
Bedir Tekinerdog ˘an · Romina Spalazzese ·
Hasan Sözer · Silvia Bonfanti ·
Danny Weyns (Eds.)

LN
CS

 1
45

90

Software Architecture
ECSA 2023 Tracks, Workshops,
and Doctoral Symposium
Istanbul, Turkey, September 18–22, 2023
Revised Selected Papers

Lecture Notes in Computer Science 14590
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.

Bedir Tekinerdoğan · Romina Spalazzese ·
Hasan Sözer · Silvia Bonfanti · Danny Weyns
Editors

Software Architecture

ECSA 2023 Tracks, Workshops,
and Doctoral Symposium

Istanbul, Turkey, September 18–22, 2023
Revised Selected Papers

Editors
Bedir Tekinerdoğan
Wageningen University
Wageningen, The Netherlands

Hasan Sözer
Ozyegin University
İstanbul, Türkiye

Danny Weyns
Katholieke Universiteit Leuven
Leuven, Belgium

Linnaeus University
Växjö, Sweden

Romina Spalazzese
Malmö University
Malmö, Sweden

Silvia Bonfanti
University of Bergamo
Dalmine, Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-66325-3 ISBN 978-3-031-66326-0 (eBook)
https://doi.org/10.1007/978-3-031-66326-0

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2024

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproductiononmicrofilmsor in anyother physicalway, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

If disposing of this product, please recycle the paper.

https://orcid.org/0000-0002-2968-4763
https://orcid.org/0000-0002-1162-0817
https://orcid.org/0000-0003-0326-0556
https://orcid.org/0000-0001-9679-4551
https://doi.org/10.1007/978-3-031-66326-0

Preface

The European Conference on Software Architecture (ECSA) is the premier European
conference aimed at bringing together leading researchers and practitioners to present
and discuss the most recent, innovative, and significant findings and experiences in the
field of software architecture research and practice. ECSA 2023 was held at Yeditepe
University in Istanbul, Türkiye, during September 18–22, 2023, with attendees from
all over the world. Accepted contributions for the main research track are included in
the conference proceedings, published in Springer Lecture Notes in Computer Science
volume 14212. In addition to the main research track, ECSA 2023 included an Industry
Track, a Diversity, Equity and Inclusion Track (DE&I), a Doctoral Symposium, and a
Tools and Demonstrations Track. ECSA 2023 also offered six workshops on diverse
topics related to the software architecture discipline:

• CASA 2023: The 6th Context-Aware, Autonomous and Smart Architectures Interna-
tional Workshop

• AMP 2023: The 4th International Workshop on Agility with Microservices Program-
ming

• FAACS 2023: The 7th International Workshop on Formal Approaches for Advanced
Computing Systems

• DeMeSSA 2023: The 3rd International Workshop on Designing and Measuring
Security in Software Architectures

• QUALIFIER 2023: The 1st International Workshop on Quality in Software Archi-
tecture

• TwinArch 2023: The 2nd International Workshop on Digital Twin Architecture

This volume contains a selection of revised and extended contributions from all these
satellite events of ECSA 2023.

We received 32 submissions for the tracks and doctoral symposium. From this
list, after selection by the Program Committee, 29 papers are included in the post-
proceedings. Each submissionwas reviewed bymultiple referees.Weused theEasyChair
conference system to manage the submission and review process.

We thank the Program Committee members of all the tracks and the additional
reviewers that reviewed the revised and extended versions of papers.

We acknowledge Springer’s prompt and professional support, which published these
proceedings as part of the Lecture Notes in Computer Science series. Finally, we would
like to thank the authors of all these submissions for their contributions.

March 2024 Bedir Tekinerdoğan
Romina Spalazzese

Hasan Sözer
Silvia Bonfanti
Danny Weyns

Organization

General Chair

Bedir Tekinerdogan Wageningen University, The Netherlands

Workshops Co-chairs

Hasan Sözer Özyeğin University, Türkiye
Romina Spalazzese Malmö University, Sweden

Program Committee

Abdessalam Elhabbash Lancaster University, UK
Adam Bachorek Fraunhofer IESE, Germany
Alfredo Goldman University of São Paulo, Brazil
Amleto Di Salle Gran Sasso Science Institute, Italy
André van Hoorn University of Hamburg, Germany
Andreas Wortmann University of Stuttgart, Germany
Angelika Musil Vienna University of Technology, Austria
Antinisca Di Marco University of L’Aquila, Italy
Antónia Lopes University of Lisbon, Portugal
Antonino Sabetta SAP Security Research, France
Apostolos Ampatzoglou University of Macedonia, Greece
Barbora Buhnova Masaryk University, Czechia
Bedir Tekinerdogan Wageningen University, The Netherlands
Bernhard J. Berger University of Rostock, Germany
Carlo Vallati University of Pisa, Italy
Christopher Gerking Karlsruhe Institute of Technology, Germany
Claudia Szabo University of Adelaide, Australia
Daniel Strüber Chalmers University of Technology | University

of Gothenburg, Sweden; Radboud University
Nijmegen, The Netherlands

Danny Weyns Katholieke Universiteit Leuven, Belgium
Dharini Balasubramaniam University of St Andrews, UK
Diego Perez-Palacin Linnaeus University, Sweden
Dimitri Van Landuyt Katholieke Universiteit Leuven, Belgium

viii Organization

Eduardo B. Fernandez Florida Atlantic University, USA
Elena Lisova Mälardalen University, Sweden
Elena Navarro University of Castilla-La Mancha, Spain
Elisa Yumi Nakagawa University of São Paulo, Brazil
Emmanuel Letier University College London, UK
Enis Karaarslan MSKU, Türkiye
Fabio Moretti ENEA, Italy
Florian Rademacher RWTH Aachen University, Germany
Frank Schnicke Fraunhofer IESE, Germany
Geylani Kardas Ege University, Türkiye
Giovanni Quattrocchi Politecnico di Milano, Italy
Gregor Engels Paderborn University, Germany
Hasan Sözer Özyeğin University, Türkiye
Heiko Koziolek ABB Corporate Research, Germany
Henry Muccini University of L’Aquila, Italy
Ilias Gerostathopoulos Vrije Universiteit Amsterdam, The Netherlands
J. Andres Diaz-Pace ISISTAN Research Institute, Argentina
Jacopo Soldani University of Pisa, Italy
James Ivers Carnegie Mellon University, USA
Jan Bosch Chalmers University of Technology, Sweden
Jasmin Jahic University of Cambridge, UK
João Daniel Free University of Bozen-Bolzano, Italy
John Doe Mercedes-Benz AG, Germany
Juha Röning University of Oulu, Finland
Klara Borowa Politechnika Warszawska, Poland
Kwabena Bennin Wageningen University, The Netherlands
Liliana Dobrica University Politehnica of Bucharest, Romania
Luciana Santos Gran Sasso Science Institute, Italy
Manuel Wimmer Johannes Kepler University Linz, Austria
Marcello M. Bersani Politecnico di Milano, Italy
Marco Jahn Eclipse Foundation, Germany
Marion Wiese Universität Hamburg, Germany
Mark van den Brand Eindhoven University of Technology,

The Netherlands
Matteo Camilli Politecnico di Milano, Italy
Mert Ozkaya Yeditepe University, Türkiye
Mirko D’Angelo Ericsson Research, Sweden
Muhammad Ali Babar University of Adelaide, Australia
Norha M. Villegas ICESI University, Colombia
Nour Ali Brunel University London, UK
Nuno Laranjeiro University of Coimbra, Portugal
Paolo Arcaini National Institute of Informatics, Japan

Organization ix

Phu H. Nguyen SINTEF, Norway
Radu Calinescu University of York, UK
Rafael Capilla Universidad Rey Juan Carlos, Spain
Romina Eramo University of Teramo, Italy
Romina Spalazzese Malmö University, Sweden
Ruth Breu University of Innsbruck, Austria
Sara Hassan Birmingham City University, UK
Saverio Giallorenzo Università di Bologna, Italy
Sebastian Copei Kassel University, Germany
Sven Peldszus Ruhr University Bochum, Germany
Thomas Kuhn Fraunhofer IESE, Germany
Tony Clark Aston University, UK
Tsutomu Kobayashi Japan Aerospace Exploration Agency, Japan
Uwe Zdun University of Vienna, Austria
Vinay Kulkarni Tata Consultancy Services Research, India

Contents

AMP

Tools Reconstructing Microservice Architecture: A Systematic Mapping
Study . 3

Alexander Bakhtin, Xiaozhou Li, Jacopo Soldani, Antonio Brogi,
Tomas Cerny, and Davide Taibi

Analysis, Design, Test, and DevOps in Microservice-Based Software
Architectures: Results from Pakistan . 19

Hüseyin Ünlü, Görkem Kılınç Soylu, Isra Shafique Ahmad,
and Onur Demirörs

DevOps Patterns: A Rapid Review . 33
Sebastian Copei and Jens Kosiol

CASA

MAPE-K Based Guidelines for Designing Reactive and Proactive
Self-adaptive Systems . 53

Hendrik Jilderda and Claudia Raibulet

DE & I Track

Stakeholder Inclusion and Value Diversity: An Evaluation Using an Access
Control System . 71

Razieh Alidoosti, Martina De Sanctis, Ludovico Iovino, Patricia Lago,
and Maryam Razavian

Data-Driven Analysis of Gender Fairness in the Software Engineering
Academic Landscape . 89

Giordano d’Aloisio, Andrea D’Angelo, Francesca Marzi,
Diana Di Marco, Giovanni Stilo, and Antinisca Di Marco

DeMeSSA

Sarch-Knows: A Knowledge Graph for Modeling Security Scenarios
at the Software Architecture Level . 107

Jeisson Vergara-Vargas, Felipe Restrepo-Calle, Salah Sadou,
and Chouki Tibermacine

xii Contents

Threat Modeling: A Rough Diamond or Fool’s Gold? . 120
Anh-Duy Tran, Koen Yskout, and Wouter Joosen

FAACS

Declarative Representation of UML State Machines for Querying
and Simulation . 133

Zohreh Mehrafrooz, Ali Jannatpour, and Constantinos Constantinides

Towards Behavior-Based Analysis of Android Obfuscated Malware 151
Zakaria Sawadogo, Muhammad Taimoor Khan, George Loukas,
Jean-Marie Dembele, Georgia Sakellari, and Gervais Mendy

QUALIFIER

Towards a Prediction of Machine Learning Training Time to Support
Continuous Learning Systems Development . 169

Francesca Marzi, Giordano d’Aloisio, Antinisca Di Marco,
and Giovanni Stilo

Performance Comparison of Monolith and Microservice Architectures:
An Analysis of the State of the Art . 185

Helena Rodrigues, António Rito Silva, and Alberto Avritzer

Towards a Sustainability-Aware Software Architecture Evaluation
for Cloud-Based Software Services . 200

Iffat Fatima and Patricia Lago

Technical Debt in Microservices: A Mixed-Method Case Study 217
Roberto Verdecchia, Kevin Maggi, Leonardo Scommegna,
and Enrico Vicario

TQPropRefiner: Interactive Comprehension and Refinement
of Specifications on Transient Software Quality Properties 237

Sebastian Frank, Julian Brott, Alireza Hakamian, and André van Hoorn

TwinArch

Architecture for Digital Twin-Based Reinforcement LearningOptimization
of Cyber-Physical Systems . 257

Elias Modrakowski, Niklas Braun, Mehrnoush Hajnorouzi,
Andreas Eich, Narges Javaheri, Richard Doornbos, Sebastian Moritz,
Jan-Willem Bikker, and Rutger van Beek

Contents xiii

Towards an Urban Digital Twins Continuum Architecture 272
Sergio Laso, Lorenzo Toro-Gálvez, Javier Berrocal, Javier Troya,
Carlos Canal, and Juan Manuel Murillo

Designing a Future-Proof Reference Architecture for Network Digital
Twins . 287

Roberto Verdecchia, Leonardo Scommegna, Enrico Vicario,
and Tommaso Pecorella

Tools and Demos

Evolution and Anti-patterns Visualized: MicroProspect in Microservice
Architecture . 309

Lauren Adams, Amr S. Abdelfattah, Md Showkat Hossain Chy,
Samantha Perry, Patrick Harris, Tomas Cerny,
Dario Amoroso d’Aragona, and Davide Taibi

An Approach and Toolset to Semi-automatically Recover and Visualise
Micro-Service Architecture . 326

Nour Ali, Nuha Alshuqayran, Rana Fakeeh, Thoybur Rohman,
and Carlos Solis

An Extensible Framework for Architecture-Based Data Flow Analysis
for Information Security . 342

Nicolas Boltz, Sebastian Hahner, Christopher Gerking,
and Robert Heinrich

Studying the Evolution of Library Utilization in Maven Projects:
A Metric-Based Approach . 359

Maria Kolyda, Eirini Kostoglou, Nikolaos Nikolaidis,
Apostolos Ampatzoglou, and Alexander Chatzigeorgiou

Slicing and Visualizing F’ Topologies with F’Prism . 375
Jialong Li, Christos Tsigkanos, Toshihide Ubukata,
Elisa Yumi Nakagawa, Zhenyu Mao, Nianyu Li, and Kenji Tei

Maestro: A Deep Learning Based Tool to Find and Explore Architectural
Design Decisions in Issue Tracking Systems . 390

Jesse Maarleveld, Arjan Dekker, Sarah Druyts, and Mohamed Soliman

xiv Contents

Industry Track

Demeter: An Architecture for Long-Term Monitoring of Software Power
Consumption . 409

Lylian Siffre, Gabriel Breuil, Adel Noureddine, and Renaud Pawlak

Experience of the Architectural Evolution of a Big Data System 426
Felipe Cerezo and Belén Vela

Parallel and Distributed Architecture for Multilingual Open Source
Intelligence Systems . 438

Alper Karamanlioglu, Gokhan Yurtalan, and Yahya Bahadir Karatas

HITA: An Architecture for System-level Testing of Healthcare IoT
Applications . 451

Hassan Sartaj, Shaukat Ali, Tao Yue, and Julie Marie Gjøby

Doctoral Symposium

Pragmatic Architectural Framework to Design for Sustainability in Cloud
Software Services . 471

Sahar Ahmadisakha and Vasilios Andrikopoulos

Author Index . 489

AMP

Tools Reconstructing Microservice
Architecture: A Systematic Mapping

Study

Alexander Bakhtin1(B), Xiaozhou Li1, Jacopo Soldani2, Antonio Brogi2,
Tomas Cerny3, and Davide Taibi1,4

1 University of Oulu, Oulu, Finland
alexander.bakhtin@oulu.fi

2 University of Pisa, Pisa, Italy
3 University of Arizona, Tucson, AZ, USA
4 Tampere University, Tampere, Finland

Abstract. Various tools have been developed to reconstruct the
microservice system architecture. Some of the main reasons to build yet
another architectural reconstruction tool are the lack of features to sat-
isfy the current needs or the fact that researchers are often unaware of the
existing tools. To shed light on the available tools, we performed a review
of the literature in the form of a systematic mapping study to identify
the different architectural reconstriction tools adopted in research works,
classifying their purpose, input, and output. This paper compares 37
tools. Out of these, 19 are based on static analysis, 10 on dynamic, and
8 using a combination of them. The study shows a significant overlap
among tools, with several unmaintained, abandoned, or unavailable. This
work will help researchers identify the architectural reconstruction tools
that fit their purposes rather than developing another similar tool. This
work includes an online appendix [1].

Keywords: Microservice · Software Architecture · Architectural
Reconstruction

1 Introduction

Microservices bring significant benefits to stakeholders involved in software
development and deployment. Development teams work in smaller, autonomous
units focused on specific services, which enables decentralization. However, there
come times when we need to see the system as a whole to make informed deci-
sions on maintenance and evolution. The problem with the decentralization that
allows teams to work more independently is that teams understand microservice
bounded context but do not see beyond. With access to a system-centered view,
they could better strategize for optimization, patches, and new features, not
introducing changes that could deteriorate system design and its operability [2].

We typically look into the system architecture to understand the system as
a whole. However, there is no guarantee that the planned architecture matches
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
B. Tekinerdoğan et al. (Eds.): ECSA 2023, LNCS 14590, pp. 3–18, 2024.
https://doi.org/10.1007/978-3-031-66326-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-66326-0_1&domain=pdf
https://doi.org/10.1007/978-3-031-66326-0_1

4 A. Bakhtin et al.

the actual architecture since the system is developed decentrally and constantly
evolves without the means to assess whether the architecture maintains the pre-
scribed format. For example, Baabad et al. [3] synthesize work by Taylor et al.
[4] and Perry and Wolf [5] and conclude that they described the architectural
degradation as a process of the persistent inconsistency between the descriptive
software architecture as implemented and the prescriptive software architecture
as intended. Thus, to understand systems, we typically perform software archi-
tecture reconstruction [6]. However, the challenge with microservices and decen-
tralized teams is determining the system-centered view of separately designed
parts, possibly involving different codebases and separate issue-tracking systems.
While system monitoring offers certain means to discover service dependencies,
these have limits to the extent of uncovered detail and completeness [2,7].

This work aims to identify available tools for reconstructing the system archi-
tecture from microservice systems. For this reason, we perform a Systematic
Mapping Study [8] (SMS) identifying 37 tools, categorizing them based on com-
mon goals, supported platforms, benefits, and outputs behind such reconstruc-
tions, along with the common inputs to such tools to provide the community
with a comprehensive overview to exiting tools to apply or extend rather than
reinventing the wheel.

This paper is structured as follows: Sect. 2 discusses the related works, Sect. 3
describes the adopted SMS method, Sect. 4 presents the results and describes
what information we gather about the discovered tools, Sect. 5 goes into further
discussion of results, and Sect. 6 concludes the paper. This paper also has an
online appendix [1] that provides tables with detailed information about the
discovered tools as well as a list of all papers that came from the SMS.

2 Related Works

Various secondary studies try to organize the ever-growing body of research on
microservices. The first attempts, to our knowledge, were [9,10]. In [9], authors
considered what was proposed by Academic literature concerning microservices
up until that point (2016), focusing on proposed views and metrics but not
on tools providing them. In [10], authors conduct an SMS to identify different
types of microservice architectures as well as tools enabling to create projects
with microservice architectures, but not tools extracting them.

Another notable attempt in this direction is [11], which analyzed the state-
of-the-art on Microservice Architectures (MSAs). The goal of [11] was indeed
to report on the evolution of software architectures into microservices and to
describe open research challenges. Other examples are [12–14]: [12] presents the
results of a Grey Literature Review aimed at analyzing the practitioners’ view
on the “pains and gains” of microservices; [13,14] instead elicit the architec-
tural/security smells for MSAs and the refactorings, allowing to resolve them
by conducting Multivocal Literature Reviews. However, the four studies men-
tioned above all differ from our review in the aim of the study and in the method
exploited to pursue that aim. Similar considerations apply to [15,16], which run

Tools Reconstructing Microservice Architecture 5

Systematic Literature Reviews to pursue different aims than ours. [15] actually
focuses on the deployment/communication patterns used in MSAs, while [16]
focuses on failure detection and root cause analysis in MSAs.

Other secondary studies worth mentioning are the Systematic Mapping Stud-
ies in [17–19] and the Rapid Review in [20]. [17,20] both consider the reconstruc-
tion of MSAs as part of the broader scopes of analyzing and reasoning on MSAs.
[18,19] instead classify the existing techniques for visualizing antipatterns in
MSAs and service interactions in running MSAs, respectively. Despite the fact
that [17,18,20] touch the topic of MSA reconstruction and visualization, they
are not eliciting nor classifying the existing tools for running such tasks, which
is instead the aim and scope of this study.

The work by Cerny et al. [6] is perhaps the closest study to ours. The Sys-
tematic Literature Review in [6] elicits and classifies the existing techniques
for reconstructing the architecture of existing MSAs by distinguishing between
static and dynamic reconstruction techniques and by also commenting on how
reconstructed MSAs can be visualized. The focus of [6] is, however, on the tech-
niques for reconstructing and visualizing architectures, assuming that they are
already designed as MSAs, and the work only mentions whether/how they have
been implemented.

Similar considerations apply when relating our work to existing primary stud-
ies for reconstructing and visualizing MSAs, e.g., [21–24]. The existing primary
studies indeed typically focus on proposing techniques for reconstructing and
visualizing architectures, which are sometimes released also through prototypi-
cal implementations.

The focus of our study is, therefore, different: we indeed review the exist-
ing tools for reconstructing MSAs, including both the migration of monoliths
to microservices, the reconstruction of existing MSAs, and the possibility to
visualize the obtained results.

3 Methods

This section describes the method we applied to identify and classify the existing
tools reconstructing MSAs.

3.1 Research Questions

Our goal is to catalog existing tools that have been introduced to the commu-
nity with a scientifically published work. We, therefore, formulated the following
research questions:

RQ1 What tools for microservice reconstruction have been developed?
RQ2 What languages/platforms are currently supported by the tools?
RQ3 What is the purpose of the reconstruction?
RQ4 What is the input/output of the tools?

In order to answer our RQs, we adopt a Systematic Mapping Study of the
literature according to [8]. We also perform snowballing on the found papers
according to guidelines by Wohlin [25]. Both original and snowballed papers are

6 A. Bakhtin et al.

filtered with the use of Inclusion and Exclusion criteria. We then extract the
tools from the selected papers.

3.2 The Search Process

To answer our research questions, we searched for scientific literature introduc-
ing tools for reconstructing MSAs. Following the guidelines provided in [8], we
identified the search string by structuring it guided by our research questions.
More precisely, we defined the search string based on the terms characterizing
our research questions, picking keywords in order to cover the four main aspects
of our research question. As a result, we obtained the following search string:

(Microservice* OR Micro-service* OR "micro-service*") AND Architect*

AND (Reconstr* OR Mining OR Reverse engineering OR Recover* OR Extract* OR

Discover*)

AND (Tool* OR Prototype OR Implementation OR GitHub OR Proof of concept OR POC OR

Proof-of-concept)

(where “*” matches lexically related terms, e.g., plurals and conjugations). In
the search string, the first OR-group accounts for different spellings of the term
“Microservice”, and the third provides additional synonyms to the term “Recon-
struction”. The fourth OR group was applied to search in-text if permitted by
the database’s search syntax/filters.

The search string was used to search for literature on the following scientific
databases by converting it to the appropriate syntax: Scopus,1, IEEEXplore2,
ACM Digital Library,3 and the citation database Web of Science4. Ini-
tially, only the Scopus search was performed on 7th of February 2023. The
decision to include other databases occurred after a team discussion of initial
results, and the queries were performed on 23rd of February 2023.

The counts of obtained papers are: Scopus - 369, IEEE - 71, ACM - 28,
Web of Science - 114; Total excluding duplicates is 387.

3.3 Selection of Papers

After compiling the initial list of 387 papers found by the query, we proceeded
with a read of the title and abstract of each paper to determine if it was in
the scope of our research and worthy to be investigated for tools. We used the
following inclusion and exclusion criteria to guide the paper selection process:

– Inclusion criteria
– Mentions a tool in the context of microservice reconstruction

– Exclusion criteria
– Material not in English

1 The Scopus database: https://www.scopus.com.
2 The IEEEXplore database: https://ieeexplore.ieee.org/.
3 The ACM Digital Library: https://dl.acm.org.
4 Web of Science: https://www.webofscience.com/wos/woscc/basic-search.

https://www.scopus.com
https://ieeexplore.ieee.org/
https://dl.acm.org
https://www.webofscience.com/wos/woscc/basic-search

Tools Reconstructing Microservice Architecture 7

– Out of topic - terms used with different meanings
– Different aspects of microservice reconstruction (not dealing with tools)

The inclusion of the paper was determined by two authors separately (from
the first three authors of the paper). In case of disagreements, a third author
(from the last three authors) resolved the disagreement. After looking at some
initial pool of results, we decided to be as inclusive as possible towards papers
mentioning some kind of tool in order to create a more comprehensive catalog
of proposed tools in the context of MSA reconstruction.

In particular, during piloting, we noticed that three distinct areas use the
term ‘Microservice Reconstruction’ with different meanings:

– Microservice Architecture Reconstruction, i.e., construction of a ‘map’ of
Microservice systems, showing how different microservices connect to each
other. Main interest of this study.

– Monolith to Microservice Migration, i.e., clustering of methods/classes of
monolithic applications into distinct microservices. These papers frequently
say, “We reconstruct the Microservice architecture from a Monolithic sys-
tem,” even though the correct word to use here would be construct, since a
novel architecture is created.

– Microservice recovery, i.e., redeploying microservices that crashed due to an
error. These papers say that “Microservices are reconstructed from a failed
state,” using reconstruct as a synonym for recover.

After observing these results during piloting, we decided to accept papers
from the first and second contexts but reject papers from the third context. The
decision to include, during this stage, Monolith to Microservice migration tools
is explained by the hope that some of these tools might be ’tricked’ to accept a
Microservice system as input and get its real architecture as output.

The number of papers selected from 387 in our case was 81.

3.4 Tool Extraction/Snowballing

After selecting the papers in the previous step, we proceeded with a full read
in order to extract the existing tools for MSA reconstruction. We extracted the
tools that were directly employed by each paper (e.g., the paper introduces the
tool or the tool is studied/applied in the paper), as well as any other tools with
similar functionalities that are mentioned in the selected papers’ sections (e.g., in
their introduction, background, or related work discussion). As such, this process
was combined with backward and forward snowballing on the papers, namely
finding additional resources by following citations [25]. Backward snowballing
was performed on citations in the selected papers, as well as forward snowballing
using Google Scholar to find papers that cite the selected papers. Since the
process was combined with extracting the tools, we could quickly see that despite
finding additional papers using snowballing, the tools they mention are the same
tools we find from the originally selected papers.

8 A. Bakhtin et al.

For each paper, one person extracted the tools. However, if he reported that
no tools are found, another author stepped in to read the paper and confirm
that. In the online appendix [1], we report for each tool all the papers among
the selected papers that cite the tool.

In our case, we added 14 papers by snowballing and extracted a total of 37
tools.

3.5 Tool Coding

For each tool, we collect information on the development activity, license, sup-
ported languages, platforms or frameworks, input, and output. We also assessed
the architectural recovery method and the existence of visualizations that
make information about certain system aspects accessible to users. One author
extracted each piece of information in a shared spreadsheet. Then, at least three
authors collaboratively classified them using a collective coding method. Incon-
gruences were discussed until disagreements were resolved.

The final coding process led to the collection and classification of the infor-
mation included in the following taxonomy:

– Tool name
– The reference of the paper introducing the tool
– All selected papers that cite the tool
– Tool repository information:

– Availability5

– Indicated license
– Last update/commit date (as of 23rd of June 2023)
– Total amount of commits
– Number of stars
– Number of forks
– Number of contributors

– Supported language/platform/framework
– Input:

– Input type:
– Source code (Source) - original source code in plaintext form; can

also refer in particular to git repositories if git history is studied
– Model-generatable from source (Model-GFS) - Some intermedi-

ate representation of code/repository/infrastructure/etc. that can be
automatically generated by existing tools as it adheres to a standard-
ized format

– Model-manual custom format (Model-MCF) - Some intermediate
representation of code/repository/infrastructure/etc. that needs to
be manually generated (or a custom generator written) since authors
define the format themselves

5 We do not provide links to save space in the table. If the repository is indicated as
available, its name in Table 1 is a hyperlink in the electronic version of the paper.
Additionally, it can be found in the introductory paper of the tool from Table 4 of
the online appendix [1].

Tools Reconstructing Microservice Architecture 9

– Traces - Special type of logs, usually implemented using OpenTracing
standard6

– Deployment files - Files necessary for Docker/Kubernetes deploy-
ment, such as Dockerfile, docker-compose.yml, Kubernetes mani-
fest

– Input format - Free-form clarification of the particular case
– Output

– Output type:
– Smells, patterns, anti-patterns
– Architectural views [22,26]- target system aspects to describe, i.e.,

service view (describing the service models that specify microservices,
interfaces, and endpoints), domain view (describing the entity objects
of the system as well as the data source connections of those objects.),
operational view (describing service deployment and infrastructure,
such as containerization, service discovery, and monitoring), etc.

– Health metrics - For monitoring tools, data they provide that can
be used to infer the status and health of the project

– Tests
– Refactorings, violations

– Output sub-category - Free-form clarification of a particular case, com-
mon values are:

– Service Dependency Graph (SDG) - a graph that shows which ser-
vices call one another

– Class to Microservice mapping (C2M) - for monolith to microser-
vice migration tools, the proposed grouping/refactoring of existing
classes/methods into microservices

– Output format - The particular format (JSON, CSV, microTOSCA, etc.)
that the tool produces

– Recovery method - One of the following:
• Static - source code/repository is analyzed without building and

running the project
• Dynamic - project is run, and runtime data (logs, metrics) are collected

to perform the analysis
• Hybrid - data from both stages are used

– Tool aims - Overall purpose of the tool, common values are:
• Microservice Reconstruction (MR) - mapping out the SDG of a

microservice system
• Monolith to Microservice Migration (M2M) - proposal of group-

ing methods/classes of a monolithic system into microservices
• Vulnerability detection (VD)
• Smell detection (SD)
• Pattern detection (P)
• Monitoring (MO)

– Visualization - whether the tool produces some kind of visualization
6 A couple of tools use actual logs and not traces, but we decided not to introduce

another category for this case.

10 A. Bakhtin et al.

4 Results

A total of 81 papers are selected by a full read from 387 obtained by search, to
which an additional 14 are added by snowballing; a total of 37 tools are identified.
The summary of results is reported in Table 1. Detailed information about the
tools is provided in the online appendix [1]. We also provide the introductory
paper as well as all referencing papers for each tool in Table 4 of the appendix.

4.1 RQ1 - What Tools for Microservice Reconstruction Have Been
Developed?

This question concerns a general description of discovered tools. We can sum-
marize the following aspects:

Repository: Of 37 discovered tools, 2 are commercial and proprietary and do
not share the code repository. Among the remaining 35 tools, 6 do not provide
any kind of open repository.

Of the available tools, 2 were uploaded to Zenodo. This makes ’activity’
metrics such as the number of Commits, Stars, and Forks impossible to infer
and complicates potential development (’forking’) by other researchers. Another
2 tools host codes on GitLab, with the remaining 25 on GitHub.

License: The 2 commercial projects are covered by proprietary licenses, while
5 projects are not available at all.

The majority (17) of openly available projects do not indicate any license,
which is a bad practice since it creates legal ambiguity about how the project can
be used by third parties, which critically, in our case, includes other researchers.

The other 3 tools specify that they are available ’For Academic Use Only,’
which is better than not specifying any license, but also potentially ambiguous.

One project uses a Creative Commons By-Attribution license while CC
licenses are not considered suitable for software even by the license authors7.

The remaining are permissive OSS licenses - 7 instances of MIT License and 1
Apache 2.0 License. Also, 1 instance of ’copyleft’ GPLv3 license is represented.

Activity: Most publicly available projects have not been updated since the
tool/paper publication. Only 4 tools have commits in the first half of 2023, and
additionally, 2 commercial tools are continuously supported. Another 8 tools
were last updated in 2022. The earliest abandoned tool is Decomposer, which
has not been updated since December 2016.

Another way to measure the activity of development is through commits.
Most (16) tools for which we could gather such information have less than 100
commits. We exclude from this 4 projects that have been pushed to a public
repository without preserving the git history; thus, they had 1–2 commits.

The largest amount of commits are in VMAMV (798) and mono2micro (609);
however, they are not that popular with the community as judged by Stars,
7 https://creativecommons.org/faq/#can-i-apply-a-creative-commons-license-to-

software.

https://creativecommons.org/faq/#can-i-apply-a-creative-commons-license-to-software
https://creativecommons.org/faq/#can-i-apply-a-creative-commons-license-to-software

Tools Reconstructing Microservice Architecture 11

Table 1. Summary of results

RQ1 RQ2 RQ3 RQ4

Tool name Repo Licensea Last update Platformb Recoverye Tool aimsf Inputc Outputd Visualization

Arcan � P - Many7 S SD S S, LV �
ARCHI4MOM � - 06/22 OT D MR T OV �
Aroma � M 04/23 OT D MR, SD T OV �
attack-graph-generator � - 01/21 D S VD D HM �
Code2DFD � AP 06/23 J S MR, VD S OV �
Decomposer � - 12/16 J S M2M MG LV -

IdentificationApproach � - 01/22 J S M2M S SV -

ImpactAnalysis � - 01/19 J S Test MG T �
istio-log-parser � - 05/22 I D MR T SV �
MAIG - - - OT D MR, P T SV, AP �
MicADO � M 06/22 Any H MR T, MC SV �
microART � A 04/17 D H MR S,D,T SV -

MicroDepGraph � - 11/21 J S MR S SV �
microFreshener � M 11/22 Any S SD MG SV �
Microlyze � - 07/18 EU, OT D MR T SV �
MicroMiner � M 11/20 KU H MR D SV �
MAAT - - - J D MR, P T SV �
microserviceExtraction � A - J S M2M S SV �
microTOM � M 01/23 KU H MR D SV �
monitoring ms � - 08/18 EU,D D MR, MO T SV, HM �
mono2micro (socialsoftw.) � M 06/23 J H M2M S SV �
Mono2Micro (IBM) � P - J D M2M T SV �
MonoToMicro [27] - - - J S M2M S SV -

MS-MDE-RL � G 01/22 J S M2M MG SV �
MSA-Nose � - 04/21 J S SD S S -

MSDesigner - - - J S M2M MC SV �
MSExtractor - - - J S M2M S SV -

Rademacher et al. [23] � - 03/20 J S MR S DV, OV, SV -

De Alwis et al. [28] � - 07/19 J H M2M S,T SV -

Ntentos et al. [29] � CC 02/21 Any S MO MC Ref., Vio -

OpenTracingProcessor � M 07/19 OT D MR, MO T SV, HM �
Prophet � - 09/21 J S MR S SV -

RAD � - 01/21 J,P S MR, SEC S SV -

ServiceCutter � A 05/21 J S M2M MG SV �
Subtype � - 05/18 Any H M2M MG SV -

VECROSim � - 12/22 KU D MO MC HM -

VMAMV � - 01/22 J H MO S HM -
a P - Proprietary, M - MIT, AP - Apache v.2, A - Academic Use Only, G - GPL v.3,
CC - CC BY 4.0
b OT - OpenTracing, D - Docker, J - Java, EU - Eureka, KU - Kubernetes, P - Python
c S - Source, T - Traces, D - Deployment files, MG - Model-generatable from source,
MC - Model-custom manual format
d S - Smells, LV - Logical View, OV - Operational View, SV - Service View, DV -
Domain View, HM - Health Metrics, T - Tests, AP - Anti-Patterns, Ref. - Refactorings,
Vio. - Violations
e S - Static, D - Dynamic, H - Hybrid
f SD - Smell Detection, MR - Microservice Reconstruction, VD - Vulneraibility Detec-
tion, M2M - Monolith to Microservice, Test - Test Generation, P - [Anti-]Pattern
Detection, MO - Monitoring, SEC - Security Analysis
g Java, C, C++, C#, Python

https://www.arcan.tech/
https://zenodo.org/record/6786913
https://gitlab.com/essere.lab.public/aroma/-/tree/master/
https://github.com/tum-i4/attack-graph-generator
https://github.com/tuhh-softsec/code2DFD
https://github.com/mgarriga/decomposer
https://gitlab.com/LeveragingInternalArchitecture/IdentificationApproach
https://github.com/the-redback/istio-log-parsing
https://github.com/AMUSEResearch/MicADO
https://github.com/microart/microART-Tool
https://github.com/clowee/MicroDepGraph
https://github.com/di-unipi-socc/microFreshener
https://github.com/ga52can/microlyze
https://github.com/di-unipi-socc/microMiner
https://github.com/gmazlami/microserviceExtraction-backend
https://github.com/di-unipi-socc/microTOM
https://github.com/fabiopina/monitoring_ms
https://github.com/socialsoftware/mono2micro
https://www.ibm.com/cloud/mono2micro
https://github.com/hadiDHD/MS-MDE-RL
https://github.com/cloudhubs/msa-nose
https://github.com/andrepbento/OpenTracingProcessor
https://github.com/cloudhubs/prophet
https://github.com/cloudhubs/rad-analysis
https://github.com/ServiceCutter/ServiceCutter
https://github.com/AnuruddhaDeAlwis/Subtype
https://github.com/etigerstudio/vecrosim
https://github.com/ChunYu-Chen159/VMAMVS

12 A. Bakhtin et al.

Forks, as well as the number of citations among our papers in the online appendix
[1].

The most popular by a huge margin, both in terms of GitHub stats and
citations, is the ServiceCutter, which is one of the oldest projects in our list
and is used as a reference implementation in many M2M papers. However, the
project is now abandoned, and the build is broken, with only surviving Docker
images making it possible to run it.

4.2 RQ2 What Languages/Platforms are Currently Supported
by Tools?

The overwhelming majority of tools cover Java (21), most as the only supported
language (19). Other represented languages include Python (2 tools), as well as
C, C++, and C# (1 tool - Arcan is multiplatform). Apart from that, certain
tools target a certain framework rather than a language - 6 tools use OpenTracing
logs, 2 leverage Eureka, and 1 Istio. Some tools study deployments, with 3 tools
studying Docker containers and another 3 Kubernetes pods. Additionally, 4 tools
use some intermediate model representation as input, thus potentially being
applicable to any language.

Figure 1 groups all available platforms hierarchically by corresponding input
type (see Sect. 3.5/Table 1). It shows, for each specific platform (outer ring),
how many tools support this platform. Note that, as explained above, some
tools support several platforms, so numbers along the ring do not sum up to 37,
and it is thus not possible to deduce intermediate categories from the figure and
we do not put numbers to intermediate categories.

4.3 RQ3 What is the Purpose of Reconstruction?

When it comes to Reconstruction approaches, 19 tools use Static methods and
10 Dynamic, with another 8 using a combination of both (Hybrid).

Some tools handle systems already using Microservice Architecture (17 in
total). For some (10), reconstructing the architecture by providing the SDG is
the only purpose. Another 2 tools couple this with Monitoring of the Microservice
system, 2 with Pattern and 1 with Smell Detection, and 2 more with Vulnerabil-
ity detection/Security Analysis; also 3 of found tools are concerned purely with
Monitoring of the health of the system, and 3 more purely with Smell Detection.

Additionally, results included 12 tools that deal with Monolith to Microser-
vice migration by analyzing the legacy monolithic system and proposing a group-
ing/refactoring of methods/classes into separate microservices.

4.4 RQ4 What is the Input/Output of the Tools?

The mapping between different types of inputs and outputs among the tools is
presented in Fig. 2.

As for the input, the majority (13) of the tools use source code as input
directly, meaning they can be potentially integrated into IDEs or CI/CD

Tools Reconstructing Microservice Architecture 13

Fig. 1. Sunburst chart showing the correspondence between input types and platforms
(languages). Some tools cover several languages, so numbers along the ring exceed 37.

pipelines. Further, 6 tools use some kind of generatable model that can be
inferred from the Source, which can also be an automatic step in a pipeline
(examples of models are OpenAPI, microTOSCA). Another 3 tools use a custom-
defined Model format, which means that adoption is harder since tools to con-
struct such models need to be developed first because manual model creation
for large projects is impractical.

Additionally, 3 tools do not study the Source directly but instead use the
Deployment files, which are usually checked into the same repository.

Most of the tools that perform Dynamic Analysis use Traces (9), in particular,
OpenTracing, with particular tools using either Jaeger8 or Zipkin9 as the tracing
tool of choice, while others use Eureka10 or Istio11.

Furthermore, some tools combine different inputs (e.g., Traces and Sources).

8 Jaeger https://www.jaegertracing.io.
9 Zipkin https://zipkin.io.

10 Spring Eureka Server https://cloud.spring.io/spring-cloud-netflix/multi/multi spr
ing-cloud-eureka-server.html.

11 Istio Service Mesh https://istio.io.

https://www.jaegertracing.io
https://zipkin.io
https://cloud.spring.io/spring-cloud-netflix/multi/multi_spring-cloud-eureka-server.html
https://cloud.spring.io/spring-cloud-netflix/multi/multi_spring-cloud-eureka-server.html
https://istio.io

14 A. Bakhtin et al.

Fig. 2. Sankey diagram mapping tool Inputs to Outputs. Categories that appear only
once are excluded; Views except Service View are grouped together.

When it comes to the output, the majority of tools return some kind of
view (28), the most common being (as expected by the goal of this research)
service view (26), which is either the Service Dependency Graph for Microservice
systems (15) or Class to Microservice grouping for Monolith to Microservice
migration systems (1312).

Additionally, 4 tools provide an operational view, 2 tools - a logical view,
and 1 tool a domain view.

Out of 6 tools that deal with smell/pattern/anti-pattern detection (see pre-
vious RQ), 4 provide a list of detected smells/patterns/anti-patterns. However,
the remaining 2 tools only report these detections on top of the provided SDG
as part of the visualization, so we do not mark it as separately obtained input.

5 tools provide health metrics, which in particular can take the form of a
system response to injected faults (2), an attack graph (1), or simply metrics
given for different parts of the system (2). Another tool concerned with vulnera-
bility detection returns a dataflow diagram and yet another a breakdown of roles
required to access different endpoints to monitor potential privilege escalation
problems.

Also, 2 tools aim to improve existing code - one by suggesting refactorings
that solve detected violations, another by suggesting which CRUD-operations
tests to implement.

Different tools use different output formats to provide the results - common
include Neo4j, JSON, and microTOSCA to report SDGs or C2M mappings. Some
tools only provide the reconstructed SDG as a graphic or web visualization in
their front-end application. With 11 papers, we could not determine from the
paper text or repository description what formats were used. Additionally, we
could confirm that 23 tools provide some kind of visualization for their results
while the remaining 15 either do not provide it or did not mention such support
in documentation or source publication.

12 Note: one tool (MicADO) is reported with the aim being MR, but output being C2M
because it studies an existing Microservice system and proposes a new, optimized
grouping of methods into microservices.

Tools Reconstructing Microservice Architecture 15

5 Discussion

Different architectural reconstruction tools, often with similar features, have
been developed in the last few years. The analysis of the literature identified in
the SMS indicates that while there is a need for MSA reconstruction tools, there
is a limited amount of them actively developed, and in particular, there are no
widely adopted tools.

Such tools are commonly built from scratch instead of extending previous
ones. Some of the reasons why researchers are developing new tools might be the
unavailability of tools meeting their requirements. Often, tools require particular
resources, input, or configuration that discourage other research teams from
using them. Another reason might be the impossibility of running them. Often,
tools are not easily executable or require access to some libraries, databases,
or specific hardware not available in the research group trying to run them.
Moreover, not all the tools were available in source code repositories. To increase
the availability of the tools, we recommend hosting the tools both on GitHub
and archival platforms like Zenodo or Software Heritage, the latter providing
easy integrations with the former.

It should also be emphasized that, when considering static analysis tools, only
a limited number of tools are directly applicable to the industry, mainly because
they parse a very limited number of languages or technologies. Most of the
research-developed tools parse Java code, thus making them inapplicable in the
industry where microservices are developed with a large number of technologies.

5.1 Future Research Directions

Based on the discussion of the research questions (RQs) above, we propose the
following directions for future research in this field:

– Focus on validating existing tools and their outcomes to enhance their credi-
bility and facilitate their adoption in the industry. While some tools already
exist, our findings suggest that they have not undergone thorough validation
in terms of precision and recall of the components of the SDGs, resulting in
limited application.

– Center the tools around inputs that produce outcomes of genuine interest
to stakeholders and explore the possibility of utilizing inputs from widely
accepted technologies, both for static and dynamic analysis tools.

5.2 Threats to Validity

Various sources of bias or error could potentially impact the validity of our
study’s results. The research questions and classification schema used in our
study may be subject to construction validity. To minimize this risk, the authors
independently reviewed and discussed the research questions. As for the classi-
fication schema, we classified tools and their categories based on objective enu-
merated categories (e.g., language, license, etc.).

16 A. Bakhtin et al.

Also, to ensure replicability, we carefully identified and reported the biblio-
graphic sources used to identify peer-reviewed literature. We also provided the
search strings and the inclusion and exclusion criteria. Potential issues in the
selection process could, however, arise from the choice of search terms, which
may lead to an incomplete set of results. To mitigate this risk, we expanded the
search string by including possible synonyms. Moreover, to address the limita-
tions of search engines, we queried academic literature from four different bib-
liographic sources, and we performed both forward and backward snowballing
[25] to increase the coverage of possible sources.

Other possible threats may apply to the reliability and generalizability of our
results. As for reliability, all primary sources underwent review by at least two
authors to mitigate bias in data extraction, with any disagreements resolved
through consensus involving a third author. As generalizability, instead, we
mapped the academic literature on MSA reconstruction tools. However, we can-
not claim to have screened all possible literature, as some documents may not
have been appropriately indexed or may be subject to copyright restrictions or
limited availability.

6 Conclusion

In this work, we performed a Systematic Mapping Study to classify the tools for
MSA reconstruction. We classified 37 tools from 95 primary studies, comparing
their input and output, which will be useful to researchers and practitioners to
have a quick overview of the existing tools. It is interesting to note that the vast
majority of tools are implemented from scratch without extending previous ones.
Moreover, most tools are based on static analysis and can parse only a limited
set of technologies.

We plan to extend this work by comparing the detection accuracy of the
tools that can be executed on a set of microservice projects and conducting
an industrial survey to investigate their applicability and the usefulness of the
output provided.

Acknowledgements. This material is based upon work supported by grants from
the Research Council of Finland (grants n. 349487 and 349488 - MuFAno) and 6GSoft
project from Business Finland (grant n. 24304494 - 6GSoft); National Science Foun-
dation (grant n. 2245287); and partly supported by the projects “FREEDA” (PRIN
MUR, Italy, CUP: I53D23003550006) and “OSMWARE” project UNIPI PRA 2022 64.

References

1. Bakhtin, A., et al.: Appendix to: tools reconstructing microservice architecture:
a systematic mapping study. Zenodo. https://zenodo.org/doi/10.5281/zenodo.
8207331

2. Cerny, T., Abdelfattah, A.S., Maruf, A.A., Janes, A., Taibi, D.: Catalog and detec-
tion techniques of microservice anti-patterns and bad smells: a tertiary study. J.
Syst. Softw. 206, 111829 (2023)

https://zenodo.org/doi/10.5281/zenodo.8207331
https://zenodo.org/doi/10.5281/zenodo.8207331

Tools Reconstructing Microservice Architecture 17

3. Baabad, A., Zulzalil, H.B., Hassan, S., Baharom, S.B.: Software architecture degra-
dation in open source software: a systematic literature review. IEEE Access 8,
173681–173709 (2020)

4. Medvidovic, N., Taylor, R.N.: Software architecture: foundations, theory, and prac-
tice. In: Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering-Volume 2, pp. 471–472 (2010)

5. Perry, D.E., Wolf, A.L.: Foundations for the study of software architecture. ACM
SIGSOFT Softw. Eng. Notes 17(4), 40–52 (1992)

6. Cerny, T., et al.: Microservice architecture reconstruction and visualization tech-
niques: a review. In: 2022 IEEE International Conference on Service-Oriented Sys-
tem Engineering (SOSE), pp. 39–48 (2022)

7. Abdelfattah, A.S., Cerny, T.: Roadmap to reasoning in microservice systems: a
rapid review. Appl. Sci. 13(3), 1838 (2023)

8. Petersen, K., Vakkalanka, S., Kuzniarz, L.: Guidelines for conducting systematic
mapping studies in software engineering: an update. Inf. Softw. Technol. 64, 1–18
(2015)

9. Alshuqayran, N., Ali, N., Evans, R.: A systematic mapping study in microser-
vice architecture. In: 2016 IEEE 9th International Conference on Service-Oriented
Computing and Applications (SOCA), pp. 44–51 (2016)

10. Pahl, C., Jamshidi, P.: Microservices: a systematic mapping study. In: Proceedings
of the 6th International Conference on Cloud Computing and Services Science
- Volume 1 and 2. CLOSER 2016, Setubal, PRT, pp. 137-146. SCITEPRESS -
Science and Technology Publications, Lda (2016)

11. Dragoni, N., et al.: Microservices: yesterday, today, and tomorrow. In: Mazzara, M.,
Meyer, B. (eds.) Present and Ulterior Software Engineering, pp. 195–216. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-67425-4 12

12. Soldani, J., et al.: The pains and gains of microservices: a systematic grey literature
review. J. Syst. Softw. 146, 215–232 (2018)

13. Neri, D., et al.: Design principles, architectural smells and refactorings for microser-
vices: a multivocal review. SICS 35 (2020)

14. Ponce, F., et al.: Smells and refactorings for microservices security: a multivocal
literature review. J. Syst. Softw. 192(C) (2022)

15. Karabey Aksakalli, I., et al.: Deployment and communication patterns in microser-
vice architectures: a systematic literature review. J. Syst. Softw. 180, 111014 (2021)

16. Soldani, J., Brogi, A.: Anomaly detection and failure root cause analysis in (micro)
service-based cloud applications: a survey. ACM Comput. Surv. 55(3) (2022)

17. Bushong, V., et al.: On microservice analysis and architecture evolution: a system-
atic mapping study. Appl. Sci. (Switzerland) 11(17) (2021)

18. Gortney, M.E., et al.: Visualizing microservice architecture in the dynamic per-
spective: a systematic mapping study. IEEE Access 10, 119999–120012 (2022)

19. Parker, G., et al.: Visualizing anti-patterns in microservices at runtime: a system-
atic mapping study. IEEE Access 11, 4434–4442 (2023)

20. Abdelfattah, A.S., Cerny, T.: Roadmap to reasoning in microservice systems: a
rapid review. Appl. Sci. 13(3) (2023)

21. Cerny, T., et al.: Microvision: static analysis-based approach to visualizing
microservices in augmented reality. In: 2022 IEEE International Conference on
Service-Oriented System Engineering (SOSE), pp. 49–58 (2022)

22. Walker, A., Laird, I., Cerny, T.: On automatic software architecture reconstruction
of microservice applications. In: Kim, H., Kim, K.J., Park, S. (eds.) Information
Science and Applications. LNEE, vol. 739, pp. 223–234. Springer, Singapore (2021).
https://doi.org/10.1007/978-981-33-6385-4 21

https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-981-33-6385-4_21

18 A. Bakhtin et al.

23. Rademacher, F., Sachweh, S., Zündorf, A.: A modeling method for systematic
architecture reconstruction of microservice-based software systems. In: Nurcan, S.,
Reinhartz-Berger, I., Soffer, P., Zdravkovic, J. (eds.) BPMDS/EMMSAD -2020.
LNBIP, vol. 387, pp. 311–326. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-49418-6 21

24. Kleehaus, M., Uludağ, Ö., Schäfer, P., Matthes, F.: MICROLYZE: a framework
for recovering the software architecture in microservice-based environments. In:
Mendling, J., Mouratidis, H. (eds.) CAiSE 2018. LNBIP, vol. 317, pp. 148–162.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92901-9 14

25. Wohlin, C.: Guidelines for snowballing in systematic literature studies and a repli-
cation in software engineering. In: International Conference on Evaluation and
Assessment in Software Engineering. Ease ’14, pp. 1–10 (2014)

26. Cerny, T., Abdelfattah, A.S., Bushong, V., Al Maruf, A., Taibi, D.: Microservice
architecture reconstruction and visualization techniques: a review. In: 2022 IEEE
International Conference on Service-Oriented System Engineering (SOSE), pp. 39–
48. IEEE (2022)

27. Zaragoza, P., Seriai, A.D., Seriai, A., Bouziane, H.L., Shatnawi, A., Derras, M.:
Refactoring monolithic object-oriented source code to materialize microservice-
oriented architecture, pp. 78–89 (2021)

28. De Alwis, A.A.C., Barros, A., Fidge, C., Polyvyanyy, A.: Availability and scala-
bility optimized microservice discovery from enterprise systems. In: Panetto, H.,
Debruyne, C., Hepp, M., Lewis, D., Ardagna, C.A., Meersman, R. (eds.) OTM
2019. LNCS, vol. 11877, pp. 496–514. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-33246-4 31

29. Ntentos, E., Zdun, U., Plakidas, K., Geiger, S.: Semi-automatic feedback for
improving architecture conformance to microservice patterns and practices, pp.
36–46 (2021)

https://doi.org/10.1007/978-3-030-49418-6_21
https://doi.org/10.1007/978-3-030-49418-6_21
https://doi.org/10.1007/978-3-319-92901-9_14
https://doi.org/10.1007/978-3-030-33246-4_31
https://doi.org/10.1007/978-3-030-33246-4_31

Analysis, Design, Test, and DevOps
in Microservice-Based Software Architectures:

Results from Pakistan

Hüseyin Ünlü(B) , Görkem Kılınç Soylu , Isra Shafique Ahmad,
and Onur Demirörs

Izmir Institute of Technology, Izmir 35430, Turkey
{huseyinunlu,gorkemkilinc,israshafique,onurdemirors}@iyte.edu.tr

Abstract. In today’s software industry, Microservice-based Software Architec-
ture (MSSA) has been a common practice and has been adopted by many compa-
nies. MSSA differs from traditional object-oriented architecture in several ways.
The architecture moved away from being data-driven and evolved into a behavior-
oriented structure. The usage of a single database is replaced by the structures in
which each microservice is developed independently and has its own database.
Therefore, adaptation demands software organizations to transform their culture.
However, there is no de factomethod for analyzing, designing, and testing systems
for these architectures, similar to object-oriented analysis and design practices.
This study aimed to understand how Pakistani software organizations undertake
analysis, design, test, and DevOps processes in software projects adopting the
MSSA paradigm. To achieve this goal, we surveyed 49 participants from vari-
ous agile organizations in Pakistan, encompassing different roles and domains.
The results reveal that Pakistani software organizations continue using famil-
iar object-oriented analysis and design approaches. However, they have already
started exploring event-oriented analysis and design methods for MSSA projects.

Keywords: Microservices · Analysis · Design · Test · DevOps · Pakistan ·
Survey

1 Introduction

The software industry has been experiencing a paradigm shift for the last ten years:
microservice-based software architectures (MSSA) [1, 2]. Today, many software orga-
nizations, including both small-scale and large-scale, such asAmazon, LinkedIn,Netflix,
SoundCloud, and Uber, have adopted the MSSA paradigm [3].

MSSA comprises multiple microservices that exhibit high cohesion and loose cou-
pling.Thedegreeof functional dependence among the elementswithin eachmicroservice
is high, while the degree of interdependence among microservices is as low as possible.
In such a system, each microservice is designed as an isolated, autonomous applica-
tion with a small bounded context and a single responsibility [4]. On the other hand, to
perform more complicated tasks, microservices communicate with each other through

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
B. Tekinerdoğan et al. (Eds.): ECSA 2023, LNCS 14590, pp. 19–32, 2024.
https://doi.org/10.1007/978-3-031-66326-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-66326-0_2&domain=pdf
http://orcid.org/0000-0001-9906-6066
http://orcid.org/0000-0002-7047-0556
http://orcid.org/0000-0001-6601-3937
https://doi.org/10.1007/978-3-031-66326-0_2

20 H. Ünlü et al.

asynchronous communication channels throughmessages over lightweightmechanisms,
such as event queues. In this form,MSSAhas also been associatedwith event-based asyn-
chronous service communication and ledger-style data persistence to reveal real-world
benefits regarding scalability, reliability, and performance [3, 5–7].

Organizations that develop software using Service-Oriented Architecture (SOA) can
observe that they apply similar concepts when working with microservices. Similarly,
agile software development organizations may observe that they have already started
adapting their culture to the microservices world [8]. However, this transition is not as
easy as it may seem. It comes with unprecedented challenges, such as the high coupling
level, difficulties in identifying the boundaries of services, and system decomposition
[9–12].

Agile organizations that start developing software usingMSSA face the challenge of
dealing with decentralization and autonomy on the one hand and efficient management
and integration of the output of all teams on the other. We have previously observed that
traditional modeling notations used for the analysis and design are not effective when
working with microservices [7]. Even the most fundamental abstraction we use today,
the ‘object’ of the Object-oriented Analysis and Design (OOAD) methodologies, has to
change.

On the other hand, organizations implementing DevOps practices may observe that
they have already begun adopting automated deployment processes. Some studies also
argue that there is an inherent evolution in adopting DevOps withinMSSA [13]. DevOps
enhances productivity in MSSA by employing a toolchain and establishing a swift
feedback mechanism [14].

We previously performed a survey [15, 16] and an interview [9] to explore the
organizational choices and the challenges of the agile development process, agile tools,
software analysis, design, test, size measurement, and effort estimation. We presented
the views, experiences, and challenges over different roles, domains, and countries.
The global results showed that organizations continue to use the same analysis, design,
size measurement, and effort estimation approaches that they were using previously in
traditional architectures. However, they face unique challenges in the management of
MSSA projects.

As a developing country, Pakistan’s market for computer software has seen steady
growth for the past several years.Much of the growth is driven by the work of freelancers
who earned subpar certifications from local institutions and support specialized fields in
the local market. Pakistan is currently the fourth largest freelance provider after India,
Bangladesh, and the United States, with gaming software development [17].

In this study, we aimed to explore how Pakistani Agile organizations perform anal-
ysis, design, and test in their projects developed with MSSA. For this purpose, we
performed our previous survey of over 49 Pakistani participants from different organi-
zations, roles, and domains. In addition to our previous survey, we added a section that
explores the common DevOps practices in MSSA.We compared the results of Pakistani
organizations with our previous studies with participants from different countries to see
whether software management practices differ based on regional demographics.

The remainder of this paper is structured as follows. Section 2 summarizes the
related work. Section 3 explains our research methodology behind the survey. Section 4

Analysis, Design, Test, and DevOps in Microservice-Based Software 21

summarizes our results. Section 5 discusses our findings. Lastly, Sect. 6 concludes our
study by stating the future work.

2 Related Work

In the literature, several studies analyze migration or technical issues for converting
monoliths toMSSAs. In our previous paper, we obtained that only a few studies explored
the issues from the project management perspective and for building newMSSA systems
[9]. To the best of our knowledge, no study reveals Pakistani organizational practices in
these management practices.

3 Research Method

In this work, we conducted a survey, following the guidelines proposed by [18, 19], to
investigate how organizations in Pakistan apply analysis, design, and test their software
projects adopting the MSSA paradigm. We conducted the survey anonymously online
to ensure confidentiality and encourage open sharing. This approach served multiple
purposes. Firstly, it respects organizations’ privacy, allowing them to freely provide
information without hesitation. Secondly, it facilitated efficient outreach to a large num-
ber of participants within a short period. Lastly, we sought a platform to enable easy
organization and analysis of the collected data. In line with these objectives, we selected
Google Forms as our survey platform due to its user-friendly interface, free availability,
convenient export of results in XLSX format, and its ability to present the collected data
in an informative manner.

While the questionnaire-based survey method offers the benefit of efficiently reach-
ing numerous practitioners and quickly collecting substantial data, it can occasionally
lead to misunderstandings regarding the questions [18]. In order to address this concern,
we conducted three pilot interviews with individuals from different companies. During
these interviews, we read the questions aloud to the participants and observed their com-
prehension of the content. This process allowed us to identify any ambiguities present in
the questions and subsequently refine the questionnaire based on the feedback received
from the interviews.

3.1 Goals and Research Questions

The primary goal of this work is to gain a deeper understanding of how software orga-
nizations in Pakistan carry out analysis, design, and testing in their MSSA projects. By
collecting responses from industry practitioners, we aim to identify patterns in the meth-
ods and technologies employed in executing MSSA projects. The research questions
addressed in this study are as follows:

RQ1. What analysis techniques do Pakistani organizations utilize while applying
agile methodologies in MSSA projects?

RQ2.Which design principles do Pakistani organizations followwhile applying agile
methodologies in their MSSA projects?

22 H. Ünlü et al.

RQ3. How do Pakistani organizations test their MSSA projects while applying agile
methodologies?

RQ4. How do Pakistani organizations implement DevOps in MSSA projects while
applying agile methodologies?

RQ5. Are Pakistan’s analysis, design, and test approaches and technologies different
from those employed globally? If there are differences, what sets them apart?

3.2 Sampling Method

For our survey, we employed the accidental nonprobabilistic sampling method [19].
Our focus was on professionals in the software industry who had experience in MSSA.
To locate and reach out to suitable participants, we utilized various channels such as
personal and company contacts, online forums, mailing groups, and LinkedIn. During
the participant selection process, we ensured representation from diverse companies
operating in different domains.

3.3 Designing Survey Questions

To gather information about analysis, design, and testing in software projects that
embrace the MSSA paradigm, we developed a comprehensive set of survey questions.
These questions were carefully designed to address our research objectives and provide
valuable insights into the practices employed by organizations in Pakistan. The survey
encompasses inquiries about the participants’ demographics and their respective organi-
zations, aswell as inquiries specifically focusedon the application of agilemethodologies
in MSSA projects. Our primary focus was understanding how Pakistani organizations
perform analysis, design, and testing in their MSSA projects while incorporating agile
methodologies. We aimed to uncover the methods, techniques, and tools utilized in this
context, enabling us to gain a deeper understanding of the practices organizations adopt
to effectively perform analysis, design, and testing in their MSSA projects.

While our main focus in this paper centers around analysis, design, and testing, our
survey investigates a broader range of topics. In addition to these key areas, we also
include questions about size measurement, effort estimation, and DevOps. The survey
is divided into a total of 7 sections. The initial section provides an overview of the
survey and seeks participants’ consent regarding its content. The second section is ded-
icated to gathering demographic information, including details about the participants,
their organizations, and their experiences. The third section aims to gather insights into
the organization’s domain, team dynamics, adoption of agile methodologies, and experi-
ence withMSSA projects. The fourth section investigates specific details regarding agile
methodologies. The fifth section focuses on how the organization applies size measure-
ment and effort estimation. The sixth section is dedicated to gathering information about
how organizations analyze, design, and test and which techniques and tools are used
for this aim. The last section includes questions dedicated to DevOps practices. While
designing the questions, we considered the following key aspects: relevance, clarity and
understandability, coverage, and an unbiased approach.

Analysis, Design, Test, and DevOps in Microservice-Based Software 23

3.4 Survey Piloting and Execution

Before distributing the survey, we conducted a pilot study to ensure the clarity and
effectiveness of the questions. The pilot study took the form of interviews with three
participants, each from a different company involved in a MSSA project. These partic-
ipants possessed varying levels of experience. We read the survey questions aloud to
the participants during the interviews while displaying the questionnaire on a screen.
As the participants provided their responses, we took notes that were visible to them.
We carefully observed and collected participant feedback, which helped us refine and
improve the survey accordingly.

Once we received approval from the Human Subjects Ethics Committee (HSEC) at
İzmir Institute of Technology (IZTECH), we proceeded to distribute the survey to our
intended participants. The survey was completed by 50 participants with diverse levels
of experience and represented companies operating in various industries. Following the
completion of the survey, we carefully evaluated the collected answers to generate a
comprehensive report.

3.5 Criteria for Validation

In order to ensure the validity and reliability of the data gathered from our survey, we
implemented specific validation criteria. These criteria were developed to evaluate the
survey responses’ reliability, accuracy, and overall quality of the survey responses. A key
criterion for participant inclusion was their experience in the field of MSSA. Through-
out the process of selecting and distributing the survey, we ensured to target individuals
who were actively engaged in MSSA projects. Once the survey was concluded, we
carefully reviewed the answers provided by all 50 participants to ensure their validity.
It should be noted that a few participants did not complete the entire survey, and as a
result, their incomplete responses were not saved and did not impact the final results.
All the completed surveys were contributed by individuals actively involved in MSSA
projects. However, one participant acknowledged their lack of experience in MSSA
projects despite their current involvement as a new beginner. Due to their limited expe-
rience, their responses were considered inappropriate for an unbiased evaluation of the
subject and were therefore excluded from the analysis. Consequently, the survey results
from a total of 49 participants were accepted as valid and considered in our findings.

4 Results

In this section, we give a summary of the survey results of 49 participants regarding
the demographics, experience with Agile methodology, analysis, design, testing, and
DevOps in MSSA projects.

4.1 Participant Demographics and Experience

The majority, i.e., 60%, of the participants who contributed to our survey have an under-
graduate degree in computer science, while 30% graduated from software engineering,

24 H. Ünlü et al.

4% from information systems, and 6% from other fields (see Fig. 1a). 68% of our partici-
pants have a graduate degree, i.e., 38% in computer science, 20% in software engineering
and 10% in other fields (see Fig. 1b).

The survey participants have a range of roles within their respective companies,
including developer, senior developer, software architect, test engineer, software engi-
neer, and other positions such as software test engineer, analyst, and chief executive offi-
cer, among others. Most of the participants, i.e. 38%, hold the role of a senior developer,
followed by 26% as developers, 6% as software engineers, 6% as software architects,
6% as software test engineers, and the remaining 18% occupying various other roles
(see Fig. 1c).

Fig. 1. The percentage of the responses regarding (a) participants’ undergraduate education, (b)
participants’ graduate education, (c) participants’ role in the organization, (d) the domain of the
organization, and (e) the adopted Agile methodology.

Our participants represent organizations from diverse industry sectors. In order to
achieve more readable and informative charts, we grouped some specific answers into
broader domains, allowing for more meaningful deductions from the results, such as
combining “Banking” and “Finance” together as “Finance.”Based on the responses, 34%

Analysis, Design, Test, and DevOps in Microservice-Based Software 25

of our participants are employed in the finance sector, 24% work in mobile software-
related fields, 16% are engaged in web development, 14% work in the entertainment
sector, 6% are involved in game development, and 6% are employed in the telecom
industry (see Fig. 1d).

The participants in our study have a range of experience in their current roles, span-
ning from 1 to 10 years. This distribution’s average (mean) experience is 2.74 years, with
a median of 2.5 years. Similarly, their experience in software engineering-related fields
varies from 1 to 10 years. The average experience in this domain is 4.29 years, with
a median of 4 years. Our results show that the participants’ organizations’ experience
in MSSA ranges from 1 to 9 years, whereas their experience with agile methodologies
ranges from 1 to 23 years. The mean and the median of the organizations’ experience in
MSSA are 4.03 and 3, whereas themean and themedian of the organizations’ experience
in agile methodologies are 7.81 and 5. The distribution can be found in Table 1.

Table 1. Descriptive statistics of participant experience (years).

Software field Current role Agile methodology MSSA

Minimum 1 1 1 1

Maximum 10 10 23 9

Mean 4.29 2.74 7.81 4.03

Median 4 2.5 5 3

Mode 3 3 3 3

Standard Deviation 2.01 1.71 6.12 2.45

In our survey, we asked participants about the agile methodologies used in their
organizations. The findings reveal that SCRUM is the most preferred methodology as
the majority of participants replied with SCRUM. Some participants mentioned using
Kanban, while no other methodologies were mentioned. Notably, there were instances
where participants indicated using both SCRUM and Kanban in conjunction. According
to our results, 80% of participants employ SCRUM, while 25% utilize Kanban. It is
worth noting that there is an overlap between the two methodologies (see Fig. 1e).

4.2 Analysis, Design, and Test

In this study, we conducted a comprehensive survey to gain insights into the analysis,
design, and testing techniques employed by organizations within Pakistan’s software
industry for the development of MSSA projects. By exploring the practices utilized in
this context, we aimed to contribute to the understanding of software analysis and design
approaches specific to MSSA. Our study aimed to identify the techniques implemented
by organizations in Pakistan’s software industry.

Our results show that 84% of our participants utilize a standard process for software
analysis for MSSA projects (see Fig. 2a). The functional requirements are represented
using traditional approaches, as shown in Fig. 2b.When asked about the utilized notation,

26 H. Ünlü et al.

70% of the participants responded with user stories, while 48% use use-case scenarios,
34% depict the functional requirements with use-case diagrams, and 20% use unstruc-
tured/natural language. As seen from the responses, a notable amount of participants
utilize a combination of methods.

Fig. 2. The percentage of the responses regarding (a) whether the organization utilizes a standard
process for software analysis, (b) the notation used to depict the functional requirements, (c) the
notation used to represent the design, (d) the method used to analyze the problem, (e) the notation
used to show the analysis of the project, (f) focused test paradigms, and (g) the level of test
automation.

Analysis, Design, Test, and DevOps in Microservice-Based Software 27

Our survey inquired about the design notation used in MSSA projects. We have seen
that organizations commonly (60%) use ER diagrams, whereas 42% use component
diagrams. The other widely used design notations are activity diagrams at 38%, sequence
diagrams at 36%, and class diagrams at 34%. 6% of participants mentioned other less
commonnotations.As seen from the results,manyorganizations combine these notations
(see Fig. 2c).

We also asked how our participants perform problem analysis in their projects. The
responses show that organizations mainly adopt event-based and ad-hoc analysis tech-
niques. 46% perform event-basedmodeling, while 36% follow ad-hoc techniques. Event
storming is used by 24%, whereas 20% do not perform problem analysis in their MSSA
project while utilizing agile methodologies (see Fig. 2d).

As for the notation used for the analysis of the MSSA projects; our results show that
flow charts are themost commonly used notation, i.e., 60% of our participants responded
with flow charts. Activity diagrams with 54% follow it, whereas 22% of the participants
stated that they do not use any specific notation for analysis. According to the responses
we received, only 4% of the participants utilize eEPC (see Fig. 2e).

Within MSSA architectures, multiple services coexist and interact with each other
asynchronously. While loose coupling is a crucial aspect of such architectures, the com-
munication complexity between microservices is unavoidable. Consequently, testing in
this context can become more intricate. Our survey included test-related questions to
gain insight into how testing is applied in MSSA projects. We asked our participants
what tests they performed in their MSSA projects. Our results indicate the focus is on
unit testing since 86% of our participants stated that they perform it. It is followed by
integration testing with 66%. The system test is applied by 52% of the participants,
whereas the acceptance test is used by 40%. The responses show that only 2% perform
a performance test in their MSSA projects (see Fig. 2f).

We inquired about the level of test automation in MSSA projects. We asked our
participants to choose a number between 1 and 5, where 1 is the lowest and 5 is the
highest level of automation. Most participants (34%) responded with 3, meaning they
have a medium level of test automation in their projects. 30% of the participants chose
4, meaning there is a high level of automation, while 10% find the level of automation
very high (level 5). 14% of the participants responded with 2, meaning there is some
level of automation, whereas 12% indicated that testing is not automated (see Fig. 2g).

4.3 DevOps

We dedicated a section of the survey to inquire about the DevOps tools and technologies
used in the MSSA projects in the industry. The first question was to inquire whether
the participants’ organizations have a dedicated DevOps team. The results show that the
majority (82%) have such a team in their organization, whereas the remaining 18% do
not. (see Fig. 3.a).

We asked the participants which tools and/or technologies they use for developing,
testing, and deploying MSSA. We saw that it is very common to utilize more than one
tool. Most participants (54%) stated that they use Jenkins. GitLab was the second most
used tool, with 48%. These tools were followed by Circle CI with 18%, while 12% of
the participants stated that they use Bamboo. 12% of the participants use other tools,

28 H. Ünlü et al.

including Azure DevOps and Bitbucket CI, whereas 12% do not use any tools for this
purpose (see Fig. 3.b).

Fig. 3. The percentage of the responses regarding (a) whether the organization has a DevOps
team, (b) the tool used for developing, testing, and deploying microservices, (c) the tool used
to monitor and troubleshoot the environment, (d) the tool used to manage releases and version
control, and (e) the tool used to ensure the security and compliance.

The next question was to inquire about the tools used to monitor and troubleshoot
the environment. The results show that a big portion, 36%, stated that they do not use
any tool for this purpose. The most used tool was Datadog, as 30% of the participants
reported using it. 22% of the participants stated to use Papertrail while 18% stated to
use Splunk. 6% of the participants use other tools such as Cloud Watch and Sentry (See
Fig. 3.c).

We asked the participants which tools they use to manage releases and version
control. The results show that GitHub is used by the majority of the participants, i.e.,
64% use it. Bitbucket Server is the second most used tool, with 42%. According to the
answers, GitLab is used by 32% of the participants. 4% answered that they use other
tools, such as Azure DevOps, whereas only 6% of the participants stated that they do
not use any tool for release management and version control (See Fig. 3.d).

Analysis, Design, Test, and DevOps in Microservice-Based Software 29

The last question of the section was concerning security and compliance. The results
show that the majority of the participants (68%) use Docker Bench for Security. 12% use
Dockle, and 10% use Anchore. 10% of the participants use other tools, including Clair,
whereas 14% do not use any tool for ensuring security and compliance in an MSSA
project (See Fig. 3.e).

5 Discussion

Over the last three decades, the software industry has witnessed significant advance-
ments in object-oriented projects. Consequently, Object-Oriented Analysis and Design
(OOAD) techniques have become the prevailing standard worldwide. Despite the mini-
mal documentation approach in agile development, OOADhasmaintained its popularity.
However, with the emergence of MSSA, we have started deviating from object-based
decomposition principles. Even the fundamental abstraction we rely on today, known as
the ‘object,’ is now subject to potential modifications.

This paper presented how Pakistani organizations perform analysis, design, test, and
DevOps in their MSSA projects. Our results show that there is no standard approach, as
proposed by the studies in the literature to be used on microservice decomposition [4,
20], utilized for these tasks among the participants. Pakistani organizations usewhat they
are familiar with; they utilize traditional object-oriented analysis and design notations for
their MSSA projects. On the other hand, they started to use some event-based methods
to analyze the problem. Therefore, organizations have started exploring new analysis
and design methods for MSSA projects.

The structural decompositions required by MSSA are quite different from those of
OOAD-based decomposition. MSSA’s analysis and design approach should meet char-
acteristics such as small bounded context, asynchronous communication, loose coupling,
cohesion, isolation, autonomy, composability, single responsibility, scalability, and fault
tolerance. Overall, by its nature, OOAD may not have useful viewpoints to analyze
and design an MSSA that meets these essential characteristics. Thus, we believe there
is a need for new modeling approaches for the analysis and design that are compati-
ble with the building blocks of MSSA, such as events [4, 20]. In [7], we proposed an
event-oriented analysis and design (EOAD) methodology for MSAA.

Another interesting finding of our survey was that Pakistani organizations usemostly
ER diagrams to represent the design. However, the usage of a single database is replaced
by the structures in which each microservice is developed independently and has its own
database. Furthermore, MSSA mainly adopts non-relational NoSQL databases as the
nature of their distributed structures. The relational databasewas replacedwith structures
such as event queues. Therefore, a question arises: Have Pakistani organizations not fully
migrated to MSSA yet?

We also compared the analysis and design methods utilized in Pakistan with those
employed globally [9, 16] (see Table 2). The comparison shows that the results are
parallel in general. This showed us that the methods in software management do not
differ based on different regional demographics. Software management methods are
employed globally.

As we added DevOps questions to the survey for the first time in this study, we
couldn’t compare the DevOps tools used by Pakistani organizations with the global

30 H. Ünlü et al.

Table 2. Comparison between Pakistan’s and global results.

Question Pakistan Global [9, 16]

Utilizing a standard process for
software analysis

Yes (84%) Yes (60%)

The notation used to depict the
functional requirements

User story (70%) User story (69%)

The notation used to represent
the design

ER diagram (66%) Sequence diagram (58%)

The method used to analyze the
problem

Event-based modeling (46%) Event storming (36%)

The notation used to show the
analysis of the project

Flow chart (60%) Flow chart (53%)

Focused test paradigm Unit test (86%) Unit test (90%)

The level of test automation 3 (34%) 4 (55%)

community. However, we observed that a significant majority of Pakistani organizations
implement DevOps processes and have established a dedicated team for this purpose.
Furthermore,we obtained that there are somede factoDevOps tools used in Pakistan. The
literature discusses the relationship between MSSA and DevOps processes. Therefore,
in future studies, a detailed DevOps survey could be globally employed in organizations
that develop projects using MSSA in the industry.

Lastly, our study is not without limitations. The survey’s participant size could be
viewed as a limitation. We tried expanding the sample size while avoiding dominance
by a single organization. This constraint stems from various factors, including the con-
sideration of participants’ experience, role, and organization size to ensure a diverse
range. Consequently, we achieved a respectable representation, although the number of
participants remained limited. Although it is difficult to generalize the results as best
practices, we believe we provide a meaningful snapshot of Pakistan’s software industry
that utilizes MSSA.

6 Conclusion

MSSAis considered apopular and effective approach in software development.However,
adoptingmicroservices requires organizations to change their cultures. Software analysis
and design techniques differ in MSSA projects. No de facto analysis and design process
is similar to OOAD in the literature.

In this study, we surveyed to explore the analysis, design, test, and DevOps prac-
tices employed by organizations in Pakistan’s software industry when developingMSSA
projects. The results indicate that there is generally no consistent approach adopted for
the analysis and design of MSSA projects among the participating organizations. It
is observed that traditional object-oriented analysis and design methods are predomi-
nantly used in developing MSSA projects within these organizations. Weinberg stated,

Analysis, Design, Test, and DevOps in Microservice-Based Software 31

‘People choose the familiar over the comfortable’ [21]. However, we believe there is
a need to explore new analysis and design methods that result in a natural decom-
position strategy for developing MSSA considering bounded context and event-based
asynchronous communication. Therefore, further studies may explore a new analysis
and design methodology for MSSA.

Supplementary Material
The survey questions and the raw survey data can be found at https://bit.ly/3rQAlAC.

Acknowledgments. This research is supported by The Scientific and Technological Research
Council of Turkey (TUBITAK) ARDEB 1001 [Project number: 121E389] program.

References

1. Fowler, M., Lewis: Microservices. https://martinfowler.com/articles/microservices.html.
Accessed 11 Mar 2021

2. Alshuqayran, N., Ali, N., Evans, R.: A systematicmapping study inmicroservice architecture.
In: 2016 IEEE9th International Conference on Service-OrientedComputing andApplications
(SOCA), pp. 44–51 (2016). https://doi.org/10.1109/SOCA.2016.15

3. Larrucea, X., Santamaria, I., Colomo-Palacios, R., Ebert, C.: Microservices. IEEE Softw. 35,
96–100 (2018). https://doi.org/10.1109/MS.2018.2141030

4. Bonér, J.: Reactive Microsystems. O’Reilly Inc, Sebastopol (2017)
5. Thönes, J.: Microservices. IEEE Softw. 32, 116 (2015). https://doi.org/10.1109/MS.2015.11
6. Sampaio, A.R., et al.: Supporting microservice evolution. In: 2017 IEEE International Con-

ference on Software Maintenance and Evolution (ICSME), pp. 539–543 (2017). https://doi.
org/10.1109/ICSME.2017.63

7. Unlu, H., Tenekeci, S., Yıldız, A., Demirors, O.: Event oriented vs object oriented analysis
for microservice architecture: an exploratory case study. In: 2021 47th Euromicro Conference
on Software Engineering and Advanced Applications (SEAA), pp. 244–251 (2021). https://
doi.org/10.1109/SEAA53835.2021.00038

8. Dragoni, N., et al.: Microservices: yesterday, today, and tomorrow. In: Mazzara, M., Meyer,
B. (eds.) Present and Ulterior Software Engineering, pp. 195–216. Springer International
Publishing, Cham (2017). https://doi.org/10.1007/978-3-319-67425-4_12

9. Ünlü, H., Kennouche, D.E., Soylu, G.K., Demirörs, O.: Microservice-based projects in agile
world: a structured interview. Inf. Softw. Technol. 165, 107334 (2024). https://doi.org/10.
1016/j.infsof.2023.107334

10. Velepucha, V., Flores, P.: Monoliths to microservices - migration problems and challenges:
A SMS. In: 2021 Second International Conference on Information Systems and Software
Technologies (ICI2ST), pp. 135–142 (2021). https://doi.org/10.1109/ICI2ST51859.2021.
00027

11. Doležal, J., Buchalcevová, A.: Migration from monolithic to microservice architecture:
research of impacts on agility. IDIMT-2022 (2022)

12. Di Francesco, P., Lago, P., Malavolta, I.: Migrating towards microservice architectures: an
industrial survey. In: 2018 IEEE International Conference on Software Architecture (ICSA),
pp. 29–2909 (2018). https://doi.org/10.1109/ICSA.2018.00012

13. Waseem,M., Liang, P., Shahin,M.:A systematicmapping study onmicroservices architecture
in DevOps. J. Syst. Softw. 170, 110798 (2020). https://doi.org/10.1016/j.jss.2020.110798

https://bit.ly/3rQAlAC
https://martinfowler.com/articles/microservices.html
https://doi.org/10.1109/SOCA.2016.15
https://doi.org/10.1109/MS.2018.2141030
https://doi.org/10.1109/MS.2015.11
https://doi.org/10.1109/ICSME.2017.63
https://doi.org/10.1109/SEAA53835.2021.00038
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1016/j.infsof.2023.107334
https://doi.org/10.1109/ICI2ST51859.2021.00027
https://doi.org/10.1109/ICSA.2018.00012
https://doi.org/10.1016/j.jss.2020.110798

32 H. Ünlü et al.

14. Stahl, D., Martensson, T., Bosch, J.: Continuous practices and DevOps: beyond the buzz,
what does it all mean? In: 2017 43rd Euromicro Conference on Software Engineering and
Advanced Applications (SEAA), pp. 440–448 (2017). https://doi.org/10.1109/SEAA.2017.
8114695

15. Bilgin, B., Unlu, H., Demirörs, O.: Analysis and design of microservices: results fromTurkey.
In: 2020TurkishNational SoftwareEngineeringSymposium (UYMS), pp. 1–6 (2020). https://
doi.org/10.1109/UYMS50627.2020.9247022

16. Ünlü, H., Bilgin, B., Demirors, O.: A survey on organizational choices for microservice-based
software architectures. Turkish J. Elect. Eng. Comput. Sci. 30, 1187–1203 (2022). https://doi.
org/10.55730/1300-0632.3843

17. Pakistan - Computer Software. https://www.trade.gov/country-commercial-guides/pakistan-
computer-software. Accessed 22 July 2023

18. Shull, F., Singer, J., Sjøberg, D.I.K. (eds.): Guide to Advanced Empirical Software
Engineering. Springer, London (2008). https://doi.org/10.1007/978-1-84800-044-5

19. Linåker, J., Sulaman, S.M., Maiani deMello, R., Höst, M.: Guidelines for conducting surveys
in software engineering (2015)

20. Richardson, C.: Microservices patterns: with examples in Java. Simon and Schuster (2018)
21. Weinberg, G.M.: Quality software management, vol. 1, systems thinking. Dorset House

Publishing Co., Inc. (1992)

https://doi.org/10.1109/SEAA.2017.8114695
https://doi.org/10.1109/UYMS50627.2020.9247022
https://doi.org/10.55730/1300-0632.3843
https://www.trade.gov/country-commercial-guides/pakistan-computer-software
https://doi.org/10.1007/978-1-84800-044-5

DevOps Patterns: A Rapid Review

Sebastian Copei(B) and Jens Kosiol

Kassel University, Kassel, Germany
{sco,jens.kosiol}@uni-kassel.de

Abstract. The DevOps tool and technology landscape is large and com-
plex. According to the CNCF Landscape, there are about 1196 Tools
grouped into five categories, and 20 sub-categories. While CNCF also
provides guidelines for each main category, patterns for DevOps are not
covered. In this Rapid Review, we collect patterns that can be used for
DevOps and map them onto the phases of the DevOps cycle for a bet-
ter overview of when to use which pattern. In our primary search, we
initially identified 193 papers, out of which we eventually selected eight
for pattern extraction. We detected 52 patterns, which we grouped into
seven categories. Moreover, we mapped these categories onto the phases
of the DevOps cycle. We find that in each phase, at least one category
maps. Furthermore, there is a near even distribution from patterns onto
the phases except for one phase, to which only a single pattern could be
mapped. Finally, we investigate whether the patterns can be flawlessly
combined and which patterns are needed to provide a minimal technol-
ogy stack to support the usage of DevOps. We also introduce a concrete
sample stack for a simple scenario.

Keywords: DevOps · design patterns · architecture patterns · rapid
review

1 Introduction

Referring to Ramtin Jabbari et al., “DevOps is a development methodology
aimed at bridging the gap between Development (Dev) and Operations emphasiz-
ing communication and collaboration, continuous integration, quality assurance,
and delivery with automated deployment utilizing a set of development prac-
tices.” [17] Besides its technical aspects, DevOps is also an organizational pattern
for company development and operation teams. To use DevOps in a company, the
employees must be grouped into multi-functional teams and adopt agile devel-
opment methods. In contrast to the traditional team layout where the developer
and operator are strictly separated, the DevOps Engineer combines both roles. He
can develop and roll out his software independently [1,16]. DevOps is associated
with benefits like faster time to market or improved cross-team collaboration
and communication [14,20]. The DevOps process is summarized in the DevOps
development cycle (Fig. 1), based on the already known CI/CD cycle.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
B. Tekinerdoğan et al. (Eds.): ECSA 2023, LNCS 14590, pp. 33–50, 2024.
https://doi.org/10.1007/978-3-031-66326-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-66326-0_3&domain=pdf
https://doi.org/10.1007/978-3-031-66326-0_3

34 S. Copei and J. Kosiol

Motivation. Despite the benefits of DevOps, its adoption is still ongoing and
DevOps is not broadly applied. The greatest barriers for a broader adoption are
a lack of collaboration and communication, criticism practices, lack of manage-
ment, or trust and confidence problems on the cultural side. From the technical
side, challenges could be a lack of skill and knowledge, a lack of DevOps approach,
complicated or legacy infrastructure, poor software, or security issues [13,18].
There exists material designed to support the DevOps onboarding process. Pro-
cess models like the DevOps maturity model try to support the general DevOps
adoption process [8]. Moreover, the CNCF (Cloud Native Computing Foundation)
provides a landscape map1 for dozens of technologies grouped by categories like
databases, logging, or service mesh. The landscape should help conceptualize a
technology stack in a cloud environment. Still, the landscape only summarizes
technologies and tools, and without general knowledge about DevOps and cloud
architectures, it is challenging to select the appropriate technology for an appli-
cation, as the technologies can have strong interdependencies and the general
complexity is very high [30]. Thus, the difficulty of choosing the right technol-
ogy for a certain set of requirements while adopting DevOps remains a pressing
problem.

We conjecture that design patterns, rather than tools, provide a helpful app-
roach for getting started with DevOps. Design patterns, popularized by the Gang
of Four [15], provide solutions to recurring problems and tasks in software engi-
neering on a higher level of abstraction than tools or coding guidelines. In the
long run, we imagine an onboarding process, where engineers are suggested pat-
terns that meet the (architectural) requirements of their project and are helped
with building a technology stack that allows to implement the needed patterns.

In this work, we want to investigate whether the foundation for such a system
has already been developed. While empirical evidence for their benefits could be
more comprehensive [38], describing new patterns for emerging technologies has
become a relevant topic in software engineering research. Thus, we expect a
reasonable collection of patterns for DevOps to already exist in the academic
literature. We perform a Rapid Review (RR) [10] to collect these patterns and
investigate their interconnections and the respective roles they can play with
reference to the DevOps cycle (see Fig. 1). Furthermore, we investigate whether
it is already possible to assemble a minimal blueprint stack needed for DevOps
from the extracted patterns. Besides the minimal stack, we also define a small use
case and derive possible tools that implement the minimal stack to investigate
the practicability of the identified patterns.

Related Work. With DevOps consolidating itself as a field, secondary studies, in
particular, Systematic Literature Reviews (SLR), on various aspects of DevOps
are a timely topic. A whole range of recent publications review the benefits
of applying DevOps [14,20,28] or the challenges of a successful adoption [2–
5,18,21,29]. There are also recent SLRs on the usage of DevOps in a specific
application area, e.g., [23] (medicine), in combination with a certain technique/

1 https://landscape.cncf.io/.

https://landscape.cncf.io/

DevOps Patterns: A Rapid Review 35

Fig. 1. DevOps cycle

technology, e.g. [36] (microservices) and [31] (machine learning), or with reference
to a desired property, e.g., [22] (security). For the usage of patterns, there is an
SLR to identify architectural patterns for Microservices [34]. However, no SLR
specifically addresses patterns for DevOps.

Structure. The following section describes the methodology used for this paper.
In Sect. 3, we present the results of the RR and discuss them. In Sect. 4, we exam-
ine the threats to the study’s validity. Finally, Sect. 5 concludes and highlights
our next steps.

2 Methodology

For the methodology of our work, we draw inspiration from the well-established
guideline for conducting SLRs by Kitchenham and Charters [19]. As, for the time
being, our goals are exploratory rather than analytical, we follow a simplified
approach and perform a Rapid Review [10]. The main differences to Kitchenham
and Charters’ guideline are the following.

– Our research questions are exploratory rather than analytical. In particular,
we do not follow the PICO (population, intervention, comparison, outcomes)
structure for our questions.

– We use a rather basic search string for our search.
– Study selection and data extraction is performed by a single person. A second

person merely performs a consistency check for a subset of the data.
– Instead of developing and applying quality criteria for study selection, we

restrict ourselves to academic literature and exclude grey literature (as com-
mon for Rapid Reviews [10]). Moreover, we restrict our search to the relevant
digital libraries for software engineering and perform snowballing but do not
search pre-print servers like arXiv2 or contact established researchers from
our field of study.

– Consequently, we present a simplified research protocol [11] that provides an
overview over all extracted studies, reasons for exclusion, and extracted data
but cannot give, e.g., quality criteria.

2 https://arxiv.org/.

https://arxiv.org/

36 S. Copei and J. Kosiol

2.1 Research Questions

In this study, we want to collect patterns that help to create minimal technology
stacks to apply DevOps. To reach this goal, we will answer the following research
questions:

RQ1 What patterns are described in the literature that can be used for
DevOps?

RQ1a Does the literature already group the patterns?
RQ1b Can patterns without a group be added to existing categories, or
must additional categories be defined?

RQ2 Can the identified patterns be combined, or are there any that mutually
exclude each other?
RQ3 Are the identified patterns or categories related in any form to the
phases of the DevOps cycle?

We want to summarize the existing research for DevOps patterns by answering
the first question. To also address a categorization of these patterns, we added
the two subquestions, RQ1a and RQ1b. With the second question, RQ2, we
want to ensure that at least a single selection of the patterns exists to derive a
blueprint stack for DevOps. With the third research question, RQ3, we aim to
investigate whether the identified patterns cover the entire DevOps cycle or only
a part of it. We aim to identify a set of patterns that are at least necessary to
assist in implementing DevOps.

2.2 Search Strategy and Search String

Figure 2 shows our steps during the search process. Beginning with the initial
search, we merged the results and eliminated duplicates. To the resulting set of
papers, we have applied our inclusion and exclusion criteria. We read the full
text of the remaining papers and decided which papers should be used in the
study. As a last step, we have done snowballing on the finally picked papers. For
the initial search, a combination of the keywords devops pattern(s) and devops
design pattern(s) builds the used search string, shown in Listing 3.1.

Fig. 2. Overview of the search process and selection process

DevOps Patterns: A Rapid Review 37

Listing 3.1. Search string

”devops pattern ” OR ”devops pat t e rns ” OR
”devops des ign pattern ” OR ”devops des ign pat te rns ”

A first test with this simple search string already retrieved papers that use near-
synonyms like architecture instead of (design) pattern in the abstract and/or
title. Therefore, we confined ourselves to that search string. We searched the
following digital libraries, which are the relevant digital libraries for Software
Engineering [19], for this string:

1. IEEExplore (www.ieeexplore.ieee.org)
2. ACM Digital library (www.dl.acm.org)
3. Google Scholar (www.scholar.google.com)
4. ScienceDirect (www.sciencedirect.com)

2.3 Inclusion and Exclusion Criteria

We defined inclusion and exclusion criteria to decide whether we consider a paper
for our study. We include a paper if it fulfills each of the following criteria:

– Published between 2007 and October 2023.
– Written in English.
– Peer-reviewed paper.
– The paper describes or introduces one or more patterns that could be useful

for DevOps.

Concerning publication date, we only include papers published between Jan-
uary 2007 and October 2023. Patrick Debois coined the term DevOps around
2007 [9,12,26], so we have used 2007 as the earliest time constraint. We per-
formed the search in October 2023, which provides the upper bound for publi-
cation of considered papers. We identify a procedure as a pattern if the authors
provide a clear problem description and a replicable solution for the correspond-
ing problem. The authors should either describe their patterns in the known
structure of context, problem, forces, and solution [24,37], or they can develop
the patterns in the context of a use case and describe the usage and the problem
that was solved. Finally, to be considered for extraction, a pattern must have
a clear connection to DevOps. For example, the well-known singleton pattern
is not directly associated with DevOps. In contrast, the design pattern Circuit
Breaker is related to web services and resiliency, which provides an association
to DevOps. We exclude a paper if it fulfills one of the following criteria:

– The paper presents or demonstrates tools and technologies without any
abstraction into a reusable pattern.

– The paper presents a tutorial or example for implementing DevOps, again
without abstracting the taken approach into a reusable pattern.

www.ieeexplore.ieee.org
www.dl.acm.org
www.scholar.google.com
www.sciencedirect.com

38 S. Copei and J. Kosiol

With regard to these criteria, we first read the title and abstract of each paper
(and sometimes the introduction and conclusion) to pre-select the dataset. Sub-
sequently, we read the full text of the remaining papers and rechecked the crite-
ria. The first author of this paper performed this selection process. The second
author reevaluated the criteria on a randomly selected set of 9 extracted papers
to prevent selection bias and validate our decisions. No conflicting decisions
occurred.

2.4 Data Extraction

From the finally selected papers, we first extracted the categories the authors
used to group their patterns if categories were present. Afterwards, we collected
all the described patterns. If the authors did not directly categorize patterns, we
sorted them into the categories we extracted beforehand. To better understand
the connection between the identified patterns and DevOps, we tried to map the
patterns onto the different phases of the DevOps cycle (see Fig. 1). For clarity,
we mapped the categories and not the patterns.

3 Results and Discussion

Table 1 presents the outcomes of the initial search. Upon applying the search
string to the digital libraries, 193 papers were identified. Our first screening
phase reduced the number of papers to 13. After thoroughly reading the com-
plete papers, the count was narrowed down to six. Via snowballing, we identified
two additional papers and received a final count of eight papers in the study.
Table 2 displays the identified papers, denoted by paper IDs P[1–8], for improved
readability in subsequent descriptions. The patterns described in the papers do
not relate directly to DevOps but to microservices architecture. Nevertheless,
the identified patterns can also be applied in DevOps. The papers P1 and P2
describe pattern languages for the cloud and microservices. The paper P3 intro-
duces a pattern map for software orchestration on the cloud. Paper P4 collects
the architectural patterns used in open-source projects realized with microser-
vices. In paper P5, the authors describe a single pattern to handle the changes
of software specifications during the software lifecycle. Paper P6 describes the

Table 1. Paper sources

Library Found Criteria applied Full text Snowballing

IEEExplore 53 6 0

ACM Digital library 6 3 3

Google Scholar 131 4 3

ScienceDirect 3 0 0

Total 193 13 6 8

DevOps Patterns: A Rapid Review 39

usage of the micro-frontends pattern. The steps to migrate from a monolithic
architecture to a microservice-based architecture are described in paper P7. The
authors of paper P8 perform a Systematic Mapping Study on architectural pat-
terns for microservices.

Table 2. Included papers

Title ID/Reference

Overview of a Pattern Language for Engineering Software for the Cloud P1 [33]

Implementation Patterns for Microservices Architecture P2 [7]

Patterns for Software Orchestration on the Cloud P3 [32]

Actual Use of Architectural Patterns in Microservices-Based Open Source Projects P4 [25]

Specification in Continuous Software Development P5 [35]

Micro-frontends: application of microservices to web front-ends P6 [27]

Microservice migration pattern P7 [6]

Architectural Patterns for Microservices: a Systematic Mapping Study P8 [34]

3.1 Research Question 1: What Patterns are Described
in the Literature that Can Be Used for DevOps?

In total, we identified 52 patterns. Table 3 shows the number of patterns per
category, which we introduce in the following. At first, we collected all already
grouped patterns, as described in Sect. 3.2. We combined patterns with different
names but identical meanings during this step. For example, in P3, the authors
describe the pattern API Management. In P4 and P8, this pattern is called API
Gateway ; in P7, it is described as Introduce edge server. We list the pattern
only once (under the name API Gateway). After extracting the patterns that
had already been categorized in the literature, we proceeded with the remaining
patterns from P5, P6, and P7. We present the final list of all identified categories,
patterns, and source papers in Table 4. A short description of each pattern is
available as part of our research protocol [11].

Table 3. Absolute count of pattern per category

Category Number of patterns

(C1) Automated Infrastructure Management 6

(C2) Development 9

(C3) Discovery and Communication 5

(C4) Isolated Execution 4

(C5) Monitoring 8

(C6) Orchestration and Supervision 19

(C7) Requirements 1

Total 52

40 S. Copei and J. Kosiol

Table 4. Identified patterns grouped by categories

Category Pattern Paper

(C1) Automated Infrastructure Management

Automated Orchestration P3, P7

Automated Scalability P1

Complete Code Ownership P3

Continuous Deployment P3

Continuous Integration P3, P4, P7

Infrastructure as Code P1, P3

(C2) Development

Backend for Frontend P2, P4

Circuit Breaker P4, P7

Micro-Frontends P6

Microservices P2

Native Mobile Application P2

Near Cache P2

Page Cache P2, P4

Results Cache P2, P4

Single Page Application P2

(C3) Discovery and Communication

Automated Master Election P3

Local Reverse Proxy P1, P3

Message System P1, P3, P8

Service Discovery P4

Service Registry P2, P4, P7, P8

(C4) Isolated Execution

Environment-based Configuration P3

Locale Volumes P3

One Container per Application P3

Single service per Host P8

(C5) Monitoring

Alarms P3, P7

Correlation ID P2

External Monitoring P1, P4

Health Check P4

Log Aggregation P1, P2, P3, P4

Monitor Everything P3, P7

Preemptive Logging P1

Real Time Analytics P3

(C6) Orchestration and Supervision

API Gateway P3, P4, P7, P8

Automated Recovery P1

Containerization P1, P3, P4, P7

Database cluster P8

Database per Service P4, P8

Deployment Manager P3

Deployment Strategies P3

Document Store P2

Fault Injection P1, P3

Job Scheduling P1, P3, P4

Key Value Store P2, P4

Load Balancer P4, P7

Multiple service per Host P8

Orchestration by Resource Offering P3

Orchestration Manager P1

Scalable Store P2, P4

Shared database server P8

Self-Healing P3

System-wide Resiliency P3

(C7) Requirements

Continuous Software Design Specification P5

DevOps Patterns: A Rapid Review 41

3.2 Research Question 1a: Does the Literature Already Group
the Patterns?

The papers P1, P2, P3, P4, and P8 use categories to group their identified/de-
scribed patterns. We extracted all named categories and compared them and the
patterns grouped by them. We reused seven from the 28 named categories for
our study to categorize our identified patterns. Table 5 lists all categories and
briefly describes whether or not we used the category and why not. The origi-
nally extracted 28 categories are Automated Infrastructure Management, Orches-
tration and Supervision, Monitoring and Discovery and Communication from
P1, Modern Web Architecture, Microservices Architecture, Scalable Store and
Microservices DevOps from P2, Development, Deployment, Supervision, Mon-
itoring, Discovery and Application Support and Isolated Execution from P3,
IoT, DevOps, Front-End, Back-End, Orchestration, Migration,Communication,
Behaviour, Design, Mitigation, Deployment from P4 and Orchestration and
Coordination, Deployment and Data Storage from P8.

We used the four categories from P1 as a starting point for our grouping.
We dismissed the categories from P2 and moved the patterns to the categories
Development from P3 and Orchestration and Supervision and Monitoring from
P1. The original categories from P2 were Modern Web Architecture Patterns,
Microservices Architecture Patterns, Scalable Store Patterns, and Microservices
DevOps Patterns. Since the other papers presented more suitable categories for
the patterns, we decided to drop the categories from paper P2. We combined
the other categories, Deployment, and Supervision, with the category Orchestra-
tion and Supervision and Discovery and Application Support, with the category
Discovery and Communication both from P1. The last categories from P3, Mon-
itoring and Isolated Execution, are used for the study. Since the authors of P4 do
not provide patterns for their categories IoT, DevOps, Front-End, Behaviour, and
Design, we neither used these categories. Patterns from the category Back-End
are moved to Development from P3, patterns from Orchestration to Orchestra-
tion and Supervision, Migration and Communication to Discovery and Commu-
nication from P1, and Mitigation to Monitoring from P3. In contrast to the
Deployment category from P3, we moved the pattern from this Deployment cat-
egory to the Development category from P3. The authors of P4 grouped patterns
in the Deployment category, which the authors of the other papers grouped into
the Development category. Finally, we moved the pattern from the categories
Orchestration and Coordination and Deployment to Orchestration and Supervi-
sion from P1 and Data Storage to Development from P3. This procedure leads
at this point to the six categories Automated Infrastructure Management, Devel-
opment, Discovery and Communication, Isolated Execution, Monitoring, Orches-
tration and Supervision, which we will use to group our identified patterns. To
give more insight into our grouping process, we briefly describe each category
we extracted and provide examples of patterns for the categories.

42 S. Copei and J. Kosiol

Table 5. Named categories by papers

Paper Category Used in study

P1

Automated Infrastructure Management Yes

Orchestration and Supervision Yes

Monitoring Yes

Discovery and Communication Yes

P2

Modern Web Architecture No, patterns moved to Development

Microservices Architecture No, patterns moved to Development

Scalable Store No, patterns moved to Development

Microservices DevOps No, patterns moved to Development

P3

Development Yes

Deployment No, patterns moved to Orchestration and Supervision

Supervision No, patterns moved to Orchestration and Supervision

Monitoring Yes

Discovery and Application Support No, patterns moved to Discovery and Communication

Isolated Execution Yes

P4

IoT No, no patterns in this category

DevOps No, no patterns in this category

Front-End No, no patterns in this category

Back-End No, patterns moved to Development

Orchestration No, patterns moved to Orchestration and Supervision

Migration No, patterns moved to Discovery and Communication

Communication No, patterns moved to Discovery and Communication

Behaviour No, no patterns in this category

Design No, no patterns in this category

Mitigation No, patterns moved to Monitoring

Deployment No, patterns moved to Development

P8

Orchestration and Coordination No, patterns moved to Orchestration and Supervision

Deployment No, patterns moved to Orchestration and Supervision

Data Storage No, patterns moved to Development

Automated Infrastructure Management (C1) combines patterns to set up the
infrastructure needed for a cloud. They help by tackling issues like scalability,
reliability, and resilience. For instance, the Infrastructure as Code (IaC) pattern
is widely used for automating the creation of virtual machines and infrastructure
deterministic behavior akin to containers.

Development (C2) groups patterns that can be used directly during the devel-
opment of applications intended to be deployed in a cloud environment. The
patterns can be used for frontends, backends, or service-based applications. The
Microservices pattern in this category represents a software architecture for

DevOps Patterns: A Rapid Review 43

service-oriented systems, marking the next evolutionary step after the service-
oriented architecture. With this pattern, services are deployed as independent
and separate artifacts.

Discovery and Communication (C3) patterns are essential for a distributed ser-
vice architecture. In contrast to the Development patterns, these patterns aim
to resolve issues regarding the data exchange between services. For example, the
Message System pattern should be combined with the Microservices pattern to
ensure service independence. The advantages of Microservices can be exploited
by utilizing an asynchronous event-based message system.

Isolated Execution (C4) contains patterns for creating containerized appli-
cations. In a cloud environment, multiple applications are hosted. The
Environment-based Configuration pattern can be employed to guarantee the iso-
lation of these applications. This pattern necessitates the separation of appli-
cations using, for instance, namespaces, with each namespace having its own
set of configurations, such as database credentials. This approach significantly
enhances the security of all applications.

Monitoring (C5) contains patterns to optimize applications’ operation and help
find bugs and failures during runtime. Collecting log data alone is insufficient
for detecting fraud within an application or a large system comprising thou-
sands of services. However, implementing the Log Aggregation pattern makes it
possible to extract valuable information regarding the status of individual ser-
vices or applications. For instance, by leveraging AI techniques, anomalies can
be detected by analyzing the log message stream.

Orchestration and Supervision (C6) bundles patterns for the distribution and
management of containerized applications. This also includes patterns that
increase resilience and reliability. The patterns within this category exhibit emer-
gent effects. A Deployment Manager, in isolation, is not functional without
Deployment Strategies or a Job Scheduler. However, when combined with the
Containerization and Orchestration Manager patterns, these patterns demon-
strate the advantages of a cloud-based environment, exemplified by technologies
like Kubernetes.

3.3 Research Question 1b: Can Patterns Without a Group Be
Added to Existing Categories, or Must Additional Categories
Be Defined?

By collecting and summarizing these categories, we implicitly grouped the pat-
terns from the papers P1, P2, P3, P4, and P8. We then sorted the patterns
described in P6 and P7 into these six categories. Since the pattern described
in P5 does not fit into any of the extracted categories, we group it into a new
seventh category that we call Requirements. For completeness, we describe this
new category in the same way as the other ones.

44 S. Copei and J. Kosiol

Requirements (C7) groups patterns that support the communication between
all affected stakeholders during a software development project, like Continuous
Software Design Specification.

All in all, we reused six categories from the literature and added a seventh.
The seventh was added because we could not correctly group the Continuous
Software Design Specification pattern into the existing ones.

3.4 Research Question 2: Can the Identified Patterns Be Combined,
or Are There Any that Mutually Exclude Each Other?

Comparing the individual patterns, we detected conflicting ones. From C6, the
patterns Database cluster, Database per Service, and Shared database server
mutually exclude each other. The three patterns describe different ways to pro-
vide a database. In a Database cluster, data is replicated on multiple nodes
to provide high availability of the stored data. These clusters can be hosted on-
cloud or on-premise. Multiple services could use the Database cluster to read and
write data. With a Shared database server, multiple services also use the same
database, but the data are not replicated onto multiple nodes. When developing
a microservice-based application, the Database per Service pattern can prevent
the mixing up of data that does not belong to the same service. Inside of each
category, the other patterns are combinable. Across the categories, the patterns
Single service per Host and Multiple service per Host exclude each other. While
the Single service per Host pattern requires that on each host, only a single
service or application is hosted, on the other hand, the Multiple service per Host
allows the hosting of multiple services and applications on a single host. We
could not detect further conflicts between patterns.

3.5 Research Question 3: Are the Identified Patterns or Categories
Related in Any Form to the Phases of the DevOps Cycle?

Because we could not identify papers investigating the relationship between pat-
terns and the DevOps Cycle, we tried to map each of the found patterns from
Table 4 onto one of the phases of the DevOps cycle (see Fig. 1). Because of the
number of patterns, we decided to map the categories. Figure 3 shows a possible
mapping of the pattern categories onto the DevOps cycle. While we could map
C2, C3, C4, C5, and C7 onto exactly one phase, C1 and C6 could be mapped
onto multiple phases. The mapping of the categories C2, C5, and C7 emerged
from the naming of categories and phases. The categories C3 and C4 contain
patterns used to operate an application in a cloud environment. For this reason,
we mapped these categories onto the Operate phase. In category C6, the patterns
are helpful for deployment, like Deployment Manager, Deployment Strategies, or
Job Scheduling and operation, like Load Balancer, Self-Healing, or System-wide
Resiliency. Therefore, we mapped the category C6 onto the phases Deploy and
Operate. Category C1 contains patterns for the process of CI/CD. Thus, we
mapped this category on the Build, Test (CI), Release, and Deploy (CD) phases.

DevOps Patterns: A Rapid Review 45

Fig. 3. DevOps cycle with pattern category mapping

The categories C1 and C6 could be further divided into sub-categories and then
mapped to individual phases. However, despite the distribution seeming to be
near even, the phase of Plan only has mapped a single pattern. From this, we
conclude that there is a need for more patterns applicable to the Plan phase.

3.6 Discussion: What is a Possible Minimal Stack to Apply
DevOps?

In Table 6, we present the patterns minimally needed in each phase according
to our opinion to create a minimal stack. As we have only a single pattern for
the Plan phase, a minimal stack requires a sufficient project management tool,
like Scrum or Kanban. Although we have identified patterns in the Code phase,

Table 6. Patterns minimally needed to enable DevOps

Phase Patterns Comment

Plan Not enough patterns identified in study

Code Should not be generalized to maintain flexibility

Build

Continuous Integration

Test

Continuous Integration

Release

Continuous Deployment

Deploy

Automated Orchestration

Containerization

Continuous Deployment

Operate

Load Balancer

Local Reverse Proxy

Locale Volumes

Orchestration Manager

Monitor

Alarms

Health Check

Log Aggregation

46 S. Copei and J. Kosiol

we do not want to fixate any patterns for the development. Patterns used in the
following phases depend on decisions made during the Code phase. For example,
if a team decides to use Microservices, more patterns are needed for communi-
cation and orchestration of these services. These patterns would not be required
if the team used a monolithic architecture. With the patterns Continuous Inte-
gration and Continuous Deployment, the phases of Build, Test, and Release are
covered. In the Deploy phase, the Automated Orchestration and Containeriza-
tion patterns need to be applied besides the Continuous Deployment pattern.
A deployed workload must be able to be deployed with other services available
as containers. During the Operate phase, incoming traffic must be directed to
the correct service. Therefore, the Load Balancer and Local Reverse Proxy pat-
terns are needed. The Local Volumes pattern should be used to preserve the
state of any databases. The Orchestration Manager pattern is also crucial for
deploying a service on a host with sufficient hardware resources for the Operate
phase. Alarms, Health Check, and Log Aggregation patterns must be used in the
Monitor phase to detect errors as soon as possible. With this minimal set of pat-
terns, it is now possible to define technology stacks for scenarios with different
complexity.

Example application A team wants to implement a simple application that col-
lects data from soccer games and visualizes the ratio between attempts to make
a goal and actual goals for each match in a session. The team uses a mono-
lithic architecture with a single backend and a separate frontend application.
To apply the Continuous Integration and Continuous Deployment pattern, they
may use the integrated tool GitHub Actions if they use GitHub as their repos-
itory tool. To enable the patterns Automated Orchestration, Containerization,
Health Check, and Orchestration Manager, Docker would be suitable. For traffic
routing, nginx could be used for the Load Balancer and Local Reverse Proxy
patterns. Finally, the ELK (elasticsearch, logstash and kibana) stack could be
used to apply Alarms and Log Aggregation patterns.

However, it is important to note that aspects such as resilience, scalability,
and security still need to be fully addressed in this minimal scenario. The iden-
tified patterns can be instrumental in addressing these concerns. For example,
patterns like Circuit Breaker, Automated Recovery, Self-Healing, and System-
wide Resilience can be employed to enhance resilience. Like the example, it is
now possible to define further stacks for other complex scenarios.

4 Threats to Validity

Our threats to validity arise from the taken simplified approach that was laid
out at the beginning of Sect. 2. Our simple search string and restriction to digi-
tal libraries make it possible that we missed research papers reporting relevant
patterns. However, we additionally performed snowballing, controlled our search
string to also retrieve papers that use (near) synonyms, and searched Google
Scholar that covers pre-print servers like HAL and arXiv. Thus, we deem the
risk of missed papers to be minimal.

DevOps Patterns: A Rapid Review 47

Next, the first author performed study selection and data extraction alone,
which is considered to be a practice that might introduce selection bias. To reduce
the risk, the second author double checked a randomly selected set of papers for
inclusion and we obtained perfect accordance. Moreover, given the exploratory
nature of our research questions, the risks of wrongly excluding papers or making
mistakes in data extraction seem to be minimal.

Our greatest threat to validity is the exclusion of grey literature. As DevOps
is a topic where practice rushes ahead of academia, it is quite possible that we
missed trends from the industry.

Summarizing, by design of our study it is possible that we missed individ-
ual relevant patterns. In particular, we might have missed patterns that are
employed in practice without having been presented in academic publications.
However, additional patterns just support our idea that approaching the DevOps
onboarding problem via patterns might be a viable option.

5 Conclusion and Future Work

In this paper, we conducted a Rapid Review to identify patterns that can help to
create stacks for implementing DevOps. We extracted a set of categories and used
these for grouping the identified patterns. After that, we named patterns that
mutually exclude each other. Further, we mapped the categories to the DevOps
cycle to identify any relations between the patterns and the DevOps cycle. We
observed a relation between the extracted patterns and the DevOps cycle. With
this knowledge, we defined a minimal set of patterns to apply DevOps. With
a short example, we derived a simple technology stack that could be used to
implement the minimal set of patterns. However, the actual usability of possible
derivable stacks needs to be investigated. Also, whether these patterns can help
apply DevOps still needs to be determined. Our next step will be to identify a
set of tools for each pattern. We aim to create best practice guides for DevOps
migration or initial onboarding by mapping these tools to the corresponding
patterns. By mapping these tools to the related patterns, we intend to refine
these guides into tool and technology stacks that can be readily implemented.
These stacks should address a range of project sizes and business scales, from
small to large.

Acknowledgements. We are very thankful for the constructive criticism of the
anonymous reviewers that helped us to considerably improve the presentation of this
paper.

48 S. Copei and J. Kosiol

References

1. Agrawal, P., Rawat, N.: DevOps, a new approach to cloud development & test-
ing. In: 2019 International Conference on Issues and Challenges in Intelligent
Computing Techniques (ICICT), vol. 1, pp. 1–4 (2019). https://doi.org/10.1109/
ICICT46931.2019.8977662

2. Akbar, M.A., Rafi, S., Alsanad, A.A.-A., Qadri, S.F., Alsanad, A., Alothaim, A.:
Toward successful DevOps: a decision-making framework. IEEE Access 10, 51343–
51362 (2022). https://doi.org/10.1109/ACCESS.2022.3174094

3. Amaro, R., Pereira, R., da Silva, M.M.: Capabilities and practices in devops: a mul-
tivocal literature review. IEEE Trans. Softw. Eng. 49(2), 883–901 (2023). https://
doi.org/10.1109/TSE.2022.3166626

4. Azad, N., Hyrynsalmi, S.: DevOps critical success factors – a systematic literature
review. Inf. Softw. Technol. 157, 107150 (2023). https://doi.org/10.1016/j.infsof.
2023.107150

5. Badshah, S., Khan, A.A., Khan, B.: Towards process improvement in DevOps: a
systematic literature review. In: Li, J., Jaccheri, L., Dingsøyr, T., Chitchyan, R.
(eds.) EASE ’20: Evaluation and Assessment in Software Engineering, Trondheim,
Norway, 15–17 April 2020, pp. 427–433. ACM (2020). https://doi.org/10.1145/
3383219.3383280

6. Balalaie, A., Heydarnoori, A., Jamshidi, P., Tamburri, D.A., Lynn, T.: Microser-
vices migration patterns. Softw. Pract. Exp. 48(11), 2019–2042 (2018). https://
doi.org/10.1002/spe.2608

7. Brown, K., Woolf, B.: Implementation patterns for microservices architectures. In:
Proceedings of the 23rd Conference on Pattern Languages of Programs. PLoP ’16.
The Hillside Group, USA (2016)

8. Bucena, I., Kirikova, M.: Simplifying the DevOps adoption process. In: BIR Work-
shops (2017). https://api.semanticscholar.org/CorpusID:10430574

9. Buchanan, I.: History of DevOps. https://www.atlassian.com/devops/what-is-
devops/history-of-devops. Accessed 11 Mar 2024

10. Cartaxo, B., Pinto, G., Soares, S.: Rapid reviews in software engineering. In:
Felderer, M., Travassos, G.H. (eds.) Contemporary Empirical Methods in Soft-
ware Engineering, pp. 357–384. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-32489-6 13

11. Copei, S., Kosiol, J.: Research Protocol for “DevOps Patterns: A Systematic Lit-
erature Review”, December 2023. https://doi.org/10.5281/zenodo.10224501

12. Debois, P.: Patrick Debois – Speaker Bio. https://www.jedi.be/bio/. Accessed 11
Mar 2024

13. Erich, F.M.A., Amrit, C., Daneva, M.: A qualitative study of DevOps usage in
practice. J. Softw. Evol. Process. 29(6), e1885 (2017). https://doi.org/10.1002/
smr.1885

14. Faustino, J.P., Adriano, D., Amaro, R., Pereira, R., da Silva, M.M.: DevOps ben-
efits: a systematic literature review. Softw. Pract. Exp. 52(9), 1905–1926 (2022).
https://doi.org/10.1002/spe.3096

15. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Boston (1994)

16. Gokarna, M., Singh, R.: DevOps: a historical review and future works. In: 2021
International Conference on Computing, Communication, and Intelligent Sys-
tems (ICCCIS), pp. 366–371 (2021). https://doi.org/10.1109/ICCCIS51004.2021.
9397235

https://doi.org/10.1109/ICICT46931.2019.8977662
https://doi.org/10.1109/ICICT46931.2019.8977662
https://doi.org/10.1109/ACCESS.2022.3174094
https://doi.org/10.1109/TSE.2022.3166626
https://doi.org/10.1109/TSE.2022.3166626
https://doi.org/10.1016/j.infsof.2023.107150
https://doi.org/10.1016/j.infsof.2023.107150
https://doi.org/10.1145/3383219.3383280
https://doi.org/10.1145/3383219.3383280
https://doi.org/10.1002/spe.2608
https://doi.org/10.1002/spe.2608
https://api.semanticscholar.org/CorpusID:10430574
https://www.atlassian.com/devops/what-is-devops/history-of-devops
https://www.atlassian.com/devops/what-is-devops/history-of-devops
https://doi.org/10.1007/978-3-030-32489-6_13
https://doi.org/10.1007/978-3-030-32489-6_13
https://doi.org/10.5281/zenodo.10224501
https://www.jedi.be/bio/
https://doi.org/10.1002/smr.1885
https://doi.org/10.1002/smr.1885
https://doi.org/10.1002/spe.3096
https://doi.org/10.1109/ICCCIS51004.2021.9397235
https://doi.org/10.1109/ICCCIS51004.2021.9397235

DevOps Patterns: A Rapid Review 49

17. Jabbari, R., bin Ali, N., Petersen, K., Tanveer, B.: What is DevOps? A systematic
mapping study on definitions and practices. In: Proceedings of the Scientific Work-
shop Proceedings of XP2016. XP ’16 Workshops, New York, NY, USA. Association
for Computing Machinery (2016). https://doi.org/10.1145/2962695.2962707

18. Khan, M.S., Khan, A.W., Khan, F., Khan, M.A., Whangbo, T.K.: Critical chal-
lenges to adopt DevOps culture in software organizations: a systematic review.
IEEE Access 10, 14339–14349 (2022). https://doi.org/10.1109/ACCESS.2022.
3145970

19. Kitchenham, B., Charters, S.: Guidelines for performing systematic literature
reviews in software engineering (2007). https://www.elsevier.com/ data/promis
misc/525444systematicreviewsguide.pdf

20. Lazuardi, M., Raharjo, T., Hardian, B., Simanungkalit, T.: Perceived benefits of
DevOps implementation in organization: a systematic literature review. In: ICSIE
2021: 10th International Conference on Software and Information Engineering,
Cairo, Egypt, 12–14 November 2021, pp. 10–16. ACM (2021). https://doi.org/10.
1145/3512716.3512718

21. Leite, L.A.F., Rocha, C., Kon, F., Milojicic, D.S., Meirelles, P.: A survey of DevOps
concepts and challenges. ACM Comput. Surv. 52(6), 127:1–127:35 (2020). https://
doi.org/10.1145/3359981

22. Leppänen, T., Honkaranta, A., Costin, A.: Trends for the DevOps security. A sys-
tematic literature review. In: Shishkov, B. (ed.) BMSD 2022. LNBIP, vol. 453, pp.
200–217. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-11510-3 12

23. Lie, M.F., Sánchez-Gordón, M., Palacios, R.C.: DevOps in an ISO 13485 regulated
environment: a multivocal literature review. In: Baldassarre, M.T., Lanubile, F.,
Kalinowski, M., Sarro, F. (eds.) ESEM ’20: ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement, Bari, Italy, 5–7 October
2020, pp. 9:1–9:11. ACM (2020). https://doi.org/10.1145/3382494.3410679

24. Meszaros, G.: A pattern language for pattern writing. https://hillside.net/index.
php/a-pattern-language-for-pattern-writing. Accessed 11 Mar 2024

25. Márquez, G., Astudillo, H.: Actual use of architectural patterns in microservices-
based open source projects. In: 2018 25th Asia-Pacific Software Engineering Con-
ference (APSEC), pp. 31–40 (2018). https://doi.org/10.1109/APSEC.2018.00017

26. Odazie, D., Iheanacho, A.: A Brief History of DevOps and Its Impact on
Software Development (2023). https://everythingdevops.dev/a-brief-history-of-
devops-and-its-impact-on-software-development/. Accessed 11 Mar 2024

27. Pavlenko, A., Askarbekuly, N., Megha, S., Mazzara, M.: Micro-frontends: applica-
tion of microservices to web front-ends. J. Internet Serv. Inf. Secur. 10(2), 49–66
(2020)

28. Plant, O.H., van Hillegersberg, J., Aldea, A.: How DevOps capabilities leverage
firm competitive advantage: a systematic review of empirical evidence. In: Almeida,
J.P.A., Bork, D., Guizzardi, G., Montali, M., Proper, H.A., Sales, T.P. (eds.) 23rd
IEEE Conference on Business Informatics. CBI 2021, Bolzano, Italy, 1–3 September
2021, vol. 1, pp. 141–150. IEEE (2021). https://doi.org/10.1109/CBI52690.2021.
00025

29. Rafi, S., Wu, Y., Akbar, M.A.: RMDevOps: a road map for improvement in DevOps
activities in context of software organizations. In: Li, J., Jaccheri, L., Dingsøyr, T.,
Chitchyan, R. (eds.) EASE ’20: Evaluation and Assessment in Software Engineer-
ing, Trondheim, Norway, 15–17 April 2020, pp. 413–418. ACM (2020). https://doi.
org/10.1145/3383219.3383278

https://doi.org/10.1145/2962695.2962707
https://doi.org/10.1109/ACCESS.2022.3145970
https://doi.org/10.1109/ACCESS.2022.3145970
https://www.elsevier.com/__data/promis_misc/525444systematicreviewsguide.pdf
https://www.elsevier.com/__data/promis_misc/525444systematicreviewsguide.pdf
https://doi.org/10.1145/3512716.3512718
https://doi.org/10.1145/3512716.3512718
https://doi.org/10.1145/3359981
https://doi.org/10.1145/3359981
https://doi.org/10.1007/978-3-031-11510-3_12
https://doi.org/10.1145/3382494.3410679
https://hillside.net/index.php/a-pattern-language-for-pattern-writing
https://hillside.net/index.php/a-pattern-language-for-pattern-writing
https://doi.org/10.1109/APSEC.2018.00017
https://everythingdevops.dev/a-brief-history-of-devops-and-its-impact-on-software-development/
https://everythingdevops.dev/a-brief-history-of-devops-and-its-impact-on-software-development/
https://doi.org/10.1109/CBI52690.2021.00025
https://doi.org/10.1109/CBI52690.2021.00025
https://doi.org/10.1145/3383219.3383278
https://doi.org/10.1145/3383219.3383278

50 S. Copei and J. Kosiol

30. Rosilier, A., Demir, M.A., Prevost, J.J.: Automated consulting for cloud native
architectures. In: 2022 17th Annual System of Systems Engineering Conference
(SOSE), pp. 472–477 (2022). https://doi.org/10.1109/SOSE55472.2022.9812695

31. Rzig, D.E., Hassan, F., Kessentini, M.: An empirical study on ML DevOps adop-
tion trends, efforts, and benefits analysis. Inf. Softw. Technol. 152, 107037 (2022).
https://doi.org/10.1016/j.infsof.2022.107037

32. Sousa, T.B., Correia, F.F., Ferreira, H.S.: Patterns for software orchestration on the
cloud. In: Proceedings of the 22nd Conference on Pattern Languages of Programs.
PLoP ’15. The Hillside Group, USA (2015)

33. Sousa, T.B., Ferreira, H.S., Correia, F.F.: Overview of a pattern language for engi-
neering software for the cloud. In: Proceedings of the 25th Conference on Pattern
Languages of Programs. PLoP ’18. The Hillside Group, USA (2020)

34. Taibi, D., Lenarduzzi, V., Pahl, C.: Architectural patterns for microservices: a
systematic mapping study. In: Muñoz, V.M., Ferguson, D., Helfert, M., Pahl, C.
(eds.) Proceedings of the 8th International Conference on Cloud Computing and
Services Science. CLOSER 2018, Funchal, Madeira, Portugal, 19–21 March 2018,
pp. 221–232. SciTePress (2018). https://doi.org/10.5220/0006798302210232

35. Theunissen, T., Van Heesch, U.: Specification in continuous software development.
In: Proceedings of the 22nd European Conference on Pattern Languages of Pro-
grams. EuroPLoP ’17. Association for Computing Machinery, New York, NY, USA
(2017). https://doi.org/10.1145/3147704.3147709

36. Waseem, M., Liang, P., Shahin, M.: A systematic mapping study on microservices
architecture in DevOps. J. Syst. Softw. 170, 110798 (2020). https://doi.org/10.
1016/j.jss.2020.110798

37. Wellhausen, T., Fiesser, A.: How to write a pattern? A rough guide for first-time
pattern authors. In: Proceedings of the 16th European Conference on Pattern
Languages of Programs. EuroPLoP ’11. Association for Computing Machinery,
New York, NY, USA (2011). https://doi.org/10.1145/2396716.2396721

38. Zhang, C., Budgen, D.: What do we know about the effectiveness of software design
patterns? IEEE Trans. Softw. Eng. 38(5), 1213–1231 (2012). https://doi.org/10.
1109/TSE.2011.79

https://doi.org/10.1109/SOSE55472.2022.9812695
https://doi.org/10.1016/j.infsof.2022.107037
https://doi.org/10.5220/0006798302210232
https://doi.org/10.1145/3147704.3147709
https://doi.org/10.1016/j.jss.2020.110798
https://doi.org/10.1016/j.jss.2020.110798
https://doi.org/10.1145/2396716.2396721
https://doi.org/10.1109/TSE.2011.79
https://doi.org/10.1109/TSE.2011.79

CASA

MAPE-K Based Guidelines for Designing
Reactive and Proactive Self-adaptive

Systems

Hendrik Jilderda1 and Claudia Raibulet1,2(B)

1 Vrije Universiteit Amsterdam, De Boelelaan 1111, Amsterdam, The Netherlands
h.jilderda@student.vu.nl, c.raibulet@vu.nl

2 DISCo - Dipartimento di Informatica, Sistemistica e Comunicazione, Universita’
degli Studi di Milano-Bicocca, Viale Sarca 336, 20126 Milan, Italy

claudia.raibulet@unimib.it

Abstract. The rapid evolution of complex software systems claims for
novel approaches, such as self-adaptive systems that can autonomously
adjust their behavior to meet changing requirements and dynamic con-
texts. This paper proposes guidelines for the development of reactive and
proactive approaches to self-adaptive systems. The guidelines concern
architectural based approaches using explicitly the MAPE-K (Monitor,
Analyze, Plan, Execute using Knowledge) control feedback loop. The
proposed guidelines are organized into five parts, one for each step of the
MAPE-K loop including the knowledge with the goal to provide guidance
when designing and implementing self-adaptive systems from a software
engineering point of view. Three self-adaptive artifacts (i.e., OCCI Mon-
itoring, DingNet, and SWIM) from different application domains (i.e.,
cloud computing, Internet of Things, Web application) have been ana-
lyzed by considering the proposed guidelines. Their reactive and proac-
tive characteristics are compared.

Keywords: Self-Adaptive Systems · Reactive · Proactive · MAPE-K ·
Software Design

1 Introduction

The continuously changing technological landscape has created a demand for
Self-Adaptive Systems (SAS) [1,7,25]. Modern systems are getting more com-
plex and dynamic, making it challenging for traditional static systems to stay
effective and efficient [8,21,26]. Changes in the environment, requirements, or
resources in such systems might result in unanticipated behavior or failures which
can be costly or even catastrophic. To overcome these problems, SAS have been
developed. SAS adjust to changes while maintaining functionality and perfor-
mance. They have usually a managed part, which provides the functionally of
the system, and a managing part, which ensures the adaptation of the managed
one based on its current state and execution environment. SAS may be either
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
B. Tekinerdoğan et al. (Eds.): ECSA 2023, LNCS 14590, pp. 53–68, 2024.
https://doi.org/10.1007/978-3-031-66326-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-66326-0_4&domain=pdf
http://orcid.org/0000-0002-7194-3159
https://doi.org/10.1007/978-3-031-66326-0_4

54 H. Jilderda and C. Raibulet

reactive, i.e., changing their behavior triggered by a change in their execution
context, or proactive, i.e., anticipating changes based on historical knowledge
about the systems and their execution environments and observing trends that
may trigger changes in the next future [25]. Proactive approaches are typically
also reactive. While there are changes or uncertainties that cannot be predicted,
so reactive approaches may not be also proactive.

The aim of this paper is to research the differences and similarities between
reactive and proactive approaches in SAS from a software engineering point of
view and define guidelines which can be used for designing and implementing
such systems. Its main contributions are:

– comparison of SAS from a reactive and proactive point of view;
– comparison of SAS artifacts based on their reactive and proactive features;
– design guidelines for developing SAS from a software engineering perspective.

Overall, this paper shows the similarities and differences between reactive
and proactive SAS from a software engineering perspective, and aims to out-
line their strengths and weaknesses together with guidelines for their design and
implementation. These guidelines enable and promote consistency, reproducibil-
ity, standardization, and collaboration for SAS.

Related Work: Significant and constant research effort has been invested in var-
ious aspects concerning the development of SAS [2,9,10,26] from the uncertain-
ties they address [23], the control feedback loop they use [27], until their imple-
mentation in various application domains and evaluation from various points of
view [22]. However, as far as concerns our knowledge, there is no similar work
focusing on guidelines for UML-based designing reactive and proactive SAS.

Our Previous Work: Our attention has been focused on facets of self-
adaptation [19], criteria and metrics for the evaluation of self-adaptation
[6,11,18], as well as on the quality assessment of SAS from various points of view
as for any other type of software (e.g., design patterns, code and architectural
smells, software metrics, quality attributes) [22]. We also analyzed MAPE-K
based solutions in dynamic environments [16,20].

The rest of the paper is organized as follows. Section 2 compares reactive and
proactive approaches for SAS. Section 3 compares various SAS artifacts based on
their reactive and proactive nature. Section 4 outlines the findings and guidelines.
Conclusions and further work are dealt in Sect. 5.

2 MAKE-K Based Comparison of Reactive and Proactive
Approaches

This section compares reactive and proactive SAS approaches based on their use
of MAPE-K through a three-part examination: what, when, how.

– what focuses on defining each component and its role in SAS; this provides
a clear understanding of the purpose of each step and how it contributes to
the overall SAS.

MAPE-K Based Guidelines for Designing 55

– when examines when each step is executed; this provides insight into the
temporal aspects of SAS, and how each step operates in real-time.

– how delves into the details of how each step is implemented in reactive and
proactive approaches; this provides a more detailed understanding of the dif-
ferences between the two types of approaches.

To further extend the comparison between reactive and proactive MAPE-
K based approaches, each subsection includes a UML class diagram and its
description. The goal of these diagrams is to show more of the context of the
self-adaptation loop, and concurrently the similarities and differences between
reactive and proactive approaches. The class diagrams use two colors. Black:
common elements for both approaches, Blue: elements specific to proactive
approaches.

2.1 Monitoring

What: The primary goal of this MAPE-K component is executed by both
approaches roughly the same. Both approaches make use of real time data from
the host system, with the proactive approach commonly saving the realtime
data. This results in a history of the system [4]. This history is used for training
the proactive part of the implementation.

When: There are three common time frames in which to execute the moni-
toring: continuous, periodically (pre-defined window), or by signal indicating a
finished cycle [26]. Both implementations work the most optimal with contin-
uous monitoring. However, this may result in higher resource usage. Periodic
monitoring can be more efficiently used by proactive implementations. Because
of the usage of historic data a proactive implementation can shorten the interval
based on the predicted pattern of the data making it a suiting middle ground
between alertness of the system and resource usage. Assuming a static interval
for periodic may result the implementation having a higher detection time.

How: The monitoring component in both implementation collects data from
sensors, and performs (if needed) the necessary preprocessing. Here are no spe-
cific differences between reactive and proactive implementations.

The primary class is Monitor (see Fig. 1). It uses Sensor(s) to monitor the
Context of the system. Sensors and Context are very important for the sys-
tem, since they contain the information needed for SAS to be able to achieve
self-awareness and context-awareness. Because of the different possible tempo-
ral characteristics of monitoring inside of SAS, the Monitor class sets a Strategy
which can be either Continuous, Periodical, or Triggered. Using both Sensor and
Strategy, the Monitor generates Data which is stored in Knowledge. Data con-
tains all of the monitored data, including when the data has been monitored. It is
important to note that the Monitor might implement some sort of data process-
ing function. However, since this is not always included in SAS implementations,
it is not shown in Fig. 1.

The HistoricData class is the only difference between reactive and proactive
approaches on a class level, with HistoricData used only by proactive approaches.

56 H. Jilderda and C. Raibulet

Fig. 1. Class diagram of the Monitoring step

2.2 Analyzing

What: The main differences between the two approaches is essentially in the
analysis component. It assesses the data received from the monitoring component
and determines if the system needs adaptation [26]. A proactive implementation
is primarily focused on prediction. Because this implementation makes use of not
only real time data, but also historic data, this approach has the ability to act
before the time of change need. This can be important in cases where changes
might need time to be effective.

When: In both approaches the analysis step is called at the end of the moni-
toring step.

How: Reactive approaches commonly consist of rule or policy based implementa-
tions to determine how the system should adapt and react in different situations.
These rules and policies are commonly defined at design time which makes them
a non-dynamic approach [7]. Proactive approaches make use of models (e.g., a
machine learning model). To be able to use and train this model, data is used
from the knowledge base where the monitoring step deposits it.

Analyzer is the primary class (see Fig. 2). It has the same available strategies
as Monitor. Since proactive approaches are to a certain extend also reactive,
the Threshold class is considered used by both approaches. The Model class con-
tains some sort of machine learning implementation which uses the HistoricData
gathered by the Monitor step. This is stored within the Knowledge.

MAPE-K Based Guidelines for Designing 57

To summarize the overall Analyzing step, Analyzer uses the data, and poten-
tially the historic data, in combination with an AnalysisType and a Strategy to
generate an OutputAnalysis, which in turn is stored in the Knowledge such that
the Planning step can make use of this information.

Fig. 2. Class diagram of Analyzing step

2.3 Planning

What: Reactive SAS focus primarily on selecting the best adaptation option
to conform to adaptation goals, and generate a plan for adapting the managed
system [26]. While proactive does most of this step the same, it anticipates adap-
tation needs which can lead to more efficient decision making and adaptation.

When: Execution is for both implementations triggered by the Analysis step.

How: Both implementations have the option to perform either static or dynamic
decision making. In SAS implementations where the adaptation goals are listed
as rules, all the possible adaptation options are ranked, thus turning this step
into an optimization problem [26]. Ranking the options is commonly done by
running a cost-benefit analysis at runtime.

The planning class diagram is similar to the Analysis one, but with few key
differences. Since reactive approaches may not have any historical knowledge, it

58 H. Jilderda and C. Raibulet

is not possible for them to consistently predict when a plan should be made and
are thus reliant on a strategy in which the planning step gets triggered. With
proactive approaches having the historic data, it is possible for them to either
monitor Periodical or Continuous making them blue in this class diagram.

Because an adaptation strategy can consist of multiple strategies, a Com-
posite design pattern [24] is used. The plan that gets generated by the Planner
class, consists of either one or smaller steps and thus implementing the Compos-
ite design pattern once again (Fig. 3).

Fig. 3. Class diagram of Planning step

2.4 Executing

What: The execution step in MAPE-K is for both implementations the same.
Both have the options for either closed or open adaptation actions. The adapta-
tion plan can consist of multiple steps, in these cases the system can decide to
either execute them all together, or rerun MAPE-K after each step in the plan
to potentially withdraw the further steps since the goal has been reached.

When: The executing step is triggered by the planning step of MAPE-K.

How: After being triggered, this step selects an adaptation action given by the
planning step and enacts this action on the managed system by means of an
effector [26].

The Executor uses the plan to generate an Action, which itself uses Effector(s)
to implement the changes to the Context of the system (see Fig. 4).

MAPE-K Based Guidelines for Designing 59

Fig. 4. Class diagram of Executing step

2.5 Knowledge

What: The Knowledge base stores relevant gathered information, and poten-
tially the adaptation goals set by the user. Knowledge acts as a central hub that
combines and organizes the information for all the steps of MAPE-K [4,5].

When: There is no specific time when the knowledge base is used. It is used
during the whole cycle of the loop.

How: The monitoring step acquires information from the managed system and
its environment and updates the knowledge if needed. The analysis step uses
this information from the knowledge base and determines if there is a need for
adaptation with respect to the adaptation goals [4].

As stated before, Knowledge functions as the basis of the MAPE-K loop
(see Fig. 5). All the different classes are linked through the knowledge. It also
becomes obvious that, while there are differences between reactive and proactive
approaches, they are mostly similar with the proactive approach having some
additions on top of a reactive approach. However, these additions do make the
whole implementation more complex.

3 Artifact Based Comparison of Reactive and Proactive
Approaches

This section investigates the characteristics of reactive and proactive SAS by
means of the following artifacts: OCCI Monitoring [3], DingNet [17], and SWIM

60 H. Jilderda and C. Raibulet

Fig. 5. The overall class diagrams of MAPE-K

[15] made available by the SEAMS community1. It examines the differences in
quantity, and quality of input data between these two types of approaches. It
explores whether the approaches reason about the data, or gain extra knowledge
from it. It investigates when an approach executes the analysis, and whether
it employs closed or open decision-making. It indicates whether an approach is
model-based or not, and whether it makes use of atomic or multiple steps for
the execution of an adaptation plan. It outlines whether adaptation is applied
immediately, or over time/programmed when a SAS is not overloaded. These
aspects aim to provide a deeper understanding of the differences between the
two approaches and their underlying processes. OCCI Monitoring and DingNet
are reactive, while SWIM is both reactive and proactive.

3.1 Artifacts

OCCI Monitoring: The OCCI Monitoring artifact, as proposed by Erbel et
al. [3], is primarily an extension of the Open Cloud Computing Interface (OCCI)
specification [12]. It consists of a set of guidelines and standards that define a
standardized and open interface for managing cloud computing resources with
the intend to provide a common language for cloud providers and its users to
interact with each other. The monitoring extension for OCCI allows the OCCI
implementation to manage sensors over a standardized interface, and reflect the
gathered data within OCCI [3].

1 https://www.hpi.uni-potsdam.de/giese/public/selfadapt/exemplars/.

https://www.hpi.uni-potsdam.de/giese/public/selfadapt/exemplars/

MAPE-K Based Guidelines for Designing 61

DingNet: The DingNet artifact, presented by Provoost and Weyns [17], is a
reference implementation with the goal to support research of self-adaptation in
the Internet of Things (IoT) domain. DingNet offers a simulator that directly
maps to a physical IoT system in the area of Leuven, Belgium. DingNet focuses
on supporting the design and evaluation process of smart city applications, which
can consist of a large number of motes that can be deployed in city areas to collect
and send data to gateways.

DingNet makes use of a Long Range Wide Area Network (LoRaWAN) which
covers a large part of Leuven. LoRaWAN2 is a communication protocol that is
designed to allow low-powered motes to communicate with Internet-connected
applications. To ensure good coverage, DingNet consists of 14 gateways located
on high buildings throughout the city. Due to the fact that testing implementa-
tions such as DingNet physically can be error-prone and time consuming, simu-
lations can be used to test solutions before deploying them.

SWIM: The SWIM artifact, by Moreno et al. [15], simulates a generic multi-
tier web application. SWIM consists of two tiers, namely web server tier which
receives requests from user clients and a database tier which stores data needed
to render the page with dynamic content. SWIM also has the ability to use a
load balancer, which gives SWIM support for multiple web servers.

The goal of SWIM is to be able to self-adapt to changing request arrival rates
and work with the trade-off between cost and revenue. The system is able to deal
with changes in two ways. First, it has the ability to add/remove a server to/from
the pool of servers connected to the load balancer [15]. Second, the system has
the ability to control the amount of optional content send to the user.

3.2 Which Characteristics Do Input Data Have?

For all the considered SAS artifacts both reactive and proactive, the monitored
data is used to verify that quality requirements are fulfilled.

– For OCCI Monitoring this results in monitoring the CPU utilization (on one
or multiple nodes within a cluster).

– DingNet’s primary requirement is low packet loss and energy consumption.
– SWIM monitors the arrival rate of requests, throughput, server utilization.

To summarize, (1) the data to be monitored are derived from the require-
ments specification for a SAS, and (2) they may consider one aspect (e.g., CPU
utilization) or multiple aspects (e.g., arrival rate, throughput server utilization).

3.3 Does the Quantity and the Quality of the Input Data Differ?

The considered artifacts have a low quantity of data used to verify the status
and the appropriate working of the system.
2 LoRaWAN - https://www.thethingsnetwork.org/docs/lorawan/.

https://www.thethingsnetwork.org/docs/lorawan/

62 H. Jilderda and C. Raibulet

– OCCI Monitoring monitors its data periodically, in combination with only
one value being monitored, it results in a low quantity of data.

– DingNet sends its drones signal home every 10 m with limited amount of data.
The quantity of the data is largely reliant on the amount of drones used in
the system.

– Between the reactive and proactive implementation of SWIM, there is no
difference in quality of data. The quantity of the monitored data is the same,
however, the proactive implementation does process a higher quantity of data
because of the model used to predict adaptation needs.

To summarize, the quantity of data is limited in the reactive approaches,
while it may be significantly higher in proactive approaches due to the historic
data needed for prediction. No significant differences in the quality of data.

3.4 Does SAS only Reason About the Data or Does It Gain Extra
Knowledge from It?

The considered SAS reason with data directly gathered through monitoring.

– OCCI Monitoring reasons about CPU utilization. In cases where nodes are
fully using their RAM in combination with ‘normal’ CPU usage, the node
won’t scale, resulting in somewhat of a blind spot in the adaptation. There-
fore, OCCI monitoring uses only directly acquired data.

– DingNet uses the signal strength. No extra knowledge is derived to be used
for adaptation.

– This is also the case for the reactive implementation of SWIM. The proactive
implementation does gain extra knowledge from the system by observing the
distribution of data in time and identifying trends meaningful for adaptation.

Generally, reactive approaches use directly monitored data, while proactive
approaches aim to find relations among the data by means of a model.

3.5 When is Analysis Executed?

All of the implementations used for this comparison have implemented a periodic
approach for gathering and analyzing data.

– OCCI Monitoring makes its nodes send status updates every 3 s.
– Every drone in DingNet has as its requirement to send a status update every

10 m with a speed of 0.5 m/s, this results in a periodic monitoring and analysis
every 20 s.

– SWIM has in both its implementations a different philosophy to OCCI Moni-
toring and DingNet, namely it combines the analysis and planning steps into
one making it the first big difference between the artifacts.

To summarize, in reactive approaches, analysis is performed as soon as new
data becomes available from the monitoring step. Monitoring and analysis are
dependent of each other, i.e., if monitoring is performed periodically then also
the analysis is performed periodically.

MAPE-K Based Guidelines for Designing 63

3.6 Closed (Existing List of Defined Adaptations Strategies)
or Open (Generating) Decision Making?

The considered SAS perform the planning as follows:

– Since OCCI Monitoring only monitors the CPU usage of node(s), it is limited
in its options to safely adapt the system (i.e., to increase core count of a node
or increase the amount of nodes).

– DingNet has two distinct ways to adapt; a signal based adaptation or a dis-
tance based adaption. In these cases the system either incrementally adapts
power based on signal strength or based on distance from gateway.

– The reactive SWIM implementation has two variables it is able to optimize.
One of these variables is on a continuous scale between 0 and 1, with the
other variable being the up- or down scaling of the amount of VMs used
by the system. The proactive SWIM implementation also has the same two
variables to optimize, but it goes a different way in doing so.

Current approaches use closed adaptation strategies. An advantages is the
short reaction time to adaptation needs. Open adaptation strategies are not
frequently applied due to their potential complexity in the identification process,
and a significant response time increase over the closed approach.

3.7 Is the SAS Model-Based or Not?

All the reactive artifacts have a similar approach to adaptation: they make use
of conditional statements to enforce thresholds. The proactive artifacts indeed
use a model.

– OCCI Monitoring scales vertically or horizontally based on CPU utilization
making this a model free implementation.

– The adaptation in DingNet is based on a limited number of conditional state-
ments making this implementation also model-free.

– The reactive implementation of SWIM uses conditional statements which are
based on thresholds set in the initial stages of development. One of the proac-
tive SWIM approaches uses both CobRA and PLA. CobRA is a requirements
based approach which applies control theory, while PLA provides architecture
based stochastic analysis [14]. A different proactive implementation of SWIM
uses a Markov Decision Process [13].

To summarize, all reactive approaches are model free, while proactive
approaches apply a model-based approach. While machine learning models are
commonly used, also other models are suitable, e.g., from control theory.

3.8 Does the Artifact Make Use of Atomic Steps or Multiple Steps?

All the considered artifacts use atomic steps to execute the adaptation plan.

64 H. Jilderda and C. Raibulet

– In the MAPE-K cycle, OCCI Monitoring uses an atomic step to execute the
adaptation. However, there exists a chance in which one extra core or node
is not sufficient, so the next cycle further increases the core size or node size.

– Since DingNet has a straight forward implementation with two adaptation
options and is periodically monitored, it uses atomic adaptation steps.

– Both SWIM implementations use atomic steps. However, steps from different
time periods can be executed asynchronously as long as they do not interfere.

Generally, both reactive and proactive approaches apply atomic steps when
implementing the adaptation plan. This leads to a lower complexity of the imple-
mentation, and an easier way to evaluate the results of the adaptation.

3.9 Is Adaptation Applied Immediately or over Time?

Adaptation plans may be applied immediately after they have been established
or scheduled for the next iterations.

– OCCI Monitoring executes the adaptation immediately after is chosen in the
planning step.

– Like OCCI Monitoring, the adaptation for DingNet is immediately executed
after receiving the adaptation plan.

– SWIM also implements the changes as soon as they become available to the
execution step. However, finishing the adaptation step might take some time
to complete in the proactive approaches.

All the artifacts implement the adaptation plan as soon as possible. This is
also needed since reactive approaches only make use of realtime data making it
necessary to instantly adapt to ensure best overall performance.

4 Findings and Guidelines

Based on the taxonomy of Salehie et al. [25], and on the theoretical and practical
comparisons between reactive and proactive SAS, several guidelines for each step
of the MAPE-K loop can be identified.

Monitoring Guidelines

– The data monitored as input for the adaptation should concern
non-functional requirements. This leads to a straightforward implemen-
tation of the MAPE-K loop. Practical hints can be found in all the considered
artifacts. They all monitor one to few values meaningful for the non-functional
requirements.

– Quality over quantity for monitored data. This leads to reduced need to
process the monitored data, and to a reduced reaction time. All the considered
artifacts monitor a low amount of data periodically.

MAPE-K Based Guidelines for Designing 65

– Continuous monitoring is useful for reactive approaches. Proactive
approaches have the ability to predict, resulting in no significant differences
in the exact detection time of the adaptation need. Continuous monitoring is
best suited to reactive approaches in comparison to proactive approaches. All
considered artifacts use periodical monitoring with different time intervals.

Analyzing Guidelines

– Focus analysis on the explicitly gathered data. As stated in the moni-
toring guidelines, the monitored data should concern non-functional require-
ments. This makes it unnecessary to reason about the data to gain more
insight from it, since the non-functional requirements can already be derived.

– Proactive approaches must aim to implement some sort of model
to predict. While proactive approaches do have a reactive implementation
incorporated, and thus use a threshold implementation, prediction is possible
using models based on historic data for trends.

– Reactive SAS may be developed with a model-free implementation.
Because of the reactive nature of this type of SAS, there is no need to increase
the complexity of the system with additional models. It is sufficient for the
system to just react based on thresholds. The considered reactive artifacts do
not implement any model.

Planning Guidelines

– Adopt closed decision making. While open decision making may be imple-
mented, it increases complexity, computation, and power usage.

– Reactive approaches make no use of continuous or periodical plan-
ning. Since reactive approaches only have the ability to react, and thus only
use real time data, the planning step does not have the ability to predict and
propose potential future adaptations. Hence, there is no need for continuous,
or periodical strategies, which lead to waste computation time and power.

Executing Guidelines

– Atomic steps over multiple steps. Executing multiple steps makes it dif-
ficult to check if partial changes were sufficient. Further, because of potential
delays on adaptions several adaptations might get executed simultaneously.

– Execute the plan as soon as possible. The best moment to execute the
adaptation plan is as soon as possible. This ensures a reduced reaction time
and an efficient application for the context for each it has been designed.

– Keep execution context in mind when executing plan. Some adapta-
tions take time to be executed (e.g., start a server). Not accounting for such
aspects can result in the same adaptation being executed multiple times, and
can therefore result in overcompensation.

66 H. Jilderda and C. Raibulet

Knowledge Guidelines

– Data should be stored in the knowledge. Knowledge is the center of
MAPE-K. Having each steps reading and writing only from/to the knowledge
results in a easy to understand system with reduced chances of missing data.
Adaptation goals should also be stored in the knowledge for easy access.

– Historic data should be used by proactive approaches. For proactive
approaches it is important to consider the amount of historic data stored and
used. The amount of data can become too high and waste storage space.

5 Conclusion and Further Work

This paper presents guidelines for developing SAS from a software engineering
perspective considering both a theoretical (Sect. 2) and a practical (Sect. 3) com-
parison. The theoretical comparison based on MAPE-K shows that the differ-
ences are not as significant as one might expect. Since proactive approaches are
inherently reactive, most of the guidelines coincide, with proactive approaches
extending the functionality of reactive ones (see Fig. 5). While the reviewed arti-
facts are implemented in different domains, a lot of their characteristics are
similar. The characteristics, quality, and quantity of the data show no signifi-
cant differences between approaches other than domain specific differences. The
differences between reactive and proactive approaches concern mostly how and
when the analysis step is performed. Additionally, the complexity of this step
may significantly differ between reactive and proactive approaches.

Guidelines for monitoring essentially concern what the data should look like
as well as when it should be gathered. The analysis guidelines focus on how the
analysis should be executed and the limitations it should have. For planning the
guidelines go into the temporal aspects and suggested complexity limitation for
the implementation. Comparable to the planning guidelines the execution guide-
lines focus on when this step should be executed in combination with suggested
limitations. While knowledge plays a key role in the self-adaptation MAPE-K
based process, it is important to follow guidelines. These guidelines focus on
location and storage of the data as well as limiting the use of historic data.

Further work will concern the extension of the theoretical comparison to
other aspects proposed by the SAS taxonomy [25], as well as of the practical
comparison to other available artifacts in various application domains. This will
extend the guidelines and validate them.

Acknowledgement. This research is partially supported by ExtremeXP, a project
co-funded by the European Union Horizon Programme under Grant Agreement No.
101093164.

MAPE-K Based Guidelines for Designing 67

References

1. Arcelli, F., Raibulet, C., Tisato, F., Adorni, M.: Architectural reflection in adaptive
systems. In: Maurer, F., Ruhe, G. (eds.) 16th International Conference on Software
Engineering and Knowledge Engineering (SEKE’2004), pp. 74–79 (2004)

2. Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J. (eds.): Soft-
ware Engineering for Self-adaptive Systems [Outcome of a Dagstuhl Seminar].
LNCS, vol. 5525. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-
02161-9

3. Erbel, J., Brand, T., Giese, H., Grabowski, J.: OCCI-compliant, fully causal-
connected architecture runtime models supporting sensor management. In: 2019
IEEE/ACM 14th International Symposium on Software Engineering for Adaptive
and Self-Managing Systems (SEAMS), pp. 188–194. IEEE (2019)

4. Iglesia, D.G.D.L., Weyns, D.: MAPE-k formal templates to rigorously design
behaviors for self-adaptive systems. ACM Trans. Auton. Adapt. Syst. (TAAS)
10(3), 1–31 (2015)

5. Jiang, M., Zheng, L., Ding, Z., Jin, Z.: A software-defined MAPE-k architecture
for unmanned systems. Sci. China Inf. Sci. 66(5), 159101 (2023)

6. Kaddoum, E., Raibulet, C., Georgé, J., Picard, G., Gleizes, M.: Criteria for the
evaluation of self-* systems. In: de Lemos, R., Pezzè, M. (eds.) 2010 ICSE Workshop
on Software Engineering for Adaptive and Self-managing Systems. SEAMS 2010,
pp. 29–38. ACM (2010). https://doi.org/10.1145/1808984.1808988

7. Krupitzer, C., Roth, F.M., VanSyckel, S., Schiele, G., Becker, C.: A survey on
engineering approaches for self-adaptive systems. Pervasive Mob. Comput. 17, 184–
206 (2015). https://doi.org/10.1016/J.PMCJ.2014.09.009

8. Krupitzer, C., Temizer, T., Prantl, T., Raibulet, C.: An overview of design patterns
for self-adaptive systems in the context of the internet of things. IEEE Access 8,
187384–187399 (2020). https://doi.org/10.1109/ACCESS.2020.3031189

9. de Lemos, R., Garlan, D., Ghezzi, C., Giese, H. (eds.): Software Engineering for
Self-Adaptive Systems III. LNCS, vol. 9640. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-74183-3

10. de Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.): Software Engineering for
Self-adaptive Systems II. LNCS, vol. 7475. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-35813-5

11. Masciadri, L., Raibulet, C.: Frameworks for the development of adaptive systems:
evaluation of their adaptability feature through software metrics. In: Boness, K.,
Fernandes, J.M., Hall, J.G., Machado, R.J., Oberhauser, R. (eds.) The Fourth
International Conference on Software Engineering Advances. ICSEA 2009, pp. 309–
312. IEEE Computer Society (2009). https://doi.org/10.1109/ICSEA.2009.51

12. Metsch, T., Edmonds, A., Parák, B.: Open cloud computing interface-
infrastructure. In: Standards Track, no. GFD-R in The Open Grid Forum Doc-
ument Series, Open Cloud Computing Interface (OCCI) Working Group, Muncie
(IN) (2010)

13. Moreno, G.A., Cámara, J., Garlan, D., Schmerl, B.: Efficient decision-making under
uncertainty for proactive self-adaptation. In: 2016 IEEE International Conference
on Autonomic Computing (ICAC), pp. 147–156. IEEE (2016)

14. Moreno, G.A., Papadopoulos, A.V., Angelopoulos, K., Cámara, J., Schmerl, B.:
Comparing model-based predictive approaches to self-adaptation: Cobra and PLA.
In: 2017 IEEE/ACM 12th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems (SEAMS), pp. 42–53. IEEE (2017)

https://doi.org/10.1007/978-3-642-02161-9
https://doi.org/10.1007/978-3-642-02161-9
https://doi.org/10.1145/1808984.1808988
https://doi.org/10.1016/J.PMCJ.2014.09.009
https://doi.org/10.1109/ACCESS.2020.3031189
https://doi.org/10.1007/978-3-319-74183-3
https://doi.org/10.1007/978-3-319-74183-3
https://doi.org/10.1007/978-3-642-35813-5
https://doi.org/10.1007/978-3-642-35813-5
https://doi.org/10.1109/ICSEA.2009.51

68 H. Jilderda and C. Raibulet

15. Moreno, G.A., Schmerl, B., Garlan, D.: Swim: an exemplar for evaluation and
comparison of self-adaptation approaches for web applications. In: Proceedings
of the 13th International Conference on Software Engineering for Adaptive and
Self-Managing Systems, pp. 137–143 (2018)

16. Oh, J., Raibulet, C., Leest, J.: Analysis of MAPE-K loop in self-adaptive sys-
tems for cloud, IoT and CPS. In: Troya, J., et al. (eds.) CSOC 2022. LNCS, vol.
13821, pp. 130–141. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-
26507-5 11

17. Provoost, M., Weyns, D.: Dingnet: a self-adaptive internet-of-things exemplar.
In: 2019 IEEE/ACM 14th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems (SEAMS), pp. 195–201. IEEE Computer
Society (2019)

18. Raibulet, C., Arcelli Fontana, F., Capilla, R., Carrillo, C.: Chapter 13 - an overview
on quality evaluation of self-adaptive systems. In: Mistrik, I., Ali, N., Kazman,
R., Grundy, J., Schmerl, B. (eds.) Managing Trade-Offs in Adaptable Software
Architectures, pp. 325–352. Morgan Kaufmann, Boston (2017). https://doi.org/
10.1016/B978-0-12-802855-1.00013-7

19. Raibulet, C.: Facets of adaptivity. In: Morrison, R., Balasubramaniam, D., Falkner,
K. (eds.) ECSA 2008. LNCS, vol. 5292, pp. 342–345. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-88030-1 33

20. Raibulet, C., Arcelli, F., Mussino, S., Riva, M., Tisato, F., Ubezio, L.: Components
in an adaptive and QoS-based architecture. In: International Workshop on Self-
adaptation and Self-managing Systems, pp. 65–71. ACM (2006). https://doi.org/
10.1145/1137677.1137690

21. Raibulet, C., Drira, K., Fornaro, C., Fugini, M.: Introduction to special issue on
software architectures for smart and adaptive systems (SASAS). Inf. Softw. Tech-
nol. 157, 107158 (2023). https://doi.org/10.1016/J.INFSOF.2023.107158

22. Raibulet, C., Fontana, F.A., Carettoni, S.: A preliminary analysis of self-adaptive
systems according to different issues. Softw. Qual. J. 28(3), 1213–1243 (2020).
https://doi.org/10.1007/S11219-020-09502-5

23. Ramirez, A.J., Jensen, A.C., Cheng, B.H.C.: A taxonomy of uncertainty for
dynamically adaptive systems. In: Müller, H.A., Baresi, L. (eds.) 7th Interna-
tional Symposium on Software Engineering for Adaptive and Self-managing Sys-
tems. SEAMS 2012, pp. 99–108. IEEE Computer Society (2012). https://doi.org/
10.1109/SEAMS.2012.6224396

24. Riehle, D.: Composite design patterns. In: Proceedings of the 12th ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applica-
tions, pp. 218–228 (1997)

25. Salehie, M., Tahvildari, L.: Self-adaptive software: landscape and research chal-
lenges. ACM Trans. Auton. Adapt. Syst. (TAAS) 4(2), 1–42 (2009)

26. Weyns, D.: An Introduction to Self-adaptive Systems: A Contemporary Software
Engineering Perspective. Wiley, Hoboken (2020)

27. Weyns, D., et al.: On patterns for decentralized control in self-adaptive systems.
In: de Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.) Software Engineering
for Self-Adaptive Systems II. LNCS, vol. 7475, pp. 76–107. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-35813-5 4

https://doi.org/10.1007/978-3-031-26507-5_11
https://doi.org/10.1007/978-3-031-26507-5_11
https://doi.org/10.1016/B978-0-12-802855-1.00013-7
https://doi.org/10.1016/B978-0-12-802855-1.00013-7
https://doi.org/10.1007/978-3-540-88030-1_33
https://doi.org/10.1145/1137677.1137690
https://doi.org/10.1145/1137677.1137690
https://doi.org/10.1016/J.INFSOF.2023.107158
https://doi.org/10.1007/S11219-020-09502-5
https://doi.org/10.1109/SEAMS.2012.6224396
https://doi.org/10.1109/SEAMS.2012.6224396
https://doi.org/10.1007/978-3-642-35813-5_4

DE & I Track

Stakeholder Inclusion and Value
Diversity: An Evaluation Using an Access

Control System

Razieh Alidoosti1,2(B), Martina De Sanctis2, Ludovico Iovino2, Patricia Lago1,
and Maryam Razavian3

1 Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
{r.alidoosti,p.lago}@vu.nl

2 Gran Sasso Science Institute, L’Aquila, Italy
{martina.desanctis,ludovico.iovino}@gssi.it

3 Eindhoven University of Technology, Eindhoven, The Netherlands
m.razavian@tue.nl

Abstract. Software systems bring great benefits to people’s lives. Nev-
ertheless, they can cause issues in terms of social and ethical implica-
tions toward individuals and society, and compromise their ethical val-
ues. Therefore, it is crucial to consider all potentially-concerned stake-
holders during the system design process, as they are the primary source
of value and requirements identification. In this study, we aim to evalu-
ate the effect that two ethics-driven instruments we have created (i.e., a
stakeholder map and a value model) may have on supporting ethical
considerations (such as stakeholder and ethical value), using the case of
an Access Control System. The paper presents the insights gained from
this evaluation, performed as a retrospective study.

Keywords: Stakeholder · Ethical value · Software system · ACS

1 Introduction

With the growing digitalization and the increasing reliance on software systems,
ethics in software engineering has gained significant attention. This is because
of the social and ethical implications these systems have on individuals and
society. Software systems can undermine ethical values, leading to issues such as
restrictions on personal freedom and violations of privacy. Such issues, therefore,
reinforce the need to focus on software systems and architectures from an ethical
standpoint. As pointed out in [1], it is essential to focus on ethical considerations,
such as stakeholder, ethical concern, ethical value, and ethical decision, at the
early stages of system design (e.g., when making architecture design decisions).

With these premises, stakeholders play a critical role in incorporating an
ethical perspective in software systems, as they are the primary source for value
and requirements elicitation [3]. Accordingly, it is important to account for the

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
B. Tekinerdoğan et al. (Eds.): ECSA 2023, LNCS 14590, pp. 71–88, 2024.
https://doi.org/10.1007/978-3-031-66326-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-66326-0_5&domain=pdf
https://doi.org/10.1007/978-3-031-66326-0_5

72 R. Alidoosti et al.

plurality of values in design decision-making, especially when there are vari-
ous stakeholders who software systems may directly or indirectly impact. For
instance, consider the case of facial recognition technology in Access Control
Systems used at airports [6]. In such cases, there is a tendency to overlook the
needs of specific groups, such as people of color or those with disabilities, as
the focus is primarily on security benefits. This can result in discrimination
and potential biases against these individuals. Thus, it is crucial to equip soft-
ware designers with instruments that facilitate the inclusion of a wide range
of stakeholders and their values by focusing on software systems’ ethical and
social implications. These instruments should enable designers to explore vari-
ous potential stakeholders of the system, either affecting or being affected by it,
and prompt designers to explore different aspects and scenarios in which they
can be affected by the system from an ethical perspective.

To this end, we introduced two ethics-driven instruments, namely a stake-
holder map and a value model [2]. The stakeholder map outlines the three over-
arching stakeholder roles that may directly or indirectly receive benefit/harm
from the system. The value model is a classification of values usually consid-
ered in software design and a representation of relations among values. In this
work, we evaluate these instruments with a retrospective study examining the
effects of utilizing them on stakeholder inclusion and value diversity within the
context of an Access Control System (ACS) [4] (Sect. 2). The selection of the
ACS as the case of our evaluative reflective study is justified by its critical role
in controlling users’ access to resources and services, which can have significant
ethical implications, such as privacy violations and threats to autonomy [9].
Specifically, this study investigates the ethical considerations associated with
the ACS and evaluates which considerations could have been supported if the
instruments had been employed during the system design process. We conducted
two focus group sessions involving pertinent stakeholders (Sect. 3). Results indi-
cate that the instruments effectively facilitated the identification of stakeholders
with different roles, their ethical concerns and values, and ethical decision mak-
ing (Sect. 4). We further discuss threats to the validity of our results (Sect. 4.3),
and we conclude the paper with future directions (Sect. 5).

2 Background

In this Section, we introduce the ACS that we used as the case of the retro-
spective study, as well as the two ethics-driven instruments we created in our
previous study [2].

An Access Control System. An ACS supports to check entries via controlled
gates (e.g., doors equipped with a lock mechanism) to restricted access areas [8].
We selected, as our case, an ACS implementing an approach enabling the commu-
nication between an IoT infrastructure (e.g., Near Field Communication (NFC)
readers and tags, relays, led, alarms) and an access management platform to
authenticate users [4]. The ACS has been deployed and evaluated in a fitness
center (in L’Aquila, Italy). The ACS architecture aligns with the conventional

Stakeholder Inclusion and Value Diversity in Software Systems 73

access control framework [14] and its components (see Fig. 1), reported in italic
in this section. The user requests access via an NFC tag through the Policy
Enforcement Point (PEP) embedded in a NFC reader installed on the gate. The
PEP will forward the request to the Policy Decision Point (PDP) that evalu-
ates the access request against the authorization policy, by querying a policies
repository and replying to the PEP. The PEP will then grant or deny access
to the user for the specified resource, i.e., a room. A Policy Information Point
(PIP) can optionally be used to enrich the authorization request, e.g., with user
rights. Lastly, the Policy Administration Point (PAP) manages the authorization
policies. We refer to [4] for the detailed ACS architecture.

Fig. 1. An overview of the ACS architecture and its components adapted from [4]

Ethics-Driven Instruments. Our Systematic Literature Review of software
engineering ethics (SE ethics) [2] led to the creation of two ethics-driven instru-
ments (see Fig. 2 and Fig. 3) described below.

The Stakeholder Map. It visualizes three overarching stakeholder roles: system
users, system development organization, and indirect stakeholders, each compris-
ing various role types, as depicted in Fig. 21. For example, the role of “system
development organization”, in the ACS, includes role types such as “IoT experts”
and “architects”. The stakeholder map focuses on three key aspects: (i) the dif-
ferent relations of stakeholders with the system, i.e.,using it, building it, or being
impacted by it, (ii) the system’s implications on stakeholders, i.e.,benefits and
harms, and (iii) the ways in which stakeholders receive benefits and harms from
the system, i.e.,directly or indirectly. This map helps software designers in the
system design process, to identify a comprehensive range of stakeholders.

1 In the stakeholder map, solid circles represent stakeholders identified before intro-
ducing the instruments, while dotted circles correspond to those identified after the
introduction.

74 R. Alidoosti et al.

Fig. 2. The stakeholder map: A representation of the stakeholders related to the ACS
based on the stakeholder map proposed in the SLR [2].

The Value Model. It categorizes ethical values commonly used in system design,
along with the relations among these values, as depicted in Fig. 32. This model
is based on the Schwartz value structure [11,12], a widely used structure for
classifying values in social sciences and ethics [13]. Software designers can uti-
lize this model by following a series of steps. First, they should identify the
relevant value categories that align with the system’s goal(s), and explore sub-
values w.r.t. the relevant stakeholders, assessing whether they are supported or
undermined by the system. The next step involves determining the relationships
among those values, including any conflicts or congruencies. To this aim design-
ers should consider the positions of the values within two orthogonal dimensions,
namely (i) self-enhancement vs. self-transcendence and (ii) openness to change
vs. conservation. For instance, “safety” can be considered a pertinent value for
gym members, in line with the system’s goal. By examining its position in the
value model, it becomes apparent that it conflicts with the value of “freedom”,
as they belong to non-adjacent categories (in openness to change vs. conserva-
tion dimension). The model provides designers with a guideline to identify the

2 In the value model, solid circles depict values identified before introducing instru-
ments, while dotted circles represent them after the introduction.

Stakeholder Inclusion and Value Diversity in Software Systems 75

Fig. 3. The value model: A mapping of the values associated with the ACS onto the
value model proposed in the SLR [2].

relevant ethical values and relations among them. This enables them to effec-
tively manage potential conflicts and reinforce the values that align with the
system’s goal(s).

3 Methodology

In this section, we describe our research objective and questions, the evaluation
design and execution, as well as the data collection and analysis.

76 R. Alidoosti et al.

Research Objective and Questions. The objective of this study is to explore
the effects of the two ethics-driven instruments in supporting ethical consider-
ations in the case of the ACS represented in Sect. 2. To achieve the research
objective, we drive the study with the following research questions (RQs):

(RQ1) How could the proposed instruments affect the identification of stake-
holders with different roles and their ethical concerns?
(RQ2) How could the instruments affect the identification of ethical values
and the potential relations among them?
(RQ3) How could the instruments enable decision-making to support ethical
considerations?

Evaluation Design and Execution. We conducted a retrospective study
through a small-scale evaluation of the ACS [4] case. Following the guidelines pro-
posed by Robson [10], we designed the evaluation in two steps: initial evaluation
and secondary evaluation (the asked questions can be found in Appendix A3).

In the former, we used the focus group research method to explore the effects
of the instruments on supporting ethical considerations. In the latter, we also
employed a focus group to evaluate the findings from the initial evaluation.

Initial Evaluation. The focus group study was conducted in March 2023 as
an online session involving four participants who had actively contributed to the
design and development of the ACS. The session began with an introduction
to the study objective and fundamental concepts in the context of SE ethics.
The session was organized as a semi-structured discussion in two parts, lasting a
total of three hours. In part 1, participants were asked predetermined questions
categorized based on our RQs. In part 2, participants were introduced to the
ethics-driven instruments and were asked questions regarding their usage.

The session served a twofold aim. First, understanding the current state of the
ACS in terms of ethical considerations, such as stakeholders and ethical values.
Second, using the instruments to uncover ethical considerations that could have
been supported in the design of the ACS but were overlooked.

Secondary Evaluation. The focus group study was conducted in May 2023 as
an online session lasting one and a half hours. It included two participants from
the initial focus group and three additional participants who were end users of
the ACS and members of the fitness center exposed to the case.

This evaluation aimed to discover the opinions and expectations of system
users, regarding the ethical aspects of the ACS. The results from this phase
served as an indicator of the effectiveness of the instruments in identifying ethical
considerations related to the system.

Data Collection and Analysis. Focus group sessions in both evaluations
were video-recorded and transcribed for further analysis. We analyzed the tran-
script of each session by using transcript coding as our qualitative data analysis

3 Appendix A is available in the GitHub repository https://github.com/S2-group/
ECSA23-SIVD-rep-pkg.git.

https://github.com/S2-group/ECSA23-SIVD-rep-pkg.git
https://github.com/S2-group/ECSA23-SIVD-rep-pkg.git

Stakeholder Inclusion and Value Diversity in Software Systems 77

method. Following the approach suggested by Miles and Huberman [7], we cre-
ated an initial list of codes based on the RQs, including stakeholders, ethical
concerns, ethical values, value relations, and ethical decisions. Throughout the
analysis process, we further expanded and refined this code list.

4 Results

In this section, we outline our research findings, by discussing the possible rela-
tion with the components making the architecture of the ACS (Sect. 2).

4.1 The Initial Evaluation Results

Finding 1. In part 1 of the session, participants discussed those individuals
or groups who were explicitly considered in the design of the ACS, such as the
business owner (the ACS contractor) and the building owner. During the stake-
holder identification process, only individuals with direct relationships with the
system were considered, e.g., those involved in the ACS implementation, infras-
tructure, and usage. The participants recognized the end users of the ACS as
one of the most crucial stakeholder, being the primary beneficiaries of the sys-
tem (refer to the stakeholders marked with solid circles in Fig. 2). In part 2 of
the session, as the ethics-driven instruments were introduced, the participants
noted that certain stakeholders had been overlooked during the ACS design
process. These stakeholders included individuals who could have a significant
impact on the ethical implications of the system by, e.g., establishing ethical
standards and providing oversight and regulation, such as policy designers and
fire safety experts. Policy designers could be directly involved in designing and
implementing the PDP and policy repositories. Additionally, some could be indi-
rectly influenced by the system’s ethical implications, such as the entire society
and the families of end users (refer to the stakeholders marked with dotted cir-
cles in Fig. 2). The only part of the system in which the involvement of the end
users and relatives (e.g., visiting the facility) maybe required is the PEP since
it serves as the external interface of the ACS with the users. Table 1 reports the
identified stakeholders.

Finding 1 (RQ1): We observed that utilizing the ethics-driven instruments
had the effect of broadening the participants’ perspectives on the ethical impli-
cations associated with the system and its various interactions with stakehold-
ers. As a result, the stakeholders that were previously disregarded, often due
to their indirect or less visible relations to the system, came now into focus.
This highlights the role of the instruments in considering a diverse range of
stakeholders in the ACS design process.

Finding 2. During part 1, participants examined the possible ethical issues
associated with the ACS concerning the stakeholders involved. One of the most
prominent raised concerns was possible privacy violations. All participants were

78 R. Alidoosti et al.

Table 1. The list of the stakeholders identified in the two parts of the session

Stakeholder (Part1)

The business owner: The person or group who is responsible for making decisions
about the implementation and use of the ACS

The building owner: Individual or organization that owns the physical building
where the gym is located

The final users of the system: Individuals who require access to specific areas of
the gym, including gym members, staff members, and even guests visiting the
gym for a specific purpose

Software development stakeholders: The individuals involved in the system design
and implementation, including designers, developers, architects, IoT experts, and
network designers

Data maintainers: Individuals who are responsible for ensuring the accuracy,
completeness, and security of the data used by the system

The electricians/the electrical team: Individuals responsible for installing,
maintaining, and repairing the electrical components of the ACS.

Stakeholder (Part2)

Researchers: Those who inspect the existing literature to gain insight into how
ACSs should be designed

Domain experts/Policy designers: Those who are specialists and have knowledge
of the system’s regulations, such as GDPR. They can be consulted to address
queries such as “Are we performing tasks correctly?”, “Is deleting the log
sufficient?”, or “Are we violating any legal requirements or law?”

Families or relatives of the gym members/neighbors of the gym: Those who can
be indirectly affected by the ACS

Fire safety experts: Those who possess knowledge and experience in fire safety,
testing, and inspection, particularly in emergency situations

Different groups of system users: The system may have diverse groups of users,
including individuals and groups from different religions or cultures, transgender
individuals, and other groups with unique characteristics

The entire society: A group of individuals involved in constant social interaction
sharing the same social territory and cultural expectations

The business competitors: In the event of a company failing to uphold user
values, such as through a violation or breach, they risk losing their customers to
competing businesses that can capitalize on this loss and offer similar services

Third parties: Those who are external to the company and are not directly
involved in the business’s core operations. They can offer valuable insights into
integrating the system with other external systems, thereby enhancing its
functionality

cognizant of this issue and acknowledged its significance in the context of soft-
ware systems. They also identified other ethical concerns, such as avoiding

Stakeholder Inclusion and Value Diversity in Software Systems 79

identifiability and avoiding malicious activities (see Table 2)4. When the sys-
tem evaluates an authorization request, the PIP can enhance it with additional
information such as user rights, and schedules, while the PAP is responsible for
administering the authorization policies. They may be both affected by privacy
issues, thus their design must consider these possible threats. In part 2, the par-
ticipants brainstormed the system’s ethical implications for different stakehold-
ers. They discussed different scenarios to determine how ethical values in relation
to the system could potentially be supported or undermined. They raised ethical
concerns regarding the ACS, which they had never thought about or considered
their impacts on stakeholders. For example, the risk of violating dignity of gym
members, e.g., when they are publicly denied access to gym services (by raising
the alarm) due to late payment of membership fees. It could lead to feelings
of embarrassment and shame. Moreover, they raised ethical concerns focused on
indirect system’s stakeholders, e.g., noise pollution affecting the gym’s neighbors,
the potential threats to the sense of togetherness experienced by gym members
and their families (see Table 3). Such implications emphasize the need to con-
sider system users and indirect stakeholders when designing the components of
the PEP. It is essential to properly control and configure the loudness of speakers
to prevent any violation of dignity when a user is denied entrance and to ensure
there are no disturbances to the gym’s neighbors.

Finding 2 (RQ1): We observed that using the instruments significantly
enhanced the participants’ ability to comprehend the possible and far-reaching
ramifications of the system from an ethical perspective. It facilitated a thor-
ough exploration of the system’s capacity to impact various stakeholders, both
directly and indirectly. By providing a structured framework, the instruments
guided participants in uncovering the ethical concerns of the involved stake-
holders and encouraged a more inclusive analysis.

Finding 3. During part 1, the participants discussed several values related to
the system, including privacy, security, welfare, and fairness (indicated by solid
circles in Fig. 3). Although not explicitly stated, they acknowledged their reliance
on use cases to identify these values, guided by the functionalities requested by
the business owner. Given the relations among ethical values, specified in the
two parts of the session and listed in Table 4, the participants focused only
on the tension between security and privacy, and the congruity between fair-
ness and well-being/welfare. They emphasized that defining these relations was
not straightforward and required reasoning, as there was no clear-cut solution.
During part 2, following the introduction of the instruments, the participants
identified several new values concerning the system (refer to the values marked
with dotted circles in Fig. 3). They elucidated the relationships among these val-
ues, including tensions between values, such as togetherness and ownership and
property, freedom and safety, freedom and control, safety and anonymity, cultural
4 To enhance readability, ethical concerns identified in part 1 are presented in Table 2,

while those identified in part 2 are summarized in Table 3.

80 R. Alidoosti et al.

Table 2. The list of the ethical concerns identified in the first part of the session

Ethical concern (Part1)

Violating privacy: During the COVID pandemic, the system barred gym entry to
anyone with a temperature over 38 ◦C, displaying a message on the screen. But,
this could potentially reveal users’ confidential health information. To prevent
this, the system could show a false reason, like an expired subscription, instead of
the real cause

Avoiding malicious activities: The system can offer protection to users from
potential harm caused by others by preventing unauthorized individuals from
entering the gym

Avoiding identifiability: ACSs usually allow individuals to view information such
as whether someone is inside a room or when they entered. However, this
presents a privacy concern that needs to be addressed to prevent identity
disclosure. In the system, only the administrator has access to users’ entrance
logs. Occasionally, family members of gym members may inquire about the
presence of their spouse or children to monitor their activities, as they may claim
to be at the gym while actually being elsewhere. With our system, users do not
need to worry about such violations

Facilitating financial success: Ensuring the safety and security of users is a
crucial aspect of upholding ethical principles for any gym business. By
demonstrating a commitment to this principle, the business can earn a favorable
reputation among users and attract more subscriptions. When users feel that
their ethical concerns and values are taken into consideration, they are more
likely to choose the gym over others, which can result in increased revenue and
profits for the business owner

Supporting mental well-being: Mental well-being of gym members can be
supported by establishing a calm and peaceful atmosphere in the gym,
particularly in activities like yoga classes. When individuals enter the class and
set up their mats during the final relaxation stage, it could disrupt the experience
for others and trigger irritation and anxiety. To avoid such issues, limiting access
to the class during a designated period before the activities begin is
recommended. This approach helps promote a pleasant environment that
enhances the overall mental well-being of all members

Supporting fairness: Indoor cycling and gym bikes have varying levels of quality,
with newer models being superior. However, some individuals tend to monopolize
the best equipment, leaving others with bad options. To address this issue, the
gym owner has suggested restricting access to equipments to only 10 min before
classes begin. This ensures fair equipment usage for all users

values, and congruity between cultural values and control (see Table 4). The ACS
components are all tied to the above-mentioned value relations, highlighting the
need for their consideration when designing the components.

Stakeholder Inclusion and Value Diversity in Software Systems 81

Table 3. The list of the ethical concerns identified in the second part of the session

Ethical concern (Part2)

Noise pollution: The system can produce noise upon people entering the gym, which can
be problematic, particularly at night, as it may cause disturbance to nearby residents

Controlling: There may be instances where the gym owner or staff notices that a gym
member has registered for a class but did not attend. This situation can make him feel
like he is being judged or controlled, even though no one is monitoring his every move.
This perception can make him feel like he is not in full control of his choices and actions

Security risks: In the event of an emergency, individuals may become trapped inside or
outside of the gym and feel helpless if the system does not allow them to take
appropriate action

Freedom restriction: During a fire emergency at the gym, individuals may be needed to
pass through rooms for which they do not have a subscription to reach the nearest
security exit

Violating physical and emotional well-being: Restrictions at the gym may prevent family
members from entering to provide assistance to a sick member during a lesson or
retrieving a forgotten item, potentially causing undue stress and emotional problems

Violating dignity: Gym members who fail to renew their membership on time may feel a
loss of dignity, as the system prompts them to make a payment and restricts access if
they do not comply. This process draws attention to the fact that the payment was not
made on time, potentially causing embarrassment and shame

Threatening togetherness: The system at the gym may threaten togetherness in
situations where a member’s family wishes to enter to witness their child’s activity and
show support but is restricted from doing so

Religious discrimination: Consider a scenario where users are treated differently based
solely on their religious beliefs and practices, which is a form of discrimination

Violating cultural and spiritual values: In situations where a group of individuals
culturally oppose monitoring, perhaps due to religious beliefs or lack of documentation,
they may view it as a violation of their cultural and spiritual values

Supporting usability: The owner had a requirement to implement a system that would
make it easier for users to access the facility and decrease the workload of the employees.
To achieve this, gym members are allowed to use their own tags to enter and exit the
room, eliminating the need for employees to constantly check the computer for
subscription end dates. This results in improved usability for the system and reduced
workload for the employees

Supporting trust: Users are more likely to trust a system when they can observe that it
operates efficiently, provides sufficient functionalities, and does not retain sensitive
information. Therefore, implementing these features can enhance the trust users have in
the system

Supporting autonomy: The system notifies gym members when their
memberships/subscriptions are expiring, allowing them to stay informed without seeking
information from the secretary or administration. This autonomy helps them plan and
avoid being rejected at the desk by choosing not to attend until the next billing cycle if
they cannot pay

82 R. Alidoosti et al.

Table 4. The list of the potential value relations specified in the two parts of the
session

Value relation (Part1)

Conflict between security and privacy: While ensuring the security of individuals,
it is important to be mindful of the privacy of users and their data

Congruency between fairness and mental welfare: When a user is consistently
given an older bike in the fitness area because they come from a different class,
while others have enough time to choose the newer ones, it creates an unfair
situation that can lead to negative emotions. This inequality may have a
detrimental impact on the user’s mental health.

Value relation (Part2)

Conflict between togetherness and ownership and property: The owner of the
gym, who has the right of ownership, may desire to have the authority to
determine who can enter the premises without necessarily considering the
togetherness of the gym members and their families

Conflict between freedom and safety: Users may have to compromise some of
their safety in order to gain greater freedom within the context of the ACS

Conflict between freedom and control: While it is necessary to control the
entrances of various rooms within the gym, users still desire the freedom to move
around the facility

Conflict between safety and privacy/anonymity: If the police require the gym to
monitor all individuals entering the premises due to safety regulations, it may
compromise other aspects for gym members, such as privacy and anonymity

Conflict between cultural values: While it is important to acknowledge cultural
values, it may not always be feasible to satisfy all of them. Considering the
prevailing culture in the region where the gym is situated can aid in determining
which values to prioritize. However, applying the same approach in diverse
settings may lead to challenges. In such cases, it is necessary to make
compromises among cultural values

Congruency between cultural values and control: By implementing an ACS, we
aim to regulate access and exert control for a specific group of individuals in
order to preserve certain cultural values

Finding 3 (RQ2): We observed that the instruments played a crucial role in
elevating the participants’ perspectives by not only expanding their awareness
of affected values but also prompting a deeper understanding of the intricate
relationships among these values. By focusing on stakeholders’ ethical concerns,
participants gained valuable insights into the complex task of identifying and
balancing different ethical values within the context of the ACS.

Finding 4. Table 5 reports the list of the ethical decisions identified in the two
parts of the session. During part 1, participants focused primarily on privacy-
related design decisions, such as implementing separate internal and external

Stakeholder Inclusion and Value Diversity in Software Systems 83

Table 5. The list of the ethical decisions identified in the two parts of the session

Ethical decision (Part1)

Ed-1: Storing sensitive user data externally, separate from internal data that
could potentially be linked to user identities through building access logs. Access
information is maintained externally, including the logs, which should be removed
annually for security purposes

Ethical decision (Part2)

Ed-2: Designing the system that generates minimal noise, such as using biometric
scanners, can foster a peaceful and supportive environment for individuals
residing in the same building or nearby area. This can have a positive impact on
their mental health and overall well-being

Ed-3: Reducing the amount of personal information that we need to collect. This
can help to protect user privacy, as there is less data that could potentially be
misused in the case of a data breach

Ed-4: Categorizing system users based on their gender, cultural background, or
religious affiliation and providing tailored services to align with their cultural
values

Ed-5: Providing customization options in the system to support cultural values
in different contexts is certainly a good practice. However, it is important to keep
in mind that releasing the system in a simulation environment and forcing it to
face different cultural and ethical violations may not necessarily be the best
approach. This is because it cannot fully capture the complexity of real-world
cultural contexts

storage for keeping data. A scenario was derived where a user might require
authorization from the PEP following another user. If the PEP includes output
devices, e.g., a display, the system must ensure that the PEP can provide infor-
mation regarding a possible denial without causing ethical harm to the users.
This highlights the importance of considering privacy concerns when designing
the PDP, PIP, and PAP, even though the PEP could also be exposed. Thus, an
important design decision is about how long the reason for the denial of entrance
should be displayed on the screen. Alternatively, this private information could
even be sent to the user confidentially, e.g., by email. During part 2, the partici-
pants put forward various design decisions aimed at supporting different ethical
aspects. They suggested, e.g., a solution to reduce noise pollution at night, which
could have a positive impact on the well-being of neighbors (see Table 5). When
designing the PIP for the ACS, it is crucial to consider all the decisions above,
as the PIP’s role is to enrich the authorization with additional data.

Further, we observed that using the instruments enabled the participants to
propose recommendations grounded in an understanding of the system’s ethical
implications on the stakeholders. These recommendations can be regarded as
potential considerations for future design decisions within the context of the
ACS. Below, we present the suggestions made by participants to foster ethical
considerations in the context of the ACS.

84 R. Alidoosti et al.

– Conducting an ethical assessment using a framework/model can be crucial
in evaluating the system’s ethical implications. This can provide insight into
potential ethical issues and conflicting values and help determine appropriate
responses by the system.

– Establishing generic policies using a specific language that can articulate gen-
eral invariant constraints.

– Using an ethical model to guide the design and development of the software
system in a responsible and ethical manner.

– Concretizing ethical considerations during the design phase, especially in
requirements and use cases, can effectively help identify potential violations.
This can serve as a good starting point for improving the ethical perspective
of the system.

– Deploying the system in various contexts can be useful in identifying poten-
tial ethical violations, especially those that may be associated with cultural
factors.

Finding 4 (RQ3): We observed that the instruments served as catalysts,
elevating the participants’ awareness about the vital role of ethical values in
the ACS design decision process. This heightened awareness empowered the
participants to actively incorporate ethical considerations into their decision-
making, fostering a sense of responsibility in navigating the intricate ethical
dimensions of ACS design.

4.2 The Secondary Evaluation Results

During this session, our main focus was on examining the potential ethical impli-
cations of the ACS, discovered in the initial evaluation. We delved into the opin-
ions and perspectives of system’s users (e.g., gym members) regarding these
implications. By analyzing the session’s transcript, we found that participants
acknowledged the existence of most of them within the context of the ACS. They
specifically emphasized the relevance of the following implications:

– Noise pollution: “The gym in our specific location is situated in an isolated
area, away from residential properties, and there is a hospital approximately
600 m away. Given this setting, an ACS is unlikely to cause significant prob-
lems or disruptions to the surrounding neighborhood. However, it is important
to consider that in densely populated areas with numerous nearby buildings,
the ACS may introduce potential disturbances.”

– Controlling: “In relation to the system, we experienced a sense of being judged
and controlled based on our understanding of how it operates. An illustration
of this is when we utilize the gym’s mobile app to enroll in a class, as the
system administrator can track our preferences, such as attending the 7 pm
guided sessions. It’s worth noting that individuals may have different levels
of awareness regarding data gathering and may experience varying degrees of
feeling judged and controlled.”

Stakeholder Inclusion and Value Diversity in Software Systems 85

– Violating physical and emotional well-being: “The accessibility of the gym
during emergencies is a significant concern, as it can have a detrimental
impact on our physical and emotional well-being. The presence of closed doors
or obstacles that impede immediate access is viewed as problematic in such
situations.”

– Violating dignity: “The experience of embarrassment is subjective and can
be influenced by individual emotions and perspectives. If someone typically
attends the gym with a friend, forgetting to renew a gym membership and
subsequently being denied entry by the ACS can be particularly embarrass-
ing. The presence of available staff, such as a receptionist, proves helpful in
resolving access issues and reducing potential embarrassment. However, when
staff is absent, especially during the early morning, it may lead to more embar-
rassing situations. Additionally, to avoid the embarrassment of being denied
access, receiving an email reminder one or two weeks prior to the membership
expiration would be preferable.”

– Threatening togetherness: “Limitations that prevent our family members from
accessing the gym can disrupt the feeling of togetherness. While granting
access to parents supporting their children’s activities is beneficial, it’s impor-
tant to consider such restrictions during the subscription process. Personal
experiences illustrate the difficulties that arise when only one parent has
access, especially when tasks like preparing the child after swimming lessons
become challenging. Such severe restrictions can lead to dissatisfaction and
subscription cancellations. Finding a balance that allows for family involve-
ment while maintaining necessary constraints is key to ensuring a positive
experience for parents and their children.”

– Violating cultural and spiritual values: “The ACS offers a user-friendly solu-
tion, particularly for individuals struggling with technology. Using a physical
bracelet as an access device enhances accessibility and transparency compared
to relying on software or mobile apps. The wearable nature of the bracelet
makes it well-suited for people of different ages and cultural backgrounds,
including older individuals with diverse cultural habits. Moreover, this sys-
tem can help prevent potential conflicts with gym staff or owners regarding
membership renewals. Being rejected by an electronic device is often per-
ceived as less aggressive than dealing with a staff member. Furthermore, in
specific countries, the cultural value of unrestricted gym access may clash
with the presence of an ACS. It is crucial to consider the impact on cultural
values when implementing such systems.”

– Supporting usability: “Without an ACS, entering the gym becomes challeng-
ing, especially when there is no receptionist available. The ACS is crucial as
it enables self-verification and ensures a smoother experience. Manual verifi-
cation with the receptionist can result in queues and delays, e.g., during busy
times. Additionally, relying solely on human verification increases the risk of
unauthorized access. Implementing an ACS eases the workload of employees
and provides valuable insights into customer preferences, allowing the gym to
offer improved services based on attendance data.”

86 R. Alidoosti et al.

– Supporting trust: “We favor an ACS that does not necessitate our sensitive
information, as it is unnecessary for a gym or similar establishments. Having
a system that does not store or utilize our sensitive data makes us feel more
confident and trusting.”

– Supporting autonomy: “While we appreciate receiving notifications about our
membership status, we have concerns regarding the level of autonomy granted
to us. We are uncertain if the ACS includes a feature that allows us to make
membership payments. Even if we receive a notification regarding our mem-
bership expiration, we still have to visit the reception to finalize the payment
process personally. Consequently, our autonomy as members remains unful-
filled in this regard.”

There were also instances where participants expressed that certain implica-
tions are not deemed as significant in relation to the ACS. For instance, they
believed that the system’s security risks are not highly impactful since the sys-
tem does not store sensitive information. Additionally, they believed that the
system does not impose restrictions on their freedom, and any limitations they
experience are primarily due to the gym’s security measures. Furthermore, par-
ticipants raised the ethical concern of identifiability, i.e.,the state of being iden-
tifiable, which had not been previously mentioned. They considered it as the
most significant implication that requires to be taken into account during the
design process. All the components of the ACS are clearly tied to the highlighted
ethical concerns. However, since the user interaction happens through the PEP,
it is crucial to design it in a way that instills a sense of trust in the end user.

Finding 5 (RQ1): We observed that the opinions of the system’s users
regarding its ethical implications align closely with those revealed using the
instruments. This suggests that the instruments have the potential to assist
software designers in identifying ethical implications of the system that are
important from the standpoint of stakeholders with different roles.

4.3 Threats to Validity

A potential threat to construct validity is related to the mediator’s bias in data
collection. We mitigated it by proposing predetermined questions in the two
focus group sessions. A potential threat to internal validity is related to the
reliability of the data collected from the two focus groups. To mitigate it, we used
Atlas.ti [5] to code and cluster notable quotes to reduce bias and ensure reliable
results. A potential threat to external validity is related to the experience and
background of participants involved in the secondary evaluation. To mitigate it,
we conducted the focus group involving participants with different experiences.
A potential threat to conclusion validity is related to the credibility of the final
findings. To mitigate it, we all discussed the study findings and drew conclusions.

Stakeholder Inclusion and Value Diversity in Software Systems 87

5 Conclusion and Future Directions

This study highlights the dual nature of software systems, bringing substan-
tial benefits to individuals’ lives while also posing potential social and ethical
challenges that may compromise ethical values. Emphasizing the significance of
considering all relevant stakeholders and their values during the system design
process, we introduced two ethics-driven instruments (i.e.,a stakeholder map
and a value model) to evaluate their impact on supporting ethical considera-
tions, illustrated through the case of an ACS. The retrospective study revealed
that these instruments effectively facilitated the identification of stakeholders
with different roles, their ethical concerns, values, and ethical decision-making.
To further advance this line of inquiry, future research could explore a broader
array of studies to comprehensively assess the effectiveness of the instruments.
Another direction involves utilizing these two instruments right from the initial
phases of software system design.

Acknowledgement. We would like to thank the ACS designers for their contribu-
tion to enhancing our understanding of the system from an ethical standpoint. Also, we
thank the gym members for their valuable feedback. The work has been partially sup-
ported by ARS01 00540 - RASTA project, funded by the Italian Ministry of Research
PNR 2015–2020. The authors De Sanctis and Iovino acknowledge the support of the
MUR (Italy) Department of Excellence 2023–2027 for GSSI.

References

1. Alidoosti, R., Lago, P., Poort, E., Razavian, M.: Ethics-aware decidarch game:
Designing a game to reflect on ethical considerations in software architecture design
decision making. In: 2023 IEEE 20th International Conference on Software Archi-
tecture Companion (ICSA-C), pp. 96–100. IEEE (2023)

2. Alidoosti, R., Lago, P., Razavian, M., Tang, A.: Ethics in software engineering:
a systematic literature review. Technical report, Vrije Universiteit Amsterdam
(2022). https://tinyurl.com/39crpyn2

3. Bittner, K., Spence, I.: Establishing the Vision for Use Case Modeling, Use Case
Modeling. Addison Wesley Professional, Reading (2003)

4. De Sanctis, M., Di Salle, A., Iovino, L., Rossi, M.T.: A technology transfer journey
to a model-driven access control system. Int. J. Softw. Tools Technol. Transf. 1–26
(2023)

5. Friese, S.: Qualitative Data Analysis with ATLAS.ti. Sage, Thousand Oaks (2019)
6. Leong, B.: Facial recognition and the future of privacy: I always feel like... some-

body’s watching me. Bull. Atomic Sci. 75(3), 109–115 (2019)
7. Miles, M.B., Huberman, A.M.: Qualitative Data Analysis: An Expanded Source-

book. Sage, Thousand Oaks(1994)
8. Moreno, M.V., Hernández, J.L., Skarmeta, A.F.: A new location-aware authoriza-

tion mechanism for indoor environments. In: International Conference on Advanced
Information Networking and Applications Workshops, pp. 791–796. IEEE (2014)

9. Neudecker, T., Hayrapetyan, A., Degitz, A., Andelfinger, P.: Consideration of val-
ues in the design of access control systems. In: Informatik 2016 (2016)

https://tinyurl.com/39crpyn2

88 R. Alidoosti et al.

10. Robson, C.: Small-Scale Evaluation: Principles and Practice. Sage, Thousand Oaks
(2017)

11. Schwartz, S.H.: Universals in the content and structure of values: theoretical
advances and empirical tests in 20 countries. In: Advances in Experimental Social
Psychology, vol. 25, pp. 1–65. Elsevier, Amsterdam (1992)

12. Schwartz, S.H.: Basic human values: theory, measurement, and applications. Rev.
Fr. Sociol. 47(4), 929 (2007)

13. Schwartz, S.H.: An overview of the schwartz theory of basic values. Online readings
in Psychology and Culture 2(1), 2307–0919 (2012)

14. Sicari, S., Rizzardi, A., Miorandi, D., Cappiello, C., Coen-Porisini, A.: Security
policy enforcement for networked smart objects. Comput. Netw. 108, 133–147
(2016)

Data-Driven Analysis of Gender Fairness
in the Software Engineering Academic

Landscape

Giordano d’Aloisio , Andrea D’Angelo , Francesca Marzi , Diana
Di Marco, Giovanni Stilo(B) , and Antinisca Di Marco

University of L’Aquila, L’Aquila, Italy
{giordano.daloisio,andrea.dangelo6}@graduate.univaq.it,

diana.dimarco@student.univaq.it,

{francesca.marzi,giovanni.stilo,antinisca.dimarco}@univaq.it

Abstract. Gender bias in education gained considerable relevance in
the literature over the years. However, while the problem of gender bias in
education has been widely addressed from a student perspective, it is still
not fully analysed from an academic point of view. In this work, we study
the problem of gender bias in academic promotions (i.e., from Researcher
to Associated Professor and from Associated to Full Professor) in the
informatics (INF) and software engineering (SE) Italian communities
(we restricted to the Italian community since each country has specific
and own promotion systems). In particular, we first conduct a literature
review to assess how the problem of gender bias in academia has been
addressed so far. Next, we describe a process to collect and preprocess
the INF and SE data needed to analyse gender bias in Italian academic
promotions. Subsequently, we apply a formal bias metric to these data
to assess the amount of bias and look at its variation over time. From
the conducted analysis, we observe how the SE community presents a
higher bias in promotions to Associate Professors and a smaller bias in
promotions to Full Professors compared to the overall INF community.

Keywords: Gender bias · Academia · Italy · Informatics · Software
Engineering

This work is partially supported by European Union - NextGenerationEU - National
Recovery and Resilience Plan (Piano Nazionale di Ripresa e Resilienza, PNRR) -
Project: “SoBigData.it - Strengthening the Italian RI for Social Mining and Big Data
Analytics” - Prot. IR0000013 - Avviso n. 3264 del 28/12/2021, by “FAIR-EDU: Pro-
mote FAIRness in EDUcation institutions” a project founded by the University of
L’Aquila, 2022, and by COST Action CA19122 - European Network Balance in Infor-
matics (EUGAIN). All the numerical simulations have been realized on the Linux HPC
cluster Caliban of the High-Performance Computing Laboratory of the Department of
Information Engineering, Computer Science and Mathematics (DISIM) at the Univer-
sity of L’Aquila.
G. d’Aloisio, A. D’Angelo and F. Marzi—These authors contributed equally to the
paper.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
B. Tekinerdoğan et al. (Eds.): ECSA 2023, LNCS 14590, pp. 89–103, 2024.
https://doi.org/10.1007/978-3-031-66326-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-66326-0_6&domain=pdf
http://orcid.org/0000-0001-7388-890X
http://orcid.org/0000-0002-0577-2494
http://orcid.org/0009-0009-9129-9231
http://orcid.org/0000-0002-2092-0213
http://orcid.org/0000-0001-7214-9945
https://doi.org/10.1007/978-3-031-66326-0_6

90 G. d’Aloisio et al.

Terminology

In this work, we adhere to the convention in the existing literature by using
the term ‘gender’ to refer to the sex assigned at birth, aligning with established
research practices. While the literature commonly uses the term ‘gender’ in this
context, we acknowledge that this may differ from its more typical use referring
to gender identity.

1 Introduction

Nowadays, the problem of gender bias has been widely considered and analysed
in the literature under several contexts and domains, like health [28], justice [4],
or education [24]. Concerning the latter, the problem of gender bias in education
gained considerable relevance over the years, and several papers studied this
issue from both a technical and sociological point of view [6,23]. However, most
works focus on gender bias in students’ education, not considering other relevant
contexts [5]. In this work, we want to analyze the issue of gender bias in education
from the academic point of view by analyzing if there is a gender bias in academic
promotions (i.e., from Researcher to Associated Professor and from Associated
to Full Professor) in the Italian academic context, in Italian informatics (INF)
in general and software engineering (SE) in particular.

We first perform a literature review to assess how the issue of gender bias
in academia has been addressed so far. Next, we perform an empirical analysis
of gender bias in academic promotions in the Italian informatics (INF) com-
munity. We first extract all the needed data from several open repositories and
process them to make them suitable for the analysis. We perform said analysis
by investigating the gender distribution and academic productivity of each gen-
der group. Then, by applying a formal bias metric, we show the trend of bias
over the years, starting from 2018 to 2022. Finally, we compare the overall trend
with the sole software engineering (SE) Italian community highlighting how the
trend for the latter exhibits similar behaviour, albeit considerably more biased
towards researchers and less biased towards associate professors, compared to
the overall INF community.

Hence, the main contributions of this work are the following:

– We perform a literature review of the most relevant papers addressing the
issue of gender bias in academia by also highlighting the main weaknesses of
the current approaches (Sect. 2);

– We describe a process to collect and preprocess data useful to assess the
amount of gender bias in academic promotions in Italy (Sect. 3);

– We analyse the gender distribution of each gender group in both the Italian
Informatics and Software engineering Communities.

– We depict the trend of gender bias in academic promotions in Italy over the
years by relying on a formal bias metric, and we compare the trend of bias
of the overall INF Italian community with the sole SE Italian community
(Sect. 4).

Data-Driven Analysis of Gender Fairness in the SE Academic Landscape 91

The paper concludes in Sect. 6 which describes some future works and final
considerations.

2 Gender Bias in Classic Academic Systems

This section describes the literature review process, focused on those works that
address the problem of gender bias in academia. The search process involved
research of conference proceedings and journal papers on Google Scholar by
relying on the search string shown in Listing 1.1.

Listing 1.1. Search string
a l l i n t i t l e : (gender b ia s OR gender d i s c r im ina t i on) AND (academic recru i tment OR

Women’ s f a cu l t y recru i tment OR fa cu l t y equ i ty OR car e e r advancements OR I t a l i a n

u n i v e r s i t i e s OR s e l e c t i o n p ro c e s s e s)

Among the results, we selected papers that studied and analysed gender bias
in the context of Italian educational systems. Papers discussing practices and
techniques utilised in foreign universities were also included to gain a broader
perspective and compare different approaches and methods. We mainly focus on
works related to the recruitment, promotion and productivity level of academic
staff, i.e., full professors, associate professors and researchers. Articles about
specific faculties or that address the gender bias problem in the general working
world are excluded. This process yields 21 papers that have been carefully anal-
ysed to highlight these main features: the context (i.e. the country where the
study was conducted), the process (i.e., recruitment, promotions or productiv-
ity) in which the gender bias has been studied, if the data used are public or not,
the analytical method employed (i.e., whether descriptive or inferential statistics
are used to analyze the data), and the year of the paper.

Table 1 summarises such features for each paper. Note that papers with the
same features have been grouped in the same row.

Concerning the context, most of the papers focus on specific countries, while
the rest of them are generic and unrelated to particular academic systems. In
the table, we use the official national abbreviation to specify each country, while
papers with unspecified countries are labeled with UNK.

Concerning the process, most papers address the problem of gender bias
either in recruitment or promotions, while only two papers (i.e., [3,17]) address
the issue of gender bias in productivity. Gender bias in recruitment is mainly
addressed by providing recommendations, practices, and strategies to minimize
the impact of bias and reach gender equity in the recruitment process. Instead,
the problem of gender bias in academic promotions is mainly addressed by esti-
mating the probability of promotion by looking at the number of female and male
academicians across different career stages or focusing on women in university
leadership. Finally, the problem of gender bias in productivity is addressed by
investigating the causes that lead to lower productivity by women.

Concerning the source data, public data comes mainly from institutional
repositories like the Ministero dell’Università e della Ricerca (MIUR) (i.e., the

92 G. d’Aloisio et al.

Table 1. Summary of the Literature Review.

Paper Context Process Source Data Analytical Method Year

[33] AU Prom. Priv. Descr. 2000

[34] U.K. Prom. Priv. Inf. 2001

[32] U.S. Recr./Prom. Priv. Inf./Descr. 2002

[17] U.S. Prod. Priv. Inf./Descr. 2005

[7] NL Recr. Priv. Descr. 2006

[2] IT Prod. Pub. Descr. 2009

[19] UNK Rescr./Prom. Priv. Inf./Descr. 2010

[25] IT Prom. Pub. Inf./Descr. 2011

[3,26] IT Recr. Pub. Inf./Descr. 2016, 2019

[13,16] IT Prom. Pub. Descr. 2017, 2021

[22] IT Prom. Pub. Inf. 2018

[9,29] U.S. Recr./Prom Priv. Descr. 2020, 2019

[31] U.S. Recr. Priv. Descr. 2019

[18] IT Recr./Priv. Pub. Descr. 2020

[8] IT Prom. Priv. Inf./Descr. 2021

[10] IS,NO,SE Recr. Priv. Inf. 2021

[20] DE,AT,CH Prom. Priv. Inf./Descr. 2022

[21] UNK Prom Priv Descr 2022

Italian Ministry of University and Research) and the National Scientific Quali-
fication website (for Italian works) [11,27]. Private data were instead collected
through different methods, for instance interviews [2,22], questionnaires [3] and
compilation of surveys [7,8,31,33]. Other papers collected data directly from
internal private university databases.

Concerning the analytical methods, papers using classical descriptive analysis
typically measure the percentages of males and females across career stages and
institutions, means, standard deviations or comparisons using t-tests between
men and women. In addition to these indicators, cross-tables [19], frequency
distributions and segregation indexes [18] were used. Papers that perform infer-
ential statistical analysis use different regressions methods, such as ordinary least
squares regressions, multiple logistic regressions, and multilevel logistic regres-
sions. Works like [26] use quantitative analysis with the glass ceiling index and
the glass door index to measure and compare the effects of gender practices, and
[34] relies on a static discrete-choice model for rank attainment.

From this review of the existing literature, it is clear how there is an interest
in analysing the issue of gender bias in academia. However, some examined
works are old, and the reported conclusions may be outdated. Moreover, we have
seen a lack of analyses using formal metrics to measure bias, and none of the
reported papers analyses the issue of gender bias in academic promotions inside

Data-Driven Analysis of Gender Fairness in the SE Academic Landscape 93

the informatics community (and thereby software engineering). In this paper,
we aim to overcome these lacks by formally analysing gender bias in academic
promotions in the informatics (and software engineering) Italian communities.

3 Analysis Description

This section presents the analysis conducted to evaluate the level of gender bias
in the academic positions within the overall informatics (INF) and software engi-
neering (SE) Italian communities. The informatics community is the conjunction
of Areas 1 and 9 of the MIUR scientific areas classification [1]. We first report
the dataset creation and filtering procedure (Sect. 3.1). Next, we describe the
performed experiment (Sect. 3.2).

3.1 Data Collection and Filtering

Figure 1 reports the full data collection and filtering pipeline used to collect
the datasets of the INF and SE Italian communities for our analysis1. In the
figure, we report the different sources (Italian and international) from where we
gathered the needed information, namely: Scopus [14] and Google Scholar [30] as
international sources and MIUR [27] and National Scientific Qualification (ASN)
[11] as Italian sources.

Italian Sources

International Sources Data
Aggregation

Pipeline

Dataset
D'

Data
Filtering
Pipeline

INF
Datasets

SE
Datasets

Fig. 1. Data collection and filtering pipeline

The first step of the pipeline is the dataset collection and aggregation. Specif-
ically, data was gathered between 2015 and 2022 with the aim of identifying the
following information:
1 https://github.com/dangeloandrea14/Italian SE Fairness Public.

https://github.com/dangeloandrea14/Italian_SE_Fairness_Public

94 G. d’Aloisio et al.

– Personal Data: i.e., information such as age and gender. These data have
been gathered from the MIUR website, which contains all the information
about people employed in the Italian academia [27].

– Academic Career: i.e., information such as the university and department
of affiliation, career advancements, academic seniority, macro disciplinary
area, scientific sub-sector they belong to, area of expertise, current academic
appointment, academics managerial appointments, teaching activities, funded
projects, committees, salaries, and sabbatical period. These data have been
gathered from the MIUR and National Scientific Qualification (ASN) websites
[11].

– Scientific Productivity: i.e., information such as the list of publications,
the total number of papers, total citations, the h-index, publication range,
papers per year, citations per year, publication types, journal metrics, and
research area. These data have been scraped from Scopus [14] and Google
Scholar [30].

Note that not all the reported information is used in the following analysis,
but we choose to gather them for future works. The data have then been aggre-
gated into a single dataset D′ using the name, surname, email, and affiliation
as join keys. This aggregated dataset D′ was then thoroughly anonymized to
protect the University employees’ privacy. As a result, no references to names,
surnames, or other sensitive or personal data are stored, as they are neither rel-
evant nor valuable for computing bias metrics. Since the licences under which
some of such data are published are not clear, we prefer to not publish them, but
researchers who want to analyse them can request them on-site. However, the
dataset can be recreated by gathering the same data from the sources mentioned
above and applying the pipeline code published at the link above.

2015

2016

2017

2018

2019

2020

2021

Sliding w
indow

D''

Area 1

Area 9

Starting
Dataset

D'

Division by year

Other Areas

Division by area

Academ
ic

Area

Division by role

Researchers and
associated profs
Associated and
full professors

D'''

Division by
research domain

Software
Engineering

Other domains

Division by role

Researchers and
associated profs
Associated and
full professors

SE

INFRA

INFAF

SERA

SEAF

Fig. 2. Filtering pipeline of the dataset.

Data-Driven Analysis of Gender Fairness in the SE Academic Landscape 95

Starting from the anonymized dataset D′, we performed a set of filtering
operations to obtain the final datasets that we used to compute bias metrics
yearly. The filtering procedure is depicted in Fig. 2. First, we selected from the
dataset only people employed in the academic system for all the reference period
(i.e., from 2015 to 2022). Next, since we are interested in the evolution of bias in
academic promotions year by year, the anonymized dataset D′ was split accord-
ing to a sliding time window of fixed size. In particular, we considered a sliding
window of three years, starting from 2015. Hence, to gather metrics for 2019, we
would slice D′ to obtain only the columns referencing data collected from 2016
to 2019. After this operation, we obtain a partially filtered dataset D′′ for each
sliding window.

The subsequent step was selecting only specific scientific areas from D′′.
Because different domains have different promotion criteria, it would be incor-
rect to consider them all together. Our study only focused on Areas 1 and 9 of
the MIUR scientific areas classification, which refers broadly to Science, technol-
ogy, engineering, and mathematics [1]. In this study, we refer to the conjunction
of these two areas as the Informatics community. From this further filtering,
we obtain a dataset D′′′. From D′′′, we perform two different branches of oper-
ations. In the first branch, D′′′ is split into two versions: one without records
representing researchers (INFAF) and one without Full Professors (INFRA). In
the second phase, D′′′ is refined by selecting individuals who work specifically
in the SE field. To achieve this, we use Google Scholar to find individuals who
have expressed interest in software engineering or related topics. In particular,
we considered people with interests in: software engineering, software architec-
ture, model-driven engineering, software quality, and software testing. The SE
dataset is then divided into two sub-datasets as done above: one consisting of
only researchers and associate professors (SERA), and the other consisting of
only associate and full professors (SEAF). As a result of the data pre-processing
pipeline, four distinct datasets were created. Two of them are for the overall
Italian INF community (INFRA and INFAF), while the other two are for the
Italian SE community (SERA and SEAF). Finally, we only preserved data for
people employed at an Italian university for the entire time window.

3.2 Analysis Setting

Once the final yearly datasets INFRA, INFAF , SERA, and SEAF have been
constructed, the experiments can occur. As already mentioned, the experiment
aims to measure the amount of gender bias in academic promotions and analyze
its variation over the years. To calculate the amount of bias, we use the Disparate
Impact (DI) metric [15]. This metric measures the probability of having a pos-
itive outcome while being in the privileged or unprivileged group and is defined
formally as:

DI =
P (Y = yp|X = xunpriv)
P (Y = yp|X = xpriv)

(1)

96 G. d’Aloisio et al.

where Y is the label, yp is the positive outcome, X is the sensitive variable,
and xunpriv and xpriv are the values identifying the unprivileged and privileged
groups, respectively. The more this metric is close to one, the fairer the dataset.

In our context, the label assigned to a person represents their position for that
particular year. In the analysis between Researchers and Associate Professors,
the positive label is Associate Professor, while in the analysis between Associate
and Full Professors, it is Full Professor. The sensitive variable is gender, where
men and women are the privileged and unprivileged groups, respectively. Hence,
the experiment is performed as follows: for each final yearly dataset (INFRA,
INFAF , SERA, and SEAF) and for each year in the considered range (2018–
2022), we compute the DI between the two subsets contained in the dataset
(either Researchers and Associate Professors or Associate Professors and Full
Professors). We also compute the cardinality of each subset per year.

4 Experimental Results

In this section, we first present statistics on the datasets we analyzed. Then, we
present and discuss the Experimental Results on the bias metric of Disparate
Impact(DI).

4.1 Statistics

Figure 3 depicts the gender distribution in the Informatics and SE Italian com-
munities, on the left and right sides respectively. For the former, the dataset size
is roughly 6600 entries. For the latter, the size is around 100 entries.

(a) Informatics Community (b) SE Community

Fig. 3. Gender Distribution in the Italian Informatics (left side) and Software Engi-
neering (right side) Communities in 2022.

The disparity in gender representation within both communities reveals a
substantial underrepresentation of women compared to men. This disparity is
indicative of a longstanding and well-documented concern within the Informatics

Data-Driven Analysis of Gender Fairness in the SE Academic Landscape 97

community, which our research findings further corroborate [12]. It is notewor-
thy that this discrepancy becomes even more pronounced within the Software
Engineering Community, with 83.3% of researchers being men.

It is also interesting to note the disparity in distribution within the single
groups of Researchers, Associate Professors, and Full Professors. Please note that
the following data refer to the year 2022. Figure 4 depicts them on the subfigures
(a), (b), and (c) respectively. The number of total researchers is 628 (452 men
and 176 women), the number of Associate Professors is 3222 (2332 men and 890
women), and the number of Full Professors is 2737 (2311 men and 426 women). It
is important to note that, as described in Sect. 3.1, we only consider researchers
who have been inside the Italian academic system for the entire time window
that we consider. For this reason, the cardinality of the sets is skewed towards
higher academic roles.

(a) Researchers (b) Associate Professors

(c) Full Professors

Fig. 4. Gender Distribution in the Italian Informatics community, within Researchers
(left side), Associate Professors (center) and Full Professors (right side) in 2022.

For the informatics community, the gender groups’ size disparity increases
as we progress to higher academic roles. The lower representation of female Full
Professors suggests a gender-based disparity in the attainment of Full Professor-
ship, indicating that women face greater challenges in achieving promotion to

98 G. d’Aloisio et al.

this academic rank compared to their male counterparts. However, the higher
percentage of female researchers within the informatics community may lead to
the inference that there is a relatively more balanced representation at the ear-
lier career stages. This suggests that the gender-based disparities in academic
roles become more pronounced as individuals progress towards higher positions,
such as Associate Professors and Full Professors, indicating the need for targeted
interventions to address these disparities at advanced career levels.

Figure 5, on the other hand, shows the gender distribution within roles in
the Software Engineering Community. The cardinality of these sets is much
lower: researchers are only 6 (6 men), Associate Professors are 32 (25 men and
7 women), and Full Professors are 34 (29 men and 5 women).

(a) Researchers (b) Associate Professors

(c) Full Professors

Fig. 5. Gender Distribution in the Italian Software Engineering community, within
Researchers (left side), Associate Professors (center) and Full Professors (right side) in
2022.

Interestingly, results are significantly different with respect to the Informatics
Community. The percentage of women within the Italian Informatics commu-
nity shows notable variations across academic ranks. Women are least repre-
sented among Researchers, and most represented among Associate Professors,
with Full Professors falling in between. Note how, at the end of our time window,

Data-Driven Analysis of Gender Fairness in the SE Academic Landscape 99

only male researchers are left (Fig. 5 (a)). This means that all women were pro-
moted to at least Associate Professors during the time window2. However, this
middle ground for Full Professors suggests that women may encounter unique
challenges in advancing to this rank. More concerning, there is a limited presence
of women in the field of Software Engineering as researchers in general, which
could potentially widen the gender gap in the future.

4.2 Disparate Impact

Figure 6 shows the Disparate Impact (DI) (left y-axis) and set cardinalities (right
y-axis) for each of the datasets above (INFRA, INFAF , SERA, and SEAF) on
a yearly basis in the reference period (2018–2022). In the figure, the charts
on the left side show results for the Informatics (INF) Community datasets
(INFRA, INFAF), while the ones on the right side show results for the Software
Engineering (SE) Community (SERA, SEAF).

Fig. 6. Year-by-year Disparate Impact and Set Cardinality for the Informatics Com-
munity (left column) and Software Engineering Community (right column).

Concerning the full set cardinalities (i.e., of both men and women), they
exhibit the same trend across all datasets. Since we only consider people that
2 Since, as explained above in Sect. 3, we consider only people employed in the aca-

demic system for all the considered period.

100 G. d’Aloisio et al.

were in the Italian academic system for the entire reference period, we do not
consider researchers that were acquired later than 2018, so their cardinality is
bound to decrease. The number of Full professors is rising in both the INF and
SE communities, but the increase in the SE community is significantly larger. In
2022, there are more Full professors than Associate professors specifically in the
SE subset. This suggests that promotions to Full professorship are occurring at a
higher rate among professors in the field of SE compared to the INF community.

Concerning the gender bias in promotions to Associate Professor (INFRA

and SERA in the figure), in both the Informatics and Software Engineering
communities the trend of Disparate Impact (DI) appears to be on an upward
trajectory. However, the SE community seems to suffer from a higher bias w.r.t.
the overall INF community. The DI for the SE community starts from a value of
0.75 in 2018 to a value of 0.8 in 2022. In contrast, the DI of the INF community
starts from a value of 0.9 in 2018 to a value of almost 1 in 2022, meaning a
nearly complete absence of bias in academic promotions. In general, we observe
how the amount of bias in the SE community is about 20% higher than in the
overall INF community.

In contrast, concerning bias in promotions to Full Professors (INFAF and
SEAF in the figure), the SE community exhibits a much lower bias concerning the
INF community. DI for the SE community starts from 0.7 in 2018, then reaches
a peak of 0.95 in 2020, to a final value of almost 0.8 in 2022. This downtrend
from 2020 to 2022 can be partially explained by the small set cardinality, which
makes the DI more sensitive to small changes (i.e., additions or deletions) in the
groups. Instead, the DI for the overall INF community presents a slight increase
over the period, starting from a value of 0.63 in 2018 to a value of 0.65 in 2022.
In this case, the amount of bias in the INF community ranges from 15 to 35%
greater than in the SE community throughout the observed period.

5 Threats to Validity

This section discusses possible threats that can hamper the results of the per-
formed evaluation.

Internal Validity concerns factors that can impact the results of our evaluation.
Firstly, we want to acknowledge that we are considering gender as a binary vari-
able in our analysis despite being aware that some individuals may not identify
with this classification. However, the data sources from which we have extracted
gender information present it as a binary variable, limiting our ability to per-
form a more detailed gender analysis. Secondly, we have chosen to restrict our
analysis of the Italian SE and informatics communities to individuals within the
Italian academic system for all the year ranges assessed. This decision was made
to ensure that our analysis of gender bias in academic promotions is accurate
and not influenced by individuals leaving or joining the academic system.

Construct Validity concerns factors that can jeopardise how the experimental
evaluation has been performed. One threat could be that there might be other

Data-Driven Analysis of Gender Fairness in the SE Academic Landscape 101

confounding factors impacting the results that are not related to gender. In this
sense, we plan to extend our analysis considering also the number of publications
and citations of each academic.

Conclusion Validity concerns threats about the conclusions that are derived from
our evaluation. In this context, we observe that the low number of data samples
might impact the visualized results, causing a high fluctuation of the metrics
curves. The low number of samples is caused by the filtering procedure we apply
to the collected data and, in particular, by the fact that we select only people
employed in academia for all the considered time ranges.

External Validity concerns the generalizability of our results. Our analysis is
focused on the Italian academic system and is not applicable to countries having
a different academic system.

6 Conclusion and Future Work

In this paper, we have studied the issue of gender bias in academic promo-
tions. First, we performed a literature review to observe how the literature has
addressed this issue so far. Then, we formally analyzed gender bias in academic
promotions in the informatics (INF) and software engineering (SE) Italian com-
munities. From the analysis, we observed that gender bias has been improving
over the years in both communities, even though the SE community has a higher
trend in promoting professors from Associated to Full compared to the broader
INF community. In the future, we plan to extend this analysis to other coun-
tries by identifying valuable data sources to retrieve all the needed information.
Next, we plan to analyze the behaviour of a Machine Learning classifier trained
on such data to predict the position of a person. In particular, we want to study
how a classifier is subject to learning a possible gender bias in the data and how
we can mitigate it by relying on proper fairness methods.

References

1. MIUR - Italian Higher Education guide. https://www.miur.it/guida/capitolo3.htm
2. Abramo, G., D’Angelo, C., Caprasecca, A.: Gender differences in research produc-

tivity: a bibliometric analysis of the Italian academic system. Scientometrics 79,
517–539 (2009). https://doi.org/10.1007/s11192-007-2046-8

3. Abramo, G., D’Angelo, C.A., Rosati, F.: Gender bias in academic recruitment.
Scientometrics 106(1), 119–141 (2016)

4. Angwin, J., Larson, J., Mattu, S., Kirchner, L.: Machine bias. ProPublica 23(2016),
139–159 (2016)

5. Baker, R.S.: Learning analytics: an opportunity for education. XRDS: Crossroads
ACM Mag. Students 29(3), 18–21 (2023)

6. Baker, R.S., Hawn, A.: Algorithmic bias in education. Int. J. Artif. Intell. Educ.
(2021). https://doi.org/10.1007/s40593-021-00285-9

https://www.miur.it/guida/capitolo3.htm
https://doi.org/10.1007/s11192-007-2046-8
https://doi.org/10.1007/s40593-021-00285-9

102 G. d’Aloisio et al.

7. van den Brink Marieke, B., Margo, B., Waslander, S.: Does excellence have a gen-
der? A national research on recruitment and selection procedures for professorial
appointments in the Netherlands. Empl. Relat. 28, 523–539 (2006). https://doi.
org/10.1108/01425450610704470

8. Calabrese, A., Fede, M.C., Naciti, V., Rappazzo, N.: Female careers in Italian
universities: the role of gender budgeting to achieve equality between women and
men. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Krakowie/Cracow Rev.
Econ. Manag. 5(989), 31–47 (2021)

9. Cardel, M.I., et al.: Turning chutes into ladders for women faculty: a review and
roadmap for equity in academia. J. Womens Health 29(5), 721–733 (2020). https://
doi.org/10.1089/jwh.2019.8027

10. Carlsson, M., Finseraas, H., Midtboen, A.H., Rafnsdottir, G.L.: Gender bias in
academic recruitment?: Evidence from a survey experiment in the Nordic region.
Eur. Sociol. Rev. 37(3), 399–410 (2021). https://doi.org/10.1093/esr/jcaa050

11. MIUR, Cineca: Abilitazione Scientifica Nazionale. https://abilitazione.mur.gov.it/
public/index.php

12. Research and Innovation - European Commission: Innovation: bridging the gender
gap in STEM - strengthening opportunities for women in research and innovation.
Publications Office of the European Union (2022). https://doi.org/10.2777/774922

13. De Paola, M., Ponzo, M., Scoppa, V.: Gender differences in the propensity to
apply for promotion: evidence from the Italian Scientific Qualification. Oxford
Econ. Papers 69(4), 986–1009 (2017). https://doi.org/10.1093/oep/gpx023

14. Elsevier: Scopus. https://dev.elsevier.com/
15. Feldman, M., Friedler, S.A., Moeller, J., Scheidegger, C., Venkatasubramanian,

S.: Certifying and removing disparate impact. In: Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
259–268. ACM, Sydney, NSW, Australia, August 2015. https://doi.org/10.1145/
2783258.2783311

16. Filandri, M., Pasqua, S.: ‘Being good isn’t good enough’: gender discrimination in
Italian academia. Stud. High. Educ. 46(8), 1533–1551 (2021). https://doi.org/10.
1080/03075079.2019.1693990

17. Fox, M.F.: Gender, family characteristics, and publication productivity among sci-
entists. Soc. Stud. Sci. 35(1), 131–150 (2005)

18. Gaiaschi, C., Musumeci, R.: Just a matter of time? women’s career advancement
in neo-liberal academia. an analysis of recruitment trends in Italian universities.
Soc. Sci. 9(9) (2020). https://doi.org/10.3390/socsci9090163

19. Glass, C., Minnotte, K.L.: Recruiting and hiring women in stem fields. J. Divers.
High. Educ. 3(4) (2010). https://doi.org/10.1037/a0020581

20. Henningsen, L., Eagly, A.H., Jonas, K.: Where are the women deans? The impor-
tance of gender bias and self-selection processes for the deanship ambition of female
and male professors. J. Appl. Soc. Psychol. 52(8), 602–622 (2022). https://doi.org/
10.1111/jasp.12780

21. Kenney, J., et al.: A snapshot of female representation in twelve academic psychi-
atry institutions around the world. Psychiatry Res. 308, 114358 (2022). https://
doi.org/10.1016/j.psychres.2021.114358

22. Marini, G., Meschitti, V.: The trench warfare of gender discrimination: evidence
from academic promotions to full professor in Italy. Scientometrics 115(2), 989–
1006 (2018). https://doi.org/10.1007/s11192-018-2696-8

23. Mengel, F., Sauermann, J., Zölitz, U.: Gender bias in teaching evaluations. J. Eur.
Econ. Assoc. 17(2), 535–566 (2019). https://doi.org/10.1093/jeea/jvx057

https://doi.org/10.1108/01425450610704470
https://doi.org/10.1108/01425450610704470
https://doi.org/10.1089/jwh.2019.8027
https://doi.org/10.1089/jwh.2019.8027
https://doi.org/10.1093/esr/jcaa050
https://abilitazione.mur.gov.it/public/index.php
https://abilitazione.mur.gov.it/public/index.php
https://doi.org/10.2777/774922
https://doi.org/10.1093/oep/gpx023
https://dev.elsevier.com/
https://doi.org/10.1145/2783258.2783311
https://doi.org/10.1145/2783258.2783311
https://doi.org/10.1080/03075079.2019.1693990
https://doi.org/10.1080/03075079.2019.1693990
https://doi.org/10.3390/socsci9090163
https://doi.org/10.1037/a0020581
https://doi.org/10.1111/jasp.12780
https://doi.org/10.1111/jasp.12780
https://doi.org/10.1016/j.psychres.2021.114358
https://doi.org/10.1016/j.psychres.2021.114358
https://doi.org/10.1007/s11192-018-2696-8
https://doi.org/10.1093/jeea/jvx057

Data-Driven Analysis of Gender Fairness in the SE Academic Landscape 103

24. Moss-Racusin, C.A., Dovidio, J.F., Brescoll, V.L., Graham, M.J., Handelsman, J.:
Science faculty’s subtle gender biases favor male students. Proc. Natl. Acad. Sci.
109(41), 16474–16479 (2012)

25. Paola, M.D., Scoppa, V.: Gender discrimination and evaluators’ gender: evidence
from the Italian academy. In: Working Papers 201106, Università della Calabria,
Dipartimento di Economia, Statistica e Finanza “Giovanni Anania” - DESF (2011).
https://ideas.repec.org/p/clb/wpaper/201106.html

26. Picardi, I.: The glass door of academia: unveiling new gendered bias in academic
recruitment. Soc. Sci. 8(5) (2019). https://doi.org/10.3390/socsci8050160

27. dell’Istruzione dell’Università e della Ricerca, M.: Cerca Università, http://
cercauniversita.cineca.it/php5/docenti/cerca.php

28. Ruiz, M.T., Verbrugge, L.M.: A two way view of gender bias in medicine. J. Epi-
demiol. Community Health 51(2), 106 (1997)

29. Russell, J., Brock, S., Rudisill, M.: Recognizing the impact of bias in faculty recruit-
ment, retention, and advancement processes. Kinesiol. Rev. 8, 1–5 (2019). https://
doi.org/10.1123/kr.2019-0043

30. Google Scholar. https://scholar.google.com/
31. Sekaquaptewa, D., Takahashi, K., Malley, J., Herzog, K., Bliss, S.: An evidence-

based faculty recruitment workshop influences departmental hiring practice per-
ceptions among university faculty. Int. J. Equal. Divers. Inclus. (2019)

32. Sonnad, S.S., Colletti, L.M.: Issues in the recruitment and success of women in
academic surgery. Surgery 132(2), 415–419 (2002). https://doi.org/10.1067/msy.
2002.127694

33. Todd, P., Bird, D.: Gender and promotion in academia. Equal Opportunities Int.
19(8) (2000). https://doi.org/10.1108/02610150010786166

34. Ward, M.E.: Gender and promotion in the academic profession. Scott. J. Polit.
Econ. 48(3), 283–302 (2001). https://doi.org/10.1111/1467-9485.00199

https://ideas.repec.org/p/clb/wpaper/201106.html
https://doi.org/10.3390/socsci8050160
http://cercauniversita.cineca.it/php5/docenti/cerca.php
http://cercauniversita.cineca.it/php5/docenti/cerca.php
https://doi.org/10.1123/kr.2019-0043
https://doi.org/10.1123/kr.2019-0043
https://scholar.google.com/
https://doi.org/10.1067/msy.2002.127694
https://doi.org/10.1067/msy.2002.127694
https://doi.org/10.1108/02610150010786166
https://doi.org/10.1111/1467-9485.00199

DeMeSSA

Sarch-Knows: A Knowledge Graph
for Modeling Security Scenarios

at the Software Architecture Level

Jeisson Vergara-Vargas1,2(B) , Felipe Restrepo-Calle1 , Salah Sadou2 ,
and Chouki Tibermacine3

1 Universidad Nacional de Colombia, Bogotá, Colombia
{javergarav,ferestrepoca}@unal.edu.co

2 IRISA & CNRS, Université Bretagne Sud, Vannes, France
salah.sadou@irisa.fr

3 LIRMM & CNRS, Univ Montpellier, Montpellier, France
chouki.tibermacine@lirmm.fr

Abstract. Security, as a software quality attribute, needs to be
addressed from different perspectives and at different levels of the soft-
ware life-cycle. One of these perspectives is the one that focuses on design
decisions at the highest level, that is, at the architectural level. This paper
presents a knowledge graph, called “Sarch-Knows”, that models security
scenarios based on the architectural design of a software system. The
knowledge graph is based on different paths called scenarios, where each
scenario covers the fundamental elements to meet a security property and
the architectural elements on which the properties fall. This knowledge
graph is being implemented as a Neo4j database on which queries can be
issued to extract aggregated knowledge about security and architecture.
This knowledge is scattered over many sources of documentation, like
NIST, MITRE, databases, books and papers; which is why this graph
can be considered as a starting option to establish an ordered scheme of
this knowledge.

Keywords: Software Architecture · Security · Modeling · Knowledge
Graph · Sarch

1 Introduction

The architecture of a software system is defined from a series of elements and
relationships, which constitute the most important structures of the system,
fundamental to reason about it [1,13]. These structures are essential to ensure
compliance with the functional and non-functional requirements of the system.
However, from the non-functional point of view, these structures are essential
when it comes to ensuring quality attributes [12]. Although there is a wide variety
of quality attributes, there are some that are indisputably relevant to all types
of software systems. One of these is security. Security is the ability of a software
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
B. Tekinerdoğan et al. (Eds.): ECSA 2023, LNCS 14590, pp. 107–119, 2024.
https://doi.org/10.1007/978-3-031-66326-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-66326-0_7&domain=pdf
http://orcid.org/0000-0001-5498-6619
http://orcid.org/0000-0003-4226-1324
http://orcid.org/0000-0001-8961-3142
http://orcid.org/0000-0002-2063-0291
https://doi.org/10.1007/978-3-031-66326-0_7

108 J. Vergara-Vargas et al.

system to protect the elements of the system, including data, from unauthorized
access [1,18]. Likewise, it is the ability to provide access to the different system
actors that are authorized (users, components and external systems). Security
as a software quality attribute is covered by the same fundamental elements of
cybersecurity, among which are threats, weakness, attacks and risks. It can be
identified that some contributions have been made in the identification of spe-
cific elements, at the architecture level, that can affect the security of a software
system, among them the classifications of architectural weaknesses and vulner-
abilities related to the application of security tactics [14,16]. Although some
methodological proposals have been presented to support the secure software
development process, as in [20], there is currently no comprehensive contribu-
tion that provides a transversal description of the essential security concepts as
well as specific concepts related to the architecture of a software system. In this
context, this paper presents a knowledge graph where it is possible to model
a complete security scenario, involving elements associated with cybersecurity
and elements associated with software architecture. This conceptual modeling
approach makes it possible to identify the flow of a possible security risk, from
the identification of the threat and the respective weakness, to the architectural
elements that are subject to this risk.

The remainder of this paper is structured as follows. Section 2 describes the
related work to the context of the proposed work. Section 3 specifies and details
the characteristics of the knowledge graph proposed. In Sect. 4 the approach of
security scenarios is presented. Section 5 analyzes the applicability of the pro-
posed work. Finally, Sect. 6 presents the conclusions and future work.

2 Related Works

Software architecture, as a field of knowledge, poses different strategies when
designing and building a software system. On the one hand, architecture is
responsible for defining the structure of the system, that is, the elements that
make it up and the way in which they are related [13]. On the other hand,
the architecture is responsible for defining mechanisms to meet non-functional
requirements, particularly quality attributes. Security, as a software quality
attribute, is addressed from the architectural point of view through two fun-
damental concepts. In the first place, the use of architectural tactics has been
proposed [4,11], as sets of design decisions that seek to guarantee the quality
attribute. In the case of security, architectural tactics have been classified in dif-
ferent ways; however, the taxonomy is highlighted where the moment on which
the tactic acts in the system to deal with an attack is taken into account [1,8].
In this case, this can be seen at the level of detection, resistance, reaction and
recovery. Moreover, the use of architectural patterns is also proposed to address
recurring design problems. For security, these patterns seek to specify a con-
crete solution on the architecture, through the implementation of a particular
architectural tactic [1,5,19].

At the level of the basic elements of cybersecurity, several works have been
proposed, in which a relationship between these elements and the elements of

Sarch-Knows 109

Fig. 1. Knowledge graph overview (SA: Software Architecture, CS: Cybersecurity).

the architecture of a software system is considered [10,14–17]. In this case, the
information registered by NIST in the National Vulnerability Database (NVD) is
identified as one of the most relevant [9], where specific records can be found on
vulnerabilities identified over time, associated with multiple types of computer
systems, including software systems. In the same way, the information published
by MITRE is highlighted, through the Common Weakness Enumeration (CWE)
[6], where a particular mapping of architectural concepts is presented with a
set of weaknesses identified over time, associated with poor implementation (or
null) of an architectural tactic in a software system [7].

3 Sarch-Knows: Knowledge Graph

The proposed knowledge graph is modeled from two fundamental perspectives:
the field of knowledge and the level of detail. In the first place, the perspective
by field of knowledge divides the graph into two parts; the first that includes the
elements associated with software architecture, and the second that includes the
elements associated with cybersecurity.

On the other hand, the level of detail perspective divides the graph into two
other parts; the first that includes the abstract elements (lower level of detail),
and the second that includes specific elements, corresponding to instances of the
abstract elements (higher level of detail).

Figure 1 presents a general overview of the knowledge graph structure, taking
into account the two described perspectives. The green region corresponds to the
field of knowledge: Software Architecture (SA), and the blue region corresponds
to the field of knowledge: Cybersecurity (CS). Likewise, each region by field of
knowledge presents the two levels of detail. SA1 and CS1 correspond to the
minimum level of detail (abstract elements), and SA2 and CS2 correspond to
the maximum level of detail (specific elements). The details of the graph are
described below, based on the fields of knowledge. It is important to mention
that both the abstract elements and the specific elements are presented in the
graph as nodes. Likewise, the relationships between the abstract elements and
specific elements are presented in the graph as edges/arcs. Abstract elements
establish conceptual relationships between them. Abstract elements and specific

110 J. Vergara-Vargas et al.

elements establish instantiation relationships between them. While the specific
elements establish security scenarios between them.

3.1 Software Architecture (SA)

The first part of the graph groups the relationships between different concepts
related to the architecture of a software system. To comprehend the principles
of software architecture, it is important to understand the generalities of the
related abstract elements:

– Architectural Element: The fundamental unit of construction of a software
system. Among its basic characteristics are: a set of responsibilities, a bound-
ary, and a set of interfaces. These elements can include components, connec-
tors, modules, layers, services, and messages [13].

– System Structure: A particular organization and arrangement of architectural
elements within a software system. It can be considered as a set of architec-
tural elements and their respective relationships [1,13].

– Component-and-Connector Structure: structure of the system that groups
those architectural elements that are present at runtime [2].

– Component: a computational element or data store that is present at run-
time. [2,18].

– Connector: a path of interaction at runtime between two or more compo-
nents. [2,18].

– Architectural Tactic: a design decision that influences the fulfillment of a
quality attribute [1,8].

– Architectural Pattern: an architectural solution to solve a recurring software
design problem [18].

Figure 2 (a) presents the abstract elements associated with the software archi-
tecture perspective in the graph.

The software architecture perspective presents the basic idea of architecture
responsibility. On the one hand, it presents the definition of the system struc-
tures, composed of a set of architectural elements and emphasizing the structure
of components and connectors. On the other hand, it presents architectural tac-
tics and architectural patterns, fundamental to achieving quality attributes; in
this case, security.

3.2 Cybersecurity (CS)

The second part of the graph groups the relationships between the basic concepts
of cybersecurity. These concepts are essential to understand and attend to the
aspects related to the security quality attribute, from any point of view, including
the architectural. Thus, to comprehend the principles of security, it is important
to understand the generalities of the related abstract elements [9]:

– Weakness: a defect or deficiency in the design, construction or configuration
of a software system.

Sarch-Knows 111

Fig. 2. First perspective: Software Architecture (a), and second perspective: Cyberse-
curity (b).

– Risk: the possibility of an undesired occurring event or incident that has a
negative impact on the security of a software system.

– Attack: a malicious attempt to compromise the security of a software system.
– Threat: any event, action or entity that has the potential to cause damage or

compromise the security of a software system.
– Countermeasure: A measure or action taken to prevent, mitigate or neutralize

an identified threat or risk. Its main objective is to protect a software system
against possible attacks or security incidents.

– Security Property: a system’s ability to protect the elements that compose
the system, including data, from any event that may mainly generate a con-
fidentiality, integrity and availability risk.

Figure 2 (a) presents the abstract elements associated with the cybersecurity
perspective in the graph.

The security perspective presents the basic idea of treatment of the security
quality attribute from the general perspective of cybersecurity. On the one hand,
it presents the concept of weakness of a software system, which can affect a
security property. This weakness can be exploited by an attack, and therefore can
cause a risk. Attack that will always be associated with a threat. On the other,
the concept of countermeasure is presented, as the element that can prevent
the attack and therefore remedy the weakness so that the risk does not become
effective.

3.3 SA-CS Connection

From the two perspectives presented (Software Architecture and Cybersecurity)
the graph presents a main characteristic related to the connection point between
the two fields of knowledge. Particularly, the concepts of architectural tactic and
architectural pattern are taken, both for the security quality attribute, which
support decisions and design solutions at the architectural level. In this way, both
a tactic and a pattern can be considered as forms of implementation of coun-
termeasures at the architecture level to guarantee security properties. Figure 3

112 J. Vergara-Vargas et al.

Fig. 3. Connection between the abstract elements of the two perspectives of the graph:
Software Architecture (SA1) and Cybersecurity (CS1).

presents the connection between the two perspectives and their respective ele-
ments.

This figure shows the relationship that exists between the two perspectives.
Fundamentally, the relationship is given in terms of the concept of countermea-
sure, which is what will allow to remedy the vulnerability (a weakness instance)
in the system, and therefore, mitigate the risk. Since the graph has a focus
on the architecture of the system, in addition to providing the specification of
the architectural elements on which the possible risk falls, the graph also pro-
vides the definition of security tactics and security patterns that can be taken
to address some security requirement. Thus, the graph works on the idea that
tactics and patterns support the necessary countermeasures to address security
requirements. In conclusion, the relationship between the two perspectives is
created from the analysis of architectural tactics and patterns that can be taken
at the design stage, in order to ensure a software system before and during its
implementation.

4 Security Scenarios

4.1 Scenario Overview

Based on the general characteristics of the knowledge graph presented, the con-
cept of security scenario is presented below. The security scenarios are based
on the general scenario model for quality attributes presented by Bass et al. [1],
which is composed of the following parts:

– Source: a threat.
– Stimulus: an attack that seeks to exploit a vulnerability (associated with a
weakness).

– Artifact: the system structure (or part of it), composed by a set of architec-
tural elements.

– Environment: normal execution of the system.
– Response: Countermeasures defined from architectural tactics and architec-

tural patterns. Mechanisms used to control response.
– Response Measure: Evidence of the effectiveness of the applied counter-
measures. Evidence that the risk became effective or not.

Sarch-Knows 113

Based on the above, the knowledge graph presented allows the description of
a security scenario from a subgraph composed of a initial set of nodes, associated
with the abstract elements of the two perspectives: software architecture (SA1)
and cybersecurity (CS1); and a second set of nodes, associated with the specific
elements defined from the abstract elements. This last set of nodes represents a
specific security case on the architecture of a software system (SA2, CS2). Spe-
cific elements are classified as SASE (Software Architecture Specific Elements)
and CCSK (Current Common Security Knowledge).

4.2 Using Neo4j for Knowledge Modeling

With the purpose of making use of the knowledge graph, it has been modeled by
means of a Neo4j database1. It is a database management system oriented to per-
sistence and data query, through an approach of graph-based data model. Neo4j
offers several advantages for graph databases. It provides efficient storage and
retrieval of complex, interconnected data, enabling flexible, high-performance
queries. With its native graph processing capabilities, Neo4j enables easy rela-
tionship traversal and analysis, making it ideal for applications involving knowl-
edge graphs [3].

For the creation of the database, the characteristics of the knowledge graph
described in Sect. 3 were taken into account. In this way, the database is made up
of a set of nodes (and their respective relationships) associated with the abstract
elements, both at the software architecture level and at the cybersecurity level.
These nodes belong to a category (a label in Neo4j) called abstract. In addition,
the complementary nodes of the database are created from the specific elements,
that is, from the specific elements for each concept and that describe the security
scenario. This means that a single node of an abstract element, can have multiple
relationships with nodes that represent specific elements. These nodes belong to
a category (a label in Neo4j) called specific.

In this way, a security scenario corresponds to a subgraph, formed from a
logical relationship between specific elements of the software architecture and
specific elements of cybersecurity. Thus, through the Neo4j query language
(Cypher2) it is possible to filter a security scenario, and to obtain its respec-
tive subgraph, looking for all nodes corresponding to specific elements that have
a logical relationship. A particular example of a security scenario is presented
below. Table 1 summarizes the relationship between the abstract elements and
the specific elements associated with the security scenario to be described.

The presented security scenario is related to a common weakness in dif-
ferent software systems designed as a Service-Oriented Front-End Architecture
(SOFEA). This architecture (system structure) is generally composed of the fol-
lowing elements: a front-end component (presentation), a back-end component
(business logic), a database component (data persistence), an HTTP connec-
tor for communicating a web browser with the front-end component, a REST

1 https://neo4j.com/.
2 https://neo4j.com/docs/getting-started/cypher-intro/.

https://neo4j.com/
https://neo4j.com/docs/getting-started/cypher-intro/

114 J. Vergara-Vargas et al.

connector for communicating the front-end component with the back-end com-
ponent, and a database connector for communicating the back-end component
with the database component. In this case, the weakness is related to the HTTP
connector and refers to the fact that the protocol may not have a mechanism that
allows verifying the integrity of the message that travels through that channel.

Table 1. Example of a particular security scenario for a software system with a Service-
Oriented Front-End Architecture (SOFEA).

Perspective Abstract Element(s) Specific
Element(s)

SoftwareArchitecture(SA) System Structure SOFEA (Service Oriented Front-End
Architecture)

ArchitecturalElement HTTP connector between a web browser
component and the Front-End component of the
system

sase1

Cybersecurity(CS) Weakness CWE-353: Missing Support for Integrity Check ccsk1

Security Property Integrity ccsk2

Attack CAPEC-389: Content Spoofing Via Application
API
Manipulation

ccsk3

Threat Malicious User ccsk4

Risk A08:2021 - Software and Data Integrity Failures ccsk5

SA/CS Countermeasure Implement a Mechanism for Verifying Message
Integrity

ccsk6

Architectural Tactic Detect Attacks >Verify Message Integrity sase2

Architectural Pattern Intercepting Validator sase3

The weakness, called “Missing Support for Integrity Check”3 is part of the
Common Weakness Enumeration (CWE) published by MITRE, in its mapping
on Architectural Concepts. In this case, the weakness falls on an architectural
element of the architecture: the HTTP connector, which allows communication
between a web browser and the front-end component, connector in charge of
sending messages coming from the client. Additionally, this scenario poses the
threat of a malicious user attempting an attack called “Content Spoofing Via
Application API Manipulation”4 and which is part of the Common Attack Pat-
tern Enumeration and Classification (CAPEC), also published by MITRE. The
weakness leads to a risk called “Software and Data Integrity Failures”5 mapped
in the OWASP Top Ten classification.

Finally, the scenario presents an architectural tactic and an architectural pat-
tern that serve as countermeasures to mitigate the risk generated by the weak-
ness. In this case, the architectural tactic “Verify Message Integrity” proposes
the use of techniques such as checksum and hash values to verify the integrity of

3 https://cwe.mitre.org/data/definitions/353.html.
4 https://capec.mitre.org/data/definitions/389.html.
5 https://owasp.org/Top10/A08 2021-Software and Data Integrity Failures/.

https://cwe.mitre.org/data/definitions/353.html
https://capec.mitre.org/data/definitions/389.html
https://owasp.org/Top10/A08_2021-Software_and_Data_Integrity_Failures/

Sarch-Knows 115

Fig. 4. Security scenario subgraph as a Neo4j database query.

the messages that travel through the HTTP connector. It is important to men-
tion that this tactic is part of the “Detect Attacks” category. On the other hand,
the architectural pattern “Intercepting Validator” is based on the addition of a
new software element upfront the destination of messages (the front-end com-
ponent), whose responsibility is to implement the described architectural tactic.
Figure 4 presents the subgraph associated with the described security scenario,
based on a query made on the Neo4j database. Here, the yellow nodes represent
the abstract elements and the nodes with different colors represent the specific
elements of the security scenario. See Table 1 for details of these elements.

The Cypher (Neo4j’s graph query language) request made to return the
described security scenario is:

MATCH p =
(a:sase {short name: “HTTP”})-[*]-(b:ccsk {name: “Missing Support for
Integrity Check”})
RETURN p;

This means that the database is being searched the subgraph (p) contain-
ing all interrelated nodes that have the “HTTP” architectural element and the
weakness “Missing Support for Integrity Check” in its path.

5 Discussion

Guaranteeing the quality of a software system involves dealing with different
quality attributes, among which security is one of the most important, and the
architecture of the software system is essential to meet the related requirements.
In this way, due to the complexity when dealing with this attribute and the
number of possible scenarios that fall on a software system and where it is
necessary to meet the security requirements, it is very important to have a source
that synthesizes the fundamental elements. That contributes to the treatment
of these security scenarios.

116 J. Vergara-Vargas et al.

However, despite the fact that there are different sources of information where
the elements that contribute to the description of a security scenario are related,
there is no single resource that comprehensively covers and relates all the ele-
ments. For this reason, our knowledge graph proposal comprehensively conceives
all the fundamental elements necessary to fully describe a scenario in which secu-
rity in the architecture of a software system is sought to be addressed. The knowl-
edge graph is implemented manually, from different sources of information, where
the following stand out: the Common Weakness Enumeration (CWE) and the
Common Attack Pattern Enumeration and Classification (CAPEC), provided
by MITRE, the official documentation and the National Vulnerability Database
(NVD) by NIST, different databases and the main bibliographical references on
software architecture and cybersecurity.

At the implementation level, the base model of the graph is highlighted,
which includes abstract elements of the two fields: software architecture and
cybersecurity. This guarantees that all security scenarios are structured in the
same way, keeping the formalism between the elements of the architecture and
the solidity of the control scheme over the security of the software system. In the
same way, each specific element is rigorously described, based on the identified
sources of information and a corresponding analysis that allows the generation
of logical relationships between each part of the scenario.

Based on the above, the applicability of the knowledge graph can be observed
as follows. In the first place, the knowledge graph allows analyzing a security
scenario at the level of the architecture of a software system. In analysis, it is
based on the contribution of the graph when it comes to identifying vulnerabil-
ities in a set of elements of the architecture. This can generate a security risk
in the system, as well as the countermeasures that can be applied in the system
to mitigate this risk. This is based on the point of view of a set of architectural
tactics and patterns. In second place, all the specific elements modeled in the
graph, based on the abstract elements, can have one or more security scenarios
associated to them. This allows multiple security scenarios to be consulted, per-
forming a filter by the scenario identifier, allowing multiple specific elements to
be part of multiple security scenarios.

It is important to mention that vulnerabilities are not modeled in the knowl-
edge graph since they are considered instances of weaknesses, that is, weaknesses
identified or reported in real software systems.

The proposed knowledge graph can be used as a primary tool when carrying
out the architectural design of a software system that requires meeting a set of
security requirements, and therefore, serves as a basis to guide the construction of
the system. The maintenance of the knowledge graph is based on the appearance
of new reports of vulnerabilities and weaknesses in the sources of information
taken as reference. The addition to the database is done using the Cypher query
language, building the query from the abstract elements and the specific elements
analyzed, equivalent to a new security scenario.

Finally, the works presented in Sect. 2 generally describe independent clas-
sifications when dealing with security. On the one hand, precise classifications

Sarch-Knows 117

of weaknesses at the architectural level are presented, but without a deep level
of detail towards the architectural elements involved. On the other hand, works
are presented that describe the different design decisions that can be taken to
deal with security, but do not delve into the vulnerabilities that are sought to
be remedied. For this reason, our knowledge graph proposes a joint perspective
where, under the concept of security scenario, it is possible to detect vulner-
abilities in a more precise way, thanks to the structure of the graph and the
knowledge vocabulary that it incorporates.

6 Conclusions and Future Work

In this paper, we presented a knowledge graph for modeling security scenarios
from the point of view of a software system architecture. This graph, imple-
mented as a Neo4j database, models abstract elements in two fields: software
architecture and cybersecurity, as well as specific elements that allow describing
a security scenario in a software system architecture. The scenarios start from
the weakness that can be exploited and that falls on a set of architectural ele-
ments, up to the countermeasures that can be applied to the system to mitigate
the risk generated in terms of tactics and architectural patterns for security.
The graph is created from different sources of information and allows a general
overview of the elements involved when dealing with a security requirement at
the software system architecture level.

As a future work, three paths are proposed. The first one is related to the
definition of the strategy so that relevant security scenarios at the architectural
level can be loaded into the database in a collaborative way, guaranteeing the
rigor of the concepts involved, the guarantee of the sources of information and
the precision of the new data. Secondly, it is pertinent to include a detailed
and comparative evaluation of the proposed approach with other approaches,
in order to analyze the real utility of this approach for decision-making at the
architectural level, both in small and large software systems. This is due to the
fact that in large software systems the number of security scenarios will grow
exponentially and it is important to complement the proposal with data loading
schemes and more automated data analysis, which make this tool very useful for
a software architect. Finally, the possibility of extending this same knowledge
graph idea to other quality attributes such as scalability, availability, among
others, is raised.

References

1. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 4th edn
(2022)

2. Clements, P., et al.: Documenting Software Architectures - Views and Beyonds,
2nd edn (2011)

3. Fernandes, D., Bernardino, J.: Graph databases comparison: allegrograph,
arangoDB, infinitegraph, neo4j, and orientDB (2018). https://doi.org/10.5220/
0006910203730380

https://doi.org/10.5220/0006910203730380
https://doi.org/10.5220/0006910203730380

118 J. Vergara-Vargas et al.

4. Fernandez, E.B., Astudillo, H., Pedraza-Garćıa, G.: Revisiting architectural tactics
for security. In: Weyns, D., Mirandola, R., Crnkovic, I. (eds.) ECSA 2015. LNCS,
vol. 9278, pp. 55–69. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
23727-5 5

5. Fernandez, E.B., Yoshioka, N., Washizaki, H.: Evaluating the degree of security of a
system built using security patterns. In: ACM International Conference Proceeding
Series (2018). https://doi.org/10.1145/3230833.3232821, https://dl.acm.org/doi/
10.1145/3230833.3232821

6. MITRE: Common weakness enumeration (CWE). https://cwe.mitre.org/data/
index.html

7. MITRE: Common weakness enumeration (CWE) - architectural concepts. https://
cwe.mitre.org/data/definitions/1008.html

8. Márquez, G., Astudillo, H., Kazman, R.: Architectural tactics in software archi-
tecture: a systematic mapping study. J. Syst. Softw. 197, 111558 (2023). https://
doi.org/10.1016/J.JSS.2022.111558

9. NIST: NVD - national vulnerability database. https://nvd.nist.gov/
10. Orellana, C., Villegas, M.M., Astudillo, H.: Mitigating security threats through

the use of security tactics to design secure cyber-physical systems (CPS). In: ACM
International Conference Proceeding Series, vol. 2, pp. 109–115 (2019). https://doi.
org/10.1145/3344948.3344994, https://dl.acm.org/doi/10.1145/3344948.3344994

11. Pedraza-Garcia, G., Astudillo, H., Correal, D.: A methodological approach to apply
security tactics in software architecture design. In: 2014 IEEE Colombian Confer-
ence on Communications and Computing, COLCOM 2014 - Conference Proceed-
ings (2014). https://doi.org/10.1109/COLCOMCON.2014.6860432

12. Richards, M., Ford, N.: Fundamentals of Software Architecture: an Engineering
Approach (2020)

13. Rozanski, N., Woods, E.: Software Systems Architecture, 2nd edn. Addison-Wesley,
Boston (2012). https://doi.org/10.1017/CBO9781107415324.004

14. Santos, J.C., Peruma, A., Mirakhorli, M., Galstery, M., Vidal, J.V., Sejfia, A.:
Understanding software vulnerabilities related to architectural security tactics: an
empirical investigation of chromium, PHP and Thunderbird. In: Proceedings - 2017
IEEE International Conference on Software Architecture. ICSA 2017, pp. 69–78
(2017). https://doi.org/10.1109/ICSA.2017.39

15. Santos, J.C., Suloglu, S., Ye, J., Mirakhorli, M.: Towards an automated app-
roach for detecting architectural weaknesses in critical systems. In: Proceed-
ings - 2020 IEEE/ACM 42nd International Conference on Software Engineering
Workshops. ICSEW 2020, pp. 250–253 (2020). https://doi.org/10.1145/3387940.
3392222, https://dl.acm.org/doi/10.1145/3387940.3392222

16. Santos, J.C., Tarrit, K., Mirakhorli, M.: A catalog of security architecture weak-
nesses. In: Proceedings - 2017 IEEE International Conference on Software Archi-
tecture Workshops. ICSAW 2017: Side Track Proceedings, pp. 220–223 (2017).
https://doi.org/10.1109/ICSAW.2017.25

17. Santos, J.C., Tarrit, K., Sejfia, A., Mirakhorli, M., Galster, M.: An empirical study
of tactical vulnerabilities. J. Syst. Softw. 149, 263–284 (2019). https://doi.org/10.
1016/J.JSS.2018.10.030

18. Taylor, R.N., Medvidovic, N., Dashofy, E.M.: Software Architecture - Foundations,
Theory, and Practice. Wiley, New York (2009)

https://doi.org/10.1007/978-3-319-23727-5_5
https://doi.org/10.1007/978-3-319-23727-5_5
https://doi.org/10.1145/3230833.3232821
https://dl.acm.org/doi/10.1145/3230833.3232821
https://dl.acm.org/doi/10.1145/3230833.3232821
https://cwe.mitre.org/data/index.html
https://cwe.mitre.org/data/index.html
https://cwe.mitre.org/data/definitions/1008.html
https://cwe.mitre.org/data/definitions/1008.html
https://doi.org/10.1016/J.JSS.2022.111558
https://doi.org/10.1016/J.JSS.2022.111558
https://nvd.nist.gov/
https://doi.org/10.1145/3344948.3344994
https://doi.org/10.1145/3344948.3344994
https://dl.acm.org/doi/10.1145/3344948.3344994
https://doi.org/10.1109/COLCOMCON.2014.6860432
https://doi.org/10.1017/CBO9781107415324.004
https://doi.org/10.1109/ICSA.2017.39
https://doi.org/10.1145/3387940.3392222
https://doi.org/10.1145/3387940.3392222
https://dl.acm.org/doi/10.1145/3387940.3392222
https://doi.org/10.1109/ICSAW.2017.25
https://doi.org/10.1016/J.JSS.2018.10.030
https://doi.org/10.1016/J.JSS.2018.10.030

Sarch-Knows 119

19. That, M.T.T., Sadou, S., Oquendo, F.: Using architectural patterns to define archi-
tectural decisions, pp. 196–200 (2012). https://doi.org/10.1109/WICSA-ECSA.
212.28

20. Uzunov, A.V., Fernandez, E.B., Falkner, K.: Assessing and improving the qual-
ity of security methodologies for distributed systems. J. Softw. Evol. Pro-
cess 30, e1980 (2018). https://doi.org/10.1002/SMR.1980, https://onlinelibrary.
wiley.com/doi/full/10.1002/smr.1980, https://onlinelibrary.wiley.com/doi/abs/10.
1002/smr.1980, https://onlinelibrary.wiley.com/doi/10.1002/smr.1980

https://doi.org/10.1109/WICSA-ECSA.212.28
https://doi.org/10.1109/WICSA-ECSA.212.28
https://doi.org/10.1002/SMR.1980
https://onlinelibrary.wiley.com/doi/full/10.1002/smr.1980
https://onlinelibrary.wiley.com/doi/full/10.1002/smr.1980
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.1980
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.1980
https://onlinelibrary.wiley.com/doi/10.1002/smr.1980

Threat Modeling: A Rough Diamond
or Fool’s Gold?

Anh-Duy Tran(B), Koen Yskout, and Wouter Joosen

imec-DistriNet, KU Leuven, Leuven, Belgium
{anh-duy.tran,koen.yskout,wouter.joosen}@kuleuven.be

Abstract. Threat modeling is a process to identify security threats
and propose effective solutions for mitigating them. Numerous resources
emphasize the importance of threat modeling in the secure software
development lifecycle, particularly during the design phase. In this paper,
we collect and discuss the (scarce) empirical evidence from the literature
that provides insights into the adoption and utilization of threat mod-
eling. Based on our observations, we also formulate a number of open
challenges related to gaining a better empirical understanding of the use
of threat modeling in practice.

Keywords: Threat modeling · Empirical study · Effectiveness ·
Adoption · Open challenges

1 Introduction

Threat modeling is a process to identify security flaws and propose effective solu-
tions for mitigating them based on architectural models of the system, actively
involving software development team members. Numerous resources emphasize
the importance of threat modeling in the secure software development lifecy-
cle, particularly during the design phase. Specifically, threat modeling is among
the techniques suggested to address the (newly introduced) A04:2021 - Insecure
Design entry in the OWASP Top Ten 2021 [22]. Moreover, the Software Assur-
ance Maturity Model (SAMM) offers an effective and measurable framework for
analyzing and enhancing the secure development lifecycle, including the incor-
poration of threat modeling as a criterion for assessing software security posture
during the Design phase [23]. SAMM stipulates that achieving Maturity Level 3
in threat modeling requires its integration into the SDLC and its adoption as an
integral part of the developer security culture. Other comprehensive frameworks,
such as the Microsoft SDL [19] and NIST SSDF [20], also recommend the use of
threat modeling to identify architectural flaws and security threats.

With these numerous recommendations advocating for the implementation of
threat modeling, we must wonder which concrete evidence exists for its practical
effectiveness, especially in an industrial context. This question holds significant
importance as it enables evidence-based decision-making and empowers orga-
nizations to make informed choices regarding its adoption and integration into
their software development processes [12,16].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
B. Tekinerdoğan et al. (Eds.): ECSA 2023, LNCS 14590, pp. 120–129, 2024.
https://doi.org/10.1007/978-3-031-66326-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-66326-0_8&domain=pdf
https://doi.org/10.1007/978-3-031-66326-0_8

Threat Modeling: A Rough Diamond or Fool’s Gold? 121

It is thus necessary to gather scientific evidence and insights on the pre-
cise circumstances and assumptions under which adopting threat modeling is
the right choice, as well as the most effective form of threat modeling. This
paper makes a first step in this direction, by asking “What are the main insights
on the effectiveness and adoption of threat modeling processes and techniques
from empirical studies currently available in the literature?”, and suggests future
research directions to explore.

2 Empirical Studies on Threat Modeling

We first describe how we selected the articles with empirical studies on threat
modeling for our study, followed by a brief summary of the insights they provide.
For this paper, we interpret empirical studies as studies that involve systematic
observations and measurements of real-world phenomena to derive knowledge
from practical experience rather than relying solely on theory or belief [17,24].
Empirical studies encompass two main types: qualitative research, which gathers
non-numerical data, and quantitative research, which gathers numerical data.
The weaknesses of both qualitative and quantitative paradigms are somewhat
balanced by the strengths of the other [28].

2.1 Article Selection

To compile the list of relevant studies, we have conducted searches across five
digital libraries, namely IEEE [3], ACM [1], Google Scholar [2], Semantic Scholar
[5], and Scopus [4]. In each library, we perform 32 searches, each query combining
one keyword from a collection of 4 related to threat modeling (threat modeling,
threat model, threat analysis, risk assessment) and one from a collection of 8
related to empirical evidence (in practice, case study, empirical study, compari-
son, adoption, experience, effectiveness, industry). These keywords were chosen
based on their estimated relevance and applicability for the intended search, as
well as their occurrence in a set of relevant papers already known by the authors.
We acknowledge that this keyword selection yields a possible threat to validity
by introducing bias into the set of included papers, and some relevant papers
may have been overlooked.

Subsequently, to identify the relevant articles for our study, we started from
the top 20 results for each library, sorted by relevance (i.e., 3200 non-unique
results in total). We removed duplicates and manually reviewed the abstracts,
introductions, and conclusions to select those that empirically examine the effec-
tiveness or adoption of threat modeling processes or techniques in software sys-
tems or industry. We excluded papers that propose new methods for threat
modeling where the evaluation consists solely of the authors demonstrating it
on an example. This results in 20 articles, listed in Table 1. For each article, we
mention the year of publication, the study method (qualitative or quantitative),
the study object (adoption of threat modeling or evaluation of threat modeling),
and the type of system for which the study was performed (general software or
a more specific system type).

122 A.-D. Tran et al.

Table 1. Selected Empirical Studies on Effectiveness of Threat Modeling

Reference Year Methods Objects System Addressed

Q
u
a
li
ta

ti
v
e

Q
u
a
n
ti

ta
ti

v
e

A
d
o
p
ti

n
g
+

E
va

lu
a
ti

n
g

−

Bernsmed and Jaatun[7] 2019 ○ ○ ○ ○ General Software

Bernsmed et al.[6]∗ 2022 ○ ○ ○ ○ General Software

Bygds et al.[8] 2021 ○ ○ ○ ○ General Software

Cruzes et al.[9] 2018 ○ ○ ○ ○ General Software

Dewitte et al.[10] 2019 ○ ○ ○ ○ Governmental Regulations

Dhillon[11] 2011 ○ ○ ○ ○ General Software

Galvez and Gurses[13] 2018 ○ ○ ○ ○ General Software

Granata et al.[14] 2023 ○ ○ ○ ○ General Software

Jamil et al.[15] 2021 ○ ○ ○ ○ Cyber-Physical Systems

Opdahl and Sindre[21] 2009 ○ ○ ○ ○ General Software

Scandariato et al.[25] 2015 ○ ○ ○ ○ General Software

Shostack[27] 2008 ○ ○ ○ ○ General Software

Stevens et al.[29] 2018 ○ ○ ○ ○ Enterprise Security

Tuma and Scandariato[32] 2018 ○ ○ ○ ○ General Software

Van Landuyt and Joosen[33] 2020 ○ ○ ○ ○ General Software

Van Landuyt and Joosen[34] 2021 ○ ○ ○ ○ General Software

Williams et al.[35] 2015 ○ ○ ○ ○ General Software

Wuyts et al.[36] 2014 ○ ○ ○ ○ General Software

Yeng et al.[38] 2020 ○ ○ ○ ○ Cloud Computing

Yskout et al.[39] 2020 ○ ○ ○ ○ General Software
∗ The work of Bernsmed et al.[6] also includes the results of Cruzes et al.[9] and Bernsmed and
Jaatun[7]. When referring to [6], we only consider the results that have not been reported in the other
papers.

+ Adopting Threat Modeling

− Evaluating Threat Modeling Methods and Tools

2.2 Empirical Insights

We analyze the selected articles to gain insight into the available evidence for the
effectiveness of threat modeling from two primary perspectives: (1) the adoption
of the threat model process in practice, and (2) the comparison and evaluation
of threat modeling methods or tools. We provide observations and suggestions
related to these two perspectives.

Adopting Threat Modeling. Several studies [6,7,11,15,29] already investi-
gated the adoption of threat modeling to enhance system or software security
and identify known threats. This adoption comes with certain limitations and
challenges, though.

Threat Modeling: A Rough Diamond or Fool’s Gold? 123

Typically, threat modeling is carried out by developers who possess exten-
sive knowledge about the software system they are responsible for [6,11]. Yet
integrating security and privacy threat modeling into the software development
processes, and agile processes in particular, poses significant challenges [6,9,13].
Threat modeling is not yet integrated into daily activities [6] and is often sched-
uled as a separate session, involving brainstorming and potentially requiring a
significant amount of time [6,7,27]. Also, the execution of threat modeling can be
hindered by, for example, the initial difficulty in understanding and using certain
terminology and missing background knowledge [7,9,13,29]. Various resources
are needed for effective threat modeling, such as asset identification [6], software
requirements [9], technical insight into the system [10], and a deep understand-
ing of system or component design [11]. However, these resources are sometimes
not brought into the threat modeling process or have no up-to-date documen-
tation. The created threat models may not always be up-to-date or accurately
reflect the current state of systems [9,15], and they may also face challenges
when being transferred to other domains [15]. Finally, scalability represents a
significant challenge in threat modeling, particularly as software systems grow in
complexity and size [9,11,13]. Organizations face difficulties in effectively scaling
threat modeling activities to accommodate large and intricate systems, poten-
tially resulting in gaps in threat identification and mitigation.

The selected articles provide numerous suggestions for improving the inte-
gration of threat modeling into the software development life cycle, particularly
within agile methodologies [6,13]. They emphasize the importance of establishing
a precise scope for threat modeling activities and defining the criteria for comple-
tion, often referred to as the Definition of Done [6,7,9]. Effective threat modeling
requires proper training, skills, and guidelines. It is essential to find ways to bring
relevant focus and expertise into the process with minimal effort, ensuring that
individuals involved are equipped with the necessary knowledge and capabilities
to perform threat modeling effectively [9,27,29,39]. Further attention should
be given to the role of humans within the threat modeling process, as well as
human factors engineering issues pertaining to the design of security modeling
methods, processes, and tools [27]. While the involvement of a security expert is
recognized as a best practice in threat modeling [6], Shostack [27] presented two
reasons why it may be reasonable to perform threat modeling without experts,
namely (1) a scarcity of experts, and (2) the potential benefits of engaging indi-
viduals responsible for building the system, allowing them to develop a sense of
ownership and understanding of the security model.

Moreover, the articles mention several other possible enhancements to
improve the effectiveness and adoption of threat modeling. These include: foster-
ing better communication and collaboration to understand the software system
better and highlight important threats [6,29] which can be supported by agile
[13]; integrating multiple threat modeling techniques to provide an alternative
viewpoint on system weaknesses and have a complete picture about the threats of
a given software [9,15,38]; extending the impact of modeling to the source code
[9], and incorporating automated threat analysis or dynamic threat modeling

124 A.-D. Tran et al.

[9,39]. These improvements aim to enhance the overall efficacy and acceptance
of threat modeling practices. Additionally, one suggestion is to develop a stan-
dardized reference model for threat modeling, enabling the sharing and reuse of
threat modeling artifacts [39]. Another improvement involves enhancing mod-
eling support to track the iterative creation of the model and the associated
assumptions, rather than solely focusing on the final model [10,11,39].

Evaluating Threat Modeling Methods and Tools. Besides insights about
the adoption of threat modeling itself, we also look in to empirical evaluations of
threat modeling methods and tools, for example regarding their usefulness and
accuracy.

Two papers mention that developers often lack motivation to perform threat
modeling techniques or utilize threat modeling tools [6,7], which may indicate
the low (perceived) usefulness of these methods. While threat modeling tech-
niques are generally perceived as learnable and practical, and yielding accurate
threat identification, their usage can be time-consuming [25,36]. Certain tech-
niques may prove more effective, accurate, and comprehensive in identifying
threats under specific circumstances [14,21,32]. The review of Yeng et al. found
that none of the evaluated threat modeling methods provided a comprehen-
sive assessment of all threats and vulnerabilities [38]. Some studies indicate that
threat modeling techniques heavily rely on human interpretation, such as making
assumptions about the system while identifying threats [33,34].

In terms of tool support, different tools exhibit varying learning curves, with
some being more challenging than others [8]. Additionally, tool selection can
be influenced by factors such as simplicity, configurability, usability, and the
generation of comprehensive reports [6,8,14,35,38].

Several suggestions arise from the reviewed literature. Firstly, there is a need
for improved tooling that assists developers in creating Data Flow Diagrams
(DFDs) and facilitates the identification and analysis of relevant threats, while
promoting collaboration [6]. Secondly, involving a security expert during the
DFD drawing process is considered a best practice. Additionally, combining dif-
ferent threat modeling techniques can enhance the effectiveness of the process
[38]. STRIDE is useful for generating an initial set of threats which develop-
ers could then build upon. Lastly, utilizing DFDs as a means of documenting
systems or providing additional documentation can be advantageous [6].

3 Open Challenges

While several studies have investigated the integration and effectiveness of threat
modeling, there is a strong recommendation for further research to provide
more concrete evidence regarding its effectiveness and other influential factors
[21,25,27,32]. This section presents research questions that can guide future
investigations and potential experimental studies in the field.

Threat Modeling: A Rough Diamond or Fool’s Gold? 125

3.1 How Effective Is Threat Modeling in Delivering More Secure
Software in Practice?

Providing compelling and specific evidence of the effectiveness of threat mod-
eling in practical applications can increase the persuasive power for companies
and enterprises to adopt and implement threat modeling in their software devel-
opment processes. However, there is still a lack of existing studies that provide
conclusive results regarding the effectiveness of threat modeling in an industrial
context. One of the key pieces of evidence for this is demonstrating the bene-
fits of conducting threat modeling in producing more secure software products.
Research should aim to provide concrete data to assess the extent to which the
application of threat modeling can reduce the number of security vulnerabili-
ties and threats, or employ metrics to demonstrate that software development
assisted by threat modeling results in more secure products, particularly in terms
of architectural security.

Multiple experiments can be conducted to address this question. A compari-
son can be made between the number of security flaws, including security bugs,
identified and remediated in a software product when threat modeling is applied
versus when it is not applied within specific software development processes (e.g.,
agile [6,7,9,13]). The selection of effective threat modeling methods and tools for
specific systems is also an important consideration. Software development teams
can rely on the results of experiments, case studies, and observational meth-
ods to choose suitable methods and tools for the domain they are working in
(such as CPS, Blockchain, AI, etc.). Furthermore, conducting studies on threat
modeling across various scopes and sizes of systems can reveal the scalability of
this approach. By exploring different contexts and dimensions, researchers can
gain a better understanding of how threat modeling scales and adapts to diverse
software development scenarios.

3.2 What Is the Impact of Threat Modeling on the Software
Development Process?

It would be irrational to encourage companies to adopt threat modeling without
providing reasonable evidence of the impact on time and cost. For businesses,
time to market and production costs are crucial factors that are always consid-
ered during software development. Demonstrating that threat modeling does not
excessively or reasonably impact time and cost, or showing that the time and
cost invested in threat modeling are worthwhile, can partially indicate the effec-
tiveness of threat modeling in practice and recommend its adoption by teams.

Currently, there are some studies addressing the issue of time in threat mod-
eling implementation [6,7,27,32]. However, there is a lack of research that ana-
lyzes in detail the changes in time and cost [18]. Future research should focus
on quantitative research methods to provide specific data. Researchers can com-
pare the time and effort required for threat modeling through experiments with
real-world projects or collect surveys from companies. Additionally, measuring
the security level of the product is essential to assess the corresponding value in

126 A.-D. Tran et al.

relation to the time and effort invested. Evaluating the differences in time and
cost required for threat modeling in each software development phase through a
longitudinal study or comparing the time and cost of different threat modeling
methods and tools in specific contexts through causal-comparative research are
empirical studies that need to be explored.

3.3 How Easily Can Threat Modeling Be Learned?

Demonstrating that the learning curve for adopting threat modeling is not sig-
nificant and highlighting its practicality can serve as compelling evidence for
increased adoption of threat modeling in practice. While some studies have eval-
uated the learning curve and usability of threat modeling [6,8,25,29,35], they
have been limited in detail and primarily focused on student subjects. Further
research is needed to provide more comprehensive and diverse evaluations in
real-world settings.

Conducting training sessions on threat modeling for individuals with diverse
backgrounds and skillsets, followed by pre- and post-training assessments, inter-
views, and surveys, can provide valuable insights into the ease of perceiving and
operating threat modeling. The assessments and practical exercises help eval-
uate participants’ knowledge and skills, while qualitative data from interviews
and focus groups offer deeper understanding of their experiences and challenges.
Surveys can provide quantitative data on satisfaction, usefulness, and confidence
levels. By analyzing these findings, researchers can gain insights to improve the
ease of use and comprehension of threat modeling techniques, ultimately enhanc-
ing its effectiveness in practice.

3.4 How Does the Human Mind Apply Threat Modeling?

The human factor plays a crucial role in understanding the effectiveness of any
tool or technique. Conducting detailed evaluations of the mindset, perception,
and handling of threat modeling operations can maximize the efficiency of this
technique and provide valuable insights for future improvements. Currently, com-
prehensive assessments regarding the human thought processes involved in threat
modeling are lacking, and there is a need to extend ongoing research in this area
for future advancements [31].

To address this question, several experiments can be designed involving indi-
vidual engineers or groups with diverse backgrounds and experiences. Games or
challenges can be developed to engage participants in threat modeling activi-
ties, allowing for the observation and evaluation of their behavior and outcomes
using both quantitative and qualitative methods. Controlling the participants,
exercises, as well as the experimental techniques and environment, will enable
researchers to provide valuable insights for the initial research objectives. Inves-
tigating the communication and collaboration among developers during threat
modeling can provide valuable insights into the human factors involved.

Threat Modeling: A Rough Diamond or Fool’s Gold? 127

4 Related Work

The main purpose of this paper is the collection and review of the existing
empirical evidence on the effectiveness of threat modeling found in the scientific
literature. Other researchers have already systematically surveyed the literature
on threat modeling, albeit with a different focus. Xiong and Lagerström [37]
have performed a systematic literature review on threat modeling, focusing on
the different definitions and methods for threat modeling. They also investigate
the validation provided for such methods, concluding that “validation methods
need to be developed and enhanced for assuring the outcomes of threat modeling
(less examples and more empirics)”. Similarly, the systematic literature review
of Tuma et al. [30] lists and compares 26 methodologies for threat analysis.
Based on their findings, they also call for a more thorough empirical evaluation
of threat modeling techniques. Finally, Shi et al. [26] investigate tool support
for threat modeling by providing a taxonomy for such tools to classify them
based on their features and characteristics. While their research is primarily
focused on the features offered by such tools, they too call for more research
(including a benchmark) to assist with quantitative evaluations. Neither these
systematic reviews, nor the collection of existing empirical evaluations of threat
modeling composed in paper, is sufficient to address the open challenges outlined
in the previous section at this point. In other words, we conclude that the threat
modeling community would profit from a clear demonstration of the benefits
and drawbacks the existing techniques when they are applied in practice, with
particular attention to human, organizational, and other non-technical factors.

5 Conclusion

In this paper, we present a review of empirical studies that investigate practi-
cal aspects of threat modeling. Our study collects several studies that provide
indications for the benefits and challenges of adopting threat modeling, as well
as empirical evaluations of existing threat modeling methods and tools. Based
on our analysis of the collected papers, we identify open challenges, including
the effectiveness, impact, learning, and human factors of threat modeling, which
should be addressed in future research to generate more compelling evidence for
organizations when making decisions regarding its adoption.

Acknowledgements. This research is partially funded by the Research Fund KU
Leuven, and by the Flemish Research Programme Cybersecurity.

References

1. ACM Digital Library — dl.acm.org. https://dl.acm.org/. Accessed 04 Jul 2023
2. Google Scholar — scholar.google.com. https://scholar.google.com/. Accessed 04

Jul 2023
3. IEEE Xplore — ieeexplore.ieee.org. https://ieeexplore.ieee.org/Xplore/home.jsp.

Accessed 04 Jul 2023

https://dl.acm.org/
https://scholar.google.com/
https://ieeexplore.ieee.org/Xplore/home.jsp

128 A.-D. Tran et al.

4. Scopus Preview — scopus.com. https://www.scopus.com/. Accessed 04 Jul 2023
5. Semantic Scholar — AI-Powered Research Tool — semanticscholar.org. https://

www.semanticscholar.org/. Accessed 04 Jul 2023
6. Bernsmed, K., Cruzes, D.S., Jaatun, M.G., Iovan, M.: Adopting threat modelling

in agile software development projects. J. Syst. Softw. 183, 111090 (2022)
7. Bernsmed, K., Jaatun, M.G.: Threat modelling and agile software development:

Identified practice in four norwegian organisations. In: 2019 International Con-
ference on Cyber Security and Protection of Digital Services (Cyber Security),
pp. 1–8. IEEE (2019)

8. Bygd̊as, E., Jaatun, L.A., Antonsen, S.B., Ringen, A., Eiring, E.: Evaluating
threat modeling tools: microsoft tmt versus owasp threat dragon. In: 2021 Interna-
tional Conference on Cyber Situational Awareness, Data Analytics and Assessment
(CyberSA), pp. 1–7. IEEE (2021)

9. Cruzes, D.S., Jaatun, M.G., Bernsmed, K., Tøndel, I.A.: Challenges and experi-
ences with applying microsoft threat modeling in agile development projects. In:
2018 25th Australasian Software Engineering Conference (ASWEC), pp. 111–120.
IEEE (2018)

10. Dewitte, P., et al.: A comparison of system description models for data protection
by design. In: Proceedings of the 34th ACM/SIGAPP Symposium on Applied
Computing, pp. 1512–1515 (2019)

11. Dhillon, D.: Developer-driven threat modeling: lessons learned in the trenches.
IEEE Secur. Privacy 9(4), 41–47 (2011)

12. Fitzgerald, B., Musia�l, M., Stol, K.J.: Evidence-based decision making in lean
software project management. In: Companion Proceedings of the 36th International
Conference on Software Engineering, pp. 93–102 (2014)

13. Galvez, R., Gurses, S.: The odyssey: modeling privacy threats in a brave new
world. In: 2018 IEEE European Symposium on Security and Privacy Workshops
(EuroS&PW), pp. 87–94. IEEE (2018)

14. Granata, D., Rak, M.: Systematic analysis of automated threat modelling tech-
niques: comparison of open-source tools. Softw. Quality J., 1–37 (2023)

15. Jamil, A.-M., Ben Othmane, L., Valani, A.: Threat modeling of cyber-physical
systems in practice. In: Luo, B., Mosbah, M., Cuppens, F., Ben Othmane, L.,
Cuppens, N., Kallel, S. (eds.) CRiSIS 2021. LNCS, vol. 13204, pp. 3–19. Springer,
Cham (2022). https://doi.org/10.1007/978-3-031-02067-4 1

16. Kitchenham, B.A., Dyba, T., Jorgensen, M.: Evidence-based software engineering.
In: Proceedings of the 26th International Conference on Software Engineering, pp.
273–281. IEEE (2004)

17. Library, C.: Qualitative and quantitative research: What is “empirical research”?
Website. https://library.lasalle.edu/c.php?g=225780&p=3112085

18. Mbaka, W., Tuma, K.: A replication of a controlled experiment with two stride
variants. arXiv preprint arXiv:2208.01524 (2022)

19. Microsoft: Microsoft Security Development Lifecycle — microsoft.com. https://
www.microsoft.com/en-us/securityengineering/sdl. Accessed 30 Jun 2023

20. NIST: Secure Software Development Framework — CSRC — CSRC —
csrc.nist.gov. https://csrc.nist.gov/Projects/ssdf. Accessed 30 Jun 2023

21. Opdahl, A.L., Sindre, G.: Experimental comparison of attack trees and misuse
cases for security threat identification. Inf. Softw. Technol. 51(5), 916–932 (2009)

22. OWASP: A04 Insecure Design - OWASP Top 10:2021 — owasp.org. https://owasp.
org/Top10/A04 2021-Insecure Design/. Accessed 30 Jun 2023

23. OWASP: OWASP SAMM — OWASP Foundation — owasp.org. https://owasp.
org/www-project-samm/. Accessed 30 Jun 2023

https://www.scopus.com/
https://www.semanticscholar.org/
https://www.semanticscholar.org/
https://doi.org/10.1007/978-3-031-02067-4_1
https://library.lasalle.edu/c.php?g=225780&p=3112085
http://arxiv.org/abs/2208.01524
https://www.microsoft.com/en-us/securityengineering/sdl
https://www.microsoft.com/en-us/securityengineering/sdl
https://csrc.nist.gov/Projects/ssdf
https://owasp.org/Top10/A04_2021-Insecure_Design/
https://owasp.org/Top10/A04_2021-Insecure_Design/
https://owasp.org/www-project-samm/
https://owasp.org/www-project-samm/

Threat Modeling: A Rough Diamond or Fool’s Gold? 129

24. Patten, M.L., Galvan, M.C.: Proposing empirical research: A guide to the funda-
mentals. Routledge (2019)

25. Scandariato, R., Wuyts, K., Joosen, W.: A descriptive study of microsoft’s threat
modeling technique. Requirements Eng. 20, 163–180 (2015)

26. Shi, Z., Graffi, K., Starobinski, D., Matyunin, N.: Threat modeling tools: a tax-
onomy. IEEE Secur. Privacy 20(4), 29–39 (2022). https://doi.org/10.1109/MSEC.
2021.3125229

27. Shostack, A.: Experiences threat modeling at microsoft. MODSEC@ MoDELS
2008, 35 (2008)

28. Steckler, A., McLeroy, K.R., Goodman, R.M., Bird, S.T., McCormick, L.: Toward
integrating qualitative and quantitative methods: An introduction (1992)

29. Stevens, R., Votipka, D., Redmiles, E.M., Ahern, C., Sweeney, P., Mazurek, M.L.:
The battle for new york: A case study of applied digital threat modeling at the
enterprise level. In: USENIX Security Symposium, pp. 621–637 (2018)

30. Tuma, K., Calikli, G., Scandariato, R.: Threat analysis of software systems: a
systematic literature review. J. Syst. Softw. 144(May), 275–294 (2018). https://
doi.org/10.1016/j.jss.2018.06.073

31. Tuma, K., Mbaka, W.: Human aspect of threat analysis: A replication. arXiv
preprint arXiv:2208.01512 (2022)

32. Tuma, K., Scandariato, R.: Two architectural threat analysis techniques compared.
In: Cuesta, C.E., Garlan, D., Pérez, J. (eds.) ECSA 2018. LNCS, vol. 11048, pp.
347–363. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00761-4 23

33. Van Landuyt, D., Joosen, W.: A descriptive study of assumptions made in linddun
privacy threat elicitation. In: Proceedings of the 35th Annual ACM Symposium
on Applied Computing, pp. 1280–1287 (2020)

34. Van Landuyt, D., Joosen, W.: A descriptive study of assumptions in stride security
threat modeling. Software and Systems Modeling, pp. 1–18 (2021)

35. Williams, I., Yuan, X.: Evaluating the effectiveness of microsoft threat modeling
tool. In: Proceedings of the 2015 Information Security Curriculum Development
Conference, pp. 1–6 (2015)

36. Wuyts, K., Scandariato, R., Joosen, W.: Empirical evaluation of a privacy-focused
threat modeling methodology. J. Syst. Softw. 96, 122–138 (2014)

37. Xiong, W., Lagerström, R.: Threat modeling – a systematic literature review. Com-
put. Secur. 84, 53–69 (2019). https://doi.org/10.1016/j.cose.2019.03.010

38. Yeng, P., Wolthusen, S.D., Yang, B.: Comparative analysis of threat modeling
methods for cloud computing towards healthcare security practice (2020)

39. Yskout, K., Heyman, T., Van Landuyt, D., Sion, L., Wuyts, K., Joosen, W.: Threat
modeling: from infancy to maturity. In: Proceedings of the ACM/IEEE 42nd Inter-
national Conference on Software Engineering: New Ideas and Emerging Results,
pp. 9–12 (2020)

https://doi.org/10.1109/MSEC.2021.3125229
https://doi.org/10.1109/MSEC.2021.3125229
https://doi.org/10.1016/j.jss.2018.06.073
https://doi.org/10.1016/j.jss.2018.06.073
http://arxiv.org/abs/2208.01512
https://doi.org/10.1007/978-3-030-00761-4_23
https://doi.org/10.1016/j.cose.2019.03.010

FAACS

Declarative Representation of UML State
Machines for Querying and Simulation

Zohreh Mehrafrooz(B), Ali Jannatpour, and Constantinos Constantinides

Department of Computer Science and Software Engineering, Concordia University,
Montreal, Canada

zohreh.mehrafroozmayvan@mail.concordia.ca,

{ali.jannatpour,constantinos.constantinides}@concordia.ca

Abstract. Among the various aspects of the Unified Modeling Lan-
guage, state machines are utilized to model the dynamic behavior of
reactive systems. In this paper we present a platform where we transform
a state machine into a declarative model, implemented as a database of
clauses in Prolog. To tackle the complexity of composite states, we pro-
pose an algorithm for flattening the state machine’s representation. Both
initial and flattened declarative models allow for querying on the qual-
ity attributes, the behavior and the well-formedness of the underlying
machine. To complement the query-based analysis, we present a sim-
ulation process and we describe its automation and tool support. We
demonstrate the analysis through a case study. The approach can assist
software developers while performing validation of requirements.

Keywords: UML state machines · Model transformation · Declarative
modeling · Simulation · Automation

1 Introduction and Motivation

Originally introduced by Gill in 1962 [7] and later proposed by Harel in 1987 [8]
as a significant extension over traditional finite state machines, statecharts are
a visual formalism for modeling the dynamic behavior of components at various
levels of abstraction. The Unified Modeling Language (UML), an industrial de
facto standard that supports software modeling, adopted Harel’s statecharts
in its specification and extended them. This study is based on the extended
statechart model, referred to in the literature as “UML state machine” (or “UML
statechart”). A state machine can model the behavior of a reactive system at
any level of abstraction. In this study, we define a declarative representation
of a state machine, and construct a platform to analyze the machine through
queries and simulation. The objective is to assist in the validation of system
requirements captured by the machine and the methodology entails the study
of quality attributes, behavior and well-formedness of the machine as well as
simulation.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
B. Tekinerdoğan et al. (Eds.): ECSA 2023, LNCS 14590, pp. 133–150, 2024.
https://doi.org/10.1007/978-3-031-66326-0_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-66326-0_9&domain=pdf
https://doi.org/10.1007/978-3-031-66326-0_9

134 Z. Mehrafrooz et al.

A declarative model is a powerful and intuitive way to represent state
machines, offering numerous advantages in terms of maintainability, scalabil-
ity, and analysis. In fact, declarative representation expresses the behavior and
transitions of the state machine using logical clauses and rules. This model can
be implemented in Prolog, which provides capabilities like pattern matching
and backtracking, making it well-suited for modeling complex behavior in state
machines [16]. Sheng et al. [15] present a Prolog-based consistency checking for
UML class diagrams and object diagrams. They formalize the elements of the
model and then convert the model into Prolog facts along with some consis-
tency rules that enable querying of the properties, elements, and subsequent
parts of the model. Similarly, Khai et al. [12] propose a Prolog-based approach
for consistency checking of class and sequence diagrams. State machines are
widely utilized in software testing to evaluate performance and quality against
predefined requirements. Hashim and Dawood [11] conduct a review of test case
generation methods that use UML statecharts. Chen and Lin [3] propose a test
case generation strategy that enhances efficiency and guarantees high test cover-
age and accuracy. Aktaş and Ovatman [1] discuss statechart anti-patterns which
may occur in software development process.

Using a declarative model, the static behavior of a system can be studied and
the system requirements can be validated. Additionally, statecharts are a widely-
used notation for representing the dynamic and executable behavior of complex
systems [5]. This highlights the significance of having tools for visualizing and
simulating statecharts. Mens et al. [13] introduce a technique to improve stat-
echart design using specialized tools including a modular Python library called
Sismic [5]. Van Mierlo and Vangheluwe [17] present an approach for modeling,
simulating, testing, and deploying statecharts. Balasubramanian et al. [2] intro-
duce Polyglot, a framework for analyzing models described using multiple state-
chart formalisms. Their approach involves translating the structure and behavior
of statechart models into Java and analyzing them using pluggable semantics.
Modeling state machines with nested composite states and flattening the model
has been a challenge. One major issue is the potential occurrence of unwanted
non-determinism which has also been studied in the literature [9,10], and [17].
E. V. and Samuel [6] describe a technique to transform hierarchical, concurrent,
and history states into Java code using a design pattern-based methodology.

We structure the remainder of this paper as follows: We provide a background
to the mathematical specification of a state machine in Sect. 2. We present an
overview of our approach and the case study in Sect. 3. We present our initial
declarative model in Sect. 4 and describe our query system in Sect. 6. We present
our flattened declarative model in Sect. 5; and the simulation process in Sect. 7,
together with a discussion on the results of a given scenario. We finally present
our conclusion.

2 Background and Assumptions

UML 2.5.1 [14] provides numerous complex features, such as composite and
nested states; entry and exit pseudostates; entry, exit, and do state behavior;

Declarative Representation of UML State Machines 135

as well as implicit region completion transitions. These features lead to a com-
plex behavioral analysis. We simplify the machine by converting it into a mod-
ified Extended Finite State Machine EXTENDED FINITE STATE MACHINE
(EFSM), as specified in the subsequent section. Moreover, the standard UML
does not allow ε-transitions. An ε-transition is a transition whose event and guard
are empty. Observe that ε-transitions are only allowed in pseudostates (i.e. entry
and exit), as well as region completion (i.e. in the case of the completion of a do
behavior, or reaching a final substate).

2.1 Modified Extended Finite State Machine (EFSM)

The EFSM is formally defined as a 7-tuple [4]. Our definition of EFSMs adapts
this 7-tuple, with a slight modification on the inputs of the transition. An EFSM
M , is defined as a 7-tuple (Q,Σ1, Σ2, q0, V, Γ, Λ), where

Q is a finite set of states,
Σ1 = {ei : i ∈ Z}, is a non-empty finite set of events,
Σ2 = {ai : i ∈ Z}, is a finite set of actions,
q0 ∈ Q is the starting state,
V = {vi : i ∈ Z} is a finite set of mutable global variables,
Γ = {gi : i ∈ Z} is a finite set of guards,

Λ = {λ : q
ei[gi]/ai−−−−−→ q′, i ∈ Z}, is a finite set of deterministic transitions

defined on Q ×
◦

Σ1 ×
◦
Γ → Q ×

◦
Σ2, where

◦
Σ1 = {ε} ∪ Σ1,

◦
Γ = {ε} ∪ Γ ,

◦
Σ2 = {ε} ∪ Σ2, ε denotes null, q, q′ ∈ Q, e ∈

◦
Σ1, gi ∈

◦
Γ , and ai ∈

◦
Σ2 are all

bindable string literals.

A guarded ε-transition is represented by λ : q
ei[gi]/ai−−−−−→ q′ where ei = ε. In

the case where g = ε, the transition is referred to as ε-transition. In order for Λ
to be deterministic, for every state q ∈ Q, at most one possible transition must

exist. In other words, ∀q∀λi : q
ei[gi]/ai−−−−−→ q′, the satisfiability of (ei, gi) must

be exclusive. While this property holds for all EFSMs, we enforce the following
restrictions:

1. If state q has an outgoing ε-transition, no other outgoing transitions are
allowed on q.

2. If state q has an outgoing guarded ε-transition, only other guarded ε-
transitions are allowed on the state. Let {gi} be the set of all guards for
all guarded ε-transitions on state q. i) ∪gi = True; ii) ∀i∀j �= i (¬(gi ∧ gj)).

3 Overview of the Approach and Case Study

An overview of our approach is illustrated in the UML activity diagram of Fig. 1,
and the various aspects of the diagram will be discussed in the subsequent sec-
tions through a case study that models an alarm system, shown in Fig. 2 and
Fig. 3.

136 Z. Mehrafrooz et al.

Fla�en SM

Simulate
behavior

Declara�ve
fla�ened model

SM
Descrip�on

Scenario

Impera�ve
model

Output

Generate
Impera�ve

model

Error Log

State
Snapshot

Fla�ening Rules
Generate

Declara�ve
model

Declara�ve
model

Run QueriesResults

Declara�ve
Rules

Generate
Visualiza�onVisualiza�on

Fig. 1. UML activity diagram of the approach.

4 Transformation of the State Machine into a Declarative
Model

The first part of this task is to provide a platform that can serve as a virtual
machine for analysis of a state machine. The model consists of a declarative rep-
resentation of a machine, following a defined structure of clauses, implemented
as Prolog facts, that represent the state machine as a cyclic directed multigraph,
where states are modeled as nodes and where transitions are modeled as edges.
Unary clauses such as state/1, pseudostate/1, initial/1, final/1 model
their respective language element and proc/1 defines a do behavior. Binary and
multi-arity clauses are defined in Table 1.

4.1 Modeling Events

In this declarative model, events are represented by the event/2 clause, imple-
mented as event(type, argument). The supported event types in accordance
with the UML specification include call, signal, time and change. Additionally,
we introduce three new event types: inactivity, update and completion. A brief
description of all event types is shown below:

call: An external event that triggers a transition. Makes use of keyword call.

Declarative Representation of UML State Machines 137

‘ Mode’
‘Exit Mode’ : Echo ‘Exit Emergency’

Fig. 2. Case study: Alarm.

Fig. 3. The initial declarative model of the alarm case study.

138 Z. Mehrafrooz et al.

signal: Triggered by an internal or external clock, which indicates a specific
time for triggering a transition. Makes use of keyword at.

time: When the source state has been active for a specified length of time, the
transition occurs if its guard evaluates to true. If no guard is present (nil), a
transition occurs automatically. Makes use of keyword after.

change: Triggered by a constantly evaluated condition once true. Makes use of
keyword when.

inactivity: The system is expected to be inactive over a given amount of time,
specified by the argument. Though treated as a time event, it makes use of
keyword timeout.

update: Updates the value of a variable or attribute, which may subsequently
trigger a transition if the new value satisfies the conditions for the transition.
Makes use of keyword set.

completion: Occurs when a region concludes or a do behavior completes, mod-
eled as event(completed, ?state), where ?state represents the current
state (or region). Makes use of keyword completed.

4.2 Modeling Actions

We classify actions into EXEC and LOG. This classification provides the means to
manage each action type differently, allowing for greater flexibility in the model.
This classification is particularly useful when we need to flatten the model (see
Sect. 5), as it allows us to easily identify and apply the appropriate processing to
each type. Finally, the model introduces action/2 to codify actions. The case
study illustrates actions that are executed by the script engine (e.g. invoking the
echo() method) as well as actions that are logged by the system (e.g. Green LED

OFF). Note that a do behavior is a process that is started when the machine enters
a state and may be stopped (upon successful termination) or aborted (triggered
by an exit event). Finally, in Fig. 2, system shutdown is implemented as an
entry behavior of the final state, since a final state cannot have an exit behavior.

5 Flattened Representation of UML State Machines

We extend the initial declarative model and develop an algorithm that flattens
the machine. We believe that a flattened model can provide a platform for deeper
analysis as well as a simulation of behavior (see Sect. 7). The flattened model
provides the same semantic model as the initial model, though at a lower level
of abstraction, being analogous to the bytecode platform for languages such as
Java and Clojure, which is a seamless virtual machine. The flattened model can
also be extended with rules that target the three aspects of our analysis (quality
attributes, behavior, and well-formedness).

Declarative Representation of UML State Machines 139

Table 1. Major clause signatures of the initial declarative model.

FACT DESCRIPTION

entry pseudostate/2 entry pseudostate(?Entry, ?Substate) implies that
?Substate is the target inner-state whose superstate is
already defined by superstate(?Superstate, ?Substate)

exit pseudostate/2 exit pseudostate(?Exit, ?Superstate) implies that ?Exit
is an exit state within the superstate ?Superstate

superstate/2 superstate(?Superstate, ?Substate) implies that
?Superstate is a composite state with ?Substate being a
nested state

onentry action/2 onentry action(?Name, ?Action) implies that ?Name defines
?Action as an entry behavior

onexit action/2 onexit action(?Name, ?Action) implies that ?Name defines
?Action as an exit behavior

do action/2 do action(?Name, ?Proc) implies that ?Name defines ?Proc
as a do behavior

transition/5 transition(?Source, ?Destination, ?Event, ?Guard,

?Action) indicates that while the system is in state ?Source,
should ?Event occur and with ?Guard being true, the system
performs a transition to state ?Destination while performing
?Action. All elements of the triple (?Event, ?Guard,

?Action) are optional, and the absence of an element is
codified as nil

internal transition/4

internal transition(?State, ?Event, ?Guard, ?Action)

indicates that while the system is in ?State, should ?Event

occur and with ?Guard being true, the system performs
?Action. In the triple (?Event, ?Guard, ?Action), only
?Guard is optional, the absence of which is codified as nil

event/2 event(?Type, ?Argument) indicates an event where ?Type

shows event type and ?Argument is a literal

action/2 action(?Type, ?Argument) indicates an action where ?Type

shows action type and ?Argument is a literal

5.1 The Flattening Process

In a complex UML machine, transitions can trigger various sequences of actions.
For example, when transitioning from idle to active, while the transition itself
has no action, the activate event triggers the entry action on active before tran-
sitioning into configuring. Similarly, when transitioning from activated (substate
of active) to idle, a sequence of actions is executed: aborting ‘Make Siren Sound’,
executing echo(‘Exit Emergency’), and logging ‘Green LED OFF’.

To analyze the behavior of the UML state machine, we convert it into a
flattened EFSM by chaining the subsequent actions using ε-transitions. Our
flattening algorithm consists of 4+1 passes, progressively eliminating complex
UML features such as composite states, pseudostates, state behaviors, and inter-

140 Z. Mehrafrooz et al.

nal transitions. Each pass involves multiple steps, modifying facts and reducing
complexity until the machine is fully flattened. Finally, the resulting machine is
minimized by reducing the number of states and combining equivalent transi-
tions. Prolog queries are used as selectors to process the working database. An
outline of the flattening algorithm is presented on the next page:

Procedure Flatten(Input: UML in decl. DB, Output: EFSM in decl. DB)
Pass 0: Preprocessing
1: Convert all outgoing nil-events form state s to event(completed, s).
2: Convert all actions to action-lists.
Pass 1: Processing pseudostates, entry, exit, and do behaviors
1: Resolving do behaviors: For each state s with do behavior with process p: i)
Append “start p”, insert “abort p” notification actions to the entry and exit
actions of state s, respectively; ii) For every completed event on state s, insert
“stop p” notification action to transition’s actions; iii) Remove the do behavior
from s.
2: Resolving entry/exit pseudostates: i) Replace all entry pseudostate(s, t)

clauses with transition(s, t, nil, nil, []) and superstate(p, s) where
superstate(p, t); ii) Change all exit pseudostate(s, p) clauses to superstate(p,
s).
3: Resolving entry behaviors: Starting from top to bottom, for every state with
entry behavior: i) Find onentry action(s, a) and remove it; ii) For each incom-
ing transition from an external state x to s : append s to the transition’s action
list; iii) For each incoming transition from an external state x to a substate b

of s, append a to the transition’s action list; iv) If s is a top-level initial state,
create a new state ps, add state(ps); change initial(s) to initial(ps), and
add transition(ps, s, nil, nil, a); v) Otherwise if s is a non-top-level initial
state, find p where superstate(p, s); add superstate(p, ps); change initial(s)

to initial(ps), and add transition(ps, s, nil, nil, a).
Pass 2: Full State Resolution
1: For each composite state p do the following: i) Obtain the list of immediate
substates of p into l ; Obtain the exit behavior of p into ea; ii) Change the target
state of all incoming transitions to p, to the initial substate of p; iii) For each
non-final substate s of p repeat: a) Inherit all outgoing nil-transitions from
the superstate, if the child state does not contain a nil-transition; b) For every
outgoing transition from the state s to a state that is not in l, including the above;
insert ea to the transition’s action list, if ea �= nil; c) Replace superstate(p,
s) with state(s).

iv) Find inner final state f (if applicable); remove both superstate(p, f)

and final(f); add state(f); for each transition(p, t, e, g, a) from p to
the target state t where e is a region completion event on p: add transition(s,
t, nil, g, a); insert ea to a, if ea �= nil; v) Remove the composite state p, its
behaviors, and all its outgoing transitions.
2: For each remaining state s with exit behavior e, insert e to all outgoing
transitions’ actions list and remove the exit behavior clause.

Declarative Representation of UML State Machines 141

3: For each internal transition on state s, convert internal transition to
transition to self.
Pass 3: Post-Processing
1: For all action lists containing “stop p”, find corresponding “abort p” in the
list; remove “stop p”, and change “abort p” to “stop p”.
2: For all transition(s, t, e, g, l), where length(l) > 1, create intermedi-
ary state i, replace the original transition with transition(s, i, e, g, head(l))
and transition(i, t, nil, nil, tail(l)); Resolve transition(i, t, nil, nil,

tail(l)), recursively. 3: Replace all transition(s, t, e, g, []) with transition(s,
t, e, g, nil).
Pass 4: State Reduction/Minimization
For each transition(s, t, e, g, a): Find all transition(s2, t, e, g, a)

where s2 is not initial and s2 �= s. Replace all transition(x, s2, e2, g2, a2)
with transition(x, s, e2, g2, a2). Remove all instances of state(e2) and
transition(e2, t, e, g, a). Repeat until no more transitions can merge.

Having produced a flattened model, we perform a model transformation into a
(new) declarative representation, deploying only the clause structures state/1,
initial/1, final/1, transition/5, event/2, and action/2.

Fig. 4. Partial flattened declarative model of the alarm case study.

Figure 4 includes a partial model capturing transitions from states idle and
configuring to reading. Consider the transition from idle to configuring in
Fig. 2. Such transition causes system startup notification upon entry to idle.
The reception of the event activate causes a transition to the active super-
state which is now collapsed. Upon reaching active, the transition causes echo

142 Z. Mehrafrooz et al.

configuring mode upon entry to the configuring substate. Such sequence of
actions are implemented in the flattened model by sequence of transitions start-
ing from initial, to pre idle, idle, s71, and finally to configuring. Note that one
may extend the model to support transition with multiple actions, in which
case, an extra step in pass 4 may reduce the total number of states by following
and merging all outgoing nil-transitions into a single transition. We intention-
ally avoided this to make the model compatible with the definition of EFSMs
(Fig. 5).

Fig. 5. The flattened UML diagram

6 Building a Query Platform

With the declarative model as is, we can execute simple ground queries that can
give us some basic knowledge of the machine such as “Is there a transition from
state idle to state configuring?”

Declarative Representation of UML State Machines 143

? transition(idle, configuring, _, _, _).

Yes.

We can also execute non-ground queries such as “Under what conditions, if any,
would the state machine perform a transition to the emergency state?” This
would entail capturing any and all state-event-guard triples that can cause
such a transition.

? transition(State, emergency, event(_,Event), Guard, _).

Event = "tCurrent >= tThreshold", Guard = null, State = reading

6.1 Extending the Declarative Model with Rules

We can extend the declarative model by introducing rules. We can identify three
types of rules: (1) We have rules that reason about the behavior of the state
machine by examining the traversal of the underlying graph under various dif-
ferent conditions. When we study behavior, we want rules that reason about
elements such as the exposed interface and legal event sequences. (2) We have
rules that reason about the quality attributes of the state machine by examin-
ing the properties and measurements of the underlying directed graph. When
we study graph (machine) complexity we want rules that provide knowledge
about aspects such as connectivity and (global and nodal) measurements. We
argue that the above two types of rules roughly correspond to the state machine’s
functional and non-functional requirements. (3) We have rules that reason about
the well-formedness of the machine, such as the presence of infinite loops, dead
ends, or conflicts with the UML specification e.g. the existence of an internal
transition without an action association.

6.2 Studying Behavior

Exposed Interface: The call and set events correspond to messages sent to
the system and they collectively constitute the exposed interface of the system.
Rule get interface/1 succeeds by collecting any and all such events.

get_interface(Interface) :- %% Consults: Initial model.

findall(E, (transition(_, _, E, _, _),

(E = event(call, _); E = event(set, _)));

(internal_transition(_, E, _, _),

(E = event(call, _); E = event(set, _))),

EventList), list_to_set(EventList, Interface).

Legal Events at a Given State: Given the system exposed interface, it is
important to note that not all events can be acted upon unconditionally. An
event can be accepted based on the system’s current state. It will be acted upon
provided the associated guard (if one is present) evaluates to true.

is_legal(State, Event) :- %% Consults: Initial model.

transition(State, _, event(_, Event), _, _);

internal_transition(State, event(_, Event), _, _).

144 Z. Mehrafrooz et al.

6.3 Studying Complexity

We provide rules for properties and measurements. Measurements in graphs can
be global or nodal. Global measurements refer to global properties of the graph
and consist of a single number for any given graph. Nodal measurements refer
to properties of the nodes and consist of a number for each node for any given
graph.
Order of Graph: This measurement refers to the number of nodes in a graph.
In the context of state machines, we believe that the initial model may not give
us an accurate picture due to the presence of composite states. The flattened
model would be more accurate for this measurement. For the initial and flattened
models the corresponding rules are shown below:

order(N) :- %% Consults: Initial model.

findall(State, (state(State); superstate(_, State)), StateList),

list_to_set(StateList, States), length(States, N).

%% Consults: Flattened model.

order(N):- findall(S, state(S), Length), length(Length, N).

Number of nil Transitions: The number of nil transitions in a flattened
model can be a measure of the complexity of a state machine. The following rule
succeeds by returning the number of nil transitions:

nil_transition(N) :- %% Consults: Flattened model.

findall(Nilevents,

(transition(_, _, Nilevents, _, _), Nilevents=nil), Transitions),

length(Transitions, N).

Size (or Length) of Graph: This measurement refers to the number of edges
in a graph. In the context of state machines, we believe that the initial model
may not give us an accurate picture due to the fact that in the presence of
composite states, their nested states inherit the transitions of their superstate.
The flattened model would be more accurate for this measurement.

size(N):- %% Consults: Flattened model.

findall(S, transition(S,_,_,_,_), Length), length(Length, N).

6.4 Studying the Well-Formedness of the State Machine

We define rules to study the design of the state machine and find cases such
as dead ends, conflicts, or inconsistencies among the state machine’s elements,
considering issues such as (1) Dead ends and infinite loops, (2) Internal transition
without an action, (3) Multiple change events originating from the same state,
(4) Non mutually exclusive guards originating from the same state, (5) The
absence of a do behavior in the presence of an external transition with no event,
and (6) As the previous item for a composite state, in the absence of an exit
substate.

Declarative Representation of UML State Machines 145

Dead Ends: We are interested in finding out if the machine can enter a state
from which the final state is not reachable. Rule dead end/0 succeeds by obtain-
ing a non-empty list of states from each of which there is no path to state final.

%% Consults: Initial model.

path(X, Y) :- path(X, Y, [X]).

path(X, Y, V) :- transition(X, Y, _, _, _), \+ member(Y, V).

path(X, Y, V) :- transition(X, Z, _, _, _), \+ member(Z, V),

path(Z, Y, [Z|V]).

dead_end :-findall(State, \+path(State, final), L), L \= [].

7 Simulating State Machine Behavior

The query system provides a level of analysis that is complemented with a simu-
lation of the machine. The flattened model serves as the platform for simulation.
A simulation reads in a machine representation and a scenario under which the
machine is traversed and its state and behavior is monitored and recorded. The
question we ask here is “Is the Machine behaving according to its specification?”
During simulation, we need to be able to identify issues perhaps not having been
identified by the query system, e.g. “Has the simulator encountered an ambiguous
transition?”, in which case we need to report such issues.

Structure of Scenario: A scenario is a sequence of commands consisting of
three types of tags: EVENT, EXECUTE, and TIME. EVENT tags can be of type call,
set, or completion, and must trigger the corresponding transition. EXECUTE tags
contain expressions that modify variable values, and may trigger a transition.
TIME tags can be either after or at, which update time variables duration and
absoluteTime (if applicable) and may trigger a transition.

Read-Evaluate-Execute Cycle: In UML, it is assumed that a state machine
processes one event at a time and finishes all the consequences of that event
before processing next event [14]. At the highest level of abstraction, and given
a scenario, the simulation would be performed using a Read-Evaluate-Execute
Cycle. When a command in a scenario is EVENT e, where e ∈ Σ1, given the
current state and the event, the simulator would construct a transition query
and consult the declarative model. We query the database and find all transitions
λi ∈ Λ with event e. The result of the query is a set of λi, associated with tuples
{(q, g, a)i} where q ∈ Q is the target state, g ∈ Λ is a guard, and a ∈ Σ2 is an
action. Each tuple is also associated with a set of vi ⊂ V , containing all variables
used in gi and ai. The query is successful only if one transition is possible. This
is achieved by instantiating all variables in vi and evaluating gi. Upon success,
a single transition is fired. The simulator consequently checks if any additional
transitions can be triggered, following the most recent transition. The process
continues until no further possible transition is applicable.

Simulator Architecture: To perform a simulation, we need to provide storage
of all variables (machine and environment) while keeping track of any changes.

146 Z. Mehrafrooz et al.

We also need to provide storage and keep track of the machine’s current state.
To support these requirements, we provide an imperative model in Java while
deploying Java Prolog Library (JPL). We use Javascript to maintain system
variables, and we deploy the GraalVM engine to evaluate events and guards,
and finally to execute actions. We illustrate the architecture of the simulator in
the UML component diagram shown in Fig. 6. We illustrate the interaction of
the various components during simulation with the UML sequence diagram of
Fig. 7. The diagram illustrates the interactions among high-level objects, includ-
ing SimulatorExecuter, JPLMediator (facilitating the communication with the
declarative model), ScriptHandler (responsible for evaluating guards, actions,
and modifying variables), a Scenario defined as a text file containing a sequence
of events for simulation, and the Output generated by the tool. The outer loop
in the sequence diagram illustrates the Read-Evaluate-Execute cycle and the
inner loop mostly covers ε-transitions in our flattened model.

Fig. 6. UML component diagram of the simulator.

Results of Simulation in the Case Study: We applied the flattening algo-
rithm to the declarative representation of our case study, and the resulting min-
imized flattened model is shown in Fig. 4. Also, Fig. 8 presents a sample scenario
(top-left) along with the corresponding simulation output (top-right).

Visualization of Results: we visualize the results of simulating the scenario
as the model of behavior which is shown in Fig. 8 (bottom). This diagram shows
the current state of the state machine as well as state of the system in each time
id.

Declarative Representation of UML State Machines 147

Fig. 7. UML sequence diagram of the simulation process.

Table 2. Complexity Metrics: Original vs Flattened Models

Metric Original Flattened

states and substates 9 18

internal initial states 2 0

transitions(+ internal) 16+2 29

entry/exit pseudostates 2 0

entry/exit (+do behaviors) 5+2 0

ε-transitions 2 11

actions 10 26

148 Z. Mehrafrooz et al.

Fig. 8. Input scenario and the corresponding simulation output (top), and its model
of behavior (bottom)

Conclusion

In this paper, we presented a declarative model to represent UML state machines.
The model is used to study the dynamic behavior of the underlying machine.
The simulation results provide insights into the machine’s behavior under specific
scenarios. We developed a simulation tool and a query engine that use the model
in Prolog environment and run scenarios in an imperative platform. We deployed
JPL for Java-Prolog interoperability. Our platform supports codified actions in
JavaScript, by which developers may set or update system variables, in both the
model, as well as in scenarios.

We introduced an algorithm to flatten the UML state machine and convert
it into an extended finite state machine. Our algorithm supports major UML
2.5.1 features including single and composite states; exit and entry pseudostates;
state behaviors including entry, do, and exit; in addition to the UML events
including call, signal, time, change, as well as three newly introduced events
namely inactivity, update, and completion. Table 2 lists some metrics that may
be used to measure the complexity of the UML diagrams in both original and
flattened models.

Declarative Representation of UML State Machines 149

We used a modified version of the extended finite state machine to support
guarded and unguarded ε-transitions that are required for handling complex
sequences of actions and notifications in a non-flattened model. Future work
may involve expanding the model to include contract considerations as well as
other UML features such as history pseudostates and orthogonal regions.

Acknowledgments. The authors would like to thank Robin Laliberté-Beaupré and
Simon Foo for their contributions to the automation and tool support for this project.

References

1. Aktaş, M., Ovatman, T.: UML statechart anti-patterns. In: 2022 IEEE 46th Annual
Computers, Software, and Applications Conference (COMPSAC), pp. 413–414
(2022)

2. Balasubramanian, D., Păsăreanu, C.S., Karsai, G., Lowry, M.R.: Polyglot: system-
atic analysis for multiple statechart formalisms. In: Piterman, N., Smolka, S.A.
(eds.) TACAS 2013. LNCS, vol. 7795, pp. 523–529. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-36742-7 36

3. Chen, C., Lin, W.: Research of software testing technology based on statechart
diagram. In: Pan, J.-S., Li, J., Namsrai, O.-E., Meng, Z., Savić, M. (eds.) Advances
in Intelligent Information Hiding and Multimedia Signal Processing. SIST, vol.
211, pp. 314–322. Springer, Singapore (2021). https://doi.org/10.1007/978-981-
33-6420-2 39

4. Cheng, K.T.T., Krishnakumar, A.: Automatic generation of functional vectors
using the extended finite state machine model. ACM Trans. Des. Automation Elec-
tron. Syst. 1, May 1999. https://doi.org/10.1145/225871.225880

5. Decan, A., Mens, T.: Sismic - A Python library for statechart execution and
testing. SoftwareX 12, 100590 (2020). https://doi.org/10.1016/j.softx.2020.100590.
https://www.sciencedirect.com/science/article/pii/S2352711020303034

6. Sunitha, E.V., Samuel, P.: Automatic code generation from UML state chart dia-
grams. IEEE Access 7, 8591–8608 (2019). https://doi.org/10.1109/ACCESS.2018.
2890791

7. Gill, A.: Introduction to the Theory of Finite-State Machines. McGraw-Hill, Elec-
tronic Science Series (1962)

8. Harel, D.: Statecharts: a visual formalism for complex systems. Sci. Comput.
Program. 8(3), 231–274 (1987). https://doi.org/10.1016/0167-6423(87)90035-9.
https://www.sciencedirect.com/science/article/pii/0167642387900359

9. Harel, D., Kugler, H.: The Rhapsody semantics of statecharts (or, on the exe-
cutable core of the UML). In: Ehrig, H., Damm, W., Desel, J., Große-Rhode, M.,
Reif, W., Schnieder, E., Westkämper, E. (eds.) Integration of Software Specifica-
tion Techniques for Applications in Engineering. LNCS, vol. 3147, pp. 325–354.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27863-4 19

10. Harel, D., Naamad, A.: The STATEMATE semantics of statecharts. ACM Trans.
Softw. Eng. Methodol. 5(4), 293–333 (1996). https://doi.org/10.1145/235321.
235322. https://doi.org/10.1145/235321.235322

11. Hashim, N.L., Dawood, Y.S.: A review on test case generation methods using
UML statechart. In: 2019 4th International Conference and Workshops on Recent
Advances and Innovations in Engineering (ICRAIE), pp. 1–5 (2019). https://doi.
org/10.1109/ICRAIE47735.2019.9037786

https://doi.org/10.1007/978-3-642-36742-7_36
https://doi.org/10.1007/978-981-33-6420-2_39
https://doi.org/10.1007/978-981-33-6420-2_39
https://doi.org/10.1145/225871.225880
https://doi.org/10.1016/j.softx.2020.100590
https://www.sciencedirect.com/science/article/pii/S2352711020303034
https://doi.org/10.1109/ACCESS.2018.2890791
https://doi.org/10.1109/ACCESS.2018.2890791
https://doi.org/10.1016/0167-6423(87)90035-9
https://www.sciencedirect.com/science/article/pii/0167642387900359
https://doi.org/10.1007/978-3-540-27863-4_19
https://doi.org/10.1145/235321.235322
https://doi.org/10.1145/235321.235322
https://doi.org/10.1145/235321.235322
https://doi.org/10.1109/ICRAIE47735.2019.9037786
https://doi.org/10.1109/ICRAIE47735.2019.9037786

150 Z. Mehrafrooz et al.

12. Khai, Z., Nadeem, A., Lee, G.: A prolog based approach to consistency checking
of UML class and sequence diagrams. In: Kim, T., Adeli, H., Kim, H., Kang, H.,
Kim, K.J., Kiumi, A., Kang, B.-H. (eds.) ASEA 2011. CCIS, vol. 257, pp. 85–96.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-27207-3 10

13. Mens, T., Decan, A., Spanoudakis, N.I.: A method for testing and validating exe-
cutable statechart models. Softw. Syst. Model. 18(2), 837–863 (2019). https://doi.
org/10.1007/s10270-018-0676-3. https://doi.org/10.1007/s10270-018-0676-3

14. Object Management Group: UMLR 2.5.1 (2017). https://www.omg.org/spec/
UML/2.5.1/

15. Sheng, F., Zhu, H., Yang, Z., Yin, J., Lu, G.: Verifying static aspects of UML
models using Prolog. In: Perkusich, A. (ed.) The 31st International Conference
on Software Engineering and Knowledge Engineering, SEKE 2019, Hotel Tivoli,
Lisbon, Portugal, July 10-12, 2019, pp. 259–342. KSI Research Inc. and Knowledge
Systems Institute Graduate School (2019). https://doi.org/10.18293/SEKE2019-
175, https://doi.org/10.18293/SEKE2019-175

16. Sterling, L., Shapiro, E.: The Art of Prolog: Advanced Programming Techniques,
vol. 2. MIT Press, Cambridge (1994)

17. Van Mierlo, S., Vangheluwe, H.: Introduction to statecharts modeling, simulation,
testing, and deployment. In: 2019 Winter Simulation Conference (WSC), pp. 1504–
1518 (2019). https://doi.org/10.1109/WSC40007.2019.9004771

https://doi.org/10.1007/978-3-642-27207-3_10
https://doi.org/10.1007/s10270-018-0676-3
https://doi.org/10.1007/s10270-018-0676-3
https://doi.org/10.1007/s10270-018-0676-3
https://www.omg.org/spec/UML/2.5.1/
https://www.omg.org/spec/UML/2.5.1/
https://doi.org/10.18293/SEKE2019-175
https://doi.org/10.18293/SEKE2019-175
https://doi.org/10.18293/SEKE2019-175
https://doi.org/10.1109/WSC40007.2019.9004771

Towards Behavior-Based Analysis
of Android Obfuscated Malware

Zakaria Sawadogo1,2,3(B), Muhammad Taimoor Khan2, George Loukas2,
Jean-Marie Dembele1, Georgia Sakellari2, and Gervais Mendy3

1 Gaston Berger University, Saint-Louis, Senegal
{sawadogo.zakaria,jean-marie.dembele}@ugb.edu.sn

2 Centre for Sustainable Cyber Security, University of Greenwich, London, UK
{m.khan,g.loukas,g.sakellari}@greenwich.ac.uk

3 Cheikh Anta Diop University, Dakar, Senegal
gervais.mendy@ucad.edu.sn

Abstract. In this paper, we report on the initial results of an ongoing
project that aims to rigorously detect obfuscated Android malware. In
fact, the detection of Android malware has become increasingly complex
as malicious app developers employ various obfuscation techniques. Pre-
vious approaches have focused on addressing specific obfuscation meth-
ods, but the dynamic nature of these techniques presents challenges
in accounting for all possible variations. In response to this challenge,
we have developed an innovative behavioral methodology for analyzing
obfuscated malware. Our approach combines model-based and AI-based
techniques, making it the first effort to integrate these approaches for
obfuscated malware detection. Given that deobfuscation is a computa-
tionally very challenging (i.e., NP-hard) problem, our methodology cir-
cumvents obfuscation by indirectly observing malware behavior through
the runtime behavior of target services controlled and operated by the
Android applications.

Keywords: Android malware · Formal model · Machine learning

1 Introduction

Ever since Google Inc. declared Kotlin1 as the official programming language
for Android app development in 2019, its popularity has been steadily grow-
ing [14]. According to Google in 2022, over 95% of major Android applications
incorporate Kotlin, Java, or Java-like code. Additionally, it is more than 60%
of professional Android developers opt for Kotlin, Java, or similar languages
for their development projects. This demonstrates the significant adoption and
usage of Kotlin and Java in the Android app development landscape. But we’re
also faced with a growing number of malicious apps for Android, as according to
the Kaspersky Security Bulletin 2022 report [2], cyber-criminals are launching
around 400,000 new malicious files a day, which is a major issue for user security.

1 https://kotlinlang.org/.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
B. Tekinerdoğan et al. (Eds.): ECSA 2023, LNCS 14590, pp. 151–165, 2024.
https://doi.org/10.1007/978-3-031-66326-0_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-66326-0_10&domain=pdf
https://kotlinlang.org/
https://doi.org/10.1007/978-3-031-66326-0_10

152 Z. Sawadogo et al.

Kaspersky’s security experts have also noted a 10% increase in the number of
malicious files targeting the Android platform every day.

Malware developers use obfuscation techniques such as renaming, dead code
insertion, code encryption, control flow, and string encryption to transform
the malware code so that it becomes more complex and less readable and can
evade malicious application detection methods [17,30]. A number of efforts have
proposed approaches to detect obfuscated malware using artificial intelligence,
memory dumping, code analysis, and other techniques [4,21]. Though these
approaches are robust and can identify unknown malware patterns, they are not
practically effective mainly because they are retrospective (i.e., can only detect
the already seen patterns) and suffer from high false alarms on one hand, and
fail to detect the obfuscated malware due to failure in differentiating between
actual malicious part and the obfuscated part of the malware code on the other
hand.

In addition, various malware detection techniques have used formal
approaches such as verification and model checking to analyse the source, byte-
code or features of Android applications [18]. In another sense, the authors have
built specific detection models for overlay banking malware [13]. In general, these
approaches model the expected behaviour of the application and, possibly, known
malware behaviour, then detect either by matching the malware behaviour model
or by inconsistency with the expected behaviour. Although these approaches are
effective at detecting modelled malware or malicious code, they fail to detect
obfuscated malware because the behaviour of obfuscated malware is not known
and therefore cannot be modelled. Detecting obfuscated Android applications is
a complex challenge due to the variety of obfuscation techniques, the similar-
ity of their behaviors to legitimate applications, and to constantly stay updated
with the ever-evolving obfuscation techniques employed by malicious developers.

To address the aforementioned limitations, we have developed an innovative
behavioral methodology for obfuscated malware analysis by combining model-
based and AI-based malware analysis techniques [16]. To the best of our knowl-
edge, this is the first effort to combine model and AI-based techniques to detect
obfuscated malware. The use of obfuscation techniques makes deobfuscation clas-
sified as NP-hard, belonging to the category of challenging problems for which
there is no efficient algorithm capable of providing a polynomial-time solution.
As a result, the detection of obfuscated malware is also considered NP-hard [11].
Our methodology innovatively evades obfuscation by indirectly observing the
malware behavior though run-time behavior of the target services that are con-
trolled and operated by the Android applications. Based on the formal behavioral
model of the critical services and operations, we perform online malware analy-
sis based on model checking that checks consistency by comparing the observed
run-time operations of the services with the known model of the services and
operations, eventually raising an alarm, if inconsistency is detected. Later, AI-
based offline malware analysis either learns newly identified malware behavioral
patterns by the online analysis or confirms that the identified malware behavior
is already known. We demonstrate our project with a simple example based on
the open dataset provided by Kaggle.

Towards Behavior-Based Analysis of Android Obfuscated Malware 153

The rest of the paper is organized as follows: in Sect. 2, we introduce key com-
ponents of our methodology, namely, online and offline behavioral malware anal-
ysis techniques, and demonstrate the methodology based on a running example.
In Sect. 3, we report on the current status of the implementation our methodol-
ogy and sketch the future work. In Sect. 4, we describe state of the art related
to our work. Section 5 presents the conclusions.

2 Malware Behavioural Analysis

In this section, we present the main components of the workflow (see Fig. 1)
which consists of Features Extraction, Modeling, Online Malware Analysis, and
Offline Malware Analysis. All the elements of the workflow enable a behavioral
analysis of Android malware.

2.1 Extraction of Behavioral Features

As an initial step, we have collected, analyzed, and chosen an open (Kaggle) data-
set [1] for the analysis that includes information about permissions, receivers,
services, and API calls of various Android applications. Permissions, receivers,
and services are related to the functionality of underlying Android phone/system
features such as WiFi, Bluetooth, and Internet enabling data sharing between
the phone and various applications or networks. The API calls of an application
provide insights into its behavior while running on the Android platform. Con-
sidering the operational behavior of the different Android services as sketched in
Fig. 2, we extracted those features from the data set that characterize dynamic
but expected execution behavioral dependencies among various services. For
instance, a foreground service Bluetooth service automatically starts a back-
ground Download service in an online mode, and the Download service auto-
matically starts a bound Synchronisation service. Consequently, we enlist those
features that observe execution behavioral dependencies among various services,
which is a subset of the data-set features.

2.2 Modelling of Behavior

Based on the extracted behavioral features, we model their behavioral depen-
dencies as a state transition system as sketched in Fig. 3. Our model includes
selected but representative operations and services (i.e., features) of an open
Kaggle data-set. The model is based on a behavioral state includes.

154 Z. Sawadogo et al.

Fig. 1. Workflow of Malware Detection

Towards Behavior-Based Analysis of Android Obfuscated Malware 155

Fig. 2. Types of Android Services

– (B)luetooth service works (e.g., plays audio or video) either offline or online.
– (D)ownload service downloads data by automatically synchronizing connec-

tivity.
– (S)ynchronisation service is required by the Download service.
– (T)ransfer service is enabled when multimedia content download is required

by the Bluetooth service.

and their expected behavioral transitions to the following four states (i.e.,
s0, s1, s2, and s3)

– s0 = 〈¬B,¬D,¬S,¬T 〉 - in the initial and final state all the services are
inactive.

– s1 = 〈B,¬D,¬S,¬T 〉 - when only Bluetooth is active and working offline
– s2 = 〈B,D, S,¬T 〉 - when Bluetooth is active and working in online mode.
– s3 = 〈B,D, S, T 〉 - when Bluetooth is active and working in online mode by

transferring multimedia contents.

Fig. 3. Behavioural Model of Applications

156 Z. Sawadogo et al.

All the possible expected transitions are sketched in Table 1. For the sake of
modelling simplicity, the current model does not allow self-transitions.

Table 1. Possible Behavioral Transitions

Current State Next State

s0 s1 s2 s3

s0 ✗ ✓ ✓ ✗

s1 ✓ ✗ ✓ ✓

s2 ✓ ✓ ✗ ✓

s3 ✓ ✓ ✓ ✗

Any transition that deviates from the described model would be considered
suspicious behavior and could be classified as potentially malicious and conse-
quently a malware. To formalize the model, we encode the model in SMT-Lib2

format [7] as sketched in Listing 1.1.
The transition model is based on a trans function that declares the variables

representing the four services for previous and next state (lines 3–12 of the
Listing). All the possible transitions are declared as sketched in Table 1 (starting
at line 56), e.g., lines 58–61 and 62–65 declare the transitions from s0 to s1, and
s0 to s2, respectively. Later, the actual transitions from the previous state to
the next possible state are modelled, e.g., lines 17–28 models the transition from
state s2 to s3.

Once the dependencies are specified, we move on to defining the behav-
ioral model of the applications (refer to the Fig. 3). This modeling enables us
to establish the dependency relationships among the different features compre-
hensively. Subsequently, we implement our modeling approach by creating an
example utilizing the Z3 framework [3]. Through this example, we explicitly
outline the dependencies of each feature and the standard transitions of each
state, as depicted in example transition system.

2 https://ocamlpro.github.io/verification for dummies/trans smt/index.html.

https://ocamlpro.github.io/verification_for_dummies/trans_smt/index.html

Towards Behavior-Based Analysis of Android Obfuscated Malware 157

158 Z. Sawadogo et al.

2.3 Model-Based Online Malware Analysis

The online analysis checks if the observed behavioral pattern of different services
through various Android applications is consistent with the expected behavior
as described in the model (Fig. 3).

The algorithm requires (i) a sequence of run-time observations O that char-
acterise at least one transition, and (ii) and a set of expected behaviors. The
analysis works as follows:

– first it checks if each current and next observation in the sequence represents
a valid behavioral state (lines 9 and 10 of the Algorithm 1) and returns the
invalid state (lines 21–22 and 17–18), if so.

– if the given previous and next observations are valid behavioral states and
returns the two states (line 12), if they do not represent a valid behavioral
transition. Alternatively, it continues checking next possible transitions.

To implement the model, we have used model checking of the transition
system using Z3, which is an Satisfiability Modulo Theory (SMT) Solver checking
satisfiability of formulas in a decidable first-order theory (Fig. 4). Z3 accepts
SMT-Lib format model, which implies that our previously developed model is
amenable for satisfiability check by Z3. We ask the question to the solver that
given the transition model, the given sequence of observed behavioral states are
malicious, i.e., they do not satisfy the model. Then the solver answers

– either “SAT” which implies that the two given observed states are indeed
malicious

– or “UNSAT” which implies that the two given observed states are not mali-
cious.

To demonstrate our example, we report on checking the following two exam-
ple properties using online version of Z33:

1. when all the services are currently observed as active (i.e., system is in s3
state), then in the next state all services are inactive except the Bluetooth

3 https://jfmc.github.io/z3-play/.

https://jfmc.github.io/z3-play/

Towards Behavior-Based Analysis of Android Obfuscated Malware 159

Algorithm 1. Algorithm for Online Malware Behaviour Detection
Require: O : (〈bj , dj , sj , tj〉)nj=1 s.t. |O| ≥ 2
1: � A sequence of Observed behavioural states of services, i.e., b: Bluetooth, d:

download, s: synchronisation, and t: transfer.
Require: E : S � A set of Expected behavioural states of different services
Ensure: P : ∅ ∨ (〈bj , dj , sj , tj〉) � (〈bj , dj , sj , tj〉)nj=1 ∨

(〈bj−1, dj−1, sj−1, tj−1〉, 〈bj , dj , sj , tj〉) � (〈bj , dj , sj , tj〉)nj=1

2: � Either empty, when no malware Pattern,
3: � Or a single state, when either previous or next state is not an expected

behavioural state
4: � Or a sequence of two (previous and next) states, when the two states

characterise a malware behavioural transition
5: P ← ∅ � There is no malicious pattern, initially
6: i ← 0
7: l ← |O|
8: while i < l − 1 do
9: if O[i] ∈ E then � If the current state is an expected state

10: if O[i + 1] ∈ E then � If the next state is an expected state
11: if 	= next(O[i], O[i + 1]) then
12: return P
 O[i]
 O[i + 1]
13: � Return the sequence of two (previous and next) states when the transition from

the previous state to the next state is unexpected
14: end if
15: else
16: return P
 O[i + 1] � Return the next state, if the next state is not an

expected state
17: end if
18: else
19: return P
 O[i] � Return the current state, if the current state is not an

expected state
20: end if
21: i ← i + 1
22: end while
23: return ∅ � No malicious pattern found

and Synchronisation services. The next state is an invalid state as can be
seen in Fig. 3 and indicates a malicious behavior because Synchronisation
service is bound service and is only active when Download service is active as
sketched in Fig. 2. The results for the verification of this property are depicted
in Fig. 4a.

2. when all the services are currently observed inactive (i.e., system is in s0
state), then in the next state all services are active (i.e., system is in s3
state). This is again a a malicious behavior because this is not a valid behav-
ioral transition as sketched in Table 1. The results for the verification of this
property is depicted in Fig. 4b.

160 Z. Sawadogo et al.

(a) Output of Malicious Synchronisa-
tion Service

(b) Output of Malicious Services Ini-
tialization

Fig. 4. Verification of Online Malware Analysis

Once we have identified the given sequence of behavioral observations as
malicious malware, then we perform offline malware analysis as discussed in the
next sub-section.

2.4 AI-Based Offline Malware Analysis

Based on the identification of malware behavioral patterns by online analysis, in
this stage, we perform AI-based offline malware analysis that either confirms that
the identified pattern is a known malware or learns a new behavioral pattern of
malware. Online analysis only knows the valid behavioral states but in practice
there are a lot of unknown but invalid behavioral states. Therefore, to make
the malware analysis more efficient, the offline analysis aims to produce a list of
every new malware pattern so that any given behavioral states can be directly
filtered against the list before actually performing the online analysis, which
otherwise will require a lot of resources and time to decide the same.

To facilitate offline malware analysis, we use DeepMalOb [22], which is a
malware detection technique that addresses the detection of obfuscated mal-
ware without relying on specific obfuscation techniques. DeepMalOb uses deep
learning algorithms, in particular the multilayer perceptron (MLP), which is a
supervised deep learning algorithm. The dataset used to train the model was
obtained by memory analysis of obfuscated malware. This allows all obfuscation

Towards Behavior-Based Analysis of Android Obfuscated Malware 161

techniques to be taken into account. It is a dataset that is as close as possible
to a real situation because it uses malware that is widespread in the real world.
DeepMalOb has achieved an accuracy performance of 99%, outperforming sev-
eral works in the literature.

3 Current Status and Future Work

Currently all the different modules of the workflow (see Fig. 1 are developed
independently. As a next step, we want to automate the entire workflow through

– intra-module integration that aims at automating the internal processing of
each module. Specifically, we want to automatically generate the scalable Z3
model based on large features of the dataset in a sound way considering more
complex behavioral properties, e.g., permissions that require access not only
to other applications and services but to underlying hardware, e.g., memory
and other peripheral interfaces.

– inter-module integration that aims at automating interfacing of different mod-
ules by making input/output of the modules interoperable. Specifically, we
want to extend AI-based offline analysis to learn new malware patterns as
identified by the model-based online analysis.

Beside the integration, we aim to assess the performance of the model on
diverse datasets and real-world scenarios. This involves comparing the malware
detection results obtained by our model with those achieved by other existing
approaches. Through this evaluation, we aim to identify any challenges or limi-
tations encountered during the analysis process.

4 Related Work

In this section we present related work to our behavior-based online and offline
malware analysis, respectively.

More recently, AI/ML based malware detection approaches have used
machine learning and deep learning algorithms to analyze Android applications,
using their permissions and code structure, etc. [28]. The researchers used the
learning algorithms to develop efficient models, exploiting features such as API
calls, permissions, opcode, and intents. [5,20]. A certain research focus has turned
to the detection of obfuscated malware by integrating code analysis, memory
dumping and machine learning techniques. By combining these methodologies,
they aim to improve the efficiency of malware detection and overcome the chal-
lenges posed by obfuscation [24,25,29]. However, it is important to recognize
that biases can have an impact on the reliability and robustness of models. Also,
the dynamic nature of malware and the constant evolution of attack techniques
are obstacles to the development of highly accurate and robust models. In addi-
tion, the presence of obfuscation and evasion techniques employed by malware
developers can hamper the detection process [22].

162 Z. Sawadogo et al.

Some other approaches have employed heuristics [18] and formal modeling
techniques, to model the malicious behavior of applications. Heuristics-based
approaches rely on expert knowledge and predefined rules to identify suspi-
cious behaviors and patterns in applications. Formal modeling techniques involve
mathematical or logical models to define precise specifications and analyze appli-
cation behavior against these models [12]. Formal modeling of malware allows
researchers to precisely define the semantics of malicious code, identify poten-
tial vulnerabilities, and analyze the impact of malware on a system [13,27].
Cimitile [10] et al., presented a method relying on formal methods to detect
obfuscation in mobile applications. However, their model was developed using a
limited dataset comprising trusted software and Android ransomware. Further-
more, their methodology involves model checking, which entails the translation
of Java Bytecode into formal models. It should be noted that this approach may
encounter challenges and potential errors when dealing with obfuscated Java
Bytecode. LEILA, as presented by Canfora et al. [8], is an Android malware
detection tool that utilizes model checking to analyze and validate Java byte-
code derived from source code compilation. Model checking involves examining
all possible system states to ensure compliance with a predefined specification. In
the case of LEILA, the analyzed system is the bytecode generated by Android
malware, while the specification consists of predefined rules representing the
behavior of known malware families. However, it is worth noting that LEILA
does not take into account potential relationships between malware from different
families. Additionally, the bytecode-centric approach employed by LEILA does
not consider the dynamic behavior of malware. F. Mercaldo et al. [8], presented
a set of heuristics aimed at deducing the malicious nature of mobile applications
by detecting whether they belong to a specific malware family. To do this, they
rely on formal equivalence checks. However, it is important to note that this
approach relies on signature-based detection, which means that it may not be
able to identify obfuscated malware that uses techniques such as code encryption
and renaming to evade detection. It is therefore possible for obfuscated malware
to go undetected using this approach. Authors of these works have proposed
formal methods to deepen the structure, dependencies and potential malicious
attributes of malware. The formal analysis of malicious behavior is emerging as
a prominent area of research in the field of Android malware detection. While
formal analysis holds great potential, it is essential to acknowledge the challenges
associated with its application in the realm of Android malware detection. The
scalability and complexity of formal methods in handling large-scale or real-world
malware scenarios remain areas of ongoing research and development.

Indeed, it is crucial to acknowledge that biases can significantly influence
the reliability and robustness of models in malware detection. Biases can arise
from various sources, such as imbalanced training data, biased labeling, or inher-
ent biases in the algorithms themselves [15,23]. These biases can lead to false
positives or false negatives, impacting the accuracy of the models. Moreover,
the dynamic nature of malware and the continuous evolution of attack tech-
niques pose ongoing challenges in developing highly accurate and resilient detec-

Towards Behavior-Based Analysis of Android Obfuscated Malware 163

tion models [9]. Malware authors constantly adapt their strategies and employ
sophisticated obfuscation and evasion techniques to evade detection. This neces-
sitates the continuous monitoring and updating of detection models to keep pace
with emerging threats. Obfuscation techniques employed by malware develop-
ers further complicate the detection process. By deliberately obscuring the code
structure or employing encryption, obfuscation techniques aim to make it harder
for detection models to identify and analyze malicious behavior. As a result,
detecting obfuscated malware becomes more challenging and requires innovative
approaches and advanced analysis techniques to overcome these obstacles. As
indicated in the Table 2, the existing work in this field has certain limitations,
specifically regarding the employed techniques and the approach to detecting
malicious applications. Statistical techniques are unable to identify obfuscated
malicious behavior effectively. Moreover, detection based on identification alone,
which is commonly used, fails to detect newly obfuscated malicious behavior.
In contrast, our proposed approach offers the advantage of combining multiple
techniques to address the limitations found in existing literature.

Table 2. State-of-the-art Comparison

Technique Methodology Analysis Required Resources Detecting

Obfuscation

AI/ML-based DANdroid [19] Static Opcodes Permissions API calls Discriminative adversarial
learning

DroidSieve [26] Static Syntactic features Obfuscation family identification

Obfuscapk [6] Static App code Program analysis

DeepMalOb [22] Dynamic Memory Feature Run-time behaviour of application

Model-based LEILA [8] Model checking Java Bytecode Identifying Mobile malicious
behaviour

Mercaldo et al. [18] Static Java byte-code Heuristics equivalence checking

Iadarola et al. [13] Static Java Bytecode model checking

This work Dynamic SMT Memory Features App events Dynamic features
Run-time behaviour of
application-controlled services

5 Conclusion

We have presented a methodology that combines model-based online malware
analysis with AI-based offline malware analysis techniques to detect malware
developed through obfuscation. We have demonstrated the initial results of the
implementation of various modules of the workflow. Currently, we are automat-
ing the entire workflow by integrating all of the modules in a sound way.

Acknowledgment. The Partnership for Skills in Applied Sciences, Engineering, and
Technology - Regional Scholarship and Innovation Fund (PASET-RSIF) provided sup-
port for this work.

164 Z. Sawadogo et al.

References

1. Android Malware Detection|Kaggle. https://www.kaggle.com/datasets/
defensedroid/android-malware-detection?select=Services+Dataset.csv

2. Kaspersky Security Bulletin 2022. Statistics | Securelist. https://securelist.com/
ksb-2022-statistics/108129/

3. Z3 Theorem Prover. https://github.com/Z3Prover
4. Ahvanooey, M.T., Li, P.Q., Rabbani, M., Rajput, A.R.: A survey on smartphones

security: software vulnerabilities. Malware Attacks 8(10), 30–45 (2017)
5. Alazab, M., Alazab, M., Shalaginov, A., Mesleh, A.: Intelligent mobile malware

detection using permission requests and API calls. Futur. Gener. Comput. Syst.
107, 509–521 (2020). https://doi.org/10.1016/j.future.2020.02.002

6. Aonzo, S., Georgiu, G.C., Verderame, L., Merlo, A.: Obfuscapk: an open-source
black-box obfuscation tool for Android apps. SoftwareX 11, 100403 (2020). https://
doi.org/10.1016/j.softx.2020.100403

7. Barrett, C., Stump, A., Tinelli, C., et al.: The smt-lib standard: version 2.0. In:
Proceedings of the 8th International Workshop on Satisfiability Modulo Theories
(Edinburgh, UK), vol. 13, p. 14 (2010)

8. Canfora, G., Martinelli, F., Mercaldo, F., Nardone, V., Santone, A., Visaggio, C.A.:
LEILA: Formal Tool for Identifying Mobile Malicious Behaviour; LEILA: Formal
Tool for Identifying Mobile Malicious Behaviour (2019). https://doi.org/10.1109/
TSE.2018.2834344

9. Carrier, T., Victor, P., Tekeoglu, A., Lashkari, A.H.: Detecting Obfuscated Malware
using Memory Feature Engineering. https://doi.org/10.5220/0010908200003120

10. Cimitile, A., Martinelli, F., Mercaldo, F., Nardone, V., Santone, A.: Formal meth-
ods meet mobile code obfuscation identification of code reordering technique. In:
2017 IEEE 26th International Conference on Enabling Technologies: Infrastructure
for Collaborative Enterprises (WETICE), pp. 263–268 (2017). https://doi.org/10.
1109/WETICE.2017.23

11. Dunaev, D., Lengyel, L.: Complexity of a special deobfuscation problem
12. Ezekiel, O.O., Oluwasola, O.A., Martins, I.: An Evaluation of some Machine Learn-

ing Algorithms for the detection of Android Applications Malware (January 2021)
(2020). https://doi.org/10.25046/aj0506208

13. Iadarola, G., Martinelli, F., Mercaldo, F., Santone, A.: Formal methods for android
banking malware analysis and detection. In: 2019 6th International Conference on
Internet of Things: Systems, Management and Security, IOTSMS 2019, pp. 331–
336, October 2019. https://doi.org/10.1109/IOTSMS48152.2019.8939172

14. Inc, G.: Kotlin and Android | Android. https://developer.android.com/kotlin
15. Khan, M.T., Serpanos, D., Shrobe, H., Yousuf, M.M.: Rigorous machine learning

for secure and autonomous cyber physical systems. In: 2020 25th IEEE Interna-
tional Conference on Emerging Technologies and Factory Automation (ETFA),
vol. 1, pp. 1815–1819 (2020). https://doi.org/10.1109/ETFA46521.2020.9212074

16. Khan, M.T., Shrobe, H.: Security of cyberphysical systems: chaining induction
and deduction. Computer 52(7), 72–75 (2019). https://doi.org/10.1109/MC.2019.
2913138

17. Liu, K., Xu, S., Xu, G., Sun, D., Liu, H.: A review of android malware detection
approaches based on machine learning, pp. 124579–124607 (2020)

18. Mercaldo, F., Santone, A.: Formal equivalence checking for mobile malware detec-
tion and family classification. IEEE Trans. Softw. Eng. 48(7), 2643–2657 (2022).
https://doi.org/10.1109/TSE.2021.3067061

https://www.kaggle.com/datasets/defensedroid/android-malware-detection?select=Services+Dataset.csv
https://www.kaggle.com/datasets/defensedroid/android-malware-detection?select=Services+Dataset.csv
https://securelist.com/ksb-2022-statistics/108129/
https://securelist.com/ksb-2022-statistics/108129/
https://github.com/Z3Prover
https://doi.org/10.1016/j.future.2020.02.002
https://doi.org/10.1016/j.softx.2020.100403
https://doi.org/10.1016/j.softx.2020.100403
https://doi.org/10.1109/TSE.2018.2834344
https://doi.org/10.1109/TSE.2018.2834344
https://doi.org/10.5220/0010908200003120
https://doi.org/10.1109/WETICE.2017.23
https://doi.org/10.1109/WETICE.2017.23
https://doi.org/10.25046/aj0506208
https://doi.org/10.1109/IOTSMS48152.2019.8939172
https://developer.android.com/kotlin
https://doi.org/10.1109/ETFA46521.2020.9212074
https://doi.org/10.1109/MC.2019.2913138
https://doi.org/10.1109/MC.2019.2913138
https://doi.org/10.1109/TSE.2021.3067061

Towards Behavior-Based Analysis of Android Obfuscated Malware 165

19. Millar, S., McLaughlin, N., Del Rincon, J.M., Miller, P., Zhao, Z.: DANdroid:
a multi-view discriminative adversarial network for obfuscated android malware
detection. In: CODASPY 2020 - Proceedings of the 10th ACM Conference on
Data and Application Security and Privacy, pp. 353–364, March 2020. https://doi.
org/10.1145/3374664.3375746

20. Razgallah, A., Khoury, R., Hallé, S., Khanmohammadi, K.: A survey of mal-
ware detection in Android apps: recommendations and perspectives for future
research. Comput. Sci. Rev. 39, 100358 (2021). https://doi.org/10.1016/j.cosrev.
2020.100358

21. Salah, Y., Hamed, I., Nabil, S., Abdulkader, A., Mostafa, M.s.M.: Mobile malware
detection: a survey 17(1) (2019)

22. Sawadogo, Z., Dembele, J.M., Tahar, A., Mendy, G., Ouya, S.: DeepMalOb: deep
detection of obfuscated android malware. In: Ngatched Nkouatchah, T.M., Woun-
gang, I., Tapamo, J.R., Viriri, S. (eds.) Pan-African Artificial Intelligence and
Smart Systems, pp. 307–318. Springer, Cham (2023). https://doi.org/10.1007/978-
3-031-25271-6 19

23. Sawadogo, Z., Mendy, G., Dembele, J.M., Ouya, S.: Android malware detec-
tion: Investigating the impact of imbalanced data-sets on the performance of
machine learning models. In: 2022 24th International Conference on Advanced
Communication Technology (ICACT), pp. 435–441 (2022). https://doi.org/10.
23919/ICACT53585.2022.9728833

24. Sawadogo, Z., Mendy, G., Dembelle, J.M., Ouya, S.: Android malware clas-
sification: updating features through incremental learning approach (UFILA).
In: International Conference on Advanced Communication Technology, ICACT
2022-February, pp. 544–550 (2022). https://doi.org/10.23919/ICACT53585.2022.
9728977

25. Sharma, T., Rattan, D.: Malicious application detection in android - a systematic
literature review. Comput. Sci. Rev. 40, 100373 (2021). https://doi.org/10.1016/
J.COSREV.2021.100373

26. Suarez-tangil, G., Dash, S.K., Ahmadi, M., Kinder, J., Giacinto, G., Cavallaro, L.:
DroidSieve: Fast and Accurate Classification of Obfuscated Android Malware, pp.
309–320 (2017)

27. Taimoor Khan, M.: Towards practical and formal security risk analysis of iot
(internet of things) applications. In: IEEE International Conference on Emerg-
ing Technologies and Factory Automation, ETFA, September 2022. https://doi.
org/10.1109/ETFA52439.2022.9921511

28. Wang, Z., Liu, Q., Chi, Y.: Review of android malware detection based on deep
learning 8 (2020). https://doi.org/10.1109/ACCESS.2020.3028370

29. Xu, Y., Wang, G., Ren, J., Zhang, Y.: An adaptive and configurable protection
framework against android privilege escalation threats. Futur. Gener. Comput.
Syst. 92, 210–224 (2019). https://doi.org/10.1016/j.future.2018.09.042

30. Zhang, X., Breitinger, F., Luechinger, E., O’Shaughnessy, S.: Android application
forensics: a survey of obfuscation, obfuscation detection and deobfuscation tech-
niques and their impact on investigations. Forensic Sci. Int. Digital Investigation
39, 301285 (2021). https://doi.org/10.1016/j.fsidi.2021.301285

https://doi.org/10.1145/3374664.3375746
https://doi.org/10.1145/3374664.3375746
https://doi.org/10.1016/j.cosrev.2020.100358
https://doi.org/10.1016/j.cosrev.2020.100358
https://doi.org/10.1007/978-3-031-25271-6_19
https://doi.org/10.1007/978-3-031-25271-6_19
https://doi.org/10.23919/ICACT53585.2022.9728833
https://doi.org/10.23919/ICACT53585.2022.9728833
https://doi.org/10.23919/ICACT53585.2022.9728977
https://doi.org/10.23919/ICACT53585.2022.9728977
https://doi.org/10.1016/J.COSREV.2021.100373
https://doi.org/10.1016/J.COSREV.2021.100373
https://doi.org/10.1109/ETFA52439.2022.9921511
https://doi.org/10.1109/ETFA52439.2022.9921511
https://doi.org/10.1109/ACCESS.2020.3028370
https://doi.org/10.1016/j.future.2018.09.042
https://doi.org/10.1016/j.fsidi.2021.301285

QUALIFIER

Towards a Prediction of Machine
Learning Training Time to Support

Continuous Learning Systems
Development

Francesca Marzi , Giordano d’Aloisio(B) , Antinisca Di Marco ,
and Giovanni Stilo

University of L’Aquila, L’Aquila, Italy
{francesca.marzi,antinisca.dimarco,giovanni.stilo}@univaq.it,

giordano.daloisio@graduate.univaq.it

Abstract. The problem of predicting the training time of machine
learning (ML) models has become extremely relevant in the scientific
community. Being able to predict a priori the training time of an ML
model would enable the automatic selection of the best model both in
terms of energy efficiency and in terms of performance in the context of,
for instance, MLOps architectures or learning-enabled architectures. In
this paper, we present the work we are conducting towards this direction.
In particular, we present an extensive empirical study of the Full Param-
eter Time Complexity (FPTC) approach by Zheng et al., which is, to the
best of our knowledge, the only approach formalizing the training time of
ML models as a function of both dataset’s and model’s parameters. We
study the formulations proposed for the Logistic Regression and Random
Forest classifiers, and we highlight the main strengths and weaknesses
of the approach. Finally, we observe how, from the conducted study,
the prediction of training time is strictly related to the context (i.e., the
involved dataset) and how the FPTC approach is not generalizable.

Keywords: Machine Learning · Training Time · Formal Analysis ·
Learning-enabled Architectures

1 Introduction

The problem of energy efficiency and sustainability of machine learning (ML)
systems is becoming increasingly important within the scientific community [7,8,

This work is partially supported by “ICSC - Centro Nazionale di Ricerca in High Per-
formance Computing, Big Data and Quantum Computing”, funded by European Union
- NextGenerationEU, by “Data-quality-driven estimation of computational complexity
of Machine Learning systems” project, funded by University of L’Aquila, 2023, and by
European Union - NextGenerationEU - National Recovery and Resilience Plan (Piano
Nazionale di Ripresa e Resilienza, PNRR) - Project: “SoBigData.it - Strengthening the
Italian RI for Social Mining and Big Data Analytics” - Prot. IR0000013 - Avviso n.
3264 del 28/12/2021.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
B. Tekinerdoğan et al. (Eds.): ECSA 2023, LNCS 14590, pp. 169–184, 2024.
https://doi.org/10.1007/978-3-031-66326-0_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-66326-0_11&domain=pdf
http://orcid.org/0009-0009-9129-9231
http://orcid.org/0000-0001-7388-890X
http://orcid.org/0000-0001-7214-9945
http://orcid.org/0000-0002-2092-0213
https://doi.org/10.1007/978-3-031-66326-0_11

170 F. Marzi et al.

24], as also highlighted by the ONU’s Sustainable Development Goals (e.g., Goal
9 or Goal 12) [18]. Generally, the energy consumption of ML models is directly
related to the training phase time complexity. This means that the longer it
takes to train a model, the more energy is required by the system. For this
reason, predicting a priori the training time of an ML model will be a significant
advance in such direction, enabling the automatic selection of the efficient ML
model. The training time prediction of ML models also becomes highly relevant
in the context of MLOps and, in general, continuous learning or learning-enabled
systems, where the ML model is constantly re-trained with new data [3]. As
highlighted in [17], engineering such kind of system is always very challenging
since the development processes are often ad-hoc and specific to the use case.
For this reason, having an a priori estimation of the training time can help in
standardizing some phases of the development process in contexts where, for
instance, the computational power for training the model is very limited (e.g., ,
IoT devices [26]). In addition, selecting the most efficient ML model can help
stakeholders satisfy other relevant quality properties of software architectures,
like performance [13].

In this paper, we present the work we are conducting towards a prediction
of ML training time. In particular, we present an extensive empirical evaluation
of the Full Parameter Time Complexity (FPTC) approach proposed by Zheng
et al. in [25], which is, to the best of our knowledge, the only approach so far
that formulates the ML training time as a function of dataset’s and ML model’s
parameters. Specifically, differently from what has been done in [25], where the
authors use only one dataset, we use the FPTC approach to predict the train-
ing time of a Logistic Regression [15] and Random Forest [21] classifier on a
heterogeneous set of data, and we compare the predicted time with the actual
training time of the method, highlighting the main strengths and weaknesses
of the approach1.

The paper is structured as follows: in Sect. 2 we discuss some related works
in the context of training time prediction; Sect. 3 describes in detail the FPTC
approach; Sect. 4 presents the conducted experiment and the research questions
we want to answer; Sect. 5 shows the experiment’s results and discuss them w.r.t.
the research questions; finally Sect. 6 presents some future works and concludes
the paper.

2 Related Work

Nowadays, the estimation of the running time of the training phase of ML models
is primarily conducted through empirical analysis relying on a set of common
characteristics.

In [12], the authors performed empirical analyses to assess the impact of dif-
ferent dataset characteristics, such as sample size, class type, missing values and
dimensionality, on the performance of classification algorithms, considering both

1 The replication package of the experiments is available here: https://bit.ly/
3G4m5rF.

https://bit.ly/3G4m5rF
https://bit.ly/3G4m5rF

Towards a Prediction of Machine Learning Training Time 171

accuracy and elapsed time. In [2], a rule-based learning algorithm was derived
through an empirical evaluation of the performance of eight classifiers on 100
classification datasets, comparing them based on various accuracy and computa-
tional time measures. The empirical results were combined with the dataset char-
acteristic measures to formulate rules to determine which algorithms were best
suited for solving specific classification problems. Finally, in [16], a model was
developed to predict the running time of ML pipelines through empirical anal-
ysis of different ML algorithms with a heterogeneous set of data. The approach
was used to predict the timeout of an ML pipeline.

Considering non-empirical analyses, to the best of our knowledge, [25] is the
first attempt to provide an a priori estimation of the training time for various
ML models without actually running the code. In this work, the authors pro-
pose a method to quantitatively evaluate the time efficiency of an ML classifier
called Full Parameter Time Complexity (FPTC). The authors derive FPTC for
five classification models, namely Logistic Regression, Support Vector Machine,
Random Forest, K-Nearest Neighbors, and Classification and Regression Trees.
FPTC depends on several variables, including the number of attributes, the
size of the training set, and intrinsic characteristics of the algorithms, such as
the number of iterations in Logistic Regression or the number of Decision Trees
in a Random Forest. A coefficient ω was introduced to establish the relation-
ship between the running time and FPTC. The coefficient ω can be obtained
through a preliminary experiment on a small sampled dataset under different
execution environments. When the physical execution environment changes, the
coefficient ω should be reevaluated to reflect the new conditions.

Based on this state-of-the-art analysis, we observe that most of the studies
concerning the training time of ML models tend to rely on empirical approaches.
The only approach formalizing the training time as a function of datasets’ and
ML models’ parameters is [25]. In this paper, we aim to highlight the strengths
and weaknesses of this approach by conducting an extensive evaluation of the
method.

3 Background Knowledge

In this section, we describe in detail the FPTC method [25] where the training
time of several ML models is defined as a function of different parameters of the
dataset, of the model itself, and of a coefficient (ω) that reflects the influence
given by the execution environment on the actual training time of the model.
This value should vary only when an ML model runs on a different execution
environment. We detail better in Sect. 4 how ω has been computed in our exper-
iment. In this work, we focus on the formulation of the training time for two
particular ML models, i.e., Logistic Regression (LogReg) [15] and Random Forest
(RF) [21], while we leave the analysis of other methods to future works.

The FPTC for the Logistic Regression classifier is defined as:

FPTCLogReg = F (Qm2vn) ∗ ωLogReg (1)

172 F. Marzi et al.

where n is the number of rows of the dataset, v is the number of dataset’s
features, m is the number of classes of the dataset, Q is the number of model’s
iterations during the training phase, and ωLogReg is the slope of a regression
function computed comparing the results of the first part of the Eq. 1 with the
actual training time of a Logistic Regression model using a subset of the training
datasets.

The FPTC for the Random Forest classifier is defined instead as:

FPTCRF = F (s(m + 1)nv log2(n)) ∗ ωRF (2)

where n, m, and v are the same variables as above, while s is the number of trees
of the random forest. ωRF is again defined as the slope of a regression function
computed comparing the results of the first part of the Eq. 2 with the actual
training time of a Random Forest classifier on a set of synthetic datasets.

Concerning ω, the authors state that this variable reflects the influence given
by the execution environment on the actual training time of the model. Hence,
this value should vary only when an ML model runs on a different environment.
We detail better in Sect. 4 how ω has been computed in our experiment.

4 Experimental Setting

This section describes the experiments we conducted to evaluate the FPTC
method. In particular, with our experiments, we aim to answer the following
two research questions:

RQ1. Is the slope (ω) parameter of FPTC only dependent on the execution
environment?
RQ2. Is the FPTC able to predict the training time of an ML model?

In Sect. 4.1, we describe the experimental setting conducted to compute the
slope parameter. While in Sect. 4.2, we describe the experiment led to predict
the training time of the Logistic Regression and Random Forest models. All the
experiments have been executed on a DELL XPS 13 2019 with a processor Intel
Core i7, 16 GB of RAM and Ubuntu 22.04.2 LTS.

4.1 Slope Computation

To answer RQ1, we must assess if the slope computation only depends on the
execution environment. That is, given the same environment and the same ML
model, the slope should not change significantly if the dataset used to compute
the slope changes. To answer this question, we performed an experiment that
computes a set of slopes using a synthetic dataset Ds with 6,167 rows and
10,000 features. In particular, we calculate a set of slopes corresponding to 19
subsets of Ds, each one with a different subset of features. Next, we compared the
different slopes obtained. It is worth noticing that, in [25], the authors compute
the slope on the same dataset on which they want to predict the training time.

Towards a Prediction of Machine Learning Training Time 173

In this experiment, we use a synthetic dataset different from the ones on which
we predict the training time. We have chosen a synthetic dataset instead of a
real one to have better control over its number of features and instances. In
addition, a synthetic dataset can be easily released and used for computing the
slopes in further experiments.

Algorithm 1: Slope computation
Input: (Synthetic dataset Ds, ML Model M , Number of starting features

f = 501, Number of features to add a = 501, Number of starting rows
s = 100, Number of rows to add p = 1, 000)

Output: (List of slopes at increasing number of features)
n = number of rows of Ds // in our case 6.167

m′ = number of features of Ds // in our case 10.000

slopes = {}
for i ∈ 20 do

D′
s = subset of Ds with f features

while features of D′
s < m′ do

tt = []
fptcs = []
m = features of D′

s

/* split D’ into sub-datasets and get training times and fptc

*/

for (r = s; r < n; r+ = p) do
D′′

s = dataset of r rows from D′
s

train M on D′′
s

t = training time of M
fptc = getFPTC(D′′

s , M)
add t to tt
add fptc to fptcs

reg = LinearRegression()
train reg on tt and fptcs
ω = slope of reg
append ω to slopes[m]
D′

s = D′
s + a other features from Ds

for m ∈ slopes keys do
slopes[m] = median of slopes[m]

return slopes

Algorithm 1 shows the procedure we followed to compute the slopes. The
algorithm takes as input a synthetic dataset Ds, an ML model M (in our case,
M is either a Logistic Regression or a Random Forest classifier), and a set of
parameters useful for the analysis: f , i.e., the number of starting features of the
synthetic dataset Ds; a, i.e., the number of features to add at each iteration;
s, i.e., the number of rows of the first sub-dataset used to compute the slope;
and p, i.e., the number of rows to add to each other sub-dataset. In our case,

174 F. Marzi et al.

f = 501, a = 501, s = 100, and p = 1.000. The algorithm returns a list of slopes,
each one corresponding to a subset D′

s of Ds with a number of features lower
or equal to the ones in Ds. At the first iteration, D′

s has 501 features. Next, D′
s

is split into a set of sub-datasets D′′
s with an increasing number of rows ranging

from 100 to the total number of rows. Each sub-dataset has a delta of 1000
rows. These sub-datasets are used to compute the training time of the model
M and the relative FPTC prediction using Eqs. 1 and 2 for Logistic Regression
and Random Forest, respectively. After computing the training times and the
FPTC predictions for each sub-dataset D′′

s , the training times and the FPTC
predictions are used to train a Linear Regression model and to get its slope
ω. The obtained slope is added to a dictionary of slopes with the key equal to
the number of features of D′

s. Finally, the number of features of D′
s is increased

by 500. This procedure continues until the number of features of D′
s equals the

number of features of Ds. This whole process is repeated 20 times, and the
median slope of each subset D′

s is finally returned.

4.2 Training Time Prediction

To answer the RQ2, we conducted a set of experiments to predict, using the
FPTC method, the training time of a Logistic Regression and a Random For-
est classifier using 7 heterogeneous datasets. Then we compared the predicted
training time with the actual training time of the method. Algorithm 2 reports
the experiment’s pseudo-code. The algorithm takes as input a dataset D, the
ML model M , and the list of slopes S computed with the procedure described in
Algorithm 1, and returns a list of Root Mean Squared Errors RMSE [5] and
Mean Absolute Percentage Errors MAPE [6], one for each slope. The experi-
ment can be divided into two steps. In the first step, the algorithm computes
100 times the training time of the ML model M on D and then calculates the
mean of the times. In the second step, for each slope, ω, the algorithm computes
the FPTC and the RMSE and MAPE between the actual training time and the
FPTC. Finally, the list of errors is returned.

In the evaluation, we have employed 7 heterogeneous datasets which differ
in terms of dimensions to evaluate if the FPTC method works better under
datasets2. The involved datasets are reported below:

– Adult Income (Adult) [11]: this binary dataset comprises 30,940 instances
by 101 features. The goal is to predict if a person has an income higher than
50k a year;

– Malicious Executable Files (Antivirus) [22]: this binary dataset com-
prises 373 instances and 531 features to predict if an executable file is mali-
cious or not;

2 Before running Algorithm 2, following the guidelines reported in [19], all the data has
been scaled by removing the mean (μ) and by dividing the variance (σ) from each
feature.

Towards a Prediction of Machine Learning Training Time 175

Algorithm 2: Training time prediction
Input: (Dataset D, ML Model M , List of slopes S)
Output: (List of Root Mean Squared Errors RMSE, List of Mean Absolute

Percentage Error MAPE)
trainingT imes = []
for i ∈ 100 do

train M on D
t = training time of M
add t to trainingT imes

tt = mean(trainingT imes)
RMSE = []
MAPE = []
for ω ∈ S do

FPTC =getFPTC(D, M , ω)
rmse = getRMSE(tt, FPTC)
mape = getMAPE(tt, FPTC)
add rmse to RMSE
add mape to MAPE

return RMSE, MAPE

– APS Failure at Scania Trucks (APS) [1]: a dataset of 6000 instances and
162 features to predict if the failure of a Scania Truck is related to a failure
in the APS system or not;

– Arcene Dataset (Arcene) [9]: this binary dataset comprises 100 instances
and 10,000 features to distinguish cancer versus normal patterns from mass-
spectrometric data;

– ProPublica Recidivism (Compas) [4]: this binary dataset is made of 6,167
instances by 399 features. The goal is to predict if a person will recidivate in
the next two years;

– Dexter Dataset (Dexter) [10]: a dataset of 300 instances and 20,000 fea-
tures to predict which Reuters articles are about corporate acquisitions;

– German Credit (German) [20]: this dataset consists of 1,000 instances
and 59 features and is used to predict if a person has good or bad credit risk.

Concerning the ML classifiers, we used the implementations from the scikit-
learn library [19] and, following the hyper-parameters settings of [25], we set the
l2 penalty and sag solver for the Logistic Regression, while we set the number of
trees of the Random Forest classifier to 80. Finally, we set the maximum number
of iterations of the Logistic Regression to 10.000.

Table 1 synthesizes, for each dataset, the values of the different parameters of
the two FPTC formulations for Logistic Regression and Random Forest classi-
fiers. In particular, together with the dimensions of the datasets, we also report
the number of iterations required by the Logistic Regression to train and the
number of trees of the Random Forest.

176 F. Marzi et al.

Table 1. Values of FPTC parameters for each dataset

Dataset Coefficients ML Methods Coefficients

Dataset Instances Features Classes LogReg Iters RF Trees

Adult [11] 30940 101 2 635 100

Antivirus [22] 373 531 2 840 100

APS [1] 60000 162 2 5068.73 100

Arcene [9] 100 10000 2 1089 100

Compas [4] 6167 400 2 721 100

Dexter [10] 300 20000 2 855.91 100

German [20] 1000 59 2 33.93 100

5 Experimental Results and Discussion

In this section, we present the results of our experimental evaluation and dis-
cuss them with respect to the research questions defined in Sect. 4. Finally, we
present some threats to the validity of our evaluation.

5.1 Addressing RQ1

Figure 1 reports the boxplot of the variation of the slopes computed with an
increasing number of features of the synthetic dataset. In particular, Fig. 1a
reports the slopes computed for the Logistic Regression classifier, while Fig. 1b
reports the slopes computed for the Random Forest classifier.

Concerning the Logistic Regression model, it can be seen (in Fig. 1a) how
the slopes have generally low variability. An exception is given by the slopes
computed with 501 and 1002 features which are, on average, higher than the
others. In particular, the median of the slopes computed using 501 features is
around 0.02 points higher than the others, while the median of the slopes calcu-
lated using 1002 features is about 0.04 points higher than the others. In all the
other cases, the median slope ranges from 1.83 ∗ 10−9 to 1.85 ∗ 10−9.

Concerning the Random Forest classifier, it can be seen from Fig. 1b how the
slopes present a higher variability among them, starting from a value around
8.5 ∗ 10−10 using 501 features to a value of 2 ∗ 10−10 using 9519 features. In
particular, it can be noticed from the figure that the value for the slope tends
to decrease with an increase in the number of the dataset’s features.

Moreover, we study the significance of the results of the slopes by performing
the ANOVA test [14] for both experiments. This test checks for the null hypoth-
esis that all groups (i.e., all the slopes computed using the same number of fea-
tures) have the same mean; if the confidence value (p-value) is > 0.05, the null
hypothesis is confirmed. Concerning the Logistic Regression classifier, the test
returned a p-value of 0.002, meaning the groups do not have the same mean.
However, performing the same ANOVA test excluding the slopes computed with

Towards a Prediction of Machine Learning Training Time 177

(a) Logistic Regression

(b) Random Forest

Fig. 1. Slope variation with an increasing number of dataset’s features

501 and 1,002 features returns a p-value of 0.352, accepting the null hypothesis
of the same mean. This means that, excluding the slopes computed with 501
and 1.002 features, all the others have the overall same mean. Concerning the
Random Forest classifier, the p-value returned is 9.022 ∗ 10−222, confirming the
high variability of the slopes.

From this analysis of the slope variations, we can conclude how, differently
from what is stated in [25], the slopes do not change only when the execution
environment changes, but they are also related to the number of features of
the dataset used to compute them, in particular when using a Random Forest
classifier.

Answer to RQ1: The slopes computed under the same execution environ-
ment but using an increasing number of features are pretty stable for the
Logistic Regression classifier. Instead, they present a higher variance for
the Random Forest classifier. Hence, we can conclude how the slope is also
related to the number of features of the dataset used to compute them.

5.2 Addressing RQ2

Figures 2 and 3 report the errors in the predictions of the FPTC method com-
pared to the actual training time of the Logistic Regression and Random Forest

178 F. Marzi et al.

Fig. 2. RMSE and MAPE at different slope values for LogReg

Classifier, respectively, for all the datasets described in Sect. 4. In particular, in
each figure, the left y-axis reports the RMSE, while the right y-axis reports the
MAPE. On the x-axis, we report the number of features of the synthetic dataset
used to compute the relative slope. Near each dataset name, we also report its
number of features.

Concerning the Logistic Regression classifier, it can be seen from Fig. 2 how
the FPTC method can predict the training time of the model under some
datasets while it fails in the prediction of others. In particular, the FPTC method
can predict the training time of the LogReg under the Antivirus dataset (with
an RMSE and MAPE almost equal to 0 using the slope computed with 9,009
features of the synthetic dataset), Arcene (with an RMSE and MAPE almost
equal to 0 using the slope computed with 6,006 features), Compas (with an
RMSE and MAPE almost equal to 0 using the slope computed with 4,004 fea-
tures), and Dexter (with an RMSE and MAPE almost equal to 0 using the slope
computed with 501 features). In contrast, the FPTC method is not able to pre-
dict the training time of the LogReg under Adult (with the lowest MAPE equal
to 9.5 using the slope computed with 1,503 features), and APS (with the lowest
MAPE equal to 9.0 using the slope computed with 1,503 features). It is worth
noting that the high MAPE for the German dataset may be influenced by the
low values of FPTC and true running time, causing this metric to increase [6].
This is also supported by a low value of the RMSE.

Towards a Prediction of Machine Learning Training Time 179

Table 2. Mean and stand. dev. of training time and FPTC for LogReg model

Dataset Training Time (seconds) FPTC (seconds)

Adult 16.54 ± 0.042 14.77 ± 0.066

Antivirus 1.15 ± 0.012 1.214 ± 0.006

APS 400.156 ± 1.126 356.81 ± 1.803

Arcene 7.711 ± 0.012 7.953 ± 0.006

Compas 12.802 ± 5.366 12.956 ± 0.065

Dexter 37.597 ± 0.403 37.5 ± 0.188

German 0.019 ± 0.003 0.015 ± 7.342 ∗ 10−5

Fig. 3. RMSE and MAPE at different slope values for Random Forest

Table 2 reports the mean and standard deviation of the training time and
FPTC in seconds for each selected dataset. From this table, it can be seen how
the FPTC method tends to underestimate the real training time, especially in
Adult (with a delta of almost 2 s between the actual training time and the pre-
dicted one), and APS (with a delta of almost 50 s between the actual training
time and the predicted one). Finally, following the low variability of the slopes
computed in Sect. 5.1, we notice how the slopes’ variation does not much influ-
ence the FPTC predictions.

180 F. Marzi et al.

Figure 3 reports the same metrics computed for the Random Forest classifier.
Differently from the Logistic Regression classier, here we notice how the FPTC
method is more sensitive to the variation of the slopes, which lets the predic-
tion increase or decrease significantly. This behaviour is explained by the high
variability of the slopes shown in Sect. 5.1. In addition, it can be seen from the
charts that the FPTC method can always predict real training time under a spe-
cific slope value achieving a value of zero for both RMSE and MAPE. However,
we also notice how the value of the slope leading to the optimal predictions is not
constant and varies between the datasets. The only dataset on which the FPTC
method is not able to correctly predict the training time is the APS dataset,
with the lowest MAPE of around 15 points. Table 3 reports the mean and stan-
dard deviation of the actual training time and the predicted one for the Random
Forest classifier. Differently from above, in this case, we notice a higher variabil-
ity among the predicted training times, especially in Adult, APS, Compas, and
Dexter. In addition, we notice how for the APS dataset (which is the one letting
the worse performances), the FPTC method underestimates the real training
time. Finally, as noticed above, the low training time of some datasets (namely,
Antivirus, Arcene, Dexter) explains the high value of the related MAPE metric
for them.

Table 3. Mean and stand. dev. of training time and FPTC for RF model

Dataset Training Time (seconds) FPTC (seconds)

Adult 2.15 ± 0.012 2.60 ± 2.383

Antivirus 0.07 ± 8.368 ∗ 10−17 1.20 ± 0.711

APS 37.54 ± 0.698 11.49 ± 6.469

Arcene 0.13 ± 0.004 0.79 ± 0.874

Compas 0.99 ± 0.009 1.23 ± 1.758

Dexter 0.217 ± 0.005 2.76 ± 2.452

German 0.11 ± 0.004 1.3 ± 0.677

Finally, Fig. 4 reports the Pearson correlation coefficient [23] between
the FPTC parameters and MAPE for Logistic Regression (Fig. 4a) and Ran-
dom Forest (Fig. 4b)3. Concerning LogReg, we notice how MAPE is negatively
correlated with the number of features of the dataset (with a value of −0.51).
This means that, on average, there is a lower error in the training time predic-
tions for datasets with a higher number of columns. On the contrary, MAPE is
lightly positively correlated with the number of instances of the dataset (with
a value of 0.18), meaning that, datasets with a high number of rows have a
slightly higher error in the predictions. Eventually, we notice a low correlation of

3 The number of classes and the number of trees for the RF are not considered because
their values are constant.

Towards a Prediction of Machine Learning Training Time 181

(a) Logistic Regression

(b) Random Forest

Fig. 4. Pearson correlation coefficient between FPTC parameters and MAPE for
LogReg and RF

MAPE with the number of iterations and the values of the slope. In particular,
the low correlation between MAPE and slope can be explained by the fact that
the value of the slope leading to optimal predictions is not constant and varies
with the datasets. Concerning RF, it can be seen from Fig. 4b how there is an
opposite correlation between MAPE and the number of instances and features
with respect to LogReg. In fact, MAPE is negatively correlated with the num-
ber of rows (−0.49), while it is lightly positively correlated with the number of
columns (0.19). This means that datasets with a high number of rows have, on
average, a lower prediction error, while datasets with a high number of columns
have a slightly higher prediction error. Finally, as for the LogReg, we observe a
low correlation between MAPE and the values of the slope. This can be again
explained by the fact that the slope value leading to optimal predictions is not
constant and changes with the dataset.

From this analysis, we can conclude how the FPTC method is able to predict
the training time of a Logistic Regression and Random Forest classifier under
certain circumstances (i.e., datasets) while it is not working in others. However,
as shown in Fig. 4, we do not notice any high correlation between the FPTC
parameters and the correctness of the predictions. Moreover, we see how the
correctness of the predictions is directly related to the value of the slope, which
is again not only dependent on the execution environment but also varies with
the variation of the dataset used to compute it, as shown in Sect. 5.1. In addition,
the value of the slope leading to optimal predictions is not constant and varies
between the different datasets (especially with the RF classifier).

Answer to RQ2: The FPTC method is able to predict the training time
of the Logistic Regression and Random Forest classifiers under certain cir-
cumstances (i.e., datasets), while it fails in others. The correctness of the
predictions (especially for the Random Forest classifier) is strongly related

182 F. Marzi et al.

to the value of the slope, which, however, depends on the dataset used to
compute it and is not constant. Finally, we observe how, for both LogReg
and RF, there is no high correlation between the FPTC parameters and the
correctness of the predictions.

5.3 Threats to Validity

Internal Validity: We adopted a synthetic dataset to compute the slopes to
answer RQ1. In contrast, a real-world dataset could include more complexity and
variability not considered in this experiment. To answer this threat, we clarify
that the goal of our experiment was to prove that the value of the slope is not
only dependent on the execution environment. Hence, any dataset (synthetic or
not) that proves this hypothesis is effective.

External Validity: The results of our experiments may apply only to the
selected ML models and datasets. Concerning the selection of the dataset, we
selected several datasets heterogeneous in their dimensions, making our results
enough general. Concerning the ML models, we analysed two of the most adopted
ML models for classification, while we will analyse the others in future works.

6 Conclusion and Future Work

In this paper, we have presented the work we are conducting towards predicting
the training time of ML models. In particular, we have extensively evaluated
the work proposed in [25], which is the only approach so far that formulates
the training time as a function of the dataset’s and model’s parameters. In this
paper, we have considered the formulations proposed for the Logistic Regression
and Random Forest classifiers, and we have shown how the proposed approach is
not always able to predict the training time successfully. Further, from the results
shown in Sect. 5.2, there is no evidence of any correlation between the dataset
size and the correctness of the predictions. Instead, from the results shown in
Sect. 5.1, there is a correlation between the number of dataset features and the
value of the slope used in the FPTC formulation (which is, again, not only
dependent on the execution environment as stated in [25]).

In the future, we want to deeper analyse the formulations proposed for the
different ML models and overcome the observed limitations. In particular, we
want to investigate if some specific characteristics of the dataset or ML model
influence the training time and are not considered in the current formulation.

Towards a Prediction of Machine Learning Training Time 183

References

1. APS Failure at Scania Trucks: UCI Machine Learning Repository (2017). https://
doi.org/10.24432/C51S51

2. Ali, S., Smith, K.A.: On learning algorithm selection for classification. Appl. Soft
Comput. 6(2), 119–138 (2006)

3. Alla, S., Adari, S.K.: What is mlops? Beginning MLOps with MLFlow: Deploy
Models in AWS SageMaker, Google Cloud, and Microsoft Azure, pp. 79–124 (2021)

4. Angwin, J., Larson, J., Mattu, S., Kirchner, L.: Machine bias. ProPublica, May
23(2016), 139–159 (2016)

5. Chai, T., Draxler, R.R.: Root mean square error (rmse) or mean absolute error
(mae)?-arguments against avoiding rmse in the literature. Geoscientific Model Dev.
7(3), 1247–1250 (2014)

6. De Myttenaere, A., Golden, B., Le Grand, B., Rossi, F.: Mean absolute percentage
error for regression models. Neurocomputing 192, 38–48 (2016)

7. Fischer, R., Jakobs, M., Mücke, S., Morik, K.: A unified framework for assessing
energy efficiency of machine learning. In: ECML PKDD 2022. LNCS, pp. 39–54.
Springer, Cham (2022). https://doi.org/10.1007/978-3-031-23618-1 3

8. Garćıa-Mart́ın, E., Rodrigues, C.F., Riley, G., Grahn, H.: Estimation of energy
consumption in machine learning. J. Parallel Distrib. Comput. 134, 75–88 (2019)

9. Guyon, I., Gunn, S., Ben-Hur, A., Dror, G.: Arcene. UCI Machine Learning Repos-
itory (2008). https://doi.org/10.24432/C58P55

10. Guyon, I., Gunn, S., Ben-Hur, A., Dror, G.: Dexter. UCI Machine Learning Repos-
itory (2008). https://doi.org/10.24432/C5P898

11. Kohavi, R., et al.: Scaling up the accuracy of naive-bayes classifiers: A decision-tree
hybrid. KDD 96, 202–207 (1996)

12. Kwon, O., Sim, J.M.: Effects of data set features on the performances of classifi-
cation algorithms. Expert Syst. Appl. 40(5), 1847–1857 (2013)

13. Lewis, G.A., Ozkaya, I., Xu, X.: Software architecture challenges for ml systems.
In: 2021 IEEE International Conference on Software Maintenance and Evolution
(ICSME), pp. 634–638. IEEE (2021)

14. McDonald, J.H.: One-way ANOVA, vol. 2. sparky house publishing Baltimore, MD
(2009)

15. Menard, S.: Applied logistic regression analysis, vol. 106. Sage (2002)
16. Mohr, F., Wever, M., Tornede, A., Hüllermeier, E.: Predicting machine learning

pipeline runtimes in the context of automated machine learning. IEEE Trans. Pat-
tern Anal. Mach. Intell. 43(9), 3055–3066 (2021)

17. Nahar, N., Zhang, H., Lewis, G., Zhou, S., Kästner, C.: A Meta-Summary
of Challenges in Building Products with ML Components – Collecting Expe-
riences from 4758+ Practitioners, March 2023. https://doi.org/10.48550/arXiv.
2304.00078, http://arxiv.org/abs/2304.00078, arXiv:2304.00078 [cs]

18. ONU: ONU Sustainable Development Goals. https://www.un.org/
sustainabledevelopment/

19. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

20. Ratanamahatana, C.A., Gunopulos, D.: Scaling up the naive bayesian classifier:
Using decision trees for feature selection (2002)

21. Rigatti, S.J.: Random forest. J. Insur. Med. 47(1), 31–39 (2017)
22. Rumao, P.: Detect Malacious Executable (AntiVirus). UCI Machine Learning

Repository (2016). https://doi.org/10.24432/C5531V

https://doi.org/10.24432/C51S51
https://doi.org/10.24432/C51S51
https://doi.org/10.1007/978-3-031-23618-1_3
https://doi.org/10.24432/C58P55
https://doi.org/10.24432/C5P898
https://doi.org/10.48550/arXiv.2304.00078
https://doi.org/10.48550/arXiv.2304.00078
http://arxiv.org/abs/2304.00078
http://arxiv.org/abs/2304.00078
https://www.un.org/sustainabledevelopment/
https://www.un.org/sustainabledevelopment/
https://doi.org/10.24432/C5531V

184 F. Marzi et al.

23. Sedgwick, P.: Pearson’s correlation coefficient. Bmj 345 (2012)
24. Wenninger, S., et al.: How sustainable is machine learning in energy applications?–

the sustainable machine learning balance sheet (2022)
25. Zheng, X., et al.: Full parameter time complexity (fptc): a method to evaluate the

running time of machine learning classifiers for land use/land cover classification.
IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 14, 2222–2235 (2021)

26. Zikria, Y.B., Afzal, M.K., Kim, S.W., Marin, A., Guizani, M.: Deep learning for
intelligent iot: Opportunities, challenges and solutions (2020)

Performance Comparison of Monolith
and Microservice Architectures
An Analysis of the State of the Art

Helena Rodrigues1(B) , António Rito Silva2 , and Alberto Avritzer3

1 Centro Algoritmi/LASI, University of Minho, Braga, Portugal
helena@dsi.uminho.pt

2 INESC-ID, Técnico Lisboa, University of Lisbon, Lisbon, Portugal
rito.silva@tecnico.ulisboa.pt

3 eSulabSolutions, Inc., Princeton, USA

beto@esulabsolutions.com

Abstract. The migration of monolith systems to the microservices
architecture is becoming common due to the promised advantages of
the latter. In this paper, we do a state-of-the-art analysis of the perfor-
mance, throughput, and deployment infrastructure costs associated with
the migration of monoliths to microservices. We analyze existing studies
using a reference model of the relevant architectural elements used to
design a microservices architecture. We identified the conflicting results
that were already reported in the literature and we propose some aspects
that we consider to be relevant to be addressed in future studies.

Keywords: Monolith System · Microservice Architecture ·
Performance

1 Introduction

The migration from monolith to microservice-based systems has become increas-
ingly popular in the last decade. This migration is even more critical in the con-
text of cloud-native applications. Identifying the most suitable software archi-
tecture for a cloud-native application is an important but complex task because
it affects the development and execution of the application in the future [19].
By decomposing applications into independent stateless components, and com-
municating through REST-based distributed communication mechanisms or
RPC, systems architects promote development team autonomy, fast deployment
pipelines, the support for multiple technology stacks, and segregation by charac-
teristics that improve qualities such as scalability, availability, maintainability,
and security [11,25].

This work was supported by Fundação para a Ciência e Tecnologia (FCT)
through projects UIDB/50021/2020 (DOI:10.54499/UIDB/50021/2020), PTDC/CCI-
COM/2156/2021 (10.54499/PTDC/CCI-COM/2156/2021) and UIDB/00319/2020.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
B. Tekinerdoğan et al. (Eds.): ECSA 2023, LNCS 14590, pp. 185–199, 2024.
https://doi.org/10.1007/978-3-031-66326-0_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-66326-0_12&domain=pdf
http://orcid.org/0000-0002-8978-8804
http://orcid.org/0000-0001-9840-457X
http://orcid.org/0000-0002-9401-9663
https://doi.org/10.1007/978-3-031-66326-0_12

186 H. Rodrigues et al.

Research has been done on the comparison of performance, scalability, and
infrastructure costs between a system monolith architecture and its microservice-
based architecture alternative. These papers present different aspects of the
selected metrics, and the results differ from each other. For example, some
present contradictory results [22,26], others do not discuss complex service inter-
actions [4,16,21,22,24], present very few details on the benchmark used for the
experiments [2], are evaluated using simple systems [7] or use different met-
rics of a microservice system [1,6]. Additional research has also been done on
understanding and addressing the quality attributes of microservice-based archi-
tectures, such as in [15,25].

In this paper, we do a state-of-the-art analysis of the performance and infras-
tructure costs associated with the migration of monoliths to the microservice
architecture.

Our work differs from previous research because it focuses on the comparison
of microservice-based and monolith architectures and on a state-of-the-art anal-
ysis of the performance and infrastructure costs associated with the migration
between these two architecture styles. Research that compares the impact on
the performance of migration of monoliths to microservice architecture does not
use a reference model that identifies possible architectural variations [4,15,22].

We start by defining an architectural reference model for microservice archi-
tectures in Sect. 2, where we identify and relate the main architectural elements
that are used in the related work studies. Then, in Sect. 3 we present the config-
uration in which the experiment studies are designed, such as the test workload.
An analysis of the identified studies is done in Sect. 4, followed by a discussion
of the results in Sect. 5. Finally, we conclude the paper in Sect. 6.

2 Reference Model

The adoption process for a microservice-based architecture is complex and is
shaped by many factors [9,18,23]. In this paper, we focus on the problem of
comparing the performance, scalability, and costs of monolith and microservice-
based software architectures. To do so, we first introduce a reference model that
will frame our analysis of state-of-the-art research works. This model will be
the base for our discussion on open issues concerning the impact of each of
the elements of the reference model on the mentioned qualities. In addition, it
will allow us to identify the extent to which each of the case studies analyzed
addresses the different architectural aspects of microservice architecture.

Figure 1 presents the architectural software elements considered in the ref-
erence model that are relevant to the design of microservice systems. These
software elements are grouped into two views, according to the categorization
of Clements et al. [5]: component-and-connector and deployment. The former
captures the run-time aspects of the system, while the latter is deployment in
the execution infrastructure.

The software elements of the component and connector view are distributed
software elements that correspond to the basic types of components and

Performance Comparison of Monolith and Microservice Architectures 187

Component

MicroserviceMiddlewareElement

Extends

Computing
Infrastructure

APIGateway Caches

Extends

ServiceRegister

Multiple Instance
per Host

Single Instance
per Host

Single Instance
per VM

Single Instance
per Container

Serverless
Deployment

Integrates with

1 1

1..n

1..n

1 1..n

LoadBalancer

Connector

Asynchronous
Messaging
Connector

Database
Connector

Synchronous
Communication

Connector

1

1..n

is deployed to

1 1..n

Communicates with other
components using

Extends

Database

Microservice
Application

Extends

Fig. 1. Microservices architecture reference model

connectors found in the microservice-based architecture style. It includes the
microservice component, which implements the application business logic, and
additional specialized components that act as intermediaries or provide infras-
tructure services.

Microservice is the core component type of the microservice architecture. It
is an independently deployable, loosely coupled component that provides a set of
application functionality. In a typical microservice architecture, each microser-
vice has its own database server, which stores the data model managed by the
team responsible for the microservice. Besides this data access connector with
its database component, microservices can be connected to other microservices
using two different types of connectors:

– Synchronous communication: The caller microservice waits synchronously by
the response of the called microservice. The most common implementation
of this connector in the microservices architecture is REST. These requests
are based on the four basic HTTP commands to create, retrieve, update, or
delete a resource. Resources have a well-defined representation in JSON, or
a similar language notation.

– Asynchronous messaging: components exchange asynchronous messages whe-
re the caller does not wait for the message to be processed by the called
microservice. The messaging connector can be point-to-point or publish-
subscribe, depending on whether the caller knows the address of the called or
not. The called microservice can only respond to the caller using a callback.

188 H. Rodrigues et al.

Microservices components may be part of a more complex topology where
additional components perform management activities. Some of these compo-
nents are:

– API Gateway: Controls the access to the microservices network through a
single entry point for all clients. It is responsible to manage authentication,
access control, and other security aspects. Requests are then routed to the
appropriate microservice.

– Load Balancer: This component is responsible for deciding how the workload
is distributed among different microservice replicas. It can also be responsible
for provisioning new instances of microservice components on demand, based
on the number of requests submitted by users. It is located in front of the
microservice replicas.

– Service Registry: Provides transparency in the location of microservice com-
ponents. It allows services to be registered, discovered, and accessed at run-
time, such that new microservices may be added and removed transparently
to their clients, which can be other microservices. It is located as an interme-
diary between the microservices invocations.

– Caches: Implementing caches for faster information retrieval speed and to
reduce the number of remote invocations for faster performance. These caches
can be owned by a single microservice or shared by several microservices.

A microservices system executes functionalities. Execution of these function-
alities may require the cooperation of several microservices. When this is the
case, the execution of the functionality corresponds to the execution of a dis-
tributed transaction. This occurs because each microservice accesses its own
database, which raises problems of isolation. Therefore, to handle this type of
problem several patterns have been suggested:

– SAGA [10,20]: Each functionality is implemented as an SAGA. An SAGA is
a sequence of local transactions, where each local transaction is a microser-
vice invocation, that updates the database and publishes a message or event
to trigger the next local transaction in the SAGA. Changes can be undone
if any local transaction fails. This process may be coordinated by choreog-
raphy or orchestration. Using choreography, local transactions are triggered
by events produced by local transactions in other services. Using orchestra-
tion, an orchestrator component requests participant services to execute the
involved local transactions.

– Command Query Responsibility Segregation (CQRS) [20]: Separates query
services from update services, so that reads can be optimized. Defines read-
only replicas of databases (database views) that join data from multiple ser-
vices. The application keeps the replica up-to-date by subscribing to events
published by the service that owns the data.

To address the problem of scalability, microservices can use several strategies:

– Vertical Scaling: Increases the overall application capacity by increasing the
resources (computation and storage) within existing computing and storage
nodes.

Performance Comparison of Monolith and Microservice Architectures 189

– Horizontal Scaling: Increases the overall application capacity by adding
microservice replicas. It requires a load balancer to manage the workload of
each of the replicas. This is the strategy that is more common in the microser-
vices architecture because it allows independent scaling based on particular
microservice demand.

Relevant for the analysis of the performance and scalability of the microser-
vice architecture is how it is deployed in the communication and computation
infrastructure. Therefore, it is important to describe the mapping between the
software’s components and connectors and the hardware of the computing plat-
form on which the software executes. The following types of deployment are
considered:

– The Single Service Instance per Host: Each microservice instance is deployed
on its own host.

– The Multiple Service Instances per Host: Run multiple instances of different
microservices on a host.

– The Service Instance per Virtual Machine: Each microservice is packaged with
a virtual machine image and deployed as a separate virtual machine.

– The Service Instance per Container: Package the microservice as a container
image and deploy each microservice instance as a Docker container.

– The Serverless deployment: Each microservice is deployed in a deployment
infrastructure that hides any concept of servers. The infrastructure receives
the microservice’s code and runs it.

3 Test Design

The test design defines the architectural configuration under test. For instance,
what are the microservices involved in the test, whether they have replicas, or
if there is a service registry involved? Additionally, the test design also defines
the operational profile associated with the test.

An operational profile characterizes the services invoked, their test inputs,
and their frequency. Several aspects must be considered:

– Type of Request: The performance of a microservices architecture can signifi-
cantly depend on the type of request. Therefore, it is important to distinguish
between requests that result in accesses to the database (create, read, update,
and delete) or whether they are computationally intensive.

– Multi-Service Invocations: Distributed applications have a latency overhead
associated with remote invocations. Therefore, to analyze this overhead, it
is important to design test variations in which a single service can fulfill the
request or it is necessary to invoke several services. The latter may consider
whether the service interactions follow one of the patterns: orchestration or
choreography, as mentioned in the discussion on Sagas. On the other hand, it
is also relevant to consider the type of connector used in interactions between
services, such as synchronous communication or asynchronous messaging.

190 H. Rodrigues et al.

– Workload: The frequency of requests also helps characterize the performance
and scalability qualities of a microservice architecture. Therefore, it is nec-
essary to define several types of test workload, from sequential to concur-
rent, defining, for instance, the number of parallel requests and the maximum
expected load. The payload used in the tests may also be relevant.

Another aspect to consider in test design is how the results are going to be
evaluated. In terms of performance and scalability, the following metrics can be
considered:

– Latency: measures the time taken to fulfill a request.
– Throughput: measures the number of successfully processed requests per unit

of time.
– Cost: measures the infrastructure cost associated with the processing of

requests.

Note that it may not be possible to optimize all these metrics, but analyz-
ing the best trade-offs permits us to discuss the advantages and drawbacks of
migrating a monolith system to a microservice architecture. For instance, even
though the microservices architecture may perform better in terms of through-
put, what is the trade-off in terms of having a more complex architecture that
consumes more resources and may have a higher cost per processed request?

4 Analysis

We identified thirteen studies that compare the performance of two different
architectural implementations of the same system: monolith and microservices.
The analysis of these studies is done according to variations in the test design
and the architectural elements of the implementation. These variations were
described in the previous sections.

To search for a relevant bibliography, we used Google Scholar, a major bib-
liographic database, recognized as suitable for a variety of tasks, including the
selection of journal and conference literature. Our search strategy consisted of
one query that included a seven-year time frame and used performance microser-
vices monolith as the selection keywords. The results were then refined to extract
English-written peer-reviewed papers that focused on the evaluation of microser-
vices vs monolith architectures regarding performance, throughput, and deploy-
ment infrastructure costs. Table 1 presents the list of selected case studies.

In Table 2 we present a summary of the aspects analyzed in the reviewed
studies, specifically a summary of objectives and approaches. Then, we summa-
rize the analysis in the following tables:

– Table 3: Studies Test Design.
– Table 4: Architectural Elements.
– Table 5: Deployment and scalability.
– Table 6: Performance and cost metrics.

Performance Comparison of Monolith and Microservice Architectures 191

Table 1. Selected Studies.

Study Year Title

Villamizar et al. [26] 2017 Cost comparison of running web applications in the cloud

using monolithic, microservice, and AWS Lambda

architectures

Flygare et al. [8] 2017 Performance characteristics between monolithic and

microservice-based systems

Eriksson et al. [7] 2020 A case study of performance comparation between monolithic

and microservice-based quality control system

Mangwani et al. [16] 2023 Evaluation of a Multitenant SaaS Using Monolithic and

Microservice Architectures

Blinowski at al. [4] 2022 Monolithic vs. Microservice Architecture: A Performance and

Scalability Evaluation

Ueda et al. [24] 2016 Workload characterization for microservices

Al-Debagy et al. [2] 2018 A Comparative Review of Microservices and Monolithic

Architectures

Tapia et al. [22] 2020 From Monolithic Systems to Microservices: A Comparative

Study of Performance

Singh et al. [21] 2017 Container-based Microservice Architecture for Cloud

Applications

Costa et al. [6] 2022 Performance Evaluation of Microservices Featuring

Different Implementation Patterns

Akbulut et al. [1] 2019 Performance Analysis of Microservice Design Patterns

Bjorndal et al. [3] 2021 Benchmarks and performance metrics for assessing the

migration to microservice-based architectures

Jayasinghe et al. [13] 2021 An Analysis of Throughput and Latency Behaviours

Under Microservice Decomposition

From Table 3 we can observe that most of the tests done considered requests
with access to the database, while only two studies analyze the performance of
requests that do not access a database. On the other hand, most studies ana-
lyzed requests that are fulfilled by a single microservice. This does not explore
the migration of complex requests. Finally, in terms of payload, only two test
studies discuss this variation. Note that some studies do not provide clear infor-
mation about the type of request and multi-services invocations, which shows
the importance of using an explicit reference model [2].

Table 4 shows that the API Gateway and Load Balancer were the components
most frequently used in the microservice architecture of the studies. On the other
hand, the Service Registry and Caches where only applied in two studies. Regard-
ing connectors, most of the studies analyzed synchronous requests, whereas only
two studies considered asynchronous requests. Interestingly, systems that have a
high number of requests, like Facebook or Twitter, do a significant part of their
request processing asynchronously.

Table 5 shows that most of the deployments used docker containers. Vil-
lamizar et al. [26] compare the deployment in virtual machines with the deploy-
ment using serverless. Blinowski et al. [4] experiments with a large range of

192 H. Rodrigues et al.

Table 2. Summary of Studies Comparing Monolith and Microservice Architectures

Study Objective Approach

Villamizar et al. [26] Compare infrastructure costs of monolith

vs. microservice-based architecture with

different deployment scenarios

Evaluate latency and costs in

service instances per virtual

machine and serverless deploy-

ment

Flygare et al. [8] Compare the performance of a

microservice-based system with the

monolith version on a single machine

and computer cluster

Evaluate performance differences

in varying deployment setups

Eriksson et al. [7] Compare the performance of a microser-

vice architecture versus a monolithic

architecture for a specific case study

Analyze the impact of caches in

migration to microservice archi-

tecture

Mangwani et al. [16] Compare factors (performance, scalabil-

ity, load balancing, reliability, resource

utilization, infrastructure cost) between

monolith and microservices with increas-

ing concurrent requests

Investigate multiple factors

under varying load conditions

Blinowski at al. [4] Compare the performance of monolith

and microservices architectures with sim-

ilar infrastructure costs

Explore performance in equiva-

lent cost settings

Ueda et al. [24] Compare the performance of monolith

and microservices architectures under

different language environments

Analyze the behavior of

AcmeAir benchmark ver-

sions (microservice-based vs.

monolith) using Node.js and

Java

Al-Debagy et al. [2] Compare the performance of monolith

and microservices architectures under

different test scenarios

Emphasis on service discovery

and its variations

Tapia et al. [22] Analyze monolith and microservice

architectures, assessing performance

and resource consumption (CPU, RAM,

bandwidth)

Explore resource usage in differ-

ent architecture types

Singh et al. [21] Discuss deployment of social network

application in monolith and microser-

vices architectures, considering deploy-

ment time

Explore deployment metrics in

different application setups

Costa et al. [6] Compare the performance of monolith

and microservices architectures

Explore performance under dif-

ferent microservice implementa-

tion patterns

Akbulut et al. [1] Compare CPU and RAM requirements

of microservice vs. monolith implementa-

tion

Investigate resource usage in dif-

ferent architectures

Bjorndal et al. [3] Present methodology and performance

indicators for assessing migration from

monolith to microservices

Investigate performance metrics

in migration scenarios

Jayasinghe et al. [13] Investigate the effect of service decompo-

sition on microservice application perfor-

mance

Explore performance impact of

different microservice types and

decomposition strategies

Performance Comparison of Monolith and Microservice Architectures 193

Table 3. Studies Test Design. Type of Request indicates if the request execution
accesses the database (C - create, R - read, U - update, D - delete), considers whether
there are computationally intensive requests (CI), or do not require any access to the
database (NODB). Multi-Service Invocations indicates if more than a microservice is
required to fulfill the request, when that is the case we distinguish between the use of
microservice patterns like SAGA and CQRS, or whether it is only a chain of invocations
(CHAIN). Workload characterizes the concurrent tests and their payload.

Study Type of Request Multi-Service Invocations Workload

Villamizar et al. [26] R,CI No Concurrent 1..MAX

Flygare et al. [8] R,U No Concurrent 1..1000 Payload 10 properties

Eriksson et al. [7] R,U,D,CI CHAIN Concurrent 1..120 Payload small..high

Mangwani et al. [16] R,U,D,CI No Concurrent 100..500

Blinowski at al. [4] R,CI,NODB No Concurrent10

Ueda et al. [24] R,U No Concurrent 30

Al-Debagy et al. [2] - - Concurrent 100..7000

Tapia et al. [22] R,U No Concurrent 5Payload 10.000,20.000

Singh et al. [21] - No Concurrent 1..2000

Costa et al. [6] R,U,CI SAGA,CQRS Concurrent 1..MAX

Akbulut et al. [1] CI,NODB CHAIN Concurrent 10..50

Bjorndal et al. [3] C,R CHAIN Concurrent 1..MAX

Jayasinghe et al. [13] R,CI,NODB CHAIN Concurrent 1..1000Payload 50..1024 bytes

Table 4. Architectural Elements. Besides the microservices components, the com-
ponents and connectors used in the microservice architectural implementation in each
of the studies.

Study Components Connectors

APIGateway LoadBalancer Service Registry Caches

Villamizar et al. [26] Yes Yes No No Synchronous (REST)

Flygare et al. [8] No No No No Synchronous (REST)

Eriksson et al. [7] Yes No No Yes Synchronous (REST)

Mangwani et al. [16] Yes Yes No No Synchronous (REST)

Blinowski at al. [4] Yes Yes Yes No Synchronous (REST)

Ueda et al. [24] No No No No Synchronous (REST)

Al-Debagy et al. [2] Yes No Yes No Synchronous (REST)

Tapia et al. [22] Yes No No No Synchronous (REST)

Singh et al. [21] Yes Yes No No Synchronous (REST)

Costa et al. [6] Yes Yes No No Synchronous (REST)

Asynchronous

Akbulut et al. [1] Yes Yes No No Synchronous (REST)

Bjorndal et al. [3] No Yes No No Synchronous (REST)

Asynchronous

Jayasinghe et al. [13] No No No Yes Synchronous (REST)

194 H. Rodrigues et al.

Table 5. Deployment and Scalablility. The deployment of the architectural ele-
ments and the use of scalability strategies.

Study Deployment Scalability

Villamizar et al. [26] Virtual machinesServerless Horizontal

Flygare et al. [8] Docker containers No scaling Vertical

Eriksson et al. [7] Docker containers No scaling

Mangwani et al. [16] Docker containers Horizontal

Blinowski at al. [4] Azure Spring Cloud VMsAzure APP service VMs HorizontalVertical

Ueda et al. [24] Docker containers Vertical

Al-Debagy et al. [2] Docker containers No scaling

Tapia et al [22] Docker containers No scaling

Singh et al. [21] Docker containers Horizontal

Costa et al. [6] Docker containers Horizontal

Akbulut et al. [1] Docker containers Horizontal

Bjorndal et al. [3] Docker containers, Kubernets Horizontal

Jayasinghe et al. [13] Bare metal No scaling

deployment variations, in terms of the number of servers, CPUs, and memory
used in each of the deployment configurations, for monolith and microservices.

Not all studies address scalability. Only one study [4] compares Vertical scal-
ability with Horizontal scalability, while another [8] compares Vertical scalability
with No scalability.

The results obtained in each of the studies for the performance and cost
metrics are presented in Table 6. There is a large diversity of analysis results,
which reflect the objectives of each of the studies.

Concerning latency, we can observe some variation in the results. The
expected result would be that, due to the introduction of a more complex
architecture, the request latency would increase. The use of load balancers, for
instance, or the migration of procedure calls to remote calls, would introduce
an overhead in the request processing. However, some studies conclude to a
decrease in latency [21,22] while others [2,3,16,26] observe a decrease in some
circumstances or that the latency is not significantly different from the monolith.

The first relevant aspect for the analysis of the studies in which latency
decreases for microservice architecture is that none of these studies considered
multi-services invocations. This means that all the possible overhead associated
with microservices execution would be restricted to interactions with additional
architectural components. Actually, these studies add some components, and [2]
even consider a service discovery that can be penalizing. However, studies that
report an increase in latency also use these components. Therefore, we can con-
sider the results to be somehow contradictory. Finally, two other interesting
results are [16,26] where they observe the decrease in latency for particular
conditions, the former for a serverless implementation and the latter for highly
computationally intensive requests.

Performance Comparison of Monolith and Microservice Architectures 195

Similar contradictory conclusions can be observed for the throughput. While
the expectation would be an increase in throughput, there are a large number
of studies that conclude on a decrease [2,6–8]. Note that some of them do not
apply scaling techniques, though there are studies that do not apply scaling and
obtained an increase in throughput [1,22].

Table 6. Metrics. The performance and cost metrics used in the studies and the
obtained results. MS stands for Microservice, SV for serveless, LCI for low computa-
tionally intensive, HCI for highly computationally intensive, NODB for no database
operations, LC for low concurrency, and HC for high concurrency. The comparison
is always done against the monolith, e.g. “MS <” means the microservice implemen-
tation has lower values than the monolith implementation. On the other hand, the
microservice implementation can be characterized, e.g. “MS Cache <<” means that
the microservice implementation used a cache and has much lower values when com-
pared with another term in the same cell. Besides the microservices, the requests can
also be characterized.

Metrics (Microservice vs Monoltith)

Study Latency Throughput Costs

Villamizar et al. [26] MS >SV ∼= No MS < SV <<

Flygare et al. [8] MS 1 Machine >
MS Cluster (2) >>

MS 1 Machine < MS Cluster (2) < No

Eriksson et al. [7] MS No Cache >>
MS Cache >

MS No Cache <<MS Cache < No

Mangwani et al. [16] Requests LCI > Requests HCI < No No

Blinowski at al. [4] No Requests LCI Horizontal >
Requests LCI Vertical >>
Requests HCI NODB >>

MS >

Ueda et al. [24] No - No

Al-Debagy et al. [2] MS ∼= Requests LC <
Requests HC ∼=

No

Tapia et al. [22] MS < MS > No

Singh et al. [21] Requests LC <Requests HC << > No

Costa et al. [6] MS Sync >MS Async >> MS Sync ∼=
MS Async <

No

Akbulut et al. [1] No No MS <

Bjorndal et al. [3] MS Sync >
MS Async >>

MS Sync <MS Async < No

Jayasinghe et al. [13] Requests LCI >
Requests HCI <

Requests LCI <
Requests HCI <
MS No Cache < <
MS Cache >

No

Finally, only three studies perform a cost analysis [1,4,26]. Also in this case
the results are contradictory. Akbulut et al. [1] evaluated costs based on the
consumption of RAM and CPU for monolith and microservices configurations
that offer the same throughput. The costs are lower for microservices configura-
tion as it consumes fewer resources in total. This seems to happen because the
microservice architecture allows for scaling the services independently leading
to less resource consumption. This seems to be also the case for the case study

196 H. Rodrigues et al.

discussed in [26]; for the monolith configuration to obtain the same throughput
as the microservices configuration, it was necessary to create additional replicas
of the monolith application so that memory and CPU consumption was higher.
On the other hand, Blinowski et al. [4], by experimenting with several deploy-
ment configurations, were able to find monolith configurations that have a lower
cost than microservice configurations, while providing similar throughput. Fur-
thermore, a recent result from the gray literature shows a case where a 90% cost
reduction was achieved by migrating a microservice system back to the monolith
architecture [14].

A more thorough analysis is presented in [4] where it compares the perfor-
mance of monoliths and microservices configurations that exhibit similar infras-
tructure costs for both high and low-intensive computation requests, and Java
Spring cloud and Azure App services. The authors conducted several experi-
ments with different deployment configurations, with variations in the number
of machines and their capabilities (horizontal and vertical scaling). They con-
cluded that when one considers simple and short request applications, it is more
advantageous to horizontally scale them by increasing the number of instances in
a moderate manner. However, further increases in the number of replicas result in
excessive communication overhead due to load balancing and the need for request
passing. Conversely, the impact of vertical scaling is more pronounced compared
to horizontal scaling. In situations involving intensive computation, the impact
of both horizontal and vertical scaling is visible; the higher the configuration and
the larger the number of microservice instances, the better throughput.

5 Discussion

From the previous analysis, we identified several aspects of existing case studies:

– Contradictory results for the three qualities;
– Large variation of the conditions of each study;
– An emphasis on single microservice request fulfillment;
– An emphasis on synchronous implementations of requests in the microservice

architecture;
– An emphasis on docker-based deployments.

A large number of variations occur in the test conditions, although there is a
set of decisions that most studies repeat. On the other hand, studies ignore that
migration of a monolith to a microservice architecture may require a change of
the type of request, from synchronous to asynchronous, because throughput is
a quality that is mostly relevant for scalability, and latency problems are solved
by returning intermediate results in response to the request.

Previous work identified open issues in microservice performance testing,
monitoring, and modeling [12]. Interestingly, we identified some of the same
concerns when comparing monolith with microservices. In our opinion, the lit-
erature is scarce and difficult to compare because each study is conducted in a
different context and the complexities associated with infrastructure deployment

Performance Comparison of Monolith and Microservice Architectures 197

were not explored. Furthermore, we believe that a new proposal for a benchmark
is needed to serve as a reference model for future studies. Also, since any of the
architectures do not provide the best results for all conditions, it is relevant to
identify and measure the trade-offs.

This is particularly relevant because a recent industry report [14] shows that
by migrating a microservice system back to the monolith architecture a reduction
cost of 90% is obtained. The authors conclude that microservices and serverless
components are tools designed to operate at a high scale, but the decision to
adopt them instead of a monolithic architecture must be carefully evaluated on
a per-case basis.

Consequently, there exist some open issues that necessitate further investi-
gation and clarification:

– How can we define a benchmark to analyze monolith and microservices perfor-
mance that covers most of the contextual variations identified in the current
studies?

– Can we identify a performance and scalability threshold where the migration
of a monolith to a microservice architecture becomes worthwhile?

– When should a monolith synchronous request be implemented as an asyn-
chronous request in the microservice architecture?

– What are the trade-offs between cost and performance?

6 Conclusion

Although the migration of monolith systems to microservice architectures has
become a common trend in the industry, there are also reports suggesting that
the microservice architecture may not necessarily be the best solution [17].
Therefore, there are trade-offs that have to be evaluated when deciding to do
the migration.

In this paper, we examine the performance and scalability qualities when
comparing the monolith with the microservice architecture. Therefore, we have
done an analysis of published studies that compare these qualities in both types
of architecture. The results of the analysis show that the studies have contra-
dictory results. This is due to the contextual variations in which the studies are
performed.

From the analysis of the different case studies, we concluded that more
research is needed to define a suitable benchmark that takes into account a large
number of architectural variations. This benchmark can help in the identification
of relevant trade-offs for evaluating the migration of monolith to microservice
architecture. We also identified the need to give more relevance to request asyn-
chrony when migrating monolith to microservices architecture.

References

1. Akbulut, A., Perros, H.G.: Performance analysis of microservice design patterns.
IEEE Internet Comput. 23(6), 19–27 (2019). https://doi.org/10.1109/MIC.2019.
2951094

https://doi.org/10.1109/MIC.2019.2951094
https://doi.org/10.1109/MIC.2019.2951094

198 H. Rodrigues et al.

2. Al-Debagy, O., Martinek, P.: A comparative review of microservices and monolithic
architectures. In: 2018 IEEE 18th International Symposium on Computational
Intelligence and Informatics (CINTI), pp. 000149–000154 (2018). https://doi.org/
10.1109/CINTI.2018.8928192

3. Bjorndal, N., Araujo, L., Bucchiarone, A., Dragoni, N., Mazzara, M., Dustdar, S.:
Benchmarks and performance metrics for assessing the migration to microservice-
based architectures. J. Object Technol. 20(2), 2:1–17 (2021). https://doi.org/10.
5381/jot.2021.20.2.a3

4. Blinowski, G., Ojdowska, A., Przyby�lek, A.: Monolithic vs. microservice archi-
tecture: a performance and scalability evaluation. IEEE Access 10, 20357–20374
(2022). https://doi.org/10.1109/ACCESS.2022.3152803

5. Clements, P., et al.: Documenting Software Architectures: Views and Beyond, 2nd
edn. SEI Series in Software Engineering, Addison-Wesley, Upper Saddle River
(2010)

6. Costa, L., Ribeiro, A.N.: Performance evaluation of microservices featuring dif-
ferent implementation patterns. In: Abraham, A., Gandhi, N., Hanne, T., Hong,
T.-P., Nogueira Rios, T., Ding, W. (eds.) ISDA 2021. LNNS, vol. 418, pp. 165–176.
Springer, Cham (2022). https://doi.org/10.1007/978-3-030-96308-8 15

7. Eriksson, M.: A case study of performance comparison between monolithic and
microservice-based quality control system. Bachelor’s thesis, Linköpings Univer-
sitet (2020)

8. Flygare, R., Holmqvist, A.: Performance characteristics between monolithic and
microservice-based systems. Bachelor’s thesis, Blekinge Institute of Technology
(2017)

9. Fowler, M.: Microservices. Web page (2014). http://martinfowler.com/articles/
microservices.html. Accessed 06 July 2023

10. Garcia-Molina, H., Salem, K.: Sagas. SIGMOD Rec. 16(3), 249–259 (1987).
https://doi.org/10.1145/38714.38742

11. Gysel, M., Kölbener, L., Giersche, W., Zimmermann, O.: Service cutter: a system-
atic approach to service decomposition. In: Aiello, M., Johnsen, E.B., Dustdar, S.,
Georgievski, I. (eds.) ESOCC 2016. LNCS, vol. 9846, pp. 185–200. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-44482-6 12

12. Heinrich, R., et al.: Performance engineering for microservices: research challenges
and directions. In: Proceedings of the 8th ACM/SPEC on International Conference
on Performance Engineering Companion, ICPE 2017 Companion, pp. 223–226.
Association for Computing Machinery, New York (2017). https://doi.org/10.1145/
3053600.3053653

13. Jayasinghe, M., Chathurangani, J., Kuruppu, G., Tennage, P., Perera, S.: An anal-
ysis of throughput and latency behaviours under microservice decomposition. In:
Bielikova, M., Mikkonen, T., Pautasso, C. (eds.) ICWE 2020. LNCS, vol. 12128,
pp. 53–69. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50578-3 5

14. Kolny, M.: Scaling up the prime video audio/video monitoring service and
reducing costs by 90%. Web page (2023). https://www.primevideotech.com/
video-streaming/scaling-up-the-prime-video-audio-video-monitoring-service-and-
reducing-costs-by-90. Accessed 06 July 2023

15. Li, S., et al.: Understanding and addressing quality attributes of microservices
architecture: a systematic literature review. Inf. Softw. Technol. 131, 106449
(2021). https://doi.org/10.1016/j.infsof.2020.106449. https://www.sciencedirect.
com/science/article/pii/S0950584920301993

https://doi.org/10.1109/CINTI.2018.8928192
https://doi.org/10.1109/CINTI.2018.8928192
https://doi.org/10.5381/jot.2021.20.2.a3
https://doi.org/10.5381/jot.2021.20.2.a3
https://doi.org/10.1109/ACCESS.2022.3152803
https://doi.org/10.1007/978-3-030-96308-8_15
http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html
https://doi.org/10.1145/38714.38742
https://doi.org/10.1007/978-3-319-44482-6_12
https://doi.org/10.1145/3053600.3053653
https://doi.org/10.1145/3053600.3053653
https://doi.org/10.1007/978-3-030-50578-3_5
https://www.primevideotech.com/video-streaming/scaling-up-the-prime-video-audio-video-monitoring-service-and-reducing-costs-by-90
https://www.primevideotech.com/video-streaming/scaling-up-the-prime-video-audio-video-monitoring-service-and-reducing-costs-by-90
https://www.primevideotech.com/video-streaming/scaling-up-the-prime-video-audio-video-monitoring-service-and-reducing-costs-by-90
https://doi.org/10.1016/j.infsof.2020.106449
https://www.sciencedirect.com/science/article/pii/S0950584920301993
https://www.sciencedirect.com/science/article/pii/S0950584920301993

Performance Comparison of Monolith and Microservice Architectures 199

16. Mangwani, P., Mangwani, N., Motwani, S.: Evaluation of a multitenant saas using
monolithic and microservice architectures. SN Comput. Sci. 4, Mar 2023. https://
doi.org/10.1007/s42979-022-01610-2

17. Mendonca, N.C., Box, C., Manolache, C., Ryan, L.: The monolith strikes back:
Why istio migrated from microservices to a monolithic architecture. IEEE Softw.
38(05), 17–22 (2021). https://doi.org/10.1109/MS.2021.3080335

18. O’Hanlon, C.: A conversation with werner vogels. Queue 4(4), 14–22 (2006).
https://doi.org/10.1145/1142055.1142065

19. Pahl, C., Jamshidi, P., Zimmermann, O.: Microservices and containers - architec-
tural patterns for cloud and edge. In: Lecture Notes in Informatics (LNI), Pro-
ceedings - Series of the Gesellschaft fur Informatik (GI). vol. P-300, p. 115–116
(2020)

20. Richardson, C.: Microservices Patterns. Manning (2019)
21. Singh, V., Peddoju, S.K.: Container-based microservice architecture for cloud

applications. In: 2017 International Conference on Computing, Communication
and Automation (ICCCA), pp. 847–852 (2017). https://doi.org/10.1109/CCAA.
2017.8229914

22. Tapia, F., Mora, M.A., Fuertes, W., Aules, H., Flores, E., Toulkeridis, T.:
From monolithic systems to microservices: a comparative study of performance.
Appl. Sci. 10(17) (2020). https://doi.org/10.3390/app10175797. https://www.
mdpi.com/2076-3417/10/17/5797

23. Thönes, J.: Microservices. IEEE Softw. 32(1), 116–116 (2015)
24. Ueda, T., Nakaike, T., Ohara, M.: Workload characterization for microservices. In:

2016 IEEE International Symposium on Workload Characterization (IISWC), pp.
1–10 (2016). https://doi.org/10.1109/IISWC.2016.7581269

25. Vale, G., et al.: Designing microservice systems using patterns: an empirical study
on quality trade-offs. In: 2022 IEEE 19th International Conference on Software
Architecture (ICSA), pp. 69–79. IEEE Computer Society, Los Alamitos, CA, USA,
March 2022. https://doi.org/10.1109/ICSA53651.2022.00015

26. Villamizar, M., et al.: Cost comparison of running web applications in the cloud
using monolithic, microservice, and AWS lambda architectures. SOCA 11, 233–247
(2017)

https://doi.org/10.1007/s42979-022-01610-2
https://doi.org/10.1007/s42979-022-01610-2
https://doi.org/10.1109/MS.2021.3080335
https://doi.org/10.1145/1142055.1142065
https://doi.org/10.1109/CCAA.2017.8229914
https://doi.org/10.1109/CCAA.2017.8229914
https://doi.org/10.3390/app10175797
https://www.mdpi.com/2076-3417/10/17/5797
https://www.mdpi.com/2076-3417/10/17/5797
https://doi.org/10.1109/IISWC.2016.7581269
https://doi.org/10.1109/ICSA53651.2022.00015

Towards a Sustainability-Aware Software
Architecture Evaluation for Cloud-Based

Software Services

Iffat Fatima(B) and Patricia Lago

Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
{i.fatima,p.lago}@vu.nl

Abstract. The ubiquity of digital solutions integrating cloud-based
software services necessitates sustainability awareness of such solutions.
The integration of sustainability needs evaluation early in the soft-
ware development life-cycle; preferably at the software architecture level.
Although extensive literature is available for software architecture eval-
uation, not so much is observed for sustainability awareness, in general,
and specifically for cloud-based software service architectures. In this
study, we aim to create a blueprint of a software architecture evaluation
method that has the potential to guide the sustainability-aware software
architecture evaluation of cloud-based software services. Based on previ-
ous work, we identify 11 general steps grouped into 3 phases. We address
challenges and provide recommendations for software architecture evalu-
ation, emphasizing sustainability. Additionally, we propose sub-steps for
trade-off analysis, impact analysis, and prioritization with a sustainabil-
ity focus. The blueprint can be customized to evaluate cloud-based soft-
ware services using specific sustainability criteria. Future work involves
identifying sustainability metrics and testing the blueprint in an indus-
trial setting for cloud-based software services.

Keywords: software architecture · sustainability · architecture
evaluation · cloud-based software services

1 Introduction

The ubiquity and rapid growth of cloud-based digital solutions reinforce the
need to study the sustainability of digital ecosystems. In the context of software,
the sustainability needs of these ecosystems should be ensured as part of the
Software Development Lifecycle (SDLC).

Designing Software Architecture (SA) is one of the most crucial stages of the
SDLC, as it lays a foundation for the whole software. Bass et al. [5] describe the
importance of SA in terms of its role in inhibiting or enabling quality attributes
(QAs). Hence, evaluating SA for the fulfillment of required QAs is the first
checkpoint to ensure conformance to quality.

Lago et al. [18] create a case for treating sustainability as a property of
software quality. To ensure the conformity of software to sustainability quality

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
B. Tekinerdoğan et al. (Eds.): ECSA 2023, LNCS 14590, pp. 200–216, 2024.
https://doi.org/10.1007/978-3-031-66326-0_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-66326-0_13&domain=pdf
http://orcid.org/0000-0002-2430-0441
http://orcid.org/0000-0002-2234-0845
https://doi.org/10.1007/978-3-031-66326-0_13

Sustainability-Aware Software Architecture Evaluation 201

requirements, sustainability awareness needs to be evaluated. Therefore, an SA
evaluation method would aid in ascertaining the fulfillment of the sustainability
quality of a software system.

The literature includes several studies that present a comparative analysis
of SA evaluation methods [29,34]. None of these methods, however, consider
sustainability as a criterion for SA evaluation. Koziolek [9] presents a review of
SA evaluation methods for sustainability and catalogs architecture-level sustain-
ability metrics. However, some of these metrics are determined by source code
analysis and hence, the analysis is at a more granular level. These metrics can
directly be mapped to the technical dimension of sustainability, however, further
analysis and validation are needed to evaluate how these metrics may contribute
to sustainability across other dimensions (social, economic, environmental) and
if new metrics are required to fulfill the sustainability requirement.

Our objective is to explore the support of current SA evaluation methods
in the analysis of CBSS SA. Building upon our previous work [11], which con-
ducted a systematic literature review of SA evaluation methods, in this study, we
leverage its findings and data to build an overarching SA evaluation blueprint,
independent of the evaluation technique and type of software architecture. We
further instantiate this blueprint to add steps to assess sustainability and present
an example to apply it to CBSS architectures. Our vision for this blueprint is
to help practitioners integrate sustainability into the existing SA evaluation pro-
cess and make informed decisions in the context of the impact of design decisions
on sustainability.

The structure of the paper is as follows: Sect. 2 presents the background of
our research. Section 3 covers related work. Section 4 outlines our methodology.
Section 5 presents the results of the study and discussions. Section 6 addresses the
threats to the validity of the study and their mitigation. Lastly, Sect. 7 concludes
with future work.

2 Background

In the context of software engineering research, software sustainability has a lot
of variation in terms of its definitions. One of the early mentions of software sus-
tainability in literature appears in a study by Robert et al. [31], who introduce
a sustainability attribute to measure sustainability in software in terms of its
potential for evolution and maintainability. Penzenstadler et al. [27] compare
sustainability definitions in the literature and conclude that defining sustain-
ability is relative to the context of the system and the researcher. They define
sustainability as “preserving the function of a system over a defined time period”.

Lago et al. [18] address sustainability with a broader scope and provide a
comprehensive definition of sustainability dimensions embracing the aspects cov-
ered in previous definitions with economic, environmental, social and technical
dimensions, which we refer to as 4D-sustainability. Economic (Ec) dimension is
related to the software’s ability to preserve and create financial value for the
stakeholders. Environmental (E) dimension is related to the ability of the soft-
ware to impact natural resources. Social (S) dimension is related to the ability of

202 I. Fatima and P. Lago

the software to produce sociological impacts by its use in communities. Technical
(T) dimension is related to the ability of the software to be used over a long
period of time through its evolution. Based on the definitions of Hilty et al. [13],
three levels of impacts are defined that affect temporal aspects of sustainabil-
ity (i) Direct impact refers to the impact that is produced during the production
and operation of ICT-based solution (ii) Enabling impact refers to the indirect
impact of ICT on using the services (iii) Systemic Impact refers to the structural
socio-economic impact of ICT at a macro level, over a long period of time.

To perform a sustainability assessment of CBSS architectures, it needs to be
evaluated across all dimensions considering the over-time impacts (i.e. direct,
enabling, and systemic) [13], of design decisions. Here CBSS architecture refers
to the both the SA of the service itself and the SA of a combination of services
operating on the cloud as a system. Several architecture evaluation methods, like
Architecture Trade-off Analysis Method (ATAM) [14], exist that can aid in SA
assessment. However, these methods do not explicitly provide support for sus-
tainability assessment. Using sustainability criteria as a quality requirement of
the system can enable sustainability assessment at the architectural level. In the
context of our research, evaluation criteria specific to CBSS architectures need
identification. Moreover, the SA evaluation needs to be carried out while mak-
ing informed trade-offs considering the over-time impacts of design decisions on
4D-sustainability, in the context of CBSS architectures.

3 Related Work

In this section, we present work related to ours, summarising what is missing for
the sustainability evaluation of CBSSs.

Comparison of State of the Art in SA Evaluation. Several SA evaluation
methods are available in the literature for analyzing SA for certain QAs [4,21,
29,33,34]. These works reveal extensive literature on SA evaluation methods.
Scenario-based approaches, often rooted in ATAM, are more prevalent. Existing
methods offer detailed insights into evaluation steps, artifacts, and the overall
process. This information enables the creation of a generic blueprint for SA
evaluation, adaptable for assessing sustainability in CBSSs. Most studies focus
on a few QAs, but as QAs increase, trade-off decisions become more complex.
Thus, the SA evaluation method’s capacity for accommodating trade-off analysis
with a larger set of QAs needs study, specifically for sustainability. However,
there is insufficient information for sustainability-aware SA evaluation.

State of the Art in Sustainability Evaluation of SA. Koziolek et al. [16]
employ a metric-based SA evaluation concluding that addressing architectural
erosion requires analysis by code metrics at the architectural level while require-
ment and technology-based changes need to be addressed through scenario anal-
ysis. Condori-Fernandez et al. [9] employ a software sustainability assessment
framework (SAF) to evaluate a software product based on a reference architec-
ture, identifying QAs contributing to sustainability dimensions and unidentified

Sustainability-Aware Software Architecture Evaluation 203

QAs that can potentially trigger product evolution. The results of the study
show that a criterion is needed, to qualify a QA for its over-time impact (direct,
enabling, or systemic). Furthermore, all types of inter-QA effects need evaluation
for a well-rounded trade-off analysis.

From the related work, we observe an emerging trend in the literature for
the sustainability evaluation of SA. However, the sustainability evaluations are
limited to the technical dimension of sustainability. Hence, the conformance
to sustainability across other dimensions needs to be studied and appropriate
metrics need to be identified. No study evaluates the long-term sustainability
impact of architectural decisions on the SA over time.

SA Evaluation of Specific Architecture Types. Regarding specific archi-
tecture types, some evaluation methods are tailored for certain software architec-
tures. For example, Nurani et al. [24] present an evaluation method for Service
Oriented Architecture using a metric-based approach.

Adjepon-Yamoah et al. [1] adapt ATAM for cloud-specific QA trade-offs but
acknowledge the need for exploring other cloud-specific QAs. Different SA types
may require specific QAs and associated metrics for their evaluation.

4 Methodology

In this section, we provide an overview of our research objectives, highlighting
the identified problems, the goals we aim to achieve, the research questions we
seek to answer, and the methodologies employed for each research question.

Problem Statement. Existing SA evaluation processes lack a mechanism for
incorporating sustainability as a quality criterion. CBSS architectures need thor-
ough exploration to incorporate sustainability effectively into evaluations.

P1: Lack of uniform SA evaluation artifacts: pre-requisite and post-requi-
sites.

P2: Lack of criteria for sustainability-aware SA evaluation.
P3: Lack of SA evaluation methods specialized for CBSS architectures.

Goals. To elaborate on the possibilities of solving this problem, we present the
following four goals as a guide for our research methodology:

G1: To identify the requirements for sustainability-aware SA evaluation.
G2: To exploit the available knowledge about SA evaluation methods for

sustainability awareness.
G3: To present a blueprint of a SA evaluation method equipped with

sustainability-aware SA evaluation of CBSS architectures.

Research Questions. Based on the above goals, we define a set of research
questions (RQs) and describe the methodology used to answer each RQ.

RQ1: What are the required input and output artifacts for SA
evaluation? From the data1 obtained from our preliminary study, we use open
1 Online Material [https://github.com/S2-group/ECSA23-TSSAE-rep-pkg].

https://github.com/S2-group/ECSA23-TSSAE-rep-pkg
https://github.com/S2-group/ECSA23-TSSAE-rep-pkg

204 I. Fatima and P. Lago

coding [35] to extract the elements about the inputs and outputs of SA evaluation
methods. This step aims to identify what artifacts are used for SA evaluation
and how evaluation results are represented.

RQ2: What are the Steps of Existing SA Evaluation Methods?
We use axial coding [35] and a visualization-based technique to systematically
categorize the steps of the existing SA evaluation methods. We illustrate these
steps in activity diagrams1 and color-code them based on similarity. Upon need,
colors are merged to form a single generic category. Steps are grouped by color,
representing categories in the SA evaluation blueprint. A similar technique is
employed to identify order of steps and iteration patterns. The results are unified
as an SA evaluation blueprint.

RQ3: What are the Challenges Associated with SA Evaluation;
in General and in the Context of Sustainability? For RQ3, we reflect
on (i) the results of RQ1 and RQ2, (ii) sustainability literature, and (iii) the
discussion of related works. Based on this reflection we identify limitations and
recommendations for developing a sustainability-aware SA evaluation blueprint
for CBSSs.

RQ4: How Can Existing SA Evaluation Method be Tailored for
4D-Sustainability Evaluation of CBSS Architectures? To answer this
RQ, we identify the QAs specific to the quality of CBSSs. We run a
Google Scholar search with the following search string: software AND cloud
AND (‘‘quality attribute’’ OR ‘‘non-functional requirement’’). As a
result of this search query, we filter relevant studies by title and analyze the
full text of those studies and identify the quality attributes within those studies,
important for CBSSs. The data is available in the Online Material1. We use this
information as an exercise for our future work, where we aim to develop com-
prehensive CBSS-specific evaluation criteria. To enable a sustainability-aware
evaluation, we leverage the reflections from RQ3 to provide sub-steps to enable
sustainability evaluation as an additional part of the SA evaluation blueprint.

5 Results and Discussion

In this section, we present our findings per each research question (RQ). Based on
these findings, we present a blueprint of the SA evaluation method and identify
the challenges and recommendations, in general, and specifically in the context of
the 4D-sustainability of CBSS architectures.
RQ1 - Input & Output Artifacts
We answer RQ1, in light of the findings from our preliminary work consisting of
a systematic literature review [11]. We identify the common input and output
artifacts of the SA evaluation methods, their limitations and possible improve-
ments.

Most SA evaluation methods are not clear about the type of input informa-
tion they need for the initiation of the SA evaluation process. We identify these
inputs from the description of SA evaluation methods in the reviewed studies
(see Table 1). The completion of the SA evaluation process produces output arti-
facts, which are normally included in an evaluation report (see Table 2). Many

Sustainability-Aware Software Architecture Evaluation 205

Table 1. Types of inputs used for SA Evaluation

Input Type Study ID

SA Description S1, S5, S7, S8, S11, S17, S20, S21, S22, S30, S33,
S36, S37, S39, S42, S44, S48, S55, S62, S64, S66,
S69, S70

Scenarios S5, S6, S7, S10, S12, S15, S21, S34, S37, S38, S41,
S42, S50, S51, S65

Requirements S24, S25, S28, S39, S44, S45, S48, S50, S53, S64

QAs S6, S24, S35, S36, S46, S59, S60, S68

Goals S5, S6, S15, S19, S33, S39, S59

SA Specification S2, S16, S26, S29, S43, S52, S57

UML S14, S31, S40, S49, S63

Source Code S4, S23, S44, S47

Quality Concerns S8, S17, S18

SA Candidates S46, S68

Metrics S11, S54

Design Properties S56, S57

Documentation S9, S32

SA Drivers S20

Context Diagrams S31

SA Strategies S65

Architecture Views S42

Simulation Model S67

Usability Profile S27

Fault Domain Model S30

Risks S15

Usage Profile S10

SA and SC* Models S13

Execution profiles of UML
scenarios

S3

UI Prototype S3

*SC=Source Code. See Online Material1 for Study IDs

methods skip initial SA evaluation steps and require an input that might be an
output of one of the SA evaluation steps. For example, scenarios are produced
as a part of the SA evaluation process. However, some methods rely on scenarios
as input without performing scenario identification [25].
A structured template for the inputs/outputs per step, would aid in structuring
the evaluation process. The inclusion of decision rationale as an output artifact
would aid architects in better decision-making for future changes.

206 I. Fatima and P. Lago

Table 2. Types of Outputs of SA Evaluation

Output Type Study ID

Quantified QAs S37, S49, S54, S55, S56, S57, S59, S60, S61, S63,
S67

Metric Values S19,S53,S29,S30,S23,S26

QA Conformance S2, S12, S50, S48, S36

Risks S1, S6, S38, S58

Architectural Approaches S32, S33, S69, S70

Component Interactions S14, S16, S18

Cost Benefit S15, S34, S65

Impact of Architectural
Decisions

S25, S28, S66

Probability of achieving
quality

S40, S43

Scenario classification and
ranking

S7, S39

Architectural Recommen-
dations

S11, S66

Risk Factors S3, S31

Uncertainty Levels S35, S68

Evaluation Report S13, S44

Decision Rationale S15, S16

Scenario Description S51, S71

Design goal violations S4

Dependency Model S23

Improvements S8

Strong and weak points S9

Acceptance Levels S10

SA Rating S17

Prioritized ASRs* S45

Impact of modifiability S5

Dependency Graph S47

Prioritized Architectural
Views

S46

Warnings S52

Evolvability Guidelines S20

Evolvability Points S20

Suitability S68

*ASR = Architecturally Significant Requirement. See Online Material1 for
Study IDs

Sustainability-Aware Software Architecture Evaluation 207

RQ2 - SA Evaluation Blueprint
To answer RQ2, we analyze the studies presenting SA evaluation methods, to
elicit the evaluation steps and the process organization.

Types of Processes. Our analysis shows that existing SA evaluation meth-
ods can be grouped into 3 categories based on the type of process they follow to
carry out the evaluation activities.

1. Sequential. All evaluation steps are performed in a sequence, one-time each.
2. Iterative. All steps or a set of steps, are performed iteratively. An iteration is

usually confined to the steps of the analysis phase. This iterative nature of the
SA evaluation methods enables the evaluators to ponder over the implications
of the design decisions. It further aids them in performing an improvement-
driven trade-off- and impact- analysis.

3. Phase-based. Such methods divide the evaluation process into multiple phases.
Based on the type of method, the steps can be either, (i) Unique. All steps are
divided into several phases, or (ii) Common. The same steps are repeated in
each phase with different goals and architectural artifacts per each phase [26].

Certain methods combine iterative and phase-based methods, where iterations
can occur at the phase level or within individual steps of a phase.

SA Evaluation Steps. We identify the SA evaluation steps from the studies
presenting SA evaluation methods. These steps are further analyzed in terms of
(i) Commonalities in steps, (ii) Phases of evaluation, and (iii) Sequence of steps
and iteration patterns. The data of the SA evaluation steps can be found in
Online Material1.

Common Steps. In our analysis, we observe that ATAM [14] is the base-
line that, to various extents, other SA evaluation methods follow. Based on the
analysis of SA evaluation steps and their comparison with steps of ATAM, we
identify 11 common steps and present them as a blueprint for SA evaluation (see
Fig. 1).

Phases of Evaluation. Inspired by ATAM [14], we divide the common steps of
SA evaluation methods into three phases, (i) Pre-Evaluation (ii) In-Evaluation
(iii) Post-evaluation (see Fig. 1 for the steps within each phase).

Sequence of Steps and Iteration Patterns. In Fig. 1, we illustrate the SA eval-
uation steps divided into multiple phases. We further represent the iteration and
change in the sequence of steps during evaluation.

SA evaluation process naturally starts with a Pre-Evaluation phase con-
sisting of two steps; Preparation and Requirement Identification. However,
these steps are found missing in the majority of SA evaluation methods.

Next, comes the In-Evaluation phase. The first three steps in this phase
are quite consistent in their placement among the sequence of steps in all evalu-
ation methods. These are Goal Identification, Method Presentation and
Architecture Presentation. Instead of the Pre-Evaluation phase, many
methods use at least one or all of the above three steps, as a starting point.

In our analysis, two types of Prioritization steps are observed.
(a) Prioritization of evaluation criteria. It refers to an early prioritization of
QAs, requirements, or evaluation perspectives (e.g. a specific architectural view).

208 I. Fatima and P. Lago

Fig. 1. Blueprint of SA Evaluation Methods

This prioritization is performed to narrow down the scope and focus of SA
evaluation to high-priority QAs/requirements etc.
(b) Prioritization Based on the Evaluation Criteria. It involves prioritizing
architectural decisions for scenario ranking, QA ranking, trade-off decisions, and
impact analysis. For example, design decisions with positive effects on high-
priority QAs may receive higher priority, or trade-off decisions may be prioritized
based on their impact on critical requirements like sustainability.

The position of prioritization steps can oscillate between different steps, on
an as-needed basis, facilitating a continuous improvement of the SA.

After presenting the SA, the Identification of Architectural Approa-
ches takes place. The architectural approach representation can range from
abstract (e.g., textual description, component diagram) to concrete (e.g.,
sequence diagram, source code).

Next, Generation of data for analysis is performed. In our blue-
print, this step is independent of the evaluation technique being used. Data
is generated from the identified architectural approaches based on the chosen

Sustainability-Aware Software Architecture Evaluation 209

evaluation technique. E.g., data can entail utility trees for scenario-based meth-
ods, metric computations for metric-based methods, prototypes for simulation-
based methods, and Petri-net generation and execution for formal-modeling-
based methods.

For Evaluation of obtained data, the data can be in the form of scenar-
ios, metric values, etc. The evaluation is based on the (prioritized) requirements
and goals. At this stage, some methods perform prioritization based on evalua-
tion criteria. For example, one design decision may be prioritized over the other
based on the priority of a scenario or a quality requirement.

Once this prioritization is completed, either the evaluation is finalized or
another iteration is performed. This iteration can go back to either the generation
of data or the evaluation of obtained data. This process continues until all goals
have been met or the evaluators have agreed on the achieved trade-offs (see
Fig. 1 - Right). For SA evaluation, prioritization can be conducted in one of two
ways: (i) Top-down - where evaluation criteria are prioritized first, followed by
prioritizing design decisions based on the established criteria, or (ii) Bottom-up
- where the evaluation is initially carried out without prioritizing any specific
criterion. Subsequently, design decisions are prioritized based on the analysis
results, potentially leading to updates in the priorities of evaluation criteria.

In the Post-evaluation phase, analysis results are interpreted and appro-
priate actions are taken if needed, such as modifying the SA in the Improve
and take action step. The Presentation of results concludes the process,
generating a comprehensive report with all necessary output artifacts.
RQ3 - Challenges and Recommendations
To answer RQ3, we identify challenges for defining an SA evaluation method
in general, and for the 4D-sustainability of CBSSs in particular. We further
present recommendations that can aid in streamlining the current SA evaluation
approaches.

Representation of 4D-Sustainability Needs to be Ensured By Equi-
table Stakeholder Representation. Our results indicate that most methods
overlook ATAM (Architecture Trade-off Analysis Method) [14] Phase 0 steps,
namely Partnership and Preparation. These steps involve stakeholder identi-
fication, document examination, and training. By skipping this crucial step,
stakeholder identification is disregarded in the evaluation process, jeopardizing
equitable stakeholder representation. In our state-of-the-art review, we found
that most studies only consider technical and business stakeholders in SA eval-
uation. This raises concerns about the inclusion of other indirect stakehold-
ers [3] during the evaluation. This bias in the evaluation process towards techni-
cal and economic dimensions undermines sustainability assessment. Neglecting
stakeholders from social sustainability domains impedes the comprehensive 4D-
sustainability awareness of SA. For example, if software users’ concerns are not
explicitly analyzed during SA evaluation, it can lead to unfair trade-offs and
disregard the impact of design decisions on social sustainability.

210 I. Fatima and P. Lago

An SA evaluation method can be stakeholder-inclusive by explicitly representing
them in the process. A 4D-sustainability representation should identify indirect
and hidden stakeholders.

Heavy-Weight Methods are Prone to Non-Acceptance in Practice.
In agile software organizations, incorporating heavy-weight SA evaluation meth-
ods like ATAM, which typically take at least three days for evaluation [14], can
hinder fast delivery. Instead, a lightweight and continuous SA evaluation app-
roach, as proposed by Pooley et al. [28], would be more suitable. To enhance
consistency and structure in SA evaluation, standardizing the SA representa-
tion format within a project or organization can facilitate rapid adaptation to
changes, while automation tools such as CSAFE [2] and SDMetrics [24] can
help by extracting architectural properties, and conducting metric-based soft-
ware design analysis, respectively.
Automation and tool-based solutions can aid in accelerating SA evaluation. A
systematic process with clear templates/guides can facilitate fast(er) evaluation.

Choice of Abstraction Level for Quantification is Complex. Scenario-
based and experience-based methods are carried out at a high abstraction level
(typically architecture level). Metric-based methods are carried out at a lower
abstraction level (design level or code level) involving definition and collection of
metrics [8,30]. Simulation-based methods evaluate the SA using ADLs [32] or
source code [6], also at a lower level of abstraction.

Choosing an abstraction level for SA evaluation is complex. Hilty et al. [13]
emphasize the difference between sustainability analysis at the micro- and macro-
levels. They argue against performing sustainability analysis of actions at a
micro-level, so to avoid missing the macro-level impact of those actions. In the
context of SA, we observe this phenomenon frequently with QA trade-offs (e.g.
reliability vs performance). Hence, the impact of micro-level decisions needs to
be analyzed for macro-level impact; systematically.
An approach aggregating micro-level 4D-sustainability to macro-level 4D-
sustainability is essential. Micro-level 4D-sustainability can be ensured through
sustainability metrics and macro-level 4D-sustainability, through Key Perfor-
mance Indicators (KPIs) and impact analysis of micro-level design decisions.
Continuous impact analysis can ensure over-time sustainability impact.

Lack of Sustainability-Specific Evaluation Criteria. The related work
shows that only Koziolek [15] presents sustainability metrics that are defined
at the code level and categorized based on modularization design principles,
corresponding to technical sustainability. In order to provide a well-rounded
view of 4D-sustainability quality, metrics are needed which provide an equitable
representation of all sustainability dimensions. Liu et al. [20] present two metrics
(Impact on the SA and Adaptability Degree of SA) to quantify the adaptability
of SAs. In the context of over-time sustainability, similar metrics can be helpful
in identifying the impact of change requirements on SA and the capacity of SA
to integrate this change based on the degree of SAs adaptability and evolution.

Sustainability-Aware Software Architecture Evaluation 211

Identification and measurement of comprehensive 4D-sustainability metrics is
needed. In the context of over-time 4D-sustainability, architectural decisions
resulting in QA trade-offs need to be analyzed for the impacts (i) on other
QAs, (ii) on the sustainability dimension itself, (iii) on other sustainability
dimensions, and (iv) over time, i.e., direct, enabling and systemic.

RQ4 - Sustainability-Aware SA Evaluation of CBSS architectures. To
answer RQ4, we identify CBSS-specific QAs from literature and supplement the
blueprint (in Fig. 1) with additional sub-steps to ensure sustainability.
Supplementing SA Evaluation with CBSS-Specific QAs. Lee et al. [19]
present a difference between conventional software and cloud software-as-a-
service (SaaS) through the notion of quality attributes. To evaluate CBSS archi-
tectures, we identify cloud-specific QAs by conducting a small-scale systematic
search as outlined in Sect. 4. Our results show that certain QAs are specifically
discussed in the context of CBSSs, as having a priority (see Table 3). These
CBSS-specific QAs can serve as base evaluation criteria for CBSS architec-
tures. Our future work will explore these QAs through associated metrics for
quantification and design principles for ensuring their conformance.

Table 3. Quality Attributes significant for CBSSs

QAs References QAs References

Availability [1,10,19,22,37] Portability [22] [7]

Resource Utilization [19,22,23,37] Decentrality [7,12]

Functional Correct-
ness

[37] Recoverability [19]

Maintainability [1,19,22] Usability [37]

Fault Tolerance [10,19] Compliance [7,37]

Interoperability [7,19,22,37] Configurability [37]

Security [1,10,37] Operability [1]

Scalability [1,19,22,37] Elasticity [17]

Response Time [19,22,23,37] Reliability [1]

Supplementing SA Evaluation with Sustainability
To supplement sustainability, we propose to specify the Evaluation of

obtained data step (in Fig. 1) with 3 sub-steps (see Fig. 2). The goal of intro-
ducing this supplementary support is to make these steps explicit to ensure sus-
tainability evaluation. The steps are (i) Trade-off analysis, (ii) Prioritization of
trade-offs based on evaluation criteria, and (iii) Impact analysis. In these steps,
the chosen design decisions are analyzed for possible trade-offs. The choice of
selecting an appropriate trade-off is carried out using a prioritization mecha-
nism. Next, the impact (direct, enabling and systemic) of the chosen trade-off,
on sustainability is identified. This impact analysis is classified into 3 types. (i)

212 I. Fatima and P. Lago

Inter-QA impact of trade-offs between prioritized CBSS-specific QAs, (ii) Inter-
dimension impact of QA trade-offs across four sustainability dimensions, (iii)
Intra-dimension impact of QA trade-offs within one sustainability dimension.
Prioritization is a crucial sub-step here as the results of impact analysis may
indicate requiring a change in prioritization of QAs or their trade-offs.

This process continues in an iterative cycle until all design decisions have been
agreed upon by mutual consensus of the involved stakeholders. Although ATAM
already provides a trade-off analysis mechanism, it lacks an explicit mechanism
for impact analysis and continuous improvement. This mechanism is provided
by adding these supplementary sub-steps to the blueprint.

Fig. 2. Supplementary sub-steps for SA Evaluation

The blueprint itself is evaluation technique-agnostic. Evaluators have the lib-
erty to choose a specific technique to perform impact analysis. From the results of
our preliminary work [11], we find only one study by Condori-Fernandez et al. [9]
that provides a guideline toward the impact analysis for 4D-sustainability via
Sustainability Assessment Framework (SAF). We can leverage the SAF to per-
form this impact analysis in the context of SA evaluation.
Example. Consider the design decisions regarding scaling strategies for a CBSS
architecture. Two prominent options are auto-scaling and managed scaling.
Auto-scaling positively impacts availability, scalability and resource utilization
with positive direct impacts across technical, economic and environmental sus-
tainability. However, this can result in negative systemic impacts on environmen-
tal and social sustainability by fostering a mindset of infinite resource availability
leading to an overall increase in the energy footprint. To perform a well-rounded
SA evaluation, architects need to be equipped with an evaluation mechanism
that enables them to make optimal decisions while considering sustainability
dimensions and understanding the long-term impacts.

Looking ahead, our goal is to use the SA evaluation blueprint for sustainabil-
ity analysis of CBSS architectures for such impacts using industrial case studies.

6 Threats to Validity

Following [36], this section explores threats to validity and mitigation strategies.

Sustainability-Aware Software Architecture Evaluation 213

Construct Validity. The application of open coding and axial coding yields
the risk of subjective bias. To mitigate this risk, the categorization is cross-
reviewed by all authors. In case of inconsistencies, consensus is established
through discussion, with eventual adjustments to the blueprint.

Internal Validity. To minimize internal bias, the evaluation begins with an
analysis of general SA evaluation methods, which is then contextualized within
the framework of sustainability and CBSS architectures. Cross-validation by the
co-author is conducted to ensure objectivity and prevent any subjective bias.

External Validity. Our generic SA evaluation blueprint is enhanced
for sustainability-aware evaluation using CBSS-specific QAs. This versatile
blueprint can be applied to various software architectures and domains by incor-
porating specific QAs, and design decisions’ impact on domain-specific QAs.

Reliability. The initial data for analysis was obtained through a SLR [11]. To
ensure objectivity, we utilize a systematic approach to categorize and analyze SA
evaluation steps, identifying common patterns and generating a blueprint. The
Online Material1 includes the data used and visualizations for categorization.

7 Conclusion and Future Work

In this paper, we leverage state-of-the-art SA evaluation methods to create a
blueprint guiding SA evaluation. We (i) identify the inputs, outputs and common
steps of SA evaluation methods to create a reusable blueprint (cf. RQ1-2); (ii)
identify the challenges and present recommendations for a sustainability-aware
SA evaluation process (cf. RQ3); (iii) supplement the blueprint with additional
sub-steps for trade-offs, impact analysis and prioritization (cf. RQ4); and (iv)
present preliminary results towards the evaluation criteria for CBSS architec-
tures through CBSS-specific QAs (cf. RQ4).

In our future work, we will validate the applicability and usefulness of our
blueprint. To this aim, we will conduct a case study on a CBSS-based system in
the industry. We further aim to (i) identify and use evaluation criteria in terms
of 4D-sustainability metrics; (ii) identify the impact of these metrics on 4D-
sustainability in terms of possible trade-offs or ripple effects; and (iii) represent
the sustainability-quality of CBSS architectures at a macro-level through 4D-
sustainability indicators.

Acknowledgements. This publication is part of the SustainableCloud
(OCENW.M20.243) project from the research program Open Competition which is
(partly) financed by the Dutch Research Council (NWO).

214 I. Fatima and P. Lago

References

1. Adjepon-Yamoah, D.E.: cloud-ATAM : method for analysing resilient attributes of
cloud-based architectures. In: Crnkovic, I., Troubitsyna, E. (eds.) SERENE 2016.
LNCS, vol. 9823, pp. 105–114. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-45892-2 8

2. Admodisastro, N., Kotonya, G.: An architecture analysis approach for supporting
black-box software development. In: Crnkovic, I., Gruhn, V., Book, M. (eds.) ECSA
2011. LNCS, vol. 6903, pp. 180–189. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-23798-0 17

3. Alidoosti, R., Lago, P., Poort, E., Razavian, M., Tang, A.: Incorporating ethical
values into software architecture design practices. In: IEEE 19th Int. Conf. on
Software Architecture Companion (2022)

4. Babar, M.A., Gorton, I.: Comparison of scenario-based software architecture eval-
uation methods. In: 11th Asia-Pacific Softw. Eng. Conference. IEEE (2005)

5. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 4th edn.
Addison-Wesley Professional (2021)

6. Cavalcante, E., Quilbeuf, J., Traonouez, L.-M., Oquendo, F., Batista, T., Legay,
A.: Statistical model checking of dynamic software architectures. In: Tekinerdogan,
B., Zdun, U., Babar, A. (eds.) ECSA 2016. LNCS, vol. 9839, pp. 185–200. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-48992-6 14

7. Chauhan, M.A., Babar, M.A.: Cloud infrastructure for providing tools as a ser-
vice: Quality attributes and potential solutions. In: Proc. of the WICSA/ECSA
Companion Volume. ACM (2012)

8. Christensen, H.B., Hansen, K.M., Lindstrøm, B.: Lightweight and continuous archi-
tectural software quality assurance using the aSQA Technique. In: Babar, M.A.,
Gorton, I. (eds.) ECSA 2010. LNCS, vol. 6285, pp. 118–132. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15114-9 11

9. Condori-Fernandez, N., Lago, P., Luaces, M.R., Places, A.S.: An action research
for improving the sustainability assessment framework instruments. Sustainability:
Science Practice and Policy, vol. 12, no. 4 (2020)

10. Devata, S., Olmsted, A.: Modeling non-functional requirements in cloud hosted
application software engineering. In: The 7th Int. Conf. on Cloud Computing,
GRIDs, and Virtualization. IARIA (2016)

11. Fatima, I., Lago, P.: A review of software architecture evaluation methods for
sustainability assessment. In: 20th Int. Conf. on Software Architecture Companion
(ICSA-C). IEEE (2023)

12. Gochhayat, S.P., Shetty, S., Mukkamala, R., Foytik, P., Kamhoua, G.A., Njilla,
L.: Measuring decentrality in blockchain based systems. IEEE Access 8, 178372–
178390 (2020)

13. Hilty, L.M., Aebischer, B.: ICT for sustainability: an emerging research field. In:
Hilty, L.M., Aebischer, B. (eds.) ICT Innovations for Sustainability. AISC, vol.
310, pp. 3–36. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-09228-
7 1

14. Kazman, R., Barbacci, M., Klein, M., Carrière, S.J., Woods, S.G.: Experience with
performing architecture tradeoff analysis. In: Int. Conf. on Software Engineering,
IEEE/ACM (1999)

15. Koziolek, H.: Sustainability evaluation of software architectures: a systematic
review. In: 7th Int. Conf. on the Quality of Softw. Architectures and 2nd Int.
Symposium on Architecting Critical Systems, ser. QoSA-ISARCS ’11. ACM (2011)

https://doi.org/10.1007/978-3-319-45892-2_8
https://doi.org/10.1007/978-3-319-45892-2_8
https://doi.org/10.1007/978-3-642-23798-0_17
https://doi.org/10.1007/978-3-642-23798-0_17
https://doi.org/10.1007/978-3-319-48992-6_14
https://doi.org/10.1007/978-3-642-15114-9_11
https://doi.org/10.1007/978-3-319-09228-7_1
https://doi.org/10.1007/978-3-319-09228-7_1

Sustainability-Aware Software Architecture Evaluation 215

16. Koziolek, H., Domis, D., Goldschmidt, T., Vorst, P.: Measuring architecture sus-
tainability. IEEE Softw. 30(6), 54–62 (2013)

17. Kuperberg, M., Herbst, N.R., von Kistowski, J., Reussner, R.H.: Defining and
quantifying elasticity of resources in cloud computing and scalable platforms.
In:Karlsruhe Reports in Informatics (2011)

18. Lago, P., Koçak, S.A., Crnkovic, I., Penzenstadler, B.: Framing sustainability as a
property of software quality. Commun. ACM 58(10) (2015)

19. Lee, J.Y., Lee, J.W., Cheun, D.W., Kim, S.D.: A quality model for evaluating
software-as-a-service in cloud computing. In: 7th ACIS Int. Conf. on Software Engi-
neering Research, Management and Applications (2009)

20. Liu, X., Wang, Q.: Study on application of a quantitative evaluation approach for
software architecture adaptability. In: 5th Int. Conf. on Quality Software (2005)

21. Mattsson, M., Grahn, H., Mårtensson, F.: Software architecture evaluation meth-
ods for performance, maintainability, testability, and portability. In: Int. Conf. on
the Quality of Software Architectures (2006)

22. Nadanam, P., Rajmohan, R.: QoS evaluation for web services in cloud computing.
In: 3rd Int. Conf. on Computing, Commun. and Networking Technol. (2012)

23. Nogueira, L., Barros, A., Zubia, C., Faura, D., Gracia Pérez, D., Miguel Pinho, L.:
Non-functional requirements in the elastic architecture. Ada Lett. 40(1) (2020)

24. Nuraini, A., Widyani, Y.: Software with service oriented architecture quality assess-
ment. In: Int. Conf. on Data and Software Engineering (ICODSE) (2014)

25. Ojameruaye, B., Bahsoon, R., Duboc, L.: Sustainability Debt: A Portfolio-based
approach for evaluating sustainability requirements in architectures. In: 38th Int.
Conf. on Software Engineering Companion (ICSE-C). IEEE/ACM (2016)

26. Olumofin, F.G., Mǐsic, V.B.: A holistic architecture assessment method for software
product lines. Information and Software Technology (2007)

27. Penzenstadler, B.: Towards a definition of sustainability in and for software engi-
neering. In: Proc. of the 28th Annual ACM Symp. on Applied Comput. (2013)

28. Pooley, R., Abdullatif, A.: CPASA: continuous performance assessment of software
architecture. In: 2010 17th IEEE Int. Conf. and Workshops on Engineering of
Computer Based Systems (2010)

29. Sahlabadi, M., Muniyandi, R.C., Shukur, Z., Qamar, F.: Lightweight software
architecture evaluation for industry: a comprehensive review. Sensors (Basel) 22(3)
(2022)

30. Sant’Anna, C., Figueiredo, E., Garcia, A., Lucena, C.J.P.: On the modularity of
software architectures: a concern-driven measurement framework. In: Oquendo,
F. (ed.) ECSA 2007. LNCS, vol. 4758, pp. 207–224. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-75132-8 17

31. Seacord, R., et al.: Measuring software sustainability. In: Int. Conf. on Software
Maintenance. ICSM. Proc. (2003)

32. Sion, L., Van Landuyt, D., Yskout, K., Joosen, W.: SPARTA: security & pri-
vacy architecture through risk-driven threat assessment. In: Int. Conf. on Software
Architecture Companion (ICSA-C). IEEE (2018)

33. Soares, R.C., Capilla, R., dos Santos, V., Nakagawa, E.Y.: Trends in continuous
evaluation of software architectures. Computing (2023)

34. Sobhy, D., Bahsoon, R., Minku, L., Kazman, R.: Evaluation of software architec-
tures under uncertainty. ACM Trans. Softw. Eng. Methodol. 30(4), 1–50 (2021)

35. Strauss, A., Corbin, J.M., Corbin, J.: Basics of Qualitative Research: Techniques
and Procedures for Developing Grounded Theory. SAGE Publications, Inc. (1998)

https://doi.org/10.1007/978-3-540-75132-8_17

216 I. Fatima and P. Lago

36. Zhou, X., Jin, Y., Zhang, H., Li, S., Huang, X.: A map of threats to validity
of systematic literature reviews in software engineering. In: Asia-Pacific Software
Engineering Conference, ser. APSEC. IEEE Computer Society, pp. 153–160 (2016)

37. Younas, M., et al.: Elicitation of nonfunctional requirements in agile development
using cloud computing environment. IEEE Access 8, 209153–209162 (2020)

Technical Debt in Microservices: A
Mixed-Method Case Study

Roberto Verdecchia(B) , Kevin Maggi, Leonardo Scommegna ,
and Enrico Vicario

Department of Information Engineering, University of Florence, Florence, Italy
{roberto.verdecchia,leonardo.scommegna,enrico.vicario}@unifi.it,

kevin.maggi@edu.unifi.it

Abstract. Background: Despite the rising interest of both academia
and industry in microservice-based architectures and technical debt, the
landscape remains uncharted when it comes to exploring the technical
debt evolution in software systems built on this architecture. Aims: This
study aims to unravel how technical debt evolves in software-intensive
systems that utilize microservice architecture, focusing on (i) the pat-
terns of its evolution, and (ii) the correlation between technical debt
and the number of microservices. Method: We employ a mixed-method
case study on an application with 13 microservices, 977 commits, and
38k lines of code. Our approach combines repository mining, automated
code analysis, and manual inspection. The findings are discussed with
the lead developer in a semi-structured interview, followed by a reflex-
ive thematic analysis. Results: Despite periods of no TD growth, TD
generally increases over time. TD variations can occur irrespective of
microservice count or commit activity. TD and microservice numbers are
often correlated. Adding or removing a microservice impacts TD simi-
larly, regardless of existing microservice count. Conclusions: Developers
must be cautious about the potential technical debt they might intro-
duce, irrespective of the development activity conducted or the number
of microservices involved. Maintaining steady technical debt during pro-
longed periods of time is possible, but growth, particularly during inno-
vative phases, may be unavoidable. While monitoring technical debt is
the key to start managing it, technical debt code analysis tools must be
used wisely, as their output always necessitates also a qualitative system
understanding to gain the complete picture.

Keywords: Technical Debt · Microservices · Software Evolution

1 Introduction

As companies seek to take advantage of their many benefits, microservice-based
architectures are becoming more and more adopted. As often referenced, the

R. Verdecchia and K. Maggi—The first two authors contributed equally to this work.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
B. Tekinerdoğan et al. (Eds.): ECSA 2023, LNCS 14590, pp. 217–236, 2024.
https://doi.org/10.1007/978-3-031-66326-0_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-66326-0_14&domain=pdf
http://orcid.org/0000-0001-9206-6637
http://orcid.org/0000-0002-7293-0210
http://orcid.org/0000-0002-4983-4386
https://doi.org/10.1007/978-3-031-66326-0_14

218 R. Verdecchia et al.

microservice architecture style offers several advantages, such as scalability, flex-
ibility, and the ability to develop and deploy individual components indepen-
dently [11]. Albeit the many benefits microservice-based systems offer, the archi-
tectural style also comes with its own set of challenges, including increased com-
plexity, the need for effective management of eventual consistency, and additional
effort required for integration and system testing.

In this context, we can intuitively conjecture that, in order to cope with
the increased complexity and potential loss of the bigger architectural picture,
developers may tend to adopt suboptimal implementation expedients. While
providing temporary benefits, such expedients may tend to make future devel-
opment harder or even impossible. This concept of software quality issues related
to temporary expedients is commonly referred to as technical debt (TD) [5].

TD is one of the paramount factors in software development practice. If
left unmanaged, TD can lead, among other consequences, to lower development
speed, raise of a high number of bugs, or even completely crystallized archi-
tectures [39]. TD has been widely covered in academic literature [3,27,41] and
is increasing in research popularity. Similarly, albeit the adoption of microser-
vice architectural style could be considered as a relatively new phenomenon, its
widespread adoption recently drew a considerable academic interest [12,17,34].

Surprisingly, while both TD and microservices could be considered as popular
topics in current academic literature, there has been relatively little focus on the
relationship between TD and microservice architectures. To date, few studies
have considered how TD evolves in microservice systems and, to the best to
our knowledge, none have quantitatively studied in depth the characteristics of
such evolution.

With this research, through a mixed-method case study on an open-source
project comprising 12 microservices (see Sect. 3.4), we make a first step towards
understanding how TD changes as microservice-based systems evolve. Our goal is
to pave the way for future empirical studies that investigate the evolution of this
relationship. By understanding how TD evolves in microservice architectures,
and gaining insights into the characteristics of such evolution, we might be able
to shed light on how TD can be effectively managed in microservice architectures,
with the end goal of better supporting the long-term success of software-intensive
systems based on such architectural style.

The main contributions of this research are (i) a quantitative case study
reporting TD measurements through the evolution of a microservice-based soft-
ware system, (ii) a thorough statistical analysis complemented by a manual code
inspection and discussion of the results, (iii) a qualitative assessment of the gath-
ered results via an interview with the leading developer and subsequent reflexive
thematic analysis, and (iv) a replication package containing the entirety of the
raw, intermediate, and final data, analysis traces, and code used for this study.

This work extends the preliminary case study presented at the first Inter-
national Workshop on Quality in Software Architecture (QUALIFIER) [40] by
complementing the investigation with an interview with the leading developer

Technical Debt in Microservices: A Case Study 219

of the case study, analyzed via reflexive thematic analysis, which is used to gain
further insights into the results and assess our conjectures on their interpretation.

2 Related Work

By considering the academic literature that focuses on TD in microservice-based
systems we can identify, to the best of our knowledge, only a handful of studies.

The research of Lenarduzzi et al. [25], where the effects of migrating from a
monolithic to a microservice architecture can have on TD are investigated, might
potentially be the most similar to this work. As our study, the research presents
a case study based on repository mining and static code analysis. In contrast
to such study however, we (i) do not focus on the effects of migrating from
monolithic to microservice architecture, (ii) aim to study various characteristics
affecting TD (e.g., number of microservices), and (iii) consider as case study
a software-intensive system which comprises 13 microservices instead of the 5
studied by Lenarduzzi et al. [25].

By inspecting the other related literature, TD in microservices appears
to be investigated primarily from a qualitative point of view. In a study by
Toledo et al. [35], a multiple case study based on 25 interviews investigating
architectural TD (ATD) in microservices is reported. The results of the investiga-
tion identified ATD issues, their negative impact, and the common solutions used
to repay each debt type. Differently to such study, we focus on code TD [19,27],
utilize a quantitative rather than qualitative research method, and focus on a
case study. In a similar work by Toledo et al. [16], through a qualitative analysis
of documents and interviews, ATD in the communication layer of microservice-
based architecture is investigated. The main contribution of the paper is a list
of debt types specific to the communication layer of a microservice-based archi-
tecture, as well as their associated negative impact, and solutions to repay the
debt types. Regarding the differences w.r.t. our work, the same considerations
previously elicited for the other study of Toledo et al. [35] apply.

Bogner et al. [10] adopted 17 semi-structured interviews to study how the
sustainable evolution of 14 microservice-based systems was ensured. Albeit from
the results ATD emerged as a relevant issue, differently from our study, the work
of Bogner et al.does not explicitly focus on TD. As additional difference w.r.t.
our work, while tool-based DevOps processes were often mentioned as a mean to
assure evolvability, the study is based on a qualitative rather than quantitative
empirical research method. Bogner et al., in a different study [9], surveyed 60 soft-
ware professionals via an online questionnaire to learn how technical debt can be
limited through maintainability assurance. Results indicated that using explicit
and systematic techniques benefits software maintainability. As for the previous
studies, also this work by Bogner et al. [9] adopts a qualitative rather than quan-
titative research approach. In addition, albeit both the study of Bogner et al. [9]
and this work consider TD in microservices, the primary focus of Bogner et al.is
on studying maintainability assurance techniques, while the one of this work is
on TD evolution in microservice-based software-intensive systems.

220 R. Verdecchia et al.

Related to the concept of TD in microservice-based systems, Pagazz-
ini et al. [31] present the extension of the tool Arcan [20] to detect microservice
smells. As main difference with this work, the Arcan extension focuses on archi-
tectural smells rather than focusing explicitly on TD, and does not carry out a
case study on TD evolution.

A more systematic literature review on TD in microservices w.r.t. this related
work section is conducted by Villa et al. [43]. Based on the analysis of 12 primary
studies, Villa et al.corroborate the intuition grounding this study, namely the
absence of qualitative studies focusing on the evolution of TD in microservice-
based systems. From the results of Villa et al., ATD and code debt result to be
the most frequently reported debt types for microservices. Such finding, which
reflects the general trend observed for TD in developer discussions [2,24], pro-
vides further support to the focus of this work on the evolution of code TD in
microservice-based systems.

3 Study Design and Execution

In this section, we document the research design and execution of the study,
in terms of research goal (Sect. 3.1), research questions (Sect. 3.2), and research
process (Sect. 3.3).

3.1 Research Goal

The goal of this research is to conduct a preliminary investigation into the evo-
lution of TD in software-intensive systems utilizing a microservice architecture.
By using the Goal-Question-Metric framework of Basili et al. [8], our goal is:

Analyze software evolution
For the purpose of studying trends and characteristics
With respect to technical debt
From the viewpoint of software engineering researchers
In the context of microservice-based software-intensive systems.

In this study, we opt to focus on code TD [27], rather than other TD types
(e.g., ATD) guided to multiple factors, namely (i) code TD is one of the most
frequent TD types appearing in microservice-based systems [43], (ii) in contrast
to the other TD types, code TD is supported by a vast range of consolidated off
the shelf tools, which are vastly used both in academic research and industrial
practice [6], (iii) the focus on code TD allows for the natural extension of this
preliminary case study to future heterogeneous case studies.

3.2 Research Questions

Based on the goal of our study, we can derive the main research question (RQ)
and sub-research questions which guide our research.

The main RQ on which this study is based can be formulated as follows:

Technical Debt in Microservices: A Case Study 221

Phase 1

GitHub

Microservice Software

Repository Cloning

Phase 2

Checkout Commit in

Main Branch

Phase 3

Build Project

Phase 4

Analyze Project with

SonarQube™

Quantitative

analysis

results

Phase 5

Quantitative Data

Analysis

Phase 6

Interview with

leading developer

Quantitative

data analysis

findings

Phase 7

Reflexive

thematic analysis

Interview

transcript

Fig. 1. Research process overview.

RQ: How does code technical debt evolve in a microservice-based software-
intensive system?

With this main RQ, which encompasses the overall goal of the study, we
broadly express our intent to study the evolution of code TD in microservice-
based systems. To be more systematic, we decompose our main RQ into two
sub-RQs, each one considering a different facet of TD evolution in microservice-
based software intensive systems.
RQ1: What is the evolution trend of TD in a microservice-based software-
intensive system?

With RQ1, we aim to understand the overall evolution trend of TD in
microservice-based systems, e.g., if TD is constant through the evolution of
a microservice-based software-centric system, if TD showcases a growing trend
in time, or if the system is characterized by a seasonal TD trend (e.g., if devel-
opers are more prone to incur in TD before/after seasonal holidays).
RQ2: Is there a relation between TD evolution and number of microservices?

With RQ2, we aim to understand if a relation exists between the evolution of
TD and the number of microservices composing a software-intensive system. As
example, we could conjecture that, due to suboptimal practices, as the number
of microservices grows, TD grows at a higher rate (e.g., TD is in superlinear or
even exponential relation with the number of microservices).

3.3 Research Process

An overview of the process followed in this study is depicted in Fig. 1, and is
further documented below.

The research process consists of five phases, from cloning the case study soft-
ware repository containing a microservice-based software project, to the static
analysis of its source code, and the concluding statistical and manual analysis of
the collected data. Each research phase is described in detail in the following.

222 R. Verdecchia et al.

3.4 Phase 1: Microservice Software Repository Cloning

The first step of our research process consists in cloning a repository containing
a microservice-based software project. For this preliminary case study, we select
the software repository Cloud Native GeoServer.1 The project is a microser-
vice implementation of GeoServer, an open source server for sharing geospatial
data. Cloud Native Geoserver splits the original GeoServer geospatial services
and API offerings into individually deployable components of a microservices
based architecture.

The case study is selected starting from the manually validated list
of microservice-based open-source projects hosted on GitHub elicited by
Baresi et al. [7]. The project is selected from the list by considering as selec-
tion criteria (SC1) the real use of the application, (SC2) the number of times
the repository is forked and starred, (SC3) the number of repository commits,
and (SC4) the number of microservices the project comprises. We use SC1 to
exclude as potential case study a toy project and demo. SC2 instead provides
us assurance on the quality and popularity of the repository. Finally, SC3 and
SC4 guarantee us that the project is representative of a long-lived, complex,
software application based on a microservie-based architecture. Cloud Native
GeoServer to date is forked a total of 52 times and starred 176 times. The repos-
itory currently counts a total of 985 commits, comprises 13 distinct microser-
vices, and is composed of 38k lines of code (NCLOC), and is contributed to by
10 developers.2

3.5 Phase 2: Checkout Commit in Main Branch

The second phase of our research consists in checking out in temporal order
the commits of the selected repository. For this process, we opt to consider
the commits present in the main branch of the selected repository. While we
are aware of the potential pitfalls implied by considering exclusively the main
branch during repository mining processes [23], we deem analyzing also other
branches as out of scope for this preliminary investigation. Related threats to
validity are discussed in Sect. 5.

3.6 Phase 3: Build Project

After checking out a commit, the project is built by using the build automation
tool used by the case study software-intensive system, namely Maven3. This
step is a prerequisite for the analysis of the project via SonarQube (Phase 4, see
Sect. 3.7), as the tool requires the compiled code of the software project in order
to analyze it.

During this step, 7 out of 985 builds result to fail (0.7% of all builds). Upon
inspection, we identify the failure to be caused by issues related to the Project
1 http://geoserver.org/geoserver-cloud. Accessed 4th July 2023.
2 https://github.com/geoserver/geoserver-cloud. Accessed 4th July 2023.
3 https://maven.apache.org. Accessed 4th July 2023.

http://geoserver.org/geoserver-cloud
https://github.com/geoserver/geoserver-cloud
https://maven.apache.org

Technical Debt in Microservices: A Case Study 223

Object Model (POM) of the Maven build. Rather than using a subjective heuris-
tic to fix the issue, we opt to discard the commits associated to these failing
builds. A single commit results instead to be characterized by an erroneous date
in the versioning system. In order to avoid to independently estimate the correct
commit date via some ad hoc heuristic, we opt to discard such commit from
our analysis. Given the relatively low number of commits skipped due to build
failures or dating issues (8/985 in total), we do not deem this factor to notice-
ably influence our results. Further considerations are reported in the threats to
validity section (Sect. 5). For scrutiny and traceability purposes, the metadata
of the 8 commits omitted from our analysis are documented in the replication
package of this study.

To iterate and avoid possible confusion, due to the failing builds and an ill-
dated commit, 977 out of the 985 total commits are considered for analysis of
this study.

3.7 Phase 4: Analyze Project with SonarQube

After obtaining the compiled code of the project, the code is analyzed by utilizing
the SonarQube tool. All commits are analyzed by using SonarQube version 9.9
LTS with SonarScanner for Maven version 3.9.1. During this process, in addition
to the SQUALE metric measuring TD [26], other metrics and metadata of the
project is collected, e.g., the project size in terms of NCLOC, number of files,
cognitive complexity, and committer name. To measure TD, the standard out
of the box SonarQube rules configuration is used, in order to avoid subjective
tempering of the tool settings.

The number of microservices appearing in each commit version is instead
collected by following the method first introduced by Baresi et al. [7]. Such
method relies on the analysis of Docker Compose files, in order to identify via
parsing the microservices composing a software-intensive system.

Phases 2–4 are repeated for each of the 977 commits of the software project
considered for this case study.

3.8 Phase 5: Data Analysis

As last quantitative step of the research process, the data collected through Steps
1–4 is analyzed to answer our RQs.

To answer RQ1, we decompose the TD evolution trend into its seasonal,
trend, and irregular components [18] by utilizing on the STL algorithm [15].
We adopt the STL algorithm as it does not assume a time series distribution,
it was successfully used in previous software engineering studies [4,28], and an
open-source implementation is available as an R library.4 The resulting trend is
then inspected qualitatively by graphical means. To gain further insights into

4 https://stat.ethz.ch/R-manual/R-devel/library/stats/html/stl.html. Accessed 4th
July 2023.

https://stat.ethz.ch/R-manual/R-devel/library/stats/html/stl.html

224 R. Verdecchia et al.

the “TD hotspots”, i.e., commits showcasing the most outlier values in TD
measurements, the content of the outlier commits are manually scrutinized. To
identify outlier values, we leverage the STL decomposition, by first removing
any seasonality and trend in the TD time series, and subsequently selecting the
10 most anomalous outliers identified in the STL irregular component series for
manual scrutiny.

To answer RQ2, we first study the potential correlation between the num-
ber of microservices and TD time series. Afterwards, we analyze the potential
correlation between the derivatives of such series, to understand the relation
between the growth speed of TD w.r.t. microservice number. For both cases, we
test the correlation by using the Multivariate Granger causality analysis [21]. To
calculate the optimal lag order for the Granger analysis, we adopt the Akaike
Information Criterion [1]. As the Granger test assumes the time series to be
stationary, we test such assumption via the Augmented Dickey-Fuller test [14].
In case the time series result to be non-stationary, we make them stationary by
differencing the data, i.e., by subtracting the value of each observation from
the value of the previous observation in the time series.

3.9 Phase 6: Interview with Leading Developer

As closing phase of our investigation, we complement the quantitative research
results collected through Phases 1 to 5 via a qualitative research process, namely
an interview with the leading developer of Cloud Native Geoserver. This final
research phase is used to validate the quantitative results collected for RQ1 and
RQ2, gain further insights into the results, and assess our conjectures on their
interpretation.

To identify the leading developer of the software project, the commit author-
ship of the GitHub repository is analyzed, and the most recurrent committer is
contacted for confirmation of being the leading developer. The interview is con-
ducted in a semi-structured fashion [22], with the support of a slide deck which
is used to guide the interview.5 Two weeks prior the interview, the quantitative
analysis findings are shared with the leading developer, to ensure the interviewee
has sufficient background knowledge and time to prepare for the interview.

The interview is composed of four main portions, namely (i) introduction and
background, (ii) questions on the TD evolution in Cloud Native Geoserver,
(iii) questions on the relation between TD and microservices in Cloud Native
Geoserver, and (iv) closing remarks. During the introductory interview por-
tion, we verify the familiarity of the leading developer with the repository and
the TD metaphor, summarize the research procedure, and outline the goals of
the interview. In the second interview portion, we ask a set of questions designed
to gain insights into the TD evolution trends identified in Phase 5 (see Sect. 3.8).
Specifically, for each observed TD evolution trend, we inquire about the devel-
opment activities conducted in that period, the awareness of the TD trend in
5 For completeness, the slide deck used, including the structured questions asked dur-

ing the interview, is made available in the replication package of this study (see
Sect. 5.4).

Technical Debt in Microservices: A Case Study 225

that period, and the effects of the TD trend on future development activities.
Additionally, we also present our preliminary conclusions on the trend nature,
in order to corroborate or disprove our suppositions. In the third interview por-
tion, which regards the relation between TD and microservices in Cloud Native
Geoserver, we present our quantitative results on the relation and our conjec-
tures on the interpretation of the findings. As for the previous phase, we ask a
set of questions designed to gain more insights into the quantitative data col-
lected, and verify if we reached the correct conclusions. Finally, in the closing
interview portion, we give the interviewee the opportunity to provide any addi-
tional remark on the investigated topic that we might have not covered with our
previous interview questions.

Due to geographical distance, the interview is conducted via a Google Meet
video-call. To ease the interview process, webcams are utilized to observe non-
verbal communication of the interviewee, e.g., hand gestures, facial expressions,
and posture, and provide silent feedback to the interviewee without interrupting
them [13]. The interview lasts approximately 45 min.

3.10 Phase 7: Reflexive Thematic Analysis

The interview is audio-recorded and manually transcribed by utilizing the denat-
uralism approach, i.e., grammar errors are rectified, disturbances in the inter-
view such as stutters are eliminated, and nonstandard accents (those not belong-
ing to the majority) are normalized while maintaining a comprehensive and accu-
rate transcription [29]. The transcript is then analyzed via reflexive thematic
analysis [36] based on an open and axial coding process [33]. The adopted quali-
tative analysis approach allows us to cluster the incidents provided by the inter-
viewee into different themes, and subsequently map the themes to our RQs to
report the interview results in an structured and systematic fashion. In addition,
adopting a reflexive approach allows us to reflect and reinterpret our conjectures
on our quantitative results, revising their potentially subjective interpretation,
and gain a more concrete and sound understanding of the studied case.

In the following section, the quantitative results and their reinterpretation
based on the qualitative insights offered by the leading developer are reported.

4 Results

In this section we report and discuss the data gathered to answer our RQs.
Specifically, in the next section (Sect. 4.1) we consider the results of RQ1, while
in Sect. 4.2 we take into account the results of RQ2.

4.1 Results RQ1: Evolution of TD in a Microservice-Based
Software-Intensive System

As described in Sect. 3.8, in order to study the TD evolution of our case study,
namely the Cloud Native GeoServer application, we consider three different

226 R. Verdecchia et al.

Trend Seasonal Irregular

07−2020

10−2020

01−2021

04−2021

07−2021

10−2021

01−2022

04−2022

07−2022

10−2022

01−2023

04−2023

07−2020

10−2020

01−2021

04−2021

07−2021

10−2021

01−2022

04−2022

07−2022

10−2022

01−2023

04−2023

07−2020

10−2020

01−2021

04−2021

07−2021

10−2021

01−2022

04−2022

07−2022

10−2022

01−2023

04−2023

0

5000

10000

Commit date

T
ec

h
n
ic

al
 d

eb
t

(S
Q

U
A

L
E

 i
n
d
ex

)

Fig. 2. Decomposition of the Cloud Native GeoServer application technical debt evo-
lution via the STL algorithm.

components, namely the TD evolution trend, seasonality, and irregularities. An
overview of such decomposition is depicted in Fig. 2.

As we can observe from the leftmost diagram of Fig. 2, the TD evolution
showcases an overall growing trend. Interestingly, two outstanding jumps, i.e.,
sudden increases in TD values, can be noticed in the plot. By comparing the
trend figure with the one reporting the irregularities in TD evolution (rightmost
diagram of Fig. 2), we note that such outliers are captured by the STL algorithm
decomposition. The commits corresponding to such jumps are further analyzed
in the second data analysis carried out to answer RQ1, namely the manual
scrutiny of the “TD hotspots” (see Sect. 3.8). Overall, as could be expected, TD
tends to naturally increase during time as the application becomes bigger and
more complex. From the qualitative data collected we determine that, according
to the leading developer, the main reason behind the overall increasing trend
is due to the lack of a systematic TD monitoring process in the development
pipeline. By directly quoting the leading developer:
“The main and very actual reason for the increase of TD is the lack of monitoring
it. We could have established a quality assurance policy from the beginning. For
one reason or another it’s something we always kept on postponing. I think that
is the most relevant part.”

The TD evolution trend also presents noticeable plateaus, i.e., periods where
the TD values remain approximately stable. The first plateau, starting from
October 2020, lasts approximately one year and three months of development.
By inspecting the commit dates, we note that none of the plateaus reported in
the trend of Fig. 2 is due to periods of development inactivity. Therefore, we
conjecture that the development periods associated to the plateaus correspond
to development periods where deliberate efforts might be made to prevent a
TD increase. As further discussed in the following paragraphs, spikes in TD

Technical Debt in Microservices: A Case Study 227

correspond to periods of innovation and intense activity. Contrary to initial
conjectures, insights from the interview reveal that the plateaus are not a result of
intentional efforts to maintain TD constant. As articulated by the lead developer,
these plateaus actually represent hard-earned periods of tranquil development,
which followed the more tumultuous phases marked by significant jumps in TD.
By quoting the leading developer:
“Seeing that almost flat line for that long period makes me happy. It means that,
after all that crazyness, our development choices were not that bad.”

By considering the seasonality of the time series (center diagram of Fig. 2),
we can intuitively observe that no seasonal behavior is present in the TD evolu-
tion of the Cloud Native GeoServer application. This implies that TD is not
more likely to be introduced during a certain period of the year. The leading
developer confirms this conjecture by describing a general lack of seasonality in
the development activities:
“We don’t have an established development roadmap but we do have contracts
with costumers. So it’s [the release time] more based on a as needed basis and
is more agile than having a six month release timeline. We actually release very
often. From one week to another we can have a new release because of patching
or adding new features.”

As second data analysis process carried out to answer RQ1, we manually
inspect the potential “TD hotspots” (see Sect. 3.8). The most noticeable “TD
hotspot” corresponds to a sudden increase in TD values recorded on June 2022
(see Fig. 2, rightmost plot). From manual scrutiny, this sudden TD variation
results to be due to the upgrade of the JUnit testing framework6. The com-
mit also includes the cross-microservice refactoring of test files according to the
upgrade.

Other seven “hotspots”, which are not graphically appreciable from the TD
evolution irregularities depicted in the rightmost plot of Fig. 2, happen on the
same day as the JUnit upgrade commit. Upon manual inspection, we note that
the commits corresponding to these additional seven hotspots involve many
microservices of the Cloud Native GeoServer application. The commits result
to either focus on (i) further refactoring of testing artifacts, (ii) bug fixing, (iii)
implementing logging mechanisms, and (iv) introducing automation processes.
The leading developer confirms JUnit as being the root cause of the identified
“TD hotspots”, recalling the high development effort required by the upgrade:
“I did noticed as well as you did that the new JUnit 5 version provoked a jump
on TD, because there are a lot of tests and we need to make all test methods and
classes package private, which led to a quick [TD] spike.”

Via unstructured follow up question on the TD associated to this develop-
ment period, we learn that the deliberate TD taken on by upgrading JUnit paid
off, by considerably easing future development activities. As described by the
leading developer:
“It was refreshing. There are [in JUnit 5] new constructs. . . new ways to test

6 https://junit.org/junit5/. Accessed 5th July 2023.

https://junit.org/junit5/

228 R. Verdecchia et al.

that don’t require to launch the whole application. That was so time consuming.
There is always a bit of a learning curve, but I would not go back to JUnit 4.”

Regarding the sudden increase of TD values in October 2020 results instead,
from manual inspection of the quantitative data results to be caused by the
addition of 33 new files in a microservice. The commit involves the extension of
the Cloud Native GeoServer features via the binding to a new JSON parser.

The last of the 10 “TD hospots” considered for manual analysis instead
corresponds to a sudden increase of TD values happening in September 2020. In
this case, the TD increase results to be due to a refactoring activity carried out
across 70 files, which involved a considerable number of NCLOC (1.5k NCLOC
additions, and 589 NCLOC deletions).

By asking about the “TD hotspost” of September and October 2020 to the
leading developer, we understand that both months of noticeable TD increase are
due to the early stage of the software project. During this phase, the developers
get accustomed to developing the new application, learning as they go on how
the project should be shaped. Taking on TD appears to be a natural consequence
of this early stage development period. The lead developer recalls on this episode
as follows:
“The early stages of the project were subject to a lot of activity. Figuring out
mainly how to split up all GeoServer functionality into microservices, Spring
Boot modules, and configurations. There was a lot of activity, and it was an
intense learning period. It makes sense that until we reached some stability. . . we
are talking about the first 3 months. . . it was crazy having to figure all that out.”

As conclusion to RQ1, we conclude that both working on a single microser-
vice, or multiple ones at the same time, can drastically influence TD. Consid-
erable TD variations can happen independently of the developer activity con-
ducted, e.g., a framework upgrade can have an unforeseen cascading impact on
TD, or a refactoring activity could lead to a considerable TD increase. As could
be intuitively expected, early stages of development are prone to introduce TD.
In addition, taking on TD in a certain period can lead to following periods of
TD steadiness, till a new cycle of development innovation is needed. As a word
of caution, from the considered case study we learn that TD tool measures can
be mischievous. More specifically, a steep code TD increase could also be con-
currently associated with a TD decrease that is not measured by the utilized
tool, as highlighted by the upgrade of JUnit in the considered case study.

RQ1 answer (TD Evolution in a Microservice-based Architecture)
TD displays an overall increasing trend in time, albeit long periods of con-
tinued development without TD increase are noticeable. Considerable TD
variations can happen by working on one or multiple microservices, and may
occur regardless of the development activity conducted. Taking on in a given
development phase can result in subsequent periods of TD stability, until a
new wave of development innovation is needed. TD metrics can be decep-

Technical Debt in Microservices: A Case Study 229

0

5

10

0

5000

10000

07−2020

10−2020

01−2021

04−2021

07−2021

10−2021

01−2022

04−2022

07−2022

10−2022

01−2023

04−2023

Commit date

N
u
m

b
er

 o
f

m
ic

ro
se

rv
ic

es

T
ech

n
ical d

eb
t (S

Q
U

A
L

E
 in

d
ex

)
Number of microservices Technical debt (SQUALE index)

Fig. 3. Overview of the evolution of technical debt and number of microservices of the
Cloud Native GeoServer application.

tive, as a sharp increase in code TD might coincide with an unmeasured
decrease in another TD dimension.

4.2 Results RQ2: Relation Between TD Evolution and Number
of Microservices

In order to study the potential correlation between TD and number of microser-
vices, we start by graphically inspecting the time series of the two metrics. As can
be seen in Fig. 3, both TD and microservices seem to display an overall similar
growth trend. However, a correlation does not appear always to be present in all
commits. As example, by considering Fig. 3, we can observe that the removal of
one microservice in April 2021 did not correspond to any noticeable TD decrease.
In some cases, e.g., April 2023, the addition of a microservice is even associated
with a decrease in TD (i.e., microservice number and TD are inversely propor-
tional). This would imply that, while number of microservices could display a
strong correlation of directly proportional nature, this might not always be the
case.

In order to gain statistical insight into the relation, we follow the analysis
process presented in Sect. 3.8. From the results of the Granger causality test we
confidently reject the null hypothesis and conclude that the evolution of num-
ber of microservices and TD are strongly correlated (p-value < 4.593−6). This
implies that, albeit seldom irregularities, a growth (or decrease) of microser-
vice number corresponds to a similar change in TD. As additional remark, this
indicates that the number of microservices could be used to predict TD values.

As further analysis conducted to answer RQ2, we study the derivatives of the
two time series. This allows us to understand if the two series grow at similar

230 R. Verdecchia et al.

rates, or if a growth in the microservice series correspond to the growth at a
higher rate in the TD series. Intuitively, we could expect that, as the number
of microservices increases, the software-intensive system becomes more complex,
and hence TD grows at a higher rate as the system becomes bigger. From the
Granger test results however, we understand that this is not the case. In fact,
we observe that also the derivatives of the time series are strongly correlated
(p-value < 7.896−6), i.e., we can discard with statistical confidence the null
hypothesis. This implies that the impact of adding (or removing) a microservice
on TD is similar regardless of the number of microservices already present in a
software-intensive system.

As subjective interpretation of this latter result, we can conjecture that this
pattern indicates an appropriate adherence to the microservice architectural
principles, through which microservices are developed independently by follow-
ing a loosely coupled and highly cohesive architecture. From the interview with
the leading developer however, we learn that this conjecture is partially inac-
curate. While in fact the impact on TD of including or excluding microservice
is independent of the microservices already present, the motivation behind this
phenomenon is not primarily due to the microservice independence. On the con-
trary, as described by the leading developer, all microservices share a common
architectural foundation, and each functionality implemented in the microser-
vice heavily relies on dependencies loaded ad hoc from the common architectural
layer all microservices share. Therefore, the absent impact of microservice num-
ber on TD trends is due to the lean nature of the microservices, which enforce
loose coupling by loading the functionalities from a common architectural layer.
As described by the leading developer:
“It does not matter how many microservices there are in the ecosystem because
architecturally there is a cross-cutting layered design. The microservice func-
tionality itself builds up from dependencies that are usually cross-cutting. There
is this cherry-picking approach on what is loaded on each microservice, but all
microservices have pretty much the same dependencies on the classpath.”

From the additional insights gained via the interview, we note the crucial
importance of complementing quantitative source code analyses with qualitative
aspects. While, during the qualitative assessment of the TD present in a software-
intensive system we can conjecture on the deeper motivations behind TD values,
it is only by presenting and discussing the analysis results with the developers of
the system that we can get a more detailed and complete picture. Therefore, as a
word of caution for software managers, product owners, and alike, it is paramount
to always interpret the values provided by static analyzers with caution, and
when possible qualitatively complementing the results, before taking decisions
on future development activities.

RQ2 answer (Relation between TD and number of microservices)
TD and number of microservices are strongly correlated, albeit in seldom
cases such relation does not persist. The impact of adding (or removing)

Technical Debt in Microservices: A Case Study 231

a microservice on TD is similar, regardless of the number of microservices
already present in a software-intensive system. TD tools based on source
code analysis can support TD management processes. However, their results
should be complemented with qualitative knowledge before making decisions
on future development activities.

5 Threats to Validity

The presented results have to be interpreted in light of potential threats to
validity. By following the categorization of Runeson et al. [32], we consider four
aspects. While documented towards the end of the study, in order to avoid
a common pitfall of threats to validity in software engineering research [38],
threats were considered from the early stages of this investigation, as further
documented below.

5.1 Construct Validity

To answer our RQs, we measured code TD by adopting the SQUALE index,
a metric widely used in the literature to study TD [6,25,42]. The number
of microservices was measured by utilizing the heuristic first introduced by
Baresi [7] (see also Sect. 3.7). The use of the heuristic might have marginally
affected our results, as it relies on the analysis of the Docker Compose file.
Therefore, a service could be identified at its insertion in the Docker Compose
file, which does not necessarily imply the start of its actual development. At most,
this threat could have introduced a lag in the TD timeseries w.r.t. the number
of microservice one (corresponding to the time elapsed from the insertion of a
microservice in the Docker Compose file, and the start of its actual develop-
ment). As the potential effects of this marginal threat were not noticeable in our
data analysis, we do not deem the threat considerably influenced our results. The
threat would at most imply a stronger correlation between microservice number
and TD than the one observed. Regarding the focus on the main development
branch of Cloud Native Geoserver (see Sect. 3.5), we note that the applica-
tion possesses other two branches, which are characterized by 2 and 48 commits
ahead, and 256 and 28 commits behind the master branch respectively. Given
the low number of commits in such branches w.r.t. the master branch (2/985 and
48/985), we do not deem that this research design choice could have drastically
influenced our results. To mitigate potential threats to construct validity due to
the design of the structured interview questions, we complemented the process
with follow-up questions whenever necessary, e.g., when more information was
required to completely understand answers. Additionally, the interviewee was
frequently asked if they wanted to include any additional information on the
studied topic that was not directly covered by the questions posed.

232 R. Verdecchia et al.

5.2 Internal Validity

To avoid potential confounding factors, we (i) discarded all failing builds, and
a commit associated with an incorrect date, (ii) manually scrutinized a set of
commits presenting anomalous TD values, (iii) conducted a rigorous statistical
analysis on the collected data. Regarding the qualitative analysis, to avoid sub-
jective biases during the data collection and analysis, three researchers took part
to the interview, and the relevant findings were jointly discussed before including
them in the paper.

5.3 External Validity

As any case study, we do not claim the complete generalizability of the
obtained results. While comparable results might be observed in software-
intensive systems of similar development context and characteristics as Cloud
Native GeoServer, this could also not be the case. To partially mitigate poten-
tial threats to external validity, we selected the case study a software project
developed in one of the most popular programming languages (Java), while also
ensuring the representativeness of the software project via a set of selection
criteria defined a priori (see also Sect. 3.4).

5.4 Reliability and Replication Package

If and to what extent the results of the study can be independently reproduced by
other researchers. With exception of the manual scrutiny conducted to analyze
the commits presenting the most anomalous TD values, the quantitative results
are completely based on the execution of mining and data analysis scripts. We
make all data, scripts, and settings available in a companion replication package7.
Given that such results are of purely quantitative nature, we deem the reliability
of such results as very high. To increase the reliability of the qualitative research
process used (see Sect. 3.9), we make the guiding interview slide deck available
for scrutiny in the replication package, and make extensive use of direct quotes
in the manuscript to avoid subjective misinterpretation of the data collected
through the interview.

6 Conclusion and Future Work

In this study, we present a preliminary case study investigating the evolution
of technical debt in microservice architectures. The investigation utilizes as case
study the application Cloud Native GeoServer, which comprises a total of 13
distinct microservices, 977 commits, and 38k NCLOC. The study is primarily
based on repository mining and source code analysis. The results show that TD

7 Replication package of this study: https://github.com/STLab-UniFI/
QUALIFIER-2023-TD-microservices-rep-pkg. Accessed 6th July 2023.

https://github.com/STLab-UniFI/QUALIFIER-2023-TD-microservices-rep-pkg
https://github.com/STLab-UniFI/QUALIFIER-2023-TD-microservices-rep-pkg

Technical Debt in Microservices: A Case Study 233

evolution displays a growing trend, mostly due to development innovation peri-
ods, followed by moments of TD stability, when no disruptive change is needed.
TD variation are independent of the number of microservices and development
activities considered in a commit. TD and number of microservices are cor-
related, and adding or removing a microservice has the same impact on TD
regardless the number of microservices already present.

Adhering to microservice architecture principles might keep technical debt
compartmentalized within microservices, and therefore make TD more manage-
able w.r.t. other types of architectures (e.g., monolithic ones). It is crucial for
developers to remain aware of the potential TD they may incur in, irrespective of
the quantity of microservices they modify or the nature of the development activ-
ity they undertake. An intuitively trivial change, such as the upgrade of a testing
framework, could have a massive cascading effect on the TD of a microservice-
based software-intensive system. While it is feasible to maintain a consistent
level of TD during the evolution of a microservice-based application, an increase
in technical debt may be inevitable as the software-intensive system grows in
size and complexity.

As a word of warning for both researchers and practitioners, through the
presented case study, we observe how TD metrics can be deceptive, as they
may not always provide a clear and complete picture of the TD present in a
software-intensive system. While conducting TD source code analyses it is there-
fore paramount to consider that (i) a variation in code TD may co-occur with
an opposite variation in another TD aspect, (ii) code analysis results should be
always complemented by qualitative knowledge (e.g., interviews or focus groups).

The leading developer however also emphasizes the importance of including
TD monitoring capabilities in the development pipeline to manage TD and avoid
significant consequences, e.g., flaky behaviors or crystallized architectures [39].
As articulated in the interview, the leading developer states:
“It [the quantitative analysis] was quite enlightening to me. I wanted to include
a static code analysis for a long time. And maybe it would have never happen
or it would have taken me way too long to address if I dind’t have this feedback
from you”.
The leading developer further reports that they are waiting for the project steer-
ing committee to integrate the repository with SonarCloud, and is currently
working lowering the identified TD. From a email exchange held after the inter-
view, we learn that the Cloud Native GeoServer repository underwent a con-
siderable refactoring, leading the TD measured via SonarQube to be close to
zero.

The presented case study has to be considered as a stepping stone for future
research on TD in microservice-based systems. Several facets which could provide
more information on the phenomenon are not considered in the study. As future
work, we plan to (i) study the individual contribution of each microservice to
the TD measured at system level, (ii) conduct a more in-depth analysis of “TD
hotspots”, (iii) utilize dedicated tools to measure other types of TD, e.g., by

234 R. Verdecchia et al.

combining different data sources [37] or focusing on ATD via the ATDx tool [30],
and (iv) extend the research to a multiple-case study.

Acknowledgments. We would like to express our uttermost gratitude to Gabriel
Roldan, leading developer of Cloud Native Geoserver, for his availability, insightful
feedback, and genuine interest in the research project.

Roberto Verdecchia would like to thank Curzio Checcucci for his lighthearted yet
insightful feedback on the data analysis process.

This work was partially supported by the European Union under the Italian
National Recovery and Resilience Plan (NRRP) of NextGenerationEU, partnership
on “Telecommunications of the Future” (PE0000001 - program “RESTART”).

References

1. Akaike, H.: Information theory and an extension of the maximum likelihood prin-
ciple. In: Parzen, E., Tanabe, K., Kitagawa, G. (eds.) Selected Papers of Hirotugu
Akaike, pp. 199–213. Springer, Cham (1998). https://doi.org/10.1007/978-1-4612-
1694-0 15

2. Aldrich Edbert, J., Jannat Oishwee, S., Karmakar, S., Codabux, Z., Verdecchia, R.:
Exploring technical debt in security questions on stack overflow. In: International
Symposium on Empirical Software Engineering and Measurement (2023)

3. Alves, N.S., Mendes, T.S., De Mendonça, M.G., Sṕınola, R.O., Shull, F., Seaman,
C.: Identification and management of technical debt: a systematic mapping study.
Inf. Softw. Technol. 70, 100–121 (2016)

4. Atchison, A., Berardi, C., Best, N., Stevens, E., Linstead, E.: A time series anal-
ysis of travistorrent builds: to everything there is a season. In: 2017 IEEE/ACM
14th International Conference on Mining Software Repositories, pp. 463–466. IEEE
(2017)

5. Avgeriou, P., Kruchten, P., Ozkaya, I., Seaman, C.: Managing technical debt in
software engineering (dagstuhl seminar 16162). Dagstuhl Reports 6 (2016)

6. Avgeriou, P.C., et al.: An overview and comparison of technical debt measurement
tools. IEEE Softw. 38(3), 61–71 (2020)

7. Baresi, L., Quattrocchi, G., Tamburri, D.A.: Microservice architecture practices
and experience: a focused look on docker configuration files. arXiv preprint:
2212.03107 (2022)

8. Basili, V.R., Caldiera, G., Rombach, D.: The goal question metric approach. In:
Encyclopedia of Software Engineering, pp. 528–532. Wiley (1994)

9. Bogner, J., Fritzsch, J., Wagner, S., Zimmermann, A.: Limiting technical debt with
maintainability assurance: an industry survey on used techniques and differences
with service-and microservice-based systems. In: Proceedings of the 2018 Interna-
tional Conference on Technical Debt, pp. 125–133 (2018)

10. Bogner, J., Fritzsch, J., Wagner, S., Zimmermann, A.: Assuring the evolvability
of microservices: insights into industry practices and challenges. In: 2019 IEEE
International Conference on Software Maintenance and Evolution, pp. 546–556.
IEEE (2019)

11. Bogner, J., Fritzsch, J., Wagner, S., Zimmermann, A.: Microservices in indus-
try: insights into technologies, characteristics, and software quality. In: 2019 IEEE
International Conference on Software Architecture Companion, pp. 187–195. IEEE
(2019)

https://doi.org/10.1007/978-1-4612-1694-0_15
https://doi.org/10.1007/978-1-4612-1694-0_15

Technical Debt in Microservices: A Case Study 235

12. Bogner, J., Wagner, S., Zimmermann, A.: Automatically measuring the maintain-
ability of service-and microservice-based systems: a literature review. In: Proceed-
ings of the 27th International Workshop on Software Measurement and 12th Inter-
national Conference on Software Process and Product Measurement, pp. 107–115
(2017)

13. Brinkmann, S.: Qualitative interviewing. Understanding Qualitative Rese (2013)
14. Cheung, Y.W., Lai, K.S.: Lag order and critical values of the augmented dickey-

fuller test. J. Bus. Econ. Stat. 13(3), 277–280 (1995)
15. Cleveland, R.B., Cleveland, W.S., McRae, J.E., Terpenning, I.: STL: a seasonal-

trend decomposition. J. Off. Stat. 6(1), 3–73 (1990)
16. De Toledo, S.S., Martini, A., Przybyszewska, A., Sjøberg, D.I.: Architectural tech-

nical debt in microservices: a case study in a large company. In: 2019 IEEE/ACM
International Conference on Technical Debt, pp. 78–87. IEEE (2019)

17. Di Francesco, P., Lago, P., Malavolta, I.: Architecting with microservices: a sys-
tematic mapping study. J. Syst. Softw. 150, 77–97 (2019)

18. Dickey, D.A., Fuller, W.A.: Distribution of the estimators for autoregressive time
series with a unit root. J. Am. Stat. Assoc. 74(366a), 427–431 (1979)

19. d’Aragona, D.A., Pecorelli, F., Baldassarre, M.T., Taibi, D., Lenarduzzi, V.: Tech-
nical debt diffuseness in the apache ecosystem: a differentiated replication. In: 2023
IEEE International Conference on Software Analysis, Evolution and Reengineering
(SANER), pp. 825–833. IEEE (2023)

20. Fontana, F.A., Pigazzini, I., Roveda, R., Tamburri, D., Zanoni, M., Di Nitto, E.:
ARCAN: a tool for architectural smells detection. In: 2017 IEEE International
Conference on Software Architecture Workshops, pp. 282–285. IEEE (2017)

21. Granger, C.W.: Investigating causal relations by econometric models and cross-
spectral methods. Econ. J. Econ. Soc. 424–438 (1969)

22. Kallio, H., Pietilä, A.M., Johnson, M., Kangasniemi, M.: Systematic methodolog-
ical review: developing a framework for a qualitative semi-structured interview
guide. J. Adv. Nurs. 72(12), 2954–2965 (2016)

23. Kovalenko, V., Palomba, F., Bacchelli, A.: Mining file histories: should we consider
branches? In: Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering, pp. 202–213 (2018)

24. Kozanidis, N., Verdecchia, R., Guzmán, E.: Asking about technical debt: charac-
teristics and automatic identification of technical debt questions on stack overflow.
In: Proceedings of the 16th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, pp. 45–56 (2022)

25. Lenarduzzi, V., Lomio, F., Saarimäki, N., Taibi, D.: Does migrating a monolithic
system to microservices decrease the technical debt? J. Syst. Softw. 169, 110710
(2020)

26. Letouzey, J.L.: The SQALE method for evaluating technical debt. In: 2012 Third
International Workshop on Managing Technical Debt., pp. 31–36. IEEE (2012)

27. Li, Z., Avgeriou, P., Liang, P.: A systematic mapping study on technical debt and
its management. J. Syst. Softw. 101, 193–220 (2015)

28. Malavolta, I., Verdecchia, R., Filipovic, B., Bruntink, M., Lago, P.: How maintain-
ability issues of android apps evolve. In: 2018 IEEE International Conference on
Software Maintenance and Evolution, pp. 334–344. IEEE (2018)

29. Oliver, D.G., Serovich, J.M., Mason, T.L.: Constraints and opportunities with
interview transcription: towards reflection in qualitative research. Soc. Forces
84(2), 1273–1289 (2005)

236 R. Verdecchia et al.

30. Ospina, S., Verdecchia, R., Malavolta, I., Lago, P.: ATDx: a tool for providing a
data-driven overview of architectural technical debt in software-intensive systems.
In: European Conference on Software Architecture (2021)

31. Pigazzini, I., Fontana, F.A., Lenarduzzi, V., Taibi, D.: Towards microservice smells
detection. In: International Conference on Technical Debt., Seoul, Republic of
Korea, p. 6. ACM (2020). https://doi.org/10.1145/3387906.3388625

32. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empir. Softw. Eng. 14, 131–164 (2009)

33. Saldaña, J.: The Coding Manual for Qualitative Researchers. Sage (2021)
34. Soldani, J., Tamburri, D.A., Van Den Heuvel, W.J.: The pains and gains of

microservices: a systematic grey literature review. J. Syst. Softw. 146, 215–232
(2018)

35. de Toledo, S.S., Martini, A., Sjøberg, D.I.: Identifying architectural technical debt,
principal, and interest in microservices: a multiple-case study. J. Syst. Softw. 177,
110968 (2021)

36. Vaismoradi, M., Turunen, H., Bondas, T.: Content analysis and thematic analysis:
implications for conducting a qualitative descriptive study. Nurs. Health Sci. 15(3),
398–405 (2013)

37. Verdecchia, R.: Architectural technical debt identification: moving forward. In:
2018 IEEE International Conference on Software Architecture Companion (ICSA-
C), pp. 43–44 (2018). https://doi.org/10.1109/ICSA-C.2018.00018

38. Verdecchia, R., Engström, E., Lago, P., Runeson, P., Song, Q.: Threats to validity
in software engineering research: a critical reflection. Inf. Softw. Technol. 164,
107329 (2023)

39. Verdecchia, R., Kruchten, P., Lago, P., Malavolta, I.: Building and evaluating a
theory of architectural technical debt in software-intensive systems. J. Syst. Softw.
176, 110925 (2021)

40. Verdecchia, R., Maggi, K., Scommegna, L., Vicario, E.: Tracing the footsteps of
technical debt in microservices: a preliminary case study. In: International Work-
shop on Quality in Software Architecture (2023)

41. Verdecchia, R., Malavolta, I., Lago, P.: Architectural technical debt identification:
the research landscape. In: Proceedings of the 2018 International Conference on
Technical Debt, pp. 11–20 (2018)

42. Verdecchia, R., Malavolta, I., Lago, P., Ozkaya, I.: Empirical evaluation of an archi-
tectural technical debt index in the context of the apache and Onap ecosystems.
PeerJ Comput. Sci. 8, e833 (2022)

43. Villa, A., Ocharan-Hernandez, J.O., Perez-Arriaga, J.C., Limon, X.: A systematic
mapping study on technical debt in microservices. In: 2022 10th International
Conference in Software Engineering Research and Innovation. IEEE (2022)

https://doi.org/10.1145/3387906.3388625
https://doi.org/10.1109/ICSA-C.2018.00018

TQPropRefiner: Interactive
Comprehension and Refinement

of Specifications on Transient Software
Quality Properties

Sebastian Frank1,2(B) , Julian Brott1 , Alireza Hakamian2 ,
and André van Hoorn1

1 University of Hamburg, Hamburg, Germany
{andre.van.hoorn,sebastian.frank}@uni-hamburg.de

2 University of Stuttgart, Stuttgart, Germany

Abstract. Microservice-based systems are exposed to transient behav-
ior caused, for example, by (frequent) deployments, failures, or self-
adaption. The potential complexity of transient behavior scenarios makes
specifying flawless transient behavior requirements challenging. Still, the
required approaches and tooling to comprehend transient behavior and
refine the requirements are lacking.

This paper aims to address this gap by providing a structured interac-
tive approach that assists software architects in comprehending transient
behavior and refining requirements. The prototypically implemented
TQPropRefiner allows specifying transient behavior requirements using
PSP. Then, TQPropRefiner uses runtime verification to evaluate require-
ment satisfaction on time-series data, e.g., from Chaos Experiments.
TQPropRefiner visualizes the system’s behavior and requirement sat-
isfaction to foster comprehension. Based on the gathered insights, users
can refine their requirements. In particular, TQPropRefiner currently
supports refining timing constraints and simple predicates. Finally, we
evaluated the feasibility and practical applicability of our early approach
in a qualitative user study with five industry experts. All participants
could interpret the results, and four solved the refinement task success-
fully. Despite currently limited support of PSP and refinement strategies,
the preliminary results indicate that the approach can facilitate under-
standing transient behavior requirements among software architects and
assist in the refinement process. Thus, our work is a first step toward
facilitating the comprehension of transient behavior and refinement of
requirements.

Keywords: Transient Behavior · Requirements · Comprehension ·
Refinement · Property Specification Patterns

1 Introduction

In the last decade, major software companies have tended to deploy large appli-
cations in the cloud as small (micro-)services and benefited from greater agility,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
B. Tekinerdoğan et al. (Eds.): ECSA 2023, LNCS 14590, pp. 237–254, 2024.
https://doi.org/10.1007/978-3-031-66326-0_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-66326-0_15&domain=pdf
http://orcid.org/0000-0002-3068-1172
http://orcid.org/0000-0002-6253-3908
http://orcid.org/0000-0001-9899-0062
http://orcid.org/0000-0003-2567-6077
https://doi.org/10.1007/978-3-031-66326-0_15

238 S. Frank et al.

reduced complexity, and more effective application scaling in cloud environ-
ments [27]. Due to their flexibility, microservice-based software systems are
suitable for operating under frequent changes, e.g., load peaks, autoscaling,
(re-)deployments, or failures. Changes in a software system usually temporarily
affect the quality properties of a software system, e.g., response times increase
due to a service failure. The term transient behavior denotes the system’s behav-
ior during the phase in which the system is not in a steady state. While it is
theoretically possible to minimize transient behavior, it is practically infeasible
as, for example, costly overprovisioning of resources would be necessary. Fur-
thermore, external and unexpected events like load peaks and service failures
can hardly be avoided. Thus, in practice, transient behavior is often accepted.

In an interview with experienced software engineers [4], we previously inves-
tigated whether transient behavior should be specified. Most experts stated it
makes sense to specify requirements regarding transient behavior for critical sys-
tems explicitly. In such cases, it is important to make quality requirements and
expectations regarding transient behavior explicit and to (in-)validate them [12].
For example, a too-long service recovery time may lead to customer frustration.
Furthermore, disproving the expectation of the reaction time of an autoscaler
can indicate severe problems in the system design and configuration.

However, flawlessly specifying transient behavior is challenging. This is due
to the complexity involved in the changes triggering transient behavior and the
dynamic nature of transient behavior. When eliciting resilience scenarios in pre-
vious work [16], we found that software architects were interested in validating
that their resilience mechanisms proved helpful when transient behavior occurs,
e.g., “autoscaling will be helpful”. One challenge is that specifying exact parame-
ter values involves a lot of uncertainty among software architects, i.e., they often
do not know whether their overall specification is feasible. Another challenge
is that user feedback must be considered to decide what transient behavior is
acceptable. Thus, learning from validating and refining the requirements is nec-
essary. Approaches like Chaos Engineering [2]—building hypotheses and exper-
imenting on the system to (in-)validate them—tackle this problem through an
iterative refinement process. However, they are unspecific in guiding compre-
hension and refinement with strategies and methods. Furthermore, as shown in
previous work [4], there is a general lack of proper tooling to address transient
behavior.

This paper presents our approach to comprehension of transient behavior and
refinement of transient behavior requirements, which is an elemental part of our
envisioned approach for continuous specification, verification, and refinement of
resilience scenarios [14]. Thus, the presented approach aims at software architects
of (business-)critical systems who want to increase confidence in their system’s
response to transient behavior. For single transient behavior occurrences of inter-
est, our approach aims to help software architects decide whether and to what
degree transient behavior requirements must be weakened or strengthened in
cases where the initial specification turns out to be flawed or is reconsidered in
the light of new information.

Refinement of Specifications on Transient Software Quality Properties 239

Transient Behavior
Requirement

(PSP)

Verify

Visualize

Refine

4

2

3

Specify

1

Fig. 1. Simplified overview of TQPropRefiner’s refinement process.

The general process of our approach is depicted in Fig. 1. As a formalism for
specifying requirements, we use PSP [1] to transform human-readable Structured
English Grammar (SEG) specifications into testable Metric Temporal Logic
(MTL) [23] formulas. TQPropRefiner—the early prototypical implementation
of our approach—guides software architects through the three steps of (i) speci-
fying transient behavior requirements using PSP, (ii) verifying the requirements
against runtime data using runtime verification [25], (iii) presenting the require-
ment satisfaction using visualizations, and (iv) refining the requirements by
altering time constraints or thresholds in simple predicates. Regarding refine-
ment, our approach assists in finding satisfaction thresholds for both satisfied
and unsatisfied requirements.

We conducted an expert user study with five industry participants to gather
early feedback on our approach and TQPropRefiner, despite limitations in the
supported PSP and refinement strategies. The participants had to solve two tasks
regarding comprehension and refinement capabilities of TQPropRefiner, answer
a questionnaire, and participate in an interview. The participants were able to
solve the tasks, and their answers indicate that our approach was easy to use.
We implemented several suggestions by the participants, e.g., alignment of the
shown visualizations and initial integration with monitoring systems. However,
further improvements are necessary for use in practice, e.g., closer integration
with monitoring systems and persistence of specified requirements. Furthermore,
the time constraint refinement needs more explanation.

In summary, the contributions of this paper comprise:

– An approach and tool (TQPropRefiner) that fosters comprehension of tran-
sient behavior to facilitate specification and refinement of transient behavior
requirements. We make TQPropRefiner publicly available [7].

– Our vision and initial concept of refining transient behavior requirements.
In particular, the implementation of time constraint and predicate threshold
refinement strategies.

– The evaluation of our approach regarding feasibility and practicability in an
expert user study. We provide the used documents and (anonymized) results
as part of the supplementary material [13].

240 S. Frank et al.

The remainder of this paper is structured as follows. Section 2 introduces the
foundations used in this work, i.e., transient behavior and PSP. Next, Sect. 3
discusses the most relevant related works. Section 4 introduces our concept and
the TQPropRefiner prototype, while Sect. 5 presents and discusses its evaluation
by an expert user study. Finally, Sect. 6 summarizes this work.

2 Background

We first introduce Transient Behavior (see Sect. 2.1), for which we aim to acquire
specifications. Then, we outline Property Specification Patterns (see Sect. 2.2),
which we use as a formalism for our specifications.

2.1 Transient Behavior

Microservice-based software systems are usually complex and interdependent.
Changes, e.g., failures, deployments, or self-adaptation, in one or more services
may cause a system to transition from one steady state to another. This shift of
states is described by the term transient behavior [5]. The concept of transient
behavior originates from the field of electrical engineering. Within the state-space
system model, there are two kinds of behavior: steady-state and transient. By
performing transient analysis, it is possible to gain insight into the time-varying
behavior of a system’s Quality of Service (QoS) [28].

Since transient behavior is not focused on particular quality attributes and
change types, it subsumes more specific concepts dealing with dynamic system
behavior, e.g., survivability [18], elasticity [19], and resilience [24]. The quality
of a system can be specified by quality requirements containing metrics such as
response times. To identify occurrences of transient behavior, the actual QoS
function of an underlying metric can be compared against the expected QoS [5].
Beck et al. [5] use Service-Level Objective (SLO) violations as indicators for
transient behavior.

2.2 Property Specification Patterns

Transferring software system requirements to mathematical formulas to evaluate
its quality can be challenging due to pragmatic barriers. To overcome this obsta-
cle, Dwyer et al. [11] developed Property Specification Patterns (PSP) to specify
temporal logic formulas for recurring requirement scenarios. A PSP represents
a generalized depiction of a frequently occurring requirement that governs the
allowable sequences of events and states in a finite-state model of a system.
Dwyer et al. [11] introduce the two pattern categories order patterns and occur-
rence patterns. Each pattern also has a scope, which defines an interval during
the program execution in which the pattern must remain valid [11]. The scope
is established by specifying the pattern’s starting and ending state/event. Five
different scopes exist: Global, Before, After, Between, and After-Until.

Refinement of Specifications on Transient Software Quality Properties 241

The initial PSP version is qualitative, i.e., it does not consider time con-
straints. To address this limitation, Konrad and Cheng [22] introduced Real-
Time Specification Patterns. They describe these patterns as quantitative as
they allow for quantitative reasoning about time. Such PSP can be mapped to
MTL, among others, as done in this work. Autili et al. [1] further extend and
align the available qualitative and quantitative patterns.

An example of an instance of the qualitative Response pattern is: Globally, if
{response time high} then in response {instance increase} eventually holds within
5 s. In this example, response time high and instance increase are predicates, i.e.,
they evaluate to either true or false at specific points in time. The 5 s is the time
constraint on how fast the autoscaler must react.

3 Related Work

To our knowledge, only a limited number of approaches and tools holistically
focus on specifying and comprehending transient behavior and refining transient
behavior requirements.

The Property Specification Pattern Wizard (PSPWizard) [1,26] aims to sim-
plify the selection and creation of PSP by providing a graphical user interface
to construct supported patterns. A mapping generator allows the translation of
the specified pattern into various target logics. The specification is not the core
contribution of our approach, so we mostly reuse the concept of the PSPWizard.
We further extend it by adding capabilities to specify predicates and visualize
the satisfaction of predicates for the imported runtime data.

The Transient Behavior Verifier (TBV) [15] is a tool that provides an Appli-
cation Programming Interface (API) for verifying transient behavior occurrences
specified as PSP or MTL on monitoring data. The requirement satisfaction is
visualized using a multi-line graph for the relevant metrics and colors to indicate
requirement satisfaction over time. In our approach, we reuse TBV for its verifi-
cation capabilities. Further, we reuse the visualization concept to show require-
ment satisfaction. However, we further extend the concept by also visualizing
the satisfaction of the predicates involved in the requirement.

Hoxha et al. [20] developed VISPEC, a graphical tool for eliciting MTL
requirements. VISPEC utilizes a graphical formalism automatically translated
to MTL to assist non-experts in creating and visualizing formal specifications.
Therefore, users can easily specify requirements without requiring training in
formal logic. In that regard, we share the comprehension and visualization of
temporal logic on runtime data. Nevertheless, VISPEC is focused on (initial)
specification, while we focus on refinement of requirements. Furthermore, VIS-
PEC uses an MTL-based graphical formalism in the specification process, while
we use PSP and internally translate to MTL. Finally, our approach has a stronger
focus on visualizing the satisfaction of requirements instead of supporting the
specification.

The TransVis [5] approach assists software architects and DevOps engineers
in specifying and evaluating transient behavior occurrences in their microservice

242 S. Frank et al.

Requirement
specified?

Import
Transient Behavior

Data Set

Specify Requirement

Verify Requirement
against Runtime Data

Requirement
Satisfied?

Software
Architect
Accepts

Software
Architect
Accepts

Apply Strengthen
Refinement Strategy

yes

no

yes

yes

no

no

Apply Weaken
Refinement Strategy

no

yes Visualize
Requirement
Satisfaction

Fig. 2. Flowchart of the approach

systems. The tool displays the architecture of the assessed system and visualizes
transient behavior in a graph. The user can interact with the tool via a chatbot,
allowing for specifying simple requirements. The TransVis approach is based on
the resilience triangle model from Bruneau et al. [8] in which transient behavior
is characterized by the three indicators: initial loss of quality, time to recovery,
and loss of resilience. Consequently, the specifications and visualizations are built
specifically for these metrics, and there is no refinement assistance beyond visual
comprehension. In contrast, we do not rely on the resilience triangle model and
focus on requirement refinement.

4 Approach and TQPropRefiner

First, we outline the general concept (see Sect. 4.1) of our approach before we
go into detail on the implemented refinement strategies (see Sect. 4.2). Next, we
sketch our approach’s intended usage and tool landscape and present how we
implemented our concept into TQPropRefiner (see Sect. 4.4). Note that, due to
space constraints, we only present the final version of the approach that incorpo-
rates improvements suggested by participants of the qualitative user study (see
Sect. 5).

4.1 Concept

The approach presented in the following is designed to assist software archi-
tects in comprehending and refining quality requirements in the context of tran-
sient behavior occurrences. Our underlying assumption is that transient behavior
occurrences have been successfully identified, and data for a specified instance
of transient behavior can be provided. Thus, our approach does not provide
support for identifying transient behavior occurrences beyond visual inspection.

Our general approach is depicted in Fig. 2. First, data from a detected tran-
sient behavior occurrence has to be imported. If not already available, an initial
transient behavior requirement has to be specified. We use PSP as a formalism
for these requirements since they are understandable to humans but also formal
enough to be testable [10]. This property of TQPropRefiner is exploited in the

Refinement of Specifications on Transient Software Quality Properties 243

next step, where we use runtime verification [25] to determine the satisfaction
of (parts of) the requirement. Next, we visualize the runtime data and require-
ment satisfaction. Thus, software architects can easily decide whether the overall
requirement is satisfied. Further, the software architect can consider the addi-
tional information to decide whether changes to the requirement are necessary,
i.e., either because the specified requirement did not reflect the initial inten-
tion or new insights changed the expectation. A satisfied requirement can be
strengthened to reflect new confidence in the system’s capabilities. Vice versa,
an unsatisfied requirement can be weakened to reflect the insight that the system
behavior was actually good enough.

4.2 Refinement Strategies

We introduce the concept of refinement strategies to transform a requirement
into a refined one. Besides the actual transformation, a refinement strategy has
the properties (i) type, (ii) target, and (iii) assistance. The type describes whether
the strategy aims to strengthen or weaken (or both) a requirement. The target
specifies which part of the PSP the transformation affects, i.e., the overall pat-
tern, scope, predicate, or time bound. Finally, assistance describes whether the
strategy actively assists the software architect in making a decision or whether
it just shows the software architect the effects of already applied decisions. In
this work, we focus on active assistance and implemented two active refinement
strategies, which we aim to extend in future work:

– RS1: Compute Satisfying Time Constraint
(type: weaken/strengthen, target : time bound, assistance: active)
The approach computes the threshold for the time bound so that the overall
pattern is only just satisfied. Depending on whether the pattern was satis-
fied before, the specification is weakened or strengthened by applying the
suggestion.

– RS2: Test Predicate Threshold Values
(type: weaken/strengthen, target : predicate, assistance: active)
For a simple predicate that involves a static threshold, e.g., response time
lesser than 100 ms, the approach evaluates the overall pattern satisfaction for
all the available values of the predicate thresholds. The results are presented
to the user, who can then select a value and, by doing so, weaken or strengthen
the specification.

4.3 Envisioned Usage

TQPropRefiner is intended to be part of a process for continuous specification,
verification, and refinement of resilience scenarios focusing on transient behavior
as described in previous work [14]. This process is particularly useful in settings
where software architects are insecure regarding the behavior and capabilities
of their system regarding transient behavior. During experimentation, they can
gather feedback and knowledge reflected by the increased quantity and quality

244 S. Frank et al.

Software Architect Users

Time-Series
DatabaseTQPropRefiner System

2.2 : execute test(s)

Scenario
Repository

Specification
Editor

2 : create PSP specification

1 * : use

2.1 :
store

specifications

2.3 : collect test data

3.1 :
provide

specification
& test metadata

3 : select
test case

3.2 :
collect

test data

1.1 :
provide

monitoring
data

5 : refine specification
4 : collect user feedback

5.1 :
update

specification

Fig. 3. Communication diagram of the envisioned technical landscape and usage

of scenarios. In our case, quality refers to the confidence of the software architect
that a specified scenario makes sense. TQPropRefiner specifically aims to help
software architects gain knowledge and reflect it in the specification through
refinement strategies. Figure 3 depicts a simplified perspective on the role of
TQPropRefiner as part of this vision and its interactions with users and other
tools in practical settings.

We assume the system under test is instrumented and monitored so that
monitoring data can be provided to state-of-the-art monitoring systems, e.g.,
Prometheus1. In previous works [4,16], we identified software architects as the
ideal users of our approach since they possess knowledge about the system
domain and system’s usage as well as the applied software architecture and
implemented resilience mechanisms. Therefore, they are most capable of identi-
fying and specifying a relevant stimulus that leads to transient behavior and the
intended response of the system, which both can be expressed using PSP, e.g.,
through specification editors as the PSPWizard [26]. The stimulus and response
are the essential parts of quality scenarios as described by Bass et al. [3]. The
software architects can then persist the initial scenarios in a scenario repository.
Since a stimulus is specified, it can be applied to the system as part of resilience
tests, and the scenario repository can collect the monitoring data associated
with the tests. Note that other methods can be used instead of resilience tests
at runtime to gather test data as long as the data is persisted in a time-series
database by the monitoring system.

Using the scenario repository, the software architect can select a test case of
interest for a scenario. The software architect can utilize scenario satisfaction
and visualization approaches, e.g., Grafana dashboards2, to decide whether a
scenario and test case are interesting enough to enter the refinement phase. The
specification and test metadata are then sent to TQPropRefiner, which collects
the required monitoring data from the time-series database. Currently, TQProp-
Refiner contains a prototypical implementation for collecting the monitoring
data from a Prometheus database. Before and during the refinement process,

1 https://prometheus.io/.
2 https://grafana.com/.

https://prometheus.io/
https://grafana.com/

Refinement of Specifications on Transient Software Quality Properties 245

the software architect is assumed to collect user feedback as the basis for the
refinement decisions, particularly whether specifications or the system must be
modified. When the software architect applies refinement strategies, TQProp-
Refiner has to update the specification at the scenario repository to persist the
newly gained knowledge.

Note that to allow an early evaluation of the approach, the first version of
TQPropRefiner is deliberately designed to be useable as a standalone tool, i.e.,
without requiring external tools like the specification editor, scenario reposi-
tory, or time-series database. However, in future work, we aim to incrementally
integrate the approach into the described process and tool landscape.

4.4 TQPropRefiner

Figure 4 shows the TQPropRefiner prototype in a state where (1) a data set (see
DS2 in Sect. 5) has been imported, (2) the Response PSP has been selected, and
(3) an initial requirement (see T2 in Sect. 5) has been entered. The tool guides
the software architect through the three-step process of importing monitoring
data, selecting a PSP, and specifying & refining the requirement. Each step can
be accessed via the stepper component (see Fig. 4 (A)).

Data Import. The first step is to import a Comma-separated values (CSV) file
containing time series data of monitored metrics, e.g., from a chaos experiment.
Alternatively, the user can retrieve monitoring data directly from a Prometheus
database by specifying the time interval of interest. The imported data is dis-
played in a table where each row represents the monitored data for each time
unit, and the columns show the metrics.

Specification. In step two, the software architect is asked to select a PSP as
starting point for the initial specification. The selection is based on the pattern
hierarchy introduced by Dwyer et al. [11] and the PSPWizard [26]. The software
architect defines a scope, chooses a category (see Sect. 2.2), and finally picks
a PSP. To provide additional context, the selected pattern is presented in the
SEG as described by Autili et al. [1] and represented in a target logic of choice.
However, only MTL is currently supported, and the pattern catalog is limited
to three pattern variants: The Response pattern with the Global scope, and
the Universality and Absence patterns with the After scope. We plan to add
additional target logics and extend the supported patterns in the future.

The final step involves specifying the initial requirement and its refinement,
as shown in Fig. 4. To provide an intuitive specification process, the selected
pattern is displayed as a SEG (see Fig. 4 (C)). Each predicate of the pattern can
be specified individually (see Fig. 4 (C2) & (C4)). A predicate is specified by
providing (1) a meaningful name, (2) selecting a measurement source (metric),
which is populated from the imported data set, (3) selecting an operator, and
(4) specifying a numeric comparison value. Currently, TQPropRefiner supports

246 S. Frank et al.

A

B

C1

2

3

4

5

Fig. 4. TQPropRefiner showing (A) the step selection, (B) the pattern evaluation
graph, and (C) the requirement specification & refinement

the same operators as TBV [15], which has to interpret these inputs. The sup-
ported operators contain basic relational operators (<,≤,=,≥, >) and (strict)
upward and downward trends. While currently limited by the available operators
provided by TBV, we plan to further extend the supported operators to reflect
more complex and realistic use cases.

Comprehension. For verifying the PSP against the provided data set,
TQPropRefiner uses the Transient Behavior Verifier [15]. We host an instance
and access it via its API. The overall evaluation of the pattern is displayed in the
graph at the top (see Fig. 4 (B)). An all-green graph indicates the satisfaction
of the entered requirement, while a red segment marks the moment the require-
ment is violated. The pattern evaluation result is also visualized by a green or
red rectangle around the pattern (see Fig. 4 (C)).

The predicates are individually verified against the provided data set, and
the results are visualized in graphs. The time is represented on the X-axes, and
the Y-axes represent the metrics. A selected metric is displayed in a black line
chart, and the comparison value is a blue horizontal line. The time-dependent
evaluation of the predicate is visualized by green segments for intervals the pred-

Refinement of Specifications on Transient Software Quality Properties 247

icate is satisfied and red segments for unsatisfied intervals. In Fig. 4 (C4), the
specification of the instance increase predicate is shown, which is defined as
instance count is strictly increasing. The time-dependent evaluation of the pred-
icate is visualized to the right in the graph. As specified, the interval is mostly
marked red, while the point in time the instance count is increased to three is
marked green.

Refinement. To refine the pattern specification, the software architect can
tweak its predicates. TQPropRefiner provides the passive refinement strategy
of updating the visualization for the selected predicate and the overall pattern.
This aims to facilitate a better comprehension of how changing one or more
parameters affects the satisfaction of (parts of) the requirement.

For specifying and refining the time constraints, TQPropRefiner provides the
implementation of two active refinement strategies (see gear symbol in Fig. 4 (C2)
& (C5)). The tool performs a binary search based on the available predicate spec-
ifications to test potential time constraints. The resulting time-dependent verifi-
cation result is displayed to the user showing for which time constraint intervals
the pattern is satisfied following the same color coding we use for predicates. For
predicates with relational operators, the tool can evaluate the pattern satisfac-
tion for all comparison values between the minimum and maximum values of the
dataset. The tool then displays all tested values and the corresponding evalua-
tion results indicated by red or green colors. The user can then click on a value
to set it as the comparison value. Currently, these are the only two implemented
refinement strategies. However, we plan to add more sophisticated strategies in
future versions of TQPropRefiner, particularly ones that simultaneously modify
multiple predicates.

Implementation and Technologies. TQPropRefiner has been implemented
using the Angular3 framework in conjunction with the Angular Material UI com-
ponent library. Our prototype sends requests to an instance of the TBV [15] tool
in order to verify the PSP specifications. The code for the prototype is publicly
available [7]. The modeling of PSP has been adopted from the PSPWizard [26].
We migrated the code of selected patterns to TypeScript classes, as the PSP-
Wizard is implemented in Java.

5 Evaluation

To evaluate our approach’s comprehension and refinement capabilities and prac-
tical applicability, we conducted a qualitative user study with five industry
experts. We provided the experts with two tasks that needed to be solved using
the prototype and asked them to evaluate their experience afterward. We inves-
tigate the following research questions:

3 https://angular.io/.

https://angular.io/

248 S. Frank et al.

– RQ1: To what extent can our approach facilitate comprehension of transient
behavior occurrences among practitioners?

– RQ2: To what extent can our approach assist practitioners in refining require-
ments?

– RQ3: How can the approach be improved to assist practitioners in addressing
practical challenges?

In the following, the provide details on our method, the provided tasks, the study
execution, the results, and the discussion of the results and our method.

5.1 Method

We decided on a qualitative evaluation for two reasons. Firstly, the research
questions focus on usability and improving an early concept and prototype. We
argue that this can be best achieved by promoting a dialog with the study
participants. This perception is supported by Greenberg & Buxton [17], who
suggest that quantitative study designs could be detrimental in evaluating new
ideas, particularly during prototype design, as they may limit expert feedback.
Secondly, the complexity and the specialization of the covered topic lead to the
practical barrier of finding enough participants to conduct a representative study.

We designed the expert user study not to exceed 1 h and conducted it with
each participant individually. In total, we gathered five participants, three work-
ing in a software company from the taxes domain and two working in a consult-
ing and development company focusing on Application Performance Monitoring
(APM). The participation did not demand any prior preparation.

Note that Sect. 4 describes the state of the prototype after the evaluation.
The version used in the evaluation was less advanced, in particular, it only
supported refinement strategy RS1 and only relational operators in predicates.
The evaluation results led to further improvements in the tooling.

5.2 Tasks

To solve the tasks, the participants received access to a hosted version of
TQPropRefiner. We also provided two CSV files containing time-series data
from two chaos experiments conducted by Frank et al. [15] with Chaos Toolkit
(CTK) [9]. The first data set (DS1) provided originates from Chaos Experiment 1,
in which an injected fault caused a service instance to crash, leading to a response
times increase. The second data set (DS2) is from Chaos Experiment 2, in which
the workload suddenly increases, and the implemented autoscaler is required to
spawn an additional service instance.

Each task demands participants to go through four steps using TQProp-
Refiner. Firstly, each participant was asked to select a specific data set from a
chaos experiment. Secondly, a suggested PSP from the pattern catalog needed to
be selected. Thirdly, a given (initial) specification had to be entered by specifying
the predicates of the selected PSP. Fourthly, a question on the requirement
needed to be answered. Answering the questions may require the refinement of

Refinement of Specifications on Transient Software Quality Properties 249

Table 1. Context and SLO, initial requirement, and question for the two tasks

Task 1 (T1): Service Failure Task 2 (T2): Load Peak

Data Set 1 (DS1) Data Set 2 (DS2)

– According to the SLO, response times may not
exceed 150 time units
– In the exceptional case of only 1 service being
available, a response time of up to 400 time units
is tolerated
– In the experiment, 1 of in total 2 service
instances has been terminated

– Response times may not exceed 100 time units.
– In case the system is unable to satisfy the per-
formance requirement, the number of instances
should be increased
– In the experiment, due to a load peak, service
instances are scaled from 2 to 3

After {instances are smaller than 2}, it is never
the case that {response times exceed 400 time
units}.

Globally, if {response times exceed 100 time
units} then in response {the instance count
increases to 3}.

Is the requirement fulfilled? How long did the system take to scale to 3
service instances?

the initial specification. For each task, the participants have been provided with
context information containing (i) the SLO of the underlying system defined by
stakeholders, (ii) an initial specification, and (iii) a question as shown in Table 1.

We designed Task 1 (T1) to evaluate to which degree participants are able
to enter a given requirement specification and correctly interpret the verifica-
tion result without any necessary refinement. Thus, T1 is designed to address
RQ1. Task 2 (T2) aims to evaluate to which degree participants can refine a
given specification to examine a related requirement question. The answer to
this question had to be derived from refining the time constraint of the selected
specification. Therefore, T2 addresses RQ1 and RQ2. To address RQ3, we con-
ducted an interview with the participant to discuss potential improvements and
required developments for practical use.

5.3 Execution

We conducted the evaluation online, with participants sharing their screens dur-
ing the entire study. At the beginning of the session, we explained the study
procedure. Afterward, we provided a link to a Google Form containing all infor-
mation necessary for the study participation. This included seven questions on
the participants’ background knowledge, the two tasks to solve using TQProp-
Refiner, and 20 questions. The study host was present to answer potential ques-
tions from participants but did not actively intervene while the participants were
going through the information on the Google Form.

After solving the given tasks, we asked each participant to evaluate their
experience concerning feasibility, usability, practical applicability, and potential
improvements. To evaluate the prototype’s feasibility, we asked the participants
to rate their interaction with the tool on a Likert scale (one to five, one: strongly
disagree; five: strongly agree; see Fig. 5). We based our useability questions on
the System Usability Scale (SUS) [6] method. Finally, we gathered practical

250 S. Frank et al.

0

1

2

3

4

1 2 3 4 5

of

 p
ar

ti
ci

pa
nt

s

(disagree) (agree)

(a) ... easy to interpret the initial eval-
uation of a single predicate.

0

1

2

3

4

1 2 3 4 5

of

 p
ar

ti
ci

pa
nt

s

(disagree) (agree)

(b) ... easy to interpret the initial prop-
erty evaluation.

0

1

2

3

4

1 2 3 4 5

of

 p
ar

ti
ci

pa
nt

s

(disagree) (agree)

(c) ...easy to refine single predicate.

0

1

2

3

4

1 2 3 4 5

of

 p
ar

ti
ci

pa
nt

s

(disagree) (agree)

(d) ... easy to refine the property.

Fig. 5. Answers by the study participants for selected questions. It was...

applicability evaluation and potential improvement suggestions using qualitative
questions as well as a discussion between the participant and the session host.

5.4 Results

RQ1. No participant encountered problems entering the given specification into
TQPropRefiner. Interpreting the evaluation result of a single predicate as well
as the overall property was perceived as easy by all participants, who rated the
comprehensibility for both with a median value of 4 out of 5. Additionally, all
five participants were able to solve the tasks correctly.

During the specification process, we observed that specifying a time con-
straint was not intuitive for some participants and, therefore, may require addi-
tional explanation within the tooling. Consequently, the answers to the ten SUS
questions indicate that the tool overall was generally perceived as easy to use
with a low entry barrier.

RQ2. All participants perceived the refinement of a single predicate as simple
and rated it as easy with a 5 out of 5 median value. Refining the overall property
was perceived as more difficult but was still rated with a median value of 4 out
of 5. As part of the qualitative evaluation, we asked the participants whether

Refinement of Specifications on Transient Software Quality Properties 251

they would have been able to solve the given task without TQPropRefiner. Two
participants answered yes (they would just use the data visualization and manual
inspection), two with no, and one with maybe. Also according to the results, T2

has been solved correctly by four of the five participants. The wrong answer was
due to the challenges of correctly interpreting the time constraint in the context
of the overall pattern. However, the existence and the functionality of the tool’s
time constraint refinement feature were not intuitive to the participants, i.e., they
did not understand the feature solely by seeing the gear icon. The refinement
needs better presentation and explanation in future versions of TQPropRefiner.

RQ3. In open feedback, participants stated various ideas and requirements for
potential production use of TQPropRefiner. Multiple participants pointed out
that comprehensibility could be increased by horizontally aligning the predicate
graphs. In the used version of TQPropRefiner, the two predicate graphs were not
aligned, which made identifying dependencies between various metrics difficult.
As depicted in Fig. 4 (C2) & (C4), we have aligned the graphs and provided a
blue line that highlights the same point in time for all predicate graphs.

One participant elaborated that importing time series data as CSV files would
be infeasible in production environments. Instead, an API integration of standard
monitoring systems for trace import is required. Based on the suggestion, we
have implemented a database connection that obtains monitoring data directly
from a Prometheus database. For the question of whether the participants would
frequently use the tool, the answers varied. Some participants agreed, but others
pointed out that this depends on the precondition that they face tasks in their
jobs where a tool like this would be beneficial.

Finally, participants provided some general potential improvements, e.g.,
adding a feature to save and load specifications, adding support for time units,
providing additional explanations on the color coding, and improving the tool’s
responsive design.

5.5 Discussion

The findings of RQ1 and RQ2 indicate that our approach is able to assist practi-
tioners in comprehending and refining transient behavior requirements. The par-
ticipants were able to enter a given specification, interpret verification results,
and refine requirements. The tool’s usability was perceived positively, and has a
low entry barrier. This is supported by the fact that the participants (mostly)
solved the given tasks using the tool. Still, our approach must be improved,
extended, and evaluated in a more exhaustive user study and applied to more
complex use cases. To avoid the influence of useability issues on the result of
potential quantitative evaluations in the future, we also have to improve features
that are considered not intuitive by the participants, i.e., the time refinement
and the color coding.

252 S. Frank et al.

5.6 Threats to Validity

As a result of the evaluation, we have identified three validity concerns. Firstly,
the group of participants was small and lacked heterogeneity. The five par-
ticipants were employed at only two companies; some had similar expertise.
Including software engineers without an APM background might have negatively
impacted the results. Nevertheless, the number of (heterogenous) participants in
qualitative studies is less critical. Studies with low (1 to 5) numbers of partici-
pants are not uncommon, according to Isenberg et al. [21].

Secondly, the tasks were designed specifically for the data sets we used for
the evaluation. Since this data originates from academic experiments, they are
not representative of the scenarios practitioners face in their production envi-
ronments. Despite these concerns, we assume that the qualitative feedback we
have received will be a first step in extending our early-stage prototype toward
handling real-world challenges in the future.

Thirdly, some participants stated they could have solved the given tasks with-
out TQPropRefiner. Thus, we must thoroughly investigate whether the compre-
hension and refinement of the requirement were facilitated due to using the tool,
e.g., by comparing solutions obtained with and without TQPropRefiner.

6 Conclusion

This paper introduced our approach and tool TQPropRefiner for supporting
software architects in comprehending transient behavior and refining require-
ments. In an expert user study, the participants were able to solve two tasks and
confirmed the ease of use—providing evidence that our approach is a valuable
step toward the interactive refinement of transient behavior requirements.

In future work, we aim to significantly extend the supported PSP, add sup-
port for more sophisticated predicates, and add more refinement strategies. In
particular, we plan to support composed predicates and predicates on time inter-
vals. We also plan to further integrate TQPropRefiner into our process for spec-
ifying, verifying, and refining resilience scenarios. Further, we aim to evaluate
the approach in more realistic use cases and make the necessary improvements
suggested by the participants, e.g., further improve monitoring integration and
making the refinement features more intuitive to the users.

Acknowledgment. The authors thank Marvin Taube and Alexander Baur for their
contributions to TQPropRefiner and the German Federal Ministry of Education and
Research (dqualizer FKZ: 01IS22007B; Software Campus 2.0, Microproject: DiSpel,
FKZ: 01IS17051) for supporting this work. The work was conducted in the context of
the SPEC RG DevOps Performance Working Group.

References

1. Autili, M., Grunske, L., Lumpe, M., Pelliccione, P., Tang, A.: Aligning qualita-
tive, real-time, and probabilistic property specification patterns using a structured
English grammar. IEEE Trans. Software Eng. 41(7), 620–638 (2015)

Refinement of Specifications on Transient Software Quality Properties 253

2. Basiri, A., et al.: Chaos engineering. IEEE Software 33, 1–1 (2016)
3. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 4 edn.

Addison-Wesley Professional (2021)
4. Beck, S., Frank, S., Hakamian, A., van Hoorn, A.: How is transient behavior

addressed in practice? insights from a series of expert interviews. In: Companion of
the 2022 ACM/SPEC International Conference on Performance Engineering, pp.
105–112 (2022)

5. Beck, S., Frank, S., Hakamian, A., Merino, L., van Hoorn, A.: Transvis: using visu-
alizations and chatbots for supporting transient behavior in microservice systems.
In: 2021 Working Conference on Software Visualization (VISSOFT), pp. 65–75.
IEEE (2021)

6. Brooke, J.: SUS-a quick and dirty usability scale. Usability Eval. Ind. 189(194),
4–7 (1996)

7. Brott, J.: Github project (2023). https://github.com/Cambio-Project/transient-
behavior-requirement-refiner

8. Bruneau, M., et al.: A framework to quantitatively assess and enhance the seismic
resilience of communities. Earthq. Spectra 19(4), 733–752 (2003)

9. Chaos Toolkit Team: Chaos Toolkit (2023). https://chaostoolkit.org
10. Czepa, C., Zdun, U.: On the understandability of temporal properties formalized

in linear temporal logic, property specification patterns and event processing lan-
guage. IEEE Trans. Software Eng. 46(1), 100–112 (2018)

11. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Property specification patterns for
finite-state verification. In: Proceedings of the Second Workshop on Formal Meth-
ods in Software Practice, pp. 7–15 (1998)

12. Eckhardt, J., Vogelsang, A., Fernández, D.M.: Are “non-functional” requirements
really non-functional? an investigation of non-functional requirements in practice.
In: Proceedings of the 38th International Conference on Software Engineering, pp.
832–842 (2016)

13. Frank, S., Brott, J., Hakamian, A., van Hoorn, A.: Supplementary material (2023).
https://doi.org/10.5281/zenodo.8125612

14. Frank, S., Hakamian, A., Wagner, L., Von Kistowski, J., Van Hoorn, A.: Towards
continuous and data-driven specification and verification of resilience scenarios. In:
2022 IEEE International Symposium on Software Reliability Engineering Work-
shops (ISSREW), pp. 136–137. IEEE (2022)

15. Frank, S., Hakamian, A., Zahariev, D., van Hoorn, A.: Verifying transient behav-
ior specifications in chaos engineering using metric temporal logic and property
specification patterns. In: Companion of the 2023 ACM/SPEC International Con-
ference on Performance Engineering. ICPE ’23 Companion, New York, NY, USA,
pp. 319–326. Association for Computing Machinery (2023)

16. Frank, S., Hakamian, M.A., Wagner, L., Kesim, D., von Kistowski, J., van Hoorn,
A.: Scenario-based resilience evaluation and improvement of microservice architec-
tures: an experience report. In: ECSA (Companion) (2021)

17. Greenberg, S., Buxton, B.: Usability evaluation considered harmful (some of the
time). In: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pp. 111–120 (2008)

18. Heegaard, P.E., Trivedi, K.S.: Network survivability modeling. Comput. Netw.
53(8), 1215–1234 (2009)

19. Herbst, N.R., Kounev, S., Reussner, R.: Elasticity in cloud computing: what it
is, and what it is not. In: 10th international conference on autonomic computing
(ICAC 13), pp. 23–27 (2013)

https://github.com/Cambio-Project/transient-behavior-requirement-refiner
https://github.com/Cambio-Project/transient-behavior-requirement-refiner
https://chaostoolkit.org
https://doi.org/10.5281/zenodo.8125612

254 S. Frank et al.

20. Hoxha, B., Mavridis, N., Fainekos, G.: Vispec: A graphical tool for elicitation of
MTL requirements. In: 2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 3486–3492. IEEE (2015)

21. Isenberg, T., Isenberg, P., Chen, J., Sedlmair, M., Möller, T.: A systematic review
on the practice of evaluating visualization. IEEE Trans. Visual Comput. Graphics
19(12), 2818–2827 (2013)

22. Konrad, S., Cheng, B.H.: Real-time specification patterns. In: Proceedings of the
27th International Conference on Software Engineering, pp. 372–381 (2005)

23. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-time
systems 2(4), 255–299 (1990)

24. Laprie, J.C.: From dependability to resilience. In: 38th IEEE/IFIP International
Conference on Dependable Systems and Networks, pp. G8–G9 (2008)

25. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Logic Alge-
braic Program. 78(5), 293–303 (2009)

26. Lumpe, M., Meedeniya, I., Grunske, L.: Pspwizard: machine-assisted definition of
temporal logical properties with specification patterns. In: Proceedings of the 19th
ACM SIGSOFT Symposium and the 13th European Conference on Foundations
of Software Engineering, pp. 468–471 (2011)

27. Villamizar, M., et al.: Evaluating the monolithic and the microservice architec-
ture pattern to deploy web applications in the cloud. In: 2015 10th Computing
Colombian Conference (10CCC), pp. 583–590. IEEE (2015)

28. Wang, C.Y., Logothetis, D., Trivedi, K.S., Viniotis, I.: Transient behavior of ATM
networks under overloads. In: Proceedings of IEEE INFOCOM’96. Conference on
Computer Communications, vol. 3, pp. 978–985. IEEE (1996)

TwinArch

Architecture for Digital Twin-Based
Reinforcement Learning Optimization

of Cyber-Physical Systems

Elias Modrakowski1(B) , Niklas Braun2, Mehrnoush Hajnorouzi1 ,
Andreas Eich3 , Narges Javaheri4, Richard Doornbos5, Sebastian Moritz6 ,

Jan-Willem Bikker7, and Rutger van Beek7

1 Institute of Systems Engineering for Future Mobility, German Aerospace Center
(DLR e.V.), Oldenburg, Germany

elias.modrakowski@dlr.de
2 AVL Deutschland GmbH, Karlsruhe, Germany

3 Liangdao GmbH, Munich, Germany
4 Thermo Fisher Scientific, Eindhoven, The Netherlands

5 TNO-ESI, Eindhoven, The Netherlands
6 TrianGraphics, Berlin, Germany

7 CQM, Eindhoven, The Netherlands

Abstract. The optimization of complex cyber-physical systems is a cru-
cial task for their correct functioning, usability, and commercial viability.
Due to their complexity, scale and resource intensiveness, conventional
manual optimization is infeasible in many instances. We investigate the
combination of the Digital Twin paradigm and Reinforcement Learn-
ing framework to address the long response times, limited availability of
data, and the intractability of such systems. Here, the Digital Twin func-
tions as the training environment in different development phases of the
optimization. In this position paper we showcase our ongoing research
on developing a reference architecture of a Digital Twin-Artificial Intel-
ligence optimization system. This includes presenting the development
process of the optimization system in terms of phases, an architecture
from four viewpoints and an exemplary implementation.

Keywords: Digital Twin · Reinforcement Learning · System
Optimization · Cyber-Physical System · Reference Architecture ·
System Architecture · Training Data Generation

The research is carried out as part of the ITEA4 20216 ASIMOV project. The ASI-
MOV activities are supported by the Netherlands Organization for Applied Scientific
Research TNO and the Dutch Ministry of Economic Affairs and Climate (project num-
ber: AI211006). This research is also partially funded by the German Federal Ministry
of Education and Research (BMBF) within the project ASIMOV-D under grant agree-
ment No. 01IS21022B [AVL], 01IS21022D [Liangdao], 01IS21022F [TrianGraphics] and
01IS21022G [DLR] based on a decision of the German Bundestag.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
B. Tekinerdoğan et al. (Eds.): ECSA 2023, LNCS 14590, pp. 257–271, 2024.
https://doi.org/10.1007/978-3-031-66326-0_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-66326-0_16&domain=pdf
http://orcid.org/0009-0006-0305-7848
http://orcid.org/0009-0007-1656-5670
http://orcid.org/0000-0002-0828-9385
http://orcid.org/0009-0006-0344-6253
https://doi.org/10.1007/978-3-031-66326-0_16

258 E. Modrakowski et al.

1 Introduction

Complex high-tech Cyber-Physical Systems (CPSs) often have an unattainable
scale (e.g., number of controls, settings, and usage scenarios) with limited avail-
ability for tests combined with high costs. The optimization in terms of adjust-
ment of their configuration for proper functionality, usability, and commercial
viability is required. However, achieving optimization objectives, due to indirect
and long-term materializing optimization goals or complex high-dimensional sys-
tem states, usually is challenging for conventional automated methods. Conse-
quently, manual intervention becomes necessary which demands experts to spend
valuable time and resources.

Typically, this process is slow, costly, and inexperienced personnel may inad-
vertently place the CPS in a non-optimal state, or disrupt the system. One
solution to these problems is to determine optimal system settings by the use
of Artificial Intelligence (AI), or more precisely, Reinforcement Learning (RL)
techniques [31] which would yield these settings from system-generated data [7].
However, RL is known for demanding large amounts of training data making it
incapable of being parameterized using the high-tech CPSs directly and therefore
models and simulations are necessary for data generation [18].

To illustrate the challenge, let us assume a robot arm in a factory with a PID-
controller regulating one of the actuators. In this case, the RL optimizes the CPS,
i.e., the robot arm, by adjusting controller’s parameters, guided by higher level
objectives such as precise positioning of the robot arm’s attachment or minimiz-
ing the failure rates on factory level. A human operator would need to adjust
these parameters for every robot arm commissioned (as they all differ slightly
from each other) and readjust them over time (aging of the machinery, chang-
ing of the attachment or manufacturing product, etc.). New controller settings
may be suggested by the optimization AI and tested in simulation to minimize
the downtime of the robot arm. While this example is simple, it showcases the
potential of the idea as these optimizations may be done in an automated way.

In this position paper, we propose an approach of optimizing CPSs that
incorporates two technologies; (i) Digital Twin (DT) to mitigate long response
times and limited availability of CPS; (ii) RL to address complex systems opti-
mization. The expected result is a setup that performs the optimization of a
CPS quicker, safer, and less expensive compared to a human. More concretely,
we address the question: How does an architecture look like that leverages RL
training data generation using DT? This research is unique by outlining the key
factors on the DT side necessary for RL training throughout a CPS’s life cycle
in form of a reference architecture. It is directed to system developers search-
ing for a solution to slow, manual and expensive optimization of such systems.
Subsequently, we introduce a DT-RL optimization framework, a reference archi-
tecture supporting its development, outline the application to an exemplary use
case, and conclude by outlining the shortcomings resulting into future avenues
of work.

Architecture for DT-Based RL Optimization of CPS 259

2 Prerequisites and Related Work

2.1 Combining DTs and RL

Figure 1 depicts the overall interactions during the DT-based optimization-RL
life cycle that shall be enables by the architecture. First, DT of a typical system
is modelled with the capability of representing variations of the system. It repre-
sents the environment with which the optimization-RL Agent (RLA) is then
trained. In continuation, the optimization-RL is applied to actual system(s)
where further data can be collected for fine-tuning purposes. Consequently, we
derived three iterative phases:

Training phase In this phase, the RLA is trained using multiple varying
instances of a typical CPS. This is done to prevent the problem of overfitting
and to increase generalization to enable transfer learning (see [7,25]).

Operational phase Once the RLA has matured enough, it is deployed on an
actual CPS to perform system optimization. Here, the RLA is assumed to
interact directly with the CPS or is part of the CPS. During this period, data
from the CPS is gathered for the next phase.

Fine-tuning phase Periodically, the RLA is fine-tuned using the CPS’s data
from the operational phase to improve and specialize the learned policy w.r.t.
the CPS instance by twinning the related real system. In addition, the variant
agnostic RLA (result of the training phase) is also further trained, e.g., by
using federated learning [20]. An extensive testing of the RLA adjustment is
necessary, yet the frequency of the fine-tuning phase depends on the use case.

2.2 Fundamental Considerations

A DT is defined as a virtual duplicate of a system built from a fusion of models
and data [32]. The essential role of DT is to represent the behavior of real system
by periodically adapting to the actual system. This differentiates a DT from a

Fig. 1. Overview of the development process of DT supported RL training.

260 E. Modrakowski et al.

digital model [5,12,29,32]. We adopt the notion of different integration levels by
[2]. Different phases of system optimization apply varying degrees of integration,
i.e., digital model up to DT. While a digital model of a generic CPS is sufficient
for the training phase, the operational and fine-tuning acquire higher levels of
integration, to the degree of twinning [17]. It is important to note that in this
context, the DT encompasses the CPS itself and its surrounding environment and
how it imposes influence on the CPS. With respect to the robot arm example,
this would be the room temperature or properties of the manufacturing product
the arm should process.

RL [31] is broadly applied in various disciplines for the purpose of system
optimization or optimized control, e.g., [8,13,21,33]. RL is well-suited to the
problems that include learning from unlabeled data, e.g., due to long-term mate-
rialization of optimality [13].

Several challenges arise from the proposed DT-RL approach, aiming to estab-
lish simulation-based training capabilities and enable a continual enhancement of
optimization RL algorithm exploiting the advantages of DTs. It is crucial to meet
RL-specific demands, namely result accuracy, efficient execution, standardized
simulation input/output (state, action, reward) and managing variations for pol-
icy transfer into the real world. An additional focus lies in facilitating the model
re-usability throughout its life-cycle.

2.3 Literature on DT-Based RL

Recent research has delved into combination of these challenges across diverse
domains. [25] introduces a RL training approach through simulations. The
domain of application in this case are driving functions for automated vehi-
cles. Nevertheless, it lacks an architectural view and continuous RLA refin-
ing. [8] emphasizes training RLA for fusion reactor control with architectural
aspects taking a backseat in training consideration. [3] adopts a DT strategy for
robot arm control including architectural specifications, akin to our proposal, but
overlooks the post-initial learning. [18] and [11] provide insights into real-world
transfer of RL policies and DT-based RL scheduling strategy training, respec-
tively. However, architectural and, yet again, post-deployment learning aspects
are under-explored. Similarly, [27] advocates DT and RL fusion for unmanned
aerial vehicle control and proposes a DT-based “continuous evolution” in this
context [28]. However, the work is domain-specific and generalizable architecture
considerations are not present in this work.

In the field of “life-long” RL [19], scholars deal with continuous learning and
policy transfer (e.g., from simulation to real world or adjustments from one sys-
tem to the next). To the authors’ best knowledge, availability of training data is
assumed in most of the relevant studies. In context of continuous learning, Fed-
erated Learning (FL) [16] is a common practice for pre-training and consequent
fine-tuning of AI. [30] showcases the combination of DT and FL but leaves the
design of these DTs open for interpretation. In general, application independent
DT architectures are rare as a high percentage of solution-oriented architectures
[10] show that every application context requires their own interpretation.

Architecture for DT-Based RL Optimization of CPS 261

From the cited research, it is evident that the comprehensive exploitation of
the DT paradigm’s capabilities has not yet been fully realized in RL training. In
all of the aforementioned literature, RL is utilized for system control, wherein
we see system optimization a sub-field. Our objective is to delineate the essential
considerations required on the DT side for RL training across the various stages
of its life-cycle. We aim to provide an architectural recommendation that goes
beyond mere building block descriptions.

3 Architecture

A multi-sided description is required to plan an architecture that considers a
multitude of aspects. Among various architectural view models like [14], we
have adopted four viewpoints similar as in SPES (Software Platform Embedded
Systems) [26]. In spite of minimizing the number of viewpoints, namely require-
ments, functional, logical and technical views, they are capable of covering all
relevant layers and aspects [6].

3.1 Requirements View

The main objective of our approach is to realize a self-optimizing solution for
complex CPSs which can be then applied to analogous systems without neces-
sitating extensive re-development, e.g., re-modelling of interfaces, or re-training
the AI from scratch. The specific requirements of our approach mostly derived
from the RL requirements on the training and fine-tuning data. All require-
ments mentioned in this view are on the system. However, the fulfillment of
some requirements is facilitated by the architecture (see Table 1).

The functional requirements of the DT in general include (i) to model the
components that contribute to the observable outputs/behavior sufficiently, (ii)
to model the potential influences of the CPS’s environment, and (iii) to possess
parameters that determine its behavior, analogous to the corresponding physical
counterpart.

Moreover, in the context of RL-training, the set of requirements of DT as
the training data generator model, need to be expanded by minimized calcu-
lation time (time to result) and satisfactory data accuracy. While the previous
comes naturally, defining “sufficient” accuracy is not straight forward. As a gen-
eral principle, more information with higher quality results in improved decision
making. However, machine learning algorithms can bridge the gap and transfer
whatever they learned from a less accurate model to the actual operating sys-
tem (see [9,18]). As an example, the autonomous driving functions trained by
simulated data, can be applied successfully to the real-world use cases [25]. This
relaxes the constraints on DT’s requirements and improves execution efficiency
on the way. Therefore, the required accuracy level of DT within the proposed
approach is highly dependent on the AI capabilities. As long as the RL model
can bridge the gap, the accuracy of the DT is sufficient.

262 E. Modrakowski et al.

To effectively train the RLA, it is important to mitigate the impacts of noise
and irrelevant information during training phase. Overfitting on these effects
can hinder the trained RLA’s adaptability and resilience to slightly changed
circumstances comparing to the training data [4]. To address this issue, one
approach is to train the RLA by higher-level features of the data, specifically by
“averaging out” system-specific behavior. To this end, we propose to use a fleet of
digital models or DTs representing the CPSs. These models should encompass
multiple variants, each incorporating slight differences to represent the variations
in real-world. The variation can be introduced by altering virtual environment
effects and configuration changes within a predefined valid parameter space.
This approach allows the RLA to learn from a spectrum of possible CPS variants
instead of only from one specific instances. By training on a diverse set, the RLA
is enabled to perform across multiple systems without requiring re-training [7].

The non-functional requirements can be summarized in footprint (minimiza-
tion of resource usage), integrability (the ability to integrate heterogeneous sys-
tems and IP-protection), re-usability, and maintainability.

Table 1. Overview of key requirements and considerations at a high level, assessing
their reflection by the architecture.

No. Requirement Description Reflected in architecture

1 Execution efficiency Calculation time needs to be minimized to make
training time manageable

No

2 Accuracy of result The system must accurately enough simulate
real-world behavior for successful RL-driven
optimization in the operational phase

No

3 Variants representation The DTs must be able to represent real or
virtual variants of a system w.r.t. to its
environment and configuration

Yes

4 Twinning The system must be able to retrieve data from its
physical twin and parametrize itself accordingly

Yes

5 Footprint The resource usage for training and fine-tuning
shall be minimized

No

6 Re-Usability To reduce resource and time consumption,
developed models and infrastructure shall be
reusable

Yes

7 Maintainability The system shall be easily maintainable Yes

8 Integrability The integration of heterogeneous models and
IP-protection shall be facilitated

Yes

3.2 Functional View

The functional view describes the specification of solution-independent func-
tional system, i.e., it describes the functionality that the system intended to
provide in order to fulfill its purpose. Figure 2 shows the functional model of opti-
mization using data from DT and CPS during the training phase and operational

Architecture for DT-Based RL Optimization of CPS 263

Fig. 2. Generic functional model of the system’s optimization in form of IDEF0 (Inte-
gration Definition for Process Modelling).

phase, respectively. As mentioned earlier, the model shall be used interchange-
ably for different phases without requiring major adjustments to the architecture
(requirement No. 6 in Table 1). Initially, operational goals and the twinning infor-
mation are given to the system which initializes and “controls” the optimization
by executing a scenario. An initial batch of parameters containing the parameters
that shall be optimized as well as the parameters that define the model variants
(fulfilling requirement No. 3 in Table 1) are given to an entity that performs the
optimization. This might be the actual CPS or its DT. Optimization metrics and
system defining information (e.g., previous parameter configuration) in form of
state and reward according to the RL paradigm shall be collected one hand and
also analyzed. Based on this and possibly the history of prior states, an improved
configuration is proposed and returned to be executed again. It can be seen that
the four major functionalities needed can be assigned to four main sub-systems:
A control system, a CPS/DT within its environment, a data storage platform
and an AI system.

Regarding functional capabilities of the DT as represented in Fig. 3, it must
be able to control (Control simulation) and represent and execute simulation
of system features (Simulate features) to mimic the CPS’s behavior accurate
enough and output relevant simulation results for further training. The features
must be configurable to enable adaptation to a real or synthetic CPS variant.

3.3 Logical View

The logical view describes the design solution, providing functional building
blocks by communicating components [26]. Due to the already stated variety of
RL training algorithms, we showcase the simulation environment and the con-
tained DT only. The simulation environment is not meant the context in which
the CPS is located in, but rather the digital infrastructure for performing sim-
ulations. Both modules’ structure is expressed in accordance with the SysML

264 E. Modrakowski et al.

Fig. 3. Generic functional model of DT in form of IDEF0, exemplary with two simu-
lation features.

language as internal block diagrams (ibd) in the following. The simulation envi-
ronment in Fig. 4 consists of a flow of data from the action port via a pre-
processing component into the DT as a simulation input, and after computing
from the DT’s output via a post-processing component to the state and reward
output of the simulation environment. The pre- and post-processing components
serve the goal of conversion of the RLA/DT output to an adequate format. A
controller manages the processing and optional databases providing additional
information. In case of the operational and fine-tuning phase, a twinning block is
implemented to orchestrate the retrieval of CPS data as necessary according to
the requirements (requirement No. 4 in Table 1). During the training phase, as
no physical counterpart exists, it is replaced by a variation generator within the
DT mimicking the existence of multiple, slightly different CPS instances. The
simulation environment interacts through five ports: (i) control inputs from con-
troller that manages RL training, (ii) connection to the CPS and (iii) action,
(iv) reward and (v) state ports for the communication with RLA.

The DT represented in Fig. 5, consists of none or more submodule-DTs and
one or more logic block(s). The latter calculates the behavioral output of the DT
by using (i) simulation data input to the DT itself, (ii) and/ or simulation data
output of hierarchically nested sub-DTs, (iii) static configuration parameters
sourced from persistent databases, and (iv) dynamic configuration parameters,
obtained through the adaptation model.

Adaptation to changing behavior of the CPS is handled by the adaptation
model. It identifies any emerging differences DT and CPS data comparison and
compensate them via providing a set of dynamic configuration parameters to the
DT logic block. Hierarchically nested sub-DTs get their CPS output data via a
twinning port, to provide adaptation on multiple levels of the DT. It is impor-

Architecture for DT-Based RL Optimization of CPS 265

Fig. 4. Logical components and communication of the simulation environment.

Fig. 5. Logical components and communication of the Digital Twin.

tant to define the configuration parameters that can (and cannot) be changed by
every (sub-)DT to leverage the explainability and traceability provided by the
architecture. The digital twin controller is used to control the adaptation model
and the pass-through to sub-DTs. The logic of the adaptation model is hereby
dependent on the current phase while the remainder of the architecture persists.
During the training phase, the DT is used to create RL training data in a con-
trolled manner for specified variants of the CPS but without synchronization to
a CPS. Creating multiple instances of an adapted static DT representing a CPS
variant for parallel RL training is possible. Slight derivatives of the adapted DT
are possible to generate, via a configuration parameter generator. Generation of
these parameters can be sampled from parameter distributions. These parameter

266 E. Modrakowski et al.

(a)(a) During training phase (b)(b) During fine-tuning phase

Fig. 6. Logical components of the adaptation model.

distributions can either be estimated or measured based on one or more CPS
that have already been synchronized during the fine-tuning phase. This oper-
ating mode is depicted in Fig. 6a. The fine-tuning phase sees a connected CPS,
leading to the ability to synchronize behavior of the DT again. The main logical
components can be seen in Fig. 6b. Twinning data from the CPS is used for cal-
culating respective configuration parameters. This is in contrast to the training
phase, where configuration parameters are generated or sourced from a param-
eter distribution. To realize the hierarchical DT structure, data pass-through is
also handled inside the adaptation model via the data distributor.

In context of the robot-arm example, during the training phase parameter
distributions are initially estimated e.g., for the room temperature, robot arm
attachments properties, and manufacturing product’s mass while the mechanical
and electronic characteristics of the arm itself would typically be quite invariant.
During the fine-tuning phase not only the optimization-RL can be improved with
the DT twinned with data specific robot arm, but also the above mentioned
parameter distributions can be adjusted with data from multiple robots arms.
The latter is relevant for the training phase of a next iteration of the generic
RLA.

3.4 Technical View

The concrete technical solution for the combination of DT and RL mainly
depends on the specific demands of the use case. However, the integrability,
re-usability and maintainability are the biggest drivers for a standardized solu-
tion on a technical realization level as well as execution-efficiency (requirements
No. 2, 6, 7 and 8 in Table 1).

On the DT level (see Fig. 5), co-simulation is an ideal approach for sim-
ulating DTs of multiple system components to provide the possibility of cre-
ating a modular architecture where all models interact with a central control
unit. Examples are HLA [15], FMI [23] or proprietary software solutions such as

Architecture for DT-Based RL Optimization of CPS 267

Model.CONNECT1. They can enable the execution of simulations and calcu-
lations in a distributed computing manner using cloud-solutions and multiple
on-site workstations. A benefit is increased execution speed of training data
sampling which is, as already stated, a major requirement.

On a higher level, the development and integration of the architecture ben-
efits from containerization with tools such as Docker2. It enables seamless and
consistent deployment of the components across diverse environments by encap-
sulating them along with their dependencies. As the communication between the
containers is via network and well defined thanks to the architecture, maintain-
ability and scalability (multiple simulation environments for parallel sampling) is
non-issue, and distributed computing between multiple workstations or in the
cloud is possible.

With respect to the linkage between the DTs and their physical counterpart,
infrastructure is needed that enables reliable and straightforward communica-
tion between the DT and the CPS. It is needed for (I) retrieval of physical twin
data and (II) execution of optimization configurations. The level of sophistica-
tion of the applied framework depends on the use case characteristics. For this,
an example is Basys43 where the communication between the physical asset
and digital applications is managed by an Asset Administration Shell (AAS)
which provides standardized communication interfaces (HTTP/REST interface)
via network to applications. This makes a cloud-based deployment of the opti-
mization RLA non-complex. In context of the presented architecture, the AAS
represents the “Twinning” block (see Fig. 4) while the simulation environment
can be seen as an application to the Basys4 framework. The simulation controller
(see Fig. 7) can request from the AAS/Twinning block (which is connected to
the physical system via a sub model) to send data to the twinning port of the
DT. In principle, a profound integration of the Basys4 framework into the pro-
posed approach is possible when considering simulation models including their
sub-modules as the DT. However, this potential integration is not reflected in
the given architecture.

4 Exemplary Application

The architecture is developed in conjunction with a use case from the highly-
automated vehicle testing domain that aims for automatic creation of a 3D-
environment for vehicle tests. The system to be optimized is the testbed including
a virtual environment in conjunction with a vehicle. For development of auto-
mated vehicle driving functions, critical scenarios are to be optimized to ensure
testing time is used for the most insightful tests in order to find e.g., weaknesses
in the functions. Also, this approach could be used as open-exploration to build
a database of scenarios. A scenario is usually characterized by specific criticality
1 https://www.avl.com/en/simulation-solutions/software-offering/simulation-tools-

z/modelconnect.
2 https://www.docker.com/.
3 https://www.basys40.de/ and https://github.com/eclipse-basyx.

https://www.avl.com/en/simulation-solutions/software-offering/simulation-tools-z/modelconnect
https://www.avl.com/en/simulation-solutions/software-offering/simulation-tools-z/modelconnect
https://www.docker.com/
https://www.basys40.de/
https://github.com/eclipse-basyx

268 E. Modrakowski et al.

Fig. 7. Exemplary application of the architecture to a vehicle-in-the-loop test setup
during the operational and fine-tuning phase wherein scenarios are optimized and addi-
tional data are gathered for further improvement of RLA.

metrics that indicate its significance and potential impacts [24]. The RLA pro-
poses concrete scenarios with concrete parametrization/state values from logical
scenarios with parameter ranges of state values (see [22]) which are executed on
the virtual or real testbed, and the results are then computed to evaluate the
scenarios.

Figure 7 showcases the logical view on the optimization system during the
fine-tuning phase. Thanks to the reference architecture enabling hierarchical
DTs, the DT of the vehicle test setup contains a virtual environment simulating
e.g., the street as a logic block, and the DT of a vehicle enables a black-box inte-
gration of this sub-module. The vehicle DT can also contain other DTs as sub-
modules e.g., of sensors or the chassis. A database is integrated to hold libraries
of the virtual environment’s assets. The simulation environment is connected
to a vehicle its behavior it shall mimic. While in Fig. 7 the fine-tuning phase
is depicted, the only difference to the training phase is the substitution of the
adaptation model by a parameter generator as seen in Fig. 6. This results in
the minimization of necessary adjustments to the system including data formats
as the variation generator and the twinning function output data in identical
format.

On a technical level, a Docker-based architecture is used for continuous devel-
opment and prototyping. As a DT’s co-simulation framework, Model.CONNECT
was selected due to its features designed for automotive domain. As this example
is a prototypical implementation, simple Python scripts are used to enable the
function of the twinning and adaptation model. The implemented RL algorithm
(“RL System” block in Fig. 7) is Maximum a Posteriori Policy Optimization
(MPO) [1] inspired by [8]: an off-policy actor-critic approach.

Although a comprehensive assessment of the architecture’s effectiveness and
efficiency in facilitating the creation of a system capable of training and fine-
tuning an optimization-RLA is ongoing, initial findings indicate favorable out-
comes in terms of maintainability and reusability (see Table 1). The development

Architecture for DT-Based RL Optimization of CPS 269

process has been notably streamlined, for the incorporation of new features prov-
ing to be a straightforward task. However, a crucial aspect of the architecture
and the system yet to be validated pertains to the representation capabilities
of the variants, including the assessment of twinning.

5 Conclusion and Future Work

This position paper presents our work-in-progress regarding a reference archi-
tecture for DT-based AI-training for CPS optimization. In four viewpoints we
highlighted the necessary considerations and requirements on the simulation
environment including the DT as the virtual representation of the CPS, a model
view of its functionality, a design-solution and technical considerations for the
implementation. The differences of the architecture over the life-cycle of RL
optimization (training-, operational- and fine-tuning phase) are highlighted and
exemplary implementation in an automotive use case is shown.

In the future we will focus on improving the level of detail putting a strong
focus on the differences between phases. The current state lacks detail on the
requirements on data type and considerations of the twinning and variation gen-
erator. Further validation and integration are necessary in the above-mentioned
use case to evaluate the improvement of the approach beyond the state of the art
and verification of the broader applicability by utilizing it for the development
of an alternative use case is needed. In addition, we will increase the research on
behavioral modelling and the impacts on the architecture.

References

1. Abdolmaleki, A., Springenberg, J.T., Tassa, Y., Munos, R., Heess, N., Riedmiller,
M.: Maximum a posteriori policy optimisation (2018). https://doi.org/10.48550/
arXiv.1806.06920

2. Aheleroff, S., Xu, X., Zhong, R.Y., Lu, Y.: Digital twin as a service (DTAAS)
in industry 4.0: An architecture reference model. Adv. Eng. Inform. 47, 101225
(2021). https://doi.org/10.1016/j.aei.2020.101225

3. Alexopoulos, K., Nikolakis, N., Chryssolouris, G.: Digital twin-driven supervised
machine learning for the development of artificial intelligence applications in man-
ufacturing. Int. J. Comput. Integr. Manuf. 33(5), 429–439 (2020). https://doi.org/
10.1080/0951192X.2020.1747642

4. Amiranashvili, A., Argus, M., Hermann, L., Burgard, W., Brox, T.: Pre-training
of deep RL agents for improved learning under domain randomization. eprint
arXiv:2104.14386 (2021). https://doi.org/10.48550/arXiv.2104.14386

5. Barricelli, B.R., Casiraghi, E., Fogli, D.: A survey on digital twin: definitions, char-
acteristics, applications, and design implications. IEEE Access 7, 167653–167671
(2019). https://doi.org/10.1109/ACCESS.2019.2953499

6. Brankovic, B., Binder, C., Draxler, D., Neureiter, C., Lastro, G.: Towards a cross-
domain modeling approach in system-of-systems architectures. In: Boy, G.A., Gue-
gan, A., Krob, D., Vion, V. (eds.) CSDM 2019, pp. 164–175. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-34843-4 14

https://doi.org/10.48550/arXiv.1806.06920
https://doi.org/10.48550/arXiv.1806.06920
https://doi.org/10.1016/j.aei.2020.101225
https://doi.org/10.1080/0951192X.2020.1747642
https://doi.org/10.1080/0951192X.2020.1747642
http://arxiv.org/abs/2104.14386
https://doi.org/10.48550/arXiv.2104.14386
https://doi.org/10.1109/ACCESS.2019.2953499
https://doi.org/10.1007/978-3-030-34843-4_14

270 E. Modrakowski et al.

7. Cobbe, K., Klimov, O., Hesse, C., Kim, T., Schulman, J.: Quantifying general-
ization in reinforcement learning. In: 36th International Conference on Machine
Learning, vol. PMLR 97. PMLR, Long Beach, USA (2019)

8. Degrave, J., et al.: Magnetic control of tokamak plasmas through deep rein-
forcement learning. Nature 602(7897), 414–419 (2022). https://doi.org/10.1038/
s41586-021-04301-9

9. Dulac-Arnold, G., et al.: Challenges of real-world reinforcement learning: defini-
tions, benchmarks and analysis. Mach. Learn. 110(9), 2419–2468 (2021)

10. Ferko, E., Bucaioni, A., Behnam, M.: Architecting digital twins. IEEE Access 10,
50335–50350 (2022). https://doi.org/10.1109/ACCESS.2022.3172964

11. Gan, X., Zuo, Y., Zhang, A., Li, S., Tao, F.: Digital twin-enabled adaptive schedul-
ing strategy based on deep reinforcement learning. Sci. China Technol. Sci. 1–15
(2023)

12. Grieves, M., Vickers, J., (None): Digital twin: mitigating unpredictable, undesirable
emergent behavior in complex systems. In: Kahlen, F.J., Flumerfelt, S., Alves, A.
(eds.) Transdisciplinary Perspectives on Complex Systems, pp. 85–113. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-38756-7

13. Haj-Ali, A., Ahmed, N.K., Willke, T., Gonzalez, J., Asanovic, K., Stoica, I.: A
view on deep reinforcement learning in system optimization

14. Hankel, M., Rexroth, B.: Das Referenzarchitekturmodell Industrie 4.0 (RAMI 4.0)
15. IEEE: IEEE standard for modeling and simulation (m&s) high level architecture

(HLA): Framework and rules (2010). https://standards.ieee.org/ieee/1516/3744/
16. Jamil, S., Rahman, M.: Fawad: a comprehensive survey of digital twins and fed-

erated learning for industrial internet of things (IIOT), internet of vehicles (IOV)
and internet of drones (IOD). Appl. Syst. Innov. 5(3), 56 (2022)

17. Jones, D., Snider, C., Nassehi, A., Yon, J., Hicks, B.: Characterising the digital
twin: a systematic literature review. CIRP J. Manuf. Sci. Technol. 29, 36–52 (2020).
https://doi.org/10.1016/j.cirpj.2020.02.002

18. Ju, H., Juan, R., Gomez, R., Nakamura, K., Li, G.: Transferring policy of deep
reinforcement learning from simulation to reality for robotics. Nature Mach. Intell.
4(12), 1077–1087 (2022). https://doi.org/10.1038/s42256-022-00573-6

19. Julian, R., Swanson, B., Sukhatme, G.S., Levine, S., Finn, C., Hausman, K.: Never
stop learning: the effectiveness of fine-tuning in robotic reinforcement learning.
arXiv preprint arXiv:2004.10190 (2020)

20. Kairouz, P., et al. (eds.): Advances and Open Problems in Federated Learning,
Foundation and Trends in Machine Learning, vol. 14. Now Publishers Inc. (2021).
https://doi.org/10.1561/2200000083

21. Matulis, M., Harvey, C.: A robot arm digital twin utilising reinforcement learning.
Comput. Graph. 95, 106–114 (2021). https://doi.org/10.1016/j.cag.2021.01.011

22. Menzel, T., Bagschik, G., Maurer, M.: 2018 IEEE Intelligent Vehicles Symposium
(IV): 26–30 June 2018, Piscataway, NJ. IEEE (2018)

23. Modelica Association Project FMI: Functional mock-up interface for model
exchange and co-simulation (2019)

24. Neurohr, C., Westhofen, L., Henning, T., de Graaff, T., Möhlmann, E., Böde, E.:
Fundamental considerations around scenario-based testing for automated driving.
In: IEEE Intelligent Vehicles Symposium Proceedings, pp. 121–127 (2020). https://
doi.org/10.1109/IV47402.2020.9304823

25. Osiński, B., et al.: Simulation-based reinforcement learning for real-world
autonomous driving. In: 2020 IEEE International Conference on Robotics and
Automation (ICRA), pp. 6411–6418. IEEE (2020)

https://doi.org/10.1038/s41586-021-04301-9
https://doi.org/10.1038/s41586-021-04301-9
https://doi.org/10.1109/ACCESS.2022.3172964
https://doi.org/10.1007/978-3-319-38756-7
https://standards.ieee.org/ieee/1516/3744/
https://doi.org/10.1016/j.cirpj.2020.02.002
https://doi.org/10.1038/s42256-022-00573-6
http://arxiv.org/abs/2004.10190
https://doi.org/10.1561/2200000083
https://doi.org/10.1016/j.cag.2021.01.011
https://doi.org/10.1109/IV47402.2020.9304823
https://doi.org/10.1109/IV47402.2020.9304823

Architecture for DT-Based RL Optimization of CPS 271

26. Pohl, K., Broy, M., Daembkes, H., Hönninger, H. (eds.): Advanced Model-Based
Engineering of Embedded Systems. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-48003-9

27. Shen, G., et al.: Deep reinforcement learning for flocking motion of multi-UAV
systems: learn from a digital twin. IEEE Internet Things J. 9(13), 11141–11153
(2021)

28. Shen, G., Lei, L., Zhang, X., Li, Z., Cai, S., Zhang, L.: Multi-UAV cooperative
search based on reinforcement learning with a digital twin driven training frame-
work. IEEE Trans. Veh. Technol. 72, 8354–8368 (2023)

29. Stark, R., Damerau, T.: Digital twin. In: Chatti, S., Tolio, T. (eds.) CIRP Encyclo-
pedia of Production Engineering, pp. 1–8. Springer Berlin Heidelberg, Heidelberg
(2019). https://doi.org/10.1007/978-3-642-35950-7 16870-1

30. Sun, W., Lei, S., Wang, L., Liu, Z., Zhang, Y.: Adaptive federated learning and
digital twin for industrial internet of things. IEEE Trans. Industr. Inf. 17(8), 5605–
5614 (2021). https://doi.org/10.1109/TII.2020.3034674

31. Sutton, R.S., Barto, A.: Reinforcement Learning: An Introduction. Adaptive Com-
putation and Machine Learning, 2nd edn. The MIT Press, Cambridge, Mas-
sachusetts and London, England (2018)

32. Wagg, D.J., Worden, K., Barthorpe, R.J., Gardner, P.: Digital twins: state-of-the-
art and future directions for modeling and simulation in engineering dynamics
applications. ASCE - ASME J. Risk Uncertainty Eng. Syst. 6(3) (2020). https://
doi.org/10.1115/1.4046739

33. Zhang, Z., Zahng, D., Qiu, R.C.: Deep reinforcement learning for power system:
an overview. CSEE J. Power Energy Syst. 6(1) (2020). https://doi.org/10.17775/
CSEEJPES.2019.00920

https://doi.org/10.1007/978-3-319-48003-9
https://doi.org/10.1007/978-3-319-48003-9
https://doi.org/10.1007/978-3-642-35950-7_16870-1
https://doi.org/10.1109/TII.2020.3034674
https://doi.org/10.1115/1.4046739
https://doi.org/10.1115/1.4046739
https://doi.org/10.17775/CSEEJPES.2019.00920
https://doi.org/10.17775/CSEEJPES.2019.00920

Towards an Urban Digital Twins
Continuum Architecture

Sergio Laso1(B) , Lorenzo Toro-Gálvez2 , Javier Berrocal1 ,
Javier Troya2 , Carlos Canal2 , and Juan Manuel Murillo1

1 University of Extremadura, Badajoz, Spain
{slasom,jberolm,juanmamu}@unex.es

2 ITIS Software, Universidad de Málaga, Málaga, Spain
{lorenzotoro,jtroya,carloscanal}@uma.es

Abstract. In the era of smart cities, where the integration of Internet
of Things devices and the need to efficiently manage urban environ-
ments have generated considerable interest, the Digital Twin concept
emerges as a key solution. This technology allows us to study and sim-
ulate the behavior of complex urban dynamics. However, conventional
Digital Twin architectures face significant challenges, such as limited
scalability, inherent latency, and data privacy concerns stemming mainly
from their centralized nature. In response to these challenges, this paper
proposes an innovative distributed architecture for the so-called Urban
Digital Twins, implemented on top of the Computing continuum. The
main objective is to establish a more efficient and scalable framework,
specifically designed for the demands of smart cities. To support the fea-
sibility of this proposal, two case studies are presented: one focused on
urban public transportation systems, and the other focused on a pollu-
tion monitoring system. These case studies illustrate how a distributed
architecture can effectively address existing challenges, providing a solid
foundation for the smart and sustainable management of urban environ-
ments.

Keywords: Urban Digital Twins · Architecture · Smart City ·
Computing continuum

1 Introduction

In recent years, we have witnessed a significant increase in the use of Internet-
connected devices, which has led to the emergence of the IoT paradigm [20]. This
approach has been applied in various fields, such as smart homes, healthcare,
industry 4.0, and smart cities. However, making adjustments to the operation in
these largely distributed systems can lead to unexpected problems. For example,
in a smart city scenario, managing traffic based on air quality values to alleviate
congestion in one area may inadvertently lead to traffic jams in other places.

To try to solve this kind of problems, Digital Twins [22] have recently emerged
as a powerful technology to replicate the behavior of real systems. A Digital Twin
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
B. Tekinerdoğan et al. (Eds.): ECSA 2023, LNCS 14590, pp. 272–286, 2024.
https://doi.org/10.1007/978-3-031-66326-0_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-66326-0_17&domain=pdf
http://orcid.org/0000-0001-8911-9371
http://orcid.org/0009-0000-0234-6898
http://orcid.org/0000-0002-1007-2134
http://orcid.org/0000-0002-1314-9694
http://orcid.org/0000-0002-8002-0372
http://orcid.org/0000-0003-4961-4030
https://doi.org/10.1007/978-3-031-66326-0_17

Towards an Urban Digital Twins Continuum Architecture 273

(DT) is a digital representation of a system, service, or product. To create such
a digital representation, it must receive the status of the physical system, which
allows it to replicate the real environment. In a DT system, there is a bidirec-
tional communication between the two twins that allows keeping the digital twin
updated and proposing changes on the physical twin [13]. DTs become funda-
mental tools for monitoring, predicting, and integrating data from IoT devices.

However, conventional DT implementations have several limitations on scal-
ability [18], latency [12], and privacy [6]. These limitations become evident when
we want to represent highly-distributed systems such as smart cities, with a
large variety of data sources from IoT devices, people, etc. Conventional DTs
are highly-coupled systems where all collected data is centralized in one single
place. Creating a so-called Urban Digital Twin (UDT) this way is practically
unfeasible due to its size and complexity.

To try to overcome these challenges, the Computing continuum paradigm [2]
has been gaining importance in recent years. The Computing continuum repre-
sents an evolution of Cloud computing that extends from cloud environments
to IoT devices, located closer to people, for the purpose of storing and process-
ing information. The Fog and Edge computing paradigms have brought cloud
computing environments and data processing closer to information sources. By
processing information closer to its source, it is possible to reduce infrastructure
load, improve the quality of service, and preserve privacy.

In this paper, we propose a distributed architecture on the low-coupling Com-
puting Continuum [3,7] composed of different DTs that simulate the behavior
of different entities in a highly-distributed system, so that altogether they com-
pose a UDT. Due to their low coupling, the DTs work independently but can
interact with each other to enrich their models allowing greater scalability and
flexibility. Their distributed nature and proximity to users allow for improved
data privacy as well as faster responsiveness, as it minimizes data transmission.
To demonstrate the feasibility of our proposal, two case studies focused on smart
cities are considered in this work, one focused on an urban public transportation
system, and the other focused on a pollution monitoring system.

The paper is organized as follows. Section 2 provides an introductory context
on the current state and need for an Urban Digital Twin (UDT) in the com-
puting continuum. In Sect. 3, some related work is examined in detail. Section 4
provides a detailed explanation of the proposed Digital Twins architecture for
the Computing Continuum. Section 5 presents in detail the two case studies that
addressed transportation and pollution in a smart city. Section 6 discusses how
our proposal addresses the current challenges and also its limitations. Finally, in
Sect. 7, the conclusions derived from the study are presented and some directions
for future research are outlined.

2 Motivation

In the context of smart cities, it encompasses a diversity of systems and appli-
cations aimed at optimizing their governance. These include fundamental areas

274 S. Laso et al.

such as transportation [14], whose main objective is to offer an efficient service
of the arrival times of public transport, as well as in the identification of traffic
patterns to improve urban mobility. Also, in the field of pollution control [5], new
regulations are emerging due to the problems generated by air quality, intending
to monitor them to avoid penalties and improve air quality.

The implementation of Digital Twins in these strategic areas would not
only improve operational efficiency but also contribute to the sustainability and
resilience of cities. By providing a real-time digital representation of the infras-
tructure, Digital Twins facilitate a detailed understanding and analysis of urban
systems, enabling data-driven decision-making to address critical challenges such
as traffic congestion, environmental pollution, and public transportation plan-
ning.

Digital Twins represent essential tools [1] in monitoring, predicting, and
integrating data from IoT devices. They continuously exchange data, including
dynamic physical twin data and environmental data, and store it in a data stor-
age system (the so-called data lake). They use ontologies for data comprehension,
high-dimensional data analysis, and data fusion algorithms to integrate multiple
data sources. With artificial intelligence (AI) algorithms, DTs can perform fea-
ture selection, pattern recognition, and optimization. In addition, they enable
closed-loop optimization, allowing the physical entity to respond to changes
based on the DT’s analysis and optimization. DTs have self-adaptation and
self-parametrization capabilities, allowing them to resemble the physical twin
throughout their lifecycle. They employ predictive analytics to forecast future
statuses and use prescriptive analytics to make data-driven decisions.

The Digital Twins in the context of smart cities are referred to as Urban
Digital Twins (UDTs) [4]. An Urban Digital Twin (UDT) is a Digital Twin that
acts as a virtual representation of a city’s physical resources, making use of data,
analytics, and AI to generate real-time, adaptive simulation models. This digital
twin captures both the present state and historical context of various aspects
of a smart city. Moreover, additional applications provide practical intelligence,
contributing to the construction of a collective picture of urban reality. UDTs
facilitate more informed decision-making, foster collaborative governance, and
improve urban planning by providing a safe environment for environmental sus-
tainability [26].

To achieve the development of a UDT, it is essential to collect data from
a variety of sources that are produced by a smart city, ranging from sensors
to contextual information and the experience of users interacting with different
services such as the transportation system. In previous work [9,15], we proposed
innovative models such as People-as-a-Service (PeaaS) and Human Microser-
vices designed specifically for IoT environments. The purpose of these models
lies in the collection and detailed analysis of user habits and routines. By imple-
menting these models, we can effectively integrate citizen information into UDT
models. This approach would give us the opportunity to enrich the UDT to make
it more accurate and adapted to the context of the citizens who make use of it.

Towards an Urban Digital Twins Continuum Architecture 275

However, a traditional approach would involve implementing a centralized
and monolithic UDT, usually deployed in the cloud. Inevitably, this comes with
significant drawbacks. First, there is the complexity and lack of scalability of
the system, as all information and processes are concentrated in a single loca-
tion. Storing data generated by the entire city would require extremely large
data transmission and storage capacities, generating considerable costs. As an
example, consider the Los Angeles Department of Transportation [23], which
processed more than 7 Terabytes of real-time data daily in 2022 from different
sources like traffic lights signals, traffic sensors, bus signals, etc. In addition,
there are concerns about user privacy when storing sensitive data about indi-
viduals, which compromises the integration of data from various sources. By
concentrating all information at a single point, considerable computing power
would be required to integrate all sources of information. Since the processing
capabilities of a centralized model may be limited, this would adversely affect
system performance and the quality of results, or greatly increase operational
costs.

To overcome these drawbacks, a solution is to use distributed architectures
such as Computing continuum [17] to deploy a UDT. With this type of archi-
tecture, different entities (citizens, buses, air monitoring stations, etc.) deploy
their own DT providing low coupling, allowing them to work independently but
interact with each other to enrich their models allowing for greater scalability
and flexibility. By adopting this distributed architecture, concerns associated
with centralized storage and processing on a single node, as well as high cou-
pling between entities, are overcome. In addition, this strategy addresses privacy
concerns, as personal information is handled and processed in a decentralized
manner on individual devices, ensuring anonymization and preservation of data
privacy.

To carry out this initiative, in this paper, we present a detailed proposal
of an architecture designed in the framework of the Computing continuum to
implement a UDT. To demonstrate the feasibility of this proposal, we provide
a description of its application in two specific contexts: a transportation sys-
tem and a pollution control system. We explain in detail how this architecture
would be implemented in each of these scenarios, highlighting its adaptability
to complex and dynamic urban environments, materializing the usefulness and
practical applicability of a distributed UDT in concrete cases of great relevance
for the improvement of the quality of life in urban environments.

3 Related Work

In this section, we present and analyze some related works on Urban Digital
Twins, and we detail the requirements of this kind of system.

Lehtola et al. [11] study the impact of digital twins in smart cities. They
argue that UDTs must address the specific needs of a city, offering high-fidelity
content. In addition, continuous updating of the UDT—using devices like IoT

276 S. Laso et al.

sensors—is essential to reflect the constant urban changes. The authors empha-
size the necessity of taking humans into consideration to ensure successful imple-
mentation in order to improve decision-making, which is a concern that we also
share. They also highlight the incorporation of AI techniques for automatically
updating models through the utilization of sensor data.

Schrotter and Hurzeler [21] present a UDT for the city of Zurich, which is
defined as a digital and spatial model of the city that integrates 3D spatial
data and models for different themes. We have chosen this work because it
shows diverse applications of digital twins in smart cities: analyze city growth,
visualize construction projects, assess the impact on urban climate, and enable
active public participation in planning, among others. The authors also highlight
the availability of open data, which is an essential component for the success and
usefulness of the UDT.

Ruiz et al. propose BODIT [19], a UDT of the public transportation system in
the city of Badalona (Spain). They use a traffic simulator and a genetic algorithm
to reproduce the city’s traffic and adapt to different situations. Bus schedules are
used to predict and detect a lack of punctuality at bus stops, enabling informed
decision-making as a response to unusual situations such as accidents.

Although these works present interesting UDT initiatives, there are several
significant concerns that they do not properly address. In particular, all of them
describe a monolithic and centralized UDT architecture. A smart city is a com-
plex system composed of a large set of subsystems, devices, people, etc. There-
fore, centralized UDTs may be unmanageable and unfeasible due to its sheer
scale and complexity.

One example of a distributed architecture is given in Villalonga et al. [25],
in which the authors present a distributed DT framework that improves local
decision-making in the manufacturing industry. The integration of local and
global digital twins enables more accurate fault detection, notifying the system
for reconfiguration and scheduling actions. This distributed approach offers the
advantage of increasing efficiency in decision-making by using improved predic-
tive models and performing simulations at different levels.

After reviewing and analyzing these and other related works, we have iden-
tified several limitations that we aim to address with our approach. Some of the
proposals [11,19,21] primarily focus on monolithic and centralized architectures
for UDTs, ignoring the potential advantages of a distributed architecture as dis-
cussed in [25]. We can go further and consider this distribution of UDTs over the
Continuum to solve the problems that centralized architectures present, such as
scalability, response time, and structural complexity, among others. Taking these
concerns into consideration, we advocate that DT proposals for smart cities and
other complex systems follow a hierarchical and distributed architecture over
the Continuum, addressing the following requirements:

• Scalability and flexibility. The DT architecture must rest on weakly cou-
pled systems, which operate independently and interact and coordinate with
each other. A distributed architecture allows for the storage and processing of
information in the entities where it is generated or consumed. This provides

Towards an Urban Digital Twins Continuum Architecture 277

greater scalability and flexibility, avoiding the complexity associated with
centralized systems. Each entity manages its own information and resources,
contributing to a more adaptable system.

• Data privacy. Personal data privacy must be prioritized by keeping sensitive
information stored and processed locally on citizens’ devices. This decentral-
ized approach minimizes the need for data transmission, reducing the risks
associated with centralizing sensitive data.

• Reduction of duplicity. By distributing computation, the system optimizes
resource allocation and avoids duplicating computational tasks. Component
reuse and modularization minimize duplicity by designing components that
prevent redundant functionalities in different layers.

• Reactivity and responsiveness. By enabling local-level responsiveness,
where data are computed in proximity, the system will achieve faster response
times, enabling the system to react promptly to changes and events, ensuring
quick processing, and providing almost instantaneous responses.

• Adaptability to complex systems. Smart cities are complex systems that
integrate technology, interconnected infrastructures, and citizen participation
to address urban challenges. Monolithic and single-deployment DTs do not
address these challenges correctly. A distributed DT handles the complexity
in a better way, by adapting and scaling components according to the needs.
This adaptability will ensure that the DT adapts to the specific requirements
and complexity of smart cities, offering flexibility and scalability as mentioned
above.

• Collaboration. A loosely-coupled distributed DT architecture facilitates col-
laboration between systems or applications by providing a platform for data
and knowledge exchange. Multiple applications can connect to shared twins,
enabling real-time collaboration and decision-making. By leveraging a dis-
tributed architecture, DTs can be shared by different systems, leading to
interoperability and resource optimization.

4 Architecture

This section presents our proposal for an Urban Digital Twin architecture in
the Continuum. We will also describe which modules and components form the
different layers of the architecture.

Figure 1 illustrates the proposed architecture, where the Physical Twin (PT)
and the Digital Twin (DT) establish communication through a Distributed Data
Lake (DDL), following the architectural conceptualization for DT systems sug-
gested by Muñoz et al. [13]—only two Edge nodes and one Fog node have been
represented for simplicity, although this structure could be expanded. The partic-
ularity of this architecture in the Continuum lies in the flexible coupling between
components, managed by the Cloud, Fog, Edge, and Things layers. Figure 1 illus-
trates the proposed architecture, where the Physical Twin (PT) and the Digital
Twin (DT) establish communication through a Distributed Data Lake (DDL),
following the architectural conceptualization for DT systems suggested by Muñoz

278 S. Laso et al.

et al. [13]—only two Edge nodes and one Fog node have been represented for
simplicity, although this structure could be expanded. The particularity of this
architecture in the Continuum lies in the flexible coupling between components,
managed by the Cloud, Fog, Edge, and Things layers.

In this context, the DT adopts a distributed architecture in which each
instance of the twin operates autonomously, avoiding dependence on a central-
ized replica of the entire system. This approach provides flexibility and efficiency
in data management, offering different levels of information and knowledge, and
avoiding unnecessary data transmission and infrastructure overload. The key to
achieving this objective lies in the distribution of the data lake along the Con-
tinuum so that each layer can write to and read from the corresponding DDL
module. This distribution favors system adaptability, allowing each component
to contribute to knowledge generation in an autonomous and collaborative way.

Urban Digital Twin Physical Twin

Data Exchange Dimension

Things Things

Fog Node

Cloud

External Contextual Data

Distributed
Data Lake

Computing Dimension

Edge Node Edge Node

Fig. 1. Architecture proposed.

– Things layer: This layer focuses on the sensors that provide information
to the Edge nodes. These sensors are physical devices that capture real-time
data about the environment in the PT and write it in the DDL. This data is
fundamental to the operation of the UDT, as it feeds the monitoring, analy-
sis, and decision-making process. Each DT module in the Things layer gets
the corresponding data from the DDL and sends it to an Edge node. This is
represented in Fig. 1 with the arrow from the DDL to a Things module—only
the connection with one Thing module is depicted for simplicity. Unlike Edge
nodes or the Fog layer, the Things layer generally does not perform compu-
tations or data processing itself but focuses on capturing the corresponding
data from the DDL and transmitting it to the Edge nodes.

Towards an Urban Digital Twins Continuum Architecture 279

– Edge layer: The Edge layer is composed of devices located at the periphery
of the network that perform the function of collecting information from the
Things layer or from other services. These Edge nodes also host DT modules
that store the information collected from the Things layer that allows it to
analyze and predict the behavior of the elements it monitors. Therefore, these
devices must have sufficient capabilities for data collection and the provision
of a DT.
The results obtained through these analyses are written in the DDL for the
PT to have access to them as well as the Fog nodes for further processing.
Additionally, Edge nodes also exchange information with each other. This
collaboration and information sharing contribute to improving and enriching
the results generated by the DTs present in each of the nodes. By working
together, the Edge nodes achieve greater accuracy and quality in the results
obtained. They also increase their capacity to adapt to changes and unex-
pected situations, as they can benefit from the experience and knowledge
shared among them.

– Fog layer: The Fog layer serves as a crucial intermediary, tasked with gath-
ering and retaining data sourced from the Edge nodes. This collection of
data from the Edge nodes is instrumental in providing a more expansive
and nuanced understanding of the system. Within each Fog node, Digital
Twin (DT) modules play a pivotal role-they not only store the information
acquired from the Edge nodes but also conduct in-depth analyses, unravel-
ing the intricacies of the data. This involves identifying patterns, discerning
trends, pinpointing emerging issues, and distilling this raw data into valuable
knowledge and insights.
The knowledge thus amassed proves to be indispensable for anticipating
events and making well-informed decisions. This reservoir of insights is not
left untapped; instead, it is meticulously recorded in the DDL. This strategic
move ensures that the Physical Twin (PT) has direct and immediate access
to this wealth of information. By leveraging the capabilities of the Fog layer,
the system not only enhances its capacity to comprehend the intricacies of
the data but also empowers decision-makers with the foresight and under-
standing needed to navigate complex scenarios and make proactive, informed
choices.

– Cloud layer: The Cloud layer plays a pivotal role in the system by serving as
a repository for diverse external contextual data obtained from a multitude
of sources including databases, APIs, and more. This layer is essential for
consolidating and storing this contextual information, which is subsequently
utilized to feed and enhance the functionality of the other layers within the
architecture. By gathering and integrating data from various external sources,
the Cloud layer ensures that the entire system has access to a comprehensive
and up-to-date pool of information, facilitating more accurate analyses, pre-
dictions, and decision-making across the distributed digital twin architecture.

280 S. Laso et al.

5 Case Studies

The proposed architecture demonstrates adaptability, allowing it to be applied
to various case studies or applications. Depending on the scenario, different ele-
ments within the architecture can assume different roles, tailored to the require-
ments of each application. This versatility enables the architecture to be cus-
tomized based on the problem being addressed. In this section, we explore two
case studies that exemplify the adaptability of our architecture. In the first one,
the government of a smart city wants to collect data about its public trans-
portation system and how its citizens use it, with the goal of deploying a UDT
to optimize and improve service to citizens. In the second one, the government
has to comply with current pollution regulations and wants to implement a UDT
pollution monitoring system to improve the accuracy of air quality prediction
and avoid non-compliance.

5.1 Urban Transportation System

In Fig. 2, we apply the proposed architecture to a bus transportation system,
focusing on improving the accuracy of predicting bus arrival times, detecting
potential skipped stops, and/or knowing how citizens move around the city. To
achieve this, our architecture takes into consideration both buses and passengers.
Next, we present a description of the architecture implementation:

Fig. 2. Case study: Urban transportation system.

Things Layer: This layer contains Bluetooth beacons and GPS devices installed
on each bus of the transportation system, as well as the sensors (GPS and
Bluetooth) of passengers’ smartphones. The bus’ GPS tracks and locates the

Towards an Urban Digital Twins Continuum Architecture 281

current position, while beacons are used to detect passengers’ presence through
Bluetooth and count the number of people on board. These data are essential
to analyze pedestrian movement patterns and calculate whether the bus will
be able to make a stop at the following destinations, considering the maximum
capacity allowed.

Edge Layer: The Edge nodes represent both buses and passengers, each with
their own DT. Regarding the buses, each one is represented by an Edge node
consisting of a DT that simulates the bus behavior. These Edge nodes are fed
with the data of each bus, coming from the information of the Things layer. The
information gathered allows the DTs to more accurately predict bus arrival times
and identify situations where a stop may be skipped due to capacity limitations.

Similarly, each passenger is represented by an Edge node consisting of a
DT that represents and simulates the user’s Digital Avatar [16] that refers to
the virtual representation of a person residing on their smartphone, collecting
information about their habits and preferences, and allowing them to interact
with the other DTs. These Edge nodes capture the information of individual
passengers within the transportation system. By integrating the data from both
the buses’ DTs and Digital Avatars’ DTs, the Edge layer improves the accuracy
of arrival time predictions and overall system optimization.

Apart from their individual roles, the Edge layer facilitates horizontal com-
munication between buses and passengers within the transportation system. Pas-
sengers can receive real-time updates and notifications about bus schedules or
delays. Furthermore, buses can also communicate with other buses within the
Edge layer, promoting collaboration and coordination for better efficiency.

Fog Layer: The Fog layer is essential in the bus transportation system. Each bus
line is governed by a Fog node, which contains a DT representing and simulating
the buses’ behavior on that specific line. These Fog nodes serve as data collection
and processing points for the Edge nodes, enabling the creation of an overall
model for the entire line. In addition, the Fog layer is responsible for periodically
distributing the federated model to other buses to update their respective DTs.
This update occurs regularly or when a new bus joins the line, ensuring all buses
benefit from the latest updates in the prediction model.

Moreover, the Fog nodes may be interested in incorporating information
about people’s habitual travel patterns to determine if a person who usually
takes a specific bus line will be using it on a particular day. This information can
be leveraged to provide targeted recommendations for specific buses, ensuring
that the transportation system adjusts to the individual’s needs and preferences.

Cloud Layer: This layer plays a crucial role in providing external contextual
information, such as weather conditions, event calendars, and vacation dates.
This contextual information is used to further enrich the prediction and decision-
making model. For instance, considering weather conditions allows anticipating
possible delays due to rain or adverse weather factors. Likewise, by taking into
account the calendar of events and vacation dates, the transportation demand
prediction can be adjusted and resource allocation can be optimized.

282 S. Laso et al.

5.2 Pollution Monitoring System

In Fig. 3, we apply the proposed architecture to a pollution control system, focus-
ing on analyzing and predicting pollution levels of CO2 and allergenic particles
to improve the accuracy of air quality prediction. Next, we present a description
of the architecture implementation:

Fig. 3. Case study: Pollution monitoring system.

Things Layer: In this layer, there are sensors distributed throughout the city
to measure air pollution levels, such as CO2 and suspended particles (pollu-
tants, pollen, and other allergenic particles). CO2 sensors are located on the
buses moving around the city. The data from the suspended particle sensors are
strategically distributed at different points in the city.

Edge Layer: In the Edge layer, there are pollution analysis control centers
distributed in different neighborhoods in the city. These centers are responsible
for capturing the data coming from the Things layer. Each control center has its
own DT, which represents and simulates the behavior of the center in question.

The pollution analysis control centers receive the data collected through their
DTs and perform a comprehensive analysis of these data. The DTs are able to
predict accurately CO2 pollution levels and suspended particle concentrations.
This information is used to generate notifications and alerts to citizens through
information panels. These panels display real-time and predictive information
on air quality, providing relevant data on CO2 levels and allergenic particles.
In this way, citizens can be informed about the air quality in their environment
and receive alerts in case of risk situations or high levels of allergenic particles
or activate action protocols to address the problem.

Towards an Urban Digital Twins Continuum Architecture 283

Fog Layer: The Fog layer is represented with one node by the city’s air manage-
ment system. Its main function is to collect and process the information coming
from the different control centers. The information collected by the Fog node is
essential to feed and enrich the DT present in this layer. The DT uses histori-
cal data to analyze and evaluate air quality in the city. By analyzing long-term
patterns and trends, the DT can provide a complete and detailed picture of
pollution and allergy levels.

The results are critical to making informed decisions. For example, if an
area with high CO2 levels is detected, authorities can take measures to regulate
traffic in that area, reduce pollutant emissions, and comply with regulations set
by the European Union. Regarding the concentration of allergenic particles, if
high levels of allergenic particles are predicted in certain areas of the city, this
will imply an increase in allergy cases in the local population. The health system
can use this information to take proactive measures and provide better resource
allocation and better care to affected citizens.

Cloud Layer: The Cloud layer is essential for integrating data sources from
meteorological portals and event calendars to enrich the models of the different
DTs. For instance, weather conditions, such as wind speed and precipitation,
along with temperature and humidity, impact the dispersion of pollutants and
concentration of allergenic particles in the air. Additionally, integrating event
calendar data helps identify activities like sports events, concerts, or festivals
that can lead to increased traffic and crowds, directly affecting air quality.

6 Discussion

In this section, we analyze the proposed architecture for the Urban Digital Twin
(UDT) over the Continuum. We analyze how this proposal stands out for its
scalability, flexibility, and privacy enhancement in complex urban environments.
In addition, we carefully examine challenging considerations, such as implemen-
tation complexity, infrastructure requirements, and security-related issues. This
critical assessment provides insight into the suitability and feasibility of the UDT
architecture in the Continuum, offering a holistic perspective for consideration in
smart city management. The issues addressed position it as a robust and adapt-
able solution for the efficient management of urban environments. However, like
any proposal, it also presents certain limitations.

Firstly, the distributed architecture in the Continuum allows for efficient
scalability. Each entity deploys its own Digital Twin, which facilitates the incor-
poration of new urban elements without affecting the existing infrastructure.
This ensures exceptional adaptability as the city evolves and expands, enabling
the seamless integration of new services and devices. Nevertheless, the implemen-
tation of a distributed architecture composed of different entities can be com-
plex, requiring careful planning and coordination. This can lead to challenges
in terms of integration and initial configuration, especially in urban environ-
ments already established with pre-existing systems. It is therefore important to

284 S. Laso et al.

consider economic and technological feasibility, especially for those cities with
limited resources.

Secondly, the low coupling between the DTs of the different entities enables
their independent operation. In addition, the architecture enables collaboration
between them, thus enriching their models and improving joint decision-making.
This optimizes operational efficiency while fostering collaboration and synergy
between the different urban components. This low coupling brings inherent pri-
vacy improvements as information is stored and processed at the data source.
This feature is fundamental to gaining the trust of citizens and ensuring com-
pliance with privacy regulations. This low coupling in data management also
poses additional challenges in terms of security and protection against threats.
Careful implementation of security measures is required to ensure data integrity
and confidentiality, as well as resilience to potential attacks.

The Urban Digital Twin architecture in the Continuum offers numerous
advantages, from its flexibility to its privacy enhancement. However, its effective
implementation requires carefully addressing the associated constraints, ensuring
a smooth transition and long-term benefits for smart city management.

7 Conclusions and Future Work

Recently, Digital Twins have emerged as a powerful enabling technology for
the virtualization of systems, products, and services. They represent fundamen-
tal tools for monitoring, prediction, and integration of data from IoT devices.
Despite their benefits, conventional implementations face challenges such as scal-
ability, coupling, or privacy, which can affect their ability to adapt optimally in
scenarios with a high distribution of resources. To try to overcome these chal-
lenges, there are architectures such as the Computing continuum that enable the
flexibility and distribution capabilities inherent to Digital Twins, thus ensuring
their usefulness in diverse environments and applications.

In this paper, we have presented an architecture for Urban Digital Twins
deployed in the Continuum, which addresses the limitations of conventional DTs
in terms of scalability, latency, and privacy, among others. Through the distribu-
tion of DTs in the Continuum, we achieve greater flexibility and responsiveness,
as well as more efficient data and privacy management. In addition, through
citizen participation, we can ensure personalized data-driven decision-making.
The case studies presented demonstrate the applicability and effectiveness of
our architecture in the context of smart cities, enabling more accurate and par-
ticipatory management of urban environments.

We are currently implementing the architecture for both case studies, setting
up the necessary infrastructure, and deploying the different components across
the layers. We have already obtained some preliminary implementation results,
presented in [10,24]. Furthermore, in [8] we introduce Perses, a tool that emulates
different parts of the Computing Continuum, including user smartphones.

Acknowledgements. This work has been partially funded by grant DIN2020-011586,
funded by MCIN/AEI/10.13039/501100011033 and by the European Union “Next

Towards an Urban Digital Twins Continuum Architecture 285

GenerationEU/PRTR”, by the Spanish Ministry of Science, Innovation, and Universi-
ties (projects PID2021-125527NB-I00, TED2021-130913B-I00, TED2021-130523B-I00,
and PD C2022-133465-I00), by the Regional Ministry of Economy, Science and Digital
Agenda of the Regional Government of Extremadura (GR21133) and the European
Regional Development Fund.

References

1. Barricelli, B.R., Casiraghi, E., Fogli, D.: A survey on digital twin: definitions, char-
acteristics, applications, and design implications. IEEE Access 7, 167653–167671
(2019)

2. Bendechache, M., Svorobej, S., Takako Endo, P., Lynn, T.: Simulating resource
management across the cloud-to-thing continuum: a survey and future directions.
Future Internet 12(6), 95 (2020)

3. Costantini, A., et al.: Iotwins: Toward implementation of distributed digital twins
in industry 4.0 settings. Computers 11(5), 67 (2022)

4. Deng, T., Zhang, K., Shen, Z.: A systematic review of a digital twin city: a new
pattern of urban governance toward smart cities. J. Manag. Sci. Eng. 6(2), 125–134
(2021)

5. Fadda, M., Anedda, M., Girau, R., Pau, G., Giusto, D.D.: A social internet of
things smart city solution for traffic and pollution monitoring in Cagliari. IEEE
Internet Things J. 10(3), 2373–2390 (2022)

6. Fuller, A., Fan, Z., Day, C., Barlow, C.: Digital twin: enabling technologies, chal-
lenges and open research. IEEE Access 8, 108952–108971 (2020)

7. Laso, S., et al.: Elastic data analytics for the cloud-to-things continuum. IEEE
Internet Comput. 26(6), 42–49 (2022)

8. Laso, S., Berrocal, J., Fernández, P., Ruiz-Cortés, A., Murillo, J.M.: Perses: a
framework for the continuous evaluation of the QoS of distributed mobile applica-
tions. Pervasive Mob. Comput. 84, 101627 (2022)

9. Laso, S., Berrocal, J., Garćıa-Alonso, J., Canal, C., Manuel Murillo, J.: Human
microservices: a framework for turning humans into service providers. Software:
Practice Exp. 51(9), 1910–1935 (2021)

10. Laso, S., Toro-Gálvez, L., Berrocal, J., Canal, C., Murillo, J.M.: Deploying digital
twins over the cloud-to-thing continuum. In: 2023 IEEE Symposium on Computers
and Communications (ISCC), IEEE (2023)

11. Lehtola, V.V., et al.: Digital twin of a city: review of technology serving city needs.
Int. J. Appl. Earth Obs. Geoinf. 114, 102915 (2022)

12. Lei, B., Janssen, P., Stoter, J., Biljecki, F.: Challenges of urban digital twins: a
systematic review and a Delphi expert survey. Autom. Constr. 147, 104716 (2023)

13. Muñoz, P., Troya, J., Vallecillo, A.: A conceptual architecture for building digital
twins. In: Proceedings of the 3rd International Workshop on MDE for Smart IoT
Systems (MeSS 2023) (2023)

14. Nikitas, A., Michalakopoulou, K., Njoya, E.T., Karampatzakis, D.: Artificial intel-
ligence, transport and the smart city: definitions and dimensions of a new mobility
era. Sustainability 12(7), 2789 (2020)

15. Pérez-Vereda, A., Canal, C.: A people-oriented paradigm for smart cities. In:
Cabot, J., De Virgilio, R., Torlone, R. (eds.) ICWE 2017. LNCS, vol. 10360, pp.
584–591. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60131-1 46

16. Pérez-Vereda, A., Canal, C., Pimentel, E.: Modelling digital avatars: a tuple space
approach. Sci. Comput. Program. 203, 102583 (2021)

https://doi.org/10.1007/978-3-319-60131-1_46

286 S. Laso et al.

17. Pujol, V.C., Raith, P., Dustdar, S.: Towards a new paradigm for managing com-
puting continuum applications. In: 2021 IEEE Third International Conference on
Cognitive Machine Intelligence (CogMI), pp. 180–188. IEEE (2021)

18. Ramu, S.P., et al.: Federated learning enabled digital twins for smart cities: con-
cepts, recent advances, and future directions. Sustain. Urban Areas 79, 103663
(2022)

19. Ruiz, P., Seredynski, M., Torné, Á., Dorronsoro, B.: A digital twin for bus operation
in public urban transportation systems. In: Big Data Intelligence and Computing,
pp. 40–52 (2023)

20. Samih, H.: Smart cities and internet of things. J. Inf. Technol. Case Appl. Res.
21(1), 3–12 (2019)

21. Schrotter, G., Hürzeler, C.: The digital twin of the city of Zurich for urban planning.
PFG - J. Photogrammetry Remote Sens. Geoinf. Sci. 88, 99–112 (2020)

22. Singh, M., Fuenmayor, E., Hinchy, E.P., Qiao, Y., Murray, N., Devine, D.: Digital
twin: origin to future. Appl. Syst. Innov. 4(2), 36 (2021)

23. Technology, L.: LADOT. Los Angeles. Technology Action Plan; 2022. https://
ladot.lacity.org/sites/default/files/documents/annual-report-2022 2023.pdf.
Accessed 30 Nov 2023

24. Toro-Gálvez, L., Garćıa-Luque, R., Troya, J., Canal, C., Pimentel, E.: Towards the
integration of digital avatars in urban digital twins on the cloud-to-thing contin-
uum. In: Proceedings of the 3rd International Workshop on Big data driven Edge
Cloud Services (BECS 2023) (2023)

25. Villalonga, A., Negri, E., Fumagalli, L., Macchi, M., Castaño, F., Haber, R.: Local
decision making based on distributed digital twin framework. IFAC-PapersOnLine
53(2), 10568–10573 (2020)

26. Weil, C., Bibri, S.E., Longchamp, R., Golay, F., Alahi, A.: A systemic review of
urban digital twin challenges, and perspectives for sustainable smart cities. Sustain.
Cities Soc. 104862 (2023)

https://ladot.lacity.org/sites/default/files/documents/annual-report-2022_2023.pdf
https://ladot.lacity.org/sites/default/files/documents/annual-report-2022_2023.pdf

Designing a Future-Proof Reference
Architecture for Network Digital Twins

Roberto Verdecchia(B) , Leonardo Scommegna , Enrico Vicario ,
and Tommaso Pecorella

Department of Information Engineering, University of Florence, Florence, Italy
{roberto.verdecchia,leonardo.scommegna,enrico.vicario,

tommaso.pecorella}@unifi.it

Abstract. As the complexity, distribution, and heterogeneity of net-
works continue to grow, how to architect and monitor of these network-
ing environments is becoming an increasingly critical open issue. Digi-
tal twins, which can replicate the structure and behavior of a physical
network, are seen as potential solution to address the problem. While
reference architectures for digital twins exist in other fields, a compre-
hensive reference architecture for the networking context has yet to be
developed. This paper discusses the need for such a reference architecture
and outlines the key elements necessary for its design. We present the
findings of a preliminary survey that explores the need for a network digi-
tal twin reference architecture, the crucial information it should include,
and practical insights into its design. The survey results confirm that
existing standards are inadequate for modeling network digital twins,
outlining the necessity of a new reference architecture. We then artic-
ulate our position on the need for a reference architecture for network
digital twins, focusing on three main aspects, namely: (i) digital twins
of what, (ii) for what, and (iii) how to deploy them. We then proceed to
delineate the fundamental obstacles that a reference architecture must
confront, in tandem with the essential characteristics it needs to embody
to successfully navigate these challenges. As conclusion, we present our
vision for the reference architecture and outline the main research steps
we plan to take to address this open problem. Our ultimate goal is to
tightly collaborate both with the networking and digital twin software
architecture communities to jointly establish a sound network digital
twin architecture of the future.

Keywords: Reference architecture · Digital twin · Networking

1 Introduction

In recent years, Digital Twins (DTs) gained and increasing popularity, and year
after year are becoming more adopted in different and new industrial contexts. A
digital twin is a virtual representation of a system, facilitating bidirectional com-
munication between the system and its digital representation [18]. Such virtual
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
B. Tekinerdoğan et al. (Eds.): ECSA 2023, LNCS 14590, pp. 287–306, 2024.
https://doi.org/10.1007/978-3-031-66326-0_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-66326-0_18&domain=pdf
http://orcid.org/0000-0001-9206-6637
http://orcid.org/0000-0002-7293-0210
http://orcid.org/0000-0002-4983-4386
http://orcid.org/0000-0002-0009-8154
https://doi.org/10.1007/978-3-031-66326-0_18

288 R. Verdecchia et al.

representation is used, among other goals, for designing, modeling, and monitor-
ing physical asses [11]. DTs enable to mimic the structure, context, and behavior
of a single or groups of physical assets, supporting both design and runtime deci-
sion making processes of the physical counterparts. By collecting and analyzing
data from multiple sources, DTs can be used to digitally gain information on
various attributes, such as performance and related inefficiencies, to identify and
design solutions to improve their physical counterparts.

In networking environments, DTs are commonly used to represent physi-
cal networking assets such as routers, switches, controllers, and communication
channels [32]. Network DTs (NDTs) usually include information regarding oper-
ational status, performance data, and environmental conditions of their phys-
ical twins. By exchanging network data and control messages with a network
of DT instances through twin-physical interfaces, network engineers can rely
on DT representations to design, test, assess security, and improve the mainte-
nance of physical networks. This allows for efficient and intelligent management
of networks, with the ultimate goal of supporting the improvement of network
performance, reliability, and accelerate network innovation.

The concept of DT has been largely developed in the context of Cyber Phys-
ical Systems, much promoted by the agenda of Industry 4.0 where it was also
addressed and formalized in standardization initiatives [15]. In the context of
future generation networks, the growing level of softwarization demands archi-
tectural paradigms that can drive the organization of functional responsibili-
ties, their connection with data collection and intelligent processing, and their
deployment and composition across network computing, storage, and connectiv-
ity resources.

While various concepts can inherit results consolidated in contexts where
the DT paradigm has already reached higher maturity and readiness, applica-
tion in software driven networks raises several and hard new challenges, notably
including: distribution across a large-scale network, with sustainable footprint
on communication and storage resources; critical need for high levels of interop-
erability among heterogenous resources and services managed by multiple oper-
ators; autonomic orchestration capability supporting efficient and self-adaptive
placement of network functions and applications across edge-to-cloud levels and
localities. The relevance of these challenges, and their scientific and technological
perception is clearly testified by the level of standardization initiatives and the
growing number of scientific works.

In order to architect NDTs, comprehensively model their characteristics, and
manage the high complexity such systems entail, a reference architecture, i.e., a
template solution for an architecture of a particular domain [3], could be used.
Such solution was recently introduced for manufacturing environments, with the
establishment of the ISO Standard 23247 [15] (which was also picked up in recent
software architecture literature [10]). To the best of our knowledge, a reference
architecture to model NDTs, covering both functional and non-functional aspects
of NDT architectures, is still missing in the current body of knowledge.

Designing a Future-Proof Reference Architecture for Network Digital Twins 289

As note, while reference architectures and standards might have similar prop-
erties, they convey different concepts. Specifically, a reference architecture is a
template architectural solution for a particular domain and context. Software
engineering standards instead are a set of guidelines for the process, quality, and
documentation of software development and maintenance, usually developed by
industry organizations or governing bodies, e.g., IEEE and ISO. Therefore while
a standard can document a reference architecture (e.g., in the case of the ISO
Standard 23247 [15]), the opposite is not always true. Moreover, a reference
architecture can leverage standards (e.g., data interchange standards), but its is
often independent from the particular standard being used.

The NDTs architectures are foreseen to play a critical role in the RESTART
Foundation (RESearch and innovation on future Telecommunications sys-
tems and networks, to make Italy more smART)1, funded by the European
Union (EU), under the Next Generation EU (NGEU) program.2 The RESTART
Foundation is a partnership between 25 Italian universities (e.g., the Sant’Anna
School and the University of Rome La Sapienza.), research centers (e.g., the Ital-
ian National Research Council), and companies (e.g.,Vodafone and Ericsson).
The goal of the RESTART project is to leverage DTs to provide a structural
improvement of telecommunications research and development in Italy, support-
ing the digital transformation of industries, and growth of related research and
professional communities. Within the RESTART Foundation, the COHERENT
project “Shaping a Digital Twins future proof network architecture” focuses
explicitly on integrating the outcomes of all RESTART research activities in a
comprehensive network architecture considering both a technical and a business
point of view. The research project, founded for a total of 116 million euros, aims
to fill a current gap in networking, namely the lack of an extensible and evolvable
NDT reference architecture. Current standards and documentation related to a
NDTs reference architecture result to either be too generic to effortlessly incor-
porate the specifics of the networking domain, e.g., consider the DT framework
of Josifovska et al. [16] or the DT archetypes of van der Valk et al. [30], or result
to be deeply grounded in current technologies, and are therefore inherently hard
to evolve according to future emerging technologies. As documented by the fund-
ing body, realizing a future proof DT network architecture and documenting its
related design rationale allows to establish a set of best-practices to fully harness
the potential of the implementation of projects in the networking domain.

As part of COHERENT, in this position paper we outline how, in order
to comprehensively consider and integrate the various facets of NDTs, a future
proof reference architecture for network digital twins needs to be established.

The contributions of the paper are (i) an opening survey empirically investi-
gating the need of a reference architecture for NDTs, (ii) a grounding problem
statement outlining the need of such reference architecture, and (iii) our vision
on a future proof reference architecture of NDTs.

1 https://www.fondazione-restart.it/. Accessed 18th June 2023.
2 https://next-generation-eu.europa.eu/index en. Accessed 2 August 2023.

https://www.fondazione-restart.it/
https://next-generation-eu.europa.eu/index_en

290 R. Verdecchia et al.

This research builds upon the initial position paper presented at the sec-
ond International Workshop on Digital Twin Architecture (Twin-Arch) [31] by
(i) discussing the main challenges of designing a network digital twin reference
architecture, (ii) reporting the key features the reference architecture must pro-
vide, and (iii) providing a stepping stone towards the concrete implementation
of the architecture.

2 Opening Survey

In order to gain introductory empirical insights into the need for a NDT refer-
ence architecture, independent of the statements and goal set by the RESEARCH
funding body (see Sect. 1), we conducted a survey involving researchers and prac-
titioners working in the field of networking. Participants were recruited via con-
venience sampling starting from the RESTART Foundation participant list and
the personal network of the authors, followed by a subsequent snowballing sam-
pling. Survey invitation target networking experts, belonging either to academic
entities, renowned large scale industrial companies, or networking standardiza-
tion entities. Under the human ethics guidelines governing this study, we cannot
disclose affiliations of participants to preserve their anonymity.

In total, 16 participants took part in the survey.
The survey comprised a mix of close-ended 5-point Likert scale questions

(CE) and free form open-ended questions (OE). Each CE was accompanied by
a OE, where respondents could further clarify their answer.3 The survey was
composed of three main parts, namely:

1. Participant demographic questions: Current job position (OE), years of expe-
rience (OE), familiarity with networking and digital twins (CE);

2. On need of a NDT reference architecture: Degree to which the ISO 23247
can be used to represent NDTs (CE), degree to which the ISO 23247 needs
to be modified to represent NDTs (CE), and perceived usefulness of a NDT
reference architecture (CE);

3. Further advice to establish a NDT reference architecture: expected network-
ing components modeled (OE), expected grouping of networking components
(OE), degree to which elements of standardisation groups (e.g.,ETSI or
IETF) should appear in the NDT reference architecture (CE).

To ensure respondents have enough knowledge on DT to answer the survey,
a definition of DT is provided at the beginning of the survey. Similarly, an
overview of the ISO 23247 standard provided by Bucaioni et al. [9] is provided
in the survey. Participants who acknowledge not being familiar with networking
and/or DT concepts are discarded from the respondents.

3 To support replicability and scrutiny, the survey and received answers are made
available online at: https://github.com/STLab-UniFI/twinarch-2023-reference-
architecture-rep-pkg.

https://github.com/STLab-UniFI/twinarch-2023-reference-architecture-rep-pkg
https://github.com/STLab-UniFI/twinarch-2023-reference-architecture-rep-pkg

Designing a Future-Proof Reference Architecture for Network Digital Twins 291

From the demographic answers, the vast majority of participants resulted to
work in academia (11/16), possess an average of 10 years of experience, be highly
familiar with networking concepts, and moderately familiar with DT.

Regarding the ISO 23247, most participants noted that it can be applied to
networking concepts only to a moderate extent (6/16) or low extent (5/16). From
the supporting OE answers, we note that this is primarily due to a perceived
lack of generalizability of the ISO 23247 standard. By considering the extent
to which the ISO 23247 standard needs to be modified in order to be used
for NDTs, respondents primarily indicated a medium, or medium-high degree
(13/16). Accompanying OE questions clarified that this is mostly due to the
need to model concepts specific to NDTs, e.g., details regarding network virtu-
alization functions, and other networking-related attributes, which require new
abstraction levels. All participants agreed on a medium-high, or high usefulness
of a NDT reference architecture (15/16).

When considering the further advice provided by participants to estab-
lish a NDT reference architecture, respondents mostly indicated basic hard-
ware networking components, e.g., routers, switches, and hubs (8/16). In con-
trast, virtual elements, e.g., virtual machines, VPNs, and firewalls, were men-
tioned far less frequently (3/16). Only seldom, communication-related elements,
e.g., physical channels, were mentioned (3/16). Only few respondents described
the expected grouping of networking components, providing heterogeneous
answers, e.g., “physical layer; security; services; hardware; software; protocols”
and “SDN control plane; 5G-oriented data plane”. Finally, respondents indi-
cated that networking elements of presented by standardisation groups (e.g., the
the European Telecommunications Standards Institute (ETSI).4) could be used
between a medium and medium-high extent to model a NDT reference architec-
ture (15/16).

Overall, as main takeaways of the opening survey conducted for this position
paper, we can conclude that, based on the opinion of mostly academic researchers
experienced in networking:

1. The ISO 23247 does not fit completely the networking context, and would
need to be considerably modified;

2. A NDT reference architecture is perceived as highly useful;
3. Elements to be covered in the NDT reference architecture should primarily

focus on hardware networking components, could use to a moderate extent
elements of existing standards.

3 On the Need of a Reference Architecture for Network
Digital Twins

Albeit extensive literature considered network DT [1,19,26,27,32], the topic has
been primarily addressed from a purely networking point of view. As such,
aspects related to a reference architecture NDTs, i.e., a reusable metamodel
4 https://www.etsi.org. Accessed 18th June 2023.

https://www.etsi.org

292 R. Verdecchia et al.

that can applied to heterogeneous contexts, considering disciplines such as soft-
ware engineering and software architecture, seem to have been almost completely
neglected in current literature [5]. To address this point, in this position paper,
we take a software engineering stance by reviewing the topic of NDTs reference
architectures through the lens of software architects.

As emerges from recent reviews [1,11,32], when considering NDTs, three
main aspects can be taken into account, namely NDTs for what?, NDTs of
what?, and how to deploy NDTs?. In the following, we detail our position on
these three aspects, building towards our vision on the main proprieties an NDT
reference architecture needs to possess.

3.1 Network Digital Twins for What?

As one of the most consolidated aspects of NDTs, the related body of literature
extensively describes the different application scenarios of NDT, e.g., their use for
network function virtualization, controlled orchestration, and reliability/security
monitoring and assurance processes. For example, NDTs can be used to facilitate
service placement, allowing for the efficient streaming of data from one point to
another within a network [4].

Reference architectures for NDTs are available (e.g., the NDTs architecture
presented by the Telecommunication Standardization Sector of the International
Telecommunication Union [28]). Nevertheless, such reference architectures con-
sidered primarily, if not exclusively, the functional nature of NDTs, i.e., do not
consider aspects related to the characteristics of the entities that have to be
represented, or their concrete use/deployment (see also following sections).

Similarly, standards regarding functional aspects of DTs are widespread
knowledge within the industry, as documented for example by the industry-
driven effort in the Internet Research Task Force (IRTF) [35], as well as the
evolution of standards relative to the network devices management planes (see
for example the standards issued by the IETF NETCONF Working Group5)

Overall, it appears as if the “NDTs of what?” field is a quite consolidated
in the networking community. For example, the field of network function vir-
tualization experienced a growing interest through the years, and can now be
regarded as a mature, consolidated, and standardized area [34].

As more recent example of NDTs functional viewpoints, current research
investigates the use of NDTs for AI model lifecycle management [17]. This
topic, currently under investigation, opens for new challenges of functional
NDT aspects, e.g., controlling responsibilities, management of AI model lifecycle
within NDTs, and consistency between models distributed via federated learn-
ing.

3.2 Network Digital Twins of What?

As less explored area, we note that often the literature on NDTs does not appear
to predicate in detail and precision on the specific network elements that are
5 https://datatracker.ietf.org/wg/netconf. Accessed 18th June 2023.

https://datatracker.ietf.org/wg/netconf

Designing a Future-Proof Reference Architecture for Network Digital Twins 293

required to be modeled in the NDT context. As a matter of fact, frequently the
nature of network components which need to be modeled within NDT architec-
tures seem to be reported at a rather high level, with auxiliary elements left
implicit, or not regarded at all. This more often than not seem to cause the
unsystematic documentation of incomplete or vague NDT reference architec-
tures, that, due to their abstract and at times speculative nature, cannot be
ported into practice without making considerable assumptions.

Even in the rare cases in which the most important elements of NDTs archi-
tectures are explicitly documented, their description often lacks basic details
regarding property characteristics and attributes NDTs must posses. There-
fore, theoretical or even simulation results are hardly portable into practice by
implementing a concrete NDT architecture. In fact, the development process
would imply a considerable upfront conceptual effort, which would require per
se an independent study and verification prior the concrete development can
take place.

As a possible solution to address this issue, the information to model NDTs
could be derived from standard network architecture documentation, e.g., the
documentation provided by ETSI. Similarly, the necessary information could be
identified by porting the modeling information of network simulators (e.g., ns-36

and OMNET++7) to a NDT reference architecture, documenting via a metamodel
the NDT elements, their attributes, and relations.

3.3 How to Deploy Network Digital Twins?

Another area that appears to be only marginally considered from a practical
standpoint is the concrete deployment of NDTs over a network.

As for DT in general, one of the challenges in the use of NDTs within a
network is the distributed deployment of these virtual representations. To date,
standards do not appear to provide a clear guidance on how NDTs should be
deployed, distributed, and relocated. From an architectural standpoint, one app-
roach could be to consider network elements, such as Media Access Control
(MAC) addresses, as monolithic entities. Nevertheless, given the growing func-
tional complexity of NDTs, this approach might be considered as too simplistic.
As alternative, network elements could be factored into bounded contexts. This
strategy would lead to the production of microservices, allowing, albeit their
potential complexity increase, to take advantage of the benefits of the microser-
vice architecture style, e.g., fault tolerance and fault isolation.

By considering the adoption of a microservice architecture in the context of
NDTs however, there is a special emphasis on enabling deployment and place-
ment at different levels of the edge-to-cloud continuum at different localities.

As a double-edged sword, on one hand NDTs are responsible for resolving
placement problems through their state and associated computational power (or

6 https://www.nsnam.org. Accessed 18th June 2023.
7 https://omnetpp.org. Accessed 18th June 2023.

https://www.nsnam.org
https://omnetpp.org

294 R. Verdecchia et al.

by delegating the task at hand to other NDTs to obtain states and/or dele-
gate the processing). However, NDTs also rise novel issues associated to how to
place these responsibilities on physical and virtual resources within a network.
Therefore, while DTs can resolve placement problems, they also open up new
challenges in terms of the placement of NDT themselves. The challenges associ-
ated to the deployment of NDTs must be carefully managed, in order to optimize
the performance of DTs within a network environment. To date, this problem
appears to be marginally addressed in the literature, lacking to provide concrete
guidance and reference on how NDTs should be deployed.

4 Main Challenges for a Network Digital Twin Reference
Architecture

In this section, we identify the key challenges a network digital twin architecture
must be capable of addressing to be considered future-proof. The ensuing list
is derived from discussions and a workshop event with sector-leading experts
involved in the COHERENT project, focusing on the examination of proposed
standards on the topic [28,35].

4.1 Large Scale Data Collection

Considering the inherent characteristics of the network and the potential of
digital twin networks, we posit that a digital twin network architecture should
be equipped to manage substantial volumes of data efficiently. It is expected
that the architecture will be capable of collecting and managing data of various
natures originating from multiple sources.

– Recordings and event logs from all elements of the network;
– Statistics-related data like traffic throughput, latency, and packet loss;
– Data related to service usage and users;
– Monitoring data of observable entities;
– Operational and provisional data;
– Simulation and emulation results.

This information generates a continuous flow of large data sets. The digital twin
should use this data to represent the current state of the entity. Additionally, it’s
crucial to preserve this data to maintain a historical record of the information
The inherent heterogeneity of data, which encompasses both variety and volume,
presents a significant challenge in its effective management.

The exponential growth of data from mobile devices and IoT applications
will make this problem a central concern in network management. One of the
challenges that Network Digital Twin architectures will face is managing massive
network data collection from network infrastructures.

Designing a Future-Proof Reference Architecture for Network Digital Twins 295

4.2 Scalability

Given the expected surge in network components and participants (e.g.,more
sensors, clients, and applications), a Network Digital Twin architecture must
effectively accommodate this growth and ensure consistent performance. As the
number of network elements increases, it is crucial for a network digital twin
architecture to effectively handle virtual representations of real networks, regard-
less of their scale. Furthermore, as network size gradually expands, the features
offered by the architecture must remain efficient and effective. Therefore, fea-
tures such as data collection from the network, reconfiguration, and simulations
should always be available, ensuring consistent functionality irrespective of the
network’s size, the number of data sources, or the number of network applica-
tions. In addition to functionalities, the performance provided by the architecture
should be scalable. For example, latency, the accuracy of prediction, and simu-
lation algorithms should maintain the expected performance without depending
on the size of the network that the digital twins compose.

4.3 Flexibility and Autonomous Reconfiguration

It is expected that the network will maintain a dynamic behavior, with network
components, applications, and clients evolving over time and the load fluctu-
ating in intensity. For this reason, a digital twin network should be able to
cope with the network variation. Therefore, it is expected to possess the ability
to execute on-demand behaviors and reconfigure itself (possibly automatically
without the intervention of human operators) in response to events while main-
taining Quality of Service constraints. These behaviors are moving towards the
implementation of networks that are often identified with the term Zero Touch
Network [8], which are envisioned to be highly autonomous networks capable of
self-configuration, self-healing, and self-optimization with minimal to no human
intervention. It is also expected that many of the features and constraints can be
specified dynamically, thus allowing for greater system availability without tak-
ing the system online. Last but not least, given the heterogeneity of the network,
the architecture must be able to provide adequate adaptability to new elements,
provide functionality to new network applications, and collect and store data of
various nature and format.

4.4 Heterogeneous Performance Requirements

In the near future, the network will be used to support many challenging applica-
tions. Some of these will require near real-time response requirements, e.g., in the
context of autonomous driving, virtual reality, gaming, and healthcare. Other
applications will instead necessitate elevated levels of parallelism or data stor-
age to execute algorithms with efficiency. Such applications typically encompass
simulations, algorithms pertaining to artificial intelligence and machine learning,
and, in recent developments, practices of federated learning.

296 R. Verdecchia et al.

The complex requirements required by network applications, sometimes in
contrast with each other, will have to coexist and be natively supported in an
architecture that aims to be future-proof.

4.5 Interfaces

In the context of a network digital twin architecture, we deem the selection
of interfaces as a fundamental. A Network Digital Twin requires an interface
to interact with the physical network. This interface is commonly called south
bound and is responsible for establishing the ways in which digital twins exchange
information with the corresponding physical entities. To ensure the architecture
is accessible and open to extension, we posit that it is also crucial to establish
a standard interface through which the architecture can expose its services and
features externally. Beyond digital representation an control of entities, digital
twins offer the significant ability to gather information and conduct analysis,
emulations, and simulations based on real-world data. To execute these types of
functionalities and ensure the scalability of the network architecture capabilities
over time, it is crucial in the architectural design process to identify the meth-
ods through which these functions will be invoked. In this sense, we consider
the definition of internal interfaces (sometimes referred to as side bound) to be
equally fundamental to the definition of the architecture.

4.6 Digital Twin Security

Even though NDTs can be used to improve the network security of a system,
e.g., by analyzing and quickly applying changes related to adverse events, they
have to be also resistant to attacks targeted to the NDT itself.

As a matter of fact, NDTs can be seen as a particular case of a Cyber-
Physical system, and their security depends not only on the security of the NDT
itself (the software component), but also on the capability to have a ‘useful’
knowledge of the physical counterpart, and to control it. It is fairly evident
that the attack surface for NDTs is larger and more complex than the one of a
traditional network, and even larger than the one of a Software-Defined Network
(SDN).

In our opinion the technologies needed to address the security requirements
should not be part of the NDT architecture. However, the security analysis
should be part of the architecture, at least to highlight the attack surfaces and
the possible threats.

For what concerns the threat agents and their capabilities, these can be
considered as “normal” threat actors targeting traditional networks, as the goals
and means to perform an attack are the same. The normal approach used by
IETF is to define the possible attacks based on the threat actor capabilities
(see [24]), i.e., splitting the attacks into passive or active.

Passive attacks to NDTs are not to be underestimated, as an attacker might
gather a very precise (and timely) knowledge of the network status. As a matter
of fact, intercepting the data collection traffic between the physical and digital

Designing a Future-Proof Reference Architecture for Network Digital Twins 297

parts, an attacker can not only understand the network operational status, and
perform targeted (active) attacks, but also understand the existence of particular
network statuses, and correlate them with user data. Again, this can be useful
to perform further actions.

Hence, the loss of confidentiality in the data collection can create serious
risks, not only to the NDT itself, but also to the user data.

Active attacks are peculiar as well, as they can be targeted to the NDT
software components, to the data collection mechanism, or to the network con-
figuration elements, used by the NDT to modify the actual network setup.

The NDT components and the network elements configuration are well under-
stood, are almost universally considered as sensitive elements, and secure-by-
design architectures and network configuration protocols are generally available.
On the contrary the data collection has only recently evaluated, and several pro-
tocols have been, or are in the process of being updated to add confidentiality
and integrity features (see for example [7]).

Hence, we believe that a NDT architecture should contain the threat models
and possible attacks to the NDT, in order to guide the implementations to use
the proper security models, both in the components, and in the protocols used
by the NDT.

5 Key Features of a Network Digital Twin Architecture

After identifying the challenges that the design of a network digital twin archi-
tecture will have to face (Sect. 4), we now provide the key features that, in our
vision, are necessary for the architecture to adequately address these challenges.

5.1 Edge to Cloud Continuum Deployment Awareness

The increasingly pervasive spread of edge devices capable of collecting and com-
puting data will necessitate a paradigm shift in the use of network infrastruc-
tures. The emergence of Mobile Edge Computing (MEC) represents a trans-
formative paradigm shift [13], which is anticipated to rapidly gain prominence.
This advancement is poised to facilitate the execution of algorithms and the
provisioning of services in closer proximity to the end-user. MEC will enable a
reduction in latency that is unthinkable in architectures that rely solely on cloud
computing. Thus, MEC will enable all those applications that require near real-
time requirements. In addition, by processing requests locally, the cloud and the
backhaul network [25], i.e., the network that connects the edge to the cloud, will
be relieved of a large number of requests.

Although mobile edge computing represents a turning point for many future
applications, its use introduces complexities that must be considered. Indeed,
an MEC node is characterized by a limited amount of resources, so it is not
possible to deploy all functionalities on these nodes. Moreover, some particularly
resource-demanding tasks, such as machine learning algorithms or simulations,

298 R. Verdecchia et al.

are better suited to execution on the cloud where there is no problem of resource
scarcity.

Another intrinsic complexity in the MEC paradigm and more generally in
edge computing, is the local nature of data and services in an environment
characterized by clients who typically move in space and vary over time [25]. This
implies the implementation of strategies such as service placement, handover, and
service offloading, should be native in a network digital twin architecture [23].

It is necessary also to consider that the duality between edge and cloud cannot
be defined in a clear-cut fashion and that there is continuum between the two
entities in which intermediate nodes are able to provide functionalities and data
storage halfway between the two extremes. This is known as the Edge-to-Cloud
continuum and is also closely related to the concept of Fog Computing [29].

Ultimately, we believe that a reference architecture for network digital twins
must necessarily take into account such aspects of deployment and resource
management natively. In our view, this is necessary to best manage challenges
such as large-scale data collection, scalability, and heterogeneous performance
requirements.

5.2 Digital Twin Interoperability

In our opinion, one aspect that is not adequately highlighted in the presented
standards (ITU Y.3090 [28] and IRTF [35]) and which we deem central to a
network digital twin architecture is the interoperability that should exist between
network digital twins.

In our view, the architecture does not manage a single network digital twin
but an entire ecosystem. This ecosystem, like the actual network, is not static but
changes over time in terms of both elements and functionalities, and collaborates
to achieve the objectives required by the network applications it uses.

The definition of an ecosystem of digital twins that collaborate with each
other enables the possibility to dynamically extend the digital representation of
the network. A change in the physical network does not necessitate to change
the entire digital twin, but rather the addition, removal, or update of a single
element. Such change does not affect the entire representation of the network
but only a single part. Furthermore, this modularity allows for a more granular
control of the elements.

An ecosystem of digital twin allows for extremely flexible management of
the network with the possibility of implementing policies of distributed auto-
reconfiguration, management of heterogeneous requirements, especially if com-
bined with a deployment awareness as described in Sect. 5.1, and even security.

5.3 Distributed Network Digital Twin

A Network Digital Twin is anticipated to deliver a diverse array of functionalities,
reflective not only of the spectrum of performance requisites but also of their
inherent complexity. Considering the imperative for deployment awareness (see

Designing a Future-Proof Reference Architecture for Network Digital Twins 299

Sect. 5.1) in conjunction with the diversity of functionalities each NDT furnishes,
we believe that the network digital twin ought to exhibit a distributed rather
than a monolithic structure.

The decentralization of the NDT is poised to facilitate performance opti-
mization: for instance, functionalities with low latency requirements could be
deployed at the edge, whereas those demanding substantial computational
resources might be more aptly positioned within the cloud infrastructure. This
approach is also likely to enhance network utilization, preventing the potential
for data flow congestion within both the network and the cloud.

We advocate for the adoption of a distributed model for Network Digital
Twins, as it promises augmented flexibility within the network. This model
enables the dynamic reallocation of digital twin components to nodes that are
optimally suited, through the implementation of strategic placement and offload-
ing. A distributed model also permits the precise management of the heteroge-
neous performance requirements that characterize digital twins. Ultimately, this
strategic framework is expected to support extensive data collection and scala-
bility, while simultaneously reinforcing security measures, as sensitive data and
functionalities can be securely housed within more secure nodes.

5.4 Composite (Hierarchical) Digital Twin

The concept of network is often associated with a composition of other sub-
networks (e.g., , the internet is a network of networks). We therefore naturally
consider the digital twin network to be characterized by a composite and hier-
archical nature. This concept, moreover, is not new to digital twins in the field
of manufacturing and also appears in the seminal paper by Grieves et al. [12]
under the term “Digital Twin Aggregate”. A hierarchical representation of dig-
ital twin networks enables the representation of the network at different levels
of granularity, allowing for different views and functionalities depending on the
type of granularity required.

At the lowest rung of the hierarchy is the digital representation of the atomic
elements of the network (e.g., , routers and switches). Digital twin networks with
this level of granularity will therefore provide information on the status of net-
work elements and expose functionalities aimed at their configuration. However,
there are situations where it is necessary to interact with a large network like
Metropolitan Area Networks (MANs) or Wide Area Networks (WANs). In such
cases, it is plausible that the pertinent information extends beyond the scope of
singular network components and pertains instead to an aggregated construct.
Similarly, the type of actions to be performed on the network, reasonably, will
not concern the individual network element but the network as a whole. In such
a case, the Digital Twin Network will represent a network with aggregated infor-
mation derived from Digital Twin Networks of lower granularity levels and will
provide high-level functionalities that could cascade into the NDTs that compose
it.

This type of representation allows bringing to the different levels of abstrac-
tion only the necessary aggregated information, ignoring data and functionalities

300 R. Verdecchia et al.

that are too fine or too coarse. This type of hierarchical representation of digital
twin networks is beneficial for many reasons and helps to address various chal-
lenges identified in this paper. The use of data of the right granularity for the
level of abstraction of the digital twin network allows for efficient data collection
and excellent scalability. These advantages are further enhanced when combined
with deployment awareness (Sect. 5.1). Moreover, a hierarchical strategy allows
for a high level of network flexibility. Finally, the ability to represent aggregated
data combined with the presentation of high-level functionalities will greatly
simplify the interfaces to be presented to a client (North Bound).

5.5 Prototyping

One of the main features of digital twins is to execute simulations based on
real data collected in the field. Within a network context, this enables what-if
analysis simulations and predictions, wherein hypothetical scenarios are studied
based on present data. In such instances, it becomes necessary to have proto-
types of network elements readily available. That is, having at disposal virtual-
ized representations of network elements not directly associated with a physical
element. A prototype is indeed a stereotypical representation of a specific type
of network element and as such encapsulates default functionalities and statis-
tical data common to the category of element it represents. The concept of a
prototype is widely used in the industrial and manufacturing context, enabling
procedures for product lifecycle management [12].

A prototype is a stereotypical representation of a specific type of network
element and, as such, encapsulates default functionalities and statistical data
common to the category of element it represents, which are based on real-world
observations collected in the field. The prototype thus permits an optimized and
aggregated use of data gathered during the monitoring that NDTs continuously
perform.

We therefore posit that a reference architecture for network digital twins
should take into account this type of representation of components. Especially,
we contend that the employment and management of prototypes are funda-
mental, particularly for addressing challenges such as efficient data collection,
flexibility and autonomous reconfiguration capabilities, and security through the
possibility of conducting appropriate simulations.

5.6 Digital Twin of Anything

Nowadays, many network elements are digitized and programmable. The pri-
mary elements include software defined networks, virtualized network functions,
and network slices [22]. However, even elements such as virtual machines and
containers can be considered as integral parts of the network and contribute to
its operation. We therefore believe that for a satisfactory architectural represen-
tation of the network, network digital twin should not be limited to representing
physical network elements, but also those elements that inherently possess a
digital nature.

Designing a Future-Proof Reference Architecture for Network Digital Twins 301

Even the existing standards acknowledge this possibility [35] but without
identifying its main advantages. Below we list the reasons why we consider it
useful to establish a digital twin for all digital elements of the network digital
twins reference architecture. The digital twin of a digital component can act as a
wrapper for the component and enrich it with additional functionalities that are
not natively supported by the original component. For example, a component
could collect information from monitoring and perform simulations or prediction
algorithms. Through the digital twin, better management of interfaces is allowed,
thus improving the management by the user of the element (north bound) and
the management of interoperability between different digital twins (side bound).
The establishment of an interface relieves the other architectural components
of the responsibility of having to know all possible elements and their specific
interfaces in advance, greatly increasing the flexibility and maintainability of the
network.

5.7 An Intent-Based Architecture

A network must be capable of fulfilling various requirements specified by clients
and applications external to the network. These requirements change over time
and are often in conflict with one another. To address the evolving nature of
network requirements and ensure flexibility, self-configuration, and user-friendly
interface interaction, it is crucial to adopt the concept of Intent as the foun-
dation for the network configuration and specification mechanism. The concept
of Intent has become increasingly prominent in recent standards [8,28,33,35].
according to IRTF NMRG [14], an intent is “a set of operational goals (that
a network should meet) and outcomes (that a network is supposed to deliver)
defined in a declarative manner without specifying how to achieve or implement
them”. An intent-based network aligns with a user-centric perspective, simplify-
ing the expression of requirements and enhancing the architecture’s usability and
flexibility. An intent can also be expressed in human language and then easily
translated into machine-readable language. This simplicity in defining an intent
dramatically increases the usability of the architecture and the definition of the
North Bound interface. In addition to offering high simplicity at interface level,
intent-based architectures allow for a high degree of autonomy and flexibility
and auto reconfiguration capabilities.

In our vision, the adoption of intent-based networking techniques could be
highly beneficial. Managing through intents provides several advantages, par-
ticularly when various applications are concurrently utilizing the network. The
network will be capable of defining a space of possible configurations that satisfy
all the intents specified by the applications. The exploration and identification of
an optimal configuration can then be entrusted to algorithms and programmatic
policies.

302 R. Verdecchia et al.

6 A Step Towards an Architecture Implementation

After identifying the set of key features deemed as essential to address the chal-
lenges posed by a network digital twin architecture, we now provide a perspective
on how the architecture can be developed with a more implementational out-
look. In doing so, we will also specify which key features, in our opinion, will be
implemented in this manner.

In an architecture where service decoupling and high interoperability are
required, as outlined in this article, a microservices ecosystem is certainly the
most suitable [21]. Indeed, each microservice natively has the ability to be
deployed on various network nodes while maintaining its independence and
still being able to collaborate with other microservices. This characteristic thus
ensures strong interoperability between digital twins. Furthermore, a network dig-
ital twin does not necessarily have to be confined within a single microservice.
Various functionalities pertaining to the same digital twin could be represented
by a set of microservices, thus implementing a distributed digital twin. Regard-
ing prototyping, in our vision, just as for the network digital twin, we imagine
a microservice or a set of microservices dedicated to individual prototypes. This
makes the architecture both maintainable and extendable over time.

In a microservices architecture, it is simple to identify a set of microser-
vices as “front-end” microservices, i.e., , microservices that collect information
and expose high-level functionalities. These microservices will therefore be the
ones used by the client and will act as entry points for network functionalities.
Microservices are particularly suited to defining flexible interfaces, and it would
thus be possible to specify Intents through such entities as well (see Sect. 5.7).
In networks of considerable complexity, it is conceivable that a collection of
front-end microservices alone may not suffice to fulfill client intents. Under such
circumstances, the front-end microservices would engage in collaboration with
other microservices that operate at a more granular level of abstraction, thereby
delineating a workflow of microservices: the invocation of a front-end service
triggers a sequential activation of other microservice instances [2]. This coopera-
tive mechanism thus establishes a hierarchical structure of microservices, which,
in turn, facilitates the representation of composite digital twins.

Through specific actors and technologies commonly implied in microservices
architectures (e.g., , Kubernetes and its container orchestration platform [20])
it is possible to programmatically manage the scaling of individual services and
also their deployment. This makes it possible to have a deployment-aware archi-
tecture capable of defining edge-to-cloud deployment policies and also implement
dynamic service placement strategies [6].

7 Conclusions, Our Vision, and Future Work

Despite the growing adoption and complexity of network digital twins, a ref-
erence architecture for this context, which considers both functional and non-
functional aspects, appears to date to be missing in the literature. From the

Designing a Future-Proof Reference Architecture for Network Digital Twins 303

preliminary motivating survey conducted for this position paper, we noted that
(i) such reference could be highly helpful, (ii) existing standards do not totally
fit the networking context, and would need to be considerably modified, and (iii)
elements to be considered would be primarily of hardware nature, and could to
a certain extent be modeled by leveraging existing network standards and tools.

We documented our position on the current state of the art, and what is
needed to move towards a future proof reference architecture for NDTs. By
considering current trends and advancements, we reasoned on the key aspects
of architecting NDTs, which we formulated in terms of NDTs for what, NDTs
of what, and How to deploy NDTs. Based on these three facets, we note that
research and development endeavors primarily focused on the functional “for
what” aspects of NDTs. As such, albeit crucial, which elements to be represent
with NDT, and how/where to deploy NDTs, are aspects that are only marginally
considered in the current state of the art. In an effort to crystallize the scenarios
that a reference architecture for NDT must manage, we have pinpointed the
most intricate challenges, subsequently identifying the essential key features we
believe the architecture requires to address the identified issues. Ultimately, we
have also provided our perspective with a more implementational outlook.

To move towards a standardized modeling of NDTs architectures, we posit
that all three aspects, digital twins of what, for what, and how to deploy them,
need to be considered. To do so, a reference architecture covering all three of
these aspects needs to be established. Providing a standardized framework for
NDTs would allow the community to move with a unified effort towards con-
solidated new abstractions of networking attributes, supporting the design and
development of the next-generation wireless networks.

As future work, we plan to proactively build upon the position outlined in
this document, by working towards the establishment of a future proof reference
architecture for network digital twins. As first research step, we plan to conduct
(i) a comprehensive qualitative empirical research involving network researchers
and practitioners, and (ii) a systematic literature review on network digital twins.
With this first step, we aim at gaining a deep and systematic understanding
of the state of the art and practice of NDTs. In a second phase, we plan to
design a reference architecture that comprehensively covers aspects related to
NDTs of what, for what, and how to deploy them. Data and inspiration could be
drawn from existing concrete artifacts to model networks, e.g., the elements and
attributes used by widespread simulation tools such as NS3 and OMNET++. Finally,
we plan to evaluate and refine the established NDT reference architecture in a
design science fashion, by gathering feedback from researchers and practitioners
in the field via qualitative assessments and concrete case studies.

The task of establishing a NDT reference architecture is ambitious, and
requires by definition interdisciplinary knowledge coming from the areas of soft-
ware architecture, digital twin modeling, and networking. For this reason, we
more than welcome feedback, insights, and collaboration with researchers and
practitioners of any of these areas who are interested in jointly progress towards
a holistic, standardized reference architecture for NDT.

304 R. Verdecchia et al.

With this position paper, we aim to reach out to both the networking and
digital twin software architecture research and practitioners communities, in
order to jointly progress towards the end goal of the RESTART mission, namely
the establishment of a future proof digital twin network architecture.

Acknowledgments. This work was partially supported by the European Union under
the Italian National Recovery and Resilience Plan (NRRP) of NextGenerationEU, part-
nership on “Telecommunications of the Future” (PE0000001 - program “RESTART”).

References

1. Almasan, P., et al.: Network digital twin: context, enabling technologies, and oppor-
tunities. IEEE Commun. Mag. 60(11), 22–27 (2022)

2. Alshuqayran, N., Ali, N., Evans, R.: A systematic mapping study in microservice
architecture. In: IEEE International Conference on SO Computing and Applica-
tion, pp. 44–51. IEEE (2016)

3. Bass, L., Clements, P., Kazman, R.: Software architecture in practice. Addison-
Wesley Professional (2003)

4. Bellavista, P., Giannelli, C., Mamei, M., Mendula, M., Picone, M.: Application-
driven network-aware digital twin management in industrial edge environments.
IEEE Trans. Industr. Inf. 17(11), 7791–7801 (2021)

5. Dalibor, M., et al.: A cross-domain systematic mapping study on software engi-
neering for digital twins. J. Syst. Softw. 193, 111361 (2022)

6. Detti, A.: Microservices from cloud to edge: an analytical discussion on risks, oppor-
tunities and enablers. IEEE Access (2023)

7. Elkins, N., Ackermann, M., Deshpande, A., Pecorella, T., Rashid, A.: IPv6 Perfor-
mance and Diagnostic Metrics Version 2 (PDMv2) Destination Option. Internet-
Draft draft-ietf-ippm-encrypted-pdmv2-05, Internet Engineering Task Force
(Oct 2023). https://datatracker.ietf.org/doc/draft-ietf-ippm-encrypted-pdmv2/
05/, work in Progress

8. Zero-touch network and Service Management (ZSM); Intent-driven autonomous
networks; Generic aspects. Standard, European Telecommunications Standards
Institute (Feb 2023)

9. Ferko, E., Bucaioni, A., Behnam, M.: Architecting digital twins. IEEE Access 10,
50335–50350 (2022)

10. Ferko, E., Bucaioni, A., Pelliccione, P., Behnam, M.: Standardisation in digital
twin architectures in manufacturing. In: 2023 IEEE 20th International Conference
on Software Architecture (ICSA), pp. 70–81. IEEE (2023

11. Fuller, A., Fan, Z., Day, C., Barlow, C.: Digital twin: enabling technologies, chal-
lenges and open research. IEEE Access 8, 108952–108971 (2020)

12. Grieves, M., Vickers, J.: Origins of the digital twin concept. Florida Inst. Technol.
8, 3–20 (2016)

13. Haibeh, L.A., Yagoub, M.C., Jarray, A.: A survey on mobile edge computing infras-
tructure: design, resource management, and optimization approaches. IEEE Access
10, 27591–27610 (2022)

14. Intent-Based Networking - Concepts and Definitions. Standard, Internet Research
Task Force (Dec 2022)

15. ISO/IEC/IEEE: Automation systems and integration - digital twin framework for
manufacturing - part 2: Reference architecture. ISO/IEC/IEEE ISO 23247-2:2021,
pp. 1 –9 (10 2021)

https://datatracker.ietf.org/doc/draft-ietf-ippm-encrypted-pdmv2/05/
https://datatracker.ietf.org/doc/draft-ietf-ippm-encrypted-pdmv2/05/

Designing a Future-Proof Reference Architecture for Network Digital Twins 305

16. Josifovska, K., Yigitbas, E., Engels, G.: Reference framework for digital twins
within cyber-physical systems. In: 2019 IEEE/ACM 5th International Workshop
on Software Engineering for Smart Cyber-Physical Systems (SEsCPS), pp. 25–31.
IEEE (2019)

17. Kaur, M.J., Mishra, V.P., Maheshwari, P.: The convergence of digital twin, Iot,
and machine learning: transforming data into action. In:Digital Twin Technologies
and Smart Cities, pp. 3–17 (2020)

18. Kritzinger, W., Karner, M., Traar, G., Henjes, J., Sihn, W.: Digital twin in man-
ufacturing: a categorical literature review and classification. Ifac-PapersOnline
51(11), 1016–1022 (2018)

19. Kuruvatti, N.P., Habibi, M.A., Partani, S., Han, B., Fellan, A., Schotten, H.D.:
Empowering 6G communication systems with digital twin technology: A compre-
hensive survey. IEEE Access (2022)

20. Li, W., Lemieux, Y., Gao, J., Zhao, Z., Han, Y.: Service mesh: Challenges, state of
the art, and future research opportunities. In: 2019 IEEE International Conference
on Service-Oriented System Engineering (SOSE), pp. 122–1225. IEEE (2019)

21. Lombardo, A., Morabito, G., Quattropani, S., Ricci, C.: Design, implementation,
and testing of a microservices-based digital twins framework for network man-
agement and control. In: 2022 IEEE 23rd International Symposium on a World
of Wireless, Mobile and Multimedia Networks (WoWMoM), pp. 590–595 (2022).
https://doi.org/10.1109/WoWMoM54355.2022.00092

22. Long, Q., Chen, Y., Zhang, H., Lei, X.: Software defined 5G and 6G networks: a
survey. Mobile Netw. Appl. 27(5), 1792–1812 (2022)

23. Malazi, H.T., et al.: Dynamic service placement in multi-access edge computing: a
systematic literature review. IEEE Access 10, 32639–32688 (2022)

24. Rescorla, E., Korver, B.: Guidelines for Writing RFC Text on Security Considera-
tions. RFC 3552 (Jul 2003). https://doi.org/10.17487/RFC3552, https://www.rfc-
editor.org/info/rfc3552

25. Singh, R., Sukapuram, R., Chakraborty, S.: A survey of mobility-aware multi-access
edge computing: challenges, use cases and future directions. Ad Hoc Netw. 140,
103044 (2023)

26. Tang, F., Chen, X., Rodrigues, T.K., Zhao, M., Kato, N.: Survey on digital twin
edge networks (diten) toward 6G. IEEE Open J. Commun. Society 3, 1360–1381
(2022)

27. Tao, F., Zhang, H., Liu, A., Nee, A.Y.: Digital twin in industry: State-of-the-art.
IEEE Trans. Industr. Inf. 15(4), 2405–2415 (2018)

28. Telecommunication Standardization Sector - International Telecommunication
Union: Digital twin network - requirements and architecture. Series Y: Global
Information Infrastructure, Internet Protocol Aspects, Next-Generation Networks,
Internet of Things and Smart Cities. (Future Networks), 1–26 (2022)

29. Tuli, S., et al.: AI augmented edge and fog computing: Trends and challenges. J.
Netw. Comput. Appl. 216, 103648 (2023)

30. van der Valk, H., Haße, H., Möller, F., Otto, B.: Archetypes of digital twins.
Business and Inform. Syst. Eng. 1–17 (2021). https://doi.org/10.1007/s12599-021-
00727-7

31. Verdecchia, R., Scommegna, L., Vicario, E., Pecorella, T.: Network Digital Twins:
Towards a Future Proof Reference Architecture. International Workshop on Digital
Twin Architecture (2023)

32. Wu, Y., Zhang, K., Zhang, Y.: Digital twin networks: a survey. IEEE Internet
Things J. 8(18), 13789–13804 (2021)

https://doi.org/10.1109/WoWMoM54355.2022.00092
https://doi.org/10.17487/RFC3552
https://www.rfc-editor.org/info/rfc3552
https://www.rfc-editor.org/info/rfc3552
https://doi.org/10.1007/s12599-021-00727-7
https://doi.org/10.1007/s12599-021-00727-7

306 R. Verdecchia et al.

33. Yastrebova, A., Kirichek, R., Koucheryavy, Y., Borodin, A., Koucheryavy, A.:
Future networks 2030: architecture and requirements. In: 2018 10th International
Congress on Ultra Modern Telecommunications and Control Systems and Work-
shops (ICUMT), pp. 1–8. IEEE (2018)

34. Yi, B., Wang, X., Li, K., Huang, M., et al.: A comprehensive survey of network
function virtualization. Comput. Netw. 133, 212–262 (2018)

35. Zhou, C., et al.: Digital Twin Network: Concepts and Reference Architecture.
Internet-Draft draft-irtf-nmrg-network-digital-twin-arch-03, Internet Engineering
Task Force (Apr 2023), https://datatracker.ietf.org/doc/draft-irtf-nmrg-network-
digital-twin-arch/03/, work in Progress

https://datatracker.ietf.org/doc/draft-irtf-nmrg-network-digital-twin-arch/03/
https://datatracker.ietf.org/doc/draft-irtf-nmrg-network-digital-twin-arch/03/

Tools and Demos

Evolution and Anti-patterns Visualized:
MicroProspect in Microservice

Architecture

Lauren Adams1, Amr S. Abdelfattah1, Md Showkat Hossain Chy2,
Samantha Perry2, Patrick Harris1, Tomas Cerny2(B),

Dario Amoroso d’Aragona3, and Davide Taibi3,4

1 Baylor University, Waco, Texas, USA
2 SIE, University of Arizona, Tucson, Arizona, USA

tcerny@arizona.edu
3 Tampere University, Tampere 33720, Finland

4 University of Oulu, Oulu 90520, Finland

Abstract. A microservice architecture has become the dominant direc-
tion for designing the building blocks of large-scale, distributed software
systems. However, the dynamic and changing microservices within decen-
tralized systems in contrast to available static tracing tools presents chal-
lenges for comprehending its impact on the overall architecture. Existing
tracing tools uncover service call graphs but have limitations in visualiz-
ing historical changes; moreover, they are not meant to aid with architec-
ture assessment where developers seek potential design anomalies. With
the ever-growing system complexity, developers likely resort to focusing
on specific subsets of the system, especially given the lack of tools to
analyze the impacts of system evolution. To address these challenges,
we introduce the MicroProspect tool that provides a high-level, holis-
tic visual perspective on the system’s service view, tracks its structural
changes throughout system evolution, and detects and visualizes anti-
patterns that could lead to architectural degradation.

Keywords: Microservices · Evolution · Degradation · Visualization

1 Introduction

Microservices are a mainstream approach to building large and scalable systems
[37]. Microservice architecture offers increased flexibility and autonomy in sys-
tem evolution involving independent development teams following Conway’s law
[17]. However, development teams typically deal with the evolution of individ-
ual microservices without paying attention to the greater system perspective as
the effect of decentralization. Without instruments to advise developers about
continuous changes and the system’s evolution as a whole, the system becomes
susceptible to architectural degradation.12

1 MicroProspect Source Code: https://github.com/cloudhubs/mvp.
2 MicroProspect Demo: https://youtu.be/HXSB4uAxRH4.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
B. Tekinerdoğan et al. (Eds.): ECSA 2023, LNCS 14590, pp. 309–325, 2024.
https://doi.org/10.1007/978-3-031-66326-0_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-66326-0_19&domain=pdf
https://github.com/cloudhubs/mvp
https://youtu.be/HXSB4uAxRH4
https://doi.org/10.1007/978-3-031-66326-0_19

310 L. Adams et al.

Architectural degradation is defined as the process of the persistent
inconsistency between the descriptive software architecture as implemented and
the prescriptive software architecture as intended [5,16]. The example of archi-
tecture degradation in open-source software is evident as over time, software
architecture erodes, deviating from its intended conceptual structure due to fac-
tors like requirement changes and new features. This divergence, termed architec-
ture erosion or drift, introduces inconsistencies between the implemented archi-
tecture and the originally planned architecture, negatively impacting software
quality and potentially necessitating a redesign of the system [5]. It is typically
an outcome of the gradual injection of code anomalies (i.e., anti-patterns, poor
design choices, lack of maintenance, accumulated technical debt [7,27], etc.) as
the software evolves. Degradation occurs when the critical quality attributes are
violated [30].

Common detection strategies to identify degradation [5] base on design qual-
ity metrics (e.g., instability, cohesion, coupling) [8,31], or on the prioritiza-
tion of architecture anomalies referred to as smells or anti-patterns [19,33].
Anti-patterns [36] are recurring design practices, choices, or solutions to com-
mon problems despite appearing reasonable and effective, leading to negative
consequences and undermining the system’s overall quality. Bad smells [35]
describes a design characteristic that indicates a potential problem or violation
of good practices, a warning sign that suggests potential issues in the design.
These both prompt further analysis and consideration to identify the underly-
ing problems and propose appropriate design improvements. To refer to both
anomalies, we use the term anti-pattern.

With microservices, the system complexity easily grows to the point where
system evolution becomes hard to trace, requiring new methods and tools to
support history tracking for the system architecture [20]. Detecting and recti-
fying microservice anti-patterns apparent from the system’s holistic perspective
throughout the development and evolution process is crucial to avoid undesir-
able outcomes [4,13,29]. Even though distributed tracing tools (i.e., Jaeger [1],
Dapper [34]) derive service call graphs, there is no visualization support for evo-
lution, making it challenging to observe system changes. As many microservice
anti-patterns are elusive within individual microservices, traditional tools like
SonarQube [10] fail. The holistic system perspective (i.e., service call graph) is
necessary for such analysis; however, even then, complex graphs in large systems
pose difficulties in identifying issues due to information overload and distractions
from numerous connections and nodes.

To address these limitations, we introduce a MicroProspect tool to pro-
vide developers with a comprehensive and interactive visualization fueled with
the capability to compare system versions, highlight anti-patterns, and pro-
vide detailed architectural insights to identify design issues. By analyzing the
system’s historical data (i.e., from repositories), developers can visually iden-
tify degradation trends over time, leading to informed decisions leading to wise
design choices.

MicroProspect in Microservice Architecture 311

This paper is organized as follows: Sect. 2 details the software architecture
reconstruction process. Section 3 introduces our tool and Sect. 4 gives details on
how to practically use the tool. The evaluation of the tool on a microservice
system is described in Sect. 5 and related work is briefed in Sect. 6. Finally,
Sects. 7 and 8 concludes the paper.

2 Software Architecture Reconstruction (SAR)

To accurately represent the system’s architecture, the process of Software Archi-
tecture Reconstruction (SAR) aims at extracting the architecture from an exist-
ing software system [9]. It involves reverse-engineering the system’s structure,
components, and interactions based on its implementation artifacts, such as
source code and configuration files. Automating the process requires constructing
a system Intermediate Representation (IR) that captures the system structure
and component dependencies [9]. Such a representation can be extracted from
the system by various means (i.e., static or dynamic analysis).

Our target result is a visualized system service view perspective [11] dec-
orated with information pertaining to the occurrence of anti-patterns and the
system evolution. The service view represented by a service call graph is the
mostly adopted visual approach for microservices [23]. In such a graph, services
are represented as nodes, and requests between services as links. The overall SAR
process phases are detailed in Fig. 1 and described in the following subsections.

Fig. 1. Generalized SAR process for service call graph extraction and visualization
used in MicroProspect processing

Model Extraction: The first phase involves static analysis of the microservices
codebase to extract architectural components to construct the model represen-
tation of the system. The two-phase process involves the analysis of individual
microservice codebases and then their interconnections.

The first phase analyzes the individual microservices, it can be assumed that
component-based development frameworks are used to develop microservices.
Resorting to low-level language use would lead to wheel reinvention and bring
significant disadvantages to system evolution [32]. Therefore, our methodology
assumes that the framework follows enterprise communication standards, orga-
nizing components into Controller, Service, and Data Repository within projects

312 L. Adams et al.

[15]. We scrutinize microservices’ codebases, extracting source files and parsing
them to pinpoint method declarations and bodies. This extracted content encom-
passes an individual microservices component call graph, depicted in Fig. 2. It
illustrates that endpoint calls are received from the Controller component and
then delegated to the implemented Service component. The Service component
is tasked with communicating with the data sources of the Data Repository
component and other microservices, initiating remote calls to fulfill the required
tasks. Schiewe et al. [32] demonstrated the identification of high-level constructs
and components from abstract syntax trees. This approach reveals controllers
and their endpoints with specific REST properties, along with identifying remote
REST calls within the code.

The second phase interconnects the individual microservices with each other.
The extracted remote calls from component call graphs reveal the connec-
tions between the microservices, forming the foundation for constructing ser-
vice dependencies. The process combines individual component call graphs using
merging ingredients like call signature match to endpoints or data simulates [3].
For extracting system interconnections, we consider the Prophet static analy-
sis tool [9]. For explicit dependencies, Prophet uses approximation via signature
matching between the REST endpoint and remote REST calls to identify connec-
tions. This approach has shown to be reliable through repeated experimentation,
yet, it must be understood that static analysis provides only an approximation.
However, the requisite cost is low, given no system execution is necessary, as in
the case of dynamic system analysis.

The result then follows in the format of endpoint and rest call interconnec-
tions which, with the trace to their original microservices, leads to derived depen-
dencies across microservices. A similar approach is possible for asynchronous
calls (i.e., messaging) but was not considered in this work.

Intermediate Representation: Following the model extraction phase, the
extracted component call graphs evolve into the IR, which represents the sys-
tem components and their interconnections. From this IR, we can derive informa-
tion about services, types, and dependencies which can be used to demonstrate
the interconnections between services to construct a service view. Its format
describes a composite structure listing the component call from endpoints within
all its microservices and links between services throughout the particular end-
point route, as shown in Fig. 3. Such information makes it possible to render a
service dependency graph of the system at a high level as a directed network.

Anti-pattern Identification: From the IR, we can seek to identify various
anti-patterns within the microservice system that are traceable from the service
dependency perspective. We can traverse the intermediate representation and
label nodes with information pertaining to anti-patterns they may be a part
of. We demonstrate the detection of selected anti-patterns based on information
derived from the structure of the service call graph. In particular, we targeted
the following:

MicroProspect in Microservice Architecture 313

Fig. 2. Component Call Graph example

Fig. 3. Example intermediate representation of service dependency graph from the
train ticket system benchmark

314 L. Adams et al.

– High outgoing coupling(variable threshold) - Service (outgoing connec-
tions) is interconnected or dependent on too many other services.

– Cyclic dependency - A cyclic chain of calls between two or more services
that depend on each other directly or indirectly. Various cyclic dependency
shapes can be recognized. Involved services can be hard to release and main-
tain. Likely, responsibilities are not separated correctly across services. This
leads to problems with deployment, scalability, and co-change coupling. [13]

– Bottleneck service (variable threshold) - A service that is highly used
(incoming connections) by other services. Its response time can be high
because too many services use it. Service availability may go down due to
the traffic.

– Megaservice (variable threshold) - Services should be small, independent,
independently deployable units and serve a single purpose. A mega service
has a high number of endpoints and a high fan-in. It is a result of poor system
decomposition when a service combines multiple functionalities that multiple
services should handle. [13] Creates maintenance issues, reduced performance,
and difficult testing.

The decorated version of the graph JSON can then be used by the Micro-
Prospect tool to display information pertaining to anti-patterns within and
across system versions, highlighting changes.

3 MicroProspect Tool

We sought to develop a comprehensive visualization approach to enable develop-
ers to view the system service dependency graph regardless of the system scale.
This necessitated an interactive tool that allows for various features suggested
by Abdelfattah et al. [2], such as search, tracking, and isolation of particular
services and their neighbors to successfully divide large microservice systems
into manageable components. Additionally, Abdelfattah et al. found that a 3D
visualization enabled novices to perform on the same level as experts in identi-
fying relationships between services and outperform those using a 2D tool [2].
As a result of this and the service dependency graph’s focus on relationships
among services, we targeted a 3D visualization. Moreover, to understand system
degradation, we desired to incorporate a fourth dimension in comparing system
versions and anti-patterns over time. To further understand the system degrada-
tion, we can also display how anti-patterns change between system versions by
comparing the individual occurrences between the two versions. Tracking system
degradation can be accomplished by repeating the aforementioned SAR process
for several system iterations and ordering them on a timeline that can be paged
through.

Interactivity: MicroProspect offers interactive navigation of a visual service
dependency graph in 3D space. The graph can be rotated, panned, zoomed, and
rearranged via dragging nodes. Services are visualized as nodes in the graph and

MicroProspect in Microservice Architecture 315

Fig. 4. Capture of the Train Ticket system in the MicroProspect tool

can be focused on via click to obtain specifics and to isolate the service and its
neighbors visually. Requests between services are visualized as arrows of width
dependent on request quantity and have the flow direction animated on hover.
The tool offers many visualization options that can be toggled from menus on
the left side of the screen, in addition to search functionality to isolate services
by name for easier navigation of complex graphs.

All of these features serve to enable navigability despite graph complexity,
which necessitated this 3D interactive approach. Figure 4 illustrates the Train
Ticket benchmark in MicroProspect3.

Anti-pattern Visualization: Previously mentioned anti-patterns are visual-
ized by MicroProspect, including High outgoing coupling, Cyclic Dependency,
Bottleneck, and Mega service. The anti-pattern information is extracted from
the labeled system IR and used to highlight services and interactions based on
the selected anti-pattern. Anti-pattern information is compared to the previous
graph instance across system evolution as well to address the need to understand
when and how anti-patterns developed in the system. Figure 4 highlights Cyclic
Dependency in purple, and the left panel informs that a cycle did not appear in
the previous system version.

System Evolution: A timeline slider enables linear paging through major
graph versions over time that was extracted and uploaded to the tool. Graph
versions are grouped by a unique named identifier and include metadata about
creation and update time, as well as a mock git commit number. This is to be
utilized in future tool iterations to extract the system timeline from a continu-
ous integration pipeline using our SAR process. The timeline enables us to page
3 https://dblp.uni-trier.de/rec/conf/icse/ZhouPX0XJZ18.html?view=bibtex.

https://dblp.uni-trier.de/rec/conf/icse/ZhouPX0XJZ18.html?view=bibtex

316 L. Adams et al.

through versions and compare anti-pattern occurrences between system itera-
tions to determine degradation sources. This can also pair with the ‘track node’
menu to focus on specific services in the graph across versions.

Fig. 5. MicroProspect capture with tools labeled

4 System Use Overview

The system provides two primary modes of operation that can be toggled
between in the top left corner menu (Fig. 5 ref 1). Visual Mode and Anti-Pattern
Mode each equipped with distinctive tools and capabilities. This subsection offers
an in-depth overview of these modes and their features.

Visual Mode: Visual Mode is designed to provide users with a comprehensive
visualization of the system’s microservices and their dependency relationships.
Key features of Visual Mode include:

– 3D Visualization: Users can explore the system in a 3D environment with
six degrees of freedom.

– Interactive Controls: Features such as rotation, panning, and zooming in
and out offer intuitive navigation.

– Node Interaction: Users can interact with nodes by clicking and dragging
them for enhanced visualization (Fig. 5 ref 2).

– Relationship Insight: Hovering over nodes reveals dependency relation-
ships. Purple links represent incoming dependencies, while yellow links rep-
resent outgoing dependencies.

– Cyclic Dependency Visualization: Cyclic dependencies are easily identi-
fied when a node is selected.

MicroProspect in Microservice Architecture 317

– Node Details: Clicking on nodes provides access to the following information
(Fig. 6):
• Dependency relationships.
• Endpoints encapsulated by relationships.
• Antipatterns detected on the node.
• Threshold settings, if applicable.

Fig. 6. Example of a selected Node’s details

Furthermore, Visual Mode offers a set of tools and capabilities to enhance
the user’s experience:

– Timeline: The timeline tool allows users to explore the system’s evolution
by sliding between timeslices of development (Fig. 5 ref 3). Timeslices per
commit provide insights into changes and evolution over time.

– Track Nodes: Users can track specific nodes across different timeslices by
right-clicking on a node and adding it to the time slice menu (Fig. 5 ref 4).
Tracked nodes are marked in green and persist through various timeslices.
Users can access in-depth data for each time node by clicking on a tracked
node, and they have the option to remove it from the menu.

– Upper Right Panel: This panel provides several toggles and options, includ-
ing light and dark mode, the ability to switch between 2D and 3D views,
reactive search to filter nodes based on queries, JSON schema export, cap-
turing screenshots of the current camera angle, a track menu toggle, and a
reset option to return to the default camera angle (Fig. 5 ref 5).

Anti-Pattern Mode: Anti-Pattern Mode focuses on the identification of var-
ious anti-patterns within the system. Users can set specific thresholds for anti-
pattern detection. Notable features of Anti-Pattern Mode include:

318 L. Adams et al.

– High Coupling Detection: The system highlights high coupling by shifting
affected nodes to green, orange, and red colors. Red nodes indicate high cou-
pling, green nodes represent low coupling, and orange nodes indicate medium
coupling. The coloring is controlled by user-defined thresholds or dependency
relationships. Additionally, the system provides a count of nodes above the
specified threshold.

– Cyclic Dependency Identification: Cyclic dependencies are highlighted
in purple for easy recognition.

– Bottleneck Detection: Services at risk of becoming bottlenecks or having
dependencies above the threshold are displayed in purple.

– Megaservice Indication: Megaservices are identified and displayed in pur-
ple.

5 Evaluation

MicroProspect renders a service dependency graph by analyzing the IR of
microservices and interconnections between endpoints and REST calls. For an
assessment, we deployed our MicroProspect tool4 with a microservice benchmark
Train Ticket [38] and considered thirty-six of its microservices in our analysis
since we considered only Java-based microservices. Table 1 presents the outcomes
of manual code analysis versus our tool, including the number of microservices
and REST Calls and their corresponding service dependency graph representa-
tions.

Table 1. Service Dependency Graph Data Analysis

Numbers/Approaches Manual extraction MicroProspect

Microservices 36 36

REST calls 135 135

Nodes in SDG 36 36

Links in SDG 87 87

Cycles in SDG 2 2

Highly-Coupled Nodes in SDG 8 8

The above analysis depicts that our tool successfully extracted all services
and REST calls from the Train Ticket system we chose to visualize. Our rep-
resentation combines multiple REST calls between the same two microservices
into one singular link, which explains the different number of REST calls and
links in the service dependency graph. This comparison between manual analysis
and our tool shows that MicroProspect can provide an accurate representation
of a system through the use of a service dependency graph.
4 MicroProspect Tool: https://cloudhubs.ecs.baylor.edu/mavp.

https://cloudhubs.ecs.baylor.edu/mavp

MicroProspect in Microservice Architecture 319

Our tool is novel in the idea of incorporating a measure of system evolution
in visualization and anti-pattern detection, allowing for distinctive use cases.
Scrolling through a timeline of all the commits in a codebase would allow devel-
opers to quickly identify changes and the commit associated, which could greatly
reduce the costs associated with debugging. Similarly, the automatic detection
and visualization of anti-patterns is a great aid in locating the causes of defi-
ciencies at a glance. Thus, resources could be focused more on the service being
provided rather than on troubleshooting a faulty or ill-performing system.

Prior Evaluation of MicroProspect: Our prior research [25] yielded insight-
ful data that emphasized the need for our tool when applied to microservice
systems. We performed a user study involving 28 participants. The study con-
sidered the detection of two anti-patterns: cyclic dependency and knot in service-
dependency graphs. The outcomes revealed that manual detection of cyclic
dependencies resulted in only 66% to 70% accuracy, even dropping to as low as
32% for complex systems, despite the participants’ experience levels. Similarly,
in knot detection, practitioners achieved only 72% accuracy in small systems
and 53% in larger ones, with false positives reported by 22% to 39% of partic-
ipants. Interestingly, even highly familiar developers struggled, with accuracy
rates similar to or only marginally better than less familiar peers. Notably, the
time spent on detection tasks didn’t significantly decrease with increased famil-
iarity, emphasizing the inefficiency of manual detection. Naturally, the visual
highlight of the selected anti-pattern explained the problem instantly.

Our prior research [25] underscores the necessity for such tools within
microservice systems. The study revealed the limitations of manual detection
in identifying anti-patterns, with accuracy rates often falling short, regardless of
practitioners’ experience levels. Notably, the time spent on detection tasks didn’t
significantly decrease with increased familiarity, highlighting the inefficiency of
manual approaches. These findings strongly advocate for the adoption of auto-
mated tools like MicroProspect to enhance accuracy and efficiency in identifying
and addressing anti-patterns within microservice architectures as demonstrated
in this evaluation.

6 Related Works

Several approaches have been proposed to address the challenges of understand-
ing and maintaining complex microservice architectures [6].

Gaidels et al. [21] explored leveraging service call graphs to identify microser-
vice system issues using centrality and community recognition methods. Their
techniques extracted meaningful metrics and visualizations, offering valuable
insights into system dynamics. However, their approach lacked tool support,
potentially limiting practical implementation and wider adoption. On the other
hand, our solution offers a thorough analysis with integrated tool support, mak-
ing it practical and accessible for evaluating and improving systems.

320 L. Adams et al.

In the research conducted by Gamage et el. [22], they employed dynamic
analysis to retrieve the dependency graph of the microservice system. By apply-
ing various graph algorithms, such as Degree centrality and Clustering coefficient,
they successfully identified five common anti-patterns in the system: Bottleneck,
Knot, Cyclic Dependencies, Nano Service, Service Chain. This approach solely
relies on dynamic information for obtaining the dependency graph. Due to the
dynamic nature of data extraction, sufficient time should be allocated to collect
all the communication data between services. Additionally, the tool is limited to
tracking synchronous systems that communicate in a RESTful style.

Cerny et al. [11] describes use of major microservice architecture tools in
industry, although microservice architecture comes primarily from practitioners,
so there are limited publications on the subject.

Amazon X-Ray console utilizes a map visual representation, featuring service
nodes for requests, upstream client nodes for request origins, and downstream
service nodes representing web services and resources. Embedded views enable
users to inspect service maps and traces [11].

Netflix interactive visualization employs a service graph to depict system-
wide service dependencies, allowing users to analyze different topologies by
reconstructing the services communication graph. However, this approach may
not be optimal for debugging specific service issues [11].

Jaeger tracing offers a Jaeger UI that renders service dependencies with
dynamic data capabilities. Visualizes Directed Acyclic Graphs (DAGs) along
with call frequencies to observe system architecture [1].

Kiali provides visualization tools for Istio, producing graphs representing
traffic flow through the service mesh. Graph types include application, versioned
application, workload, and service, each offering different levels of aggregation
for system analysis [11].

With regards to additional existing tools, Engel et al. [18] developed a tool
using architectural principles to uncover architectural issues in microservice sys-
tems. Their proposed approach evaluates dependency graphs based on metrics
such as synchronous and asynchronous dependencies. While the tool assists in
identifying design flaws, it has limited integration of graph theory concepts,
potentially restricting the analysis depth. In contrast, our proposed solution
takes a comprehensive approach, enabling a thorough understanding of archi-
tectural degradation and effective mitigation strategies.

MicroART [24] stands out as a tool that extracts both static and dynamic
data to create a visual representation of the system’s architecture. By leveraging
model-driven engineering concepts, MicroART primarily focuses on recovering
the system’s deployment architecture and subsequently improving it. However,
MicroART does not possess the capability to highlight issues and anti-patterns
within the system. Hence, manual effort is required to analyze the system and
identify architectural design problems.

Ma [28] introduces a tool that automatically generates the system’s depen-
dency graph for a microservice system by analyzing the source code through
reflection. The tool identifies cyclic dependencies using Tarjan’s Strongly

MicroProspect in Microservice Architecture 321

Connected Component graph technique. However, its capability is limited to
detecting only the cyclic dependencies anti-pattern. In contrast, our proposed
method enables the analysis and comparison of multiple versions, facilitating
efficient monitoring and management of architectural changes and degradation.

Several software tools are available for visualizing architecture, such as App-
dash, Datadog, Dynatrace, ElasticAPM, Hypertrace, Honeycomb.io, Instana,
Jaeger, Kamon, LightStep, Logit.io, Lumigo, OpenCensus, OpenTelemetry,
Splunk, Signoz, Site24× 7, Uptrace, Victoriametrics, and Zipkin. These tools
vary in their supported programming languages, licensing models, pricing, and
functionalities. For instance, Datadog is renowned for its broad language sup-
port and comprehensive monitoring capabilities, while Zipkin and Jaeger offer
free distributed tracing with simplicity in visualization. On the other hand, tools
like Appdash and Grafana Tempo emphasize simplicity and are available for free,
although they might lack certain advanced features. Janes et al. [26] delve into a
comparative analysis of these tools, discussing their features, performance, and
limitations, offering valuable insights into their effectiveness in diverse architec-
tural contexts. Nevertheless, they reveal limitations in processing visualization
to identify and incorporate anti-patterns, a gap addressed by our proposed tool.
Moreover, our tool emphasizes the evolutionary aspect, providing complemen-
tary features that align with the dynamic nature of architectural changes, further
enriching the toolset.

Recently, Cerny et al. introduced Microvision [12], a cutting-edge tool that
offers the ability to reconstruct and visualize microservice systems in a captivat-
ing 3D virtual reality (VR) environment. By leveraging Prophet static analysis
tool [9], Microvision can automatically reconstruct the architecture of Java-
based microservice systems. However, it’s important to note that Microvision
only relies on static analysis and is limited to Java-based microservice systems,
potentially overlooking the dynamic aspects of system behavior. Similarly, our
tools share the same limitations.

7 Conclusion

The evolution of microservice systems faces multiple challenges related to decen-
tralized development teams operating at individual microservice levels, focusing
little on the overall system perspective. Such and many other factors might lead
to system architecture degradation. In this work, we present a MicroProspect
tool that uses a service call graph extracted from microservice systems to pro-
vide developers with a system-centered view of the system’s dependencies. Given
the extraction of the graph happens statically, they do not need to wait for the
system to deploy and undergo comprehensive testing as common for established
instruments. To mitigate architecture degradation, MicroProspect goes beyond
presenting the system-centered view to developers expecting them to reason
about the system. It utilizes the service dependency graph to detect and visual-
ize selected anti-patterns. While we demonstrated a few examples, there are no
limitations to continuing the effort by adding more anti-patterns to be detected.

322 L. Adams et al.

Furthermore, the evolution aspect is considered as the tool takes into account
service call graphs from multiple system versions to detect differences in and
inform on newly formed anti-patterns. All these aspects are integrated through
an intuitive visual approach using a 3D perspective that is more likely to better
cope with more complex systems. The benefit of such a visualization approach
is that it points developers to the specific place in the system’s architecture
that needs their attention rather than presenting a plain message that the sys-
tem has a certain issue, which allows developers to analyze the problem in a
greater context and make an informed decision on evolution. It is our belief that
this approach has the potential to significantly improve the maintainability and
evolvability of microservice systems and can be integrated into existing developer
tools for wider adoption.

We aim to present the advancements our tool provides to the scientific com-
munity to join efforts to aid the maintenance and evolution of infrastructure for
microservice systems. There are many avenues for future work extension, includ-
ing dynamic analysis integration, mining software repository integration, more
experimentation, and broader anti-pattern support. In ongoing works, efforts are
made to catalog over 50 microservice anti-patterns [14] and some of these can
be detected and visualized to bring direct utility to developers.

Acknowledgements. This material is based upon work supported by the National
Science Foundation under Grant No. 2409933, and a grant from the Academy of Finland
(grant n. 349488 - MuFAno).

References

1. Jaeger: Open source, distributed tracing platform. https://www.jaegertracing.io/.
Accessed Nov 17 2023

2. Abdelfattah, A.S., Cerny, T., Taibi, D., Vegas, S.: Comparing 2D and aug-
mented reality visualizations for microservice system understandability: A con-
trolled experiment. In: 2023 IEEE/ACM 31st International Conference on Program
Comprehension (ICPC), pp. 135–145 (2023). https://doi.org/10.1109/ICPC58990.
2023.00028

3. Abdelfattah, A.S., Cerny, T.: The microservice dependency matrix. In: Papadopou-
los, G.A., Rademacher, F., Soldani, J. (eds.) Service-Oriented and Cloud Comput-
ing: 10th IFIP WG 6.12 European Conference, ESOCC 2023, Larnaca, Cyprus,
October 24–25, 2023, Proceedings, pp. 276–288. Springer Nature Switzerland,
Cham (2023). https://doi.org/10.1007/978-3-031-46235-1 19

4. Abdelfattah, A.S., Cerny, T.: Roadmap to reasoning in microservice systems: a
rapid review. Appl. Sci. 13(3), 1838 (2023)

5. Baabad, A., Zulzalil, H.B., Hassan, S., Baharom, S.B.: Software architecture degra-
dation in open source software: a systematic literature review. IEEE Access 8,
173681–173709 (2020). https://doi.org/10.1109/ACCESS.2020.3024671

6. Bakhtin, A., Li, X., Soldani, J., Brogi, A., Tomas, C., Taibi, D.: Tools recon-
structing microservice architecture: A systematic mapping study. In: Agility with
Microservices Programming, co-located with ECSA 2023 (2023)

https://www.jaegertracing.io/
https://doi.org/10.1109/ICPC58990.2023.00028
https://doi.org/10.1109/ICPC58990.2023.00028
https://doi.org/10.1007/978-3-031-46235-1_19
https://doi.org/10.1109/ACCESS.2020.3024671

MicroProspect in Microservice Architecture 323

7. Bogner, J., Fritzsch, J., Wagner, S., Zimmermann, A.: Limiting technical debt with
maintainability assurance - an industry survey on used techniques and differences
with service- and microservice-based systems. In: 2018 IEEE/ACM International
Conference on Technical Debt (TechDebt), pp. 125–133 (2018)

8. Bogner, J., Wagner, S., Zimmermann, A.: Automatically measuring the maintain-
ability of service-and microservice-based systems - a literature review (10 2017).
https://doi.org/10.1145/3143434.3143443

9. Bushong, V., Das, D., Cerny, T.: Reconstructing the holistic architecture of
microservice systems using static analysis. In: Proceedings of the 12th Interna-
tional Conference on Cloud Computing and Services Science-CLOSER (2022)

10. Campbell, G.A., Papapetrou, P.P.: SonarQube in Action, 1st edn. Manning Pub-
lications Co., USA (2013)

11. Cerny, T., Abdelfattah, A.S., Bushong, V., Al Maruf, A., Taibi, D.: Microservice
architecture reconstruction and visualization techniques: A review. In: 2022 IEEE
International Conference on Service-Oriented System Engineering (SOSE), pp. 39–
48. IEEE (2022)

12. Cerny, T., Abdelfattah, A.S., Bushong, V., Al Maruf, A., Taibi, D.: Microvision:
Static analysis-based approach to visualizing microservices in augmented reality.
In: 2022 IEEE International Conference on Service-Oriented System Engineering
(SOSE), pp. 49–58 (2022). https://doi.org/10.1109/SOSE55356.2022.00012

13. Cerny, T., Abdelfattah, A.S., Maruf, A.A., Janes, A., Taibi, D.: Catalog and detec-
tion techniques of microservice anti-patterns and bad smells: a tertiary study.
J. Syst. Softw. 206, 111829 (2023). https://doi.org/10.1016/j.jss.2023.111829,
https://www.sciencedirect.com/science/article/pii/S0164121223002248

14. Cerny, T., Maruf, A., Janes, A., Taibi, D.: Microservice anti-patterns and bad
smells. how to classify, and how to detect them. a tertiary study. SSRN Electronic
Journal (01 2023). https://doi.org/10.2139/ssrn.4328067

15. Cerny, T., et al.: On code analysis opportunities and challenges for enterprise
systems and microservices. IEEE access 8, 159449–159470 (2020)

16. Cerny, T., Taibi, D.: e static analysis: opportunities, gaps, and advancements.
In: Joint Post-proceedings of the Third and Fourth International Conference on
Microservices (Microservices 2020/2022). Schloss Dagstuhl–Leibniz-Zentrum für
Informatik GmbH (2023)

17. Conway, M.E.: How do committees invent? Datamation (April 1967)
18. Engel, T., Langermeier, M., Bauer, B., Hofmann, A.: Evaluation of microservice

architectures: a metric and tool-based approach. In: Mendling, J., Mouratidis, H.
(eds.) Information Systems in the Big Data Era: CAiSE Forum 2018, Tallinn, Esto-
nia, June 11-15, 2018, Proceedings, pp. 74–89. Springer International Publishing,
Cham (2018). https://doi.org/10.1007/978-3-319-92901-9 8

19. Fontana, F.A., Roveda, R., Zanoni, M.: Tool support for evaluating architectural
debt of an existing system: an experience report. In: Proceedings of the 31st Annual
ACM Symposium on Applied Computing, pp. 1347–1349. SAC ’16, ACM (2016).
https://doi.org/10.1145/2851613.2851963

20. de Freitas Apolinário, D.R., de França, B.B.N.: Towards a method for monitoring
the coupling evolution of microservice-based architectures. In: Proceedings of the
14th Brazilian Symposium on Software Components, Architectures, and Reuse,
pp. 71-80. SBCARS ’20, ACM (2020). https://doi.org/10.1145/3425269.3425273

https://doi.org/10.1145/3143434.3143443
https://doi.org/10.1109/SOSE55356.2022.00012
https://doi.org/10.1016/j.jss.2023.111829
https://www.sciencedirect.com/science/article/pii/S0164121223002248
https://doi.org/10.2139/ssrn.4328067
https://doi.org/10.1007/978-3-319-92901-9_8
https://doi.org/10.1145/2851613.2851963
https://doi.org/10.1145/3425269.3425273

324 L. Adams et al.

21. Gaidels, E., Kirikova, M.: Service dependency graph analysis in microservice archi-
tecture. In: Buchmann, R.A., Polini, A., Johansson, B., Karagiannis, D. (eds.) Per-
spectives in Business Informatics Research: 19th International Conference on Busi-
ness Informatics Research, BIR 2020, Vienna, Austria, September 21–23, 2020, Pro-
ceedings, pp. 128–139. Springer International Publishing, Cham (2020). https://
doi.org/10.1007/978-3-030-61140-8 9

22. Gamage, I.U.P., Perera, I.: Using dependency graph and graph theory concepts
to identify anti-patterns in a microservices system: a tool-based approach. In:
2021 Moratuwa Engineering Research Conference (MERCon), pp. 699–704 (2021).
https://doi.org/10.1109/MERCon52712.2021.9525743

23. Gortney, M.E., et al.: Visualizing microservice architecture in the dynamic per-
spective: a systematic mapping study. IEEE Access (2022)

24. Granchelli, G., Cardarelli, M., Francesco, P., Malavolta, I., Iovino, L., Di Salle, A.:
Towards recovering the software architecture of microservice-based systems, pp.
46–53 (04 2017). https://doi.org/10.1109/ICSAW.2017.48

25. Huizinga, A., Parker, G., Abdelfattah, A.S., Li, X., Cerny, T., Taibi, D.: Detecting
microservice anti-patterns using interactive service call graphs: effort assessment.
In: Han, H., Baker, E. (eds.) Next Generation Data Science: Second Southwest
Data Science Conference, SDSC 2023, Waco, TX, USA, March 24–25, 2023, Revised
Selected Papers, pp. 212–227. Springer Nature Switzerland, Cham (2024). https://
doi.org/10.1007/978-3-031-61816-1 15

26. Janes, A., Li, X., Lenarduzzi, V.: Open tracing tools: overview and critical com-
parison. J. Syst. Softw. 204, 111793 (2023). https://doi.org/10.1016/j.jss.2023.
111793,https://www.sciencedirect.com/science/article/pii/S0164121223001887

27. Lenarduzzi, V., Lomio, F., Saarimäki, N., Taibi, D.: Does migrating a monolithic
system to microservices decrease the technical debt? J. Syst. Softw. 169, 110710
(2020). https://doi.org/10.1016/j.jss.2020.110710

28. Ma, S.P., Fan, C.Y., Chuang, Y., Liu, I.H., Lan, C.W.: Graph-based and scenario-
driven microservice analysis, retrieval, and testing. Future Gener. Comput. Syst.
100, 724–735 (11 2019). https://doi.org/10.1016/j.future.2019.05.048

29. Parker, G., et al.: Visualizing anti-patterns in microservices at runtime: a system-
atic mapping study. IEEE Access 11, 4434–4442 (2023). https://doi.org/10.1109/
ACCESS.2023.3236165

30. Riaz, M., Sulayman, M., Naqvi, H.: Architectural decay during continuous software
evolution and impact of ‘design for change’ on software architecture, pp. 119–126.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10619-4 15

31. Roveda, R., Arcelli Fontana, F., Pigazzini, I., Zanoni, M.: Towards an architec-
tural debt index. In: 2018 44th Euromicro Conference on Software Engineering
and Advanced Applications (SEAA), pp. 408–416 (2018). https://doi.org/10.1109/
SEAA.2018.00073

32. Schiewe, M., Curtis, J., Bushong, V., Cerny, T.: Advancing static code analysis
with language-agnostic component identification. IEEE Access 10, 30743–30761
(2022)

33. Schmitt Laser, M., Medvidovic, N., Le, D.M., Garcia, J.: Arcade: an extensible
workbench for architecture recovery, change, and decay evaluation. In: Proceed-
ings of the 28th ACM Joint Meeting on European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineering, pp. 1546–1550.
ESEC/FSE 2020, ACM (2020). https://doi.org/10.1145/3368089.3417941

34. Sigelman, B.H., et al.: Dapper, a large-scale distributed systems tracing infrastruc-
ture. Tech. rep., Google, Inc. (2010). https://research.google.com/archive/papers/
dapper-2010-1.pdf

https://doi.org/10.1007/978-3-030-61140-8_9
https://doi.org/10.1007/978-3-030-61140-8_9
https://doi.org/10.1109/MERCon52712.2021.9525743
https://doi.org/10.1109/ICSAW.2017.48
https://doi.org/10.1007/978-3-031-61816-1_15
https://doi.org/10.1007/978-3-031-61816-1_15
https://doi.org/10.1016/j.jss.2023.111793
https://doi.org/10.1016/j.jss.2023.111793
https://www.sciencedirect.com/science/article/pii/S0164121223001887
https://doi.org/10.1016/j.jss.2020.110710
https://doi.org/10.1016/j.future.2019.05.048
https://doi.org/10.1109/ACCESS.2023.3236165
https://doi.org/10.1109/ACCESS.2023.3236165
https://doi.org/10.1007/978-3-642-10619-4_15
https://doi.org/10.1109/SEAA.2018.00073
https://doi.org/10.1109/SEAA.2018.00073
https://doi.org/10.1145/3368089.3417941
https://research.google.com/archive/papers/dapper-2010-1.pdf
https://research.google.com/archive/papers/dapper-2010-1.pdf

MicroProspect in Microservice Architecture 325

35. Taibi, D., Lenarduzzi, V.: On the definition of microservice bad smells. IEEE Softw.
35(3), 56–62 (2018). https://doi.org/10.1109/MS.2018.2141031

36. Taibi, D., Lenarduzzi, V., Pahl, C.: Microservices anti-patterns: a taxonomy. In:
Bucchiarone, A., Dragoni, N., Dustdar, S., Lago, P., Mazzara, M., Rivera, V.,
Sadovykh, A. (eds.) Microservices: Science and Engineering, pp. 111–128. Springer
International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-31646-
4 5

37. Xiao, L., Cai, Y., Kazman, R., Mo, R., Feng, Q.: Identifying and quantifying
architectural debt. In: Proceedings of the 38th International Conference on Soft-
ware Engineering, pp. 488–498. ICSE ’16, ACM (2016). https://doi.org/10.1145/
2884781.2884822

38. Zhou, X., et al.: Benchmarking microservice systems for software engineering
research. In: The 40th International Conference on Software Engineering, pp. 323–
324. ICSE ’18, ACM (2018). https://doi.org/10.1145/3183440.3194991

https://doi.org/10.1109/MS.2018.2141031
https://doi.org/10.1007/978-3-030-31646-4_5
https://doi.org/10.1007/978-3-030-31646-4_5
https://doi.org/10.1145/2884781.2884822
https://doi.org/10.1145/2884781.2884822
https://doi.org/10.1145/3183440.3194991

An Approach and Toolset to Semi-automatically
Recover and Visualise Micro-Service

Architecture

Nour Ali1(B), Nuha Alshuqayran2, Rana Fakeeh3, Thoybur Rohman1,
and Carlos Solis4

1 Brunel University London, Uxbridge, UK
{nour.ali,2026156}@brunel.ac.uk

2 Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
nshaqayran@imamu.edu.sa

3 AIDA Geschäftsführungs-Organisations-Systeme GmbH, Hauptstr. 11, 75391 Böblingen,
Germany

rfakeeh@aidaorga.de
4 ION Group, London, UK

carlos.solis@iongroup.com

Abstract. This paper presents theMicroService Architecture Recovery (MiSAR)
toolset for software engineers (software architects and developers) that need
to semi-automatically obtain as-implemented architectural models of existing
microservice-based systems. The MiSAR approach has been designed following
Model Driven Architecture, and a set of components have been developed to sup-
port the semi-automatic support of MiSAR. The toolset first parses microservice-
based systems and generates a Platform-SpecificModel,which is an abstract repre-
sentation of the system using the technology. Then, a model transformation engine
automatically generates a Platform Independent Model which represents the as-
implemented microservice architectural mode of a system. To support the visual-
ization of as-implemented architectural models, the Graphical Model Generator
component of the toolset can be used. The Graphical Model Generator allows the
software engineer to obtain quantitative metrics of the microservice architectural
model and UML diagrams representing different views of the architecture.

Keywords: Microservice · architecture reconstruction · architecture recovery ·
architectural views · architecture visualization · model driven engineering ·
model driven architecture

1 Introduction

Microservice architecture has become a popular architectural style [1].Microservices are
developed quickly and providemore agility to the system [2], which results in continuous
architectural changes [3]. Therefore, it can be stated that not every system is built using
a well-documented architecture, and often the documentation of the architecture is not

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
B. Tekinerdoğan et al. (Eds.): ECSA 2023, LNCS 14590, pp. 326–341, 2024.
https://doi.org/10.1007/978-3-031-66326-0_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-66326-0_20&domain=pdf
https://doi.org/10.1007/978-3-031-66326-0_20

An Approach and Toolset to Semi-automatically Recover 327

kept up to date [4]. Keeping control of the overall architecture during development can
be very difficult, especially when microservice-based systems are designed, developed
and deployed by different stakeholders and teams. Moreover, these architectures follow
evolutionary design, which is very hard to manage, and architectural constraints are
difficult to track. Software engineers often have little knowledge of the as-implemented
architecture of their systems, and often face the challenge of not knowing in detail the
underlying structures of the software system architecture.

The above concerns can be solved by using software architecture recovery (recon-
struction or reverse architecting) [5, 6] which is a technique that reverse engineers sys-
tems to obtain the actual (as-implemented) architectural structure and description from
system artefacts such as source code.

This paper presents theMicroServiceArchitectureRecovery (MiSAR) toolset,which
aims to support the architecture recovery of microservice systems by allowing soft-
ware engineers to obtain semi-automatically an up-to-date architecture of implemented
microservice systems. This can be challenging to obtain manually as microservices are
not first-class citizens in the software, microservice systems use different programming
frameworks and technologies, and microservices are highly inter-dependent, making
analysis and architecture abstraction and comprehension difficult. The MiSAR toolset,
manuals, artefacts and its application to case studies can be found at [7]. The MiSAR
toolset video demonstration is available at [8].

The paper is structured as follows: Sect. 2 gives an overview of the MiSAR app-
roach. Section 3 presents the components of the MiSAR toolset. Section 4 describes
how MiSAR toolset has been implemented. Section 5 presents a walkthrough of the
toolset recovering the architecture of an open-source system. Section 6 evaluates the
performance of the toolset. Section 7 presents related work toMiSAR and finally Sect. 8
concludes and discusses further work.

2 MiSAR Approach

MiSAR follows Model Driven Architecture (MDA) [9], to recover architectural models
of existing microservice systems. The initial version of the MiSAR approach has been
defined empirically in [10]. To define the MDA artefacts of MiSAR (metamodels and
mapping rules),we selectedmicroservice-basedopen-source systems and recovered their
architectures manually. This allowed us to learn by example the architectural elements
that need to be included in the metamodels and mapping rules.

The MiSAR approach analyses the microservice software artefacts and produces
models at two abstraction levels (see Fig. 1). First, MiSAR analyses the source code
of a microservice project represented in text files. Second, it automatically creates a
Platform-Specific Model of the project. Third, MiSAR automatically creates a Platform
Independent Model which represents the architectural model of the system. To support
this, the MiSAR approach includes the following MDA artefacts found at [7]:

328 N. Ali et al.

Fig. 1. MiSAR Model Driven Architecture abstraction levels

2.1 The Platform-Specific Metamodel

The Platform-Specific Metamodel defines the constructs which abstract microservice-
based systems using the platforms and technologies (see Fig. 2). For each microservice-
based system that needs to be recovered, a Platform-Specific Model (PSM) is generated
conforming to the Platform-SpecificMetamodel. The current platforms and technologies
which are supported are the Java Language, Docker, and Spring boot framework and
technologieswhich includeConsul, Eureka,MongoDB,MySQL,Neo4jGraph database,
OAuth2, and RabbitMQ.

Figure 2 shows the main elements of the Platform-Specific Metamodel and the
PSM.ecore file can be found at [7]. As it can be seen, every PSM of a microser-
vice application has a DistributedApplicationProject instance, with an application
name and its root repository URI (ProjectPackageURL). The DistributedApplica-
tionProject is composed of the architecture’s development artefacts which include
a multi-module project (ApplicationProject) and Docker containers represented by
the DockerContainerDefinition. The DockerContainerDefinition elements involved
in the architecture are extracted from the Docker Compose and Dockerfile files. The
DockerContainerDefinition captures DockerContainerPort and DockerContainer-
Link instances. An ApplicationProject represents one or many MicroservicePro-
ject elements. A MicroserviceProject generalises a wide range of project artefacts
implemented in any framework or language, including Java Spring Boot/Cloud. The
JavaSpringWebApplicationProject element is a subtype of the MicroservicePro-
ject element which reflects the specific characteristics of applications built with the
Spring Boot/Cloud framework. Another characteristic of JavaSpringWebApplication-
Project is that it aggregates multiple Java classes and/or Java interfaces with a means
of annotation into JavaSpringWebApplicationLayers.

2.2 The Platform-Independent Metamodel

The Platform Independent Metamodel defines the microservice architectural elements
that describe a microservice architecture in a technology independent way. The meta-
model (see Fig. 3) includes 17 architectural element types. These include Microservices

An Approach and Toolset to Semi-automatically Recover 329

Fig. 2. MiSAR’s Platform-Specific Metamodel in Ecore for the Java Language, Docker, and
Spring boot

that can be classified into Functional Microservices, which realize the system’s business
capabilities, and Infrastructure Microservices, which realize infrastructural capabilities.
Infrastructure Pattern Components which support the functionality of patterns. Mes-
sageDestination type which is an abstract element to represent communication and cur-
rently has two subtypes: Endpoints which are service URIs for synchronous remote calls
and QueueListeners which are a kind of asynchronous communication. Service Depen-
dencies which describe the communication between a consumer microservice and a
provider microservice. Each architectural model recovered conforms to the Platform
Independent Metamodel and is called a Platform Independent Model (PIM).

2.3 Mapping Rules

Mapping Rulesmap elements of PSMs into PIMs. Eachmapping rule is representedwith
a Left-Hand Side (L-H-S) and a Right-Hand Side (R-H-S). The L-H-S includes PSM
elements structured in a tree and the R-H-S indicates targeted PIM elements. The L-H-S
PSM elements are checked and if they exist in a PSM instance, then the R-H-S PSM

330 N. Ali et al.

Fig. 3. MiSAR’s Platform Independent Metamodel

elements are transformed into a group of target PIM elements. An example of a mapping
rule is the one which identifies that a java method uses asynchronous communication:

[L-H-S] A Java Method with Element Identifier value: “convertAndSend” whose
parent is a Java User Defined Type with Element Identifier value: “RabbitTemplate” or
“AmqpTemplate”, which has one Java Method Parameter with Parameter Order value:
“2” and Field Value value: “[routing-key]” whose type is a Java Class Type with Element
Identifier value: “String” such that there is a Queue Listener with Queue Name value that
contains: “[routing-key]” and belongs to a Microservice with Microservice Name value:
“[provider-name]” indicates [R-H-S] a Service Dependency with Provider Destination
value: “QueueListener[QueueName:[queue-name]]”.

In the above mapping rule a Service Dependency PIM element is created which
has a QueueListener as a providerMessageDestination. MiSAR currently supports 275
mapping rules.

One of the benefits of MiSAR in following the MDA approach is the separation of
concerns. Models can be reusable and independent of their graphical notation. As it can
be noticed in the following sections, a recovered architectural model (PIM instance) can

An Approach and Toolset to Semi-automatically Recover 331

be obtained without a graphical notation. Consequently, an architectural model can be
manipulated in other contexts and transformed into other forms.

Another advantage of MDA is obtaining and using models at different abstraction
levels. The PSM is an abstraction that allowed MiSAR to have a structured reverse
engineering process and therefore has enabled simple mapping rules (transformations)
to generate an architectural model. The PSM allowed the reverse engineering process to
first collect and extract which elements from the system and its technologies are needed
to construct an architecturalmodel and cluster them. The PSM instance can also be useful
for users as it can allow them to trace back and identify which platform and technology
elements participated in constructing a recovered architectural model.

3 Components of MiSAR Toolset

The MiSAR toolset is composed of four components which support a user to obtain an
architectural model from a microservice system in a semi-automatic way. Each of the
components, has as input and/or produces the MDA artefacts explained in Sect. 2. The
components in the toolset are the following:

• AIO: The All In One (AIO) user interface appears when you launch MiSAR. If it is
the first launch, it provides guidelines on how to install the toolset components and
provides guidelines on using them.

• Parser: MiSAR includes a parser which statically analyses the source files of
microservice-based software. The parser analyses these files, collects information
from different artefacts, and clusters them into concepts of the PSM. The parser pro-
duces a Platform-Specific Model (PSM) of the system by instantiating the Platform-
Specific Metamodel. For example, the parser to create a JavaSpringWebAppli-
cationProject (explained in Sect. 2.1) object, it analyses different POM files of a
system which contain a list of dependency libraries. The parser deserializes each
POM file from XML format into a Python dictionary, extracting only the ‘par-
ent’ and ‘dependencies’ elements. Each child element within the ‘dependencies’
element is then converted into a ‘DependencyLibrary’ PSM object. The informa-
tion from the source element is collected and organized in attributes within this
object. Finally, all the ‘DependencyLibrary’ objects are clustered inside one par-
ent ‘JavaSpringMVCApplicationProject’ object. Currently, the parser analyses the
following files:

– Docker Compose Files (.yml|.yaml): These files define services, networks, and
volumes for Docker containers.

– POM Files (.xml): Maven POM (Project Object Model) files, specify project
information, dependencies, and build configurations.

– Configuration Files (.yml|.yaml|.properties): Configuration files in YAML or
properties format can be parsed. These files often contain settings, properties,
or environment-specific configurations.

– Java Source Files: For Java source files to be parsed, the project needs to have
specific libraries in the POM/build.gradle file. Specifically, include either one
of the following libraries: 1) org.springframework.boot: which indicates a Java

332 N. Ali et al.

Spring Boot project. 2) org.springframework.cloud: which indicates a Spring
Cloud project.

• Model Transformation Engine: MiSAR implements bottom-up model-driven trans-
formations to obtain architectural models. PSMs generated by the parser are fed
into model transformations that automatically transform them into PlMs. The
model transformations implement the mapping rules and automatically generate the
as-implemented architecture model of a system.

• Graphical Model Generator: To improve the understandability of the PIMs, we have
developed a Graphical Generator to enable users to visualize the PIM models of
the recovered systems. For each PIM, the generator creates: 1) metrics of the PIMs
(architectural models) in excel sheets, e.g., a table with the number of architectural
elements in an architectural model such as the number of microservices, pattern
components and service dependencies, 2) images with graphical UML diagrams of
the models and 3) PlantUML [13] files of the models. We currently use the UML
Component diagram to represent the microservice architecture. The architecture can
also have different views at architecture level and microservice level.

4 Implementation of MiSAR

The Platform Independent and Platform-Specific Metamodels have been implemented
as Ecore models using the Eclipse Modeling Framework (EMF) [11] (see Fig. 2 &
Fig. 3) The MiSARParser is a python application that incorporates PyEcore, JavaLang,
Yaml, XMLtoDict and other python libraries to parse YAML, XML and JAVA artefacts
of a microservice-based application such as docker-compose.yml and pom.xml into a
MiSAR PSM. The generated PSM is in Ecore (or XMI).

To automate the mapping rules, we have developed the model transformation engine
using the Eclipse Model-to-Model Transformation (M2M) project. The 275 mapping
rules of MiSAR are written using the operational QVT transformation language (QVTo)
[12]. QVTo follows the structure of our mapping rules. The implementation of mapping
rules into QVTo, implements the model transformation engine. The model transforma-
tion engine receives as input a PSM instance, executes the rules and then produces PIMs
in Ecore (or XMI).

Finally, the graphical generator is a java application which navigates through PIMs
and automatically translates them into UML graphical notations. The application uses
the javaEcore implementations ofMiSAR’s Platform IndependentMetamodel and trans-
lates each element into PlantUML textual language [13] to create the images with the
diagrams. The java application also creates excel sheets with metrics of the models. We
could have implemented a graphical editor by using frameworks such as GraphicalMod-
eling Projects [14] or EcoreViz [15] which can be integrated into Eclipse. However, we
made the decision to be Eclipse independent as Eclipse is heavyweight and can change
its versions making our approach obsolete in the future. Since, currently, MiSAR does
not require the manipulation of diagrams generated (no human interaction), then this
is sufficient. This could change in the future, if MiSAR is to be extended for further
software engineering activities such as manipulating models to keep them consistent
with the microservice implementation.

An Approach and Toolset to Semi-automatically Recover 333

5 A Walkthrough of MiSAR

We will demonstrate the steps and artefacts produced using the MiSAR toolset to semi-
automatically generate the as-implemented architectural model of a microservice-based
system. To demonstrate MiSAR, we have selected a microservice project, which is
an open-source project called the MicroCompany application [16]. MicroCompany
is implemented using Java Spring Boot/Spring Cloud microservice-based application
that consists of 11 microservices of which 4 are business-oriented. It utilises both
synchronous and asynchronous inter-service communication.

Fig. 4. User interface of MiSAR AIO

Consider that the software team, after having developed the MicroCompany appli-
cation, would need to get an up-to-date architecture of their application. The software
team has to follow the installation instructions and manuals found on [17]. A user can
use the AIO for installation guidelines as well. Figure 4 shows the AIO when the user
has already installed the parser and it is ready to be launched. To obtain the up-to-date
architecture, the user follows the following steps:

Step 1- Parsing the Microservice System to Create a PSM Instance: The files from
the MicroCompany GitHub are first downloaded locally. Then, the required artefacts
are collected and uploaded to the existing MiSAR parser, as illustrated in Fig. 5. The
parser receives as input: the Project name, Build directory of the system (multi-module)
project, Path of every Docker Compose file (yml), Build directory of every microservice
(single-module) project, Path of build file (POM) of the system (multimodule) project
and the Path of the build file (POM) for every microservice (single-module) project.
Configuration and Java Source artefacts are collected automatically by the parser with
the help of the build directory of every microservice project. When the user inputs
the Build Directory, the parser asks the user if they would like to import all the files
automatically or whether they would like to upload them manually.

The user has the option to delete or add uploaded files. This is to allow the user
to control the parts of the system which they would like to recover. Users may want
to recover the architecture of the entire microservice system, whereas other users may
want to only recover specific parts of the system, e.g., specific microservices.

334 N. Ali et al.

Fig. 5. User interface of Parser used to create PSM of MicroCompany

The parser produces a PSM instance for the MicroCompany application. The PSM
instance can be found at [18]. Even though the PSM is not the as-implemented archi-
tecture model, it is useful, as it provides backtracking support and allows the user to
understand the elements that generated the PIM, by checking the specific lines in the
artefact that generated those particular PSM elements.

Step 2- Executing Model Transformations to Create the PIM Instance: The PIM
architectural model is obtained by running the Eclipse QVTo project. The PIM recov-
ered is in XMI format and can be opened as a tree view with Sample Reflective Ecore
Model editor provided by the Eclipse Modeling Framework (EMF). Figure 6 shows the
generated architecture of MicroCompany using EMF. It consists of 11 microservices: 6
Infrastructure microservices and 5 Functional microservices. The user can have a more
detailed view of the microservices if they click on them. In Fig. 6, the user has clicked on
the Infrastructure Microservice called circuit-breaker and can view its associated archi-
tectural elements: Container, Infrastructure Server Components, Infrastructure Client
Components, Service Interface, Endpoint, and Service Dependencies.

In addition, the microservice view has the attributes for the microservices. Figure 7
shows attributes for the recovered microservice called query-side-blog. For instance,
(a) the “query-side-blog” microservice exposes an endpoint with request URI “GET
/blogposts/search/findByDraftTrue” which is handled by (b) the service operation “find-
ByDraftTrue()” and (c) returns a response service message of model “Page(BlogPost)”.
As it can be noticed, one of the attributes is “Generating PSM” which indicates the
element from the PSM that was used to generate the attribute. This feature provides
traceability and backtracking support for the recovery.

Step 3- Transforming the PIMXMI into Graphical Architectural Diagrams: Once
you have a PIM instance, you can explore it in XMI or by using EMF as explained in Step
2. However, if users are not experts in Ecore or they prefer to have an improved visual-
ization experience, e.g., sharing diagrams with their teams, they can use the Graphical
Model Generator. The user selects the PIM instance and indicates the location where
the different images and excel sheets will be located once produced (see Fig. 8). Then,
automatically a drop-down menu with all the microservices of the architectural model
of the PIM instance will be visible under Microservice Level. The user can produce

An Approach and Toolset to Semi-automatically Recover 335

Fig. 6. Recovered PIM model for MicroCompany

Fig. 7. Example of the recovered “query-side-blog” microservice attributes

images with UML architecture diagrams and metrics at the architecture level or at a
microservice level as follows:

At Architecture Level: If the user clicks on the Architecture Metrics Excel Datasheet,
an excel sheet is produced that contains the number of architectural elements for
every single architectural element type. Figure 9 shows the excel sheet produced for
MicroCompany. For example, there are 5 Functional Microservices and 6 Infrastructure
Microservices inMicroCompany. In addition, the user can click under DependencyView
and create an image (Download PNG and Download SVG buttons) or get the PlantUML

336 N. Ali et al.

Fig. 8. Using the Graphical Model Generator for MicroCompany

file for the graphical UML diagram. Figure 10 shows the dependency diagram for the
architecture of MicroCompany. The diagram shows the microservices of the architec-
ture and their dependencies. Blue components are Functional microservices and purple
components are Infrastructure microservices.

Fig. 9. Architecture Level Metrics of recovered MicroCompany

At Microservice Level: As it can be noticed from Fig. 10, it is very hard to read the
architectural diagram of a medium to large architectural model such as MicroCom-
pany. Therefore, the tool allows the user to select from the top-down menu a specific
microservice. Once a microservice is selected, they can create an excel with metrics for
that microservice, a microservice view which shows the pattern components, endpoints
and service interfaces and a microservice dependency view diagram which shows the
microservice chosen and the service dependencies it has with others. Figure 11 shows the
excel sheet generated summarizing the metrics of Circuit-Breaker microservice: it has 4
Pattern Components, 1 Infrastructure Service Component, 2 Infrastructure Client com-
ponents, 1 Service Interface, 1 endpoint and 7 Service Dependencies. Figure 12 shows

An Approach and Toolset to Semi-automatically Recover 337

Fig. 10. Architecture Level Dependency View for recovered MicroCompany

the microservice view for Circuit-Breaker showing that it has 4 InfrastructurePattern-
Components (2 of type InfrastructureClientComponents and 1 InfrastructureServerCom-
ponent) and an endpoint. Figure 13 shows the microservice dependency view diagram
for Circuit-Breaker. Circuit-Breaker has 7 dependencies with other microservices.

Fig. 11. Circuit-Breaker microservice metrics

Fig. 12. Circuit-Breaker Microservice View

Fig. 13. Circuit-Breaker microservice Dependency View

338 N. Ali et al.

6 Evaluation

In this section, we evaluate the performance of the tool’s components to demonstrate the
time it takes for MiSAR to generate the as-implemented architecture (the PIM instance)
for three open-source projects. It is important to emphasize that the authors of the papers
have not been involved in the development of these open-source projects. Table 1 shows
the time it takes, for each toolset component, on an Intel Processor Core (TM) i5-
7200U CPU @ 2.50GHz, 2701 MHz, 2 Core(s), 4 Logical Processor(s). The time for
the Graphical Generator Component is not shown as this is instantaneous. It can be
noticed that for a large project, such as TrainTicket, the parser takes most of the time of
the recovery process. However, several days could have been taken if software engineers
would want to recover the architecture manually. Manual architecture recovery typically
requires the involvement of multiple stakeholders to gather knowledge about the system
and its interpretation. It relies on the experience of these stakeholders and involves
manual analysis of the system’s source code [21]. Manual recovery could also produce
an inaccurate architecture due to human errors or an architecture with not enough details.

This evaluation has several limitations. Firstly, it has only been conducted on three
open-source systems, albeit including a large-scale one such as TrainTicket. Future
evaluations could expand to encompass larger and industrial systems. Additionally, the
evaluation did not consider the user experience of using the toolset.

Table 1. Time of MiSAR toolset to obtain as-implemented architecture models.

LOC Parser to generate
PSM (sec)

Model Engine to
Transform PSM to
PIM (sec)

Total No. of
Recovered
elements in PIM

MicroCompany
[16]

127.1K 9 3.89 490 including 11
microservices

TrainTicket [19] 507.2K 446 63.15 1341 including 69
microservices

MusicStore [20] 116.6K 1 1.07 107 including 9
microservices

7 Related Work

One of the few existing works related to ours is MicroART [22]. MicroART also uses
model-driven engineering but does not follow MDA, e.g., it does not define a Platform-
SpecificMetamodel. InMiSAR, the architectural model is recovered automatically from
the PSM, i.e., there is no human input, whereas in MicroART, a software architect
needs to identify service discovery services. MiSAR produces architectural models that
are richer than MicroART as MicroART only has 8 architectural concepts whereas
MiSAR has 17. Therefore, the expressiveness of the MiSAR Platform Independent
Metamodel has elements such as Infrastructure Pattern Components and Asynchronous
communication which MicroART does not support.

An Approach and Toolset to Semi-automatically Recover 339

MicroLyze [23] is another work which proposes an architecture recovery approach
for microservices. MicroLyze, unlike MiSAR, does not adopt a model-driven approach.
Instead, it utilises a distributed tracing component that dynamically monitors simulated
user requests. In addition, the work of Wang et al. [24], present an automated recovery
process using system source code to build a dependency graph. Like MiSAR, their
approach is based on source code analysis. However, their approach does not employ
model-driven architecture and does not recover many elements such as patterns.

Another approach that recovers microservice architecture is Kieker [25]. Kieker is
a monitoring framework which uses dynamic analysis to discover the architecture of
a system. The main elements it extracts (or recovers) are containers and methods. It
does not explicitly provide a microservice as an architecture concept and infrastructure
pattern components. Since Kieker uses dynamic analysis, the software engineer needs
to add jar files next to docker files, execute the microservice systems and manipulate
the docker files. In comparison to MiSAR which only statically analyses systems, the
recovery of the architecture does not require manipulating any parts of the source code
artefacts and does not require the microservice system to be executing. However, with
dynamic analysis, the recovered architecture obtains dynamic information such as times
of methods which are not recovered by MiSAR.

8 Conclusion

In this paper, we have introduced the MiSAR toolset that semi-automatically generates
as-implemented architectural models from existing microservice systems implemented
in diverse technologies. We have demonstrated how the MiSAR toolset components can
be used to recover architectural models in Ecore (XMI) and if required they can be
introduced to be visualized in UML Component diagrams in different views. We have
also presented the evaluation of the time it takes for MiSAR to recover the architectures
of 3 microservice projects.

Our further work includes improving the usability aspects of the toolset and the
efficiency of the parser. As explained in the paper, currently MiSAR only supports
Java Spring Boot Applications and/or Docker. We are currently working on a project to
extend MiSAR to support the recovery of microservice-based systems partly (or fully)
developed in Python. To do so, we need to extend the parser, the Platform-Specific
Metamodel and the mapping rules. We will continue working on extending MiSAR to
support its analysis of additional languages and technologies.

Furthermore, one existing limitation of our visually generated diagrams is their
reliance on PlantUML, which generates static images. This restricts user manipulation
of the graphical architecturemodels, and the layout of the diagrams cannot be controlled.
To address this limitation, we plan on creating a diagramming tool. Additionally, we
intend to evaluate our approach with practitioners and in industrial settings, rather than
solely relying on open-source projects.

References

1. Newman, S.: BuildingMicroservices: Designing Fine-Grained Systems. O’Reilly Media, Inc
(2015)

340 N. Ali et al.

2. Hasselbring,W., Steinacker, G.,Microservice architectures for scalability, agility and reliabil-
ity in e-commerce. In: IEEE International Conference on Software Architecture Workshops
(ICSAW), pp. 243–246 (2017)

3. Simioni, A., Vardanega, T.: In pursuit of architectural agility: experimenting with microser-
vices. In: 2018 IEEE International Conference on Services Computing (SCC), pp. 113–120
(2018)

4. Cerny, T., Donahoo, M.J., Trnka, M.: Contextual understanding of microservice architecture:
current and future directions. ACMSIGAPPAppl. Comput. Rev. 17(4), 29–45 (2018). https://
doi.org/10.1145/3183628.3183631

5. Ducasse, S., Pollet, D.: Software architecture reconstruction: a process-oriented taxonomy.
IEEE Trans. Softw. Eng. 35(4), 573–591 (2009)

6. Ali, N., Rosik, J., Buckley, J.: Characterizing real-time reflexion based architecture recovery:
an in-vivo multicase study. In: 8th international ACM SIGSOFT conference on Quality of
software architectures, pp. 23–32. ACM, January 2012

7. MiSAR. https://github.com/MicroServiceArchitectureRecovery/misar
8. MiSAR Toolset video demo: https://youtu.be/sdRDkLesyS0
9. Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven Software Engineering in Practice, 1st

ed. Morgan & Claypool (2012)
10. Alshuqayran,N.,Ali, N., Evans, R.: Towardsmicro service architecture recovery: an empirical

study. In: IEEE International Conference on Software Architecture (ICSA), pp. 47–4709
(2018)

11. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling Framework,
2nd edn. Addison-Wesley (2008)

12. Barendrecht, P.J.: Modeling transformations using QVT Operational Mappings, Research
project report. Eindhoven University of Technology Department of Mechanical Engineering
Systems Engineering Group, Eindhoven (2010)

13. PlantUML Homepage. https://plantuml.com/. Accessed 05 May 2023
14. Graphical Modeling Project. https://eclipse.dev/modeling/gmp/
15. Ecore visualization using KIELER. https://github.com/kieler/ecoreviz
16. Dugalic, I.: MicroCompany (2022). https://github.com/idugalic/micro-company. Accessed

26 Apr 2023
17. MiSAR parser andModel Transformation Engine. https://github.com/MicroServiceArchitect

ureRecovery/MiSAR-Parser-and-Model-Transformation
18. MiSAR PSM and PIM instances of MicroComany: https://github.com/MicroServiceArchit

ectureRecovery/misar/tree/main/EmpiricalStudyReplication/EvaluationOfMiSAR/microc
ompany-PIM%26PIM

19. Zhou,X., Peng,X.,Xie, T., Sun, C.J.C., Xu, J., Zhao,W.: Benchmarkingmicroservice systems
for software engineering research. In: Proceedings of the 40th International Conference on
Software Engineering Companion Proceedings - ICSE, pp. 323–324 (2018)

20. OSS, S.: MusicStore. https://github.com/SteeltoeOSS/Samples/tree/main/MusicStore.
Accessed 06 July 2023

21. van Deursen, A., Hofmeister, C., Koschke, R., Moonen, L., Riva, C.: Symphony: view-driven
software architecture reconstruction. In: Proceedings of Fourth Working IEEE/IFIP Confer-
ence on Software Architecture (WICSA 2004), Oslo, Norway, pp. 122–132 (2004). https://
doi.org/10.1109/WICSA.2004.1310696

22. Granchelli, G., Cardarelli, M., Di Francesco, P., Malavolta, I., Iovino, L., Di Salle, A.:
Microart: a software architecture recovery tool for maintaining microservice-based sys-
tems. In: IEEE International Conference on Software Architecture Workshops (ICSAW),
pp. 298–302 (2017)

https://doi.org/10.1145/3183628.3183631
https://github.com/MicroServiceArchitectureRecovery/misar
https://youtu.be/sdRDkLesyS0
https://plantuml.com/
https://eclipse.dev/modeling/gmp/
https://github.com/kieler/ecoreviz
https://github.com/idugalic/micro-company
https://github.com/MicroServiceArchitectureRecovery/MiSAR-Parser-and-Model-Transformation
https://github.com/MicroServiceArchitectureRecovery/misar/tree/main/EmpiricalStudyReplication/EvaluationOfMiSAR/microcompany-PIM%26PIM
https://github.com/SteeltoeOSS/Samples/tree/main/MusicStore
https://doi.org/10.1109/WICSA.2004.1310696

An Approach and Toolset to Semi-automatically Recover 341

23. Kleehaus,M., Uludağ, Ö., Schäfer, P.,Matthes, F.:MICROLYZE: a framework for recovering
the software architecture inmicroservice-based environments. In:Mendling, J.,Mouratidis,H.
(eds.) Information Systems in the Big Data Era: CAiSE Forum 2018, Tallinn, Estonia, June
11-15, 2018, Proceedings, pp. 148–162. Springer International Publishing, Cham (2018).
https://doi.org/10.1007/978-3-319-92901-9_14

24. Wang, L., et al.: Microservice architecture recovery based on intra-service and inter-service
features. J. Syst. Softw. 204, 111754 (2023). https://doi.org/10.1016/j.jss.2023.111754

25. Hasselbring, W., van Hoorn, A.: Kieker: a monitoring framework for software engineering
research. Softw. Impacts 5, 100019 (2020)

https://doi.org/10.1007/978-3-319-92901-9_14
https://doi.org/10.1016/j.jss.2023.111754

An Extensible Framework
for Architecture-Based Data Flow
Analysis for Information Security

Nicolas Boltz(B), Sebastian Hahner, Christopher Gerking, and Robert Heinrich

Karlsruhe Institute for Technology (KIT), Karlsruhe, Germany
{boltz,hahner,gerking,heinrich}@kit.edu

Abstract. The growing interconnection between software systems
increases the need for security already at design time. Security-related
properties like confidentiality are often analyzed based on data flow dia-
grams (DFDs). However, manually analyzing DFDs of large software sys-
tems is bothersome and error-prone, and adjusting an already deployed
software is costly. Additionally, closed analysis ecosystems limit the reuse
of modeled information and impede comprehensive statements about
a system’s security. In this paper, we present an open and extensible
framework for data flow analysis. The central element of our framework
is our new implementation of a well-validated data-flow-based analysis
approach. The framework is compatible with DFDs and can also extract
data flows from the Palladio architectural description language. We show-
case the extensibility with multiple model and analysis extensions. Our
evaluation indicates that we can analyze similar scenarios while achieving
higher scalability compared to previous implementations.

Keywords: Data Flow Diagram · Software Architecture · Security

1 Introduction

As our modern world becomes increasingly digitized, the integration of vari-
ous digital services into our daily lives has become more prevalent. To enhance
the quality of service, a growing amount of data is stored and processed, e.g.,
online shops utilizing purchase history data for recommendations. The seamless
exchange of such collected data between different services or systems is a common
practice. In scenarios like online shopping, sensitive information like payment
details and customer addresses are involved. Consequently, security becomes a
central concern in designing and building such software-intensive systems.

Information security has several definitions, e.g., as the CIA triad of con-
fidentiality, integrity, and availability, or in ISO 27000 [17]. More recent legal
regulations, like the General Data Protection Regulation (GDPR) [11], define

N. Boltz and S. Hahner—Both main authors contributed equally.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
B. Tekinerdoğan et al. (Eds.): ECSA 2023, LNCS 14590, pp. 342–358, 2024.
https://doi.org/10.1007/978-3-031-66326-0_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-66326-0_21&domain=pdf
https://doi.org/10.1007/978-3-031-66326-0_21

An Extensible Framework for Architecture-Based Data Flow Analysis 343

information security more broadly. For modern systems, changes and reconfigu-
ration in the context, environment, or internal structure might occur frequently
[36]. Since the protection goals are highly dependent on the system under con-
sideration, the protection goals that must be addressed may also change. In
addition to the CIA goals, other protection goals might be considered, like pri-
vacy, authenticity, non-repudiation, accountability, and auditability. A system
violating confidentiality or privacy can cause costly fines, as seen in the case
of H&M [16] or British Airways [4]. However, identifying such violations can
be difficult, because the interconnected software systems represent complex net-
works of data flows. Hence, a holistic and scalable approach to analyzing them
is required.

Data flow analyses based on source code, e.g., JOANA [33], KeY [1], or
CodeQL [9], cannot consider context information, such as deployment. How-
ever, such information can be essential for information security, e.g., whether
the application is deployed to an external cloud provider or not. In addition,
source code analyses cannot be used in early design phases because of their need
for existing source code. Analyzing the system during design time is beneficial
because fixing issues in later phases is usually more costly [31]. Seifermann et al.
[28,30] proposed an architecture-based data flow analysis to analyze software sys-
tems for confidentiality violations. Their approach considers additional context
information, such as the deployment, enabling software architects to analyze
confidentiality during early design phases. However, the original Prolog-based
implementation of Seifermann et al. [30] is hard to maintain and has a high
resource demand, which severely limits the applicability for large software sys-
tems. Although they already used a model of a data flow diagram (DFD) [10]
as an intermediate representation during their analysis, they did not continue to
follow the idea of using DFDs as the primary model artifact. With appropriate
tool support, DFDs represent a powerful and commonly used mechanism for
threat analysis [3] that helps in correctly identifying security-related issues [24].

In this paper, we present an extensible analysis framework centered around
our previously presented new implementation of the aforementioned approach
to data flow analysis [27]. Our framework addresses shortcomings regarding the
limited input capabilities, the limited intermediate use of DFDs, and problems
with maintainability, scalability, and extensibility:

C1 We propose a novel DFD metamodel. In contrast to the previous DFD model
[30] we do not consider DFDs as intermediate system representations but as
primary software architecture modeling artifacts. As part of our framework,
we provide means to manually define DFDs as well as automatically derive
them from the architecture description language Palladio Component Model
(PCM) [21] and other third-party diagram representations [23,25].

C2 We present a new Java-based implementation of the analysis approach of
Seifermann et al. [30], which is based on a newly developed internal data
structure and alleviates the need to mix Java with other technologies like
Prolog. In addition, we provide new forms of input, e.g., DFDs defined with
our metamodel (C1), and a domain-specific language (DSL) that enables

344 N. Boltz et al.

software architects to define constraints or queries for the analysis. We
demonstrate how our analysis framework can be applied and extended for
other security concerns, e.g., regarding the GDPR [6], or uncertainty [12].

This paper is structured as follows: Sect. 2 introduces our data flow analy-
sis framework. Section 3 describes our new DFD metamodel (C1). In Sect. 4,
we describe the analysis (C2), and in Sect. 5, we showcase existing extensions.
Section 6 presents our evaluation and Sect. 7 concludes the paper.

2 Overview of the Data Flow Analysis Framework

In this section, we summarize our framework which is explained in more detail
hereafter. Figure 1 gives an informal overview of the structure and the dependen-
cies between the different parts of our data flow analysis framework. We highlight
analyses and editors with a bold border; all other rectangles represent models.

PCM models

Flow graphsUnified data flow diagrams

analyzes

Data flow analysis

creates

Web-based editor

GDPR models

Tird-party diagrams Uncertainty impact analysis

uses

uses

DSL-based constraints and queries

Uncertainty-aware

confidentiality analyses
complements

Legend
Transformation
Dependency
Framework element
Framework extension

Fig. 1. Informal overview of the structure of the data flow analysis framework.

Unified data flow diagrams (DFDs) [28] play a central role in our frame-
work (C1). These diagrams can be manually defined using a web-based editor or
transformed from third-party diagram representations. Additionally, we enable
the extraction of data flows from software architecture models described using
PCM [21]. To unify the analysis process (C2), we transform DFD or PCM mod-
els into a set of Directed Acyclic Graphs (DAGs), called transpose flow graphs
(TFGs). Each vertex represents one individual data processing operation from
either a DFD or PCM model, which simplifies the analysis. Using label prop-
agation on TFGs, the analysis finds violations of predefined constraints that
reflect information security objectives, e.g., confidentiality requirements. Con-
straints and queries can be specified using a domain-specific language (DSL),
referencing PCM and DFD models. Framework extensions are possible by trans-
forming into our DFDs or TFGs or by inheriting from the data flow analysis.
GDPR models [6] are an example of the former while uncertainty impact analysis
[12] and uncertainty-aware confidentiality analyses [8,14,35] showcase the latter.
The framework is tool-supported and available as open source1. This includes
1 See https://dataflowanalysis.org or https://github.com/DataFlowAnalysis.

https://dataflowanalysis.org
https://github.com/DataFlowAnalysis

An Extensible Framework for Architecture-Based Data Flow Analysis 345

modeling support, automated model transformations, and a DSL-supported anal-
ysis2. We also provide a dataset [7] including all tooling, code artifacts, and
evaluation data.

3 Modeling and Deriving Data Flow Diagrams

While Seifermann et al. [28] created a unified DFD notation, they only used it
as an intermediary representation for their data flow analysis [30]. However, as
DFDs are an established software architecture representation [3] and are widely
used to analyze various types of data security [2,30,32,34], we present an explicit
DFD metamodel that can also be used as input for our analysis. The study of
Bernsmed et al. [3] concludes, that, while DFDs are good for evaluating security,
there exist challenges in preparing DFDs. Especially tooling that improves the
effort of creating and maintaining DFDs is missing. In this section, we present our
DFD metamodel (C1). We also provide tooling centered around our metamodel,
which aims to aid in the creation of new DFDs, the import of already existing
DFD notations [23,25], and the automated derivation and visualization of DFDs
from system architecture models like the PCM [21].

3.1 Unified Data Flow Diagram Metamodel

DFDs, as proposed by DeMarco [10], can be represented as DAGs showing
the data flow and processing in software systems. Nodes in these graphs rep-
resent External entities like users, Processes that can alter data, or Stores like
databases, connected by Flows of data. Seifermann et al. [30] extend the notation
by integrating several strands of work from different research groups into one
unified metamodel. Figure 2 shows our metamodel that aligns with the unified
DFD notation. It is split into the so-called Data Dictionary [10] and the DFD.
The Data Dictionary does not directly depend on a modeled system and can
thus be reused while DFD elements are specific to a certain system.

The central part of the unified notation is the representation of behavior and
characteristics as first-class entities. Labels represent characteristics in the DFD,
e.g., specifying the sensitivity of data, or the role of a user. They can either be
defined as a characteristic of a Node or as a characteristic of data flowing between
Nodes. Labels are grouped in LabelTypes. The Behavior of Nodes defines which
Labels flow from one Node to the next via the connecting Flow. It is made up of
Pins and Assignments. Input Pins represent required interfaces and output Pins
represent provided interfaces of nodes. If a node has a certain Behavior, it also
has the corresponding input and output Pins. A Flow connects two Nodes by
connecting an output Pin of the source Node to an input Pin of the destination
Node. Assignments define which labels flow out of a node. They reference input
and output Pins of their corresponding Behavior and aggregate all Labels of the
data flowing in through the input Pin. By evaluating a logical statement defined

2 Video demonstration available [27]: https://youtube.com/watch?v=q3WJsMyqJcA.

https://youtube.com/watch?v=q3WJsMyqJcA

346 N. Boltz et al.

1

AbstractAssignment

input output
*

Behavior

Label

Pin

src

1

dst

src0..1

dst

Flow

0..1

Node

Process

Store

External

1

0..1

1

Forwarding

Assignment

1

Assignment

LabelType

1

NOTTRUE

OR

2

BinaryOperator

AND

1

Label

Reference

Term

1..*

input

output

*

Data Flow Diagram

Data Dictionary

*

output

Fig. 2. Metamodel of data flow diagrams and data dictionaries.

in the assignment, it is determined how the incoming Labels are changed and
passed on via the referenced output Pins, e.g., the encryption of data can be
represented by an Assignment that adds an encrypted label to the flowing data.

For assignments, we define two subclasses: Assignment which contains a freely
definable logical Term that is evaluated to decide if a set of Labels is applied
to the output Pin. The ForwardingAssginment does not define a logical term
but specifies that all Labels that flow into the input pins are combined and
directly forwarded to the output pin. The logical terms can be nested with
binary operators AND and OR and negated with NOT to express different
statements. LabelReferences are evaluated by checking if the referenced Label
flows into the node through one of the input pins of the Assignment. In this
case, the LabelReference evaluates to true, otherwise to false. The Assignments
of a Behavior are ordered. If a Behavior contains multiple Assignments, first all
ForwardingAssignments are evaluated and the Labels for each output Pin are
saved. Other Assignments add or remove labels for their specific output Pin,
depending on if their Term evaluates to true or false. Once all Assignments are
evaluated, the Labels flow to the next Node.

3.2 Manually Defining Data Flow Diagrams

Manual ways to define DFDs that go beyond drawing on either paper or in
software are limited. With our approach, we therefore offer a ready-to-use web
editor to manually define DFDs and means to import DFDs from other notations.

Our web-based editor uses a notation that is compatible with the unified
DFD notation from Fig. 2. We also incorporated the concept of the data dictio-

An Extensible Framework for Architecture-Based Data Flow Analysis 347

Fig. 3. Screenshot of the web-based editor showing the DFD of a simplified online
shop.

naries. The graphical syntax follows earlier definitions of DFDs [10,30]. Figure 3
shows the editor with an exemplary DFD. The toolbar on the right allows the
creation of the three node types, data flow edges, and input and output pins
via drag and drop. The Label Types field allows the creation of label types and
corresponding labels. Created labels can be annotated to a node by drag and
drop. Double-clicking on an output pin opens an editor for specifying assign-
ments for the corresponding output pin. Assignments can be defined in textual
form using a DSL. The forward keyword is used to forward all labels of the corre-
sponding input. The set keyword is used to define an output label and a logical
term, similar to the DFD metamodel. Incoming data can be referenced via the
name of the incoming edge. Labels are referenced by label type and label name.
Assignments are automatically syntax-checked, and issues are reported to the
user. Additionally, our web editor supports highlighting in different colors and
providing tooltips for nodes. This can be used to, e.g., visualize analysis results
and provide additional information regarding identified security violations.

The manually created DFDs can be exported as JSON files. To integrate the
editor into our framework, we offer tooling that converts the JSON files of the
web editor into an instance of our DFD metamodel. The editor is implemented
in TypeScript and uses the open-source diagramming framework Eclipse Sprotty.
To ease the adoption of our approach, we additionally created extensible tooling
for generating instances of our DFD metamodel from various inputs. At the time
of writing, we support DFD notations in PlantUML and two different types of
JSON notations. To showcase this functionality, we have processed all security-
enriched DFDs of the microSecEnD dataset of Schneider et al. [25]. The resulting
instances of our DFD metamodel can be found in our dataset [7].

3.3 Automatically Deriving Data Flows from Architectural Models

Besides the manual modeling of DFDs, our framework also supports the auto-
mated extraction of data flows from the architecture description language
PCM [21]. We choose PCM as it has already been used by previous data flow

348 N. Boltz et al.

Local Server

OnlineShop
User

SEFF: buy()
 On Premise

Encrypt: SetVariableAction

userData.encrypted := true

buy_entry encrypt

(4)

buy_exit

 On Premise

User

 On Premise On Premise

forward userData
forward userData

set Encryption.Encrypted = TRUE
forward userData

(2)

(2) (2) (2)

(1)

(1)

(3)

(3) (5)

(4)
(5)

Fig. 4. Simplified PCM model of the online shop example and the corresponding data
flow with annotated node labels, data labels, and numbered transformation traces.

analysis approaches [29,30]. However, the described concept of data flow extrac-
tion is also applicable to other modeling languages like UML.

Figure 4 shows a simplified PCM model of an online shop. It comprises infor-
mation about components (e.g., Online Shop), resources (e.g., Local Server),
deployment, usage, and system behavior as Service Effect Specification (SEFF)
[21]. The model is annotated with confidentiality-related labels that represent
characteristics of data storage like On Premise and data processing like the
encryption of userData in the SetVariableAction. In the lower half, we show
the extracted data flow. We annotate numbers to represent the transformation
traces from PCM to DFD. Note, that this is only a simplified example; realistic
software systems contain more than one data flow and several hundred nodes
[12].

Every action in the usage and system behavior is transformed into one DFD
node. This includes calls from the user, external calls between components, start
and end nodes, and internal data processing nodes. The nodes’ pins correspond
to the in and outgoing data types, e.g., userData. For every node, we perform a
lookup of node labels, which can be annotated, e.g., to resources, or usage scenar-
ios. An exemplary lookup in the PCM model goes from the encrypt node to the
Online Shop component via the deployment to the Local Server resource which
is annotated with On Premise. Additionally, we convert the modeled system
behavior to assignments of our DFD metamodel like the encryption of userData
can be expressed. The default case is the forwarding of labels.

The transformation considers all information that is relevant for security anal-
ysis, e.g., data processing and characteristics. Other information is not trans-
formed, e.g., components and servers do not cause additional elements in the
DFD. This enables a system view from the perspective of the data which is
especially suitable for properties like confidentiality [29]. However, we store all
traces to the originating PCM elements during the transformation. This enables
the evaluation of advanced queries and constraints in the data flow analysis.

An Extensible Framework for Architecture-Based Data Flow Analysis 349

4 Data Flow Analysis

The original Prolog-based analysis of Seifermann et al. [30] realized the extrac-
tion of data flows and propagation of labels by first transforming the PCM mod-
els to an explicit DFD metamodel notation, then transforming the DFD elements
to Prolog. Data flow constraints were checked by defining Prolog queries that are
unique to the modeled system. As one DFD element with characteristic labels
is transformed into multiple Prolog statements, the Prolog code grows exponen-
tially with the model size. The exponential growth results in high demand for
memory, as the whole Prolog program needs to be fully loaded by the Prolog
interpreter. As the analysis is made up of multiple chained transformations and
intermediate model representations, the maintenance of the analysis was made
even harder.

Additionally, the approach of modeling data flows via logical statements in
Prolog can lead to increased runtimes: Due to the lazy evaluation of Prolog, the
Prolog-based analysis needs to reevaluate the characteristic labels of nodes for
each different constraint. For cases where very few nodes need to be evaluated,
this might be an advantage. However, in using the analysis, the use case rarely
occurs. For most constraints, like Role-based Access Control (RBAC), the node
and data characteristic labels need to be evaluated at each node.

Due to the aforementioned reasons, we chose to implement the data flow
analysis in Java and made the analysis more extensible as a central part of our
framework. In this section, we first provide a general overview of the architecture
of the analysis and provide a more detailed technical description of the extraction
of data flows into flow graphs, label propagation, and constraint definition.

4.1 Architecture Overview

Our data flow analysis follows the general architecture of the Prolog-based data
flow analysis of Seifermann et al. [30]. Figure 5 shows the analysis steps and their
sequential order as an activity diagram. Initially, the input models are loaded and
references between model elements are resolved. This is done automatically by
the Eclipse Modeling Framework (EMF). Using the information from the models
and annotations, we extract a set of transpose flow graphs (TFGs) that each
represents one unambiguous flow of data to a data sink in the modeled software
architecture, i.e., the transpose rooted directed graph, where the root is a single
data sink. The extraction starts at each identified data sink and follows the
modeled flow of data in the opposite direction. Afterward, we transpose the graph
to represent data flows between the vertices of the graph, so each TFG connects
one or multiple data sources with a single data sink. Each vertex represents
one individual data processing step. If the analysis encounters an ambiguity
in the data flow of the current element, it is resolved by creating copies of the
current TFG, for each of the possible flows. After all TFGs are extracted, we first
evaluate the node characteristic labels of the vertices. Afterward, we propagate
the data characteristic labels along the edges of the TFGs. Starting with the sink
vertices, we calculate the data characteristics flowing into the current vertex by
recursively evaluating the behaviors of the previous vertices in the TFG and

350 N. Boltz et al.

tracing back the results. How sinks are identified, how characteristic labels and
vertex behavior are specified, and how they are evaluated, is specific to the input
model type, e.g., DFD or PCM.

Using a set of fully propagated TFGs, data flow constraints can be checked.
For example, by comparing propagated data characteristics with specified node
characteristics, as described in Sect. 3.

Flow graph extraction Label propagation Constraint checking

Fig. 5. Analysis architecture as performed key activities.

4.2 Flow Graph Extraction

We specify extraction logic for creating TFGs and specific subclasses of vertex
for each element that represents a data flow node in DFDs and PCM models.

For the DFDs described in Subsect. 3.1, sinks are nodes that either have no
outgoing flows or nodes whose assignments for an output pin are independent of
all its input pins. Starting with these, the analysis performs a depth-first search
over the DFD and creates vertices for each node. Ambiguities in the data flow
exist if two or more flows point to the same input pin. To resolve the ambiguity,
the analysis creates a copy of the current TFG for each path to the pin.

In the PCM, sinks are represented by the last element in usage scenarios.
As the information regarding data flows is distributed across all PCM models,
the analysis has to iterate over them and resolve relationships between elements.
The analysis creates a vertex for all elements that can be annotated with a node
characteristic label, that specifies data flow behavior, or that joins the control
flow after a branch. The latter also creates a new TFG. Calls to Service Effect
Specifications (SEFFs) that are defined in interfaces are also handled separately:
For each call of these SEFFs, a calling and returning vertex is created, which
enclose the data flows, i.e., the vertices, which make up the SEFF internally.

4.3 Label Propagation

We individually propagate the characteristic labels for each TFG. Each vertex
references the input model element it represents and contains all logic regarding
the calculation of node and data characteristic labels. First, we calculate the node
characteristic labels and store them in the corresponding vertex. Starting from
the sink of the TFG, we calculate the data characteristic labels that represent
the output of the vertex and also store them in the corresponding vertex. This is
achieved by recursively calling the calculation logic of all previous vertices and
using the hereby calculated output labels as input. Note, that we do not consider
cycles in the propagation logic because TFGs represent DAGs.

For our DFD metamodel, the calculation of node characteristic labels is triv-
ial, as DFD nodes already contain these labels, and vertices directly represent

An Extensible Framework for Architecture-Based Data Flow Analysis 351

nodes. During the calculation of data characteristic labels, each vertex first recur-
sively evaluates its input, as described above, iterating the DFD nodes that are
connected by input pins. After the input has been evaluated the labels are aggre-
gated and saved as output of the corresponding output pin.

In PCM, node characteristic labels are directly annotated to PCM elements
like resource containers or usage scenarios. For the calculation of node charac-
teristic labels, the vertex iterates over the relationships of the PCM element it
represents and stores the annotated characteristic labels relevant to the vertex.
For the calculation of data characteristic labels, the PCM-specific vertices use
the output of the previous vertex in the TFG. In contrast to our DFDs, the
PCM does not support the definition of multiple individual data flows between
two nodes that each represents a separate flowing data variable. Rather, one
flow between two vertices in the TFG encapsulates all data flowing between two
nodes. To evaluate the input, the vertices filter the variables with their data
characteristics to only include variables that are in the scope of the element rep-
resented by the vertex. To calculate the output data characteristic labels, the
vertex evaluates stochastical expressions that are used in the PCM to define
propagation behavior.

4.4 DSL-Based Constraint Checking

To help in the specification and checking of constraints and queries, we define
a simple domain-specific language (DSL). We follow the general structure of
the DSL by Hahner et al. [15], which was defined for the original analysis of
Seifermann et al. [30] but simplify the approach by implementing it in Java and
fitting it to our new implementation of the analysis.

Selector

DataSelector VertexSelector

Selection

NameSelection

LabelSelectionsecondary

primary

Constraint

TypeSelection

Variable

LabelSelection

0..*

0..*

0..1

0..1

1

Condition

0..1

1..*

Fig. 6. Metamodel showing the abstract syntax of the DSL for the data flow analysis.

Figure 6 shows the abstract syntax of our DSL. A Constraint is made up of
primary and secondary selectors, as well as an optional condition. Selectors are
either specific for data or vertices. VertexSelectors match the properties of the
vertices themselves, while DataSelectors match the propagated data characteris-
tic labels of each vertex. They contain a set of Selections that each represent a
property. A Selection can for example define a characteristic label or the name

352 N. Boltz et al.

of a vertex or data. The VariableLabelSelection does not reference a specific
label but defines a variable that contains all labels of a given label type that
are present at either the vertex or data. These variables can be compared in the
Condition of the constraint using set theory. Executing the constraint searches
all TFGs in the modeled software architecture using the flow graph extraction,
propagates all labels, and tests each vertex. The selectors return all vertices in
a TFG that match the properties defined by its selections. Constraints define a
never flows relationship between the primary DataSelector and secondary selec-
tors. The results of the primary and secondary selectors represent violations. If
a condition is defined, it is evaluated in addition. In this case, the violations are
the results of primary and secondary selectors, for which the condition evaluates
to true.

Listing 1 demonstrates the concrete syntax of our DSL for the online shop
example from Subsect. 3.2. We provide a builder to set up the analysis with
required inputs, which is simplified in line 1. We define a constraint using our
DSL, starting in line 3. For our example, we specify that personal data (line 5)
that is not encrypted (line 6) should never flow to vertices that are off-premise of
the online shop (line 9). We execute the constraint in line 12. After the execution,
the variable violations contains a list of all constraint-violating vertices within
the modeled software architecture. If no violation has been found, the list is
empty.

1 analysis = DataFlowAnalysisBuilder().build();
2
3 constraint = Constraint()
4 .ofData()
5 .withLabel(,)
6 .withoutLabel(,)
7 .neverFlows()
8 .toVertex()
9 .withLabel(,)

10 .create();
11
12 violations = constraint.execute(analysis);

Listing 1. Code snippet showing a DSL constraint for a simplified online shop.

5 Analysis Framework Extensions

We demonstrate the extensibility of our framework with several related work
[5,6,8,9,12,14,26,35] that is either compatible to or already using our approach.

Boltz et al. [5,6] showcase the extension of both modeling and analysis for
data protection and privacy. As shown in Fig. 1, they provide a GDPR meta-
model and transformations from PCM and to and from our DFD metamodel.
Regarding the consideration of uncertainty within the software architectural
design and system environment, multiple black-box and white-box extensions
exist. Walter et al. [35] use the data flow analysis as black-box together with
PerOpteryx [20] for design space exploration regarding confidentiality under
structural uncertainty. Other white-box extensions analyze access control under
uncertainty [8] or trace confidentiality violations to related uncertainty sources

An Extensible Framework for Architecture-Based Data Flow Analysis 353

[14]. Our framework is also used in an uncertainty impact analysis [12] that pre-
dicts the impact of uncertainty on confidentiality based on the extracted data
flows and a classification of uncertainty regarding confidentiality [13].

6 Evaluation

In our evaluation, we compare our new Java-based analysis to the Prolog-based
analysis of Seifermann et al. [30]. The primary goals of this evaluation were to
assess the accuracy and scalability of both analyses and to show that our Java-
based analysis not only maintains the core functionalities of the Prolog-based
analysis but also improves execution times and resource efficiency. Due to the
lack of support for our new DFD metamodel in the Prolog-based analysis, our
evaluation only focuses on PCM model instances. The evaluation of our analysis
with a focus on the DFD metamodel or the extensions from Sect. 5 are considered
potential future work.

6.1 Evaluation Design

To compare accuracy, we check whether both analyses correctly identify viola-
tions across various case study-based PCM models. To ensure a good base for
comparison, we utilize the same case study-based models employed by Seifer-
mann et al. [30] for evaluating the accuracy of the Prolog-based approach. The
selected case studies use the default call return semantics of the current stable
PCM version. We executed both analyses with semantically equivalent constraint
queries, using the count of accurately identified violations as the evaluation met-
ric.

To examine and compare scalability, we measured the full execution time of
both analyses while analyzing models of increasing size. To isolate the impact of
distinct model features on scalability, we generated individual minimal models
incrementally increasing the number of node characteristic labels, characteris-
tic label propagations, variable actions, or SEFF parameters. We chose these
elements, as they have the highest impact on either the length of Prolog code
or Java loop iterations, depending on the analysis. Each analysis was executed
with a constraint designed to detect a violation at each node, thus ensuring a
worst-case execution time scenario for both analyses. For each run, we increase
the model feature under consideration by the power of ten, starting at 100 and
ending with 105. We conducted each test 10 times and calculated the median exe-
cution time to mitigate outliers or measurement anomalies. The analyses were
performed on a dedicated VM equipped with 4 AMD Opteron 8435 cores, 97
GB RAM, running Debian 11 with OpenJDK 11/17.

6.2 Evaluation Results

In terms of accuracy, both analyses successfully identified the 42 violations
present in the case study-based models without returning any false positives.

354 N. Boltz et al.

Table 1 shows the results of the accuracy evaluation and size of analyzed models.
As both analyses performed the same, we assume, that our Java-based analysis
is functionally equivalent to the Prolog-based analysis, when analyzing models
using the call return semantics of the PCM.

Table 1. Accuracy results of both analyses compared and size of the models.

Case Study Prolog-based Java-based Components Labels

ContactSMS [18] 10 violations 10 violations 3 4

FlightControl [30] 0 violations 0 violations 6 6

FriendMap [34] 0 violations 0 violations 5 12

Hospital [34] 0 violations 0 violations 4 12

ImageSharing [30] 0 violations 0 violations 1 9

PrivateTaxi [18] 0 violations 0 violations 13 20

TravelPlanner [18] 32 violations 32 violations 7 8

WebRTC [34] 0 violations 0 violations 20 12

100 102 104

100

102

104

Number of Node Characteristic Labels

M
e
d
ia
n

o
f
E
x
e
c
u
ti
o
n

T
im

e
[m

s]

100 102 104

100

103

106

Number of Labels Propagation

M
e
d
ia
n

o
f
E
x
e
c
u
ti
o
n

T
im

e
[m

s]

100 102 104

100

103

106

Number of Variable Actions

M
e
d
ia
n

o
f
E
x
e
c
u
ti
o
n

T
im

e
[m

s]

100 102 104

100

103

106

Number of SEFF Parameters

M
e
d
ia
n

o
f
E
x
e
c
u
ti
o
n

T
im

e
[m

s]

Prolog-based analysis Java-based analysis

Fig. 7. Scalability results of the Prolog-based analysis and the Java-based analysis.
(Color figure online)

An Extensible Framework for Architecture-Based Data Flow Analysis 355

Regarding scalability, we plotted the results of both analyses as line graphs
for each examined model feature, shown in Fig. 7. Each graph contains data
points from both analyses-the Prolog-based analysis (in red) and the Java-based
analysis (in blue). Both axes are scaled logarithmically, with the x-axis showing
the increasing number of model elements and the y-axis the median execution
times in milliseconds. Our evaluation showed that the Prolog-based analysis fails
to complete a run for more than 1000 node characteristic labels or 100 for vari-
able actions and SEFF parameters, due to high memory demand (see Sect. 4). In
our tests, the analysis ran in out of memory errors or crashed, despite the sub-
stantial 97 GB of available memory. Regarding execution time behavior, while
the Prolog-based analysis displayed an exponential increase in execution times or
incomplete analysis runs for larger models, our Java-based analysis maintained
nearly constant execution times up to 103 elements for most evaluated cases.
When increasing the number of label propagations, the execution time behavior
of both analyses is similar. The exponential increase in execution time of the
Java-based analysis for larger models can be explained due to inefficiencies in
TFG finding, and overhead during label propagation.

Overall, despite the noted increase in execution times for larger models in
the Java-based analysis, we consider the time required in all scenarios feasible
for design-time analyses. Our Java-based analysis, compared to the Prolog-based
analysis, offers more manageable execution times and the capability to analyze
large models, rendering it more suitable for real-world systems.

As parts of our evaluation are based around artificial scenarios and case stud-
ies, we discuss the external, internal, and construct validity, as well as reliability
of our evaluation, as characterized by Runeson et al. [22]. Our main threat to
external validity is the limited generalizability due to the case study-based eval-
uation. We try to mitigate this threat by using well-known case studies from
literature to evaluate and compare accuracy. For the evaluation of scalability,
the models were programmatically generated to only scale and focus on individ-
ual aspects of the models and analysis. A threat to the internal validity of our
evaluation of scalability is that, due to the use of different technologies in both
analyses, it was not possible to use the exact same constraints. We mitigate this
threat by defining semantically equivalent constraints that find a violation at
each node. Our main threat to construct validity of our scalability evaluation is
that it does not comprehensively cover all aspects that influence the execution
time. We cannot fully mitigate this threat but have chosen the examined aspects
based on the execution logic of both analyses and a previous scalability evalua-
tion of Seifermann et al. [30]. To mitigate threats regarding the reliability of our
evaluation and to address the lack of replication packages in software architec-
ture research [19], we have published a data set [7]. The dataset contains all raw
and compiled code artifacts, as well as an Eclipse-based product that already
includes the plugins that make up the framework. The product can be used to
model DFD or PCM instances and analyze them using our data flow analysis.
We also include the raw results of our scalability evaluation and the used case
study models.

356 N. Boltz et al.

7 Conclusion and Future Work

In this paper, we have presented our open and extensible framework for data flow
analysis. We have introduced a unified DFD metamodel as a primary software
architecture modeling artifact and input for our data flow analysis framework.
We have described means that we provide to manually define DFDs as well as
automatically derive them from the architecture description language PCM and
other third-party representations.

Based on the approach of Seifermann et al. [21], we have implemented a Java-
based data flow analysis. We described the general architecture of the analysis
and provided detailed technical descriptions of the core features. For the anal-
ysis, we have defined an extensible intermediate representation of data flows,
called transpose flow graphs. We have described how data flows are extracted
from input models and how characteristic labels are propagated using our new
intermediate representation. To enable the definition of data flow constraints for
the analysis, we have defined a new domain-specific language.

We highlight the problems of the Prolog-based analysis of Seifermann et al.
[30] and show in our evaluation, that our Java-based analysis is functionally
equivalent to the Prolog-based analysis and can analyze larger system models.

In future work, we aim to further enhance the tooling that makes up our
framework. We also aim to further work on the various framework extensions,
like the data protection [6] and uncertainty analyses [14] and include more cooper-
ation points of our framework, e.g., with continuous security analysis [26]. Lastly,
we aim to comprehensively evaluate the overall approach of our framework.

Acknowledgements. This publication is partially based on the research project SofD-
Car (19S21002), which is funded by the German Federal Ministry for Economic Affairs
and Climate Action. This work was also supported by funding from the topic Engi-
neering Secure Systems of the Helmholtz Association (HGF) and by KASTEL Security
Research Labs, the BMBF (German Federal Ministry of Education and Research) grant
number 16KISA086 (ANYMOS), and the NextGenerationEU project by the European
Union (EU). We like to thank Felix Schwickerath, Tom Hüller, Daniel Huber, Tizian
Bitschi, Anne-Kathrin Hermann, and Nils Niehues for their support in the development
of the presented work.

References

1. Ahrendt, W., et al.: Deductive Software Verification-The Key Book. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-49812-6

2. Alshareef, H., et al.: Precise analysis of purpose limitation in data flow diagrams.
In: ARES, pp. 1–11 (2022)

3. Bernsmed, K., et al.: Adopting threat modelling in agile software development
projects. J. Syst. Softw. 183, 111090 (2022)

4. Beverley-Smith, H., Perowne, C.H., Kelleher, F.: British airways faces signifi-
cantly reduced £20M fine for GDPR breach. The National Law Review. www.
natlawreview.com/article/british-airways-faces-significantly-reduced-20m-fine-
gdpr-breach. Accessed 12 Nov 2023

https://doi.org/10.1007/978-3-319-49812-6
www.natlawreview.com/article/british-airways-faces-significantly-reduced-20m-fine-gdpr-breach
www.natlawreview.com/article/british-airways-faces-significantly-reduced-20m-fine-gdpr-breach
www.natlawreview.com/article/british-airways-faces-significantly-reduced-20m-fine-gdpr-breach

An Extensible Framework for Architecture-Based Data Flow Analysis 357

5. Boltz, N., Walter, M., Gerking, C.: Designing Automotive Case Studies for Archi-
tectural Security Analyses (2023)

6. Boltz, N., et al.: A model-based framework for simplified collaboration of legal and
software experts in data protection assessments. In: INFORMATIK 2022 (2022)

7. Boltz, N., et al.: Dataset: an extensible framework for architecture-based data flow
analysis for information security. Zenodo (2024). https://doi.org/10.5281/zenodo.
10794265

8. Boltz, N., et al.: Handling environmental uncertainty in design time access control
analysis. In: SEAA, pp. 382–389 (2022)

9. De Moor, O., et al.: “.QL: Object-Oriented Queries Made Easy”. In: International
Summer School on Generative and Transformational Techniques in Software Engi-
neering, pp. 78–133 (2008)

10. DeMarco, T.: Structure analysis and system specification. In: Pioneers and Their
Contributions to Software Engineering, pp. 255–288 (1979)

11. General Data Protection Regulation (GDPR) (2016). https://gdpr.eu/tag/gdpr/
12. Hahner, S., Heinrich, R., Reussner, R.: Architecture-based uncertainty impact anal-

ysis to ensure confidentiality. In: SEAMS, pp. 126–132 (2023)
13. Hahner, S., et al.: A classification of software-architectural uncertainty regarding

confidentiality. In: ICETE, pp. 139–160 (2023)
14. Hahner, S., et al.: Model-based confidentiality analysis under uncertainty. In: ICSA-

C, pp. 256–263 (2023)
15. Hahner, S., et al.: Modeling data flow constraints for design-time confidentiality

analyses. In: ICSA-C, pp. 15–21 (2021)
16. HmbBfDI: 35.3 Million Euro Fine for Data Protection Violations in H&M’s

Service Center. www.datenschutz-hamburg.de/fileadmin/user upload/HmbBfDI/
Pressemitteilungen/2020/2020-10-01-H M.pdf. Accessed 12 Nov 2023

17. International Organization for Standardization: Information technology - Security
techniques - Information security management systems - Overview and vocabulary.
Standard ISO/IEC 27000:2018

18. Katkalov, K.: Ein modellgetriebener Ansatz zur Entwicklung informations-
flusssicherer Systeme. doctoralthesis, Universität Augsburg (2017)

19. Konersmann, M., et al.: Evaluation methods and replicability of software architec-
ture research objects. In: ICSA, pp. 157–168 (2022)

20. Koziolek, A., Koziolek, H., Reussner, R.: PerOpteryx: automated application of
tactics in multi-objective software architecture optimization. In: QoSA-ISARCS,
pp. 33–42 (2011)

21. Reussner, R., et al.: Modeling and Simulating Software Architectures - The Palladio
Approach. MIT Press, Cambridge (2016). isbn: 9780262034760

22. Runeson, P., et al.: Case Study Research in Software Engineering: Guidelines and
Examples. John Wiley & Sons (2012)

23. Schneider, S., Scandariato, R.: Automatic extraction of security-rich dataflow dia-
grams for microservice applications written in Java. J. Syst. Softw. 202, 111722
(2023)

24. Schneider, S., et al.: How dataflow diagrams impact software security analysis: an
empirical experiment. In: SANER (2024)

25. Schneider, S., et al.: microSecEnD: a dataset of security-enriched dataflow diagrams
for microservice applications. In: MSR, pp. 125-129 (2023)

26. Schulz, S., et al.: Continuous secure software development and analysis. In: SSP
(2021)

https://doi.org/10.5281/zenodo.10794265
https://doi.org/10.5281/zenodo.10794265
https://gdpr.eu/tag/gdpr/
www.datenschutz-hamburg.de/fileadmin/user_upload/HmbBfDI/Pressemitteilungen/2020/2020-10-01-H_M.pdf
www.datenschutz-hamburg.de/fileadmin/user_upload/HmbBfDI/Pressemitteilungen/2020/2020-10-01-H_M.pdf

358 N. Boltz et al.

27. Schwickerath, F., et al.: Tool-supported architecture-based data flow analysis
for confidentiality. In: arXiv preprint (2023). https://doi.org/10.48550/arXiv.2308.
01645

28. Seifermann, S., et al.: A unified model to detect information flow and access control
violations in software architectures. In: SECRYPT, pp. 26–37 (2021)

29. Seifermann, S., Heinrich, R., Reussner, R.: Data-driven software architecture for
analyzing confidentiality. In: ICSA, pp. 1–10 (2019)

30. Seifermann, S., et al.: Detecting violations of access control and information flow
policies in data flow diagrams. J. Syst. Softw. 184, 111138 (2022)

31. Shull, F., et al.: What we have learned about fighting defects. In: METRICS, pp.
249–258 (2002)

32. Sion, L., et al.: Solution-aware data flow diagrams for security threat modeling. In:
SAC, pp. 1425–1432 (2018)

33. Snelting, G., et al.: Checking probabilistic noninterference using JOANA. it - Infor-
mation Technol. 56(6), 280–287 (2014)

34. Tuma, K., Scandariato, R., and Balliu, M.: Flaws in flows: unveiling design flaws
via information flow analysis. In: ICSA, pp. 191–200 (2019)

35. Walter, M., et al.: Architectural optimization for confidentiality under structural
uncertainty. In: ECSA, pp. 309–332 (2021)

36. Weyns, D., et al.: Towards a research agenda for understanding and managing
uncertainty in self-adaptive systems. SIGSOFT Software Eng. Notes 48(4), 20–36
(2023)

https://doi.org/10.48550/arXiv.2308.01645
https://doi.org/10.48550/arXiv.2308.01645

Studying the Evolution of Library Utilization
in Maven Projects: A Metric-Based Approach

Maria Kolyda, Eirini Kostoglou, Nikolaos Nikolaidis(B) ,
Apostolos Ampatzoglou , and Alexander Chatzigeorgiou

Department of Applied Informatics, University of Macedonia, Thessaloniki, Greece
nnikolaidis@uom.edu.gr

Abstract. In modern software development, usually, reuse takes place by invok-
ing in the codebase, methods that are deployed and imported into projects as 3rd

party libraries. The ease with which one can take benefit of reuse of libraries has
been simplified lately, by platforms such as Maven, Gradle, etc. However, this
convenient choice in many cases leads to an overwhelming number of libraries
being packed in the final executable, evenwhen not needed (e.g., the code that uses
originally invoked a library is removed, or it is dead). In this paper, we propose
five novel metrics that capture the extent to which each library is utilized in the
codebase, providing information to the software engineers on the actual utility
of the library in the final product. To automate the calculation of these metrics
we have developed a corresponding tool that can be used for quality monitoring
purposes. Finally, we have used the tools and metrics to study the evolution of
library utilization in several Maven open-source software projects.

Keywords: libraries · metrics · maven · library utilization · app evaluation

1 Introduction

The use of third-party libraries in software development is awidely used practice to speed
up the development process, and in turn reduce costs [7]. This practice only gets more
popular with the rise of easy-to-use build automation tools and library repositories like
Maven, Gradle, NPM, etc. Libraries provide already created and tested functionalities,
so developers do not need to write code from scratch, but rather find an appropriate
library. However, as any other benefit, the reuse of libraries comes with a cost, or at
least with a threat of a cost—e.g., by introducing bugs or vulnerabilities. Based on the
literature, the use of third-party libraries is a living part of software development, in the
sense that libraries can be added, upgraded, or removed along evolution, and similarly
does the code around them [17].

The excessive and unnecessary use of third-party libraries can lead to three main
problems: (a) the size of the target system grows larger in size, hurting the performance
and resource utilization of the software; (b) the third party librarymight bring vulnerabil-
ities into the target system; and (c) the external quality of the library cannot be controlled,
in the sense that in the majority of the cases, third-party library reuse is black-box. As

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
B. Tekinerdoğan et al. (Eds.): ECSA 2023, LNCS 14590, pp. 359–374, 2024.
https://doi.org/10.1007/978-3-031-66326-0_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-66326-0_22&domain=pdf
http://orcid.org/0000-0002-7958-9393
http://orcid.org/0000-0002-5764-7302
http://orcid.org/0000-0002-5381-8418
https://doi.org/10.1007/978-3-031-66326-0_22

360 M. Kolyda et al.

examples of excessive and unnecessary use of third-party libraries, the following cases
can be considered. First, along evolution, there is a chance that some libraries become
unused after some source code update. In other words, either the code that was invoking
a method declared from a library is removed, or it becomes dead code. However, if the
development team does not remove the library from the build automation system, the
library will remain a part of the build process. Therefore, it is important to keep track
of the libraries that are used in the target system, and the extent of their utilization—in
some cases, it might be beneficial to implement something from scratch, if a very small
fraction of a library is utilized. Additionally, as an unnecessary upgrade of the library,
we can consider an upgrade to a newer version of a library that does not offer any func-
tional or non-functional benefit. Therefore, it is important to monitor along evolution if
the level of library utilization is not decreasing over time—i.e., importing larger libraries
that are not used more.

The rest of the paper is organized as follows: In Sect. 2 we present related work,
while in Sect. 3 we propose five novel metrics that assess the level of library utilization
in a software project. Section 4 presents the developed tool for automating the metrics
calculation, to boost their adoption in practice. Moreover, in Sect. 5 we present the case
study of open-source projects and the evolution of their metrics along with a validation
study, while in Sect. 6, we present the results. Section 7 presents the threats of our study,
and we conclude our study in Sect. 8. As supplementary material for this submission,
we have added online a video presentation1, a running instance2, and the codebase3,4.

2 Related Work

A lot of information about library reuse and metrics can be found in the literature, thus
we try to present some of those studies in this section. Firstly, Mora et al. [4, 5] provided
a way that compares libraries to help the developers with selecting themost suitable each
time. To achieve this comparison, they used 9 metrics for each library and asked a total
of 61 developers to evaluate them. They found out that developers are more interested
in metrics related to the popularity, security, and performance of libraries. But this can
change a bit depending on the domain of the application under development. A similar
study was conducted by Vargas et al. [10], where they studied the factors that influence
the selection process of libraries. They asked 115 developers for feedback on a total
of 26 factors, which in turn could be used as metrics. Also, they grouped these factors
into three categories namely: technical, human, and economic. Finally, similar types
of metrics with an emphasis on performance, usability, documentation, and popularity
were proposed in other studies as well [1, 8, 9, 12].

Moreover, Washizaki et al. [16] viewed the libraries as black-box reuse and focused
on metrics based on the limited information that can be obtained from outside of the
components without any source code. They defined five metrics and through evaluation

1 https://youtu.be/m1N22F5mbHI.
2 http://195.251.210.147:3005.
3 https://github.com/kostoglou/LibraryUtilization.
4 https://github.com/MariaKolyda/javaLibraryUtilization.

https://youtu.be/m1N22F5mbHI
http://195.251.210.147:3005
https://github.com/kostoglou/LibraryUtilization
https://github.com/MariaKolyda/javaLibraryUtilization

Studying the Evolution of Library Utilization in Maven Projects 361

experiments, it was found that these metrics can effectively identify black-box compo-
nents with high reusability. These metrics are EMI (Existence of Meta-Information),
RCO (Rate of Component Observability), RCC (Rate of Component Customizability),
SCCr (Self-Completeness ofComponent’sReturnValue), andSCCp (Self-Completeness
of Component’s Parameter). A similar black-box approach was selected by Shatnawi
et al. [14], where they proposed a model consisting of three metrics. These metrics
are related more to the business side and are the library investment ratio, the library
investment level, and program simplicity.

In contrast to the previously mentioned studies that aim at assessing the quality of
the libraries per se, to aid developers in library selection, in this work, we focus on the
target system, and we assess the effectiveness of reuse—i.e., the level to which a library
is utilized in each system. Therefore, even for the same library, the metric scores could
be different for different systems, since the way that the library is used is being assessed,
rather than the library per se. Finally, we created a tool which is able to calculate those
metrics, and provide details on the utilization of libraries along with their evolution.

3 Proposed Metrics

In this section, we present the proposed metrics that can be used to assess the level of
library utilization in a specific project. Most of these metrics rely on the entry points of a
library, used in a specific project, as well as the call-tree that is parsed by invoking these
methods (i.e., the subsequent series of method calls made inside the library to provide
the needed functionality). Similar approaches can be found in other studies that calculate
the call tree, e.g., for assessing the Technical Debt (TD) of service, based on the entry
points of services (end-points) and the methods that are subsequently invoked by the
API call [11]. The proposedmetrics are in principal novel; however, the rationale of their
inception is based on existingmetrics. For example, as inspirationwe have usedCoupling
Factor (CF), which is calculated as a fraction of existing dependencies to the number
of possible dependencies. In that sense, some of our metrics count the utilization of a
metric as a fraction of the actual usage against the maximum allowed usage. To explain
the proposed metrics, we provide an illustrative example in Fig. 1. We should note that
each circle represents a class, while the number inside the circle represents the methods
of that class. Finally, the connection between the classes represents the called methods
from one class to another, and the different colors are used for each call-tree.

Fig. 1. Illustrative example for all metrics

362 M. Kolyda et al.

Number of Used Libraries (NUL). The first proposedmetric is calculated at the project
level, and as the name implies is the number of the used libraries from one project. In
our example, we can see that Project X used classes only from one library (Library Z).
So, the value of NUL is 1. This number provides an indication of how much the project
depends on third-party code—related to the performance and resource utilization of the
executable.

Percentage of Used Classes Directly (PUCD). To measure the utilization of a library
we proposed the PUCD metric, which calculates the percentage of used classes from a
given project. We should note that for the calculation of this metric, we consider only
the classes that are being used directly from the given target projects. So, in our example
since Project X uses only two classes out of 5, the PUCD is 2/5 or 40%. This metric is
related to the extent to which the quality of the target system might be affected by the
third-party code.

Percentage of Used Classes Indirectly (PUCI). To measure the usability of the whole
library, by considering all the classes that are being used, we proposed the PUCI metric.
For the calculation of this metric, we consider all the classes that are being accessed,
even indirectly from the examined project. So, the value of PUCI is 5/5 or 100%, because
in our example all 5 classes are being used. This metric is related to the extent to which
the quality of the target system might be affected by the third-party code. The same
discrimination between direct and indirect dependencies, can be found in traditional
coupling metrics, as well (e.g., TCC and LCC [3]).

Library Direct Utilization Factor (LDUF). To measure the utilization of a library we
proposed the LDUF metric, which calculates the percentage of used methods out of the
total number of methods that the used classes have.We should note that in this metric we
do not consider the indirect methods that are being used. In the given example, Project
X calls in total 3 methods (2 from the first class, and 1 from the second one) of Library
Z, and these classes have 9 methods in total (the first one has 5, and the second one has
4). So, the value of LDUF is 3/9 or 33.3%. This metric can act as an indicator of the
“worth” of reusing the library, based on its fraction that is reused in practice.

Library IndirectUtilizationFactor (LIUF). Finally,we created theLIUFmetric,which
considers the indirect utilization of a library. To achieve this, we trace all the method
calls that take place, and we find the number of used methods of each class. In the same
example from Library Z 13 methods are being used out of the total 31 methods, so the
value of LIUF is 13/31 or 41.9%. In more detail, we can see that the red call tree calls 6
methods, the blue one calls 2 methods, and the green calls 5 methods. Also, we should
note that we do not count more than once a used method. This metric can act as an
indicator of the “worth” of reusing the library, based on the fraction that is reused.

4 Library Utilization Tool

For the calculation of the proposed metrics, we created the Library Utilization tool. This
tool was created as a web application, with a front-end, written in React and a back-end
written in Java and the Spring framework. The web service exposes all the necessary

Studying the Evolution of Library Utilization in Maven Projects 363

functionalities through a RESTful API, whereas the web app makes the appropriate
requests and demonstrates the appropriate results and views to the user. We should note
that both the frontend5 and backend6 projects can be found online, along with a video7,
which presents all the functionalities. The main functionalities of the application are the
following: (a) analyze a project, (b) inspect the metrics scores, (c) inspect the call-tree
of a method call, and (d) analyze the history of a project.

Analyze a project. When the users open the web application, they are greeted with the
screen of Fig. 2, from where they can start a new analysis. By providing the Git URL of
the project they want to analyze, they can start a new static analysis in the last commit
of the project or get the last already analyzed commit (if any exist). The analysis of a
project is time-consuming, especially for big projects with a lot of libraries. To calculate
all the proposed metrics, we must analyze the code of the project and all the libraries that
are being used. To be able to get the code of each library we had to limit our application
to analyze only Maven project (at least for a first release). Moreover, we had to analyze
the code of the project, to get the used methods of each library, and the code of each
library, to get the call-tree of the methods. To this end, we used the JavaParser library
[15], which is a very well-known parsing library for Java projects. Finally, we should
note that once a project is analyzed it is saved in a database, so in case a user asks for
an already analyzed project the results can be provided almost instantly.

Fig. 2. Analyze Project Screen

Inspect the Metric Scores. Once the project analysis is finished, or the results are
retrieved from the database, the user is presented with the metric scores (see Fig. 3).

5 https://github.com/kostoglou/LibraryUtilization.
6 https://github.com/MariaKolyda/javaLibraryUtilization.
7 https://youtu.be/m1N22F5mbHI.

https://github.com/kostoglou/LibraryUtilization
https://github.com/MariaKolyda/javaLibraryUtilization
https://youtu.be/m1N22F5mbHI

364 M. Kolyda et al.

The user can see the NUL of the project and for each library the values of the other four
metrics. This feature provides a basic and bird-eye view on the analysis.

Fig. 3. Metrics Results

Inspect the call-tree of a method call. By selecting the “Investigate” button for one
library, the user can see all the methods that were used from this library. And by selecting
one, the user can see the call-tree of that method (see Fig. 4). Moreover, a slider is
provided from which the user can specify the number of nodes they want to see for a
given call tree. The nodes are limited to a max number of 800 since after that the graph
is hard to read and maybe not so useful. This function can be useful for inspecting out
of which method calls, tentatively malicious or low-quality methods are being invoked,
affecting the external behavior of the target system. Through this feature, the engineer
can get a hint of which functionalities might need to be re-written from scratch, in case
of a run-time quality problem.

Analyze Project History. The analysis of all the commits of a project is not recom-
mended due to time constraints, and since we do not expect there to be a big change
in every commit from the aspect of library utilization. For this reason, in the historical
analysis, the user should provide the number of commits they want to analyze along
with the Git URL. The commits that are going to be analyzed will be spread out to the
history of the project according to the provided number. Once the historic analysis is
completed, the user is presented with the results like in Fig. 5. The users can see the
evolution of NUL in a line chart and a table with all the libraries that were used along
with their commits. Finally, by selecting a specific library they can see the evolution
of the four-remaining metrics. This feature can be interesting for seeing if the level of
library utilization stays constant along evolution, or if the library grows or shrinks, but
no additional features are being exploited.

Studying the Evolution of Library Utilization in Maven Projects 365

Fig. 4. Call-Graph Representation

Fig. 5. Evolution Analysis

366 M. Kolyda et al.

5 Case Study Design

In this section, we present the study design, by providing information about the research
questions and the datasets that we used. The case study was designed and reported based
on the guidelines provided by Runeson et al. [13].

5.1 Research Questions

To study the proposed metrics, and tool with respect to its usage in practice, in terms
of real-world systems and the relevance of the idea, we have formulated the following
research questions.

RQ1: What are the metrics values and evolution in open-source large-scale
software projects?

RQ2: Does the developed library utilization tool meet the expectations of the
practitioners?

In RQ1, we investigate the actual real-world values that the proposed metrics can
have, and how these can change over the evolution of the project. The answer to this
questionwill help us determine the correctness of ourmetrics, by cross-checking changes
in the history of the projects or finding patterns and correlations that might exist between
them. InRQ2, we focus on the usability of the tool and its characteristics. For this reason,
we conducted a survey with senior software developers to get initial feedback on our
tool. The answer to this question will give us an insight into the actual usage of such a
tool by industry, along with some very important feedback on new features or needed
improvements.

5.2 Cases and Units of Analysis

To answer the first research question, we selected several open-source projects to analyze
them with our tool. The reason for selecting open-source projects was the vast amount
of open data and their openness to using third-party libraries [17]. The five projects that
we analyzed can be found in the following Table 1.

Table 1. Dataset Demographics

Project Releases Commits Size (LoC)

apache/brooklyn-server 29 14,321 345.527

apache/incubator-baremaps 41 1,430 23.083

apache/ozone 22 6,782 466.682

apache/zookeeper 164 2,528 121.067

apache/doris 104 15,379 543.311

Studying the Evolution of Library Utilization in Maven Projects 367

The selection of the projects was based on the following criteria:

• The main programming language is Java, due to the language specific tool that we
created which, at the moment, works only with this language. Moreover, in this way,
we will not risk having different results due to language specific characteristics.

• The automation build system is Maven, due to the specific limitations of the created
tool, at the moment. This acted as criteria while selecting the projects, but we do
not expect it to differentiate the results of the metrics in other Java automation build
systems (Gradle, Ivy, Grape, etc.), since they all have a common repository8.

• The project should have more than 20 releases in the form of tags in GitHub. This is
important to have a sufficient number of versions to analyze with our tool.

5.3 Data Collection

For the data collection regarding the first research question, we used the created tool’s
backend mechanism to analyze snapshots of our choosing of each selected project. The
reason for not analyzing all the commits is two-fold, firstly, we do not expect to see many
changes to the libraries that a project uses in each commit, and secondly, the analysis
is quite time-consuming. For this reason, we automated the process of analyzing each
project as shown in the following figure.

Fig. 6. Data Collection Flow

For each project, we identified the tag releases that we wanted to analyze and fed
them one by one to the analyzer. The tag releases that we analyzed were different for
each project and the number of them along with their versions, were relying on the
versioning that each project was using. The selected tags for each project can be found
in the following Table 2.

Regarding the second research question, the validation of the tool was conducted
by asking 13 senior software developers from the area of software architecture, from 5
different companies based in Greece, to use and evaluate the tool in a 1-day workshop.
First, the researchers have presented the tool, as well as the envisioned motivation and
usage scenarios. Then, the practitioners were given a small task to familiarize themselves
with the tool, and then some extra time to experiment independently. To assess the
relevance and usability of the tool, we provided access to the participants to an online
instance of the web application. They were asked to perform several tasks and interact
with the application, to get hands-on experience. Each of the participants was asked to
do the following: (a) create a new analysis; (b) inspect the results and the call tree; and
(c) inspect the results of the evolution analysis. Then, they were asked to brainstorm

8 https://mvnrepository.com

https://mvnrepository.com

368 M. Kolyda et al.

Table 2. Analyzed Tags per Project and NUL

Project Analyzed
Tags

Tags

apache/brooklyn-server 5 1.0.0, 0.12.0, 0.11.0, 0.10.0, 0.9.0

apache/incubator-baremaps 7 v0.7.1, v0.7.0, v0.6.0, v0.5.10, v0.5.1, v0.4.0, v0.3.0

apache/ozone 5 1.3.0, 1.2.0, 1.1.0, 1.0.0, 0.5

apache/zookeeper 5 3.9.0, 3.8.0, 3.7.0, 3.6.0, 3.5.5

apache/doris 9 2.0.0-rc01, 1.2.0-rc01,
1.1.0-rc01, 1.0.0-rc01,
0.15.0-rc01, 0.14.0-rc01,
0.13.0-rc01, 0.12.0-rc01,
0.10.0-rc03

on what they had learned from using the tool in the form of a focus group, using the
whiteboard. The focus group and the discussion were moderated by the researchers.

The workshop closed with the participant filling in a small questionnaire at the end.
The evaluation of the relevance of the metrics and the usability of the tool was performed
based on the System Usability Scale (SUS) instrument [2].

6 Results and Discussion

In this section, we present the results of this study based on the research questions that
we described in Sect. 5.1.

6.1 Metrics and Evolution

To answer RQ1, we first present the values of a metric across the history of each project,
along with some detailed examples with the evolution of all the metrics. Finally, we
performed a correlation analysis to find patterns and correlations between our proposed
metrics.

In Table 3 we present the evolution of the number of libraries for each project. We
should note that here we counted only the timeswhen amethod of some librarywas used,
like we defined the NUL method. We can observe that in most cases, the NUL slowly
increases or remains the same as the project evolves. But for the “incubator-baremaps”
project we can see that in the last two versions, the NUL was zero. For this specific
instance, if we compare the two versions, we can see that big restructuring and changes
overall the project took place. Along with those changes, all the libraries were removed
and replaced with new code to not have so many dependencies. This practice can be seen
in other projects as well, in which one library is added and in a later version it might
be replaced with new code. As new libraries are continuously added, this phenomenon
is not visible in Table 3. Regarding the rest of the metrics, since they are method-level

Studying the Evolution of Library Utilization in Maven Projects 369

specific, the report of them is a bit less trivial. The complete dataset can be found online9.
First, by examining the evolution of the metrics (PUCD, PUCI, LDUF, LIUF), we can
see that the values of the metrics, in most cases, are small and remain the same. This
shows that a library is used for some specific method calls and rarely is utilized to its
full potential.

Table 3. Analyzed Tags per Project and NUL

Project Tags Number of
Libraries

apache/brooklyn-server 1.0.0
0.12.0
0.11.0
0.10.0
0.9.0

13
12
11
11
2

apache/incubator-baremaps v0.7.1
v0.7.0
v0.6.0
v0.5.10
v0.5.1
v0.4.0
v0.3.0

0
0
5
3
3
4
1

apache/ozone 1.3.0
1.2.0
1.1.0
1.0.0
0.5

3
3
3
2
1

apache/zookeeper 3.9.0
3.8.0
3.7.0
3.6.0
3.5.5

9
9
9
1
1

apache/doris 2.0.0-rc01
1.2.0-rc01
1.1.0-rc01
1.0.0-rc01
0.15.0-rc01
0.14.0-rc01
0.13.0-rc01
0.12.0-rc01
0.10.0-rc03

4
5
4
4
7
2
0
0
0

9 https://users.uom.gr/~a.ampatzoglou/aux_material/LibUse.rar.

https://users.uom.gr/~a.ampatzoglou/aux_material/LibUse.rar

370 M. Kolyda et al.

However, this is not always the case, in Fig. 7 we provide some instances of specific
methods metrics and their evolution. We should note that the first two charts corre-
spond to methods from the “brooklyn-server” project, while the third corresponds to
the “incubator-baremaps” project. Also, the horizontal axis labels contain the num-
ber of the version, the library, and the version of the library as follows: {project
version}_{library}-{library version}.

From these charts, we can obtain information on: (a) the change in the metrics (from
version to version); (b) when the developers are utilizing the libraries more (or less); and
(c) when the developers update the libraries. For the changes in the libraries’ version,
we can focus on the first two charts where is visible that this change also affects the

0
0.5
1

1.5
2

2.5
3

3.5

pucd puci lduf liuf

0
5

10
15
20
25
30
35
40
45
50

pucd puci lduf liuf

0
1
2
3
4
5
6
7
8
9

10

pucd puci lduf liuf

Fig. 7. Examples of metrics evolutions

Studying the Evolution of Library Utilization in Maven Projects 371

metrics. We can see that the PUCD metric is changed in both of those instances and in
turn, so are all the other metrics. This is mostly because the number of methods that
exist in the class that is used from the source project is changed (a library change), or the
user utilizes more of the provided methods of the library (a project change). This can be
important feedback for the developers to differentiate between library and project-level
changes and track them across the evolution of the project.

It is evident that changes in the library version, or changes in the utilization of them
from the project level affect the metrics, but the correlation between them is not clear.
For this reason, we performed a correlation analysis for the values of each metric using
the Pearson correlation. The results of this analysis can be found in Table 4. We can see
that there are two significant correlations, one positive between PUCD and PUCI, and
one negative between PUCD and LDUF. First, the correlation between the PUCD and
the PUCI can be explained because of the similarity of their definition, where the first
one counts the number of used classes, and the second one counts the unused as well.
For the second one, similarly to the previous, the correlation can be explained due to the
similarity of the definitions, where the PUCD counts the number of used classes, and
the LDUF considers the number of used classes (along with their methods).

Table 4. Correlations of metrics

pucd puci lduf liuf

pucd Pearson Correlation 1 .737** -.182* .002

Sig. (2-tailed) .001 .036 .981

puci Pearson Correlation .737** 1 -.002 -.005

Sig. (2-tailed) .001 .981 .951

lduf Pearson Correlation -.182* -.002 1 -.164

Sig. (2-tailed) .036 .981 .061

liuf Pearson Correlation .002 -.005 -.164 1

Sig. (2-tailed) .981 .951 .061

6.2 Evaluation

The results of the evaluation from RQ2 are presented in Fig. 6 based on SUS. We
can see that all the questions received excellent responses, however, the frequency of
the application usage received a little bit more unfavorable feedback. The participants
seemed to understand the main disadvantage of the application, which is the time needed
for a new analysis, but they were not displeased about it. In a Q&A that was followed
with some of the participants, we could see the need for supporting more languages and
library registries. Moreover, as for the frequency of use of the tool, the participants told

372 M. Kolyda et al.

us that they do not often add new libraries or change the methods that they use. So,
it is normal to not have to use a tool like this in their daily routines, but mostly as a
complementary analysis during quality control processes (e.g., before releases or end of
sprints).

Fig. 8. Usability of Proposed Metrics and Tool

7 Threats to Validity

In this section, we present and discuss construct, reliability, and external threats to the
validity of this study [13].

Studying the Evolution of Library Utilization in Maven Projects 373

Construct validity is related to what extent the phenomenon under study represents
what is investigated according to the research questions. In our study, the main threat is
the way of evaluating the tool, without long-term usage. This can positively affect the
results since the participants used the tool only for a demo session, while it can negativly
affect due to the limited time and experience of the developer with the tool.

Tomitigate any reliability threats, two different researchers were involved in the data
collection of both studies. Also, all the data, from the extraction of the metrics all the
way to the call trees of each method call, can be found online as already mentioned.

Finally, concerning external validity, we have identified two possible threats. Firstly,
all the investigated projects are written in Java and it’s possible that different program-
ming languages would result in different conclusions. Even though the usage of automa-
tion tools like Maven exists for other languages (NPM for JavaScript), the programming
style along with the inner workings of the libraries are different. Secondly, the study of
the evolution of metrics was conducted on 5 open-source projects, which can be consid-
ered small, and the validation took place with only 13 developers. As a result, we cannot
generalize our findings for the metrics to all open-source projects, or all the companies
regarding the validation. Themain reason for the first limitation was the time-consuming
analysis of the projects. As we already mentioned, this analysis is time-consuming since
it’s very exhaustive and the bigger the project the more is required.

8 Conclusions

Using libraries in software engineering is a widely adopted practice, for both time and
reliability reasons. The usage of many dependencies or wrong ones can lead to a lot of
problems, so several metrics exist to measure some aspects of the libraries. However,
there is a gap in the existing metrics, which makes the libraries unaware of their envi-
ronment (project) each time, so the metrics do not consider the way that the library is
being used each time. In this paper, we have introduced five metrics to fill this gap in the
utilization aspect of a library for a given project. To provide a more robust solution, we
also created a tool for the calculation and presentation of these metrics, and we provided
it as a web application. Moreover, we performed an initial exploration of the values
of these metrics across the evolution of 5 open-source projects. We found out that our
metrics were in line with actual big changes in either the project level or the library
level (in case of a library update). This goes to show the relevance of our metrics to the
development process, and that in big revisions, releases, or tags these metrics and the
tool can be useful. Finally, an industrial validation took place with 13 developers from
5 companies to assess the usability of the created tool. The results showed that the tool
is usable and liked by the participants, with the only concern being the frequency with
which they would use it.

Acknowledgements. Work reported in this paper has received funding from theEuropeanUnion’s
Horizon 2020 research and innovation programme under grant agreement No. 780572 (project
SDK4ED).

374 M. Kolyda et al.

References

1. Abdalkareem, R., Nourry, O., Wehaibi, S., Mujahid, S., Shihab, E.: Why do developers use
trivial packages? An empirical case study on NPM. In: Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering, pp. 385–395 (2017)

2. Brooke, J.: Sus: a “quick and dirty’usability. Usabil. Eval. Indus. 189(3), 189–194 (1996)
3. Charalampidou, S., Arvanitou, E.M., Ampatzoglou, A., Avgeriou, P., Chatzi-georgiou, A.,

Stamelos, I.: Structural quality metrics as indicators of the long method bad smell: An empir-
ical study. In: 2018 44th Euromicro Conference on Software Engineering and Advanced
Applications (SEAA), pp. 234–238 (2018). https://doi.org/10.1109/SEAA.2018.00046

4. De la Mora, F.L., Nadi, S.: An empirical study of metric-based comparisons of software
libraries. In: Proceedings of the 14th International Conference on PredictiveModels and Data
Analytics in Software Engineering, pp. 22–31 (2018)

5. De La Mora, F.L., Nadi, S.: Which library should I use? A metric-based comparison of soft-
ware libraries. In: Proceedings of the 40th International Conference on Software Engineering:
New Ideas and Emerging Results, pp. 37–40 (2018)

6. Floven, K.F.: State management models impact on run-time performance in single page
applications (2020)

7. Frakes, W.B., Kang, K.: Software reuse research: status and future. IEEE Trans. Softw. Eng.
31(7), 529–536 (2005)

8. Gizas, A., Christodoulou, S., Papatheodorou, T.: Comparative evaluation of Javascript frame-
works. In: Proceedings of the 21st International Conference onWorldWideWeb, pp. 513–514
(2012)

9. Hora, A., Valente, M.T.: apiwave: Keeping track of api popularity and migration. In: 2015
IEEE International Conference on Software Maintenance and Evolution (ICSME), pp. 321–
323. IEEE (2015)

10. Larios Vargas, E., Aniche, M., Treude, C., Bruntink, M., Gousios, G.: Selecting third-party
libraries: the practitioners’ perspective. In: Proceedings of the 28th ACM joint meeting on
European Software Engineering Conference and Symposium on the Foundations of Software
Engineering, pp. 245–256 (2020)

11. Nikolaidis, N., Ampatzoglou, A., Chatzigeorgiou, A., Tsekeridou, S., Piperidis, A.: Technical
Debt in Service-Oriented Software Systems. In: Taibi, D., Kuhrmann, M., Mikkonen, T.,
Klünder, J.,Abrahamsson, P. (eds.) Product-FocusedSoftwareProcess Improvement PROFES
2022. LNCS, vol. 13709, pp. 265–281. Springer, Cham (2022)

12. Piccioni,M., Furia, C.A.,Meyer, B.: An empirical study ofAPI usability. In: 2013ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement, pp. 5–14.
IEEE (2013)

13. Runeson, P., Host, M., Rainer, A., Regnell, B.: Case Study Research in Software Engineering:
Guidelines and Examples. John Wiley & Sons, London (2012)

14. Shatnawi, M.Q., Hmeidi, I., Shatnawi, A.: Software library investment metrics: a new
approach, issues and recommendations (2017)

15. Smith, N., Van Bruggen, D., Tomassetti, F.: Javaparser: Visited. Leanpub. (2017)
16. Washizaki, H., Yamamoto, H., Fukazawa, Y.: A metrics suite for measuring reusability of

software components. In: Proceedings. 5th International Workshop on enterprise networking
and computing in healthcare industry (IEEE Cat. No. 03EX717), pp. 211–223. IEEE (2004)

17. Zaimi, A., et al.: An empirical study on the reuse of third-party libraries in open-source
software development. In: 7th Balkan Conference on Informatics Conference. BCI 2015,
ACM (2015). https://doi.org/10.1145/2801081.2801087

https://doi.org/10.1109/SEAA.2018.00046
https://doi.org/10.1145/2801081.2801087

Slicing and Visualizing F’ Topologies
with F’Prism

Jialong Li1, Christos Tsigkanos2, Toshihide Ubukata1, Elisa Yumi Nakagawa3,
Zhenyu Mao1, Nianyu Li4(B), and Kenji Tei5

1 Waseda University, Tokyo, Japan
lijialong@fuji.waseda.jp, {toshihide,rockmao}@akane.waseda.jp

2 University of Athens, Athens, Greece
christos.tsigkanos@aerospace.uoa.gr

3 University of São Paulo, São Paulo, Brazil
elisa@icmc.usp.br

4 ZGC National Laboratory, Beijing, China
li nianyu@pku.edu.cn

5 Tokyo Institute of Technology, Tokyo, Japan
tei@c.titech.ac.jp

Abstract. As the barriers to entry in the aerospace industry continue
to decrease, software engineering techniques are increasingly being inte-
grated into spaceflight software development methods. F’, an open-
source software framework developed by JPL (Jet Propulsion Labo-
ratory), leverages component-based architectures with a strict, fine-
grained, and explicit declaration of components with typed ports, fos-
tering compile-time correctness guarantees, modularity, and reusability.
However, such declaration inevitably increases architectural complexity,
leading to potential pitfalls in understandability of such component-
based architectures and maintainability of systems built using F’. To
mitigate the aforementioned problem, this paper presents F’Prism, an
open-source tool that incorporates automated architecture slicing into
topology visualization by employing three architecture-general and three
spaceflight-specific slicing criteria tailored for F’ architectures. Our obser-
vation shows architecture slicing has potential to improve visualization
and comprehension of such complex, critical software architectures.

Keywords: Topology Visualization · F prime · Architecture Slicing ·
Component-based Architectures · Flight Software

1 Introduction and Motivation

The emergence of low-cost and powerful onboard computers on small-scale flight-
and space-craft has lowered the barrier to entry [43], often referred to as New
Space [31]. Software is a core part of spaceflight missions, with its complexity
increasing – mirroring other software systems. As long acknowledged in software

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
B. Tekinerdoğan et al. (Eds.): ECSA 2023, LNCS 14590, pp. 375–389, 2024.
https://doi.org/10.1007/978-3-031-66326-0_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-66326-0_23&domain=pdf
https://doi.org/10.1007/978-3-031-66326-0_23

376 J. Li et al.

engineering research, such complexity brings challenges for designing, maintain-
ing, and understanding systems [37]. In this setting, there is an increase of inter-
est in the availability and adoption of open development platforms, including
software frameworks that can support the engineering of such systems, along
with adoption of contemporary software engineering methods and techniques.
While software architecture is usually reflected in representations such as mod-
els capturing architectural views, maintaining architectural knowledge beyond
representations involves other factors [39], it also encompasses methods and tech-
niques necessary to manage the often complex and sizable codebases of soft-
ware systems, reflecting those representations. As such, architectural knowledge
should be transferable, comprehensible, and relevant for stakeholders such as
developers and project managers, who should be aided in taking in (their) sys-
tem view. The latter is particularly important for e.g., onboarding new team
members. For spaceflight software systems, this is particularly relevant because
the cost of potential failures is typically high [33].

Regarding frameworks for the space domain, F’ (“F prime”) is a software
framework developed by Jet Propulsion Laboratory (JPL), targeting small-scale
spaceflight applications and enabling rapid development and deployment [16].
Notable real-world deployments include the Ingenuity Mars Helicopter [18], Near
Earth Scout CubeSats [24,36] as well as multiple instrument and satellite soft-
ware. From the software architecture perspective, F’ contains components and
connectors, uses typed interfaces to provide compile-time guarantees, and has
built-in unit and integration testing features. The architecture of an F’ software
system (i.e., a system derived from F’) is concretely represented in a so-called
topology, explicitly declared through a set of component instances and their
typed port connections. Ports in F’ are defined as generalizations of SysML[11]
flow ports, demanding the directionality, data types, and other detailed interface
specifications for specifying interactions between components. Within F’, ports
are primarily categorized into input or output ports, and input ports are further
divided into synchronous, asynchronous, and guarded. Connections are estab-
lished from an output port to an input port with matching port types. Hence, F’
enables modularity and separation of concerns (by virtue of its component-based
approach), with key concepts being restricted visibility (via access through typed
ports) and procedural/object abstraction [32].

Due to the strict and fine-grained (i.e., data-type) port declaration, F’ topolo-
gies can quickly become sizable, hindering architecture comprehension and main-
tainability. Table 1 summarizes an investigation of topology complexity of open-
source F’ projects1. Remarkable complexity is observed even in a basic “hello
world” project, which includes 219 ports and 142 connections within 25 com-
ponents (one application-specific component and 24 standard components) pro-
vided by F’ standard library. This complexity is also mirrored in the lines of code
(LoC) metric, with 249 LoC for topology declaration (in F’, the topology is not

1 It is worth noting that these three (small-scale) F’ projects are all sourced from
the F’ official website [3]. Larger-scale examples are typically unavailable due to the
intellectual property constraints associated with real-world flight software.

Slicing and Visualizing F’ Topologies with F’Prism 377

merely “implied” but explicitly declared via XML). Moreover, merely 48 LoC
are for implementation within C++ source, counting only application-specific
components (and excluding standard F’ components).

Table 1. Topology complexity of indicative open-source F’ projects.

#Components #Ports #Connections .xml LoC .cpp LoC

Hello World [28] 25 219 142 249 48

LED Blinker [29] 26 226 147 275 91

Ref App [27] 33 315 214 554 564

Motivated by this complexity problem, this paper presents F’Prism, an F’
topology visualization tool that leverages automated architecture slicing. The
key idea is to visualize a project’s F’ topology with various slicing criteria,
enabling relevant stakeholders such as developers, system engineers, and project
managers, to better understand the topology they are involved in, and thus
indirectly improving other software development life cycle facets, such as test-
ing, maintenance, or documentation [40]. In short, our main contributions are
as follows:

1. We propose new architecture slicing criteria tailored for spaceflight software
(“spaceflight-specific”). We also explore established criteria such as slicing by
coupling or component complexity (“architecture-general”) for dealing with
general architectural aspects;

2. We extend existing F’ visualization tools [14,15], to support interactive slicing
parameter specification and visualization, aiming to support stakeholders in
architecture comprehension;

3. We realize the aforementioned in a tool artifact, available as open-source
software. A demonstration video can be accessed at https://youtu.be/
KbZcF-IQjlg, and the artifact is accessible at https://github.com/545659928/
FPrimePrism.

The remainder of this paper is organized as follows. Section 2 presents a brief
background and related work. Section 3 describes the slicing criteria. Section 4
presents F’Prism and its demonstration. Section 5 concludes this work and dis-
cusses potential future work.

2 Background and Related Work

We briefly describe JPL’s F’, the software framework targetted by F’Prism for
slicing and visualization, before considering works that have an affinity with the
approach presented in this paper.

https://youtu.be/KbZcF-IQjlg
https://youtu.be/KbZcF-IQjlg
https://github.com/545659928/FPrimePrism
https://github.com/545659928/FPrimePrism

378 J. Li et al.

2.1 JPL’s F’ Framework

F’ (F prime), is an open-source software framework developed by the JPL
specifically for embedded (space-)flight systems [16,38]. The software architec-
ture employed by F’ is component-based, enjoying well-defined interfaces which
encourage reusability, analyzability, and maintainability [39]. This architectural
topology is defined explicitly in XML, detailing component instances and their
typed port connections. Ports in F’ have types specifying data that can be
transmitted through them and are primarily categorized into input or output
ports, and input ports are further divided into synchronous, asynchronous, and
guarded. Connections are established from an output port to an input port with
matching port types.

In terms of implementation, C++ is employed to facilitate encapsulation and
inheritance inherent in Object Oriented Design, enhancing both reusability and
modularity. Components in F’ are defined as C++ classes comprised of a set of
data, and associated operations on this data, termed methods. Benefitting from
its open-source nature, multiple flight-proven components are officially provided
in the F’ standard component library [18]. The library mainly provides two kinds
of components: (i) OS features abstraction such as threads, files, and clocks, and
(ii) a collection of reusable components that perform standard flight software
functions such as command dispatch, event logging, and ground system sup-
port. Note that the above components are strictly designed per F’ architectural
principles with well-defined ports and connections, providing a solid foundation
for rapid development allowing engineers to focus on application-specific com-
ponents.

2.2 Related Work

Software and Architecture Slicing. Software or program slicing [42] has
been employed in various software engineering activities, including for program
understanding [21], debugging [9], testing [12,25], maintenance [22], model check-
ing [41], reuse [34], reverse engineering [13], and complexity measurement [35].
Slicing methods have also been explored within software architectures. Zhao
et al. [45] pioneered architecture slicing based on information flow dependency.
Kim et al. [23] introduced dynamic slicing to uncover architecture’s dynamic
behavior. Lun et al. explored and compared the efficiency of forward and back-
ward slicing methods [30]. Zhao et al. applied the slicing methods aiming to
extract reusable architectural elements (e.g., components and connectors) from
the existing architectural specifications [44]. Colangelo et al. [20] used slicing and
abstraction to reduce architecture complexity for model checking in large-scale
architectures.

Architecture slicing focuses on the architectural level of software and aims to
better understand the high-level design of the software, how it’s organized, and
how its components interact. From the side of the practice, several commercial
software tools have slicing features to aid engineers in modeling and visual-
izing software architectures, e.g., Astah [1], Papyrus [6], StarUML [7], Visual

Slicing and Visualizing F’ Topologies with F’Prism 379

Paradigm [8], and Enterprise Architect [2]. Observe that most of them primarily
provide support for manual slicing (i.e., manual choice of hiding some compo-
nents), and Enterprise Architect specially allows finer-grained manual slicing
(i.e., manual choice of hiding connectors within components). However, to the
best of our knowledge, these tools lack capabilities for automated architecture-
driven slicing.

F’ Topology Visualization. Magicdraw’s F’ plug-in [5] was developed for the
modeling and visualization of F’ software [38]; however, with the deprecation of
MagicDraw support from F’ version 2.0 due to limited usability and expandabil-
ity [4], several initiatives have emerged to develop tools, including open-source
ones, specifically for F’. The tool proposed in [19] was an initial attempt at visu-
alizing the F’ topology. Subsequently, F Prime Layout (FPL) [14] and F Prime
Visualizer (FPV) [15] were proposed. FPL acts as a preprocessor, converting
topology XML into JSON, while FPV is a web application developed to visu-
alize the latter as generated by FPL. In our tool, we employ both: (i) FPL to
encode the complete topology at hand (and implement slicing at the FPL JSON
level) and (ii) FPV is used to visualize it.

3 Slicing Criteria

In this section, we detail the slicing criteria that are supported by F’Prism,
whose classification overview is shown in Fig. 1. The first-level classification is
bifurcated into (i) spaceflight-specific slicing criteria that are specifically tailored
for spaceflight software, and (ii) architecture-general slicing criteria that are
suitable for generic issues of software architectures.

Fig. 1. Classification of Slicing Criteria.

380 J. Li et al.

3.1 Spaceflight-Specific Slicing Criteria

Spaceflight-specific slicing criteria aim to increase developer’s comprehension by
utilizing typical domain-specific concepts that spaceflight systems have in com-
mon. Based on discussions with experts and developers in the field of aerospace,
we identified the following three criteria.

Slicing by Telecommand: Telecommanding is a core feature of spaceflight
applications, enabling ground center staff to manipulate the spacecraft (e.g.,
adjusting orientation, firing thrusters, or activating scientific instruments). It
sends telecommands to invoke specific logic that, in the case of F’ software,
are implemented in F’ components. This criterion focuses on elements (com-
ponents and respective connections) triggered or issued by each telecommand.
Such slicing is achieved through the invocation chain, analyzed via static code
from the XML (capturing topology) and C++ (containing implementation) files.
This slicing criterion not only facilitates engineers in grasping the scope of each
telecommand but also is beneficial in designing test cases, as command-based
test cases are common patterns in spaceflight software.

Slicing by Segment: Spaceflight software contains logic pertaining to both the
flight segment (running on flight-/space-craft) and the ground segment (which is
responsible for ground operations). Those flight and ground software segments
are often co-designed in space software, something reflected as a key feature in F’
as well. To this end, this slicing criterion allows the topology to be subdivided and
sliced into either flight segment or ground segment. Such a separation facilitates
a clear comprehension and review of the respective responsibilities pertaining to
each segment, including its components.

Slicing by Standard or Application-Specific Components: F’ contains an
open-source, flight-proven standard component library, which comprises more
than 40 well-designed components providing various functionalities (e.g., opera-
tion system abstractions, files and threading) and a collection of reusable com-
ponents (e.g., for telecommanding and system event capture). This criterion was
designed to hide these standard components from the topology, avoiding showing
the complexity that these components introduce. By omitting them, engineers
can concentrate on the unique operational logic of their mission, i.e., bespoke
components that they implemented.

3.2 Architecture-General Slicing Criteria

Based on insights from the existing literature, we organize the following three
criteria that support established ways of slicing software architectures.

Slicing by Coupling: Coupling generally refers to the degree of interdepen-
dence or the measure of the connection strength between two components.
F’Prism considers two fundamental definitions of coupling: qualitative and
quantitative. Given one component c as the central (or start) node, the quali-
tative coupling is defined as “whether a component is connected to component

Slicing and Visualizing F’ Topologies with F’Prism 381

c within m hops”, where m (m ≥ 0) and c are user-specified. Quantitative cou-
pling is defined as “whether a component is connected to component c with
more than n connections”, where n is also defined by the user. Moreover, more
complex types of coupling [23] can be supported in future work.

Slicing by Component Complexity: This criterion addresses three dimen-
sions of component complexity: (i) LoC (in .cpp files); (ii) number of ports
(in topology .xml files); and (iii) number of connected components. This crite-
rion empowers engineers to grasp the complexity of each component intuitively,
potentially providing indirect support in risk assessment and localization during
the testing phase.

Manual Slicing: Alongside automated slicing, manual, user-defined slicing (as
supported by most commercial tools) is beneficial. This criterion offers users the
ability to choose specific components, visualizing their interactions with others.
More precisely, in this case the sliced topology comprises: (i) the user-selected
components; (ii) their respective ports; and (iii) the connections between them.

4 Visualizing F’ Topology Slices

In the following, after a high-level view of F’Prism, we illustrate its slicing
features along with their visual counterparts.

4.1 Overview of F’Prism Implementation

Figure 2 offers an overview of F’Prism. Its architecture is divided into three
main parts: Front-end (left), Back-end (middle), and Source (right).

sliced topology (.json)

On-demand
slicing engine

(i) criterion,
(ii) parametor

User interaction interface

F Prime Visualizer

Complete topology declaration (.xml)

Implementation (.cpp)

Complete topology (.json)

Front-end Back-end Source
F' projectWeb interface

Fig. 2. F’Prism tool architecture.

– The User interaction interface provides a user interface that allows users
to (i) upload the F’ project and (ii) select slicing criteria and input necessary
parameters.

– the On-demand slicing engine generates a sliced topology (as a .json file),
upon receiving (i) user inputs; (ii) an F’ project (complete topology dec-
laration (.xml file); (iii) implementation (.cpp files); and (iv) the complete
topology (.json file).
Here, the F’ project’s source code is employed for static code analysis, which

382 J. Li et al.

lays the groundwork for the slicing operation. Note that the code analy-
sis functionality, specially designed for F’, requires both .cpp and .xml files.
This is because of the restricted visibility imposed by F’ – a component
cannot directly call methods of other components. Instead, it must invoke
its own output ports (implemented within .cpp), which then indirectly trig-
ger the connected input ports of another component (declared within .xml),
thereby calling the corresponding handler functions within that component
(also implemented within .cpp).
Based on the aforementioned method, the slicing engine slices the topology
in an on-demand way, according to user specifications. Specifically, slicing by
telecommand and coupling starts from a specific component or function, and
then recursively analyzes the components, ports, and connections that meet
the user condition. The remaining four criteria involve selecting components
that meet user conditions by traversing all components, and subsequently
analyzing their interactions.

– Ultimately, the F Prime Visualizer [15] parses the generated .json file and
shows the resulting sliced topology. Observe that the functionality offered can
be integrated within a CI/CD pipeline as well, facilitating teams working on
F’ projects and visualizing relevant slices upon respective relevant changes in
the system’s architecture.

Briefly, the project is developed using the React framework, and the pro-
gramming languages used are: (i) TypeScript, a superset of JavaScript, for imple-
menting application logic and dynamic content rendering; (ii) CSS to handle the
visual styling and layout of the web pages; and (iii) JSX (JavaScript XML), which
allows HTML-like syntax directly in JavaScript, serving as the basic structure
for web pages.

4.2 F’Prism Workflow and Demonstration

Workflow. We introduce the workflow of using F’Prism, assuming that the
user runs this application in a local environment. The user first starts the local
server by running a bash script. After that, they can access F’Prism locally in
a web browser. When using F’, the user initially needs to upload the F’ project
files. Subsequently, the user selects the slicing criterion and provides the slicing
parameters through selection boxes and/or text input. In a user experiment
involving four graduate students who are familiar with F’, the average time taken
to set up the necessary environment for running the tool was approximately
15 min, and users typically became proficient in utilizing F’Prism within an
additional 5 min.

Demonstration. Ref App [27] is a reference application part of the official
F’ tutorial and demonstrates key features for data transmission and reception.
This application primarily employs four application-specific components to man-
age various types of data interactions, noting that there is no direct interaction

Slicing and Visualizing F’ Topologies with F’Prism 383

between them. Recalling Table 1, Ref App contains 33 components, 315 ports
with 214 connections, with its topology defined in 554 LoC and 564 LoC of
C++ source. The application-specific components within this application are:
(i) Five instances of SignalGen component, identified as SG1 to SG5, each dis-
tinguished by their respective generation frequencies. These component instances
are designed to generate a variety of signals, such as Triangle and Sine waves,
with user-defined parameters like amplitude and phase; (ii) PingReceiver, a com-
ponent that increments its counter every time a ping is received and subsequently
forwards a ping; (iii) RecvBuff, a component receives, deserializes, and processes
data buffers, further updating telemetry data like sensor values once the data is
successfully processed; and (iv) SendBuff is responsible for creating and send-
ing data buffers when the corresponding command is invoked. Note that these
application-specific components are designed to be used to handle different types
of data interactions, and there is no direct interaction between them.

Figure 3 shows (a fragment of) screenshots of six slicing criteria of the
F’Prism workflow, where Figs. 3a to 3c illustrate three architecture-general slic-
ing criteria, and Figs. 3d to 3f demonstrate three spaceflight-specific slicing cri-
teria.

– Manual slicing: Figure 3a illustrates (part of) the complete topology (before
slicing) of Ref App. This is also the default setting of manual slicing, where
all components are initially pre-selected. Observe that dense connections span
the entire visual page, significantly hampering readability and comprehensi-
bility.

– Slicing by coupling: Figure 3b illustrates an example of slicing by coupling,
where SG1 is chosen as the central component and hop is set to 1. This pared-
down sub-topology lets users focus on and intuitively understand the direct
interactions between SG1 and other components. For instance, SG1 transmits
log information from its logOut port to the LogRecv port of eventLogger.

– Slicing by component complexity: Fig. 3c shows the sub-topology which
only includes the components that have more than ten ports. By adopting this
criterion, we can more effectively distinguish complex components, as their
complexity often implies a significant impact on overall system functionality.

– Slicing by telecommand: Figure 3d provides an example of slicing by
telecommand, where the selected command is “SB GEN FATAL”, which
injects fatal errors into the data buffer of SendBuff component. Observe that
cmdDisp sends the command to SendBuff via its cmdSequencer port, and
then SendBuff relays the results back through CmdReg and CmdStatus
ports. This sub-topology provides engineers with two additional pieces of
valuable information: (i) the command only impacts the internal behavior of
SendBuff and does not directly engage external components; and (ii) the
result of this command is not logged within the system since eventLogger is
not displayed.

– Slicing by segment: Figure 3e displays the sub-topology of flight segments.
This enables engineers to concentrate on the interactions of components

384 J. Li et al.

(a) Complete topology of Ref App. (default setting of manual slicing)

(b) Sub-topology sliced by coupling (SG1 as central component, hop = 1).

(c) Sub-topology sliced by component complexity (port number >10)

Fig. 3. Demonstration of Six Slicing Criteria on Ref App.

Slicing and Visualizing F’ Topologies with F’Prism 385

(d) Sub-topology sliced by telecommand (telecommand: SB GEN FATAL).

(e) Sub-topology sliced by flight segment

(f) Sub-topology sliced by application-specific components

Fig. 3. (continued)

386 J. Li et al.

within the spacecraft while disregarding the logic of the ground system and
the interactions between the spacecraft and the ground system.

– Slicing by standard or application-specific components: Fig. 3f dis-
plays the sub-topology of only application-specific components. In this view,
we can observe the four types of application components of Ref App (SG1
to SG5, all located in the rightmost column), as introduced earlier in this
chapter. More specifically, it is evident that there is no direct interaction
between these components because they are independent units responsible
for the transmission and reception of different types of data.

5 Conclusion and Future Work

Architectural visualization is essential for understandability of software archi-
tectures, with important implications to software quality. This paper introduced
F’Prism, a visualization tool that incorporates automated architecture slicing
for the F’ space software development framework. This tool encompasses novel
spaceflight-specific slicing criteria as well as slicing criteria applicable to generic
issues of software architectures, also supporting interactive slicing parameter
specification and visualization. Hence, this paper makes dual contributions to
the field of software architectures: (i) we pioneer the integration of automatic
slicing into architectural visualization, an approach not yet widely available in
contemporary commercial tools; and (ii) we illustrate integration of architectural
slicing and visualization, underscoring their potential in enhancing architecture
comprehension. We intend this work can serve as an example for other applica-
tion domains to address their large-scale and complex architectures.

Regarding future work, we intend to evolve F’Prism in three aspects, each
corresponding to each part depicted previously in Fig. 2:

– Visualization: Visualization has been facilitated via FPV; we aim to refine
this with bespoke visualization functionality that leverages layout optimiza-
tion [26] and that follows an overview + details-on-demand approach [10] to
enhance readability and usability.

– Slicing: We intend F’Prism to support more advanced slicing. This includes:
(i) expanding the current slicing criteria, for instance leveraging other soft-
ware maintenance metrics such as cyclomatic complexity or data complex-
ity. Additionally, (ii) supporting combined criteria, such as ’flight segment +
manual slicing’; considering the perspective of users requiring more compre-
hensive, multi-view slicing.

– Source input: The slicing engine was designed to support solely code analy-
sis on XML topologies. Those can also be specified with FPP [17], a simplified
language. As .xml files can be derived by compiling .fpp files, we plan to embed
an automatic compiling feature within F’Prism. This seeks to eliminate the
need to compile manually .xml files, thereby improving usability.

Furthermore, as a limitation of this study, we acknowledge that the practical
effectiveness of our tool has not been verified. To address this and further enhance

Slicing and Visualizing F’ Topologies with F’Prism 387

the utility of our tool in real-world settings, we plan to gather feedback from
actual F’ engineers and introduce additional features. These enhancements could
include IDE integration, allowing users to directly navigate to specific pieces of
code by interacting with a port within the tool.

Acknowledgment. This work was partially supported by CNPq (313245/2021-
5), FAPESP (2015/24144-7), RV4THINGS (HFRI/GR), and JSPS KAKENHI
(JP23H03374, JP22KJ2935). The author, Jialong Li, would like to thank Tzu-Yi Pan
for her inspiration on this work.

References

1. Astah: Premier diagramming, modeling software & tools. https://astah.net/.
Accessed 25 Jun 2023

2. Enterprise architect. https://sparxsystems.com/. Accessed 06 Jul 2023
3. F’ flight software & embedded systems framework. https://nasa.github.io/fprime/.

Accessed 20 Jun 2023
4. Magic draw support (deprecated). https://nasa.github.io/fprime/v2.0.1/

UsersGuide/dev/magicdraw.html. Accessed 20 Jun 2023
5. Magicdraw. https://www.3ds.com/products-services/catia/products/no-magic/

magicdraw/. Accessed 20 Jun 2023
6. Papyrus. https://www.papyrus.com/. Accessed 25 Jun 2023
7. Staruml. https://staruml.io/. Accessed 25 Jun 2023
8. Visual paradigm. https://www.visual-paradigm.com. Accessed 25 Jun 2023
9. Agrawal, H., Demillo, R.A., Spafford, E.H.: Debugging with dynamic slicing and

backtracking. Software Pract. Experien. 23(6), 589–616 (1993). https://doi.org/
10.1002/spe.4380230603

10. Arleo, A., Tsigkanos, C., Leite, R.A., Dustdar, S., Miksch, S., Sorger, J.: Visual
exploration of financial data with incremental domain knowledge. Comput. Graph.
Forum 42(1), 101–116 (2023). https://doi.org/10.1111/cgf.14723

11. Balmelli, L.: The systems modeling language for products and systems develop-
ment. J. Object Technol. 6, 149–177 (2007). https://doi.org/10.5381/jot.2007.6.6.
a5

12. Bates, S., Horwitz, S.: Incremental program testing using program dependence
graphs. In: Proceedings of the 20th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. POPL ’93, New York, NY, USA, pp.
384–396. Association for Computing Machinery (1993). https://doi.org/10.1145/
158511.158694

13. Beck, J., Eichmann, D.: Program and interface slicing for reverse engineering. In:
Proceedings of 1993 15th International Conference on Software Engineering, pp.
509–518 (1993). https://doi.org/10.1109/ICSE.1993.346015

14. Bocchino, R.: F Prime Layout (FPL) (2021). https://github.com/fprime-
community/fprime-layout. Accessed 20 Jun 2023

15. Bocchino, R.: F prime visualizer (fpv) (2021). https://github.com/fprime-
community/fprime-visual. Accessed 20 Jun 2023

16. Bocchino, R., Canham, T., Watney, G., Reder, L., Levison, J.: F Prime: an open-
source framework for small-scale flight software systems. In: 32nd Annual Small
Satellite Conference (2018)

https://astah.net/
https://sparxsystems.com/
https://nasa.github.io/fprime/
https://nasa.github.io/fprime/v2.0.1/UsersGuide/dev/magicdraw.html
https://nasa.github.io/fprime/v2.0.1/UsersGuide/dev/magicdraw.html
https://www.3ds.com/products-services/catia/products/no-magic/magicdraw/
https://www.3ds.com/products-services/catia/products/no-magic/magicdraw/
https://www.papyrus.com/
https://staruml.io/
https://www.visual-paradigm.com
https://doi.org/10.1002/spe.4380230603
https://doi.org/10.1002/spe.4380230603
https://doi.org/10.1111/cgf.14723
https://doi.org/10.5381/jot.2007.6.6.a5
https://doi.org/10.5381/jot.2007.6.6.a5
https://doi.org/10.1145/158511.158694
https://doi.org/10.1145/158511.158694
https://doi.org/10.1109/ICSE.1993.346015
https://github.com/fprime-community/fprime-layout
https://github.com/fprime-community/fprime-layout
https://github.com/fprime-community/fprime-visual
https://github.com/fprime-community/fprime-visual

388 J. Li et al.

17. Bocchino, R.L., Levison, J.W., Starch, M.D.: FPP: a modeling language for f prime.
In: 2022 IEEE Aerospace Conference (AERO), pp. 1–15 (2022). https://doi.org/
10.1109/AERO53065.2022.9843754

18. Canham, T.: The mars ingenuity helicopter - a victory for open-source software.
In: 2022 IEEE Aerospace Conference (AERO), pp. 01–11 (2022). https://doi.org/
10.1109/AERO53065.2022.9843438

19. cdmuhlb: Grafprime (2020). https://github.com/cdmuhlb/GraFPrime. Accessed
20 Jun 2023

20. Colangelo, D., Compare, D., Inverardi, P., Pelliccione, P.: Reducing software archi-
tecture models complexity: a slicing and abstraction approach. In: Najm, E.,
Pradat-Peyre, J.-F., Donzeau-Gouge, V.V. (eds.) FORTE 2006. LNCS, vol. 4229,
pp. 243–258. Springer, Heidelberg (2006). https://doi.org/10.1007/11888116 19

21. De Lucia, A., Fasolino, A., Munro, M.: Understanding function behaviors through
program slicing. In: WPC ’96. 4th Workshop on Program Comprehension, pp. 9–18
(1996). https://doi.org/10.1109/WPC.1996.501116

22. Gallagher, K., Lyle, J.: Using program slicing in software maintenance. IEEE
Trans. Software Eng. 17(8), 751–761 (1991). https://doi.org/10.1109/32.83912

23. Kim, T., Song, Y.T., Chung, L., Huynh, D.T.: Software architecture analysis: a
dynamic slicing approach. ACIS Int. J Comp. Inf. Sci. 1(2), 91–103 (2000). https://
doi.org/10.5555/543107.543111

24. Kolhof, M., Rawson, W., Yanakieva, R., Loomis, A., Lightsey, E.G., Peet, S.:
Lessons learned from the gt-1 1u cubesat mission. In: 35nd AIAA/USU Conference
on Small Satellites (2021)

25. Lalchandani, J.T., Mall, R.: Regression testing based-on slicing of component-
based software architectures. In: Proceedings of the 1st India Software Engineering
Conference. ISEC ’08, New York, NY, USA, pp. 67–76. Association for Computing
Machinery (2008). https://doi.org/10.1145/1342211.1342227

26. Larmore, L., Gajski, D., Wu, A.H.: Layout placement for sliced architecture. IEEE
Trans. Comput. Aided Des. Integr. Circuits Syst. 11(1), 102–114 (1992). https://
doi.org/10.1109/43.108623

27. LeStarch: Ref (2021). https://github.com/nasa/fprime/tree/master/Ref. Accessed
20 Jun 2023

28. LeStarch, h.: fprime-tutorial-hello-world (2023). https://github.com/fprime-
community/fprime-tutorial-hello-world. Accessed 20 Jun 2023

29. LeStarch, kevin-f-ortega, J.A.: fprime-workshop-led-blinker (2023). https://github.
com/fprime-community/fprime-workshop-led-blinker. Accessed 20 Jun 2023

30. Lun, L., Chi, X., Xu, H.: The relationship between forward slicing and backward
slicing for software architecture. Comput. J. 57(5), 744–758 (2014). https://doi.
org/10.1093/COMJNL/BXT025

31. Martin, G.: Newspace: The emerging commercial space industry (2017). nASA
Ames Research Center

32. Halvorson, M., et al.: Model-based systems engineering and f’: proof of concept
via the creation of an on-orbit textual command parsing component for the abex
mission. 35th AIAA Space Conference (2021)

33. Network, A.S.: Asn aircraft accident airbus a320-211 d-aipn warsaw-okecie airport
(1993). https://aviation-safety.net/database/record.php?id=19930914-2

34. Ning, J.Q., Engberts, A., Kozaczynski, W.V.: Automated support for legacy code
understanding. Commun. ACM 37(5), 50–57 (1994). https://doi.org/10.1145/
175290.175295

https://doi.org/10.1109/AERO53065.2022.9843754
https://doi.org/10.1109/AERO53065.2022.9843754
https://doi.org/10.1109/AERO53065.2022.9843438
https://doi.org/10.1109/AERO53065.2022.9843438
https://github.com/cdmuhlb/GraFPrime
https://doi.org/10.1007/11888116_19
https://doi.org/10.1109/WPC.1996.501116
https://doi.org/10.1109/32.83912
https://doi.org/10.5555/543107.543111
https://doi.org/10.5555/543107.543111
https://doi.org/10.1145/1342211.1342227
https://doi.org/10.1109/43.108623
https://doi.org/10.1109/43.108623
https://github.com/nasa/fprime/tree/master/Ref
https://github.com/fprime-community/fprime-tutorial-hello-world
https://github.com/fprime-community/fprime-tutorial-hello-world
https://github.com/fprime-community/fprime-workshop-led-blinker
https://github.com/fprime-community/fprime-workshop-led-blinker
https://doi.org/10.1093/COMJNL/BXT025
https://doi.org/10.1093/COMJNL/BXT025
https://aviation-safety.net/database/record.php?id=19930914-2
https://doi.org/10.1145/175290.175295
https://doi.org/10.1145/175290.175295

Slicing and Visualizing F’ Topologies with F’Prism 389

35. Ottenstein, K.J., Ottenstein, L.M.: The program dependence graph in a software
development environment. SIGPLAN Not. 19(5), 177–184 (1984). https://doi.org/
10.1145/800020.808263

36. Pong, C.M.: On-orbit performance & operation of the attitude & pointing control
subsystems on Asteria. In: 32nd AIAA/USU Conference on Small Satellites (2018)

37. Pressman, R.S.: Software Engineering: A Practitioner’s Approach, 4th edn.
McGraw-Hill (1994)

38. Rich, T.: The development and application of the f prime magicdraw plug-in user
handbook. In: 34th AIAA/USU Conference on Small Satellites (2020)

39. Shaw, M., Garlan, D.: Software Architecture - Perspectives on an Emerging Disci-
pline. Prentice Hall (1996)

40. E.C. for Space Standardization: Software engineering handbook. ecss-e-hb-40a
(2011). https://ecss.nl/hbstms/ecss-q-hb-80-01a-reuse-of-existing-software/

41. Tsigkanos, C., Nianyu, L., Jin, Z., Zhenjiang, H., Ghezzi, C.: Scalable multiple-
view analysis of reactive systems via bidirectional model transformations. In: 2020
35th IEEE/ACM International Conference on Automated Software Engineering
(ASE), pp. 993–1003. IEEE (2020). https://doi.org/10.1145/3324884.3416579

42. Weiser, M.D.: Program slicing. In: Jeffrey, S., Stucki, L.G. (eds.) Proceedings of
the 5th International Conference on Software Engineering, San Diego, California,
USA, March 9–12, 1981, pp. 439–449. IEEE Computer Society (1981)

43. Yost, B., et al.: State-of-the-art small spacecraft technology p. 1-366 (NASA Ames
Reserach Center, 2021) (2021)

44. Zhao, J.: A slicing-based approach to extracting reusable software architectures.
In: Proceedings of the Fourth European Conference on Software Maintenance and
Reengineering, pp. 215–223 (2000). https://doi.org/10.1109/CSMR.2000.827330

45. Zhao, J.: Applying slicing technique to software architectures. In: Proceedings.
Fourth IEEE International Conference on Engineering of Complex Computer
Systems (Cat. No.98EX193). pp. 87–98 (1998). https://doi.org/10.1109/ICECCS.
1998.706659

https://doi.org/10.1145/800020.808263
https://doi.org/10.1145/800020.808263
https://ecss.nl/hbstms/ecss-q-hb-80-01a-reuse-of-existing-software/
https://doi.org/10.1145/3324884.3416579
https://doi.org/10.1109/CSMR.2000.827330
https://doi.org/10.1109/ICECCS.1998.706659
https://doi.org/10.1109/ICECCS.1998.706659

Maestro: A Deep Learning Based Tool
to Find and Explore Architectural Design

Decisions in Issue Tracking Systems

Jesse Maarleveld1(B) , Arjan Dekker1, Sarah Druyts1,
and Mohamed Soliman1,2

1 University of Groningen (RUG), Groningen, The Netherlands
{j.maarleveld,m.a.m.soliman}@rug.nl,

{a.j.dekker.5,s.druyts}@student.rug.nl
2 Paderborn University, Paderborn, Germany

mohamed.soliman@uni-paderborn.de

Abstract. Software engineers commonly re-use architectural design
decisions (ADDs) from their previous experience. However, in practice,
software engineers still depend on adhoc mechanisms to re-use ADDs.
Recent studies show that software engineers discuss ADDs in issue track-
ing system, which could be useful for software engineers to make new
ADDs. Nevertheless, it is rather challenging to find ADDs among the
big amount of issues in issue trackers. Therefore, we introduce Mae-
stro, an open source tool for finding, annotating, and exploring ADDs
in issue tracking systems. The tool allows researchers and practitioners
to find and analyze issues containing ADDs in issue trackers. Maestro
provides annotation mechanisms, deep learning components, keywords-
based search engine and a user-interface that can be easily used by
researchers and practitioners to find and analyze ADDs in issue trackers.

Keywords: Architectural design decisions · issue tracking system

1 Introduction

Software engineers tend to reuse the knowledge from previously made Architec-
tural Design Decisions (ADDs) [14], such as ADDs on components design (e.g.
through patterns ([6])), technology ADDs [22], and ADDs on tactics to address
quality requirements (e.g. authentication mechanisms as security tactics) [2].
For instance, software engineers can learn from the drawbacks (e.g. performance
issues) of solutions decided in previous ADDs. The re-use of knowledge from
previous ADDs could help software engineers to effectively design new systems
and mitigate risks.

While re-using ADDs could be useful in practice, empirical studies show
that software engineers do not commonly document ADDs [14]. For instance,
researchers proposed a wide variety of tools to manage and document ADDs

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
B. Tekinerdoğan et al. (Eds.): ECSA 2023, LNCS 14590, pp. 390–405, 2024.
https://doi.org/10.1007/978-3-031-66326-0_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-66326-0_24&domain=pdf
http://orcid.org/0009-0000-7944-1746
http://orcid.org/0000-0002-6638-3732
https://doi.org/10.1007/978-3-031-66326-0_24

Maestro: A Tool for Finding and Exploring ADDs in Issue Trackers 391

[7,26,27]. However, software engineers still tend to maintain their knowledge
on ADDs in their head (i.e. tacit) without explicit documentation [7]. On the
other hand, software engineers communicate and discuss ADDs informally to
resolve issues (e.g. new features1 or improvements2) in issue tracking systems
(e.g. Jira) [3,20]. We call issues containing such discussions architectural issues.
The discussions on ADDs in architectural issues contain useful knowledge, which
software engineers could potentially re-use to make new ADDs.

While architectural issues could potentially be useful for software engineers,
they are not tagged by software engineers [20], which make them hard to find and
explore in between the vast majority of issues on programming and bugs. There-
fore, researchers utilised different approaches (e.g. machine learning [3], source
code analysis [20], and qualitative analysis [20]) to find and explore architectural
issues, each with different pros and cons. However, the diversity of the differ-
ent approaches require researchers and practitioners to execute each approach
separately, and possibly manually combine their results to effectively find and
explore architectural issues. To execute each approach separately is a complex,
error prone and time-consuming process, which require expertise in different
fields like machine learning and qualitative analysis.

In this paper, we propose Maestro: An open source tool3 to find and explore
ADDs in issue tracking systems. Maestro combines four different approaches to
find and explore ADDs in a single process: keyword-based searches, deep learn-
ing, qualitative analysis, and statistical analysis. In addition, Maestro allows
importing results from other approaches such as source code analysis. In Mae-
stro, we distinguish between different types of ADDs according to Kruchten et al.
[12]: existence (component related), executive (process and technology related),
and property (quality related). Maestro is designed to be extensible and easy
to use for both researchers and practitioners. For instance, software engineering
researchers can train and run deep learning models without expertise on pro-
gramming deep learning models. Maestro can be deployed remotely or locally,
which provides flexibility for researchers and practitioners to run the tool.

The rest of the paper is organised as follows: In Sect. 2, we discuss the require-
ments of Maestro. In Sect. 3, we discuss the architecture of Maestro. We explain
the process of developing Maestro in Sect. 4, and Maestro’s limitations in Sect. 5.
Furthermore, we compare Maestro with related work in Sect. 6. Finally, we con-
clude the paper in Sect. 7.

2 Requirements

Because software engineers informally discuss ADDs in software repositories, it
is challenging for both practitioners and researchers to find ADDs within these
informal discussions. Therefore, Maestro aims to facilitate recovering ADDs from
informal discussions in issue trackers. We envisioned Maestro to be useful for
1 https://issues.apache.org/jira/browse/HADOOP-13944.
2 https://issues.apache.org/jira/browse/CASSANDRA-12245.
3 Available from: https://github.com/mining-design-decisions/Maestro.

https://issues.apache.org/jira/browse/HADOOP-13944
https://issues.apache.org/jira/browse/CASSANDRA-12245
https://github.com/mining-design-decisions/Maestro

392 J. Maarleveld et al.

both researchers and practitioners. Researchers can use Maestro to search for
ADDs for further empirical analysis. Additionally, researchers can use Maestro to
design new deep learning models for finding ADDs in issue trackers. Practitioners
can use Maestro to recover ADDs in order to understand design in pre-existing
systems, and to find knowledge which might be useful in making new decisions
– either when evolving the system or when designing a new system involving
similar challenges. We explain the functional requirements in form of use cases,
as well as non-functional requirements in the following two sub-sections.

2.1 Use Cases

Fig. 1. Use cases supported by Maestro, annotated with relevant actors per use case
(indicated with “P” for practitioner and “R” for researcher). Arrows represent the flow
of data between use cases by showing how results from one use case can be used by
others (e.g. issues annotated in UC2 can be used to train models developed in UC3).

Our vision of Maestro leads to six use cases. The use cases for researchers were
inspired by our own research experiences (see Sect. 4). While Maestro has not
yet been used or evaluated by practitioners, we hypothesise useful use cases for
practitioners, which are based on our practical and research experiences [20,21].
Figure 1 shows an overview of the use cases supported by Maestro and their
relationships. We explain each use-case below:

UC1 Select candidate issues for qualitative analysis: Researchers can
select certain issues to be manually analysed (in UC2). The nomination
of the selected issues can come from different sources: 1) predictions made
by deep learning classifiers (in UC4). 2) issues resulting from keywords-
searching (in UC5). 3) issues identified from other tools (e.g. source code
analysis [18,20]), and 4) issues selected randomly similar to Bhat et al.
[3].

UC2 Annotate issues with types of ADDs: Researchers can analyse
selected issues (from UC1) using qualitative methods (e.g. grounded the-
ory [23]), and annotate them based on the types of ADDs within issues.
Using the tool, multiple remotely located researchers can discuss types
of ADDs using an online conversation associated with each issue. The UI

Maestro: A Tool for Finding and Exploring ADDs in Issue Trackers 393

provides the researchers with the summaries and descriptions of issues,
the assigned types of ADDs, and a discussion thread per issue. The con-
versations between researchers can be used incrementally to create a cod-
ing book for annotating architectural issues. For example, Fig. 2 shows a
snapshot of a conversation between researchers to annotate an issue. Fur-
thermore, the tool supports researchers to calculate agreement measures
such as Kappa [9] to ensure high quality of the qualitative analysis. The
annotated issues can be directly used to develop new deep learning models
(in UC3).

UC3 Develop deep learning models to identify types of ADDs in
issues: First, researchers can design classifiers by choosing from differ-
ent types of feature generation (e.g. Word embedding [15] and Word
Frequency), deep learning architectures (e.g. RNN [8,11], CNN [17], and
BERT [10]), which can be automatically tuned using the flexible user inter-
face of the tool (Fig. 3). Second, researchers can train designed classifiers
using the annotated issues (from UC2), and compute their accuracy (e.g.
in terms of F1 score) to automatically identify types of ADDs in issues.

UC4 Predict types of ADDs in issues: Both practitioners or researchers can
use the trained classifiers (from UC3) to predict types of ADDs in new,
previously un-annotated, issues. Specifically, practitioners can find past
ADDs in issues of existing projects, understand their rationale, and re-use
their knowledge to make new ADDs. Researchers could further analyse
these issues using qualitative analysis (in UC2) or statistical analysis (in
UC6).

UC5 Search for ADDs using keywords: Both practitioners or researchers
can search for architectural issues using classical keywords-based search
(i.e. information retrieval). Moreover, the tool facilitates filtering search
results based on the predictions of classifiers (from UC4). In this way, prac-
titioners could effectively find issues that discuss certain types of ADDs.
At the same time, researchers can focus their qualitative and statistical
analysis (in UC2 and UC6) on issues that discuss certain types of ADDs.
More details can be found in Fig. 4.

UC6 Perform statistical analysis on ADDs: Researchers and practitioners
could perform statistical analysis on architectural issues. For example,
practitioners could determine the duration of issues that involve certain
types of ADDs. This can help practitioners to estimate the duration of
future ADDs based on their type. As another example, researchers might
be interested to determine the amount of knowledge on certain types of
ADDs in the descriptions and comments of architectural issues.

2.2 Non-functional Requirements

In addition to the use cases of Maestro, we also explain the non-functional
requirements (NFRs) with the highest priority. These non-functional require-
ments were based on our research experience and initial trial usage of Maestro

394 J. Maarleveld et al.

The summary (title)
and description of

the issue.
This area is scrollable

for long issues.

Interface to modify
the label assigned

to the issue.

Button to mark the
issue for review,

highlighting it to stand
out to other
annotators.

Chronologically
ordered comment
section for inter-

annotator discussions.

Fig. 2. Screenshot of the annotating screen in Maestro.

(see Sect. 4), and thus describe the NFRs necessary to effectively and efficiently
use Maestro in a research context. We believe that these NFRs also support the
use cases from a practitioners point of view, because the use cases envisioned for
practitioners are a strict subset of the research use cases. We will now describe
every NFR below, with some additional details for each NFR:

NFR1 Extensibility : The development of deep learning models (UC3) and
search approaches (UC5) should be easily extended by developers to
introduce new deep learning algorithms and searching techniques. This

Maestro: A Tool for Finding and Exploring ADDs in Issue Trackers 395

Different tabs
with settings

Classifier Selection
(Feed Forward

Neural Network)

Classifier Settings

Fig. 3. Screenshot of the model creation screen in Maestro

1

2

3

4

1: Search bar with configurable amount of results.
2: Interface to optionally select a model to filter search results based on classifier predictions.
 Users can filter issues based on the three decision types with fitlers "True", "False", and "Eithher".
3: Dropdown menu to select which projects in the database to search for issues.
4: List of search results.

Fig. 4. Screenshot of the search screen in Maestro.

396 J. Maarleveld et al.

is especially important due to the fast evolution of techniques in the
machine learning field.

NFR2 Deployability : Software engineers should be able to easily deploy Mae-
stro’s components without further guide. This is important due to the
complexity of the system, and to facilitate the task for users who want
to use the system without extending it.

NFR3 Usability : Software engineers and researchers with limited machine learn-
ing knowledge should be able to develop (UC3) and use (UC4) deep
learning models, without further knowledge on programming models or
libraries. This requirement is important, because many software engi-
neering researchers and practitioners are not experts in machine learn-
ing.

NFR4 Performance & Scalability : The system must be able to scale to handle
large amounts (millions) of issues, without experiencing malfunctions or
timeouts. In particular, the size of the workload should not affect the
loading times in the user interface.

NFR5 Interoperability : It should be possible to communicate with Maestro’s
components through standard interfaces without the user interface. This
is important for researchers who might want to query the database or
execute separate components of Maestro.

3 Architecture of Maestro

Maestro consists of four layers, each containing multiple components. The logical
architecture is depicted in Fig. 5, and the physical architecture in Fig. 6. We
explain below each layer in more details:

– The Persistence Layer contains four different databases: 1) a database that
contains data on issues (e.g. summary and description), which we based on
the dataset from Montgomery et al. [16]. 2) a database that contains data
related to the manual annotation of issues (e.g. manual labels and discussions
between researchers), and all deep learning related data (e.g. trained models,
their configurations, performance scores), 3) a database that contains cached
statistics data, and 4) a database for usernames and passwords.

– The Data Access Layer provides secure access to the databases using an
API designed with authentication tactics. Furthermore, it contains compo-
nents that can update the issues database with new issues from issue trackers
(current only Jira is supported) to support the extensibility (NFR1 – Exten-
sibility) of the system. We re-used the component created by Montgomery
et al. [16], and enhanced it to be extensible.
The Data Access Layer can be used by other components inside Maestro,
but also by external components (NFR1 – Extensibility). For instance, a
source code analysers meant to search for architectural design decisions in
issue trackers could use the API in order to mark certain issues as likely to
contain design decisions.

Maestro: A Tool for Finding and Exploring ADDs in Issue Trackers 397

The API for accessing the database also provides pagination endpoints which
allow the user interface to remain responsive and fast, even when dealing
with large amounts of issues. Additionally, the database API uses streaming
responses, which enables only loading part of the data from the database at
a time, while still sending a large collection of data. This lowers the mem-
ory footprint of the program, and allows the API to scale even when large
quantities of data are requested (NFR4 – Performance & Scalability).

– The Processing Layer contains two major components:
1) The Keywords Search Engine provides a centralised API for performing

keyword searches (UC5) using Apache Lucene with additional filtering
based on predictions made by classifiers and issue characteristics (e.g.
number of comments on an issue). The centralised search engine interface
enables the re-use of pre-computed indices for text search using Lucene.

2) The Deep Learning Manager acts as the backend for all deep learning
related functionality outlined in UC2 and UC3. The deep learning was
designed to be extensible (NRF1 – Extensibility) by application of the
factory pattern. In Fig. 5, every “pipeline” makes use of one or more enti-
ties. (e.g. the feature generation pipeline uses feature generator entities).
New entities, such as new feature generators or neural networks types,
can be easily added by adding new entity classes which are instantiated
through factories. By having the available entities and their configuration
options exposed through a public API, other components (i.e. the UI)
can adapt through dynamic run-time introspection and do not have to be
modified to accommodate the addition of new functionality in the deep
learning manager. This loosens the coupling between these components
and improves extensibility (NRF1 – Extensibility) and maintainability
of the system.

– The User Interface provides an interface for the user to fulfil all use-cases
in Sect. 2.1. For instance, to achieve UC3, the UI presents different options
for each deep learning model and provides a user-friendly interface to provide
parameter values (NRF3 – Usability). Through the UI, researchers could
initiate the training of machine learning models, and view accuracy scores in
a concise overview. Moreover, researchers could manually view and classify
issues (UC2). Further details on the UI can be viewed in our video4. The
UI is designed according to the Model-View-Controller (MVC) pattern, and
depends on the processing layer and the data access layer (see Fig. 5). When-
ever possible, the UI uses pagination endpoints from the database API in
order to remain responsive irrespective of the amount of data being worked
with (NFR4 – Performance & Scalability).

Components can be deployed locally or remotely (Fig. 6), allowing data cen-
tralisation and offloading of computationally intensive tasks to other devices. By
using Docker, we also improve cross-platform deployability and make installation
of required software and deployment of Maestro’s components easier (NFR2

4 https://www.youtube.com/watch?v=sztY5it5Lb4.

https://www.youtube.com/watch?v=sztY5it5Lb4

398 J. Maarleveld et al.

– Deployability). Additionally, by separating the components into separate
Docker files, subsets of components can be deployed if desired. This, combined
with the fact that all back-ends components provide APIs, allows the re-use of
Maestro’s components with external tools and scripts (NFR5 – Interoper-
ability).

Presentation Layer

User Interface

Models/Views/Controllers (one of each for each) <<Flask>>

Login StatisticsMachine
Learning

Classification
& Tagging

Keyword
Search

Persistence Layer

User DB Statistics DB ML + Annotation DBIssue DB

Data Access Layer

Database API

Internal Data
Manager

External Data
Retriever

Data Access API
<<FastAPI>>

Processing Layer

Deep Learning Manager

Entities

Pipelines

Training
<<TensorFlow>>

Prediction
<<TensorFlow>>

Feature
Generation

Data
Splitting

Embedding
Generation

Metric
Calculation

Embedding
Generators

Deep Learning Manager Interface
<<FastAPI>

Model
Builders

Feature
Generators Metrics Data

Splitters

Keyword Search Engine

Search Engine Interface
<<FastAPI, Apache Lucene>>

Jira
Instance

Data

Source Code
Analyser

Legend

Layer

High Level
Component

Component
<<Technology>>

Data Store

Invoke/Call

A connection to
 a layer means that
some component
is connected to
all components
(or at least their

interfaces)
in the layer.

Example:
The user interface is

connected to
all components in

the processing layer
(Search Engine

Interface and Deep
Learning Manager

Interface)

Symbols in grey
(filled in) represent

components external
to Maestro.

High Level
Components are

larger components
with smaller

sub-components

Fig. 5. The logical architecture of Maestro.

4 Research Process Leading to Maestro

Maestro is a result of a research project spanning more than 2 years of efforts
([13]) that aims to explore ADDs in issue tracking systems. The four authors

Maestro: A Tool for Finding and Exploring ADDs in Issue Trackers 399

«device»
:Database Server

«Execution Environment»
:Docker

Persistence Layer

Data Access Layer

«device»
:Deep Learning Server

«Execution Environment»
:Docker

Deep Learning
Manager

«device»
:Client Device

«Execution Environment»
:Docker

Presentation Layer

These components are deployed separately, but may be deployed on the same device

«device»
:Seach Engine Server

«Execution Environment»
:Docker

Search Engine

Fig. 6. The physical architecture of Maestro.

of this paper, as well as two other independent researchers, participated in this
project. Our research follows an action research method [1], where researchers
investigated the problem of finding and exploring architectural issues in issue
trackers, evaluated in a research context (in later iterations using Maestro), and
simultaneously developed approaches to find and analyse architectural issues.
Various ideas, insights, and challenges encountered during this research have
resulted into various custom-made solutions which ultimately ended up in the
creation of Maestro. In this section, we will briefly explain the research process
which formed the larger context in which – and as a result of which – Maestro
was developed. This will illustrate what problems Maestro is meant to solve,
how it was conceived from various challenges encountered during research, how
it can improve over other methodologies, and how it can be used in research. In
detail, we followed four phases, each consisting of an action and an evaluation
steps. We explain below each phase and step, and associate them to the use-cases
(UC) in Sect. 2.1:

– Phase 1 - Random sampling to find architectural issues:
Action: We selected a random sample of 400 issues from six different open-
source projects, and analysed them using qualitative analysis [23].
Evaluation: The percentage of architectural issues range between 10–15% of
the random sample, which shows that random sampling is not an effective
approach to find ADDs in issue trackers; Manually finding issues containing
ADDs would be too time consuming for the collection of large datasets.

– Phase 2 - Keywords-search and source code analysis:
Action: Because random sampling was ineffective to find architectural issues,
we experimented with two further approaches: searching using keywords from
literature (UC5), and source code analysis [20]. Using both approaches, we
selected 2179 candidate issues (UC1) from six open source projects from the
Big Data domain (e.g. Apache Hadoop) to be manually analysed using qual-
itative analysis. For each issue, we downloaded its title and description in an
excel sheet, and annotated the types of ADDs in their descriptions accord-
ing to Kruchten et al. [12]: Existence, property and executive. Disagreements
between researchers were discussed in separate meetings.
Evaluation: Keywords searching and source code analysis were effective to find
existence ADDs (precision > 50%), but suffered from low precision to find

400 J. Maarleveld et al.

property and executive ADDs (precision < 20%). Moreover, during the qual-
itative analysis, we realised that it is challenging to annotate large number of
issues using Excel sheets, because some issues are long and contain format-
ting symbols, which cannot be correctly visualised. It was also challenging to
track our discussions on issues during our meetings. These discussions were
important to write and improve our coding book to annotate ADDs in issue
trackers.

– Phase 3 - Machine learning to find architectural issues:
Action: Because keywords-search and source code analysis were not effective
(i.e. low precision) to find property and executive architectural issues, we
trained different deep learning models to automatically classify architectural
issues (UC3). We then used the model with the best accuracy (i.e. “BERT”
model) to predict the types of issues (UC4), which have not been previously
manually analysed. Accordingly, We sorted the issues identified from “BERT”
model depending on the confidences obtained from the model to analyse man-
ually (UC1). We developed the user interface of the tool to display and sort
list of issues based on the confidences generated by deep learning models.
Furthermore, we developed a dedicated user interface to annotate and tag
issues based on the types of ADDs in their description (UC2).
Evaluation: The tool showed significant usefulness to annotate issues, because
researchers (allocated remotely) could directly view, discuss and classify issues
in one process. According to our experience, using the tool was better than
relying on excel sheets, especially in visualising long and complex issues. More-
over, the tool allows to discuss issues, and instantly add issues to the training
set without any need to run other scripts or upload data, which prevent
faults such as forgetting to include issues or inserting duplicate issues (i.e.
the tool provides a consistent overview of all labelled issues for all users).
Additionally, during annotations, the tool allows adding tags to issues, which
helped us to mark issues that require a second opinion on their classification,
and enabled us to track information about who annotated which issues, and
how these issues were found (e.g. using keywords searching – UC5). This
tagging functionality helped us to more easily identify groups of potentially
miss-annotated issues. Furthermore, the UI brings notable enhancements to
train deep learning models. Previously, we had to manually create configu-
rations for each model, which was error-prone and tedious. However, the UI
now clearly presents all available options for each model to facilitate creation,
training and evaluation. Using this new functionality of the tool, we performed
UC2-UC4 in 3 iterations to expand our dataset to reach 2210 architectural
issues and 2903 non-architectural issues. The deep learning models had a pre-
cision (sometimes far) exceeding 50% for finding issues containing executive
and property ADDs, making deep learning an effective method to find such
ADDs.

– Phase 4 - Find architectural issues from different domains:
Action: In the previous phases, we explored ADDs in six open-source projects
from the Big Data domain. In this phase, we explore ADDs in projects from
different domains other than Big Data. Thus, we re-used a recent dataset

Maestro: A Tool for Finding and Exploring ADDs in Issue Trackers 401

from Montgomery et al. [16], which contains more than 2.7 million Jira issues
from 1352 projects that belong to six different domains including Big Data,
Cloud Computing, SOA, and DevOps. We trained and executed the best
performing model (i.e. “BERT”) to identify architectural issues and predict
the types of ADDs in all issues in the dataset (UC4). We also developed a
statistical analysis functionality in the tool (UC6) to visualise the types of
ADDs in the different domains, as well as the characteristics of architectural
issues such as time to resolve and the amount of discussion in comments.
Evaluation: Using the tool, we automatically identified 250,708 architectural
issues from the six domains. Moreover, we determined the most common
types of ADDs per domain, and compared characteristics of architectural
issues per domain. For example, issues that discuss property ADDs were
most involved and took longer time to resolve. The statistical functionality
in the tool (UC6) shows its usefulness to explore ADDs in a massive number
of architectural issues.

5 Limitations

In this section, we will cover some of the limitations of Maestro, as well as some
possible proposals for improvements. We came up with these limitations by 1)
considering the degree to which Maestro fulfils our desired requirements, and 2)
comparing the workflow in Maestro with our old workflow using spreadsheets
(see Sect. 4), focusing on the quality attributes expressed in our non-functional
requirements.

– Functionalities
Currently Maestro is limited to importing issues from Jira issue trackers. We
aim to expand the scope of Maestro to import issues from other issue trackers,
such as Git issues or Bugzilla.

– Extensibility
While the deep learning manager was specifically designed to be extensible,
the search engine does not fulfil this requirement to the same degree. Thus,
refactoring of the search engine is required to make it extensible and flexible
for changes.

– Deployability
Maestro can be deployed using Docker, which enables a fairly platform-
independent and quick deployment. However, the setup process is still fairly
involved, requiring manually executing separate steps, which could be auto-
mated in a single process.

– Usability
Few functionalities (e.g., importing issues from Jira, calculating Kappa, and
adding custom tags to issues) cannot be directly executed from the user
interface and require calling API functions and scripts. These functionalities
require separate user interfaces.

402 J. Maarleveld et al.

– Performance & Scalability
The deep learning manager is, as is the nature of deep learning, a resource
intensive component. In some cases, this is exacerbated by the use of sub-
optimal data representations (e.g. dense versus sparse arrays), and lack of
streamed feature generation and learning (i.e. all data is loaded into memory
at once). Both these things could be changed to improve scalability.

One final potential limitation, unrelated to our non-functional requirements,
is the lack of evaluation by practitioners. Specifically, we have no prior empirical
evidence – and have not yet evaluated – how practitioners would benefit from
Maestro’s functionalities, how they would benefit from the recovered ADDs from
issue trackers.

6 Related Work

Several traditional architectural knowledge management tools have been pre-
viously proposed [24]. These tools store and document ADDs in repositories
and templates, which need to be manually populated. On the other hand, our
proposed tool Maestro focuses on ADDs discussed in issue tracking systems.

The closest tool to Maestro is ADeX [4], which can classify architectural issues
using machine learning. Moreover, ADeX can recommend developers for making
certain ADDs based on personal expertise. While both tools ADeX and Maestro
aim to find and explore ADDs in issue trackers, our proposed tool Maestro is
different from ADeX in the following points:

– Maestro allows researchers to apply qualitative analysis (in UC2), and add
manually classified issues to the training dataset. Moreover, Maestro sup-
ports keywords-based searches (in UC5), which allows researchers to easily
expand their dataset of architectural issues through a snowballing process.
This process is not supported by ADeX.

– Maestro provides a user-friendly UI to train and evaluate new deep learn-
ing models (in UC3 and UC4), which can help researchers to evolve models
for classifying architectural issues. This flexibility is not provided by ADeX,
which provides pre-trained machine learning models for classification. The
accuracy of the pre-trained model is fixed based on Bhat et al. [3].

– Maestro has been evaluated on a large dataset of issues with 2.7 million issues
from different domains, which show its scalability and usefulness to run on
projects from different domains. In contrast, ADeX has been applied on two
open source projects.

– Maestro is open source5 and is designed to be extended by other researchers
or practitioners. In contrast, the source code of ADeX is not referenced by
the authors of ADeX.

5 https://github.com/mining-design-decisions/Maestro.

https://github.com/mining-design-decisions/Maestro

Maestro: A Tool for Finding and Exploring ADDs in Issue Trackers 403

The authors are not aware of other tools to search for ADDs in software
repositories. However, some approaches have been proposed to find ADDs. How-
ever, they have not been developed into tools. For instance, Shahbazian et al.
[18,19] proposed a machine learning approach to identify ADDs in issue tracking
system. They employed static source code analysis to identify architectural code
changes between different versions of a system, identify commits in which these
changes were introduced, and map these commits to the corresponding issues in
the issue tracker. Shahbazian et al. assumed that these issues contain architec-
tural discussions, and trained their prediction classifier on issues identified using
this described approach. The most important difference with our work, is that
all our issues were manually inspected and annotated. During this process, we
also found that not all architectural changes result in architectural discussions
(also not all architectural discussions lead to architectural code changes).

Other sources have also been explored as sources for architectural knowledge.
In [25], Viviani et al. used machine learning to detect architectural knowledge
in paragraphs of comments in GitHub pull requests. Stack Overflow has also
been explored by various researchers. In [5] automatic mining of discussions on
architectural tactics and quality attributes from StackOverflow was evaluated.
In [21], Soliman et al. developed a search approach for architectural discussions
in StackOverflow posts which is somewhat similar to the approach used by Mae-
stro. Soliman et al. proposed a keyword search, which is then re-ranked based on
predictions made by a classifier which classified posts as either “Pure program-
ming post”, “Technology identification”, “Technology evaluation”, or “Features
and configuration”. This is different from Maestro, because 1) we implemented a
strict filtering and not a re-ranking, and 2) we filter based on the decision types
“existence”, ‘executive”, and “property”.

7 Conclusion

We developed Maestro, an open source tool for finding, and exploring architec-
tural issues that discuss design decisions. Our experience with Maestro showed
its usefulness to find and annotate 5113 issues, and develop deep learning models
that automatically classified 250,708 architectural issues. Contrary to existing
tools, Maestro supports researchers to find and annotate architectural issues
through keywords searching, deep learning models and snowballing. Our future
work focuses on evaluating Maestro with practitioners to evaluate its usefulness
to re-use ADDs from issue trackers. Furthermore, we aim to use Maestro to fur-
ther expand our dataset with new issues from different projects, and different
issue trackers. This can improve the accuracy and generalizability of Maestro.
Finally, at the time of writing, we are working on major refactorings for the
components of Maestro to mitigate some of its limitations.

404 J. Maarleveld et al.

References

1. Baskerville, R.L., Wood-Harper, A.T.: A critical perspective on action research as
a method for information systems research. In: Willcocks, L.P., Sauer, C., Lacity,
M.C. (eds.) Enacting Research Methods in Information Systems: Volume 2, pp.
169–190. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29269-4 7

2. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison-
Wesley Professional, Upper Saddle River (2003)

3. Bhat, M., Shumaiev, K., Biesdorf, A., Hohenstein, U., Matthes, F.: Automatic
extraction of design decisions from issue management systems: a machine learn-
ing based approach. In: Lopes, A., de Lemos, R. (eds.) ECSA 2017. LNCS, vol.
10475, pp. 138–154. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
65831-5 10

4. Bhat, M., Tinnes, C., Shumaiev, K., Biesdorf, A., Hohenstein, U., Matthes, F.:
ADeX: a tool for automatic curation of design decision knowledge for architectural
decision recommendations. In: 2019 IEEE International Conference on Software
Architecture Companion (ICSA-C), pp. 158–161 (2019). https://doi.org/10.1109/
ICSA-C.2019.00035

5. Bi, T., Liang, P., Tang, A., Xia, X.: Mining architecture tactics and quality
attributes knowledge in stack overflow. J. Syst. Softw. 180, 111005 (2021). https://
doi.org/10.1016/j.jss.2021.111005

6. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-
Oriented Software Architecture, Volume 1: A System of Patterns. Wiley, Chich-
ester, UK (1996)

7. Capilla, R., Jansen, A., Tang, A., Avgeriou, P., Babar, M.A.: 10 years of software
architecture knowledge management: practice and future. J. Syst. Softw. 116, 191–
205 (2015). https://doi.org/10.1016/j.jss.2015.08.054

8. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical Evaluation of Gated Recur-
rent Neural Networks on Sequence Modeling (2014). https://doi.org/10.48550/
arXiv.1412.3555

9. Cohen, J.: A coefficient of agreement for nominal scales. Educ. Psychol. Measur.
20(1), 37–46 (1960). https://doi.org/10.1177/001316446002000104

10. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep
bidirectional transformers for language understanding (2019). https://doi.org/10.
48550/arXiv.1810.04805

11. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9,
1735–80 (1997). https://doi.org/10.1162/neco.1997.9.8.1735

12. Kruchten, P.: An ontology of architectural design decisions in software intensive
systems. In: 2nd Groningen Workshop on Software Variability (2004)

13. Maarleveld, J., Dekker, A.: Developing Deep Learning Approaches to Find and
Classify Architectural Design Decisions in Issue Tracking Systems. M.Sc. thesis,
University of Groningen (2023). https://fse.studenttheses.ub.rug.nl/31368/

14. Manteuffel, C., Avgeriou, P., Hamberg, R.: An exploratory case study on reusing
architecture decisions in software-intensive system projects. J. Syst. Softw. 144,
60–83 (2018). https://doi.org/10.1016/j.jss.2018.05.064

15. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient Estimation of Word Rep-
resentations in Vector Space (2013). https://doi.org/10.48550/arXiv.1301.3781

16. Montgomery, L., Lüders, C., Maalej, W.: An alternative issue tracking dataset of
public Jira repositories. In: Proceedings of the 19th International Conference on
Mining Software Repositories, pp. 73–77 (2022). https://doi.org/10.1145/3524842.
3528486

https://doi.org/10.1007/978-3-319-29269-4_7
https://doi.org/10.1007/978-3-319-65831-5_10
https://doi.org/10.1007/978-3-319-65831-5_10
https://doi.org/10.1109/ICSA-C.2019.00035
https://doi.org/10.1109/ICSA-C.2019.00035
https://doi.org/10.1016/j.jss.2021.111005
https://doi.org/10.1016/j.jss.2021.111005
https://doi.org/10.1016/j.jss.2015.08.054
https://doi.org/10.48550/arXiv.1412.3555
https://doi.org/10.48550/arXiv.1412.3555
https://doi.org/10.1177/001316446002000104
https://doi.org/10.48550/arXiv.1810.04805
https://doi.org/10.48550/arXiv.1810.04805
https://doi.org/10.1162/neco.1997.9.8.1735
https://fse.studenttheses.ub.rug.nl/31368/
https://doi.org/10.1016/j.jss.2018.05.064
https://doi.org/10.48550/arXiv.1301.3781
https://doi.org/10.1145/3524842.3528486
https://doi.org/10.1145/3524842.3528486

Maestro: A Tool for Finding and Exploring ADDs in Issue Trackers 405

17. Ren, X., Xing, Z., Xia, X., Lo, D., Wang, X., Grundy, J.: Neural network-based
detection of self-admitted technical debt: from performance to explainability. ACM
Trans. Software Eng. Methodol. 28(3), 15:1–15:45 (2019). https://doi.org/10.1145/
3324916

18. Shahbazian, A., Kyu Lee, Y., Le, D., Brun, Y., Medvidovic, N.: Recovering archi-
tectural design decisions. In: Proceedings - 2018 IEEE 15th International Confer-
ence on Software Architecture, ICSA 2018, pp. 95–104 (2018). https://doi.org/10.
1109/ICSA.2018.00019

19. Shahbazian, A., Nam, D., Medvidovic, N.: Toward predicting architectural signifi-
cance of implementation issues. Proceedings - International Conference on Software
Engineering pp. 215–219 (2018). https://doi.org/10.1145/3196398.3196440

20. Soliman, M., Galster, M., Avgeriou, P.: An exploratory study on architectural
knowledge in issue tracking systems. In: Biffl, S., Navarro, E., Löwe, W., Sirjani,
M., Mirandola, R., Weyns, D. (eds.) ECSA 2021. LNCS, vol. 12857, pp. 117–133.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86044-8 8

21. Soliman, M., Rekaby Salama, A., Galster, M., Zimmermann, O., Riebisch, M.:
Improving the search for architecture knowledge in online developer communities.
In: 2018 IEEE International Conference on Software Architecture (ICSA), pp. 186–
18609 (2018). https://doi.org/10.1109/ICSA.2018.00028

22. Soliman, M., Riebisch, M., Zdun, U.: Enriching architecture knowledge with tech-
nology design decisions. In: 2015 12th Working IEEE/IFIP Conference on Software
Architecture, pp. 135–144 (2015). https://doi.org/10.1109/WICSA.2015.14

23. Stol, K.J., Ralph, P., Fitzgerald, B.: Grounded theory in software engineering
research: a critical review and guidelines. In: Proceedings of the 38th International
Conference on Software Engineering. ICSE ’, pp. 120–13116, New York, NY, USA.
Association for Computing Machinery (2016). https://doi.org/10.1145/2884781.
2884833

24. Tang, A., Avgeriou, P., Jansen, A., Capilla, R., Ali Babar, M.: A comparative
study of architecture knowledge management tools. J. Syst. Softw. 83(3), 352–370
(2010). https://doi.org/10.1016/j.jss.2009.08.032

25. Viviani, G., Famelis, M., Xia, X., Janik-Jones, C., Murphy, G.C.: Locating latent
design information in developer discussions: a study on pull requests. IEEE
Trans. Software Eng. 47(7), 1402–1413 (2021). https://doi.org/10.1109/TSE.2019.
2924006

26. Weinreich, R., Groher, I.: Software architecture knowledge management
approaches and their support for knowledge management activities: a systematic
literature review. Inf. Softw. Technol. 80, 265–286 (2016). https://doi.org/10.1016/
j.infsof.2016.09.007

27. Weinreich, R., Groher, I., Miesbauer, C.: An expert survey on kinds, influence
factors and documentation of design decisions in practice. Futur. Gener. Comput.
Syst. 47, 145–160 (2015). https://doi.org/10.1016/j.future.2014.12.002

https://doi.org/10.1145/3324916
https://doi.org/10.1145/3324916
https://doi.org/10.1109/ICSA.2018.00019
https://doi.org/10.1109/ICSA.2018.00019
https://doi.org/10.1145/3196398.3196440
https://doi.org/10.1007/978-3-030-86044-8_8
https://doi.org/10.1109/ICSA.2018.00028
https://doi.org/10.1109/WICSA.2015.14
https://doi.org/10.1145/2884781.2884833
https://doi.org/10.1145/2884781.2884833
https://doi.org/10.1016/j.jss.2009.08.032
https://doi.org/10.1109/TSE.2019.2924006
https://doi.org/10.1109/TSE.2019.2924006
https://doi.org/10.1016/j.infsof.2016.09.007
https://doi.org/10.1016/j.infsof.2016.09.007
https://doi.org/10.1016/j.future.2014.12.002

Industry Track

Demeter: An Architecture for Long-Term
Monitoring of Software Power

Consumption

Lylian Siffre1, Gabriel Breuil1, Adel Noureddine2(B) , and Renaud Pawlak3

1 Constellation, Saint-Cloud, France
lylian.siffre@impakt.io, gabriel.breuil@dlr.de

2 Universite de Pau et des Pays de l’Adour, E2S UPPA, LIUPPA, Pau, France
adel.noureddine@univ-pau.fr

3 Cinchéo, Paris, France

renaud.pawlak@cincheo.com

Abstract. Quantifying and long-term monitoring of the energy con-
sumption of software in end-user computers is a complex task. It brings
multiple technical and sociological challenges. End users need to visu-
alize their energy consumption and get a per-software feedback about
their energy impact to adapt their software usage towards a greener app-
roach. In this paper, we present our monitoring and feedback architec-
ture: Demeter. Our distributed approach monitors energy consumption
per application on runtime, provides end users with immediate feedback
through a graphical user interface, and delayed feedback through an anal-
ysis email notification. We illustrate our approach with a two-week study
of software usage of three different user profiles in a corporate environ-
ment.

Keywords: Power Monitoring · Measurement · Energy
Consumption · Long-term monitoring · Distributed Architecture ·
Software Engineering

1 Introduction

Information and Communications Technology (ICT) has direct, indirect, and
extended effects. The direct effects are the production, use, and disposal of hard-
ware while the indirect effects are the effects of use (induction and obsolescence)
and the extended effects (rebound and emerging risks) [8]. The indirect impacts
are due to the abstract representation of software, API, browsers, networks, vir-
tualization, and the offshoring of the manifold data centers over the world [3,9].
Thus, one has to evaluate how much is ICT energy consuming and what are the
solutions to reduce its energy consumption. The impact of ICT is already at 4%
of the total worldwide energy consumption, more than civil aviation [6]. It is
expected that in 2030 the energy consumption of ICT will triple [13].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
B. Tekinerdoğan et al. (Eds.): ECSA 2023, LNCS 14590, pp. 409–425, 2024.
https://doi.org/10.1007/978-3-031-66326-0_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-66326-0_25&domain=pdf
http://orcid.org/0000-0002-8585-574X
https://doi.org/10.1007/978-3-031-66326-0_25

410 L. Siffre et al.

Basic variants of energy consumption monitoring software, such as the task
manager, are available on modern OS to inform qualitatively on the software
energy consumption. Unfortunately, the given data are not always accurate nor
specific. In the past ten years, scientists and practitioners have focused their
research on developing more elaborate energy-probing software. Johann et al. [12]
discussed the importance of using a generic metric to quantify energy consump-
tion. They suggest two methods: 1) a white-box method consists in measuring
the energy consumption of the source code and 2) a black-box method consists in
measuring the energy consumption of the whole software. The latter allows one
to perform benchmark and individual measurements on computers. Two major
issues arise from the existing energy probing software: 1) they only quantify the
energy consumption of a specific group of software [5,11,16] or of the general
energy consumption of a computer without software specification, and 2) the
probing software is not hardware specific. Even though the CPU is well known
to be energy consuming, it is essential to consider the energy consumption of
every hardware component [4,11,16].

Most recent monitoring software at the component and application levels,
such as Jolinar and PowerJoular [10,15], are capable of monitoring hardware
components for a limited number of applications (typically one application or
process), and are primarily available on server environments or Linux systems.
In particular, existing monitoring solutions are either limited in capabilities (i.e.,
only monitoring specific hardware components or a particular software), or can-
not scale up for multi-days or weeks of monitoring (i.e., huge data collected,
high CPU or energy impact of the monitoring tool, invasive monitoring inter-
face, etc.). Moreover, end users tend to be less savvy and more reluctant to install
monitoring software on their computers. The difficulty is in convincing users and
administrators alike to deploy a monitoring software. Our goal is summarized
in two main objectives: 1) provide a long-term monitoring software (days and
weeks measurements), and 2) provide energy feedback to users with fine gran-
ularity (per-application and per-hardware component). Our presented software
architecture, Demeter, implements these two objectives and allows practitioners,
researchers, and industrial managers to study the energy impact of devices and
users, and encourage eco-friendly software usage behavior.

In this article, we first present Demeter’s architecture and its energy con-
sumption models in Sect. 2. Then we present, in Sect. 3, a use case scenario using
Demeter and aiming towards studying the energy impact of users’ software usage
in a corporate environment. Finally, we conclude in Sect. 4.

2 Architecture of Demeter

In this section, we present Demeter’s architecture. The intended purpose is to
develop a probing software capable of monitoring the energy consumption of
various applications. Demeter interacts with the end user (who can view its power
consumption and get immediate or delayed feedback), and with applications and
the OS in order to collect statistics of usage and estimate energy consumption.

Demeter 411

Demeter focuses on four criteria:

– simplicity fosters clear code comprehension, effortless software usage and
installation, and streamlined data utilization.

– energy efficiency aims to ensure the software produces accurate results while
minimizing energy consumption.

– adaptability refers to the capacity of the architecture to accommodate a
diverse spectrum of use cases, ensuring its suitability for a wide range of
applications.

– and lightness entails minimizing the reliance on external libraries and pro-
ducing lightweight output files.

We model the architecture of Demeter using the C4 software architecture
model1. The system context diagram of Demeter is presented in Fig. 1, showing
the interactions between the end user, applications, the operating system, and
Demeter itself.

Fig. 1. System context diagram of Demeter architecture

Figure 2 presents the container diagram of Demeter with its three main parts:

– Monitoring Application (MA): responsible for the usage and power moni-
toring of every application and hardware component. It collects data from
running applications and the OS and provides the results to the graphical
user interface and to the reporting server.

– Graphical User Interface (GUI): a graphical interface software allowing per-
application visualization to end users, aggregated statistics, and historical
power usages.

1 https://c4model.com/.

https://c4model.com/

412 L. Siffre et al.

Fig. 2. Container diagram of Demeter architecture

– Reporting Server (RS): responsible for analyzing long-term power data, pro-
viding weekly summaries and notifications to end users about their energy
usage and impacts.

Figure 3 presents the component diagram of the Monitoring Application. Each
hardware component has a dedicated software component implementing the rel-
evant sensors to collect usage or power data, and its associated power formulas
and models to estimate its power consumption. An additional component is also
implemented to collect processes and applications information and usage, and a
utility component manages the input/output of the application and communi-
cations with the Remote Server. Demeter’s architecture is OS-agnostic, but our
initial implementation only targets Microsoft Windows as it is the most used
desktop OS in corporate environments.

2.1 Monitoring Application Implementation

This section describes the implementation of the Monitoring Application (the
source code is available under an open source license [2]), and the tradeoffs we
made to accommodate the four criterion.

Demeter 413

Fig. 3. Component diagram of Demeter’s Monitoring Application

To satisfy the simplicity criterion, we decided to develop a one-agent probing
software. Thus a non-Object-Oriented Programming (OOP) approach seems to
be more suitable, reducing the memory footprint of Demeter and the cost of
object creation and management.

Motivated by the energy efficiency criterion, we programmed in C++ since
it is ranked among the most energy efficient programming languages [17].

To accommodate to most use cases, according to the adaptability criteria,
each data source is handled in an independent file, thus no side effect on the
software can be expected when adding or removing a data source. The behavior
of Demeter is based on a unique periodic while loop for which the time between
two iterations of this loop is at least an interval long. It will sequentially collect
data from all activated sources (i.e., calls to a function).

To ensure a light and low external dependency software and satisfy the light-
ness criteria, we prioritized on using system APIs. For instance, gathering mem-
ory, disk and CPU data is done through calls to the Windows Win32 API2.

2 https://learn.microsoft.com/en-us/windows/win32/api/.

https://learn.microsoft.com/en-us/windows/win32/api/

414 L. Siffre et al.

However, for network and CPU energy data collection, we must rely on third
party drivers as described in the next paragraphs.

CPU: The CPU is the most consuming computing component (besides the dis-
play) in a laptop without a dedicated graphics card [14]. There are two major
ways to monitor CPU energy consumption from a computer: 1) using a power
meter and applying a statistical approach to isolate the CPU energy, or 2) using
a mathematical model to estimate the CPU energy consumption and of appli-
cations [7,15].

Implementation: In Demeter, the energy consumption is collected through Run-
ning Average Power Limit (RAPL) and Intel Power Gadget API (IPG). They
are model-based software and are precise enough to rely on [18]. We define the
CPU percentage usage of a process as in Eq. 1.

U = (
tuser + tkernel

ttotal
)/ncores (1)

Where ncores is the CPU’s core amount, tuser is the duration during which the
process runs in user mode, tkernel is the duration during which the process runs
in kernel mode and ttotal is the duration during which the CPU is active and
idle. These values are retrieved from PSAPI3. In Eq. 1, the sum between tkernel
and tuser corresponds to the invested CPU time for a process. To avoid having
values above 100%, it is required to divide by ncores.

Hard Drive: Modern hard drives use different technologies, such as in SSD or
mechanical drives. Even drives with the same technology have different read and
write operation costs. In our probe, we base our disk model on hardware spec-
ifications provided by manufacturers in order to estimate the disk energy con-
sumption. For instance, in our experiments, we use the NVMe KBG40ZNS512G
NVMe KIOXIA 512 GB disk, where the manufacturer provides detailed infor-
mation about read and write costs [1].

Implementation: We use the read and write performance power ratio to calculate
the disk energy consumption, in addition to the idle power consumption. This
ratio is usually provided by manufacturers of modern disk drives. In addition,
if the sequential read and write performance power ratio is also given, we take
this ratio into consideration as it is more aligned with disk operations.

Network: Our aim is to probe the energy consumed by the network interface
controller as Demeter will only estimate the energy consumed by the computer
and its components.

Implementation: Gathering the bandwidth for every process is done using the
Npcap driver4. Npcap sniffs and reads the content of every packet passing
through a network interface. Every available network interface of the computer is
3 https://learn.microsoft.com/en-US/windows/win32/psapi/psapi-functions.
4 https://npcap.com.

https://learn.microsoft.com/en-US/windows/win32/psapi/psapi-functions
https://npcap.com

Demeter 415

then opened and sniffed. For each process, the upstream and downstream band-
widths are gathered by our packet parser, using Npcap. The network energy
consumption of a given software is the sum of its processes energy consump-
tion. In our approach, for each packet, we increase the bandwidth counter of the
port it goes through by the size of the packet. For every loop iteration, ports
are mapped to the corresponding process that has opened the port. The corre-
sponding process accounts for each and every bit that has gone through the port
since the last loop iteration.

We base our model on data from Ethernet transceiver’s data sheet of man-
ufacturers. In particular, most transceiver can negotiate multiple bitrates, such
as 10/100/1000 Mb · s−1, each with its own energy consumption.

WatchDog: Demeter has to control its CPU usage to have the smallest impact
on the system. Our CPU consumption regulator is called WatchDog (WD), which
can be activated or deactivated by the user.

Implementation: The WatchDog will pause Demeter’s activity if it becomes too
CPU-consuming. The calibration of the WD is based on the CPU average con-
sumption of Demeter over the first hour. It pauses the software for one minute
if it detects an over-consumption (i.e. if its energy consumption is higher than
three times the energy mean value during the calibration hour). Pausing has
consequences as data gathering and exporting are stopped. As the network is
sniffed by our parser, all data is lost during the pause. The CPU and disk data
are not impacted as they are probed continuously by external software. All net-
work consumption data are lost, but the CPU energy consumption data is not
because it is probed through IPG. Disk transfer data is metered by the oper-
ating system (Windows) and stored in counters. Therefore, pausing does not
affect disk consumption data. We discuss the impact of our WatchDog function
in Sect. 2.3.

2.2 Data Feedback

In this section, we discuss the two types of feedback Demeter proposes. Data can
be viewed in real-time or aggregated over time, both bringing different insights.
To leverage all the benefits of collecting and processing data, we decided to
exploit both real-time data and aggregated data. These two types of feedback
are described in the next two sections.

Immediate Feedback Through a Graphical User Interface (GUI): The
GUI (shown in Fig. 4) aims to give immediate feedback to users as Demeter is
also meant to be used by non-technical end users. The GUI is desktop application
relying on the monitoring data provided by the Monitoring Application.

The GUI allows the user to create their own dashboard by adding, moving,
and removing graphics. The graphics can be configured with two main parame-
ters: the program to plot and the resource to plot. The user has the possibility

416 L. Siffre et al.

to display its real-time energy consumption, the cumulative energy consumption
of an hour of the day, and the cumulative energy per day of the current week.

Fig. 4. Screenshot of Demeter’s GUI

The GUI allows end users to monitor the power consumption of all applications.
For each application, users can monitor real-time power consumption, the his-
torical power evolution (through time), and aggregated statistics about power
usage. The flexibility of the GUI (per-application and system-wide measure-
ments and statistics), allows end users to customize the interface according to
their desires and needs, thus allowing a personalized approach with the tool and
in regards to power consumption. We argue that such a relationship where the
user feels empowered in freely and easily choosing what to follow might lead to
better engagement with power efficiency software usage best practices, and thus
to an overall reduction of power consumption.

Demeter 417

Delayed Feedback Through Cloud Notifications: The third part of Deme-
ter is the Remote Server (RS). The server component is responsible for: 1) stor-
ing all power data sent by the Monitoring Application for all related users (for
instance, one RS can handle all users in an office, a company, or a building); 2)
analyzing per-user and cross-user power consumption patterns and trends, and
providing an overview of a population’s power profiles (for example, through
a dashboard); and 3) sending recurrent notifications to users with a summary
of their power consumption along with trends and recommendations for power
reductions. For instance, an email notification could be sent to users in a cor-
porate environment with the power analysis of their consumption of the prior
week.

In the next section, we validate our architecture and power models, then
present a real-world experiment scenario using Demeter to monitor users’ soft-
ware and energy usage in a corporate environment.

2.3 Validation

In this section, we validate our architecture, in particular the monitoring applica-
tion, in accordance with the four criteria. Demeter uses Intel’s APIs to estimate
the power consumption of the CPU, and we use existing state-of-the-art power
models for the other hardware components. Therefore, we consider that Demeter
provides accurate power readings as far as Intel’s API and existing power models
are accurate.

The simplicity of Demeter is shown in the simple installation and usage of its
monitoring application. The latter is built where each power model component
is self-sufficient with no dependencies on other power models. Thus, it is sim-
ple to add a new energy consumption model of another hardware component.
The application only depends on two external libraries: Npcap and Intel Power
Gadget.

We perform benchmark tests using SilverBench5 on a web page on Firefox.
The benchmark is an online multi-core CPU benchmark that uses JavaScript
and lasts around 10 min. All other applications and services are stopped during
the benchmark session. Demeter’s monitoring is adaptable as data is collected in
a variable interval. This interval is configurable by the user, and we evaluate the
value of the smallest interval that gives accurate data and is also long enough
for the runtime calculations of Demeter to finish. We calculate the mean value
and the standard deviation of the duration of a probing and writing loop during
one benchmark with the following configuration, no WD, 5-s time step. We then
obtain a time length tloop such that:

tloop = 1.97 ± 1.46 s (2)

The benchmark test lasted 8min 57 s and 106 measurements are listed. Four
have lasted more than five seconds (5.78 s, 6.27 s, 5.97 s, and 5.07 s). We can assess

5 https://silver.urih.com.

https://silver.urih.com

418 L. Siffre et al.

that the lowest recommended monitoring interval is five seconds. A smaller time
interval would not increase the accuracy of the measurements.

The energy efficiency of Demeter is analyzed through an empirical validation
of its various configurations: the use or not of the watchdog (WD) function
and the duration between two measurements (5 s, 30 s, and 60 s). We repeat the
experiment 20 times with each configuration. In Table 1, we gather the mean
values of the total energy (Etot), power consumption (P), and size of the output
file (size). We also calculate the related standard deviations for each mean value
(σEtot

, σP, and σsize). The total energy and power consumption are given for
Demeter and for the Firefox web page on which the benchmark is launched.

Table 1. Mean values of the total energy (Etot) and power (P) with their respective
standard deviations (σEtot

and σP) for the benchmark test on Firefox and with six
configurations on Demeter – 5-s, 30-s, 60-s, WD and 5-s, WD and 30-s, WD and 60-s
step.

Configuration Etot [Wh] σEtot
[Wh] P [W] σP [W] size [Ko] σsize [Ko]

Demeter

WD - 5 s 21.65 · 10−3 9.27 · 10−3 143.82 · 10−3 59.81 · 10−3 621.00 43.17

WD - 30 s 3.07 · 10−3 0.51 · 10−3 20.98 · 10−3 3.10 · 10−3 104.30 3.98

WD - 60 s 2.08 · 10−3 0.54 · 10−3 14.26 · 10−3 4.02 · 10−3 56.10 3.56

WD - 5s 10.33 · 10−3 4.20 · 10−3 71.45 · 10−3 28.28 · 10−3 184.13 60.87

WD - 30s 3.42 · 10−3 1.39 · 10−3 23.02 · 10−3 9.85 · 10−3 86.80 12.79

WD - 60s 2.49 · 10−3 1.31 · 10−3 17.42 · 10−3 9.80 · 10−3 45.15 5.42

Benchmark test on Firefox

WD - 5 s 6.86 0.67 46.56 8.12

WD - 30 s 6.95 0.27 47.80 4.98

WD - 60 s 6.61 0.35 47.44 6.08

WD - 5 s 7.05 0.18 49.02 2.50

WD - 30 s 6.61 0.58 44.99 8.31

WD - 60 s 6.61 0.53 46.61 7.37

The larger the time step between two measurements, the lower the energy
consumption of Demeter. We see in Table 1 that the 60-s configuration is less
consuming than the two others. Indeed, Demeter is consuming Etot(60 s) = 2.08 ·
10−3 Wh while it consumes Etot(30 s) = 3.07 · 10−3 Wh and Etot(5 s) = 21.65 ·
10−3 Wh for the two other configurations, respectively. We observe a similar
behavior concerning the different time steps when Demeter is used with the WD
function. The WD function allows Demeter to go into sleep mode if its energy
consumption is too high and so it artificially increases the time step of the
software. Therefore, we observe, for the same time step, a decrease in the energy
consumption of Demeter when the WD function is activated. For example, in the
case of a 5-s configuration, Demeter consumes Etot(WD−5 s) = 10.33 · 10−3 Wh

Demeter 419

when the WD is activated while it consumes Etot(5 s) = 21.65·10−3 Wh without.
Since the total energy decreases when the time step increases and the duration
of the benchmark tests are the same, it is clear that the power related to the
energy consumption of Demeter decreases as well.

When the WD puts Demeter in sleep mode, we miss data on the energy
consumption of the network and of the hard disk. This is why the total energy
of the Firefox web page consumes less energy than when the WD is not activated,
but we still get the same order of magnitude. The benchmark test consumes with
and without the WD function for a 60-s configuration Etot(WD−60 s) = 6.61Wh
and Etot(60 s) = 6.61Wh, respectively. As Intel Power Gadget probes the energy
consumption of the CPU, and even if the data are not collected by Demeter, IPG
still stores the monitored values. Whensoever Demeter will collect the CPU’s
energy, it will be the exact energy consumption. However, it is not possible to
recover the energy consumption related to the network during the activation of
the WD. Thus, we have a less accurate measurement when the duration of the
step increases and with the frequency of WD activations.

Finally, the lightness of Demeter is validated where an increase in the time
length or the activation of the WD function reduces the number of measure-
ments and therefore reduces the size of the output files. When the WD function
is not activated, we observe a decrease of 6 and 12 times the weight of the out-
put file when the time step is of 30 and 60 s compared to a time step of five
seconds, respectively. If the WD function is activated, the weight of the output
file decreases of 2 and 4 times when the interval step is of 30 and 60 s compared
to a time step of five seconds, respectively. This is due to the fact that with
bigger sampling, the probabilities to exceed the WD threshold are greater.

3 Long-Term Monitoring Preliminary Study of Software
Energy Consumption in a Corporate Environment

We present in this section the effect of the usage on the energy consumption
of applications. We first determine good practices on the energy consumption
of applications, then we examine their impacts during a two-week experiment
on the overall energy consumption and on user behavior. For our study, we
implement the Monitoring Application and the GUI, but we did not implement
the Remote Server.

3.1 Green Good Practices

To determine precise energy consumption good practices, we measure the energy
consumption of specific application usages on a laptop6. We evaluate the energy
savings that can be made when reducing the quality of a YouTube video, reducing
the quality of music streaming on Spotify, having the lowest possible number of
opened tabs on Google Chrome, and deactivating the camera on Teams.

6 Dell Latitude 5420.

420 L. Siffre et al.

Watching YouTube videos: All running applications were closed except Deme-
ter and a YouTube web page on Chrome. We launched the first 30 min of the
following YouTube video7. We measured the energy consumption of Chrome for
three video resolutions: 160p (E = 27.445mWh), 480p (E = 28.425mWh), and
4K (E = 211.773mWh). We observe that the energy consumption related to the
video resolution at 160p and 480p are in the same order of magnitude while the
energy consumption at 4K is 7.7 and 7.45 times higher, respectively. Since we do
not measure the energy consumption of the GPU, we underestimate the overall
energy consumption. We conclude that reducing the video resolution from 4K
to 480p helps in reducing energy consumption.

Music Streaming: All applications have been closed except for Demeter and
Spotify. We played each of these two tracks once for 30 min8,9. We measured the
energy consumption of Spotify for two different audio quality: low (24Kbits.s−1,
E = 7.563mWh) and very high (320Kbits.s−1, E = 12.141mWh). We conclude
that decreasing the quality helps in reducing the overall energy consumption of
Spotify of 4, 578mWh.

Browsing Webpages on Chrome: We measured and compared the energy con-
sumption of two different scenarios: 1) every minute we refresh one tab, in a
round-robin cycle, while the 14 others are idle; and 2) every five minutes we
open the tab of Wikipedia’s random page10 and close the previously browsed
ones. We did both measurements during 30 min each. We observe that scenario
1 consumes E = 30.649mWh, and scenario 2 consumes E = 17.993mWh. There-
fore, we saved 12, 656mWh thanks to the scenario 2.

Videoconferencing on Teams: We started two 30-minute meetings on Teams, one
with the cameras of both users on, and the one with cameras off. The experiment
during which the cameras were activated had an overall energy consumption of
E = 1 123.405mWh while the latter consumed E = 164.059mWh. Therefore,
the deactivation of both cameras allowed a decrease in energy consumption by
a factor 6.8 and we saved ΔE = 959.346mWh.

3.2 Impact of the Good Practices During a Two-Week Experiment

We showcase the importance of our approach in a two-week experiment, studying
the impact of the recommended good practices on the energy consumption and
sustainability awareness of 3 corporate users. We run Demeter for two weeks
on three laptops (Dell Latitude 5420) for 3 different user profiles: user 1 is a
project leader in digital marketing, user 2 is a help desk technician, and user 3
is a researcher in Green IT. The three users performed their day-to-day tasks at
work as usual.
7 youtube.com/watch?v=XVkADAwOXnU, accessed 04/26/2023.
8 open.spotify.com/track/2QJx8IgKSFfbMQDKxMUioZ?si=13b3e7896d82491e.
9 open.spotify.com/track/3KtsRijwp8KunCRYlOdWEi?si=373f58f7accb47ba.

10 https://en.wikipedia.org/wiki/Special:Random.

https://www.youtube.com/watch?v=XVkADAwOXnU
https://open.spotify.com/track/2QJx8IgKSFfbMQDKxMUioZ?si=13b3e7896d82491e
https://open.spotify.com/track/3KtsRijwp8KunCRYlOdWEi?si=373f58f7accb47ba
https://en.wikipedia.org/wiki/Special:Random

Demeter 421

During the first week, no specific instructions have been given to the users.
Then, users were briefed about sustainability software good practices before the
second week. Users finally had to report how they used Teams, Spotify, and
Chrome during the two weeks.

Reading HD
Writing HD
CPU

.Upload Net
.Download Net

En
er

gy
 [

%
]

En
er

gy
 [

%
]

1st week

CHROME TEAMS

En
er

gy
 [

%
]

User 2

User 1

2nd week

User 3

1st week 2nd week

Date [dd/mm] Date [dd/mm]
29/1128/11 30/11 01/12 02/12

100

40

60

80

20

0

100

40

60

80

20

0 21/11 22/11 23/11 24/11 25/11

29/1128/11 30/11 01/12 02/12

100

40

60

80

20

0

100

40

60

80

20

0 21/11 22/11 23/11 24/11 25/11

29/1128/11 30/11 01/12 02/12

100

40

60

80

20

0

100

40

60

80

20

0 21/11 22/11 23/11 24/11 25/11

Date [dd/mm] Date [dd/mm]
29/1128/11 30/11 01/12 02/12

100

40

60

80

20

0

100

40

60

80

20

0 21/11 22/11 23/11 24/11 25/11

29/1128/11 30/11 01/12 02/12

100

40

60

80

20

0

100

40

60

80

20

0 21/11 22/11 23/11 24/11 25/11

29/1128/11 30/11 01/12 02/12

100

40

60

80

20

0

100

40

60

80

20

0 21/11 22/11 23/11 24/11 25/11

Fig. 5. Stacked bar chart of the energy consumption [Wh] of Chrome (on the left) and
Teams (on the right) during two weeks for three users detailed by electric components
(Hard-disk reading and writing phases, CPU, Network upload and download phases

In Fig. 5, we gather the percentage of the energy consumption per day and
per component for users 1, 2, and 3, and for Chrome and Teams. We observe that
the CPU consumption embodies the total energy consumption. The CPU energy
is higher than 99.93% of the total energy for both applications. The upload and
download stream is lower than 0.068% of the total energy. The reading and
writing phase of the hard disk is the least consuming part of the laptop since
their energy consumption is lower than 0.002%.

Chrome and Teams Evaluation: In Fig. 6 is gathered the total energy con-
sumption for Chrome and Teams. Only user 1 listened to music on YouTube
(720p in the first week and 140p in the second). The user 1 had an average of
10 tabs opened per day in the first week, and 2 to 3 tabs per day in the sec-
ond week. He did a one-hour meeting on Google Meet on Chrome without the
camera turned on during the second week (on 01/12 and 02/12). No significant
variation is observed in Fig. 6 between the two weeks.

Thus, an increase of the total energy (Etot = 1.26Wh) is noticed in the
second week in regard to the first one. User 2 had a more constant usage of
Chrome. During the first week, the user had an average of 10 tabs opened per
day, and in the second week, the user tried to close the tabs as soon as possible.
No meeting was scheduled, and the user did not listen to music on his laptop. It
led to a saving of the total energy of E = 2.36Wh. User 3 listened to music on
YouTube (720p in the first week, 140p in the second week), and had an average

422 L. Siffre et al.
To

ta
l E

ne
rg

y
[W

h]
To

ta
l E

ne
rg

y
[W

h]
To

ta
l E

ne
rg

y
[W

h]

1st week

CHROME TEAMS

User 2 User 2 User 2 User 2

User 3

User 1 User 1 User 1 User 1

2nd week

User 3

1st week 2nd week

Date [dd/mm] Date [dd/mm]
29/1128/11 30/11 01/12 02/12

10

4

6

8

2

0

10

4

6

8

2

0 21/11 22/11 23/11 24/11 25/11

29/1128/11 30/11 01/12 02/12

10

4

6

8

2

0

10

4

6

8

2

0 21/11 22/11 23/11 24/11 25/11

29/1128/11 30/11 01/12 02/12

10

4

6

8

2

0

10

4

6

8

2

0 21/11 22/11 23/11 24/11 25/11

Date [dd/mm] Date [dd/mm]
29/1128/11 30/11 01/12 02/12

10

4

6

8

2

0

10

4

6

8

2

0 21/11 22/11 23/11 24/11 25/11

29/1128/11 30/11 01/12 02/12

10

4

6

8

2

0

10

4

6

8

2

0 21/11 22/11 23/11 24/11 25/11

29/1128/11 30/11 01/12 02/12

10

4

6

8

2

0

10

4

6

8

2

0 21/11 22/11 23/11 24/11 25/11

User 3 User 3

Fig. 6. Total energy consumption [Wh] of Chrome (on the left) and Teams (on the
right) during two weeks for users 1, 2, and 3.

of 10 tabs opened per day in the first week while it was around 3 tabs per day in
the second week. User 3 did a videoconference on 25/11 with the camera turned
on and screen sharing while no meeting was done on the second week on Google
Meet on Chrome.

Besides the last days of each week, we see a noticeable variation in the second
week which is presumably due to the advised usages. We observe a strong differ-
ence between these two days leading to a total saving of E = 9.79Wh between
the two weeks.

On 21/11 and 25/11, user 1 did a videoconference with the camera turned
on for 45 min and 2 h 45, respectively. Videoconferencing has been done without
the camera on 22/11 (3 min), 23/11 (7 min), and 02/12 (1 h 11 min). We observe
that the second week is less energy-consuming. The most significant effect is the
use of the camera on 21/11 and 25/11 while it has not been used on the one-
hour meeting the 02/12. Thus, it reduces the Teams total energy consumption of
E = 14.42Wh. User 2 did a videoconference of 22 min on 22/11 with the camera
while on the 21/11 (1 h 08 min), 23/11 (1 min), 25/11 (1 h 19), 28/11 (18 min),
29/11 (23 min), 30/11 (2 h 02), 01/12 (11 min), and 02/12 (1 h 35 min) the user
did a videoconference without the camera.

Therefore, Teams increases its energy consumption of E = 2.95Wh on the
second week compared to the first one. User 3 had a similar use of Teams during
both weeks. The user did videoconferences with the camera turned on during
both weeks. They were on 21/11 (10 min), 24/11 (1 h), 25/11 (2 h 45 min), 28/11
(1 h), 01/12 (1 h), and 02/12 (1 h). Since the usage of Teams was similar in both
weeks, we cannot spot significant differences. Teams energy consumption of the
second week is lower by E = 0.69Wh than the first week. Overall, it remains
quite similar to the first week. We observe that the use of the camera has an
effect on energy consumption of Teams when doing videoconferences. Moreover

Demeter 423

closing tabs and reducing the quality of the music on YouTube and Spotify have
a significant impact on the energy consumption of Chrome.

1st week 1st week 1st week

User 2User 1

2nd week 2nd week 2nd week

User 3

En
er

gy
 [

W
h]

En
er

gy
 [

W
h]

Date [dd/mm] Date [dd/mm] Date [dd/mm]

21/11 22/11 23/11 24/11 25/11

25

10

15

20

5

0

29/1128/11 30/11 01/12 02/12

25

10

15

20

5

0

21/11 22/11 23/11 24/11 25/11

25

10

15

20

5

0

29/1128/11 30/11 01/12 02/12

25

10

15

20

5

0

21/11 22/11 23/11 24/11 25/11

25

10

15

20

5

0

29/1128/11 30/11 01/12 02/12

25

10

15

20

5

0

Fig. 7. Energy consumption [Wh] per application (Explorer is yellow, Teams is purple,
Chrome is blue, and the total energy consumption of the computer is gray) during two
weeks for users 1, 2, and 3. (Color figure online)

Total Evaluation: Figure 7 shows the energy consumption of users 1, 2, and 3
during two weeks, with the total energy of all applications (in gray), of Chrome
(in blue), of Teams (in purple), and of the Windows Explorer (in yellow, a file
manager in Windows).

Teams and Chrome represent a significant part of the overall energy con-
sumption of a computer for these three users. In the first week, the sum of both
applications is 57% (User 1), 48% (User 2), and 90% (User 3) of the overall
energy consumption while in the second week, they represent 40% (User 1), 57%
(User 2), and 37% (User 3) of the overall energy. Since Teams was less solicited
for User 1 (no camera) during the second week, a reduction of energy is detected.

During the first week, Teams represent 24% of the total energy consumption
while it represents 12% in the second week. Users 2 and 3 used Teams more
during the second week which lead to an increase in energy consumption. It
represents 30% (User 2) and 35% (User 3) of the overall energy in the first
week while it represents 43% (User 2) and 25% (User 3) in the second. Finally,
we see for users 1 and 3 that on 28/11 there is an energy consumption peak,
Etot = 12.35Wh (User 1) and Etot = 21.76Wh. (User 3). This is due to the
usage of Windows Explorer, while its energy consumption is very low during the
other days.

As we didn’t collect specific and detailed software usage (through our tool or
the questionnaire), it is difficult to analyze why we have this peak for a specific
application on 28/11. However, Demeter allows users and system administrators
to get an insight into software energy consumption for multiple days and weeks,
and therefore identify energy leaks or abnormal energy behavior.

424 L. Siffre et al.

3.3 Discussions and Limitations

We recommended good practices for users to modify their software behavior in
order to evaluate their impact on the application’s energy consumption.

All of the recommendations were simple to follow for all three users and did
not require significant changes in their workflows. However, some actions were
more bothering for users, such as closing the browser’s tabs. Since some users
are not used to frequently close their tabs, they had to constantly be aware and
remember they have to close unused tabs.

This constant awareness might either fade and certain users stop applying the
recommendations, or it might turn into a habit. A similar conclusion is brought
on the deactivation of the camera which is not a systematic habit for some users.
Moreover, this action involves other users who would like to keep their camera
activated or wish to see the face of the speaker.

We also found that the two easiest recommendations to follow were reduc-
ing the music and the video quality. Both recommendations required only some
actions at the beginning (such as changing YouTube’s parameters). A longer
experiment might give us a wider overview of the impact of good practices rec-
ommendations on the software’s energy consumption and on user behavior.

Our study and our approach have a few limitations:

– Our study only consisted of three users. Although different in their user profile
and role in the office, they all worked for the same company.

– The experiment lasted for two weeks, with the first week serving as a control
study, and the second week aimed to study the impact of the green recommen-
dations. Although we monitored software energy constantly for two weeks, we
argue that we need to analyze usage for a longer period of time, in particular
to study if behavioral changes are kept on the long run.

– Our study is the first essay into understanding user software usages in an
office environment, and therefore we did not follow field studies protocol (no
control group, no randomization of groups, low number of participants, etc.).
However, we monitored users in normal usage for the first week, serving as a
control week, and we monitored three different user profiles.

4 Conclusion and Perspectives

We presented Demeter, a software architecture capable of energy consumption
long-term monitoring of software. We developed Demeter in accordance with four
criteria: simplicity, energy efficiency, adaptability, and lightness. We conducted a
real world experiment with three users in a corporate environment for two weeks.
We observed a significant difference in energy consumption after providing users
with green software good practices.

From our perspectives, we aim to reduce even further the dependencies of
our probe and improve its own performance. We aim to conduct a multi-month
study of multiple users in a large corporate environment using Demeter, with
a goal to provide insights into their energy patterns, impact, and acceptance of
green recommendations and actions.

Demeter 425

References

1. Delivering improved performance and power efficiency with next-generation
BG4 series client NVMeTM SSDs. https://europe.kioxia.com/content/dam/kioxia/
shared/business/ssd/client-ssd/asset/whitepaper-cSSD-BG4.pdf. Accessed 06 Oct
2022

2. Demeter GitHub repository. https://github.com/Constellation-Group/Demeter
3. Bieser, J.C.T., Hilty, L.M.: Assessing indirect environmental effects of information

and communication technology (ICT): a systematic literature review. Sustainabil-
ity 10(8), 2662 (2018)

4. Chen, H., Wang, S., Shi, W.: Where does the power go in a computer system:
experimental analysis and implications. In: 2011 International Green Computing
Conference and Workshops, pp. 1–6. IEEE (2011)

5. Dick, M., Kern, E., Drangmeister, J., Naumann, S., Johann, T.: Measurement and
rating of software-induced energy consumption of desktop PCs and servers. In:
EnviroInfo, pp. 290–299 (2011)

6. Efoui-Hess, M.: Climate crisis: the unsustainable use of online video. The Shift
Project, pp. 1–36 (2019)

7. Flinn, J., Satyanarayanan, M.: PowerScope: a tool for profiling the energy usage
of mobile applications. In: Proceedings of the Second IEEE Workshop on Mobile
Computing Systems and Applications, WMCSA 1999, February 1999, pp. 2–10
(1999). https://doi.org/10.1109/MCSA.1999.749272

8. Hankel, A., Heimeriks, G., Lago, P.: A systematic literature review of the factors
of influence on the environmental impact of ICT. Technologies 6(3), 85 (2018)

9. Horner, N.C., Shehabi, A., Azevedo, I.L.: Known unknowns: indirect energy effects
of information and communication technology. Environ. Res. Lett. 11(10), 103001
(2016)

10. Islam, S., Noureddine, A., Bashroush, R.: Measuring energy footprint of software
features. In: 2016 IEEE 24th International Conference on Program Comprehension
(ICPC), pp. 1–4. IEEE (2016)

11. Jagroep, E., van der Werf, J.M.E., Jansen, S., Ferreira, M., Visser, J.: Profiling
energy profilers. In: Proceedings of the 30th Annual ACM Symposium on Applied
Computing, pp. 2198–2203 (2015)

12. Johann, T., Dick, M., Naumann, S., Kern, E.: How to measure energy-efficiency of
software: metrics and measurement results. In: 2012 First International Workshop
on Green and Sustainable Software (GREENS), pp. 51–54. IEEE (2012)

13. Jones, N.: The information factories. Nature 561, 163–166 (2019)
14. Mahesri, A., Vardhan, V.: Power consumption breakdown on a modern laptop. In:

Falsafi, B., VijayKumar, T.N. (eds.) PACS 2004. LNCS, vol. 3471, pp. 165–180.
Springer, Heidelberg (2005). https://doi.org/10.1007/11574859 12

15. Noureddine, A.: PowerJoular and JoularJX: multi-platform software power moni-
toring tools. In: 18th International Conference on Intelligent Environments (2022)

16. Ournani, Z.: Software eco-design: investigating and reducing the energy consump-
tion of software. Ph.D. thesis, University of Lille (2021)

17. Pereira, R., et al.: Ranking programming languages by energy efficiency. Sci. Com-
put. Program. 205, 102609 (2021)

18. Rotem, E., Naveh, A., Ananthakrishnan, A., Weissmann, E., Rajwan, D.: Power-
management architecture of the intel microarchitecture code-named sandy bridge.
IEEE Micro 32(2), 20–27 (2012)

https://europe.kioxia.com/content/dam/kioxia/shared/business/ssd/client-ssd/asset/whitepaper-cSSD-BG4.pdf
https://europe.kioxia.com/content/dam/kioxia/shared/business/ssd/client-ssd/asset/whitepaper-cSSD-BG4.pdf
https://github.com/Constellation-Group/Demeter
https://doi.org/10.1109/MCSA.1999.749272
https://doi.org/10.1007/11574859_12

Experience of the Architectural Evolution
of a Big Data System

Felipe Cerezo and Belén Vela(B)

VorTIC3 Research Group, Universidad Rey Juan Carlos (URJC), Madrid, Spain
jf.cerezo.2019@alumnos.urjc.es, belen.vela@urjc.es

Abstract. This paper presents the evolution of a hybrid Big Data architecture
over 7 years to adapt to changes in user requirements and technological evolution.
This architecture is developed and used by one of the main telco companies in
our country. Currently, the result of the presented work is used in many projects
providing key information for the operation of the company.

We describe the initial architecture, its main shortcomings, and the current
architecture as well as the challenges we met in the process. The main lessons
learned are related to the need of modularity and flexibility in the architecture of
Big Data systems.

Keywords: Architectural evolution · real-time · batch · Big Data system ·
technological landscape

1 Introduction

Since mid-2016 members of our research group have been collaborating in the develop-
ment of several Big Data projects within one of the main telecommunications operators
in our country, with more than 20 million customers. In this paper we will show the
evolution over 7 years of the software architecture used for these Big Data projects
to adapt it to new system requirements that were appearing, to overcome the detected
shortcomings and to tackle the evolution of the relevant technologies.

Currently the result of our work is used in 21 projects with more than 130 end users,
providing key information for the operation of the company.

We will start with the initial scenario and the used technologies. We will show how
the architecture has evolved with new requirements, showing the most relevant changes
related to the architectural elements. We present a description of the main changes made
in response to the user needs in chronological order.

Finally, we include a discussion and the main conclusions obtained.

2 Initial Scenario

When these projects started, a standard architecture model was used. It could be con-
sidered a simplification of the NIST model [1]. This architecture has a hybrid model,
combining real time and batch data processing. In this configuration, the information is

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
B. Tekinerdoğan et al. (Eds.): ECSA 2023, LNCS 14590, pp. 426–437, 2024.
https://doi.org/10.1007/978-3-031-66326-0_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-66326-0_26&domain=pdf
http://orcid.org/0000-0002-0128-0783
http://orcid.org/0000-0003-0604-7312
https://doi.org/10.1007/978-3-031-66326-0_26

Experience of the Architectural Evolution 427

received through input files in a storage space, called the Landing Area. These files are
ingested in real time into a Data Bus. This information is read from the Data Bus and
processed both in real time (RT) and batch. The results of this processing are stored in
two separate Data Repositories (RT and batch) that would be accessed by the end user
by means of specific Consumer Tools. We can see this initial architecture in Fig. 1.

This architecture is quite similar to the Lambda architecture [2], but it implements
a little modification: the batch layer does not process all the information from scratch.
This batch process is executed with the information already processed by the speed layer.
With this modification we optimize the use of hardware resources. Any change in the
process to provide new indicators needs only to be done in the real time layer; batch
layer had this information already processed [3].

Fig. 1. Architecture of the initial scenario indicating the used technologies

The Landing Area was implemented with local disks on each server. Kafka [4]was
selected as the Data Bus and Flume [5] was chosen for performing data ingestion in
Kafka. For the data Processing, Apache Storm [6] was used for real-time and long term
batch processing was deferred to Apache Hive [7] (YARN [8] and Tez [9] were used for
process execution). For storing the results, Elasticsearch [10] is used as the repository
for real-time data and HDFS [11] for batch data. To access this information, Kibana [12]
is used as the end-user consumer tool, but only for Elasticsearch. Data stored in HDFS
were not accessed by users at this initial stage of the project.

InFig. 1 highlightedwith green colour,we show the twodifferent hardware clusters of
our system: one only for Elasticsearch (ELK Cluster) and the other (Processing Cluster)
for RT (Flume, Kafka and Storm) and for batch processing (Apache Hive and HDFS).

Initially, the platform architecture was intended to be deployed on-premise, using
our own hardware infrastructure, as opposed to a public cloud or private virtualization
deployment. This customer requirement was justified for different reasons:

• Economic: The customer, being a large operator, already has its own computing
centres. Therefore, installation, maintenance and support costs are not high compared
to the costs of deploying a full Big Data environment without having these facilities.

• Security: The information stored in the system includes calls made by the operator’s
customers. As required by the corresponding legislation, this information must be
stored in a secure manner and accesses must be audited. The customer considers that

428 F. Cerezo and B. Vela

there is a greater security and control if this information does not physically leave its
facilities.

• Performance andControl:The customerwants to obtain themaximumperformance
from the systems used, as well as the greatest possible control and monitoring in case
of performance problems with the hardware.

Finally, we started with 10 servers on-premise (590 TB HDD, 3.3 TB RAM, 680
cores) in this initial scenario.

3 Main Architectural Changes and Evolution

We describe the main changes made in the 7-year of the architectural evolution in
response to user needs and technological requirements. We present them, respectively
affecting: 1) Data repository, 2) Processing elements and 3) Landing area. For each
element, we will discuss the implemented changes in chronological order.

3.1 Evolution of the Data Repository: From One to Several Elements

As can be seen in Fig. 1, the data consumer tool accesses the RT input information
stored in Elasticsearch [12]. This technology has a very good performance as a search
engine and, in our environment, it can handle more than 100 billion documents. It also
has analytical capabilities, aggregations, using different fields or patterns, and some
quite interesting features, such as approximate count distinct and dynamic histograms.
However, Elasticsearch presents relevant limitations in terms of analytical capabilities,
such as not being able to perform joins between indexes [13] or to carry out operations
with different fields of the data.

Therefore, in order to perform this kind of analytical queries, the information is also
stored in a Hive datastore, which behaves as a SQL relational database. The design of
the Hive architecture [14], based on HDFS, allows handling large volumes of data. In
our system we have tables up to 500 billion records. The data are represented with a
snowflake model [15]. With this model, the generated queries perform one or more joins
between the different tables.

Response times for this type of queries in Hive are very long. This is due to Hive’s
own architecture, which divides each query into one or more Map-Reduce operations,
which involve many disk accesses. Therefore, Vertica [16], another database manage-
ment system, was initially used to store a smaller subset of the data. With Vertica we
were able to perform the queries on the snowflake model much faster. However, since
the cost of the required Vertica licenses is high, fully replacing Hive with Vertica was
discarded.

In the resulting architecture, the information is available for the data consumer tools in
three different ways, as can be seen in Fig. 2: 1) Elasticsearch for fast searches and simple
analytics, 2) Vertica for fast queries on a snowflake model, but with a smaller subset
of data, and 3) Hive, with higher response times but capable of handling large volumes
of data with a lower cost. Each consumer tool can only access certain technologies:
Elasticsearch is accessed through Kibana and MicroStrategy has been chosen to access
Hive and Vertica.

Figure 2 shows the evolution of the Data Repositories and Consumer Tools elements.

Experience of the Architectural Evolution 429

Fig. 2. Initial and current versions of the Data Repositories and Consumer Tools

3.2 Evolution of Processing Elements

Real-time applications become more and more relevant: users require information to
be available within seconds or minutes after it is generated. This makes it possible
to react to customers access problems, or to know which telephones are affected at a
specific moment in certain geographical areas during network outages. For this reason,
it was decided to expand the existing hardware. Part of that hardware expansion was
used for the horizontal growth of Elasticsearch and the rest was used to build a new
cluster for batch processing. The initial processing cluster was now only dedicated for
real time processing. In both clusters the technologies used are the same existing in the
initial configuration. With this change the resources used for real-time processing were
decoupled from those used for batch processing.

After this separation into two clusters (batch and real time), the client decided to
incorporate a new real time data source. This source generated a very large volume
of data (400 Gb per day, 2,500 million records). Therefore, additional hardware was
acquired. At the software level, this hardwarewas configured as a new cluster completely
separated from the previous one. This prevented both clusters from competing for the
same resources and allowed them to provide a completely independent service. We can
see the final version of the system in Fig. 3.

Additionally, in the case of a catastrophic loss of the real-time cluster, the batch
cluster is available to perform their operations, as a disaster recovery. This seemed an
unlikely scenario, but it was actually used to perform a migration of the technologies in
the real-time cluster without loss of service.

New services, mainly machine learning, advance analytics and AI start to be in
demand by system users. These services started with the need of information about data
quality (at the syntactic and semantic level) of the existing data, but soon after new
requirements on clustering and segmentation also appeared. These new needs pose new
architectural problems. Frequently these technologies are not familiar to the existing
development and support teams, so they have no or little knowledge of installation and
configuration. Also, different users often need different versions of the tools (such as
Python and data libraries as Pandas), which can be incompatible.

Additionally, we need to ensure that these new services do not interfere with already
existing elements in production. In this context, the most adequate solution would be to

430 F. Cerezo and B. Vela

Fig. 3. Initial and current configuration of the Processing Elements

use containers ormachine virtualization.Using this solution, it is possible to create differ-
ent isolated environments with the tools configured for each use. Using containers, tools
are installed and ready to usewith little or no configuration at all. Using virtual machines,
it is possible to install the tools and do all the experimentation and configuration needed
in them; all of this without interference in production environments.

The introduction of virtualization was motivated by the needs of system users; the
development team also started to use virtualization.

As we have seen, different tools have been introduced throughout the life of the
system. These new tools must be properly and fully validated before being introduced
into the system. Virtualization provides us with an environment to perform the functional
validation of the tools. This can also be used for testing Big Data volumes because more
hardware resources are available. This validation can be done when system users have
less need of resources, e.g. weekends, holidays orwhen users have finished their analysis.

Virtualization has also two additional advantages in our project: first, the capability
to configure and to limit hardware resource usage for every virtualization: different
environments do not compete for these resources. Second, a low time to market: it is
quick and easy to provide to the users with the tools they need.

In summary, the architecture of the processing module has increased in complexity;
from a single cluster to four different clusters: two for real-time, one for batch and a
fourth virtualized cluster, open to any kind of tools.

3.3 Evolution of the Landing Area: Diversification and Securitization

In the initial architecture, the landing area was a storage space for the reception of input
data files. It was composed of local disks where several servers received the input files in
a balanced way using the scp protocol [17] (a widely used mechanism for simplicity in
network routing and security). Initially the received information was composed of CDR
(Call Detail Records) with an uncompressed data volume of 500Gb per day.

Experience of the Architectural Evolution 431

But, as the use of the platform increased, we began to receive additional information
from other sources: alarms, DNS logs, inventories, downloads from different operational
databases, etc. This information was stored in Vertica and Elasticsearch for querying and
was also available as files to be accessed by other users. This way, the system evolved
into a Data Lake [18], where information can freely be accessed and used through a
search engine, a database or directly as files.

So, it is necessary for the Landing Area to evolve from being a set of servers with
local storage to a shared storage space. Therefore, the next proposal was to use HDFS
as shared storage, and several servers that mount HDFS and use a FUSE driver [19]. But
this was not a stable solution as the servers periodically crashed and had to be rebooted.
We found out that this driver is not recommended in production environments [20].

Therefore, we need a new storage sharing element: a NAS (Network Attached
Storage) using NFS to allow servers to offer a file service still compatible with scp.

Moreover, a new source of information had to be included, namely the daily reports
with the setofbox [21] configuration of the operator’s customers. As these reports are sent
to our servers through a direct connection to the Internet, additional security measures
are required. The only allowed operation must be to receive these reports. A new file
reception area, local to each server, is included in the Landing Area. After reception,
files are moved to a shared storage area (Secured Landing). There is a full control over
the files, where only the expected ones are processed.

In summary, the Landing Area, which initially was very simple, has become quite
complex due to the needs of the platform. This evolution is depicted in Fig. 4.

Fig. 4. Initial and current versions of the Landing Area

3.4 Current Architecture

In Fig. 5, we present the current architecture of the system. It is quite clear that compared
to the initial version of the architecture, this one is much more complex.

Another indicator of the increased complexity is the volume of used resources. As
can be seen in Table 1, the hardware resources have been multiplied by a factor between

432 F. Cerezo and B. Vela

Fig. 5. Current version of the architecture of the system

10 and 13, depending on the concrete resource under consideration. It is interesting to
mention that the growth of each of them (servers, cores, RAM and hard disk) has been
very similar. Although it is possible that this is due to a bias of the initially purchased
servers. When acquiring new hardware, the previously deployed servers would be used
as a starting point.

Table 1. Evolution of resources

Resource Initial Current Increase (times)

#Servers 10 103 x 10

#Cores 680 8,000 x 12

RAM (TB) 3.3 41.5 x 13

Hard Disk (TB) 322 3,434 x 11

The complexity not only involves the number of used servers (the highest level)
depicted in Fig. 5. Some of these elements also has several instances or clusters to fulfil
customer needs. These needs include data isolation between different projects and final
end-users, and avoiding competition for resources. We show this complexity in Table 2.
The total number of servers does not add up, because some are used for additional tools
(head nodes for cluster control, Kibana, Microstrategy, MySQL databases).

Table 2. Number of software clusters

Initial Current

Element #Clusters #Servers #Clusters #Servers

Processing Cluster 1 4 3 14

Elasticsearch 1 6 5 47

Vertica - - 2 6

Data Mediation (NiFi) - - 3 12

Virtualized environment - - 2 5

Experience of the Architectural Evolution 433

4 Discussion

The constant evolution of the complexity in the system is mainly caused by the addition
of new user requirements. This is consequence of the well-known of Lehman’s Second
Law (Law of Increasing Complexity) in the context of an analytical system [22]. New
needs for information and analysis arise, either because new data are incorporated or
because new studies are carried out on existing data.

This growth in complexity inherently implies a growth in the required hardware
resources, so it is essential that the tools are able to scale horizontally [23].

Tools do not need to be structured in a monolithic way: one architectural element
does not necessarily correspond to a single technology cluster. In some scenarios, such as
the ones presented here, two separate processing clusters or separate landing areas meet
user requirements better than a single technology element. In the same way, other tools
(Kafka, HDFS, Elasticsearch, etc.) may present similar scenarios: the same architectural
element can be implemented using different clusters or technologies.

A major problem of increasing complexity in a Big Data ecosystem is that the tools
have a very specific scope of use. This is because the volume of data handled forces
both the design and architecture of the tool to focus on some specific functionalities.
The tools can be used for other functionalities, but the large volume of data used will
not allow them to work properly.

For instance, in the case of data repositories, Elasticsearch allows very fast searches
but has very limited analytical capabilities. Hive does not allow fast searches but has
the capability to handle large volumes of data. Vertica has great analytical capabilities
and could be used for fast searches, but would require the creation and maintenance of
indexes, which would not cover more than a few search cases.

Therefore, in the evolution of our Big Data architecture the choice of the right tool
for each functionality has been significant. Experience has shown us that the results are
not good when a Big Data tool is used outside its core functionality.

In this selection of tools there have been four key criteria. First, the tool should
adequately cover the required functionality (e.g. Vertica for fast and powerful analytical
queries). Second, avoid using recently released tools, as it can be very risky since their
evolution is unpredictable. Third, selecting tools that are active and used by the commu-
nity. And fourth, adding only tools that provide a clear benefit, since the maintenance of
many tools is complex and costly.

Architecture should be modular. This is a regular requirement, and part of the
tradition in software architecture, but it is also a specific requirement in this context.
There are two main reasons for this: 1) a modular approach makes easier to support a
healthy system growth, which has been required every time. 2) The constant evolution
of technologies and tools in a Big Data environment is often a driver for the co-evolution
of a specific part of the architecture.

With regard to the former, to integrate a new data flow or a new information analysis,
both the input and output elements should be analysed in a modular approach. Once this
information is available, the interfaces are clearly defined, and the implementation of a
new module can focus on the processing of the information, not on the relationship with
other existing elements.

434 F. Cerezo and B. Vela

This modular mechanism has an additional advantage, as it allows to study the
impact of the new development within the overall system, and mainly the impact on use
of hardware. The modularity makes possible to selectively activate or deactivate parts
of the system in the case of some problem.

Regarding the constant evolution of technologies and tools, and the way in which
they can affect the system, several situations may arise:

• New relevant tools appear, and existing tools continue to be used, even with a similar
purpose. In the context of RT processing, this happens with Apache Storm, Apache
Spark Streaming and Apache Flink.

• A new tool appears that causes an existing tool to “freeze” and to significantly slow
down its evolution. This was the case, in our system, of ApacheNiFi, that has replaced
Apache Flume in new developments.

• A tool becomes stagnant, does not evolve and eventually “disappears”. This was the
case of the once popular Apache Sqoop [24].

Table 3 shows some data that support the above statements. Apache Storm, Apache
Flink and Apache Spark are tools which include batch and streaming capabilities, and
all of them are widely used by many companies. In this context, an older tool is likely
to become more widespread. And even then, currently the number of companies using
Apache NiFi doubles the number of companies using Apache Flume, despite having
appeared three years later. Also, the number of commits on Github, a metric often used
as a measure of the popularity of a technology, is eight times higher.

Table 3. Information about Big Data Apache tools usage, including the date of the first release
on Apache and the number of Github commits in 2022/2023. Sources (at 2023/06/08): (1), https://
enlyft.com/, (2) github.com

Tool #Companies (1) First Apache release #Commits 2022/2023 (2)

Apache Flume 1,000 Jul 2012 183

Apache Nifi 2,458 Jul 2015 1.533

Apache Storm 3,065 Feb 2014 95

Apache Spark 5,257 Apr 2012 4.937

Apache Flink 1,789 Dec 2014 3.931

Modularity helps to manage the complexity caused by the evolution of technologies.
When it becomes necessary to replace an older technologywith amore recent one,we can
control the impact on the overall system. By restricting this impact, it is possible to have
more flexibility in the migration between tools, i.e., it is possible to migrate module by
module or all modules at the same time, in a “big bang” mode. The coexistence between
the new tool and the old one is also possible; the existing modules can remain without
changes, and the new ones can be integrated already using the new tool. This strategy
can not only be applied to the change of a tool, but also allows us to migrate between
different versions of the same tool.

https://enlyft.com/

Experience of the Architectural Evolution 435

Modularity implies that the technologies able to replace each other must be intercon-
nectable. Thus, for example, when Apache Flume is replaced by Apache NiFi to load
files into Kafka or into a database, both tools must be able support this functionality.
Therefore, you must have interoperable and interconnectable interfaces, which can be
used interchangeably.

Considering all of the above, we find that changes in this kind of systems have, as
already implied, two main origins, namely: new user requirements and the technologies
themselves. In the first case, these are not necessarily requirements for new data analyses
or the addition of new data sources. They can have a different nature, such as security
requirements (as during the evolution of the landing area) or virtualization requirements
(as it happened in the processing module).

Therefore, the architecture of a Big Data system can never be considered as some-
thing finished and immutable: on the contrary, it must be flexible. This way, it will be able
to respond to changes that appear over time: the addition of new sources of information,
the integration of new technologies, the total or partial disappearance of existing tech-
nologies, the adaptation to new security requirements, the modification of information
access needs, etc.

5 Conclusions

In this paper we have presented the evolution of a Big Data system during a period
of 7 years. The increase of complexity in the system is evident in the evolution of the
hardware needs. We started with 10 on-premise servers (322 TB HDD, 3.3 TB RAM,
680 cores), and now the system is using 103 servers (3.4 PB HDD, 41.5 TB RAM, 8000
cores). That means an increase of an order of magnitude.

As already noted, there are two main sources for change: new user requirements and
the evolution of Big Data technologies. The current ecosystem is significantly different
from the one existing 7 year ago, which inspired the original design.

Modularity is the main key to handle the increasing complexity of the architecture,
keeping elements isolated and being able to measure and control the impact of changes.

Flexibility is also a very important feature.Weneedflexibility in the architecture to be
able to add new elements and to solve the problems arising from new scenarios proposed
by the client. Flexibility is also necessary to include the new relevant technologies that
appear over time.

With regard to the organization of the project, the main key to success throughout
these years has been the excellent communication and transparency at the technical level
among the project’s stakeholders. In every architectural decisionmade, there was always
a certain degree of uncertainty regarding the impact of changes. A clear and transparent
technical study of the changes done by the stakeholders has made possible to be aware
of their advantages and disadvantages.

Acknowledgments. This work was partially supported by the In-Data (Intelligent data engineer-
ing techniques for a digital society) project (M3036), and the mobiliToo (Intelligent Mobility
Data Platform with a Gender Perspective) project (M3332), funded both by the Rey Juan Carlos
University.

436 F. Cerezo and B. Vela

References

1. Chang, W.L., Boyd, D.: NIST big data interoperability framework: volume 6, big data
reference architecture. Nat. Inst. Standards Technol., USA (2019)

2. Marz, N.: How to beat the CAP theorem. Thoughts from the Red Planet (2011), [Online].
Available: http://nathanmarz.com/blog/how-to-beat-the-cap-theorem.html

3. Cerezo, F., Cuesta, C.E.,Moreno-Herranz, J.C., Vela, B.: Deconstructing the lambda architec-
ture: an experience report. In: 2019 IEEE International Conference on Software Architecture
Companion (ICSA-C), pp. 196–201 (2019). https://doi.org/10.1109/ICSA-C.2019.00042

4. Shapira, G., Palino, T., Sivaram, R., Petty, K.: Kafka: The Definitive Guide, 2nd Edition.
Sebastopol, CA: O’Reilly Media (2020)

5. Flume, A.:Welcome toApache Flume—Apache Flume. https://flume.apache.org/. Accessed
04 May 2023

6. Storm, A.: Apache Storm. https://storm.apache.org/. Accessed 23 Apr 2023
7. Hive, A.: Getting Started - Apache Hive - Apache Software Foundation. https://cwiki.apache.

org/confluence/display/Hive//GettingStarted#GettingStarted-Hive,Map-ReduceandLocal-
Mode. Accessed 20 Apr 20 2023

8. Hadoop, A.: ApacheHadoop 3.3.5 –ApacheHadoopYARN. https://hadoop.apache.org/docs/
stable/hadoop-yarn/hadoop-yarn-site/YARN.html. Accessed 19 May 2023

9. Tez, A.: Apache Tez – Welcome to Apache TEZ®. https://tez.apache.org/. Accessed 19 May
2023

10. Near real-time search | Elasticsearch Guide [master] | Elastic. https://www.elastic.co/guide/
en/elasticsearch/reference/master/near-real-time.html. Accessed 02 May 2023

11. Apache Hadoop 3.3.5 – HDFSArchitecture. https://hadoop.apache.org/docs/current/hadoop-
project-dist/hadoop-hdfs/HdfsDesign.html#Data_Disk_Failure.2C_Heartbeats_and_Re-Rep
lication. Accessed 20 Apr 2023

12. Elasticsearch, Kibana: Explore, Visualize, Discover Data, Elastic. https://www.elastic.co/
kibana. Accessed 11 Jun 2023

13. Elasticsearch, Joining queries | Elasticsearch Guide [8.7] | Elastic. https://www.elastic.co/
guide/en/elasticsearch/reference/current/joining-queries.html. Accessed 09 May 2023

14. Hive, A.: Design - Apache Hive - Apache Software Foundation. https://cwiki.apache.org/con
fluence/display/hive/design#Design-HiveArchitecture. Accessed 09 May 2023

15. Levene, M., Loizou, G.: Why is the snowflake schema a good data warehouse design? Inf.
Syst. 28(3), 225–240 (2003). https://doi.org/10.1016/S0306-4379(02)00021-2

16. Vertica, Enterprise Mode concepts, Vertica 12.0.x. https://docs.vertica.com/en/architecture/
enterprise-concepts/. Accessed 09 May 2023

17. scp (1): secure copy - Linux man page. https://linux.die.net/man/1/scp. Accessed 11 Jun 2023
18. Gorelik, A.: The enterprise big data lake: delivering the promise of big data and data science,

First edition. Sebastopol, California: iO’Reilly Media, Inc (2019)
19. FUSE — The Linux Kernel documentation. https://www.kernel.org/doc/html/next/filesy

stems/fuse.html. Accessed 25 May 2023
20. Cloudera, Configuring Mountable HDFS | 6.3.x | Cloudera Documentation. https://docs.clo

udera.com/documentation/enterprise/6/6.3/topics/cdh_ig_hdfs_mountable.html. Accessed
25 May 2023

21. Rath, K., Wendorf, J.W.: Set-top box control software: a key component in digital video.
Philips J. Res. 50(1), 185–199 (1996). https://doi.org/10.1016/0165-5817(96)81308-8

22. Lehman, M.M.: On understanding laws, evolution, and conservation in the large-program life
cycle. J. Syst. Softw. 1, 213–221 (1979). https://doi.org/10.1016/0164-1212(79)90022-0

http://nathanmarz.com/blog/how-to-beat-the-cap-theorem.html
https://doi.org/10.1109/ICSA-C.2019.00042
https://flume.apache.org/
https://storm.apache.org/
https://cwiki.apache.org/confluence/display/Hive//GettingStarted%23GettingStarted-Hive,Map-ReduceandLocal-Mode
https://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/YARN.html
https://tez.apache.org/
https://www.elastic.co/guide/en/elasticsearch/reference/master/near-real-time.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html%23Data_Disk_Failure.2C_Heartbeats_and_Re-Replication
https://www.elastic.co/kibana
https://www.elastic.co/guide/en/elasticsearch/reference/current/joining-queries.html
https://cwiki.apache.org/confluence/display/hive/design%23Design-HiveArchitecture
https://doi.org/10.1016/S0306-4379(02)00021-2
https://docs.vertica.com/en/architecture/enterprise-concepts/
https://linux.die.net/man/1/scp
https://www.kernel.org/doc/html/next/filesystems/fuse.html
https://docs.cloudera.com/documentation/enterprise/6/6.3/topics/cdh_ig_hdfs_mountable.html
https://doi.org/10.1016/0165-5817(96)81308-8
https://doi.org/10.1016/0164-1212(79)90022-0

Experience of the Architectural Evolution 437

23. Ali, A.H., Abdullah, M.Z.: A survey on vertical and horizontal scaling platforms for big data
analytics. Int. J. Integr. Eng. 11(6), 138−150 (2019). https://doi.org/10.30880/ijie.2019.11.
06.015

24. Apache Sqoop - ApacheAttic. https://attic.apache.org/projects/sqoop.html. Accessed 04May
2023

https://doi.org/10.30880/ijie.2019.11.06.015
https://attic.apache.org/projects/sqoop.html

Parallel and Distributed Architecture
for Multilingual Open Source Intelligence

Systems

Alper Karamanlioglu1,2(B), Gokhan Yurtalan1,3, and Yahya Bahadir Karatas1,2

1 AI Technologies Group, HAVELSAN, 06800 Ankara, Turkey
{alperk,gyurtalan,ybkaratas}@havelsan.com.tr

2 Department of Computer Engineering, Middle East Technical University,
06800 Ankara, Turkey

3 Department of Computer Engineering, Çankaya University, 06530 Ankara, Turkey

Abstract. The proliferation of publicly available information across
multiple languages presents both unique challenges and opportunities for
Open Source Intelligence (OSINT) systems. This paper proposes a novel
architecture for multilingual OSINT that is both parallel and distributed.
The architecture integrates language identification and translation capa-
bilities, enabling it to handle linguistically diverse data by transforming
it into a unified format for efficient analysis. Designed specifically to
address the challenges of parallel and distributed processing in OSINT
systems, this architecture aims to offer scalability and performance ben-
efits when dealing with massive data volumes. Our primary focus has
been on devising strategies and tactics that address these concerns, pro-
viding a robust solution for the collection, processing and analysis of
data in various languages. This work marks a significant step towards
the development of more globally inclusive OSINT systems.

Keywords: data scraping · distributed systems · multilingual data
processing · open source intelligence · OSINT architecture · parallel
architecture

1 Introduction

Open Source Intelligence (OSINT) involves collecting and analyzing information
from publicly available sources to produce actionable intelligence. This intelli-
gence can support a range of domains, including national security, law enforce-
ment and business intelligence. The proliferation of publicly accessible data from
diverse sources, including websites, social media platforms and news articles, has
significantly expanded the potential for deriving valuable predictions through
OSINT. However, this expanded potential also introduces significant challenges.

Among these challenges, the linguistic diversity of the data is particularly
prominent. The Internet, a global platform, hosts content in hundreds of lan-
guages. This reality introduces significant complexity into the processing and
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
B. Tekinerdoğan et al. (Eds.): ECSA 2023, LNCS 14590, pp. 438–450, 2024.
https://doi.org/10.1007/978-3-031-66326-0_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-66326-0_27&domain=pdf
https://doi.org/10.1007/978-3-031-66326-0_27

Parallel and Distributed Architecture for Multilingual OSINT Systems 439

understanding of such data, especially for OSINT systems designed to analyze
and gather intelligence from these vast and diverse sources.

This challenge stems from many existing OSINT systems’ inability to pro-
cess data in multiple languages. These systems are typically designed for specific
languages, limiting their applicability across different linguistic contexts. More-
over, with the growing volume of open-source data, the need for scalable and
efficient processing solutions has become increasingly critical. Clearly, there is a
need for an architecture capable of handling diverse linguistic data in a scalable
and efficient manner.

Our research tackles this challenge by developing a novel architecture for
OSINT systems, designed to effectively process data across multiple languages.
The proposed architecture integrates language identification and translation
techniques, facilitating the conversion of diverse linguistic data into a common
language for streamlined processing and analysis. The architecture offers a solu-
tion that is not only language-independent but also scalable and reliable. Fur-
thermore, it incorporates a continuous data crawling system, complete with a
queue mechanism for managing incoming data, and reliable storage solutions to
ensure data persistence.

The architecture of the system supports various language-specific NLP mod-
els, each specially designed to manage tasks including named entity recognition,
classification, summarization, question answering and sentiment analysis for the
respective language. This multi-model strategy enables the system to adapt flex-
ibly to the content it processes, thereby optimizing both its performance and the
accuracy of its predictions.

Employing parallelism and distribution, this architecture handles data pro-
cessing both efficiently and scalably, underlining these strategies as vital to its
design. Distributing the processing load across multiple nodes allows the system
to manage and process larger data volumes faster. The use of Virtual Private
Server (VPS) machines for web scraping not only enhances the system’s capa-
bilities but also maintains anonymity, an essential aspect of OSINT operations.

1.1 Contributions

Our research advances OSINT systems and the handling of multilingual data in
several key ways:

– We propose a novel architecture for OSINT systems that can effectively han-
dle multilingual data extracted from the scraped content.

– Strategies of parallelism and distribution are employed to enhance the effi-
ciency and scalability of data processing.

– VPS machines are utilized for web scraping, ensuring operational security
and anonymity, which are crucial for OSINT.

This paper presents a novel parallel and distributed architecture aimed at
bridging this gap. The architecture integrates cutting-edge language identifica-
tion and translation technologies, web scraping tools and distributed task man-
agement strategies to handle an extensive range of languages and large data

440 A. Karamanlioglu et al.

volumes. Accordingly, it has the potential to markedly enhance OSINT capabil-
ities by expanding its geographic and cultural scope.

The rest of the paper is organized as follows: Sect. 2 reviews relevant liter-
ature. In Sect. 3, we introduce the proposed architecture in detail. In Sect. 4,
we present a discussion on the implications of the architecture. Finally, Sect. 5
outlines the conclusion and future directions of the paper.

2 Related Work

Multilingual OSINT is an evolving field demanding sophisticated methods and
techniques to navigate the complexities of diverse and dynamic data sources [6].
Despite significant advancements, existing studies have not yet offered a compre-
hensive architecture capable of effectively scaling and managing the evolution of
data sources for language-independent OSINT applications. This paper aims to
address this gap by proposing a novel parallel and distributed architecture for
multilingual OSINT.

Current research in multilingual OSINT focuses on specific aspects of the sys-
tem, such as translation services or individual modules for information extraction
and analysis. These works, while essential, often lack a comprehensive view of
the architectural needs of large-scale, multilingual data processing in OSINT
applications, such as scalability and adaptability.

In one of the earliest studies, Zavarella et al. [21] introduced a system for
information extraction and analysis from multilingual web sources, consist-
ing of modules for language identification, translation, information extraction
and fusion. While this work provides a foundation for multilingual information
extraction, it lacks the provisions for scalability that is required for large-scale
data processing, a crucial aspect of OSINT systems.

Another system, proposed by Steinberger et al. [18], focuses on monitoring
global media coverage of events in various languages using a large-scale news
aggregator. This work is significant in using a news aggregator for monitoring
global media coverage. However, the authors did not thoroughly discuss the
architecture’s scalability and adaptability, aspects which are vital for handling
the growth and evolution of data sources and the ever-increasing data volumes.

More recently, Ranade et al. [14] presented a system specifically for translat-
ing multilingual threat intelligence using deep neural networks, addressing the
need for translation services in private security environments. While this study
highlights the importance of translation services, it is constrained to a specific
application (threat intelligence) and does not propose a broader solution that
could be applicable to a wide range of multilingual OSINT applications.

Quoc et al. introduced UniCrawl [13], an efficient geo-distributed crawler
designed to minimize inter-site communication costs. An independent crawler is
initiated for each site and applies a four-phased routine consisting of generate,
fetch, parse and update. The crawled domain space is partitioned across sites
and their storage and computing resources are federated in order to minimize the
inter-site communication cost. The crawling logic is implemented using Apache

Parallel and Distributed Architecture for Multilingual OSINT Systems 441

Nutch [11]. In order to avoid the duplication of requests to a URL, a caching
solution which replicates the crawled URLs list at all nodes in a site is used.
When a URL is selected in the frontier, it is first checked locally against the
visited URLs. While the proposed solution resulted in a 1.75 times faster crawler
system than the Apache Nutch deployment, this study focuses solely on the
distributed crawling architecture and does not provide any multilingual support.

Bahrami et al. [2] proposed a cloud-based distributed crawler architecture
that runs on Azure Web Services. The Cloud-based web crawler engine (CWCE)
they used leverages Azure Cloud Queue for temporary URL storage and Azure
Cloud Table for permanent page information. The mentioned table is based on
a NoSQL database which allows flexibility without a predefined schema. As a
distribution strategy, they employed the MapReduce programming technique.
This study, much like [13], lacks multilingual support while introducing a well-
architectured cloud-based crawler.

Heydon et al. [8] introduced one of the early scalable and extensible Web
Crawlers which can be scaled up to the entire web. By their definition of exten-
sibility, the system has two major features. Initially, it has the flexibility to
introduce additional features such as incorporating new processing modules to
handle downloaded documents in a personalized manner. Secondly, it can be
effortlessly configured to employ different versions of its key components. For
the deduplication of content, they used checksum based methods like content-
seen test.

While these pioneering studies have laid the groundwork for multilingual
OSINT, they highlight the necessity for a scalable, adaptable and comprehensive
architecture that supports extensive language diversity and data volumes. Our
proposed architecture seeks to address these critical gaps by offering scalable and
efficient processing, language-agnostic design, and enhanced security measures
for comprehensive OSINT applications.

3 Proposed Architecture

Understanding both the requirements and constraints is crucial for evaluating
any architecture. Generally, the fundamental purpose of OSINT is to perform
data acquisition by browsing billions of web URLs with optimum performance.
Sufficient resources are required for this operation. However, increasing the
resources does not always yield optimum results and may even lead to decreased
efficiency. For this reason, there is a need for a strongly scalable system archi-
tecture in accordance with Amdahl’s law [1] with a high speed-up value. In
addition, constraints such as not sending more requests from a client to target
websites during data acquisition and the client’s compliance with politeness rules
highlight the need for parallel programming.

Against this backdrop, the proposed architecture provides a parallel, com-
prehensive and robust solution for efficiently processing and analyzing multilin-
gual data to generate valuable intelligence and predictions from the vast array
of publicly available information. This architecture also leverages various tech-
nologies and methodologies to enhance performance, scalability, reliability and

442 A. Karamanlioglu et al.

anonymity. These are important differentiating features of the proposed architec-
ture, as it provides a practical framework for multilingual OSINT and addresses
vital technical challenges associated with large-scale data processing and analy-
sis. The capabilities of the system for multilingual content handling are shown
in Fig. 1:

Fig. 1. Multilingual content handling.

– Data Acquisition: This initial phase involves scraping web content from
diverse sources. We utilize Scrapy [16], an open-source web crawling frame-
work renowned for its speed and efficiency. Scrapy is one of the ideal choices
for our data acquisition needs as it is especially effective for data mining and
automated testing and can be easily adapted to specific needs. According to
a study by Yang and Thiengburanathum [20], Scrapy exhibits the lowest fail-
ure rate and ranks among the most scalable open-source web crawlers. Addi-
tionally, it includes abstractions that simplify various mechanisms, including
authentication, session management, compression, cookie handling, caching,
user-agent spoofing, concurrency support, crawl depth restrictions and rate
limiting. To supplement Scrapy, we also employ Splash [17]. By using Splash,
we are able to handle complex web content, including JavaScript-based ele-
ments, thereby extending the scope of our data acquisition capabilities.

– Content Parsing: Following data acquisition, the raw HTML content must
be parsed and cleaned to extract valuable textual data. For this process, we
utilize Trafilatura [3]. As a specialized library for extracting text from HTML
and XML documents, Trafilatura enables accurate and efficient distilling of
the raw scraped data into meaningful and usable text [4].

– Language Identification: Upon cleaning the data, the next crucial step is
to identify the language of the content, which is essential for the subsequent
processing and analysis stages. The architecture incorporates FastText [7]
and pycld2 [12] for this purpose. FastText is an open-source library that uses
a neural network-based model for language identification, offering superior
performance even for low-resource languages. Pycld2, on the other hand, is a
Python interface to Google’s language-detection library (CLD2) and provides
a good balance between speed and accuracy. FastText generates a confidence
rate that is generally accurate for language detection. However, this rate may
not be as high for content consisting of mixed languages. Such content can
be fragmented with character offsets of different language parts with Pycld2.
Therefore, parts to be translated into the target language can be prepared.

Parallel and Distributed Architecture for Multilingual OSINT Systems 443

– Language Translation: Following the language identification, the architec-
ture employs OpenNMT [10] for translation. By using OpenNMT, we can
handle a wide range of language pairs and translation requirements, provid-
ing a high level of adaptability for multilingual data processing. This step
converts the text into a common language, facilitating subsequent analysis
and comparison across different languages. Given the security concerns asso-
ciated with OSINT systems, OpenNMT emerges as the most inclusive and
sustainable option, allowing for the training or fine-tuning of models rather
than relying on service-like solutions. Language translation is optional when
the source and target language are the same as shown in Fig. 1.

– Language-Specific NLP: Depending on the identified language, the sys-
tem selects the relevant NLP models for tasks such as named entity recog-
nition, classification, summarization, question answering and sentiment anal-
ysis. The language-specific models generally enable more precise processing
of text data, improving the overall quality of the intelligence and predictions
generated. The selected models can either be developed in-house or sourced
from the HuggingFace library [19], which provides a wide range of pre-trained
models for various NLP tasks.

– Data Distribution and Task Management: The architecture uses Celery
[5], a robust asynchronous task/job manager based on distributed message
passing, to manage the distribution of tasks across multiple worker nodes.
This allows for effective load balancing and parallel processing, significantly
enhancing the scalability and performance of the architecture. Moreover,
Kafka, a distributed event streaming platform, manages high-velocity real-
time data, enhancing the system’s scalability and robustness.

– Data Storage and Management: The processed and translated data is
stored and managed using PostgreSQL, a powerful, open-source relational
database system. This ensures reliable and efficient storage of the large vol-
umes of data handled by the architecture. For real-time data retrieval and ana-
lytics, the system utilizes Redis [15], a high-performance in-memory database
known for its speed and flexibility.

In making the design decisions for this study, we considered interactions
among the system’s building blocks Manager Application, AI Application, Mas-
ter Application and Web Scraper for runtime communication. To describe the
runtime communications of blocks and subsystems, we use the concepts of ser-
vice provision and consumption, as well as item flow interactions. The interaction
diagram of the blocks and subsystems of the entire system is given in Fig. 2. The
master application orchestrates the system, managing both the tasks assigned to
the web scrapers and synchronously sharing content with the manager applica-
tion. The manager application block processes the content to obtain analytical
outputs and assists the AI application in article processing.

Manager application is the orchestrator that coordinates the system context
with the data flow and functional services between the system’s technical build-
ing blocks. It has business logic that meets OSINT functional requirements with
its business building blocks. It is also the interface of the entire system with exter-

444 A. Karamanlioglu et al.

Fig. 2. System Context.

nal systems and the end user. Requests enter the system through the manager
application, which also transmits all outputs aligned with the business goals as
responses. As indicated in Fig. 3, it has bounded context created by query man-
agement, article management, seed URL management, system administration
and duplicate detection modules for the business solutions.

The operator creates the criteria to be searched from open internet resources
through query management. After the slaves complete their task given by the
master application, different responses returned from the master application are
combined with the article management. There may be duplication between the
articles. At this stage, the duplicate detection module assesses the duplication
ratio between articles, presents the results for the operator’s approval and facili-
tates storage decision management. Finally, the seed URL management module
oversees the seed URLs, crucial for query management, and determines the login
information for these URLs. All these issues create the bounded context of the
manager application.

In addition, it has technical system contexts such as Cross-cutting Concerns,
Data Access Layer and Fault Tolerance Layer. Cross-cutting concerns not only
serve modules within the manager application’s bounded context but also bene-
fit other subsystem modules. Since each of them is developed as a component, it
can be used by other components in accordance with aspect-oriented program-
ming [9]. Apart from all this, all domain components in the manager application
manage the data to be stored or read through the data access service. The data

Parallel and Distributed Architecture for Multilingual OSINT Systems 445

Fig. 3. Manager Application System Context.

access service, also known as the persistence framework, acts as middleware
facilitating the storage and retrieval of information between applications and
databases. It acts as an abstraction layer for persistent data, bridging the con-
ceptual and technical differences between storage and usage. Within the scope
of the manager application, data transfer via file server is also planned with the
data access service.

The master application and external systems communicating with the man-
ager application make requests to the system using APIs. Similarly, users make
requests to the system via Graphical User Interface (GUI). Then clients receive
the response to the request through API Gateway, represented as a technical
component. API gateway has significantly contributed to managing, orchestrat-
ing, monitoring and maintaining APIs provided to clients in the system archi-
tecture. Orchestrated APIs are coupled with business logic via Fault Tolerance
Layer rather than directly. The authentication, verification, logging, auditing
and defending cyber-attack for the security of the system are performed by the

446 A. Karamanlioglu et al.

fault tolerance layer. Verified and audited requests passing through the fault
tolerance layer turn into meaningful responses with business logic, represented
as a subsystem in Fig. 3, divided into structures according to principles.

AI application performs the analysis task of interpreting the data it receives
from the manager application with text summarization, text classification, sen-
timent analysis, named entity recognition, question answering, language detec-
tion and language translation models. Models that analyze text may need NLP
features such as tokenization and normalization. The NLP model service pro-
vides these features. All these models need an infrastructure to operate sustain-
ably. The machine learning pipeline provides all infrastructural tools required
for the model to work properly, such as data collection, data verification, feature
extraction, machine resource management, process management, configuration,
deployment and monitoring.

The master application does not collect and interpret information by itself.
Instead, it orchestrates, synchronizes and manages the scraper tasks necessary for
information creation. Briefly, it undertakes the task of master in the master-slave
architecture pattern. It performs all these operations with the task orchestrator,
cache and message broker services it contains, as shown in Fig. 4. The task
orchestrator continuously triggers the slaves by creating tasks in each iteration.
The created tasks are produced to the message broker’s queue and thus the tasks
are distributed asynchronously. Cache is the in-memory database used to store
the contents collected by slaves. The in-memory database acts as short-term
memory, enabling small-scale data manipulations and analyses. For example,
duplicate detection first checks the duplicates of the data in this data store.

The message broker service balances the workload of the slaves, ensuring
instantaneous, efficient system operation and leveraging parallel processing capa-
bilities. As indicated in Fig. 4, message broker distributes tasks simultaneously
by keeping the tasks processed by each VPS in the queue data structure. Tasks
are distributed in configurable batches, not individually, to maximize task pro-
cessing in a single batch and minimize network costs, given that VPSs operate
with minimal resources and maximal internet bandwidth. This design ensures
that the architecture is strongly scaling. Message broker’s distributed task pro-
cessing is initiated via message relay using a middleware agent such as Kafka.
Task processing is performed by the slave(s) responsible for the execution of the
task. Results from task processing can be stored in a backend repository such
as Redis. Task processing can be triggered immediately (real-time) or scheduled
(batch). The system automatically retries failed tasks to ensure robust process-
ing. A complex pipeline of tasks can be handled by deploying tasks to different
hosts. The architecture is based on a pluggable component model. For all these
features, the Celery framework is used in the system of message broker service.
The design of the system allows for robust handling of tasks and ensures reliable
processing even in case of task failures.

Web scraper applications hosted on VPS machines carry out data collection
and scraping operations. These are technically defined as slaves of the master-
slave architecture pattern. They are standalone applications and their packages

Parallel and Distributed Architecture for Multilingual OSINT Systems 447

Fig. 4. Master Application System Context.

(e.g., DLL, Jar) will be deployed and executed in each VPS. The master appli-
cation waits asynchronously to fulfil the scraper tasks that it shares with the
slaves. Slaves will be available for new tasks by transmitting the results of the
tasks they have completed to the master.

All the systems are executed in two different network environments. Envi-
ronment 1 includes main components and the master application in accordance
with the master-slave architecture pattern. It can be run on-premise by the
organization or in the cloud network. Environment 2 includes the slaves of the
master-slave architectural pattern and the message broker that enables these
slaves to work efficiently. Slaves, represented as VPS devices, should work in
an environment different from Environment 1 to avoid leaving a footprint for
organizations. Such configurations ensure the system’s flexibility and scalability,
while also upholding security and privacy standards.

4 Discussion on the Implications of the Architecture

The proposed architecture can handle a significant range of languages, thus
increasing the variety of data sources available. By integrating language identi-
fication and translation technologies, our architecture can process and analyze
content from various sources regardless of the original language. This capabil-
ity is fundamental to the system’s functionality, as it ensures our architecture’s
applicability across a diverse range of contexts and environments. In this way,

448 A. Karamanlioglu et al.

the geographic and cultural reach of OSINT systems broadens and allows for a
more comprehensive and globally inclusive analysis.

One of the defining characteristics of the proposed architecture is its scal-
ability, a feature that significantly differentiates it from other architectures. In
this context, scalability means the architecture can effectively adapt to data
volume or complexity changes. While different architectures may struggle with
scalability, particularly when handling large volumes of multilingual data, our
proposed system addresses this by leveraging multiple VPS for web scraping
and using the message broker for handling distributed scraper tasks. This app-
roach enables our architecture to exploit parallelism and distribution, crucial
elements in handling large-scale data. In addition, tasks are processed in real-
time or in batches for automatically retrying failed tasks and handling complex
task pipelines across different hosts. As a consequence, the functionalities sup-
ported by the distributed architecture using the Celery framework, the message
broker service and VPS machines together, contribute to the overall scalability
and adaptability of the system.

Despite its potential benefits, the proposed architecture has its challenges.
Integrating various technologies and models requires careful management to
ensure seamless interoperability. Moreover, the large-scale handling of multilin-
gual data may also raise issues related to data privacy and ethical considerations
that need to be addressed. It’s crucial to note that the sensitivity and potential
misuse of public data makes it necessary to implement rigorous data protection
measures and ensure the technology’s ethical use. This includes stringent access
controls, privacy-aware processing techniques and careful consideration of the
data sources’ legality and ethics.

5 Conclusion and Future Work

This paper presents a novel parallel and distributed architecture for multilingual
OSINT systems. The architecture combines language identification and transla-
tion technologies, enabling it to handle a wide range of languages and opening up
the potential for more globally inclusive data analysis. It also has a distributed
software architecture with multiple VPS, message broker architectural pattern
and Celery which is used for task management, ensuring efficient and reliable
large-scale data handling.

This work contributes to the ongoing discourse on effectively leveraging the
power of large-scale, multilingual data for intelligence purposes. The study aims
to stimulate further innovation in the design and implementation of OSINT
systems and related applications. This architecture is recommended for organi-
zations needing rapid data acquisition from open sources.

For future work, we plan to develop a dynamic adaptation strategy to enhance
the system’s responsiveness to changes in data volume and complexity. Further-
more, we aim to conduct a comprehensive performance evaluation of the archi-
tecture, including its scalability, fault tolerance and overall effectiveness in gen-
erating valuable predictions from multilingual data sources. Additionally, future

Parallel and Distributed Architecture for Multilingual OSINT Systems 449

efforts will focus on establishing a framework to address privacy and ethical
considerations inherent in the large-scale processing and analysis of multilingual
data to ensure our proposed architecture’s secure and responsible use.

References

1. Amdahl, G.M.: Validity of the single processor approach to achieving large scale
computing capabilities. In: Proceedings of the April 18–20, 1967, Spring Joint
Computer Conference, pp. 483–485 (1967)

2. Bahrami, M., Singhal, M., Zhuang, Z.: A cloud-based web crawler architecture. In:
2015 18th International Conference on Intelligence in Next Generation Networks,
pp. 216–223. IEEE (2015)

3. Barbaresi, A.: Trafilatura: a web scraping library and command-line tool for text
discovery and extraction. In: Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th International Joint Conference
on Natural Language Processing: System Demonstrations, pp. 122–131 (2021)

4. Bevendorff, J., Gupta, S., Kiesel, J., Stein, B.: An empirical comparison of web
content extraction algorithms (2023)

5. Celery (2023). https://docs.celeryq.dev/en/stable/userguide/workers.html.
Accessed 17 May 2023

6. Coleman, S., Secker, A., Bawden, R., Haddow, B., Birch, A.: Architecture of a
scalable, secure and resilient translation platform for multilingual news media. In:
1st International Workshop on Language Technology Platforms, pp. 16–21 (2020)

7. FastText (2023). https://fasttext.cc. Accessed 17 May 2023
8. Heydon, A., Najork, M.: Mercator: a scalable, extensible web crawler. World Wide

Web 2(4), 219–229 (1999). https://doi.org/10.1023/A:1019213109274
9. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An

overview of AspectJ. In: Knudsen, J.L. (ed.) ECOOP 2001. LNCS, vol. 2072, pp.
327–354. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45337-7 18

10. Klein, G., Kim, Y., Deng, Y., Senellart, J., Rush, A.M.: OpenNMT: open-source
toolkit for neural machine translation. arXiv preprint arXiv:1701.02810 (2017)

11. Nutch (2023). https://nutch.apache.org. Accessed 09 Dec 2023
12. PYCLD2 (2023). https://github.com/aboSamoor/pycld2. Accessed 17 May 2023
13. Quoc, D.L., Fetzer, C., Felber, P., Rivière, , Schiavoni, V., Sutra, P.: UniCrawl: a

practical geographically distributed web crawler. In: 2015 IEEE 8th International
Conference on Cloud Computing, pp. 389–396 (2015). https://doi.org/10.1109/
CLOUD.2015.59

14. Ranade, P., Mittal, S., Joshi, A., Joshi, K.: Using deep neural networks to trans-
late multi-lingual threat intelligence. In: 2018 IEEE International Conference on
Intelligence and Security Informatics (ISI), pp. 238–243. IEEE (2018)

15. Redis (2023). https://redis.io. Accessed 17 May 2023
16. Scrapy (2023). https://scrapy.org. Accessed 17 May 2023
17. Splash (2023). https://splash.readthedocs.io/en/stable. Accessed 17 May 2023
18. Steinberger, R., Ehrmann, M., Pajzs, J., Ebrahim, M., Steinberger, J., Turchi, M.:

Multilingual media monitoring and text analysis – challenges for highly inflected
languages. In: Habernal, I., Matoušek, V. (eds.) TSD 2013. LNCS (LNAI), vol.
8082, pp. 22–33. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
40585-3 3

https://docs.celeryq.dev/en/stable/userguide/workers.html
https://fasttext.cc
https://doi.org/10.1023/A:1019213109274
https://doi.org/10.1007/3-540-45337-7_18
http://arxiv.org/abs/1701.02810
https://nutch.apache.org
https://github.com/aboSamoor/pycld2
https://doi.org/10.1109/CLOUD.2015.59
https://doi.org/10.1109/CLOUD.2015.59
https://redis.io
https://scrapy.org
https://splash.readthedocs.io/en/stable
https://doi.org/10.1007/978-3-642-40585-3_3
https://doi.org/10.1007/978-3-642-40585-3_3

450 A. Karamanlioglu et al.

19. Wolf, T., et al.: HuggingFace’s transformers: state-of-the-art natural language pro-
cessing. arXiv preprint arXiv:1910.03771 (2019)

20. Yang, D., Thiengburanathum, P.: Scalability and robustness testing for open source
web crawlers. In: 2021 Joint International Conference on Digital Arts, Media and
Technology with ECTI Northern Section Conference on Electrical, Electronics,
Computer and Telecommunication Engineering, pp. 197–201. IEEE (2021)

21. Zavarella, V., Tanev, H., Linge, J., Piskorski, J., Atkinson, M., Steinberger, R.:
Exploiting multilingual grammars and machine learning techniques to build an
event extraction system for Portuguese. In: Pardo, T.A.S., Branco, A., Klautau,
A., Vieira, R., de Lima, V.L.S. (eds.) PROPOR 2010. LNCS (LNAI), vol. 6001,
pp. 21–24. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12320-
7 3

http://arxiv.org/abs/1910.03771
https://doi.org/10.1007/978-3-642-12320-7_3
https://doi.org/10.1007/978-3-642-12320-7_3

HITA: An Architecture for System-level
Testing of Healthcare IoT Applications

Hassan Sartaj1(B) , Shaukat Ali1 , Tao Yue1 , and Julie Marie Gjøby2

1 Simula Research Laboratory, Oslo, Norway
{hassan,shaukat,tao}@simula.no

2 Section of Welfare Technologies, Oslo Kommune Helseetaten, Oslo, Norway
julie-marie.gjoby@hel.oslo.kommune.no

Abstract. System-level testing of healthcare Internet of Things (IoT)
applications requires creating a test infrastructure with integrated med-
ical devices and third-party applications. A significant challenge in cre-
ating such test infrastructure is that healthcare IoT applications evolve
continuously with the addition of new medical devices from different ven-
dors and new services offered by different third-party organizations fol-
lowing different architectures. Moreover, creating test infrastructure with
a large number of different types of medical devices is time-consuming,
financially expensive, and practically infeasible. Oslo City’s healthcare
department faced these challenges while working with various health-
care IoT applications. To address these challenges, this paper presents
a real-world test infrastructure software architecture (HITA) designed
for healthcare IoT applications. We evaluated HITA’s digital twin (DT)
generation component implemented using model-based and machine
learning (ML) approaches in terms of DT fidelity, scalability, and time
cost of generating DTs. Results show that the fidelity of DTs created
using model-based and ML approaches reach 94% and 95%, respectively.
Results from operating 100 DTs concurrently show that the DT gen-
eration component is scalable and ML-based DTs have a higher time
cost.

Keywords: Healthcare Internet of Things (IoT) · Software
Architecture · System Testing · Digital Twins

1 Introduction

Healthcare Internet of Things (IoT) applications follow a cloud-based archi-
tecture to create an interconnected network with various medical devices and
third-party applications [11]. The primary objective of developing healthcare IoT
applications is to create a central access point for medical professionals, patients,
hospitals, pharmacies, and caretakers to deliver efficient healthcare services. Fail-
ure to provide timely healthcare services may lead to financial and human life
loss. Therefore, automated and rigorous system-level testing of healthcare IoT
applications is essential to ensure their dependability.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
B. Tekinerdoğan et al. (Eds.): ECSA 2023, LNCS 14590, pp. 451–468, 2024.
https://doi.org/10.1007/978-3-031-66326-0_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-66326-0_28&domain=pdf
http://orcid.org/0000-0001-5212-9787
http://orcid.org/0000-0002-9979-3519
http://orcid.org/0000-0003-3262-5577
http://orcid.org/0009-0002-8657-5691
https://doi.org/10.1007/978-3-031-66326-0_28

452 H. Sartaj et al.

This work is conducted with Oslo City’s healthcare department [1], which
is working with various industries to develop healthcare IoT applications to
deliver patients with high-quality services. One of the primary objectives is to
create a test infrastructure for the system-level testing of healthcare IoT appli-
cations. Such test infrastructure requires integrating physical medical devices
(e.g., medicine dispensers) and third-party applications (e.g., pharmacies) with
a healthcare IoT application. A major testing challenge is that healthcare IoT
applications evolve continuously with the addition of new medical devices,
new/updated medical services, and new third-party applications. Integrating
several different types of medical devices from various vendors is time-consuming,
costly, and not a practical solution. Moreover, each third-party application has
a limit on the maximum number of allowed requests for a particular time inter-
val. Testing healthcare IoT applications within the limitations of third-party
applications is challenging.

Several architectures have been proposed in the literature for developing
healthcare IoT applications [21]. A few works also utilize architectures for various
software testing activities, e.g., integration testing [20]. Our work focuses on
designing a test infrastructure architecture to facilitate automated system-level
testing of healthcare IoT applications.

To address the above-mentioned challenges, this paper presents a real-world
test infrastructure software architecture (HITA) designed for healthcare IoT
applications. HITA includes the DT generation (DTGen) and test stubs gen-
eration (TSGen) components to handle the integration of medical devices and
third-party applications. We evaluate HITA’s DTGen component implemented
using model-based and machine learning (ML) approaches. For the evaluation,
we use a medicine dispenser (named Medido [17]) integrated with a healthcare
IoT application as a part of the experimental apparatus provided by Oslo City.
Our evaluation analyzes the fidelity of DT created using both approaches, the
scalability of the DTGen component in operating 100 DTs, and the time cost
involved in generating DTs. The evaluation results indicate that the fidelity of
DTs created using model-based and ML approaches is 94% and 95%, respec-
tively. Results from operating 100 generated DTs concurrently show that the
DTGen component is scalable. Results also indicate that ML-based DTs have
a higher time cost compared to model-based DTs. In the end, we describe our
experiences and lessons learned from applying HITA in a real-world industrial
context.

The remaining paper is organized as follows. The related work is discussed
in Sect. 2. HITA is described in Sect. 3. Evaluation is presented in Sect. 4, and
lessons learned are outlined in Sect. 5. The paper’s conclusion is given in Sect. 6.

2 Related Work

Many works are available related to architectures for healthcare IoT targeting
various aspects. This includes; analysis of IoT architectures for healthcare appli-
cations [21], design patterns for healthcare IoT [18], architecture for intelligent

Healthcare IoT Test Infrastructure Architecture 453

IoT-based healthcare systems [10], architectural design decisions for developing
digital twins of IoT systems [16], a tool for modeling IoT architectures [30], health
monitoring architecture for IoT systems [6], an architecture for IoT-based remote
patient monitoring [2], a requirements-based healthcare IoT architecture [15],
distributed IoT architecture [3], health data sharing architecture [22], analyze
architecture for healthcare IoT system [24], architecture for an IoT-based health-
care monitoring system [19], and architecture for blockchain-driven healthcare
IoT systems [31]. In contrast to the aforementioned works, our work focuses on
developing a test infrastructure architecture for healthcare IoT applications.

Several works are also available targeting architecture-based testing. This
includes; analysis of architecture’s function in software testing [7], architecture-
based test criteria [14], architecture-driven integration testing [20], an architec-
ture for analyzing fault tolerance [8], and reliability assessment using architecture
models [9]. Compared to the above-mentioned works, our work offers a distinct
contribution by presenting a test infrastructure architecture for healthcare IoT
applications, which is designed to facilitate automated system-level testing of
such applications.

Fig. 1. An overview of HITA. The arrow () shows one-way information flow, ()
indicates two-way information flow, () exhibits behavior simulation, and ()
depicts optional information flow.

454 H. Sartaj et al.

3 HITA: An Architecture for Test Infrastructure

3.1 HITA Components

Fig. 1 shows a real-world test infrastructure software architecture (HITA)
designed for healthcare IoT applications. HITA is designed based on two com-
monly used architectural patterns, i.e., collaborative and centralized for health-
care IoT [21]. HITA follows IoT reference architecture [13], which is composed
of an Application Layer including healthcare IoT core and testing process, IoT
Integration Middleware with the DT generation (DTGen) and test stubs gener-
ation (TSGen) components, Gateways, and Device comprising physical medical
devices.

Healthcare IoT Core. The system under test (SUT) is a healthcare IoT appli-
cation core that consists of several web and mobile clients for different users,
such as patients, medical professionals, caregivers, and health authorities. The
primary communication channel for mobile clients (including iPads/Tablets) is
the 4G/5G network due to its availability and access in remote areas. WiFi
is used as an alternative communication channel in rare cases. An important
component of healthcare IoT applications is Application Programming Inter-
faces (APIs) developed according to the Representational State Transfer (REST)
architecture [12]. These REST APIs allow communication among various clients,
third-party applications, and medical devices. The data interchange format used
for this purpose is JavaScript Object Notation (JSON). To execute the tests
on SUT, several different types of medical devices and third-party applications
need to be integrated. HITA utilizes the DTGen component for medical devices
and the TSGen component for third-party applications to handle integration
challenges. API Gateways are used for secure communication with DTGen and
TSGen components using Hypertext Transfer Protocol (HTTP) and secure API
keys.

Medical Devices - DTGen Component. For integration with medical
devices, HITA utilizes the concept of digital twins to create a virtual repre-
sentation of physical devices. Each medical device from a different vendor is
connected to a server with several APIs for integration (as shown in the right-
bottom of Fig. 1). The architecture for creating physical medical devices DTs
consists of one DT Server with APIs (e.g., APIs DT -D1) specific to a certain
type of DTs representing a particular device (e.g., DTs-D1). APIs need to be
developed following REST architecture [12] to allow easy integration with SUT.
DTs of medical devices can be generated with commonly used approaches [32]
like model-based approach or ML approach. In the case of multiple versions of
a medical device, a separate DT for each device variant is required to be gener-
ated. For the communication between the DT Server and DTs, JSON data inter-
change format is used. In case medical devices support different JSON schema,
the Schema Registry can be used to ensure compatibility. The DTGen compo-
nent also consists of Data Persistence to preserve the state of DTs among various

Healthcare IoT Test Infrastructure Architecture 455

requests. The APIs of DTs are used to integrate DTs with SUT and physical
medical devices. During testing, the DTs act as middle-ware between SUT and
physical medical devices. DTs handle all communication traffic from SUT and
communicate (via HTTP) with their physical twins when necessary.

Third-Party Applications - TSGen Component. To handle the challenges
of integrating third-party applications for testing purposes, HITA’s TSGen com-
ponent plays an important role. Each third-party application has dedicated
servers with APIs for integration. The architecture for test stubs creation con-
sists of one TS Server with APIs (e.g., APIs TS1) simulating the behavior of
various applications (e.g., App 1). The APIs for each test stub must be devel-
oped according to REST architecture [12] for easy integration with SUT. Test
stubs play a key role in replicating the functionality of third-party applications.
For APIs requiring data (e.g., health data), the architecture includes an artificial
data store with multiple databases corresponding to APIs representing different
applications. The data manipulation is performed using query language compli-
ant with the database type.

Testing Process. The testing process starts with the test generation step using
techniques for generating test data, test sequence, and test oracle. Before testing
SUT, it is important to ensure that DTGen and TSGen components adequately
represent the desired behaviors. This can be done through pilot experiments
evaluating the similarity in behaviors. The similarity in outputs should ideally
be close to 100% to have sufficient reliance on testing results. The generated
tests in the form of test scripts are executed on the SUT. Test execution requires
API keys for communicating with SUT according to test scripts. The results of
test execution are evaluated to analyze errors, faults, and failures. Moreover,
test optimization during test generation is required for testing in a rapid-release
environment and within a short time frame.

HITA Operational Context. A tester initiates the testing process for testing
a particular aspect of SUT, REST API testing, or graphical user interface (GUI)
testing. This requires SUT to be integrated and operated with DTGen and
TSGen components. Tests are executed on SUT through HTTP using JSON
format. The SUT processes the request and communicates with medical devices
DTs or third-party applications TS, depending on the test case. Finally, SUT
generates a JSON response containing test execution results and sends it to the
test execution module. This process continues for a specified testing budget.

3.2 Quality Attributes

Scalability. An important concern when testing a healthcare IoT application
with a growing number of medical devices is scalability of development efforts.
HITA provides a component for digital twins used in place of physical medical

456 H. Sartaj et al.

devices during testing. Any number of digital twins corresponding to a particu-
lar medical device can be easily created and operated in HITA, either utilizing
model-based or ML practices. Digital twins eliminate the physical need to inte-
grate several medical devices and the risk of damaging physical devices. The use
of digital twins is also cost-effective, which is another key consideration for creat-
ing test infrastructure. In addition to digital twins, HITA has a Device layer for
connecting medical devices in the case physical devices are required in testing.

Maintainability. Using digital twins of medical devices and test stubs of third-
party applications enables achieving maintainability quality. Furthermore, HITA
utilizes one server for DTGen and TSGen components that can operate locally
or on the cloud, depending upon industrial preferences. Using one server each
for both components requires less maintainability effort as compared to using
individual servers for different applications.

Extensibility. The modular structure of HITA components allows for achieving
extensibility. For each new medical device, digital twins and their APIs can be
created using a model-based or ML approach. The APIs of digital twins are
used for communication with SUT and the physical device. In the case of adding
new healthcare services or features from a third-party application, a test stub
is required to be created consisting of APIs for communication with SUT. The
artificial dataset is created for testing if the new application is data-intensive
and the data is unavailable or inaccessible.

Evolvability. HITA implicitly achieves evolvability quality attribute by facili-
tating the evolvability of medical devices and third-party applications. Whenever
a new medical device is added or an existing one is upgraded, the DTGen compo-
nent can be utilized to generate a new DT or calibrate an existing one. Similarly,
when third-party applications undergo evolution, the TSGen component can be
employed to generate or update test stubs. This leads to achieving overall evolv-
ability requirements of SUT and integrated devices/applications during testing.

Heterogeneity. Creating test infrastructure for healthcare IoT applications
involves integration with heterogeneous systems such as different medical devices
and various types of third-party applications. HITA addresses this challenge by
utilizing REST APIs, HTTP communication protocol, and the JSON data inter-
change format, providing a standardized method across all layers and compo-
nents. This enables HITA to seamlessly support heterogeneous medical devices
and third-party applications.

Security & Privacy. Using real health records (e.g., patients’ health data) dur-
ing the testing process may lead to security breaches and data privacy issues. To
handle security concerns, HITA imposes authentication and authorization mech-
anisms on all components. For data privacy, the TSGen and DTGen components

Healthcare IoT Test Infrastructure Architecture 457

consist of Artificial Data Store and Data Persistence, respectively, which contain
synthetic data instead of real patients’ health data.

Availability. A critical problem solved by HITA is the availability of medi-
cal devices and third-party applications during testing. Running extensive tests
with the goal of rigorous testing may lead to unavailable services. HITA uses
third-party applications’ test stubs in the form of APIs running on a server (TS
Server). Similarly, digital twins have DT Server to handle requests during test
execution. These servers are dedicated for testing purposes and hosted locally
or on the cloud according to the up-time required for the testing process.

Robustness. The goal of testing a healthcare IoT application is to identify
errors, faults, and failures with the assumption that integrated applications are
robust. HITA instructs the development of APIs for DTGen and TSGen com-
ponents following REST architecture, which provides a reliable mechanism for
integration and communication among various applications [12]. Moreover, as
a result of test execution, DTGen, and TSGen components generate responses
with failure and success information that enables identifying errors/faults in
SUT.

Portability. It is an additional feature of HITA. The architecture followed by
TSGen and DTGen components can work on local machines when testing offline
and remotely in different cloud environments.

4 Evaluation

We evaluate HITA’s DTGen component considering the DT fidelity, scalability
of operating 100 DTs, and time cost of DT generation steps. We utilize model-
based and ML approaches to generate DTs. We address the following research
questions (RQs) in this evaluation.

– RQ1: What is the fidelity of DTs generated using model-based and ML
approaches?
In this RQ, we analyze the fidelity DTs in terms of their similarity with
corresponding physical devices.

– RQ2: How do DTs operate with test infrastructure as the number of DTs
scale up?
In this RQ, we assess the scalability of HITA by examining its ability to
manage the operation of 100 DTs across various batch sizes (i.e., 10, 20, ..,
100) during test execution.

– RQ3: How much time is required in creating DTs using model-based and ML
approaches?
In this RQ, we examine the time cost in various steps of model-based and
ML approaches for creating DTs.

458 H. Sartaj et al.

4.1 DTGen Component Implementation

We generate DTs with two common approaches, i.e., model-based and ML
approaches [32]. The DTs generation steps of both approaches are described
below.

Model-Based DT. To generate model-based DT, we follow the approach pre-
sented in [26], which is briefly described below. In the first step, we model the
structural and behavioral aspects of a medical device for which we need to create
DTs. This requires creating a domain model of a medical device to capture device
concepts and properties, specifying constraints on device properties using Object
Constraint Language (OCL), and modeling the device behavior in the form of
state machines. Creating models and constraints in the first step is manual. The
next steps are automated. In the second step, we create an instance model of
the domain model using the input device property values (in JSON format) and
validate the instance model using OCL constraints [27]. In the third step, we cre-
ate a device state machine as the owned behavior of the device instance model.
Finally, we make a device executable model to operate DT simulating the device.

ML-Based DT. Generating DTs using ML requires medical devices’ data for
training. Since medical devices are assigned to patients, their data is inacces-
sible. In the first step, we collect data using a REST API testing tool (i.e.,
EvoMaster [4]). For each test execution, we collect data from the API request
and response. In the second step, we preprocess the data to remove outliers
and handle missing values. In the third step, we define a neural network (NN)
architecture with an input layer representing total features and output layers rep-
resenting total classes. The number of hidden layers, dropouts, and activation
functions are finalized through a pilot experiment for hyperparameter search.
In the fourth step, we train the NN with the training data. For training, we
use the Adam optimizer and cross-entropy loss function, which are suitable for
classification tasks in ML. At the end of training, we store the trained model.
Finally, to operate a DT, we load the trained model and prepare for inference.

Development Utilities. We implemented the DTGen component in Python,
with different frameworks and libraries employed for both DT generation
approaches. For the model-based DTs, we utilized the PyEcore1 framework to
handle modeling aspects of DT. For ML-based DTs, we used Scikit-learn [23]
library and PyTorch framework. To develop a DT server for the DTGen compo-
nent, we utilized the Flask2 framework, with Flask-RESTful library for creating
REST APIs of DTs. In addition, to facilitate DTs’ data persistence and com-
munication, we used JSON data interchange format.

1 https://github.com/pyecore/pyecore.
2 https://flask.palletsprojects.com/en/2.2.x/.

https://github.com/pyecore/pyecore
https://flask.palletsprojects.com/en/2.2.x/

Healthcare IoT Test Infrastructure Architecture 459

Fig. 2. Evaluation setup with a healthcare IoT application, testing tool, DTGen com-
ponent, and physical device (PD).

4.2 Experiment Setup and Execution

Real-World Case Study. We used Medido [17] medicine dispenser integrated
with a healthcare IoT application provided by Oslo City as a part of the exper-
iment apparatus. Medido is a multi-featured automatic medicine dispenser that
provides various functionalities to stakeholders. It enables healthcare special-
ists and caretakers to personalize device settings, including language, alarm,
and medication plans. Its key operations are loading medication plans from the
healthcare IoT application, following a plan to dispense medicine at the specified
time, and notifying concerned healthcare specialists/caretakers regarding missed
doses and medicine dispense problems.

Setup. Fig. 2 presents an overview of the evaluation setup. At application layer,
we used a healthcare IoT application provided by Oslo City as a part of the
experiment apparatus. We used a REST API testing tool, namely EvoMaster [4].
At device layer, we utilized Medido [17] medicine dispenser supplied by Oslo
City. Medido is connected to its server, which manages communication with the
device. For the IoT integration middleware, we generated DTs of Medido using
model-based and ML approaches, namely MBDT and MLDT, respectively. For
MBDT, we modeled the domain, constraints, and state machines of Medido. For
MLDT, we performed a pilot experiment to determine the NN architecture and
hyperparameters. The resulting NN has two hidden layers with dimensions eight
and four, dropout rate=0.2, and a Sigmoid activation function. The remaining
hyperparameters are learning rate=0.01, epochs=3000, optimizer=Adam, and
loss function=Cross-entropy. For both MBDT and MLDT, we created DT APIs
and configured a DT Server. We used JSON as a data interchange format for
communication with DTs.

For each RQ, we executed EvoMaster to generate test data and sent this data
to both MBDT and MLDT, as well as to Medido. EvoMaster was configured to
run for a duration of two hours at a rate of 100 API requests per minute. In
each execution, we collected responses from MBDT, MLDT, and Medido. Using

460 H. Sartaj et al.

responses, we analyzed the fidelity (for RQ1) of MBDT and MLDT with Medido
based on the similarity in responses. For RQ2, we generated 100 MBDTs and
100 MLDTs and run them in different batch sizes, i.e., 10, 20, 30, ..., 100. We
sent test data to all MBDTs and MLDTs running in different batches and to
Medido and compared the responses of all DTs. For RQ3, we executed each
machine-dependent automated step 10 times on one machine to analyze the
average time.

Execution. We ran experiments using a machine with a macOS operating
system, an 8-core CPU, and 24 GB RAM.

4.3 Metrics and Statistical Tests

We analyze DTs’ fidelity in terms of their operating similarity with PD. For this
purpose, we used the Cosine similarity measure. To statistically analyze DTs’
fidelity, we also used the Wilcoxon test signed rank and Cliff’s Delta (δ) with a
significance level (α) 0.05, following guidelines by Arcuri and Briand [5].

4.4 Results and Discussion

Following, we discuss results corresponding to each RQ.

RQ1: DT Fidelity. Table 1 shows results of MBDT and MLDT fidelity in
terms of their similarity with Medido PD. The similarity of MBDT and MLDT
with Medido PD is ≈94% and ≈95%, respectively, indicating both types of DTs
have close operational resemblance with PD. The Wilcoxon test p-values are
greater than α for both MBDT and MLDT. This shows there is no significant
difference between MBDT and PD and MLDT and PD. The effect size analysis
indicates that the difference magnitude is negligible for both MBDT and MLDT.
This indicates a high operational similarity of MBDT and MLDT with their
corresponding Medido PD.

RQ1 Result

DTs generated using model-based and ML approaches have fidelity com-
pared to Medido.

RQ2: DTGen Component Scalability. Fig. 3 shows boxplots for fidelity
comparison of MBDTs and MLDTs running in different batch sizes, i.e., 10, 20,
30, ..., 100, highlighted with increasing gradient color. It can be observed that the
median fidelity level of MBDTs is approximately 94% across different batches.
Similarly, MLDTs’ median fidelity is approximately 95.5% for varying batch
sizes. It is worth noticing that the fidelity of different batches of MBDTs and
MLDTs with their corresponding Medido PD is consistent with the increase in

Healthcare IoT Test Infrastructure Architecture 461

Table 1. RQ1: Fidelity of MBDT and MLDT compared with Medido PD

MBDT MLDT

Cosine Similarity 94.05% 95.54%

Wilcoxon Testp − value) 1.0 1.0

Effect Size (δ) -0.12 (negligible) -0.09 (negligible)

DTs number. Furthermore, the fidelity values reported in Table 1 for one MBDT
and MLDT are in order with the median fidelity values observed while operating
multiple MBDTs and MLDTs in various batch sizes. This indicates that operat-
ing different numbers of DTs has nearly identical fidelity as the number of DTs
grows.

RQ2 Result

The fidelity of 100 DTs (MBDTs and MLDTs) is consistent in all batch
sizes, highlighting that the DTGen component is scalable.

Fig. 3. RQ2: Scalability of multiple MBDTs and MLDTs running in different batch
sizes

RQ3: Time Cost. Table 2 and 3 present the estimated time cost involved in
various steps of creating MBDT and MLDT, respectively. To generate MBDT,
modeling domain, constraints, and behavior requires significant time, approxi-
mately 1–2 hours, which can vary depending on the modelers’ experience. Pro-
viding input configurations may take 2–5 minutes. It is important to note that
generating one or more MBDTs is an automated step and only takes time in ms.

462 H. Sartaj et al.

The time required to generate one MBDT and 100 MBDTs is, on average, ≈108
and ≈229 ms, respectively.

For MLDT, the data collection step requires integrating a testing tool and
compiling data during execution. This semi-automatic step takes 2–3 hours to
collect sufficient data set for training. In case more data set is required, this
can take more time. Configuring ML involves identifying suitable NN archi-
tecture and hyperparameters search that can take approximately 1–2 hours.
Training MLDT with 3000 epochs takes 3 min and 15 s, and with 5000 epochs it
takes 5 min and 29 s. In our experiments, 3000 epochs are sufficient to obtain a
well-trained model; however, training with higher epochs is not high. The time
required to generate one MLDT and 100 MLDTs is, on average, ≈4 and ≈38 ms,
respectively. The automatic steps’ time cost varies with machine specifications,
thus requiring further empirical study involving machines with different specifi-
cations.

RQ3 Result

DTs generated using ML require fewer manual steps and more time com-
pared to model-based DT. ML approach with higher time cost generates
DTs with higher fidelity compared to model-based DTs.

Table 2. RQ3: MBDT time cost considering main/sub-steps, automation level, and
average time

Steps Automation Time

Modeling Domain model,
OCL constraints,
state machines

Manual 1–2 hrs

Inputs Configs. Device properties,
server settings, API
mapping

Manual 2–5 min

DT Generation Create executable
models and DT
storage, operate
DT

Automatic 108.428 ms (avg)

00 DTs Create 100 DTs Automatic 228.931 ms (avg)

4.5 Threats to Validity

To minimize potential external validity threats, we evaluated HITA’s DTGen
component utilizing a Medido medicine dispenser integrated with a real-world
healthcare IoT application. Medido is a widely used and a good representative

Healthcare IoT Test Infrastructure Architecture 463

Table 3. RQ3: MLDT time cost considering main/sub-steps, automation level, and
average time

Steps Automation Time

Data Collection Setup and run
testing tool,
compile data from
responses

Semi-Automatic 2–3 hrs

ML Configs. NN design, tune
hyperparameters

Semi-automatic ≈1–2 hr

Training Train and save NN
model

Automatic 3m 15 s - 5m 29 s

DT Generation Load NN model,
create storage,
operate DT

Automatic 4.551 ms (avg)

100 DTs Create 100 DTs Automatic 38.208 ms (avg)

medicine dispenser. We intend to add more medical devices to conduct a large-
scale evaluation in the future. To reduce internal validity threats, we carefully
designed experiments based on device and API documentation from Oslo City.
We conducted sessions with industry practitioners to showcase the setup and get
their feedback. Apart from initial configurations, the MBDT generation approach
involves no further parameter tuning during execution. Regarding the MLDT
experiment, we conducted pilot experiments for hyperparameter search, ensuring
careful consideration of hyperparameters. To handle construct and conclusion
validity threats, we used the Cosine similarity measure, the Wilcoxon test signed
rank, and Cliff’s Delta. We used the suggested significance level [5] for statistical
analysis. In the time cost analysis (RQ3), we executed each automated step
10 times for both MBDT and MLDT to calculate the average time, ensuring
robustness in our analysis.

5 Experiences and Lessons Learned

Following we outline our experience and lessons learned while developing HITA
work products and analyzing them through experiments.

5.1 DTs Role in Test Infrastructure

System-level testing of healthcare IoT applications requires different medical
devices in the loop. Each type of medical device from a different vendor is linked
to a web server that has certain constraints on maximum allowed requests. The
test generation and execution process involves sending several requests to med-
ical devices through a healthcare IoT application. This leads to the blocking of
service or the damaging of a medical device. Further, testing with hundreds of

464 H. Sartaj et al.

such devices is costly and not a practical option. Based on such experiences from
Oslo City, we propose the idea of using DTs in place of physical medical devices
to enable testing with multiple digital representations of physical devices. Thus,
DTs have an important role in this regard. DTs with dedicated DT Server and
APIs eliminate the risk of service blockage or device damage. Virtually rep-
resenting physical devices, DTs are a scalable and cost-effective solution. Our
experiments with 100 DTs in different batches (i.e., 10, 20, 30, ..., 100) indicated
scalability, heterogeneity, and cost-effectiveness of the DTGen component.

5.2 Trade-Off Between Model-Based and ML DTs

The model-based approach for the automated generation of DTs requires creat-
ing domain models of medical devices capturing devices’ structural aspects and
modeling behavioral aspects of medical devices using executable state machines.
Several modeling tools (e.g., IBM RSA and Papyrus) are available for this pur-
pose. Test engineers need to have a fundamental level of familiarity with any of
the modeling tools. Models developed in this way involve a one-time effort and
can be reused for testing multiple evolution phases of SUT [28,29]. In the case
of adding or upgrading medical devices, only the domain model and executable
state machines need to be fine-tuned.

For generating DTs using the ML approach, training data needs to be gener-
ated with medical devices in the loop. A key consideration for generating training
data is a device’s request processing capability. For example, if a device takes
two seconds to process a request, sending many requests without delay may
damage the device. With training data collected and preprocessed, identifying
suitable neural network architecture and hyperparameters for training requires
several experiment trials. These steps are largely automated; nevertheless, for
each new/upgraded device, these steps must be repeated.

Using model-based or ML approaches for DT generation depends on the
industrial application context. The model-based approach requires more manual
steps compared to the ML approach. However, device data is a fundamental
requirement for using the ML approach which needs to be generated using test
devices. Since model-based and ML DTs have nearly similar fidelity, either app-
roach can be employed with test infrastructure.

5.3 Fidelity Evaluation of DTs

While utilizing DTs of physical devices, an important consideration is the fidelity
of DTs corresponding to physical twins. For this purpose, we empirically eval-
uated the fidelity of model-based and ML DTs (up to 100) in terms of their
functional similarities with a physical medicine dispenser (Medido). The results
highlighted the functionality of DTs was almost similar to medicine dispensers.
Moreover, fidelity evaluation in terms of internal behaviors is challenging due to
limited access to internal operations of physical medicine dispensers.

Healthcare IoT Test Infrastructure Architecture 465

5.4 Testing with Third-Party Applications

We experimented with testing the REST API of a healthcare IoT application
(SUT) connected to different third-party applications [25]. In our experiments,
we observed that API failures of third-party applications during test execution
pose a challenge in pinpointing faults within the SUT. We also noticed that ser-
vices provided by third-party applications often become unavailable after numer-
ous test executions, causing a hindrance to the rigorous testing of healthcare
IoT applications. Hence, the creation of test stubs for third-party applications,
as suggested in HITA, appears to be a viable solution.

5.5 Domain-Specific Testing Strategies

Our experiments with REST API testing highlighted the need for domain-
specific testing strategies for healthcare IoT applications [25]. We analyzed that
automated realistic test data generation is a challenging and open research prob-
lem. For example, automatically generating a valid medication plan for a patient
is not a simple task. Generating a valid medication plan requires information
regarding the start date, dose intake, number of days to take medicines, number
of doses, and the total number of medicines allowed in a roll of a medicine dis-
penser. This involves understanding domain properties related to medications
and the context of a medicine dispenser. There is still a need for domain-specific
testing strategies.

5.6 Intelligent Test Generation Technique

Healthcare IoT applications commonly have a two-way communication mech-
anism with different medical devices and third-party applications. Several sce-
narios require an integrated medical device or third-party application to initiate
the first step of the process. Automatically generating test cases for such sce-
narios is challenging. For instance, the steps to assign an alert (received from
a patient) to concerned personnel include: (i) the patient’s medical device gen-
erates an alert, (ii) the alert is received as an unassigned alert, (iii) identify an
appropriate person (doctor, nurse, caretaker, etc.) to assign the alert, and (iv)
assign the alert with notification to health authorities. An alert should be gener-
ated beforehand to test the alert-assigning scenario. This requires an intelligent
technique for automated test case generation since HITA is designed for creating
test infrastructure.

5.7 Test Optimization

Testing an industrial healthcare IoT application in production and a rapid-
release environment requires a designated time budget for test generation and
execution. Executing a maximum number of test cases with the aim of rigorous
testing for each release is desirable but not feasible, even using test stubs and
digital twins. An approach for generating and executing optimized test cases is
necessary to ensure the dependability of healthcare IoT applications within a
given time frame.

466 H. Sartaj et al.

6 Conclusion and Future Work

In this paper, we presented real-world architectural work in collaboration with
Oslo City’s healthcare department. We introduced HITA – a test infrastruc-
ture architecture to facilitate automated system-level testing of healthcare IoT
applications, with design considerations aligned to Oslo City’s healthcare depart-
ment requirements. We evaluated HITA’s DTGen component by creating DTs of
a Medido medicine dispenser using model-based and ML approaches. Our eval-
uation focused on analyzing the fidelity of DT created using both approaches,
assessing the scalability of the DTGen component when operating 100 DTs in dif-
ferent batch sizes, and the time cost involved in creating DTs. Results show that
the fidelity of DTs created using model-based and ML approaches is 94% and
95%, respectively. Results with 100 DTs also show that the DTGen component
is scalable. Moreover, results indicate that DTs generated with the ML app-
roach have fewer manual steps and higher time costs compared to model-based
DTs. Finally, we presented experience and lessons learned based on experiments
conducted with work products of HITA that are valuable for industry practition-
ers working in a similar domain. Our architecture, findings, and lessons learned
are generalizable to various IoT-based systems such as activity/fitness trackers,
smart homes, and smart security systems.

In the future, we plan to extend the DTGen component and create DTs of dif-
ferent types of medical devices. We also intend to implement HITA’s TSGen com-
ponent supporting third-party applications. Next, we plan to develop domain-
specific testing strategies focusing on GUI testing, REST API testing, and test
optimization.

Acknowledgements. This work is a part of the WTT4Oslo project (No. 309175)
funded by the Research Council of Norway. All the experiments reported in this paper
are conducted in a laboratory setting of Simula Research Laboratory; therefore, they
do not by any means reflect the quality of services Oslo City provides to its citizens.
Finally, we would like to acknowledge Kjetil Moberg for providing feedback on the
initial version of this paper.

References

1. Norwegian health authority. https://www.oslo.kommune.no/etater-foretak-og-
ombud/helseetaten/. Accessed 18 May 2023

2. Al-Joboury, I.M., Hemiary, E.H.: Internet of things architecture based cloud for
healthcare. Iraqi J. Inform. Commun. Technol. 1(1), 18–26 (2018). https://doi.
org/10.31987/ijict.1.1.7

3. Alnefaie, S., Cherif, A., Alshehri, S.: Towards a distributed access control model for
IoT in healthcare. In: 2019 2nd International Conference on Computer Applications
and Information Security (ICCAIS), pp. 1–6. IEEE (2019). https://doi.org/10.
1109/CAIS.2019.8769462

4. Arcuri, A.: Restful API automated test case generation with Evomaster. ACM
Trans. Softw. Eng. Methodol. 28(1), 1–37 (2019). https://doi.org/10.1145/3293455

https://www.oslo.kommune.no/etater-foretak-og-ombud/helseetaten/
https://www.oslo.kommune.no/etater-foretak-og-ombud/helseetaten/
https://doi.org/10.31987/ijict.1.1.7
https://doi.org/10.31987/ijict.1.1.7
https://doi.org/10.1109/CAIS.2019.8769462
https://doi.org/10.1109/CAIS.2019.8769462
https://doi.org/10.1145/3293455

Healthcare IoT Test Infrastructure Architecture 467

5. Arcuri, A., Briand, L.: A practical guide for using statistical tests to assess random-
ized algorithms in software engineering. In: Proceedings of the 33rd International
Conference on Software Engineering, pp. 1–10 (2011). https://doi.org/10.1145/
1985793.1985795

6. Azimi, I., et al.: HiCH: hierarchical fog-assisted computing architecture for health-
care IoT. ACM Trans. Embed. Comput. Syst. 16(5s), 1–20 (2017). https://doi.
org/10.1145/3126501

7. Bertolino, A., Inverardi, P., Muccini, H.: Software architecture-based analysis and
testing: a look into achievements and future challenges. Computing 95, 633–648
(2013). https://doi.org/10.1007/s00607-013-0338-9

8. Morrison, R., Balasubramaniam, D., Falkner, K. (eds.): Software Architecture:
Second European Conference, ECSA 2008 Paphos, Cyprus, September 29-October
1, 2008 Proceedings. Springer, Berlin, Heidelberg (2008)

9. Brosch, F., Koziolek, H., Buhnova, B., Reussner, R.: Architecture-based reliability
prediction with the palladio component model. IEEE Trans. Softw. Eng. 38(6),
1319–1339 (2011). https://doi.org/10.1109/TSE.2011.94

10. Catarinucci, L., et al.: An IoT-aware architecture for smart healthcare systems.
IEEE Internet Things J. 2(6), 515–526 (2015). https://doi.org/10.1109/JIOT.2015.
2417684

11. Fiedler, M., Meissner, S.: IoT in practice: examples: IoT in logistics and health.
In: Bassi, A., et al. (eds.) Enabling Things to Talk. Springer, Berlin, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-40403-0 4

12. Fielding, R.T.: Architectural Styles and the Design of Network-Based Software
Architectures. University of California, Irvine (2000)

13. Guth, J., Breitenbücher, U., Falkenthal, M., Leymann, F., Reinfurt, L.: Compari-
son of IoT platform architectures: a field study based on a reference architecture.
In: 2016 Cloudification of the Internet of Things (CIoT), pp. 1–6. IEEE (2016).
https://doi.org/10.1109/CIOT.2016.7872918

14. Jin, Z., Offutt, J.: Deriving tests from software architectures. In: Proceedings 12th
International Symposium on Software Reliability Engineering, pp. 308–313. IEEE
(2001). https://doi.org/10.1109/ISSRE.2001.989484

15. Lindquist, W., Helal, S., Khaled, A., Hutchinson, W.: Iotility: architectural require-
ments for enabling health IoT ecosystems. IEEE Trans. Emerg. Top. Comput. 9(3),
1206–1218 (2019). https://doi.org/10.1109/TETC.2019.2957241

16. Malakuti, S., Grüner, S.: Architectural aspects of digital twins in IIoT systems. In:
Proceedings of the 12th European Conference on Software Architecture: Compan-
ion Proceedings, pp. 1–2 (2018). https://doi.org/10.1145/3241403.3241417

17. Medido, A.M.D.: https://medido.com/en/. Accessed 10 Nov 2023
18. Mezghani, E., Exposito, E., Drira, K.: A model-driven methodology for the design

of autonomic and cognitive IoT-based systems: application to healthcare. IEEE
Trans. Emerg. Top. Comput. Intell. 1(3), 224–234 (2017). https://doi.org/10.1109/
TETCI.2017.2699218

19. Moosavi, S.R., et al.: SEA: a secure and efficient authentication and authorization
architecture for IoT-based healthcare using smart gateways. Procedia Comput. Sci.
52, 452–459 (2015). https://doi.org/10.1016/j.procs.2015.05.013

20. Muccini, H., Inverardi, P., Bertolino, A.: Using software architecture for code test-
ing. IEEE Trans. Softw. Eng. 30(3), 160–171 (2004). https://doi.org/10.1109/TSE.
2004.1271170

21. Muccini, H., Spalazzese, R., Moghaddam, M.T., Sharaf, M.: Self-adaptive IoT
architectures: an emergency handling case study. In: Proceedings of the 12th

https://doi.org/10.1145/1985793.1985795
https://doi.org/10.1145/1985793.1985795
https://doi.org/10.1145/3126501
https://doi.org/10.1145/3126501
https://doi.org/10.1007/s00607-013-0338-9
https://doi.org/10.1109/TSE.2011.94
https://doi.org/10.1109/JIOT.2015.2417684
https://doi.org/10.1109/JIOT.2015.2417684
https://doi.org/10.1007/978-3-642-40403-0_4
https://doi.org/10.1109/CIOT.2016.7872918
https://doi.org/10.1109/ISSRE.2001.989484
https://doi.org/10.1109/TETC.2019.2957241
https://doi.org/10.1145/3241403.3241417
https://medido.com/en/
https://doi.org/10.1109/TETCI.2017.2699218
https://doi.org/10.1109/TETCI.2017.2699218
https://doi.org/10.1016/j.procs.2015.05.013
https://doi.org/10.1109/TSE.2004.1271170
https://doi.org/10.1109/TSE.2004.1271170

468 H. Sartaj et al.

European Conference on Software Architecture: Companion Proceedings, pp. 1–6
(2018). https://doi.org/10.1145/3241403.3241424

22. Nguyen, D.C., Pathirana, P.N., Ding, M., Seneviratne, A.: BEdgeHealth: A decen-
tralized architecture for edge-based IoMT networks using blockchain. IEEE Inter-
net Things J. 8(14), 11743–11757 (2021). https://doi.org/10.1109/JIOT.2021.
3058953

23. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

24. Pise, A., Yoon, B., Singh, S.: Enabling ambient intelligence of things (AIoT) health-
care system architectures. Comput. Commun. 198, 186–194 (2023). https://doi.
org/10.1016/j.comcom.2022.10.029

25. Sartaj, H., Ali, S., Yue, T., Moberg, K.: Testing real-world healthcare IoT appli-
cation: experiences and lessons learned. In: Proceedings of the 31st ACM Joint
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, pp. 2044-2049. ESEC/FSE 2023, Association for Com-
puting Machinery (2023). https://doi.org/10.1145/3611643.3613888

26. Sartaj, H., Ali, S., Yue, T., Moberg, K.: Model-based digital twins of medicine
dispensers for healthcare IoT applications. Softw. Prac. Experience 54(6), 1172–
1192 (2024). https://doi.org/10.1002/spe.3311

27. Nejati, S., Gay, G. (eds.): Search-Based Software Engineering: 11th International
Symposium, SSBSE 2019, Tallinn, Estonia, August 31 – September 1, 2019, Pro-
ceedings. Springer International Publishing, Cham (2019)

28. Sartaj, H., Iqbal, M.Z., Khan, M.U.: CDST: a toolkit for testing cockpit display
systems. In: 2020 IEEE 13th International Conference on Software Testing, Valida-
tion and Verification (ICST), pp. 436–441. IEEE (2020). https://doi.org/10.1109/
ICST46399.2020.00058

29. Sartaj, H., Iqbal, M.Z., Khan, M.U.: Testing cockpit display systems of aircraft
using a model-based approach. Softw. Syst. Model. 20(6), 1977–2002 (2021).
https://doi.org/10.1007/s10270-020-00844-z

30. Sharaf, M., Abughazala, M., Muccini, H.: Arduino realization of caps IoT archi-
tecture descriptions. In: Proceedings of the 12th European Conference on Software
Architecture: Companion Proceedings, pp. 1–4 (2018). https://doi.org/10.1145/
3241403.3241412

31. Sharma, P., Namasudra, S., Crespo, R.G., Parra-Fuente, J., Trivedi, M.C.:
EHDHE: enhancing security of healthcare documents in IoT-enabled digital health-
care ecosystems using blockchain. Inf. Sci. 629, 703–718 (2023). https://doi.org/
10.1016/j.ins.2023.01.148

32. Somers, R.J., Douthwaite, J.A., Wagg, D.J., Walkinshaw, N., Hierons, R.M.:
Digital-twin-based testing for cyber-physical systems: a systematic literature
review. Inform. Softw. Technol. 156, 107145 (2023). https://doi.org/10.1016/j.
infsof.2022.107145

https://doi.org/10.1145/3241403.3241424
https://doi.org/10.1109/JIOT.2021.3058953
https://doi.org/10.1109/JIOT.2021.3058953
https://doi.org/10.1016/j.comcom.2022.10.029
https://doi.org/10.1016/j.comcom.2022.10.029
https://doi.org/10.1145/3611643.3613888
https://doi.org/10.1002/spe.3311
https://doi.org/10.1109/ICST46399.2020.00058
https://doi.org/10.1109/ICST46399.2020.00058
https://doi.org/10.1007/s10270-020-00844-z
https://doi.org/10.1145/3241403.3241412
https://doi.org/10.1145/3241403.3241412
https://doi.org/10.1016/j.ins.2023.01.148
https://doi.org/10.1016/j.ins.2023.01.148
https://doi.org/10.1016/j.infsof.2022.107145
https://doi.org/10.1016/j.infsof.2022.107145

Doctoral Symposium

Pragmatic Architectural Framework
to Design for Sustainability in Cloud

Software Services

Sahar Ahmadisakha(B) and Vasilios Andrikopoulos

University of Groningen, Groningen, Netherlands
{s.ahmadisakha,v.andrikopoulos}@rug.nl

Abstract. The incorporation of sustainability in cloud software services
design is crucial. This paper proposes a Pragmatic Architecting Frame-
work addressing challenges related to sustainability multi-dimensionality
and cloud computing characteristics. It aims to provide guidance on han-
dling different cloud stakeholder engagements, offer decision support, and
promote sustainability as a core aspect of software architecting. This
research presents also the results of a systematic literature review on the
sustainability-relating concerns that can affect architectural solutions.

Keywords: Software Architecture · Cloud Software Services ·
Sustainability · Architecturally Significant Concerns · Decision Support

1 Introduction

Given the rapidly growing use of software-intensive systems, it is essential to rec-
ognize the significance of software sustainability. Various endeavors have been
made to clarify and define software sustainability, including its four dimen-
sions [21]: technical, economic, social, and environmental, concerning software
longevity, capital preservation, community continuity, and natural resource con-
servation, respectively. The recognition of sustainability as a quality attribute in
software systems has also prompted its integration into software architecture [21].
Additionally, research has demonstrated how software architecture can act as a
valuable lever for addressing sustainability [27] in light of its potential to con-
tribute positively to it [18]. While previous research has explored the intersection
of software architecture and sustainability [9,21,29] and addressed it in the soft-
ware system design [20,26], there remains a need for further work on the service
orientation aspect [27], specifically on cloud software services.

The pervasive adoption of cloud computing has amplified the importance of
sustainability in software services and allows a significant portion of the software
market to rely on service orientation, aligning with the Everything as a Service

This work is partly funded by the project SustainableCloud (project number
OCENW.M20.243) of the research program Open Competition Domain Science by
the Dutch Research Council (NWO).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
B. Tekinerdoğan et al. (Eds.): ECSA 2023, LNCS 14590, pp. 471–487, 2024.
https://doi.org/10.1007/978-3-031-66326-0_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-66326-0_29&domain=pdf
http://orcid.org/0000-0002-1485-4512
http://orcid.org/0000-0001-7937-0247
https://doi.org/10.1007/978-3-031-66326-0_29

472 S. Ahmadisakha and V. Andrikopoulos

(EaaS) model [2]. However, existing studies in cloud computing have primarily
focused on the environmental dimension [12], also overlooking the other cloud
software service stakeholders’ perspective [2].

This research project aims to develop a Pragmatic Architectural Framework
built upon the Sustainability-Aware Architecting Framework (SAAF) [2] for
designing sustainable cloud software services (both cloud-based and cloud-native
software services). The framework consists of three pillars: (1) a sustainability
body of knowledge encompassing its various dimensions and architectural knowl-
edge on the cloud software services, (2) cloud software services’ stakeholder
engagement to align sustainability-affecting concerns with design choices, and
(3) a decision support mechanism enabling the integration of multiple sustain-
ability dimensions with cloud-related architecting decisions and stakeholders.
For the first action, we explore the literature in the format of a systematic liter-
ature review to elaborate on creating the body of knowledge. This review offers
some initial outcomes that pertain to the sustainability-related concerns that
can affect the architecture.

This research proposal includes a problem statement in Sect. 2 and a prob-
lem decomposition augmented by research methods and anticipated research
outcomes in Sect. 3. Section 4 reports on the initial results of a study currently
under review, while Sect. 5 presents new results out of the same study. The
conclusion in Sect. 6 wraps up the paper.

2 Problem Statement

Main statement: While software architects already possess the expertise to
design sustainable software systems in general, there is a paucity of literature
and experiences on creating software (services) that function within the cloud
computing domain aimed at achieving sustainability objectives. In the following,
we outline the main arguments to support our statement.

S1. Lack of a Sufficient Body of Knowledge (BoK): Although guidelines
for sustainability-aware software development have been formulated in [9] with
a focus on the technical and economic dimensions, the intersection of cloud
computing and sustainability in the software architecture suffers from a lack of a
substantial BoK, specifically given the multi-dimensional nature of sustainability.
For instance, while cloud-native architectural assets have been identified in [13],
the attainment of sustainability goals remains a distant objective.

S2. Unclear Effect of Cloud-Specific Stakeholders (SHs): Incorporating
sustainability into software requirement engineering is of interest [4,24], with
existing models and frameworks also promoting sustainability [8,25]. Gaining an
understanding of the trade-offs between sustainability goals and other business
goals can be instrumental in aiding SHs’ decision-making, including architects,
as highlighted in [26]. However, a distinct absence is observed in terms of any

Pragmatic Architectural Framework 473

discernible trace regarding the various cloud-specific SHs (cloud provider, cloud
broker, cloud carrier, cloud auditor as per [22]) and their potential impact on
the decision-making process of designing cloud software services. For instance,
cloud auditor SHs may not necessarily prioritize sustainability concerns, but
their specific reports to regulatory agencies or the cloud provider can influence
the overall design and preferences of other SHs on the same topic.

S3. Absence of Knowledge on Cloud Implications and Decision Mak-
ing: Most works exploring the stability of design decisions as architectural
knowledge [5] and as a means of achieving architectural sustainability [29] focus
on technical aspects, neglecting other dimensions. Moreover, while some informa-
tion exists on the positive and negative environmental impacts of cloud comput-
ing [13,19] and the sustainability impact of software systems [20], our awareness
of cloud-related architecting decisions’ (CAD) sustainability impacts, particu-
larly across all dimensions of sustainability, is still incomplete.

These CADs can encompass, for example, the selection of the cloud provider,
as well as the choice of cloud deployment and delivery model [2]. Furthermore,
these decisions can be more granular, such as determining the specific cloud com-
puting resources utilized for the range of services that the service can leverage
from the provider.

S4. Lack of a Decision Support Method (DSM) Centered Around
Sustainability: Given the diverse impacts of various CADs on sustainability
goals, it is imperative for architects to employ appropriate decision support
methods. However, existing methods focused on CADs [3,11] share common
deficiencies in that they fail to prioritize sustainability as a central aspect and
neglect to consider its potential (side-)effects. Additionally, these methods do not
adequately incorporate the influence of SHs on the decision-making processes.

3 Problem Decomposition

The proposed research project is grounded in the design science framework [28].
It addresses Research Questions (RQ) that encompass design problems (RQD)
and knowledge questions (RQK). The investigation of these questions will utilize
empirical methods described in [10]. In the following, we provide a detailed
elaboration on the decomposition of the aforementioned problem statements (S1-
S4), assigning them individual objectives (OBJ). Each objective corresponds to
a distinct problem and may encompass multiple RQs. Furthermore, we outline
the empirical methods to be employed for each OBJ and highlight anticipated
outcomes (OCMs).

OBJ1. to Establish a Comprehensive BoK Encompassing Cloud-
Related Architectural Knowledge Concerning Sustainability in Cloud

474 S. Ahmadisakha and V. Andrikopoulos

Software Services, both from the Literature and Industrial Perspec-
tives. In light of the identified S1, we pursue the attainment of OBJ1 and
formulate two corresponding RQs: RQK1) How do cloud architectural solutions
address sustainability? to be answered by a Literature Review (LR), and RQK2)
How do practitioners in cloud software services currently address sustainability?
to be addressed by a Practitioner Survey (PS) or a Multi-Case Study (MCS).

As part of this objective, we also aim to investigate and evaluate our hypoth-
esis regarding the potential for achieving sustainability through cloud comput-
ing via architectural design. To address those inquiries, we anticipate asking
about the sustainability concerns involved in architects’ cloud usage decisions,
the pros and cons of cloud computing in designing for sustainability, and
the specific design decisions and solutions addressing sustainability in cloud
software services’ design. As OCM1, we envision a BoK for architectural
knowledge in the design of sustainable cloud software services, showcasing
the feasibility of achieving sustainability through cloud computing.

OBJ2. To explore and define the impact of cloud SHs’ concerns on the
design decisions (DDs). This objective aligns with S2 and is accompanied by a
single research question denoted as RQK3) What are the SH concerns that affect
the sustainability of cloud software services and in what way? This question is
going to be investigated through one or more exploratory case studies (CS).

In these studies, we aim to investigate the various SH types (both cloud-
and services-specific) and their concerns impacting sustainability. Subse-
quently, we will consider how architects’ decisions are influenced by these
sustainability-affecting concerns. OCM2 is anticipated to incorporate diverse
cloud SHs perspectives within the architectural design.

OBJ3. To acquire a more comprehensive understanding of the impact
of CADs on sustainability and their interrelationships. This objective,
aimed at investigating sub-problem S3, will be achieved through the formulation
of two corresponding RQs: RQK4) How do CADs impact sustainability? (in
terms of which decisions and in what way) and RQK5) How are CADs related
to each other? Both RQs are intended to be explored through one or more
exploratory CS.

Here, our research aims to identify CADs and their impact on sustainability.
Subsequently, we strive to understand the interrelationship among CADs and
explore strategies for managing their effect on sustainability. The OCM3
pertains to the identification of CADs and their impact on sustainability, as
well as the examination of their interrelationships.

OBJ4. To establish a DSM considering SHs and the sustainability
implications of cloud. In the pursuit of S4, we define a design problem formu-
lated as RQD6) Design and validate a DSM on the impact of CADs on system
sustainability.

Pragmatic Architectural Framework 475

Our intended empirical course of action involves the validation and exam-
ination of the final DSM through confirmatory CS. We anticipate OCM4
as a DSM that facilitates the observability of relationships between various
CADs and SHs throughout the decision-making process, with sustainability as
its paramount objective

4 Initial Results: Solutions on Sustainability

In our endeavor to address the stated problem and contribute to a comprehensive
understanding, we embarked on the task of developing a body of knowledge
by conducting a systematic literature review. Through this systematic review
which is currently under review, we tried to answer the RQK1) How do cloud
architectural solutions address sustainability? To provide a more detailed
exploration of this query, we have formulated a set of sub-inquiries as follows:

RQ1: What cloud architectural solutions have been proposed to address one
or more sustainability dimensions?
RQ2: What are the building blocks of the proposed solutions and how these
blocks are related to each other and to the various sustainability dimensions?
RQ3: To what extent sustainability dimensions are covered by the identified
solutions?
RQ4: Which quality requirements in the proposed solutions are taken into
account considering sustainability?
RQ5: How is the adoption of cloud computing perceived in relation to sus-
tainability?

Our initial aim was to discover architectural solutions that effectively address
sustainability within the context of software systems utilizing the cloud comput-
ing model. To apprehend how these systems take sustainability into account, we
have investigated the primary studies’ solutions. Following this identification, a
comprehensive evaluation should be conducted to ascertain the individual con-
tributions of each identified solution toward sustainability objectives. By these
means, we could differentiate the solutions that are most widely adopted and
subsequently analyze their constituent building blocks to effectively address sus-
tainability, specifically within the context of cloud computing.

Ultimately, our attention in this study was directed toward gaining an under-
standing of how cloud computing is firmly situated within the solutions space,
particularly considering the significance of sustainability. This study was con-
ducted following a widely recognized method for conducting systematic literature
reviews, as outlined by [17]. For the main research question (RQK1), we con-
ducted searches in several reputable databases, including Scopus, ACM Digital
Library, IEEE Xplore, ScienceDirect, Web of Science, and Wiley Online Library,
using the following query:

software AND architect* AND sustainab* AND cloud

476 S. Ahmadisakha and V. Andrikopoulos

Our initial search yielded a total of 541 papers. After removing duplicate stud-
ies and applying our inclusion and exclusion criteria, we narrowed down the
selection to 23 primary studies for the purpose of data extraction. Additionally,
we conducted both backward and forward snowballing, as recommended by [16],
which further expanded our sample to a total of 27 primary studies. To extract
data, we used the fields marked with ID C1 to C9 as presented in Table 1.

Table 1. Data Extraction Form. Each row in this table represents a column in the
main data extraction sheet.

ID Column Explanation/Purpose RQ

C1 Paper ID A unique number attaching to each primary study -

C2 Paper Title Title of the primary study -

C3 Publication Year The year that primary study is published -

C4 Stakeholder To identify whether the primary study proposing the solution

from the cloud provider perspective or the cloud consumer

one

RQ1

C5 Solution A summary of the proposed solution and the reason for the

solution is extracted here, along with the goal of such a

solution

RQ1, RQ2, RQ3

C6 Sustainability

Dimension

To single out which sustainability dimension is addressed by

the proposal

RQ2, RQ3, RQ4

C7 Service Model To single out which service model is covered by the proposal RQ2

C8 Quality

Requirements

To identify what quality requirements are considered by the

solution

RQ4

C9 Cloud Perception To identify how cloud computing is understood in the

proposal

RQ5

C10 Concern To identify the sustainability-related concerns mentioned in

the primary study

RQ6, RQ7

C11 Viewpoint To single out which sustainability viewpoint is considered in

the primary study

RQ7

After finishing up the data extraction, the results of the data analysis pro-
vided the following insights per research question as discussed in the following.
We also made the replication package of these five RQs available online.

RQ1–Solution Types: From the 27 primary studies, we successfully identified
10 distinct types of architectural solutions: Tactics, System Architecture, Soft-
ware Architecture, Patterns, Modified Cloud Architecture, Model, Infrastructure
Architecture, Enterprise Architecture, Design Rules and Principles, and Cloud
Management Systems. These solutions were subsequently categorized based on
the role that cloud computing plays within them. When a solution was proposed
to benefit the cloud provider side, it was classified under the Cloud Architec-
ture (CA) category. Conversely, if the solution targeted cloud customers, it was
classified under the Cloud-Based Architecture (CB) category.
Insight: Reusable architectural solutions, such as tactics and patterns, are rel-
atively underutilized among the identified solution types.

RQ2–Building Blocks: Upon thorough analysis and synthesis of the solution
types, we identified 8 commonly recurring design decisions and pinpointed 11 key

https://figshare.com/s/f2f3ca3e933f9c949ca3

Pragmatic Architectural Framework 477

entities that serve as the foundational elements of the recognized solution types.
The predominant design decision observed is Application Infrastructure Provi-
sioning, which essentially underscores the prevalent practice of utilizing cloud
computing primarily as a back-end for applications in the solutions and pri-
mary studies. In parallel, the most frequently encountered entity we identified is
Application Infrastructure. This implies that these solutions predominantly focus
their modifications and decisions on the infrastructure where the application will
ultimately be deployed.
Insight: Given the paramount significance of computational resources and appli-
cation infrastructure, architects should exercise caution when creating the archi-
tectural deployment views of the application.

RQ3–Sustainability Dimensions: Our analysis revealed that all four dimen-
sions of sustainability have been considered in the primary studies. However,
none of the primary studies encompasses all of these sustainability dimensions.
Notably, the environmental dimension emerged as the most commonly addressed,
followed by the economic dimension in second place. The technical and social
dimensions took the third and fourth positions, respectively.
Insight: It was surprising to note that the patterns for addressing sustainability
dimensions in our study did not align with those reported in [1]. In our research,
the most addressed dimension was identified as the environmental dimension,
while authors in [1] recognized the technical dimension as the most prominent.
This disparity may be attributed to the contextual influence of cloud computing
in our study, leading to varying emphases on sustainability dimensions.

RQ4–Quality Requirements: We compiled a list of 28 quality requirements
mentioned in the studies. Interestingly, some of these requirements, such as “elas-
ticity” which holds great significance for cloud-based applications [6], were not
included in the list presented by ISO [15]. However, the majority of these require-
ments (22 in total) were found following [7,27]. Among this extensive list, there
are five quality requirements that exhibit the strongest associations with vari-
ous sustainability dimensions. These include accessibility, compatibility, cost effi-
ciency, energy efficiency, and flexibility.
Insight: Economic sustainability has the largest contribution to different quality
requirements. Additionally, cloud computing not only enforces specific quality
requirements but also transforms the manner in which we address them.

RQ5–Cloud Perceptions: We delved deeper into our research to determine
whether the primary studies acknowledged cloud computing as a facilitator or
inhibitor to sustainability. Our findings revealed 17 distinct cloud perceptions,
with the prevailing sentiment being that the cloud is most often perceived as an
enabler of sustainability.
Insight: In our exploration of these perceptions, we discovered that certain
cloud characteristics, as outlined in NIST’s definition [23], align with the factors
that enable sustainability. While cloud computing may be categorized as a pro-
moter of sustainability, it remains imperative to discern the specific conditions
and contexts under which this promotion occurs.

478 S. Ahmadisakha and V. Andrikopoulos

5 Further Results: Concerns on Sustainability

In the context of the previous section, we provided an overview of the results
obtained from a systematic literature review aimed at comprehending how archi-
tectural solutions within a cloud computing context are concerned with sustain-
ability. In the earlier series of research inquiries (RQ1-RQ5), our exploration
centered on the solution space, while the central research question (RQK1) and
its goal delve also into another facet, namely the problem space, which we will
refer to as concerns here. To further expand our investigation in this space for
the aim of the current study, we present the following new research questions
pursued in the context of the same literature review:

RQ6: What are the architecturally significant concerns that are sustainability-
related as reported by the primary studies?
RQ7: How are the identified concerns related to the different sustainability
dimensions and viewpoints?

The aim of RQ6 is to identify the key issues highlighted in the primary studies.
In this context, our aim is to isolate and categorize only those concerns that
are specifically directed toward sustainability and have the potential to impact
it. In other words, we compile a list of concerns that inherently encompass sus-
tainability implications. On the other hand, RQ6 also aims to discern whether
these identified concerns have the potential to impact the proposed architectural
solutions. As articulated in the definition of Architecturally Significant Require-
ments (ASR) provided in [14], it is important to note that not all concerns are
pertinent to the architectural aspect. Moreover, certain ASRs may not originate
as standalone concerns but could emerge from other architectural considerations
or the system’s contextual factors [14].

In the end, RQ7 seeks to explore whether the identified concerns are asso-
ciated with distinct viewpoints on sustainability, which encompass two main
paradigms: Sustainable Software (SS) and Sustainability through Software (StS),
as outlined in [27]. The former pertains to the objective of ensuring sustainability
in software systems and their architectural design, while the latter concentrates
on the delivery of sustainability to stakeholders through the utilization of soft-
ware systems.

To address these research questions, the search process and the inclusion and
exclusion criteria remain consistent with those outlined in the previous section.
The structure and approach of the use of the data extraction form will also
remain unchanged. However, the data extraction is using fields C10 and C11
in Table 1 to answer RQ6 and RQ7 this time. We introduce C10 to document
quotations from primary studies indicating concerns relevant to the proposed
solutions. These concerns were selected based on if they are directly related to
sustainability goals, i.e. they are sustainability-related concerns. We use C11 to
enable the extraction of the viewpoints on the sustainability of each primary
study (SS or StS). To address RQ6, we will primarily focus on the data from the
C10 row. RQ7, on the other hand, will be addressed by considering both C10 and

Pragmatic Architectural Framework 479

C11 in combination. The interested reader can find the new replication package
for the last two RQs online. Additionally, it is worth noting that the threats to
the validity of this study align with those outlined in the paper currently under
review.

5.1 RQ6: Identified Concerns

We have identified a total of 22 concerns from the primary studies. Among them,
10 concerns are identified as Architecturally Significant (AS) and the rest as
Non-Architecturally Significant (NAS). It is noteworthy to highlight that both
types of concerns are extracted in relation to cloud architecture, as our focus
is centered on primary studies related to cloud architectural solutions. In this
section, we will list and explain the AS concerns only. NAS concerns are out of
the scope of this paper but are available in the replication package.

AS1. Service and Resource Sharing in Communities : There is a need
for diverse services and more resources to support various communities. This
concern arises from the necessity to establish a cloud federation environment,
enabling diverse communities to gather and access a wide array of services. Con-
sequently, a multitude of services offered by different providers can be aggregated
to serve a specific domain (P1). Moreover, there is also a need for sharing com-
puting resources across communities. Within community networks, bandwidth
sharing is a common practice, but sharing computing resources, especially stor-
age, is equally essential for the benefit of users and economic advantages (P18).

AS2. Challenges on Data : There are situations in which there is a large
amount of data to process and store. This data is employed to address a spe-
cific sustainability dimension and is hard to manage. This data can be used,
for example, for managing economic growth and public participation (P16) or
minimizing environmental impacts (P6, P23, P25). In this case, where there is a
large amount of data, sometimes the presence of a huge number of users gener-
ating data could also be a concern. This is a sustainability issue since if systems
cannot manage the number of users and the data they are creating, properly,
they will end up with high energy usage. If the data production and resource
demand are not managed properly, systems will face a loss of users (P2).

Sometimes data is local and hard to process. Current data loggers utilized
for example in irrigation management systems are not energy-efficient, and they
typically store data locally (P5). Additionally, retrieving and processing this data
to establish an effective management system is a challenging task. Moreover, lack
of data consistency can influence energy optimization efforts. For achieving this
goal, having a performance trend is necessary, while a lack of unified data models
and inconsistent data can present significant challenges to this objective (P12).

https://figshare.com/s/65a7601ac1ac5ff101e7

480 S. Ahmadisakha and V. Andrikopoulos

We also see heterogeneous data formats or fragmented data as potential issues.
The former means that for data to be processed effectively across various sys-
tems and devices, the data must be presented in a uniform format. Without this
standardization, there would be a deficiency in interoperability among these
diverse systems (P21). The latter point particularly affects environmental data
that frequently fails to adhere to established standards and is collected in various,
mismatched formats from different sources and groups. Therefore, achieving inte-
grated environmental monitoring necessitates both compliance with standards
and service interoperability (P22, P25).

AS3. Challenges on the Network Management : This concern has two
faces. First, there is a need for unifying scheduling and allocation of network
resources. Given the presence of various types of network devices in data centers,
it is crucial to achieve unified control over them to enhance energy efficiency (P3).
The second network-related concern is that there is network congestion within
data centers. Traffic congestion at the switch point between the client and server
within data centers can have a detrimental impact on the sustainability of a
network management system. It can also compromise the guaranteed bandwidth
for other customers. To ensure sustainable management, especially within virtual
private clouds, the system must be capable of handling various types of network
equipment (P14). This concern will affect the physical view of the architecture
on the cloud service provider side.

AS4. Lack of Energy Efficiency Support in the Cloud : This concern
shows itself in different service offerings of cloud computing. In some cases, the
cloud fails to show energy measures to its customers, a deficiency originating
from the absence of this functionality across its diverse service layers. In other
words, cloud customers cannot measure their energy usage. They lack full access
to the energy consumption of their applications and cannot trace how their
decisions affect energy usage. Additionally, they often lack knowledge on how to
migrate their applications to the cloud to achieve energy efficiency (P20, P27).

This deficiency comes from the lack of functionalities to support energy effi-
ciency in IaaS, PaaS, and SaaS layers. In the service offerings across different
cloud layers, there is a deficiency of components designed to enhance energy
efficiency in each respective layer (P26). Developing this feature is also of impor-
tance since creating cost and energy efficiency balance in the serverless applica-
tions is necessary. Since the pricing model is a key business driver of serverless
decisions, it is important to have a balance between the cost and the energy
usage of this model (P4).

Pragmatic Architectural Framework 481

AS5. Need for Architectural and Goal Continuity Across Different
Cloud Layers : When it comes to the software evolution and adaptation as a
goal, especially for cloud-based software, it should be considered as a multilayer
affecting concern, since this software mostly uses different cloud layers (IaaS,
PaaS, and SaaS) (P7).

AS6. Challenges in Managing the Resources : In some domains like e-
learning, there is a need for surviving the peaks. In systems subject to variable
loads, it is vital for them to withstand peak request levels, while a substantial
amount of resources is needed (P8). The other side of this issue in general, is
the need for maximum performance with minimum computing resources. When
utilizing cloud computing, the virtualization layer can sometimes sacrifice over-
all performance in favor of greater elasticity and scalability. Therefore, achieving
satisfactory user performance without excessive resource consumption is essen-
tial. This not only aids in reducing energy usage but also lowers the costs paid
by customers (P11).

Moreover, the need for running fewer physical hosts is crucial. To reduce
energy consumption, it is crucial to minimize the number of physical hosts run-
ning in the data center (P9). Furthermore, increasing the number of operational
physical servers leads to higher energy consumption. To minimize both energy
usage and the associated costs in data centers, it is imperative to reduce the
number of running servers, including the energy used for cooling purposes (P24).

This concern has another side that arises when the cloud provider starts
delivering high-quality services to the cloud customers. To prevent financial losses
for the cloud provider, it is essential to monitor and manage the quality of the
service experienced by the end customer. Occasionally, customers may have a
subpar experience not because the provider offers inadequate service or resources,
but due to their poor network coverage or resource limitation. This aspect should
be monitored, even on the customer’s device (P19).

AS7. Challenges in Having a Reliable Infrastructure : This concern
which can be associated with the deployment view, means that having a reliable
infrastructure has some consequences considering its economic or environmental
impact. Considering the cost, it points out that the importance of having tech-
nically and economically feasible hardware and software infrastructure becomes
evident when aiming for a continuously up-to-date system that requires minimal
maintenance efforts (P10). This means, in turn, that looking at the need for
cost-effective and reliable infrastructure at the same time is crucial.

Considering the environmental impact, we also see that paying attention to
the infrastructure availability and service accessibility and environmental impact
at the same time is important. Having the infrastructure available and services
accessible in the data centers needs high-performance computing which means
energy-hungry facilities in data centers. These contrasting requirements must be
carefully handled (P15).

482 S. Ahmadisakha and V. Andrikopoulos

AS8. Need for Preventive and Predictive Device Maintenance : To
effectively manage energy and maintain a sustainable system, it must have the
capability to store historical and real-time data, enabling the detection of failures
in real-time or even before they occur (P13).

AS9. Designing a Multi-tenant Web App Is Time-Consuming and
Expensive : Creating a multi-tenant web application is a complex endeavor
that demands time and effort. This is primarily because many existing frame-
works lack support for modularity and reusability, resulting in the loss of initial
efforts and reduced long-term maintainability (P17).

AS10. Device Dependent Software : The cost of software design and devel-
opment escalates when there is a requirement to create distinct software for each
individual device (P21). It is because of the need for developing software that is
embedded in a particular terminal or independent device. A lack of adopting an
as-a-service model can exacerbate the situation. This concern can directly affect
the economic sustainability of the system.

5.2 RQ7: Concerns and Sustainability Dimensions Viewpoints

According to the data presented in Table 2, each concern is linked to a particular
viewpoint. It is worth noting that the viewpoint itself is not an attribute of
the concern; instead, it pertains to the primary study that encompasses the
respective concern. In summary, among the 27 studies, there are 11 studies
adopting the StS viewpoint and 15 studies the SS viewpoint, with one study
encompassing both viewpoints (P21). When examining the concerns, we observe
5 concerns exclusively associated with the SS viewpoint (AS: 3, 4, 5, 7, 9, and
10) and 1 concern (AS: 8) linked to the StS viewpoint.

An additional noteworthy aspect to address is concerns AS1, AS2, and AS6,
which emanate from both the StS and SS perspectives. This signifies that these
particular concerns can be approached via both viewpoints. For instance, for
AS6, the former involves decreasing the number of operational servers by incor-
porating specific architectural components within the software, thereby pro-
moting environmental sustainability through the careful allocation of virtual
machines on the hosting infrastructure (SS). Alternatively, the latter entails hav-
ing direct control over the active hosts within a data center by creating software
to deliver this feature (StS).

It is also worth mentioning that, whenever we observe a StS viewpoint for a
primary study, that study contains both AS and NAS concerns. Studies adopt-
ing the StS viewpoint often connect AS concerns to broader concerns, such as
the promotion of environmental sustainability through smart irrigation systems,
which fall outside the scope of AS, while it involves AS2.

Pragmatic Architectural Framework 483

Table 2. Architecturally significant concerns, along with the viewpoints and sustain-
ability dimensions from which these concerns arise. CR: Concern, PID: Primary study
ID from Table 3, AS: Architecturally Significant, SS: Sustainable Software, StS: Sus-
tainability through Software.

AS CR# SID Viewpoint Associated Sustainability Dimension Temper

1 P1 SS Social Social

P18 StS Social→Economic

2 P2 SS Social Social-Environmental

P5 StS Environmental→Economic

P6 StS Environmental

P12 StS Environmental

P16 StS Social→Environmental, Economic

P21 StS Social

P22 StS Environmental→Technical, Economic

P23 StS Environmental

P25 StS Environmental

3 P3 SS Environmental Social-Environmental

P14 SS Social→Technical

4 P4 SS Environmental→Economic Environmental

P20 SS Environmental

P26 SS Environmental

P27 SS Environmental

5 P7 SS Technical→Environmental Technical

6 P8 SS Technical Technical-Economic-
Environmental

P9 SS Environmental→Economic

P11 SS Environmental

P19 StS Economic

P24 StS Environmental→Economic

7 P10 SS Economic→Technical Economic-Environmental

P15 SS Environmental→Technical

8 P13 StS Environmental Environmental

9 P17 SS Economic→Technical Economic

10 P21 SS Technical→Economic Technical

Regarding the relationship with sustainability dimensions, we create a map
connecting concerns and associated dimensions in Table 2. For this purpose
looked into the study to find what sustainability dimension(s) this specific con-
cern points to. The arrows in the sustainability dimensions column show that
the dimension on the left might affect the ones after it. In this study, we lack
sufficient evidence to describe the specific nature of the relationship and how
addressing a concern can indirectly impact another sustainability dimension.
Table 2 simply identifies a perceived relation from one dimension to another as
presented in relevant primary study.

The only aspect we can determine based on the extracted data is the nature of
each AS concern, as indicated in Table 2 under the “Temper” column. A concern
may be discussed in various studies, and not all studies necessarily cover the same

484 S. Ahmadisakha and V. Andrikopoulos

dimension. The Temper column summarizes the diverse natures of each concern,
irrespective of its source study. These temper classifications are derived from
the associated sustainability dimensions of the concerns. The process involves
designating the sustainability dimension on the left side of the arrow in the
associated dimensions column as the temperament of the concern.

In other words, the “Associated Sustainability Dimension” column provides
a summary of the sustainability dimension linked to the specific concern men-
tioned in each study. Given that concerns in various studies may be associated
with different sustainability dimensions, this column captures those associations.
On the other hand, the “Temper” column aims to depict the overall sustainabil-
ity association of the concern, irrespective of the specific study referencing it. To
provide an example, take AS1; it consistently exhibits a social sustainability asso-
ciation across all the studies it originates from. Consequently, the overall temper
of this concern is labeled as social, indicating its social nature. Conversely, AS7
displays an economic association in one study and an environmental association
in another. This suggests that this concern has the potential to impact both
economic and environmental dimensions, which are mentioned in the “Temper”
column. The majority of concerns exhibit an Environmental temper with respect
to sustainability, followed by Economic, Social, and Technical tempers.

6 Conclusion and Future Work

The adoption of cloud computing and the as-a-service model underscores the
importance of sustainability in software systems. To effectively integrate sus-
tainability as a quality attribute, considering it from a software architecture
perspective is crucial. Three key points emerge within this context: the lack
of comprehensive BoK on architectural knowledge of cloud software services
encompassing all sustainability dimensions, identifying cloud SHs’ sustainability
concerns, and the scarcity of decision support to design for sustainability consid-
ering the cloud-related architecting decisions. To address these considerations,
our proposal aims to develop a Pragmatic Architecting Framework tailored for
software architects. This framework intends to guide architects in designing cloud
software services with sustainability goals in mind which a part of the BoK is
presented in the current study that concerns cloud architectural solution types
and their associated concerns.

Future actions encompass the precise exploration of the implications of these
issues on sustainability. Additionally, our objective is to investigate the interplay
among the dimensions of sustainability linked to these concerns. We also aim to
explore the notion of reusable concerns associated with sustainability, beginning
with the most frequently recurring concerns identified in this study.

Pragmatic Architectural Framework 485

Appendix

Table 3. Selected Primary Studies. Detailed code presentations and extracted
records for each primary study are available in the replication package. and
the new replication package

PID Primary Study Title and Link Year

P1 Creating a sustainable federation of cloud-based infrastructures for the future internet 2015

P2 Green architecture for sustainable elearning systems 2017

P3 A Green and High Efficient Architecture for Ground Information Port with SDN 2020

P4 Sustainability Efficiency Challenges of Modern IT Architectures - A Quality Model for Serverless Energy Footprint 2020

P5 Irriman Platform: Enhancing Farming Sustainability through Cloud Computing Techniques for Irrigation Management 2022

P6 IoT-Aware Waste Management System Based on Cloud Services and Ultra-Low-Power RFID Sensor-Tags 2020

P7 Cloud architecture continuity: Change models and change rules for sustainable cloud software architectures 2017

P8 Scalable and elastic e-Assessment cloud solution 2014

P9 PaaS-IaaS Inter-Layer Adaptation in an Energy-Aware Cloud Environment 2017

P10 Architectural framework for implementing visual surveillance as a service 2014

P11 L3B: Low level load balancer in the cloud 2013

P12 GeoBMS: Hybrid Cloud/ On-Premise Architecture for Building Energy Optimization 2019

P13 An Enterprise Architecture based on Cloud, Fog and Edge Computing for an Airfield Lighting Management System 2020

P14 Sustainable Network Resource Management System for Virtual Private Clouds 2010

P15 Sustainable availability provision in distributed cloud services 2016

P16 A Cloud-Based Architecture for Citizen Services in Smart Cities 2012

P17 Multi-tenant web application framework architecture pattern 2015

P18 Towards Distributed Architecture for Collaborative Cloud Services in Community Networks 2014

P19 Fuzzy Logic based QoS Management and Monitoring System for Cloud Computing 2020

P20 Architectural Tactics to Optimize Software for Energy Efficiency in the Public Cloud 2022

P21 A Healthcare System as a Service in the Context of Vital Signs: Proposing a Framework for Realizing a Model 2012

P22 Experiences of Using a Hybrid Cloud to Construct an Environmental Virtual Observatory 2013

P23 An Intelligent Power Distribution Service Architecture Using Cloud Computing and Deep Learning Techniques 2018

P24 Application for modern energy efficient data center 2014

P25 An architecture for integrated intelligence in urban management using cloud computing 2012

P26 Energy efficiency embedded service lifecycle: Towards an energy efficient cloud computing architecture 2014

P27 Green architectural tactics for the cloud 2014

References

1. Andrikopoulos, V., Boza, R.D., Perales, C., Lago, P.: Sustainability in software
architecture: a systematic mapping study. In: 2022 48th Euromicro Conference
on Software Engineering and Advanced Applications (SEAA), pp. 426–433. IEEE
(2022)

2. Andrikopoulos, V., Lago, P.: Software sustainability in the age of everything as a
service. In: Next-Gen Digital Services. A Retrospective and Roadmap for Service
Computing of the Future: Essays Dedicated to Michael Papazoglou on the Occasion
of His 65th Birthday and His Retirement, pp. 35–47 (2021)

3. Andrikopoulos, V., Strauch, S., Leymann, F.: Decision support for application
migration to the cloud. Proc. CLOSER 13, 149–155 (2013)

4. Becker, C., et al.: Requirements: the key to sustainability. IEEE Softw. 33(1),
56–65 (2015)

5. Capilla, R., Nakagawa, E.Y., Zdun, U., Carrillo, C.: Toward architecture knowledge
sustainability: extending system longevity. IEEE Softw. 34(2), 108–111 (2017)

https://figshare.com/s/f2f3ca3e933f9c949ca3
https://figshare.com/s/65a7601ac1ac5ff101e7
http://dx.doi.org/10.4108/icst.tridentcom.2015.259747
https://doi-org.proxy-ub.rug.nl/10.1145/3129790.3129817
https://doi.org/10.1007/978-981-13-9409-6_156
https://doi.org/10.1007/978-3-319-97925-0_37
https://doi.org/10.3390/s22010228
https://doi.org/10.1109/JSEN.2020.3010675
http://dx.doi.org/10.1002/smr.1849
https://doi.org/10.1109/EDUCON.2014.6826180
https://doi.org/10.1109/TSUSC.2017.2719159
https://doi.org/10.1109/IndiaCom.2014.6828147
https://doi.org/10.1109/EUROCON.2013.6624994
https://doi.org/10.1109/GIOTS.2019.8766402
https://doi.org/10.1109/EDOCW49879.2020.00021
https://doi.org/10.1109/CloudCom.2010.63
https://doi.org/10.1109/FTC.2016.7821756
https://doi.org/10.1109/UCC.2012.43
https://doi.org/10.1109/NICS.2015.7302219
https://doi.org/10.1109/INCoS.2014.63
https://doi.org/10.1109/ICISS49785.2020.9315874
https://doi.org/10.1109/ICT4S55073.2022.00019
https://doi.org/10.1016/j.camwa.2012.03.076
https://doi.org/10.1145/2460756.2460759
https://doi.org/10.1016/j.jnca.2017.09.001
https://doi.org/10.1109/TELFOR.2014.7034602
https://doi.org/10.1186/2192-113X-1-1
http://ceur-ws.org/Vol-1203/
https://doi.org/10.1109/WICSA.2014.30

486 S. Ahmadisakha and V. Andrikopoulos

6. Chauhan, M.A., Probst, C.W.: Architecturally significant requirements identifi-
cation, classification and change management for multi-tenant cloud-based sys-
tems. In: Requirements Engineering for Service and Cloud Computing, pp. 181–205
(2017)

7. Condori-Fernandez, N., Lago, P.: Characterizing the contribution of quality
requirements to software sustainability. J. Syst. Softw. 137, 289–305 (2018)

8. Duboc, L., et al.: Requirements engineering for sustainability: an awareness frame-
work for designing software systems for a better tomorrow. Requirements Eng. 25,
469–492 (2020)

9. Durdik, Z., et al.: Sustainability guidelines for long-living software systems. In:
2012 28th IEEE International Conference on Software Maintenance (ICSM), pp.
517–526. IEEE (2012)

10. Easterbrook, S., Singer, J., Storey, M.A., Damian, D.: Selecting empirical meth-
ods for software engineering research. In: Guide to Advanced Empirical Software
Engineering, pp. 285–311 (2008)

11. Farshidi, S., et al.: A decision support system for software technology selection. J.
Decis. Syst. 27(sup1), 98–110 (2018)

12. Gill, S.S., Buyya, R.: A taxonomy and future directions for sustainable cloud com-
puting: 360 degree view. ACM Comput. Surv. 51(5), 1–33 (2018)

13. Goniwada, S.R.: Cloud native architecture and design patterns. In: Cloud Native
Architecture and Design: A Handbook for Modern Day Architecture and Design
with Enterprise-Grade Examples, pp. 127–187 (2022)

14. Hofmeister, C., et al.: A general model of software architecture design derived from
five industrial approaches. J. Syst. Softw. 80(1), 106–126 (2007)

15. ISO/IEC 25010: 2011: Systems and software engineering-systems and software
quality requirements and evaluation (SQuaRE)-system and software quality mod-
els. Technical report (2011)

16. Kitchenham, B., Brereton, P.: A systematic review of systematic review process
research in software engineering. Inf. Softw. Technol. 55(12), 2049–2075 (2013)

17. Kitchenham, B., Charters, S.: Guidelines for performing systematic literature
reviews in software engineering, ver. 2.3. Technical report (2007)

18. Koziolek, H.: Sustainability evaluation of software architectures: a systematic
review. In: Proceedings of the Joint ACM SIGSOFT Conference-QoSA and ACM
SIGSOFT Symposium-ISARCS on Quality of Software Architectures-QoSA and
Architecting Critical Systems-ISARCS, pp. 3–12 (2011)

19. Kumar, S., Buyya, R.: Green cloud computing and environmental sustainability.
In: Harnessing Green IT: Principles and Practices, pp. 315–339 (2012)

20. Lago, P.: Architecture design decision maps for software sustainability. In: 2019
IEEE/ACM 41st International Conference on Software Engineering: Software Engi-
neering in Society (ICSE-SEIS), pp. 61–64. IEEE (2019)

21. Lago, P., Koçak, S.A., Crnkovic, I., Penzenstadler, B.: Framing sustainability as a
property of software quality. Commun. ACM 58(10), 70–78 (2015)

22. Liu, F., et al.: NIST cloud computing reference architecture. NIST Spec. Publ.
500(2011), 1–28 (2011)

23. Mell, P., Grance, T., et al.: The NIST definition of cloud computing (2011)
24. Mireles, G.A.G., et al.: A classification approach of sustainability aware require-

ments methods. In: 2017 12th Iberian Conference on Information Systems and
Technologies (CISTI), pp. 1–6. IEEE (2017)

25. Mussbacher, G., Nuttall, D.: Goal modeling for sustainability: the case of time. In:
2014 IEEE 4th International Model-Driven Requirements Engineering Workshop
(MoDRE), pp. 7–16. IEEE (2014)

Pragmatic Architectural Framework 487

26. Penzenstadler, B., et al.: Software engineering for sustainability: find the leverage
points! IEEE Softw. 35(4), 22–33 (2018)

27. Venters, C.C., et al.: Software sustainability: research and practice from a software
architecture viewpoint. J. Syst. Softw. 138, 174–188 (2018)

28. Wieringa, R.J.: Design Science Methodology for Information Systems and Software
Engineering. Springer, Berlin, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-43839-8

29. Zdun, U., Capilla, R., Tran, H., Zimmermann, O.: Sustainable architectural design
decisions. IEEE Softw. 30(6), 46–53 (2013)

https://doi.org/10.1007/978-3-662-43839-8
https://doi.org/10.1007/978-3-662-43839-8

Author Index

A
Adams, Lauren 309
Ahmad, Isra Shafique 19
Ahmadisakha, Sahar 471
Ali, Nour 326
Ali, Shaukat 451
Alidoosti, Razieh 71
Alshuqayran, Nuha 326
Amoroso d’Aragona, Dario 309
Ampatzoglou, Apostolos 359
Andrikopoulos, Vasilios 471
Avritzer, Alberto 185

B
Bakhtin, Alexander 3
Berrocal, Javier 272
Bikker, Jan-Willem 257
Boltz, Nicolas 342
Braun, Niklas 257
Breuil, Gabriel 409
Brogi, Antonio 3
Brott, Julian 237

C
Canal, Carlos 272
Cerezo, Felipe 426
Cerny, Tomas 3, 309
Chatzigeorgiou, Alexander 359
Constantinides, Constantinos 133
Copei, Sebastian 33

D
d’Aloisio, Giordano 89, 169
D’Angelo, Andrea 89
De Sanctis, Martina 71
Dekker, Arjan 390
Dembele, Jean-Marie 151
Demirörs, Onur 19
Di Marco, Antinisca 89, 169

Di Marco, Diana 89
Doornbos, Richard 257
Druyts, Sarah 390

E
Eich, Andreas 257

F
Fakeeh, Rana 326
Fatima, Iffat 200
Frank, Sebastian 237

G
Gerking, Christopher 342
Gjøby, Julie Marie 451

H
Hahner, Sebastian 342
Hajnorouzi, Mehrnoush 257
Hakamian, Alireza 237
Harris, Patrick 309
Heinrich, Robert 342
Hossain Chy, Md Showkat 309

I
Iovino, Ludovico 71

J
Jannatpour, Ali 133
Javaheri, Narges 257
Jilderda, Hendrik 53
Joosen, Wouter 120

K
Karamanlioglu, Alper 438
Karatas, Yahya Bahadir 438
Kolyda, Maria 359
Kosiol, Jens 33
Kostoglou, Eirini 359

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2024
B. Tekinerdoğan et al. (Eds.): ECSA 2023, LNCS 14590, pp. 489–490, 2024.
https://doi.org/10.1007/978-3-031-66326-0

https://doi.org/10.1007/978-3-031-66326-0

490 Author Index

L
Lago, Patricia 71, 200
Laso, Sergio 272
Li, Jialong 375
Li, Nianyu 375
Li, Xiaozhou 3
Loukas, George 151

M
Maarleveld, Jesse 390
Maggi, Kevin 217
Manuel Murillo, Juan 272
Mao, Zhenyu 375
Marzi, Francesca 89, 169
Mehrafrooz, Zohreh 133
Mendy, Gervais 151
Modrakowski, Elias 257
Moritz, Sebastian 257

N
Nakagawa, Elisa Yumi 375
Nikolaidis, Nikolaos 359
Noureddine, Adel 409

P
Pawlak, Renaud 409
Pecorella, Tommaso 287
Perry, Samantha 309

R
Raibulet, Claudia 53
Razavian, Maryam 71
Restrepo-Calle, Felipe 107
Rito Silva, António 185
Rodrigues, Helena 185
Rohman, Thoybur 326

S
S. Abdelfattah, Amr 309
Sadou, Salah 107
Sakellari, Georgia 151
Sartaj, Hassan 451
Sawadogo, Zakaria 151
Scommegna, Leonardo 217, 287
Siffre, Lylian 409
Soldani, Jacopo 3
Soliman, Mohamed 390
Solis, Carlos 326
Soylu, Görkem Kılınç 19
Stilo, Giovanni 89, 169

T
Taibi, Davide 3, 309
Taimoor Khan, Muhammad 151
Tei, Kenji 375
Tibermacine, Chouki 107
Toro-Gálvez, Lorenzo 272
Tran, Anh-Duy 120
Troya, Javier 272
Tsigkanos, Christos 375

U
Ubukata, Toshihide 375
Ünlü, Hüseyin 19

V
van Beek, Rutger 257
van Hoorn, André 237
Vela, Belén 426
Verdecchia, Roberto 217, 287
Vergara-Vargas, Jeisson 107
Vicario, Enrico 217, 287

Y
Yskout, Koen 120
Yue, Tao 451
Yurtalan, Gokhan 438

	 Preface
	 Organization
	 Contents
	AMP
	Tools Reconstructing Microservice Architecture: A Systematic Mapping Study
	1 Introduction
	2 Related Works
	3 Methods
	3.1 Research Questions
	3.2 The Search Process
	3.3 Selection of Papers
	3.4 Tool Extraction/Snowballing
	3.5 Tool Coding

	4 Results
	4.1 RQ1 - What Tools for Microservice Reconstruction Have Been Developed?
	4.2 RQ2 What Languages/Platforms are Currently Supported by Tools?
	4.3 RQ3 What is the Purpose of Reconstruction?
	4.4 RQ4 What is the Input/Output of the Tools?

	5 Discussion
	5.1 Future Research Directions
	5.2 Threats to Validity

	6 Conclusion
	References

	Analysis, Design, Test, and DevOps in Microservice-Based Software Architectures: Results from Pakistan
	1 Introduction
	2 Related Work
	3 Research Method
	3.1 Goals and Research Questions
	3.2 Sampling Method
	3.3 Designing Survey Questions
	3.4 Survey Piloting and Execution
	3.5 Criteria for Validation

	4 Results
	4.1 Participant Demographics and Experience
	4.2 Analysis, Design, and Test
	4.3 DevOps

	5 Discussion
	6 Conclusion
	References

	DevOps Patterns: A Rapid Review
	1 Introduction
	2 Methodology
	2.1 Research Questions
	2.2 Search Strategy and Search String
	2.3 Inclusion and Exclusion Criteria
	2.4 Data Extraction

	3 Results and Discussion
	3.1 Research Question 1: What Patterns are Described in the Literature that Can Be Used for DevOps?
	3.2 Research Question 1a: Does the Literature Already Group the Patterns?
	3.3 Research Question 1b: Can Patterns Without a Group Be Added to Existing Categories, or Must Additional Categories Be Defined?
	3.4 Research Question 2: Can the Identified Patterns Be Combined, or Are There Any that Mutually Exclude Each Other?
	3.5 Research Question 3: Are the Identified Patterns or Categories Related in Any Form to the Phases of the DevOps Cycle?
	3.6 Discussion: What is a Possible Minimal Stack to Apply DevOps?

	4 Threats to Validity
	5 Conclusion and Future Work
	References

	CASA
	MAPE-K Based Guidelines for Designing Reactive and Proactive Self-adaptive Systems
	1 Introduction
	2 MAKE-K Based Comparison of Reactive and Proactive Approaches
	2.1 Monitoring
	2.2 Analyzing
	2.3 Planning
	2.4 Executing
	2.5 Knowledge

	3 Artifact Based Comparison of Reactive and Proactive Approaches
	3.1 Artifacts
	3.2 Which Characteristics Do Input Data Have?
	3.3 Does the Quantity and the Quality of the Input Data Differ?
	3.4 Does SAS only Reason About the Data or Does It Gain Extra Knowledge from It?
	3.5 When is Analysis Executed?
	3.6 Closed (Existing List of Defined Adaptations Strategies) or Open (Generating) Decision Making?
	3.7 Is the SAS Model-Based or Not?
	3.8 Does the Artifact Make Use of Atomic Steps or Multiple Steps?
	3.9 Is Adaptation Applied Immediately or over Time?

	4 Findings and Guidelines
	5 Conclusion and Further Work
	References

	DE & I Track
	Stakeholder Inclusion and Value Diversity: An Evaluation Using an Access Control System
	1 Introduction
	2 Background
	3 Methodology
	4 Results
	4.1 The Initial Evaluation Results
	4.2 The Secondary Evaluation Results
	4.3 Threats to Validity

	5 Conclusion and Future Directions
	References

	Data-Driven Analysis of Gender Fairness in the Software Engineering Academic Landscape
	1 Introduction
	2 Gender Bias in Classic Academic Systems
	3 Analysis Description
	3.1 Data Collection and Filtering
	3.2 Analysis Setting

	4 Experimental Results
	4.1 Statistics
	4.2 Disparate Impact

	5 Threats to Validity
	6 Conclusion and Future Work
	References

	DeMeSSA
	Sarch-Knows: A Knowledge Graph for Modeling Security Scenarios at the Software Architecture Level
	1 Introduction
	2 Related Works
	3 Sarch-Knows: Knowledge Graph
	3.1 Software Architecture (SA)
	3.2 Cybersecurity (CS)
	3.3 SA-CS Connection

	4 Security Scenarios
	4.1 Scenario Overview
	4.2 Using Neo4j for Knowledge Modeling

	5 Discussion
	6 Conclusions and Future Work
	References

	Threat Modeling: A Rough Diamond or Fool's Gold?
	1 Introduction
	2 Empirical Studies on Threat Modeling
	2.1 Article Selection
	2.2 Empirical Insights

	3 Open Challenges
	3.1 How Effective Is Threat Modeling in Delivering More Secure Software in Practice?
	3.2 What Is the Impact of Threat Modeling on the Software Development Process?
	3.3 How Easily Can Threat Modeling Be Learned?
	3.4 How Does the Human Mind Apply Threat Modeling?

	4 Related Work
	5 Conclusion
	References

	FAACS
	Declarative Representation of UML State Machines for Querying and Simulation
	1 Introduction and Motivation
	2 Background and Assumptions
	2.1 Modified Extended Finite State Machine (EFSM)

	3 Overview of the Approach and Case Study
	4 Transformation of the State Machine into a Declarative Model
	4.1 Modeling Events
	4.2 Modeling Actions

	5 Flattened Representation of UML State Machines
	5.1 The Flattening Process

	6 Building a Query Platform
	6.1 Extending the Declarative Model with Rules
	6.2 Studying Behavior
	6.3 Studying Complexity
	6.4 Studying the Well-Formedness of the State Machine

	7 Simulating State Machine Behavior
	References

	Towards Behavior-Based Analysis of Android Obfuscated Malware
	1 Introduction
	2 Malware Behavioural Analysis
	2.1 Extraction of Behavioral Features
	2.2 Modelling of Behavior
	2.3 Model-Based Online Malware Analysis
	2.4 AI-Based Offline Malware Analysis

	3 Current Status and Future Work
	4 Related Work
	5 Conclusion
	References

	QUALIFIER
	Towards a Prediction of Machine Learning Training Time to Support Continuous Learning Systems Development
	1 Introduction
	2 Related Work
	3 Background Knowledge
	4 Experimental Setting
	4.1 Slope Computation
	4.2 Training Time Prediction

	5 Experimental Results and Discussion
	5.1 Addressing [rq1]RQ1
	5.2 Addressing [rq2]RQ2
	5.3 Threats to Validity

	6 Conclusion and Future Work
	References

	Performance Comparison of Monolith and Microservice Architectures
	1 Introduction
	2 Reference Model
	3 Test Design
	4 Analysis
	5 Discussion
	6 Conclusion
	References

	Towards a Sustainability-Aware Software Architecture Evaluation for Cloud-Based Software Services
	1 Introduction
	2 Background
	3 Related Work
	4 Methodology
	5 Results and Discussion
	6 Threats to Validity
	7 Conclusion and Future Work
	References

	Technical Debt in Microservices: A Mixed-Method Case Study
	1 Introduction
	2 Related Work
	3 Study Design and Execution
	3.1 Research Goal
	3.2 Research Questions
	3.3 Research Process
	3.4 Phase 1: Microservice Software Repository Cloning
	3.5 Phase 2: Checkout Commit in Main Branch
	3.6 Phase 3: Build Project
	3.7 Phase 4: Analyze Project with SonarQube
	3.8 Phase 5: Data Analysis
	3.9 Phase 6: Interview with Leading Developer
	3.10 Phase 7: Reflexive Thematic Analysis

	4 Results
	4.1 Results RQ1: Evolution of TD in a Microservice-Based Software-Intensive System
	4.2 Results RQ2: Relation Between TD Evolution and Number of Microservices

	5 Threats to Validity
	5.1 Construct Validity
	5.2 Internal Validity
	5.3 External Validity
	5.4 Reliability and Replication Package

	6 Conclusion and Future Work
	References

	TQPropRefiner: Interactive Comprehension and Refinement of Specifications on Transient Software Quality Properties
	1 Introduction
	2 Background
	2.1 Transient Behavior
	2.2 Property Specification Patterns

	3 Related Work
	4 Approach and TQPropRefiner
	4.1 Concept
	4.2 Refinement Strategies
	4.3 Envisioned Usage
	4.4 TQPropRefiner

	5 Evaluation
	5.1 Method
	5.2 Tasks
	5.3 Execution
	5.4 Results
	5.5 Discussion
	5.6 Threats to Validity

	6 Conclusion
	References

	TwinArch
	Architecture for Digital Twin-Based Reinforcement Learning Optimization of Cyber-Physical Systems
	1 Introduction
	2 Prerequisites and Related Work
	2.1 Combining DTs and RL
	2.2 Fundamental Considerations
	2.3 Literature on DT-Based RL

	3 Architecture
	3.1 Requirements View
	3.2 Functional View
	3.3 Logical View
	3.4 Technical View

	4 Exemplary Application
	5 Conclusion and Future Work
	References

	Towards an Urban Digital Twins Continuum Architecture
	1 Introduction
	2 Motivation
	3 Related Work
	4 Architecture
	5 Case Studies
	5.1 Urban Transportation System
	5.2 Pollution Monitoring System

	6 Discussion
	7 Conclusions and Future Work
	References

	Designing a Future-Proof Reference Architecture for Network Digital Twins
	1 Introduction
	2 Opening Survey
	3 On the Need of a Reference Architecture for Network Digital Twins
	3.1 Network Digital Twins for What?
	3.2 Network Digital Twins of What?
	3.3 How to Deploy Network Digital Twins?

	4 Main Challenges for a Network Digital Twin Reference Architecture
	4.1 Large Scale Data Collection
	4.2 Scalability
	4.3 Flexibility and Autonomous Reconfiguration
	4.4 Heterogeneous Performance Requirements
	4.5 Interfaces
	4.6 Digital Twin Security

	5 Key Features of a Network Digital Twin Architecture
	5.1 Edge to Cloud Continuum Deployment Awareness
	5.2 Digital Twin Interoperability
	5.3 Distributed Network Digital Twin
	5.4 Composite (Hierarchical) Digital Twin
	5.5 Prototyping
	5.6 Digital Twin of Anything
	5.7 An Intent-Based Architecture

	6 A Step Towards an Architecture Implementation
	7 Conclusions, Our Vision, and Future Work
	References

	Tools and Demos
	Evolution and Anti-patterns Visualized: MicroProspect in Microservice Architecture
	1 Introduction
	2 Software Architecture Reconstruction (SAR)
	3 MicroProspect Tool
	4 System Use Overview
	5 Evaluation
	6 Related Works
	7 Conclusion
	References

	An Approach and Toolset to Semi-automatically Recover and Visualise Micro-Service Architecture
	1 Introduction
	2 MiSAR Approach
	2.1 The Platform-Specific Metamodel
	2.2 The Platform-Independent Metamodel
	2.3 Mapping Rules

	3 Components of MiSAR Toolset
	4 Implementation of MiSAR
	5 A Walkthrough of MiSAR
	6 Evaluation
	7 Related Work
	8 Conclusion
	References

	An Extensible Framework for Architecture-Based Data Flow Analysis for Information Security
	1 Introduction
	2 Overview of the Data Flow Analysis Framework
	3 Modeling and Deriving Data Flow Diagrams
	3.1 Unified Data Flow Diagram Metamodel
	3.2 Manually Defining Data Flow Diagrams
	3.3 Automatically Deriving Data Flows from Architectural Models

	4 Data Flow Analysis
	4.1 Architecture Overview
	4.2 Flow Graph Extraction
	4.3 Label Propagation
	4.4 DSL-Based Constraint Checking

	5 Analysis Framework Extensions
	6 Evaluation
	6.1 Evaluation Design
	6.2 Evaluation Results

	7 Conclusion and Future Work
	References

	Studying the Evolution of Library Utilization in Maven Projects: A Metric-Based Approach
	1 Introduction
	2 Related Work
	3 Proposed Metrics
	4 Library Utilization Tool
	5 Case Study Design
	5.1 Research Questions
	5.2 Cases and Units of Analysis
	5.3 Data Collection

	6 Results and Discussion
	6.1 Metrics and Evolution
	6.2 Evaluation

	7 Threats to Validity
	8 Conclusions
	References

	Slicing and Visualizing F' Topologies with F'Prism
	1 Introduction and Motivation
	2 Background and Related Work
	2.1 JPL's F' Framework
	2.2 Related Work

	3 Slicing Criteria
	3.1 Spaceflight-Specific Slicing Criteria
	3.2 Architecture-General Slicing Criteria

	4 Visualizing F' Topology Slices
	4.1 Overview of F'Prism Implementation
	4.2 F'Prism Workflow and Demonstration

	5 Conclusion and Future Work
	References

	Maestro: A Deep Learning Based Tool to Find and Explore Architectural Design Decisions in Issue Tracking Systems
	1 Introduction
	2 Requirements
	2.1 Use Cases
	2.2 Non-functional Requirements

	3 Architecture of Maestro
	4 Research Process Leading to Maestro
	5 Limitations
	6 Related Work
	7 Conclusion
	References

	Industry Track
	Demeter: An Architecture for Long-Term Monitoring of Software Power Consumption
	1 Introduction
	2 Architecture of Demeter
	2.1 Monitoring Application Implementation
	2.2 Data Feedback
	2.3 Validation

	3 Long-Term Monitoring Preliminary Study of Software Energy Consumption in a Corporate Environment
	3.1 Green Good Practices
	3.2 Impact of the Good Practices During a Two-Week Experiment
	3.3 Discussions and Limitations

	4 Conclusion and Perspectives
	References

	Experience of the Architectural Evolution of a Big Data System
	1 Introduction
	2 Initial Scenario
	3 Main Architectural Changes and Evolution
	3.1 Evolution of the Data Repository: From One to Several Elements
	3.2 Evolution of Processing Elements
	3.3 Evolution of the Landing Area: Diversification and Securitization
	3.4 Current Architecture

	4 Discussion
	5 Conclusions
	References

	Parallel and Distributed Architecture for Multilingual Open Source Intelligence Systems
	1 Introduction
	1.1 Contributions

	2 Related Work
	3 Proposed Architecture
	4 Discussion on the Implications of the Architecture
	5 Conclusion and Future Work
	References

	HITA: An Architecture for System-level Testing of Healthcare IoT Applications
	1 Introduction
	2 Related Work
	3 HITA: An Architecture for Test Infrastructure
	3.1 HITA Components
	3.2 Quality Attributes

	4 Evaluation
	4.1 DTGen Component Implementation
	4.2 Experiment Setup and Execution
	4.3 Metrics and Statistical Tests
	4.4 Results and Discussion
	4.5 Threats to Validity

	5 Experiences and Lessons Learned
	5.1 DTs Role in Test Infrastructure
	5.2 Trade-Off Between Model-Based and ML DTs
	5.3 Fidelity Evaluation of DTs
	5.4 Testing with Third-Party Applications
	5.5 Domain-Specific Testing Strategies
	5.6 Intelligent Test Generation Technique
	5.7 Test Optimization

	6 Conclusion and Future Work
	References

	Doctoral Symposium
	Pragmatic Architectural Framework to Design for Sustainability in Cloud Software Services
	1 Introduction
	2 Problem Statement
	3 Problem Decomposition
	4 Initial Results: Solutions on Sustainability
	5 Further Results: Concerns on Sustainability
	5.1 RQ6: Identified Concerns
	5.2 RQ7: Concerns and Sustainability Dimensions Viewpoints

	6 Conclusion and Future Work
	References

	Author Index

