provide a platform that can serve as a virtual
machine for analysis of a state machine. The model consists of a declarative rep-
resentation of a machine, following a defined structure of clauses, implemented
as Prolog facts, that represent the state machine as a cyclic directed multigraph,
where states are modeled as nodes and where transitions are modeled as edges.
Unary clauses such as state/1, pseudostate/1, initial/1, final/1 model
their respective language element and proc/1 defines a do behavior. Binary and
multi-arity clauses are defined in Table 1.

4.1 Modeling Events

In this declarative model, events are represented by the event/2 clause, imple-
mented as event(type, argument). The supported event types in accordance
with the UML specification include call, signal, time and change. Additionally,
we introduce three new event types: inactivity, update and completion. A brief
description of all event types is shown below:

call: An external event that triggers a transition. Makes use of keyword call.
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‘ Mode’
‘Exit Mode’ :  Echo ‘Exit Emergency’

Fig. 2. Case study: Alarm.

Fig. 3. The initial declarative model of the alarm case study.
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signal: Triggered by an internal or external clock, which indicates a specific
time for triggering a transition. Makes use of keyword at.

time: When the source state has been active for a specified length of time, the
transition occurs if its guard evaluates to true. If no guard is present (nil), a
transition occurs automatically. Makes use of keyword after.

change: Triggered by a constantly evaluated condition once true. Makes use of
keyword when.

inactivity: The system is expected to be inactive over a given amount of time,
specified by the argument. Though treated as a time event, it makes use of
keyword timeout.

update: Updates the value of a variable or attribute, which may subsequently
trigger a transition if the new value satisfies the conditions for the transition.
Makes use of keyword set.

completion: Occurs when a region concludes or a do behavior completes, mod-
eled as event(completed, ?state), where ?state represents the current
state (or region). Makes use of keyword completed.

4.2 Modeling Actions

We classify actions into EXEC and LOG. This classification provides the means to
manage each action type differently, allowing for greater flexibility in the model.
This classification is particularly useful when we need to flatten the model (see
Sect. 5), as it allows us to easily identify and apply the appropriate processing to
each type. Finally, the model introduces action/2 to codify actions. The case
study illustrates actions that are executed by the script engine (e.g. invoking the
echo() method) as well as actions that are logged by the system (e.g. Green LED

OFF). Note that a do behavior is a process that is started when the machine enters
a state and may be stopped (upon successful termination) or aborted (triggered
by an exit event). Finally, in Fig. 2, system shutdown is implemented as an
entry behavior of the final state, since a final state cannot have an exit behavior.

5 Flattened Representation of UML State Machines

We extend the initial declarative model and develop an algorithm that flattens
the machine. We believe that a flattened model can provide a platform for deeper
analysis as well as a simulation of behavior (see Sect. 7). The flattened model
provides the same semantic model as the initial model, though at a lower level
of abstraction, being analogous to the bytecode platform for languages such as
Java and Clojure, which is a seamless virtual machine. The flattened model can
also be extended with rules that target the three aspects of our analysis (quality
attributes, behavior, and well-formedness).
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Table 1. Major clause signatures of the initial declarative model.

FACT DESCRIPTION

entry pseudostate/2 entry pseudostate(?Entry, ?Substate) implies that
?Substate is the target inner-state whose superstate is
already defined by superstate(?Superstate, ?Substate)

exit pseudostate/2 exit pseudostate(?Exit, ?Superstate) implies that ?Exit
is an exit state within the superstate ?Superstate

superstate/2 superstate(?Superstate, ?Substate) implies that
?Superstate is a composite state with ?Substate being a
nested state

onentry action/2 onentry action(?Name, ?Action) implies that ?Name defines
?Action as an entry behavior

onexit action/2 onexit action(?Name, ?Action) implies that ?Name defines
?Action as an exit behavior

do action/2 do action(?Name, ?Proc) implies that ?Name defines ?Proc
as a do behavior

transition/5 transition(?Source, ?Destination, ?Event, ?Guard,

?Action) indicates that while the system is in state ?Source,
should ?Event occur and with ?Guard being true, the system
performs a transition to state ?Destination while performing
?Action. All elements of the triple (?Event, ?Guard,

?Action) are optional, and the absence of an element is
codified as nil

internal transition/4

internal transition(?State, ?Event, ?Guard, ?Action)

indicates that while the system is in ?State, should ?Event

occur and with ?Guard being true, the system performs
?Action. In the triple (?Event, ?Guard, ?Action), only
?Guard is optional, the absence of which is codified as nil

event/2 event(?Type, ?Argument) indicates an event where ?Type

shows event type and ?Argument is a literal

action/2 action(?Type, ?Argument) indicates an action where ?Type

shows action type and ?Argument is a literal

5.1 The Flattening Process

In a complex UML machine, transitions can trigger various sequences of actions.
For example, when transitioning from idle to active, while the transition itself
has no action, the activate event triggers the entry action on active before tran-
sitioning into configuring. Similarly, when transitioning from activated (substate
of active) to idle, a sequence of actions is executed: aborting ‘Make Siren Sound’,
executing echo(‘Exit Emergency’), and logging ‘Green LED OFF’.

To analyze the behavior of the UML state machine, we convert it into a
flattened EFSM by chaining the subsequent actions using ε-transitions. Our
flattening algorithm consists of 4+1 passes, progressively eliminating complex
UML features such as composite states, pseudostates, state behaviors, and inter-
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nal transitions. Each pass involves multiple steps, modifying facts and reducing
complexity until the machine is fully flattened. Finally, the resulting machine is
minimized by reducing the number of states and combining equivalent transi-
tions. Prolog queries are used as selectors to process the working database. An
outline of the flattening algorithm is presented on the next page:

Procedure Flatten(Input: UML in decl. DB, Output: EFSM in decl. DB)
Pass 0: Preprocessing
1: Convert all outgoing nil-events form state s to event(completed, s).
2: Convert all actions to action-lists.
Pass 1: Processing pseudostates, entry, exit, and do behaviors
1: Resolving do behaviors: For each state s with do behavior with process p: i)
Append “start p”, insert “abort p” notification actions to the entry and exit
actions of state s, respectively; ii) For every completed event on state s, insert
“stop p” notification action to transition’s actions; iii) Remove the do behavior
from s.
2: Resolving entry/exit pseudostates: i) Replace all entry pseudostate(s, t )

clauses with transition(s, t, nil, nil, []) and superstate(p, s ) where
superstate(p, t ); ii) Change all exit pseudostate(s, p ) clauses to superstate(p,
s ).
3: Resolving entry behaviors: Starting from top to bottom, for every state with
entry behavior: i) Find onentry action(s, a) and remove it; ii) For each incom-
ing transition from an external state x to s : append s to the transition’s action
list; iii) For each incoming transition from an external state x to a substate b

of s, append a to the transition’s action list; iv) If s is a top-level initial state,
create a new state ps, add state(ps); change initial(s ) to initial(ps ), and
add transition(ps, s, nil, nil, a ); v) Otherwise if s is a non-top-level initial
state, find p where superstate(p, s ); add superstate(p, ps ); change initial(s )

to initial(ps ), and add transition(ps, s, nil, nil, a ).
Pass 2: Full State Resolution
1: For each composite state p do the following: i) Obtain the list of immediate
substates of p into l ; Obtain the exit behavior of p into ea; ii) Change the target
state of all incoming transitions to p, to the initial substate of p; iii) For each
non-final substate s of p repeat: a) Inherit all outgoing nil-transitions from
the superstate, if the child state does not contain a nil-transition; b) For every
outgoing transition from the state s to a state that is not in l, including the above;
insert ea to the transition’s action list, if ea �= nil; c) Replace superstate(p,
s) with state(s ).

iv) Find inner final state f (if applicable); remove both superstate(p, f )

and final(f ); add state(f ); for each transition(p, t, e, g, a ) from p to
the target state t where e is a region completion event on p: add transition(s,
t, nil, g, a ); insert ea to a, if ea �= nil; v) Remove the composite state p, its
behaviors, and all its outgoing transitions.
2: For each remaining state s with exit behavior e, insert e to all outgoing
transitions’ actions list and remove the exit behavior clause.
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3: For each internal transition on state s, convert internal transition to
transition to self.
Pass 3: Post-Processing
1: For all action lists containing “stop p”, find corresponding “abort p” in the
list; remove “stop p”, and change “abort p” to “stop p”.
2: For all transition(s, t, e, g, l ), where length(l ) > 1, create intermedi-
ary state i, replace the original transition with transition(s, i, e, g, head(l))
and transition(i, t, nil, nil, tail(l)); Resolve transition(i, t, nil, nil,

tail(l )), recursively. 3: Replace all transition(s, t, e, g, []) with transition(s,
t, e, g, nil).
Pass 4: State Reduction/Minimization
For each transition(s, t, e, g, a ): Find all transition(s2, t, e, g, a )

where s2 is not initial and s2 �= s. Replace all transition(x, s2, e2, g2, a2)
with transition(x, s, e2, g2, a2). Remove all instances of state(e2) and
transition(e2, t, e, g, a ). Repeat until no more transitions can merge.

Having produced a flattened model, we perform a model transformation into a
(new) declarative representation, deploying only the clause structures state/1,
initial/1, final/1, transition/5, event/2, and action/2.

Fig. 4. Partial flattened declarative model of the alarm case study.

Figure 4 includes a partial model capturing transitions from states idle and
configuring to reading. Consider the transition from idle to configuring in
Fig. 2. Such transition causes system startup notification upon entry to idle.
The reception of the event activate causes a transition to the active super-
state which is now collapsed. Upon reaching active, the transition causes echo
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configuring mode upon entry to the configuring substate. Such sequence of
actions are implemented in the flattened model by sequence of transitions start-
ing from initial, to pre idle, idle, s71, and finally to configuring. Note that one
may extend the model to support transition with multiple actions, in which
case, an extra step in pass 4 may reduce the total number of states by following
and merging all outgoing nil-transitions into a single transition. We intention-
ally avoided this to make the model compatible with the definition of EFSMs
(Fig. 5).

Fig. 5. The flattened UML diagram

6 Building a Query Platform

With the declarative model as is, we can execute simple ground queries that can
give us some basic knowledge of the machine such as “Is there a transition from
state idle to state configuring?”
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? transition(idle, configuring, _, _, _).

Yes.

We can also execute non-ground queries such as “Under what conditions, if any,
would the state machine perform a transition to the emergency state?” This
would entail capturing any and all state-event-guard triples that can cause
such a transition.

? transition(State, emergency, event(_,Event), Guard, _).

Event = "tCurrent >= tThreshold", Guard = null, State = reading

6.1 Extending the Declarative Model with Rules

We can extend the declarative model by introducing rules. We can identify three
types of rules: (1) We have rules that reason about the behavior of the state
machine by examining the traversal of the underlying graph under various dif-
ferent conditions. When we study behavior, we want rules that reason about
elements such as the exposed interface and legal event sequences. (2) We have
rules that reason about the quality attributes of the state machine by examin-
ing the properties and measurements of the underlying directed graph. When
we study graph (machine) complexity we want rules that provide knowledge
about aspects such as connectivity and (global and nodal) measurements. We
argue that the above two types of rules roughly correspond to the state machine’s
functional and non-functional requirements. (3) We have rules that reason about
the well-formedness of the machine, such as the presence of infinite loops, dead
ends, or conflicts with the UML specification e.g. the existence of an internal
transition without an action association.

6.2 Studying Behavior

Exposed Interface: The call and set events correspond to messages sent to
the system and they collectively constitute the exposed interface of the system.
Rule get interface/1 succeeds by collecting any and all such events.

get_interface(Interface) :- %% Consults: Initial model.

findall(E, (transition(_, _, E, _, _),

(E = event(call, _); E = event(set, _)));

(internal_transition(_, E, _, _),

(E = event(call, _); E = event(set, _))),

EventList), list_to_set(EventList, Interface).

Legal Events at a Given State: Given the system exposed interface, it is
important to note that not all events can be acted upon unconditionally. An
event can be accepted based on the system’s current state. It will be acted upon
provided the associated guard (if one is present) evaluates to true.

is_legal(State, Event) :- %% Consults: Initial model.

transition(State, _, event(_, Event), _, _);

internal_transition(State, event(_, Event), _, _).
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6.3 Studying Complexity

We provide rules for properties and measurements. Measurements in graphs can
be global or nodal. Global measurements refer to global properties of the graph
and consist of a single number for any given graph. Nodal measurements refer
to properties of the nodes and consist of a number for each node for any given
graph.
Order of Graph: This measurement refers to the number of nodes in a graph.
In the context of state machines, we believe that the initial model may not give
us an accurate picture due to the presence of composite states. The flattened
model would be more accurate for this measurement. For the initial and flattened
models the corresponding rules are shown below:

order(N) :- %% Consults: Initial model.

findall(State, (state(State); superstate(_, State)), StateList),

list_to_set(StateList, States), length(States, N).

%% Consults: Flattened model.

order(N):- findall(S, state(S), Length), length(Length, N).

Number of nil Transitions: The number of nil transitions in a flattened
model can be a measure of the complexity of a state machine. The following rule
succeeds by returning the number of nil transitions:

nil_transition(N) :- %% Consults: Flattened model.

findall(Nilevents,

(transition(_, _, Nilevents, _, _), Nilevents=nil), Transitions),

length(Transitions, N).

Size (or Length) of Graph: This measurement refers to the number of edges
in a graph. In the context of state machines, we believe that the initial model
may not give us an accurate picture due to the fact that in the presence of
composite states, their nested states inherit the transitions of their superstate.
The flattened model would be more accurate for this measurement.

size(N):- %% Consults: Flattened model.

findall(S, transition(S,_,_,_,_), Length), length(Length, N).

6.4 Studying the Well-Formedness of the State Machine

We define rules to study the design of the state machine and find cases such
as dead ends, conflicts, or inconsistencies among the state machine’s elements,
considering issues such as (1) Dead ends and infinite loops, (2) Internal transition
without an action, (3) Multiple change events originating from the same state,
(4) Non mutually exclusive guards originating from the same state, (5) The
absence of a do behavior in the presence of an external transition with no event,
and (6) As the previous item for a composite state, in the absence of an exit
substate.
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Dead Ends: We are interested in finding out if the machine can enter a state
from which the final state is not reachable. Rule dead end/0 succeeds by obtain-
ing a non-empty list of states from each of which there is no path to state final.

%% Consults: Initial model.

path(X, Y) :- path(X, Y, [X]).

path(X, Y, V) :- transition(X, Y, _, _, _), \+ member(Y, V).

path(X, Y, V) :- transition(X, Z, _, _, _), \+ member(Z, V),

path(Z, Y, [Z|V]).

dead_end :-findall(State, \+path(State, final), L), L \= [].

7 Simulating State Machine Behavior

The query system provides a level of analysis that is complemented with a simu-
lation of the machine. The flattened model serves as the platform for simulation.
A simulation reads in a machine representation and a scenario under which the
machine is traversed and its state and behavior is monitored and recorded. The
question we ask here is “Is the Machine behaving according to its specification?”
During simulation, we need to be able to identify issues perhaps not having been
identified by the query system, e.g. “Has the simulator encountered an ambiguous
transition?”, in which case we need to report such issues.

Structure of Scenario: A scenario is a sequence of commands consisting of
three types of tags: EVENT, EXECUTE, and TIME. EVENT tags can be of type call,
set, or completion, and must trigger the corresponding transition. EXECUTE tags
contain expressions that modify variable values, and may trigger a transition.
TIME tags can be either after or at, which update time variables duration and
absoluteTime (if applicable) and may trigger a transition.

Read-Evaluate-Execute Cycle: In UML, it is assumed that a state machine
processes one event at a time and finishes all the consequences of that event
before processing next event [14]. At the highest level of abstraction, and given
a scenario, the simulation would be performed using a Read-Evaluate-Execute
Cycle. When a command in a scenario is EVENT e, where e ∈ Σ1, given the
current state and the event, the simulator would construct a transition query
and consult the declarative model. We query the database and find all transitions
λi ∈ Λ with event e. The result of the query is a set of λi, associated with tuples
{(q, g, a)i} where q ∈ Q is the target state, g ∈ Λ is a guard, and a ∈ Σ2 is an
action. Each tuple is also associated with a set of vi ⊂ V , containing all variables
used in gi and ai. The query is successful only if one transition is possible. This
is achieved by instantiating all variables in vi and evaluating gi. Upon success,
a single transition is fired. The simulator consequently checks if any additional
transitions can be triggered, following the most recent transition. The process
continues until no further possible transition is applicable.

Simulator Architecture: To perform a simulation, we need to provide storage
of all variables (machine and environment) while keeping track of any changes.
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We also need to provide storage and keep track of the machine’s current state.
To support these requirements, we provide an imperative model in Java while
deploying Java Prolog Library (JPL). We use Javascript to maintain system
variables, and we deploy the GraalVM engine to evaluate events and guards,
and finally to execute actions. We illustrate the architecture of the simulator in
the UML component diagram shown in Fig. 6. We illustrate the interaction of
the various components during simulation with the UML sequence diagram of
Fig. 7. The diagram illustrates the interactions among high-level objects, includ-
ing SimulatorExecuter, JPLMediator (facilitating the communication with the
declarative model), ScriptHandler (responsible for evaluating guards, actions,
and modifying variables), a Scenario defined as a text file containing a sequence
of events for simulation, and the Output generated by the tool. The outer loop
in the sequence diagram illustrates the Read-Evaluate-Execute cycle and the
inner loop mostly covers ε-transitions in our flattened model.

Fig. 6. UML component diagram of the simulator.

Results of Simulation in the Case Study: We applied the flattening algo-
rithm to the declarative representation of our case study, and the resulting min-
imized flattened model is shown in Fig. 4. Also, Fig. 8 presents a sample scenario
(top-left) along with the corresponding simulation output (top-right).

Visualization of Results: we visualize the results of simulating the scenario
as the model of behavior which is shown in Fig. 8 (bottom). This diagram shows
the current state of the state machine as well as state of the system in each time
id.
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Fig. 7. UML sequence diagram of the simulation process.

Table 2. Complexity Metrics: Original vs Flattened Models

Metric Original Flattened

states and substates 9 18

internal initial states 2 0

transitions(+ internal) 16+2 29

entry/exit pseudostates 2 0

entry/exit (+do behaviors) 5+2 0

ε-transitions 2 11

actions 10 26
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Fig. 8. Input scenario and the corresponding simulation output (top), and its model
of behavior (bottom)

Conclusion

In this paper, we presented a declarative model to represent UML state machines.
The model is used to study the dynamic behavior of the underlying machine.
The simulation results provide insights into the machine’s behavior under specific
scenarios. We developed a simulation tool and a query engine that use the model
in Prolog environment and run scenarios in an imperative platform. We deployed
JPL for Java-Prolog interoperability. Our platform supports codified actions in
JavaScript, by which developers may set or update system variables, in both the
model, as well as in scenarios.

We introduced an algorithm to flatten the UML state machine and convert
it into an extended finite state machine. Our algorithm supports major UML
2.5.1 features including single and composite states; exit and entry pseudostates;
state behaviors including entry, do, and exit; in addition to the UML events
including call, signal, time, change, as well as three newly introduced events
namely inactivity, update, and completion. Table 2 lists some metrics that may
be used to measure the complexity of the UML diagrams in both original and
flattened models.
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We used a modified version of the extended finite state machine to support
guarded and unguarded ε-transitions that are required for handling complex
sequences of actions and notifications in a non-flattened model. Future work
may involve expanding the model to include contract considerations as well as
other UML features such as history pseudostates and orthogonal regions.

Acknowledgments. The authors would like to thank Robin Laliberté-Beaupré and
Simon Foo for their contributions to the automation and tool support for this project.
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