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Abstract. Two Semi Markov processes are defined to describe the ser-
vice and inter-arrival times of an s − S inventory model with zero lead
time, in which both inter-arrival time and service time depend upon the
inventory level. It is assumed that both the service time and the inter-
arrival time follow Phase-Type distributions, which are determined by
the current inventory level. The marginal distributions of both the ser-
vice time and the inter-arrival time are obtained. A continuous parameter
Markov chain is used to model the queue size. Condition for stability and
the steady state characteristics of the system are derived. The impact of
interdependence between service and arrival processes, along with inven-
tory level on the system is examined. Furthermore, a numerical analysis
is also done to explain the consequences of this dependency on steady-
state system characteristics.

Keywords: Interdependent processes · Semi-Markov Process · Matrix
analytic method · s − S inventory model

1 Introduction

Inventory models had received significant attention in academic research. While
numerous classical models assume negligible or no time for the inventory to be
served, real-world scenarios often demand considerations of the time to serve the
inventory. Pioneering the exploration of Inventory models with positive service
time were Berman et al. [12] and Sigman et al. [14]. Comprehensive insight into
studies by various authors in this direction can be found in the survey articles
by Krishnamoorthy et al. [8,9].
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Unexpectedly, there have been relatively few prior studies exploring models
where the service time and/or inter-arrival time are contingent upon the inven-
tory level. This stands in contrast to the significant emphasis placed on queueing
models with state-dependent arrival and service processes in the existing liter-
ature. S. K. Gupta [4] analyzed such a model with a finite queue size. In his
investigation, both arrival and service rates were treated as arbitrary functions
of the number of customers in the system. Other pioneering works in a similar
direction were done by Hiller et al. [6] as well as Conway et al. [3]. Later, Bekker
et al. [2] provided detailed descriptions of both M/G/1 and G/G/1 models incor-
porating workload-dependent arrival and service rates.

However, there are classical models (with zero service time) that have ana-
lyzed inventory models with stock dependent demands. These models are derived
from the observation that maintaining abundant inventory has a favourable
impact on demand.

Customers are often enticed to make purchases by prominently displaying a
considerable amount of inventory in stores. Larson et al. [10] coined the term
“psychic stock” for this displayed inventory. Hadley et al. [5], Wolfe [16], T L
Urban [15] and Johnson [7] are among the researchers who have investigated
the stimulating impact of inventory level on demand. The influence of inven-
tory level on demand is evident in cases involving distinct inventory items, such
as ornaments or clothing materials. A diverse assortment of these items offers
customers a wider choice, consequently elevating demand. Another instance is
when there’s an abundance of inventory or when dealing with perishable items.
In these situations, sellers may introduce special offers to entice buyers and clear
out excess/old stock, resulting in a notable increase in demand.

Queueing models with interdependent arrival and service processes are intro-
duced by Ranjith et al. [13]. Much before that Guy Latouche [11] derived interde-
pendent phase type processes by a semi Markovian point process. He constructed
this by considering a finite state irreducible Markov chain. In this paper we fol-
lows a similar approach. But with the difference that our focus is not on the
dependence between these processes, but on the interdependence between the
state of the embedded Markov chain and the phase type distribution constructed.

Using this method, this paper analyses an s − S inventory model with no
lead time and positive service time. In this model both the service and arrival
processes depend on the inventory level. The structure of the paper is in the
following manner. Section 2 presents the description of the underlying Markov
chains for the service and arrival processes. In Sect. 3, the marginal distribution
of the service time and inter arrival time are found. In Sect. 4, a continuous-time
Markov chain is employed to model a queueing-inventory model with inventory
dependent arrival and service processes. It also covers the condition for stability
of the system. Section 5 focuses on the steady state analysis and evaluation of
the key system performance measures. Furthermore, we conduct a comprehensive
numerical investigation of the system in Sect. 6. Finally, in Sect. 7 we conclude
the discussion.
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2 Semi-Markovian Service and Arrival Processes
Depending on Inventory Level

To construct Semi-Markovian point processes suitable for modeling arrival and
service processes of a queueing-inventory model in which these two processes
depend on the level of inventory, we proceed as follows:-

Consider an irreducible Markov chain X = {Xi|i = 0, 1, 2, 3, ...} with state
space {1, 2, 3, ..., r}. Let PX =

[
pX

ij

]
where

pX
ij =

⎧
⎪⎨

⎪⎩

1 if j = i − 1, 2 ≤ i ≤ r

1 if i = 1, j = r

0 otherwise.

be the transition probability matrix of the chain X .
Assume that the transitions of the chain X occur at random epochs γi, i =

1, 2, 3, ... . Let τi be the interval of time between the successive transitions.

τi =

{
γi − γi−1, if i = 2, 3, ...

γ1 if i = 1

For each i, if Xi−1 = j, assume that τi follows a Phase type distribution
Fj(.) with representation (αj ,Dj), where Dj is an nj ×nj matrix. Thus we have
a semi-Markov Process {ZX(t)|t ≥ 0} defined by

ZX(t) = Xi, γi ≤ t < γi+1, i = 0, 1, 2, ...

In the present study, states of the chain X are the inventory levels and each
state transition corresponds to a service completion. γi, i = 1, 2, 3, ... are the
epochs of completion of ith service, ZX(t) represents the inventory level at time
t and the distribution of duration of the service happening at time t is FZX(t)(.).

For the arrival process, we proceed as follows:- Consider the phase type dis-
tributions Gi(.) with representations (βi, Ti), i = 1, 2, .., r where Ti is a square
matrix of order mi. Define a Markov chain Y = {Yi|i = 0, 1, 2, 3, ...} with state
space {0,1,2,...}, Y0 = 0 and having the transition probability matrix PY =

[
pY

ij

]

where

pY
ij =

{
1 if j = i + 1, i ≥ 0
0 otherwise.

Starting from time t = 0, let νi be the epoch at which the chain Y makes the ith

transition, i = 1, 2, 3, .... Let ϕi be the inter occurrence time νi−νi−1 between the
i−1th and ith transitions of the chain Y. Assume that ϕi follows the distribution
Gj(.) where j = ZX(νi−1). Hence we have a semi Markov Process

ZY (t) = Yi, νi ≤ t < νi+1, i = 0, 1, 2, ...

We may take the states of the chain Y to be the number of arrivals. The
distribution of the inter arrival times are then determined by the inventory level
at the epochs of the preceding arrivals.
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3 Marginal Distributions of Service Times
and Inter-arrival Times

Consider the continuous parameter Markov chain

N1 = {(N1(t), IX(t), Jτ (t))|t ≥ 0}

where N1(t) is the number of transitions occurred during the time interval (0, t]
of the chain X , IX(t) is the state of the chain X and Jτ (t) is the phase of the
distribution of the ongoing service process at time t. The state space of this
process is

r⋃

i=1

{(n, i, j)|n = 0, 1, 2, ..., j = 1, 2, 3, ..., ni}

Since in the steady state all the states of the chain X are equally likely,
the initial probability distribution of the chain N1 is given by 1

r α̃, where α̃ =
(α1, α2, ..., αr) The infinitesimal generator of the chain N1 is

Qs =

⎡

⎢
⎢
⎢
⎢
⎣

U U0 0 0 ...
0 U U0 0 ...
0 0 U U0 ...
. . . . ...
. . . . ...

⎤

⎥
⎥
⎥
⎥
⎦

where
U = diag(D1,D2, ...,Dr)

and

U0 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 ... 0 0 D0
1α1

D0
2α2 0 0 ... 0 0 0
0 D0

3α3 0 ... 0 0 0
. . . ... . . .
. . . ... . . .
0 0 0 ... 0 D0

rαr 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

Here D0
i = −Die, i = 1, 2, ..., r.

The service time τi of the ithcustomer is the time taken by the chain N1 for
the transition from level i to level i + 1. From the infinitesimal generator of N1

it follows that τi’s are identically distributed and that their common marginal
distribution F (t) is of phase type with representation

(
1
r α̃, U

)
.

Therefore,

F (t) = 1 − 1
r
α̃exp(Ut)e

= 1 − 1
r

r∑

i=1

αiexp(Dit)e
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where e is a column vector of 1’s of appropriate order and the density function
is

f(t) =
1
r

r∑

i=1

αiexp(Dit)D0
i =

1
r

r∑

i=1

F ′
i (t)

Thus in the steady state, marginal density of the service time is the mixture of
the densities F ′

1(.), F
′
2(.), ..., F

′
r(.).

To determine the marginal distribution of the inter arrival time, we consider
the Markov chain

N2 = {(N2(t), IX(ν), IX(t), Jϕ(t)) |t ≥ 0}

where N2(t) is the number of transitions of the chain Y occurred in the interval
(0, t], IX(ν) and IX(t) are the states of the chain X at time ν and t respectively
where ν = max{νj ∈ (o, t]} and Jϕ(t) is the phase of the ongoing arrival process
at time t. Note that N2(t) is the total number of arrivals in (0, t] and ZX(ν)
is the inventory level at the epoch of previous arrival. This chain has the state
space

r⋃

i=1

{(n, i, k, j)|n = 0, 1, 2, ..., k = 1, 2, ..., r, j = 1, 2, 3, ...,mi}

and the infinitesimal generator

QV =

⎡

⎢
⎢
⎢
⎢
⎣

V V 0 0 0 ...
0 V V 0 0 ...
0 0 V V 0 ...
. . . . ...
. . . . ...

⎤

⎥
⎥
⎥
⎥
⎦

where
V = diag(V1, V2, ..., Vr)

and

V 0 =

⎡

⎢
⎢
⎢
⎣

V 0
1

V 0
2
...

V 0
r

⎤

⎥
⎥
⎥
⎦

in which

Vi =

⎡

⎢
⎢
⎢
⎢
⎣

Ti − μ1Im1 0 0 ... 0 μ1Im1

μ2Im2 Ti − μ2Im2 0 ... 0 0
. . . ... . .
. . . ... . .
0 0 0 ... μrImr

Ti − μrImr

⎤

⎥
⎥
⎥
⎥
⎦

,

μi = −αiD
−1
i e and V i

0 is a block matrix of order r × r2 with T 0
i βi at positions

(j, (j − 1)r + j) and zero matrices at every other positions.
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Hence in the steady state, the distribution G(.) of the inter arrival time
is a Phase type distribution with representation (1r β̃ ⊗ ζ, V ) where β̃ =
(β1, β2, . . . , βr) and ζ =

(
1
r , 1

r , ...1r
)

is the stationary probability vector of the
chain X . Therefore, we have

G(t) = 1 −
(

1
r
β̃ ⊗ ζ

)
exp(V t)e

= 1 − 1
r

r∑

i=1

(βi ⊗ ζ)exp(Vit)e

and the density function is

g(t) =
1
r

r∑

i=1

(βi ⊗ ζ)exp(Vit)
(
T 0

i ⊗ er

)

where er is a column vector of 1’s of dimension r × 1. Thus in the steady state,
marginal distribution of the service time is the mixture of the phase type distri-
butions with representations ((βi ⊗ ζ), Vi) , i = 1, 2, ..., r.

A simplified version of the model we discussed so far may be obtained by
assuming that Di’s and Dj ’s are linearly dependent and so are Ti’s and Tj ’s.
This is made by taking Di = εiD, αi = α and Ti = δiT , βi = β, where (α,D)
and (β,D) represents two phase type distributions. This assumption gives us
the freedom to switch to the process (βi, Ti) from (βi+1, Ti+1), even before the
absorption of the latter, whenever there is a state transition occurs in the chain
X . Such a model is introduced in the next section.

4 A Queueing-Inventory Model with Inventory
Dependent Arrival and Service Processes

Consider a single server inventory model. The inventory is instantaneously
replenished according to (s − S) policy. At any time t, the arrival of customers
is according to the inventory level at that time. When the inventory level is
s + i, the distribution of the inter-arrival time is phase-type with representa-
tion (β, δiT ) where T is a square matrix of order n and δi is a real number,
i = 1, 2, ..., r = S − s. The service time distributions too are determined by the
inventory level. While the inventory level is s + i, the service time distribution
is phase type with representation (α, εiD). Here D is of order m × m, εi are real
numbers i = 1, 2, .., r and α is the initial distribution.

Let N(t) be the number of customers in the system, I(t) be the inventory
level, J1(t) and J2(t) be the states of arrival and service processes respectively
at time t. Then the system under discussion can be modelled by the continuous
time Markov chain

N = {(N(t), I(t), J1(t), J2(t)) /t ≥ 0}
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with state space

{(0, i, j1)/1 ≤ i ≤ r, 1 ≤ j1 ≤ n} ∪ {(k, i, j1, j2)/k = 1, 2, 3, ...1 ≤ i ≤ r, 1 ≤ j1 ≤ n, 1 ≤ j2 ≤ m}

The infinitesimal generator of the chain N is given by

Q =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

A00 A01 0 0 0 ...
A10 A1 A0 0 0 ...
0 A2 A1 A0 0 ...
0 0 A2 A1 A0 ...
. . . . . ...
. . . . . ...

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

where

A00 = Δ ⊗ T

A01 = Δ ⊗ T 0β ⊗ α

A10 = E⊥ ⊗ In ⊗ D0

A0 = Δ ⊗ T 0β ⊗ Im

A1 = Δ ⊗ T ⊗ Im + E ⊗ In ⊗ D

A2 = E⊥ ⊗ In ⊗ D0α

Here

Δ = diag(δ1, δ2, ..., δr)
E = diag(ε1, ε2, ..., εr)

E⊥ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 ... 0 ε1
ε2 0 0 ... 0 0
0 ε2 0 ... 0 0
. . . ... . .
. . . ... . .
0 0 0 ... εr 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

Now let π and θ be the stationary probability vectors of T + T 0β and D + D0α
respectively and

A = A0 + A1 + A2 = Δ ⊗ (T + T 0β) ⊗ Im + E ⊗ In ⊗ D + E⊥ ⊗ In ⊗ D0α.

For any row vector ϕ of length r such that ϕE⊥ = ϕE,

(ϕ ⊗ π ⊗ θ)A = ϕE ⊗ π ⊗ θD + ϕE⊥ ⊗ π ⊗ θD0α

= ϕE ⊗ π ⊗ θ
(
D + D0α

)

= 0.

Thus we have the following lemma.
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Lemma 1. For any row vector ϕ of length r such that ϕE⊥ = ϕE, (ϕ ⊗ π ⊗ θ)
is a null vector of A.

Choose φ =
(

1
ε1

, 1
ε2

, ..., 1
εr

)
. For this φ, φE⊥ = φE. Hence by lemma 1,

(φ ⊗ π ⊗ θ) is a null vector of A. Therefore Π = 1
φ.e (φ ⊗ π ⊗ θ) is the stationary

probability vector of A.
Now

ΠA2e =
r

φe
θD0 =

r

φe
μ

and

ΠA0e =
1
φe

(
r∑

i=1

δi

εi

)

πT 0 =
1
φe

(
r∑

i=1

δi

εi

)

λ

Hence we have the following theorem.

Theorem 1. The continuous parameter irreducible Markov chain N is positive
recurrent if and only if (

S−s∑

i=1

δi

εi

)

λ < (S − s)μ

Note that when δi = εi ∀i, the condition for stability reduces to λ < μ. In
particular if δi = εi = 1 ∀i, inventory level and the arrival and service processes
are independent.

5 Stationary Distribution of the Markov Chain N
The stationary probability vector z = (z0, z1, z2 . . .) is given by

zi = z1Ri−1, i = 2, 3, 4... (1)

z0 (Δ ⊗ T ) + z1
(
E⊥ ⊗ In ⊗ D0

)
= 0 (2)

z0
(
Δ ⊗ T 0β ⊗ α

)
+ z1 (Δ ⊗ T ⊗ Im + E ⊗ In ⊗ D) + z2

(
E⊥ ⊗ In ⊗ D0α

)
= 0
(3)

where the matrix R is the minimal solution of the matrix quadratic equation

R2
(
E⊥ ⊗ In ⊗ D0α

)
+ R (Δ ⊗ T ⊗ Im + E ⊗ In ⊗ D) +

(
Δ ⊗ T 0β ⊗ Im

)
= 0

From Eq. (2),
z0

(
Δ ⊗ T 0

)
= z1

(
E⊥ ⊗ en ⊗ D0

)

So that

z0
(
Δ ⊗ T 0β ⊗ α

)
= z0

(
Δ ⊗ T 0

)
(Ir ⊗ β ⊗ α)

= z1
(
E⊥ ⊗ en ⊗ D0

)
(Ir ⊗ β ⊗ α)

= z1
(
E⊥ ⊗ enβ ⊗ D0α

)
(4)
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Using Eqs. (3) and (4), we get

z1
[
E⊥ ⊗ enβ ⊗ D0α + Δ ⊗ T ⊗ Im + E ⊗ In ⊗ D + R

(
E⊥ ⊗ In ⊗ D0α

)]
= 0

(5)
Therefore the vector z1 can be uniquely determined up to a multiplicative con-
stant. This constant can be found by normalizing the total probability to one.

We partitioned each steady state vector zi as zi = (zi1, zi2, . . . , zir) where
z0j = (z0j1, z0j2, . . . , z0jn), zij = (zij11, zij12, . . . , zij1m, . . . , zijn1, zijn2 . . . ,
zijnm), j = 1, 2, . . . , r, i = 1, 2, 3, . . . in which z0jk and zijkl, k = 1, 2, . . . , n, l =
1, 2, . . . ,m are scalars.

Some of the important system characteristics in the steady state are as fol-
lows.

1. Probability that the server is idle = z0ern.
2. For k > 0, Probability that there are k customers in the system,

P (N = k) = zkernm.

3. Expected number of customers in the system, E (N) =
n∑

i=1

iziernm.

4. Probability that the inventory level is j, P (I = j) = z0jen +
∞∑

i=1

zijenm.

5. Expected inventory level, E (I) =
r∑

j=1

jP (I = j) .

5.1 Expected Waiting Time

Consider a customer who joins the queue as the kth customer. The waiting time
Wk of this customer in the queue is the time until absorption of the Markov
chain

W (t) = {(r(t), I(t), Js(t))/t ≥ 0}
where r(t) is the position of the particular customer in the queue, I(t) is the
inventory level and Js(t) is the state of the ongoing service process at time t.
The infinitesimal generator of this chain is

Q̃ =
[
Qw −Qwe
0 0

]

where

Qw =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

E ⊗ D E⊥ ⊗ D0α 0 0 0 ... 0
0 E ⊗ D E⊥ ⊗ D0α 0 0 ... 0
0 0 E ⊗ D E⊥ ⊗ D0α 0 ... 0
0 0 0 E ⊗ D E⊥ ⊗ D0α ... 0
. . . . . ...
0 0 . . . E ⊗ D

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦
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Hence Wk follows a Phase type distribution with representation (ψw, Qw) where
ψw = (ψk,0,0, ..0) in which ψk is a vector of length rm. The ijth entry of ψk

is the conditional probability that the chain is in a state with inventory level i
and service phase j given that it is in level k in the steady state.

Hence, when the system is in the steady state, the expected waiting time of
this customer is

Wk = −ψwQ−1
w e

= ψk

[
k∑

i=0

(−1)i
[
(E ⊗ D)−1(E⊥ ⊗ D0α)

]i

]

[E ⊗ D]−1
e

= ψk

[

I +

(
k∑

i=1

(I⊥)k

)

⊗ eα

]

[E ⊗ D]−1
e.

where I⊥ = E−1E⊥.

Hence the Expected waiting time of an arbitrary customer in the steady state is
given by

E(W ) =
∞∑

k=1

P (N = k)Wk

6 A Sample Problem on Cost Optimization
and Numerical Analysis of the Chain N

In this section we present an example of a cost optimization problem that arises
in queueing-inventory situations with interdependent arrival and service pro-
cesses. In this example we assumed that the demand increases with the inventory
level according to the relation ρi1−κ, where ρ and 0 < κ < 1 are constants and i
is the inventory level. Baker et al. [1] used such a functional to model a situation
with inventory level dependent demand which is for a relatively short season.
Also we take the service rate to be proportional to the inventory level with σ as
the proportionality constant.

6.1 A Cost Optimization Problem

We assumed that the multipliers εi and δi, i = 1, 2, . . . r are related to the inven-
tory level i by the relation δi = ρi1−κ and εi = σi where ρ and σ are two positive
parameters.

This illustration encompasses four distinct cost categories. The initial type
involves the cost associated with providing the service at inventory level i, rep-
resented as c(i). The second, denoted as c0, refers to the cost of maintaining the
server in a state of readiness during idle periods. Additionally, there are holding
costs, denoted as ch, incurred to ensure customer comfort within the system,
along with the cost cs associated with preserving the integrity of the inventory.
All these costs are calculated per unit time.
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Taking all these costs into account, we construct the cost function, Cost =
ch × E(N) + cs × E(I) +

∑n
1 c(i)P (I = i) + c0 × P (N = 0) where E(N) is the

expected number of customers in the system, E(I) is the expected inventory
level, P (I = i) is the probability that the inventory level is i and P (N = 0) is
the probability that the system is idle.

For illustration, we choose ρ = 0.7, κ = 0.4, ch = 2, cs = 0.5, c(i) = E(i, i),

c0 = 6. T =

⎡

⎣
−12 4 6
3 −10 5
4 3 −9

⎤

⎦, D =

⎡

⎢
⎢
⎣

−7 1 2 1
3 −11 2 3
2 2 −10 3
5 3 4 −15

⎤

⎥
⎥
⎦, β = (0.4, 0.35, 0.25) and

α = (0.2, 0.3, 0.4, 0.1).

Fig. 1. Variation of cost wrt κ

Our objective is to determine the rate
at which the service rate should increase
with the inventory level in order to mini-
mize the incurred cost. That is we would
like to find the value of the proportionality
constant σ that optimizes the cost func-
tion. Figure 1 depicts the cost function
plotted against σ. The convex nature of
the curve indicates the presence of a min-
imum cost. Specifically, the cost reaches
its minimum value when σ equals 0.54,
with the minimal cost being 15.5280. Con-
sequently, by exerting control over the ser-
vice process, we ensure system stability
even in the presence of heightened arrival rates, and we achieve this at the low-
est possible cost.

Our numerical analysis demonstrates that it is possible to adjust the service
rate based on the inventory level, thereby enabling control over the system’s
characteristics.

6.2 Numerical Analysis of the Chain N
For the specified parameter values, we computed the expected number of cus-
tomers E(N), system idle probability P (N = 0), expected inventory level E(I)
expected waiting time E(W ) for various values of σ and the results are displayed
in Figs. 2, 3 4 and 5. The calculated values are given in Table 2 in Appendix.

As σ increases, the service rates corresponding to each inventory level also
rise. The escalation in service rate provides support for the growth in the arrival
rate, stemming from increased inventory levels. This leads to a decrease in the
expected number of customers in the system. With higher σ values, the traffic
intensity decreases. Consequently, the system idle probability increases. For a
small value of σ, service is delivered at a reduced rate when the inventory level
is low. Consequently, it takes more time to complete a service and subsequently
replenish the low inventory. As a result, the system experiences prolonged periods
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with low inventory levels. In contrast, higher values of σ increase the probability
that the system is in a state with a higher inventory level.

Fig. 2. Expected number of customers Fig. 3. Idle probability

Fig. 4. Inventory level Fig. 5. Expected Waiting time

6.3 A Comparison Between Proposed Model and One with Stock
Dependent Arrival Process and Independent Service Process

The model under discussion (Model 1) is compared with a similar one where the
service rate remains unaffected by the inventory level (Model 2) giving the follow-
ing values to the parameters. Δ = diag(0.7000, 1.0610, 1.3532, 1.6082, 1.8386),
and

D =

⎡

⎢
⎢
⎣

−12 1 2 2
3 −16 2 4
2 3 −15 3
6 3 4 −20

⎤

⎥
⎥
⎦ , T =

⎡

⎣
−10 − d 4 2

3 −8 − d 1
1 3 −8 − d

⎤

⎦ where d varies from

0 to 2 in increments of 0.1, r = 5, n = 3,m = 4, α = (.2, .3, .4, .1), β =
(0.4, 0.35, 0.25), E = diag(0.4567, 0.9133, 1.3700, 1.8267, 2.2833)
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Fig. 6. Copmarison of two models

In Model 2, the service rate remains
the same, while the arrival rate escalates
with the inventory level. A comparison of
the expected number of customer in both
systems is presented in Fig. 6. The numer-
ical results are tabulated in Table 1 in the
Appendix. Notably, Model 2 experiences
a higher inflow of customers compared to
Model 1. In both systems, the arrival rate
increases with the inventory level. When
the inventory level is high, the arrival rate
is also elevated. In the case, where the ser-
vice rate is constant, the inventory level
has nearly a uniform change, resulting in approximately equal probabilities for
all inventory levels. This, in turn, leads to a high average arrival rate, causing
the system to quickly burst out.

Conversely, in Model 1, the service rate diminishes as the inventory level
decreases. Consequently, when the inventory level is low, service occurs at a slow
pace. Since an increase in inventory level through replenishment occurs only after
these long service periods, the system spends a considerable proportion of time
in a state of low inventory. Consequently, at these times the expected arrival
rate will be low. Therefore, even with higher demand v, the effective arrival rate
will be moderate, ensuring the stability of the system.

In scenarios where there is high demand for the inventory, opting for stock-
dependent service processes becomes advantageous in regulating the inflow of
customers and maintaining system stability. This proves particularly useful in
contexts such as ration distribution systems or the distribution of essential com-
modities to a large population. In such situations, the arrivals increase with the
available stock. Consequently, we can exert control over the arrival rate by man-
aging the inventory level. Our numerical study indicates that an effective method
to achieve this control is by employing stock-dependent service processes.

7 Conclusion

In our investigation, we delved into a queueing inventory model incorporating
interdependent arrival and service processes, along with the inventory level, uti-
lizing two semi-Markov processes. The marginal distributions of both service
time and inter-arrival times were identified as mixtures of phase-type distribu-
tions. Further analysis focused on a specific instance of this model, with the
derivation of conditions for system stability. The stationary distribution was
determined numerically. We also explored the distribution of waiting time, its
expected value, and other critical system performance measures. This model
has the potential for extension to more complex scenarios involving positive lead
time. Examining the impact of replenishment time on system performance would
be particularly intriguing in such cases.
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Appendix

Results of numerical analysis mentioned in Sects. 6.1, 6.2 and 6.3 are tabulated
in the following tables.

Table 1. Comparison between the models in terms of expected number of customers

Arrival Rate −αT−1e Expected Number of Customers

Model 1 Model 2

4 1.6968 3.0114

4.1 1.8088 3.3473

4.2 1.9302 3.7428

4.3 2.0624 4.2155

4.4 2.2069 4.7899

4.5 2.3656 5.5027

4.6 2.5405 6.4105

4.7 2.7345 7.6053

4.8 2.9508 9.2483

4.9 3.1935 11.6489

5 3.4679 15.4862

5.1 3.7807 22.598

5.2 4.1406 40.2836

5.3 4.5592 157.9844

5.4 5.0521

5.5 5.6413

5.6 6.358

5.7 7.249

5.8 8.3869

5.9 9.8911

6 11.9727
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Table 2. Variation of important performance measures with σ

σ Inventory Level E(N) P (I) Cost Expected Service rate E(W)

0.46 2.2639 2.6019 0.2744 15.8498 3.0219 0.798

0.47 2.2681 2.4235 0.289 15.6555 3.0876 0.7485

0.48 2.2721 2.2683 0.3031 15.5059 3.1533 0.7026

0.49 2.276 2.1319 0.3165 15.3925 3.219 0.6602

0.5 2.2798 2.0111 0.3295 15.309 3.2847 0.6211

0.51 2.2835 1.9034 0.342 15.2502 3.3504 0.585

0.52 2.287 1.8068 0.354 15.2123 3.4161 0.5518

0.53 2.2905 1.7195 0.3656 15.192 3.4818 0.5211

0.54 2.2938 1.6404 0.3768 15.1868 3.5474 0.4929

0.55 2.2971 1.5683 0.3876 15.1945 3.6131 0.4668

0.56 2.3002 1.5024 0.398 15.2135 3.6788 0.4427

0.57 2.3033 1.4418 0.4081 15.2423 3.7445 0.4204

0.58 2.3062 1.3859 0.4178 15.2796 3.8102 0.3997

0.59 2.3091 1.3342 0.4272 15.3244 3.8759 0.3805

0.6 2.3119 1.2863 0.4363 15.3759 3.9416 0.3627

0.61 2.3147 1.2417 0.4451 15.4333 4.0073 0.3462

0.62 2.3173 1.2001 0.4537 15.496 4.073 0.3307

0.63 2.3199 1.1613 0.462 15.5634 4.1387 0.3163

0.64 2.3225 1.1248 0.47 15.635 4.2044 0.3028

0.65 2.3249 1.0907 0.4778 15.7105 4.2701 0.2902

0.66 2.3273 1.0585 0.4854 15.7893 4.3358 0.2784

0.67 2.3297 1.0282 0.4928 15.8713 4.4015 0.2673

0.68 2.332 0.9996 0.4999 15.9562 4.4672 0.2569

0.69 2.3342 0.9725 0.5069 16.0436 4.5328 0.2471

0.7 2.3364 0.9469 0.5136 16.1333 1.0873 0.2378
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