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Preface

The series of scientific conferences Information Technologies and Mathematical
Modelling (ITMM) was started in 2002. In 2012, the series acquired an international
status, and selected revised papers have been published inCommunications in Computer
and Information Science since 2014. The conference series was named after Alexander
Terpugov, one of the first organizers of the conference, an outstanding scientist of the
TomskStateUniversity and a leader of the famous Siberian school on applied probability,
queueing theory, and applications.

Traditionally, the conference has about ten sections in various fields of mathematical
modelling and information technologies. Throughout the years, the sections on proba-
bilistic methods and models, queueing theory, and communication networks have been
the most popular ones at the conference. These sections gather many scientists from dif-
ferent countries. Many foreign participants come to this Siberian conference every year
because of our warmwelcome and serious scientific discussions. In 2023, the conference
was held in Tomsk together with the 14th International Workshop on Retrial Queues and
Related Topics (WRQ). This workshop is aimed at a specific area of queueing theory.
The conference was organized by the National Research Tomsk State University of Rus-
sia, Peoples’ Friendship University of Russia (RUDNUniversity), Trapeznikov Institute
of Control Sciences of Russian Academy of Sciences, and Karshi State University of
Uzbekistan.

This volume presents selected papers from the 22th ITMM conference. The con-
ference received 96 submissions, from which 23 were selected to be published in the
current collection. Papers have passed single-blind peer review and each of them had at
least three reviewers.

The papers are devoted to new results in queueing theory and its applications, and
also related areas of probabilistic analysis. Its target audience includes specialists in
probabilistic theory, random processes, andmathematical modelling as well as engineers
engaged in logical and technical design and operational management of data processing
systems, communication, and computer networks.

December 2023 Alexander Dudin
Anatoly Nazarov

Alexander Moiseev
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Analysis of a k-out-of-n Reliability
System with Single Server, Internal

and External Service, N-Policy,
and Multiple Server Vacations

Binumon Joseph1 and K. P. Jose2(B)

1 Government Engineering College Idukki, Painavu, Idukki 685603, Kerala, India
2 PG and Research Department of Mathematics, St. Peter’s College,

Kolenchery 682311, Kerala, India

kpjspc@gmail.com

Abstract. This study involves the evaluation of the reliability of a k-
out-of-n repairable system with a single server responsible for repairing
failed components. The server provides service to external customers
in addition to servicing failed components in the system. To optimise
revenue from external services without compromising system reliabil-
ity, we introduce the N-policy. The repair of internal failed components
starts only with the accumulation of N failed components. Once the ser-
vice of internal components is started, all failed internal components are
repaired one by one. As soon as the system is free of failed internal and
external components, the server takes multiple vacations. Whenever the
number of internal failed components reaches N, if the server is on vaca-
tion, it is interrupted, and the server immediately serves the internal
component. Meanwhile, the server is in an external service, and then
the service is preempted to serve the internal components. The failure
times of the components of the system follow an exponential distribu-
tion, and external customers arrive according to the Poisson process. The
service times of both internal and external customers follow an exponen-
tial distribution. The vacation time follows an exponential distribution.
By using the Matrix Analytic Method, we discuss system stability and
steady-state distribution. The N-policy level is optimised numerically
using a suitable cost function.

Keywords: k-out-of-n system · Multiple vacation · N-Policy ·
Matrix-Analytic Method

1 Introduction

In order to maintain system functionality in the event of a failure, redundancy
is provided by multiple identical components that are connected in a way that

The authors acknowledge the financial support provided by FIST Program, Department
of Science and Technology, Government of India, to the PG & Research Department
of Mathematics through SR/FST/College-2018- XA 276(C).
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allows them to share the increased load resulting from fewer operating compo-
nents. Redundancy is also a very economical way to raise the system’s reliability
level. k-out-of-n reliability systems, which require at least k of n components to
be operational for the system to function, are a common type of redundancy.
They have been widely studied in the context of system optimisation and relia-
bility computation. Chakravarthy et al. [2] analysed a system with N machines
having an exponential failure rate serviced by an unreliable server. The service
time of a failed machine and the repair time of the server follow a phase-type dis-
tribution. Chakravarthy et al. [3] studied a k-out-of-n system with an unreliable
server that takes multiple vacations under (N,T)policy.

In a world of intense competition, businesses place a great priority on serving
both internal and external clients. The increased revenue obtained from outside
services is one of the key goals of this. Attending more diversified services, may
also be assumed to increase the server’s level of experience. Krishnamoorthy et
al. [8] studied a k-out-of-n system extending service to external customers with
MAP arrival. The service of both failed components of the system and external
customers follows phase-type distributions. Dudin et al. [4] analysed a k-out-of-n
system with utilization of idle time by providing service to external customers. If
the server is busy, the external customers with BMAP arrival directed to an orbit.
Krishnamoorthy et al. [9] analysed the reliability of a k-out-of-n system serving
external customers, and obtained various performance measures using the Matrix
geometric method. Switching of server between internal and external customers
is controlled by N-policy. By providing vacations to a heterogeneous multi-server
system, Jose and Beena [7] effectively use the idle time in a production inventory
system. Beena and Jose [1] analyse a production inventory system with multiple
servers under multiple vacations. The arrival of customers is constituted by the
Markovian Arrival Process(MAP). Wu et al. [13] discussed a single-vacation,
k-out-of-n:G repairable system whose vacation and repair times are distributed
according to general distributions. By employing the supplementary variable
technique, a range of reliability metrics, including availability, failure rate, and
mean time to first failure of the system, are obtained in steady-state.

Jain and Jain [6] analysed a machine repair problem with multiserver and
asynchronous vacation for servers. The servers are subject to breakdown. In the
analysis of a standby system with a single repairman, Yang et al. [14] introduced
a working vacation, in which the repairman offers service at a lower rate dur-
ing vacation. Wang et al. [12] analysed a repairable system with non-identical
components under phase-type distributed multiple vacations of a single server.
Liu et al. [10] introduced a mixed redundancy strategy in the reliability analysis
of a multistate system under phase-type distributed multiple vacations of a sin-
gle server. Eryilmaz [5] investigated a k-out-of-n system with multiple types of
components having nonidentical failure distributions, and obtained the number
of failed components present in the system at a time. This paper analyses a k-
out-of-n system in which a single server serves external customers in addition to
internal failed components. The server takes a vacation when the system is free
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from failed components. An N-policy is introduced to maintain system reliability
by balancing the main and external services.

The rest of the paper is organised as follows: The mathematical model is
defined and analysed in Sect. 2. Section 3 deduces the stability conditions and
steady-state probability vector of the systems. In Sect. 4, we derive some essen-
tial system performance measures. Section 5 discussed the numerical study of
the model. The impact of N-policy and external customer service on system
reliability is investigated. A cost function is discussed for determining the value
of N.

2 Mathematical Modelling and Analysis of the Problem

We consider a k-out-of-n system in which all components work well initially.
The components of the system are subject to failure. When i components are
operational, their lifetimes are independent and exponentially distributed ran-
dom variables with parameter λ1/i. Hence, λ1 failures occur on average per unit
time when i components are working, and the failure rate of internal components
follows an exponential distribution with parameter λ1. The server offers service
to the failed components from outside during idle time. This will improve the
server’s performance by gaining more experience from various external service
situations. Also, this will improve the revenue without compromising the relia-
bility of the system. The arrival of failed components from outside the system
also follows an exponential distribution with parameter λ2. Although the system
offers service to external components to generate additional income, we have an
N policy for the service of the failed components to ensure system reliability.
That means whenever the number of failed components of the system reaches N,
the service to the external components is preempted and the server repairs all
the N system components one by one. To ensure the proper working of the server,
a vacation is taken after servicing N internal failed components. The vacation
time follows an exponential distribution with the parameter ν.

The server takes a vacation after service when the system is free from
failed outside and internal customers. After completing one vacation, the server
searches for failed components, and if there are no failed units in the external
components, and the number of failed system components is less than N, then
the server takes another vacation. Also, if the server is on vacation, whenever the
number of failed components of the system reaches N, the vacation is interrupted,
and the server immediately services all the N internal failed components one by
one. When the server is busy with internal components, the external components
do not join the system for service. Otherwise, the external components join a
queue of infinite length. The service times of internal and external components
are exponentially distributed with parameters μ1 and μ2 respectively.

Let N1(t) be the number of external failed components in the system, N2(t)
be the number of internal failed components and S(t) the status of the server at
time t.
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S(t) =

⎧
⎪⎨

⎪⎩

0, if the server is in vacation,
1, if the server services the internal components,
2, if the server services the external components.

Then {X(t), t ≥ 0} where X(t) = (N1(t), S(t), N2(t)) is a continuous time
Markov chain with the state space {(i, 0, j)/i ≥ 0, 0 ≤ j ≤ N −1}∪{(i, 1, j)/i ≥
0, 1 ≤ j ≤ n − k + 1} ∪ {(i, 2, j)/i ≥ 1, 0 ≤ j ≤ N − 1}

In sequel, we use the following notations:

1. In - nth order identity matrix.
2. Ek - kth order square matrix defined as

Ek(i, j) =

⎧
⎪⎨

⎪⎩

1, if j = i + 1; 1 ≤ i ≤ k − 1,

−1, if j = i; 1 ≤ i ≤ k,

0, otherwise.

3. E′
k - transpose of Ek.

4. rk(i) - 1×k order row matrix with ith element is 1 and all elements are zeros.
5. ck(i) - transpose of rk(i).
6. e - a column matrix of appropriate order.
7. ⊗ - Kronecker product of matrices.

The block tridiagonal infinitesimal generator matrix of {X(t), t ≥ 0} is

Q =

⎛

⎜
⎜
⎜
⎝

B1 B0

B2 A1 A0

A2 A1 A0

. . . . . . . . .

⎞

⎟
⎟
⎟
⎠

, where

B1 =
(

B11 B12

B13 B14

)

,

B11 = λ1EN − λ2IN ,

B12 = λ1

(
rn−k+1(N) ⊗ CN (N)

)
,

B13 = μ1

(
rN (1) ⊗ Cn−k+1(1)

)
,

B14 = λ1En−k+1 +μ1E
′
n−k+1 +λ1

(
rn−k+1(n− k +1)⊗Cn−k+1(n− k +1)

)
,

B0 =
(

λ2IN 0N×(n−k+1) 0N×N

0(n−k+1)×N 0(n−k+1)×(n−k+1) 0(n−k+1)×N

)

,
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B2 =

⎛

⎝
0N×N 0N×(n−k+1)

0(n−k+1)×N 0(n−k+1)×(n−k+1)

μ2IN 0N×(n−k+1)

⎞

⎠,

A1 =

⎛

⎝
A11 A12 A13

A14 A15 A16

A17 A18 A19

⎞

⎠,

A11 = λ1EN − (
λ2 + ν

)
IN ,

A12 = λ1

(
rn−k+1(N) ⊗ CN (N)

)
,

A13 = νIN ,

A14 = μ1

(
rN (1) ⊗ Cn−k+1(1)

)
,

A15 = λ1En−k+1 +μ1E
′
n−k+1 +λ1

(
rn−k+1(n− k +1)⊗Cn−k+1(n− k +1)

)
,

A16 = 0(n−k+1)×N ,

A17 = 0N×N ,

A18 = λ1

(
rn−k+1(N) ⊗ CN (N)

)
,

A19 = λ1EN − (
λ2 + μ2

)
IN ,

A0 =

⎛

⎝
λ2IN 0N×(n−k+1) 0N×N

0(n−k+1)×N 0(n−k+1)×(n−k+1) 0(n−k+1)×N

0N×N 0N×(n−k+1) λ2IN

⎞

⎠,

A2 =

⎛

⎝
0N×N 0N×(n−k+1) 0N×N

0(n−k+1)×N 0(n−k+1)×(n−k+1) 0(n−k+1)×N

0N×N 0N×(n−k+1) μ2IN

⎞

⎠.

3 Stability Condition

Theorem 1. The steady state probablity vector Π = (Π0,Π1,Π2) =
(
(π(0,0),

π(0,1), π(0,2) . . . , π(0,N−1)), (π(1,1), π(1,2), π(1,3) . . . , π(1,N), . . . , π(1,n−k+1)), (π(2,0),

π(2,1), π(2,2) . . . , π(2,N−1))
)
corresponding to the generator matrix A = A2+A1+

A0 is given by
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π(0,0) =

(
μ1−λ1
λ1+ν

)

[

N
(

λ1
μ1

)
−

((
λ1
μ1

)n−k+1−N

−
(

λ1
μ1

)n−k+1
) (

λ1
μ1−λ1

)] ,

π(0,i) =
( λ1

λ1 + ν

)i

π(0,0), i = 1, 2, 3, . . . , N − 1,

π(1,i) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[

1 −
(

λ1

μ1

)i
] (

λ1 + ν

μ1 − λ1

)

π(0,0), i = 1, 2, 3, . . . , N,

(
λ1

μ1

)i−N
[

1 −
(

λ1

μ1

)N
] (

λ1 + ν

μ1 − λ1

)

π(0,0),

i = N + 1, N + 2, . . . , n − k + 1,

(1)

π(2,i) =

[

1 −
(

λ1

μ1

)i+1
] (

λ1 + ν

λ1

)

π(0,0), i = 0, 1, 2, . . . , N.

Proof. The generator matrix A = A2 + A1 + A0 =
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

λ1EN − νIN λ1

(
rn−k+1(N) ⊗ CN (N)

)
νIN

μ1

(
rN (1) ⊗ Cn−k+1(1)

)
λ1En−k+1 + μ1E

′
n−k+1+ 0(n−k+1)×N

λ1

(
rn−k+1(n − k + 1)⊗

Cn−k+1(n − k + 1)
)

0N×N λ1

(
rn−k+1(N) ⊗ CN (N)

)
λ1EN

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Let the steady state vector of A be Π = (Π0,Π1,Π2) =
(
(π(0,0), π(0,1),

π(0,2) . . . , π(0,N−1)), (π(1,1), π(1,2), π(1,3) . . . , π(1,N), . . . , π(1,n−k+1)), (π(2,0), π(2,1),

π(2,2) . . . , π(2,N−1))
)
. Then

ΠA = 0 and Π e = 1,

gives
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π(0,0)(−λ1 − ν) + π(1,1)μ1 = 0,

π(0,i−1)λ1 + π(0,i)(−λ1 − ν) = 0,
for i = 1, 2, 3 . . . , N − 1,

π(1,1)(−λ1 − μ1) + π(1,2)μ1 = 0,

π(1,i−1)λ1 + π(1,i)(−λ1 − μ1) + π(1,i+1)μ1 = 0,

for i = 2, 3 . . . , N − 1,

π(0,N−1)λ1 + π(1,N−1)λ1π(1,N)(−λ1 − μ1) + π(1,N+1)μ1 + π(2,N−1)λ1 = 0,

π(1,i−1)λ1 + π(1,i)(−λ1 − μ1) + π(1,i+1)μ1 = 0,

for i = N + 1, N + 2, . . . , n − k,

π(1,n−k)λ1 + π(1,n−k+1)(−μ1) = 0,
π(0,0)ν + π(2,0)(−λ1) = 0,

π(0,i)ν + π(2,i−1)(−λ1) + π(2,i)(−λ1) = 0,
for i = 1, 2, 3, . . . , N − 1.

(2)

From Eq. (2)

π(0,i) =
( λ1

λ1 + ν

)i

π(0,0), i = 1, 2, 3, . . . , N − 1,

π(1,i) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

[

1 −
(

λ1

μ1

)i
] (

λ1 + ν

μ1 − λ1

)

π(0,0), i = 1, 2, 3, . . . , N,

(
λ1

μ1

)i−N
[

1 −
(

λ1

μ1

)N
] (

λ1 + ν

μ1 − λ1

)

π(0,0),

i = N + 1, N + 2, . . . , n − k + 1,

π(2,i) =

[

1 −
(

λ1

μ1

)i+1
] (

λ1 + ν

λ1

)

π(0,0), i = 0, 1, 2, . . . , N.

(3)

Using normalization Πe = 1, gives

π(0,0) =

(
μ1 − λ1

λ1 + ν

)

N

(
λ1

μ1

)

−
[(

λ1

μ1

)n−k+1−N

−
(

λ1

μ1

)n−k+1
] (

λ1

μ1 − λ1

) . (4)

Theorem 2. The system is stable if and only if

μ2

ν

[

1 −
(

λ1

λ1 + μ1

)N
]

< N

(
μ2 − λ1

λ1

)

. (5)
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Proof. The above Markov chain is stable if and only if ΠA0e < ΠA2e, which
gives

λ2

⎡

⎣
N−1∑

j=0

π(0,j) +
N−1∑

j=0

π(2,j)

⎤

⎦ < μ2

N−1∑

j=0

π(2,j).

Using equations (3) and (4), the Markov chain under consideration is stable if
and only if

μ2

ν

[

1 −
(

λ1

λ1 + μ1

)N
]

< N

(
μ2 − λ1

λ1

)

.

4 Steady State Probability Vector

The Markov process {X(t), t ≥ 0} is a level-independent QBD process. The
stationery distribution when it exists, has a matrix geometric solution. Let x =
(x0, x1, x2, . . . ) be the probability steady state vector of Q, the generator matrix
of the process. Then x satisfies the equations xQ = 0 and the normalizing
condition xe = 1. Here e represents the column matrix of 1’s with infinite order.
Then

xi+1 = xi R ∀ i ≥ 1,

where R is the minimal nonnegative solution of the matrix equation A0 +A1R+
A2R

2 = 0. The boundary probability vectors (x0, x1) are obtained from the
equations

x0B0 + x1B2 = 0,

x0B1 + x1(RA2 + A1) = 0.

Using normalization, x0e + x1(I − R)−1e = 1, one can solve the equations for
x0 and x1.

5 System Performance Measures

Theorem 3. Expected server busy period of the server with internal failed com-
ponents, that start with an arbitrary number of external customers is EB =
E(T ) [

∑∞
i=0 x(i, 0, N − 1) +

∑∞
i=1 x(i, 2, N − 1)].

Proof. The server busy period with the internal failed components begins with
the accumulation of N failed components and ends when all components are
served. Let T (i), i ≥ 0 be the server busy period with internal components, which
begins with i external customers are in the system. But the busy period with
internal components is not dependes on the number of customers from outside.
Hence, T (i) = T,∀i ≥ 0. Consider a Markov chain XB(t), which denotes the
number of failed internal components of the system with {0, 1, 2, . . . , N,N +
1, . . . , n − k + 1} as the state space. The infinitesimal generator of the Markov
chain is
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Q̄ =
(

0 0
−B̄e B̄

)

, where

B̄ = λ1En−k+1 + μ1E
′
n−k+1 + λ1

(
rn−k+1(n − k + 1) ⊗ Cn−k+1(n − k + 1)

)
.

Then 0 is the absorbing state and T is time until absorption time. Thus T
follows a phase type distribution PH(α, B̄) with the initial probability vector
α = (0, 0, 0, . . . , 1, . . . , 0) having 1 as the N th element and all other elements are
zeros. Then the expectation of the server busy period is E(T ) = −αB̄−1e.

The expected value EB , of the server busy period in internal service, when
the service begins with any arbitrary number of failed external components is

EB =E(T )

[ ∞∑

i=0

x(i, 0, N − 1) +
∞∑

i=1

x(i, 2, N − 1)

]

.

The important system performance measures are given below.

1. Portion of time the system was down PF =
∞∑

i=0

x(i, 1, n − k + 1).

2. Reliability of the system PR = 1 − PF .
3. The average number of outside units in the queue

NQ =
∞∑

i=1

i

n−k+1∑

j=1

x(i, 1, j) +
∞∑

i=0

i

N−1∑

j=0

x(i, 0, j) +
∞∑

i=2

(i − 1)
N−1∑

j=0

x(i, 2, j).

4. The average number of failed main components

NIF =
N−1∑

j=0

j

∞∑

i=0

x(i, 0, j) +
n−k+1∑

j=0

j

∞∑

i=0

x(i, 1, j) +
N−1∑

j=0

j

∞∑

i=1

x(i, 2, j).

5. Fraction of time the server in an external service PEB =
∞∑

i=1

N−1∑

j=0

x(i, 2, j).

6. Probability that the server was found on vacation Pv =
∞∑

i=0

N−1∑

j=0

x(i, 0, j).

7. Expected rate of external customer loss EEL = λ2

∞∑

i=0

n−k+1∑

j=1

x(i, 1, j).

8. Average number of external customers waiting while the server is on vacation

EEv =
∞∑

i=0

i

N−1∑

j=0

x(i, 0, j).

9. Average number of internal components waiting while the server is on vaca-

tion EIv =
N−1∑

j=0

j
∞∑

i=0

x(i, 0, j).

6 Numerical Analysis

The numerical experiments that were carried out to look at how different param-
eter adjustments affected the performance measures are described in this part.
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6.1 Various Performance Measures for Different Values of N

In Table 1, various performance measures are listed for different values of the
policy level N. The second column corresponding to PF displays the values of
the probability that the system will fail. As expected, the value of PF increases
with an increase in N. The column corresponding to NQ expresses the variation
in the expected number of outside units waiting for service in the queue. For
lower values of N, the server spends more time serving the main components,
and hence the number of outside units waiting for service increases. The fourth
column represents the change in PEB, the fraction of time the server is busy
with external customers, corresponding to different values of N. As N increases,
PEB also slightly increases. The expected loss rate of external customers, EEL,
decreases with an increase in N. Also, the average number of internal failed
components, NIF , increases with an increase in N. The fraction of time the

Table 1. Perfomance measures and the N-policy level. λ1 = 5, λ2 = 3, μ1 = 6, μ2 =
5, n = 50, k = 20, ν = 6.

N PF NQ PEB EEL NIF Pv PR EEv EIv

2 0.00064569 10.2670 0.10032 2.4984 5.3983 0.066882 0.99935 0.596040 0.024477

3 0.00071245 4.7809 0.10036 2.4982 5.8896 0.066904 0.99929 0.231160 0.052057

4 0.00078830 3.5184 0.10039 2.4980 6.3798 0.066929 0.99921 0.148040 0.081701

5 0.00087462 2.9727 0.10044 2.4978 6.8688 0.066958 0.99913 0.112380 0.112760

6 0.00097304 2.6755 0.10049 2.4976 7.3565 0.066991 0.99903 0.093032 0.144810

7 0.00108540 2.4922 0.10054 2.4973 7.8426 0.067028 0.99891 0.081088 0.177540

8 0.00121400 2.3698 0.10061 2.4970 8.3270 0.067071 0.99879 0.073074 0.210760

9 0.00136140 2.2833 0.10068 2.4966 8.8094 0.067120 0.99864 0.067370 0.244340

10 0.00153050 2.2195 0.10077 2.4962 9.2896 0.067177 0.99847 0.063126 0.278200

11 0.00172490 2.1710 0.10086 2.4957 9.7671 0.067242 0.99828 0.059859 0.312280

12 0.00194870 2.1329 0.10097 2.4951 10.2420 0.067316 0.99805 0.057276 0.346580

13 0.00220680 2.1025 0.10110 2.4945 10.7130 0.067402 0.99779 0.055190 0.381070

14 0.00250500 2.0777 0.10125 2.4937 11.1810 0.067502 0.99750 0.053477 0.415760

15 0.00284990 2.0572 0.10142 2.4929 11.6440 0.067617 0.99715 0.052053 0.450690

16 0.00324960 2.0399 0.10162 2.4919 12.1020 0.067750 0.99675 0.050858 0.485880

17 0.00371360 2.0253 0.10186 2.4907 12.5540 0.067905 0.99629 0.049850 0.521370

18 0.00425310 2.0128 0.10213 2.4894 13.0000 0.068084 0.99575 0.048998 0.557230

19 0.00488150 2.0019 0.10244 2.4878 13.4390 0.068294 0.99512 0.048279 0.593520

20 0.00561490 1.9924 0.10281 2.4860 13.8680 0.068538 0.99439 0.047676 0.630340

21 0.00647250 1.9839 0.10324 2.4838 14.2880 0.068824 0.99353 0.047179 0.667810

22 0.00747770 1.9764 0.10374 2.4813 14.6960 0.069159 0.99252 0.046780 0.706060

23 0.00865850 1.9697 0.10433 2.4784 15.0910 0.069553 0.99134 0.046474 0.745260

24 0.01004900 1.9636 0.10502 2.4749 15.4700 0.070016 0.98995 0.046260 0.785650

25 0.01169200 1.9579 0.10585 2.4708 15.8310 0.070564 0.98831 0.046140 0.827470
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system takes on vacation, Pv, increases with an increase in N, while the reliability
of the system, PR, shows a slight decrease with an increase in N.

6.2 N-Policy and the Number of External Failed Units in the Queue

As per the N policy, as the value of N increases, the server gets more time
to attend to the service of external customers. This will reduce the number of
external components waiting for service in the queue. First three columns of
the Table 2 lists NQ, the expected number of external customers in the queue
for different values of the vacation parameter ν. The table also shows the rela-
tionship between the vacation parameter and the expected number of external

Table 2. Expected number of external customers in the queue and the N-policy level.
λ2 = 3, μ1 = 6, μ2 = 5, n = 50, k = 20.

NQ NQ

N ν=5 ν=6 ν=7 λ1 = 4 λ1 = 5 λ1 = 6

2 29.318 10.267 6.6436 5.8715 10.267 28.488

3 6.7555 4.7809 3.8601 3.6159 4.7809 6.6043

4 4.4057 3.5184 3.0312 2.8942 3.5184 4.3228

5 3.5287 2.9727 2.6453 2.5509 2.9727 3.4701

6 3.0796 2.6755 2.4279 2.3557 2.6755 3.0326

7 2.8117 2.4922 2.2911 2.2323 2.4922 2.7710

8 2.6365 2.3698 2.1984 2.1486 2.3698 2.5995

9 2.5146 2.2833 2.1323 2.0887 2.2833 2.4799

10 2.4258 2.2195 2.0830 2.0441 2.2195 2.3925

11 2.3589 2.1710 2.0453 2.0098 2.1710 2.3264

12 2.3070 2.1329 2.0155 1.9828 2.1329 2.2749

13 2.2657 2.1025 1.9915 1.9611 2.1025 2.2339

14 2.2324 2.0777 1.9719 1.9433 2.0777 2.2007

15 2.2049 2.0572 1.9556 1.9285 2.0572 2.1732

16 2.1820 2.0399 1.9418 1.9160 2.0399 2.1503

17 2.1627 2.0253 1.9301 1.9054 2.0253 2.1308

18 2.1462 2.0128 1.9200 1.8963 2.0128 2.1141

19 2.1320 2.0019 1.9112 1.8885 2.0019 2.0997

20 2.1196 1.9924 1.9034 1.8816 1.9924 2.0872

21 2.1087 1.9839 1.8966 1.8755 1.9839 2.0762

22 2.0990 1.9764 1.8904 1.8702 1.9764 2.0664

23 2.0904 1.9697 1.8849 1.8654 1.9697 2.0577

24 2.0826 1.9636 1.8798 1.8610 1.9636 2.0499

25 2.0756 1.9579 1.8750 1.8570 1.9579 2.0429
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customers in the queue. As the vacation parameter increases, the vacation dura-
tion decreases. The decrease in the vacation duration ensures more time for
the service of external customers. The table illustrates that the increase in the
vacation parameter results in a decrease in the expected number of external cus-
tomers in the queue. The last three columns of the Table 2 lists NQ for different
values of the vacation parameter λ1. This shows that as λ1 increases, NQ also
increases.

6.3 N-Policy and the Reliability of the System

When N increased, we anticipated that the system’s reliability would decrease.
This is because we believe that a decrease in system reliability could result
from the server spending more time servicing external customers as N increases.
Table 3 provides support for this. As N increases, PEB, the portion of time spent

Table 3. System realibility and the N-policy level. λ1 = 5, λ2 = 3, μ1 = 6, μ2 = 5, ν =
6, k = 20.

PR PEB

N n=45 n=50 n=55 n=45 n=50 n=55

2 0.99839 0.99935 0.99974 0.10081 0.10032 0.10013

3 0.99822 0.99929 0.99971 0.10089 0.10036 0.10014

4 0.99803 0.99921 0.99968 0.10099 0.10039 0.10016

5 0.99781 0.99913 0.99965 0.10110 0.10044 0.10018

6 0.99756 0.99903 0.99961 0.10122 0.10049 0.10019

7 0.99728 0.99891 0.99957 0.10136 0.10054 0.10022

8 0.99695 0.99879 0.99951 0.10152 0.10061 0.10024

9 0.99658 0.99864 0.99946 0.10171 0.10068 0.10027

10 0.99615 0.99847 0.99939 0.10193 0.10077 0.10031

11 0.99565 0.99828 0.99931 0.10217 0.10086 0.10034

12 0.99508 0.99805 0.99922 0.10246 0.10097 0.10039

13 0.99442 0.99779 0.99912 0.10279 0.10110 0.10044

14 0.99365 0.99750 0.99900 0.10318 0.10125 0.10050

15 0.99275 0.99715 0.99886 0.10362 0.10142 0.10057

16 0.99171 0.99675 0.99871 0.10414 0.10162 0.10065

17 0.99050 0.99629 0.99852 0.10475 0.10186 0.10074

18 0.98907 0.99575 0.99831 0.10546 0.10213 0.10084

19 0.98740 0.99512 0.99807 0.10630 0.10244 0.10097

20 0.98542 0.99439 0.99778 0.10729 0.10281 0.10111

21 0.98308 0.99353 0.99745 0.10846 0.10324 0.10128

22 0.98030 0.99252 0.99706 0.10985 0.10374 0.10147

23 0.97697 0.99134 0.99661 0.11151 0.10433 0.10170

24 0.97297 0.98995 0.99608 0.11351 0.10502 0.10196

25 0.96813 0.98831 0.99546 0.11593 0.10585 0.10227
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with external customers, increases. As a result, the fraction of time spent serving
the main customers gets reduced, resulting in a decline in the system’s reliability.
When the total number of system components n was high, the magnitude of the
reliability diminished and was found to be less. Table 3 illustrates, in summary,
that an increase in the N-policy level has little impact on system reliability.
The k-out-of-n system’s reliability increases as its total number of components
does. The extent of the reliability decrease also decreases with increasing n. The
reason for this is because n-k+1 increases as n increases, with k being constant.
So, when N failed components accumulate, the server begins to handle them
and spends more time on them, which maintains system reliability even as N
increases.

6.4 Cost Function

Table 2 shows us that by raising N, we may give externally failed components
more time to be attended. Table 3 shows that when N increases, the percentage of
time the server spends serving external clients also rises. Still, when N increases,
system reliability is slightly decreased. Finding out whether the N-policy level

Table 4. Cost variation corresponding to failure rate λ1. C1 =3000, C2 =2000,
C3 =1000, C4 =2000, C5 =500, C6 =500.

N λ1= 4 λ1=5 λ1=6

2 23060 34269 76958

3 18798 23543 33313

4 17605 21263 28872

5 17168 20417 27287

6 17028 20067 26531

7 17031 19944 26125

8 17114 19942 25898

9 17244 20010 25772

10 17405 20124 25710

11 17586 20266 25687

12 17782 20428 25692

13 17988 20604 25716

14 18202 20790 25752

15 18422 20981 25798

16 18647 21178 25850

17 18875 21377 25906

18 19106 21577 25964

19 19339 21777 26024

20 19573 21976 26085

21 19808 22172 26144

22 20044 22366 26202

23 20279 22555 26258

24 20514 22738 26312

25 20746 22914 26362
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has an optional value is therefore worthwhile. To do this, we create a suitable
cost function.

Let C1 denote the cost per unit time incurred if the system fails. Let C2

represent the cost of holding each external customer in the queue for one unit
of time; C3 represent the cost of starting a failed system component service;
C4 represent the cost of losing one external customer; C5 represent the cost of
holding each failed internal component for one unit of time, and C6 represent
the cost per unit of time if the server is on vacation.

The expected cost/unit time = C1PF +C2NQ+
C3

EB
+C4EEL+C5NIF +C6Pv.

Table 4 examines how the cost function varies with N. We examine the cost
function for various component failure rates. The table shows that, up to a
certain point, the cost decreases as N increases and the policy level increases,
but after that point, the cost increases as N increases. As a result, the cost curve
has a concave shape and obtains an optimal value for N.

0 5 10 15 20 25
1

2

3

4

5

6

7

8
10 4

Fig. 1. Cost variation corresponding to failure rate λ1. C1 =3000, C2 =2000,
C3 =1000, C4 =2000, C5 =500, C6 =500.

7 Conclusion

An efficient way to make use of server idle time and increase system revenue
would be to render services to external customers and undergo server vacation.
But when a system requires a minimal number of components to function, the
vacation duration and external services need to be handled cautiously to avoid
negatively impacting the system’s reliability. We have chosen to manage the
external service using the N-Policy in this study. Specifically, we assume that
the server only begins to respond to failed components of the system when N
of them have failed. Then it provides service to external components, if any,
during this idle time. If the system is free from failed external customers and the
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number of internal failed components is below N, the server takes a vacation.
Also, after completing the service for N components of the system, the server
takes a vacation. A continuous-time Markov chain has been used to model this
situation. We also assume that the external service is preempted when N internal
failed components are accumulated and the external arrivals are prevented from
accessing the system when they find the server occupied with failed main system
components. From the numerical analysis, we see that by implementing the
N-policy and vacationing the server, we may maintain system reliability while
optimising system cost obtained from a cost function by providing services to
external clients. We intend to investigate in the future how an unreliable server
affects the N-policy and the system’s reliability. The study in this paper can also
be extended by considering PH distributions for the service time.
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Abstract. In this paper a one-line queueing system with two priority
classes, relative priority, Poissonian input flow with random intensity and
infinite number of places in queue for waiting is considered. The current
intensity value is taken at the beginning of the time reckoned for the
arrival of the next requirement. Successive values of the flow intensity
form a Markov chain of a special kind. This input flow structure allows to
take in consideration not only mathematical expectation and variance,
but also correlation between interval of two next arrivals. The main result
is the limit distribution of the queue length for the least priority class, it is
obtained in an explicit form. Also, analytical expressions for the density
function, mathematical expectation and variance are given. Numerical
examples, which show difference among limit distributions (for different
parameters) for studied cases are provided.

Keywords: Poissonian flow · random intensity · relative priority ·
queue length · heavy traffic

1 Introduction

The main goal of this paper is to study the behaviour of the queue length of the
lowest priority class in the queueing system with the autoregressive input flow
(will be fully described in Sect. 2). The relevance of this research is determined
by the fact that the vast majority of real service systems in many applied areas
operate under conditions of either the heavy load or close to the heavy load. For
instance, the widespread distribution of communication networks has led to a
sharp increase in the volume of network traffic, and, therefore, an increase in the
load on these networks, most of which have become highly loaded. It also lead
us to the relevance of considering exactly this structure of the incoming flow. In
[2,3] the authors have shown that there is a stochastic dependence between an
inter-arrival time of two adjacent requests.
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The key purpose of this study is to find the limit distribution of the queue
length of the lowest priority class. In addition, the probability density function,
mathematical expectation and variance are given for the limit distribution. It
should be mentioned that there is a huge amount of papers and monographs
dedicated to studying queueing systems under the heavy traffic condition [4–16].

The paper has the following structure. In Sect. 2 the studied system is fully
described. In Sect. 3, the results from [1], which will be used during the research,
are given. Section 4 consists of two parts: in the first one some auxiliary expan-
sions in a series are obtained, in the second one the main theorem is proved. In
Sect. 5, some numerical examples are given.

2 System Definition

In this work sequence of queuing systems (the series scheme) is researched; m-th
queueing system has the following structure. The structure of arrivals is time
zm1 before the arrival of the first requirement and interval zmn between (n −
1) - th and n-th requirement have an exponential distribution with random
parameter a

(n)
m , n = 1, 2, . . . . Value a

(n)
m is selected just before the beginning of

interval zmn such that, P(a(1)
m = amj) = cmj , ami �= amj , i �= j, cmj > 0, j =

1, N,
N∑

j=1

cmj = 1 and a
(n)
m = ξm ·a(n−1)

m +(1−ξm) ·b(n)m , where b
(n)
m , n = 1, 2, . . . ,

a
(n)
m , n = 1, 2, . . . , and ξm are independent random variables. The distribution

of the random variables a
(n)
m and b

(n)
m coincides with the distribution of a

(1)
m ,

n = 1, 2, . . . , and ξm has Bernoulli distribution with parameter pm.
It is easy to show that

P(zmn < t) =
N∑

j=1

cmj(1 − e−amjt)

P(zmn < t1, zm,n+k < t2) = (1 − pk
m)

N∑

j=1

cmj(1 − e−amjt1)

N∑

k=1

cmk(1 − e−amjt2)+

+ pk
m

N∑

k=1

cmk(1 − e−amjt1)(1 − e−amjt2)

Ezmn =
N∑

j=1

cmj

amj
, Dzmn =

N∑

j=1

cmj

a2
mj

, corr(zmn, zm,n+k) =
pk

m

2

(

1 − (Ezmn)2

Dzmn

)

(1)
Further m will be used in indexes only where it is necessary to highlight depen-
dence on m.

There are two special cases: p = 0 and p = 1, in the first one the input
flow is hyper-exponential, in the second one: we obtain a system such that the
initial intensity is randomly selected from the set {a1, . . . , aN} with probabilities
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c1, . . . , cN respectively, and afterward acts as a system with a Poissonian input
flow with the chosen intensity (this case is not considered in this work).

From (1), it follows that if μ > 0 and σ > μ, there exists second-order
flow (N = 2) such that it belongs to the class of flows considered in this work,
and its expectation and variance of intervals between arrivals are equal to μ

and σ2, respectively. The correlation coefficient is equal to p
2

(
1 − (

μ
σ

)2
)
. While

mathematical model of real system is being constructed, it is possible to adjust
the first two moments of the real arrival process and their dependence.

All arriving requirements are divided into 2 classes with probabilities
p1, p2 (p1 + p2 = 1), respectively, and it does not depend on other requirements.
We firstly assume that each type of requirement forms its own queue. Secondly,
if a service is started, it is never interrupted. The studied system operates under
the relative priority discipline.

We assume that the system is free of requirements for t = 0 and serving
lengths are independent random variables equally distributed for requirements
of each particular type. The distribution function is Bmi(x) and the density
is bmi(x) for ith class and mth system , i = 1, 2; βmi(s) — Laplace-Stieltjes
transform of function bmi(x), i = 1, 2; βmij – j th moment of random variable
with Bmi(x) distribution function.

L(t) = (L1(t), L2(t)) – amount of requirements in a system in time t.

It is known that if
(

N∑

i=1

cja
−1
j

)−1

· (p1β11 + p2β21) < 1 the non-degenerate

limit distribution of stochastic process L(t) exists. In this work, L2(t) is studied

in case while t → ∞ and
(

N∑

i=1

cmja
−1
mj

)−1

· (pm1βm11 + pm2βm21) → 1,m → ∞.

We will study the system under the next assumptions:

I) the first and the second moment of service time distribution exist (for each
priority class) and

βi(s) = 1 − βi1s +
βi2

2
s2 + om(s2), i = 1, 2,

where om(s2)/s2 → 0 while s → 0 uniformly on variable m
II) for each m ∈ {1, 2, . . . }: am(p1βm11 + p2βm21) < 1

III) following limits exist lim ci = c∗
i , lim ai = a∗

i , lim βij = β∗
ij , lim pj =

p∗
j , i = 1, N, j = 1, 2, where lim denote lim

m→∞.
The main goal of this study is to find

lim
m→∞P

(

ργ · L2

(
t

ρα

)

< x

)

where

ρ = 1 − a(p1β11 + p2β21), a =

(
N∑

i=1

cj

aj

)−1

, γ =

{
0.5α, α � 2,

1, α > 2.
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3 Preliminaries

In [1] expressions which Laplace-Stieltjes transform of generating function of
queue length is satisfied has been found. They will be used to find the limit
distribution. Let us write them.

Lemma 1. Equation

(1 − p)z
N∑

m=1

amcm

μ(z) + am (1 − pz)
= 1,

has N continious in domain |z| � 1 solutions μ = μk(z), k = 1, . . . , N, that :

1) only one function μk(z) is equal to 0 while z = 1;
2) �(μj(z)) < 0 for all j = 1, . . . , N and |z| < 1;
3) μi(z) �= μj(z) while i �= j.

Denote αk(z) =
∏

j �=k

[μk(z) − μj(z)].

Lemma 2. For each k = 1, . . . , N system of equations

z1 = β1(s − μk(p1z1 + p2z2)),

z2 = β2(s − μk(p1z1 + p2z2)),

has a unique solution zi = zik(s), such, that |zik(s)| < 1 while k =
2, . . . , N, �s ≥ 0, and zi1(0) = 1, |zi1(s)| < 1 while �s > 0, i = 1, 2.

Lemma 3. Laplace-Stieltjes transform of joint generating function of queue
length for the first and the second classes is

p(z1, z2, s) = p0(s)+

+
p1z1 + p2z2 − 1

(1 − p)(p1z1 + p2z2)
×

N∑

k=1

1
μk(p1z1 + p2z2)(s − μk(p1z1 + p2z2))

×

×
[

γ
(k)
1 (z1, z2, s)[1 − β1(s − μk(p1z1 + p2z2))]+

+ γ
(k)
2 (z1, z2, s)[1 − β2(s − μk(p1z1 + p2z2))]

]

,
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where functions γ
(k)
i (z1, z2, s), i = 1, 2, k = 1, N satisfy :

γ
(k)
1 (z1, z2, s)

z1 − β1(s − μk(p1z1 + p2z2))
z1

+

+ γ
(k)
2 (z1, z2, s)

z2 − β2(s − μk(p1z1 + p2z2))
z2

=

=
(1 − p)(p1z1 + p2z2)

αk(p1z1 + p2z2)

N∏

m=1

[μk(p1z1 + p2z2) + am(1 − p(p1z1 + p2z2))]×

×
N∑

j=1

cjajfj(z1, z2, s)
μk(p1z1 + p2z2) + aj(1 − p(p1z1 + p2z2))

;

fj(z1, z2, s) = 1 − (s + aj(1 − p(p1z1 + p2z2))c−1
j p0j(s)+

+ (p1z1 + p2z2)(1 − p)
N∑

k=1

akp0k(s), j = 1, N,

γ
(k)
1 (z1, z2, s) =

(1 − p)(p1z1 + p2z2)

αk(p1z1 + p2z2)

N∏

j=1

[μk(p1z1 + p2z2) + aj(1 − p(p1z1 + p2z2))]×

×
N∑

e=1

aep1e(z1, z2, 0, s)

μk(p1z1 + p2z2) + ae(1 − p(p1z1 + p2z2))
;

γ
(k)
2 (z1, z2, s) =

(1 − p)(p1z1 + p2z2)

αk(p1z1 + p2z2)

N∏

j=1

[μk(p1z1 + p2z2) + aj(1 − p(p1z1 + p2z2))]×

×
N∑

e=1

aep2e(z2, 0, s)

μk(p1z1 + p2z2) + ae(1 − p(p1z1 + p2z2))
.

functions p0j(s) might be found from:

p0j(s) =
1

aj

N∑

l=1

1 − p(p1z∗
l1 + p2z∗

l2)

(1 − p)(p1z∗
l1 + p2z∗

l2)(s − μ∗
l (s))

· 1∏
n�=j

(aj − an)
×

×
(

μ∗
l (s)

1 − p(p1z∗
l1 + p2z∗

l2)
+ aj

)−1

×

×
∏

l�=n

(
μ∗

l (s)

1 − p(p1z∗
l1 + p2z∗

l2)
− μ∗

n(s)

1 − p(p1z∗
n1 + p2z∗

n2)

)−1

×

×
N∏

k=1

(μ∗
k(s) + aj(1 − p(p1z∗

k1 + p2z∗
k2))(μ

∗
l (s) + ak(1 − p(p1z∗

l1 + p2z∗
l2))

(1 − p(p1z∗
k1 + p2z∗

k2))(1 − p(p1z∗
l1 + p2z∗

l2))
, (2)

where μ∗
k(s) = μk(p1z∗

k1 + p2z∗
k2)
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4 Main Result

To prove the main theorem, some auxiliary expansions in a series are needed,
which would be formulated as separate lemmas.

4.1 Auxiliary Expansions in a Series

Lemma 4. The next asymptotics for z(sρα) are true:

z(sρα) − 1 =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−
√

sρα

a2v
+ o(ρ

α
2 ), α < 2,

ρ · 1 − √
1 + 4sv
av

+ o(ρ), α = 2,

−sρα−1

a
+ o(ρα−1), α > 2,

where

v =
a(p1β12 + p2β22)

2
+

1
a(1 − p)

(

a2
N∑

i=1

cj

a2
j

− 1

)

,

z(s) = p1z1(s) + p2z2(s) is the solution of equation
p1z1 + p2z2 = p1β1(s − μ1(p1z1 + p2z2)) + p2β2(s − μ1(p1z1 + p2z2)).

Proof. Using assumption I and Lemma 2 it is possible to write

z(sρα) = 1− (sρα −μ1(z(sρ
α))) ·β1+(sρα −μ1(z(sρ

α)))2 · β2

2
+o((sρα −μ1(z(sρ

α)))2), (3)

where βi = p1β1i + p2β2i, i = 1, 2.
Also, we may write next expansion for function μ1(p1z1 + p2z2):

μ1(z(sρα)) = μ
′
1(1)(z(sρα) − 1) +

μ
′′
1 (1)
2

(z(sρα) − 1)2 + o((z(sρα) − 1)2). (4)

Substitute (3) in (4), after easy manipulations quadratic equation for z(sρα) − 1
is obtained:

av · (z(sρα)− 1)2 − ρ · (z(sρα)− 1)− β1 · sρα + o(max((z(sρα)− 1)2, ρ · (z(sρα)− 1), ρα)) = 0,

its solutions:

z(sρα) − 1 =
ρ ±

√
ρ2 + 4 sραv

2av
+ o(z(sρα) − 1).

from here asymptotics in the lemma statement are obtained.

Corollary 1. Asymptotic expansion for μ∗
1(sρ

α) is:

μ∗
1(sρ

α) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−
√

sρα

v
+ o(ρ

α
2 ), α < 2,

−ρ · 2 s

1 +
√

1 + 4sv
+ o(ρ), α = 2,

−sρα−1 + o(ρα−1), α > 2.
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This expansion is obtained directly from Lemma 4 and (4)

Lemma 5. The next asymptotics for p0j(sρα) are true :

p0j(sρα) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

κj ·
√

v

s
· ρ− α

2 + o(ρ− α
2 ), α < 2,

κj · 1 +
√

1 + 4sv

2 s
· ρ−1 + o(ρ−1), α = 2,

κj
ρ1−α

s
· +o(ρ1−α), α > 2,

where

κj =
∏

n�=j

an

an − aj
·

N∏

k=2

μ∗
k(0) + aj(1 − p(p, z∗

k(0)))
μ∗

k(0)
.

Proof. Since, only μ1(1) = 0 then from (2):

ραp0j(sρα) =
ρα

sρα − μ∗
1(sρα)

×
∏

n�=j

an

an − aj
·

N∏

k=2

μ∗
k(0) + aj(1 − p(p, z∗

k(0)))
μ∗

k(0)
.

Therefore and from corollary 1, lemma statement is obtained.

Lemma 6. The next asymptotics for μ1(p1z∗
1 + p2e

−uργ

) are true:

μ1(p1z∗
1 + p2e

−uργ

) =
ap2uργ

ap1β11 − 1
+ ψρ2γ + o(ρ2γ), where

ψ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ap1β11

ap1β11 − 1
s +

ap2u2

2(1 − ap1β11)
+

μ
′′
1 (1)

2

p22u2

(1 − ap1β11)3
+

p1β12a3p22u2

2(1 − ap1β11)3
, α � 2,

ap2u2

2(1 − ap1β11)
+

μ
′′
1 (1)

2

p22u2

(1 − ap1β11)3
+

p1β12a3p22u2

2(1 − ap1β11)3
, α > 2.

Proof. Since p1z
∗
1 + p2e

−uργ

= p1β1(sρα − μ1(p1z∗
1 + p2e

−uργ

)) + p2e
−uργ

.
Denote: τ = p1z

∗
1 + p2e

−uργ

. Using the assumption II we have

τ = p1

(

1 − β11(sρα − μ1(τ)) +
β12

2
((sρα − μ1(τ)))2

)

+

+ p2

(

1 − uργ +
u2ρ2γ

2

)

+ o(ρ2γ). (5)

Using the asymptotics for μ1(τ) and separate the principal part with degree ργ

we have
τ − 1 =

p2uργ

ap1β11 − 1
+ +ψρ2γ + o(ρ2γ). (6)

Substitute (6) in (5), ψ might be found.
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Lemma 7. The next asymptotics are true:

N∑

j=1

fj(z∗
1 , e−uργ

, sρα)
cjaj

μ1(p1z∗
1 + p2e−uργ ) + aj(1 − p(p1z∗

1 + p2e−uργ ))
=

=
1

1 − p
×

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 +
ap2u

ap1β11 − 1

√
v

s
+ o(1), α < 2,

1 +
ap2u

ap1β11 − 1
1 +

√
1 + 4sv
2 s

+ o(1), α = 2,

1 +
ap2uρ2−α

ap1β11 − 1
1
s

+ o(ρ2−α), α > 2.

Proof. Using the definition of fj(z1, z2, s), j = 1, N , the investigated expression
might be rewritten in the next form:

N∑

j=1

fj(z∗
1 , e−uργ

, sρα)
cjaj

μ1(p1z∗
1 + p2e−uργ ) + aj(1 − p(p1z∗

1 + p2e−uργ ))
=

=
1

(1 − p)(p1z∗
1 + p2e−uργ )

− (sρα − μ1(p1z∗
1 + p2e

−uργ

))×

×
N∑

j=1

ajp0j(s)
μ1(p1z∗

1 + p2e−uργ ) + aj(1 − p(p1z∗
1 + p2e−uργ ))

+ o(ρ2γ).

After using Lemma 5 and the fact that
N∑

j=1

κj = 1, the lemma statement is

obtained.

Lemma 8. The next asymptotics are true:

e−uργ − β2(sρα − μ1(p1z∗
1 + p2e

−uργ

)) =
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

β21ρ
2γ

ap1β11 − 1
×

[

− s +
a2p22v

(ap1β11 − 1)2
u2

]

+ o(ρ2γ), α < 2,

ρ2

ap1β11 − 1
×

[

u − β21s +
a2p22β21v

(ap1β11 − 1)2
u2

]

+ o(ρ2), α = 2,

ρ2

ap1β11 − 1
×

[

u +
a2p22β21v

(ap1β11 − 1)2
u2

]

+ o(ρ2), α > 2.

Proof. These expressions might be obtained directly from Lemma 6 and the
following expansion

e−uργ − β2(sρα − μ1(p1z∗
1 + p2e

−uργ

)) =

= 1−uργ+
u2ρ2γ

2
−1+β21

[

sρα− ap2uργ

ap1β11 − 1
−ψρ2γ

]

−β22

2

[
ap2uργ

ap1β11 − 1

]2

+o(ρ2γ).



The Limit Distribution of the Queue 27

4.2 Main Theorem

Theorem 1. While m → ∞ the next limit exists

lim
m→∞P
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1 − a∗p∗
1β

∗
11

a∗p∗
2v

∗ .

Proof. Instead of finding lim
m→∞P

(
ργ · L2

(
t

ρα

)
< x

)
, we will find lim

ρ→0
ρα ·

p(1, e−uργ

, sρα) and then inverse the Laplace transform to obtain the original
limit distribution.
Using the expression from Lemma 3, the investigated limit might be rewritten
in the next form:

lim
ρ→0

{
ρα · p0(sρ

α) + ρα · p2(e
−uργ − 1) · 1

μ1(p1 + p2e−uργ
)(sρα − μ1(p1 + p2e−uργ

))
×

×
[
γ
(1)
2 (1, e−uργ

, sρα)
1 − e−uργ
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))+

+
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)

×
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, sρα)
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) + aj(1 − p(p1 + p2e−uργ

))

]}
.

Considering the fact, that lim
ρ→0

ραp0(sρα) → 0 from lemma 5, μ1(p1+p2e
−uργ

) =

ap2uργ + o(ργ). From Lemma 1 it is possible to find

α1(1) =
N∏

m=2

(−μm(1)) =
1

a(1 − p)

N∏

m=1

(am(1 − p)),

then

lim
ρ→0

N∏
m=1

[μ1(p1 + p2e−uργ
) + am(1 − p(p1 + p2e−uργ

))]

α1(p1 + p2e−uργ
)

=

N∏
m=1

(am(1 − p))

α1(1)
= a(1 − p).
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So that, the task is equal to finding the next limit:

lim
ρ→0

{
ρα
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.

Similary to the proof of the Lemma 7, we have

lim
ρ→0

ρα−γ

a2p2u

N∑

j=1

fj(1, e
−uργ

, sρα)
cjaj

μ1(p1 + p2e−uργ
) + aj(1 − p(p1 + p2e−uργ

))
= 0 ∀α > 0.

Therefore,
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Using Lemmas 7 and 8, we have

lim
ρ→0
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After inversing the Laplace transform, the theorem statement is obtained.

Corollary 2. Probability density function of the limit distribution is:
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Corollary 3. Mathematical expectation of the limit distribution is equal to
√

t

v∗π
· 2
w

, if α < 2,

and
1
w

, if α > 2.

Corollary 4. Variance of the limit distribution is equal to

(2π − 4)t
πv∗w2

, if α < 2

and
1

w2
, if α > 2.

Remark 1. Mathematical expectation and variance in case α = 2 should be
calculated using numerical methods.

5 Numerical Examples

For visualisation results of this paper let us consider the system with parameters:
n = 2, a1 = 1, a2 = 2, c1 = 0.35, c2 = 0.65, β11 = 0.5749, β21 = 0.775, β12 =
1, β22 = 1, p = 0.5, p1 = 0.5, p2 = 0.5. The plots below show the density functions
for all different cases for α and for different parameter t.

Also let us show, how mathematical expectation is changing, while param-
eters p2 or p are being changed, the main parameters of the system are
n = 2, a1 = 1, a2, c1 = 0.2, c2 = 0.8, the other parameters has been chosen
such way that ρ is close to 0 (Figs. 1, 2, 3 and Tables 1, 2).
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Fig. 1. t = 0.1

Fig. 2. t = 0.5
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Fig. 3. t = 2.5

Table 1. Mathematical expectation while the probability of going to the lowest class
is being changed

p2 t = 0.1 t = 1 t = 10

α < 2 α = 2 α > 2 α < 2 α = 2 α > 2 α < 2 α = 2 α > 2

0.05 0.595 0.522 1.802 1.882 1.242 1.802 5.952 1.785 1.802

0.25 0.605 0.53 1.83 1.912 1.261 1.83 6.046 1.813 1.83

0.5 0.617 0.541 1.867 1.95 1.286 1.867 6.167 1.849 1.867

0.75 0.629 0.552 1.905 1.99 1.313 1.905 6.292 1.887 1.905

0.95 0.64 0.561 1.936 2.023 1.334 1.936 6.397 1.918 1.936

Table 2. Mathematical expectation while the probability of repeating intensity is being
changed:

p t = 0.1 t = 1 t = 10

α < 2 α = 2 α > 2 α < 2 α = 2 α > 2 α < 2 α = 2 α > 2

0.05 0.561 0.483 1.493 1.106 1.493 1.493 1.488 1.493 1.493

0.25 0.566 0.489 1.524 1.122 1.524 1.524 1.518 1.524 1.524

0.5 0.58 0.502 1.598 1.161 1.598 1.598 1.59 1.598 1.598

0.75 0.619 0.541 1.818 1.275 1.818 1.818 1.804 1.818 1.818

0.95 0.868 0.789 3.581 2.023 3.581 3.581 3.425 3.581 3.581
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6 Conclusion

The main result of this paper is an explicit form of the limit distribution of the
queue length for the least priority class, which has been obtained. For each cases
(α < 2, α = 2 and α > 2) expressions for the density function are obtained. For
cases (α < 2 and α > 2) mathematical expectation and variance are given in
explicit form, in case α = 2 these characteristics might be calculated numerically.
Numerical examples show us necessity to consider parameter t, since relation
among considered cases is changing while t is being changed. Provided theoretical
results of this article can be used to analyse real queueing systems in which there
is a correlation of the intervals between customer arrivals.
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1 Introduction

The fifth generation (5G) networks offer high-speed data transmission and
a wide range of services for multiple users, ensuring high quality of service
(QoS) [9,10,13]. These networks support three main scenarios: enhanced mobile
broadband (eMBB), massive machine-type communications (mMTC), and ultra-
reliable low-latency communications (URLLC) [7]. Looking toward the future,
the sixth generation (6G) network is expected to provide global coverage and
improved efficiency. To achieve these goals, new technologies and systems will
need to be implemented at the radio interface and in the core network, such as
multiple access, cloud/fog computing, and network slicing [5].

Network slicing is the concept of creating logical, independent network
resources on a single infrastructure platform [1,6]. This enables the customiza-
tion of network slices to meet specific requirements. Three main business roles
are involved in network slicing: the network slice provider, the network slice ser-
vice provider, and the network slice service user. Resource capacity planning can
be accomplished in two ways: static resource partitioning and dynamic resource
reallocation. Static resource partitioning involves allocating resources to network
slices that remain unchanged over time. Conversely, dynamic resource reallo-
cation involves modifying resource allocation between slices based on periodic
evaluations by the controller. These evaluations consider various mechanisms
and criteria, such as slice priorities, weights, resource utilization, fairness, avail-
ability, and isolation.

Several recent studies have demonstrated the use of Markov decision pro-
cesses (MDP) in optimizing resource capacity planning for network slicing tasks.
The study in [14] utilizes federated deep reinforcement learning (DRL) with
MDP to ensure QoS and manage network load for mobile virtual network oper-
ators (MVNOs). In [16], a combination of double deep Q-networks (DDQN),
the Dijkstra algorithm, and binary search-assisted gradient descent with MDP
is used to minimize the number of accepted service requests with higher priority
and overall cost. The paper [8] uses a reinforcement learning (RL) and MDP
framework for monitoring and adjusting resource utilization based on network
slice and multi-access edge computing (MEC) node statuses. In [4], the authors
introduce an exponential weight algorithm and multi-agent DQN with MDP to
optimize resource block allocation for URLLC and eMBB slices. Collectively,
these studies highlight the versatility of MDP in addressing diverse challenges
in resource allocation and optimization within network slicing environments.

The application of artificial neural networks (ANNs) is currently gaining
significant traction in various domains, including queuing theory. For instance,
Efrosinin et al. [3] study the optimal scheduling problem with parallel queues
and a single server by combining modeling methods with neural networks. The
paper [2] considers heterogeneous queues where servers differ in terms of service
rate and operating cost. Optimal threshold values are calculated using MDP
by implementing an iterative algorithm to find the policy. The estimates of the
optimal threshold values are obtained using an ANN and compared with the
heuristic solution.
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This paper focuses on the modeling and analysis of resource capacity plan-
ning and reallocation for network slicing between two providers handling elastic
traffic, such as that encountered during web browsing sessions. We present a
mathematical model in the form of a controllable queuing system based on three
principles: maximum matching for equal resource partitioning, maximum share
of signals resulting in resource reallocation, and maximum resource utilization.
An algorithm inspired by R. Howard’s iteration is primarily used for identifying
the optimal resource capacity planning policy.

The main contributions of our study are as follows:

– We employ an ANN, specifically a multilayer perceptron (MLP) with three
layers, to find the optimal policy for resource reallocation between two net-
work slices in a 5G network. This is a classification problem (supervised learn-
ing) – the state of the system is used as the input layer, and the possible size
of the slice for the first provider is the output layer.

– For the considered scenario of web browsing and group data transfer, we
numerically demonstrate the impact of the number of neurons in the hid-
den layer and the number of training epochs on classification accuracy. We
compare the results with those obtained using R. Howard’s iteration method.
We employ two optimizers – Adam (adaptive moment estimation) and L-
BFGS (limited-memory Broyden-Fletcher-Goldfarb-Shanno). We utilize two
libraries of the Python programming language: scikit-learn and PyTorch.

The rest of the paper is organized as follows. Section 2 presents general
assumptions and main parameters of the system model. Section 3 describes the
continuous-time MDP and the controllable queuing model employed to address
optimal resource reallocation. In Sect. 4, we investigate the deployment of an
ANN to fine-tune the resource allocation policy. Section 5 presents numerical
results, assessing how the number of neurons in the ANN and the training epochs
influence the model’s accuracy. Conclusions are drawn in the final section.

2 System Model

In this section, we describe the system model for resource reallocation in net-
work slicing, emphasizing the pivotal role of the controller and the principles
considered during this reallocation.

2.1 General Assumptions

This paper examines a network slice provider, also known as a network opera-
tor, with a fixed total capacity of C bps. This capacity is shared between two
network slice service providers, denoted as K = 2, each serving its own set of
network slice service users or communication service customers. The allocation
of resources between these service providers is managed by the controller of the
network slice provider, which sends signals to indicate the need for realloca-
tion. The inter-arrival time of these signals follows an exponential distribution
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Table 1. Main notation.

Parameter Description

C Total bitrate (capacity) for all network slices resources, bps

K = 2 Number of service providers, i.e., network slices

δ Arrival rate of signals from the controller for resource reallocation between

service providers, 1/s

w1 Weight for the maximum matching equal resource partition

w2 Weight for the maximum share of the signals resulting in resource
reallocation

w3 Weight for the maximum resource utilization

b Minimal bitrate guarantee for transmitting elastic traffic, bps

N = �C
b

� Maximum number of all providers users jointly transmitting elastic traffic

Rk Maximum number of the k-provider users (k-users) waiting for delayed
elastic traffic transmission (size of k-buffer)

λk Arrival rate of requests for elastic traffic transmission from k-users, 1/s

μ−1
k Average volume of elastic traffic transmitted by k-users, bit

εk Abandonment rate due to impatience of k-users from k-buffer, 1/s

m Maximum number of 1-users jointly transmitting elastic traffic (size of
1-slice)

n1 Number of 1-users transmitting elastic traffic and waiting in 1-buffer

n2 Number of 2-users transmitting elastic traffic and waiting in 2-buffer

s = (m, n1, n2) State of the system

with parameter δ. The decision-making process is based on three principles [11]:
maximum matching for equal resource partitioning, maximum share of signals
resulting in resource reallocation, and maximum resource utilization. Each prin-
ciple is assigned a weight, represented by w1, w2, and w3 respectively.

The network slice service provider offers a service to its users that guarantees
a minimum bitrate of b for transmitting elastic traffic [15]. This implies that the
total number of users from all providers who can simultaneously transmit elastic
traffic is limited to N = �C

b �. While a certain level of delay in transmission is
deemed acceptable, the number of users from each provider waiting for delayed
elastic traffic is constrained by Rk, the size of the provider’s buffer. User requests
for elastic traffic transmission follow a Poisson process with a rate of λk. The
volume of elastic traffic transmitted by each user follows an exponential distri-
bution with an average of μ−1

k . Additionally, each user exhibits impatience and
will abandon their provider’s buffer after an exponentially distributed amount
of time with a parameter of εk.

The main notations are listed in Table 1, and Fig. 1 illustrates the scheme of
the model with these notations as well.

2.2 Resource Capacity Planning

The controller plays a pivotal role in the successful implementation of resource
capacity planning through the periodic transmission of signals to assess the need
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Fig. 1. Scheme of the model.

for resource reallocation. The primary responsibility of the controller is to deter-
mine the most efficient approach for scheduling resources, guided by three key
principles: maximum matching of equal resource partitions, maximum utiliza-
tion of signals that result in resource reallocation, and maximum utilization of
resources.

Resource reallocation is triggered when the controller transmits a signal,
and there are available resources in one slice while another provider has pend-
ing requests [12]. This type of signal is denoted as “resulting” and will lead to
resource reallocation. However, if all buffers are empty or all slices are currently
in use at the time of signal reception, no reallocation will occur.

Resource reallocation will take place in two specific scenarios: (i) when the
resources in 1-slice are fully utilized, but there are still users waiting for service,
and there are available resources in 2-slice; or (ii) when the resources in 2-slice
are fully utilized and there are users waiting for service, but there are available
resources in 1-slice. In these cases, idle resources from one slice will be reassigned
to the other slice. However, resource reallocation will not occur if any of the
following conditions are present: (i) the system is empty, not all resources are
occupied, (ii) all resources are occupied but no users are waiting for service, (iii)
all resources are occupied and users waiting for service are from only one slice,
or (iv) all resources are occupied and there are users waiting for service from
both slices.
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2.3 Three Principles for Resource Reallocation

The controller operates based on three principles, each assigned a weight wi,
where i = 1, 2, 3:

– The first principle accounts for the deviation from the equal resource parti-
tion, specifically the number of requests waiting due to an unequal resource
partition. This consideration is crucial as the optimal policy should align with
the initial partition outlined in the service level agreement (SLA) between the
network slice provider and the network slice service providers.

– The second principle assesses the frequency of instances where resource real-
location does not occur upon the arrival of a signal. It is imperative that
signals from the controller lead to actual resource reallocation. A frequent
occurrence of “non-resulting” signals is considered undesirable as it gener-
ates unnecessary signaling messages. This aspect is also significant in radio
resource management strategies, as it can affect resource efficiency and uti-
lization.

– The third principle evaluates the amount of available resources while users
are waiting. Here, maximizing resource utilization is paramount. Having idle
resources is considered undesirable; for example, when a user is waiting for a
slice that is currently occupied, while another slice has available resources to
serve the user’s request.

3 Markov Decision Process and Controllable Queuing
Model

In this section, we employ a continuous-time MDP to model resource reallocation
within a dynamic network slicing framework.

3.1 Continuous-Time MDP

We define the system behavior using a continuous-time MDP. The states are
denoted by s = (m,n1, n2), where m signifies the maximum number of 1-users
jointly transmitting elastic traffic (size of 1-slice), and nk represents the num-
ber of k-users transmitting elastic traffic and waiting in k-buffer. To tackle the
challenge of optimal resource reallocation, selecting the most appropriate action
for determining the volume of resources to be reallocated based on the sys-
tem’s present state is essential. The MDP model is characterized by a 4-tuple
(S,As,Qa, R(s)):

1. The set S of states s = (m,n1, n2) ∈ S

S =
{
s = (m,n1, n2) : m = 0, . . . , N,

n1 = 0, . . . ,m + R1, n2 = 0, . . . , N − m + R2

}
.
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2. The set As of actions a available from state s

As =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

{m, . . . , n1}, n1 > m, n2 < N − m, n1 + n2 ≤ N,

{m, . . . , N − n2}, n1 > m, n2 < N − m, n1 + n2 > N,

{N − n2, . . . ,m}, n1 < m, n2 > N − m, n1 + n2 ≤ N,

{n1, . . . ,m}, n1 < m, n2 > N − m, n1 + n2 > N,

∅, otherwise.

3. Matrix Qa of transition rates under action a

q(s′|s, a) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ1, s′ = (m,n1 + 1, n2), n1 + 1 ≤ R1,

λ2, s′ = (m,n1, n2 + 1), n2 + 1 ≤ R2,
m
N Cμ1, s′ = (m,n1 − 1, n2), m > 0, n1 > 0,
N−m
N Cμ2, s′ = (m,n1, n2 − 1), N − m > 0, n2 > 0,

(n1 − m)ε1, s′ = (m,n1 − 1, n2), n1 ≥ m,

(n2 − N + m)ε2, s′ = (m,n1, n2 − 1), n2 ≥ N − m,

δ, s′ = (a, n1, n2), a ∈ As,

n1 > m, n2 < N − m ∨
n1 < m, n2 > N − m.

4. The reward R(s) received while in state s. It will be described in the next
subsection.

3.2 Reward Function

In addition, the slice provider can determine which of the described principles
is most important and can customize the ratios between them. Each principle
has its own weight; therefore, the coefficients wi for i = 1, 2, 3 are introduced
to define the significance of the i-th principle. The reward function is taken
with a negative sign as it implies a “penalty” for incorrect resource reallocation.
Consequently, the reward function takes the following form

R(s) = −
(
w1 · α(s) + w2 · β(s) + w3 · γ(s)

)
,

where α represents the reward for the maximum matching equal resource par-
tition, β denotes the reward for the maximum share of the signals resulting in
resource reallocation, and γ signifies the reward for maximum resource utiliza-
tion:

α(s) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

N
2 − m, m < N

2 , n1 > m, n1 > N
2 ,

n1 − m, m < N
2 , n1 > m, n1 ≤ N

2 ,
N
2 − (N − m), m > N

2 , n2 > N − m, n2 > N
2 ,

n2 − (N − m), m > N
2 , n2 > N − m, n2 ≤ N

2 ,

0, otherwise;
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β(s) = δ
(
δ + λ1 · 1(n1 + 1 ≤ R1 + m) + λ2 · 1(n2 + 1 ≤ R2 + N − m)

+
m

N
Cμ1 · 1(m > 0, n1 > 0) +

N − m

N
Cμ2 · 1(N − m > 0, n2 > 0)

+ (n1 − m)ε1 · 1(n1 > m) + (n2 − N + m)ε2 · 1(n2 > N − m)
)−1

× 1(s ∈ {n1 > m, n2 < N − m ∨ n1 < m, n2 > N − m});

γ(s) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

n1 − m, n1 > m, n2 < N − m, n1 + n2 ≤ N,

N − n2 − m, n1 > m, n2 < N − m, n1 + n2 > N,

m − N + n2, n1 < m, n2 > N − m, n1 + n2 ≤ N,

m − n1, n1 < m, n2 > N − m, n1 + n2 > N,

0, otherwise.

3.3 Optimal Policy

The optimal policy aims to maximize the average reward. Let us define the
average reward as

ga =
∑
s∈S

R(s)π(s),

where π(s) is the stationary probability distribution.
The iterative algorithm by R. Howard can be utilized to calculate the opti-

mal policy. This algorithm offers a significant advantage over the straightforward
brute force approach, particularly regarding computational complexity and the
reduced number of iterations required to ascertain the optimal policy. The com-
putational complexity of the brute force method is contingent on the dimensions
of the set of permissible policies for each state within the system. Moreover,
the convergence rate of the iterative algorithm is dependent on the judicious
selection of the initial solution.

The system of equations for the average reward ga and estimates va(s), s ∈ S
for the iterative solution method is given as:

va(s) =

R(s) +
∑

s′∈S\s
q(s′|s, a)va(s′) − ga

∑
s′∈S\s

q(s′|s, a)
, s ∈ S.

The objective function for improving the control policy is calculated using the
formula:

a(s) = arg max
a∈As

va(a, n1, n2), s ∈ S.

For the initial step, let us adopt the maximum resource utilization principle.
Upon the arrival of a signal at rate δ, the system transitions to state (m′, n1, n2),
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where

m′ =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

n1, n1 > m, n2 < N − m, n1 + n2 ≤ N,

N − n2, n1 > m, n2 < N − m, n1 + n2 > N,

m − n2 − N + m, n1 < m, n2 > N − m, n1 + n2 ≤ N,

n1, n1 < m, n2 > N − m, n1 + n2 > N.

4 Artificial Neural Network for Optimal Policy
Computing

In this section, we discuss an artificial neural network designed to compute the
optimal policy for capacity planning within our model.

4.1 ANN Architecture

To determine the optimal policy, we employed an artificial neural network app-
roach. The architecture of the neural network constructed is depicted in Fig. 2.
It comprises an input layer, one hidden layer, and an output layer. The input
layer contains three neurons, each corresponding to a component of the system’s
state s = (m,n1, n2). The hidden layer is composed of n neurons, which are
connected to the input layer neurons as follows:

y = W1s + b1,

where

W1 =

⎡
⎢⎢⎢⎣

w1
00 w1

01 w1
02

w1
10 w1

11 w1
12

...
...

...
w1

n−1,0 w1
n−1,1 w1

n−1,2

⎤
⎥⎥⎥⎦ , b1 =

⎡
⎢⎢⎢⎣

b10
b11
...

b1n−1

⎤
⎥⎥⎥⎦ ,

where W1 are weights and b1 are biases.
Subsequently, the Rectified Linear Unit (ReLU) activation function is applied

to the neurons of the hidden layer. This function introduces nonlinearity to the
processed values, enabling the neural network to make more accurate predictions.
The use of ReLU also helps prevent the exponential growth in computation
required for operating the neural network. Since ReLU is characterized by non-
saturating properties, the data must be normalized between 0 and 1 prior to
application.

y′
i = ReLu(yi) = max(0, yi), i = 0, . . . , n − 1.

The output layer consists of k neurons, corresponding to the number of pos-
sible values for m′. The transition from the hidden layer to the output layer is
facilitated by a system of linear equations:

z = W2y′ + b2,
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Fig. 2. Used multilayer perceptron architecture.

where

W2 =

⎡
⎢⎢⎢⎣

w2
00 w2

01 · · · w2
0,n−1

w2
10 w2

11 · · · w2
1,n−1

...
...

. . .
...

w2
k−1,0 w2

k−1,1 · · · w2
k−1,n−1

⎤
⎥⎥⎥⎦ , b2 =

⎡
⎢⎢⎢⎣

b20
b21
...

b2k−1

⎤
⎥⎥⎥⎦ ,

where W2 are weights and b2) are biases.
Next, we apply the Softmax activation function:

z′
i = softmax(zi) =

exp(zi)∑k−1
j=0 exp(zj)

, i = 0, . . . , k − 1.

The neural network’s output, m′, is determined by identifying the index of the
neuron in the output layer with the highest value.

m′ = arg max(z′
i).

4.2 Loss Function and Evaluation Metric

We utilized two distinct optimizers to modify the weights of the network: the
Adam algorithm and the L-BFGS algorithm. The former, a stochastic gradient-
based optimizer, computes the average of the first and second moments of
the gradients. It is widely used in neural network training and is considered
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highly effective. The latter approximates the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) algorithm, which is among the quasi-Newton methods. As will be
demonstrated subsequently, for our dataset, the L-BFGS algorithm proved most
suitable, converging more rapidly and performing optimally on smaller datasets
(up to 1000).

We use cross-entropy loss function. Cross-entropy loss, typically used in
multi-class classification with multiple labels, aims to quantify the agreement
between predicted probabilities and true class labels. This loss function is uti-
lized to adjust model weights during training. Our goal is to minimize losses
– a lower loss indicates a more accurate model, which is why we employ this
function. For an ideal model, the cross-entropy loss would be zero.

L(z, j) = − log
( exp(zj)∑k−1

i=0 exp(zi)

)
, j = 0, . . . , k − 1.

The primary metric under investigation was the accuracy of the results, cal-
culated using the formula:

Accuracy(m′, m̂′) =
1

nsamples

nsamples−1∑
i=0

1(m̂′
i = m′

i).

5 Numerical Results

In this section, we present the outcomes of our numerical analyses, which provide
insights into various aspects of our study.

5.1 Considered Scenario

We focus on evaluating two specific services, namely web-browsing and bulk
data transfer. The numerical parameters for each service are detailed in Table 2.
We use the recommended delay time trk and allowable delay time tak for data
transfer to estimate the minimum bitrate guarantee b and the abandonment rate
due to user impatience from buffering εk. The total bitrate for all network slice
resources is calculated based on the selected bandwidth, modulation and coding
scheme (MCS), and multiple input multiple output (MIMO) scheme.

The neural network was implemented using two Python programming lan-
guage libraries: scikit-learn and PyTorch. In scikit-learn, we employed the MLP-
Classifier (multi-layer perceptron), which internally applies the logistic loss func-
tion, also known as cross-entropy. This loss function incorporates the softmax
mechanism as the neural network’s output function, ensuring accurate probabil-
ity calculations for each class.

5.2 Impact of Number of Neurons

In our research, we analyzed the impact of varying the number of neurons in our
neural network on its accuracy when addressing problems using the Adam and
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Table 2. Parameters for numerical example.

Parameter Description Value

B Bandwidth 5 MHz

− MCS QPSK

− MIMO scheme 2× 2

C Total bitrate for two network slices 10 Mbps

δ Arrival rate of signals from the controller 0.000001 1/s

(w1, w2, w3) Weights for the reallocation principles (1, 1, 1)

tr1, tr2 Recommended delay time 15, 2 s

ta1, ta2 Allowable delay time 60, 4 s

b Minimal bitrate guarantee 1.067 Mbps

R1, R2 Size of 1-buffer and 2-buffer 5, 5

λ1, λ2 Arrival rate of requests from 1-users and 2-users 0.03, 0.6 1/s

μ1, μ2 Average volume of traffic transmitted by 1-users
and 2-users

0.125, 0.937 Mb

ε1, ε2 Abandonment rate due to impatience of 1-users
from 1-buffer and 2-users from 2-buffer

0.01, 0.25 1/s

Fig. 3. Accuracy vs number of neurons for Adam and L-BFGS optimizers: (a) scikit-
learn Python library, (b) PyTorch Python library.

L-BFGS learning algorithms within the scikit-learn library. Figure 3(a) demon-
strates that an increase in the number of neurons generally enhances the accuracy
of the training sample. However, beyond a certain threshold, this enhancement
may result in overtraining and a subsequent decrease in test sample accuracy.
Notably, in some instances, the L-BFGS algorithm yielded higher test sample
accuracy compared to Adam. Our findings suggest that the optimal number of
hidden neurons for our task is within a moderate range, which balances high
test data accuracy and minimizes the risk of overtraining.

In parallel analyses conducted with PyTorch, Fig. 3(b) shows that with the
Adam optimizer, learning accuracy improves as the number of neurons increases,
achieving 100% with 51 neurons, while test sample accuracy plateaus at approx-
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Fig. 4. Accuracy vs number of epochs for Adam and L-BFGS optimizers with 16 hidden
neurons in the PyTorch Python library.

Fig. 5. Accuracy vs number of epochs for different numbers of hidden neurons in the
PyTorch Python library: (a) Adam optimizer; (b) L-BFGS optimizer.

imately 97%. Conversely, with the L-BFGS optimizer, learning accuracy also
improves with an increasing neuron count, reaching around 100% with 36 neu-
rons. Importantly, test dataset accuracy continued to show enhancement, main-
taining a high level of around 90% with 51 neurons.

5.3 Impact of Number of Epochs

Figure 4 depicts that the training sample exhibited a significant rise in accuracy
from 48.81% to 81.75% over 1000 epochs using Adam. Analysis of the test sample
reveals a steady increase in accuracy from 49.21% to 71.43%. When applying
L-BFGS to the training sample, we observed an initial high accuracy level of
69.84%, which stabilized at 96%. The test sample also showed remarkable results,
starting at 58.73% and rapidly achieving 82.54%, underscoring the speed and
stability advantages of the L-BFGS method.

Figure 5 presents similar results but with varying numbers of neurons in
the hidden layer. Our analysis highlights that L-BFGS outperforms in terms of
providing consistently high accuracy across fewer epochs for both training and
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test samples; meanwhile, Adam attains respectable accuracy levels albeit with
some variability.

6 Conclusions

Today’s 5G networks offer unprecedented opportunities for data transmission,
enabling innovative services and applications. Efficient resource allocation is crit-
ical to ensuring high-performance and reliable data transmission. This paper
addresses the resource scheduling challenge within network slicing, exploring
the application of Markov decision processes and artificial neural networks to
optimize 5G network resources.

In this paper, we investigate the technology of network slicing using a control-
lable queuing system with elastic traffic, motivated by the desire to utilize net-
work resources more efficiently. A system model is developed for a network slice
provider and two network slice service providers. We establish the guiding prin-
ciples for resource reallocation, which encompass the maximum matching equal
resource partition, the highest share of signals leading to resource reallocation,
and the utmost resource utilization. Additionally, we propose an approach that
combines Markov decision processes and artificial neural networks to automate
and optimize resource management in network slicing. We aim to develop adap-
tive strategies for optimal resource allocation based on the network’s current
state and user requirements.

In future research, the application of neural networks will be extended to
larger datasets, and their capabilities will be leveraged to estimate performance
metrics. Additionally, the exploration of alternative reward functions will be
conducted to further enhance our understanding of the system dynamics.

Acknowledgements. This publication has been supported by the RUDN University
Scientific Projects Grant System, project No. 025319-2-000.
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Abstract. The paper concerns a methodology of mathematical model-
ing of passenger transport hub operation, which are significant elements
of the transport infrastructure of a megalopolis. We use non-stationary
and non-ordinary flows to describe the arrival of passengers on various
modes of transport. We model the movement of passengers through the
system using an open queueing network. The nodes’ service parameters
are time-dependent. Thus, the model considers the characteristics of pas-
senger traffic from different transport modes, the hierarchical structure
of the system, several traffic routes within it, and the fluctuation of trans-
port schedules the day. To apply the methodology, we select two objects
located in the capitals of Russia and Vietnam. We construct mathemat-
ical models, perform scenario simulations, and then estimate the current
and maximum capacity and provide recommendations for improving per-
formance based on the numerical results.

Keywords: mathematical model · queuing theory · BMAP ·
simulation · passenger transport hubs · passenger traffic

1 Introduction

Passenger transport hubs (further hubs) are important components of a mega-
lopolis transport infrastructure. The efficiency of their operation determines the
comfort and speed of transfers and, consequently, the overall quality of public
transport services [1,2]. The average transfer time is a commonly used quan-
titative indicator of the hub’s efficiency: less is better. Agent-based methods
are predominant among a variety of modelling techniques for its evaluation.
Dashamirov F. and Javadli U. [3] present the model of passenger movement in
a hub. Yu J. (et al.) [4] describe the model of boarding and disembarking from
a metro train. Lee E. (et al.) [5] evaluate the efficiency of transfers between bus
routes within the hub’s system. Article [6] investigates the capacity of public
transport networks following failures. Agent-based modeling provides high-level
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
A. Dudin et al. (Eds.): ITMM 2023/WRQ 2023, CCIS 2163, pp. 48–62, 2024.
https://doi.org/10.1007/978-3-031-65385-8_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-65385-8_4&domain=pdf
http://orcid.org/0000-0002-3047-1650
http://orcid.org/0009-0004-8738-383X
http://orcid.org/0000-0003-4981-338X
https://doi.org/10.1007/978-3-031-65385-8_4


A Stochastic Model of a Passenger Transport Hub Operation Based on QN 49

accuracy, details, and scalability for the resulting models. However, the process
of studying the appropriate software and constructing models of a particular
object is time-consuming. At the same time, the existing models are not always
applicable to systems having different structures, and it is necessary to design
new models.

One of the well-known alternative approaches to modeling the operation of
hubs and their parts is the Queueing Networks (QNs) [7]. This mathematical
apparatus can significantly reduce the complexity of model development and is
efficient and versatile enough to describe different objects. Queueing Network
(QN) models are used in [8,9] to evaluate the capacity of urban railway stations,
in [10] to analyze passenger movements in the hub, and in [11] to investigate
the passenger service process in the airport terminal before departure. Liu J. (et
al.) [12] develop a model of the rail transport system (metro network and urban
rail) based on QNs and identify the distribution of passenger delays in the hubs
system.

We have successfully used queueing theory in our studies of the operation of
transport systems. We present a railway terminal model in [13,14], and models
for hubs based on metro stations in [15,16]. In contrast to the methods proposed
in papers [8–11], we use QNs with BMAP flows [17]. It allows us to describe
in a single model the arrival of passengers from different directions and to set
parameters that depend on the mode of transport, particularly the distribution
of passenger group sizes.

In this study, we improve the proposed methodology for modeling the oper-
ation of the hubs. We use QNs with non-stationary and non-ordinary flows
that take into account the fluctuations of passenger arrival rates, and the ser-
vice parameters of transport are time-dependent. Section 2 presents the subject
description of the hub concept. Section 3 presents the methodology for the mod-
eling of its operation. In Sect. 4, we construct operation models of two objects in
Russia and Vietnam. Finally, in Sect. 5, we carry out the numerical experiment
and discuss its results.

2 Subject Description

A passenger transport hub is a terminal that allows the distribution of passen-
ger traffic between different modes and directions to reduce transfer times and
increase the comfort and convenience of public transport [1,2].

Passenger traffic. The mode of transport determines the entry point of pas-
sengers into the system, the size of incoming passenger groups, and the time
distribution between their arrivals. Metro trains run according to a schedule
and can accommodate large groups. Buses run according to the traffic situation,
and their timetable is not guaranteed. Private transport (cars) and taxis do not
follow a schedule. Passengers may also walk from the surrounding area.

The structure of the system. A hub consists of public transport stations,
a park-and-ride facility (parking), and a terminal for moving between the dif-
ferent stations and parking in a comfortable environment. The subsystems are
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autonomous and have distinct technical characteristics, including capacity, the
number of limiting elements (such as turnstiles, doors, ticket offices, and lifts),
the size of the passenger groups served, and the duration of the service.

The number of passenger routes depends on the number of stations in the
PTH. We assume that the purpose of passengers is to transfer between different
modes of transport via the terminal. Therefore, movements limited to one station
of the “bus-bus” type are not taken into account.

3 Methodology

The mathematical model of the hub operation is designed in three stages. In the
first stage, we describe the arrival of passengers at the stations. Second stage
models the operation of the subsystems. Finally, we consider the passenger routes
within the system.

Description of incoming passenger traffic. We consider transport as an exter-
nal source of passenger flows and their destinations. We simulate the arrival of
passengers from trains by a non-ordinary deterministic flow, where the time
between arrival groups obeys the schedule. In other cases, we use a non-ordinary
Poisson point process. The time between arrivals obeys the exponential distribu-
tion exp(λi(t)/ni(t)), where λi(t) is the intensity and ni(t) is the average group
size.

If all incoming passenger flows travel in the same direction, they can be
combined using a modified version of the BMAP, which is construct as follows.
1) Using statistical data, we determine the number of passenger flows W , the sum
intensity of passenger group arrivals λ(t) at time t, the distribution of arriving
group sizes fv(x), which parameters are calculated by the method of moments,
and the probability of arrival of a group p(v) from the flow v. We assume that
groups from different flows arrive independently, so p(v) could be found as the
ratio of the volume of passengers in the flow v to the total volume of all passenger
flows. 2) The data obtained are applied for constructing a BMAP, which consists
of a set of matrices Dk(t), k = 0, V , where V is the maximum size of the incoming
passenger groups.

(D0)v,v(t) = −λ(t), (D0)v,v′(t) = λ(t)p(v′)fv(0),
(Dk)v,v′(t) = λ(t)p(v′)fv(k), v, v′ = 1,W , k = 1, V ,

(1)

Remark: If in (1), we replace λ(t) with λ, p(v′) with p(v, v′) – the probability of
a group of passengers arriving from the flow v’ given the previous group arriving
from the flow v, and p(v, v′)fv(k) = pk(v, v′), then the formulas (1) coincide
with those in [17] (see p. 65).

Description of the stations and the terminal operation. An open QN is used
to simulate the operations of the hub subsystems. The QN consists of a finite
number of S queueing systems (QS) or nodes. Requests enter the QN from an
external source, which refers to a dummy node with index 0. The routes of the
requests are determined by a stochastic matrix P = ||Pij ||, where Pij is the
probability of a transfer request from node i to node j(i, j = 0, S) [7].
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In general, stations and terminals are described by several nodes, which are
determined by the number of different passenger routes and limiting elements.
Each node contains channels that simulate the operation of separate limiting
elements. The maximum queue length is calculated based on the available space
in front of this element, with a capacity of 2 people per square meter.

Description of passenger routes. Arriving requests are accepted according
to the discipline of complete admission [17]. The route matrix P describes the
itineraries, with transfer probabilities between nodes defined as relative frequen-
cies. This ratio reflects the passenger flow entering the selected element (node)
in relation to the total passenger traffic in that direction. The movement time
between nodes is constant and calculated as the average time that it takes for
passengers to move between the corresponding limiting elements. Its value is
added to the average time the request (passenger) stays in the system. There
is also feedback between the QN nodes, which consists of temporarily blocking
the channels of the previous QS until enough space appears in the next QS for
request receiving.

The purpose of the modeling is to determine the performance indicators,
including the loss probability, the average sojourn time of a request in each node
and in the system, the time of channel blocking, and some others. On the basis
of these indicators, we draw conclusions about the efficiency of the operation.

4 Mathematical Models

Let us apply the methodology to describe the operation of two hubs. The first is
located in Russia, and the other is in Vietnam. These hubs are selected for the
following reasons. Firstly, they are typical and have similar structures. Secondly,
statistics on passenger traffic and operations are available in open sources, and
it is possible to carry out a comprehensive survey.

Sokolinaya Gora (SG) PTH, Moscow, Russia. The first level includes
Moscow Central Circle station (MCC), the bus stop, and the parking. The tran-
sition between them is possible only through the second level, where the terminal
and the above-ground passage are located (see Fig. 1).

The average daily passenger flow is 5.8 thousand people from the metro sta-
tion and 6.1 thousand people in the opposite direction [19]. The hub’s operating
hours run from 5.30 a.m. to 01.00 a.m., with rush hours from 7.30 a.m. to 11.30
a.m. and 4 p.m. to 9 p.m. Table 1 shows the distribution of passengers in the
system during the day, where t is the middle of the time intervals (one hour),
and d(t) is part of the total passenger flow.

Description of incoming passenger traffic. Table 2 shows the parameters of
passenger flows obtained from field observations and open data. Further, B(a; b)
represents the binomial distribution, a is the number of trials, and b is success
probability.

Here is a brief overview of the key parameters in Table 2. The average size of
the passenger groups arriving per hour is determined from the data in Table 1
using the formula V1(t) = 2900d(t)/n(t), where n(t) = 15 is the number of trains
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Fig. 1. Map and terminal scheme of the SG hub

Table 1. Distribution of the daily passenger traffic of the SG hub

t 6:00 7:00 8:00 9:00 10:00 11:00 - 15:00 16:00

d(t) 0.02 0.06 0.11 0.08 0.05 0.05 per hour 0.06

t 17:00 18:00 19:00 20:00 21:00 22:00 23:00 23:30 - 01:00

d(t) 0.085 0.11 0.07 0.05 0.02 0.02 0.01 0.005

in one hour during the rush period and n(t) = 7, 5 for the rest of the time. The
average number of incoming pedestrians per day equals 11900×0.7×0.35 = 2916
people, where 11900 is the population density, 0.7 km is the walking distance,
and 0.35 is the population who use a metro (35%, see [13]). The average size of
the groups is 1.2 people, obtained from video camera data. Also, 238 cars enter
the parking lot per day, with an average group size of 1.34 people (see [15]).
These parameters and data from Table 1 are used in λ3(t) and λ4(t).

We model the passenger traffic from the MCC by non-ordinary deterministic
flows and from the bus stops, parking, and pedestrians by the BMAP flow.
Table 2 shows its parameters. The matrices are 3×3 in size, with a total number
of 46, but are not shown.

Table 2. Models of incoming passenger flows at the SG hub

Flow Types of transport Rush hour Left time Group size

DX
1.1; D

X
1.2 Subway (2 directions) 4 min 8 min B(2V1(t); 0.5)

BMAP1 Bus (per h.) λ1 = 6.8 λ2 = 7.7 B(30; 0.66)

Pedestrians (per h.) λ3(t) = 2916d(t)/1.2 B(7; 0.179)

Parking (per h.) λ4(t) = 238d(t)/1.34 B(7; 0.195)
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Description of the system’s operation. We consider the bus stop and the
parking only as external sources of passenger traffic since they are located far
(300 m or more) from the terminal, and passengers can depart from them freely.
Additionally, we ignore the above-ground passage as it does not restrict the
movement of passengers.

The MCC station consists of two separate platforms with an area of 1100
m.2, from which trains depart in opposite directions (see 1). Passengers enter
(and exit) the terminal from the platforms by escalator, staircase, or lift. We
do not consider stairs as they do not restrict the movement of passengers. We
allocate 50% of the platform capacity to passengers boarding the train, 40% and
10% to passengers entering the terminal by escalator and lift, respectively.

There are two ticket offices and two ticket vending machines in the terminal;
six turnstiles to the MCC and two at the back; two doors each to the entrance
and exit of the above-ground passage. We assume that the capacity of the above-
ground passage at the terminal entrance is 500 people. We allocate 40% of the
terminal hall’s area (460 m.2) to passengers traveling to and from trains and
20% to the ticket office. We split the paid area (340 m.2) of the terminal into
five sections: 30% in front of the turnstiles leading to the city, 20% each in front
of the two escalators, and 15% each in front of the two lifts. Table 3 shows the
average travel times between the limiting elements of the hub.

Table 3. Transfer time between limit elements at the SG hub

Elements of the hub Mean transfer time (Td)

MCC train - escalator / elevator 0.5 min. / 0.75 min.

Escalator / elevator - turnstiles 0.33 min. / 0.25 min.

Turnstiles / ticket office - terminal doors 0.42 min.

Terminal doors - tunnel (to the city) 1.5 min

We model the operation of the SG hub using a QN with 15 nodes and three
flows (QN 1). Nodes 1–6 simulate trains, escalators, and lifts on the MCC plat-
form. Nodes 7–15 describe the limiting elements in the terminal. We model each
lift by two nodes: 5 and 12, 6 and 13. The service time in them is doubled com-
pared to the one-way travel time. The sizes of the groups of requests (X) and the
distributions of their service times in all nodes are obtained from the analysis
of the field data. Table 4 shows this information and the formal description of
nodes in terms of Queueing theory. Figure 2 shows the non-zero elements of the
routing matrix P1 as graph weights on the QN 1 scheme.

Hub is based at Thuong Dinh metro station (TD hub) in Hanoi,
Vietnam. The structure of urban transport in Vietnam differs from that in
Russia. Motorbikes and bicycles are the main types of vehicles in Hanoi. There-
fore, 49% of passengers arrive at the hub by it. Pedestrians account for 38%,
while buses and cars make up 10% and 3% of arrivals, respectively [21].
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Table 4. Parameters of the QN 1

Nodes Elements Model Service time X

1 & 2 MCC trains ∗/DX/1/1100 8 min.; 4 min 150

during rush hour

3 & 4 Escalators from MCC DX/D/1/880 0.1 min. 1

5 & 6 Elevators to the terminal DX/DX/1/220 1 min. 8

7 Ticket offices ∗/M/4/90 exp(2) min. 1

8 Turnstiles to MCC ∗/M/6/185 exp(6) min. 1

9 Turnstiles from MCC ∗/M/2/100 exp(6) min. 1

10 & 11 Escalators to MCC ∗/D/1/70 0.1 min 1

12 & 13 Elevators to MCC ∗/DX/1/50 1 min 8

14 Doors from the terminal ∗/M/2/185 exp(6) min. 1

15 Doors to the terminal BMAP/M/2/500 exp(6) min. 1

Fig. 2. Scheme of QN 1

The first level of the hub includes a bus stop. However, the pavements on both
sides of the roads in Hanoi tend to turn into spontaneous motorbike parks. The
largest of them form near this hub in particular. The second level is the terminal,
and the third level is the metro station (see Fig. 3). The system operates between
5.30 a.m. and 10.00 p.m., with rush times from 7.00 a.m. to 8.30 a.m. and 4.30
p.m. to 6.00 p.m.

The average daily passenger flow is 2.1 thousand people from the metro
station and 1.7 thousand people in the opposite direction. The data received was
based on an analysis of field data. Table 5 shows t, the mean of time intervals
(one hour) and d(t), part of the total passenger flow.
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Fig. 3. Map and terminal scheme of the TD hub

Table 5. Distribution of the daily passenger traffic of the TD hub

t 6:00 7:00 8:00 9:00 10:00 11:00–14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00

d(t) 0.02 0.1 0.15 0.07 0.05 0.04 0.05 0.06 0.1 0.11 0.05 0.04 0.03 0.01

Parking is not fixed and occurs spontaneously, and the least number of pas-
sengers arrive from buses, so we consider these elements only as sources of passen-
ger flows. Next, we construct the TD hub operation model by drawing parallels
with the description of the SG hub.

Modeling incoming passenger traffic. Table 6 shows the data for passenger
arrivals. We describe the arrival of passengers from the MCC as non-ordinary
deterministic flows and from buses, parking, and pedestrians as a BMAP flow.

Table 6. Models of incoming passenger flows at the TD hub

Flow Type of transport Rush hour Left time Group size

DX
2.1; D

X
2.2 Subway (2 directions) 6 min 10 min B(3400d(t)/n(t); 0.5)

BMAP2 Bus (per h.) λ5 = 172 ∗ d(t)/3 B(20; 0.1)

Pedestrians (per h.) λ6(t) = 0.382 ∗ 1700d(t)/3 B(10; 0.3)

Parking (per h.) λ7(t) = 0.517 ∗ 1700d(t) B(3; 0.25)

Description of the system’s operation. We implicitly include the stairs in the
model. It’s the average travel time added to the transfer time at the metro
station or the terminal. Table 7 shows the travel times connecting the limiting
elements of the hub.

We describe the operation of trains and limiting elements by QN with 17
nodes (QN 2). Table. 8 shows its parameters in terms of Queueing theory, where
X represents the sizes of the served request groups. Figure 4 shows the request
transitions’ probabilities between the nodes of QN 2 as graph weights.
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Table 7. Transfer time between limit elements at the TD hub

Elements of the hub Mean transfer time (Td)

Subway train - escalator (elevator) / stairs 0.5 min. / 1 min.

Escalator / elevator / stairs - turnstiles 0.17 min.

Turnstiles / ticket office - terminal doors 0.58 min

Table 8. Parameters of QN 2

Nodes Elements Model Service time X

1 & 2 Subway trains ∗/DX/1/400 10 min.; 6 min 96

during rush hour

3 & 4 Elevators to the terminal DX/DX/1/400 1 min. 8

5 & 6 Elevators to subway ∗/DX/1/72 1 min. 8

7 & 8 Escalators to subway ∗/D/1/96 0.1 min. 1

9 Turnstiles from subway ∗/M/6/88 exp(6) min. 1

10 Turnstiles to subway ∗/M/6/144 exp(6) min. 1

11 Ticket offices ∗/M/4/44 exp(2) min. 1

12 & 13 Elevators to the city ∗/DX/1/44 1 min. 8

14 & 15 Elevators to the terminal BMAP/DX/1/500 1 min. 8

16 & 17 Escalators to the terminal BMAP/D/1/500 0.1 min. 1

5 Computational Experiment

We numerically investigate QNs using a simulation model [15] based on the
discrete-event simulation approach and Monte Carlo methods. The software is
created in the Object Pascal programming language and can calculate perfor-
mance indicators of a QN with up to 100 nodes and 20 request flows, including
BMAP flows. We can set the inactivity time when requests do not arrive. It
is necessary to take into account the operation time of the hub. We conducted
experiments with various flow parameters for each obtained QN. The tables in
this section show the average results for ten software runs. The virtual simulation
time (run duration) is 24 h.

The tables below use the following notation. Tsys is the average transfer time
within a hub; Tc and Tm are the average transfer times between the train and
road in both directions; Td is the average time at movement between adjacent
hub elements; Tl refers to waiting in a queue; Tn refers to remaining at a node;
Tr = Td +Tn is movement to the next element of the hub along the route and
maintenance in it, except for nodes 1 and 2 where Tr = Td+Tl. Td is employed
to determine Tsys, Tc, and Tm consistently. System performance indicators: K
is the average number of load channels; L is the average length of the queue;
Vn is the average number of requests arriving at the node in a day; V(t) is the
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Fig. 4. Scheme of QN 2

number of all incoming requests per hour in the hub, t is the midpoints of the
time intervals.

Experiment 1. A study of the Sokolinaya Gora hub model (Table 3). Tables 9
and 10 and Fig. 5 show the simulation results when the request flows correspond
to the current daily passenger traffic. Table 11 shows the average performance
indicators of QN 1 with increases in request volume of 20%, 30%, 40%, and 50%,
corresponding to 14.4, 15.7, 16.8, and 19.5 thousand people per day.

Table 9. Number of incoming requests to the QN 1 per day

t 6:00 7:00 8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00

V(t) 246.4 663.5 1292.0 937.17 617.15 604.49 583.93 587.08 592.10 606.15

t 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 00:00 Sum

V(t) 700.0 989.15 1336.01 816.03 632.99 252.43 240.78 129.77 69.65 12021.0

Verification of the model. The average relative deviation ε =
(V (t)/12021 − h(t))/h(t) is equal to 3.9%, where V(t)/12021 is in Table 9
and h(t) is in Table 1. At 11:00, Tc and Tm differ from the field-observed trans-
fer time, which is 5.5 min in the MCC-street direction and 8.1 min in the opposite
direction, by 1% and 3.1%, respectively. Thus, the maximum relative deviation
does not exceed 4%.

Interpretation of the modeling results (see Table 10 and Fig. 5). A transfer at
the SG hub is considered comfortable if it does not exceed 15 min. The average
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Table 10. Performance indicators of QN 1

Tsys Tc Tm Arrived DX
1.1 DX

1.2 BMAP1

6.70 5.56 7.85 Requests 2921.4 2903.6 6196.0

Parameters K L Tl Tn Tr Vn

Node 1 0.97 5.75 2.67 8.46 2.67 3093.48

Node 2 0.97 5.76 2.66 8.46 2.66 3101.74

Node 3 0.21 1.60 0.99 0.95 1.45 2478.64

Node 4 0.21 1.67 1.02 0.96 1.46 2468.82

Node 5 0.06 0.15 1.07 1.44 2.19 442.76

Node 6 0.06 0.15 1.06 1.39 2.14 434.82

Node 7 1.08 0.08 0.27 0.68 1.09 2479.28

Node 8 0.86 0.04 0.15 0.23 0.54 5824.56

Node 9 0.90 2.40 0.80 0.63 1.05 6195.46

Node 10 0.21 0.05 0.08 0.17 0.42 2472.10

Node 11 0.21 0.05 0.08 0.17 0.42 2482.06

Node 12 0.42 0.14 0.51 1.45 1.65 621.40

Node 13 0.42 0.14 0.51 1.44 1.64 619.78

Node 14 0.85 4.37 1.46 0.95 1.37 5824.50

Node 15 0.90 8.69 2.31 1.53 3.03 6195.98

Fig. 5. Changes in Tc and Tm over the day (hourly)

Table 11. Performance indicators of QN 1 with an increase in the volume of the
request flow

V Tc Tm Tsys Tc(rush) Tm(rush) Nodes with max Tn

+20% 8.51 14.06 11.28 14.19 19.55 Nodes 14 & 15

+30% 9.79 16.38 13.08 16.26 25.22 Nodes 14 & 15

+40% 13.51 19.83 16.67 24.03 30.36 Nodes 14 & 15

+50% 16.43 26.68 21.55 27.58 38.27 Nodes 14 & 15
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transfer time is below this characteristic for the current passenger traffic. Pas-
sengers wait an average of 2.67 min (Tl) at the MCC station (nodes 1 and 2).
Crossing the terminal is comfortable and takes 3-4 min. If excluding nodes 1 and
2, then nodes 5 and 6 (elevators) and nodes 14 and 15 (terminal doors) have
the highest values of Tn. Elevators receive 10% of the total passenger traffic, so
their capacity affects insignificantly on the system’s efficiency as a whole. The
terminal doors are the bottleneck due to the high average queue length in front
of them.

When passenger numbers increase by up to 30% (as shown in Table 11),
the average transfer time of day (Tsys) is below 15 min. However, during rush
hours, the transfer becomes uncomfortable. If passenger numbers increase by
up to 50%, Tc is 28.9 min, Tm is 30.4 min, and the loss probability is non-zero
(0.003). Across all cases, we observe the maximum values of average queue length
in front of the terminal doors (nodes 14 and 15).

Experiment 2. A study of the Thuong Dinh hub model (see Table 3). Table 12
shows the performance indicators of QN 2 for one working day. Figure 6 shows
their change during the day (per hour). Table 13 shows the performance indi-

Table 12. Performance indicators of QN 2

Tsys Tc Tm Arrived DX
2.1 DX

2.2 BMAP2

6.29 3.81 8.77 Requests 1054.24 1036.64 1673.12

Parameters K L Tl Tn Tr Vn

Node 1 0.98 3.64 4.32 12.06 4.82 836.14

Node 2 0.98 3.64 4.33 12.10 4.83 836.92

Node 3 0.03 0.04 0.99 1.01 1.51 153.68

Node 4 0.02 0.03 0.96 0.93 1.43 139.66

Node 5 0.11 0.01 0.53 1.21 1.38 114.64

Node 6 0.12 0.01 0.52 1.20 1.36 116.84

Node 7 0.07 0.01 0.07 0.15 0.72 721.52

Node 8 0.07 0.01 0.07 0.15 0.72 720.10

Node 9 0.35 0.09 0.10 0.27 1.15 2090.88

Node 10 0.29 0.00 0.04 0.17 0.75 1673.12

Node 11 0.29 0.00 0.15 0.52 1.10 580.28

Node 12 0.13 0.04 0.67 1.53 2.12 146.24

Node 13 0.13 0.04 0.66 1.54 2.12 149.84

Node 14 0.08 0.01 0.58 1.06 1.06 113.18

Node 15 0.08 0.01 0.52 1.07 1.07 118.84

Node 16 0.07 0.07 0.27 0.31 0.31 717.40

Node 17 0.07 0.07 0.27 0.32 0.32 723.70
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Fig. 6. Changes in Tc and Tm over the day (hourly)

Table 13. Performance indicators of QN 2

V Tc Tm Tsys Tc(rush) Tm(rush) Nodes with max Tn

+50% 3.85 11.77 7.81 3.86 14.02 Nodes 1 & 2

+100% 3.87 12.16 8.02 3.88 15.89 Nodes 1 & 2

+200% 3.91 13.05 8.48 3.92 18.23 Nodes 1 & 2

cators of the model with a 50%, 100%, and 200% increase in application flows,
corresponding to the receipt of 5.6, 7.5, and 11.3 thousand people per day.

Experiment 2 results interpretation. Passengers spend the most time moving
from the street into the metro. Half of the time is spent by waiting for trains on
the platform. The queue length does not exceed four people at any node, there is
no blockage of channels, and the loss probability is zero. As a result, passengers
move through the terminal without any hindrance.

As the daily number of passengers increases, we observe the following: First,
Tc remains practically unchanged. The reason is that the most passengers use
stairs, which are wide enough and do not restrict movement. When people move
from the metro to the street, there is only one limiting element: six turnstiles
(node 9), whose width is also sufficient. Secondly, the transfer is still comfortable
when the number of passengers quadruples. In addition, passengers spend most
of their time on the metro platform (nodes 1 and 2), waiting for the train.

Thus, both systems have a capacity margin. Passengers can comfortably
transfer to Sokolinaya Gora hub with an increase in traffic of up to 30% and
to Thuong Dinh hub with an increase of up to 200%. However, the train inter-
vals in the Vietnamese metro are much longer than those in Russia and can be
reduced in the future. In this scenario, the Thuong Dinh hub’s capacity will be
equal that of the Sokolinaya Gora hub and the transfer time will be less due to
fewer limiting elements.
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6 Conclusion

This paper continues the authors’ previous research devoted to mathematical
modeling and simulation of the hubs. We present the methodology for the oper-
ation modeling of such systems based on a specific type of Queuing Network.
We use the modified BMAP flows to describe the arrival of passengers from
different modes of transport, taking into account fluctuations in their volumes
throughout the day. We also consider the departure of passengers in groups and
the changes in transportation parameters. Therefore, the resulting models gen-
eralize our previous models and M/G/C/C and PH/PH/C/C queuing network
models [9–11].

We consider the operation of the hubs in Russia and Vietnam. Both systems
have a multi-tiered structure and a comparable design of the terminals and
the metro stations, but differ in the incoming urban transport and the volume
of passenger traffic. Through numerical modeling, we determined the current
and maximum capacity for those systems. We also found bottlenecks in their
structures and concluded about the efficiency of both hubs.

Further research can be related to studying a network of transport hubs. We
have used a similar approach to model railway network operation [22,23], which
proves to be effective in assessing capacity and long-term forecasting.

The research was funded by the Ministry of Education and Science of the
Russian Federation within the framework of the project “Theoretical founda-
tions, methods and high-performance algorithms for continuous and discrete
optimization to support interdisciplinary research” (No. of state registration:
121041300065-9).
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Abstract. In this article, we examine a discrete time (s, S) production
inventory system with positive service time and perishable products. We
define a reasonable cost function for the model by assuming that the
demand process is a Bernoulli process and that production and service
time are geometric. This model is examined as a level independent quasi-
birth-death process.We investigate the model using the Matrix Analytic
Method. Furthermore, we use numerical experiments to determine the
optimal (s, S) pair for the model across a range of parameter values.

Keywords: Bernoulli Process · Perishable Inventory · Production
Process · Matrix Analytic Method

1 Introduction

Whether a company is a manufacturing one or a service one, inventory is an inte-
gral aspect of both. All business must maintain some inventory to keep things
running smoothly. It is impossible for any company to assert that they do not
maintain any inventory. Deteriorating items are widespread in our daily lives.
Deteriorating items are those that deteriorate over time and become rotted,
damaged, expired, devalued, and so on. Fruits, vegetables, and dairy products
deteriorate with time due to variables such as moisture, temperature, and bac-
terial development. Consuming expired or damaged food might be hazardous to
one’s health.

Perishable inventory models are mathematical models used to optimise inven-
tory management for perishable products that have a limited shelf life and can
deteriorate or expire over time. These models help businesses determine how
much perishable inventory to order, when to order it, and how to correctly
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assign it to avoid waste and increase profitability. Recent work by Munyaka and
Yadavalli (2022) [9] emphasises the necessity of inventory management concepts
and implementations in the face of increasingly demanding human needs. In the
paper by Balagopal N. et al. (2021) [1] two discrete time models with positive
service time and lead time were studied. By considering (s, S) policy and (s,
Q) policy respectively they analyzed the system and derived the conditions for
stability. Selvakumar et al. (2020) [11] addressed a discrete time service facility
system with Bernoulli arrival under (s, S) policy. By assuming lead time and ser-
vice time to follow geometric distributions they used Markov Decision Process to
obtain the optimal policy to be implemented. Tan and Weng (2012) [14] studied
a discrete time inventory control system where the deterioration and customer
demand were in a constant rate. By allowing baclogs they succeeded in deriving
a closed form solution for the optimal solution. Jose and Anilkumar(2020) [5]
investigated a discrete time Geo/Geo/1 production inventory model with service
time and local purchasing. They achieved a closed form solution for the steady
state by setting the lead time to zero.

Inventory models with positive service time have first been examined by
Sigman and Simchi-Levi(1992) [13]. Dhanya Shajin et al. (2018) [12] analyzed
two discrete queueing inventory models with positive service time. By assuming
that when inventory drops to zero, new customers are not allowed and the service
process of queued customers also stops. They derived analytical relations for the
basic stationary performance characteristics of the system.

Perishable-Inventory Control Models explicitly include perishability aspect
in inventory management choices. It optimises order quantity and timing by
taking into account parameters like perishability rates, shelf life, and demand
patterns. The goal is to reduce both holding and shortage costs while minimising
waste. One of the earliest works on inventory model with exponential decay was
by Ghare and Schrader (1963) [3]. For perishable inventory models, Lian and Liu
(1999) [7] used a discrete time model to approximate the corresponding continu-
ous time counterpart. An inventory model of perishable products with constant
deterioration rate and demand as a periodic function of time was proposed by
Patil and Michra (2017) [10]. They succeeded in obtaining the average total cost
per unit time of the system for two models by allowing shortages and the other
without shortage.

Krishnamoorthy and Viswanath (2011) [6] studied a (s, S) production inven-
tory system with positive service time and service interruption. They derived an
explicit equation for the necessary and sufficient criteria for the stability of the
system under consideration, assuming arrival to be a Poisson process, service
time to be an Erlang distribution, and service interruption to be an exponential
distribution. Nan Li et al. (2017) [8] developed an economic production quantity
(EPQ) model with deteriorating production processes and deteriorating inven-
tory. By allowing backlogs and finding the optimal total production and backlog
quantity, they succeeded in minimizing the expected total cost per unit product.
Chowdhury and Ghosh (2022) [2] investigated a production-inventory model
with exponential demand whereas production rate and holding costs are lin-
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ear functions of demand and time respectively. They attempted to find optimal
production switch off and switch on time to avoid shortages. In the continu-
ous review case Jose and Reshmi (2021) [4] considered a production inventory
model with perishable items and retrial of customers. After constructing a suit-
able cost function they obtained the optimum control policy numerically. Yue
and Qin (2019) [15] analysed an (s, S) production inventory with production
vacation and service time. By assuming that arriving customers will be lost dur-
ing stock out period, they derived the joint stationary distribution in product
form of queue length and inventory level.

When dealing with perishable items, these models assist firms in making
decisions about inventory management, ordering procedures, pricing tactics, and
overall profitability. These models can reduce waste, improve customer service
levels, and increase profitability for organisations in perishable industries by
optimising inventory allocation and replenishment.

The rest of the article is arranged in the following way: Sect. 2 is on Math-
ematical Modelling and Analysis. Section 3 discusses stability and steady-state
analysis. Section 4 dealt with performance measures and cost analysis. Section 5
included numerical and graphical illustrations.

2 Mathematical Modelling and Analysis

We investigate a discrete-time (s, S) production inventory model with perishable
items and positive service time in this model. It is assumed that the arrival is a
Bernoulli process with parameter a. Both service and manufacturing times are
assumed to be geometric, with parameters b and c. Perishability is distributed
geometrically with a parameter d. The consumer is not permitted to join the
system when the inventory level is zero.

We examine a single-server approach in which each client receives only one
inventory after the service is completed. Production begins when the inventory
level falls to s owing to demand. When the inventory level hits S, the production
process will be halted. The inventory level varies from 0 to S − 1 during the
manufacturing process.

Notations

X(m) : Number of customers in the queue at an epoch m.

Y (m) : Inventory level at the epoch m.

Z(m) : The production status at an epoch m.

e : (1, 1, 1, ..., 1)′, column vector of 1’s of size 2S − s.

Then Ψ = {(X(m), Y (m), Z(m));m = 0, 1, 2, 3, ..} is a Quasi-Birth-Death
Process on the state space E = {(i, j), i ≥ 0, 0 ≤ j ≤ s}∪ {(i, j, k), i ≥ 0, s+1 ≤
j ≤ S − 1, k = 0, 1} ∪ {(i, S), i ≥ 0}.

Now the transition probability matrix of the process is
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P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 2 3 . . . .

0 D1 D0

1 A2 A1 A0

2 A2 A1 A0

3 A2 A1 A0
...

. . . . . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

where the blocks D0,D1, A0, A1, A2 are square matrices whose (j, k)th element
with phase i is given below.

(D0)jk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ac̄d, for 2 ≤ j ≤ s + 1, k = j − 1,

a(cd + c̄d̄), for 2 ≤ j ≤ s + 1, k = j,

acd̄, for 2 ≤ j ≤ s, k = j + 1,

acd̄, for j = s + 1, s + 3, · · · , 2S − s − 3, k = j + 2,

acd̄, for j = 2S − s − 1, k = 2S − s,

ad, for j = s + 2, k = s + 1,

ac̄d, for j = s + 3, k = s + 1,

ad̄, for j = s + 2, s + 4, · · · , 2S − s, k = j,

a(cd + c̄d̄), for j = s + 3, s + 5, · · · , 2S − s − 1, k = j,

ad, for j = s + 4, s + 6, · · · , 2S − s, k = j − 2,

ac̄d, for j = s + 5, s + 7, · · · , 2S − s − 1, k = j − 2,

0, otherwise.

(D1)jk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c̄, for j = 1, k = 1,

c, for j = 1, k = 2,

āc̄d, for 2 ≤ j ≤ s + 1, k = j − 1,

ā(cd + c̄d̄), for 2 ≤ j ≤ s + 1, k = j,

ācd̄, for 2 ≤ j ≤ s, k = j + 1,

ācd̄, for j = s + 1, s + 3, · · · , 2S − s − 3, k = j + 2,
ācd̄, for j = 2S − s − 1, k = 2S − s,

ād, for j = s + 2, k = s + 1,

āc̄d, for j = s + 3, k = s + 1,

ād̄, for j = s + 2, s + 4, · · · , 2S − s, k = j,

ā(cd + c̄d̄), for j = s + 3, s + 5, · · · , 2S − s − 1, k = j,

ād, for j = s + 4, s + 6, · · · , 2S − s, k = j − 2,

āc̄d, for j = s + 5, s + 7, · · · , 2S − s − 1, k = j − 2,

0, otherwise.
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(A0)jk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ac̄, for j = 1, k = 1,

ac, for j = 1, k = 2,

ab̄c̄d, for 3 ≤ j ≤ s + 1, k = j − 1,

ab̄(cd + c̄d̄), for 2 ≤ j ≤ s + 1, k = j,

ab̄cd̄, for 2 ≤ j ≤ s, k = j + 1,

ab̄cd̄, for j = s + 1, s + 3, · · · , 2S − s − 3, k = j + 2,

ab̄cd̄, for j = 2S − s − 1, k = 2S − s,

ab̄d, for j = s + 2, k = s + 1,

ab̄c̄d, for j = s + 3, k = s + 1,

ab̄d̄, for j = s + 2, s + 4, · · · , 2S − s, k = j,

ab̄(cd + c̄d̄), for j = s + 3, s + 5, · · · , 2S − s − 1, k = j,

ab̄d, for j = s + 4, s + 6, · · · , 2S − s, k = j − 2,

ab̄c̄d, for j = s + 5, s + 7, · · · , 2S − s − 1, k = j − 2,

0, otherwise.

(A2)jk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ābc̄d, for 3 ≤ j ≤ s + 1, k = j − 2,

āb(cd + c̄d̄), for 2 ≤ j ≤ s + 1, k = j − 1,

ābcd̄, for 2 ≤ j ≤ s, k = j + 1,

ābd, for j = s + 2, k = s,

ābd, for j = s + 4, k = s + 1,

ābc̄d, for j = s + 3, k = s,

ābc̄d, for j = s + 5, k = s + 1,

ābd̄, for j = s + 2, k = s + 1,

āb(cd + c̄d̄), for j = s + 3, k = s + 1,

ābcd̄, for j = s + 3, s + 5, · · · , 2S − s − 3, k = j,

ābd̄, for j = s + 4, s + 6, · · · , 2S − s, k = j − 2,

āb(cd + c̄d̄), for j = s + 5, s + 7, · · · , 2S − s − 1, k = j − 2,

ābd, for j = s + 6, s + 8, · · · , 2S − s, k = j − 4,

ābc̄d, for j = s + 7, s + 9, · · · , 2S − s − 1, k = j − 4,

0, otherwise.
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(A1)jk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

āc̄, for j = 1, k = 1,

āc, for j = 1, k = 2,

abc̄d, for 3 ≤ j ≤ s + 1, k = j − 2,

ab(cd + c̄d̄) + c̄d, for j = 2, k = 1,

ab(cd + c̄d̄) + āb̄c̄d, for 3 ≤ j ≤ s + 1, k = j − 1,

āb̄(cd + c̄d̄) + abcd̄, for 2 ≤ j ≤ s + 1, k = j,

āb̄cd̄, for 2 ≤ j ≤ s, k = j + 1,

āb̄cd̄, for j = s + 1, s + 3, · · · , 2S − s − 3, k = j + 2,

āb̄cd̄, for j = 2S − s − 1, k = 2S − s,

abd, for j = s + 2, k = s,

abd, for j = s + 4, k = s + 1,

abc̄d, for j = s + 3, k = s,

abc̄d, for j = s + 5, k = s + 1,

abd̄ + āb̄d, for j = s + 2, k = s + 1,

ab(cd + c̄d̄) + āb̄c̄d, for j = s + 3, k = s + 1,

āb̄d̄, for j = s + 2, s + 4, · · · , 2S − s, k = j,

āb̄(cd + c̄d̄) + abcd̄, for j = s + 3, s + 5, · · · , 2S − s − 1, k = j,

abd̄ + āb̄d, for j = s + 4, s + 6, · · · , 2S − s, k = j − 2,

ab(cd + c̄d̄) + āb̄c̄d, for j = s + 5, s + 7, · · · , 2S − s − 1, k = j − 2,

abd, for j = s + 6, s + 8, · · · , 2S − s, k = j − 4,

abc̄d, for j = s + 7, s + 9, · · · , 2S − s − 1, k = j − 4,

0, otherwise.

3 Stability and Steady-State Analysis

When the inventory is 0 in this model, no customer is allowed to join the system.
As a result, the inventory level is unaffected by queue length. The stability of
the proposed queueing inventory model is the same as that of a regular discrete-
time Geo/Geo/1 queue, with inter-arrival time and service time geometrically
distributed with parameters a and b, respectively. If a < b, the system is stable.

Assume that the QBD is aperiodic and positive recurrent. Denote by π its
stationary probability vector. It is the unique solution of the system πP = π
and πe = 1, where e is a column vector of ones of appropriate order.

Let π be partitioned by levels as π = (π0, π1, π2, π3 . . . , ). Then πi has the
matrix geometric form πi = π1R

i−1, i ≥ 2. Where R is the minimal non negative
solution of the matrix quadratic equation

R2A2 + RA1 + A0 = R
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. Where π0 and π1 are obtained by solving the equations

π0(D1 − I) + π1A2 = 0

and

π0D0 + π1(A1 + RA2 − I) = 0

with the normalizing condition

π0e + π1(I − R)−1e = 1

where e is a column vector of 1’s of size (2S − s).

4 Performance Measures and Cost Analysis

We, partition the components of π as π = (π0, π1, π2 . . . )andπi = (πi,0,
πi,1 . . . , πi,s, πi,s+1,0, πi,s+1,1 . . . , πi,S−1,0, πi,S−1,1, πi,S). The performance mea-
sures of the system under steady state are

1. Expected number of customers in the system, ENC, is given by

ENC =
∞∑
i=1

iπie

2. Expected inventory level, EIL, is given by

EIL =
∞∑
i=0

s∑
j=0

jπi,j +
∞∑
i=0

S−1∑
j=s+1

j[πi,j,0 + πi,j,1] +
∞∑
i=0

Sπi,S

3. Expected production rate, EPR, is given by

EPR = c

⎡
⎣

∞∑
i=0

s∑
j=0

πi,j +
∞∑
i=0

S−1∑
j=s+1

πi,j,1

⎤
⎦

4. Expected loss rate of customers when the inventory level is zero, ELR, is
given by

ELR = a

∞∑
i=0

πi0

5. Expected rate at which production is switched on, EON , is given by

EON = (bd̄ + d)
∞∑
i=0

πi,s+1,0 + bd
∞∑
i=0

πi,s+2,0
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6. Expected rate of departure after completing the service,ERD, is given by

ERD = b

⎡
⎣

∞∑
i=1

s∑
j=1

πi,j +
∞∑
i=1

S−1∑
j=s+1

[πi,j,0 + πi,j,1] +
∞∑
i=1

πiS

⎤
⎦

7. Expected perishability rate, ERP , is given by

ERP = d

⎡
⎣

∞∑
i=0

s∑
j=1

πi,j +
∞∑
i=0

S−1∑
j=s+1

[πi,j,0 + πi,j,1] +
∞∑
i=0

πiS

⎤
⎦

8. Expected perishable Quantity, EPQ, is given by

EPQ = d

⎡
⎣

∞∑
i=0

s∑
j=1

jπi,j +
∞∑
i=0

S−1∑
j=s+1

j [πi,j,0 + πi,j,1] +
∞∑
i=0

SπiS

⎤
⎦

Define the expected total cost of the system per unit time as

ETC = c1(EON) + c2(EIL) + c3(EPR) + c4(ELR) + c5(EPQ)

where,

c1 : fixed cost for starting a production run
c2 : holding cost of inventory/unit/unit time
c3 : cost of production per inventory
c4 : cost incurred due to loss of customers
c5 : cost due to perishability of item

5 Numerical and Graphical Illustrations

The tables below show the numerical findings obtained for various performance
measures in relation to the various parameters studied. The following diagram
depicts the relationship between several performance measures and parameters.

5.1 Effect of a on Various Performane Measures

When b = 0.55, c = 0.4, d = 0.5, s = 2, S = 6, c1 = 1, c2 = 4.5, c3 = 2, c4 =
2, c5 = 2, Table 1 indicates that when the expected arrival rate rises, so does the
expected production rate and customer loss rate, but the expected production
switch-on rate, inventory level, and perishable quantity decline.

5.2 Effect of b on Various Performane Measures

When a = 0.25, c = 0.3, d = 0.4, s = 4, S = 8, c1 = 5, c2 = 1, c3 = 1, c4 =
14, c5 = 1, Table 2 demonstrates that when the expected service rate rises, so
does the expected production rate and customer loss rate, but the expected
production switch-on rate, inventory level, and perishable quantity fall.
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Table 1. Effect of a on the model.b = 0.55, c = 0.4, d = 0.5, s = 2, S = 6, c1 = 1, c2 =
4.5, c3 = 2, c4 = 2, c5 = 2

a EON EIL EPR ELR EPQ ETC

0.21 0.0007821 0.53376 0.39882 0.11684 0.26688 3.9678

0.22 0.0006897 0.53089 0.39896 0.12259 0.26544 3.96337

0.23 0.0005389 0.52738 0.39919 0.12837 0.26369 3.9562

0.24 0.0003838 0.52409 0.39942 0.13413 0.26204 3.9500

0.25 0.0002567 0.52150 0.39962 0.13986 0.26075 3.9475

0.26 0.0001662 0.51971 0.39975 0.14555 0.25986 3.9492

0.27 0.0001077 0.51857 0.39984 0.15121 0.25928 3.9543

0.28 0.0000724 0.51789 0.39989 0.15685 0.25894 3.9619

0.29 0.0000521 0.5175 0.39992 0.16248 0.25875 3.9711

Table 2. Effect of b on the model.a = 0.25, c = 0.3, d = 0.4, s = 4, S = 8, c1 = 5, c2 =
1, c3 = 1, c4 = 14, c5 = 1

b EON EIL EPR ELR EPQ ETC

0.26 0.0000309 0.70372 0.299945 0.12689 0.28149 3.06178

0.27 0.0000266 0.68768 0.299953 0.12838 0.27507 3.06010

0.28 0.0000228 0.67239 0.299960 0.12982 0.26896 3.05892

0.29 0.0000196 0.65780 0.299966 0.13123 0.26312 3.058172

0.30 0.0000169 0.64387 0.299971 0.13260 0.25755 3.05782

0.31 0.0000145 0.63054 0.299976 0.13393 0.25222 3.05783

0.32 0.0000125 0.61779 0.299979 0.13523 0.24711 3.05816

0.33 0.0000108 0.60556 0.299982 0.13650 0.24223 3.05879

0.34 0.0000093 0.59384 0.299985 0.13773 0.23754 3.05968

0.35 0.0000081 0.58259 0.299987 0.13894 0.23304 3.06081

5.3 Effect of c on Various Performane Measures

When a = 0.25, b = 0.55, d = 0.4, s = 4, S = 8, c1 = 5, c2 = 1, c3 = 1, c4 =
14, c5 = 1, Table 3 demonstrates that when the production rate rises, the
expected customer loss rate falls, but the expected production switch-on rate,
inventory level, and perishable quantity rise.

We generate ETC graphs by altering the parameters a, b, and c while holding
the other parameters constant. These graphs show that the company’s expected
total cost will be as stated in the graphs in the long run. The projected total
cost and its related values of a, b, and c can be determined. Figures 1, 2, and 3
have minimum values of (0.25, 3.9475), (0.30, 3.05782), and (0.36, 3.0883), respec-
tively.
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Table 3. Effect of c on the model.a = 0.25, b = 0.55, d = 0.4, s = 4, S = 8, c1 = 5, c2 =
1, c3 = 1, c4 = 14, c5 = 1

c EON EIL EPR ELR EPQ ETC

0.32 0.0000538 0.45823 0.31993 0.15263 0.18329 3.0985

0.33 0.0000874 0.47552 0.32988 0.14987 0.19021 3.0942

0.34 0.0001363 0.49367 0.33981 0.14709 0.19747 3.0909

0.35 0.0002037 0.51285 0.3497 0.1443 0.20514 3.0889

0.36 0.0002912 0.53319 0.35956 0.14149 0.21327 3.0883

0.37 0.0003977 0.55471 0.36939 0.13865 0.22188 3.0891

0.38 0.0005175 0.57728 0.37918 0.1358 0.23091 3.0911

0.39 0.0006407 0.60060 0.38896 0.13293 0.24024 3.0940

0.40 0.0007536 0.62422 0.39874 0.13006 0.24969 3.0972

0.41 0.0008416 0.64764 0.40856 0.1272 0.25905 3.1003

0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29

Arrival Rate - a

3.95

3.955

3.96

3.965

3.97

E
T

C

(0.25, 3.9475)

Fig. 1. a vs ETC, b = 0.55, c = 0.4s = 5, S = 10,m = 15

0.26 0.27 0.28 0.29 0.3 0.31 0.32 0.33 0.34 0.35

Service Rate - b

3.057

3.058

3.059

3.06

3.061

3.062

E
T

C

(0.30, 3.05782)

Fig. 2. b vs ETC, a = 0.4, c = 0.4s = 5, S = 10,m = 15
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0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.4 0.41
Production Rate - c

3.09

3.095

3.1

E
T

C
(0.36, 3.0883)

Fig. 3. c vs ETC, a = 0.4, b = 0.5s = 5, S = 10,m = 15

Fig. 4. a vs ETC, b = 0.55, c = 0.4s = 5, S = 10,m = 15

5.4 (s, S) Pair

We find different ETC values by altering parameter values. By adjusting the
reorder point s and maximum inventory S, one can discover the (s, S) pair of
the total cost. The Mathlab programming language is used to do the numerical
analysis of the current model. The optimal (s, S) pair for the fixed parameter
values indicated below is presented in table below (Fig. 4 and Table 4).
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Table 4. (s, S) pair of the model for fixed parameter values a = 0.35, b = 0.65, c =
0.45, d = 0.15, c1 = 150, c2 = 12.5, c3 = 1, c4 = 36.5, c5 = 1

s S 81 82 83 84 85

1 59.7334 60.7256 61.7286 62.7424 63.7669

2 59.6922 60.6812 61.6810 62.6916 63.7130

3 59.6920 60.6779 61.6746 62.6820 63.7001

4 59.7318 60.7146 61.7081 62.7123 63.7271

5 59.8111 60.7907 61.7810 62.7820 63.7936

6 Concluding Remarks

In this article, we studied a discrete (s, S) perishable inventory system with pos-
itive service times and production of items. The primary demand constitutes a
geometric process. Service time follows a geometric distribution. We analyzed the
system using the Matrix Analytic Method. Some important system performance
measures are derived. The expression for expected total cost is also obtained.
One can modify this model by allowing backlog when the inventory level is zero.
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Abstract. The solution of the problem of identifying network traffic
will allow operators and infrastructure owners to make decisions about
the strategy of its service, as well as predict its behavior in the future.
This solution will help in the design of virtual or physical networks.
In this paper, the problem of identifying several processes (stationary
Poisson, MMPP, renewal) is solved using neural networks. First, the
classification subtask is solved, which allows to tell which process model
the input data correspond to. And, secondly, the subtask of parameter
estimation is solved, which allows to tell which values of its parameters
better describe the input data. Fully connected and recurrent neural
networks are considered as tools. Predictive ability was assessed using
classical metrics of regression and classification tasks, as well as using
additional metrics.

Keywords: Stochastic process · Network traffic · Neural networks

1 Introduction

The motivation of this project is to help mathematical scientists and engineers
join strengths in the study of communication networks. We see that, on the one
hand, mathematicians (we mean mainly specialists in queue theory) are exten-
sively researching complex models of queueing systems and queueing networks,
obtaining huge formulas that, to be honest, could simplify the work of engineers.
On the other hand, engineers who know all the features of communication net-
works and can describe existing traffic service strategies or propose new ones,
but cannot work them out thoroughly, since the problem of traffic identification
has not been resolved yet. We mean choosing a good mathematical model of
the process and evaluating its parameters, i.e. such data, which need to describe
queue. Therefore, currently we can see a lot of papers on the study of hard queue
and any network technologies that use the Poisson process and exponential dis-
tributions. Moreover, the Erlang model is still often used.

The tasks of identifying network traffic have been exciting the minds of scien-
tists for many years. The fact is that it is still unclear how to identify real traffic.
That is, which mathematical process model should be used in each specific case
and with what parameters. We managed to find several papers that are studied
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
A. Dudin et al. (Eds.): ITMM 2023/WRQ 2023, CCIS 2163, pp. 76–90, 2024.
https://doi.org/10.1007/978-3-031-65385-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-65385-8_6&domain=pdf
http://orcid.org/0009-0003-8727-0918
http://orcid.org/0000-0001-7345-5565
https://doi.org/10.1007/978-3-031-65385-8_6


Identification of Network Traffic Using Neural Networks 77

to traffic identification, but in a slightly different sense: in all papers, the authors
classify packets by type (IoT, video, etc.). Next, we will talk a little about this.

Due to the widespread use of neural networks, scientists began trying to
use them to solve problems in telecommunications networks. For example, in
papers [1–3], the authors use deep networks to solve problems of classifying
network traffic by type (audio, email, etc.). This can lead to more efficient routing
later on and therefore minimize latency.

The paper [4] uses real data from RedIRIS (the Spanish academic and
research backbone network providing advanced communication services to
the scientific community and national universities). Convolutional (CNN) and
Recurrent (RNN) Neural Networks have been used as neural network models
for traffic classification. The uniqueness of this work lies in the successful use of
CNN to classify Internet traffic, also the work demonstrates the performance of
a combination of CNN and RNN networks. Also convolutional neural network
architectures in the traffic classification task have been extensively reviewed in
the works of W. Wang [5,6]. The paper [7] compares various popular CNN archi-
tectures: LeNet-5 [8], AlexNet [9], GoogleNet [10].

A method based on the use of ensembles of neural networks and decision
trees were used in the paper [11]. The dataset for the study was collected by
browsing the most visited HTTPs sites twice a day in the browsers Google
Chrome and Mozilla Firefox [12]. Similar models have been used in [13–15]. In
the paper [16] the classification of two types of traffic (IoT- and video-traffic) is
considered, recurrent neural networks (LSTM and RNN) are used. The approach,
which is based on the use of unsupervised learning methods, was outlined in the
paper [17]. Author uses a k-means clustering algorithm that allows to identify
applications and group them into a new cluster.

The paper [18] gives a big overview of the research that is carried out within
the framework of telecommunications networks using neural networks. Of course,
at now this paper is slightly outdated, nevertheless, it gives us an absolutely
clear understanding that many tasks of telecommunication networks are of huge
practical importance, and can be solved using neural networks.

So, the goal of a large project is to develop a framework that will allow
to select the best stochastic process model in real time by the packets arrive
moments, as well as evaluate its parameters. This will allow real-time manage-
ment of network traffic service. In addition, it will allow engineers not to simplify
their models when researching any new technologies. This paper is part of a large
project and demonstrates the currently results.

The idea of the framework is as follows: (i) take a set number of event time
moments (packets arriving) as input, (ii) use the classification subtask to deter-
mine the mathematical model of the traffic, (iii) use the regression subtask to
estimate the parameters of the corresponding distributions.

In short, we taught the neural network to classify three process models on
simulated data (Poisson, MMPP, renewal) and evaluate its parameters. We will
have to work on the metrics, as the existing ones cannot visualize the results
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well. Of course, we need to add the ability to differentiate between other process
models as well. And then we need to test the results on real data.

2 Data Set

The samples for training are obtained by simulation [19]. Its sizes and modelling
parameters are given in Table 1.

Table 1. Parameter values

Parameter name Parameter value, Parameter value,

classification parameters estimation

Poisson

Number of moments 500 1000

Number of samples 5000 10000

Intensity values, λ λ = unif(0, 10000) λ = unif(0, 10000)

MMPP

Number of moments 500 1500

Number of samples 5000 10000

Number of states, K K = unif(2, 10) K = unif(2, 10)

Values of Q qi,j = unif(0, 10000) qi,j = unif(0, 10000)

Values of Λ λi = unif(0, 10000) λi = unif(0, 10000)

Renewal

Number of moments 500 3000

Number of samples 5000 10000

Shape values, α α = unif(0, 10000) α = exp(100)

Rate values, β β = unif(s − sq, s + sq),

s =
1

α ∗ 5000
,

sq =
1

max(α) ∗ 5000

β = unif(0, 100)

For the classification subtask:

– the dataset contain the event time moments (ti) and process labels (stationary
Poisson/MMPP/renewal),

– the dataset was splitted into train and test datasets in a ratio of 70/30
(10500/4500),

– from the train dataset, 25% of the samples (2625) were selected for validation
during training.

For the parameters estimation subtask:
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– the dataset contain the lengths of intervals between the event time moments
(τi = ti − ti−1) and parameters of processes (λ/K,Q,Λ/α, β),

– the datasets were splitted to train and test datasets in the ratio 80/20
(8000/2000),

– from the train datasets, 20% of the samples (1600) were selected for validation
during training.

3 Quality Metrics

3.1 Classical Metrics of Classification

The following metrics are usually used for the classification problem: accu-
racy (1), recall (2), precision (3), F1 (4), AUC–ROC.

The definitions of metrics are based on the following four concepts: false
positive (FP), when there is actually no detection, but the model concludes that
there is one, false negative (FN), when the model concludes that there is no
detection, but actually there is one, true positive (TP), when model concludes
that the detection there is, and it’s actually true, and true negative (TN), when
model concludes that there is no detection, and it’s actually true.

accuracy =
TP + TN

TP + FP + FN + TN
, (1)

recall =
TP

TP + FN
, (2)

precision =
TP

TP + FP
, (3)

F1 = 2 · precision · recall

precision + recall
. (4)

AUC–ROC is a metric showing the correlation between true positive rate
(TPR) and false positive rate (FPR):

TPR =
TP

TP + FN
, FPR =

FP

FP + TN
.

3.2 Classical Metrics of Regression

For a regression task (in our case, parameter estimation), the following metrics
are usually used:

– mean absolute error (MAE) is a linear estimator, hence all errors are weighted
equally on average

MAE =
1
n

n∑

i=1

|yi − ȳi|,

where n is the number of samples, yi is the actual value of the variable, ȳi is
the predicted (estimated) value.
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– coefficient of determination (R2) is the metric that shows how well a given
model performs better than a “naive” model

R2 = 1 −

n∑

i=1

(yi − ȳi)2

n∑

i=1

(yi − ŷ)2
,

where ŷ is the sample mean yi. For a model with perfect predictive ability,
the coefficient of determination is 1.

3.3 Other Metrics of Regression

Other metrics also were proposed. Let us illustrate the motivation for their use
with the following examples. Suppose we estimate the parameters of the MMPP
arrival process: the number of states, the intensities and the generator matrix.
Let the true value of the number of states be 3 (the number of parameters: 3+6),
but the model was able to detect 4 states (number of parameters: 4 + 12). Then
the usual machine learning metrics cannot be applied.

Or let the true intensity of the events in the first state be much higher than
the others, but during the estimation the model numbered this state as the
third. This will not affect the quality of the approximation in any way, but it
may significantly worsen the metric.

We suggest using metrics based on the following intuition.

Comparison of the Proximity of Two Curves. To evaluate the quality of
the approximation, we generate a new process with the estimated parameters
and compare the proximity of the two curves: the true process and the one
generated by the estimated parameters (Fig. 1).

Below, are the metrics proposed for assessing the proximity of two curves.
Average maximum of modulus of the difference between the curves

m̄max = M

{(
max

1≤i≤2m
|ntrue(ti) − nestimated(ti)|

)

n

}
,

where i is the index of the event time moment of one of the processes occurred,
m is the number of event time moments in one process, n is the size of the test
dataset.

Average relative error of the average length of the intervals

m̄av = M

{(
M{(τtrue)m} − M{(τestimated)m}

M{(τtrue)m}
)

n

}
,

where τ is the length of intervals between event time moments in the process.
Median relative error of the average length of the intervals

m̄median = Me

{(
M{(τtrue)m} − M{(τestimated)m}

M{(τtrue)m}
)

n

}
.
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Fig. 1. Illustration of a true and estimated processes

4 Classification

In this paper, more than two type of processes are considered, so the classification
task is multi-class.

In order to verify that the classification of processes does not depend on the
intensity value of this process, the intensities λpoisson, λmmpp (5), λrenewal (6)
were calculated:

λmmpp = rΛe, (5)

where Λ is the matrix of conditional intensities, e is the unit column vector, Q
is the generator matrix, r is the vector of the stationary probability distribution,
which is found using the matrix equations system

{
rQ = 0,

re = 1.

λrenewal =
1

α ∗ β
(6)

It is found that the measures of the central tendency of the intensities for
different process are close, and thus classification by intensity is excluded (Fig. 2).

Next, we consider two neural network architectures to solve the classification
problem: a fully connected neural network (FCNN) [20], and an Long short-term
memory neural network (LSTM) [21].

Tuning of FCNN parameters does Bayesian Optimisation Algorithm [22] from
the Keras Tuner [23] library. The Table 2 lists the hyperparameters and their
configurable values.

For LSTM network, the variable lookback is initially equal to 10. Consider
the neural network architectures used for classification (Table 3).

Looking at the training graph of these architectures (Fig. 3), the value of the
accuracy metric for the FCNN is much lower than that of the architecture with
LSTM layer. On the validation sample, the value reaches almost 0.9.
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Fig. 2. Histogram of the considered processes intensities

Table 2. Hyperparameters and its configurable values

Hyperparameter Configurable values

Number of hidden layers [1, 2, 3, 4, 5]

Number of neurons in the hidden layer [32; 512]

Activation function (AF) ReLU, tanh, sigmoid, SeLU

Learning rate [10−4, 10−1]

Dropout [0.1; 0.2; 0.3; 0.4]

To achieve better predictive ability, LSTM model was trained with different
number of epochs and with the value of the variable lookback = 30, see the
Table 4. Figure 4 compares the confusion matrices for networks with 10 epochs,
lookback = 10 and 50 epochs, lookback = 30.

A ROC curve (Fig. 5) was also plotted for each class of LSTM architecture
with the number of epochs 10, lookback = 10 and the number of epochs 50,
lookback = 30. As can be seen from the Fig. 5a, class 0 (Poisson process) is best
classified by the model (AUC-ROC = 0.999989), class 1 (MMPP arrival process)
(AUC-ROC = 0.999940), in the Fig. 5b, all types of flows are classified by the
model with high accuracy.

The degenerate case , where λ1 = ... = λk = λ (the MMPP process is
the same as the Poisson process) was considered separately. In this case, the
classification model sees no difference between the types of process.

Finally, we can conclude that the neural network with LSTM layers has better
predictive ability. It is also affected from the number of epochs in training and
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Table 3. The used architectures of the FCNN and LSTM

Network parameters FCNN LSTM

Layer 1 Input layer (500)

Layer 2 Hidden layer (114)
Dropout (0.3)

LSTM (256)

Layer 3 Hidden layer (67)
Dropout (0.3)

Hidden layer (32)

Layer 4 Hidden layer (124)
Dropout (0.3)

–

Layer 5 Hidden layer (32)
Dropout (0.3)

–

Layer 6 Output layer (3)

Hidden layer AF Sigmoid ReLU

Optimizer Adam Adam

Learning rate 0.005 0.001

Number of epochs 30 30

Fig. 3. Comparison of accuracy for a FCNN and LSTM

Table 4. Values of LSTM metrics with different number of epochs and lookback

Lookback value Number of epochs Accuracy Recall Precision F1

10 10 0.829219 0.828868 0.829527 0.829167

10 30 0.864354 0.864013 0.865805 0.864661

30 10 0.971499 0.971354 0.971512 0.971378

30 30 0.986862 0.986841 0.986825 0.986823

30 50 0.995323 0.995328 0.995305 0.995311
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Fig. 4. Confusion matrix for each class (0 – Poisson, 1 – MMPP, 2 – renewal)

Fig. 5. ROC curves for each class (0 – Poisson, 1 – MMPP, 2 – renewal)

the value of lookback variable, the more these parameters the better the metrics
values and generalization ability of the model.

5 Parameters Estimation

5.1 Stationary Poisson Process

For a stationary Poisson process, the target variable is the estimated value of
the intensity parameter λ, so we solve the problem of univariate regression (in
terms of neural networks). For this subtask we used FCNN.

At the beginning of model building, the event time moments ti were used
as input data. The first models were fitted using a Bayesian optimization algo-
rithm, where hyperparameters were selected from the Table 2, except for the
number of neurons in the hidden layer:



Identification of Network Traffic Using Neural Networks 85

– [32; 1024] for Architecture 1
– and [32; 2048] for Architecture 2.

The metric R2 was calculated for Architecture 1 (R2 = −0.059957) and
Architecture 2 (R2 = 0.113776). As we can see, Architecture 2 works a little
better, because it is a deeper network. To improve the predictive ability we
could have deepened the network, but this would have increased the number of
trained parameters. Therefore, it was decided to try to use the intervals between
events time moments τi as input data.

As a first approximation, the model parameters (Architecture 3) were selected
using a Bayesian optimization algorithm. Architectures 1, 2 and 3 are presented
in the table 5.

Table 5. The used architectures of the stationary Poisson process

Network parameters Architecture 1 Architecture 2 Architecture 3

Layer 1 Input layer

Layer 2 Hidden layer (698) Hidden layer (1797) Hidden layer (368)

Layer 3 Hidden layer (603) Hidden layer (1816) Hidden layer (64)

Layer 4 Hidden layer (32) – Hidden layer (742)

Layer 5 – – Hidden layer (106)

Layer 6 Output layer (1)

Hidden layer AF ReLU ReLU ReLU

Optimizer Adam Adam Adam

Learning rate 0.001 0.001 0.001

Number of epochs 50 50 50

The metric R2 for Architecture 3 is significantly better than previous results
(R2 = 0.892156). Further models were trained based on Architecture 3 with a
different number of epochs, and the learning results are shown in the Table 6.

Table 6. Metrics for modifications of Architecture 3

Number of epochs MAE R2

50 749.899196 0.892156

70 729.681985 0.903051

100 623.516307 0.916881

When training for 150 epochs, the maximum value of the metric R2 was
achieved, but an overfitting effect was observed (Fig. 6). So we decided to make
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Fig. 6. Architecture 3 training plot for 150 epochs

the model simpler (Architecture 4: 2 hidden layers of 80 neurons each) and see
how it behaves.

The predictive ability of the model improved by 0.06, R2 = 0.978362. Then
we tried to train a model with fewer epochs (18). This is the number of epochs
that satisfy the condition that the error value on the ith iteration is less than
the error value on the (i − 1)th iteration. This increased the predictive ability
MAE = 226.270934, R2 = 0.989362.

5.2 MMPP

For MMPP, the target variables are the qenerator matrix Q and the matrix of
conditional intensities Λ. Therefore, we solve the multivariate regression. The
number of output features will be equal to K2 + K, where K is the number of
states. Generally speaking, the subtask of estimating the number of states K is a
separate problem that should be solved in the future, but within the framework
of this work we believe that K is already known. We also used FCNN for this
subtask. The intervals between event time moments τi were chosen as input data.
The architecture was selected using automatic hyperparameter selection (hidden
layer AF: ReLU, optimizer: Adam, learning rate: 0.003, number of epochs: 50).
The Table 7 indicates the number and types of layers.

Table 7. The used architecture of the MMPP

Network parameters Architecture

Layer 1 Input layer (1500)

Layer 2 Hidden layer (713)
Dropout (0.1)

Layer 3 Hidden layer (266)
Dropout (0.1)

Layer 4 Hidden layer (854)
Dropout (0.1)

Layer 5 Hidden layer (853)
Dropout (0.1)

Layer 6 Output layer (110)
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Fig. 7. True and estimated curves

The quality of the model was assessed using the metrics introduced in para-
graph 2.3. To do this, curves were constructed, the Fig. 7 shows the appearance of
two randomly selected examples, and the values of the metrics for each example.

The model was also trained on 100 epochs, the model became more accurate
in estimating the parameters (m̄max = 350.961831), and this model was also
trained with different hidden layer activation functions. It was found that with
the same other parameters, the model performed best when trained with the
ReLU activation function (see Table 8).

The results obtained show that the proposed metrics are still poorly measur-
able for such intense processes, with a small error in estimating the parameters,
the metrics instantly deteriorate significantly. We will try other metrics in the
future.

Table 8. Metrics values for MMPP

Number of epochs Activation function m̄max m̄av m̄median

50 ReLU 425.790304 0.999044 0.999021

100 ReLU 350.961831 0.998965 0.998968

50 SELU 441.293103 0.998608 0.998513

50 sigmod 520.495963 0.998593 0.998591

50 tanh 464.273782 0.998631 0.998634

5.3 Renewal Process

To estimate the parameters of the renewal arrival process, data different from
those used in the classification task were chosen, since for the classification task
the parameters were specifically chosen to obtain the desired intensity. In the
regression task, models trained on such data have poor generalization ability. To
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solve this problem, the parameters α and β were modelled from two distributions,
and the number of time points considered in one observation is equal 1000.

The first neural network architectures (based on FCNN) for further training
was selected using a Bayesian optimization algorithm (hidden layer AF: ReLU,
optimizer: Adam, learning rate: 0.004, number of epochs: 150). The Table 9 shows
the number and types of layers. As in the MMPP parameter estimation subtask,
metrics calculated from two curves were used to determine the predictive ability
of the model.

Table 9. The used architectures of the renewal process

Network parameters Architecture 1 Architecture 2 Architecture 3

Layer 1 Input layer (1000) Input layer (1000) Input layer (3000)

Layer 2 Hidden layer (614)
Dropout (0.1)

Hidden layer (614)
Dropout (0.2)

Hidden layer (567)
Dropout (0.2)

Layer 3 Hidden layer (224)
Dropout (0.1)

Hidden layer (224)
Dropout (0.2)

Hidden layer (1006)
Dropout (0.2)

Layer 4 – – Hidden layer (39)
Dropout (0.2)

Layer 5 – – Hidden layer (474)
Dropout (0.2)

Layer 6 Output layer (2)

The Architecture 1 was overfitted with 150 epochs (Fig. 8), so the value of
dropout layer was increased in Architecture 2, as can be seen from the Table 10,
this had a positive effect on the metrics. The Architecture 3 with more input data
(3000) was trained on fewer epochs as it contains many parameters, however it
performed the best based on the metrics. An assumption can be made that the
more data the model receives as input, the better it performs.

Fig. 8. Overfitting of the Architecture 1
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Table 10. Metrics values for renewal process

Architecture number Number of epochs m̄max m̄av m̄median

1 150 354.070344 0.996098 0.999009

2 150 331.036943 0.996044 0.997374

3 100 263.391194 0.996474 0.997478

6 Conclusion

As a result of this work, stationary Poisson, MMPP and renewal process were
simulated. The neural network technology was used to classify the process (AUC
ROC = 0.99), and it was also possible to obtain excellent predictive ability in
predicting the parameter λ for the stationary Poisson process (R2 = 0.989362).
A solution to the multivariate regression problem in predicting the parameters
Q and Λ for the MMPP, as well as the parameters α and β of the gamma
distribution of the renewal process, was obtained. To evaluate the predictive
ability of the considered architectures, we used metrics widely known in machine
learning, and also proposed metrics that are calculated on the basis of two curves:
the true curve and the curve simulated by the estimated parameters.

In the interim results, we see that the problem is solved quite well, and
can provide a good tool for engineers and mathematicians in the task of traffic
identification. However, there are some difficulties with visualizing these results,
and we will have to work with new metrics in the future. And also need to
add other process models to this framework, other distributions for the renewal
process. And our global goal is to make software that will receive traffic data in
real time, find a process model, its parameters, and propose a strategy for its
service in networks.
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Abstract. This paper considers a production inventory system with
perishable items where the customers arrive according to a homogeneous
Poisson process. The time interval between the production of each item
is exponentially distributed. This is a single server system, where the ser-
vice time follows exponential distribution. The server may become break-
down according to a Poisson process in which case the service restarts
after an exponentially distributed time. On arrival, a customer leads to
service if the server is available and the inventory is non-empty. The arriv-
ing customer on finding the server busy or breakdown goes to a waiting
place(orbit) of infinite capacity with pre-determined probability or exits
the system with complementary probability. Each customer in the orbit
retries to access the service facility in an exponentially distributed time
interval. If the retrial is unsuccessful, the customer returns to the orbit
with a pre-allotted probability or is lost forever with probability equal
to its complement. An algorithmic solution to the problem is obtained
using Matrix Analytic Method. Average inventory level in the system,
mean number of customers in the orbit, expected rate at which produc-
tion is switched ON, the mean number of customer loss before and after
entering the system, the rate of successful retrials among overall retri-
als, average breakdown rate and repair rate and some other performance
measures of the system are derived. The impacts of system parameters
on different measures are numerically studied. A suitable cost function
is constructed to find the optimum cost.
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1 Introduction

A glance through the literature on perishable inventory gives us an understand-
ing that majority of the existing perishable inventory models in the literature
assume that the system does not have a production unit and the items are pur-
chased from outside sources. This can be detrimental to industries and firms
if there are no goods or items on hand. Due to this, industries/firms would
lose their business. Normally, a firm must be prepared to deliver the items on
demand. To make it easier for the system to deliver items without delay, we
explore a deteriorating item inventory model with a production facility. Another
possible difficulty that industries may face is server failure during service, which
may take random time to repair. In this work, we propose a production inventory
model of perishable items with an unreliable server.

An inventory system with positive service time and retrial of customers has
received a small scale of attention in the literature. Artalejo et al. [1] were the
first to publish a work on retrial inventory where the authors considered a con-
tinuous review (s, S) inventory system in which primary customers who arrive
when the inventory level is zero, leave the server and retry after some random
time. Sivakumar [9] considered a continuous review (s, Q) inventory system with
perishable items with a finite number of demands. The lifetime of each item and
the lead time of the system are assumed to be exponentially distributed. Reshmi
and Jose [7] studied a queueing inventory system with perishable items and all
underlying processes are assumed as exponential. Items in the inventory perish
at a linear rate. Periyasamy [6] analysed a continuous review perishable inven-
tory system with a single server and zero lead time. If the demand occurs during
a busy period, it is directed to an obit and may retry from there. Krishnamoor-
thy and Islam [3] introduced perishability in a retrial inventory model with one
production unit. When the inventory level reaches zero, arriving demands are
sent to the orbit which has finite capacity and try for their luck. Customers, who
find the orbit full and inventory level zero, may even leave the system.

Jose and Reshmi [2] studied a production inventory system with perishable
items. Unsatisfied customers are provided with a retrial facility and all the under-
lying distributions are exponential. Ushakumari [10] analyzed a retrial inventory
system with an unreliable server. The server may undergo a breakdown. Here,
an interrupted customer moves to orbit and retries to access the free server.
Reshmi and Jose [8] also considered a MAP/PH/1 perishable inventory model
with retrials. In this retrial customers re-enter the orbit according to inventory
dependent probabilities.

2 Mathematical Model

Consider a single server production inventory system with an (s, S) control pol-
icy. The items under consideration are perishable and we also assume that the
system has a retrial facility. The lifetime of an item in the inventory follows
an exponential distribution with parameter jω, provided there are j items in
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the inventory. Arrival of customers follows the Poisson process with parameter
λ and each customer is served a single item. If the server is available at the
arrival epoch of a customer and the inventory is non-empty then that customer
is immediately allowed to enter the service. The service time duration follows
an exponential distribution with parameter μ. The production process follows
an exponential distribution with parameter β and it adds one unit to the inven-
tory at a time. When the on-hand inventory level drops to s, the production is
switched ON and it continues until the inventory level S is reached.

The server may experience a breakdown while in service and it follows a
Poisson distribution with parameter δ1 and its repair times are exponentially
distributed with parameter δ2. Any customer who arrives when the inventory
level is zero, or server is busy or the server breakdown, is offered the choice of
either joining a waiting space (orbit) of infinite capacity with probability γ or
exiting the system with probability 1 − γ. All customers who enter the orbit,
independently generate requests for service at exponentially distributed time
intervals with mean 1

θ . The retrial customers who find the inventory out of stock
or server busy or breakdown, return to the orbit with probability δ or exit the
system with complementary probability 1 − δ.

Let N(t) and I(t) denote the number of customers in the orbit at time t and
the inventory level at time t respectively. Further, let

P (t) =

{
0, if the production is OFF at time t

1, if the production is ON at time t

and

C(t) =

⎧⎪⎨
⎪⎩

0, if the server is idle at time t

1, if the server is busy at time t

2, if the server is breakdown at time t

denote the status of the server and the production unit at the epoch t.
Now, X = {(N(t), C(t), P (t), I(t))|t ≥ 0} constitute a continuous time

Markov chain with state space G1 ∪ G2 ∪ G3, where

G1 = {(i, k, 0, j)|i ≥ 0; k = 0, 1, 2; s + 1 ≤ j ≤ S}
G2 = {(i, k, 1, j)|i ≥ 0; k = 0, 1; k ≤ j ≤ S − 1} and
G3 = {(i, 2, 1, j)|i ≥ 0; 1 ≤ j ≤ S − 1}.

The generator matrix of the process is

Q =

⎡
⎢⎢⎢⎢⎢⎣

A10 A0

A21 A11 A0

A22 A12 A0

A23 A13 A0

. . . . . . . . .

⎤
⎥⎥⎥⎥⎥⎦

where each element in Q is a square matrix of order (6S − 3s − 2).
Transitions of A0
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– (i, 0, 1, 0)
λγ−−−−−→ (i + 1, 0, 1, 0); i ≥ 0

– (i, k, 0, j)
λγ−−−−−→ (i + 1, k, 0, j); i ≥ 0, s + 1 ≤ j ≤ S, k = 1, 2

– (i, k, 1, j)
λγ−−−−−→ (i + 1, k, 1, j); i ≥ 0, 1 ≤ j ≤ S − 1, k = 1, 2

Transitions of A2i

– (i, 0, 0, j) iθ−−−−−→ (i − 1, 1, 0, j); i ≥ 1, s + 1 ≤ j ≤ S

– (i, 0, 1, 0)
iθ(1 − δ)−−−−−→ (i − 1, 0, 1, 0)

– (i, 0, 1, j) iθ−−−−−→ (i − 1, 1, 1, j); i ≥ 1, 1 ≤ j ≤ S − 1

– (i, k, 0, j)
iθ(1 − δ)−−−−−→ (i − 1, k, 0, j); i ≥ 1, s + 1 ≤ j ≤ S, k = 1, 2

– (i, k, 1, j)
iθ(1 − δ)−−−−−→ (i − 1, k, 1, j); i ≥ 1, 1 ≤ j ≤ S − 1, k = 1, 2

Transitions of A1i

– (i, 0, 0, j) λ−−−−−→ (i, 1, 0, j); s + 1 ≤ j ≤ S

– (i, 0, 1, j) λ−−−−−→ (i, 1, 1, j); 1 ≤ j ≤ S − 1

– (i, 1, 0, j)
μ−−−−−→ (i, 0, 1, j − 1); j = s + 1

– (i, 1, 0, j)
μ−−−−−→ (i, 0, 0, j − 1); s + 2 ≤ j ≤ S

– (i, 1, 1, j)
μ−−−−−→ (i, 0, 1, j − 1); 1 ≤ j ≤ S − 1

– (i, 0, 1, j)
β−−−−−→ (i, 0, 1, j + 1); 0 ≤ j ≤ S − 2

– (i, 0, 1, j)
β−−−−−→ (i, 0, 0, j + 1); j = S − 1

– (i, 1, 1, j)
β−−−−−→ (i, 1, 1, j + 1); 1 ≤ j ≤ S − 2

– (i, 1, 1, j)
β−−−−−→ (i, 1, 0, j + 1); j = S − 1

– (i, 2, 1, j)
β−−−−−→ (i, 2, 1, j + 1); 1 ≤ j ≤ S − 2

– (i, 2, 1, j)
β−−−−−→ (i, 2, 0, j + 1); j = S − 1

– (i, 0, 0, j)
jω−−−−−→ (i, 0, 0, j − 1); s + 2 ≤ j ≤ S

– (i, 0, 0, j)
(s + 1)ω−−−−−→ (i, 0, 1, j − 1); j = s + 1

– (i, 0, 1, j)
jω−−−−−→ (i, 0, 1, j − 1); 1 ≤ j ≤ S − 1

– (i, 1, 0, j)
(s + 1)ω−−−−−→ (i, 1, 1, j − 1); j = s + 1

– (i, 1, 0, j)
jω−−−−−→ (i, 1, 0, j − 1); s + 2 ≤ j ≤ S

– (i, 1, 1, j)
jω−−−−−→ (i, 1, 1, j − 1); 2 ≤ j ≤ S − 1

– (i, 2, 0, j)
jω−−−−−→ (i, 2, 0, j − 1); s + 2 ≤ j ≤ S

– (i, 2, 0, j)
(s + 1)ω−−−−−→ (i, 2, 1, j − 1); j = s + 1

– (i, 2, 1, j)
jω−−−−−→ (i, 2, 1, j − 1); 2 ≤ j ≤ S − 1
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– (i, 1, 0, j)
δ1−−−−−→ (i, 2, 0, j); s + 1 ≤ j ≤ S

– (i, 1, 1, j)
δ1−−−−−→ (i, 2, 1, j); 1 ≤ j ≤ S − 1

– (i, 2, 0, j)
δ2−−−−−→ (i, 1, 0, j); s + 1 ≤ j ≤ S

– (i, 2, 1, j)
δ2−−−−−→ (i, 1, 1, j); 1 ≤ j ≤ S − 1

– (i, 0, 0, j)
αj−−−−−→ (i, 0, 0, j);

αj = −λ − jω − iθ; s + 1 ≤ j ≤ S

– (i, 0, 1, j)
τj−−−−−→ (i, 0, 1, j);

τj =

{
−λγ − β − iθ(1 − δ); j = 0
−λ − β − jω − iθ; 1 ≤ j ≤ S − 1

– (i, 1, 0, j)
χj−−−−−→ (i, 1, 0, j);

χj = −λγ − μ − jω − iθ(1 − δ) − δ1; s + 1 ≤ j ≤ S

– (i, 1, 1, j)
εj−−−−−→ (i, 1, 1, j);

εj =

{
−λγ − β − μ − δ1 − iθ(1 − δ); j = 1
−λγ − β − μ − δ1 − jω − iθ(1 − δ); 2 ≤ j ≤ S − 1

– (i, 2, 0, j)
ψj−−−−−→ (i, 2, 0, j);

ψj = −λγ − δ2 − iθ(1 − δ); s + 1 ≤ j ≤ S

– (i, 2, 1, j)
φj−−−−−→ (i, 2, 1, j);

φj =

{
−λγ − β − δ2 − iθ(1 − δ); j = 1
−λγ − β − δ2 − jω − iθ(1 − δ); 2 ≤ j ≤ S − 1

3 System Stability

The system under consideration is stable if and only if,

lim
N→∞

(
πNA0e

πNA2Ne
) < 1

where,

πNA0e = πN
01(λγcS(1) ⊗ rS(1))e + ((πN

10 + πN
11 + πN

20 + πN
21)λγIS−s)e,

πNA2Ne = (πN
00NθIS−s)e + πN

01(Nθ(1 − δ)cS(1) ⊗ rS(1))e

+ ((πN
10 + πN

20)Nθ(1 − δ)IS−s)e + ((πN
11 + πN

21)Nθ(1 − δ)IS−1)e.

For obtaining this, we apply the Neuts-Rao truncation [5] by assuming A1i =
A1N and A2i = A2N for all i ≥ N . When the number of customers in the
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orbit are sufficiently large, the bulk of them fail to access the server and do not
alter the state of the system. In this scenario, the change in the steady state
probability vector is negligible if the number of customers in the orbit is limited
to a suitably chosen N . The infinitesimal generator Q of the truncated system
will be

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A10 A0

A21 A11 A0

A22 A12 A0

. . . . . . . . .
A2N A1N A0

A2N A1N A0

. . . . . . . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Define AN = A0 + A1N + A2N ; then

AN =

⎡
⎢⎢⎢⎢⎢⎢⎣

H11 H12 H13 0 0 0
H21 H22 0 H24 0 0
H31 H32 H33 H34 H35 0
0 H42 H43 H44 0 H46

0 0 H53 0 H55 H56

0 0 0 H64 H65 H66

⎤
⎥⎥⎥⎥⎥⎥⎦

,

We introduce some notations to describe the terms in the above matrix.

1. Im denote an identity matrix of order m.
2. Em denote a matrix of order m defined as Em(i, j) = 1; j = i + 1 and zero

elsewhere.
3. Fm denote a matrix of order m defined as Fm(i, j) = 1; i = j + 1 and zero

elsewhere
4. rm(i) denote a 1 × m row matrix whose ith entry is 1 and all other entries

are zeros.
5. cm(i) denotes the transpose of (rm(i)).
6. ⊗ denotes Kronecker product of matrices.
Thus the entries given in the matrix AN are as follows.

H11 = (−λ − Nθ)I(S−s) + ΣS−s
j=1 jω(cS−s(j) ⊗ rS−s(j))

+ ΣS−s
j=2 (s + j)ω(cS−s(j) ⊗ rS−s(j − 1)),

H12 = (s + 1)ω(cS−s(1) ⊗ rS(s + 1)),
H13 = λIS−s,H21 = βcS−1(S − 1) ⊗ rS−s(S − s),

H22 = βES + ΣS−1
j=2 (j − 1)ω(cS(j) ⊗ rS(j − 1)) − βIS

− (λ + Nθ)ΣS
j=2(j − 1)ω(cS(j) ⊗ rS(j)),
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H24 = (λ + Nθ)ΣS
j=2(cS(j) ⊗ rS−1(j − 1)),

H31 = μFS ,H32 = μ(cS−s(1) ⊗ rS(s + 1)),

H33 = ΣS−s
j=2 (s + j)ω(cS−s(j) ⊗ rS−s(j − 1)) − (μ + δ1)IS−s

− ΣS−s
j=1 (s + j)ω(cS−s(j) ⊗ rS−s(j)),

H34 = (s + 1)ω(cS−s(1) ⊗ rS−1(s)),

H35 = δ1IS−s,H42 = ΣS−1
j=1 μ(cS−1(j) ⊗ rS(j)),

H43 = β(cS−1(S − 1) ⊗ rS−s(S − s)),

H44 = ΣS−1
j=2 jω(cS−1(j) ⊗ rS−1(j − 1)) − (β + μ + δ1)IS−s

− Σs−1
j=2 jω(cS−1(j) ⊗ rS−1(j)) + βES−1,

H46 = δ1IS−1,H53 = δ2IS−s,

H55 = ΣS−s
j=2 (s + j)ω(cS−s(j) ⊗ rS−s(j − 1)) − δ2IS−s,

H56 = (s + 1)ω(cS−s(1) ⊗ rS−1(s)),H64 = δ2IS−1,

H65 = βcS−1(S − 1) ⊗ rS−s(S − s),

H66 = βES−1 − (β + δ2)IS−1 + ΣS−1
j=2 jω(cS−1(j) ⊗ rS−1(j − 1))

− Σs−1
j=2 jω(cS−1(j) ⊗ rS−1(j)).

Let, πN = (πN
00, π

N
01, π

N
10, π

N
11, π

N
20, π

N
21), where

πN
00 = (πN,0,0,s+1, πN,0,0,s+2 . . . , πN,0,0,S), π

N
01 = (πN,0,1,0, πN,0,1,1, . . . , πN,0,1,S−1),

πN
10 = (πN,1,0,s+1, πN,1,0,s+2, . . . , πN,1,0,S), π

N
11 = (πN,1,1,1, πN,1,1,2, . . . , πN,1,1,S−1),

πN
20 = (πN,2,0,s+1, πN,2,0,s+2, . . . , πN,2,0,S), π

N
21 = (πN,2,1,1, πN,2,1,2, . . . , πN,2,1,S−1)

be the steady state vector of the generator matrix AN .
Then the relation πNAN = 0 and the normalizing condition πNe = 1 gives

rise to the following equations:

π
N
00H11 + π

N
01H21 + π

N
10H31 = 0, =⇒ π

N
00 = −(π

N
01H21 + π

N
10H31)H

−1
11 ,

π
N
00H12 + π

N
01H22 + π

N
10H32 + π

N
11H42 = 0, =⇒ π

N
01 = −(π

N
00H12 + π

N
10H32 + π

N
11H42)H

−1
22 ,

π
N
00H13 + π

N
10H33 + π

N
11H43 + π

N
20H53 = 0, =⇒ π

N
10 = −(π

N
00H13 + π

N
11H43 + π

N
20H53)H

−1
33 ,

π
N
01H24 + π

N
10H34 + π

N
11H44 + π

N
21H64 = 0, =⇒ π

N
11 = −(π

N
01H24 + π

N
10H34 + π

N
21H64)H

−1
44 ,

π
N
10H35 + π

N
20H55 + π

N
21H65 = 0, =⇒ π

N
20 = −(π

N
10H35 + π

N
21H65)H

−1
55 ,

π
N
11H46 + π

N
20H56 + π

N
21H66 = 0 =⇒ π

N
21 = −(π

N
11H46 + π

N
20H56)H

−1
66 ,

The invertibility of the matrices Hii; i = 1, 2, .., 6 follows from the fact that
they are strictly diagonally dominant. Thus by Block Gauss-Seidel iteration, we
can find the vector πN .

Now, we know that the truncated system is stable if and only if πNA0e <
πNA2Ne. By rearranging and using the limiting technique used by Krishnamoor-
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thy et.al. [4], as N → ∞, we get limN→∞( πNA0e
πNA2Ne ) < 1, where

πNA0e = πN
01(λγcS(1) ⊗ rS(1))e + ((πN

10 + πN
11 + πN

20 + πN
21)λγIS−s)e,

πNA2Ne = (πN
00NθIS−s)e + πN

01(Nθ(1 − δ)cS(1) ⊗ rS(1))e

+ ((πN
10 + πN

20)Nθ(1 − δ)IS−s)e + ((πN
11 + πN

21)Nθ(1 − δ)IS−1)e,

as the stability condition which was verified numerically.

4 Steady State Distribution

Since X is a level dependent quasi-birth-death process, we use the method
described by Neuts-Rao [5] to calculate the steady state probability vector. Con-
sider the steady state probability vector x = (x0, x1, x2, . . . ) of Q, where,

xi = (zi,0,0,s+1, zi,0,0,s+2 . . . , zi,0,0,S , zi,0,1,0, zi,0,1,1, . . . , zi,0,1,S−1,

zi,1,0,s+1, zi,1,0,s+2, . . . , zi,1,0,S , zi,1,1,1, zi,1,1,2, . . . , zi,1,1,S−1,

zi,2,0,s+1, zi,2,0,s+2, . . . , zi,2,0,S , zi,2,1,1, zi,2,1,2, . . . , zi,2,1,S−1)(i ≥ 0).

Here, xi satisfies the relation

xN+k−1 = xN−1R
k, k ≥ 1,

where the matrix R is the unique non-negative solution of the matrix quadratic
equation,

R2A2 + RA1 + A0 = 0,

with A1 = A1N , A2 = A2N and R = limn→∞ Rn, where {Rn} is defined such that
Rn+1 = −A0A

−1
1 − RnA2A

−1
1 ;n ≥ 0 and R0 = 0. The vectors x0, x1, . . . , xN−1

are obtained by solving the equations

x0A10 + x1A21 = 0
xi−1A0 + xiA1i + xi+1A2(i+1) = 0; (1 ≤ i ≤ N − 2)
xN−2A0 + xN−1(A1(N−1) + RA2) = 0

subject to normalizing condition

[ΣN−2
i=0 xi + xN−1(1 − R)−1]e = 1.

5 Performance Measures

Using the above probability vectors, we calculated some important performance
measures which are given below,

1. Expected inventory level in the system,

Einv = Σ∞
i=0Σ

2
k=0Σ

S
j=s+1jzi,k,0,j + Σ∞

i=0Σ
2
k=0Σ

S−1
j=1 jzi,k,1,j .
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2. Mean number of customers in the orbit,

Eorbit = ΣiΣkΣlΣjizi,k,l,j = (Σ∞
i=1ixi) e.

3. Expected rate at which production is switched ON ,

EON = μΣ∞
i=0zi,1,0,s+1

+ (s + 1)ω (Σ∞
i=0zi,0,0,s+1 + Σ∞

i=0zi,1,0,s+1 + Σ∞
i=0zi,2,0,s+1) .

4. Expected perishability rate,

Ep = ω
(
zi,0,1,1 + Σ∞

i=0Σ
2
k=0Σ

S
j=s+2jzi,k,0,j + Σ∞

i=0Σ
2
k=0Σ

S−1
j=2 jzi,k,1,j

)
.

5. Average number of departures after service completion,

Eds = μΣ∞
i=0

(
ΣS

j=s+2zi,1,0,j + ΣS−1
j=1 zi,1,1,j

)
.

6. Average number of customers lost prior to entering the orbit,

Ela = λ(1 − γ)Σ∞
i=0

(
zi,0,1,0 + ΣS

j=s+1zi,1,0,j + ΣS−1
j=1 zi,1,1,j

)
+ λ(1 − γ)Σ∞

i=0

(
ΣS

j=s+1zi,2,0,j + ΣS−1
j=1 zi,2,1,j

)
.

7. Average number of customers lost during retrials,

Elr = θ(1 − δ)Σ∞
i=0i

(
zi,0,1,0 + ΣS

j=s+1zi,1,0,j + ΣS−1
j=1 zi,1,1,j

)
+ θ(1 − δ)Σ∞

i=0i
(
ΣS

j=s+1zi,2,0,j + ΣS−1
j=1 zi,2,1,j

)
.

8. Average rate of breakdown

Abr = δ1Σ
∞
i=0

(
ΣS

j=s+1zi,1,0,j + ΣS−1
j=1 zi,1,1,j

)
.

9. Average rate of repair

Arr = δ2Σ
∞
i=0

(
ΣS

j=s+1zi,2,0,j + ΣS−1
j=1 zi,2,1,j

)
.

10. Overall rate of retrials,
θ∗
1 = θ (Σ∞

i=1ixi) e.

11. Successful rate of retrials,

θ∗
2 = θΣ∞

i=0i
(
ΣS

j=s+1zi,0,0,j + ΣS−1
j=1 zi,0,1,j

)
.

12. Fraction of time production is ON

FON = Σ∞
i=0Σ

S−1
j=0 zi,0,1,j + Σ∞

i=0Σ
S−1
j=1 zi,1,1,j .

13. Ratio of successful rate of retrials,

Rsr =
θ∗
2

θ∗
1

.
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6 Cost Analysis

To determine the optimum cost for the model under consideration, we construct
the expected total cost (ETC), per unit time in terms of performance measures
as follows:

ETC = k1EON + k2Einv + k3Eorbit + k4(Ela + Elr) + k5Ep + k6FON + k7Abr + k8Arr,

where k1 = Production switch on cost per unit time, k2 = Holding cost of
inventory per unit per unit time, k3 = Holding cost of customers per unit per
unit time, k4 = Cost due to loss of customers per unit per unit time, k5 = Cost
due to the decay of items per unit per unit time, k6 = Cost of running production
process per unit time, k7 = Penalty due to breakdown of server per unit per unit
time and k8 = Cost of server repair per unit per unit time.

7 Numerical Experiments

In this section, we provide results of numerical illustration that has been carried
out for studying the effects of variation of different parameters on various per-
formance measures. Numerical experiments are conducted by considering some
artificial data. Assume that the production switch on level, s = 6 and the maxi-
mum permissible inventory level, S = 18. To study the variation of each parame-
ter on system performances, we consider the following cases 7.1 to 7.9 with table
representations.

7.1 Effect of the Arrival Rate λ

As the arrival rate λ increases, the number of customers in the orbit Eorbit also
increases which in turn leads to the loss of arriving customers as well as retrying
customers. The increase in Eorbit results in the increase of Eds, θ

∗
1 and θ∗

2 (see
Table 1). The decrease in expected inventory level can be seen due to a decrease
in expected production switching rate.

Table 1. Effect of arrival rate λ on various performance measures

λ Einv Eorbit EON Ep Eds Ela Elr Abr Arr θ∗
1 θ∗

2

2.2 1.4045 1.6734 2.9503e−11 1.6854 1.1589 0.49056 0.55055 0.15452 0.022975 3.3468 0.59409

2.3 1.392 1.8047 2.8287e−11 1.6704 1.1804 0.52135 0.59821 0.15739 0.020866 3.6093 0.61826

2.4 1.3804 1.9388 2.7248e−11 1.6565 1.2005 0.55227 0.64725 0.16006 0.018881 3.8776 0.64138

2.5 1.3698 2.0757 2.6356e−11 1.6437 1.2191 0.5833 0.69759 0.16255 0.017027 4.1514 0.66344

2.6 1.3599 2.2151 2.5591e−11 1.6319 1.2364 0.61441 0.74914 0.16486 0.015307 4.4302 0.68449

2.7 1.3508 2.3568 2.493e−11 1.621 1.2526 0.64558 0.80182 0.16701 0.013719 4.7137 0.70454

2.8 1.3424 2.5007 2.4359e−11 1.6109 1.2676 0.6768 0.85557 0.16902 0.012261 5.0015 0.72363

2.9 1.3346 2.6467 2.3862e−11 1.6016 1.2817 0.70804 0.9103 0.17089 0.01093 5.2933 0.74178

S = 18; s = 6; μ = 3; ω = 1.2; β = 2.6; θ = 2; γ = 0.7; δ = 0.8; δ1 = 0.4; δ2 = 1.6
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7.2 Effect of the Service Rate μ

Intuitively, an increase in service rate leads to a greater number of service com-
pletions. Therefore, Eds also increases and the number of customers in the orbit
Eorbit decreases. The overall and successful rate of retrials decreases because
Eorbit is decreasing. Expected inventory level Einv gets decreased when more
and more customers get served, leading to a decrease in Ep. So the production
process need not have to switch ON frequently. The breakdown rate is decreasing
and the repair rate is increasing. The number of unsatisfied customers decreases,
that is Ela and Elr in Table 2 support the intuition.

Table 2. Effect of service rate μ on various performance measures

μ Einv Eorbit EON Ep Eds Ela Elr Abr Arr θ∗
1 θ∗

2

2.6 1.4414 2.2047 3.302e−11 1.7297 1.1483 0.59858 0.75316 0.17666 0.016614 4.4093 0.64352

2.7 1.4223 2.1698 3.1106e−11 1.7067 1.1674 0.59456 0.73807 0.17294 0.016744 4.3396 0.64924

2.8 1.404 2.1368 2.937e−11 1.6848 1.1855 0.59068 0.72382 0.16936 0.016855 4.2735 0.65443

2.9 1.3865 2.1054 2.7793e−11 1.6638 1.2027 0.58693 0.71034 0.16589 0.016949 4.2109 0.65915

3 1.3698 2.0757 2.6356e−11 1.6437 1.2191 0.5833 0.69759 0.16255 0.017027 4.1514 0.66344

3.1 1.3538 2.0475 2.5046e−11 1.6245 1.2347 0.5798 0.68552 0.15931 0.01709 4.0949 0.66734

3.2 1.3384 2.0206 2.3848e−11 1.6061 1.2495 0.57641 0.67408 0.15619 0.01714 4.0413 0.67088

3.3 1.3238 1.9951 2.275e−11 1.5885 1.2636 0.57314 0.66323 0.15317 0.017177 3.9902 0.67409

3.4 1.3097 1.9708 2.1742e−11 1.5716 1.2771 0.56998 0.65294 0.15025 0.017202 3.9417 0.67701

S = 18; s = 6; λ = 2.5; ω = 1.2; β = 2.6; θ = 2; γ = 0.7; δ = 0.8; δ1 = 0.4; δ2 = 1.6

7.3 Effect of the Perishable Rate ω

When decay rate increases, obviously Ep increases, which leads to decrease in
expected inventory level Einv as well as in expected departure from service
Eds. The production switch on rate is decreasing but it is very negligible. As
Einv decreases, more customers joins the orbit i.e. Eorbit increases. When Eorbit

increases, we expect increase in measures like Ela, Elr and θ∗
1 . The breakdown

rate is decreasing along with the repair rate. Table 3 supports these intuitions.

Table 3. Effect of perishable rate ω on various performance measures

ω Einv Eorbit EON Ep Eds Ela Elr Abr Arr θ∗
1 θ∗

2

0.8 1.7962 1.9275 4.1765e−09 1.437 1.3022 0.56171 0.63607 0.17363 0.020244 3.8549 0.67457

0.9 1.6558 1.9696 1.0079e−09 1.4902 1.2785 0.56798 0.65347 0.17047 0.019302 3.9392 0.67182

1 1.5424 2.008 2.7263e−10 1.5424 1.257 0.57361 0.66939 0.1676 0.018463 4.016 0.66904

1.1 1.4487 2.0432 8.1281e−11 1.5935 1.2373 0.57869 0.68404 0.16497 0.017709 4.0864 0.66624

1.2 1.3698 2.0757 2.6356e−11 1.6437 1.2191 0.5833 0.69759 0.16255 0.017027 4.1514 0.66344

1.3 1.3024 2.1058 9.195e−12 1.6931 1.2023 0.58752 0.71019 0.16031 0.016407 4.2116 0.66067

1.4 1.244 2.1339 3.4221e−12 1.7416 1.1866 0.59139 0.72197 0.15822 0.015841 4.2678 0.65793

1.5 1.193 2.1602 1.3486e−12 1.7894 1.172 0.59496 0.73302 0.15627 0.01532 4.3203 0.65523

1.6 1.1478 2.1848 5.6019e−13 1.8366 1.1583 0.59827 0.74342 0.15444 0.01484 4.3696 0.65255

S = 18; s = 6; λ = 2.5μ = 3; β = 2.6; θ = 2; γ = 0.7; δ = 0.8; δ1 = 0.4; δ2 = 1.6
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7.4 Effect of the Replenishment Rate β

As the replenishment rate β increases, the expected inventory Einv increases
and hence the expected perishable rate Ep increases. The production switch on
rate also increases with an increase in β. When the inventory available to cus-
tomers increases the service completion becomes faster, so Eds. The breakdown
rate is increasing along with the repair rate as the replenishment rate increases.
Accordingly, the expected number of customers in the orbit Eorbit decreases, due
to this, the measures Ela, Elr and θ∗

1 decreases (see Table 4).

Table 4. Effect of replenishment rate β on various performance measures

β Einv Eorbit EON Ep Eds Ela Elr Abr Arr θ∗
1 θ∗

2

2.3 1.1888 2.1977 3.4125e−12 1.4266 1.1518 0.59831 0.74984 0.15358 0.014924 4.3954 0.64623

2.4 1.2484 2.1546 6.9567e−12 1.4981 1.1756 0.59314 0.7313 0.15674 0.015641 4.3092 0.65269

2.5 1.3087 2.114 1.374e−11 1.5705 1.198 0.58813 0.71391 0.15973 0.016343 4.2279 0.65841

2.6 1.3698 2.0757 2.6356e−11 1.6437 1.2191 0.5833 0.69759 0.16255 0.017027 4.1514 0.66344

2.7 1.4315 2.0396 4.9211e−11 1.7178 1.2391 0.57864 0.68229 0.16521 0.017694 4.0793 0.66787

2.8 1.494 2.0057 8.9604e−11 1.7928 1.2579 0.57415 0.66793 0.16772 0.018341 4.0114 0.67175

2.9 1.5571 1.9737 1.5938e−10 1.8685 1.2757 0.56983 0.65446 0.1701 0.01897 3.9474 0.67514

3 1.6209 1.9436 2.7736e−10 1.9451 1.2925 0.56567 0.64183 0.17233 0.019578 3.8872 0.67808

3.1 1.6854 1.9152 4.7292e−10 2.0225 1.3083 0.56168 0.62997 0.17445 0.020167 3.8305 0.68062

S = 18; s = 6; λ = 2.5μ = 3; ω = 1.2; θ = 2; γ = 0.7; δ = 0.8; δ1 = 0.4; δ2 = 1.6

7.5 Effect of the Retrial Rate θ

As the retrial rate θ increases, one would expect a decrease in expected number
of customers in the orbit Eorbit. Which is the reason for decrease in Eds and θ∗

2 .
As the production switch on rate increases, expected inventory level Einv and
Ep increases. The breakdown rate increases and the repair rate decreases along
with theta. The decrease in Ela is very negligible because Einv is increasing.
From Table 5, as θ increases most of the retrying customers fail to access a free
server so Elr increases.

Table 5. Effect of retrial rate θ on various performance measures

θ Einv Eorbit EON Ep Eds Ela Elr Abr Arr θ∗
1 θ∗

2

1.6 1.3647 2.5704 2.5777e−11 1.6376 1.2273 0.58675 0.6859 0.16365 0.01142 4.1127 0.68318

1.7 1.366 2.4251 2.5925e−11 1.6392 1.2252 0.58587 0.68889 0.16337 0.012832 4.1226 0.67814

1.8 1.3673 2.2957 2.6071e−11 1.6407 1.2232 0.585 0.69183 0.16309 0.014241 4.1323 0.67317

1.9 1.3685 2.18 2.6215e−11 1.6422 1.2211 0.58414 0.69473 0.16282 0.015641 4.1419 0.66827

2 1.3698 2.0757 2.6356e−11 1.6437 1.2191 0.5833 0.69759 0.16255 0.017027 4.1514 0.66344

2.1 1.371 1.9813 2.6495e−11 1.6452 1.2171 0.58247 0.7004 0.16228 0.018396 4.1607 0.65869

2.2 1.3722 1.8954 2.6632e−11 1.6467 1.2152 0.58165 0.70317 0.16202 0.019744 4.1699 0.65401

2.3 1.3734 1.8169 2.6765e−11 1.6481 1.2133 0.58085 0.7059 0.16177 0.02107 4.1789 0.6494

2.4 1.3746 1.7449 2.6896e−11 1.6495 1.2114 0.58005 0.70859 0.16151 0.022372 4.1878 0.64486

S = 18; s = 6; λ = 2.5μ = 3; ω = 1.2; β = 2.6; γ = 0.7; δ = 0.8; δ1 = 0.4; δ2 = 1.6
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7.6 Effect of the Probability γ

When the probability γ increases, unsatisfied customers move to orbit, hence
Eorbit increases. This in turn leads to the reduced loss of customers upon arrival,
Ela decreases. As Eorbit increases retrials become unsuccessful that force to
increase in Elr. As Eorbit increases, we expect an increase in Eds, θ∗

1 and θ∗
2 .

Here breakdown rate increases while the repair rate decreases. Table 6 supports
these intuitions. As expected production switch on rate decreases, inventory level
also decreases which leads to a decrease in Ep.

Table 6. Effect of probability γ on various performance measures

γ Einv Eorbit EON Ep Eds Ela Elr Abr Arr θ∗
1 θ∗

2

0.1 1.5035 0.20387 3.805e−11 1.8042 0.98716 1.4512 0.061623 0.13162 0.098574 0.40774 0.099623

0.2 1.4792 0.43658 3.5559e−11 1.7751 1.0284 1.3369 0.13474 0.13712 0.076136 0.87316 0.19948

0.3 1.4554 0.7 3.3275e−11 1.7465 1.0692 1.2105 0.22031 0.14256 0.058056 1.4 0.29846

0.4 1.4323 0.99543 3.1211e−11 1.7187 1.1091 1.0718 0.31909 0.14789 0.043668 1.9909 0.39542

0.5 1.4102 1.3234 2.9371e−11 1.6922 1.1477 0.92077 0.43153 0.15303 0.032379 2.6469 0.48924

0.6 1.3893 1.6839 2.7754e−11 1.6671 1.1845 0.75776 0.55777 0.15793 0.023657 3.3677 0.57887

0.7 1.3698 2.0757 2.6356e−11 1.6437 1.2191 0.5833 0.69759 0.16255 0.017027 4.1514 0.66344

0.8 1.3518 2.4973 2.5161e−11 1.6222 1.2513 0.39819 0.85047 0.16685 0.012073 4.9946 0.7423

0.9 1.3355 2.9465 2.4155e−11 1.6026 1.281 0.2034 1.0156 0.1708 0.0084355 5.893 0.815

S = 18; s = 6; λ = 2.5, μ = 3; λ = 2; ω = 1.2; β = 2.6; θ = 2; δ = 0.8; δ1 = 0.4; δ2 = 1.6

7.7 Effect of the Probability δ

As δ increases, the unsuccessful retrying customers return to the orbit faster,
so Eorbit increases. This leads to a decrease in the expected loss of retrying
customers. Since the number of orbiting customers increases it makes the server
busy so the expected loss upon arrival Ela increases. The increase in Eorbit leads
to an increase in Eds, θ∗

1 and θ∗
2 . From Table 7, the production switch on rate

increases with an increase in δ which results the increase in Einv.

Table 7. Effect of probability δ on various performance measures

δ Einv Eorbit EON Ep Eds Ela Elr Abr Arr θ∗
1 θ∗

2

0.1 1.4575 0.65421 3.3376e−11 1.749 1.0653 0.51705 0.91763 0.14204 0.062076 1.3084 0.28882

0.2 1.4518 0.7211 3.2843e−11 1.7421 1.0752 0.52128 0.90352 0.14336 0.05773 1.4422 0.3128

0.3 1.4449 0.80406 3.2226e−11 1.7339 1.087 0.52633 0.8867 0.14493 0.052832 1.6081 0.3414

0.4 1.4367 0.90996 3.1497e−11 1.724 1.1013 0.53247 0.86625 0.14684 0.047293 1.8199 0.37617

0.5 1.4264 1.0505 3.062e−11 1.7117 1.1191 0.54013 0.84075 0.14922 0.041017 2.101 0.41954

0.6 1.4132 1.2476 2.9542e−11 1.6959 1.1421 0.55003 0.80784 0.15228 0.033908 2.4952 0.47556

0.7 1.3955 1.5478 2.8172e−11 1.6746 1.1733 0.56348 0.7632 0.15644 0.025901 3.0956 0.55159

0.8 1.3698 2.0757 2.6356e−11 1.6437 1.2191 0.5833 0.69759 0.16255 0.017027 4.1514 0.66344

0.9 1.3265 3.351 2.3749e−11 1.5918 1.2978 0.61761 0.58455 0.17305 0.0076108 6.7021 0.85654

S = 18; s = 6; λ = 2.5, μ = 3; λ = 2; ω = 1.2; β = 2.6; θ = 2; γ = 0.7; δ1 = 0.4; δ2 = 1.6
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7.8 Effect of the Breakdown Rate δ1

As the breakdown rate δ1 increases, one would expect an increase in expected
number of customers in the orbit Eorbit. It can be seen that even though θ∗

1

increases, θ∗
2 is decreasing. As the production switch on rate increases, the

expected inventory level Einv and Ep increases. When θ increases, also, intu-
itively, it is clear that Eds decreases. The increase in Einv causes an increase in
Ela. From Table 8, as δ1 increases most of the retrying customers fail to access
a free server so Elr increases.

Table 8. Effect of retrial rate δ1 on various performance measures

δ1 Einv Eorbit EON Ep Eds Ela Elr Abr Arr θ∗
1 θ∗

2

0.2 1.3174 1.9764 1.924e−11 1.5808 1.2735 0.57208 0.65446 0.084897 0.0094144 3.9527 0.6804

0.3 1.3441 2.0269 2.2801e−11 1.6129 1.2458 0.57784 0.67637 0.12458 0.013422 4.0538 0.67192

0.4 1.3698 2.0757 2.6356e−11 1.6437 1.2191 0.5833 0.69759 0.16255 0.017027 4.1514 0.66344

0.5 1.3945 2.1228 2.9901e−11 1.6733 1.1934 0.58848 0.71813 0.1989 0.020269 4.2457 0.65499

0.6 1.4182 2.1684 3.343e−11 1.7018 1.1686 0.5934 0.73802 0.23371 0.023185 4.3367 0.64658

0.7 1.441 2.2123 3.6941e−11 1.7292 1.1446 0.59808 0.75729 0.26708 0.025808 4.4247 0.63823

0.8 1.463 2.2548 4.0429e−11 1.7556 1.1215 0.60253 0.77594 0.29907 0.028166 4.5097 0.62995

0.9 1.4841 2.2959 4.3891e−11 1.781 1.0992 0.60676 0.79402 0.32977 0.030285 4.5918 0.62175

1 1.5045 2.3356 4.7324e−11 1.8054 1.0777 0.61079 0.81153 0.35923 0.032189 4.6713 0.61365

S = 18; s = 6; λ = 2.5; μ = 2; ω = 1.2; β = 2.6; θ = 2; γ = 0.7; δ = 0.8; δ2 = 1.6

7.9 Effect of the Breakdown Rate δ2

As repair rate δ2 increases, one would expect an increase in service completion
and subsequently increase in Eds. Expected number of customers in the orbit
Eorbit decreases. θ∗

1 decreases while θ∗
2 increases. The production switch on rate

increases, while the expected inventory level Einv and Ep decreases. When δ2
increases, the decrease in Ela is lesser. From Table 9, as δ2 increases, retrying
customers who try to access a free server reduces, so Elr decreases.

Table 9. Effect of retrial rate δ2 on various performance measures

δ2 Einv Eorbit EON Ep Eds Ela Elr Abr Arr θ∗
1 θ∗

2

1.4 1.3843 2.1048 2.955e−11 1.6612 1.2034 0.58619 0.71043 0.16045 0.015879 4.2095 0.65735

1.5 1.3766 2.0893 2.7825e−11 1.6519 1.2117 0.58466 0.7036 0.16157 0.016472 4.1786 0.66062

1.6 1.3698 2.0757 2.6356e−11 1.6437 1.2191 0.5833 0.69759 0.16255 0.017027 4.1514 0.66344

1.7 1.3637 2.0636 2.5096e−11 1.6364 1.2257 0.58208 0.69227 0.16342 0.017547 4.1272 0.66591

1.8 1.3582 2.0528 2.4006e−11 1.6299 1.2315 0.58097 0.68752 0.1642 0.018036 4.1057 0.66808

1.9 1.3533 2.0432 2.3058e−11 1.624 1.2368 0.57997 0.68327 0.1649 0.018496 4.0863 0.67

2 1.3489 2.0344 2.2227e−11 1.6187 1.2415 0.57906 0.67943 0.16553 0.018929 4.0689 0.6717

2.1 1.3448 2.0265 2.1496e−11 1.6138 1.2458 0.57822 0.67596 0.16611 0.019339 4.053 0.67323

2.2 1.3411 2.0193 2.0849e−11 1.6094 1.2497 0.57745 0.6728 0.16663 0.019726 4.0386 0.6746

S = 18; s = 6; λ = 2.5; μ = 2; ω = 1.2; β = 2.6; θ = 2; γ = 0.7; δ = 0.8; δ1 = 0.4
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8 Conclusion

The paper studied the impact of an unreliable server on a perishable inventory
system with production and retrials. Exponential distribution is considered for
inter-arrival time as well as the service time. The production is switched ON
based on an (s, S) policy. The customer would be allowed to join the orbit
if the inventory level is zero or the server is busy or breakdown occurs. The
Matrix Geometric Method is used to find the stationary probability vector, which
make it easier to obtain key performance measures. A suitable cost function is
constructed on the basis of system characteristics. Numerical verification of the
convexity of the cost function is conducted. This work can be extended further
by considering the arrivals to follow a Markovian Arrival Process (MAP) instead
of assuming Poisson arrivals.
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Abstract. In this paper, a polling service model is used for performance
analysis of a leaf node in an Integrated Access and Backhaul (IAB) net-
work. is constructed in order to analyse the performance measures of the
system, which will enable the estimation of packet transmission delays
in an IAB network. The Markovian polling queueing system with two
queues and nonzero switching time is constructed to analyse the perfor-
mance measures of the system, which will enable the estimation of packet
transmission delays in an IAB network. One of the queues is designed
to store packets transmitted in downlink from a parent node in the IAB
network, and the second queue is designed to store packets transmitted
in uplink from child nodes and user equipment associated with an ana-
lyzed node. Cyclic polling of queues allows to take into account the main
feature of IAB technology — half–duplex mode of packet transmission.
Using the apparatus of Markov processes, formulas for calculating the
waiting time and the sojourn time of the request in the system, affect-
ing the delay of packet transmission through the node, are obtained.
The results of the numerical analysis illustrate an upper bound estimate
for the server switching time at which the 5G NR delay constraints are
fulfilled for networks with a single relay node.

Keywords: polling · queueing system · integrated access and
backhaul · 5G · leaf node

1 Introduction

Integrated Access and Backhaul (IAB) via gNodeB base stations (gNB) for back-
haul connections in 5G networks was one of the approved objectives of the 17th
Release of the 3GPP (3rd Generation Partnership Project) [1]. When using IAB
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technology, only a small fraction of node base stations are connected to the tradi-
tional fibre-optic infrastructure of the fixed network, while the remaining nodes
carry backhaul traffic over wireless channels [2].

Although existing base station specifications in 3GPP Long Term Evolution
Advanced (LTE-Advanced) standards allow backhaul through a single hop link,
IAB is a more advanced solution capable of supporting multi-hop links, dynamic
resource multiplexing and plug-and-play design, which reduces the complexity
of network deployment [3]. Taking into account the above mentioned advantages
of IAB technology, designing an efficient and high-performance 5G/6G network
using this technology remains a relevant research task [4].

When designing a network, it is necessary to consider not only the radio
channel conditions, available radio band, topology of the designed network and
energy efficiency constraints, but also the requirements for Quality of Service
(QoS), including the delay in service provisioning as one of the most impor-
tant metrics. Although IAB technology supports the ability to transmit data
in bidirectional full duplex mode, most implementations will be restricted to
unidirectional half duplex mode, which causes increased latency. Half duplex
mode obliges us to be particularly careful about the value of end-to-end data
transmission delay.

In this paper, to analyse a single node performance in an IAB network with
half duplex mode of data transmission, a Markovian queueing system in the
form of a polling service model with two queues, non-zero switching time between
them and packet arrivals during the server switching periods is proposed. Among
the obtained performance measures of the system, the emphasis is on the delays
and access blockages, for which numerical analyses have been carried out.

2 System Model

Figure 1 schematically depicts an example of IAB network topology in the form
of a Spanning Tree (SP) with the root in the IAB-donor, the only node having a
wired connection to the fibre optic network, with all other IAB-nodes connected
only to one parent node carrying traffic over wireless channels. The object of
study is packet flow through the boundary IAB-node corresponding to the leaf
node of the tree, and the subject of study are performance measures of this flow.

In the case of half-duplex transmission mode, the packets arrive at the IAB-
node alternately

– from the parent node through the downlink channel;
– from child nodes and from User Equipment (UE) associated with the consid-

ered node through the uplink channels.

Half-duplex mode forbids simultaneously enabling

– an access link and a backhaul link on the same node;
– bidirectional data transmission on the access link or on the backhaul link.

In the following sections, a half-duplex service model with two queues, cyclic
queue traversal, non-zero switching time between queues, and requests arriving
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Fig. 1. IAB network fragment in the form of a spanning tree.

exclusively during the switching periods due to the above mentioned half-duplex
constraints is proposed to describe the data packet processing at the IAB leaf
nodes. Thus, one of the queues will be associated with the downlink channel
and the other with the uplink channel, and the packets transmitted through
these channels will correspond to the requests in the queues. The aim of the
study is to analyse the dependence of the request waiting time on the duration
of the switching interval between queues, which corresponds to the duration of
the packet arrival phase in the IAB-node from the parent node and the UE in
half-duplex mode.

It is worth noting that the apparatus of queueing theory [5,6] known in the
analysis of telecommunication systems has so far been applied to IAB networks
only in a few cases [7,8]. In the first case, by means of building a discrete model
with probabilistic service, the packet delay was estimated, and in the second case,
the limiting distribution of the number of users at the IAB-donor and IAB-node
was found.

3 Polling Service Model

The ordered polling [9–12] means that the server switches from queue to queue
according to some given switching rule and serves the requests in each queue
according to a given service rule. Polling systems with two queues and exponen-
tial distributed inter-arrival intervals are investigated in [13–15]. Thus, in [15]
analytical expressions for average waiting times of requests in the queue for
gateway and exhaustive service disciplines are found.

To analyse the process of data packet transmission by the IAB leaf node,
we propose a model of polling service with two finite queues M2|M2|1|(r1, r2),
corresponding to the conditions described in the previous section, the scheme of
which is shown in Fig. 2. The queue Q1 receives requests from the parent node
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through the downlink and the queue Q2 receives requests from the UEs through
the uplink. Due to the peculiarities of the proposed system, it is not possible to
unambiguously define its service discipline, as it is exhaustive due to the service
of all the requests received in the queue and, at the same time, global-gated,
as from the instant of the service cycle’s start new requests are not allowed to
join to the”gated” requests which were already in queues at the beginning of the
current polling cycle. As an assumption, let us assume that switching from the
first queue to the second queue is instantaneous, and switching from the second
queue to the first queue takes non-zero time, that models simultaneous requests
arrival to both queues.

As a result, the system will operate according to the following cycle: requests
arrival (i.e., filling of the queues while server switches from queue Q2 to Q1)
— queue Q1 service (if empty, then immediately switching to Q2) — queue Q2

service.

Fig. 2. Polling service model with two queues.

Since the model is assumed to be Markovian, the durations of intervals
between neighbouring arrivals of requests to the system, the durations of requests
servicing and the switching time between queues have exponential distribution,
which corresponds to 3GPP recommendations on IAB network modelling.

Let us introduce the system parameters: λi — intensities of requests arrival in
Qi; μi — intensities of requests servicing; ri — storage capacity; s−1 — intensity
of server switching from Q2 to Q1 (i.e., average switching time is equal to s),
where i = 1, 2.

The functioning of the system is described by a random process X(t):

X(t) = {(q(t), n1(t), n2(t)), t ≥ 0}, (1)

where q(t) ∈ {0, 1, 2} — the state of the server (q = 0 — requests arrival, q = 1, 2
— service of the first and second queues, respectively), ni(t) ∈ {0, 1, . . . , ri} —
the number of requests in Qi at time t.
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The main feature of the system reflecting the half-duplex mode of packet
transmission in the IAB network can be formulated as follows:

λi(q) =

{
λi, q = 0 (server switching),
0, q = 1, 2 (service of the queue Q1 or Q2),

i = 1, 2. (2)

The state space of this system has the following form:

X = {(0, n1, n2) : n1 ∈ {0, 1, . . . , r1}, n2 ∈ {0, 1, . . . , r2};
(1, n1, n2) : n1 ∈ {1, . . . , r1}, n2 ∈ {0, 1, . . . , r2};
(2, 0, n2) : n2 ∈ {1, . . . , r2}}

(3)

which cardinality is equal to

|X| = (r1 + 1)(r2 + 1) + r1(r2 + 1) + r2. (4)

Note that it can be represented as a union of three non-intersecting subspaces,
i.e.

X = X0 ∪ X1 ∪ X2, (5)

where X0 = {(0, n1, n2) : n1 ∈ {0, 1, . . . , r1}, n2 ∈ {0, 1, . . . , r2}} — state space
of arriving requests into the system (switching of the server), X1 = {(1, n1, n2) :
n1 ∈ {1, . . . , r1}, n2 ∈ {0, 1, . . . , r2}} — queue Q1 service state space, X2 =
{(2, 0, n2) : n2 ∈ {1, . . . , r2}} — queue Q2 service state space.

Let us now introduce access blocking state spaces. In our system the requests
are blocked in case of overflow of the queues only during the server switching
phase (because requests arrive to the system only during this phase). Then the
blocking state space of Qi is expressed as:

Bi = {(q, n1, n2) : q = 0, ni = ri}, i = 1, 2. (6)

So the blocking state space of partial blocking (i.e., at least one of the queues)
is represented as:

B = B1 ∪ B2 = B1 + B2 − B1 ∩ B2, (7)

where the intersection B1 ∩ B2 is the full blocking state space represented by
the only state:

B1 ∩ B2 = (0, r1, r2). (8)

The main task is to find the stationary distribution of the process X(t)

p(q, n1, n2) = lim
t→∞P{X(t) = (q(t), n1(t), n2(t))}, (q, n1, n2) ∈ X. (9)

To find it, it is necessary to solve the system of equilibrium equations (or Equi-
librium System, ES), which can be compiled using the graph of transition inten-
sities.
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Fig. 3. Transition intensity graph with three subsets of states.

Figure 3 shows the fragment of the transition intensity graph of this system. It
consists of three groups of states belonging to each of the three non-intersecting
state spaces, respectively.

Now, using the graph shown in Fig. 3 and the principle of global balance,
let’s construct an ES:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ1p(1, 1, 0) + μ2p(2, 0, 1) = (λ1 + λ2)p(0, 0, 0),

λ1p(0, i − 1, 0) = (u(r1 − i)λ1 + λ2 + s−1)p(0, i, 0), i = 1, ..., r1,

λ2p(0, 0, i − 1) = (λ1 + u(r2 − i)λ2 + s−1)p(0, 0, i), i = 1, ..., r2,

λ1p(0, i − 1, j) + λ2p(0, i, j − 1) = (u(r1 − i)λ1 + u(r2 − j)λ2 + s−1)p(0, i, j),

i = 1, ..., r1, j = 1, ..., r2,

s−1p(0, i, j) + u(r1 − i)μ1p(1, i + 1, j) = μ1p(1, i, j), i = 1, ..., r1, j = 0, ..., r2,

s−1p(0, 0, j) + μ1p(1, 1, j) + u(r2 − j)μ2p(2, 0, j + 1) = μ2p(2, 0, j), j = 1, ..., r2,

(10)
where u(x) is the Heaviside function

u(x) =

{
0, x ≤ 0,

1, x > 0.
(11)
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Fig. 4. Enlarged graph of intensities of transitions between non-intersecting spaces.

For a better understanding of the transitions between non-intersecting spaces,
a reduced graph of the system transitions is presented in Fig. 4. Thus, the left
part of the first ES equation is formed by transitions from X1 and X2 to X0; the
summands of the second, third and fourth equations containing the multiplier
s−1, are responsible for transitions to states of spaces X1 or X2 from X0; while
the remaining summands represent transitions within spaces.

We can write the ES more compactly, where each equation is related to one
of the spaces:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u(1 − i − j)(μ1p(1, 1, 0) + μ2p(2, 0, 1)) + u(i)λ1p(0, i − 1, j) + u(j)λ2p(0, i, j − 1) =

= (u(r1 − i)λ1 + u(r2 − i)λ2 + u(i + j)s−1)p(0, i, j), i = 0, . . . , r1, j = 0, . . . , r2,

s−1p(0, i, j) + u(r1 − i)μ1p(1, i + 1, j) = μ1p(1, i, j), i = 1, ..., r1, j = 0, ..., r2,

s−1p(0, 0, j) + μ1p(1, 1, j) + u(r2 − j)μ2p(2, 0, j + 1) = μ2p(2, 0, j), j = 1, ..., r2.

(12)

Solving the ES together with the normalisation condition∑
(q,n1,n2)∈X

p(q, n1, n2) = 1, (13)

we find the stationary distribution. Thus allows us to obtain the analytical
expressions for desired performance measures of the system. The following met-
rics are essential in further numerical analysis.

Probability for the system to be in a state of queues filling
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P0 = P{(q, n1, n2) ∈ X0} =
r1∑

n1=0

r2∑
n2=0

p(0, n1, n2). (14)

Probability for the system to be in a state of queue Q1 service

P1 = P{(q, n1, n2) ∈ X1} =
r1∑

n1=1

r2∑
n2=0

p(1, n1, n2). (15)

Probability for the system to be in a state of queue Q2 service

P2 = P{(q, n1, n2) ∈ X2} =
r2∑

n2=1

p(2, 0, n2). (16)

Blocking probability of a request for queue Q1

B1 = P{(q, n1, n2) ∈ B1} =
r2∑

n2=0

p(0, r1, n2). (17)

Blocking probability of a request for queue Q2

B2 = P{(q, n1, n2) ∈ B2} =
r1∑

n1=0

p(0, n1, r2). (18)

Probability of partial blocking (at least one of the queues)

B = P{(q, n1, n2) ∈ B} = B1 + B2 − B12 =
r2∑

n2=0

p(0, r1, n2) +
r1−1∑
n1=0

p(0, n1, r2),

(19)
where B12 = P{(q, n1, n2) ∈ B1 ∩ B2} = p(0, r1, r2).

Average number of requests in queue Qi, where if i = 2, then i + 1 = 1

Ni =
ri∑

ni=1

ni

2∑
q=0

ri+1∑
ni+1

p(q, n1, n2), i = 1, 2. (20)

Average waiting time in queue Qi

ωi =
Ni

λi(1 − Bi)
, i = 1, 2, (21)

which formulas are obtained using Little’s law and considering blocking proba-
bilities of corresponding queues.

The next section provides a numerical analysis of the average waiting time
of a request in a queue, the access blocking of at least one of the queues and the
probability of non-receipt of requests (i.e., the probability of servicing one of the
queues) as a function of the switching intensity between queues.
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4 Numerical Analysis

The initial data for the numerical experiment are taken from [17], which consid-
ers scenarios for FR2 band, 200 MHz of bandwidth and subcarrier spacing of 120
kHz corresponding to the NR numerology 3. The uplink and downlink overheads
are defined by following 3GPP TS 38.306 [16]. To determine the service inten-
sity parameters we will use the formula of throughput capacity C from 3GPP
standard [18]

C = 10−6νQfR
12N

T
(1 − H), (22)

where the number of multiplexed layers ν put equal to 1, scaling factor f = 0.75,
modulation index Q put equal to 6 (i.e., assume the use of quadrature amplitude
modulation QAM64), coding error R take equal to 438

1024 . Symbol length T =
8.92·10−6 and the number of resource blocks N = 132 unambiguously determined
using the third numerology and the bandwidth of 200 MHz. The overlap factor
H = 0.18 is given by the standard.

Applying abovementioned formula, we obtain a downlink access channel
capacity of 280 Mbit/s. Considering the request size equal to the maximum
TCP packet size, i.e. 1500 bytes, and subframe duration in NR, i.e. 1 ms [18],
we convert the value of the throughput capacity from C0 = 280 Mbit/s to C1

measured in number of packets per subframe using the following formula

C1 = 10−3 C0 · 106

8 · 1500
=

C0

12
≈ 23. (23)

As a result, we get the average number of transmitted packets per subframe (for
1 ms) equal to 23. This number will be considered as the first queue requests
service intensity.

Since backhaul channels are distinguished by the possibility of using large
antenna arrays, the formation of a directional beam and a stable state of line of
sight, we will consider the average number of packets transmitted through the
backhaul channel (also having size equal to 1500 bytes) for 1 ms in one and a
half times more than the obtained value for the access channel. Consequently,
we will take the second queue requests service intensity as 34.

It is worth noting that similar approach to the determining the initial param-
eters for the numerical analysis of the IAB network in the discrete case was used
in [17] for other numerologies as well.

Figure 5 plots the mean waiting time for requests in queues Q1, Q2 with
following initial parameters: μ1 = 23, μ2 = 34, λ1 = 12, λ2 = 16, r1 = r2 = 100,
where μ1, μ2, λ1, λ2 have values of packets/ms (or requests/ms). As shown in
Fig. 5, in order to satisfy the 1 ms limit to an end-to-end delay imposed by the
5G network standards, the switching duration of a single-hop IAB network must
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satisfy the upper estimate of s < 0.8 ms (since s−1 > 1.25). For a multi-hop IAB
network, such an estimate will not fit, and for a more accurate estimate, the
number and parameters of links and relay nodes must be taken into account. In
particular, it is necessary to take into account the transmission rates in the radio
links connecting the transit nodes, the duration of the phases of the half-duplex
transmission mode and the processor performance of the transit nodes.

Fig. 5. Average waiting times of requests in queues Q1 and Q2.

Figure 6 shows the graphs of probabilities of queue service by the server,
blocking access to at least one of the queues and their sum depending on the
intensity of switching between queues. The graph in Fig. 6 shows that starting
from approximately s−1 > 1.5 the probabilities of arrival and non-arrival (prob-
abilities of queue service together with access blocking) of requests coincide.
This is explained by the fact that the total proposed load ρ = ρ1 + ρ2 ≈ 1,
where ρi = λi

μi
(i = 1, 2), that is, in total, the time of arrival of requests (with

almost no blocking) will coincide with the time of their service, which gives us
equal probabilities with the value of ≈ 0.5. Thus, as the total load decrease, the
probabilities described above will also decrease.
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Fig. 6. Probabilities of blocking and queue service.

5 Conclusion

Integrated access and backhaul technology is considered one of the key technolo-
gies in the transition to next-generation networks, as it enables the deployment
of dense networks without additional connections to the core network. How-
ever, due to the use of multi-hop retransmission in half-duplex mode, additional
verification of fullfilment of delay requirements is necessary.

To study the packet delay in a half-duplex IAB network, this paper provides
a model of the IAB-node in the form of a polling queueing system. The study of
the system by methods of mathematical teletraffic theory and Markov processes,
allows to estimate the performance measures of the system at a range of initial
parameters values and to make a choice of the most appropriate values necessary
for the construction of the physical implementation of the technology. Consid-
ering packet delay and blocking probabilities as key metrics, we have performed
a numerical analysis that allows us to give an upper bound estimate for the
switching duration corresponding to the 5G NR requirements. Note that some
other QoS paramrters can also be estimated based on the constructed model.

One of the objectives of further research is the formulation and solution of
the optimisation problem for the construction of the most efficient multi-hop
IAB network, in which the load on the network nodes will be balanced, and the
quality of service for users will remain high.
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Abstract. Two Semi Markov processes are defined to describe the ser-
vice and inter-arrival times of an s − S inventory model with zero lead
time, in which both inter-arrival time and service time depend upon the
inventory level. It is assumed that both the service time and the inter-
arrival time follow Phase-Type distributions, which are determined by
the current inventory level. The marginal distributions of both the ser-
vice time and the inter-arrival time are obtained. A continuous parameter
Markov chain is used to model the queue size. Condition for stability and
the steady state characteristics of the system are derived. The impact of
interdependence between service and arrival processes, along with inven-
tory level on the system is examined. Furthermore, a numerical analysis
is also done to explain the consequences of this dependency on steady-
state system characteristics.

Keywords: Interdependent processes · Semi-Markov Process · Matrix
analytic method · s − S inventory model

1 Introduction

Inventory models had received significant attention in academic research. While
numerous classical models assume negligible or no time for the inventory to be
served, real-world scenarios often demand considerations of the time to serve the
inventory. Pioneering the exploration of Inventory models with positive service
time were Berman et al. [12] and Sigman et al. [14]. Comprehensive insight into
studies by various authors in this direction can be found in the survey articles
by Krishnamoorthy et al. [8,9].
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Unexpectedly, there have been relatively few prior studies exploring models
where the service time and/or inter-arrival time are contingent upon the inven-
tory level. This stands in contrast to the significant emphasis placed on queueing
models with state-dependent arrival and service processes in the existing liter-
ature. S. K. Gupta [4] analyzed such a model with a finite queue size. In his
investigation, both arrival and service rates were treated as arbitrary functions
of the number of customers in the system. Other pioneering works in a similar
direction were done by Hiller et al. [6] as well as Conway et al. [3]. Later, Bekker
et al. [2] provided detailed descriptions of both M/G/1 and G/G/1 models incor-
porating workload-dependent arrival and service rates.

However, there are classical models (with zero service time) that have ana-
lyzed inventory models with stock dependent demands. These models are derived
from the observation that maintaining abundant inventory has a favourable
impact on demand.

Customers are often enticed to make purchases by prominently displaying a
considerable amount of inventory in stores. Larson et al. [10] coined the term
“psychic stock” for this displayed inventory. Hadley et al. [5], Wolfe [16], T L
Urban [15] and Johnson [7] are among the researchers who have investigated
the stimulating impact of inventory level on demand. The influence of inven-
tory level on demand is evident in cases involving distinct inventory items, such
as ornaments or clothing materials. A diverse assortment of these items offers
customers a wider choice, consequently elevating demand. Another instance is
when there’s an abundance of inventory or when dealing with perishable items.
In these situations, sellers may introduce special offers to entice buyers and clear
out excess/old stock, resulting in a notable increase in demand.

Queueing models with interdependent arrival and service processes are intro-
duced by Ranjith et al. [13]. Much before that Guy Latouche [11] derived interde-
pendent phase type processes by a semi Markovian point process. He constructed
this by considering a finite state irreducible Markov chain. In this paper we fol-
lows a similar approach. But with the difference that our focus is not on the
dependence between these processes, but on the interdependence between the
state of the embedded Markov chain and the phase type distribution constructed.

Using this method, this paper analyses an s − S inventory model with no
lead time and positive service time. In this model both the service and arrival
processes depend on the inventory level. The structure of the paper is in the
following manner. Section 2 presents the description of the underlying Markov
chains for the service and arrival processes. In Sect. 3, the marginal distribution
of the service time and inter arrival time are found. In Sect. 4, a continuous-time
Markov chain is employed to model a queueing-inventory model with inventory
dependent arrival and service processes. It also covers the condition for stability
of the system. Section 5 focuses on the steady state analysis and evaluation of
the key system performance measures. Furthermore, we conduct a comprehensive
numerical investigation of the system in Sect. 6. Finally, in Sect. 7 we conclude
the discussion.
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2 Semi-Markovian Service and Arrival Processes
Depending on Inventory Level

To construct Semi-Markovian point processes suitable for modeling arrival and
service processes of a queueing-inventory model in which these two processes
depend on the level of inventory, we proceed as follows:-

Consider an irreducible Markov chain X = {Xi|i = 0, 1, 2, 3, ...} with state
space {1, 2, 3, ..., r}. Let PX =

[
pX

ij

]
where

pX
ij =

⎧
⎪⎨

⎪⎩

1 if j = i − 1, 2 ≤ i ≤ r

1 if i = 1, j = r

0 otherwise.

be the transition probability matrix of the chain X .
Assume that the transitions of the chain X occur at random epochs γi, i =

1, 2, 3, ... . Let τi be the interval of time between the successive transitions.

τi =

{
γi − γi−1, if i = 2, 3, ...

γ1 if i = 1

For each i, if Xi−1 = j, assume that τi follows a Phase type distribution
Fj(.) with representation (αj ,Dj), where Dj is an nj ×nj matrix. Thus we have
a semi-Markov Process {ZX(t)|t ≥ 0} defined by

ZX(t) = Xi, γi ≤ t < γi+1, i = 0, 1, 2, ...

In the present study, states of the chain X are the inventory levels and each
state transition corresponds to a service completion. γi, i = 1, 2, 3, ... are the
epochs of completion of ith service, ZX(t) represents the inventory level at time
t and the distribution of duration of the service happening at time t is FZX(t)(.).

For the arrival process, we proceed as follows:- Consider the phase type dis-
tributions Gi(.) with representations (βi, Ti), i = 1, 2, .., r where Ti is a square
matrix of order mi. Define a Markov chain Y = {Yi|i = 0, 1, 2, 3, ...} with state
space {0,1,2,...}, Y0 = 0 and having the transition probability matrix PY =

[
pY

ij

]

where

pY
ij =

{
1 if j = i + 1, i ≥ 0
0 otherwise.

Starting from time t = 0, let νi be the epoch at which the chain Y makes the ith

transition, i = 1, 2, 3, .... Let ϕi be the inter occurrence time νi−νi−1 between the
i−1th and ith transitions of the chain Y. Assume that ϕi follows the distribution
Gj(.) where j = ZX(νi−1). Hence we have a semi Markov Process

ZY (t) = Yi, νi ≤ t < νi+1, i = 0, 1, 2, ...

We may take the states of the chain Y to be the number of arrivals. The
distribution of the inter arrival times are then determined by the inventory level
at the epochs of the preceding arrivals.
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3 Marginal Distributions of Service Times
and Inter-arrival Times

Consider the continuous parameter Markov chain

N1 = {(N1(t), IX(t), Jτ (t))|t ≥ 0}

where N1(t) is the number of transitions occurred during the time interval (0, t]
of the chain X , IX(t) is the state of the chain X and Jτ (t) is the phase of the
distribution of the ongoing service process at time t. The state space of this
process is

r⋃

i=1

{(n, i, j)|n = 0, 1, 2, ..., j = 1, 2, 3, ..., ni}

Since in the steady state all the states of the chain X are equally likely,
the initial probability distribution of the chain N1 is given by 1

r α̃, where α̃ =
(α1, α2, ..., αr) The infinitesimal generator of the chain N1 is

Qs =

⎡

⎢
⎢
⎢
⎢
⎣

U U0 0 0 ...
0 U U0 0 ...
0 0 U U0 ...
. . . . ...
. . . . ...

⎤

⎥
⎥
⎥
⎥
⎦

where
U = diag(D1,D2, ...,Dr)

and

U0 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 ... 0 0 D0
1α1

D0
2α2 0 0 ... 0 0 0
0 D0

3α3 0 ... 0 0 0
. . . ... . . .
. . . ... . . .
0 0 0 ... 0 D0

rαr 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

Here D0
i = −Die, i = 1, 2, ..., r.

The service time τi of the ithcustomer is the time taken by the chain N1 for
the transition from level i to level i + 1. From the infinitesimal generator of N1

it follows that τi’s are identically distributed and that their common marginal
distribution F (t) is of phase type with representation

(
1
r α̃, U

)
.

Therefore,

F (t) = 1 − 1
r
α̃exp(Ut)e

= 1 − 1
r

r∑

i=1

αiexp(Dit)e
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where e is a column vector of 1’s of appropriate order and the density function
is

f(t) =
1
r

r∑

i=1

αiexp(Dit)D0
i =

1
r

r∑

i=1

F ′
i (t)

Thus in the steady state, marginal density of the service time is the mixture of
the densities F ′

1(.), F
′
2(.), ..., F

′
r(.).

To determine the marginal distribution of the inter arrival time, we consider
the Markov chain

N2 = {(N2(t), IX(ν), IX(t), Jϕ(t)) |t ≥ 0}

where N2(t) is the number of transitions of the chain Y occurred in the interval
(0, t], IX(ν) and IX(t) are the states of the chain X at time ν and t respectively
where ν = max{νj ∈ (o, t]} and Jϕ(t) is the phase of the ongoing arrival process
at time t. Note that N2(t) is the total number of arrivals in (0, t] and ZX(ν)
is the inventory level at the epoch of previous arrival. This chain has the state
space

r⋃

i=1

{(n, i, k, j)|n = 0, 1, 2, ..., k = 1, 2, ..., r, j = 1, 2, 3, ...,mi}

and the infinitesimal generator

QV =

⎡

⎢
⎢
⎢
⎢
⎣

V V 0 0 0 ...
0 V V 0 0 ...
0 0 V V 0 ...
. . . . ...
. . . . ...

⎤

⎥
⎥
⎥
⎥
⎦

where
V = diag(V1, V2, ..., Vr)

and

V 0 =

⎡

⎢
⎢
⎢
⎣

V 0
1

V 0
2
...

V 0
r

⎤

⎥
⎥
⎥
⎦

in which

Vi =

⎡

⎢
⎢
⎢
⎢
⎣

Ti − μ1Im1 0 0 ... 0 μ1Im1

μ2Im2 Ti − μ2Im2 0 ... 0 0
. . . ... . .
. . . ... . .
0 0 0 ... μrImr

Ti − μrImr

⎤

⎥
⎥
⎥
⎥
⎦

,

μi = −αiD
−1
i e and V i

0 is a block matrix of order r × r2 with T 0
i βi at positions

(j, (j − 1)r + j) and zero matrices at every other positions.
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Hence in the steady state, the distribution G(.) of the inter arrival time
is a Phase type distribution with representation (1r β̃ ⊗ ζ, V ) where β̃ =
(β1, β2, . . . , βr) and ζ =

(
1
r , 1

r , ...1r
)

is the stationary probability vector of the
chain X . Therefore, we have

G(t) = 1 −
(

1
r
β̃ ⊗ ζ

)
exp(V t)e

= 1 − 1
r

r∑

i=1

(βi ⊗ ζ)exp(Vit)e

and the density function is

g(t) =
1
r

r∑

i=1

(βi ⊗ ζ)exp(Vit)
(
T 0

i ⊗ er

)

where er is a column vector of 1’s of dimension r × 1. Thus in the steady state,
marginal distribution of the service time is the mixture of the phase type distri-
butions with representations ((βi ⊗ ζ), Vi) , i = 1, 2, ..., r.

A simplified version of the model we discussed so far may be obtained by
assuming that Di’s and Dj ’s are linearly dependent and so are Ti’s and Tj ’s.
This is made by taking Di = εiD, αi = α and Ti = δiT , βi = β, where (α,D)
and (β,D) represents two phase type distributions. This assumption gives us
the freedom to switch to the process (βi, Ti) from (βi+1, Ti+1), even before the
absorption of the latter, whenever there is a state transition occurs in the chain
X . Such a model is introduced in the next section.

4 A Queueing-Inventory Model with Inventory
Dependent Arrival and Service Processes

Consider a single server inventory model. The inventory is instantaneously
replenished according to (s − S) policy. At any time t, the arrival of customers
is according to the inventory level at that time. When the inventory level is
s + i, the distribution of the inter-arrival time is phase-type with representa-
tion (β, δiT ) where T is a square matrix of order n and δi is a real number,
i = 1, 2, ..., r = S − s. The service time distributions too are determined by the
inventory level. While the inventory level is s + i, the service time distribution
is phase type with representation (α, εiD). Here D is of order m × m, εi are real
numbers i = 1, 2, .., r and α is the initial distribution.

Let N(t) be the number of customers in the system, I(t) be the inventory
level, J1(t) and J2(t) be the states of arrival and service processes respectively
at time t. Then the system under discussion can be modelled by the continuous
time Markov chain

N = {(N(t), I(t), J1(t), J2(t)) /t ≥ 0}
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with state space

{(0, i, j1)/1 ≤ i ≤ r, 1 ≤ j1 ≤ n} ∪ {(k, i, j1, j2)/k = 1, 2, 3, ...1 ≤ i ≤ r, 1 ≤ j1 ≤ n, 1 ≤ j2 ≤ m}

The infinitesimal generator of the chain N is given by

Q =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

A00 A01 0 0 0 ...
A10 A1 A0 0 0 ...
0 A2 A1 A0 0 ...
0 0 A2 A1 A0 ...
. . . . . ...
. . . . . ...

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

where

A00 = Δ ⊗ T

A01 = Δ ⊗ T 0β ⊗ α

A10 = E⊥ ⊗ In ⊗ D0

A0 = Δ ⊗ T 0β ⊗ Im

A1 = Δ ⊗ T ⊗ Im + E ⊗ In ⊗ D

A2 = E⊥ ⊗ In ⊗ D0α

Here

Δ = diag(δ1, δ2, ..., δr)
E = diag(ε1, ε2, ..., εr)

E⊥ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 ... 0 ε1
ε2 0 0 ... 0 0
0 ε2 0 ... 0 0
. . . ... . .
. . . ... . .
0 0 0 ... εr 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

Now let π and θ be the stationary probability vectors of T + T 0β and D + D0α
respectively and

A = A0 + A1 + A2 = Δ ⊗ (T + T 0β) ⊗ Im + E ⊗ In ⊗ D + E⊥ ⊗ In ⊗ D0α.

For any row vector ϕ of length r such that ϕE⊥ = ϕE,

(ϕ ⊗ π ⊗ θ)A = ϕE ⊗ π ⊗ θD + ϕE⊥ ⊗ π ⊗ θD0α

= ϕE ⊗ π ⊗ θ
(
D + D0α

)

= 0.

Thus we have the following lemma.
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Lemma 1. For any row vector ϕ of length r such that ϕE⊥ = ϕE, (ϕ ⊗ π ⊗ θ)
is a null vector of A.

Choose φ =
(

1
ε1

, 1
ε2

, ..., 1
εr

)
. For this φ, φE⊥ = φE. Hence by lemma 1,

(φ ⊗ π ⊗ θ) is a null vector of A. Therefore Π = 1
φ.e (φ ⊗ π ⊗ θ) is the stationary

probability vector of A.
Now

ΠA2e =
r

φe
θD0 =

r

φe
μ

and

ΠA0e =
1
φe

(
r∑

i=1

δi

εi

)

πT 0 =
1
φe

(
r∑

i=1

δi

εi

)

λ

Hence we have the following theorem.

Theorem 1. The continuous parameter irreducible Markov chain N is positive
recurrent if and only if (

S−s∑

i=1

δi

εi

)

λ < (S − s)μ

Note that when δi = εi ∀i, the condition for stability reduces to λ < μ. In
particular if δi = εi = 1 ∀i, inventory level and the arrival and service processes
are independent.

5 Stationary Distribution of the Markov Chain N
The stationary probability vector z = (z0, z1, z2 . . .) is given by

zi = z1Ri−1, i = 2, 3, 4... (1)

z0 (Δ ⊗ T ) + z1
(
E⊥ ⊗ In ⊗ D0

)
= 0 (2)

z0
(
Δ ⊗ T 0β ⊗ α

)
+ z1 (Δ ⊗ T ⊗ Im + E ⊗ In ⊗ D) + z2

(
E⊥ ⊗ In ⊗ D0α

)
= 0
(3)

where the matrix R is the minimal solution of the matrix quadratic equation

R2
(
E⊥ ⊗ In ⊗ D0α

)
+ R (Δ ⊗ T ⊗ Im + E ⊗ In ⊗ D) +

(
Δ ⊗ T 0β ⊗ Im

)
= 0

From Eq. (2),
z0

(
Δ ⊗ T 0

)
= z1

(
E⊥ ⊗ en ⊗ D0

)

So that

z0
(
Δ ⊗ T 0β ⊗ α

)
= z0

(
Δ ⊗ T 0

)
(Ir ⊗ β ⊗ α)

= z1
(
E⊥ ⊗ en ⊗ D0

)
(Ir ⊗ β ⊗ α)

= z1
(
E⊥ ⊗ enβ ⊗ D0α

)
(4)
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Using Eqs. (3) and (4), we get

z1
[
E⊥ ⊗ enβ ⊗ D0α + Δ ⊗ T ⊗ Im + E ⊗ In ⊗ D + R

(
E⊥ ⊗ In ⊗ D0α

)]
= 0

(5)
Therefore the vector z1 can be uniquely determined up to a multiplicative con-
stant. This constant can be found by normalizing the total probability to one.

We partitioned each steady state vector zi as zi = (zi1, zi2, . . . , zir) where
z0j = (z0j1, z0j2, . . . , z0jn), zij = (zij11, zij12, . . . , zij1m, . . . , zijn1, zijn2 . . . ,
zijnm), j = 1, 2, . . . , r, i = 1, 2, 3, . . . in which z0jk and zijkl, k = 1, 2, . . . , n, l =
1, 2, . . . ,m are scalars.

Some of the important system characteristics in the steady state are as fol-
lows.

1. Probability that the server is idle = z0ern.
2. For k > 0, Probability that there are k customers in the system,

P (N = k) = zkernm.

3. Expected number of customers in the system, E (N) =
n∑

i=1

iziernm.

4. Probability that the inventory level is j, P (I = j) = z0jen +
∞∑

i=1

zijenm.

5. Expected inventory level, E (I) =
r∑

j=1

jP (I = j) .

5.1 Expected Waiting Time

Consider a customer who joins the queue as the kth customer. The waiting time
Wk of this customer in the queue is the time until absorption of the Markov
chain

W (t) = {(r(t), I(t), Js(t))/t ≥ 0}
where r(t) is the position of the particular customer in the queue, I(t) is the
inventory level and Js(t) is the state of the ongoing service process at time t.
The infinitesimal generator of this chain is

Q̃ =
[
Qw −Qwe
0 0

]

where

Qw =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

E ⊗ D E⊥ ⊗ D0α 0 0 0 ... 0
0 E ⊗ D E⊥ ⊗ D0α 0 0 ... 0
0 0 E ⊗ D E⊥ ⊗ D0α 0 ... 0
0 0 0 E ⊗ D E⊥ ⊗ D0α ... 0
. . . . . ...
0 0 . . . E ⊗ D

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦
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Hence Wk follows a Phase type distribution with representation (ψw, Qw) where
ψw = (ψk,0,0, ..0) in which ψk is a vector of length rm. The ijth entry of ψk

is the conditional probability that the chain is in a state with inventory level i
and service phase j given that it is in level k in the steady state.

Hence, when the system is in the steady state, the expected waiting time of
this customer is

Wk = −ψwQ−1
w e

= ψk

[
k∑

i=0

(−1)i
[
(E ⊗ D)−1(E⊥ ⊗ D0α)

]i

]

[E ⊗ D]−1
e

= ψk

[

I +

(
k∑

i=1

(I⊥)k

)

⊗ eα

]

[E ⊗ D]−1
e.

where I⊥ = E−1E⊥.

Hence the Expected waiting time of an arbitrary customer in the steady state is
given by

E(W ) =
∞∑

k=1

P (N = k)Wk

6 A Sample Problem on Cost Optimization
and Numerical Analysis of the Chain N

In this section we present an example of a cost optimization problem that arises
in queueing-inventory situations with interdependent arrival and service pro-
cesses. In this example we assumed that the demand increases with the inventory
level according to the relation ρi1−κ, where ρ and 0 < κ < 1 are constants and i
is the inventory level. Baker et al. [1] used such a functional to model a situation
with inventory level dependent demand which is for a relatively short season.
Also we take the service rate to be proportional to the inventory level with σ as
the proportionality constant.

6.1 A Cost Optimization Problem

We assumed that the multipliers εi and δi, i = 1, 2, . . . r are related to the inven-
tory level i by the relation δi = ρi1−κ and εi = σi where ρ and σ are two positive
parameters.

This illustration encompasses four distinct cost categories. The initial type
involves the cost associated with providing the service at inventory level i, rep-
resented as c(i). The second, denoted as c0, refers to the cost of maintaining the
server in a state of readiness during idle periods. Additionally, there are holding
costs, denoted as ch, incurred to ensure customer comfort within the system,
along with the cost cs associated with preserving the integrity of the inventory.
All these costs are calculated per unit time.
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Taking all these costs into account, we construct the cost function, Cost =
ch × E(N) + cs × E(I) +

∑n
1 c(i)P (I = i) + c0 × P (N = 0) where E(N) is the

expected number of customers in the system, E(I) is the expected inventory
level, P (I = i) is the probability that the inventory level is i and P (N = 0) is
the probability that the system is idle.

For illustration, we choose ρ = 0.7, κ = 0.4, ch = 2, cs = 0.5, c(i) = E(i, i),

c0 = 6. T =

⎡

⎣
−12 4 6
3 −10 5
4 3 −9

⎤

⎦, D =

⎡

⎢
⎢
⎣

−7 1 2 1
3 −11 2 3
2 2 −10 3
5 3 4 −15

⎤

⎥
⎥
⎦, β = (0.4, 0.35, 0.25) and

α = (0.2, 0.3, 0.4, 0.1).

Fig. 1. Variation of cost wrt κ

Our objective is to determine the rate
at which the service rate should increase
with the inventory level in order to mini-
mize the incurred cost. That is we would
like to find the value of the proportionality
constant σ that optimizes the cost func-
tion. Figure 1 depicts the cost function
plotted against σ. The convex nature of
the curve indicates the presence of a min-
imum cost. Specifically, the cost reaches
its minimum value when σ equals 0.54,
with the minimal cost being 15.5280. Con-
sequently, by exerting control over the ser-
vice process, we ensure system stability
even in the presence of heightened arrival rates, and we achieve this at the low-
est possible cost.

Our numerical analysis demonstrates that it is possible to adjust the service
rate based on the inventory level, thereby enabling control over the system’s
characteristics.

6.2 Numerical Analysis of the Chain N
For the specified parameter values, we computed the expected number of cus-
tomers E(N), system idle probability P (N = 0), expected inventory level E(I)
expected waiting time E(W ) for various values of σ and the results are displayed
in Figs. 2, 3 4 and 5. The calculated values are given in Table 2 in Appendix.

As σ increases, the service rates corresponding to each inventory level also
rise. The escalation in service rate provides support for the growth in the arrival
rate, stemming from increased inventory levels. This leads to a decrease in the
expected number of customers in the system. With higher σ values, the traffic
intensity decreases. Consequently, the system idle probability increases. For a
small value of σ, service is delivered at a reduced rate when the inventory level
is low. Consequently, it takes more time to complete a service and subsequently
replenish the low inventory. As a result, the system experiences prolonged periods
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with low inventory levels. In contrast, higher values of σ increase the probability
that the system is in a state with a higher inventory level.

Fig. 2. Expected number of customers Fig. 3. Idle probability

Fig. 4. Inventory level Fig. 5. Expected Waiting time

6.3 A Comparison Between Proposed Model and One with Stock
Dependent Arrival Process and Independent Service Process

The model under discussion (Model 1) is compared with a similar one where the
service rate remains unaffected by the inventory level (Model 2) giving the follow-
ing values to the parameters. Δ = diag(0.7000, 1.0610, 1.3532, 1.6082, 1.8386),
and

D =

⎡

⎢
⎢
⎣

−12 1 2 2
3 −16 2 4
2 3 −15 3
6 3 4 −20

⎤

⎥
⎥
⎦ , T =

⎡

⎣
−10 − d 4 2

3 −8 − d 1
1 3 −8 − d

⎤

⎦ where d varies from

0 to 2 in increments of 0.1, r = 5, n = 3,m = 4, α = (.2, .3, .4, .1), β =
(0.4, 0.35, 0.25), E = diag(0.4567, 0.9133, 1.3700, 1.8267, 2.2833)
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Fig. 6. Copmarison of two models

In Model 2, the service rate remains
the same, while the arrival rate escalates
with the inventory level. A comparison of
the expected number of customer in both
systems is presented in Fig. 6. The numer-
ical results are tabulated in Table 1 in the
Appendix. Notably, Model 2 experiences
a higher inflow of customers compared to
Model 1. In both systems, the arrival rate
increases with the inventory level. When
the inventory level is high, the arrival rate
is also elevated. In the case, where the ser-
vice rate is constant, the inventory level
has nearly a uniform change, resulting in approximately equal probabilities for
all inventory levels. This, in turn, leads to a high average arrival rate, causing
the system to quickly burst out.

Conversely, in Model 1, the service rate diminishes as the inventory level
decreases. Consequently, when the inventory level is low, service occurs at a slow
pace. Since an increase in inventory level through replenishment occurs only after
these long service periods, the system spends a considerable proportion of time
in a state of low inventory. Consequently, at these times the expected arrival
rate will be low. Therefore, even with higher demand v, the effective arrival rate
will be moderate, ensuring the stability of the system.

In scenarios where there is high demand for the inventory, opting for stock-
dependent service processes becomes advantageous in regulating the inflow of
customers and maintaining system stability. This proves particularly useful in
contexts such as ration distribution systems or the distribution of essential com-
modities to a large population. In such situations, the arrivals increase with the
available stock. Consequently, we can exert control over the arrival rate by man-
aging the inventory level. Our numerical study indicates that an effective method
to achieve this control is by employing stock-dependent service processes.

7 Conclusion

In our investigation, we delved into a queueing inventory model incorporating
interdependent arrival and service processes, along with the inventory level, uti-
lizing two semi-Markov processes. The marginal distributions of both service
time and inter-arrival times were identified as mixtures of phase-type distribu-
tions. Further analysis focused on a specific instance of this model, with the
derivation of conditions for system stability. The stationary distribution was
determined numerically. We also explored the distribution of waiting time, its
expected value, and other critical system performance measures. This model
has the potential for extension to more complex scenarios involving positive lead
time. Examining the impact of replenishment time on system performance would
be particularly intriguing in such cases.



A Semi-Markovian Analysis of an Inventory Model 131

Appendix

Results of numerical analysis mentioned in Sects. 6.1, 6.2 and 6.3 are tabulated
in the following tables.

Table 1. Comparison between the models in terms of expected number of customers

Arrival Rate −αT−1e Expected Number of Customers

Model 1 Model 2

4 1.6968 3.0114

4.1 1.8088 3.3473

4.2 1.9302 3.7428

4.3 2.0624 4.2155

4.4 2.2069 4.7899

4.5 2.3656 5.5027

4.6 2.5405 6.4105

4.7 2.7345 7.6053

4.8 2.9508 9.2483

4.9 3.1935 11.6489

5 3.4679 15.4862

5.1 3.7807 22.598

5.2 4.1406 40.2836

5.3 4.5592 157.9844

5.4 5.0521

5.5 5.6413

5.6 6.358

5.7 7.249

5.8 8.3869

5.9 9.8911

6 11.9727
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Table 2. Variation of important performance measures with σ

σ Inventory Level E(N) P (I) Cost Expected Service rate E(W)

0.46 2.2639 2.6019 0.2744 15.8498 3.0219 0.798

0.47 2.2681 2.4235 0.289 15.6555 3.0876 0.7485

0.48 2.2721 2.2683 0.3031 15.5059 3.1533 0.7026

0.49 2.276 2.1319 0.3165 15.3925 3.219 0.6602

0.5 2.2798 2.0111 0.3295 15.309 3.2847 0.6211

0.51 2.2835 1.9034 0.342 15.2502 3.3504 0.585

0.52 2.287 1.8068 0.354 15.2123 3.4161 0.5518

0.53 2.2905 1.7195 0.3656 15.192 3.4818 0.5211

0.54 2.2938 1.6404 0.3768 15.1868 3.5474 0.4929

0.55 2.2971 1.5683 0.3876 15.1945 3.6131 0.4668

0.56 2.3002 1.5024 0.398 15.2135 3.6788 0.4427

0.57 2.3033 1.4418 0.4081 15.2423 3.7445 0.4204

0.58 2.3062 1.3859 0.4178 15.2796 3.8102 0.3997

0.59 2.3091 1.3342 0.4272 15.3244 3.8759 0.3805

0.6 2.3119 1.2863 0.4363 15.3759 3.9416 0.3627

0.61 2.3147 1.2417 0.4451 15.4333 4.0073 0.3462

0.62 2.3173 1.2001 0.4537 15.496 4.073 0.3307

0.63 2.3199 1.1613 0.462 15.5634 4.1387 0.3163

0.64 2.3225 1.1248 0.47 15.635 4.2044 0.3028

0.65 2.3249 1.0907 0.4778 15.7105 4.2701 0.2902

0.66 2.3273 1.0585 0.4854 15.7893 4.3358 0.2784

0.67 2.3297 1.0282 0.4928 15.8713 4.4015 0.2673

0.68 2.332 0.9996 0.4999 15.9562 4.4672 0.2569

0.69 2.3342 0.9725 0.5069 16.0436 4.5328 0.2471

0.7 2.3364 0.9469 0.5136 16.1333 1.0873 0.2378
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Abstract. Infinite-server queueing system with Poisson arrival process,
two states of service and abandonments is considered in the paper. Such
system can be used as a simple mathematical model of a subscriber
communication network based on IAB (Integrated Access and Backhaul)
technology with two mobile nodes. Joint probability distribution of the
number of customers in the states of service is obtained under asymptotic
condition of high intensity of the arrival process. Numerical experiments
are performed to estimate precision and applicability area of the approx-
imation built on the results of the asymptotic analysis.

Keywords: IAB · asymptotic analysis · infinite-server queue · service
abandonments

1 Introduction

Integrated Access and Backhaul (IAB) is a technology that provides fast and
cost-effective deployment on millimeter waves (mmWave) due to self-connection
in the same spectrum [1]. Wireless autonomous reverse transmission uses the
same wireless channel to cover and connect to other base stations (BS), which
leads to increased productivity, more efficient use of spectrum resources, and
lower equipment costs, as well as to reducing dependence on the availability of
wired reverse transmission at each location of the access node [2].

Mathematical modeling of an IAB-based network using queueing theory is a
promising research direction. In addition to the mentioned standard [3], there
have been studies conducted by various authors on the coverage of BS [4], sig-
nal transmission speeds under different conditions, and the utilization of fifth-
generation networks with IAB on the Internet of Things [5]. However, the ques-
tion of modeling of such systems still remains open.

In this paper, we propose a mathematical model of IAB-based network with
two mobile nodes in the form of infinite-server queueing system with two states
of service and abandonments. This model takes into account the roaming of a
user from one node to another during the entire service time and the possibility
of early leaving the system.
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In paper [6], the authors considered a similar model in which there are two
phases of service, but due to the specifics of the real problem, the phases of
service are considered as sequential and each of them has its own service param-
eter (there is no a separate total time of successful service). Some results and
literature reviews on models with abandonments of service (customers impatient
in service) can be found in [7,8].

The rest part of the paper is organized as follows. In Sect. 2, the problem
is formulated and a mathematical model in the form of a queueing system is
proposed. In Sect. 3, the system of Kolmogorov equations is formulated and
its exact solution obtained under the condition of equivalence of the local and
global balance equations is provided. In Sect. 4, the asymptotic analysis method
is applied for solution of the problem for a wider class of systems than the exact
solution may be used for. As a result, an approximation of the joint probability
distribution of the number of customers in the states of service is obtained.
For estimating precision of the approximation and its applicability area, series
of numerical experiments have been conducted. Their results are presented in
Sect. 5. Conclusions are formulated in Sect. 6.

2 Problem and Mathematical Model

Making necessary assumptions and generalizations, we can depict the behavior
of the entire system as follows. Let us consider an IAB system consisting of
one donor and two mobile network customer service nodes (Fig. 1). Users move
between two communication nodes and the following options are possible in the
system:

– abandonment of service – user goes beyond the range of his or her communi-
cation node and does not connect to any other node (Fig. 1: a, b);

– internal migration – user goes beyond the range of his or her communication
node, but immediately after that, he (or she) enters into the range of another
communication node and can continue servicing (Fig. 1: a, b, and c);

– successful service completion – user completes his or her work and logs out
of the system.

For this model, we are interested in how much the system is loaded, e.g.
how many users are connected to each node, taking into account their possible
migrations.

For modeling the system described above, we propose a mathematical model
in the form of an infinte-server queue with two states of servicing (Fig. 2). The
input flow is a Poisson arrival process with intensity λ. An incoming customer
occupies any available server and starts its service in state 1 or 2 with probabili-
ties v1 or v2, respectively. Duration of the service is an exponentially distributed
random variable with parameter μ. While the customer is servicing, during time
period of length Δt, it can move from state i to state k (i, k ∈ {1, 2}) with
probability αikΔt (internal migration) or leave the system without completing
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Fig. 1. System model

its service with probability αi0Δt (abandonment of service). At the end of the
service (successful service completion), the customer also leaves the system.

Let us denote the number of customers serviced in state i at instant t by ni(t)
(i = 1, 2). The problem is to find joint probability distribution of the number of
customers in the states

P (n1, n2) = Pr{n1(t) = n1, n2(t) = n2}

which we consider in a steady-state regime.
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Fig. 2. Mathematical model

3 Kolmogorov Equations and Exact Solution

Described problem was considered in our recent paper [9]. The system of Kol-
mogorov equations for distribution P (n1, n2) may be written as follows:

P (n1, n2)[λ + n1μ + n2μ + n1α10 + n2α20 + n1α12 + n2α21] =
P (n1 + 1, n2)(n1 + 1)[μ + α10] + P (n1, n2 + 1)(n2 + 1)[μ + α20]

+P (n1 − 1, n2)v1λ + P (n1, n2 − 1)v2λ
+P (n1 − 1, n2 + 1)(n2 + 1)α21 + P (n1 + 1, n2 − 1)(n1 + 1)α12.

(1)

In [9], the following exact solution of the system was obtained:

P (n1, n2) =
1

n1!n2!

[
v1λ

μ + α10

]n1
[

v2λ

μ + α20

]n2

P (0, 0),

P (0, 0) =

( ∞∑
n1=1

∞∑
n2=1

1
n1!n2!

[
v1λ

μ + α10

]n1
[

v2λ

μ + α20

]n2
)−1 (2)

under condition of the equivalence of the local and global balance equations
which has the following form for the considered model:

α21[μ + α10]v2 = α12[μ + α20]v1. (3)

Solution (2) can be applied only when condition (3) is satisfied and can not
be used in other cases [10].
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4 Asymptotic Analysis

Condition (3) imposes severe constraints, and solution (2) is almost inapplicable
in practice. So, it is necessary to find a solution of system (1) for a wider range of
model parameters. Because direct solution of the problem seems unreachable, we
propose to use the asymptotic analysis method [11,12] for obtaining the solution.

Let us introduce the characteristic function

H(u1, u2) =
∞∑

n1=0

∞∑
n2=0

eju1n1eju2n2P (n1, n2) (4)

(here j =
√−1) and make corresponding transformations in (1). We obtain

H(u1, u2)(v1λ(eju1 − 1) + v2λ(eju2 − 1))+

+j
∂H(u1, u2)

∂u1
(μ + α10 + α12 − e−ju1(μ + α10 − eju2α12))+

+j
∂H(u1, u2)

∂u2
(μ + α20 + α21 − e−ju2(μ + α20 − eju1α21)) = 0.

(5)

We look for the solution of (5) under the condition of increasing intensity of
the incoming flow: λ → ∞.

4.1 First-Order Asymptotic

As the solution will be sought under the condition of increasing intensity of the
incoming flow, we introduce the following notation:

ε =
1
λ

,

where ε → 0 while λ → ∞. Also, we introduce the following notations:

u1 = εw1, u2 = εw2, H(u1, u2) = F1(w1, w2, ε).

Let us make these substitutions in Eq. (5):

F1(w1, w2, ε)
1
ε
{v1(ejεw1 − 1) + v2(ejεw2 − 1)}+

+j
∂F1(w1, w2, ε)

∂w1

1
ε
{μ + α10 + α12 − e−jw1ε(μ + α10 + ejεw2α12)}+

+j
∂F1(w1, w2, ε)

∂w2

1
ε
{μ + α20 + α21 − e−jw2ε(μ + α20 + ejεw1α21)} = 0.

Using the expansion
ejεwk = 1 + jεwk + +O(ε2),
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after completing limit transition ε → 0, we obtain

F1(w1, w2)(jw1v1 + jw2v2)+

+j2
∂F1(w1, w2)

∂w1
(w1μ + w1α10 − w2α12 + w1α12)+

j2
∂F1(w1, w2)

∂w2
(w2μ + w2α20 − w1α21 + w2α21) = 0.

(6)

Let us rewrite Eq. (6) in the following form:

F1(w1, w2)jw1v1 + j2
∂F1(w1, w2)

∂w1
(w1μ + w1α10 + w1α12)+

j2
∂F1(w1, w2)

∂w2
(−w1α21) = 0,

F1(w1, w2)jw2v2 + j2
∂F1(w1, w2)

∂w1
(−w2α12)+

j2
∂F1(w1, w2)

∂w2
(w2μ + w2α20 + w2α21) = 0.

Dividing the first equation by F (w1, w2)w1 and the second one by
F (w1, w2)w2, we obtain

jv1 + j2
∂F1(w1, w2)

∂w1

1
F1(w1, w2)

(μ + α10 + α12)+

j2
∂F1(w1, w2)

∂w2

1
F1(w1, w2)

(−α21) = 0,

jv2 + j2
∂F1(w1, w2)

∂w1

1
F1(w1, w2)

(−α12)+

j2
∂F1(w1, w2)

∂w2

1
F1(w1, w2)

(μ + α20 + α21) = 0.

(7)

We will look a solution of this system in the following form:

F1(w1, w2) = exp{jw1a1 + jw2a2},

where a1 and a2 are some constants. Making corresponding substitutions in (7),
we derive

jw1(v1 − a1μ − a1α10 − α12a1 + a2α21)+
jw2(v2 − a2μ − a1α10 − α12a1 + a2α21) = 0,

which we write in the form{
v1 − a1(μ + α10 + α12) + a2α21 = 0,

v2 − a2(μ + α20 + α21) + a1α12 = 0.
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Solving this system, we obtain

a1 =
v1 + v2α21

(μ + α20 + α21)(μ + α10 + α12) + α12α21
,

a2 =
α12v1 + v2(μ + α10 + α12)

(μ + α10 + α12)(μ + α20 + α21) + α12α21
.

4.2 Second-Order Asymptotic

Let us perform the following substitution in Eq. (5):

H(u1, u2) = H(2)(u1, u2) exp{ju1λa1 + ju2λa2}, (8)

where H(2)(u1, u2) is the characteristic function of two-dimensional centered
random process {n1(t) − a1λ, n2(t) − a2λ}. We obtain

H(u1, u2){−λ + j2(μ + α10 + α12)λa1 + j2(μ + α20 + α21)

−j2e−ju1(μ + α10)λa1 − j2e−ju1(μ + α20)λa2

+v1λeju1 + v2λeju2 − j2e−ju1α12e
ju2λa1 − j2e−ju2α21e

ju1λa2}

+
∂H(2)(u1, u2)

∂u1

{
j(μ + α10 + α12) − je−ju1(μ + α10) − je−ju1α12e

ju2
}

+
∂H(2)(u1, u2)

∂u2

{
j(μ + α20 + α21) − je−ju2(μ + α20) − je−ju2α21e

ju1
}

= 0.

By making the following substitutions:

λ =
1
ε2

, u1 = εw1, u2 = εw2,

H(2)(u1, u2) = F2(w1, w2, ε),

we derive

F2(w1, w2, ε)
1

ε2
{−1 + j2(μ + α10 + α12)a1 + j2(μ + α20 + α21)

−j2e−jεw1 (μ + α10)a1 − j2e−jεw1(μ + α20)a2

+v1ejεw1 + v2ejεw2 − j2e−jεw1α12ejεw2a1 − j2e−jεw2α21ejεw1a2}

+
∂F2(w1, w2, ε)

∂w1

1

ε

{
j(μ + α10 + α12)− je−jεw1 (μ + α10)− je−jεw1α12ejεw2

}

+
∂F2(w1, w2, ε)

∂w2

1

ε

{
j(μ + α20 + α21)− je−jεw2(μ + α20)− je−jεw2α21ejεw1

}
= 0.

Using expansions

ejεwk = 1 + jεwk +
(jεwk)2

2
+ O(ε2)
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and

e−jεwk = 1 − jεwk +
(jεwk)2

2
+ O(ε2),

we obtain

−1
2
F2(w1, w2)

{
w2

1(v1 + a1(μ + α10 + α12) + α21a2)

+w2
2(v1 + a2(μ + α20 + α21) + α12a1) − 2w1w2(α12a1 + α21a2)

}

−∂F2(w1, w2)
∂w1

jw1

{
α12 − α10 − μ

}
+

∂F2(w1, w2)
∂w1

jw2α12

−∂F2(w1, w2)
∂w2

jw1

{
α21 − α20 − μ

}
+

∂F2(w1, w2)
∂w2

jw2α21 = 0.

(9)

We will look for a solution of this equation in the form

F (w1, w2) = exp{−1
2
w2

1K11 − 1
2
w2

2K22 − w1w2K12}, (10)

where K11,K22, and K12 are some constants.
Substituting (10) into (9), we obtain:

w2
1

{
− 1

2
(v1 + a1(μ + α10 + α12) + α21a2) − 2K11(α12 − α10 − μ) + K12α21

}
+

+w2
2

{
− 1

2
(v1 + a2(μ + α20 + α21) + α12a1) + K12α12 + 2K22α21

}
+

+w1w2

{
α12a1 + α21a2 − K12(α12 − α10 − μ) + 2K11α12−

−2K22(α21 − α20 − μ) + K12α21

}
= 0.

After some derivations, we obtain the following expressions for evaluation of
constants K11,K22,K12:

K11 = 2
v1 + a2α21 + K12α21

α12 + α10 + μ
,

K22 = 2
v2 + a1α12 + K12α12

α21 + α20 + μ
,

K12 =
α12

v1 + α21a2

α12 + α10 + μ
+ α21

v2 + α12a1

α21 + α20 + μ
− (a1α12 + a2α21)

α12 + α10 + μ + α21 + α21 + μ − α12α21

α12 + α10 + μ
− α12α21

α21 + α20 + μ

.

4.3 Approximation of Joint Probability Distribution of the Number
of Customers in States of Service

Taking into account derived expressions for constants a1, a2,K11,K22,K12 and
using expression (8), we obtain the following approximation for characteristic
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function of the number of customers in states of service in the steady-state
regime:

H(u1, u2) ≈ exp
{

ju1λa1 + ju2λa2 − u1u2λK12 − u2
1λK11

2
− u2

2λK22

2

}
, (11)

which can be applied for enough big values of the arrival process intensity λ. So,
the probability distribution of the number of customers in the states of service
in the steady-state regime P (n1, n2) is a two-dimensional Gaussian distribution
with vector of mathematical expectations

m = λ [a1 a2] (12)

and covariance matrix

K = λ

[
K11 K12

K12 K22

]
. (13)

Because (11) represents characteristic function of continuous random variable
with possible negative values, we need in constructing of probability distribution
for integer non-negative values which can be applied as an approximation for the
probability distribution of the number of customers. To do this, we propose to
use the following cumulative distribution function (c.d.f.):

F (i, k) =
G(i + 0.5, k + 0.5) − G(i − 0.5, k − 0.5)

1 − G(−0.5,−0.5)
, (14)

where i, k ∈ {0, 1, . . . } mean the number of customers in service states 1 and
2 respectively, G(i, k) is a c.d.f. of two-dimensional Gaussian distribution with
vector of mathematical expectations (12) and covariance matrix (13).

5 Numerical Example

To evaluate the accuracy of approximation (14), we conduct the following exper-
iment: for different values of parameter λ, using simulations, we obtain an empir-
ical probability distribution function and compare it with approximation (14).
For the comparison, we will take into account only marginal distributions for the
corresponding states of service. For accuracy estimation, we use the Kolmogorov
distance

Δ = max
i

|F (i) − Fsim(i)|,

where Fsim(i) is an empirical c.d.f. built on the base of results of simulations,
and F (i) is a marginal one-dimensional Gaussian c.d.f. built on the base of
expression (14). Choosen values of system parameters are given in Table 1. Also,
we preformed similar numerical comparison of the approximation with the exact
solution obtained under the condition of equivalence of the local and global
balance equations (3). The experiments were conducted with the same values of
infinite (Table 1), for which condition (3) is satisfied.
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Table 1. Values of parameters for numerical experiments

Parameter Value

μ 0.1

v1 0.3

v2 0.7

α12 12.83

α21 1

α10 1

α20 0.1

Fig. 3. Probability distribution of the number of customers in state 1 for λ = 10 and
λ = 100

Figure 3 shows a comparison of the stationary probability distributions of
the number of customers serviced in state 1 for different intensities of the arrival
process. Table 2 shows corresponding values of the Kolmogorov distance. We can
see that accuracy of the theoretical approximation increases with increasing of
λ. The same results for state 2 can be found in Table 3. We consider the results
can be an acceptable if Kolmogorov distance Δ ≤ 0.05 (highlighted in boldface
in the tables). So, as we see from the tables, we reach the acceptable results for
the obtained approximation for values λ ≥ 10.

Table 2. Kolmogorov distance between probability distributions of the number of
customers in state 1 for various values of λ: Δsim – approximation against simulation;
Δex – approximation against exact solution

λ 1 5 10 15 20

Δsim 0,1388 0.0712 0,0354 0.0227 0.0165

Δex 0,1387 0.0711 0,0348 0.0229 0.0170
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Table 3. Kolmogorov distance between probability distributions of the number of
customers in state 2 for various values of λ: Δsim – approximation against simulation;
Δex – approximation against exact solution

λ 1 5 10 15 20

Δsim 0,0288 0.0058 0,0031 0.0016 0.0016

Δex 0,0284 0.0056 0,0027 0,0018 0.0013

6 Conclusion

Mathematical model for subscriber communication network using IAB technol-
ogy with two mobile nodes is proposed in the paper. The model is formulated
in the form of an infinite-server queueing system with two states of service and
abandonments. The method of asymptotic analysis is applied to find the joint
two-dimensional probability distribution of the number of customers in the first
and second states of service. Obtained result in the form of an approximation can
be applied in the case when the condition of equivalence of the local and global
balance equations is not met but it is limited by enough big intensity of the
arrival process. Conducted numerical experiments approve applicability of the
obtained approximation. We think that the approach may be applied for mod-
els with an arbitrary number of service states and for models with non-Poisson
arrivals and non-exponential service times.
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Abstract. This paper introduces the notion of service interruption
within a production inventory system. Customer arrivals follow a Pois-
son process and service times are exponentially distributed. The sys-
tem allows retrials for service, and production rates vary suitably to
accommodate increased demand. If an item is out of stock, the server is
occupied or an interruption occurs, a primary customer enters the orbit
of infinite capacity; otherwise, the customer lost permanently. Retrial
attempts for service can be made from the orbit. The system’s stability
is assessed and key performance measures are defined. A relevant cost
function is formulated and subjected to numerical and graphical analysis.

Keywords: Retrial inventory · Different production rates · Service
interruption · Cost Analysis

1 Introduction

Service interruption models include different types of service unavailability. This
may be due to server breakdown, server interruptions, server taking vacations,
arrival of a priority customer,unreliable server, etc. There are numerous studies
on inventory systems where interruption occurs due to unreliable supplier. Our
study is due to the unreliable sever.

The first study on an inventory system was by Berman et al. [1]. He stud-
ied a deterministic model in which a processing time is required for serving the
inventory. Rashid et al. [9] analyzed a production inventory system by consider-
ing demand and production time as stochastic parameters. They calculated the
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transition probabilities in steady state and the long-run inventory costs. Krish-
namoorthy et al. [5] studied queues with service interruption and repair. This
paper presents an infinite-capacity queueing system with a single server where
the service rule is FIFO. Long-run system distribution is also obtained under a
stable regime. Krishnamoorthy and Jose [4] analysed and compared three pro-
duction inventory systems with positive service time and retrial of customers
and they found that the model with a buffer size equal to the inventoried items
is the best profitable model.

Server interruptions and retrials in an inventory model were studied by Krish-
namoorthy et al. [6]. They calculated the waiting time of a customer in the orbit
and their dependence on different system parameters. A production inventory
system with different rates of production and retrials was studied by Jose and
Salini [3]. They employed the Matrix analytic method to find an algorithmic
solution. They also compared two production inventory systems with the retrial
of customers and varying production rates by introducing a buffer with different
capacities [2] and found that the model with varying buffer-size is more efficient
for practical applications.

A solution for an Inventory model with server interruption and retrials was
investigated by E. Sandhya et al. [13]. They found an explicit expression for
the steady state distribution and several performance measures are evaluated
explicitly and numerically. Salini and Jose [11] studied the production inventory
system with retrial and varying service rates by assuming the arrival of customers
as MAP and service time following Phase Type distribution.

Rejitha K.R. and K.P.Jose [10] studied a queueing inventory system with
MAP, retrials, and different replenishment rates. Here the arrival of customers
follows a Markovian arrival process and service time follows Phase-Type dis-
tribution. They used the Matrix analytic method to analyze the model. In the
paper, A PH distributed production inventory model with different modes of ser-
vice and MAP arrivals, Salini and Jose [12] studied a production inventory model
with the retrial of customers under (s, S) policy. Here also arrival pattern follows
MAP. The production process follows Phase-Type distribution. They analyzed
the effect of correlation between two successive inter-arrival times. In the present
study, the concept of interruption is introduced to a production inventory system
with varying production rates.

2 Mathematical Modelling and Analysis of the Problem

We consider a production inventory system under (s, S) policy. Retrial of cus-
tomers and service interruptions are also allowed. The item in the inventory is
served through a single server counter. The production process starts whenever
the inventory falls to s and continues the production till the inventory reaches
level S. The service of a customer can be interrupted at any time. Interruptions
occur during the service and there is no restriction on the number of possible
interruptions. An arriving customer who finds that the server is busy, server is
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interrupted or inventory level is zero can proceed to an orbit where they can retry
for the service. The following assumptions are made for modeling this problem.

• The arrival of customers is according to the Poisson process with rate λ and
the service pattern follows an exponential distribution with rate μ.

• The production rate is αβ where α ∈ [1, c] and c is a finite number greater
than 1, when production starts and the rate falls to β when the inventory
level crosses above s.

• The inter occurrence-time of interruption is exponentially distributed with
parameter δ1 and an exponentially distributed amount of time with parameter
δ2 is required to resume service from where it is stopped.

• The inter retrial-time is exponentially distributed with linear rate iθ, when
there are i customers in the orbit.

• An arriving customer who finds the server busy, on interruption, or inventory
level zero can proceed to an orbit with probability γ and lost forever with
probability 1 − γ.

• A retrial customer who finds the server busy, on interruption or inventory level
zero returns to the orbit with probability δ and lost forever with probability
1 − δ.

• Inventory as well as customers are not lost due to server interruptions.

The following are the notations used in this model.
N(t): Number of customers in the orbit at time t.
I(t): Inventory level at time t.

J(t):The production status J(t) :

{
0, if the production is on OFF mode,
1, if the production is on ON mode.

S(t) :The server status S(t) :

⎧⎪⎨
⎪⎩

0, if the server is idle,
1, if the server is busy,
2, if the server is on interruption.

Now X(t) = {(N(t), S(t), J(t), I(t)) : t ≥ 0.} is a level dependent quasi birth
death process on the state space {(i, j, 0, k) : i ≥ 0; j = 0, 1, 2; k = s + 1, ..., S}⋃{(i, 0, 1, k) : i ≥ 0; k = 0, ..., S − 1} ⋃{(i, j, 1, k) : i ≥ 0; j = 1, 2; k = 1, ..., S −
1}.

The infinitesimal generator Q of the process is a block tri-diagonal matrix
and has the form:

Q =

⎡
⎢⎢⎢⎢⎢⎣

A1,0 A0

A2,1 A1,1 A0

A2,2 A1,2 A0

A2,3 A1,3 A0

. . . . . . . . .

⎤
⎥⎥⎥⎥⎥⎦

where the block matrices A0, A1,i; (i ≥ 0) and A2.i; (i ≥ 1.) are square matrices
of order 6S − 3s − 2 and are given by
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A0 =

0, 0
0, 1
1, 0
1, 1
2, 0
2, 1

⎡
⎢⎢⎣
0 0 0 0 0 0
0 D1 0 0 0 0
0 0 D2 0 0 0
0 0 0 D3 0 0
0 0 0 0 D2 0
0 0 0 0 0 D3

⎤
⎥⎥⎦

A2,i =

0, 0
0, 1
1, 0
1, 1
2, 0
2, 1

⎡
⎢⎢⎣
0 0 B1 0 0 0
0 B2 0 B3 0 0
0 0 B4 0 0 0
0 0 0 B5 0 0
0 0 0 0 B4 0
0 0 0 0 0 B5

⎤
⎥⎥⎦ ,

A1,i =

0, 0
0, 1
1, 0
1, 1
2, 0
2, 1

⎡
⎢⎢⎣

G1 0 G2 0 0 0
C3 C4 0 G3 0 0
C5 C6 G4 0 G5 0
0 C7 C8 C9 0 G6
0 0 G7 0 G8 0
0 0 0 G9 0 G10

⎤
⎥⎥⎦

where a, b denotes the entry corresponding to the variations of the inventory
level j for fixed i, the number of customers in the orbit and a and b stands for
the server status and production status respectively. The (m,n)th element of the
matrices contained in A0, A2,i, and A1,i are given below.

D1 = (λγ)C1, D2 = (λγ)IS−s,

D3 = (λγ)IS−1, (C1)mn =

{
1;m=n=1
0; otherwise

,

B1(i) = (iθ)IS−s, B2(i) = (iθ)(1 − δ)C1, B3(i) = (iθ)C2,

B4(i) = (iθ)(1 − δ)IS−s, B5(i) = (iθ)(1 − δ)IS−1,

(C2)mn =

{
1; m=2,...S, n=m-1
0; otherwise

, (C3)mn =

{
β; m=S, n=S-s
0; otherwise

,

(C4)mn(i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−(λγ + αβ + iθ(1 − δ)); m=n=1
−(λ + αβ + iθ); m=2,...s, n=m
−(λ + β + iθ); m=s+1,...S, n=m
αβ; m=1,...s, n=m+1
β; m=s+1,...S-1, n=m+1
0; otherwise

,

(C5)mn =

{
μ; m=2,...S-s, n=m-1
0; otherwise

, (C6)mn =

{
μ; m=1, n=s+1
0; otherwise

,

(C7)mn =

{
μ; m=1,...S-1, n=m
0; otherwise

(C8)mn =

{
β; m=S-1, n=S-s
0; otherwise

,
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(C9)mn(i) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−(λγ + αβ + μ + iθ(1 − δ) + δ1); m=1,...s-1, n=m
−(λγ + β + μ + iθ(1 − δ) + δ1); m=s,... S-1, n=m
αβ; m=1,...s-1, n=m+1
β; m=s,...S-2,n=m+1
0; otherwise

,

G1(i) = −(λ + iθ)IS−s, G2 = λIS−s,

G3 = λC2, G4(i) = −(λγ + μ + iθ(1 − δ) + δ1)IS−s,

G5 = δ1IS−s, G6 = δ1IS−1,

G7 = δ2IS−s, G8(i) = −(λγ + iθ(1 − δ) + δ2)IS−s,

G9 = δ2IS−1, G10(i) = −(λγ + iθ(1 − δ) + δ2)IS−1.

Using the Neuts-Rao [9] truncation method we can find an N such that A1,i = A1

and A2,i = A2 when i ≥ N .Then the infinitesimal generator Q of the process
will take the following form,

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1,0 A0

A2,1 A1,1 A0

A2,2 A1,2 A0

A2,3 A1,3 A0

. . . . . . . . .
A2,N−1 A1,N−1 A0

A2 A1 A0

A2 A1 A0

. . . . . . . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

3 Steady State Analysis

3.1 System Stability

Let A = A0 + A1 + A2 . Then

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

M1 0 M2 0 0 0
M3 M4 0 M5 0 0
M6 M7 M8 0 M9 0
0 M10 M11 M12 0 M13

0 0 M14 0 M15 0
0 0 0 M16 0 M17

⎤
⎥⎥⎥⎥⎥⎥⎦

where M1 = G1,M2 = B1 + G2,M3 = C3,M4 = D1 + B2 + C4,M5 = B3 +
G3,M6 = C5,M7 = C6,M8 = D2 + B4 + G4,M9 = G5,M10 = C7,M11 =
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C8,M12 = B5 + C9 + D3,M13 = G6,M14 = G7,M15 = D2 + B4 + G8,M16 =
G9,M17 = D3 + B5 + G10.
Le the steady state probability vector of A be π = (π(0), π1(0), π(1), π1(1),
π(2), π1(2)). Then the equation πA=0 gives the following equations.

π(0)M1 + π1(0)M3 + π(1)M6 = 0.
π(0)M2 + π(1)M8 + π1(1)M11 + π(2)M14 = 0.
π1(0)M5 + π1(1)M12 + π1(2)M16 = 0.
π(1)M9 + π(2)M15 = 0.
π1(1)M13 + π1(2)M17 = 0.

From these equations it follows that

π(0) = (π1(0)M3 + π(1)M6)(−M1)−1

π1(0) = (π(1)M7 + π1(1)M10)(−M4)−1

π(1) = (π(0)M2 + π1(1)M11 + π(2)M14)(−M8)−1

π1(1) = (π1(0)M5 + π1(2)M16)(−M12)−1

π(2) = (π(1)M9(−M15)−1

π1(2) = (π1(1)M113)(−M17)−1

where M1 = −(λ + Nθ)IS−s, M8 = −(μ + δ1)IS−s, M15 = (−δ2)IS−s,M17 =
(−δ2)IS−1. M4 and M12 are upper triangular matrices given by M4 = (λγ +
Nθ(1 − δ))C1 + C4, M12 = (λγ + Nθ(1 − δ))IS−1 + C9. All these matrices are
invertible. So the above equations can be solved using Block Gauss Seidel iter-
ation procedure to find the vector π. The stability condition can be stated as
limN→∞ πA0e

πA2e < 1, which we checked numerically where
πA0e=π1(0) + (π(1) + π(2))(λγ)IS−s + (π1(1) + π1(2))(λγ)IS−1 and
πA2e=π(0)(Nθ)IS−s + π1(0)(Nθ)(1 − δ))C1 + π1(0)(Nθ)C2 + (π(1) +
π(2))(Nθ)(1 − δ)IS−s + (π1(1) + π1(2))(Nθ)(1 − δ))IS−1.

3.2 Steady State Probability Vector

Let x = (x0, x1, ..., xN−1, xN ...) be the steady state probability vector of Q,
where each xi is given by

xi = (yi,0,0,s+1..., yi,0,0,S , yi,0,1,0...yi,0,1,S−1, yi,1,0,s+1, ...yi,1,0,S ,

yi,1,1,1, ...yi,1,1,S−1, yi,2,0,s+1, ...yi,2,0,S , yi,2,1,1, ...yi,2,1,S−1).

Under the stability condition, xi’s are given by xN+r−1 = xN−1R
r(r ≥ 1) where

R is the unique non negative solution of the equation R2A2 + RA1 + A0 = 0
for which the spectral radius is less than one and the vectors x0, x1, ...xN−1 are
obtained by solving

x0A1,0 + x1A2,1 = 0
xi−1A0 + xiA1,i + xi+1A2,i+1 = 0(1 ≤ i ≤ N − 2)
xN−2A0 + xN−1(A1,N−1 + RA2) = 0

subject to the normlizing condition

[
∑N−2

i=0 xi + xN−1(1 − R)−1]e = 1.
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3.3 Rate Matrix R and Truncation Level N

The rate matrix R is evaluated using an iterative method. We denote the
sequence of R by {R(N)}and is defined by R0(N) = 0 and
Rn+1(N)=−(R2(N)A2(N) − A0(N))A−1

1 (N).
Elsner’s algorithm [7] is used to find the spectral radius η(N) in such a way that
‖η(N) − η(N + l)‖ < ε where ε is an arbitrarily small value and η(N) is the
spectral radius of R(N).

3.4 System Performance Measures

Some important performance measures are

(i) Expected inventory Level in the system

EIL = Σ∞
i=0Σ

2
j=0Σ

S
k=s+1kyi,j,0,k + Σ∞

i=0Σ
2
j=0Σ

S−1
k=1 kyi,j,1,k.

.
(ii) Expected Number of customers in the orbit

ENC = (Σ∞
i=1ixi) e =

(
ΣN−1

i=1 ixi + xN (N(I − R)−1 + R(I − R)−2)
)
e.

.
(iii) Expected interruption rate

EIR = δ1Σ
∞
i=0

(
ΣS

k=s+1yi,1,0,k + ΣS−1
k=1 yi,1,1,k

)
.

.
(iv) Expected repair rate of the server

ERR = δ2Σ
∞
i=0

(
ΣS

k=s+1yi,2,0,k + ΣS−1
k=1 yi,2,1,k

)
.

.
(v) Expected number of external customers lost, before entering the orbit is

ECLP = (1 − γ)λ
(

Σ
∞
i=0yi,0,1,0 + Σ

∞
i=0Σ

2
j=1Σ

S
k=s+1yi,j,0,k + Σ

∞
i=0Σ

2
j=1Σ

S−1
k=1 yi,j,1,k

)
.

(vi) Expected number of departures after completing service is

END = μ
(
Σ∞

i=0Σ
S
k=s+1yi,1,0,k + Σ∞

i=0Σ
S−1
k=1 yi,1,1,k

)
.

.
(vii) Expected number of customers lost due to retrials

ECLR = θ(1 − δ)
(
Σ∞

i=1i
(
yi,0,1,0 + Σ2

j=1Σ
S
k=s+1yi,j,0,k + Σ2

j=1Σ
S−1
k=1 yi,j,1,k

))
.

.

(viii) Overall rate of retrials

ORR = θ (Σ∞
i=1ixi)) e.

.
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(ix) Successful rate of retrials

SRR = θΣ∞
i=0

(
ΣS

k=s+1yi,0,0,k + ΣS−1
k=1 yi,0,1,k

)
.

.
(x) Expected switching rate

ESR = μΣ∞
i=0yi,1,0,s+1.

.
(xi) Server busy probability

SRB = Σ∞
i=0Σ

S
k=s+1yi,1,0,k + Σ∞

i=0Σ
S−1
k=1 yi,1,1,k.

.

3.5 Cost Analysis

The Expected Total Cost (ETC) is defined as

ETC = c1ESR + c2EIL + c3ENC + c4ECLP + c5ECLR + c6END + c7ERR

where

c1 = switching cost for production
c2 = holding cost of inventory /unit/unit time
c3 = holding cost of the customers in the orbit/unit/unit time
c4 = cost due to loss of primary customers/unit/unit time
c5 = cost due to loss of retrial customers/unit/unit time
c6 = cost due to service/unit/unit time
c7 = repair cost for the server.

4 Numerical and Graphical Illustrations

This section aims to provide a detailed description of the numerical and graphical
experiments that were conducted to analyse the effects of changes in various
parameters on the performance measures and expected total cost.

• Table 1 displays the nature of expected interruption rate(EIR), overall rate
of retrials(ORR), successful rate of retrials(SRR) and server busy probabil-
ity(SRB) with an increase in the customer arrival rate λ. As the arrival rate
increases, we expect an increase in the number of customers in the system.
This will lead to an increase in the overall retrial rate, server busy prob-
ability, and successful retrial rate. Naturally, there is a chance to increase
the service interruption rate. The table explains this well. Figure 1(a) shows
the variations in the expected total cost with variations in the parameter λ,
keeping other parameters fixed. From the graph, it is clear that the minimum
expected total cost is attained when λ = 1.2.
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• Table 2 analyses different performance measures and expected total cost by
varying the service rate μ. As shown in the table, an increase in the service rate
μ decreases the expected interruption rate, overall rate of retrials, and server
busy probability. Customers get quick service, which leads to an increase in
the successful rate of retrials. Graphical representation with variations in μ
(see Fig. 1(b)) obtains the expected minimum cost of 36.3547 at μ = 2.5.

• Arriving customers go to the orbit because of the server interruption, server
busy or no inventory. So as the value of γ increases, there will be an increase
in the server busy probability,successful rate of retrials, overall rate of retrials
and interruption rate as in Table 3. In Fig. 1(c), the convexity of the graph is
obtained, and the minimum expected total cost is attained at γ = 0.4.

• An increase in the production rate α brings more customers to the service
station. This is illustrated in Table 4. This will increase the expected interrup-
tion rate, the successful rate of retrials, and the server busy probability. But
the overall rate of retrials decreases. The expected minimum cost is obtained
for α = 1.6 as in Fig. 1(d).

• Table 5 shows that with the increase in the retrial rate θ, the overall rate of
retrials and successful rate of retrials increases. This in turn decreases the
server busy probability and expected interruption rate. Graphical represen-
tation is shown in Fig. 2(a).

• The variations in δ are similar to those of λ and γ as we can see from Table 6.
As more customers are retrying for service, the overall rate of retrials increases
to a great extent. Figure 2(b) shows the variations in ETC with respect to
changes in the value of δ. The expected minimum cost 73.8573 is attained for
δ = 0.6.

• Table 7 and 8 analyze the nature of expected number of customers too, in addi-
tion to the other performance measures. As the interruption rate δ1 increases,
ENC also increases. This is because as the interruption becomes more fre-
quent, the expected service time of a customer increases. This will reduce
the server busy probability and successful rate of retrials(See Table 7). At
the same time, an increase in the repair rate δ2 brings an increase in these
rates because the server becomes active in a shorter time after an interruption
which in turn leads to an increase in the service completion rate(See Table 8).
This will reduce the expected number of customers in the system. Graphi-
cal illustrations for variations in δ1 and δ2 to obtain the minimum ETC are
shown in Fig. 2(c) and Fig. 2(d) respectively.

4.1 Optimization of (s, S) Pair

The optimum value of (s, S) pair is obtained by considering suitable parameter
values. Here we calculated the optimum value of expected total cost by varying
the maximum inventory level S and the inventory level s at which production
starts. The optimum (s, S) pair which minimizes the expected total cost is found
to be (7,27) and the corresponding ETC is 5936.7 (Table 9).
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Table 1. Variations in λ.

λ EIR ORR SRR SRB

1.1 0.9685 3.8014 0.7181 0.3228

1.2 0.9918 4.1359 0.7322 0.3306

1.3 1.0136 4.4864 0.7466 0.3378

1.4 1.0338 4.8475 0.7607 0.3446

1.5 1.0524 5.2145 0.7744 0.3508

1.6 1.0694 5.5837 0.7873 0.3565

1.7 1.0849 5.9521 0.7994 0.3616

1.8 1.0990 6.3177 0.8107 0.3663

1.9 1.1118 6.6791 0.8210 0.3706

S = 50, s = 5, α = 1.5, δ = 0.7, θ =
2, μ = 3, γ = 0.8, β = 1.5, δ1 = 3, δ2 =
2.5

Table 2. Variations in μ.

μ EIR ORR SRR SRB

2.1 1.1435 5.6694 0.6008 0.3812

2.2 1.1332 5.6154 0.6223 0.3777

2.3 1.1229 5.5622 0.6432 0.3743

2.4 1.1126 5.5100 0.6635 0.3709

2.5 1.1025 5.4586 0.6833 0.3675

2.6 1.0923 5.4080 0.7026 0.3641

2.7 1.0822 5.3584 0.7213 0.3607

2.8 1.0722 5.3096 0.7395 0.3574

2.9 1.0623 5.2616 0.7572 0.3541

S = 50, s = 5, α = 1.5, λ = 1.5, θ =
2, γ = 0.8, β = 1.5, δ = 0.7, δ1 =
3, δ2 = 2.5

Table 3. Variations in γ.

γ EIR ORR SRR SRB

0.1 0.8945 2.1390 0.5210 0.2982

0.2 0.9079 2.3103 0.5406 0.3026

0.3 0.9260 2.5578 0.5672 0.3087

0.4 0.9488 2.9145 0.6020 0.3163

0.5 0.9749 3.3842 0.6434 0.3250

0.6 1.0020 3.9451 0.6879 0.3340

0.7 1.0282 4.5650 0.7323 0.3427

0.8 1.0524 5.2145 0.7744 0.3508

0.9 1.0741 5.8718 0.8129 0.3580

S = 50, s = 5, α = 1.5, λ = 1.5, θ =
2, γ = 0.8, β = 1.5, δ = 0.7, δ1 =
3, δ2 = 2.5
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Table 4. Variations in α.

α EIR ORR SRR SRB

1.1 1.0479 5.2217 0.7715 0.3493

1.2 1.0496 5.2191 0.7726 0.3499

1.3 1.0510 5.2169 0.7736 0.3503

1.4 1.0521 5.2152 0.7743 0.3507

1.5 1.0530 5.2138 0.7753 0.3513

1.6 1.0538 5.2126 0.7753 0.3513

1.7 1.0543 5.2116 0.7756 0.3514

1.8 1.0548 5.2108 0.7759 0.3516

1.9 1.0552 5.2101 0.7761 0.3517

S = 50, s = 5, λ = 1.5, μ = 3, γ =
0.8, β = 1.5, θ = 2, δ = 0.7, δ1 =
3, δ2 = 2.5

Table 5. Variations in θ.

θ EIR ORR SRR SRB

1.1 1.0602 4.5215 0.7575 0.3534

1.2 1.0601 4.6296 0.7607 0.3534

1.3 1.0597 4.7261 0.7633 0.3532

1.4 1.0589 4.8130 0.7654 0.3530

1.5 1.0580 4.8921 0.7671 0.3527

1.6 1.0569 4.9648 0.7687 0.3523

1.7 1.0558 5.0323 0.7701 0.3519

1.8 1.0546 5.0958 0.7715 0.3515

1.9 1.0535 5.1563 0.7729 0.3512

2 1.0524 5.2145 0.7744 0.3508

S = 50, s = 5, λ = 1.5, δ = 0.7, α =
1.5, μ = 3, γ = 0.8, β = 1.5, δ1 =
3, δ2 = 2.5

Table 6. Variations in δ.

δ EIR ORR SRR SRB

0.1 0.9500 2.6857 0.5901 0.3167

0.2 0.9554 2.8086 0.6007 0.3185

0.3 0.9633 2.9800 0.6154 0.3211

0.4 0.9747 3.2284 0.6360 0.3249

0.5 0.9914 3.6045 0.6658 0.3305

0.6 1.0160 4.2031 0.7095 0.3387

0.7 1.0524 5.2145 0.7744 0.3508

0.8 1.1051 7.0801 0.8703 0.3684

0.9 1.1779 11.2774 1.0089 0.3926

S = 50, s = 5, λ = 1.5, α = 1.5, θ =
2, μ = 3, γ = 0.8, β = 1.5, δ1 = 3, δ2 =
2.5
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Table 7. Variations in δ1.

δ1 ENC EIR ORR SRR SRB

2.2 2.4876 0.8683 4.9753 0.8618 0.3943

2.4 2.5204 0.9185 5.0408 0.8382 0.3827

2.6 2.5511 0.9657 5.1023 0.8158 0.3714

2.8 2.5800 1.0103 5.1601 0.7946 0.3608

3 2.6072 1.0524 5.2145 0.7744 0.3508

3.2 2.6329 1.0923 5.2658 0.7552 0.3413

3.4 2.6572 1.1300 5.3144 0.7369 0.3324

3.6 2.6801 1.1658 5.3603 0.7195 0.3238

3.8 2.7019 1.1999 5.4038 0.7028 0.3158

S = 50, s = 5, α = 1.5, λ = 1.5, θ = 2, μ =
3, γ = 0.8, β = 1.5, δ = 0.7, δ2 = 2.5

Table 8. Variations in δ2.

δ2 ENC EIR ORR SRR SRB

2.2 2.6606 0.9914 5.3212 0.7325 0.3305

2.4 2.6242 1.0330 5.2485 0.7611 0.3443

2.6 2.5910 1.0709 5.1820 0.7870 0.3570

2.8 2.5605 1.1015 5.1210 0.8104 0.3685

3 2.5324 1.1373 5.0649 0.8317 0.3791

3.2 2.5066 1.1665 5.0131 0.8512 0.3888

3.4 2.4826 1.1934 4.9652 0.8691 0.3978

3.6 2.4604 1.2183 4.9208 0.8855 0.4061

3.8 2.4398 1.2414 4.8796 0.9007 0.4138

S = 50, s = 5, α = 1.5, λ = 1.5, θ = 2μ =
3, γ = 0.8, β = 1.5, δ = 0.7, δ1 = 3

Table 9. λ = 1.5, μ = 3, β = 2, δ = 0.7, δ1 = 2, δ2 = 3, α = 1.5, c1 = 1, c2 = 1, c3 =
2000, c4 = 10, c5 = 1, c6 = 1, c7 = 1

s S 25 26 27 28 29 30

5 5938.0 5937.8 5937.7 5937.6 5937.6 5937.7

6 5937.1 5937.0 5936.9 5936.9 5936.9 5937.0

7 5937.0 5936.9 5936.7 5936.8 5936.8 5936.9

8 5937.4 5937.2 5937.1 5937.0 5937.1 5937.2

9 5938.0 5937.8 5937.6 5937.6 5937.6 5937.7

10 5938.7 5938.4 5938.3 5938.1 5938.1 5938.2
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λ versus ETC

(a)

S = 50, s = 5, γ = 0.8, μ = 3, δ = 0.7,
β = 1.5, δ1 = 3, δ2 = 2.5, c1 = 1, c2 = 7.32,
c3 = 1.8, c4 = 1.3, c5 = 5.8, c6 = 1, c7 = 4

μ versus ETC

(b)

S = 50, s = 5, λ = 1.5, γ = 0.8, δ = 0.7,
β = 1.5, δ1 = 3, δ2 = 2.5, c1 = 650, c2 = 1,
c3 = 1, c4 = 1, c5 = 1, c6 = 1, c7 = 1

γ versus ETC

(c)

S = 50, s = 5, λ = 1.5, μ = 3, δ = 0.7,
beta = 1.5, δ1 = 3, δ2 = 2.5, c1 = 30,
c2 = 2.2, c3 = 2, c4 = 1, c5 = 1,
c6 = 1.3, c7 = 1

α versus ETC

(d)

S = 50, s = 5, λ = 1.5, γ = 0.8, μ = 3,
δ = 0.7, β = 1.5, δ1 = 3, δ2 = 2.5,
c1 = 1.35, c2 = 1.057, c3 = 49,
c4 = 7.3, c5 = 4.2, c6 = 5.2, c7 = 2.32

Fig. 1. Variation of ETC with respect to various parameters
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θ versus ETC

(a)

S = 50, s = 5, λ = 1.5, γ = 0.8, μ = 3,
δ = 0.7, β = 1.5, δ1 = 3, δ2 = 2.5,
c1 = 2.8, c2 = 2.3, c3 = 8.4, c4 = 1.1,
c5 = 49.58, c6 = 2.1, c7 = 2.1

δ versus ETC

(b)

S = 50, s = 5, λ = 1.5, μ = 3, γ = 0.8,
β = 1.5, δ1 = 3, δ2 = 2.5, c1 = 2, c2 = 2.5,
c3 = 1, c4 = 1, c5 = 5.8, c6 = 1, c7 = 1

δ1 versus ETC

(c)

S = 50, s = 5, λ = 1.5, γ = 0.8, μ = 3,
δ = 0.7, β = 1.5, δ1 = 3, c1 = 250, c2 = 1,
c3 = 1, c4 = 1, c5 = 0.9, c6 = 1.1, c7 = 1

δ2 versus ETC

(d)

S = 50, s = 5, λ = 1.5, γ = 0.8, μ = 3,
δ = 0.7, β = 1.5, δ2 = 2.5, c1 = 1, c2 = 1,
c3 = 1, c4 = 1, c5 = 1, c6 = 6.57, c7 = 1

Fig. 2. Variation of ETC with respect to various parameters

5 Conclusion

This paper addressed a production inventory system with different production
rates, retrial of customers and server interruptions. Different production rates
were considered to minimize the customer’s loss during stock-out period. Essen-
tial performance measures were derived and a suitable cost function was con-
structed. Numerical and graphical illustrations were conducted to analyze the
total costs concerning the variations in the parameters. An optimum (s, S) pair



160 S. Skaria et al.

which minimizes the ETC is also calculated. This work can be extended further
by considering the Markovian Arrival Process (MAP) in the place of the Poisson
process.
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Abstract. Stochastic models for inventory management are powerful
tools that help to optimize inventory decisions and reduce inventory
risk. This paper presents an N-policy in a multi-server continuous review
(s, S) stochastic inventory system with service time. The system com-
prises c homogeneous parallel servers, activated based on predetermined
queue length thresholds. Inter-arrival time, service time, and lead time
are assumed to follow exponential distributions. The study establishes
a necessary and sufficient condition for system stability. The Matrix-
Geometric method is used to study the characteristics of this model.
The performance measures of the system are found, and an appropriate
cost function associated with it is developed. The performance evaluation
and optimization issues are also discussed and presented both numeri-
cally and graphically. Through rigorous numerical calculations, the opti-
mal (s,S) pair is determined for specific parameters. This comprehensive
analysis enhances our understanding of stochastic models in inventory
management, offering valuable insights into system dynamics and facil-
itating informed decision-making for efficient inventory control and risk
reduction.
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supermarkets often assign extra staff to cater to peak-time customers while uti-
lizing these employees for other tasks during off-peak hours. Deciding when to
deploy servers and when to assign them to different roles plays a pivotal role
in determining the profitability of such establishments. This work introduces a
control policy for managing multi-server inventory in businesses of this nature.

Considerable research exists on multi-server queuing systems. Yadavalli et al.
[13] focused on a multi-server queuing system with continuous review of perish-
able inventory, combining queuing theory with inventory management. Krish-
namoorthy et al. [6] analyzed multi-server queuing inventory systems, empha-
sizing scenarios with two servers and deriving product form solutions for steady-
state distributions. Jose and Beena [4] studied a retail production inventory sys-
tem with two heterogeneous vacationing servers. Wang et al. [12] analyzed prior-
ity multi-server retrial inventory queues with finite queueing and orbit spaces. To
enhance multi-server queuing inventory systems, Jeganathan et al. [2] introduced
two types of multiserver service facilities. Recently, Samouylov et al. [9] analyzed
multi-server queuing systems with flexible priorities, considering N independent
identical servers and an infinite-capacity buffer.

The N-policy concept, originating in queueing literature in 1963, finds wide
application in service control, including modeling production systems. Yadin and
Naor [14] introduced the N-policy to minimize operational costs, and Artalejo
[1] compared N, T, and D policies in an M/G/1 queueing system. Tian et al.
[11] studied threshold-type vacation policies in multiserver queuing systems, and
Krishnamoorthy et al. [5] extended the N-policy concept to (s, S) inventory
systems. Subsequently, Jose and Thresiamma [3,10] extended this concept to
production inventory systems and retrial inventory systems.

This paper unfolds in four parts: a model description, steady-state analysis,
computation of system performance measures, and numerical and graphical illus-
trations. The study concludes by identifying the optimal (s, S)pair and determin-
ing the optimum cost for a specific set of parameters, offering valuable insights
for businesses seeking to enhance their inventory management strategies. This
information enables businesses to make informed decisions and optimize their
operational costs in the context of multi-server inventory systems.

1 Description of the Model

This study examines a continuous review (s, S) multi-server stochastic inven-
tory system with positive service time and lead time. The system consists of ’c’
homogeneous parallel servers. Customers are admitted to the service facilities
on a first-come first-served basis. The system employs an N-policy, operating as
follows.: The dth server, 1 ≤ d ≤ c, becomes active when Nd customers accumu-
late in the system and have at least d items in the inventory, and is available till
the queue length falls below Nd−1, where Nd, 1 ≤ d ≤ c is a pre-fixed manage-
able level. One of the servers continues to be active until the system is empty
or the inventory reaches zero. This model is built upon several foundational
assumptions, including:
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• The arrival of customers forms a Poisson distribution with a rate λ.
• The lead time follows an exponential distribution with a rate β.
• The service time follows an exponential distribution with a rate μ.

Key notations in this model include:

N(t) : Number of customers in the system at time t.

J(t) : The server status at time t.

J(t) =

{
0, if no servers are available at time t.

d, if d servers are available at time t; for d = 1, 2, . . . , c.

I(t) : Inventory level at time t.

X(t) = (N(t), J(t), I(t))

{X(t); t ≥ 0} forms a Continuous Time Markov Chain with a state space repre-
sented by

⋃∞
i=0 Li, where

L0 = {(0, 0, k) : k = 0, 1, . . . , S}
for 1 ≤ i < N1;

Li = {(i, 0, k) : k = 0, 1, . . . , S}
⋃

{(i, 1, k) : k = 1, 2, . . . , S}
for Nd−1 ≤ i < Nd; d = 2, 3, . . . , c;

Li = {(i, 0, 0)}
⋃

{(i, j, k) : j = k; k = 1, 2, . . . , d − 1}⋃
{(i, j, k) : k = j, j + 1, . . . , S; j = d − 1, d}

for i ≥ c :

Li = {(i, 0, 0)}
⋃

{(i, j, k) : k = j; k = 1, 2, . . . , c − 1}⋃
{(i, c, k) : k = c, c + 1, . . . , S}

The infinitesimal generator G of the process is a block tri-diagonal matrix and
has the form:

G =

0
1
...

Nc − 1
Nc

Nc + 1
Nc + 2

...

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1,0 A0,0

A2,1 A1,1 A0,1

. . . . . . . . .
A2,Nc−1 A1,Nc−1 A0, Nc − 1

A2,NC
A1 A0

A2 A1 A0

A2 A1 A0

. . . . . . . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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where

[A0,0](i, j) =

{
λ, if i = j, i = 1, 2, . . . , S + 1
0, otherwise

For k = 1, . . . , N1 − 2

[A0,k](i, j) =

{
λ, if i = j, i = 1, 2, . . . , 2S + 1
0, otherwise

For d = 1, . . . , c

[A0,Nd−1](i, j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λ, if i = j, i = 1, 2, . . . , S + 1
λ, if j = (i + (d − 1)) − S,

i = S + 2, . . . , 2S + 2 − d

0, otherwise

For d = 1, . . . , c − 1; k = Nd, . . . , Nd+1 − 2

[A0,Nk
](i, j) =

{
λ, if i = j, i = 1, 2, . . . , 2S + 1 − d

0, otherwise

[A0](i, j) =

{
λ, if i = j, i = 1, 2, . . . , S + 1
0, otherwise

[A1,0](i, j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−(λ + β), if i = j, i = 1, 2, . . . , s + 1
−λ, if i = j, i = s + 2, . . . , S + 1
β, if j = S + 1, i = 1, 2, . . . , s + 1
0, otherwise

For k = 1, . . . , N1 − 1

[A1,k](i, j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−(λ + β), if i = j, i = 1, . . . , s + 1
−λ, if i = j, i = s + 2, . . . , S + 1
−(μ + λ + β), if i = j, i = S + 2, . . . , S + s + 1
−(λ + μ), if i = j, i = S + s + 2, . . . , 2S + 1
β, if j = S + 1& i = 1, 2, . . . , s + 1;

if j = 2S + 1& i = S + 2, . . . , S + 1 + s

0, otherwise

For k = Nd, . . . , Nd+1 − 1; d = 1, . . . , c − 1
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[A1,k](i, j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−(λ + β), if i = j = 1
−((i − 1)μ + λ + β), if i = j, i = 2, . . . , d + 1
−(dμ + λ + β), if i = j, i = d + 2, . . . , s + 1
−(λ + dμ), if i = j, i = s + 2, . . . , S + 1
−(λ + (d + 1)μ + β), if i = j,

i = S + 2, . . . , S + 1 + s − d

−(λ + (d + 1)μ), if i = j,

i = S + s + 1 − d, . . . , 2S + 1 − d

β, if j = S + 1, i = 1, 2, . . . , s + 1
β, if j = 2S + 1 − d,

i = S + 2, . . . , S + s + 1 − d

0, otherwise

[A1](i, j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−λ − β, if i = j = 1
−((i − 1)μ + λ + β), if i = j, i = 2, . . . , c + 1
−(cμ + λ + β), if i = j, i = c + 2, . . . , s + 1
−(λ + cμ), if i = j, i = s + 2, . . . , S + 1
β, if j = S + 1&i = 1, . . . , s + 1
0, otherwise

[A2,1](i, j) =

{
μ, if j = i − (S + 1), i = S + 2, . . . , 2S + 1
0, otherwise

For k = 2, . . . , N1 − 1

[A2,k](i, j) =

⎧⎪⎨
⎪⎩

μ, if j = 1 and i = S + 2
μ, if j = i − 1, i = S + 3, . . . , 2S + 1
0, otherwise

For d = 1, 2, . . . , c − 1;

[A2,Nd](i, j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(i − 1)μ, if j = i − 1, i = 2, . . . , d + 1
dμ, if j = i + S − d, i = d + 2, . . . , S + 1
(d + 1)μ, if j = i, i = S + 2, . . . , 2S + 1 − d

0, otherwise

For k = N1 + 1, . . . , N2 − 1

[A2,k](i, j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

μ, if j = i − 1, i = 2, . . . , S + 1
2μ, if j = 2, i = S + 2
2μ, if j = i − 1, i = S + 3, . . . , 2S

0, otherwise

For k = Nd + 1, . . . , Nd+1 − 1, d = 2, 3, . . . , c − 1
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[A2,k](i, j) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(i − 1)μ, if j = i − 1, i = 2, . . . , d

dμ, if j = i − 1, i = d + 1, . . . , S + 1
(d + 1)μ, if j = d + 1, i = S + 2
(d + 1)μ, if j = i − 1, i = S + 3, . . . , 2S + 1 − d

0, otherwise

[A2,Nc](i, j) =

⎧⎪⎨
⎪⎩

(i − 1)μ, if j = i − 1, i = 2, . . . , c + 1
cμ, if j = i + S − c, i = c + 2, . . . , S + 1
0, otherwise

[A2](i, j) =

⎧⎪⎨
⎪⎩

(i − 1)μ, if j = i − 1, i = 2, . . . , c + 1
cμ, if j = i − 1, i = c + 2, . . . , S + 1
0, otherwise

2 Steady State Analysis

Consider the finite generator matrix A = A0+A1+A2. The entries of the matrix
A are characterized by the following form.

[A](i, j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−β, if i = j = 1
−((i − 1)μ + β), if i = j, i = 2, c + 1
−(cμ + β), if i = j, i = c + 2, . . . , s + 1
−(cμ), if i = j, i = s + 1, . . . , S

β, if j = S + 1, i = 1, 2, . . . , s + 1
(i − 1)μ, if j = i − 1, i = 2, . . . , c + 1
(cμ, if j = i − 1, i = c + 2, . . . , S + 1
0, otherwise

Theorem 1. The steady-state probability vector πA = (π0, π1, . . . , πS) corre-
sponding to the generator matrix A = A0 + A1 + A2 is given by πj = ψjπ0,
where

ψj =

⎧⎪⎪⎨
⎪⎪⎩

∏j
k=1

(β+(k−1)μ)
kμ , j = 1, . . . , c(

cμ+β
cμ

)j−c

ψc, j = c + 1, . . . , s + 1

ψs+1, j = s + 2, s + 3, . . . , S

π0 =
β

ψs+1(cμ + (S − s)β)
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Proof: A satisfies the equations πAA = 0 and πAe = 1.

πAA = 0 =⇒

−βπ0 + μπ1 = 0,

−(kμ + β)πk + (k + 1)μπk+1 = 0, k = 1, 2, . . . , c − 1
−(cμ + β)πk + cμπk+1 = 0, k = c, c + 1, . . . , s

−cμπk + cμπk+1 = 0, k = s + 1, . . . , S

β(π0 + π1 + . . . + πs) − πScμ = 0.

(1)

Solving the system of Eqs. (1) and using the normalizing condition πAe = 1,
one obtains the required result.

Theorem 2. The process {X(t)|t ≥ 0} is stable if and only if λ < μ(c(1−π0)+
lπ0), where

l =
c−1∑
t=1

(c − t)
t∏

j=1

β + (j − 1)μ
jμ

and

π0 =
β

ψs+1(cμ + (S − s)β)
.

Proof: Since the process {X(t)|t ≥ 0} is a level-independent QBD process for
i ≥ Nc + 1, it will be stable if and only if πAA0e < πAA2e (see Neuts [8]). Here
πAA0e = λ and πAA2e = μ(c(1 − π0) + lπ0).

Using Theorem 1, the result is obtained.

2.1 The Steady State Probability Vector of G

Let the steady- state probability vector x of G be partitioned according to the
levels as x = (x0, x1, ..., xNc

, ...). The steady state solution takes the form (refer
to Latouche and Ramaswami [7].)

xNc+1+j = xNc+1R
j : j ≥ 1,

where R is the minimal nonnegative solution of the matrix quadratic equation

R2A2 + RA1 + A0 = 0.

R can be calculated from the iterative procedure (see Neuts [8])

Rn+1 = −(R2
nA2 + A0)A−1

1

Also x satisfies the equations xG = 0 and xe = 1.
This leads to the following system of equations

x0A1,0 + x1A2,1 = 0,
xi−1A0,i−1 + xiA1,i + xi+1A2,i+1 = 0, 1 ≤ i ≤ Nc − 1.

xNc−1A0,Nc−1 + xNc
A1 + xNc+1A2 = 0,

xNc
A0 + xNc+1(A1 + RA2) = 0,∑Nc+1

i=0 xie + xNc+1(I − R)−1e = 1

(2)
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Solving the system of Eq. (2) yields the vector x.

3 System Performance Measures

The steady-state probability vector for the system enables the calculation of
various measures of system effectiveness. The components of the vector x are
partitioned as follows: x as

x0 = (x(0, 0, 0), x(0, 0, 1), . . . , x(0, 0, S))
for 1 ≤ i ≤ N1 − 1,

xi = (x(i, 0, 0), x(i, 0, 1), ..., x(i, 0, S), x(i, 1, 1), . . . , x(i, 1, S))
for Nd ≤ i ≤ Nd+1 − 1; d = 1, . . . , c − 1

xi = (x(i, 0, 0), x(i, 1, 1), . . . , x(i, d, d), x(i, d, d + 1), . . . , x(i, d, S),
x(i, d + 1, d + 1), (x, d + 1, d + 2), . . . , x(i, d + 1, S))

for i ≥ Nc,

xi = (x(i, 0, 0), x(i, 1, 1), . . . , x(i, c, c), x(i, c, c + 1), x(i, c, S))

With these notations, essential system performance measures are defined and
detailed below.

1 Expected Number of customers in the system

EC =
∞∑

i=1

ixie =
N1−1∑
i=1

ixie +
c−1∑
d=1

Nd+1−1∑
i=Nd

ixie

+ NcxNc
e + xNc+1((Nc)(I − R)−1 + (I − R)−2)e.

2 Expected inventory level

EI =
S∑

k=1

kx(0, 0, k) +
N1−1∑
i=1

S∑
k=1

1∑
j=0

kx(i, j, k)

+
c−1∑
d=1

Nd+1−1∑
i=Nd

(
d∑

k=1

kx(i, k, k) +
S∑

k=d+1

kx(i, d,K) +
S∑

k=d+1

kx(i, d + 1, k))

+
∞∑

i=Nc

(
c−1∑
k=1

kx(i, k, k) +
S∑

k=c

kx(i, c, k)).

3 Expected reorder level

ER = μ

N1−1∑
i=1

x(i, 1, s + 1) + cμ

∞∑
i=Nc

x(i, c, s + 1)

+
c−1∑
d=1

(dμ

Nd+1−1∑
i=Nd

x(i, d, s + 1)) + (d + 1)μ
Nd+1−1∑

i=Nd

x(i, d + 1, s + 1)).
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4 Expected departure rate

ED = μ

N1−1∑
i=1

S∑
k=1

x(i, 1, k) +
c−1∑
d=1

Nd+1−1∑
i=Nd

(
d∑

k=1

kμx(i, k, k)

+ dμ

S∑
k=d+1

x(i, d, k) + (d + 1)μ
S∑

k=d+1

x(i, d + 1, k))

+
∞∑

i=Nc

(
c−1∑
k=1

kμx(i, k, k) + cμ

S∑
k=c

kx(i, c, k)).

5 Probability that exactly d servers are busy
i d=0:

Pidle =
N1−1∑
i=0

S∑
k=0

x(i, o, k) +
∞∑

i=N1

x(i, 0, 0).

ii d=1:

P1busy =
N1−1∑
i=1

S∑
k=1

x(i, 1, k) +
∞∑

i=N1

x(i, 1, 1).

iii 1 < d < c:

Pdbusy =
Nd+1−1∑
i=Nd−1

S∑
k=d

x(i, d, k) +
∞∑

i=Nd+1

x(i, d, d).

iv d=c:

Pbusy =
∞∑

i=Nc−1

S∑
k=c

x(i, c, k).

6 Expected switching rate of servers

ES = λ

(
c∑

d=1

S∑
k=d

x(Nd − 1, d − 1, k)

)
+ β

(
c∑

d=1

∞∑
i=Nd

x(i, d − 1, d − 1)

)
.

3.1 Expected Total Cost

The expected total cost (ETC) is defined as:

ETC = c1 · EC + c2 · EI + c3 · ER + c4 · ED + c5 · ES,

where,

c1 : holding cost of the customer/unit time,
c2 : holding cost of inventory/unit/unit time,
c3 : ordering cost/order/unit time,
c4 : cost of service/unit/unit time,
c5 : switching cost for the server.
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4 Numerical and Graphical Illustrations

This section provides a description of the numerical experiments that were con-
ducted to investigate the effects of variations in various parameters on the per-
formance measures and expected total cost. The values presented in Tables 1 to 5
correspond to calculations performed for a system with four servers (c = 4) and
threshold levels set as N1 = 4, N2 = 7, N3 = 10, and N4 = 12. These results pro-
vide insights into the system’s behavior under different configurations, shedding
light on the effects of parameter variation on its performance and cost dynamics.

In Table 1, the variations in performance measures and Expected Total Cost
(ETC) with respect to maximum inventory level S are highlighted. The analysis
reveals the following observations as S increases from 22 to 29:

• The Expected number of customers, Expected re-order rate, expected switch-
ing rate of servers, and the probability that all servers are idle exhibit a
consistent decrease. This trend is natural since S represents the maximum
inventory.

• The Expected inventory, expected departure rate, and the probability that
all servers are busy also experience a decrease, aligning with expectations.

• The expected total cost shows a convex variation, as illustrated in Fig. 1(a).
For the specific set of parameter values described in Table 1, the minimum
cost is attained at S = 25.

In Table 2, variations concerning the reorder level ’s’ are highlighted. The anal-
ysis reveals the following observations as s increases from 5 to 11

• The Expected number of customers, Expected inventory, Expected re-order
rate and expected switching rate of servers exhibit a slight increase. This
upward trend is expected since as s increases, the on-hand inventory and
related characteristics also increase.

• There is a slight decrease in the expected switching rate of servers. This
decrease can be attributed to the reduced likelihood of servers becoming idle
due to a lack of inventory. There are negligible variations in the probability
that the servers are idle and busy. This suggests that changes in the parameter
’s’ have minimal impact on the states of the servers.

• The expected total cost demonstrates a convex variation, as depicted in
Fig. 1(b). For the specific set of parameter values outlined in Table 2, the
minimum cost is achieved at s=7.

Table 3 illustrates the changes in performance measures as the arrival rate λ
ranges from 0.6 to 1.3

• An increase in the arrival rate corresponds to a significant rise in the expected
number of customers, leading to an increase in the departure rate and the
busy status of servers. The increased expected departure rate results in a
decrease in expected inventory and the probability of servers being idle. This
reduction in inventory triggers an increase in the re-order rate.
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• The expected total cost displays a convex pattern, as illustrated in Fig. 1(c).
For the specific parameter values detailed in Table 3, the minimum cost is
attained at λ = 0.9.

Table 4 illustrates the changes in performance measures as the service rate μ
ranges from 1 to 1.7

• An increase in the service rate leads to a substantial decrease in the expected
number of customers, expected inventory, and the busy server status. Simul-
taneously, the departure rate increases, consequently causing an uptick in the
reorder rate.

• The expected total cost exhibits a convex pattern, as depicted in Fig. 1(d).
For the specific parameter values outlined in Table 5, the minimum cost is
achieved at μ = 1.3.

Table 5 illustrates the changes in performance measures as the replenishment
rate β ranges from 0.6 to 1.4

• An increase in the replenishment rate corresponds to a significant rise in the
expected inventory, leading to an increase in the departure rate and hence
the number of customers in the system reduces.

• The expected total cost displays a convex pattern, as illustrated in Fig. 1(e).
For the specific parameter values detailed in Table 5, the minimum cost is
attained at β = 0.9.
Table 6 depicts variations in the Expected Total Cost as the parameters
s and S simultaneously change, considering the set of specified parameter
values detailed beneath Table 6. The corresponding three-dimensional plot
(Fig. 1(f)) illustrates this variation, revealing a convex pattern. The optimal
(s,S) pair for the system within the specified parameter values is determined
to be (4,28), representing the point of minimum cost. Observations across the
tables indicate that changes in parameters have a noticeable impact on various
performance measures and the Expected Total Cost. Tables revealing convex
variations in expected total cost suggest opportunities for optimization.
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Table 1. Variations in Performance Measures and ETC w.r.t S

S EC EI ER ED ES PBI PB ETC

22 5.7372 12.7072 0.6077 7.4288 0.3494 0.2239 0.0488 16.4505

23 5.7356 13.2255 0.5826 7.4566 0.3468 0.2223 0.0490 16.4385

24 5.7340 13.7420 0.5596 7.4822 0.3443 0.2209 0.0493 16.4313

25 5.7327 14.2571 0.5383 7.5059 0.3421 0.2195 0.0495 16.4284

26 5.7314 14.7707 0.5185 7.5278 0.3400 0.2183 0.0497 16.4294

27 5.7302 15.2832 0.5002 7.5482 0.3380 0.2172 0.0499 16.4339

28 5.7291 15.7945 0.4831 7.5672 0.3362 0.2161 0.0501 16.4414

29 5.7280 16.3049 0.4671 7.5849 0.3345 0.2151 0.0503 16.4518

s = 7 : λ = 1 : μ = 1.3 : β = 0.8c = 4 : c1 = 2 : c2 = 0.1 : c3 = 2 : c4 = 0.1 :
c5 = 5 :

Table 2. Variations in Performance Measures and ETC w.r.t s

s EC EI ER ED ESR PBi PBB ETC

5 6.9294 12.0936 0.3447 7.5649 0.2007 0.1786 0.0855 45.5834

6 6.9263 12.2193 0.3662 7.5663 0.2006 0.1785 0.0855 45.5790

7 6.9236 12.3385 0.3877 7.5674 0.2006 0.1785 0.0855 45.5773

8 6.9214 12.4512 0.4092 7.5683 0.2006 0.1784 0.0855 45.5774

9 6.9195 12.5575 0.4308 7.5690 0.2006 0.1784 0.0855 45.5785

10 6.9178 12.6573 0.4524 7.5697 0.2006 0.1784 0.0854 45.5805

11 6.9163 12.7508 0.4741 7.5703 0.2005 0.1783 0.0854 45.5829

S = 25 : λ = 1.8 : μ = 1.3 : β = 0.4c = 4 : c1 = 6 : c2 = c3 = c4 = 0.1 : c5 =
4 :

Table 3. Variations in Performance Measures and ETC w.r.t λ

λ EC EI ER ED ESR PBi PBB ETC

0.6 5.2198 14.9248 0.4738 6.3439 0.2453 0.2911 0.0383 19.8398

0.7 5.4016 14.7279 0.4897 6.5843 0.2677 0.2628 0.0418 19.8322

0.8 5.5570 14.5658 0.5007 6.7718 0.2902 0.2402 0.0453 19.8282

0.9 5.6932 14.4291 0.5079 6.9202 0.3130 0.2216 0.0488 19.8267

1 5.8153 14.3116 0.5122 7.0388 0.3363 0.2062 0.0524 19.8274

1.1 5.9265 14.2088 0.5142 7.1338 0.3600 0.1931 0.0560 19.8297

1.2 6.0296 14.1175 0.5144 7.2101 0.3841 0.1819 0.0597 19.8335

1.3 6.1265 14.0356 0.5132 7.2711 0.4087 0.1723 0.0635 19.8386

S = 25 : s = 7 : μ = 1.2 : β = 0.8 : c = 4 : c1 = 0.5 : c2 = c3 = 1 : c4 = 0.25 :
c5 = 1
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Table 4. Variations in Performance Measures and ETC w.r.t μ

μ EC EI ER ED ESR PBi PBB ETC

1 6.0041 14.4463 0.4541 6.0507 0.3262 0.1781 0.0600 44.7063

1.1 5.9051 14.3742 0.4842 6.5541 0.3310 0.1924 0.0558 44.6509

1.2 5.8153 14.3116 0.5122 7.0388 0.3363 0.2062 0.0524 44.6215

1.3 5.7327 14.2571 0.5383 7.5059 0.3421 0.2195 0.0495 44.6127

1.4 5.6561 14.2095 0.5627 7.9565 0.3482 0.2325 0.0471 44.6204

1.5 5.5846 14.1680 0.5856 8.3916 0.3545 0.2450 0.0449 44.6411

1.6 5.5174 14.1317 0.6073 8.8119 0.3611 0.2571 0.0431 44.6725

1.7 5.4540 14.0999 0.6277 9.2182 0.3678 0.2688 0.0414 44.7124

S = 25 : s = 7 : λ = 1 : β = 0.8 : c = 4 : c1 = c2 = 2c3 = 1 : c4 = 0.5 : c5 = 1

Table 5. Variations in Performance Measures and ETC w.r.t β

β EC EI ER ED ESR PBi PBB ETC

0.6 5.8623 13.7850 0.4655 6.9496 0.3257 0.2135 0.0520 28.3989

0.7 5.8345 14.0696 0.4908 7.0003 0.3315 0.2093 0.0522 28.3673

0.8 5.8153 14.3116 0.5122 7.0388 0.3363 0.2062 0.0524 28.3562

0.9 5.8012 14.5214 0.5305 7.0690 0.3403 0.2038 0.0526 28.3554

1 5.7905 14.7063 0.5465 7.0935 0.3437 0.2020 0.0528 28.3602

1.1 5.7820 14.8711 0.5605 7.1137 0.3467 0.2005 0.0531 28.3679

1.2 5.7751 15.0195 0.5730 7.1308 0.3493 0.1993 0.0533 28.3770

1.3 5.7694 15.1543 0.5841 7.1454 0.3516 0.1983 0.0535 28.3868

1.4 5.7645 15.2774 0.5941 7.1580 0.3537 0.1974 0.0537 28.3969

S = 25 : s = 7 : λ = 1 : μ = 1.2 : c = 4 : c1 = 4 : c2 = 0.1 : c3 = 1 : c4 = 0.4 :
c5 = 1

Table 6. Variations in ETC w.r.t (s, S)

S s

3 4 5 6 7 8 9 10

20 188.713 188.642 188.610 188.586 188.568 188.553 188.541 188.530

22 188.258 188.215 188.206 188.203 188.203 188.206 188.209 188.213

24 188.001 187.977 187.984 187.995 188.008 188.022 188.037 188.051

26 187.885 187.875 187.892 187.913 187.935 187.957 187.980 188.001

28 187.872 187.871 187.896 187.924 187.952 187.981 188.009 188.036

30 187.937 187.943 187.973 188.006 188.039 188.072 188.104 188.135

32 188.061 188.073 188.107 188.143 188.180 188.216 188.252 188.286

34 188.233 188.249 188.286 188.325 188.365 188.404 188.442 188.479

μ = 1.3 : β = 0.3 : λ = 1.5 : c = 4 : c1 = 18 : c2 = 0.5 : c3 = 0.1 : c4 = 2 : c5 = 2 :
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Fig. 1. Variation of ETC with respect to various parameters
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Conclusion

A continuous review (s, S) stochastic inventory system with c, (c > 1) servers
is studied in this work. The N-policy is implemented for the service facility
across multiple stages. A condition necessary and sufficient for system stability
is derived, and the Matrix Geometric Method is utilized for system analysis. Key
performance measures and a cost function based on these metrics are developed.
The system’s performance is numerically assessed and graphically visualized.
Specifically, the optimal (s, S) pair for a 4-server system with threshold stages
N1 = 2 : N2 = 8 : N3 = 12 : N4 = 16 is determined. For the given parameter
values and costs μ = 1.3 : β = 0.3 : λ = 1.5 : c1 = 18 : c2 = 0.5 : c3 =
0.1 : c4 = 2 : c5 = 2 : the optimum value is found to be 187.871 and (4, 8)
is the optimal (s, S).pair. This study suggests potential extensions to inventory
systems involving multi-production units or production inventory systems with
multiple servers.
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Abstract. In this paper, we determine the number of visits of the ani-
mals to the salt lake from observations from a camera trap. The main dif-
ficulty of the task is that the same animal can be registered and counted
several times as different animals. The total number of animals that
came to solonets is determined by the formula for the stationary distri-
bution of the number of applications in a queuing system with an infinite
number of devices. The interfering parameter is the intensity of service.
The problem is solved using the ergodicity of the service process. In sys-
tems with different intensity of the flow of animals, the intensity ratio is
determined by the ratio of the number of observations from the camera
trap.

Keywords: Interfering parameter · Ergodicity · Queuing system

1 Introduction

Estimating the parameters of a statistical sample in the presence of an interfer-
ing parameter is an important statistical task [1,2]. This problem has found its
application in quantum physics, where usually interfering parameters are called
hidden parameters [3]. It was also solved when creating quantum computers
[4]. Methods for solving the problem of interfering parameters were used in the
analysis of tiger tracks in Primorye in 2005. [5]. In this article, the probability
of detecting a trace is selected as an interfering parameter. Our choice of the
interfering parameter allows us to use the theorem on colouring points of the
Poisson flow [6] to estimate the parameter of the Poisson distribution of the rel-
ative number of flow points in a given area. We consider the problem of assessing
the intensity of visits by animals to camera traps set for animals at feeding sites
or salt shakers. Here, the interference parameter characterizes the average time
spent by the animal on the salt shaker.

The problem of processing data on the time of stay and frequency of visits by
animals to camera traps has recently become increasingly relevant. Photos and
videos of automatic registration of animals (data of camera traps) allow us to
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identify some rare species well, for example, large cats (tiger, leopard) by their
individual colouring (a combination of stripes and spots on the animal’s skin).
For photos and videos of the most valuable hoofed animals (raisins, roe deer, elk),
personal identification of animals is not possible. An exception may be a short
period (one and a half to two months a year), when adult males (bulls) may be
distinguished by the configuration of the horns. Therefore, camera traps record
the approach of such animals, but without their individualization. This makes it
difficult to account the number of animals recorded by the camera trap for some
time interval. To overcome this difficulty, it is necessary to use the elements of
queuing theory in relation to a system with an infinite number of servers. In
particular, such a system arises when counting the approach of animals to salt
pans. If we assume that an animal can approach the salt shaker once a day
and its successive approaches will be daily until saturation, then the time of
the animal’s stay at the salt shaker can be interpreted as service time, and the
number of channels may be considered infinite, since the competition of animals
for such a resource can be neglected. And, finally, the time of the animal’s stay
at the salt cellar with a sufficient margin of error may be considered the same
for different periods of time (months).

This allows us to obtain information about the degree of general use of salt
by animals to meet their needs, which is comparable to the number of customers
in a queuing system with an infinite number of servers. In some cases, for such
a system, it is not difficult to calculate the stationary distribution and to estab-
lish an ergodicity in the sense of an equality of the average value (number of
animals) in the ensemble and the average value along a long trajectory. The
first characteristic may be calculated from the stationary distribution of the
process characterizing the number of customers in the queuing system (on the
salt marsh). And the second characteristic may be calculated from observations
using a camera trap.

Counting the total number of animals cannot be done without serious errors
if it is performed according to the frequency of registration with a camera trap.
The reason is that it is impossible to prove the difference of hoofed animals,
therefore, the same animal may be registered several times and counted as dif-
ferent animals. Fixed information on the date and time of stay does not help in
these calculations, which is also recorded by a camera trap. It is necessary to
remove the interfering parameter and to build data on animal encounters as a
relative number that actually coincides with the total number of registrations of
all animals by month. These parameters express the average values of daily and
seasonal visits of saline animals [7–9].

The second task of estimating the parameters of the Poisson flow in the
presence of an interfering parameter is the task of processing winter animal tracks
in a certain area. The peculiarity of this problem is the fact that each trace may
be detected with some probability. This probability is an interfering parameter
and depends on the thickness of the snow cover, on the organization of trail
monitoring, on the financial circumstances, etc. Therefore, instead of estimating
the parameters of the Poisson flow characterizing the number of traces in some
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districts, it is proposed to estimate the ratio of the Poisson flow parameter
characterizing the number of traces in a certain district to the Poisson flow
parameter characterizing the number of traces in the entire area and assumed
to be large. Thus, the estimation of the parameters of the Poisson flow in the
presence of an interfering parameter may be realized from long-term observations
or in the presence of a large average number of observed traces.

Since both of these tasks are related to animal observations, it begs to con-
sider another problem about the possible movements of an animal in some area.
This problem may be solved in an optimization formulation assuming that the
minimum number of intersections of the continuous trajectory of the animal
through the boundaries of the districts of the studied area to the boundary
of the entire area is sought. This problem is closely related to the problem of
estimating the parameters of the Poisson distribution of the number of animal
tracks in a district of a certain aria. To solve this problem, it is required to use
graph-theoretic methods instead of probabilistic ones. Using these methods, we
can zone the districts of a certain area according to the minimum number of
intersections of a continuous curve starting in a certain district to the boundary
of the entire area.

2 Final Distributions in the Queuing System M |M |∞
Consider a queuing system M |M |∞ with an infinite number of servers, the
intensity of the Poisson input flow λ and the intensity of service μ. Denote x(t)
the number of customers in this system at time t. It is known that the stochastic
process x(t) is the death and birth process. In terms of Markov process theory
x(t) is ergodic and its final distribution is Poisson [10, ch. III, §3] with the
parameter ρ = λ/μ :

lim
t→∞ P (x(t) = k) =

e−ρρk

k!
, k = 0, 1, . . . (1)

This final distribution has the mean ρ and the variance ρ.
At the physical level of rigour, the ergodicity of the process x(t) may be

determined as follows: the average value of the process over the ensemble is equal
to the average value of the trajectory. From the point of view of the probability
theory, this equality means the law of large numbers for the process x(t). This
equality may be represented in terms of the convergence in probability P→ as
follows [11, ch. V, §2]:

A(T ) =

∫ T

0
x(t)dt

T

P→ ρ, T → ∞. (2)

Remark 1. Assume that there are two queuing systems M |M |∞ with input
flows intensities λ1, λ2 and the same service intensity μ. Suppose that numbers
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of customers in these systems are described by the death and birth processes
x1(t), x2(t). Then from the formula (2) we have

A1(T )
A2(T )

P→ λ1

λ2
, T → ∞. (3)

It is possible to extend this statement onto queuing systems M |G|∞ also.

Remark 2. It is worthy to say that the process x(t) is a ladder function of t with
a unit height of steps. Therefore, the steps going up are located at the arrival
moments of the input flow. Consequently the ratio between the total number
of such steps X(T ) on the segment [0, T ] and T tends to λ with T → ∞ by

probability:
X(T )

T

P→ λ. However, it is technically quite difficult to use this

remark, since it is necessary to organize the observation of the process x(t) on
the segment [0, T ].

3 Estimation of the Relative Number of Animal
Approaches to the Camera Trap

First Model of Observations. Assume that a Poisson flow of points with
intensity λ is a set on the half-interval [0, n). These points determine the moments
when customers arrive to a queuing system. Let’s split the half-interval [0, n) into
non intersecting half-intervals [0, 1), [1, 2), ldots, [n−1, n). Denote ξ1, ξ2, . . . , ξn

independent and identically distributed random variables that determine the
number of flow points in the selected half-intervals. Now let each point of the
input Poisson flow that falls into the half-interval [i − 1, i), generates one new
point in each of the half-intervals [i, i + 1), . . . , [i + m − 1) (moments of fixation
by the surveillance device). Then the random number of points generated by all
points of the Poisson flow in the half-interval [0, n) is determined by the equality

Nn =
m∑

k=1

kξn−k+1 + m
n∑

k=m+1

ξn−k+1.

Let for some finite positive numbers M, Λ the inequalities m < M, λ < Λ

take place. Denote by the icon P→ a convergence in probability. Then we obtain
the following relations:

∑m
k=1 kξn−k+1

n

P→ 0,

∑n
k=m+1 ξn−k+1

n − m

P→ λ, n → ∞.

It follows from this [12, ch. 1, §3] that

Sn =
Nn

n

P→ mλ, n → ∞. (4)

Thus, the Sn statistic is a consistent estimate of the product mλ.
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Denote

A(m,n) = −m − 1
2n

→ 0; B(m,n) =
1
2n

− 2m

3n
+

1
6mn

→ 0, n → ∞,

and get mathematical expectation and variance of random variable Nn

ENn = mnλ(1 + A(m,n)), varNn = m2nλ(1 + B(m,n)).

Hence the equalities follow

ESn = mλ(1 + A(m,n)), var
Nn√

n
= m2λ(1 + B(m,n)). (5)

From the Bieneme-Chebyshev and Cauchy-Bunyakovsky inequalities, we obtain
the bound that for any ε > 0

P

(∣
∣
∣
∣
Nn

n
− mλ

∣
∣
∣
∣ > ε

)

≤ 2m2λ

nε2

(

B(m,n) +
λ(m − 1)2

4n

)

. (6)

Remark 3. If the parameter λ is known, then the parameter m may be estimated
by the random value Sn. And vice versa, if the parameter m is known, then the
parameter λ may be estimated by the random value Sn. In this formulation of
the problem, we are not talking about estimating the number of animals that
form the flow of customers. We consider only flows of their arrivals.

Remark 4. If Si
n are consistent estimates of the parameters λi, i = 1, 2, then for

general unknown parameter m, the ratio S1
n/S2

n is a consistent estimate of the
ratio λ1/λ2. This property may be extended to any finite number of parameters
λi.

Let the random sequences Nn,t, t = 1, . . . , l are independent and coincide by

distribution with Nn, n = 1, . . . Denote Rn,l =
1

l − 1

l∑

t=1

⎛

⎝Nn,t√
n

−
l∑

j=1

Nn,j√
n

⎞

⎠

2

,

then from the consistency property of the estimate Rn,l [12, ch. 1,§3] we get

Rn,l
P→ var

Nn√
n

→ m2λ, n, l → ∞.

Remark 5. Thus, the statistics Sn, Rn,l are, for n, l → ∞, consistent estimates of
the quantities mλ, m2λ and therefore, with their help, it is possible to construct
consistent estimates of the parameters m, λ. However, for such an assessment,
it is necessary to put not one, but several devices in the vicinity of those places
where animals receive the resource they need (for example, salt).
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Let ηk, k = 1, . . . , n is the number of points generated by the points of the
Poisson flow from the semi-intervals [k − m, k − m + 1), . . . , [k − 1, k). Then the
equalities are fulfilled

ηk =
k∑

i=1

ξi, 1 ≤ k ≤ m; ηk =
k∑

i=k−m+1

ξi, m + 1 ≤ k ≤ n. (7)

Remark 6. It is easy to obtain from the central limit theorem the weak conver-

gence of random variables
Nn − nmλ√

nm2λ
to the standard normal distribution for

n → ∞.

Remark 7. Since the parameter m is unknown, it will not display ηk, 1 ≤ k ≤ n,
via ξk, 1 ≤ k ≤ n.

Second model of observations. Let us now consider another stochastic model
of a queuing system and observations of it. Assume that almost certainly random
variables ηi

k ≤ c < ∞ and each customer/animal is observed ξi
k times at a camera

trap with an average value Eξi
k = b. Denote νi(T ) the total number of customers

arriving queuing system at the segment [0, T ] and put Di(T ) the total number
of camera trap observations at [0, T ]. Then we have almost surely the following
inequality

νi(T−c)∑

k=1

ηi
k ≤ Di(T ) ≤

νi(T )∑

k=1

ηi
k.

Using Wald identity [13] it is possible to obtain the relation

bλi(T − c) ≤ EDi(T ) ≤ bλi(T ), i = 1, 2.

Consequently the following limit formula is true

ED1(T )
ED2(T )

→ λ1

λ2
, T → ∞. (8)

This formula allows to estimate the ratio λ1/λ2 by observations of queuing sys-
tems 1, 2.

Dividing Input flow into Few Sub Flows. Here λ1T, λ2T allow to approx-
imate the parameters of flows intensities λ1, λ2, respectively. These parameters
express the average values of the number of animals arrivals to the system associ-
ating with the salt marsh. In real conditions, animals may arrive the salt system
in groups. For example, males usually come alone, and females - with groups of
animals. Therefore, there is a need to build a Poisson flow model, each point
of which corresponds to a certain group of animals. But since the camera trap
records the number of animals in a group, it is possible to consider several flows
instead of a Poisson flow with a group intake. The customer in each of these
flows corresponds to a fixed number of incoming animals.
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Let’s consider the simplest example when it contains one animal and the
probability of containing more than one animals are analysed. Using the colour-
ization theorem of the points of the Poisson flow [6], it is possible to construct
two independent Poisson flows from the original flow. Each customer in one
of these flows contains one animal, and each customer in the other flow con-
tains more than one animal. Then, for each of these flows, similar considerations
and calculations may be carried out. This simple example may be extended by
assuming that each customer of the Poisson input flow corresponds with some
probability to a certain number of animals: one, two, three, etc.

4 Method of Eliminating the Interfering Parameter
in Statistics of Poisson Flow of Animal Traces

This section examines the analysis of traces of rare animals in different districts
of a certain area. The results obtained in this section show that the analysis of
traces of rare animals requires more careful processing of the results obtained.
This becomes especially important when traces are examined over a large area
and data collection turns into an industrial statistics procedure. The considered
problem arises when comparing data on the number of animal tracks in the snow,
when the interfering parameter takes values caused by different meteorological
and economic characteristics in different districts and in different years.

Let the Lebesgue-measurable and disjoint regions be distinguished on the
plane Gk, k = 1, . . . , n. Poisson point flow Π with continuous intensity λ(x) is
given, and the relations are fulfilled

λk =
∫

Gk

λ(x)dx < ∞, k = 1, . . . , r, λ =
r∑

k=1

λk.

Denote Λk =
λk

λ
and consider the flow Πm with the intensity function mλ(x).

Let each point of the flow Πm be independent of other points and, from its
coordinates with probability p, enter the flow Πm. Then, the flow Πm due to
the point colouring theorem of the Poisson flow [6] is Poisson with intensity
pmλ(x). Therefore, the number nk of flow points Πm in the subdomain Gk has

a Poisson distribution with the parameter pmλk, and the sum n =
r∑

k=1

nk has a

Poisson distribution with the parameter pmλ.

Theorem 1. The convergence in probability of the random variable Nk =
nk

n
to the parameter Λk is valid when m → ∞.

Proof. Due to the properties of the Poisson distribution, the relations are fulfilled

Enk = V ar nk = pmλk, k = 1, . . . , r; En = V ar n = pmλ. (9)
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It follows from the equalities (13) that

V ar
nk

pmλk

=
1

pmλk

, V ar
n

pmλ
=

1
pmλ

.

From Chebyshev’s inequality, we obtain that for any ε, 0 < ε < 1, and for
m → ∞

P

(

1 − ε ≤ nk

pmλk

≤ 1 + ε

)

≥ 1 − 1
pmλkε2

→ 1, k = 1, . . . , r, (10)

P

(

1 − ε ≤ n

pmλ
≤ 1 + ε

)

≥ 1 − 1
pmλε2

→ 1.

Using Formulas (13) and (10), it is not difficult for any ε, 0 < ε <
1
2
, to

obtain the inequality

P

(
1 − 2ε ≤ Nk

Λk
≤ 1 + 4ε

)
≥ P

(
1 − ε

1 + ε
≤ Nk

Λk
≤ 1 + ε

1 − ε

)
≥ 1 − 1

pmλkε2
− 1

pmλε2
.

(11)

From the inequality Λk ≤ 1, and from Formula (11), we obtain the relation

P (−2ε ≤ Nk − Λk ≤ 4ε) ≥ 1 − 1
pmλkε2

− 1
pmλε2

→ 1, m → ∞. (12)

This proves the statement of Theorem 1.

Therefore, the relation Nk, for m → ∞, is a consistent estimate of the parameter
Λk, free of probability p, playing the role of an interfering parameter in this
problem.

Remark 8. Using Inequalities (12), we can assume that p = p(m) = m−δ, 0 ≤
δ < 1, and establish convergence by probability Nk to Λk at m → ∞.

5 Setting the Problem of the Shortest Paths
to the Border of Some Aria

A map of a certain region with areas highlighted on it is considered. It is required
to zone the regions of the region according to the degree of proximity to the outer
border of the region. The degree of proximity of the district to the outer border
of the region means the minimum number of inter-district borders that must be
crossed to get from it to the outer border of the region. It is assumed that the
region is represented on the map by a flat graph consisting of polygons [14] –
[16]. This problem arises when trying to plot possible animal trajectories to the
boundary of a certain area.

The problem is to build an algorithm for zoning a certain area and listing
the shortest paths to the outer boundary. It is assumed that this algorithm will
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be based on the procedure of hierarchical classification of districts and on the
concept of a graph dual to a planar one. It is expected that the zoning algorithm
will lead to the construction of all possible shortest paths from the districts to
the outer border of the region.

Suppose that there is a finite set of U0 = {u} bounded polygons on the
plane. By a polygon (simple) we mean a connected and disconnected set of
points bounded by some closed and non-self-intersecting polyline [14, pp. 749-
752.]. We assume that these polygons can only have common borders or parts
of them. Then the boundaries of these polygons form a planar graph Γ, the
vertices of which are the break points of the boundary poly lines, and the edges
are rectilinear sections of the poly lines.

As a result of this construction, the polygons themselves become faces of a
planar graph Γ [15, Chapter 1]. Due to the limitation of the number of polygons
from the set U0, the outer face of the graph Γ is not included in U0. Each face
g ∈ G0 is mapped to a subset of the faces S(g) ⊆ G0, touches the boundaries
with the face G. Let’s call S(u) a set of adjacent faces u. A face adjacent to the
outer faces is called a boundary, and not adjacent to the outer faces is called an
inner one.

Let’s denote V0 ⊆ U0 the set of boundary faces and U1 = U0 \ V0 - the set
of inner faces. Recursively define an algorithm for hierarchical classification of
faces

Uk+1 = {u ∈ Uk : S(u) ⊆ Uk}, Vk = Uk \ Uk+1. (13)

We extend this recursion to the moment n, when for the first time Un+1 = 	 or
Un+1 = Un. As a result, we get the reward U0 ⊂ U1 ⊂ . . . ⊂ Un and consider
the set of subsets Vk = Uk \ Uk+1, k = 0.1, . . . , n − 1, Vn = Un, moreover

Uk =
n⋃

j=k

Vj , k = 0, . . . , n.

Lemma 1. The equality Un+1 = Un is impossible.

Proof. We will conduct a proof of this statement from the contrary. For any face
uk ∈ Uk, k > 0, there exists such a ε > 0, that ε - the neighbourhood of the
face uk is completely contained in the set uk

⋃
S(uk). Here, ε - neighbourhood

is understood as the set of all points on the plane, the distances from which to
the set uk

⋃
S(uk) does not exceed ε.

Since the set of faces Uk, k > 0, is a collection of bounded polygons, it is
possible to determine the maximum point xk of its projection on the abscissa axis
x. Let this maximum point belong to the projection on the x axis of the polygon-
face uk ∈ Uk. But then the face uk adjoins the faces of the set S(uk) ⊆ Uk and
consequently ε - the neighbourhood of the face uk is contained in the set of
faces Uk. The last statement leads to the fact that xk cannot be the maximum
projection point of the set of faces of Uk on the axis of the abscissa x.

Remark 9. From the formula (4) it follows that for all k ≤ n, uk ∈ Vk there is
uk−1 ∈ S(uk)

⋂
Vk−1 so that for all j > 1 we have S(uk)

⋂
Vkj = 	.
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Lemma 2. 1) Assume that k ≤ n, uk ∈ Vk, then there is a face uk−1 ∈ Vk−1

so that uk−1 ∈ S(uk).
2) For any j > 1 the intersection S(uk) ∩ Vk−j = 	.

Proof. Indeed, otherwise S(uk) ⊆ Uk and therefore the inclusion of uk ∈k⊆ Uk

is not performed. Therefore, the statement 1) is true.
Statement 2) follows from the formula (4) defining the sequence of sets of faces
Uk, k = 0, 1, . . . , n. Indeed, if the face uk ∈ Vk ⊆ Uk, then the ratio S(uk) ⊆
Uk−1 =

⋃n
t=k−1 Vt and means S(uk)

⋂
Vk−j = 	, j > 1, because from the

formula (7) it follows that Uk−1

⋂
Vk−j = 	, j > 1.

An algorithm has been developed for the hierarchical classification of the faces
of a bounded and connected planar graph (without an outer face), in which
the faces are polygons and the edges are fragments of the boundaries between
them. The algorithm allows us to build shortest paths between the face and the
outer boundary of the entire graph containing the minimum number of intersect-
ing boundaries. This algorithm is based on the allocation of edges connecting
faces from the sets Vk, Vk+1 and was applied (together with geographers V.N.
Bocharnikov and S.M. Krasnopeev) for identification of possible migration routes
of the Amur tiger between hunting farms Primorsky Krai.

6 Discussion

The consideration given in the article can be expanded if animal movements
between camera traps are known. In this case, it is possible to build a queuing
network model. It should also be noted that the definition of ergodicity used in
the work, as the equality of the ensemble average and the trajectory average, is
usually considered in the theory of random processes as the law of large numbers.
And the proof of this law is possible with the help of the central limit theorem
for an ergodic stochastic process. It should also be noted that instead of queuing
systems M |M |∞ we can consider a more general system M |G|∞, in which the
random service time has a fairly general distribution. It should be noted that the
colouring theorem The use of Poisson flow points makes it possible to expand
the range of statistical tasks related to observations of animal movements in a
certain area. This theorem also provides an opportunity to formulate and solve
an optimization problem on a planar graph. This problem naturally arises when
considering the possible trajectories of animal movement. A further development
of this topic is the analysis of the passage of animals to the salt marshes accord-
ing to information from camera traps installed on trails approaching the salt
marshes.

7 Conclusion

In this article the intensity of the flow of animal customers coming to salt shaker
estimates. It is assumed that these animals constantly return to the salt shaker
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for several days, after which they leave the salt shaker. This system is considered
as a M |M |∞ queuing system with an infinite number of servers. For this, a
formula is known that expresses the intensity of the input flow through the
stationary distribution of the number of customers in the system and through
the intensity of the service. This formula can be applied to data on the fixation of
animals on camera traps. Assuming that the intensity of service is an interfering
parameter, the ratio of the intensities of input flows in two systems with the same
intensity of service is estimated. The reference to the theorem on the points of
colouring of the Poisson flow stimulated and proved convenient for considering
new problems in dividing the flow of animals into flows consisting of separate
groups of animals.
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Abstract. 5G/6G networks are a next technological step in the field
of telecommunications. 5G/6G networks provide the implementation of
the required quality of communication with the growth of subscriber
devices and lack of frequency bands. The application of queuing the-
ory methods to analyze network performance is very important at the
design, implementation and operation stages, as it is necessary to ensure
a high return on investment that will be directed to the introduction of
this new technology. Consequently, the attention of 5G/6G researchers is
particularly focused on the analysis of the shortest queue problem which
is widely used as balancing mechanisms in time-scale queueing system
(TSQS). In this paper we employ simulation analysis of the TSQS evo-
lution dynamics under the supposition that there are the large number
of identical single-service devices and it is suppose this number increases
indefinitely. It is assumed that all single-service devices have identical
exponentially distributed service time with a finite mean value and a
finite service intensity. It is supposed that there is a Poisson incoming
stream of arriving requests with a finite intensity and TSQS fulfills a
service discipline so that for each incoming request is provided a ran-
dom selection a server device from random selected m-set server devices
that has the s-th shortest queue size. The evolution of TSQS states can
be represent by solutions of a system of differential equations of infinite
degree.

We investigate the Cauchy problem for this singularly perturbed sys-
tem with a small parameter. We use the mean-field approach and for-
mulate the Cauchy problem for the truncated singularly perturbed finite
order system of differential equations and the initial condition problem
for the singularly perturbed nonlinear first order partial differential equa-
tion with a small parameter.

We construct an analytical solution of the initial condition problem for
the singularly perturbed nonlinear first order partial differential equation
and apply a high-order non-uniform grid scheme for numerical analysis
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of the solutions of the truncated singularly perturbed Cauchy problem.
We use the numerical scheme with different sets which gives to evalu-
ate the impact of a small parameter in time-scaling processes for TSQS.
This grid scheme demonstrates good convergence of the solutions of the
truncated singularly perturbed Cauchy problem when a small parameter
tend to zero. The final outcome of our numerical simulations shows that
this TSQS can support execution of the services with a high incoming
flow of requests.

Keywords: Countable Markov chains · Time-scale network analysis ·
Singular perturbed systems of differential equations · Numerical
analysis of the Cauchy problem · Layer-adapted piecewise uniform
Shishkin-type meshes

1 Introduction

The research of time-scale queueing systems (TSQS) is very significant because
of the application of 5G/6G networks to the telecommunications market requires
to investigate not only the complicated analytical methods of the queuing theory
[3,16] but apply modern numerical methods [1,6].

The researching of TSQS with a huge number of identical server devices and
shortest queue disciplines [7,15] associated with the Caushy problems for infinite
degree systems of ordinary differential equations.

The problem of the time-scaling TSQS especially attracts attention among
the methods of TSQS analysis [4] since it is an effective technique for analyzing
large-scale complex systems. If there is a purpose to investigate the scale in time
invariance of TSQS, then there is an opportunity to study the transformation
properties of solutions of differential equations which define the dynamics of the
system changes over time. The time-scaling change is similarity transformations
of the solutions of a system of differential equations with a time-scaling parame-
ter and it form a group of time-scale transformations of TSQS. The time-scaling
methods often identify with the use of a small time-scaling parameter in TSQS
models [2,8].

The mean-field theory is a very important modeling tool in queue theory
lately [12,13]. The mean-field theory is a mathematical apparatus used to model
and analyze large-scale systems consisting of many interacting elements. Each
element of the system interacts with the rest of the elements in this approach,
but instead of taking into account all these interactions, they are averaged or
simplified to a single average value, called the average mean-field. The mean-
field theory allows to analyze complex systems in which interactions between
elements play an important role. The main idea of the mean-field theory is
that the interactions between the elements of the system can be averaged or
approximated using an average value. This makes it easier to model and analyze
the system, since it is necessary to take into account only one average field,
and not all possible interactions. The theory of the mean field also allows us
to study the special properties of the system, that is, properties that arise as
a result of the interaction of elements and cannot be explained only by their



190 S. A. Vasilyev et al.

individual characteristics. This allows you to understand how the system as a
whole functions and what properties it exhibits.

In recent times, it is proposed layer-adapted methods for the numerical sim-
ulation analysis of singularly perturbed systems differential equations which are
modifications of non-uniform mesh methods [5,9].

In the papers [10,11] we studied the shortest queue system model and showed
that this system had evolution dynamics which was described by the solutions
of the Cauchy problem of the singularly perturbed Tikhonov type system of
infinite order differential equations. We used the truncation method for this
system and applied a high-order non-uniform grid scheme for numerical analysis
of the solutions of the truncated singularly perturbed Cauchy problem. This
numerical scheme demonstrated good convergence of solutions of the singularly
perturbed Cauchy problem when a small parameter tend to zero ε → 0.

In this paper we use a high-order non-uniform grid scheme for the numeri-
cal simulation of the evolution dynamics of TSQS with n-identical single-service
devices in the case n → ∞. The TSQS evolution dynamics can be obtained as
a solution xs,m

k (t) of a infinite degree system of differential equations. We study
the singularly perturbed Cauchy problem for this system of differential equa-
tions with a small parameter. We apply the Dobrushin mean-field approach for
this singularly perturbed Cauchy problem and formulate the truncated Cauchy
problem for the finite order system of differential equations and the initial con-
dition problem for the nonlinear first order partial differential equation. We use
an analytical method and find the solution of the initial condition problem for
the nonlinear first order partial differential equation. We apply a high-order non-
uniform grid scheme for numerical analysis of the truncated Cauchy problem.
We show that the grid scheme demonstrate good convergence of the solutions
that describe TSQS evolution when a small parameter ε → 0. The results of the
numerical simulation illustrate that this TSQS can carry out the execution of
services when there is a high incoming flow of requests.

2 The Shortest Time-Scale Queueing System with a Small
Parameter

In the works [10,11] we study the shortest queue problem for TSQS with FCFS
n-identical single-service devices with its own exponentially distributed service
times. We admit that the value of TSQS average service time is t̄ = 1/μ. Thus,
the parameter μ > 0 is a TSQS service intensity. We admit that there is the
Poisson arrival process with the rate of requests nλ > 0 in this model. We assume
that we can select m identical TSQS-devices immediately and randomly for each
arrival request and then we can choice one single device among m selected devices
immediately that has the s-th shortest ((m − s)-th longest) queue length in the
choice moment for each arrival request. If there is more than one device with
the s-th shortest queue size, the choice between them is made randomly and the
request is sent to the chosen device after selection immediately.
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We use the vector of the functions xs,m(t) = {xs,m
k (t)}∞

k=0
, where the func-

tions xs,m
k (t) are the shares of the identical devices that have the queue lengths

not less than the value k at the moment t ≥ 0.
These functions xs,m

k (t) become deterministic when the infinite limit tend to
infinity n → ∞. Thus, we can find the functions xs,m

k (t) by solving the Cauchy
problem for the infinite system of differential equations with small parameter
ε > 0 in the such form [10,11]:{

ερk ẋs,m
k (t) = μ[xs,m

k+1(t) − xs,m
k (t)] − λΔhs,m(xs,m

k (t)),
xs,m
0 (t) = 1, xs,m

k (0) = x0
k ≥ 0, x0

k ≥ x0
k+1, k ≥ 1, t ≥ 0,

(1)

where x0 =
{
x0

k

}∞
k=0

(x0
0 = 1, x0

k ≥ x0
k+1, x

0
k ≥ 0, x0

k ∈ R) is a non-increasing
sequence and {ρk}∞

k=1 (ρk ≥ 0, ρk ∈ R) is a numerical sequence which we apply
for the time transformation in the form t̄k = ε−ρkt.

The function Δhs,m(xs,m
k (t)) has the form for 1 ≤ s ≤ m (s,m ∈ N ):

Δhs,m(xs,m
k (t)) =

[
hs,m(xs,m

k (t)) − hs,m(xs,m
k−1(t))

]
,

hs,m(xs,m
k (t)) =

s−1∑
l=0

l∑
p=0

(−1)l−pm!
p!(m − l)!(l − p)!

(xs,m
k (t))m−p,

Δhs,m(xs,m
k (t)) =

s−1∑
l=0

l∑
p=0

(−1)l−pm!
p!(m − l)!(l − p)!

[(xs,m
k (t))m−p − (xs,m

k−1(t))
m−p].

The Cauchy problem (1) can be represented in this way:{
ẋ + M(x(t), μ, ε, ρ) = F(x(t), λ, ε,R),
x(0) = x0, t ≥ 0,

(2)

x(t) = (xs,m
1 (t), xs,m

2 (t), . . . , xs,m
n (t), . . .), xs,m

0 (t) = 1, t ≥ 0,

M = (M1,M2, . . . ,Mn, . . .), F = (F1, F2, . . . , Fn, . . .),

Mk = ε−ρkμ
(
xs,m

k (t) − xs,m
k+1(t)

)
, Fk = ε−ρkλΔhs,m(xs,m

k (t)), k ≥ 1,

x(0) = (xs,m
1 (0), . . . , xs,m

n (0), . . .), x0 = (x0
1, x

0
2, . . . , x

0
n, . . .),

x0
k ≥ x0

k+1, k ≥ 1, R = (ρ1, ρ2, . . . , ρn, . . .).

3 Dobrushin Mean-Field Approach and Time-Scale
Queueing Systems Model with a Small Parameter

We apply the Dobrushin mean-field approach in this section. If assume that
R = (ρ1, ρ2, . . . , ρn, ρn+1, ρn+1, . . .), ρk = ρn+1, k > n + 1 for (2), we can write
the n-order finite system of differential equations with n-finite conditions and
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use the Dobrushin mean-field approach for the next n + 1, n + 2, . . . equations
in the form: ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

˙̃x + M̃(x̃(t), μ, ε, R̃) = F̃(x̃(t), λ, ε, R̃),
x̃(0) = x̃0,

L̃n+1(μ, ε, ρn+1)x
s,m
n+1(t) = 0,

xs,m
n+1(0, η) = x0

n+1(η), x0
n ≥ x0

n+1(η),
t ≥ 0, η ≥ 0,

(3)

where
x̃(t) = (xs,m

1 (t), xs,m
2 (t), . . . , xs,m

n (t)), xs,m
0 (t) = 1, t ≥ 0,

M̃ = (M1,M2, . . . ,Mn), F̃ = (F1, F2, . . . , Fn),

Mk = ε−ρkμ
(
xs,m

k (t) − xs,m
k+1(t)

)
, Fk = ε−ρkλΔhs,m(xs,m

k (t)), k ∈ 1, n,

x̃(0) = (xs,m
1 (0), . . . , xs,m

n (0)), x̃0 = (x0
1, x

0
2, . . . , x

0
n),

x0
k ≥ x0

k+1, k ∈ 1, n − 1, R̃ = (ρ1, ρ2, . . . , ρn, ρn+1),

L̃n+1(μ, ε, ρn+1)x
s,m
n+1(t) = ερn+1

∂xs,m
n+1(t, η)

∂t
− μ

∂xs,m
n+1(t, η)

∂η
+

+λ

s−1∑
l=0

l∑
p=0

(−1)l−pm!
p!(m − l)!(l − p)!

∂(xs,n
n+1(t, η))m−p

∂η
=

= ερn+1
∂xs,m

n+1(t, η)
∂t

+ Φs,m
λ,μ (xs,m

n+1(t, η), ωs,m
n+1(t, η)),

Φs,m
λ,μ (xs,m

n+1(t, η), ωs,m
n+1(t, η)) = −μ

∂xs,m
n+1(t, η)

∂η
+

+λ
s−1∑
l=0

l∑
p=0

(−1)l−pm!
p!(m − l)!(l − p)!(m − p)

(xs,n
n+1(t, η))m−p−1ωs,m

n+1(t, η),

ωs,m
n+1(t, η) =

∂xs,m
n+1(t, η)

∂η
,

where a piecewise continuous function x0
n+1(η) (x0

n ≥ x0
n+1(η), η ∈ [0,+∞)) is an

initial condition for the nonlinear first order partial differential equation. This
Cauchy problem (3) is the Tikhonov problem, if we assume that ρk = 0, k =
1, l, ρk > 0, k = l + 1, n + 1 (2 ≤ l ≤ n).

Thus, we have the system with two separate problems and we can consider the
auxiliary initial condition problem for the nonlinear first order partial differential
equation and find the solution xs,m

n+1⎧⎪⎨
⎪⎩
L̃n+1(μ, ε, ρn+1)x

s,m
n+1(t, η) = 0,

xs,m
n+1(0, η) = x0

n+1(η), x0
n ≥ x0

n+1(η),
t ≥ 0, η ≥ 0.

(4)
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It means that we can consider the problem of finding an integral surface
S0 of the Eq. (4) that passing through a given initial curve P0(η), η ≥ 0 (t =
0, xs,m

n+1(0, η) = x0
n+1(η)). Thus, we can obtain a uniquely differentiable function

xs,m
n+1(t, η) of the variables t ≥ 0, η ≥ 0 where this surface S0 must be uniquely

projected onto the plane xs,m
n+1(t, η) = 0 of the variables t ≥ 0, η ≥ 0.

We can rewrite the problem (4) in the form of the initial condition problem
for a system of two quasi-linear equations⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ερn+1
∂xs,m

n+1
∂t + Φs,m

λ,μ = 0,

ερn+1
∂ωs,m

n+1
∂t +

∂Φs,m
λ,μ

∂ωs,m
n+1

∂ωs,m
n+1

∂η +
∂Φs,m

λ,μ

∂xs,m
n+1

ωs,m
n+1 +

∂Φs,m
λ,μ

∂η = 0,

xs,m
n+1(0, η) = x0

n+1(η), x0
n ≥ x0

n+1(η),

ωs,m
n+1(0, η) = ∂x0

n+1(η)

∂η , t ≥ 0, η ≥ 0,

(5)

where the solutions xs,m
n+1(t, η), ωs,m

n+1(t, η) (t ≥ 0, η ≥ 0) have the form [14]:

η(t, ξ) = ξ − ε−ρn+1t

(
μ − λ

s−1∑
l=0

l∑
p=0

(−1)l−pm!(m − p)
p!(m − l)!(l − p)!

(x0
n+1(ξ))

m−p−1

)
≥ 0,

where a parameter ξ ∈ [0,+∞) is a non-negative real value.
We use the exponentially decreasing function x0

n+1(η) = a exp(−ση) ≤ x0
n

for our model, where we admit that 0 < a ≤ xn, σ > 0 are positive parameters.
The solution of the problem (5) has the form in this case:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
xs,m

n+1(η(t, ξ)) = a e−ση(t,ξ),

ωs,m
n+1(η(t, ξ)) = −aσ e−ση(t,ξ),

η(t, ξ) = ξ − ε−ρn+1t[μ − λaBs,m(σ, ξ)] ≥ 0,

η ≥ 0, ξ ≥ 0,

(6)

where

Bs,m(σ, ξ) =
s−1∑
l=0

l∑
p=0

(−1)l−pm!(m − p)
p!(m − l)!(l − p)!

e−σ(m−p−1)ξ.

Now we can apply this solution xs,m
n+1(t, η) of the problem (5) for finding the

solution x̃(t) of the problem (3).

4 Numerical Analysis of Time-Scale Queueing Systems
Model with a Small Parameter Using Dobrushin
Mean-Field Approach

We apply a piecewise-uniform grid Ξ̄τ [0, T0]

t0 = 0, ti < ti+1, i = 0, N − 1, tN = T0

for numerical analysis of the problem (3)
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ξ̄τ [0, T0] = (ti|ti = iτ1; i = 0,K;
ti = tK + iτ ; i = 1,M ;
ti = tK+M + iτ2; i = 1, 2L;
ti = tK+M+2L + iτ ; i = 1, N − K − M − 2L),
τ1 = δ1/K, τ2 = δ2/2L, δj = D̄jε ln(ε−1)), j = 1, 2;
τ = (T0 − δ1 − δ2)/(N − K − M − 2L),

(7)

where parameters D̄j (j = 1, 2) are determined analytically by asymptotic esti-
mates of solutions of the Tikhonov problem (3) and TIBL = tK+M + Lτ2 is a
point where there is an inner boundary layer. Thus, this piecewise-uniform grid
Ξ̄τ has K small steps τ1, 2L small steps τ2, and (N − K − M − 2L) big steps τ
on the segment [0, T0].

We apply a finite-difference approximation of the problem (3) in the form:⎧⎪⎨
⎪⎩
x̃i+1 = Bi,

i = 1, N − 1,

x̃0 = x̃0,

(8)

hi = ti − ti−1, i = 1, N − 1,

xs,m
k,i = xs,m

k (ti), xs,m
0,i = 1, i = 0, N,

Bi = (B1i, B2i, . . . , Bni), Bi = x̃i + hi[F̃i − M̃i],

Fki = ε−ρkλ

s−1∑
l=0

l∑
p=0

(−1)l−pm!
p!(m − l)!(l − p)!

[(xs,m
k−1,i)

m−p − (xs,m
k,i )m−p],

Mki = ε−ρkμ
(
xs,m

k,i − xs,m
k+1,i

)
, k ∈ 1, n, i = 0, N

Bki = xs,m
k,i + hiε

−ρk [μ
(
xs,m

k+1,i − xs,m
k,i

)
+

+λ(hs,m(xs,m
k−1,i) − hs,m(xs,m

k,i )], k = 1, n, i = 0, N,

x̃0 = (xs,m
1,0 , xs,m

2,0 , . . . , xs,m
n,0 ), x̃0 = (x0

1, x
0
2, . . . , x

0
n), x0

k ≥ x0
k+1, k ∈ 1, n − 1,

xs,m
n+1,i = xs,m

n+1(η(ti, 0)), i = 0, N,

where we use the value of the parameter ξ = 0 for the solution xs,m
n+1(η(t, ξ)).

We apply the the fourth-order Runge-Kutta method for problem (4):

g1
i = B(xi, ti), g2

i = B(xi +
hi

2
g1

i , ti + hi/2),

g3
i = B(xi +

hi

2
g2

i , ti + hi/2), g4
i = B(xi + hig3

i , ti + hi),

xi+1 = xi +
hi

6
(g1

i + 2g2
i + 2g3

i + g4
i ),

where gj
i ∈ Rn (i = 0, N, j = 1, 4) are vectors.
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The result of the simulation analysis of the TSQS evolution xs,m
k (t), when

k = 1, 25 and m = 2, 3, 4, where 1 ≤ s ≤ m), is showed in the figures (see Fig. 1-
9). The parameters of the model such as the low incoming mode of arrival request
rates λl, the high incoming mode of arrival request rates λh, the service intensity
μ, the parameters a, σ, the number of steps of the grid N , the permissible error
δ and so on are presented in the Table 1.

Table 1. Simulation parameters

Parameters Values of the parameters

λl 3

λh 7

μ 5

n 25

l (1 ≤ k ≤ 9) 9

ρk(1 ≤ k ≤ 9) 0

ρk(10 ≤ k ≤ 25) 1/k

x0
k (28 − k)/30, k = 1, 25

a x0
25

s 1

N 104

δ 10−6

The values of the parameters s,m, ε are showed in the captions under the
figures (see Figs. 1, 2, 3, 4, 5, 6, 7, 8, and 9).

Fig. 1. The function x1,2
k (t) (ε = 0.1 solid line, ε = 0.01 long dash line, ε = 0.001 short

dash line, λ = 3 for the left graph, λ = 7 for the right graph, μ = 5).
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Fig. 2. The function x2,2
k (t) (ε = 0.1 solid line, ε = 0.01 long dash line, ε = 0.001 short

dash line, λ = 3 for the left graph, λ = 7 for the right graph, μ = 5).

Fig. 3. The function x1,3
k (t) (ε = 0.1 solid line, ε = 0.01 long dash line, ε = 0.001 short

dash line, λ = 3 for the left graph, λ = 7 for the right graph, μ = 5).

Fig. 4. The function x2,3
k (t) (ε = 0.1 solid line, ε = 0.01 long dash line, ε = 0.001 short

dash line, λ = 3 for the left graph, λ = 7 for the right graph, μ = 5).
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Fig. 5. The function x3,3
k (t) (ε = 0.1 solid line, ε = 0.01 long dash line, ε = 0.001 short

dash line, λ = 3 for the left graph, λ = 7 for the right graph, μ = 5).

Fig. 6. The function x1,4
k (t) (ε = 0.1 solid line, ε = 0.01 long dash line, ε = 0.001 short

dash line, λ = 3 for the left graph, λ = 7 for the right graph, μ = 5).

Fig. 7. The function x2,4
k (t) (ε = 0.1 solid line, ε = 0.01 long dash line, ε = 0.001 short

dash line, λ = 3 for the left graph, λ = 7 for the right graph, μ = 5).
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Fig. 8. The function x3,4
k (t) (ε = 0.1 solid line, ε = 0.01 long dash line, ε = 0.001 short

dash line, λ = 3 for the left graph, λ = 7 for the right graph, μ = 5).

Fig. 9. The function x4,4
k (t) (ε = 0.1 solid line, ε = 0.01 long dash line, ε = 0.001 short

dash line, λ = 3 for the left graph, λ = 7 for the right graph, μ = 5).

In the Figs. 1, 2, 3, 4, 5, 6, 7, 8, and 9 we demonstrate that the behaviour of
the TSQS evolution solution xs,m

k (t) (m = 2, 3, 4, 1 ≤ s ≤ m) has an unstable
service conditions when there are the low incoming mode of arrival request rates
λl = 3 and the high incoming mode of arrival request rates λh = 7. We can see
the left and inner transition layers. The transitions become more sharper when
ε → 0.

In the Fig. 1, 3, 6 we can see that the TSQS evolution of the solution x1,2
k (t),

x1,3
k (t), x1,4

k (t). The TSQS evolution when t → 10 has a lower stable service
mode when there is the low incoming mode of arrival request rates λl = 3 and
it has a higher stable service mode when there is the high incoming mode of
arrival request rates λh = 7.

In the Fig. 4, Fig. 5 we can see the results of the numerical stimulation of the
TSQS evolution of the solutions x2,3

k (t), x3,3
k (t). It is shown that TSQS has an

stable service mode when t → 10 and when there are the overload conditions
similar to the case the Fig. 2. Thus, an increase in the parameter s leads to
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the stably service. There are only the left transition layers. The left transitions
become more sharper when ε → 0.

In the Fig. 7, 8, and 9 we can see the results of the numerical stimulation
of the TSQS evolution of the solutions x2,4

k (t), x3,4
k (t), x4,4

k (t). It is shown that
TSQS has an stable service mode when t → 10 and when there are the overload
conditions similar to the case the Fig. 2, 4, 5. Thus, an increase in the parameter
s leads to the stably service. There are only the left transition layers. The left
transitions become more sharper when ε → 0.

5 Conclusion

Modern 5G/6G telecommunications have stepped far ahead and these technolo-
gies are developing in the areas of research of wired and wireless networks, arti-
ficial intelligence, the Internet of Things (IoT), the creation of smart cities.
Strategic planning in 5G/6G telecommunications, which is the basis for devel-
opment and financial success, is actively used not only at the level of individual
companies, but also entire countries. It is necessary to predict the innovative
changes for successful development of the 5G/6G telecommunications technol-
ogy and for strategic planning during long-term period. The implementation of
5G/6G technology requires special attention of developers of new products in
the field of wireless communication, as these technologies will be able to provide
higher data transfer speeds, shorter latency, as well as greater energy efficiency
compared to 4G technologies currently used. Developers will inevitably face a
number of technical problems when designing the 5G/6G architecture, which
must cope with a more complex multi-user environment and the use of channels
at higher frequencies. The modern studies of theoretical TSQS models makes it
possible to understand the problems which will be solved for the implementation
of 5G/6G technology.

In this paper we show how the Dobrushin mean-field approach and the numer-
ical methods may be applied for analysis of the evolution of TSQS dynamics.
For researching of the evolution dynamics TSQS we study the function xs,m

k (t),
which are the shares of the identical devices that have the queue lengths not
less than the value k at the moment t ≥ 0. We use a high-order non-uniform
grid scheme of the Shishkin-type for numerical solving of the Cauchy problem
for the system of differential equations finite degree using the solution of the
initial problem for the nonlinear first order partial differential equation. This
equation also describes shock waves in gas dynamics. Thus, we can find general
methods for analyzing the behavior of systems in which there is abrupt changes
in the solutions of equations that describe such systems. The presence of a small
parameter makes it possible to analyze the behavior of solutions in relation to
time transformation and to study the problem of time scaling.

This paper has been supported by the RUDN University Strategic Academic
Leadership Program (recipient S.A. Vasilyev, mathematical model development,
simulation model development, numerical analysis).
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Abstract. The paper considers a single-line retrial queueing (RQ) sys-
tem with an unreliable server controlled by a adaptive random multiple
access protocol. The study is carried out using the method of asymptotic
analysis under conditions of heavy system load. In this paper, the main
characteristics of the system were found.

Keywords: Retrial queue · Adaptive random multiple access
protocol · Unreliable server

1 Introduction

Unreliable servers can be used in telecommunications, call centers and data net-
works. For example, faulty hardware or software can lead to network failures, loss
of communications, interruptions in data transmission, or incorrect processing
of information. Research into unreliable devices in such areas helps to identify
the causes of failures and develop methods to prevent them.

RQ queuing system with unreliable server and adaptive random multiple
access protocol is a system that combines elements of queuing, unreliable server
and adaptive random multiple access protocols in a data network.

In such systems, a large number of customers or clients are served using
unreliable devices that may be subject to failures or malfunctions. To ensure
efficiency and reliability, such a system can be equipped with an adaptive ran-
dom multiple access protocol, which provides mechanisms for optimizing the use
of available resources and managing data transmission in the face of varying
network load, interference, or frequent server failures.

Adaptive Random Multiple Access Protocol is a method of controlling access
to a common data link that allows multiple devices to share available resources.
It is a form of multiple access protocol that allows devices to compete for access
to data communications.

Unlike static protocols, an adaptive random multiple access protocol can
change its parameters depending on current network conditions such as load,
collisions and delays. This allows you to optimize the use of the available data
channel and significantly reduce the likelihood of collisions (a situation in which
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two or more devices try to transmit data at the same time, resulting in signal
loss).

Many scientific works are devoted to the study of various models of data
transmission networks and random multiple access protocols. There are various
modifications of access protocols [1–8].

In papers [9–12], authors investigate models with adaptive access protocols.
The papers [13–20] consider the study of queuing systems with a dynamic access
protocol.

In this paper, we study a single-channel RQ system with an unreliable device
controlled by an adaptive access protocol. The server is considered unreliable
if it periodically fails and requires time to be restored. Which, accordingly, can
lead to a decrease in the efficiency of the system and an increase in waiting time
for service.

2 Description of the Mathematical Model

Let’s consider an RQ system with an adaptive access protocol, the input of which
receives a simple flow of requests with parameter λ. The time for servicing a
customer by the server is distributed exponentially with the parameter μ1. We
assume that the server is unreliable. An unreliable device can be in one of the
following states: idle, busy or under repair. When a new customer arrives and
the server is idle, then the servicing immediately begins.

If at this moment another customer arrives, and the device is busy, then the
received customer goes into orbit and waits for the opportunity to occupy the
device during the next attempt. After a random delay, a request with intensity
σ = 1/T (t) again tries to occupy the server for service, where T (t) is the state
of the adapter at time t (see Fig. 1).

Fig. 1. Model of adaptive retrial queueing system M/M/1 with unreliable server

The working time is distributed exponentially with parameter γ1, if server
is idle and with parameter γ2, if the server is busy. As soon as a breakdown
occurs, the server is sent to repair and the servicing customer goes into the
orbit. During repairing, all incoming customers go into the orbit. The recovery
time is distributed exponentially with parameter μ2.

The goal of the research is to study such a system, as well as to determine its
main characteristics and to find the throughput of the system and the stationary
probability distribution of server states.
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Let i(t) be the number of customers in the orbit at time t and k (t) determine
the state of the server as follows:

k(t) =

⎧
⎪⎨

⎪⎩

0, if the server is idle,
1, if the server is busy,
2, if the server is under repair.

The process of changing adapter states T (t) is defined as follows:

T (t + Δt) =

⎧
⎪⎨

⎪⎩

T (t) − αΔt, if k(t) = 0,
T (t + Δt) = T (t), if k(t) = 1,
T (t) + βΔt, if k(t) = 2,

where α > 0, β > 0 are adapter parameters, the values of which are indicated.
If the device is idle, then T (t) decreases linearly with intensity α; if the

device is busy, then T (t) does not change; if the device is under repair, then T (t)
increases linearly with intensity β.

3 The Method of Asymptotic Analysis

Let us denote

P (k, i, T, t) =
∂P{k(t) = k, i(t) = i, T (t) < T}

∂T

- the probability that at time t the server is in state k and i customers in the
orbit.

The probability distribution P (k, i, T, t) satisfies the following system of
equations:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P (0, i, T − αΔt, t + Δt) = (1 − λΔt)
(

1 − i

T
Δt

)

(1 − γ1Δt) P (0, i, T, t)

+ μ1ΔtP (1, i, T, t) + μ2ΔtP (2, i, T, t) + o (Δt) ,

P (1, i, T, t + Δt) = (1 − λΔt) (1 − μ1Δt) (1 − γ2Δt) P1 (1, i, T, t)

+ λΔtP (0, i, T, t) +
i + 1

T
ΔtP (0, i + 1, T, t) + λP (1, i − 1, T, t) + o (Δt) ,

P (2, i, T + βΔt, t + Δt) = (1 − λΔt) (1 − μ2Δt) P (2, i, T, t)
+ γ1ΔtP (0, i, T, t) + γ2ΔtP (1, i − 1, T, t) + λΔtP (2, i − 1, T, t) + o (Δt) .
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Let us compose a system of Kolmogorov differential equations for the sta-
tionary probability distribution P (k, i, T ):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− α
∂P (0, i, T )

∂T
= −

(

λ +
i

T
+ γ1

)

P (0, i, T ) + μ1P (1, i, T )

+ μ2P (2, i, T ) ,

∂P (1, i, T )
∂T

= − (λ + μ1 + γ2) P (1, i, T ) + λP (0, i, T )

+
i + 1

T
P (0, i + 1, T ) + λP (1, i − 1, T ) ,

β
∂P (2, i, T )

∂T
= − (λ + μ2) P (2, i, T ) + γ1P (0, i, T )

+ γ2P (1, i − 1, T ) + λP (2, i − 1, T ) .

(1)

Let us denote the partial characteristic functions

Hk(u1, u2) =
∑

i

e−u1i

∞∫

0

e−u2T P (k, i, T )dT

= P{k(t) = k}M{e−u1i(t)−u2T (t) |k(t) = k }.

(2)

Functions Hk(u1, u2) have the following properties:

∑

i

e−u1i

∞∫

0

e−u2T iP (k, i, T )dT = − ∂Hk(u1, u2)
∂u1

,

∑

i

e−u1i

∞∫

0

e−u2T ∂P (k, i, T )
∂T

dT =u2Hk(u1, u2),

∑

i

e−u1i

∞∫

0

e−u2T 1
T

P (k, i, T )dT =

∞∫

u2

Hk(u1, x)dx.

Using the Eq. (2) and the properties of characteristic functions from Sys-
tem (1) we obtain:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(αu2 − λ − γ1) H0 (u1, u2) +

∞∫

u2

∂H0(u1, x)
∂u1

dx + μ1H1 (u1, u2)

+ μ2H2 (u1, u2) = 0,

− (λ(1 − e−u1) + μ1 + γ2 + u2)H1 (u1, u2) + λH0 (u1, u2)

− eu1

∞∫

u2

∂H0(u1, x)
∂u1

dx = 0,

− (λ(1 − e−u1) + μ2 + βu2)H2(u1, u2) + γ1H0 (u1, u2) +

γ2e
−u1H1 (u1, u2) = 0.
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We introduce a parameter

ρ =
λ

μ1
,

that characterizes the system load, then we get
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
αu2 − γ1

μ1
− ρ

)

H0 (u1, u2) +
1

μ1

∞∫

u2

∂H0(u1, x)

∂u1
dx + H1 (u1, u2)

+
μ2

μ1
H2 (u1, u2) = 0,

− (ρ(1− e−u1 ) + 1 +
γ2 + u2

μ1
)H1 (u1, u2) + ρH0 (u1, u2)

− eu1

μ1

∞∫

u2

∂H0(u1, x)

∂u1
dx = 0,

− (ρ(1− e−u1 ) +
μ2 + βu2

μ1
)H2(u1, u2) +

γ1

μ1
H0 (u1, u2)

+
γ2

μ1
e−u1H1 (u1, u2) = 0.

(3)

There are no exact analytical methods for solving the System (3), so we will
find the main characteristics of the adaptive system.

Let’s study the System (3) under the condition of heavy load. Let us define
the throughput S of an adaptive RQ system as the exact upper bound of system
load values ρ for which there is a steady-state regime with ρ ↑ S.

Let us denote
ε = S − ρ.

Assuming that ε → 0 in the System (2), we will perform the following sub-
stitutions:

ρ = S − ε, u1 = εw1, u2 = εw2, Hk(u1, u2) = Fk(w1, w2, ε).

Then, we obtain:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F0 (w1, w2, ε)

(
αεw2 − γ1

μ1
− (S − ε)

)

+
1

μ1

∞∫

u2

∂F0(w1, x, ε)

∂w1
dx

+ F1 (w1, w2, ε) +
μ2

μ1
F2 (w1, w2, ε) = 0,

F0 (w1, w2, ε) (S − ε)− eεw1

μ1

∞∫

w2

∂F0(w1, x, ε)

∂w1
dx

+ F1 (w1, w2, ε) ((S − ε)(e−εw1 − 1)− 1− γ2 + εw2

μ1
) = 0,

F0 (w1, w2, ε)
γ1

μ1
+ F1 (w1, w2, ε)

γ2

μ1
e−εw1

+ F2(w1, w2, ε)((S − ε)(e−εw1 − 1)− (
μ2 + βεw2

μ1
)) = 0.

(4)
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Theorem 1. The values of the parameters S and y in the adaptive RQ-system
are determined by the equalities

S =
αμ2 − βγ1

(1 − β)γ1 + (α + 1)μ2 + γ2(α + β)
,

y =
(αμ2 − βγ1)((α + β)γ2

2 + ((α + 1)μ2 + αμ1 − βγ1 + γ1)γ2)
(γ2(α + β) + (α + 1)μ2 + γ1(1 − β))(βγ2 + μ2)

+
μ1(αμ2 + γ1(1 − β))

(γ2(α + β) + (α + 1)μ2 + γ1(1 − β))(βγ2 + μ2)
.

where α > 0, β > 0 are adapter parameters, the values of which are indicated.

Proof. Let us denote lim
ε→0

Fk(w1, w2, ε) = Fk(w1, w2) and for ε → 0, we get

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− F0 (w1, w2)
(

γ1
μ1

+ S

)

+
1
μ1

∞∫

w2

∂F0(w1, x)
∂w1

dx + F1 (w1, w2)

+
μ2

μ1
F2 (w1, w2) = 0,

F0 (w1, w2) S − 1
μ1

∞∫

w2

∂F0(w1, x)
∂w1

dx − F1 (w1, w2) (1 +
γ2
μ1

) = 0,

F0 (w1, w2)
γ1
μ1

+ F1 (w1, w2)
γ2
μ1

− F2(w1, w2)
μ2

μ1
= 0.

(5)

We will look for the solution Fk(w1, w2) of the System (5) in the form:

Fk(w1, w2) = FkΦ(w1, w2) = Rk(S, y)ϕ(w2 + w1y). (6)

Assuming that the function ϕ(w) is equal to zero at infinity, we obtain

∞∫

w2

∂F0(w1, x)
∂w1

dx = −yR0(S, y)ϕ(w2 + yw1).

Then we rewrite the System (5):
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

− R0 (S, y)
(

γ1
μ1

+ S

)

− y

μ1
R0 (S, y) + R1 (S, y) +

μ2

μ1
R2 (S, y) = 0,

R0 (S, y) S +
y

μ1
R0 (S, y) − R1 (S, y) (1 +

γ2
μ1

) = 0,

R0 (S, y)
γ1
μ1

+ R1 (S, y)
γ2
μ1

− R2(S, y)
μ2

μ1
= 0.

(7)

Let us add a normalization condition to the System (7):

R0 + R1 + R2 = 1.
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We obtain:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

− R0 (S, y)
(

γ1
μ1

+ S

)

− y

μ1
R0 (S, y) + R1 (S, y) +

μ2

μ1
R2 (S, y) = 0,

R0 (S, y) S +
y

μ1
R0 (S, y) − R1 (S, y) (1 +

γ2
μ1

) = 0,

R0 (S, y)
γ1
μ1

+ R1 (S, y)
γ2
μ1

− R2(S, y)
μ2

μ1
= 0.

R0 + R1 + R2 = 0.

(8)

Then from the System (8) we find expressions for the stationary distribution
of server states:

R0 =
μ2(γ2 + μ1)

(Sμ1 + γ1 + μ2 + y)γ2 + (Sμ2 + μ2 + γ1)μ1 + μ2y
,

R1 =
μ2(Sμ1 + y)

(Sμ1 + γ1 + μ2 + y)γ2 + (Sμ2 + μ2 + γ1)μ1 + μ2y
,

R2 =
(Sμ1 + γ1 + y)γ2 + γ1μ1

(Sμ1 + γ1 + μ2 + y)γ2 + (Sμ2 + μ2 + γ1)μ1 + μ2y
.

To find the values S and y, we sum up all the equations of the System (4)
and for ε → 0, we obtain

F0 (w1, w2, ε)
(

αεw2

μ1

)

− eεw1 − 1
μ1

∞∫

u2

∂F0(w1, x, ε)
∂w1

dx

+ F1 (w1, w2, ε) ((S − ε)(e−εw1 − 1) +
γ2
μ1

(e−εw1 − 1) − εw2

μ1
)

+ F2 (w1, w2, ε) ((S − ε)(e−εw1 − 1) − βεw2

μ1
) = 0.

Dividing resulting equation by ε, we get:

F0 (w1, w2, ε)
(

αw2

μ1

)

− eεw1 − 1
μ1ε

∞∫

u2

∂F0(w1, x, ε)
∂w1

dx

+ F1 (w1, w2, ε) ((S − ε)
(e−εw1 − 1)

ε
+

γ2
μ1

(e−εw1 − 1)
ε

− w2

μ1
)

+ F2 (w1, w2, ε) ((S − ε)
(e−εw1 − 1)

ε
− βw2

μ1
) = 0.
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Then using the Taylor expansion, we obtain:

F0 (w1, w2, ε)
αw2

μ1
− w1

μ1

∞∫

u2

∂F0(w1, x, ε)
∂w1

dx

− F1 (w1, w2, ε) (w1(S +
γ2
μ1

+
w2

μ1
) − F2 (w1, w2, ε) (Sw1 +

βw2

μ1
) = 0.

Applying (6) to the equation, we get:

αw2ϕ(w2 + w1y)R0(S, y) + yw1ϕ(w2 + w1y)R0(S, y)
− ϕ(w2 + w1y)R1(S, y)(μ1w1S + w1γ2 + w2)
− ϕ(w2 + w1y)R2(S, y)(μ1w1S + βw2) = 0.

Let us write the equation in the form:

αw2R0(S, y) + yw1R0(S, y) − R1(S, y)(μ1w1S + w1γ2 + w2)
− R2(S, y)(μ1w1S + βw2) = 0.

(9)

Then we rewrite the Eq. (9):

w1(yR0(S, y) − μ1SR1(S, y) − γ2R1(S, y) − μ1SR2(S, y))
+ w2(αR0(S, y) − R1(S, y) − βR2(S, y)) = 0.

In order to turn the equation into an identity in w1 and w2, it is enough to
require the following equalities:

{
yR0(S, y) − μ1SR1(S, y) − γ2R1(S, y) − μ1SR2(S, y) = 0,
αR0(S, y) − R1(S, y) − βR2(S, y) = 0.

(10)

By substituting R0(S, y), R1(S, y), R2(S, y) into the System (10), we get:

S =
αμ2 − βγ1

(1 − β)γ1 + (α + 1)μ2 + γ2(α + β)
,

y =
(αμ2 − βγ1)((α + β)γ2

2 + ((α + 1)μ2 + αμ1 − βγ1 + γ1)γ2)
(γ2(α + β) + (α + 1)μ2 + γ1(1 − β))(βγ2 + μ2)

+
μ1(αμ2 + γ1(1 − β))

(γ2(α + β) + (α + 1)μ2 + γ1(1 − β))(βγ2 + μ2)
.

Definition. Throughput S is the upper limit of those load values ρ = λ
μ1

,
for which there is the steady-state regime.

The inequality

λ

μ1
≤ S

determines the condition for the existence of a steady-state regime for the con-
sidered adaptive system.

So Theorem 1 is proved.
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4 Numerical Example

We consider a system with parameters:

μ1 = 5, μ2 = 2, γ1 = 0.03, γ2 = 0.03, λ = 1, β = 1.

Table 1 shows the values of S and y for a given system for different α.

Table 1. Values of S and y for different α

α 0,2 0,4 0,8 1 5 10 100

S 0,036 0,155 0,314 0,370 0,703 0,779 0,860

y 0,049 0,376 1,426 2,070 18,838 41,502 455,880

According to the data in Table 1, we can conclude that as α increases, the
value of throughput S increases, and the value of y also increases significantly.

For adaptive RQ systems, under the limiting condition of heavy system load,
random processes i(t) and T (t) are linearly dependent with some parameter y
equal to the ratio of linearly dependent random processes i(t)/T (t).

When α = 0, 9, the throughput of the adaptive RQ system S = 0, 334 and
y = 2, which corresponds to the throughput of the dynamic RQ system M/M/1
S = 0, 334 at y = 2, which confirms the asymptotic equivalence of the adaptive
and dynamic RQ systems with the simplest incoming flow of customers.

Consequently, adaptive RQ systems are asymptotically, under heavy load
conditions, equivalent to dynamic RQ systems with the specified value of the
parameter y, calculated in the work [21].

5 Conclusion

In this paper, we study the adaptive RQ-system M/M/1 with an unreliable
server. The study was carried out using the method of asymptotic analysis under
conditions of heavy system load. As a result, the main characteristics of the
system, the stationary distribution of server states, and the throughput of the
system under consideration are found.
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Abstract. Authors consider a Fisher Information in Competing Risks
Model of random censoring when distribution function of all risks
depends on the same parameter θ. In this paper, they propose the decom-
position formulas of information of model also Cramer-Rao type inequal-
ities for unbiased estimators and some of its improvement. At the end
of the paper, there are some useful recommendations based on use of
decomposition formulas.
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1 Introduction

R.A. Fisher first proposed a concept of information in statistics in 1925 [1].
Now it is known in literature as a Fisher information of family of distribution
{Fθ, θ ∈ Θ ⊆ R}, depending on parameter θ (for simplifying) and density func-
tion of f(x; θ). It is denoted as integral

I(θ) = Eθ

(
∂ log f(ξ; θ)

∂θ

)2

=

+∞∫
−∞

(
∂ log f(x; θ)

∂θ

)2

f(x; θ)dx, (1)

ξ is a random variable with regular density f(x; θ). For more properties of
information (1) we can recommend monography [2] of Zaks Sh. Efron and Jon-
stone [3] gave another decomposition of information (1) in terms of the hazard
rate function μ(x; θ) = f(x; θ)/(1 − F (x; θ)), where F (x; θ) is a distribution
function corresponding for density f(x; θ) as

Iξ(θ) = Eθ

(
∂ log μ(ξ; θ)

∂θ

)2

, θ ∈ Θ. (2)
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In this paper we generalize a concept of Fisher information to Competing
Risks Model (CRM). CRM one can meet in queueing theory when consider
reliability of series system. A series system is a configuration such that, if any
one of the system components fails, the entire system fails. In papers [4–15]
authors are considering several statistical problems of efficiency of functioning
of server systems. They are calculating Fisher information or Cramer-Rao lower-
bound of queueing model under certain regularity conditions.

2 Competing Risks Model

We can generalize these conceptions in case when dealing with CRM [4-6] of
incomplete observation including random censorship. For a fixed natu-
ral number k and i = 1, ..., k, let {X(1),X(2), ...,X(k)} aggregation of
independent random variables having a continuous distribution func-
tions {F (1)(x1; θ), F (2)(x2; θ), ..., F (k)(xk; θ)} correspondingly and depending
on common parameter θ, θ ∈ Θ ⊆ R, x = (x1, ..., xk) ∈ Rk. We are inter-
ested in observing random variables X = min

(
X(1), ...X(k)

)
and indicators

δ(i) = I
(
X = X(i)

)
, i = 1, k, δ(1) + ... + δ(k) = 1. Let’s denote functions

f (i)(t; θ) =
∂F (i)(t; θ)

∂t
, λ(i)(t; θ) =

f (i)(t; θ)

F (i)(t; θ)
, F (i)(t; θ) = 1− F (i)(t; θ), i = 1, ..., k.

For example, in reliability theory, one can consider a physical system of k
component sub-systems connected in series. The system fails when one of the
sub-systems fail. Then the failure time X of system coincides with the failure
time of its first component.

Thus, in CRM we are interested not only in observing vector
(
X, δ(1), ..., δ(k)

)
but also in pairs

(
X, δ(i)

)
, i = 1, ..., k. Consider the sub-distributions H(i)(t; θ) =

Pθ(X ≤ t, δ(i) = 1), i = 1, k, where

H(x; θ) = H(1)(x; θ) + ... + H(k)(x; θ) =

x∫
−∞

h(t; θ)dt = Pθ(X ≤ x)

with h(x; θ) = h(1)(x; θ) + ... + h(k)(x; θ) and sub-density

h(i)(x; θ) = f (i)(x; θ)
k∏

l=1l �=i

(
1 − F (l)(x; θ)

)
, i = 1, ..., k.

Introduce regression functions

m(i)(x; θ) = Pθ(δ(i) = 1/X = x) = Eθ(δ(i)/X = x), i = 1, ..., k; (x; θ) ∈ R × Θ,

where m(1)(x; θ) + ... + m(k)(x; θ) = 1. It is not difficult to verify that

H(i)(t; θ) =

t∫
−∞

m(i)(u; θ)dH(u; θ), i = 1, ..., k.
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Let us denote hazard rate function λ(x; θ) of distribution function H(x; θ), then
it is easy to verify that

λ(i)(x; θ) = m(i)(x; θ)λ(x; θ), i = 1, ..., k.

Consider regularity conditions of sub-densities as:
(I) The sets N (i) =

{
t : h(i)(t; θ) > 0

}
, i = 1, k do not depend on the param-

eter θ and
k⋂

i=1

N (i) �= ∅.

(II) The derivatives ∂mh(i)(x;θ)
∂θm , m = 1, 2; i = 1, ..., k exist for all θ ∈ Θ.

(III)
+∞∫
−∞

∣∣∣∂mh(i)(x;θ)
∂θm

∣∣∣ dx, m = 1, 2; i = 1, ..., k.

Let I(X,δ(1),...,δ(k))(θ), IX(θ) and I
(i)

(X,δ(i))
(θ) i = 1, k be Fisher information

corresponding to the random vector
(
X, δ(1), ..., δ(k)

)
, variable X and the pairs(

X, δ(i)
)
, i = 1, ..., k.

I(X,δ(1),...,δ(k))(θ) = Eθ

(
∂ log h

(
X, δ(1), ..., δ(k)

)
∂θ

)2

, θ ∈ Θ,

IX(θ) = Eθ

(
∂ log h (X; θ)

∂θ

)2

, θ ∈ Θ,

I
(i)

(δ(i)/X)
(θ) =

+∞∫
−∞

(
∂ log m(i)(t; θ))

∂θ

)2

m(i)(t; θ)dH(t; θ), i = 1, ..., k.

In papers [21,22] we prove the following result.

Theorem 1. [21] Suppose conditions (I)–(III). Then for any θ ∈ Θ.

(A) I(X,δ(1),...,δ(k))(θ) =
k∑

i=1

I
(i)

(X,δ(i))
(θ). (3)

(B) I(X,δ(1),...,δ(k))(θ) = IX(θ) +
k∑

i=1

I
(i)

(δ(i)/X)
(θ). (4)

In the papers [21,22] we established the Cramer-Rao type inequality in CRM.
Note that in case of simple random censoring situation analogous results were
established in paper of authors [16] and used in [17–20].

Theorem 2. [22] Suppose that conditions of theorem 1 hold and for
differentiable parameter function ϕ(θ) there exist an unbiased estimator
ϕ̂
(
X, δ(1), ..., δ(k)

)
and the differentiation with respect to θ under integral sign
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Eθϕ̂ = ϕ(θ) is permissible for all θ ∈ Θ. Let ϕ′(θ) denote the derivative of ϕ(θ)
with respect to θ. Then

V arθ {ϕ̂} ≥ (ϕ′(θ))2

I(X,δ(1),...,δ(k))(θ)
for any θ ∈ Θ. (5)

An improved version of result (5) will be derived by application of the Walker’s
[23] inequality. Walker [23] obtained an improved version of the Caushy-Schwarts
inequality.

Theorem 3. [23] If ξ and η are random variables defined on a probability space
(X, F, P ) with finite second moments, then

[E(ξη)]2 ≤ Eξ2Eη2 −
[
|Eξ|

√
V arη − |Eη|

√
V arξ

]2
(6)

In particular, if random variable η has mean zero but positive variance, then
from (6) it follows that

[E(ξη)]2 ≤ Eξ2Eη2 − |Eξ|2Eη2 = V arξEη2

Hence

Eξ2 ≥ [Eξ]2 +
|Eξη|2
Eη2

(7)

Then we have

Theorem 4. Under the conditions of theorem 2 the following inequality holds

Eθ

[
ϕ̂
(
X, δ(1), ..., δ(k)

)
− ϕ(θ)

]2
≥
{

Eθ

[
ϕ̂
(
X, δ(1), ..., δ(k)

)
− ϕ(θ)

]}2

+
(ϕ′(θ))2

I(X,δ(1),...,δ(k))(θ)
for any θ ∈ Θ. (8)

Proof. In inequality (7) we put

ξ = ϕ̂
(
X, δ(1), ..., δ(k)

)
− ϕ(θ), η =

k∑
i=1

δ(i)
∂ log h(i)(X; θ)

∂θ
.

Then for any θ ∈ Θ

Eθη =
k∑

i=1

Eθ

[
δ(i)

∂ log h(i)(X; θ)
∂θ

]
=

k∑
i=1

+∞∫
−∞

∂ log h(i)(x; θ)
∂θ

h(i)(x; θ)dx =

∂

∂θ

k∑
i=1

H(i)(+∞; θ)dx =
∂

∂θ
H(i)(+∞; θ) =

∂

∂θ
(1) = 0, (9)
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and

Eθ [ξη] = Eθ

[
ϕ̂
(
X, δ(1), ..., δ(k)

)
− ϕ(θ)

] [ k∑
i=1

δ(i)
∂ log h(i)(X; θ)

∂θ

]

=
k∑

i=1

Eθ

[
ϕ̂
(
X, δ(1), ..., δ(k)

) ∂ log h(i)(X; θ)
∂θ

]

=
∂

∂θ

k∑
i=1

+∞∫
−∞

ϕ̂
(
x, y(1), ..., y(k)

)
h(i)(x; θ)dx

=
∂

∂θ

+∞∫
−∞

ϕ̂
(
x, y(1), ..., y(k)

)
dH(x; θ) = ϕ′(θ). (10)

Now (8) follows from (8)–(10). This completes the proof. Let’s denote the
probabilities

p(i)(θ) = Pθ

(
δ(i) = 1

)
= Pθ

(
X = X(i)

)
, i = 1, ..., k,

where p(1)(θ) + p(2)(θ) + ... + p(k)(θ) = 1, θ ∈ Θ.

Definition. CRM follows a proportional hazards model (PHM) if we have the
presentations for all x ∈ R

1 − F (i)(x; θ) = (1 − H(x; θ))p(i)(θ)
, i = 1, ..., k. (11)

Note that from (11) follows proportionality of hazard rate functions

λ(i)(x; θ) = p(i)(θ)λ(x; θ), i = 1, ..., k,

where λ(x; θ) = h(x; θ)/ (1 − H(x; θ)) [5,6].
In PHM from (4) we can obtain corollary that

I(X,δ(1),...,δ(k))(θ) = IX(θ) +
k∑

i=1

(
∂ log p(i)(θ)

∂θ

)2

p(i)(θ), θ ∈ Θ.

But, in particular, if all probabilities p(i)(θ) are constants depending on param-
eter θ,

(
p(i)(θ) = β(i), i = 1, k

)
, i.e.

∂ log p(i)(θ)
∂θ

= 0, i = 1, ..., k,

then the information on vector
(
X, δ(1), ..., δ(k)

)
coincides with information only

on minima X = min
(
X(1), ...,X(k)

)
:

I(X,δ(1),...,δ(k))(θ) = IX(θ), θ ∈ Θ.
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At the end of paper we consider random censorship, when k = 2,

1 − F (1)(x; θ) = e−x/θ, 1 − F (2)(x; θ) = e−x/λ =
(
1 − F (1)(x; θ)

)θ/λ

=
(
1 − F (1)(x; θ)

)β(θ)

, x ≥ 0, θ, λ > 0.

Here
1 − F (1)(x; θ) = (1 − H(x; θ))p(1)(θ)

,

1 − F (2)(x; θ) = (1 − H(x; θ))p(2)(θ)
,

β(θ) =
θ

λ
, p(1)(θ) =

1
1 + β(θ)

, p(2)(θ) =
β(θ)

1 + β(θ)
.

Thus, distribution function F (2) does functionally not depend on θ, but depends
through on indicators δ(1) and δ(2). Consequently, full information on triplet(
X, δ(1), δ(2)

)
is equal

I(X,δ(1),...,δ(k))(θ) = IX(θ) + p(1)(θ)
(

∂ log p(1)(θ)
∂θ

)2

+ p(2)(θ)
(

∂ log p(2)(θ)
∂θ

)2

.

Now, if β(θ) = β -const (not depending on θ), then

∂ log p(1)(θ)
∂θ

=
∂ log p(2)(θ)

∂θ
= 0, θ ∈ Θ

and information of triplet
(
X, δ(1), δ(2)

)
is contained only in minimal X =

min
(
X(1),X(2)

)
.

Remark. Note that authors [24] give some numerical calculations of Fisher
information in uninformative censoring case when distribution function of cen-
sors are not dependent on parameter θ and compared with Fisher information
of complete sample.

3 Gibrid Censoring in CRM

Let’s consider {X1, ...,Xm} where Xj = min
(
X

(1)
j , ...,X

(k)
j

)
, j = 1, ..., n, is

the sample of size n on independent observations of X
(i)
j , i = 1, ..., k. Consider

ordered variables X1n < X2n < ... < Xnn of sample {X1, ...,Xm}. Introduce a
sample of indicators

{
δ
(1)
j , ..., δ

(k)
j , j = 1, ..., n

}
corresponding to order statistics

{Xjn, j = 1, ..., n}. Let’s consider vector Y(m) = (Y1n, ..., Ymn), m = 1, ..., n

with Yjn = (Xjn, δ
(1)
jn , ..., δ

(k)
jn ). Suppose that all considered random variables are

positive and consider a fixed numbers T1, T2 ∈ (0;+∞), T1 < T2. Consider a
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lifetime experiment, which for a numbers s < r < n stopped at time Tsn =
min{max{Xτn, T1}, T2}.

Let’s say the j-th object (or individual) with possible competing survival
times

{
X

(1)
j , ...,X

(k)
j

}
fails after time T1 up to time min{Xτn, T2} if s-th indi-

vidual fails up to time T2.Then the possible situations are following:

(I) 0 < Xsn < Xτn < T1 < T2;

(II) 0 < Xsn < T1 < Xτn < T2;

(III) 0 < Xsn < T1 < T2 < Xτn;

(IV ) 0 < T1 < Xsn < Xτn < T2;

(V ) 0 < T1 < Xsn < T2 < Xτn;

(V I) 0 < T1 < T2 < Xsn < Xτn;

By considering these situations we know that experiment can be stopped
at times T1,Xτn, T2,Xτn, T2 and Xsn. Then the situations (I), (III) and (V)
corresponds to type I censoring and others to the type II censoring. Hence,
we deal with gibrid censoring situation where stopping time Tsn is Markovian
stopping time. Above six situations may be described by pair (Tsn, τn) where

(Tsn, τn) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(T1, ν1), for situation (I),

(Xrn, r), for situation (II) and (IV ),

(T2, ν2), for situation (III) and (V ),

(Xsn, s), for situation (V I).

Here τn is common number of failed objects, v1 and v2are number of objects
failed at times T1 and T2. Then the joint density function of vector (Tsn, τn) is

pn(Y(τ); θ) =
n!

(n − τ)!

τn∏
l=1

k∏
i=1

{[h(i)(Xln; θ)]δ
(i)
ln }[1 − H(Tτn

; θ)]n−τn . (12)

Let’s introduce sums

S1n =
τn−1∑
l=1

k∑
i=1

δ
(i)
l n

∂ log h(i)(Xl n; θ)
∂θ

and

S2n =
k∑

i=1

δ
(i)
l n

∂ log h(i)(Tsn; θ)
∂θ

+ (n − τn)
∂ log(1 − H(Tsn; θ))

∂θ
.
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By MS1S2(t1, t2) we denote the moment generating function of vector (S1n, S2n).
Then it is clear that Fisher information of considered model calculated as

In, τ = Eθ

⎧⎨
⎩
[

∂ log pn(Y(τ); θ)
∂θ

]2⎫⎬
⎭ = Eθ(S2

1n) + 2Eθ(S1n, S2n) + Eθ(S2
2n),

where

Eθ(S2
1n) =

∂2MS1S2(t1, t2)
∂t21

∣∣∣∣
t1=t2=0

;

Eθ(S1nS2n) =
∂2MS1S2(t1, t2)

∂t1∂t2

∣∣∣∣
t1=t2=0

;

Eθ(S2
2n) =

∂2MS1S2(t1, t2)
∂t22

∣∣∣∣
t1=t2=0

;

Theorem 5. Consider parametric function ϕ(θ), θ ∈ Θ ⊆ R with differential
ϕ′(θ) and the unbiased estimator ϕ̂ (X1n, ...,Xτn) of ϕ(θ). Suppose that regularity
conditions (I)-(III) hold and the differentiation with respect to θ under integral
sign in equality Eθϕ̂ = ϕ(θ) is permissible for all θ ∈ Θ. Then

V arθ {ϕ̂} ≥ (ϕ′(θ))2

In,τ (θ)
for all θ ∈ Θ.

Fisher information in terms of variation series, has been well studied by
many authors. Models for censoring types I and II, their hybrids, records, etc.
are considered. In the following section of this paper, you can familiarize yourself
with the numerical results of calculating information for random right censoring
model.

4 Simulation

Let ξ - random variable of be interest to us, defined on the probability space
(Ω,A, P ), with values in X ⊆ R1 = (−∞,∞). Let F (x), x ∈ R1, denote the
distribution function of the random variable ξ. Let us consider the paramet-
ric case when the distribution function F is specified up to the parameter θ:
F (x; θ) = Pθ (ξ ≤ x) , P = {Pθ, θ ∈ Θ} where θ = (θ1, .., θs) ∈ Θ, Θ-open
interval in Rs. In the case when, according to the sample ξ(n) = (ξ1, ..., ξn) ,
which is the result of independent observations of the random variable ξ, it is
required to calculate the Fisher information, the formula is used:

I(θ) =

+∞∫
−∞

(
∂ ln f(x; θ)

∂θ

)2

dF (x; θ).

However, when the sample ξ(n) is randomly right-censored, certain difficul-
ties arise when calculating Fisher information, since for some distributions this
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information is not explicitly calculated and one has to use numerical methods.
Let’s consider uninformative random censoring. Let G(x) be the distribution
function of the random variable η. It is easy to see that the random variables
ζi are independent and identically distributed with the distribution function
H(x; θ) = 1 − F (x; θ) · G(x) . In general, the distribution function G plays the
role of a “nuisance parameter”. Fisher information is defined as follows:

I(θ) = IG(θ) =

∞∫
−∞

(
∂ ln(f(x; θ))

∂θ

)2

f(x; θ)G(x)dx

Fig. 1. Fisher information without censoring and with censoring on the right. In the
second case, the random variable has a normal distribution with parameters (0, σ2)
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+

∞∫
−∞

(
∂ ln(1 − F (x; θ))

∂θ

)2

g(x)(F (x; θ))dx.

Let’s consider the case when the random variable ξ has a normal distribution

with density: f(x; θ) = 1√
2πσ

e− (x−θ)2

2σ2 , x ∈ (−∞;∞), θ ∈ (−∞;∞), σ > 0,

where σ is a known parameter. Let η also have a normal distribution with
parameters (0, 1) (or (0, σ2)). In the following graph you can see a graphical
representation of Fisher information (Fig. 1):

The graphs show that in classical models, Fisher information is constant, and
with incomplete data, Fisher information decreases with increasing value of the
unknown parameter.

Now consider the case when the variance is unknown, i.e. density r.v. dis-

tributions ξ has the following form: f(x; θ) = 1√
2πθ

e− (x−a)2

2θ2 , x ∈ (−∞;∞), a ∈
(−∞;∞), θ > 0 : (Fig. 2 and 3))

Fig. 2. Fisher information without censoring

Table 1 shows that the value of Fisher’s information is greater than that of
censoring.

From the graphs we can conclude that Fisher information for complete and
incomplete samples can be described by the following inequality Icomplete(θ) ≥
Iincomplete(θ) (Fig. 4).
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Fig. 3. a) has a normal distribution with parameters (0,1); b) has a normal distri-
bution with parameters (a,1)

Now let’s look at how the degree of censoring affects the amount of Fisher
information (Table 2).

Analyzing the results presented in Table 1, it can be noted that the higher
the degree of censoring is the smaller the amount of information becomes. For
example, in the case of a normal distribution with a censoring degree of 50%, the
sample contains 81.2% of Fisher’s complete information when estimating only
the parameter θ1, 50% when estimating only the parameter θ2.
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Fig. 4. Fisher information in case of complete data and in case of censoring on the
right. In the second case, the random variable has an exponential distribution with
parameter 1
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Table 1. Fisher information values in uncensored and censored models

Model Parameter σ = 1 σ = 2 σ = 3 σ = 5 σ = 10

Complete I(θ) 1 0.25 0.111 0.04 0.01

Censored θ = −8.0 1.0000 0.2500 0.1109 0.0332 0.0024

θ = −6.4 1.0000 0.2499 0.1108 0.0364 0.0031

θ = −4.8 1.0000 0.2495 0.1099 0.0374 0.0040

θ = −3.2 0.9976 0.2462 0.1073 0.0369 0.0048

θ = −1.5 0.9566 0.2326 0.1009 0.0351 0.0055

θ = 0.1 0.7215 0.1956 0.0888 0.0324 0.0060

θ = 1.7 0.2886 0.1314 0.0703 0.0286 0.0062

θ =3.3 0.0426 0.0630 0.0479 0.0240 0.0062

θ =4.9 0.0019 0.0195 0.0270 0.0190 0.0060

θ = 6.5 0.0000 0.0037 0.0122 0.0140 0.0056

θ = 8.0 0.0000 0.0005 0.0048 0.0100 0.0052

Similar results were obtained for the gamma distribution: a)

Gamma distribution with density f(x; θ) = θa

Γ(a) xa−1e−θx, x >

0, a > 0, θ > 0 :

Table 2. Fisher information quantities in a censored sample observation

Normal distribution

Degree of censoring About θ1 parameter About θ2 parameter

5% 0,9930 0,4327

10% 0,9831 1,7116

20% 0,9563 1,4750

30% 0,9206 1,2784

40% 0,8752 1,1198

50% 0,8182 1,0000

60% 0,7467 0,9202

70% 0,6551 0,8800

80% 0,5335 0,8720

Gamma distribution

Degree of censoring About θ1 parameter About θ2 parameter

5% 0,9498 0,5542

10% 0,8989 0,5527

20% 0,7989 0,5479

30% 0,6989 0,5393

40% 0,5989 0,5283

50% 0,4989 0,5121

60% 0,3989 0,4888

70% 0,2989 0,4543

80% 0,1989 0,4001

Weibull distribution

Degree of censoring About θ1 parameter About θ2 parameter

5% 0,8460 0,4555

10% 0,7411 0,4099

20% 0,5919 0,3644

30% 0,4950 0,3189

40% 0,4342 0,2733

50% 0,4009 0,2278

60% 0,3878 0,1822

70% 0,3860 0,1367

80% 0,3814 0,0911
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5 Conclusion

This paper deals with calculation of Fisher information in some models of ran-
dom censoring including Competing Risks Model. In Competing Risks Model we
provided some useful formulas for calculation of information, in hybrid censoring
for calculation one can use the moment generating function. Analogously prob-
lems considered by authors in some queueing systems in [7–15]. In simple right
random censoring simulation shows that if censoring is not informative and does
not depend on unknown parameter then information is smaller than in case of
no censoring.
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Abstract. The paper considers the Bienaymé-Galton-Watson Branch-
ing Systems, in which the mean per-capita offspring number is equal to
one and the variance is infinite. This system is called a critical one. We
state and prove an alternative variant of Basic Lemma of the theory of
critical Bienaymé-Galton-Watson system. The proved lemma essentially
improves the corresponding result of the previous works of the authors.
This assertion plays a key role in formulating the local limit theorem
with explicit terms in the asymptotic expansion of local probabilities on
positive trajectories of the system considered.

Keywords: Branching system · Generating functions · Markov chain ·
Slow variation · Basic Lemma · Transition probabilities · Invariant
measures · Limit theorems

1 Background, Assumptions and Purpose

Models of stochastic branching systems describe the evolution of the population
size in the reproductive individuals system. These models most clearly illustrate
numerous stochastic phenomena occurring both in nature and in human activity.
The simplest and most famous Branching model is the discrete-time Bienaymé-
Galton-Watson (BGW) branching system, in which the sequence of generation
numbers defines the homogeneous-discrete-time Markov chain, and the reproduc-
tion law of each individual is independent of time and other individuals. This
model originally evolved as a family survival model in the second half of the 19th
century, today has numerous generalizations and modifications. The integration
of various scientific fields has made it possible to find new applications of the
branching system models in many fields, such as graph theory, queuing theory,
combinatorics, cell biology, molecular biology, etc. Depending on the context,
the branching system of one or another model is used to describe an evolution
mechanism of individuals. Branching systems, as population growth models have
an obvious influence on the development of the population dynamics theory; see
[1,2,6,10,16].
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Let N = {1, 2, . . .} be the set of natural numbers and N0 = {0} ∪N. We con-
sider the BGW Branching System with branching rates {pj , j ∈ N0}. Denoting
by Zn the population size in the system at the time n ∈ N0, we have a reducible,
homogeneous-discrete-time Markov chain with a state space consisting of two
classes: S0 = {0} ∪ S, where S ⊂ N, therein the state {0} is absorbing, and S is
the class of possible essential communicating states. The population size of the
system can be consistently described by the following recursive relations:

Zn+1 = ξn1 + ξn2 + · · · + ξnZn
(1.1)

for all n ∈ N, where ξnk are independent and identically distributed random
variables with the common distribution

P {ξnk = j} = pj for all j ∈ S0

and they are interpreted as the number of descendants of the kth individual in
the nth generation.

Put into consideration Markov chain n-step transition probabilities

Pij(n) := P
{
Zn+k = j

∣
∣ Zk = i

}
for all i, j ∈ S0.

These probabilities are completely determined by the branching rates {pj}, since,
denoting pj(n) := P1j(n), we observe that the probability Generating Function
(GF) ∑

j∈S0

Pij(n)sj =
[
fn(s)

]i (1.2)

for any i ∈ S and s ∈ [0, 1), where fn(s) =
∑

j∈S0
pj(n)sj is the n-fold iteration

of the GF
f(s) :=

∑

j∈S0

pjs
j .

Let the series
∑

j∈S jpj converges. Then

m :=
∑

j∈S

jpj = f ′(1−)

is the mean per-capita offspring number, the value of which regulates the classi-
fication of S. In fact, using (1.2), it can be observed that E

[
Zn

∣
∣ Z0 = 1

]
= mn,

i.e., the mathematical expectation of Zn asymptotically behaves differently
depending on the value of the parameter m. So, the chain {Zn} is classified
as sub-critical, critical and supercritical if m < 1, m = 1 and m > 1 respectively.
For all cases fn(0) = p0(n) is a vanishing probability of the system initiated by
one individual, and it is monotone and limn→∞ p0(n) = q, where q is an extinc-
tion probability of the system. This probability is a smallest nonnegative root
of the fixed-point equation f(s) = s on the domain of {s : s ∈ [0, 1]}. Moreover
fn(s) → q as n → ∞ uniformly in s ∈ [0, 1); see [2, Ch.I, §§1–5].
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In this paper we consider the critical case with the offspring GF having a
form of

f(s) = s + (1 − s)1+νL

(
1

1 − s

)
, [fν ]

for s ∈ [0, 1), where 0 < ν < 1 and L(∗) is slowly varying (SV) function at
infinity in the sense of Karamata. By the criticality of our system, the assumption
[fν ] implies that the second 2b := f ′′(1−) = ∞. If 0 < b < ∞ then ν = 1 and
L(t) → b as t → ∞.

The critical case considered by authors of [7,8,12–14].
In what follows we will use the condition [fν ] in the following form:

f(s) − s = (1 − s)Λ(1 − s), [fΛ]

where

Λ(y) :=
f(1 − y) − (1 − y)

y
= yνL

(
1
y

)
for y ∈ (0, 1].

In our previous work [5] it was proved that

Un(s) :=
fn(s) − fn(0)

fn+1(0) − fn(0)
[SU ]

approaches the limit function U(s) as n → ∞ for s ∈ [0, 1], such that U(s) is
the GF of the invariant measure for the critical BGW system {Zn}.

Theorem 1 ([5]). Let

V(s) :=
1

νΛ(1 − s)
and J(s) :=

1 − f ′(s)
Λ(1 − s)

− 1.

If condition [fΛ] is satisfied, then Un(s) → U(s) as n → ∞, where

(i) the GF U(s) has the following form:

U(s) = V(s) − V(0), (1.3)

(ii) the derivative U ′(s) has the following expression:

U ′(s) = J(s)
V(s)
1 − s

. (1.4)

The proof of the Theorem 1 result is based on Slack’s [17] arguments, who
defined the prelimit function in the form of

Ûn(s) :=
fn(s) − fn(0)

fn(0) − fn−1(0)
.

We slightly altered the Slack’s definition to [SU ] in [5].
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Remark 1. The function U(s) admits a power series expansion

U(s) =
∑

j∈S

ujs
j ,

where uj =
∑

k∈S ukPkj(1) and
∑

k∈S ukpk
0 = 1; see [17]. Then relation (1.4)

implies that

u1 = U ′(0) =
J(0)
νp0

=
1 − p0 − p1

νp20
.

We now recall the following statement related to the prelimit function Un(s)
and the GF of the limiting invariant measure and clearly showing an explicit
asymptotic expression of the function

Rn(s) := 1 − fn(s).

Lemma 1 (Basic Lemma [9]). If the condition [fΛ] is satisfied then

Rn(s) =
N (n)

(νn)1/ν
·
[
1 − Un(s)

νn

]
, (1.5)

where the function N(x) is SV at infinity and

N(n) · L1/ν

(
(νn)1/ν

N(n)

)
−→ 1 as n → ∞, (1.6)

and the function Un(s) has the following properties:

(i) Un(s) → U(s) as n → ∞, where U(s) has the form of (1.3);
(ii) lims↑1 Un(s) = νn for each fixed n ∈ N;
(iii) Un(0) = 0 for each fixed n ∈ N.

Further, along with our main condition [fΛ], we make also some extra assump-
tion for the function L(·) as follows. Since L(·) is SV, then by its definition
L (λx)

/
L(x) → 1 as x → ∞ for each λ > 0. Then

ωλ(x) :=
L (λx)
L(x)

− 1

decreases to zero as x → ∞. If a decreasing rate of ωλ(x) is known, then the
function L(·) is called SV with remainder ωλ(x) at infinity; see [3, p. 185].

In the paper we will use the Landau symbols o, O, O∗ for comparison of two
functions f(·) and h(·) on the point x0 (finite or infinite):

f(x) = o
(
h(x)

) ⇐⇒ |f(x)|
|h(x)| → 0,

f(x) = O
(
h(x)

) ⇐⇒ |f(x)|
|h(x)| ≤ A,
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f(x) = O∗(h(x)
) ⇐⇒ |f(x)|

|h(x)| → A,

as x → x0, where A �= 0. And also f(x) ∼ h(x) means that f(x)
/
h(x) → 1.

The following statement is an improved analogue of the Basic Lemma 1.

Lemma 2 ([?]). Let the condition [fΛ] is satisfied and ωλ(x) = o
(
L (x)

/
xν
)
.

Then
1

Λ
(
Rn(s)

) − 1
Λ(1 − s)

= νn +
1 + ν

2
· ln
[
Λ(1 − s)νn + 1

]
+ ρn(s), (1.7)

where ρn(s) = o
(
lnn
)

+ σn(s) and, the function σn(s) is bounded uniformly in
s ∈ [0, 1) for each n ∈ N and converges to the limit function σ(s) as n → ∞
which is bounded for all s ∈ [0, 1).

The first direct result from Lemma 1 and Lemma 2 are assuredly, the expres-
sion for the survival probability Qn := P {Zn > 0} = Rn(0) at the moment n of
the BGW system initiated by a single founder-individual.

Remark 2. By writing formula (1.5) as

Un(s) =
[
1 − Rn(s)

Qn

]
νn, (1.8)

we state that Lemma 1 reports an asymptotic relation between the probabili-
ties

{
pj(n), j ∈ S

}
and the invariant measure {uj , j ∈ S} generated by the limit

function U(s).

Remark 3. The advantage of Lemma 2 is that it more exactly improves an anal-
ogous statement established in the paper [11, Theorem 1], in which the offspring
law variance was assumed to be finite and later it was refined under the third
finite moment assumption in [6, p. 20]. In both mentioned works, ν = 1 and
Λ(y) ≡ y, and at the same time f ′′(1−)n

/
2 appeared instead of first term νn,

furthermore, the subsequent tail terms were found on the right-hand side of
(1.7).

Our purpose is as follows. We first state and prove an improved and strength-
ened form of the Basic Lemma 1. To do this, we essentially use the asymptotic for-
mula (1.7). As a result, we find a normalizing constant C(n) such that C(n)fn(s)
approaches U(s) as n → ∞. In addition, we will estimate the speed rate of this
approximation. For our purpose, we adopt the decreasing rate of the remainder
term of the SV-function L(·) to be

ω(x) := ωλ(x) = O

(
L (x)
xν

)
as x → ∞, [Lω]

that is more exact decreasing speed rate condition, than it was assumed in the
Lemma 2. Our results facilitate to refine classical limit theorems.

The rest of this paper is organized as follows. Section 2 contains main results.
Section 3 provides the proof of main results.
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2 Main Results

In this section we present our main results.

Lemma 3. If conditions [fΛ] and [Lω] are satisfied, then assertion of Lemma 2
remains true.

We bypass the proof of this lemma since it duplicates the rationale for the
proof of Lemma 2, demonstrated in detail in the work [?].

Let

Mn(s) := 1 − Λ
(
Rn(s)

)

Λ (Qn)
.

We state our first result, which improves the Basic Lemma 1 as follows.

Lemma 4. If conditions [fΛ] and [Lω] are satisfied, then

Rn(s) = Qn ·
[
1 − Λ (Qn)Un(s)

]
, (2.1)

where the function Un(s) has the following properties:

(i) Un(s) → U(s) as n → ∞, where U(s) has the form of (1.3);
(ii) lims↑1 Un(s) = 1

/
Λ (Qn) for each fixed n ∈ N;

(iii) Un(0) = 0 for each fixed n ∈ N;
(iv) nMn(s) → U(s) and

νΛ (Qn)Un(s) = Mn(s) + O∗ (ln n
/
n
)

as n → ∞. (2.2)

Now consider probabilities

pSj (n) := P
{
Zn = j

∣
∣ j �= 0, Z0 = 1

}

and define the GF
Vn(s) =

∑

j∈S

pSj (n)sk.

This generates a BGW branching system
{
ZS

n

}
with positive trajectories. The

system
{
ZS

n

}
is an irreducible, homogeneous-discrete-time Markov chain with a

state space S.
Using Lemma 4, we establish the following theorem.

Theorem 2. If conditions [fΛ] and [Lω] are satisfied, then

νn

Qn
Vn(s) = Un(s)

(
1 − 1 + ν

2ν

lnn

n

(
1 + o(1)

)
)

as n → ∞ (2.3)

uniformly in s ∈ [0, 1) and

Un(s) = U(s)
(

1 − 1 + ν

2
Λ(1 − s)

ln νn(s)
νn(s)

(
1 + o(1)

)
)

(2.4)

as n → ∞, where νn(s) = Λ(1 − s)νn + 1.
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The next result is a local limit theorem for the branching system
{
ZS

n

}
,

follows from Theorem 2.

Theorem 3. If conditions [fΛ] and [Lω] are satisfied, then

(νn)(1+ν)/ν

Nν(n)
pSj (n) = uj ·

(
1 + O∗

(
lnn

n

))
as n → ∞,

where Nν(n) is SV at infinity, such that

Nν(n)L1/ν

(
(νn)1/ν

Nν(n)

)
−→ 1 as n → ∞.

Remark 4. If conditions [fΛ] and [Lω] are satisfied, then

n∑

j=1

uj =
1

νΓ(1 + ν)
nνLν(n),

where Lν(n)L(n) → 1 as n → ∞. This statement appears due to the Hardy-
Littlewood Tauberian theorem for power series; see [4, Ch.XIII.5].

3 Preliminaries

We will need the following auxiliary statements on properties of SV-functions
with the remainder, which are especially important in our purpose.

Lemma 5. Let K(y) be a positive function in y ∈ (0,∞) and K(y) ↓ 0 as y ↓ 0
and let

φ(y) := y − yK (y) .

If conditions [fΛ] and [Lω] hold, then

L

(
1

φ(y)

)
= L

(
1
y

)(
1 + K(y)ω

(
1
y

))
as y ↓ 0. (3.1)

Proof. In our conditions, L(x) is differentiable and L(x) = xνΛ
(
1/x
)
. Substi-

tuting y = 1/x in the function φ(y), we have

L

(
1

φ(y)

)
= L

(
1

y − yK(y)

)
= L

(
x

1 − k(x)

)
, (3.2)

where k(x) = K
(
1/x
)

> 0. It is easy to see that x <
[
x
/(

1 − k(x)
)]

. We can
write now the mean value theorem in the following form:

L

(
x

1 − k(x)

)
− L(x) = L′(ξ)

xk(x)
1 − k(x)

, (3.3)



Improvement of Basic Lemma of Critical Branching Systems 235

where ξ = ξ(x) is a mean value, such that x < ξ <
[
x
/(

1 − k(x)
)]

. Then it can
be written as follows:

ξ(x) =
x

1 − k(x)
− θ

xk(x)
1 − k(x)

=
1 − θk(x)
1 − k(x)

x (3.4)

for some θ ∈ (0, 1). At the same time, by Lamperti’s arguments [3, p. 401], the
function L(x) can be represented as

L(x) = p0 exp
∫ x

1

ε(t)
t

dt, (3.5)

where ε(x) = O (ω(x)). This representation appeared in the work [9]. Next, in
virtue of the assumption [Lω], we have ε(x) = O

(
L(x)

/
xν
)

as x → ∞. Then
the integral representation (3.5) implies that

L′(x) = L(x)
ε(x)
x

= O

(
L2(x)
x1+ν

)
as x → ∞. (3.6)

In our assumption, k(x) ↓ 0 as x → ∞ and hence ξ(x) ∼ x. Therefore L′(ξ) ∼
L′(x). Then combination of relations (3.2)–(3.6) leads to the fact that

L

(
1

φ(y)

)
− L

(
1
y

)
= L′(ξ)

xk(x)
1 − k(x)

=
xk(x)

1 − k(x)
O

(
L2(x)
x1+ν

)
(
1 + o(1)

)
as x → ∞

= K(y)O
(

yνL2

(
1
y

))
(
1 + o(1)

)
as y ↓ 0.

The last equality implies that

L

(
1

φ(y)

)
− L

(
1
y

)
= K(y)L

(
1
y

)
O

(
yνL

(
1
y

))
(
1 + o(1)

)
(3.7)

as y ↓ 0. Now, from (3.7) and [Lω] the assertion (3.1) readily follows.
The Lemma 5 is proved. ��

Lemma 6. Let L(x) be the SV-function with remainder at infinity. If the SV-
remainder term of this function is ω(x) = O

(
L(x)

/
xσ
)
for some σ > 0, then

CL := lim
x→∞ L(x) < ∞

and
L(x) = CL + O∗ (1

/
xσ
)

as x → ∞. (3.8)

Conversely, if the function L(x) is in the asymptotic expansion form (3.8) for
some σ > 0, then the remainder term ω(x) has a decreasing rate in the order of
O∗ (1

/
xσ
)
as x → ∞.
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Proof. The well-known representation theorem states that

L(x) = exp
{

η(x) +
∫ x

b

ε(u)
u

du

}
, (3.9)

where b is in the domain of L(x) and η(x) is a bounded measurable function
on [b,∞) such that η(x) → Cη as x → ∞, |Cη| < ∞; see [15, Ch I, §1]. Under
the conditions of the lemma, the integral expression (3.5) is valid and ε(x) =
O
(
L(x)

/
xσ
)
. Since σ > 0, due to the properties of SV-functions we observe that

the improper integral
∫∞

b
[ε(u)/u] du converges. Thus, (3.9) entails that

L(x) −→ exp
{

Cη +
∫ ∞

b

ε(u)
u

du

}
=: CL < ∞ as x → ∞. (3.10)

Therefore we have

ω(x) = O∗ (1
/
xσ
)

as x → ∞.

Now we prove formula (3.8). To do this, we first note that

η(x) = Cη + O∗ (1
/
xσ
)

as x → ∞,

which follows from the arguments of [3, Ch.3.12.1] in combination with the state-
ment (3.10). Then we write relation (3.9) in the form

L(x) = exp
{

Cη + O∗ (1
/
xσ
)}

L0(x) as x → ∞, (3.11)

where L0(x) is the normalised SV-function, such that

L0(∞) =
∫ ∞

b

ε(u)
u

du =: C0 < ∞.

Therefore, we have

C0 − L0(x) = C0

(
1 − L0(x)

C0

)
= C0

(
1 − exp

(
−
∫ ∞

x

ε(u)
u

du

))
.

The integral in the last line tends to zero as the tail of a convergent integral.
Then, taking into account that 1 − e−u ∼ u as u → 0, we obtain the following
relations:

C0 − L0(x) = O∗
(∫ ∞

x

1
u1+σ

du

)
= O∗ (1

/
xσ
)

as x → ∞. (3.12)

Combining relation (3.12) with formula (3.11) gives

L(x) = exp
{

Cη + O∗ (1
/
xσ
)}(

C0 + O∗ (1
/
xσ
))

= C0 exp
{
Cη

}(
1 + O∗ (1

/
xσ
))

.
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Hence, denoting CL := C0 exp
{
Cη

}
, we come to the relation (3.8).

The converse part of the theorem follows from the relation (3.8). In fact,

L(λx)
L(x)

=
CL + O∗ (1

/
xσ
)

CL + O∗ (1
/
xσ
) = 1 + O∗ (1

/
xσ
)

as x → ∞

for each λ > 0, which means that L(x) is the SV-function with remainder

ω(x) = O∗ (1
/
xσ
)
.

The Lemma 6 is proved. ��

4 Proof of Results

Proof (Proof of Lemma 4). Combining [fΛ] and [SU ] we write

Un(s) =
Qn − Rn(s)
QnΛ

(
Qn

) =
1

Λ
(
Qn

)
[
1 − Rn(s)

Qn

]
. (4.1)

Therefore, formula (2.1) is immediate. Now we verify the rest part of the lemma
concerning the properties of the prelimit function Un(s). Initially, Theorem 1
states that Un(s) → U(s) as n → ∞. The immediate facts are that

Un(1−) =
1

Λ (Qn)
for each fixed n ∈ N

and Un(0) = 0 for each fixed n ∈ N, since Rn(1−) = 0 and Rn(0) = Qn.
Now, recalling that Λ(y) = yνL (1/y) and Lemma 1 we write

Mn(s) = 1 −
(

Rn(s)
Qn

)ν L
(
1
/
Rn(s)

)

L
(
1
/
Qn

) . (4.2)

Here we use the Lemma 5 for the asymptotic estimate of last ratio in right-hand
side of (4.2). We compile the function to be estimated with the conditions of the
lemma as follows. First, we write out from (4.1) that

Rn(s) = Qn − QnΛ
(
Qn

)
Un(s). (4.3)

Since Un(s) → U(s) as n → ∞ for all s ∈ [0, 1), statement (3.1) is justified for
y = Qn, K(y) = O∗ (Λ(y)) and ω (1/y) = O∗ (yν) as y ↓ 0. In the last step,
to estimate the remainder ω (1/y), we relied on Lemma 6. At the same time,
Lemma 3 implies

Λ
(
Rn(s)

)
=

Λ(1 − s)
νn(s)

(
1 − 1 + ν

2
Λ(1 − s)

ln νn(s)
νn(s)

(
1 + o(1)

)
)

(4.4)

as n → ∞, where νn(s) = Λ(1 − s)νn + 1.
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Therefore

L

(
1

Rn(s)

)
= L

(
1

Qn

)(
1 + O∗

(
1
n2

))
as n → ∞. (4.5)

Then from (1.5) and (4.5) it follows

Mn(s) = 1 −
[
1 − Un(s)

νn

]ν (
1 + O∗

(
1
n2

))

=
Un(s)

n
+ O∗

(
1
n2

)
as n → ∞. (4.6)

Hence nMn(s) → U(s) as n → ∞ and

Un(s) = nMn(s) + O∗
(

1
n

)
as n → ∞.

Since Λ(1) = L(1) = p0, relation (4.4) entails that

Λ
(
Qn

)
=

1
νn

(
1 − 1 + ν

2ν

ln n

n
+ o

(
ln n

n

))
as n → ∞. (4.7)

Then considering (4.7) as s = 0, we have

Λ
(
Qn

)
Un(s) = Λ

(
Qn

)
nMn(s) + O∗

(
Λ
(
Qn

)

n

)

=
1
ν
Mn(s)

(
1 − 1 + ν

2ν

ln n

n
+ o

(
ln n

n

))
(4.8)

as n → ∞ and thus formula (2.2) is immediate. ��
Proof (Proof of Theorem 2). We can write directly that

Un(s) =
1

Λ
(
Qn

)
1

Qn
Vn(s). (4.9)

Denoting Un(s) := nMn(s), from (4.8) and (4.9) we have

νn

Qn
Vn(s) = νnΛ

(
Qn

)
Un(s)

= Un(s)
(

1 − 1 + ν

2ν

ln n

n
+ o

(
lnn

n

))
as n → ∞.

Relation (2.3) is proved.
Next, we proceed to the proof of (2.4). It is known that the invariance

property of the limiting measure {uj , j ∈ S} is expressed by the Abel equation
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U
(
f(s)

)
= U(s)+1 for the function U(s). Then repeatedly use of this equation,

with considering of relation (1.3), yields
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
Λ
(
Rn(s)

) − 1
Λ(1 − s)

= νn

and

1
Λ
(
Qn

) − 1
p0

= νn.

Term-by-term subtraction of these equalities produces

1
Λ
(
Rn(s)

) − 1
Λ
(
Qn

) = νU(s),

therefor

νΛ
(
Rn(s)

)
U(s) = 1 − Λ

(
Rn(s)

)

Λ (Qn)
= Mn(s).

Thus we have
Un(s) = νnΛ

(
Rn(s)

)
U(s). (4.10)

Now a combination of relations (4.4) and (4.10) entails

Un(s) = U(s)
νn(s) − 1

νn(s)

(
1 − 1 + ν

2
Λ(1 − s)

ln νn(s)
νn(s)

(
1 + o(1)

)
)

as n → ∞ and formula (2.4) is immediate.
The theorem is proved completely. ��

Proof (Proof of Theorem 3). This statement follows from Theorem 2, accord-
ing to the continuity theorem for power series. ��

5 Conclusion

The paper discusses the asymptotic properties of expansion of GF of the law of
evolution of the critical BGW branching system. This statement is called the
Basic Lemma. Most of the fundamental results was established on the basis of
this lemma. As the theory of branching systems developed, the formulation of
this lemma was improved and strengthened, bypassing the finiteness conditions
of high-order moments of the offspring law.

This paper presents an improvement to the Basic Lemma 4 on conditions [fΛ]
and [Lω]. A direct consequence of this lemma is that it contributes to establishing
the local limit Theorem 2 in a more refined form.

Moreover, one can find an asymptotic expansion of the function R′
n(s) which

is of special interest. Since p1(n) = f ′
n(0), this expansion involves finding an
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asymptote for the local probabilities p1(n) and therefor we can state the Mono-
tone Ratio Convergence theorem analogue, asserting the fact that the ratios
pj(n)/p1(n) monotonically converge assuming that p1 > 0, i.e.

pj(n)
p1(n)

↑ πj < ∞ as n → ∞

for all j ∈ S, where the numbers {πj} satisfy the conditions

πj =
∑

k∈S

πkPkj(1) and
∑

j∈S

πj < ∞.
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Abstract. In this paper, we examine the population growth system
called Q-processes. This is defined by the Galton–Watson Branching sys-
tem conditioned on non-extinction of its trajectory in the remote future.
This work is devoted to a statistical investigation of the properties of Q-
processes. The purpose of our paper is to estimate the main parameter
– an average number of offspring of one particle and structural parame-
ter. Thus, we find an unbiased estimators for these parameters. We also
prove limit theorems for the above unbiased estimates.

Keywords: Branching system · Q-process · Markov chain ·
Generating function · Extinction time · Transition probabilities ·
Positive recurrent · Transient · Unbiased estimator · Schröder case ·
Schröder equation · Kronecker delta · Invariant measure · Stationary
measure · Characteristic function

1 Introduction

The study of branching processes has a long history, which, as might be expected,
is closely interwoven with a number of applications in the physical and biological
sciences. The original problem, which was introduced by Francis Galton in 1873
and first successfully attacked by the Reverend Henry Watson in that year, was
in fact concerned with the extinction of family names in the British peerage. For
a most enjoyable historical introduction we refer the reader to D. Kendall and
for a complete early bibliography to T.E. Harris; see [1,2,6,14].

Branching processes are widely used in mathematical modeling. For example,
they may be applied for modeling of virtual machines’ (VM) life cycles in a cloud
node by using queueing theory methods [4]. After a VM appears in the node,
it starts switching randomly between different states generating a stochastic
process. So, each VM appearance born a new branch in the global process.
Other approaches for modeling the same processes may be found in [16,24,25].

Let (Ω,F ,P) be a probability space on which an array of non-negative integer-
valued random variables {

ξ(i)n : n ∈ N0 and i ∈ N
}
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is given, where
{

ξ
(i)
n

}
are independent and identically distributed with a common

probability function {pk, k ∈ N0}, N0 = {0} ∪ N and N = {1, 2, . . . }.

Definition 1. The Galton–Watson Branching
(GWB) system is a homogeneous-discrete-time Markov chain {Z(n), n ∈ N0}
defined inductively by Z(0) = 1 and

Z(n + 1) =

⎧
⎪⎪⎨
⎪⎪⎩

Z(n)∑
i=1

ξ
(i)
n+1, if Z(n) > 0,

0, if Z(n) = 0,

(1)

where ξ
(i)
n+1 is the number of descendants of the n-th particle in the i-th generation

and P
{

ξ
(i)
n = k

}
= pk.

The variable Z(n) denotes the population size at the moment n in the system.
The evolution of the system occurs according to the following mechanism. Each
individual lives a unit length lifetime and then gives k ∈ N0 descendants with
probability pk. This system is a reducible, homogeneous-discrete-time Markov
chain with a state space consisting of two classes: S0 = {0} ∪ S, where {0}
is absorbing state, and S ⊂ N is the class of possible essential communicating
states. To avoid trivialities, we assume that p0 > 0, pj �= 1 for any j ∈ S0. This
implies p0 + p1 > 0 called the Schröder case in which the particle can either die
or leave behind 1 offspring. In Böttcher case (p0 + p1 = 0), the particle does not
die and at the end of its life leaves behind at least 2 generations.

We suppose that p0 + p1 < 1 and

m :=
∑
k∈S

kpk < ∞.

Definition 2. The GWB system with offspring mean m is called
⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

subcritical, if m < 1,

critical, if m = 1,

supercritical, if m > 1.

(2)

The GWB system is a Markov chain {Z(n), n ∈ N0} on the non-negative
integers. Its transition function is defined in terms of a given probability function
{pk, k ∈ N0}, pk ≥ 0,

∑
k∈N0

pk = 1, by

P
{
Z(n + 1) = j

∣∣ Z(n) = i
}

=

⎧
⎨
⎩

p∗i
j , if i ≥ 0, j ≥ 0,

δ0j , if i = 0, j ≥ 0,
(3)
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where δij is the Kronecker delta and

p∗i
j :=

∑
j1+j2+···+ji=j

pj1pj2 . . . pji

is the j-th term of the i-th fold convolution of the sequence {pk, k ∈ N0}.
Considering transition probabilities

Pij(n) := P
{
Z(n + k) = j

∣∣ Z(k) = i
}

for any k ∈ N0

we observe that the corresponding probability generating function (GF)

Eis
Z(n) :=

∑
k∈S0

Pij(n)sk =
[
fn(s)

]i
for any i ∈ S, (4)

where Ei [∗] = Ei

[∗∣∣Z(0) = i
]
, E [∗] := E1 [∗] and

fn(s) := EsZ(n) =
∑
k∈S0

pk(n)sk,

therein pk(n) := P1k(n) and, fn(s) is n-fold iteration of the offspring GF f(s) :=∑
k∈S0

pksk. Needless to say that fn(0) = p0(n) is a vanishing probability of
the system initiated by single individual. Note that {p0(n)} is monotone and
tends to q as n → ∞, which called an extinction probability of the system, i.e.
limn→∞ p0(n) = q. The extinction probability is the smallest non-negative root
of the equation s = f(s) on the set 0 < s ≤ 1:

q := P
{

lim
n→∞ Z(n) = 0

}
= 1 − P

{
lim

n→∞ Z(n) = ∞
}

.

It is known that the extinction probability in the subcritical and critical cases
q = 1 and in the supercritical case q < 1; see [1,2,5], [11,13,20,22].

2 The Q-Process

Among the random trajectories of branching systems, there are those that con-
tinue a long time. In the case of the GWB model, the class of such trajec-
tories forms another stochastic model called Q-process; see [2,12]. In the case
of continuous-time Markov branching systems, an analogous model called the
Markov Q-process, was first introduced in [10]. Some properties of Q-processes
have been studied in [8]. A continuous analogue as a Markov Q-process has been
studied [7,9,10,12].

We have previously conditioned the GWB system Z(n) on the event

{n < H < ∞} ,

where H is the extinction time, i.e.

H := min {n ∈ N : Z(n) = 0} .
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It is meaningful, more generally, to condition on {n + k < H < ∞}, k ≥ 0,
namely, the event that the process is not extinct at time n + k but does eventu-
ally die out. We remark again that when m ≤ 1 this is the same as conditioning
on {n + k < H}.

An asymptote of P {H = n} has been studied in [15,23]. The event
{n < H < ∞} represents a condition of {Z(n) �= 0} at the moment n and

{Z(n + k) = 0} for some k ∈ N.

By the extinction theorem Pi {H < ∞} = qi. Therefore in non-supercritical case

Pi {n < H < ∞} ≡ Pi {H > n} → 0.

Hence, Z(n) −→ 0 with probability one, so in these cases the process will even-
tually die out. In [2] can serve as a general source of reference for the above and
other classical facts of the theory GWB systems. Let Pi

{∗} := P
{∗ ∣∣ Z(0) = i

}
and we also consider a conditional distribution

P
H(n)
i {∗} := Pi

{∗ ∣∣ n < H < ∞}
.

The classical limit theorems state that if q > 0 then under certain moment
assumptions the limit P ∗

ij(n) := P
H(n)
i {Z(n) = j} exists always; see [2, p. 16].

In particular, [21] has proved that if m �= 1 then the set aj := limn→∞ P ∗
1j(n)

represents a probability distribution and for β := f ′(q) limiting GF π(s) =∑
j∈S ajs

j satisfies to Schröder equation:

1 − π (ϕ(s)) = β [1 − π(s)] , (5)

where π(s) is a probabilistic GF satisfying the above functional equation and

ϕk(s) :=
fk(qs)

q
and ϕ(s) := ϕ1(s) for any k ∈ N0. (6)

The Eq. (5) determines an invariant property of numbers {aj} with respect to
the transition functions

{
P ∗
1j(n)

}
and, the set {aj} is called R-invariant measure

with parameter R = 1
/
β; see [?]. Investigations have shown that the limiting

behaviors of the GWB system trajectory are very sensitive to a change in the
classical condition {H > n} to the non-degeneracy condition of the system in the
remote future {H = ∞}. Apparently, this condition was first used in [5]. In the
critical case we know the Yaglom theorem about a convergence of conditional
distribution of 2Z(n)

/
f ′′(1)n given that {H > n} to the standard exponential

law. Subsequently, in [17], later in [18,19], [?] and [20], the properties of GWB
system were investigated under the condition {H = ∞}.

We define conditioned probability measure

P
H(n+k)
i {∗} := Pi

{∗ ∣∣ n + k < H < ∞}
for any k ∈ N.

In [5] it was observed that the limit

Qij(n) := lim
k→∞

P
H(n+k)
i {Z(n) = j} = Pi

{
Z(n) = j

∣∣ H = ∞}
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always exists. In [2, p. 58] proved, that

lim
k→∞

P
H(n+k)
i

{
Z(n) = j

}
=

jqj−i

iβn
Pij(n). (7)

Observe that
∑

j∈N Qij(n) = 1 for each i ∈ N. Thus, the probability measure
Qij(n) can determine a new population growth system with the state space
E ⊂ N which we denote by {W (n), n ∈ N0}. This is a discrete-homogeneous-time

irreducible Markov chain and called the Q-process. Undoubtedly W (0)
d= Z(0)

and transition probabilities

Qij(n) = P
{
W (n) = j

∣∣ W (0) = i
}

,

so that the Q-process can be interpreted as a “long-living” GWB system.
Put into consideration a GF

w(i)
n (s) :=

∑
j∈E

Qij(n)sj . (8)

Then from (4) and (7) we obtain

w(i)
n (s) =

[
fn(qs)

q

]i−1

· wn(s), (9)

where the GF wn(s) := w
(1)
n (s) = E

[
sW (n)

∣∣ W (0) = 1
]

has a form of

wn(s) = s
f ′

n(qs)
βn

for all n ∈ N. (10)

Using iterations for f(s) in (9) leads to the following functional equation:

w
(i)
n+1(s) =

w(s)
fq(s)

w(i)
n

(
fq(s)

)
, (11)

where w(s) := w1(s). Thus, Q-process is completely defined by setting the GF

w(s) = s
f ′(qs)

β
. (12)

We shall refer to {W (n), n ∈ N0} as the Q-process associated with
{Z(n), n ∈ N0}. It was introduced by F. Spitzer (unpublished) and in [17]. It can
be roughly thought of as Z(n) process conditioned on not being extinct in the
distant future and on being extinct in the even more distant future. Note that
when the original process is aperiodic and irreducible the Q-process is aperiodic
and irreducible in the same sense.

Theorem 1. [2, p. 59.]
(i) If m > 1 then the Q-process is positive recurrent.
(ii) If m = 1 then the Q-process is transient.
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(iii) If m < 1 then the Q-process is positive recurrent if and only if
∑
k∈N

(k log k) pk < ∞.

(iv) In the positive recurrent cases the stationary measure for Q is

μj = jqj−1νj for j ≥ 1, (13)

where

μj := lim
n→∞ Qij(n) = lim

n→∞
jqj−i

iβn
Pij(n) =: jqj−1νj and

∑
j∈N

jqj−1νj = 1.

An evolution of the Q-process is in essentially regulated by the structural
parameter β > 0. We can easily see that by Theorem 1 E is positive recurrent if
β < 1 and E is transient if β = 1. On the other hand, it is easy to be convinced
that positive recurrent case β < 1 of Q-process is in a definition character of
the non-critical case m �= 1 of the initial GWB system. Note that β ≤ 1 and
nothing but. As in the GWB system, the case m = 1 plays a special role in the
Q-process. Due to its transience, W (n) → ∞ with probability 1, but W (n)

/
n

will converge to a non-degenerate limit law.

3 Moments

Let αn := w′
n(1−) < ∞ and α := α1 < ∞. w′(1−) < ∞ and w′′(1−) < ∞ it is

equivalent to that f ′′(1−) < ∞ and f ′′′(1−) < ∞, respectively. The moments of
the Q-process, when they exist, can be expressed in terms of the derivatives of
f(s) at s = 1. It is easy to check for f(s) = Esξ that

Eξ = f ′(1), Eξ (ξ − 1) = f ′′(1) and varξ = f ′′(1) + f ′(1) [1 − f ′(1)] . (14)

Then differentiating (12) on the point s = 1 we obtain EW (1) = 1 + Bq

(
1 − β

)
,

where
Bq :=

bq

β (1 − β)
,

and bq := qf ′′(q). It follows from (9) and (10) that

EiW (n) := E
[
W (n)

∣∣∣ W (0) = i
]

= (i − 1) βn + EW (n), (15)

where

EW (n) =

⎧
⎨
⎩

1 + nb1, if β = 1,

1 + Bq

(
1 − βn

)
, if β < 1.

(16)

(15) and (16) formulas show that the following asymptotic relation holds

EiW (n) ∼ EW (n) ∼
⎧
⎨
⎩

nb1, if β = 1,

1 + Bq, if β < 1
(17)
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as n → ∞. From (6) and (10), we have

wn(s) = s

n−1∏
k=0

f ′ (fk(qs))
β

= s

n−1∏
k=0

f ′ (qϕk(s))
β

=: s

n−1∏
k=0

G (ϕk(s)) , (18)

where

G(x) =
f ′(qx)

β
. (19)

Let σ2
n := varW (n) and σ2 := σ2

1 , according to (14) and (18), we have

σ2 =

⎧
⎪⎨
⎪⎩

bq (1 − bq) + cq, if β = 1,

bq
β

(
1 − bq

β

)
+ cq

β , if β < 1,
(20)

and

σ2
n =

⎧
⎨
⎩

b2q
2 n2 − (

bq − 3
2b2q + cq

)
n, if β = 1,

(1 − βn) Bq + 1−β2n

1+β Cq +
(
2 − βn − β2n+1−2β2n+3

1+β

)
B2

q , if β < 1,

where
Cq =

cq

β (1 − β)
and cq = q2f ′′′(q).

We have the following asymptotic relation:

σ2
n ∼

{
b2q
2 n2, if β = 1,

Bq + 1
1+β Cq − 1−2β

1+β B2
q , if β < 1.

(21)

Also, higher moments can be derived similarly.

4 Main Results

This paper is devoted to a statistical investigation of the properties of Q-
processes. Following the classical methods of statistical estimation (see [3]), we
introduce the estimator function for the parameters α and β as follows:

α̂n = W (n + 1) − [W (n) − 1] β and β̂n =
W (n + 1) − α

W (n) − 1
.
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According to the total probability formula, we have

Eα̂n = E [W (n + 1) − [W (n) − 1] β] =
∑
k∈N

E [W (n + 1) − [W (n) − 1] β, W (n) = k]

=
∑
k∈N

Q1k(n)E
[
W (n + 1) − [W (n) − 1] β

∣∣∣ W (n) = k
]

=
∑
k∈N

Q1k(n)E
[
W (n + 1)

∣∣∣ W (n) = k
]

− β
∑
k∈N

Q1k(n)E
[
W (n) − 1

∣∣∣ W (n) = k
]

=
∑
k∈N

Q1k(n)E [1 + ζ1 + ζ2 + · · · + ζk−1 + η] − β
∑
k∈N

Q1k(n)(k − 1)

=
∑
k∈N

Q1k(n) [1 + (k − 1)β + (α − 1)] − β
∑
k∈N

kQ1k(n) + β = α (22)

and if α exists

Eβ̂n = E

[
W (n + 1) − α

W (n) − 1

]
=
∑
k∈N

E

[
W (n + 1) − α

W (n) − 1
, W (n) = k

]

=
∑
k∈N

Q1k(n)E
[
W (n + 1) − α

W (n) − 1

∣∣∣ W (n) = k

]

=
∑
k∈N

Q1k(n)
k − 1

E
[
W (n + 1) − α

∣∣∣ W (n) = k
]

=
∑
k∈N

Q1k(n)
k − 1

E [1 + ζ1 + ζ2 + · · · + ζk−1 + η − α]

=
∑
k∈N

Q1k(n)
k − 1

[1 + (k − 1)β + (α − 1) − α] = β, (23)

where to calculate var
[
W (1)

∣∣∣W (0) = k
]
, from (9) and (10) we write

w(k)(s) := w
(k)
1 (s) = E

[
xW (1)

∣∣∣W (0) = k
]

= ϕk−1(s) · w(s) = sϕk−1(s)G(s). (24)

It can be seen that the relation

W (1) = 1 + ζ1 + ζ2 + · · · + ζk−1 + η

corresponds to the latter, where ζk independent and the variable η does not
depend from all ζk. We have

fζ1(s) := Esζ1 = ϕ(s) and fη(s) := Esη = G(s).

Easy to find
var

[
W (1)

∣∣∣ W (0) = k
]

= (k − 1)varζ1 + varη, (25)
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where
varζ1 = f ′′

ζ1(1−) + f ′
ζ1(1−) − [

f ′
ζ1(1−)

]2 = β(α − β), (26)

varη = f ′′
η (1−) + f ′

η(1−) − [
f ′

η(1−)
]2 = w′′(1−) − α(α − 1) (27)

and from (25) and (27), we have

var
[
W (1)

∣∣∣ W (0) = k
]

= (k − 1)V1 + V2,

V1 = β(α − β) and V2 = w′′(1−) − α(α − 1). (28)

Thus, the estimates α̂n and β̂n are unbiased estimators for parameter α and
β, respectively.

Throughout the paper we will use famous Landau symbols o, O and O∗ to
describe kinds of bounds on asymptotic varying rates of positive functions f(x)
and g(x). So, f = o(g) means that limx f(x)

/
g(x) = 0, and we write f = O(g) if

lim supx f(x)
/
g(x) < ∞ and also we write f = O∗(g) if the ratio f(x)

/
g(x) has

a positive explicit limit. i.e. limx f(x)
/
g(x) = C < ∞. Moreover, f(x) ∼ g(x)

means that limx f(x)
/
g(x) = 1.

The following theorems characterize the proposed estimates.

Theorem 2. Let w′′(1−) < ∞.

– If β < 1, then
Varα̂n ∼ V1Bq + V2 as n → ∞, (29)

where V1 and V2 are defined in (28)
– If β = 1, then

Varα̂n = O∗(n) as n → ∞. (30)

Theorem 3. Let w′′(1−) < ∞ and α exists.

– If β < 1, then

Varβ̂n = K ·
⎡
⎣V1 + V2 ·

1∫

0

π(x)
x

dx

⎤
⎦ (1 + o(1)) as n → ∞, (31)

– If β = 1, then
n

2
Varβ̂n ∼ 1 + εn as n → ∞, (32)

where K – positive constant and

εn :=
2V2

(α − 1)2
· ln n

n
.
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5 Proof of Theorems

Proof of Theorem 2.
For the estimate α̂n, according to the total probability formula, we find its

variance:

Varα̂n = Var [W (n + 1) − [W (n) − 1] β] = E [α̂n − Eα̂n]2 = E [α̂n − α]2

=
∑
k∈N

Q1k(n) · E
[
(W (n + 1) − [W (n) − 1] β − α)2

∣∣∣ W (n) = k
]
. (33)

Further, due to the homogeneity of the Q-process, we obtain

Varα̂n =
∑
k∈N

Q1k(n) · Ek [W (1) − [W (0) − 1] β − α]2

=
∑
k∈N

Q1k(n) · Ek [W (1) − α]2 =
∑
k∈N

Q1k(n) · Ek [W (1) − E1W (1)]2

=
∑
k∈N

Q1k(n) · VarkW (1) =
∑
t∈N0

Q1t+1(n) · Vart+1W (1). (34)

where t = k − 1,

VariW (n) = Var
[
W (n)

∣∣∣ W (0) = i
]

and Var1W (n) := VarW (n). (35)

From (25)–(27), we have

Varα̂n = V2 + V1 · I1(t), (36)

where
I1(t) :=

∑
t∈N0

tQ1t+1(n).

It is easy to see that by the definition of the Q-process and in turn, from the
form (8) and (16), we have

I1(t) =

⎧
⎨
⎩

nb1, if β = 1,

(1 − βn)Bq, if β < 1.
(37)

The last relation proves the theorem. Theorem 2 is proved.
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Proof of Theorem 3.

Varβ̂n = Var

[
W (n + 1) − α

W (n) − 1

]
= E

[
β̂n − Eβ̂n

]2
= E

[
β̂n − β

]2

= Var

[
W (n + 1) − α

W (n) − 1
− β

]
=
∑
k∈N

Q1k(n) · Ek

[(
W (n + 1) − α

W (n) − 1
− β

)2
]

=
∑
k∈N

Q1k(n) · Ek

[(
W (n + 1) − α − [W (n) − 1] β

W (n) − 1

)2
]

=
∑
k∈N

Q1k(n)
(k − 1)2

· Ek [W (1) − E1W (1)]2

=
∑
t∈N0

Q1t+1(n)
t2

· Vart+1W (1). (38)

From (25)–(27), we have

Varβ̂n = V1 · Σ1 + V2 · Σ2, (39)

where

Σ1 :=
∑
t∈N0

Q1t+1(n)
t

and Σ2 :=
∑
t∈N0

Q1t+1(n)
t2

. (40)

It is easy to see that by the definition of the Q-process and in turn, from the
form (9), we have

Σ1 =

1∫

0

wn(x)
x

dx =
1
βn

(
1 − f (n)

q (0)
)

,

where f
(n)
q (s) := fn(qs)

/
q. It is almost obvious that the GF f

(n)
q (s) is equal to

the n-fold iteration fq(s) = f(qs)
/
q. The latter generates a subcritical GWB

system, i.e. f ′(1) = β < 1. In this case, it is known that 1 − f
(n)
q (0) ∼ Kβn as

n → ∞, where K is a positive constant; see [22, p. 56]. Hence

Σ1 → K as n → ∞. (41)

Then we have

Σ2 =
∑
t∈N0

Q1t+1(n)
t

·
1∫

0

xk−1dx =

1∫

0

1
x

[∑
k∈N0

Q1t+1(n)
t

xk

]
dx.

Not difficult to get using (6)

∑
k∈N0

Q1t+1(n)
t

xk =
f
(n)
q (x) − f

(n)
q (0)

βn
.



252 A. A. Imomov et al.

From the last two equalities we have

Σ2 =

1∫

0

1
x

· f
(n)
q (x) − f

(n)
q (0)

βn
dx =

1 − f
(n)
q (0)

βn
·

1∫

0

f
(n)
q (x) − f

(n)
q (0)

x
(
1 − f

(n)
q (0)

) dx. (42)

In the monograph of [2, p. 16] it is proved that the integrand
[
f (n)

q (s) − f (n)
q (0)

]/[
1 − f (n)

q (0)
]

on the right side of equality (28) converges to the GF π(x) satisfying equation
(5). According to the latter and, again, the relation 1 − f

(n)
q (0) ∼ Kβn, from

(28) we obtain

Σ2 ∼ K ·
1∫

0

π(x)
x

dx as n → ∞. (43)

Statement (31) will now be obtained from relations (39)–(43).
Let us now prove relation (32).
In this case, q = 1 and, arguing similarly to the case β < 1, we find

σ2
β = (α − 1) ·

1∫

0

wn(x)
x

dx + V2 ·
1∫

0

f
(n)
q (x) − f

(n)
q (0)

x
dx. (44)

Let us initially estimate the first integral. According to (9), we have.

1∫

0

wn(x)
x

dx =

1∫

0

(
f (n)

q (x)
)′

dx ∼ 2
(α − 1)n

as n → ∞. (45)

This takes into account the fact that 1− f
(n)
q (0) ∼ 2

/
(α− 1)n; see [2, p. 19]. We

write the second integral in the form

1∫

0

f
(n)
q (x) − f

(n)
q (0)

x
dx =

(
1 − f (n)

q (0)
) 1∫

0

f
(n)
q (x) − f

(n)
q (0)

x
(
1 − f

(n)
q (0)

) dx. (46)

In the monograph of [3, p. 10] it is proved that under our conditions and
notation,

1∫

0

f
(n)
q (x) − f

(n)
q (0)

x
(
1 − f

(n)
q (0)

) dx ∼ 2 ln n

(α − 1)n
as n → ∞. (47)

Considering relations (45)–(47) together, taking into account 1 − f
(n)
q (0) ∼

2
/
(α − 1)n, we complete the proof of assertion (32). Theorem 3 is proved.
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Remark 1. In Theorem 3, the variable K is the Kolmogorov constant, which is
equal to the product of ∏

n∈N0

q − f (fn(0))
β (q − fn(0))

,

see [22, p. 56]. Furthermore, note that the right side of (16) remains bounded,
i.e.

σ2
β = O(1) as n → ∞.

6 Conclusion

As noted above, we call Q-processes the class of trajectories determined by the
immortal Galton-Watson branching system in the remote future. In this paper,
we present the numerical characteristics of the Q-process. We also provided the
statistical estimators of the structural parameters of Q-processes and showed
that these estimates are unbiased. In addition, limit theorems for the variances
of the proposed estimators are proved.

In our future work, we intend to propose analogous estimators in the case of
continuous-time Markov Q-processes.
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25. Vilaplana, J., Solsona, F., Teixidó, I., Mateo, J., Abella, F., Rius, J.: A queuing
theory model for cloud computing. J. Supercomput. 69, 492–507 (2014)



Workshop on Retrial Queues



Retrial Queueing System
of MAP/PH/N Type with a Finite

Buffer and Group Service. The Process
Describing the System Dynamics

Alexander Dudin(B) and Olga Dudina

Department of Applied Mathematics and Computer Science, Belarusian State
University, 220030 Minsk, Belarus

dudin@bsu.by, dudina@bsu.by

Abstract. A queuing system with many identical servers, a finite buffer,
and order retrials is under study. The order’s arrival is described by
the Markov arrival process. Service is offered for orders in groups. The
size of the group is bounded from above by the capacity of the buffer
and from below by a fixed threshold. A group’s service time follows a
phase-type distribution with the irreducible representation determined
by group size. A classical retrial strategy is assumed. Retrying and wait-
ing orders can renege from the service after a random time interval. The
duration of this interval has an exponential distribution. We built a mul-
tidimensional continuous-time Markov chain that includes the number of
retrying orders, the number of busy servers, the state of the underlying
arrivals process, and an auxiliary multidimensional Markov chain that
defines the number of servers providing service at all possible service
phases. The infinitesimal generator of the constructed chain is written
down and, and the explicit expressions for the matrix blocks of the gen-
erator are presented.

Keywords: Multi-server retrial queue · group service · Markov arrival
process · phase-type distribution

1 Introduction

The group servicing of orders is the major distinctive aspect of the queueing
model discussed in this study. Such a kind of service is typical for a variety of real-
world systems, including various manufacturing, transportation, and telecommu-
nication systems, in which, from an economic point of view, it is reasonable to
provide not an individual but a group service. Concrete examples of such systems
given in [1] are as follows:

(a) Processing jobs, such as flushing with the same coolant, coating bricks with
precious metals (dipped in liquid concentrate), sandblasting, and heat treat-
ment, can all be done in groups.
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(b) Certain hazardous petrochemical and petroleum wastes may require a spe-
cific treatment procedure, such as a thermal treatment method that uses
high temperatures to break down the hazardous compounds into simpler,
less poisonous forms. These might be dealt with in groups.

(c) On machine vision systems, tasks arriving for processing may all have the
same features; therefore, all jobs may be placed on a similar tray or belt for
the camera to take the pictures and deliver the information.

(d) Jobs requiring processes in which the beam from one laser is divided into
numerous beams, one for each task present, can be processed in groups using
industrial lasers.

These examples may be supplemented by the various systems of goods and
food delivery, see, e.g., [2], in which the delivered items are preliminary packed
into containers or pallets of a finite capacity, and various transportation systems
where a server (bus, minivan, car, plane, ferry, etc.) should have enough pas-
sengers to justify the operational costs (fuel, salary for the staff, taxes and fees,
etc.).

Due to their wide applicability, investigation of queueing systems with a
group (bulk, batch, etc.) order service started back in the 1950s; see, e.g., [3–
9]. The state of the art in queueing system analysis with a group service is
represented, for example, in articles [10–18]. The essential disadvantage of many
known results consists of the imposed assumption that the arrivals of orders occur
according to the stationary Poisson process. This assumption simplifies the study
of a queueing system significantly. However, it rarely holds true in a variety of
real-world systems where flows are bursty and may change the arrival rate due
to certain reasons, e.g., the time of a day or a week, season, weather conditions,
etc. When the real flow has a more or less essential positive correlation (the
lag-1 coefficient of correlation is more than 0.1), this assumption may result in
significant inaccuracies in evaluating the primary performance measures of an
actual queueing system and wrong managerial decisions.

A more adequate model of real flows, the so-called versatile arrival flow, was
offered by M. Neuts, see [19]. In [20], this flow was named by V. Ramaswami
as N flow. A detailed study of the N/G/1 queue is implemented there. In [21,
22], this flow was renamed by D. Lucantoni into the BMAP (Batch Markov
arrival process). The BMAP assumes that the orders may arrive in batches.
The Markov arrival process (MAP ) is the particular case of the BMAP in
which orders can arrive only one by one. Useful information about the BMAP
and MAP can be found in [21–27]. The challenge of fitting real-world flows by
the MAP is extensively discussed in the literature; see, for example, [28–30].

Queueing systems with the MAP flow of orders and service provisioning in
groups have been analysed, e.g., in articles by S. Chakravarthy and coauthors;
see, e.g., [1,2,16–18,31–41]. The papers by other authors on this topic are as
follows: [13,42–51].

It is worth noting that almost all these papers deal with single-server queueing
models. Queues with many servers, a group service, input buffers, and the MAP
were considered in [34,35], where systems with an infinite and a finite capacity
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of the buffer were considered, correspondingly, in [36], where the system similar
to [35] but with a varying number of servers is under study. In paper [37], a
two-server queue was considered. The distribution of a group service time is
assumed to be exponential. Recently, an essentially more generic multi-server
model with the PH distribution of group service times dependent on group size
was investigated in [52].

Besides the group service and MAP flow, one more essential distinguishing
feature of the queueing system considered here is the following assumption. The
arriving orders that met all servers busy and the buffer full were not lost but
made repeated attempts to enter the service later on. Queueing models that
account for the possibility of repeated attempts are called retrial queues. In
the literature, it is said that retrying orders stay in the orbit. In contrast to a
buffer, which usually has a definite physical meaning, e.g., some area in computer
memory, and the orders (requests, messages, packets, etc.) are temporarily stored
in this memory, the orbit is a virtual place.

The main difference between queueing systems with a buffer and an orbit is
the following. In systems with a buffer, the server permanently knows the state of
the buffer, and vice versa. The server, which completes the service, immediately
begins a new service if the buffer is not empty. The service time is usually not
dependent on the number of orders in a buffer. In systems with an orbit and
without a buffer, the server always remains non-busy during a certain time. This
time finishes with the arrival of a new (primary) order from outside or by the
retrial of one of the orders staying in the orbit. The likelihood that the idle
time will be terminated by the retrial is, in general, dependent on the current
number of orders in the orbit. As a result, the stochastic process that describes
the system’s behavior is state-inhomogeneous. This explains why the analysis
of the systems with retrials is significantly more difficult than the study of the
respective queueing systems with buffers. This explains why the literature in
retrial queues is much poorer. We can mention only two monographs [53,54] in
English in this field.

Multi-server queues of BMAP/PH/N type with orders retrial and individ-
ual service were investigated, e.g., in [55–60]. It was assumed in these papers
that the total order retrial rate depends on the number of orbiting orders. This
assumption allows us to consider the systems with an even more general, than the
classical, retrial strategy. The classical strategy assumes that each order resid-
ing in the orbit generates retrials with a constant rate, say, α independently of
other orders. Hence, if the current orbiting order number is, say, i, then the total
retrial rate is equal to iα.

As far as we know, the retrial queues with many servers and group service of
the orders were considered only in papers [17,38]. In both of these papers, it was
assumed that the retrial rate is permanent, irrespective to the number of orbiting
orders. Such a suggestion essentially reduces the complexity of the system’s
analysis. However, it is not realistic in many real-world systems where the orders
make the retrials independently of each other. The model under consideration in
this study is the first in the literature of a multi-server retrial queue with group
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servicing of orders and a total retrial rate depending on the number of orders
in the orbit. Additional advantages of this model compared to those existing in
the literature are: (i) we suppose a phase-type distribution of a group processing
time that is essentially more general than the exponential distribution in the
vast majority of publications; (ii) we allow dependence of a group service time
on the size of a group; and (iii) we suppose that the orders staying in the buffer
and in the orbit have a limited impatience time and can renege from the system
without service receiving. It is critical to take order impatience into account
when modeling real-world systems, see [46,61]. But this complicates the analysis
of a system.

The following is the structure of the results presentation. In Sect. 2, a math-
ematical model is formulated. Section 3 introduces a multidimensional Markov
process that describes the system’s behavior. Its generator is derived there. Fur-
ther investigation of the model, including the proof of the ergodicity conditions
of this process in cases when the orders are patient and impatient during the stay
in the orbit, calculation of the stationary distribution and the system’s major
performance metrics, illustration of the feasibility of the presented results, and
impact of the capacity of the buffer and the minimal size of a group on the
performance characteristics of the system, is presented in [62].

2 Mathematical Model

We consider a queueing system having N identical servers and a finite input
buffer of size K. The scheme of its system operation is depicted in Fig. 1.

Fig. 1. The scheme of the system operation

Orders arrival is defined by the MAP . This arrival process is determined
by the continuous-time Markov chain νt, t ≥ 0, having a finite state space
{1, 2, ...,W} and an irreducible generator denoted by D(1). This generator is
represented as the sum of the non-negative matrix D1 and matrix D0. The
entries of the matrix D1 determine the intensities of transitions of the chain νt
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that are accompanied by the arrival of an order. The intensity of the correspond-
ing transition of the chain νt without the arrival of an order is determined by
the non-diagonal elements of the matrix D0, and the intensity of the process νt
exit from the corresponding state is determined by the modules of the negative
diagonal elements.

The average order rate λ is calculated as λ = θD1e where θ is an invariant
probability row vector of the Markov chain νt. This vector is found from the
system of the linear algebraic equations θD(1) = 0, θe = 1. Here, 0 is a row
vector of acceptable size made up of zeros, and e is a column vector of proper
size made up of ones.

Any of the N servers may provide service to a group of orders consisting of
at least k1 orders. Thus, the parameter k1, 1 ≤ k1 ≤ K, determines the minimal
size of the group to which service can be provided. The maximal size of the
group taken for service coincides with the buffer capacity K.

If the number of orders in the buffer is less than or equal to k1 − 2 when the
order arrives, the incoming order is buffered and awaiting service. If the number
of orders in the buffer is k1 − 1 and a server is available, the complete group of
size k1 is selected for servicing. If all servers are busy, the order is added to the
buffer if it is not already full.

If the buffer is full, the order is placed in a virtual place called orbit. The
capacity of the orbit is infinite. An order residing in the orbit (orbiting order)
repeats attempts to enter the buffer, regardless of other orders in the orbit, at
random time intervals. If at an arbitrary moment the number of orbiting orders
is i, i > 0, then the inter-retrial time from the orbit is exponential with the rate
αi = iα, i ≥ 0, where α is an individual retrial rate of an order. Note that all the
presented results are extendable to a more general case when the dependence
of αi on i is arbitrary with the limiting condition lim

i→∞
αi = ∞. An attempt is

considered successful if it finds a free space in the buffer. The retrying order
immediately moves from the orbit to the buffer.

If at the end of a group servicing by some server the number of orders in the
buffer is not less than k1, then all orders from the buffer are taken for servicing
by this server immediately.

We suggest that the group service time has a phase-type (PH) distribution,
specified by a Markov chain mt, t ≥ 0, with the set {1, 2, . . . ,M} of the transient
states and an absorbing state M + 1. The irreducible representation of the PH
distribution of service of a group consisting of k orders is the pair of a stochastic
row vector and sub-generator (βk, S), k = k1,K. The average service time for
a size k group is b

(k)
1 = βk(−S)−1e. It is worth noting that by assuming that

the starting probability vector of service time relies on the size of the group, we
account for the service process’s dependency on the size of the group.

The orders staying in the buffer are impatient and can renege from the system
without service. Each order reneges after a time interval length of which has the
exponential distribution with the parameter γ ≥ 0. Orders staying in the orbit
are also impatient and leave the system without service after an interval that
has the exponential distribution with the parameter ψ, ψ ≥ 0.
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3 The Markov Process Describing Behavior of the System
and Its Generator

The state of the considered system at an arbitrary time moment t, t ≥ 0, is
completely defined if the states of the following processes are known: (i) the
number it of orders in the orbit, it ≥ 0; (ii) the number kt of orders in the
buffer, kt = 0,K; (iii) the number nt of busy servers, nt = 0, N ; (iv) the state
of the underlying process νt of the MAP , νt = 1,W ; (v) the number m

(l)
t of

servers on the l-th phase of service, m
(l)
t = 0, nt, l = 1,M,

M∑

l=1

m
(l)
t = nt.

Thus, analysis of the considered queueing system reduces to consideration of
the M + 4-dimensional is described Markov chain

ξt = {it, kt, nt, νt, m
(1)
t , . . . , m

(M)
t }, t ≥ 0.

Evidently, this chain is a regular and irreducible.
Let us renumerate the states of the Markov chain ξt in the component’s

(it, kt, nt, νt) direct lexicographical order and the components (m(1)
t , . . . , m

(M)
t )

reverse lexicographical order. We refer to the set of states of the Markov chain
having the value i of the first component as level i, i ≥ 0. The set of states of
the Markov chain having the values (i, k) of the first and second components is
called macrostate (i, k), i ≥ 0, k = 0,K.

Theorem 1. The generator Q of the Markov chain ξt, t ≥ 0, has the block
tridiagonal structure shown below:

Q =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

Q0,0 Q0,1 O O O . . .
Q1,0 Q1,1 Q1,2 O O . . .
O Q2,1 Q2,2 Q2,3 O . . .
O O Q3,2 Q3,3 Q3,4 . . .
...

...
...

...
...

. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎠

where the non-zero matrices Qi,j , |i − j| ≤ 1, combined by the transition inten-
sities from level i to level j are specified as follows:
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1. the diagonal blocks Qi,i, i ≥ 0, have the form Qi,i = (Qi,i)k,k′ , k, k′ = 0,K,
where the non-zero blocks (Qi,i)k,k′ are given as

(Qi,i)k,k = diag{D0,D0 ⊕ (An + Δn), n = 1, N}
−(kγ + (α + ψ)i)I

W
N∑

n=0
Tn

+ diag−{IW ⊗ Ln, n = 1, N}

+δk1,1diag+{D1 ⊗ Pn(β1), n = 0, N − 1}, k = 0, k1 − 1,
(Qi,i)k,k = D0 ⊕ (AN + ΔN )

−(kγ + (α + ψ)i)IWTN
+ δk,KαiIWTN

, k = k1,K,

(Qi,i)k,k+1 = diag{D1 ⊗ ITn
, n = 0, N}, k = 0, k1 − 2,

(Qi,i)k1−1,k1 =

⎛

⎝
O

W
N−1∑

n=0
Tn×WTN

⊗ITN

⎞

⎠ ,

(Qi,i)k,k+1 = D1 ⊗ ITN
, k = k1,K − 1,

(Qi,i)k,k−1 = kγI
W

N∑

n=0
Tn

, k = 1, k1 − 1, k1 �= 2,

(Qi,i)1,0 =
(

O
WTN×W

N−1∑

n=0
Tn

γIWTN
+ IW ⊗ LNPN−1(β1)

)

, if k1 = 1,

(Qi,i)1,0 = γI
W

N∑

n=0
Tn

+ diag+{D1 ⊗ Pn(β2), n = 0, N − 1}, if k1 = 2,

(Qi,i)k1,k1−1 = k1γ

(
O

WTN×W
N−1∑

n=0
Tn

IWTN

)

, k1 �= 1,

(Qi,i)k,k−1 = kγIWTN
, k = k1 + 1,K,

(Qi,i)k1−1,0 = diag+{D1 ⊗ Pn(βk1
), n = 0, N − 1}, k1 �= 1,

(Qi,i)k,0 =
(

O
WTN×W

N−1∑

n=0
Tn

IW ⊗ LNPN−1(βk)
)

,

k = k1,K, if k1 �= 1, and k = k1 + 1,K, if k1 = 1;
(1)

2. the updiagonal blocks Qi,i+1, i ≥ 0, have the form:

Qi,i+1 =
(

OWT̄×WT̄ OWT̄×WTN

WTN × WT̄ D1 ⊗ ITN

)

; (2)

3. the subdiagonal blocks Qi,i−1, i ≥ 1, have the form Qi,i−1 =
(Qi,i−1)k,k′ , k, k′ = 0,K, where the non-zero blocks (Qi,i−1)k,k′ are given as

(Qi,i−1)k,k = ψiI
W

N∑

n=0
Tn

, k = 0, k1 − 1,

(Qi,i−1)k,k = ψiIWTN
, k = k1,K,

(Qi,i−1)k,k+1 = αiI
W

N∑

n=0
Tn

, k = 0, k1 − 2,

(Qi,i−1)k1−1,0 = αidiag+{IW ⊗ Pn(βk1
), n = 0, N − 1},

(Qi,i−1)k1−1,k1 = αi

⎛

⎝
O

W
N−1∑

n=0
Tn×WTN

WTN

⎞

⎠ ,

(Qi,i−1)k,k+1 = αiIWTN
, k = k1,K − 1.

(3)
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Here the following denotations are used:
the symbols ⊗ and ⊕ stand for the Kronecker product and sum of matrices,

respectively; see, for example, [64];
I represents the identity matrix, and O represents the zero matrix, whose

dimension is provided by a subscript if appropriate;

δi,j is the Kronecker’s symbol, i.e., δi,j =
{

1, i = j;
0, i �= j.

diag{d1, d2, . . . , dn}, diag+{d1, d2, . . . , dn}, and diag−{d1, d2, . . . , dn} are
the diagonal matrix, updiagonal matrix, and subdiagonal matrix with the diago-
nal, updiagonal, and subdiagonal elements d1, d2, . . . , dn, respectively;

mt = {m
(1)
t , . . . ,m

(M)
t };

the numbers Tn that are given by the formula

Tn =
(

n + M − 1
n

)

=
(n + M − 1)!
n!(M − 1)!

, n = 1, N, T0 = 1,

specify the cardinality of the state space of the process mt when n servers are
busy;

T̄ = k1
N∑

n=0
Tn + (K − k1 − 1)TN .

We also use the following matrices characterizing various transitions of the
vector random process mt :

The matrix Ln represents the process transition intensities mt at the time
when service in one of n busy servers is finished, n = 1, N ;

The matrix An comprises the transition intensities of the process mt at the
time of the change in service phase in one of n busy servers, n = 1, N ;

The matrix Pn(βk) specifies the process mt transition probabilities at the
point when the group of k orders begins service in the presence of n busy servers,
n = 0, N − 1;

The diagonal entries of the diagonal matrix Δn define the rates of the depar-
ture of the process mt from the corresponding states. The matrices Δn are defined
by the formula

Δn = −diag{Ane + Lne}, n = 1, N.

The detailed description of the matrices Pn(βk) n = 0, N − 1, k = k1,K,
Ln, An, Δn, n = 1, N, and the recursive algorithms for their computation are
given in [65].

Proof. The theorem is proved by studying the intensities of all conceivable
transitions of the Markov chain ξt during an infinitesimal time period. Since
during such an period orders enter and leave the orbit one at a time, the matrices
Qi,j , i, j ≥ 0, are zero matrices for all i, j such that |i − j| > 1. The blocks
Qi,j , |i − j| ≤ 1, are built from the matrices (Qi,j)k,k′ containing the transition
rates of the Markov chain ξt from the macrostate (i, k) to the macrostate (j, k′),
k, k′ = 0,K.

Let us explain the form of all these blocks.
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1. The matrices Qi,i, i ≥ 0, have the non-zero diagonal blocks (Qi,i)k,k, k =
0,K, subdiagonal blocks (Qi,i)k,k−1, k = 1,K, and updiagonal blocks
(Qi,i)k,k+1, k = 0,K − 1, and also the blocks (Qi,i)k,0, k = k1,K. This is
explained by the fact that during an interval of infinitesimal length, orders can
arrive to the buffer one-by-one, renege the system one at a time due to impa-
tience, and move to service in groups of size k, where k = k1,K.

The diagonal elements of the diagonal blocks (Qi,i)k,k, k = 0,K, of the Qi,i

matrices are negative. Their modules determine the intensity of departure of the
Markov chain ξt from the respective state. The Markov chain ξt can exit from
its current state in the following cases:

a) The underlying process νt of order arrival leaves the current state. The cor-
responding transition intensities are determined up to sign by the diagonal
entries of the matrix D0 ⊗ I N∑

n=0
Tn

for k = 0, k1 − 1, and the matrix D0 ⊗ ITN

for k = k1,K.
b) One of the busy servers’ service processes changes its phase. In this case,

the transition rates are determined by the diagonal entries of the matrix
diag{OW×W , IW ⊗ Δn, n = 1, N}, if k = 0, k1 − 1, and matrix IW ⊗ ΔN , if
k = k1,K.

c) An order from the buffer reneges from the system. The corresponding rates
are given by the matrices kγI

W
N∑

n=0
Tn

, k = 0, k1 − 1, and kγIWTN
, k = k1,K.

d) An order from the orbit makes a successful attempt to enter the buffer. The
matrices αiI

W
N∑

n=0
Tn

, k = 0, k1 − 1, and αiIWTN
, k = k1,K − 1, set the cor-

responding intensities. Note that if the buffer is full, the order cannot make
a successful attempt, which explains the summand δk,KαiIWTN

in the block
specified by formula (1).

f) The order leaves orbit due to impatience. The matrices ψiI
W

N∑

n=0
Tn

, k =

0, k1 − 1, and ψiIWTN
, k = k1,K, set the corresponding intensities.

The non-diagonal entries of the matrices (Qi,i)k,k, k = 0,K, of the matrices
Qi,i determine the transition rates of the Markov chain ξt without changing the
values of the components i and k. These transitions are defined by:

a) the non-diagonal entries of the matrix D0 ⊗ I N∑

n=0
Tn

, if k = 0, k1 − 1, or D0 ⊗

ITN
, if k = k1,K when the underlying process νt makes a jump without an

order generation;
b) the entries of the matrix diag−{IW ⊗ Ln, n = 1, N} when the process mt

makes a transition implying the finish of the service, but a new service does
not begin, since the number k of the orders in the buffer is such that k < k1;

c) the entries of the matrix diag{OW×W , IW ⊗ An, n = 1, N}, if k = 0, k1 − 1,
and matrix IW ⊗ AN , if k = k1,K, when the process mt makes a jump that
does not lead to service termination;
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d) if k1 = 1 and there is a free server, the entries of the matrix diag+{D1 ⊗
Pn(β1), n = 0, N − 1} define the transition rates when a new order arrives
while the buffer is empty. In this case, this incoming order is sent for service.

Next, we will comment the expressions for the blocks (Qi,i)k,k+1, k =
0,K − 1, which contain the rates of Markov chain ξt transitions from the
macrostate (i, k) to the macrostate (i, k +1). Obviously, an increase in the num-
ber of orders in the buffer by one may occur when a new order arrives in the
system. The transition rates of the process νt at the moment of an order arrival
are determined by the entries of the matrix D1; therefore, the blocks (Qi,i)k,k+1

are given by: the matrix diag{D1 ⊗ ITn
, n = 0, N}, when k = 0, k1 − 2, the

matrix

⎛

⎝
O

W
N−1∑

n=0
Tn×WTN

D1 ⊗ ITN

⎞

⎠ when k = k1 − 1 (in this case the order adds to the

buffer only is all servers are busy) and the matrix D1 ⊗ ITN
for all other k.

The blocks (Qi,i)k,k−1, k = 1,K, contain the transition rates of the Markov
chain ξt occurring when the number of orders in buffer decreases by one. This
can happen only when some order reneges due to impatience.

Thus, the matrices (Qi,i)k,k−1 are given by the matrix kγI
W

N∑

n=0
Tn

, if k =

1, k1 − 1, k1 �= 2, the matrix k1γ

(
O

WTN×W
N−1∑

n=0
Tn

IWTN

)

for k = k1, k1 �= 1,

and the matrix kγIWTN
, if k = k1 + 1,K.

Let us explain in more detail the form of blocks (Qi,i)1,0 when k1 = 1
and k1 = 2. If k1 = 1, then a released server always starts service if the
buffer is not empty. The reduction of the number of orders in the buffer occurs
if the service is finished or an order reneges. The rates of occurring these

events are specified by the matrices
(

O
WTN×W

N−1∑

n=0
Tn

IW ⊗ LNPN−1(β1)
)

and
(

O
WTN×W

N−1∑

n=0
Tn

γIWTN

)

respectively.

If k1 = 2, then the loss of an order due to impatience can imply the decrease
in the number of orders in the buffer from one to zero. The rates of this event
occurrence are given by the matrix γI

W
N∑

n=0
Tn

. Also, the scenario is possible when

there is an idle server and one order stays in the buffer, a new order arrives, and
two orders move to service. The corresponding rates are given by the components
of the matrix diag+{D1 ⊗ Pn(β2), n = 0, N − 1}.

Next, let’s comment the expressions for the blocks (Qi,i)k,0, specifying the
transition rates of the process ξt from the macrostate (i, k) to the macrostate
(i, 0), which occurs when k orders are accepted for simultaneous service. The
corresponding rates are given by the entries of the matrix

(
O

WTN×W
N−1∑

n=0
Tn

IW ⊗ LNPN−1(βk)
)
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for k = k1,K, if k1 �= 1, and for k = k1 + 1,K, if k1 = 1. Also, we need
to specially take into account the scenario when there is an idle server and
k1−1, k1 �= 1, orders are already in the buffer at the moment a new order arrives.
In this case, a group of k1 orders starts receiving service. The intensities of this
event occurrence are given by the entries of the matrix diag+{D1⊗Pn(βk1

), n =
0, N − 1}.

As a result of the presented considerations, we obtain the expressions for the
blocks Qi,i, i ≥ 0, presented above.

2. The updiagonal blocks Qi,i+1, i ≥ 0, contain the transition rates of the
Markov chain ξt occurring when the number of orbiting orders increases. This
can only occur when a new order enters the system when the buffer is full.
Therefore, these blocks are specified by a matrix of form (2).

3. The subdiagonal blocks Qi,i−1, i ≥ 1, contain the rates of the Markov
chain ξt transition when the number of orders in the orbit decreases by one.
This can occur when an order from the orbit makes a successful attempt
to enter the buffer, so Qi,i−1 blocks have the non-zero updiagonal blocks
(Qi,i−1)k,k+1, k = 0,K − 1, which are specified by the matrix αiI

W
N∑

n=0
Tn

, if

k = 0, k1 − 2, and matrix αi

⎛

⎝
O

W
N−1∑

n=0
Tn×WTN

IWTN

⎞

⎠ for k = k1 − 1 and matrix

αiIWTN
, if k = k1,K − 1. The blocks Qi,i−1 also have a non-zero block

(Qi,i−1)k1−1,0, given by formula (3), which specifies the transition intensity of
the Markov chain in the case when an order from the orbit enters the buffer when
it already contains k1 − 1, and then a group of k1 goes for service. Addition-
ally, a decrease in the number of orders in the orbit may occur due to an order
leaving the orbit due to impatience. This departure does not in any way affect
the number of occupied devices, as well as the process of arrival and service; in
view of this, the intensities of the corresponding transitions are specified by the
diagonal blocks (Qi,i−1)k,k, which have the form (Qi,i−1)k,k = ψiI

W
N∑

n=0
Tn

in the

case of k < k1 − 1 and (Qi,i−1)k,k = ψiIWTN
otherwise.

The theorem has been proven.

4 Conclusion

In this paper, we implemented a detailed description of the multi-server retrial
queue with the MAP arrival process, finite buffer, group service of orders, PH
distribution of the group service time with the irreducible representation depend-
ing on the size of a group, dependence of the retrial rate on the number of orbiting
orders, and orders impatience during the stay in the orbit and in the buffer. The
dynamics of the system is determined by the suitable constructed multidimen-
sional Markov chain. The explicit form of the block-structured generator of this
Markov chain is obtained. The presented results give an opportunity to imple-
ment an analysis of the steady-state behavior of the constructed Markov chain
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and queueing system. Detailed analysis of this queueing system is presented in
[62].
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Abstract. In this paper, we is consider a multi-server queueing system
with a finite buffer and customer (order) retrials. Arrival flow is defined
by the Markov Arrival Process. Service is provided to groups of orders.
The size of the group is bounded from below by a fixed threshold. The
service time of a group has a phase-type distribution with irreducible rep-
resentation depending on the size of a group. The linear dependence of
the total retrial rate on the number of retrying orders is assumed. Retry-
ing and waiting orders are assumed impatient. The behavior of the sys-
tem is described by the multidimensional continuous-time Markov chain,
including, as the components, the number of retrying orders, the number
of orders waiting in the buffer, the number of busy servers, the state of
the underlying process of arrivals, and the auxiliary multidimensional
Markov chain, which defines the number of servers providing service at
all possible phases of service. Ergodicity conditions of the analysed chain
in cases of patient and impatient orders in the orbit are obtained. Algo-
rithms for the computation of the stationary distribution and the main
performance measures of the system are briefly outlined. The feasibil-
ity of the presented algorithms is confirmed by presenting the numerical
results. The impact of the buffer capacity and the minimum group size
on the main performance characteristics of the system is highlighted. An
example of solving an optimization problem is presented.

Keywords: Multi-server retrial queue · group service · MAP ·
phase-type distribution · stationary distribution · ergodicity

1 Introduction

In a recent paper [1], a novel multi-server queueing system with group service
and a finite buffer is considered. The arrival flow is defined by the Markov Arrival
Process (MAP ). The size of a serviced group is random and is bounded from
below and above by the fixed thresholds. The service time of the group has a
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phase-type distribution with parameters depending on the group size. Waiting
orders are impatient. Service of a group having a size below the fixed low thresh-
old is possible when some order intends to abandon service and depart from the
system.

In [2], a more complicated model that assumes that in the case of a full
buffer the orders are not lost but will make repeated attempts is formulated and
analyzed. A multidimensional continuous-time Markov chain (MC) including the
number of retrying orders, the number of customers in the buffer, the number of
busy servers, the state of the underlying process of arrivals, and multidimensional
MC defining the number of servers providing service at all possible phases of
service is constructed. The infinitesimal generator of the chain is obtained, and
the explicit form of the blocks of the generator is presented. Here, we implement
the stationary analysis of this MC.

The structure of the results presentation is as follows. In Sect. 2, the math-
ematical model is very briefly formulated, and the necessary notation is given.
Ergodicity conditions for the multidimensional Markov process describing the
behavior of the system are derived in Sect. 3 for the cases of the patient and
impatient orders in the orbit. Problems of computation of the stationary dis-
tribution of the process and the main performance measures of the system are
discussed in Sect. 4. An illustration of the feasibility of the presented results and
the impact of buffer capacity and the minimum group size is presented in Sect. 5.
A small example of the application of the obtained results for optimization of the
operation of the system is presented there. Section 6 contains some concluding
remarks.

2 Brief Description of Mathematical Model and Notation

We consider a multi-server queueing system with N independent identical servers
and a finite buffer of size K.

Orders enter the system in the MAP flow defined by an irreducible MC with
continuous time νt, t ≥ 0, having a finite state space {1, 2, ...,W}, and matrices
D0 and D1. The matrix D(1) = D0 + D1 is the generator of the MC νt.

The average order rate λ is given by λ = θD1e where the row vector θ is the
only solution to the system θD(1) = 0, θe = 1.

Each of the N servers can serve a group of orders consisting of at least k1
orders. Thus, the parameter k1, 1 ≤ k1 ≤ K, determines the minimum size of
the group that can be taken for service. If an arriving order finds less than k1−1,
orders in the buffer, it waits until the accumulation of k1 orders in the buffer.
When this happens, all orders from the buffer start service as one group by one
available server. If no server is available, the order joins a buffer and waits for
picking up from the buffer when some server will become available. The server,
which finishes the service of a group, immediately starts the service of all orders
from the buffer if the number of these orders is not less than k1.

If the buffer is full at an order arrival epoch, the order goes to an orbit
of unlimited size, from where it repeats attempts to enter the buffer. If at an
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arbitrary moment the number of orders in the orbit is i, i > 0, then the total
intensity of retrials is equal to αi, α > 0. An attempt is successful if there is at
least one free space in the buffer.

The service time of the group has a phase type distribution (PH), specified
by a MC mt, t ≥ 0, with the state space {1, 2, . . . ,M} of the transient states and
a unique absorbing state M +1. The irreducible representation of MC mt, t ≥ 0,
is given as (βk, S), k = k1,K, where k is the number of orders taken for service.

Orders staying in the buffer and in the orbit may become impatient and
leave the system without service after a random interval having an exponential
distribution with the rate γ ≥ 0 or ψ, ψ ≥ 0, correspondingly.

In [2], behavior of the system is described by a continuous-time, regular
irreducible MC

ξt = {it, kt, nt, νt, m
(1)
t , . . . m

(M)
t }, t ≥ 0,

where it, it ≥ 0, is the number of orders in the orbit, kt, kt = 0,K, is the
number of orders in the buffer, nt, nt = 0, N, is the number of busy servers,
νt, νt = 1,W , is the state of the underlying process MAP, m

(l)
t is the number

of servers on the l-th service phase, m
(l)
t = 0, nt, l = 1,M,

M∑

l=1

m
(l)
t = nt, at time

t, t ≥ 0.
The states of the MC ξt are enumerated in the direct lexicographical order

of the components (it, kt, nt, νt) and reverse lexicographical order of the
components (m(1)

t , . . . , m
(M)
t ). The set of states of the chain having the val-

ues (i, k) of the first and second components of the MC is called macrostate
(i, k), i ≥ 0, k = 0,K. The set of macrostates (i, k) for all k = 0,K is called the
level i of MC, i ≥ 0.

The generator Q of the MC ξt consists of the matrices Qi,j , i, j ≥ 0, con-
taining the intensities of transitions from level i to level j. In [2], it is shown that
the generator Q has the block tridiagonal structure, and explicit expressions for
all blocks Qi,j , i, j ≥ 0, |i − j| ≤ 1, are presented.

In particular, these expressions include the following matrices:
The matrix Ln defines the transition intensities of the vector random process

mt = {m
(1)
t , . . . ,m

(M)
t }

at the moment when service in one of n busy servers is completed, n = 1, N.
The matrix An contains the transition intensities of the process mt at the

moment of the change in the phase of service in one of n busy servers, n = 1, N.
The matrix Pn(βi) defines the transition probabilities of the process mt at

the moment when the group of i orders starts service in the presence of n busy
servers, n = 0, N − 1.

The diagonal elements of the diagonal matrix Δn determine the rates of
the exit of the process mt from the corresponding states. The matrices Δn are
computed by the formula

Δn = −diag{Ane + Lne}.
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The detailed description of the matrices Pn(βk) n = 0, N − 1, k = k1,K,
Ln, An, Δ(n), n = 1, N, and algorithms for their calculation are presented in [3].

The numbers Tn specify the dimension of the state space of the process mt

when n servers are busy. They are calculated as

Tn =
(n + M − 1)!
n!(M − 1)!

, n = 1, N.

For convenience, we set T0 = 1.
Let us briefly present the results of the analysis of the steady-state behavior

of the MC with the generator Q.

3 Ergodicity Condition

It is easy to see that this MC belongs to the class of level-dependent quasi-birth-
and-death processes (LDQBDP ). Therefore, the famous results by M. Neuts,
see [4], obtained for level-independent quasi-birth-and-death processes are not
applicable here.

The analysis of the steady-state behavior of the MC includes two mandatory
steps. Step 1 consists of the derivation of conditions for the existence of the
stationary distribution of the chain. Step 2 consists of the computation of this
distribution under the assumption that it exists.

In the majority of existing works, computation of the stationary distribution
is implemented via its approximation by the solution of a finite system of linear
algebraic equations, which is obtained by means of truncation of the infinite
system of linear algebraic equations for the stationary probabilities of the MC
which has an infinite state space. This truncation may be rough or soft. The soft
truncation is based on the assumption that after some level the considered MC
behaves as a LDQBDP . This allows to use the results by M. Neuts in [4] to
compute the stationary probabilities of the MC. Usually, researchers who use
the soft truncation refer, for justification, to the paper [5].

Relating to step 1, the situation is more difficult. Some researchers derive an
ergodicity condition for the softly truncated MC and consider it as the ergod-
icity condition for the original MC. But this is completely wrong because the
ergodicity condition is defined by the behavior of MCs at high levels. However,
this behavior is completely different for the original level-dependent quasi-birth-
and-death process and for the truncated MC.

Some other researchers try to refer to the results in [6] for level-dependent
quasi-birth-and-death processes. However, the ergodicity condition given in [6] is
non-constructive. This condition is given in terms of some matrices, say Fk, k ≥
0, which are computed from an infinite system of recursive equations. But a
solution exists (even in the simplest case of the level independent process) only
if the chain is ergodic. While to check the ergodicity, these matrices must be
computed first.

In such a situation, we will use the fact that the constructed MC ξt belongs
to the class of asymptotically quasi-Toeplitz MCs (AQTMCs).
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According to the definition given in [7], the MC having a generator Q with
blocks Qi,j belongs to the class of AQTMC if the following conditions are sat-
isfied: there exist the limits

Y0 = lim
i→∞

R−1
i Qi,i−1, Y1 = lim

i→∞
R−1

i Qi,i + I, Y2 = lim
i→∞

R−1
i Qi,i+1,

and the matrix
2∑

l=0

Yl is stochastic. Here, Ri is a diagonal matrix with positive

diagonal elements defined as the moduli of the corresponding diagonal elements
of matrix Qi,i.

Let us show that these limits for the considered MC ξt indeed exist and
present their explicit form.

It can be verified that in our case the matrix Ri has the form

Ri = diag{R
(k)
i , k = 0,K},

where the diagonal blocks R
(k)
i , k = 0,K, are given by formula

R
(k)
i =

⎧
⎪⎨

⎪⎩

diag{D̂0, D̂0 ⊕ Δn, n = 1, N} + (kγ + (α + ψ)i)I
W

N∑

n=0
Tn

, k = 0, k1 − 1;

D̂0 ⊕ ΔN + (kγ + (α + ψ)i)IWTN , k = k1, K − 1;

D̂0 ⊕ ΔN + (Kγ + ψi)IWTN , k = K.

Here D̂0 is a diagonal matrix whose diagonal elements are the diagonal elements
of matrix D0,

Let’s derive expressions for the limiting matrices Y0, Y1, and Y2. It is easy to
see that it is necessary to consider two cases. If the individual rate ψ of orders
departing from the orbit due to impatience is positive, then it is easy to verify
that the limiting matrices have the form Y0 = I, and Y1 = Y2 = O.

The case ψ = 0 is more complicated. In this case, it can be verified that the
matrices Y0, Y1, and Y2 exist and have the following form:

1) the matrix Y0 contains the non-zero blocks (Y0)k,k′ , k, k′ = 0,K, which
are given by

(Y0)k,k+1 = I
W

N∑

n=0
Tn

, k = 0, k1 − 2,

(Y0)k1−1,0 = diag+{IW ⊗ Pn(βk1
), n = 0, N − 1},

(Y0)k1−1,k1 =

⎛

⎝
O

W
N−1∑

n=0
Tn×WTN

IWTN

⎞

⎠ ,

(Y0)k,k+1 = IWTN
, k = k1,K − 1.

2) the matrix Y1 is defined by the formula

Y1 =

⎛

⎜
⎜
⎜
⎝

O O . . . O O O
...

...
. . .

...
...

...
O O . . . O O O

R−1Φ O . . . O R−1KγIWTN
R−1[D0 ⊕ (AN + ΔN ) − KγIWTN

] + I

⎞

⎟
⎟
⎟
⎠
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where
R = D̂0 ⊕ ΔN + KγIWTN

,

Φ =
(

O
WTN×W

N−1∑

n=0
Tn

IW ⊗ LNPN−1(βK)
)

.

3) the matrix Y2 has the form:

Y2 =
(

OWT̄×WT̄ OWT̄×WTN

OWTN×WT̄ R−1(D1 ⊗ ITN
)

)

.

It is easy to verify that the sum of matrices
2∑

l=0

Yl is a stochastic matrix.

Then, in accordance with [7], the MC ξt, t ≥ 0, is AQTMC, and the sufficient
ergodicity condition for it can be written in the following form: the MC ξt, t ≥ 0,
is ergodic if the following inequality holds true

yY0e > yY2e (4)

where the vector y is the unique solution to the following system

y(Y0 + Y1 + Y2) = y, ye = 1. (5)

Note that the condition
yY0e < yY2e,

is sufficient for the AQTMC to be non-ergodic.
In the case of ψ > 0, it is easy to verify that inequality (4) takes the form

1 > 0, which means that the MC under study is ergodic for any value of the
system parameters.

Next, consider the case ψ = 0.
Let us represent the vector y in block form as (y0,y1, . . . ,yK), and, sub-

stituting it into system (5), we obtain the following system of equations for
unknown subvectors yk, k = 0,K :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yk1−1diag+{IW ⊗ Pn(βk1
), n = 0, N − 1} + yKR−1Φ = y0,

y0 = y1 = · · · = yk1−1,

yk1−1

⎛

⎝
O

W
N−1∑

n=0
Tn×WTN

IWTN

⎞

⎠ = yk1 ,

yk1 = yk1+1 = · · · = yK−2,
yK−2 + yKR−1KγIWTN

= yK−1,
yK−1 + yK(R−1[D(1) ⊗ ITN

+ IW ⊗ (AN + ΔN ) − KγIWTN
] + I) = yK .

(6)
Taking into account that y0 = yk1−1, and using the explicit form of the

matrices appearing in the first equation of system (6), this equation can be
rewritten as

yKR−1

(
O

WTN×W
N−1∑

n=0
Tn

IW ⊗ LNPN−1(βK)
)

= yk1−1(I − diag+{IW ⊗ Pn(βk1
), n = 0, N − 1}),
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whence it follows that the vector yk1−1, and therefore all vectors yk, k =
0, k1 − 2, have the form

yk = (0W ,0WT1 ,0WT2 , . . . ,0WTN−1 ,yKR−1(IW⊗LNPN−1(βK))), k = 0, k1 − 1,

or
yk = (0

W
N−1∑

n=0
Tn

,yKR−1(IW ⊗ LNPN−1(βK))), k = 0, k1 − 1.

Consequently, from system (6), we obtain that

yk = yKR−1(IW ⊗ LNPN−1(βK)), k = k1,K − 2.

By substituting the expression obtained above for the vector yK−2 into the
penultimate equation of system (6), we obtain equation:

yK−1 = yKR−1(IW ⊗ LNPN−1(βK) + KγIWTN
). (7)

Next, we substitute the vector yK−1 of form (7) into the last equation of
system (6):

yKR−1(D(1) ⊗ ITN
+ IW ⊗ LNPN−1(βK) + IW ⊗ (AN + ΔN )) = 0.

By direct substitution, we can verify that the vector yKR−1 can be repre-
sented in the form

yKR−1 = c(θ ⊗ ϕ)

where θ is the vector of the stationary probabilities of the MC νt, the vector ϕ
is the unique solution to the following system of linear algebraic equations

{
ϕ(LNPN−1(βK) + AN + ΔN ) = 0,
ϕe = 1,

(8)

and c is some non-zero constant.
Finally, the solution to system (6) can be written as:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

yk = (0
W

N−1∑

n=0
Tn

, c(θ ⊗ ϕ)(IW ⊗ LNPN−1(βK))), k = 0, k1 − 1.

yk = c(θ ⊗ ϕ)(IW ⊗ LNPN−1(βK)), k = k1,K − 2,
yK−1 = c(θ ⊗ ϕ)(IW ⊗ LNPN−1(βK) + KγIWTN

),
yKR−1 = c(θ ⊗ ϕ).

(9)

Substituting the vector y in block form into inequality (4), after some alge-
braic transformations, we obtain the following inequality:

K−1∑

k=0

yke > yKR−1(D1 ⊗ ITN
)e. (10)

Using (9), we rewrite inequality (10) as:

K(θ ⊗ ϕ)(IW ⊗ LNPN−1(βK) + KγIWTN
)e > (θ ⊗ ϕ)(D1 ⊗ ITN

)e.
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Taking into account that θD1e = λ, and the vectors θ and ϕ and matrix
PN−1(βK) are stochastic, we obtain the following inequality, equivalent to (4):

K[ϕLNe + γ] > λ. (11)

Let us formalize the obtained result in the form of a theorem.

Theorem 1. In the case of impatient orders staying in the orbit (ψ > 0), the
MC ξt, t ≥ 0, is ergodic for any system parameters.

In the absence of impatience of orders staying in the orbit (ψ = 0), the
sufficient condition for the ergodicity (existence of a stationary probability dis-
tribution) of the MC ξt, t ≥ 0, is the fulfillment of inequality (11) where the
vector ϕ is the only solution to the system of linear algebraic equations (8). The
fulfillment of inequality (11) with the opposite sign provides a sufficient condition
for the non-ergodicity of the chain under study.

Inequality (11) has the following probabilistic meaning: the MC ξt is ergodic
if the average arrival rate of orders entering the system is less than the average
rate of orders departing from the system under the condition that the system is
overloaded, that is, when the number of orders in the system is very large.

If the ergodicity condition (11) is fulfilled, then the following stationary prob-
abilities of the MC ξt exist:

π(i, k, n, ν,m(1), . . . ,m(M))
= lim

t→∞ P{it = i, kt = k, nt = n, νt = ν, m
(1)
t = m(1), . . . ,m

(M)
t = m(M)},

i ≥ 0, k = 0,K, n = 0, N, ν = 1,W , m(l) = 0, n, l = 1,M,
M∑

l=1

m(l) = n.

Let’s form the row vectors π(i, k), i ≥ 0, k = 0,K, of the stationary
probabilities of the states belonging to the macrostate (i, k), and the vectors
πi = (π(i, 0),π(i, 1), . . . ,π(i,K)) of the stationary probabilities of the states
belonging to the level i, i ≥ 0.

It is well known that the row vectors πi, i ≥ 0, satisfy the following system
of equations: {

(π0,π1, . . . ,πi, . . . )Q = 0,
(π0,π1, . . . ,πi, . . . )e = 1.

(12)

The difficulty of solving the infinite system (12) was briefly discussed above. It
can be solved using the numerically stable algorithms elaborated in [7–9]. The
algorithms from [7,8] can be used for AQTMC with a more general, upper-
Hessenberg, structure of the generator. The algorithm from [9] is oriented to the
case of the block tri-diagonal generator, which has MC ξt under study in this
paper. Therefore, this algorithm was used for the preparation of the numerical
illustrations presented below.
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4 Performance Measures

Having computed the probability vectors πi and π(i, k), i ≥ 0, k = 0,K, it is
possible to evaluate a variety of performance characteristics of the considered
queueing system. Expressions for computing some of them are as follows.

The average number of orders in the orbit is calculated using the formula

Lorbit =
∞∑

i=1

iπe.

The average number of orders in the buffer is calculated using the formula

Lbuffer =
∞∑

i=0

K∑

k=1

kπ(i, k)e.

The average number of busy servers is calculated by the formula

Nserv =
∞∑

i=0

(
k1−1∑

k=0

N∑

n=1

nπ(i, k, n)e +
K∑

k=k1

Nπ(i, k)e).

Here vectors π(i, k, n), n = 0, N, are defined by the partition

π(i, k) = (π(i, k, 0),π(i, k, 1), . . . ,π(i, k,N)).

The average intensity of the output flow of successfully served groups of
orders is calculated by the formula

μout =
∞∑

i=0

(
k1−1∑

k=0

N∑

n=1

π(i, k, n)(IW ⊗ Ln)e +
K∑

k=k1

π(i, k)(IW ⊗ LN )e).

The probability that an arriving order will find the buffer full and go into
orbit is found by the formula

Pto−orbit =
1
λ

∞∑

i=0

π(i,K)(D1 ⊗ ITN
)e.

The probability that an order will begin servicing immediately upon arrival
is calculated by the formula

Pto−serv =
1
λ

∞∑

i=0

N−1∑

n=0

π(i, k1 − 1, n)(D1 ⊗ ITn
)e.

The rate of orders leaving the buffer for service is calculated by the formula

μto−serv =
∞∑

i=0

[

(k1

(

iα
N−1∑

n=0
π(i, k1 − 1, n)e +

N−1∑

n=0
π(i, k1 − 1, n)(D1 ⊗ ITn

)e
)

+
K∑

k=k1

kπ(i, k)(IW ⊗ LN )e
]

.
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The loss probability of an order from the buffer due to impatience is calcu-
lated using the formula

P imp−loss−buffer =
γLbuffer

λ
.

The loss probability of an order from the orbit due to impatience is calculated
using the formula

P imp−loss−orbit =
ψLorbit

λ
.

The loss probability of an arbitrary order is calculated using the formula

P loss = P imp−loss−buffer + P imp−loss−orbit = 1 − μto−serv

λ
.

The average size of a group of orders taken for servicing is calculated by the
formula

Nbatch =
μto−serv

μout
.

The loss probability of an order from the buffer due to impatience while there
is a free server is calculated by the formula

P imp−loss
idle−server =

1
λ

∞∑

i=0

k1−1∑

k=1

kγ

N−1∑

n=0

π(i, k, n)e.

The loss probability of an order from the buffer due to impatience at a time
when all servers are busy is calculated by the formula

P imp−loss
all−busy−servers =

1
λ

∞∑

i=0

[
k1−1∑

k=1

kγπ(i, k,N)e +
K∑

k=k1

kγπ(i, k)e].

The probability that, at an arbitrary moment, there is at least one free server
in the system is found by the formula

Pidle−server =
∞∑

i=0

k1−1∑

k=0

N−1∑

n=0

π(i, k, n)e.

The probability that at an arbitrary moment there are orders in the buffer
while there is at least one free server is found by the formula

P customers
idle−server =

∞∑

i=0

k1−1∑

k=1

N−1∑

n=0

π(i, k, n)e.
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5 Numerical Examples

The goals of the examples are the demonstration of the feasibility of the presented
results and the illustration of the form of dependence of the main performance
measures of the system on the capacity K of the input buffer and the minimum
size of the serviced group. The knowledge of these dependencies is useful for
optimizing the values of K and k1 in possible applications of the model.

In this example, we consider a model with N = 5 servers. Orders arrive into
the system in the MAP that is defined by the matrices

D0 =
(−1.8 0

0 −0.6

)

, D1 =
(

1.74 0.06
0.012 0.588

)

.

The MAP has the average arrival rate λ = 0.8, the coefficient of correlation
of successive inter-arrival times ccor = 0.127928, and the coefficient of variation
cvar = 1.37037.

Let the individual retrial intensity α be equal to 0.2. The intensity of impa-
tience from the buffer is γ = 0.01, the intensity of impatience from the orbit is
ψ = 0.02.

The service time of groups is defined as follows. Let the mean service times
of groups consisting of k orders in the modeled real system be sk, k = 1,K.
Let us assume that s1 < s2 < · · · < sK . To build the PH distributions of
service times of the groups having such values of the mean service times, we
choose distributions with representations (βk, S), k = 1,K, of size two. The
sub-generator S will be fixed in the form:

S =
(− 1

s1
0

0 − 1
sK

)

while the vector βk is given as

βk = (fk, 1 − fk)

where
fk =

sK − sk
sK − s1

, k = 1,K.

In this numerical example, we assume that s1 = 20 and sk = s1+3(k−1), k =

2,K. Thus, the matrix S has the form S =
(− 1

20 0
0 − 1

137

)

.

Let us vary the buffer capacity K in the range from 2 to 40 and the parameter
k1 in the range from 1 to K with step 1.

Figures 1 and 2 illustrate the dependencies of the average number of orders
in the orbit Lorbit and the average number of orders in the buffer Lbuffer on the
parameters K and k1. It is natural that group service is reasonable when the
mean service time per order in the group is less than the mean service time of one
individual order. Our fixed choice of the parameters of the PH distributions of
service times accounts for these considerations. Thus, it is clear that if the value
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of k1 is small and service may be provided to small groups, then the advantages
of group service are not used to a proper extent. As a consequence, the average
number of orders in the orbit Lorbit is large for small k1 and quickly decreases
when k1 increases. The behaviour of Lbuffer is more complicated. From one
hand, a large value of k1 implies the better use of the advantages of a group
service and decreases the number of orders in the buffer. From the other hand, a
large value of k1 may cause the long waiting for an order in the buffer until the
group of the required size is accumulated when the servers are under-utilized.
This makes valuable the results of our computations to understand the influence
of k1 on the value of Lbuffer that can be different for the different loads of the
system.

Fig. 1. The dependence of the average
number of orders in the orbit Lorbit on
the parameters K and k1

Fig. 2. The dependence of the average
number of orders in the buffer Lbuffer

on the parameters K and k1

Figures 3 and 4 illustrate the dependencies of the probability Pto−serv that an
order will begin servicing immediately upon arrival and the probability Pto−orbit

that an arrival order will find the buffer full and go into the orbit on the param-
eters K and k1. The surface given in Fig. 4 strongly correlates with the form of
dependence given in Fig. 1 because the average number of orders in the orbit
strongly depends on the probability Pto−orbit that an arrival order will find the
buffer full and go into the orbit. Figure 3 is much more interesting. The proba-
bility Pto−serv that an order will begin servicing immediately upon arrival is one
of the most important characteristics of any retrial system. Figure 3 shows the
complicated non-monotone dependence of this probability on the parameters K
and k1. This confirms that the problem of the optimal choice of these parameters
is challenging, and the obtained results may be useful for its solution.

Figures 5 and 6 illustrate the dependencies of the probabilities
P imp−loss−buffer of an order loss from the buffer and P imp−loss−orbit of an order
loss from the orbit due to impatience on the parameters K and k1. These prob-
abilities are also very important from a practical point of view because they
reflect the probability of the loss of a possible profit of the system gained via
service provision. These probabilities are proportional to Lbuffer and Lorbit,
correspondingly.
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Fig. 3. The dependence of the proba-
bility Pto−serv that an order will begin
servicing immediately upon arrival on
the parameters K and k1

Fig. 4. The dependence of the prob-
ability Pto−orbit that an arrival order
will find the buffer full and go into the
orbit on the parameters K and k1

Fig. 5. The dependence of the loss
probability P imp−loss−buffer of an
order from the buffer due to impatience
on the parameters K and k1

Fig. 6. The dependence of the loss
probability P imp−loss−orbit of an order
from the orbit due to impatience on the
parameters K and k1

Figure 7 illustrates the dependence of the integral loss probability P loss of an
arbitrary order on the parameters K and k1. This dependence is non-monotone
and cannot be exactly evaluated based on common-sense considerations. This
confirms the value of the proposed research.

Having clarified the dependencies of the main performance measures of the
system on the parameters K and k1, it is reasonable to formulate and solve
an optimization problem. There may be many different choices of criteria for
the quality of the system’s operation. Here, as an example, we assume that the
quality of the system’s operation is evaluated in terms of the following cost
criterion:

E = E(K, k1) = aμto−serv − c1λP imp−loss−buffer − c2λP imp−loss−orbit − dK.

Here, a is the revenue of the system earned via the service of one order, c1
and c2 are the charges for the loss of an arbitrary order due to impatience from
the buffer and from the orbit, respectively, and d is the cost for maintaining
one place in a buffer per unit of time. Therefore, the criterion E determines the
average profit obtained by the system per unit of time, and our managerial goal
is to obtain such parameters as K and k1 under which the system’s profit is
maximal.
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Fig. 7. The dependence of the loss
probability P loss of an arbitrary order
on the parameters K and k1

Fig. 8. The dependence of the cost cri-
terion E on the parameters K and k1

(d = 0.0025)

Fig. 9. The dependence of the cost cri-
terion E on the parameters K and k1

(d = 0.005)

Fig. 10. The dependence of the cost
criterion E on the parameters K and
k1 (d = 0.01)

In this numerical example, let us fix the following cost coefficients:

a = 1.5, c1 = 1, c2 = 0.7.

Figures 8, 9, 10, 11 and 12 show the dependence of the cost criterion E
on the parameters K and k1 under five different values of the cost coefficient
d = 0.0025, 0.005, 0.01, 0.02, 0.04. The shapes presented in these figures show the
high variability of the value of the cost criterion and the possibility of essentially
increasing the profit of the system via the proper choice of the parameters K
and k1.

Table 1 contains the optimal values of the cost criteria E, the buffer size K
and the parameter k1 under different values of the cost d of maintenance of one
size in the buffer.

More general criteria, accounting a cost of server maintenance, can be used
as well.
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Fig. 11. The dependence of the cost
criterion E on the parameters K and
k1 (d = 0.02)

Fig. 12. The dependence of the cost
criterion E on the parameters K and
k1 (d = 0.04)

Table 1. The optimal values E∗, K∗, k∗
1 of the cost criterion E, the buffer size K and

the parameter k1 under different values of the cost coefficient d

d = 0.0025 d = 0.005 d = 0.01 d = 0.02 d = 0.04

E∗ 0.989587 0.943366 0.875663 0.790062 0.658792

K∗ 22 16 11 7 6

k∗
1 4 4 6 7 6

6 Conclusion

In this paper, we continued the started in [2] analysis of a multi-server retrial
queue with the MAP arrival process, finite buffer, group service of orders, phase-
type distribution of group service time depending on the size of a group, arbitrary
dependence of the total retrial rate on the number of orders in the orbit, and
orders impatience during the stay in the orbit and in the buffer. In [2], the
behavior of the system is described by the multidimensional Markov chain. The
explicit form of the block-structured generator of this Markov chain is obtained.
In this paper, we used these results to implement an analysis of the stationary
behavior of the considered Markov chain and queueing system. We derived the
constructive and simple conditions for ergodicity of the considered Markov chain
and presented expressions for the computation of the main performance measures
of the considered queueing system. The dependencies of these measures on the
parameters of the system (capacity of the input buffer and minimal size of a
serviced group) are numerically highlighted. The possibility of using the result
for managerial goals is numerically illustrated.
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Abstract. In this research, we consider a M/G/1-type single-class
retrial system with constant retrial rate. First we use the regenerative
approach to reprove the stability condition of this system, and then we
obtain the explicit expressions for the mean regeneration cycle length
and the mean number of customers arrived within regeneration cycle in
the stationary regime. Finally, the discrete-event simulation is applied to
illustrate the obtained theoretical results.

Keywords: constant retrial rate · regeneration cycle · stability
condition · simulation

1 Introduction

The retrial queues are important and convenient tool to model a wide spectrum
of the stochastic systems, such as, for example, the wireless telecommunication
systems. The analysis of some basic retrial models and comprehensive bibliog-
raphy on the related research are presented, for instance, in the works [1–3,7].

In the present research we use a regenerative approach to obtain the sta-
bility condition of a M/G/1-type retrial system with one class of customers,
exponential retrial times and constant retrial rate. Then this condition is used
to obtain the explicit expressions for the mean regeneration cycle length and the
mean number of customers arrived within a regeneration cycle. Moreover, we
compare these characteristics with the corresponding quantities known for the
classic buffered M/G/1 system. Finally, we conduct a discrete-event simulation
to demonstrate the convergence of the sample-mean of the regeneration cycle
length and the sample-mean of the number of arrivals per cycle to the corre-
sponding theoretical values. We note that Chap. 4 of the monograph [4] contains
recursions allowing to calculate the Laplace-Stieltjes transform of the mean busy
period in such a system. However the approach presented in this research, based
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on the regenerative method, turns out to be much simpler, more intuitive and
leads to the explicit expressions.

Summing up, the main contribution of this work is a regenerative analysis
implying the explicit expressions for the mean regeneration cycle length (in con-
tinuous and discrete time) for the single-class retrial M/G/1-type system in the
stationary regime. These expressions are found in the terms of given parameters
and do not contain Laplace-Stieltjes transforms. As a by-product of the analysis,
the stability condition of the system is also obtained. A basic observation of this
analysis is that, within one regeneration cycle, the total idle time of the server
can be expressed as the sum of the independent identically distributed (iid) idle
periods distributed as the minimum of the remaining (exponential) retrial time
and (exponential) interarrival time. We mention the fundamental works [13,14]
in the theory of regenerative process, and the monographs [5,9,11] which con-
tains the details of the regenerative approach and its applications in analysis of
the modern queueing systems.

The paper is organized as follows. In Sect. 2, we describe the model in detail.
In Sect. 3, the main stability result is proved using a regenerative approach. Then,
assuming stability, the mean regeneration cycle length is obtained. Finally, in
Sect. 4, we present some numerical results illustrating and verifying theoretical
results.

2 Description of the Model

We consider M/G/1 retrial system with constant retrial rate. Input process is
Poisson with rate λ. We denote tn the arrival instant of the n-th customer and
denote interarrival times as τn = tn+1−tn. Because these times are iid we denote
by τ the generic interarrival time and we note that λ = 1/Eτ . We denote the
iid service times as Sn with generic service time S and denote by μ = 1/ES. If
a new customer finds server busy it joins an infinite capacity orbit. After the
customer joins the orbit, after an exponential time with rate θ, he makes an
attempt to capture the server. We emphasize that only one customer is allowed
to make retrial attempts until he finds server idle, It is called the constant retrial
rate policy [9].

To use the regenerative approach, we first describe the regenerative struc-
ture of the stochastic process describing the dynamics of the system. Denote by
Q(tk) = Qk the total number of customers in the system (that is in orbit and in
server) just before arrival time t−k of customer k, k ≥ 1. Then the regeneration
instants {Tn} of the process {Q(t), t ≥ 0} are recursively defined as

Tn+1 = inf
k

(tk > Tn : Qk = 0), n ≥ 0, (1)

(T0 := 0), and the regeneration instants of the embedded process {Qn} are
defined as

θ̂n+1 = inf(k > θ̂n : Q(tk) = 0), n ≥ 0 (θ̂0 := 0). (2)
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We denote by T the generic regeneration cycle length, that is the distance
between two arbitrary adjacent regeneration instants, for continuous-time con-
struction (1). Also denote by θ̂ the corresponding quantity for the discrete-time
construction (2). We note, that θ̂ equals the number of the customers arrived
within a (continuous-time) regeneration cycle. The variable θ̂ is also the (discrete-
time) regeneration cycle length of the embedded process {Qn}. The regenerative
process {Q(t)} (and the queueing system) is called positive recurrent (stable), if
ET < ∞. This condition is a key one to establish the existence of the stationary
distribution of the basic regenerative process if the system is empty at the initial
instant t = 0 [9]. Otherwise, if ET = ∞, then the system is called null-recurrent
or unstable because, as it is easy to show, in this case the basic regenerative pro-
cess increases unlimitedly as time increases. By the Wald’s identity, it follows
that

ET = Eθ̂ Eτ,

and we may conclude that (see the work [6]) both processes {Q(t)} and {Qn}
are positive recurrent/null-recurrent simultaneously.

3 Stability and Performance Analysis

In this section, we first consider a classic M/G/1 system with an infinite capacity
buffer and, using regenerative approach, we obtain the mean regeneration cycle
length. This result is well-known but it allows further to simplify the stability
analysis of the basic retrial system. Then we obtain the main result of this
research, namely, the explicit expression for the mean regeneration period length
of the stationary basic retrial system with general service time.

For arbitrary interval of time [0, t] denote by: V (t) the total arrived work;
B(t) the busy time of the server; I(t) the idle time of the server. Also denote
by W (t) the remaining work at instant t. Then we have the following balance
equation

V (t) = W (t) + B(t) = W (t) + t − I(t), t > 0. (3)

Denote by ρ = ES/Eτ the traffic intensity. It is well known that ρ < 1 is the
stability condition of the system implying in particular ET < ∞. (It is commonly
known that generic regeneration period T for this classic system also is generated
by the arrival customers in an idle system [5,9].) It is easy to find, using the
Strong Law of Large Numbers (SLLN) that with probability (w.p.) 1

lim
t→∞

V (t)
t

= λES = ρ. (4)

Moreover, by the assumption ρ < 1, limt→∞ W (t)/t = 0 w.p.1, and it follows
from the basic theorem of the regenerative analysis (see Chap. 1 in [9]) that

lim
t→∞

I(t)
t

=
EI0
ET

, (5)
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where EI0 is the mean idle time of the server within the regeneration cycle. Col-
lecting the results (3)–(5), and using the memoryless property of the interarrival
time, we obtain

ρ = 1 − EI0
ET

= 1 − 1
λET

. (6)

This immediately implies the well-known expression for the mean length of the
regeneration cycle

ET =
1

λ(1 − ρ)
(7)

of the classic single-server system with infinite capacity.

Remark 1. According to the Little’s formula [5],

λET = Eθ̂, (8)

where Eθ̂ is the mean number of customers arrived in the system per regeneration
cycle. (Note that we keep the same notation for the system with buffer.) It
immediately gives the following (also well-known) expression

Eθ̂ =
1

(1 − ρ)
. (9)

The analysis above indeed turns out to be useful to obtain below the correspond-
ing expression of the mean regeneration cycle length in the retrial system under
consideration.

Now we consider the original system M/G/1 with constant retrial rate. Recall
that ρ = λES and θ is the retrial rate. Now we proof the following main state-
ment.

Theorem 1. If condition

ρ <
λ + θ

μ + λ + θ
, (10)

holds then ET < ∞, that is initially empty system is positive recurrent.

Proof. Denote, within the interval [0, t], by I0(t) the server idle time when the
orbit is empty, and let I1(t) be the server idle time, and simultaneously, the orbit
is not empty. Note that then the total idle time is expresses as I(t) = I0(t)+I1(t)
and then the balance equation becomes (cf. (3))

V (t) = W (t) + t − I0(t) − I1(t), t ≥ 0, (11)

where W (t) denotes now the remaining work in the orbit and in the server, if
any. Assume, by contradiction, that the system is unstable, i.e., the orbit size

Q(t) ⇒ ∞, t → ∞, (12)
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where symbol ⇒ denotes convergence in probability. Then in particular,

P(Q(t) = 0) → 0, t → ∞. (13)

Denote by σi the i-th idle time period between the sequential busy periods of
the server. Within any regeneration period, these periods are iid and we denote
them by {σi}, and let σ be the generic such a period (the time between departure
of a customer and the beginning of the next service). Then it is easy to see that

σ = min(ξ, τ), (14)

where ξ is the generic inter-retrial time. Let Î1(t) be the total idle time of server
in the renewal process generated by the iid sums {Si + σi}, that is

Î1(t) = max
k

( k∑
i=1

σi : S1 + σ1 + S2 + σ2 + · · · + Sk + σk ≤ t
)
. (15)

We emphasize that, in this process, we ’ignore’ the idle periods between regen-
eration periods. Alternatively, we may imagine the process {Î1(t)} as if it would
be generated in the permanently overloaded system with ’infinitely large’ orbit
size. It is easy to see that the idle time process {I1(t)} can be interpreted as
the ’lost’ server capacity when the server is free but the orbit is not idle. This
process can be expressed via the renewal process {Î1(t)} and the process {I0(t)},
counting the time when both orbit and server are free, as follows:

I1(t) = Î1(t − I0(t)). (16)

By the SLLN,

lim
t→∞

Î1(t)
t

=
Eσ

E(S + σ)
=

μ

μ + λ + θ
=: Δ. (17)

By the assumption (12), EI0(t)/t → 0, and it is known that then there exists
such a non-random sequence zn → ∞ that I0(zn)/zn → 0 w.p.1 [6]. Then, by
(16), (17),

lim
n→∞

I1(zn)
zn

= lim
n→∞

Î1(zn − I0(zn))
zn − I0(zn)

zn − I0(zn)
zn

= Δ
(
1 − lim

n→∞
I0(zn)

zn

)
= Δ. (18)

Thus, summing up the results above, we obtain

lim
n→∞

1
zn

W (zn) = ρ − 1 + Δ ≥ 0. (19)

If the latter condition does not hold, that is,
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ρ < 1 − Δ =
λ + θ

μ + λ + θ
, (20)

then ‘instability’ assumption (12) is violated, i.e., Q(t) �⇒ ∞. Then, based
on the regeneration condition P(τ > S) > 0 (which holds automatically for the
Poisson input process), one can unload system in such a way that a regeneration
(the arrival of a customer in the idle system) is reached, within a finite time
interval [u0, u0 + D] with a positive probability p. (Here the instant u0 denotes
the starting point of the ‘unloading procedure’, see [9].) Since both the interval
length D and the probability p do not depend on the time instant u0 then the
positive recurrence of the system follows. (Some basic details of the analysis see
in [9].) Thus (10) is the sufficient stability condition, and the proof of Theorem
is completed.

Remark 2. Indeed condition (20) is the stability criteria of the system. To show
it assume that the opposite condition

ρ ≥ λ + θ

μ + λ + θ
(21)

holds and that the system remains stationary under assumption (21). Then,
from the balance equation (11), we obtain easily as above that condition (20)
indeed holds, implying contradiction.

Now suppose that the system is stable. Then, from the balance equation (11)
similarly to the system with a buffer, we obtain

ρ = 1 − 1
λET

− EI1
ET

, (22)

where I1 is the server idle time within a regeneration cycle when also the orbit
is not empty. According to the Little’s formula and since all customers arrived
within regeneration cycle are served in this cycle, we obtain

ET = E(C + 1)Eτ, (23)

where C is the number of the idle intervals (of ‘type’ σ) within a regeneration
cycle and is also the number of the customers served within a regeneration cycle.
By the Wald identity,

EI1 = ECEσ. (24)

Then, from (22)–(24),

EC =
ρ

1 − ρ − λEσ
, (25)
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and by (23) and (18) we find the target mean cycle length

ET =
θ

λ(θ − (λ + θ)ρ)
. (26)

Remark 3. Because denominator of the r.h.s. of equality (10) must be positive,
it then immediately follows that (10) is the necessary stability condition as well.
Note that it can be rewritten in an equivalent form as

ρ <
θ

λ + θ
. (27)

Remark 4. Note that, as θ → ∞, formula (26) transforms to expression (7) while
(25) becomes (9), that corresponds to the system with infinite buffer.

Fig. 1. The mean regeneration cycle length ET in the retrial system (black lines) vs.
retrial rate θ; comparison with the mean regeneration cycle in the buffered system
(grey lines) for λ = 1. The vertical grey line corresponds to θ∗ that is the stability
region boundary for ρ = 0.9.

Figure 1 illustrates the behavior of the ET depending on θ for a few values
of ρ. We take λ = 1 and choose three values of traffic intensity: ρ = 0.6, ρ = 0.8
and ρ = 0.9. Also we compare ET (depending on θ in the retrial system, see
(26)) with the mean regeneration cycle length ET in the buffered system, see
(7). We note that, according to Remark 3, ET in retrial system approaches the
corresponding value for the buffered system, as θ → ∞. On the other hand, as
it is seen from Fig. 1, if θ approaches the stability region boundary, that is

θ ↓ λρ

1 − ρ
=: θ∗,

(see condition (27)), then ET increases unlimitedly indicating ‘increasing insta-
bility’.
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4 Simulation Results

In the previous sections we have obtained explicit expressions for the mean
regeneration cycle length and the mean number of customers arrived within
regeneration cycle. To demonstrate these results numerically, we conduct the
discrete event simulation using the ‘R language’.

First we consider the retrial system and we assume that the service time has
Pareto distribution

F (x) = 1 −
(x0

x

)α

, x ≥ x0.

In all examples, excluding Fig. 8, parameters of the Pareto service times are
satisfied ES = 0.1. We use either x0 = 0.05, α = 2 or x0 = 1/30, α = 1.5 set of
parameters. Also we use Weibull distribution

F (x) = 1 − exp
{

−
(x

b

)a}
, x ≥ 0,

with the shape parameter a = 0.9, while the scale parameter b = 0.095 which
in turn implies ES = 0.1. The input is Poisson with rate λ varying from 1 to 9,
implying ρ = 0.1, 0.2, . . . , 0.9, respectively. In all experiments the retrial times
have exponential distribution with rate θ = 30. We obtain the mean sample path
of the mean T̃ based on N = 200 paths in the fixed interval of time [0, 10000],
which means that the average number of arrivals ranges from 10000 to 90000,
depending on λ.

Fig. 2. The sample mean regeneration cycle length, denoted by ˜T , for Pareto service
time with α = 2 vs. simulation time: ρ = 0.5 (grey), ρ = 0.7 (dashed line), ρ = 0.8
(black). Stability condition is ρ < 0.7913.
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Fig. 3. The sample mean ˜T for Pareto service time with α = 1.5 vs. time; ρ = 0.5
(grey), ρ = 0.7 (dashed line), ρ = 0.8 (black); stability condition is ρ < 0.7913.

Fig. 4. The sample mean ˜T for Weibull service time with α = 0.9 vs. time; ρ = 0.5
(grey), ρ = 0.7 (dashed line), ρ = 0.8 (black); stability condition is ρ < 0.7913.

In Fig. 2, 3 and 4 we present the sample mean regeneration cycle length T̃
for different service time distributions.

Then on Fig. 5, the sample mean of the number of customers arrived within a
regeneration cycle, denoted by θ̃, is presented, while on Fig. 6, the sample mean
of the orbit size, denoted by Q̃(t), for the different value of the traffic intensity
ρ is plotted.
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Fig. 5. The sample mean number of the customers arrived within the regeneration
cycle, denoted by ˜θ, for the Pareto service time with α = 2, vs. time; ρ = 0.5 (grey),
ρ = 0.7 (dashed line), ρ = 0.8 (black); stability condition is ρ < 0.7913.

Fig. 6. The sample mean orbit size, denoted by ˜Q(t), for Pareto service time with
α = 2, vs. time; ρ = 0.5 (grey), ρ = 0.7 (dashed line), ρ = 0.8 (black); stability
condition is ρ < 0.7913.

Fig. 7. The stability area (grey) of the M/G/1 retrial system for θ = 30.
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Fig. 8. The sample mean regeneration cycle length ˜T (dotted line), theoretical value of

ET (grey) and the sample mean generic busy period in regeneration cycle ˜TB (black),
with Pareto service time, α = 2, for fixed λ = 4 under stability condition ρ < 0.8823,
vs. traffic intensity ρ.

Fig. 9. The sample mean regeneration cycle length ˜T (dotted line), theoretical value of

ET (grey) and the sample mean generic busy period in regeneration cycle ˜TB (black),
with Pareto service time, α = 2, for fixed μ = 10 with stability condition ρ < 0.7913,
vs. traffic intensity ρ.

Finally, on Fig. 8, and Fig. 9, the difference between calculated mean regener-
ation cycle length T̃ and the theoretical value mean ET , satisfying formula (26),
is demonstrated, for ρ = 0.1, 0.2, . . . , 0.7. In addition, we fix μ = 10 and take λ
implying ρ < 0.7913, to satisfy stability condition (10). Also we also fix λ = 4
and take μ such that ρ < 0.8823. We note that in the case, where we fix μ = 10,
when λ approaches 0, the mean cycle length goes to infinity. It is because the
intervals between arrivals become longer and as a result the ‘idle part’ of the
regeneration period becomes longer as well.
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Thus simulation results show that when stability condition (10) is satisfied
(see Fig. 7) then the system remains stationary (positive recurrence), and it
validates theoretical results.

5 Conclusion

We consider a M/G/1-type retrial system with constant retrial rate. Prelim-
inary, we deduce a (well-known) expression for the mean regeneration cycle
length in the classic M/G/1 queueing system with infinite buffer, and then,
using a similar approach, obtain the explicit expressions for the regeneration
cycle length and the number of customers arrived per cycle in the stable (posi-
tive recurrent) retrial system. As a byproduct of the analysis, using the regener-
ative approach, we obtain the stability criteria of the single-class retrial system.
Simulation results are included to illustrate the obtained theoretical results. In
a future research, it is assumed to extend the regenerative analysis to the retrial
system with more general renewal input process, satisfying some monotonicity
properties, to obtain the bounds for the mean regeneration cycle length.
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Abstract. In the paper, a single-server retrial queueing system with
heterogeneous customers is considered. Customers of a finite number of
classes arrive to the system in the Poisson stationary processes. Service
times and inter-retrial times have exponential distributions with the rates
depending on the customers class. A stationary probability distribution
of the number of customers of each class in the orbit is found by the new
method of marginal asymptotic-diffusion analysis under the condition of
a long delay of customers in the orbit.

Keywords: multiclass retrial queues · heterogeneous customers ·
marginal asymptotic-diffusion method

1 Introduction

Retrial queueing systems are appropriate models of various communication
systems (call-centers, cellular networks, LANs, etc. [1,2]), in which there are
repeated attempts to get service. Usually in such systems, there is not a clas-
sical queue, where customers (clients, calls, data packages, etc.) wait. But also
customers do not refuse service in the case of a busy server (operator, channel,
etc.).

Retrial queues (RQ) is a class of queuing theory models. Its description is
presented in [1–3]. In retrial queues, there is an “orbit”, which is a some virtual
place for repeated calls, where calls wait random time. In classical retrial queue,
a random access protocol for calls in orbit takes place, i.e. any call has access to
server at time t. In spite of the large number of studies in RQ, heterogeneous RQ
is weak considered. The reason is a large dimension of the mathematical prob-
lem. When we consider a model with N types of customers, it is necessary to
study a (N +1)-dimensional random process, the components of which can take
on an infinite number of states. Therefore, it is difficult to study such models
using numerical methods or simulation. Multiclass RQs (with several types of
customers or several orbits) are studied by E. Morozov [4,5], A.Krishnamoorthy
[6], B. Kim [7,8], etc. [9–11]. Most of them [4,5,7–9] are devoted stability anal-
ysis of multiclass retrial queues as classical, as with constant retrial rate. While
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probability distributions or even means of processes under study are hardly
investigated.

The novelty of the paper lies in the methodology of research for multi-class
retrial queues. We propose a new method of marginal asymptotic-diffusion anal-
ysis for obtaining marginal asymptotic probability distributions of the number of
calls of each class in the orbit. This method generalize the method of asymptotic-
diffusion analysis (presented in [12]) for the case of multiclass queueing systems.

The rest of the paper is organized as follows. In Sect. 2, the model under
study is described and the statement of the problem is formulated. Section 3 is
devoted to the original marginal asymptotic-diffusion analysis method for multi-
class retrial queues. In Sect. 4, we demonstrate some numerical examples with
comparison of simulation and asymptotic distributions for various values of the
model parameters. Section 5 consists some conclusions.

2 Mathematical Model

In the paper, a retrial queueing system with heterogeneous customers is con-
sidered. We suppose that N classes of customers exist. So, there are N arrival
Poisson processes with rates λn, n = 1, N . The system has one server. The service
time of the n-th class customer is exponential distributed with rate μn. Unserved
calls go to an orbit, where they wait for random time distributed exponentially
with corresponding rate σn. There is multiple access protocol from orbits. Orbit
capacity are not limited. From the orbit, calls again turn to the server. If the
server is free, a call begins its service, otherwise it returns up to the orbit to
make a next attempt.

Note that it does not matter to consider a retrial queue with one common
orbit or a retrial queue with several orbits (for each class of customers). It is
important to distinguish a number of customers of each class. We illustrate the
model structure as on Fig. 1.

Let us random processes of the number of the n-th class calls in the orbit be
in(t), where n = 1, N . Process k(t) determines states of the server as follows:

k(t) =
{

0, if the server is free,
n, if the n-th class customer is on the server.

Denote P{k(t) = k, i1(t) = i1, i2(t) = i2, ..., iN (t) = iN} = P (k, i, t) be the
probability that the server is in state k and there are i = {i1, i2, ..., iN} calls in
the orbit at time t, where in is the number of the n-th class calls in the orbit
(n = 1, N). Process {k(t), i(t)} is Markovian, so for probability distribution
P (k, i, t), we compose the following system of Kolmogorov equations:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂P (0, i, t)
∂t

= −
(

N∑
n=1

λn +
N∑

n=1

inσn

)
P (0, i, t) +

N∑
k=1

μkP (k, i, t),

∂P (k,i,t)
∂t = −

(
N∑

n=1
λn + μk

)
P (k, i, t) + λkP (0, i, t)+

+(ik + 1)σkP (0, i + ek, t) +
N∑

n=1
λnP (k, i − ek, t), k = 1, N,

(1)
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Fig. 1. Multiclass Retrial Queue

where ek is a vector with the k-th element being one and others elements being
zero.

Let us introduce the partial characteristic functions:

H(k,u, t) =
∞∑

i1=0

...

∞∑
iN=0

eju1i1 · ... · ejuN iN P (k, i, t).

By rewriting Eqs. (1) for the characteristic functions, we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂H(0,u,t)
∂t = −H(0,u, t)

N∑
n=1

λn +
N∑

n=1

jσn
∂H(0,u, t)

∂un

+
N∑

k=1

μkH(k,u, t),

∂H(k,u,t)
∂t =

(
N∑

n=1
λn(ejun − 1) − μk

)
H(k,u, t)

+λkH(0,u, t) − jσke−juk ∂H(0,u,t)
∂uk

, k = 1, N.

(2)

3 Marginal Asymptotic-Diffusion Analysis

The marginal asymptotic-Diffusion analysis consists of several stages:

1. Derivation of “marginal” asymptotic equations for “marked” process in(t) (a
number of calls of the n-th class in the orbit).

2. Finding of asymptotic means of numbers of calls of each class and stationary
probabilities of server states.

3. Implementation of Asymptotic-Diffusion Analysis for “marked” process in(t).

Let us solve System (2) by the method of the marginal asymptotic-diffusion
analysis under the limit condition of a long delay σ −→ 0.
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3.1 Marginal Asymptotic Equations

First of all, we mark the n-th class of calls, and try to write asymptotic equations
for process in(t).

Let us introduce infinitesimal parameter ε and substitutions

σ = ε, uv = εwv,

where
σv = γvσ, v = 1, N, v �= n,

Also, we denote

w(n) = {w1, w2, ..., wn−1, u, wn+1, ..., wN}, H(k,u, t) = F (k,w(n), t).

Then we have the following system of asymptotic equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂F (0,w(n), t, ε)
∂t

= −F (0,w(n), t, ε)
N∑

v=1

λv +
N∑

v=1
v �=n

jγv
∂F (0,w(n), t, ε)

∂wv

+jσn
∂F (0,w(n), t, ε)

∂un
+

N∑
k=1

μkF (k,w(n), t, ε),

∂F (k,w(n), t, ε)
∂t

= λkF (0,w(n), t, ε) − jγke−jεwk
∂F (0,w(n), t, ε)

∂wk

+

⎛
⎜⎝

N∑
v=1
v �=n

λv(ejεwv − 1) + λn(ejun − 1) − μk

⎞
⎟⎠ F (k,w(n), t, ε), k �= n,

∂F (n,w(n), t, ε)
∂t

= λnF (0,w(n), t, ε) − jσne−jun
∂F (0,w(n), t, ε)

∂un

+

⎛
⎜⎝

N∑
v=1
v �=n

λv(ejεwv − 1) + λn(ejun − 1) − μn

⎞
⎟⎠ F (n,w(n), t, ε).

By writing the equations under limit ε −→ 0, we obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂F (0,w(n), t)
∂t

= −F (0,w(n), t)
N∑

v=1

λv +
N∑

v=1
v �=n

jγv
∂F (0,w(n), t)

∂wv

+jσn
∂F (0,w(n), t)

∂un
+

N∑
k=1

μkF (k,w(n), t),

∂F (k,w(n), t)
∂t

=
(
λn(ejun − 1) − μk

)
F (k,w(n), t) + λkF (0,w(n), t)

−jγk
∂F (0,w(n), t)

∂wk
, k �= n,

∂F (n,w(n), t)
∂t

=
(
λn(ejun − 1) − μn

)
F (n,w(n), t) + λnF (0,w(n), t)

−jσne−jun
∂F (0,w(n), t)

∂un
.

(3)
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Let the solution have the following form:

F (k,w(n), t) = Hn(k, un, t)exp

⎧⎨
⎩

∑
v �=n

jwvxv

⎫⎬
⎭ .

System (3) is rewritten as follows
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Hn(0, un, t)
∂t

= −Hn(0, un, t)

⎛
⎜⎝

N∑
v=1

λv +
N∑

v=1
v �=n

γvxv

⎞
⎟⎠

+jσn
∂Hn(0,un,t)

∂un
+

N∑
k=1

μkHn(k, un, t),

∂Hn(k,un,t)
∂t =

(
λn(ejun − 1) − μk

)
Hn(k, un, t)

+Hn(0, un, t)(λk + γkxk), k �= n,
∂Hn(n,un,t)

∂t =
(
λn(ejun − 1) − μn

)
Hn(n, un, t) + λnHn(0, un, t)

−jσne−jun ∂Hn(0,un,t)
∂un

.

(4)

Thus, we obtained the system of equations for the marginal asymptotic char-
acteristic functions of the number of calls of the n-th class.

3.2 Asymptotic Means

The next step of the study is finding of parameters xk, k = 1, N . Let us write
System (2) in the steady state.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−H(0,u)
N∑

n=1
λn +

N∑
n=1

jσn
∂H(0,u)

∂un
+

N∑
k=1

μkH(k,u) = 0,(
N∑

n=1
λn(ejun − 1) − μk

)
H(k,u) + λkH(0,u)

−jσke−juk ∂H(0,u)
∂uk

= 0, k = 1, N.

(5)

The sum of this equations gives us an additional equation:

N∑
n=1

jσn(1 − e−jun)
∂H(0,u)

∂un
+

N∑
k=1

H(k,u)
N∑

n=1

λn(ejun − 1) = 0. (6)

We use the following substitutions:

σn = γnσ, σ = ε, un = εwn, H(k,u) = F (k,w, ε), n = 1, N.
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Thus, the following system is obtained.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−F (0,w, ε)
N∑

n=1
λn +

N∑
n=1

jγn
∂F (0,w,ε)

∂wn
+

N∑
k=1

μkF (k,w, ε) = O(ε),(
N∑

n=1
λn(ejεwn − 1) − μk

)
F (k,w, ε) + λkF (0,w, ε)

−jγke−jεwk ∂F (0,w,ε)
∂wk

= O(ε), k = 1, N,
N∑

n=1
jγnjwn

∂F (0,w,ε)
∂wn

+
∑N

k=1 F (k,w, ε)
N∑

n=1
λnjwn = O(ε).

(7)

For ε −→ 0, we have⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−F (0,w)
N∑

n=1
λn +

N∑
n=1

jγn
∂F (0,w)

∂wn
+

N∑
k=1

μkF (k,w) = 0,

−μkF (k,w) + λkF (0,w) − jγk
∂F (0,w)

∂wk
= 0, k = 1, N,

N∑
n=1

jγnjwn
∂F (0,w)

∂wn
+

N∑
k=1

F (k,w)
N∑

n=1
λnjwn = 0.

(8)

Let us find the solution in the following form:

F (k,w) = rk · exp

{
N∑

n=1

jwnxn

}
, k = 1, N.

It’s easy to obtain the system
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−r0

N∑
n=1

λn −
N∑

n=1

γnr0xn +
N∑

k=1

μkrk = 0,

−μkrk + λkr0 + γkr0xk = 0, k = 1, N,
N∑

n=1

jwn(−γnxnr0 + λn

N∑
k=1

rk) = 0.

(9)

So, rk are expressed as

rk = r0
λk + γkxk

μk
, k = 1, N.

From the normalization condition, we have

r0 =
1

1 +
N∑

k=1

λk + γkxk

μk

. (10)

Denote
κv = λv + γvxv,

then we get

r0 =
λn

κn
, rk =

λk

κk
, k = 1, N. (11)
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From the last equation of System (9), we obtain

λn(1 − r0) − γnxnr0 = 0.

Then κn are as follows

κn =
λn

1 −
N∑

k=1

λk

μk

. (12)

3.3 Marginal Asymptotic-Diffusion Probabilities

Let us solve asymptotic Eqs. (4) for marked the n-th process. First of all, we
summarize the equations for getting an additional equation:

∂Hn(un, t)
∂t

= (ejun − 1)

(
jσne−jun

∂Hn(0, un, t)
∂un

+ λn

N∑
k=1

Hu(k, un, t)

)
. (13)

First Asymptotics. Let us denote

σn = ε, σnt = εt = τ, un = εw, Hn(k, un, t) = Fn(k,w, τ, ε), k = 1, N.

By substituting the notations in Eqs. (4), we have
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε
∂Fn(0, w, τ, ε)

∂τ
= −Fn(0, w, τ, ε)

⎛
⎜⎝λn +

N∑
v=1
v �=n

κv

⎞
⎟⎠ + j

∂Fn(0, w, τ, ε)
∂w

+
N∑

k=1

μkFn(k,w, τ, ε),

ε
∂Fn(k,w, τ, ε)

∂τ
=

(
λn(ejεw − 1) − μk

)
Fn(k,w, τ, ε)

+Fn(0, w, τ, ε)κk, k �= n,

ε
∂Fn(n,w, τ, ε)

∂τ
=

(
λn(ejεw − 1) − μn

)
Fn(n,w, τ, ε) + λnFn(0, w, τ, ε)

−je−jεw ∂Fn(0, w, τ, ε)
∂w

.

(14)
And from Eq. (13), there is the following equation

ε

N∑
k=0

∂Fn(k,w, τ, ε)
∂τ

= (1 − e−jεw)

(
j
∂Fn(0, w, τ, ε)

∂w
+ λnejεw

N∑
k=1

Fn(k,w, τ, ε)

)
.

(15)
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Under the limit ε −→ 0, Eqs. (14) are rewritten as

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−Fn(0, w, τ)

⎛
⎜⎝λn +

N∑
v=1
v �=n

κv

⎞
⎟⎠ + j

∂Fn(0, w, τ)
∂w

+
N∑

k=1

μkFn(k,w, τ) = 0,

−μkFn(k,w, τ) + Fn(0, w, τ)κk = 0, k �= n,

−μnFn(n,w, τ) + λnFn(0, w, τ) − j
∂Fn(0, w, τ)

∂w
= 0.

(16)

Let us find the solution in the following form

Fn(k,w, τ) = Rk(x(τ))ejwx(τ). (17)

For simplicity, in further derivation, we omit τ , so we use notation x = x(τ).
Substituting into Eqs. (16), we get:

Rk(x) = R0(x)
κk

μk
, for k �= n, (18)

Rn(x) = R0(x)
λn + x

μn
.

From the normalization condition:

R0(x) =

⎛
⎜⎝1 +

λn + x

μn
+

N∑
k=1
k �=n

κk

μk

⎞
⎟⎠

−1

.

Returning to Eq. (15), we use Maclaurin series.

N∑
k=0

∂Fn(k,w, τ, ε)
∂τ

= jw

(
j
∂Fn(0, w, τ, ε)

∂w
+ λn

N∑
k=1

Fn(k,w, τ, ε)

)
+ O(ε).

Under the limit ε −→ 0, we obtain the following equation

N∑
k=0

∂Fn(k,w, τ)
∂τ

= jw

(
j
∂Fn(0, w, τ)

∂w
+ λn

N∑
k=1

Fn(k,w, τ)

)
. (19)

Substituting (17) into (19), we get:

dx(τ)
dτ

=

(
−R0(x) · x + λn

N∑
k=1

Rk(x)

)
.



308 A. Nazarov et al.

A derived equation is an equation for the asymptotic mean x(τ) of the number
of calls of the n-th class with a transfer coefficient:

a(x(τ)) = λn(1 − R0(x(τ))) − R0(x(τ)) · x(τ). (20)

Second Asymptotics. We suppose that

Hn(k, un, t) = H(2)
n (k, un, t) exp

{
jun

σn
x

}
, (21)

where x = x(σnt). Substituting (21) into System (4), we have:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂H
(2)
n (0, un, t)

∂t
+ juna(x)H(2)

n (0, un, t) = jσn
∂H

(2)
n (0, un, t)

∂un

−H
(2)
n (0, un, t)

⎛
⎜⎝λn +

N∑
v=1
v �=n

κv

⎞
⎟⎠ − H

(2)
n (0, un, t)x

+
N∑

k=1

μkH(2)
n (k, un, t),

∂H
(2)
n (k, un, t)

∂t
+ juna(x)H(2)

n (k, un, t) =

+
(
λn(ejun − 1) − μk

)
H

(2)
n (k, un, t) + H(2)

n (0, un, t)κk, k �= n,

∂H
(2)
n (n, un, t)

∂t
+ juna(x)H(2)

n (n, un, t) = λnH(2)
n (0, un, t)

+
(
λn(ejun − 1) − μn

)
H(2)

n (n, un, t)

−jσne−jun
∂H

(2)
n (0, un, t)

∂un
+ e−junH(2)

n (0, un, t)x.

(22)

By summing of Eq. (22), we get one more equation:

∂H
(2)
n (un, t)

∂t
+ juna(x)H(2)

n (un, t) = (ejun − 1)

×
(

jσne−jun
∂H

(2)
n (0, un, t)

∂un
− e−junH(2)

n (0, un, t)x + λn

N∑
k=1

H(2)
n (k, un, t)

)
.

(23)
Let us introduce the following notations:

σn = ε2, σnt = ε2t = τ, un = εw, H(2)
n (k, un, t) = F (2)

n (k,w, τ, ε).
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Substituting into System (22), we have
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε2
∂F

(2)
n (0, w, τ, ε)

∂τ
+ jεwa(x)F (2)

n (0, w, τ, ε) = jε
∂F

(2)
n (0, w, τ, ε)

∂w

−F
(2)
n (0, w, τ, ε)

⎛

⎜
⎝λn +

N∑

v=1
v �=n

κv

⎞

⎟
⎠ − F

(2)
n (0, w, τ, ε)x +

N∑

k=1

μkF (2)
n (k, w, τ, ε),

ε2
∂F

(2)
n (k, w, τ, ε)

∂τ
+ jεwa(x)F (2)

n (k, w, τ, ε) =

+
(
λn(ejεw − 1) − μk

)
F

(2)
n (n, w, τ, ε) + F (2)

n (0, w, τ, ε)κk, k �= n,

ε2
∂F

(2)
n (n, w, τ, ε)

∂τ
+ jεwa(x)F (2)

n (n, w, τ, ε) = λnF (2)
n (0, w, τ, ε)

+
(
λn(ejεw − 1) − μn

)
F (2)

n (n, w, τ, ε) − jεe−jεw ∂F
(2)
n (0, w, τ, ε)

∂w
+e−jεwF (2)

n (0, w, τ, ε)x,

(24)

And from (23), we obtain

ε2
∂F

(2)
n (w, τ, ε)

∂τ
+ jεwa(x)F (2)

n (w, τ, ε) = (ejεw − 1)

×
(

jεe−jεw ∂F
(2)
n (0, w, τ, ε)

∂w
− xe−jεwF (2)

n (0, w, τ, ε) + λn

N∑

k=1

F (2)
n (k, w, τ, ε)

)

.
(25)

Let us find the solution in the following form

F (2)
n (k,w, τ, ε) = Φn(x,w, τ)(Rk(x) + jwεfk(x)) + O(ε2). (26)

By substituting (26) into System (24), we obtain
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε
∂Φn(w, τ)

∂τ
R0(x) + jwa(x)Φn(w, τ)(R0(x) + jwεf0(x)) =

−Φn(w, τ)jwf0(x)

⎛
⎜⎝λn +

N∑
v=1
v �=n

κv

⎞
⎟⎠ + j

∂Φn(w, τ)
∂w

(R0(x) + jwεf0(x))

−εΦn(w, τ)f0(x) − Φn(w, τ)jwf0(x) · x +
N∑

k=1

μkΦn(w, τ)jwfk(x) + O(ε2),

ε
∂Φn(w, τ)

∂τ
Rk(x) + jwa(x)Φn(w, τ)(Rk(x) + jwεfk(x)) =

+λn

(
jw + ε

(jw)2

2

)
Φn(w, τ)Rk(x) + (λnjεw − μk)Φn(w, τ)jwfk(x)

+Φn(w, τ)jwf0(x)κk + O(ε2), k �= n,

ε
∂Φn(w, τ)

∂τ
Rn(x) + jwa(x)Φn(w, τ)(Rn(x) + jwεfn(x)) =

+λn

(
jw + ε

(jw)2

2

)
Φn(w, τ)Rn(x) + (λnjεw − μn)Φn(w, τ)jwfn(x)

+λnΦn(w, τ)jwf0(x) − j(1 − jεw)
∂Φn(w, τ)

∂w
(R0 + jwεf0(x))

+Φn(w, τ)εf0(x) +
(

−jw + ε
(jw)2

2

)
Φn(w, τ)R0(x) · x

+(1 − jεw)Φn(w, τ)jwf0(x) · x + O(ε2).
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For ε −→ 0, we have the following equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f0(x)

⎛
⎜⎝λn +

N∑
v=1
v �=n

κv + x

⎞
⎟⎠ −

N∑
k=1

μkfk(x) =

−a(x)R0(x) + R0(x)
∂Φn(w, τ)/∂w

wΦn(w, τ)
,

f0(x)κk − μkfk(x) = Rk(x)(a(x) − λn), k �= n,
f0(x)(λn + x) − μnfn(x) =

Rn(x)(a(x) − λn) + R0(x) · x + R0(x)
∂Φn(w, τ)/∂w

wΦn(w, τ)
.

(27)

Comparing this equations and System (19), we conclude that

fk(x) = CRk(x) + gk(x) − φk(x)
∂Φn(w, τ)/∂w

wΦn(w, τ)
, (28)

where C = const.
Substituting (28) into System (27), we obtain equations for φ(x):

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−φ0(x)

⎛
⎜⎝λn +

N∑
v=1
v �=n

κv + x

⎞
⎟⎠ +

N∑
k=1

μkφk(x) = R0(x),

φ0(x)κk − μkφk(x) = 0, k �= n,
φ0(x)(λn + x) − μnφn(x) = −R0(x).

(29)

For the solution uniqueness, we suppose

N∑
k=0

φk(x) = 0.

By comparing Eqs. (29) and (19), it is obvious that

φk(x) =
dRk(x)

dx
. (30)

Also from (27), we obtain the following equations for gk:
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−g0(x)

⎛
⎜⎝λn +

N∑
v=1
v �=n

+κv + x

⎞
⎟⎠ +

N∑
k=1

μkgk(x) = a(x)R0(x),

g0(x)κk − μkgk(x) = Rk(x)(a(x) − λn), k �= n,
g0(x)(λn + x) − μngn(x) = Rn(x)(a(x) − λn) + R0(x) · x.

(31)

Let us add an additional condition for the solution uniqueness:

N∑
k=0

gk(x) = 0.



Marginal Asymptotic-Diffusion Method for Multiclass Retrial Queues 311

Next step is to find the form of function Φn(w, τ). For this purpose, we
substitute Expression (26) into Eq. (25) and divide by ε and write the equation
under ε −→ 0.

∂Φn(w, τ)
∂τ

=
(jw)2

2
Φn(w, τ) × (a(x) + 2x(R0(x) − g0(x))

−2λng0(x) + (2φ0(x)(x + λn) + 2R0(x))
∂Φn(w, τ)

∂w

1
wΦn(w, τ)

)
.

(32)

So, we obtain the equation

∂Φn(w, τ)
∂τ

= w
∂Φn(w, τ)

∂w
a′(x) +

(jw)2

2
Φn(w, τ)b(x), (33)

where
b(x) = a(x) + 2x(R0(x) − g0(x)) − 2λng0(x).

Let us denote the probability distribution density:

P (y, τ) =
1
2π

∫ +∞

−∞
e−jwyΦ(w, τ)dw.

Then we have the following Fokker-Planck equation:

∂P (y, τ)
∂τ

= − ∂

∂y
(P (y, τ)ya′(x)) +

1
2

∂2

∂y2
(P (y, τ)b(x))

for the probability distribution density of the diffusion process y(τ):

dy(τ) = y(τ)a∗(x)dτ +
√

b(x)dw(τ).

Combining the results of two asymptotics, we introduce

z(τ) = x(τ) + εy(τ),

which is diffusion random process satisfying the following Fokker-Planck equa-
tion

∂P (z, τ)
∂τ

= − ∂

∂z
(P (z, τ)a(z)) +

1
2

∂2

∂z2
(P (z, τ)σb(z)).

In steady state, we obtain the following expression for probability distribution
density of z(τ):

P (z) =
C

b(z)
exp

(
σ

2

∫ z

0

a(x)
b(x)

dx

)
.

Returning to the notation, we substitute z = σnin:

Pn(in) =
C

b(σnin)
exp

(
σn

2

∫ σnin

0

a(x)
b(x)

dx

)
(34)

where C = const obtained from the normalization condition
∑

i

P (i) = 1.

Thus, we obtain the formula for calculation of the asymptotic stationary
distribution of the one-dimensional process of the number of customers on the
n-th orbit.

Note, that for each class of customers, parameters a(x) and b(x), gk(x), etc.
will be different.
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4 Numerical Examples

For demonstrating the proposed asymptotic-diffusion method application area,
we present the comparison of asymptotic Pn(i) and empirical Dn(i) (calculated
by simulation) distributions for different values of the model parameters. Let us
system parameters be the following

N = 2, λ1 = 0.3, λ2 = 0.5, μ1 = μ2 = 1, σ1 = σ2 = 0.1.

In Fig. 2, the comparison of the distributions is demonstrated.

Fig. 2. Comparison of asymptotic and simulate probability distributions of numbers
of the first and the second class of customers for σ = 0.1

Fig. 3. Comparison of asymptotic and simulate probability distributions of numbers
of the first and the second class of customers for σ = 0.01
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In the next example (Fig. 3), we propose σ1 = σ2 = 0.01.
For the estimation of the asymptotic accuracy, we use

– Kolmogorov distance (Table 1).
– The relative error of asymptotic means (Table 2).

Table 1. The Kolmogorov distances for different σ

σ 1 0.1 0.01

δ1(t) 0.135 0.053 0.021

δ2(t) 0.155 0.051 0.026

Table 2. The relative error of asymptotic means for different σ

σ 1 0.1 0.01

m1 0.150 0.032 0.004

m2 0.240 0.047 0.005

Thus, we conclude that the method accuracy increases with decreasing of
retrial rates.

Let us demonstrate one more example for four classes of customers with
different retrial rates:

N = 4, λ1 = λ2 = λ3 = λ4 = 0.2, μ1 = μ2 = μ3 = μ4 = 1,
σ1 = 0.02, σ2 = 0.03, σ3 = 0.05, σ4 = 0.07.

In Fig. 4, the comparison of the distributions is demonstrated.
Also, we consider examples for four classes of customers with different arrival

rates and the same other parameters:

N = 4, λ1 = 0.1, λ2 = 0.2, λ3 = 0.3, λ4 = 0.15,
μ1 = μ2 = μ3 = μ4 = 1, σ1 = σ2 = σ3 = σ4 = 0.01.

In Fig. 5, the comparison of the distributions is demonstrated.
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Fig. 4. Comparison of asymptotic and simulation distributions of the numbers of calls
of the n-th class for σ1 = 0.02, σ2 = 0.03, σ3 = 0.05, σ4 = 0.07

Fig. 5. Comparison of asymptotic and simulation distributions of the numbers of calls
of the n-th class for λ1 = 0.1, λ2 = 0.2, λ3 = 0.3, λ4 = 0.15

We see that the proposed method has maximum accuracy when all retrial
rates are small.

5 Conclusion

In the study, we have considered a multi-class retrial queue. The new method
of marginal asymptotic analysis under the condition of a long delay has been
proposed. The numerical analysis has been performed for different system param-
eters, which shown that the method accuracy increases with decreasing of retrial
rates.
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Abstract. This paper explores a retrial queuing system with two-way
communication and an unreliable server that may encounter random
breakdowns. The system is of the finite-source M/M/1//N type, where
the idle server can initiate calls to customers in the orbit, termed as sec-
ondary customers. Both primary and secondary customer service times
are characterized by exponential distributions, with rates denoted as μ1

and μ2, respectively. The novelty of this study lies in its investigation
of various failure time distributions and their impact on critical perfor-
mance metrics, such as the mean response time of a random customer,
while utilizing a backup server with impatient customers. The backup
server can be likened to a primary server operating at a reduced rate
during maintenance intervals. To ensure a valid comparison, a fitting
process equalizes the mean and variance across all distributions. The
outcomes are visually depicted through the utilization of our self-made
simulation program.

Keywords: Finite-source queuing system · Retrial queues · Two-way
communication · Sensitivity analysis · Simulation · Impatience

1 Introduction

Nowadays, the analysis of telecommunication systems and the creation of opti-
mal designs for these schemes have become formidable endeavors due to the
immense traffic and escalating number of users. Information exchange pervades
every facet of contemporary life, underscoring the need to develop mathemati-
cal and simulation models for telecommunication systems or adapt existing ones
to keep pace with these dynamic changes. Retrial queues stand out as potent
and fitting tools for modeling real-world challenges that arise in telecommunica-
tions, networks, mobile networks, call centers, and similar systems. A plethora
of literature, exemplified by works like [1,5,6,10], delves into the examination of
various retrial queuing systems characterized by recurring calls.
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We are currently exploring a retrial queuing system endowed with two-way
communication capabilities, a research area that has gained substantial promi-
nence owing to its striking resemblance to certain real-world systems. This corre-
spondence is particularly pronounced in the context of call centers, where service
units often perform multitasking, engaging in activities such as sales, promotions,
and product advertising alongside handling incoming calls. In our investigation,
the primary server, following a random idle interval, calls customers in from
the orbit, called secondary customers. The system’s utilization of the service
unit is under scrutiny and has undergone extensive examination in prior works,
exemplified by studies like [4,9,13].

In various research scenarios, some assume that service units remain contin-
uously available, but real-world events like failures or unexpected incidents can
occur during their operation, resulting in the rejection of incoming customers.
Devices used across different industries are prone to breakdowns, and relying on
their uninterrupted operation is often overly optimistic and unrealistic. Likewise,
in wireless communication, multiple factors can affect transmission rates, result-
ing in disruptions during packet transmission. The inherent lack of reliability
in retrial queuing systems has a substantial impact on system operations and
performance metrics.

Furthermore, ceasing production entirely is not a feasible choice, as it may
result in delays in order fulfillment. Therefore, in the event of such failures, it
becomes crucial to keep machines or operators with lower processing rates opera-
tional to ensure a continuous workflow. Additionally, the authors investigated the
option of implementing a backup server that could provide services at a reduced
rate when the primary server is inaccessible. This approach has attracted sig-
nificant attention in recent research, with studies such as [8,12] being notable
examples.

In the service sector, it’s not uncommon for service providers to encounter
disruptions for various reasons, including difficulties in accessing their databases
to address customer requests. When such disruptions transpire, service providers
frequently employ alternative measures, such as resorting to backup systems or
gathering additional information from customers to meet their needs.

Numerous research papers explore the performance of systems with the objec-
tive of improving service by integrating a backup server, as demonstrated in
studies such as [2,11,15,16]. These inquiries provide insights into strategies and
approaches for sustaining service quality in challenging scenarios.

The primary aim of this investigation is to assess how the system’s unreli-
able operation affects performance measures, such as the mean response time of
a customer or service unit utilization, by comparing various failure time distribu-
tions while the customers may depart after a random long enough waiting. This
study builds upon the authors’ earlier research [17], where the system incorpo-
rated an unreliable server. In the current configuration, in the event of server
unavailability, a backup server takes over the processing of incoming requests.

To acquire the desired performance metrics, we developed a simulation model
utilizing SimPack [7], which encompasses a collection of C/C++ libraries and
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executable programs tailored for computer simulation. Simulation serves as an
excellent alternative for approximating performance metrics when deriving pre-
cise formulas proves problematic or nearly impossible. This paper introduces a
sensitivity analysis of different failure time distributions’ impact on key perfor-
mance measures. We elucidate these findings by means of graphical representa-
tions that highlight intriguing facets of sensitivity-related issues.

2 System Model

The system is a retrial queuing system characterized by an unreliable server and a
finite source of customers which is shown in Fig. 1. Within the source, there exist
N customers, each generating primary requests at an exponential rate denoted
by λ. Consequently, the inter-arrival times adhere to an exponential distribution
parameterized by λ. Notably, our model does not contain waiting queues; thus,
incoming customers can only occupy the server when it is available and idle.
The service time for primary customers follows an exponential distribution with
a parameter of μ1. Following the successful completion of a service, the customer
returns to the source. However, if an incoming customer (whether from the source
or orbit) encounters a server in a busy or failed state, its request is redirected to
the orbit. While within the orbit, a customer may attempt to fulfill its service
requirement after an exponentially distributed random time with a parameter
of σ.

The system assumes the presence of an unreliable server prone to failures,
which can occur according to different distributions-such as gamma, hypo-
exponential, hyper-exponential, Pareto, and lognormal. Each distribution comes
with distinct parameters while sharing the same mean value. The repair process
initiates immediately upon the server’s failure, with the repair time following an
exponential distribution characterized by parameter γ2. If the server is busy and
subsequently fails, the customer is promptly transferred to the orbit. Regard-
less of the service unit’s availability, all customers within the source can gener-
ate requests. However, these requests are directed to the backup server, which
operates at a reduced rate-an exponentially distributed random variable with
parameter μ3-when the primary server is unavailable. Importantly, the backup
server is assumed to be reliable and functions solely during periods of primary
server unavailability. In cases where the backup server is busy, incoming requests
are placed into the orbit. Yet, during idle periods, the main server can initiate
outgoing calls to customers within the orbit after a random time interval, char-
acterized by an exponential distribution with a rate of ν. The service time for
these secondary customers follows an exponential distribution with parameters
μ2. Customers in the orbit, after waiting an exponentially distributed time with
parameter τ , may choose to leave the system without getting their service.

Throughout the model’s creation, the fundamental assumption is maintained
that all random variables remain entirely independent of each other.
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Fig. 1. System model

3 Simulation Results

We employed a statistical module class that incorporates a statistical analysis
tool, enabling us to quantitatively estimate both the mean and variance values
of observed variables via the batch mean method. This method involves aggre-
gating n consecutive observations from a steady-state simulation to generate a
sequence of independent samples. The batch mean method is a widely utilized
technique for establishing confidence intervals concerning the steady-state mean
of a process. It is important to note that, in order to ensure that the sample
averages exhibit approximate independence, the use of sizable batches is imper-
ative. Further details on the batch mean method can be found in [3,14]. In our
simulations, we conducted operations with a confidence level of 99.9%, and the
simulation run concluded when the relative half-width of the confidence interval
reached the threshold of 0.00001.

3.1 First Scenario

In Table 1 the used values of input parameters are presented. The parameters of
the failure time are presented in the following table (Table 2). To ensure a valid
comparison, parameters are selected to have the same mean and variance values.
The simulation program was executed with various parameter values, and this
paper will highlight the most significant results. As indicated in the table, the
squared coefficient of variation is greater than one in this scenario, enabling the
examination of the impact of specific random variables. Additionally, we present
results with a different set of parameters when the squared coefficient of variation
is less than one.
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Table 1. Used numerical values of model parameters

N λ γ2 σ μ1 μ2 ν μ3 τ

100 0.01 1 0.01 1 1.2 0.02 0.1 0.001

Table 2. Parameters of failure time

Distribution Gamma Hyper-exponential Pareto Lognormal

Parameters α = 0.6 p = 0.25 α = 2.2649 m = −0.3081

β = 0.5 λ1 = 0.41667 k = 0.67018 σ = 0.99037

λ2 = 1.25

Mean 1.2

Variance 2.4

Squared coefficient of variation 1.6666666667

The steady-state distribution, corresponding to different failure time distri-
butions, is visually represented in Fig. 2. In this graph, the X-axis is labeled as i,
which denotes the number of customers present in the system, while the Y-axis
is labeled as P (i), indicating the probability of precisely i customers being in the
system. A closer examination of the curves reveals that all of them closely resem-
ble the normal distribution. Notably, the Pareto distribution seems to exhibit
a lower number of customers in the system. Nevertheless, when comparing the
different distributions examined in our study, no significant disparities emerge.

Fig. 2. Comparison of steady-state distributions
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Figure 3 provides an illustration of the correlation between the mean response
time of customers and the arrival intensity. On the contrary to the patterns
observed in Fig. 2, the highest mean response time is associated with the
Pareto distribution. However, the distinctions among the other distribution types
become more pronounced. Remarkably, the gamma distribution stands out by
yielding the lowest mean response time. A noteworthy phenomenon is that, as
the arrival intensity increases, the mean response time initially experiences an
uptrend, but subsequently, it starts to decrease after reaching a specific thresh-
old. This behavior is a distinctive characteristic of retrial queuing systems with a
finite source, and it tends to manifest when appropriate parameter configurations
are applied.

Fig. 3. Mean response time vs. arrival intensity

The variance of the response time is presented in the function of the arrival
intensity of the incoming customers in Fig. 4. Looking at the results, it can be
said that there are differences in this indicator as well, considering the used
failure distributions. Similar trends to the previous chart are observed, with the
smallest values occurring in the gamma distribution and the largest values in
the Pareto distribution. However, at higher arrival intensity values, we find the
smallest numbers in the Pareto distribution, which is an interesting development
and requires further experiments and runs to explain this change.

The utilization of the backup service unit is shown in Fig. 5 besides the arrival
of the incoming primary customers. In choosing the parameters, we aimed to
simulate an environment where as many interruptions or failures as possible
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Fig. 4. Variance of the response time vs. arrival intensity

occur. Thus, in the chart, the utilization of the backup server unit becomes
significant, and it is evident that this server is busy for most of the time. There
are no significant differences among the used failure distributions, but with the
Pareto distribution, the utilization is higher compared to the other distributions.

Figure 6 demonstrates the development of the probability of abandonment
of a primary customer besides increasing arrival intensity. This metric indicates
the likelihood of any given primary customer exiting the system during the
orbit, signifying that the request does not meet its specified service requirement
(impatient customers). As λ increases, the value of this performance measure
also starts to increase, and this holds true for every utilized distribution, but
the discrepancy among them is relatively significant. In the case of the gamma
distribution, the inclination to exit the system earlier is much lower than in the
others, especially when compared to the Pareto distribution.

3.2 Second Scenario

Upon analyzing the outcomes from the previous section, our keen interest was
focused on understanding how modifications to the failure time parameters would
impact the performance measures. In this scenario, the parameters were selected
to ensure that the squared coefficient of variation remains below one. Instead
of employing a hyper-exponential distribution, we opt for a hypo-exponential
distribution. This choice is motivated by the fact that, in the case of a hypo-
exponential distribution, the squared coefficient of variation is always less than
one. The identical performance measures will be visually presented as earlier,
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Fig. 5. Utilization of the backup server vs. arrival intensity

Fig. 6. The probability of the departure of a primary customer vs. arrival intensity
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but with the incorporation of the new failure time parameters, as indicated in
Table 2. The remaining parameters remain unchanged, as depicted in Table 1
(Table 3).

Table 3. Parameters of failure time

Distribution Gamma Hypo-exponential Pareto Lognormal

Parameters α = 1.3846 μ1 = 1 α = 2.5442 m = −0.08948

β = 1.1538 μ2 = 5 k = 0.7283 σ = 0.7373

Mean 1.2

Variance 1.04

Squared coefficient of variation 0.72222222

We will examine the same figures but with the updated parameter setting.
Initially, Fig. 7 is related to the distribution of the number of customers in the
system. Upon closer analysis of the curves, the obtained values are much more
similar. Concerning the shape of the curves, they align with a normal distribu-
tion. Nevertheless, there isn’t much disparity observed. As evident, the curves
are nearly identical. The mean number of customers is slightly higher compared
to the previous scenario.

Fig. 7. Comparison of steady-state distributions

Figure 8 illustrates the evolution of the mean response time for a successfully
served customer as the arrival intensity increases. In this situation, the mean
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value remains constant, but the variance is substantially reduced. The difference
in the average mean response time among the distributions is not very pro-
nounced, except for Pareto, where the values are notably higher. Therefore, it
appears that variance has a noteworthy impact on performance measures, with
larger values potentially leading to greater disparities in performance measures.

Fig. 8. Mean response time vs. arrival intensity

In the next, in Fig. 9 the variance of the response time is presented with the
increment of the arrival intensity of the incoming customers. In comparison to the
previous scenario, perhaps the difference is most evident in this figure with the
use of newly employed parameters. In practice, the lines overlap completely, with
prominent values only occurring in the log-normal distribution for higher arrival
intensity values. What may be worth mentioning is that the values obtained in
this scenario are smaller compared to the previous one.

Figure 10 depicts the comparison of the utilization of the backup server as a
function of the arrival intensity. As expected, considering the results from the
previous scenario, the differences in the obtained values are relatively close to
each other, even in the case of Pareto distribution. It can be concluded that
with this parameter setting, the distinctions among the distributions are not
prominent. Regardless of the distribution, the utilization is nearly the same,
meaning that the backup server is occupied approximately 87% of the simulation
time.

Finally, Fig. 11 illustrates the variations in the abandonment probability with
the increase in arrival intensity. The values are more closely aligned compared to
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Fig. 9. Variance of the response time vs. arrival intensity

Fig. 10. Utilization of the backup server vs. arrival intensity
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the alternative scenario. However, the highest values are observed in the case of
the Pareto distribution; otherwise, the difference is minimal. The values obtained
for one distribution do not stand out compared to the others; in each case,
approximately 17% of incoming requests decide to abandon the system without
being served.

Fig. 11. The probability of the departure of a primary customer vs. arrival intensity

4 Conclusion

We introduced a retrial queuing system characterized by a finite source and two-
way communication with impatient customers. Within this system, a primary
server exhibits unreliability, and during periods of malfunction, a secondary ser-
vice unit takes over. Furthermore, we conducted a sensitivity analysis utilizing a
range of random number generators to investigate how different distributions of
failure time impact performance metrics, such as the mean response time of any
given customer. It’s worth noting that when the squared coefficient of variation
exceeds one, we observed variations in the mean response time among the values.
Results also suggest that there is minimal difference among the measured val-
ues when the squared coefficient of variation is below one. The authors intend
to further their research, delving into the observed phenomenon with greater
scrutiny and enhancing their model by incorporating additional elements such
as collisions and conducting additional sensitivity analyses on various random
variables.
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