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Abstract. Infinite-server queueing system with Poisson arrival process,
two states of service and abandonments is considered in the paper. Such
system can be used as a simple mathematical model of a subscriber
communication network based on IAB (Integrated Access and Backhaul)
technology with two mobile nodes. Joint probability distribution of the
number of customers in the states of service is obtained under asymptotic
condition of high intensity of the arrival process. Numerical experiments
are performed to estimate precision and applicability area of the approx-
imation built on the results of the asymptotic analysis.
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1 Introduction

Integrated Access and Backhaul (IAB) is a technology that provides fast and
cost-effective deployment on millimeter waves (mmWave) due to self-connection
in the same spectrum [1]. Wireless autonomous reverse transmission uses the
same wireless channel to cover and connect to other base stations (BS), which
leads to increased productivity, more efficient use of spectrum resources, and
lower equipment costs, as well as to reducing dependence on the availability of
wired reverse transmission at each location of the access node [2].

Mathematical modeling of an IAB-based network using queueing theory is a
promising research direction. In addition to the mentioned standard [3], there
have been studies conducted by various authors on the coverage of BS [4], sig-
nal transmission speeds under different conditions, and the utilization of fifth-
generation networks with IAB on the Internet of Things [5]. However, the ques-
tion of modeling of such systems still remains open.

In this paper, we propose a mathematical model of IAB-based network with
two mobile nodes in the form of infinite-server queueing system with two states
of service and abandonments. This model takes into account the roaming of a
user from one node to another during the entire service time and the possibility
of early leaving the system.
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In paper [6], the authors considered a similar model in which there are two
phases of service, but due to the specifics of the real problem, the phases of
service are considered as sequential and each of them has its own service param-
eter (there is no a separate total time of successful service). Some results and
literature reviews on models with abandonments of service (customers impatient
in service) can be found in [7,8].

The rest part of the paper is organized as follows. In Sect. 2, the problem
is formulated and a mathematical model in the form of a queueing system is
proposed. In Sect. 3, the system of Kolmogorov equations is formulated and
its exact solution obtained under the condition of equivalence of the local and
global balance equations is provided. In Sect. 4, the asymptotic analysis method
is applied for solution of the problem for a wider class of systems than the exact
solution may be used for. As a result, an approximation of the joint probability
distribution of the number of customers in the states of service is obtained.
For estimating precision of the approximation and its applicability area, series
of numerical experiments have been conducted. Their results are presented in
Sect. 5. Conclusions are formulated in Sect. 6.

2 Problem and Mathematical Model

Making necessary assumptions and generalizations, we can depict the behavior
of the entire system as follows. Let us consider an IAB system consisting of
one donor and two mobile network customer service nodes (Fig. 1). Users move
between two communication nodes and the following options are possible in the
system:

– abandonment of service – user goes beyond the range of his or her communi-
cation node and does not connect to any other node (Fig. 1: a, b);

– internal migration – user goes beyond the range of his or her communication
node, but immediately after that, he (or she) enters into the range of another
communication node and can continue servicing (Fig. 1: a, b, and c);

– successful service completion – user completes his or her work and logs out
of the system.

For this model, we are interested in how much the system is loaded, e.g.
how many users are connected to each node, taking into account their possible
migrations.

For modeling the system described above, we propose a mathematical model
in the form of an infinte-server queue with two states of servicing (Fig. 2). The
input flow is a Poisson arrival process with intensity λ. An incoming customer
occupies any available server and starts its service in state 1 or 2 with probabili-
ties v1 or v2, respectively. Duration of the service is an exponentially distributed
random variable with parameter μ. While the customer is servicing, during time
period of length Δt, it can move from state i to state k (i, k ∈ {1, 2}) with
probability αikΔt (internal migration) or leave the system without completing
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Fig. 1. System model

its service with probability αi0Δt (abandonment of service). At the end of the
service (successful service completion), the customer also leaves the system.

Let us denote the number of customers serviced in state i at instant t by ni(t)
(i = 1, 2). The problem is to find joint probability distribution of the number of
customers in the states

P (n1, n2) = Pr{n1(t) = n1, n2(t) = n2}

which we consider in a steady-state regime.
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Fig. 2. Mathematical model

3 Kolmogorov Equations and Exact Solution

Described problem was considered in our recent paper [9]. The system of Kol-
mogorov equations for distribution P (n1, n2) may be written as follows:

P (n1, n2)[λ + n1μ + n2μ + n1α10 + n2α20 + n1α12 + n2α21] =
P (n1 + 1, n2)(n1 + 1)[μ + α10] + P (n1, n2 + 1)(n2 + 1)[μ + α20]

+P (n1 − 1, n2)v1λ + P (n1, n2 − 1)v2λ
+P (n1 − 1, n2 + 1)(n2 + 1)α21 + P (n1 + 1, n2 − 1)(n1 + 1)α12.

(1)

In [9], the following exact solution of the system was obtained:

P (n1, n2) =
1

n1!n2!

[
v1λ

μ + α10

]n1
[

v2λ

μ + α20

]n2

P (0, 0),

P (0, 0) =

( ∞∑
n1=1

∞∑
n2=1

1
n1!n2!

[
v1λ

μ + α10

]n1
[

v2λ

μ + α20

]n2
)−1 (2)

under condition of the equivalence of the local and global balance equations
which has the following form for the considered model:

α21[μ + α10]v2 = α12[μ + α20]v1. (3)

Solution (2) can be applied only when condition (3) is satisfied and can not
be used in other cases [10].
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4 Asymptotic Analysis

Condition (3) imposes severe constraints, and solution (2) is almost inapplicable
in practice. So, it is necessary to find a solution of system (1) for a wider range of
model parameters. Because direct solution of the problem seems unreachable, we
propose to use the asymptotic analysis method [11,12] for obtaining the solution.

Let us introduce the characteristic function

H(u1, u2) =
∞∑

n1=0

∞∑
n2=0

eju1n1eju2n2P (n1, n2) (4)

(here j =
√−1) and make corresponding transformations in (1). We obtain

H(u1, u2)(v1λ(eju1 − 1) + v2λ(eju2 − 1))+

+j
∂H(u1, u2)

∂u1
(μ + α10 + α12 − e−ju1(μ + α10 − eju2α12))+

+j
∂H(u1, u2)

∂u2
(μ + α20 + α21 − e−ju2(μ + α20 − eju1α21)) = 0.

(5)

We look for the solution of (5) under the condition of increasing intensity of
the incoming flow: λ → ∞.

4.1 First-Order Asymptotic

As the solution will be sought under the condition of increasing intensity of the
incoming flow, we introduce the following notation:

ε =
1
λ

,

where ε → 0 while λ → ∞. Also, we introduce the following notations:

u1 = εw1, u2 = εw2, H(u1, u2) = F1(w1, w2, ε).

Let us make these substitutions in Eq. (5):

F1(w1, w2, ε)
1
ε
{v1(ejεw1 − 1) + v2(ejεw2 − 1)}+

+j
∂F1(w1, w2, ε)

∂w1

1
ε
{μ + α10 + α12 − e−jw1ε(μ + α10 + ejεw2α12)}+

+j
∂F1(w1, w2, ε)

∂w2

1
ε
{μ + α20 + α21 − e−jw2ε(μ + α20 + ejεw1α21)} = 0.

Using the expansion
ejεwk = 1 + jεwk + +O(ε2),
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after completing limit transition ε → 0, we obtain

F1(w1, w2)(jw1v1 + jw2v2)+

+j2
∂F1(w1, w2)

∂w1
(w1μ + w1α10 − w2α12 + w1α12)+

j2
∂F1(w1, w2)

∂w2
(w2μ + w2α20 − w1α21 + w2α21) = 0.

(6)

Let us rewrite Eq. (6) in the following form:

F1(w1, w2)jw1v1 + j2
∂F1(w1, w2)

∂w1
(w1μ + w1α10 + w1α12)+

j2
∂F1(w1, w2)

∂w2
(−w1α21) = 0,

F1(w1, w2)jw2v2 + j2
∂F1(w1, w2)

∂w1
(−w2α12)+

j2
∂F1(w1, w2)

∂w2
(w2μ + w2α20 + w2α21) = 0.

Dividing the first equation by F (w1, w2)w1 and the second one by
F (w1, w2)w2, we obtain

jv1 + j2
∂F1(w1, w2)

∂w1

1
F1(w1, w2)

(μ + α10 + α12)+

j2
∂F1(w1, w2)

∂w2

1
F1(w1, w2)

(−α21) = 0,

jv2 + j2
∂F1(w1, w2)

∂w1

1
F1(w1, w2)

(−α12)+

j2
∂F1(w1, w2)

∂w2

1
F1(w1, w2)

(μ + α20 + α21) = 0.

(7)

We will look a solution of this system in the following form:

F1(w1, w2) = exp{jw1a1 + jw2a2},

where a1 and a2 are some constants. Making corresponding substitutions in (7),
we derive

jw1(v1 − a1μ − a1α10 − α12a1 + a2α21)+
jw2(v2 − a2μ − a1α10 − α12a1 + a2α21) = 0,

which we write in the form{
v1 − a1(μ + α10 + α12) + a2α21 = 0,

v2 − a2(μ + α20 + α21) + a1α12 = 0.
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Solving this system, we obtain

a1 =
v1 + v2α21

(μ + α20 + α21)(μ + α10 + α12) + α12α21
,

a2 =
α12v1 + v2(μ + α10 + α12)

(μ + α10 + α12)(μ + α20 + α21) + α12α21
.

4.2 Second-Order Asymptotic

Let us perform the following substitution in Eq. (5):

H(u1, u2) = H(2)(u1, u2) exp{ju1λa1 + ju2λa2}, (8)

where H(2)(u1, u2) is the characteristic function of two-dimensional centered
random process {n1(t) − a1λ, n2(t) − a2λ}. We obtain

H(u1, u2){−λ + j2(μ + α10 + α12)λa1 + j2(μ + α20 + α21)

−j2e−ju1(μ + α10)λa1 − j2e−ju1(μ + α20)λa2

+v1λeju1 + v2λeju2 − j2e−ju1α12e
ju2λa1 − j2e−ju2α21e

ju1λa2}

+
∂H(2)(u1, u2)

∂u1

{
j(μ + α10 + α12) − je−ju1(μ + α10) − je−ju1α12e

ju2
}

+
∂H(2)(u1, u2)

∂u2

{
j(μ + α20 + α21) − je−ju2(μ + α20) − je−ju2α21e

ju1
}

= 0.

By making the following substitutions:

λ =
1
ε2

, u1 = εw1, u2 = εw2,

H(2)(u1, u2) = F2(w1, w2, ε),

we derive

F2(w1, w2, ε)
1

ε2
{−1 + j2(μ + α10 + α12)a1 + j2(μ + α20 + α21)

−j2e−jεw1 (μ + α10)a1 − j2e−jεw1(μ + α20)a2

+v1ejεw1 + v2ejεw2 − j2e−jεw1α12ejεw2a1 − j2e−jεw2α21ejεw1a2}

+
∂F2(w1, w2, ε)

∂w1

1

ε

{
j(μ + α10 + α12)− je−jεw1 (μ + α10)− je−jεw1α12ejεw2

}

+
∂F2(w1, w2, ε)

∂w2

1

ε

{
j(μ + α20 + α21)− je−jεw2(μ + α20)− je−jεw2α21ejεw1

}
= 0.

Using expansions

ejεwk = 1 + jεwk +
(jεwk)2

2
+ O(ε2)
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and

e−jεwk = 1 − jεwk +
(jεwk)2

2
+ O(ε2),

we obtain

−1
2
F2(w1, w2)

{
w2

1(v1 + a1(μ + α10 + α12) + α21a2)

+w2
2(v1 + a2(μ + α20 + α21) + α12a1) − 2w1w2(α12a1 + α21a2)

}

−∂F2(w1, w2)
∂w1

jw1

{
α12 − α10 − μ

}
+

∂F2(w1, w2)
∂w1

jw2α12

−∂F2(w1, w2)
∂w2

jw1

{
α21 − α20 − μ

}
+

∂F2(w1, w2)
∂w2

jw2α21 = 0.

(9)

We will look for a solution of this equation in the form

F (w1, w2) = exp{−1
2
w2

1K11 − 1
2
w2

2K22 − w1w2K12}, (10)

where K11,K22, and K12 are some constants.
Substituting (10) into (9), we obtain:

w2
1

{
− 1

2
(v1 + a1(μ + α10 + α12) + α21a2) − 2K11(α12 − α10 − μ) + K12α21

}
+

+w2
2

{
− 1

2
(v1 + a2(μ + α20 + α21) + α12a1) + K12α12 + 2K22α21

}
+

+w1w2

{
α12a1 + α21a2 − K12(α12 − α10 − μ) + 2K11α12−

−2K22(α21 − α20 − μ) + K12α21

}
= 0.

After some derivations, we obtain the following expressions for evaluation of
constants K11,K22,K12:

K11 = 2
v1 + a2α21 + K12α21

α12 + α10 + μ
,

K22 = 2
v2 + a1α12 + K12α12

α21 + α20 + μ
,

K12 =
α12

v1 + α21a2

α12 + α10 + μ
+ α21

v2 + α12a1

α21 + α20 + μ
− (a1α12 + a2α21)

α12 + α10 + μ + α21 + α21 + μ − α12α21

α12 + α10 + μ
− α12α21

α21 + α20 + μ

.

4.3 Approximation of Joint Probability Distribution of the Number
of Customers in States of Service

Taking into account derived expressions for constants a1, a2,K11,K22,K12 and
using expression (8), we obtain the following approximation for characteristic
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function of the number of customers in states of service in the steady-state
regime:

H(u1, u2) ≈ exp
{

ju1λa1 + ju2λa2 − u1u2λK12 − u2
1λK11

2
− u2

2λK22

2

}
, (11)

which can be applied for enough big values of the arrival process intensity λ. So,
the probability distribution of the number of customers in the states of service
in the steady-state regime P (n1, n2) is a two-dimensional Gaussian distribution
with vector of mathematical expectations

m = λ [a1 a2] (12)

and covariance matrix

K = λ

[
K11 K12

K12 K22

]
. (13)

Because (11) represents characteristic function of continuous random variable
with possible negative values, we need in constructing of probability distribution
for integer non-negative values which can be applied as an approximation for the
probability distribution of the number of customers. To do this, we propose to
use the following cumulative distribution function (c.d.f.):

F (i, k) =
G(i + 0.5, k + 0.5) − G(i − 0.5, k − 0.5)

1 − G(−0.5,−0.5)
, (14)

where i, k ∈ {0, 1, . . . } mean the number of customers in service states 1 and
2 respectively, G(i, k) is a c.d.f. of two-dimensional Gaussian distribution with
vector of mathematical expectations (12) and covariance matrix (13).

5 Numerical Example

To evaluate the accuracy of approximation (14), we conduct the following exper-
iment: for different values of parameter λ, using simulations, we obtain an empir-
ical probability distribution function and compare it with approximation (14).
For the comparison, we will take into account only marginal distributions for the
corresponding states of service. For accuracy estimation, we use the Kolmogorov
distance

Δ = max
i

|F (i) − Fsim(i)|,

where Fsim(i) is an empirical c.d.f. built on the base of results of simulations,
and F (i) is a marginal one-dimensional Gaussian c.d.f. built on the base of
expression (14). Choosen values of system parameters are given in Table 1. Also,
we preformed similar numerical comparison of the approximation with the exact
solution obtained under the condition of equivalence of the local and global
balance equations (3). The experiments were conducted with the same values of
infinite (Table 1), for which condition (3) is satisfied.



Infinite-Server Queueing System 143

Table 1. Values of parameters for numerical experiments

Parameter Value

μ 0.1

v1 0.3

v2 0.7

α12 12.83

α21 1

α10 1

α20 0.1

Fig. 3. Probability distribution of the number of customers in state 1 for λ = 10 and
λ = 100

Figure 3 shows a comparison of the stationary probability distributions of
the number of customers serviced in state 1 for different intensities of the arrival
process. Table 2 shows corresponding values of the Kolmogorov distance. We can
see that accuracy of the theoretical approximation increases with increasing of
λ. The same results for state 2 can be found in Table 3. We consider the results
can be an acceptable if Kolmogorov distance Δ ≤ 0.05 (highlighted in boldface
in the tables). So, as we see from the tables, we reach the acceptable results for
the obtained approximation for values λ ≥ 10.

Table 2. Kolmogorov distance between probability distributions of the number of
customers in state 1 for various values of λ: Δsim – approximation against simulation;
Δex – approximation against exact solution

λ 1 5 10 15 20

Δsim 0,1388 0.0712 0,0354 0.0227 0.0165

Δex 0,1387 0.0711 0,0348 0.0229 0.0170
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Table 3. Kolmogorov distance between probability distributions of the number of
customers in state 2 for various values of λ: Δsim – approximation against simulation;
Δex – approximation against exact solution

λ 1 5 10 15 20

Δsim 0,0288 0.0058 0,0031 0.0016 0.0016

Δex 0,0284 0.0056 0,0027 0,0018 0.0013

6 Conclusion

Mathematical model for subscriber communication network using IAB technol-
ogy with two mobile nodes is proposed in the paper. The model is formulated
in the form of an infinite-server queueing system with two states of service and
abandonments. The method of asymptotic analysis is applied to find the joint
two-dimensional probability distribution of the number of customers in the first
and second states of service. Obtained result in the form of an approximation can
be applied in the case when the condition of equivalence of the local and global
balance equations is not met but it is limited by enough big intensity of the
arrival process. Conducted numerical experiments approve applicability of the
obtained approximation. We think that the approach may be applied for mod-
els with an arbitrary number of service states and for models with non-Poisson
arrivals and non-exponential service times.
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