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Abstract. The paper considers a single-line retrial queueing (RQ) sys-
tem with an unreliable server controlled by a adaptive random multiple
access protocol. The study is carried out using the method of asymptotic
analysis under conditions of heavy system load. In this paper, the main
characteristics of the system were found.
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1 Introduction

Unreliable servers can be used in telecommunications, call centers and data net-
works. For example, faulty hardware or software can lead to network failures, loss
of communications, interruptions in data transmission, or incorrect processing
of information. Research into unreliable devices in such areas helps to identify
the causes of failures and develop methods to prevent them.

RQ queuing system with unreliable server and adaptive random multiple
access protocol is a system that combines elements of queuing, unreliable server
and adaptive random multiple access protocols in a data network.

In such systems, a large number of customers or clients are served using
unreliable devices that may be subject to failures or malfunctions. To ensure
efficiency and reliability, such a system can be equipped with an adaptive ran-
dom multiple access protocol, which provides mechanisms for optimizing the use
of available resources and managing data transmission in the face of varying
network load, interference, or frequent server failures.

Adaptive Random Multiple Access Protocol is a method of controlling access
to a common data link that allows multiple devices to share available resources.
It is a form of multiple access protocol that allows devices to compete for access
to data communications.

Unlike static protocols, an adaptive random multiple access protocol can
change its parameters depending on current network conditions such as load,
collisions and delays. This allows you to optimize the use of the available data
channel and significantly reduce the likelihood of collisions (a situation in which
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two or more devices try to transmit data at the same time, resulting in signal
loss).

Many scientific works are devoted to the study of various models of data
transmission networks and random multiple access protocols. There are various
modifications of access protocols [1–8].

In papers [9–12], authors investigate models with adaptive access protocols.
The papers [13–20] consider the study of queuing systems with a dynamic access
protocol.

In this paper, we study a single-channel RQ system with an unreliable device
controlled by an adaptive access protocol. The server is considered unreliable
if it periodically fails and requires time to be restored. Which, accordingly, can
lead to a decrease in the efficiency of the system and an increase in waiting time
for service.

2 Description of the Mathematical Model

Let’s consider an RQ system with an adaptive access protocol, the input of which
receives a simple flow of requests with parameter λ. The time for servicing a
customer by the server is distributed exponentially with the parameter μ1. We
assume that the server is unreliable. An unreliable device can be in one of the
following states: idle, busy or under repair. When a new customer arrives and
the server is idle, then the servicing immediately begins.

If at this moment another customer arrives, and the device is busy, then the
received customer goes into orbit and waits for the opportunity to occupy the
device during the next attempt. After a random delay, a request with intensity
σ = 1/T (t) again tries to occupy the server for service, where T (t) is the state
of the adapter at time t (see Fig. 1).

Fig. 1. Model of adaptive retrial queueing system M/M/1 with unreliable server

The working time is distributed exponentially with parameter γ1, if server
is idle and with parameter γ2, if the server is busy. As soon as a breakdown
occurs, the server is sent to repair and the servicing customer goes into the
orbit. During repairing, all incoming customers go into the orbit. The recovery
time is distributed exponentially with parameter μ2.

The goal of the research is to study such a system, as well as to determine its
main characteristics and to find the throughput of the system and the stationary
probability distribution of server states.
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Let i(t) be the number of customers in the orbit at time t and k (t) determine
the state of the server as follows:

k(t) =

⎧
⎪⎨

⎪⎩

0, if the server is idle,
1, if the server is busy,
2, if the server is under repair.

The process of changing adapter states T (t) is defined as follows:

T (t + Δt) =

⎧
⎪⎨

⎪⎩

T (t) − αΔt, if k(t) = 0,
T (t + Δt) = T (t), if k(t) = 1,
T (t) + βΔt, if k(t) = 2,

where α > 0, β > 0 are adapter parameters, the values of which are indicated.
If the device is idle, then T (t) decreases linearly with intensity α; if the

device is busy, then T (t) does not change; if the device is under repair, then T (t)
increases linearly with intensity β.

3 The Method of Asymptotic Analysis

Let us denote

P (k, i, T, t) =
∂P{k(t) = k, i(t) = i, T (t) < T}

∂T

- the probability that at time t the server is in state k and i customers in the
orbit.

The probability distribution P (k, i, T, t) satisfies the following system of
equations:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P (0, i, T − αΔt, t + Δt) = (1 − λΔt)
(

1 − i

T
Δt

)

(1 − γ1Δt) P (0, i, T, t)

+ μ1ΔtP (1, i, T, t) + μ2ΔtP (2, i, T, t) + o (Δt) ,

P (1, i, T, t + Δt) = (1 − λΔt) (1 − μ1Δt) (1 − γ2Δt) P1 (1, i, T, t)

+ λΔtP (0, i, T, t) +
i + 1

T
ΔtP (0, i + 1, T, t) + λP (1, i − 1, T, t) + o (Δt) ,

P (2, i, T + βΔt, t + Δt) = (1 − λΔt) (1 − μ2Δt) P (2, i, T, t)
+ γ1ΔtP (0, i, T, t) + γ2ΔtP (1, i − 1, T, t) + λΔtP (2, i − 1, T, t) + o (Δt) .
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Let us compose a system of Kolmogorov differential equations for the sta-
tionary probability distribution P (k, i, T ):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− α
∂P (0, i, T )

∂T
= −

(

λ +
i

T
+ γ1

)

P (0, i, T ) + μ1P (1, i, T )

+ μ2P (2, i, T ) ,

∂P (1, i, T )
∂T

= − (λ + μ1 + γ2) P (1, i, T ) + λP (0, i, T )

+
i + 1

T
P (0, i + 1, T ) + λP (1, i − 1, T ) ,

β
∂P (2, i, T )

∂T
= − (λ + μ2) P (2, i, T ) + γ1P (0, i, T )

+ γ2P (1, i − 1, T ) + λP (2, i − 1, T ) .

(1)

Let us denote the partial characteristic functions

Hk(u1, u2) =
∑

i

e−u1i

∞∫

0

e−u2T P (k, i, T )dT

= P{k(t) = k}M{e−u1i(t)−u2T (t) |k(t) = k }.

(2)

Functions Hk(u1, u2) have the following properties:

∑

i

e−u1i

∞∫

0

e−u2T iP (k, i, T )dT = − ∂Hk(u1, u2)
∂u1

,

∑

i

e−u1i

∞∫

0

e−u2T ∂P (k, i, T )
∂T

dT =u2Hk(u1, u2),

∑

i

e−u1i

∞∫

0

e−u2T 1
T

P (k, i, T )dT =

∞∫

u2

Hk(u1, x)dx.

Using the Eq. (2) and the properties of characteristic functions from Sys-
tem (1) we obtain:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(αu2 − λ − γ1) H0 (u1, u2) +

∞∫

u2

∂H0(u1, x)
∂u1

dx + μ1H1 (u1, u2)

+ μ2H2 (u1, u2) = 0,

− (λ(1 − e−u1) + μ1 + γ2 + u2)H1 (u1, u2) + λH0 (u1, u2)

− eu1

∞∫

u2

∂H0(u1, x)
∂u1

dx = 0,

− (λ(1 − e−u1) + μ2 + βu2)H2(u1, u2) + γ1H0 (u1, u2) +

γ2e
−u1H1 (u1, u2) = 0.
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We introduce a parameter

ρ =
λ

μ1
,

that characterizes the system load, then we get
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
αu2 − γ1

μ1
− ρ

)

H0 (u1, u2) +
1

μ1

∞∫

u2

∂H0(u1, x)

∂u1
dx + H1 (u1, u2)

+
μ2

μ1
H2 (u1, u2) = 0,

− (ρ(1− e−u1 ) + 1 +
γ2 + u2

μ1
)H1 (u1, u2) + ρH0 (u1, u2)

− eu1

μ1

∞∫

u2

∂H0(u1, x)

∂u1
dx = 0,

− (ρ(1− e−u1 ) +
μ2 + βu2

μ1
)H2(u1, u2) +

γ1

μ1
H0 (u1, u2)

+
γ2

μ1
e−u1H1 (u1, u2) = 0.

(3)

There are no exact analytical methods for solving the System (3), so we will
find the main characteristics of the adaptive system.

Let’s study the System (3) under the condition of heavy load. Let us define
the throughput S of an adaptive RQ system as the exact upper bound of system
load values ρ for which there is a steady-state regime with ρ ↑ S.

Let us denote
ε = S − ρ.

Assuming that ε → 0 in the System (2), we will perform the following sub-
stitutions:

ρ = S − ε, u1 = εw1, u2 = εw2, Hk(u1, u2) = Fk(w1, w2, ε).

Then, we obtain:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F0 (w1, w2, ε)

(
αεw2 − γ1

μ1
− (S − ε)

)

+
1

μ1

∞∫

u2

∂F0(w1, x, ε)

∂w1
dx

+ F1 (w1, w2, ε) +
μ2

μ1
F2 (w1, w2, ε) = 0,

F0 (w1, w2, ε) (S − ε)− eεw1

μ1

∞∫

w2

∂F0(w1, x, ε)

∂w1
dx

+ F1 (w1, w2, ε) ((S − ε)(e−εw1 − 1)− 1− γ2 + εw2

μ1
) = 0,

F0 (w1, w2, ε)
γ1

μ1
+ F1 (w1, w2, ε)

γ2

μ1
e−εw1

+ F2(w1, w2, ε)((S − ε)(e−εw1 − 1)− (
μ2 + βεw2

μ1
)) = 0.

(4)
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Theorem 1. The values of the parameters S and y in the adaptive RQ-system
are determined by the equalities

S =
αμ2 − βγ1

(1 − β)γ1 + (α + 1)μ2 + γ2(α + β)
,

y =
(αμ2 − βγ1)((α + β)γ2

2 + ((α + 1)μ2 + αμ1 − βγ1 + γ1)γ2)
(γ2(α + β) + (α + 1)μ2 + γ1(1 − β))(βγ2 + μ2)

+
μ1(αμ2 + γ1(1 − β))

(γ2(α + β) + (α + 1)μ2 + γ1(1 − β))(βγ2 + μ2)
.

where α > 0, β > 0 are adapter parameters, the values of which are indicated.

Proof. Let us denote lim
ε→0

Fk(w1, w2, ε) = Fk(w1, w2) and for ε → 0, we get

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− F0 (w1, w2)
(

γ1
μ1

+ S

)

+
1
μ1

∞∫

w2

∂F0(w1, x)
∂w1

dx + F1 (w1, w2)

+
μ2

μ1
F2 (w1, w2) = 0,

F0 (w1, w2) S − 1
μ1

∞∫

w2

∂F0(w1, x)
∂w1

dx − F1 (w1, w2) (1 +
γ2
μ1

) = 0,

F0 (w1, w2)
γ1
μ1

+ F1 (w1, w2)
γ2
μ1

− F2(w1, w2)
μ2

μ1
= 0.

(5)

We will look for the solution Fk(w1, w2) of the System (5) in the form:

Fk(w1, w2) = FkΦ(w1, w2) = Rk(S, y)ϕ(w2 + w1y). (6)

Assuming that the function ϕ(w) is equal to zero at infinity, we obtain

∞∫

w2

∂F0(w1, x)
∂w1

dx = −yR0(S, y)ϕ(w2 + yw1).

Then we rewrite the System (5):
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

− R0 (S, y)
(

γ1
μ1

+ S

)

− y

μ1
R0 (S, y) + R1 (S, y) +

μ2

μ1
R2 (S, y) = 0,

R0 (S, y) S +
y

μ1
R0 (S, y) − R1 (S, y) (1 +

γ2
μ1

) = 0,

R0 (S, y)
γ1
μ1

+ R1 (S, y)
γ2
μ1

− R2(S, y)
μ2

μ1
= 0.

(7)

Let us add a normalization condition to the System (7):

R0 + R1 + R2 = 1.
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We obtain:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

− R0 (S, y)
(

γ1
μ1

+ S

)

− y

μ1
R0 (S, y) + R1 (S, y) +

μ2

μ1
R2 (S, y) = 0,

R0 (S, y) S +
y

μ1
R0 (S, y) − R1 (S, y) (1 +

γ2
μ1

) = 0,

R0 (S, y)
γ1
μ1

+ R1 (S, y)
γ2
μ1

− R2(S, y)
μ2

μ1
= 0.

R0 + R1 + R2 = 0.

(8)

Then from the System (8) we find expressions for the stationary distribution
of server states:

R0 =
μ2(γ2 + μ1)

(Sμ1 + γ1 + μ2 + y)γ2 + (Sμ2 + μ2 + γ1)μ1 + μ2y
,

R1 =
μ2(Sμ1 + y)

(Sμ1 + γ1 + μ2 + y)γ2 + (Sμ2 + μ2 + γ1)μ1 + μ2y
,

R2 =
(Sμ1 + γ1 + y)γ2 + γ1μ1

(Sμ1 + γ1 + μ2 + y)γ2 + (Sμ2 + μ2 + γ1)μ1 + μ2y
.

To find the values S and y, we sum up all the equations of the System (4)
and for ε → 0, we obtain

F0 (w1, w2, ε)
(

αεw2

μ1

)

− eεw1 − 1
μ1

∞∫

u2

∂F0(w1, x, ε)
∂w1

dx

+ F1 (w1, w2, ε) ((S − ε)(e−εw1 − 1) +
γ2
μ1

(e−εw1 − 1) − εw2

μ1
)

+ F2 (w1, w2, ε) ((S − ε)(e−εw1 − 1) − βεw2

μ1
) = 0.

Dividing resulting equation by ε, we get:

F0 (w1, w2, ε)
(

αw2

μ1

)

− eεw1 − 1
μ1ε

∞∫

u2

∂F0(w1, x, ε)
∂w1

dx

+ F1 (w1, w2, ε) ((S − ε)
(e−εw1 − 1)

ε
+

γ2
μ1

(e−εw1 − 1)
ε

− w2

μ1
)

+ F2 (w1, w2, ε) ((S − ε)
(e−εw1 − 1)

ε
− βw2

μ1
) = 0.
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Then using the Taylor expansion, we obtain:

F0 (w1, w2, ε)
αw2

μ1
− w1

μ1

∞∫

u2

∂F0(w1, x, ε)
∂w1

dx

− F1 (w1, w2, ε) (w1(S +
γ2
μ1

+
w2

μ1
) − F2 (w1, w2, ε) (Sw1 +

βw2

μ1
) = 0.

Applying (6) to the equation, we get:

αw2ϕ(w2 + w1y)R0(S, y) + yw1ϕ(w2 + w1y)R0(S, y)
− ϕ(w2 + w1y)R1(S, y)(μ1w1S + w1γ2 + w2)
− ϕ(w2 + w1y)R2(S, y)(μ1w1S + βw2) = 0.

Let us write the equation in the form:

αw2R0(S, y) + yw1R0(S, y) − R1(S, y)(μ1w1S + w1γ2 + w2)
− R2(S, y)(μ1w1S + βw2) = 0.

(9)

Then we rewrite the Eq. (9):

w1(yR0(S, y) − μ1SR1(S, y) − γ2R1(S, y) − μ1SR2(S, y))
+ w2(αR0(S, y) − R1(S, y) − βR2(S, y)) = 0.

In order to turn the equation into an identity in w1 and w2, it is enough to
require the following equalities:

{
yR0(S, y) − μ1SR1(S, y) − γ2R1(S, y) − μ1SR2(S, y) = 0,
αR0(S, y) − R1(S, y) − βR2(S, y) = 0.

(10)

By substituting R0(S, y), R1(S, y), R2(S, y) into the System (10), we get:

S =
αμ2 − βγ1

(1 − β)γ1 + (α + 1)μ2 + γ2(α + β)
,

y =
(αμ2 − βγ1)((α + β)γ2

2 + ((α + 1)μ2 + αμ1 − βγ1 + γ1)γ2)
(γ2(α + β) + (α + 1)μ2 + γ1(1 − β))(βγ2 + μ2)

+
μ1(αμ2 + γ1(1 − β))

(γ2(α + β) + (α + 1)μ2 + γ1(1 − β))(βγ2 + μ2)
.

Definition. Throughput S is the upper limit of those load values ρ = λ
μ1

,
for which there is the steady-state regime.

The inequality

λ

μ1
≤ S

determines the condition for the existence of a steady-state regime for the con-
sidered adaptive system.

So Theorem 1 is proved.
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4 Numerical Example

We consider a system with parameters:

μ1 = 5, μ2 = 2, γ1 = 0.03, γ2 = 0.03, λ = 1, β = 1.

Table 1 shows the values of S and y for a given system for different α.

Table 1. Values of S and y for different α

α 0,2 0,4 0,8 1 5 10 100

S 0,036 0,155 0,314 0,370 0,703 0,779 0,860

y 0,049 0,376 1,426 2,070 18,838 41,502 455,880

According to the data in Table 1, we can conclude that as α increases, the
value of throughput S increases, and the value of y also increases significantly.

For adaptive RQ systems, under the limiting condition of heavy system load,
random processes i(t) and T (t) are linearly dependent with some parameter y
equal to the ratio of linearly dependent random processes i(t)/T (t).

When α = 0, 9, the throughput of the adaptive RQ system S = 0, 334 and
y = 2, which corresponds to the throughput of the dynamic RQ system M/M/1
S = 0, 334 at y = 2, which confirms the asymptotic equivalence of the adaptive
and dynamic RQ systems with the simplest incoming flow of customers.

Consequently, adaptive RQ systems are asymptotically, under heavy load
conditions, equivalent to dynamic RQ systems with the specified value of the
parameter y, calculated in the work [21].

5 Conclusion

In this paper, we study the adaptive RQ-system M/M/1 with an unreliable
server. The study was carried out using the method of asymptotic analysis under
conditions of heavy system load. As a result, the main characteristics of the
system, the stationary distribution of server states, and the throughput of the
system under consideration are found.
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