
Chapter 3 
System- and Element-Related Metrics 
Useful in the Evaluation of Resilience 

Failures of network elements will undoubtedly continue to occur since it is 
impossible to eliminate all the factors responsible for them. However, as we discuss 
in this chapter, the scale of the negative consequences of failure events is determined 
not only by the characteristics of the related challenges (such as their intensity, 
duration, and area, as, e.g., in the case of heavy rainfall, fire, hurricane) but also 
follows from the properties of the system architecture such as system topology, 
location of servers providing services to end users, transmission schemes, etc. 

For instance, if transmission of information is configured via shortest paths 
(which is a common scenario), then due to the topological properties of networked 
systems, such as the location of a given node in the topology or the number of links 
attached to that node, certain network nodes tend to switch a greater amount of 
network traffic and, therefore, are of greater importance than the other nodes. This 
also means that their failure significantly impacts the provisioning of services to the 
end users, as many more transmission paths become affected. Similarly, a malicious 
attack leading to the failure of a server providing a multitude of services may be a 
direct consequence of the recognition by an attacker of the properties of that node. 

Therefore, to assess the potential impact of a failure of a given network element 
on the functioning of the entire system, it is important to make use of a set of 
metrics, i.e., functions designed to measure either the individual properties of certain 
elements or of the entire system and its services. Apart from their essential role 
in assessing system properties during normal operation and failure scenarios, these 
metrics can also be helpful in all phases of design, deployment, and update/evolution 
of the networked system architecture. 

Understanding the meaning of certain metrics quite often requires at least some 
level of knowledge on characteristics of individual elements (nodes/links) of the 
networked system, as well as the architectural properties of the entire system 
impacting its performance, being the ability of a unit to provide the function it has 
been designed for [30]. 
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METRICS 

Element-related 

degree centrality Network-level Packet-level 

betweenness centrality 
closeness centrality 

eigenvector centrality 

Structural 

avg. node degree 
minimal node degree 
heterogeneity 
avg. shortest path length 
diameter 
efficiency 
vertex connectivity 
edge connectivity 
graph diversity 
number of spanning trees 
avg. two-terminal reliability 
relative size of the largest 
connected component 
clustering coefficient 

link utilization 
node load 
path symmetry 
link stress 
relative delay penalty/ 
stretch 
quantitative robustness 
qualitative robustness 
avg. content accessibility 
mean content accessibility 
R-value 

propagation time over 
a link 
latency / end-to-end delay 
jitter 
packet loss ratio 
retransmission rate 
throughput 

Subjective 

mean opinion score 
standard deviation of 
opinion scores 
distribution of user 
ratings 
entropy 

Functional 

Fig. 3.1 A comprehensive classification for metrics of networked systems and their elements 
relevant in resilience evaluation 

As the set of metrics for networked systems and their elements is relatively large, 
a particular focus in this chapter is on metrics useful from the perspective of the 
resilient functioning of a networked system in failure scenarios. In this context, 
as presented in Fig. 3.1, metrics relevant to evaluating the resilience of networked 
systems can be broadly divided into three categories: element-related, structural, 
and functional. 

The first group of element-related metrics focuses on the properties of individual 
network elements (nodes/links) following from their existence in the system 
topology. The structural metrics, in turn, refer to the topological properties of the 
entire system. In contrast, functional metrics are used to analyze the system quality 
of service either at the network level (i.e., network-level functional metrics), at 
the packet level (referred to as packet-level functional metrics), or to assess user 
satisfaction with the service (often called quality of experience—QoE) referred to 
as the subjective metrics. 

In the remaining part of this chapter, we first highlight in Sect. 3.1 the standard 
means of representing the topological properties of a system derived from the graph 
theory, which are useful in definitions of metrics analyzed later in this chapter. Next, 
in Sect. 3.2, we discuss the most important metrics dedicated to single elements 
of the system. Section 3.3 provides information about the most essential structural 
metrics. In Sect. 3.4, we explain the reasons for the diverse characteristics of system 
elements, the related irregular character of the system topology, and the resulting 
potential challenges. In Sect. 3.5, we analyze the major functional metrics, i.e., the 
ones for the evaluation of system performance at the network level and the packet 
level, as well as the subjective metrics referring to the satisfaction of users. In 
Sect. 3.6, we comment on examples of practical applications of the analyzed metrics 
in common use (e.g., in the configuration of routing protocols) as well as discuss 
proposals following from research papers for the use of these metrics at virtually 
every stage of the network system life cycle. Sect. 3.7 concludes the chapter.
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3.1 The Formal Representation of Networked Systems 
Architecture 

The architecture of networked systems consisting of a set N of nodes such as 
switches, routers, servers, etc., interconnected by communication links is commonly 
defined by graph .G(V ,E), where V is a set of vertices representing the system 
nodes, .|V | is the number of vertices in G, while E stands for the set of edges of 
G representing the communication links. A given edge .ei,j from E is assumed to 
interconnect the respective vertices . vi and . vj from V . 

Set E of edges often represents bidirectional network links enabling transmission 
in both directions and often characterized by the same capacity .ci,j in both 
directions, as illustrated by graph .G1 in Fig. 3.2a. However, as communication 
links are directional in certain configurations, they are then typically represented by 
directed arcs .ah = (i, j) from set A (instead of set E). Therefore, in such cases, 
graph . G takes the form of .G(V ,A). An example representation of a networked 
system with directional communication links by graph . G2 with directed arcs is 
provided in Fig. 3.2b. 

In general, the structure of any networked system can be defined by graph . G
at its various abstraction layers, such as the link layer (representing the system 
topology formed by physical links) or the Internet layer topology (formed by 
Internet links) [23]. 

Interconnection of network nodes (represented by a set V of vertices) by 
communication links represented by set E (or set A) for networks with bidirectional 
(or directional) links is often defined by the respective adjacency matrix . A with 
elements . ̂ai,j equal to 1 denoting the existence of communication link from network 
node i to network node j . Otherwise, .âi,j values are set to 0. Network nodes i and 
j are called neighbors if the respective vertices . vi and . vj are adjacent in G, i.e., 
connected by edge . ei,j (or arc .ah = (i, j), respectively). 

Fig. 3.2 Example graphs .G1 and .G2 representing networked systems with bidirectional and 
directional communication links, respectively (the numerical values located close to the respective 
edges/arcs denote the nominal capacity of network links)
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Example adjacency matrices for graphs . G1 and . G2 from Fig. 3.2, denoted as . A1
and . A2, are then defined as follows: 

. A1 =

⎛
⎜⎜⎜⎜⎜⎝

0 1 1 0 1
1 0 0 1 1
1 0 0 0 1
0 1 0 0 1
1 1 1 1 0

⎞
⎟⎟⎟⎟⎟⎠

A2 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 1 0 1
1 0 0 0 1
0 0 0 0 1
0 1 0 0 0
1 1 0 1 0

⎞
⎟⎟⎟⎟⎟⎠

It is clear that for networked systems with bidirectional (duplex) links, the 
respective matrices . A are symmetrical, i.e., such that for every pair of nodes i and 
j connected by a duplex link, .âi,j = âj,i = 1 (and 0, otherwise). This is also the 
case for matrix . A1 provided for graph . G1 from Fig. 3.2a. 

However, for networks with directional (simplex) links, for a given pair of 
network nodes i and j , transmission is often possible in one way only (e.g., from 
a given node i to a particular node j , but not vice versa). Therefore, the adjacency 
matrix for networks with simplex links need not necessarily be symmetrical, as in 
the case of matrix . A2 above representing the interconnections of network nodes 
defined by graph . G2 in Fig. 3.2b. 

Adjacency matrices can also provide additional information related to network 
links, such as link nominal capacity. For this purpose, values of .âi,j are replaced 
by the respective weights . ci,j , which leads to the concept of weighted adjacency 
matrix . C. For graphs . G1 and . G2 from Fig. 3.2, the respective weighted adjacency 
matrices . C1 (symmetrical) and . C2 (nonsymmetrical), with weights . ci,j denoting the 
nominal capacities of network links, are defined as follows: 

. C1 =

⎛
⎜⎜⎜⎜⎜⎝

0 4 4 0 4
4 0 0 8 16
4 0 0 0 8
0 8 0 0 4
4 16 8 4 0

⎞
⎟⎟⎟⎟⎟⎠

C2 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 4 0 4
8 0 0 0 16
0 0 0 0 8
0 4 0 0 0
8 8 0 4 0

⎞
⎟⎟⎟⎟⎟⎠

It is worth noting that the nonsymmetrical character of matrix . C for directed 
graphs may follow not only from the directional nature of arcs representing 
unidirectional network links but can also refer to different nominal capacities of 
links in each direction for a given pair of neighboring network nodes. For example, 
as given in graph . G2 from Fig. 3.2b, the nominal capacity of a link between network 
nodes 2 and 5 depends on the source/destination of that link and is defined as 
.c2,5 = 16 and .c5,2 = 8, respectively. 

Another way to represent the interconnection of network nodes is via the node– 
link incidence matrix . I providing information on the neighborhood relation of 
network nodes and links. In this matrix, a given i-th row refers to network node 
i, while column m is associated with m-th network link. If a link with index m
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incident to network node i exists, this is represented by the value of 1 assigned to 
an element in i-th row and m-th column of . I, 0 otherwise. 

Example form of matrix . I1 for graph . G1 from Fig. 3.2a based on the following 
assignment of indices m to graph . G1 edges: 

. 
e1,2 → m = 1 e1,3 → m = 2 e1,5 → m = 3 e2,4 → m = 4
e2,5 → m = 5 e3,5 → m = 6 e4,5 → m = 7

as well as the respective weighted incidence matrix . Î is defined as follows: 

. I1 =

⎛
⎜⎜⎜⎜⎜⎝

1 1 1 0 0 0 0
1 0 0 1 1 0 0
0 1 0 0 0 1 0
0 0 0 1 0 0 1
0 0 1 0 1 1 1

⎞
⎟⎟⎟⎟⎟⎠

Î1 =

⎛
⎜⎜⎜⎜⎜⎝

4 4 4 0 0 0 0
4 0 0 8 16 0 0
0 4 0 0 0 8 0
0 0 0 8 0 0 4
0 0 4 0 16 8 4

⎞
⎟⎟⎟⎟⎟⎠

For networks with directional links, values of elements in matrices . I and . Î are 
positive when representing indices m of links directed from given network nodes i 
and negative for links directed to given nodes i. 

Another important structure useful in evaluating the topological properties of 
networked systems is the Laplacian matrix . L. Its elements .L[i, j ] are defined as 
given in formula (3.1). 

.L[i, j ] =

⎧⎪⎪⎨
⎪⎪⎩

di, if i = j

−1, if i /= j ∧ vi is adjacent to vj

0, otherwise

(3.1) 

where . di is the degree of vertex . vi being the number of its incident edges (arcs). 

The elements .L[i, i] located along the main diagonal of . L thus provide infor-
mation on degrees of vertices . vi , while the other elements of . L store information 
about the adjacency property of vertices . vi and . vj . For example, for graph . G1 from 
Fig. 3.2a, the related Laplacian matrix . L is defined as follows: 

.LG1 =

⎛
⎜⎜⎜⎜⎜⎝

3 −1 −1 0 −1
−1 3 0 −1 −1
−1 0 2 0 −1
0 −1 0 2 −1

−1 −1 −1 −1 4

⎞
⎟⎟⎟⎟⎟⎠
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An equivalent definition of . L to the one from formula (3.1) is provided in 
Chapter 5 of [37] as given in formula (3.2). 

.L = Δ −A (3.2) 

where . Δ is a diagonal matrix with elements . δi,j defined as given in formula (3.3). 

.δi,j =
⎧

di, if i = j

0, otherwise
(3.3) 

The Laplacian matrix is used to derive specific metrics for graphs representing 
the architecture of networked systems (see, e.g., [47]). 

3.2 Centrality Metrics for Evaluation of Resilience of Single 
System Elements 

In this subsection, we focus on centrality metrics aimed at quantifying the topolog-
ical importance of single elements in networked systems. In the related literature, a 
particular interest is often in analyzing the centrality aspect of system nodes. This is 
indeed justifiable since communication paths, commonly established as the shortest 
ones between any pair of end nodes (to reduce the end-to-end transmission delay), 
typically traverse such “central” nodes. However, this feature also magnifies the 
negative consequences of failures of such elements. Also, since central nodes switch 
large amounts of data, they often become targets of malicious human activities. 
Therefore, correctly identifying the level of centrality of system nodes is crucial in 
implementing adequate resilience mechanisms. 

The most common metrics for the centrality of networked system nodes are based 
on the degree, betweenness, closeness, and eigenvector topological properties of 
these elements. Their current form follows from results of the analysis done in the 
area of social networks (and the related mutual impact of people in graphs of social 
connections) starting from 50s of the 20th century (see, e.g., the related works of 
Bavelas [3], Freeman [11], or Albert and Barabási [1]). 

Betweenness Centrality 
The primary purpose of the betweenness centrality (BC) metric defined for a given 
network node i by formula (3.4) [6, 42] is to reflect the frequency of its involvement 
in switching the data transmitted along the shortest paths between all possible pairs 
of end nodes in the system (i.e., acting as a transit node along the shortest paths). 

.bci =
Σ
p /=q

spi(p, q)

sp(p, q)
(3.4)
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where: 

.spi(p, q) is the number of the shortest paths between nodes p and q (of the same 
minimal cost) traversing node i; 

.sp(p, q) is the number of the shortest paths between nodes p and q (of the same 
minimal cost). 

Also, there exists a normalized version of betweenness centrality with the value 
of . bci divided by the total number of pairs of vertices in G (except for vertex . vi), 
i.e., by (.|V |−1)(|V |−2). As discussed in [41], a formula similar to (3.4) can be 
provided for a given network link (i.e., link betweenness centrality) to reflect the 
importance of that link in making multi-hop connections possible. 

Closeness Centrality 
Closeness centrality (CC) has been formulated to reflect the distance of a given 
node i to all the other nodes in the system [6, 41]. Therefore, its evaluation is based 
on the analysis of the length of the shortest paths between a considered node i and 
all the other system nodes [41]. Its simplified definition provided, e.g., in [42] based 
on the analysis of the hop count (i.e., the number of path links of the shortest paths) 
is given by formula (3.5). 

.cci = 1Σ
j∈N\{i} hi,j

(3.5) 

where .hi,j is the number of hops for the shortest path between nodes i and j . 
Based on formula (3.5), the higher the . cci value for a given node i, the closer it 

is to all other nodes. This property can be useful, e.g., when choosing a location for 
system services, because services located in nodes characterized by high closeness 
centrality values are closer to end users and, therefore, easily accessible (due to low 
transmission delay values). An important observation is that nodes characterized by 
high closeness centrality values are also typically located close to other nodes of 
high closeness centrality [41]. 

A normalized version of formula (3.5) assumes multiplication of . cci by .|V |−1. 

Degree Centrality 
Degree centrality (DC) is considered as one of the simplest metrics for the 
importance of a network node. It is defined based on the degree of node i as the 
number of system nodes being direct neighbors of that node (i.e., connected by a 
direct link) [46]. Following [6], degree . di of node i can be determined using the 
adjacency matrix . A as given in formula (3.6). 

.di =
|V |Σ
j=1

âi,j (3.6) 

Therefore, the importance of node i measured by its degree centrality . di grows 
linearly with the increase of its degree [41]. This property remains well in line
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with the former observation that higher-degree system nodes (such as switches) 
commonly process larger data volumes. Also, in the case of failures of nodes 
characterized by high values of degree centrality, services provided to a large group 
of users are likely to become affected as well. 

Concerning real architectures of networked systems, degree centrality values are 
often different for different nodes. Also, it is common that only a small subset of 
system nodes is characterized by high-degree centrality values. 

It is worth mentioning that a normalized variant of node degree centrality also 
exists, where . di is divided by the maximum possible degree of a node, i.e., by 
.|V |−1. 

Eigenvector Centrality 
The purpose of the eigenvector centrality (EC) metric is to evaluate the influence 
of a given node in the network. Following [6], eigenvector centrality . eci of node i 
is defined as the value of the ith element of the eigenvector referring to the largest 
eigenvalue . λ1 calculated for the adjacency matrix . A. 

.eci = 1

λ1

|V |Σ
k=1

âi,keck (3.7) 

Therefore, eigenvector centrality is another metric of the centrality of nodes, 
according to which a node should be considered an important one if it is a direct 
neighbor of another important node [41, 45]. Indeed, the value of . eci reflects the 
number of direct, 2-hop, 3-hop (and so on) neighbors of node i [6]. 

For two example network topologies shown in Fig. 3.3, the respective normalized 
values of node centrality parameters are provided in Tables 3.1 and 3.2. 

As can be seen in Tables 3.1 and 3.2, the values of node centrality metrics are 
generally consistent with each other, i.e., the highest value of one of them, say 
degree centrality (e.g., for node 7 for the NSF-14 network topology): .d7 = 0.31 in 
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Fig. 3.3 Example topologies of (a) NSF-14 and (b) Italian-21 networks
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Fig. 3.4 Correlation of node centrality metrics for (a) NSF-14 and (b) Italian-21 network 
topologies 

Table 3.1 also implies high values of the other three centrality metrics: .bc7 = 0.24, 
.cc7 = 0.54 and .ec7 = 0.37. 

A detailed analysis of the correlation of node centrality coefficients is presented 
for both considered network topologies in Fig. 3.4, where nodes are sorted descend-
ing their degrees. A general observation from Fig. 3.4 is that, with the decrease of 
the network node degree, betweenness centrality values decrease the most rapidly 
among all considered centrality metrics. Therefore, to identify the central nodes 
that have the most remarkable contribution to end-to-end transmission, betweenness 
centrality, among all considered node centrality metrics, turns out to be the most 
proper one. 

3.3 Structural Metrics for Evaluation of Resilience of 
Networked Systems Architectures 

In this section, we highlight definitions and discuss the properties of the selected 
metrics applicable in the evaluation of the resilience of the entire structure of a 
networked system. Therefore, they are often referred to as structural metrics. Our 
analysis begins with metrics related to the degrees of network elements. Next, we 
consider metrics related to communication paths in the system. The last group of 
structural metrics analyzed in this section covers selected advanced aspects related 
to the topology of the networked system. 

Average Node Degree 
The average node degree (k) [41] is a simple measure of the density of the network 
topology. It provides information on the average number of links incident to a 
network node. Based on data stored in the adjacency matrix . A, this metric, here 
denoted by . davg, can be calculated as given in formula (3.8). 

.davg =
Σ|V |

i=1

Σ|V |
j=1 âi,j

|V | (3.8)
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Coefficient .davg takes values from 0 (in the case of a system consisting only of 
isolated nodes) to .|V |−1 (in the case of a system characterized by a topology of a 
full graph representing the architecture in which each network node has direct links 
to all the other nodes). 

Since node degree values provide information on the maximum number of 
disjoint communication paths sourced from/destined to a given node, they are 
crucial in resilient routing, as they impact the ability of a system to set up multiple 
disjoint paths. The lower bound on this ability for the entire system is indeed 
constrained by the minimal node degree in the considered system. 

Minimal Node Degree 
The minimal node degree (.dmin) is the minimal value of degrees of nodes in the 
networked system. 

.dmin = min
i:vi∈V

di (3.9) 

Indeed, to deploy a resilient routing scheme in the system involving k disjoint 
paths (for protection against a simultaneous failure of k-1 nodes), a necessary 
condition is that each network node i should be characterized by its degree of at 
least k, meaning that .dmin of the entire networked system should be at least equal 
to k. 

Heterogeneity 
Heterogeneity has been introduced as a metric of inhomogeneity of node degrees. 
Following [41], it is defined as the standard deviation .σdeg of degrees of nodes in 
the system divided by the average node degree (. davg), as given by formula (3.10). 

.h = σdeg

davg
(3.10) 

In general, the smaller the values of h (i.e., the closer they are to 0), the greater 
the homogeneity of the node degrees, and thus, the greater the robustness of the 
entire networked system architecture to failures of its elements. 

Concerning the example topologies of NSF-14 and Italian-21 networks from 
Fig. 3.3, the related values of the average node degree, minimal node degree, and 
heterogeneity metrics are provided in Table 3.3. 

In particular, the minimal value of node degree for both networks is equal to 
2.00, which implies that for both networks, deploying resilient routing schemes for 
any pair of end nodes based on pairs of node-/link-disjoint paths may be possible. 

Table 3.3 Values of structural metrics referring to degrees of network nodes for the example 
NSF-14 and Italian-21 network topologies from Fig. 3.3 

Network Average node degree Minimal node degree Heterogeneity 

NSF-14 2.86 2.00 0.23 

Italian-21 3.33 2.00 0.33



3.3 Structural Metrics for Evaluation of Resilience of Networked Systems. . . 71

Topologies of systems with the minimal node degree of 2 are often called “two-
connected.” However, neither of the considered NSF-14 and Italian-21 network 
topologies can utilize schemes based on sets of three (or more) disjoint paths for 
a pair of nodes, as the degrees of some nodes in these networks are only equal to 2. 

Concerning the value of the heterogeneity metric, it is lower for the NSF-14 
network topology, implying that the topology of that network is more regular 
(relative differences of node degree values are lower than for the topology of the 
Italian-21 network). 

Average Shortest Path Length 
Average shortest path length (l) coefficient [40] provides information on the average 
distance (or the number of links) along the shortest paths calculated considering all 
pairs of source and destination vertices . vs and . vt in G, as given in formula (3.11). 

.l =
Σ

s,t :vs ,vt∈V

hcs,t

|V | · (|V | − 1)
(3.11) 

where .hcs,t is the number of links (hop count) in the shortest path between vertices 
. vs and . vt . 

It is worth noting that the calculation of the number of links in the shortest path 
instead of their length in the Cartesian sense is often applied due to a common 
assumption of the unitary length of all links in the system or follows simply from the 
assumption to focus on the number of hops in the shortest path. Another observation 
is that formula (3.11) remains valid also for directed graphs, where the number of 
links of the shortest path from . vs and . vt can be different from that for a reverse path 
from . vt and . vs . 

As the number of nodes and links traversed by the shortest path is correlated 
with the risk of path failure due to failures of system elements (see the analysis 
from Chapter 2 of this book), the average shortest path length metric is useful in 
the resilience context, especially in terms of determining the average resistance of 
communication paths in the system to failures. 

Diameter 
Diameter of a network [46] is commonly defined as the minimum hop count 
between the two most distant nodes in the system. Therefore, to calculate the 
diameter of a networked system, the numbers of links of the shortest paths between 
every pair of system nodes s and t (i.e., .hcs,t ) need to be first calculated, and next, 
the maximum of these values should be returned as provided by formula (3.12). 

.l = max
s,t :vs ,vt∈V

hcs,t (3.12) 

Similar to the average shortest path length, diameter (being, in fact, the “max-
imum shortest path length”) can provide useful information about the related 
maximum risk of affection of a communication path in the system by failures of 
system elements.
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Efficiency 
Efficiency of a networked system focuses on the inverse values of the number of 
links of the shortest paths in the networked system. It can be, therefore, used to 
evaluate how quickly information can be transmitted between any pair of end nodes 
s and t in the system. Following [27, 41], it can be defined as the normalized sum 
of reciprocals of values of hop counts .hcs,t for the shortest paths between all pairs 
of system nodes as given by formula (3.13). 

.ɛ =
Σ

s,t :vs ,vt∈V
1

hcs,t

|V | · (|V | − 1)
(3.13) 

Therefore, the higher the value of . ɛ, the shorter the communication paths are in 
the system, and, thus, the more efficient (i.e., faster) the delivery of information to 
the destination nodes, as well as the smaller the set of network elements traversed 
by a given path (i.e., the higher is the resilience of paths). 

Vertex Connectivity 
Following [41], vertex connectivity, .κ(G), is defined as the smallest number of 
vertices of graph G, the removal of which causes disconnection of system elements 
(i.e., partitioning of the system architecture into separated zones). As services are 
often provided by dedicated servers, such system partitioning (e.g., implied by 
failures due to many reasons discussed earlier in this book) might indeed bring 
severe consequences for many end users of not having access to these services. 

Values of .κ(G) range from 1—as, e.g., in the case of network graphs being 
trees (see the example network topology in Fig. 3.5a) to .|V |−1 for full graphs—see 
Fig. 3.5b. Therefore, .κ(G) can help assess the robustness of the system architecture 
to simultaneous failures of multiple network elements. 

Concerning the topologies of two real networks analyzed earlier in this chapter, 
the related vertex connectivity .κ(G) is equal to 2 for both networks (see Fig. 3.6). A 
general observation following from the analysis of properties of different network 
graphs is that the more irregular the topology of a networked system, the lower the 
number of nodes, the removal of which partitions the system. 

(a) (b) 

Fig. 3.5 Example network topologies characterized by vertex connectivity .κ(G)=1 (graph (a)), 
and .κ(G)=|V |−1 - graph  (b) (the example subsets of vertices, the removal of which causes graph 
partitioning, are marked in orange)
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Fig. 3.6 Analysis of vertex connectivity .κ(G) for NSF-14 and Italian-21 network topologies (the 
example subsets of vertices, the removal of which causes graph partitioning, are marked in orange) 

(a) (b) 

Fig. 3.7 Example network topologies characterized by edge connectivity .λ(G)=1 (graph (a)), 
and .λ(G)=|V |−1 - graph  (b) (the example subsets of edges, removal of which causes graph 
partitioning, are marked in orange) 

Edge Connectivity 
Edge connectivity—.λ(G)—is defined similarly to vertex connectivity as the small-
est number of edges from G whose removal leads to system partitioning. Similar to 
vertex connectivity, edge connectivity values range between 1 (for tree graphs) and 
.|V |-1 for full graphs, as illustrated in Fig. 3.7. As simultaneous failures of multiple 
links of the system can also take place (e.g., due to fires causing the burning of 
optical wired cables or cuts of links during dig-ups carried jointly in the same duct), 
.λ(G) provides valuable information on the resistance of the system architecture in 
such scenarios. 

As illustrated in Fig. 3.8, for the NSF-14 topology and Italian-21 topology, . λ(G)

equals 2. Similar to vertex connectivity, edge connectivity is generally higher for 
regular topologies and lower for topologies characterized by higher heterogeneity 
values. 

Graph Diversity 
According to [39, 41], graph diversity is a metric of the frequency of traversing 
the same communication links and transit nodes by communication paths between 
given pairs of end nodes s and t . This metric is defined concerning all possible pairs
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Fig. 3.8 Illustration of edge connectivity .λ(G) for NSF-14 and Italian-21 network topologies (the 
example subsets of edges, the removal of which causes graph partitioning, are marked in orange) 

of end nodes s and t in the system and is based on values of the effective path 
diversity, each for a given pair of end nodes. In turn, the values of the effective path 
diversity follow from the values path diversity provided for paths . Pi in the context 
of the respective shortest path . P0 (shortest in terms of the hop count). 

For a given pair of end nodes, s and t , the related path diversity metric for a 
given arbitrary path . Pi is defined in relation to the shortest path . P0 between these 
end nodes as given in formula (3.14). 

.D(Pi) = 1 − |Pi | ∩ |P0|
|P0| (3.14) 

where . |P | denotes the number of links and transit nodes used by path P . 

Therefore, .D(Pi) changes from 1 (if paths . Pi and . P0 do not share any elements 
except for the end nodes) to 0 (if paths . Pi and . P0 are identical, i.e., traverse the same 
set of links). 

Following [39], the effective path diversity can be determined as an aggregation 
of path diversities for a selected set of paths between a given pair s and t of end 
nodes. Finally, the value of the graph diversity metric can be calculated as the 
average of all effective path diversity values determined for all pairs of end nodes. 

Higher values of graph diversity indicate a greater level of system robustness. 

Number of Spanning Trees 
This metric calculates the total number of distinct spanning trees (i.e., trees that 
include all nodes of the networked system) that exist for a given network graph 
[25, 41]. 

In general, the analysis of the number of spanning trees can provide useful 
information on the ability of a system to switch to another configuration (i.e., based 
on another spanning tree) in scenarios of network element failures. This can help 
restore affected services quickly (see, e.g., the scheme proposed in [24]).
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Average Two-Terminal Reliability 
The average two-terminal reliability (AT T R) provides information on the prob-
ability that a randomly chosen pair of nodes s and t is connected, meaning 
a communication path exists between them in the network graph. Following [41], 
it is defined as the total number of pairs of nodes in all system components of the 
system divided by the total number of node pairs in the system. Therefore, for fully 
connected systems (see, e.g., Fig. 3.3), the value of ATTR is equal to 1. Otherwise, 
in the case of systems partitioned into several separate components, the value of 
ATTR belongs to the (0,1) range. 

For example, for the topology shown in Fig. 3.9a, .AT T RGa = 111/231 ≈ 0.48. 
This follows from the fact that topology from Fig. 3.9a consists of two separate 
components: the upper one with ten nodes and the lower one with 12 nodes. 
Therefore, the number of connected node pairs is equal to 10. ·9/2 (the upper part) + 
12. ·11/2 (the lower part) .= 45 + 66 = 111, while the total number of node pairs is 
.22 · 21/2 = 231. 

The topology from Fig. 3.9b also consists of two separate components. However, 
one of them is significantly smaller than the second one. They consist of 3 and 12 
nodes, respectively. The number of connected node pairs is equal to 3. ·2/2 (the upper 
part) + .12 · 11/2 (the lower part)=3+66=69, while the total number of node pairs 
is .15 · 14/2 = 105. The  value of  .AT T RGb is, therefore, equal to .69/105 ≈ 0.66, 
which is higher than .AT T RGa . 

Relative Size of the Largest Connected Component 
The relative size of the largest connected component (rLCC) metric is defined as 
the ratio of the number of nodes of the largest connected cluster of the system and 
the total number of system nodes [6]. 

Values of rLCC metric are generally positively correlated with ATTR values. For 
the example topologies from Fig. 3.9 with the related ATTR values: . AT T RGa ≈
0.48 and .AT T RGb ≈ 0.66, the related values of rLCC are: . rLCCGa = 12/22 ≈
0.55 and .rLCCGb = 12/15 = 0.80. 

ATTR Ga 
≈0.48 ATTR Gb 

≈0.66 

Fig. 3.9 Examples of topologies of two systems to illustrate ATTR properties
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(a) 

CC   = 1.00Ga 

(b) (c) (d) 

CC   = 0.50Gb CC   ≈ 0.33Gc CC   = 0.00Gd 

Fig. 3.10 Examples of four topologies for illustration of CC properties 

Clustering Coefficient 
The clustering coefficient (CC) has been proposed to evaluate the scale of cluster 
formation by nodes in the system topology [44]. This follows from a general 
observation that in the case of numerous real-world network topologies, system 
nodes frequently form tightly connected subsets (i.e., with either direct links or very 
short paths between node pairs in such groups). 

The clustering coefficient for the system topology is evaluated based on the 
identification of triplets of nodes, i.e., groups of three nodes with direct links 
between them. Triplets can be either “open,” i.e., formed by three vertices connected 
by two edges, or “closed,” i.e., with three vertices connected by three edges. Three 
closed triplets, each centered at a different node, form a triangle. 

The clustering coefficient is defined for a system topology as the ratio of the 
number of closed triplets over the total number of open and closed triplets [26]. 
Therefore, the cc parameter values range from 0 to 1. Fig. 3.10 presents example 
four topologies with the respective values of the clustering coefficient. 

Concerning the topologies of real-world networked systems analyzed in this 
chapter, the clustering coefficients of the NSF-14 and Italian-21 topologies from 
Fig. 3.3 are equal to 0.071 and 0.278, respectively. 

3.4 Reasons for Diverse Characteristics of System Elements 

The structure of networked systems naturally evolves over time. This, in particular, 
means: 

– Replacement of system nodes such as computing and storage nodes, communica-
tion links, and network nodes including, e.g., switches, routers, etc., by elements 
characterized by higher performance. Concerning network nodes, it is essential to 
mention that the new ones are commonly characterized by more communication 
ports than the ones being replaced. 

– Addition of new elements to the system, increasing the size of the system and, 
therefore, raising its complexity.
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It is also essential to notice that when adding a new element to the system 
(say, a network node), it is natural to link it to the existing ones characterized 
by many communication ports and, generally, by higher performance. By linking 
new elements to high-performance core nodes, one can thus fully benefit from the 
nominal capabilities of new elements not being bottlenecked by their neighbors’ 
limitations. 

When analyzing the related evolution of the system topology graph, we can 
equivalently say that when adding new vertices to the graph, it is more probable to 
link a new vertex with an existing one of high rather than low degree. This, in turn, 
forms the basis of the preferential attachment rule provided by Barabási and Albert 
in [2] defining the dependency between the probability .Π(vi) that the existing node 
represented by vertex . vi in the topology graph will be linked to a new node as given 
in formula (3.15). 

.Π(vi) = diΣ
j dj

(3.15) 

As illustrated in Fig. 3.11, such an uncontrolled growth of the structure of 
a networked system can lead to system topologies being highly irregular, i.e., 
characterized by a high diversity of node degrees, often taking the power law 
asymptotic form characteristic to the so-called scale-free networks [2]. 

As can be seen in Fig. 3.11d, for nodes of high degree (the so-called central 
nodes—e.g., nodes 2 and 4), the distance to other high-degree nodes is often small, 
which follows from another property of scale-free structures, according to which 
vertices tend to cluster together in groups. 

As discussed in Sect. 3.2 in this chapter, high-degree nodes often serve a sig-
nificant share of network traffic. This is due to their high performance and their 
“central” location in the system topology. Therefore, their potential failure may lead 
to severe consequences for many end users, which, in turn, magnifies the risk of 
possible malicious activities aimed at such elements and raises the need for even 
more advanced protection mechanisms. 
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Fig. 3.11 Example illustration of the growth of a system topology following the preferential 
attachment rule
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3.5 Functional Metrics for Networked Systems Resilience 
Evaluation 

In this section, we highlight the selected metrics aimed at evaluating the perfor-
mance of a networked system both in the case of the correct functioning of all system 
elements and in scenarios of failures. These metrics can be generally divided into 
network-level (i.e., focusing on the performance of system elements and multi-hop 
communication paths), packet-level (i.e., addressing the QoS features related to the 
transmission of packets), and subjective (i.e., designed to evaluate the performance 
of system services perceived by end users). 

3.5.1 Network-Level Metrics 

We start by highlighting the basic metrics for the operation of network elements 
referring to their involvement in multi-hop transmission. Next, we focus on the 
performance-related characteristics referring to communication paths, which are 
related mainly to the overall transmission delay and the probability of a successful 
setup of communication paths. Finally, we elaborate on network-level performance 
metrics for more advanced transmission configurations like anycast. We conclude 
this part by focusing on a selected complex metric aggregating the properties of a 
set of other metrics. 

Link Utilization 
Link utilization metric provides information on the percentage of the total (i.e., 
nominal) capacity used for data transmission [7]. It can refer to either the fraction 
of link capacity reserved in advance for serving all flows passing through that link 
(as in the case of allocation of channels of wired links in optical transport networks) 
or to the instant usage (at time t) of link resources in packet-switched systems. 

Node Load 
Following [32], node load metric has been proposed to measure node importance 
in overlay networks. It provides information on the number of overlay links passing 
through a given physical node. The higher the value of node load, the more overlay 
links get affected due to a failure of that physical node. 

Path Symmetry 
Following [23, 32], path symmetry (PSY ) aims to measure the symmetry of paths 
between source and destination nodes s and t . It focuses on analyzing the end-to-
end latency (expressed by the round trip time) and the hop count for the related 
forwarding and reverse paths, as given in formula (3.16). 

.PSY = hc

hc' · RT Tmin

RT T '
min

(3.16)
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where hc and .RT Tmin denote the hop count and the lowest round trip time for 
packets concerning the forwarding path, while .hc' and .RT T '

min have the same 
meaning for the reverse path. 

In the ideal case (i.e., when both paths are entirely symmetric), PSY=1. 
Otherwise, PSY  . < 1 denotes a longer reverse path, while PSY  . > 1 implies a longer 
forwarding path. 

For the example configuration of two paths (i.e., forwarding and reverse), as 
illustrated in Fig. 3.12, we have  hc=3 and . hc'=5. Assuming that .RT Tmin= 75ms 
while .RT T '

min= 100ms, the value of PSY is equal to (3/5). ·(75/100)=0.45. 

Link Stress 
The link stress metric helps evaluate the efficiency of overlay networks, as it 
calculates the number of times packets traverse the same physical link [32]. 

Relative Delay Penalty/Stretch 
Relative delay penalty/stretch is another measure for evaluating the efficiency of 
overlay networks. It is defined as the time needed for a packet to be transmitted 
end-to-end (from node s to node t) via the overlay path consisting of overlay links 
divided by the time needed when transmitting this packet between the same pair of 
end nodes, however, measured directly in the underlying transport network [32]. 

For example, as illustrated in Fig. 3.13, a path in the overlay network between 
nodes B and H is provided by three virtual links: (B,C), (C,F) and (F,H). In particular: 

– Virtual link (B,C) is established in the physical network via path (B,b,d,c,C) of the  
total delay equal to 79. 

– Virtual link (C,F) is established in the physical network via path (C,c,d,e,f,F) of  
the total delay equal to 114. 

– Virtual link (F,H) is established in the physical network via path (F,f,h,H) of the  
total delay equal to 49. 

Therefore, the overall transmission delay between nodes B and H in such a 
configuration equals .79 + 114 + 49 = 242. However, a path established between 

Fig. 3.12 Example different 
forward and reverse paths 
implying the value of PSY  
different than 1 

forward path 

reverse path 

s d
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Fig. 3.13 Example of the 
overlay network (values next 
to links denote their nominal 
delay) 

nodes B and H directly in the physical network without any intermediate forwarding 
in the overlay network would be (B,b,d,h,H), and its overall delay would be 
114. Therefore, the relative delay penalty (stretch) of such a configuration equals 
242/114.≈2.12, meaning that the overlay configuration is at least twice as costly as 
the original one involving transit processing only at the physical network. 

Quantitative Robustness 
The quantitative robustness metric (QNRM) is proposed in [28] to evaluate the 
efficiency in establishing connections in a given time step t as the fraction of the 
number of established connections to the total number of connections that should 
have been established at time step t . For longer intervals of interest, the respective 
average value of QNRM over all consecutive time steps . ti should be determined. 

Qualitative Robustness 
The qualitative robustness metric (QLRM) is introduced in [28] to determine 
the variation of QoS parameters for a broad range of occurrences of impairments 
(including random attacks, targeted attacks, dynamic epidemical failures, and 
dynamic periodical failures). It is focused on the analysis of the average shortest path 
length (ASPL) and is defined as the quotient of the standard deviation of ASPL and 
ASPL itself divided by the analogous quotient obtained in the scenario of occurrence 
of a given impairment. 

Average Content Accessibility 
The metric of the average content accessibility (ACA) is proposed to evaluate the 
possibility of delivering the anycast traffic in scenarios of massive failures implied 
by disaster events [33]. Generally, this feature is associated with the design problem 
of locating replica servers in a way that allows the end users to receive information 
from at least one replica server in post-disaster periods. 

Mean Content Accessibility 
As discussed in [32, 33], the mean content accessibility (.μ-ACA) is designed to 
evaluate the robustness of the networked system concerning the delivery of anycast 
traffic by taking into consideration a broad range of disasters. Therefore, it can be 
viewed as an extension of the average content accessibility metric.
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R-value 
Following [29], the R-value metric is defined as the weighted average of values of n 
other metrics of robustness, as given in formula (3.17). 

.R =
nΣ

k=1

sk · tk (3.17) 

where . sk and . tk denote the weight and the value of k-th metric, respectively 
(.
Σn

k=1 sk = 1; .tk ∈ [0, 1]). 

3.5.2 Packet-Level Metrics 

Packet-level metrics are useful in measuring the quality of transmission in packet-
switched networks. This set of metrics focuses mainly on the aspects of quality of 
service (QoS) defined in [18] as the “totality of characteristics of a telecommunica-
tions service that bear on its ability to satisfy stated and implied needs of the user of 
the service.” The set of major QoS characteristics comprises subjective parameters 
such as packet loss, bit rate, throughput, transmission delay, and jitter analyzed in 
scenarios of normal network operation and in post-failure periods when ensuring 
the assumed level of service evaluated by these metrics can be particularly difficult. 
In particular, concerning the failure scenarios, the following metrics are essential. 

Propagation Time over a Link 
Propagation time over a link is a metric of time for a packet necessary to travel via 
the considered link [32]. 

Latency/End-to-End Delay 
The latency (end-to-end delay) metric [7] is used to determine the total propagation 
time for a message to travel via all consecutive links of the transmission path 
between the source and destination nodes s and t (i.e., the sum of the propagation 
time values over all consecutive links of a path). 

Jitter 
Jitter is a metric of the variation of latency likely to occur, e.g., due to changes 
in queueing/switching time at network nodes due to fluctuations in traffic intensity 
[32]. 

Packet Loss Ratio 
Packet loss ratio metric is used to measure the fraction of packets that are not 
received correctly (i.e., received with errors or not received) at the destination node 
divided by the total number of transmitted packets in a given observation time 
window [32].
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Retransmission Rate 
The retransmission rate metric is used to evaluate the ratio of retransmitted packets 
over the total number of transmitted packets in a given observation time window for 
a certain pair of end nodes of transmission. 

Throughput 
The throughput metric provides information on the nominal message delivery rate 
via a given link. Depending on the environmental (propagation) properties (e.g., of 
wireless links) varying over time, throughput value is prone to fluctuations [35]. 

Generally, the values of almost all the above metrics will likely deteriorate in 
post-failure periods. This refers particularly to the increase of values of metrics 
such as latency, jitter, packet loss ratio, and retransmission rate, which, in fact, 
reflects difficulties of the networked system in failure scenarios (e.g., due to longer 
transmission paths and worse propagation characteristics). In the case of the last 
parameter (i.e., throughput), its deterioration denotes a decrease of its value, e.g., 
under adverse weather conditions such as dense fog in free-space optical networks— 
FSO [22]. 

3.5.3 Subjective Metrics 

Subjective metrics are used to evaluate the performance of system services perceived 
by end users. Therefore, they help assess quality of experience (QoE), being largely 
subjective and integrating user perception, experience, and expectations [10]. In 
particular, the most comprehensive definition of QoE seems to be the one from 
the ITU-T P.10/G.100 recommendation, where QoE is described as “the degree of 
delight or annoyance of the user of an application or service” [19]. A detailed set of 
QoE-related definitions can be found, e.g., in [5]. 

While QoE ratings are certainly user-centric (i.e., referring to the needs and 
expectations of end users), they much depend on QoS characteristics (referring to 
the ability of a networked system to provide its services at a certain quality level 
defined by QoS parameters such as packet loss, bit rate, throughput, transmission 
delay, and jitter). In particular, the authors of [10] show that the dependency of QoE 
on QoS can be considered exponential. 

QoS attributes are often regarded as network-centric and largely represent 
the interests of network operators/service providers. These two aspects, i.e., the 
viewpoint of users interested in as good service as possible and of network 
operators/service providers (often focusing on a minimal level of investments 
assuring the assumed level of QoS), can be seen as opposing. 

A relatively rich set of research results on methods of ensuring and measuring 
the QoE is available in the literature. Among them, particularly noteworthy seem to 
be the ones by Hossfeld et al. (see, e.g. [15, 17, 21]). In this section, a selected set of 
subjective metrics is highlighted, and their usability in failure scenarios is discussed.
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Mean Opinion Score 
The mean opinion score (MOS) metric has been designed to evaluate the perceived 
quality of experience. It is based on subjective evaluations of users [10]. Following 
[20], users assign scores based on the following scale: 5-excellent, 4-good, 3-fair, 
2-poor, 1-bad. In the final processing of results, the value of MOS is obtained as 
the arithmetic mean of user opinions. MOS is commonly considered as a standard 
metric for QoE [43]. 

Standard Deviation of Opinion Scores 
Since assessing the level of QoE by end users might largely be sensitive (e.g., in 
the case of difficulties in making a clear assessment of QoE by particular users), 
relying only on the average values user experience of MOS may not be sufficient. 
Unfortunately, providing only the average values reflected by MOS hides the level 
of variation in ratings and thus provides, at most, partial information about user 
experience. It is, therefore, necessary to extend the analysis at least by the evaluation 
of the diversity of user opinions provided by the standard deviation of MOS focusing 
on the level of rating diversity, referred to as standard deviation of opinion scores 
(shortly SOS), as proposed in [16]. 

Other Statistical Metrics for the Evaluation of QoE 
Since relying only on the mean values of user opinions in the evaluation of QoE 
is often not adequate, apart from the SOS metric of the distribution of user scores, 
one can also focus on distributions of user ratings (for comprehensive information 
about user ratings), entropy (referring to the level of unpredictability of user scores 
and the uncertainty of the measurement system), or on more detailed ratings coming 
from fractions of satisfied and dissatisfied users, as proposed in [13], as well as on 
estimating the confidence intervals for MOS values, as considered in [14]. 

In post-failure periods, it is naturally more challenging to fulfill obligations 
concerning the assumed level of QoS. Therefore, there is also a risk of deterioration 
of QoE perceived by the end users following the related degradation of QoS 
parameters. Investing in resilience mechanisms supporting communications in 
failure scenarios is thus an essential aspect of maintaining the QoE level in line 
with user expectations. 

3.6 Selected Examples for Adaptation of Metrics in 
Networked Systems 

Metrics discussed in this chapter are often used in practice. They are commonly 
applied in evaluating the performance of networked systems and their components. 
However, it is also worth emphasizing the vital role of some of them, e.g., in 
the operation of routing protocols (in particular, during the calculation of multi-
hop paths characterized by the lowest cost according to a given metric). Another 
essential utilization of metrics refers to various optimization tasks concerning 
the design of resilient architectures networked systems, e.g., designing a system
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structure or determining the location of crucial components of such systems such as 
computing nodes or data servers. As the literature provides a large set of examples 
for the application of metrics, in this section, we will present selected ones that 
are particularly useful for routing mechanisms and methods of networked systems 
design. 

Concerning the utilization of metrics in routing protocols, metrics relating to the 
characteristics of communication links are usually used. For instance, a classical 
Routing Information Protocol (RIP) [12] belonging to the distance-vector class of 
routing algorithms uses the hop count metric to determine the end-to-end paths 
characterized by the lowest cost expressed by the number of links traversed by these 
paths. As a result of these calculations, for each determined path, information about 
the related next-hop node is stored by each network node traversed by that path. 
Paths are recalculated periodically to respond to changes in network topology (for 
instance, as a result of a failure of a link or node). RIP is proper for medium-sized 
systems that are composed of relatively homogeneous equipment (e.g., identical 
nodes characterized by comparable node processing times and links of the same 
transmission rate). Then, assuming a comparable length of links in the system, the 
overall cost of a path can be, thus, well reflected by the number of path hops. 

In the case of nonhomogeneous networks (i.e., consisting of nodes from different 
vendors characterized by differentiated times for packet processing and links of 
differentiated transmission rates), metrics other than the basic hop count are better 
suited to reflect the total path cost. For instance, in Open Shortest Path First 
(OSPF) [31], each link is associated with a cost metric which by default is assumed 
to be inversely proportional to the bandwidth of that link (i.e., network-level 
functional characteristics). In this protocol, belonging to the class of link-state 
protocols, each network node is aware of the state (up/down) of each link as well as 
the associated cost metric and calculates the cheapest communication paths based 
on the related transmission rates of network links, using Dijkstra’s algorithm [8]. In 
path computations, high-speed links are thus preferred, which, in turn, reduces the 
overall transmission delay along multi-hop paths. However, as path computations in 
OSPF are CPU- and memory-intensive, practical utilization of OSPF is limited to 
medium-sized networks. 

Another example of utilization of a network-level functional metric in routing 
is provided in [36], including a proposal of a routing algorithm using the node load 
metric to calculate the multi-hop paths. Since, for every demand to establish a multi-
hop path, it selects the path associated with the least loaded nodes, an additional 
feature is that, in the long run, it also leads to balancing the load of nodes. 

Metrics referring to node centrality characteristics are used in the literature both 
in the case of routing algorithms and in network design methods, e.g., to solve 
various service placement problems. For example, in [34], a routing algorithm is 
introduced for anycast communications using a metric based on a mix of node 
degree and hop count. In this algorithm, packets are forwarded by each transit node 
to the next hop, characterized by a greater number of alternate paths available. 

As discussed earlier in this chapter, nodes characterized by high values of 
centrality metrics often switch large amounts of data (as the shortest paths often
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traverse them), as well as are good candidates for placement of certain services 
(due to low transmission delay from these nodes to other nodes in the system). 
Therefore, they are also common targets of malicious activities. As presented, e.g., 
in [38], the availability of communication paths, as well as of certain services, can 
be improved in scenarios of malicious attacks by using node centrality metrics to 
determine locations (placement) of services at low-degree nodes (i.e., characterized 
by a low risk of an attack), as well as by applying a routing scheme with link cost 
metric determined based on the average values of centrality metrics of its end nodes. 

The properties of specific communication environments often call for a metric 
adjusted to a particular communication scenario. There are many proposals in this 
context in the related literature. For example, concerning wireless environments, 
reference [9] focuses on the use of packet-related characteristics: the round trip 
time—RTT (i.e., the round trip delay for unicast probes between neighboring nodes) 
and the expected transmission count—EXT (referring to the loss rate of packets 
between neighboring nodes) as a metric for wireless links used for routing purposes. 
Indeed, collisions of packets transmitted in parallel by different sources over the 
wireless medium (justifying the need to use certain transmission protocols such 
as CSMA/CA) [4], as well as other reasons for packet retransmissions (e.g., due 
to transmission errors) are reasonable justifications for focusing on the instant 
characteristics of wireless links performance. 

3.7 Summary 

The analysis of the properties of metrics provided in this chapter confirms their 
essential role in the correct functioning of networked systems in normal operating 
conditions and during periods of failures. In a normal operational state, these metrics 
can deliver valuable information about system functioning, potential disproportions 
concerning the network load, etc. Also, they can indicate areas of the system 
where the effects of possible failures would be particularly severe and thus provide 
valuable information useful for system design, configuration, and update. 

•? Questions 

1. Characterize the ways of formal representation of the architecture of networked 
systems. 

2. Describe and compare the metrics of node centrality. 
3. Discuss the features and the purpose of structural metrics in evaluating 

networked systems resilience. 
4. Describe and compare the structural metrics referring to node degrees. 
5. Describe and compare the structural metrics referring to communication paths. 
6. Describe and compare the structural metrics referring to the system connectiv-

ity. 
7. Explain the reasons for the irregularities of the system topology.
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8. Characterize the functional network-level metrics for evaluation of networked 
systems resilience. 

9. Characterize the functional packet-level metrics for evaluation of networked 
systems resilience. 

10. Explain the role and characteristics of subjective metrics of system performance 
evaluation. 

11. Provide several examples of utilization of node- and link-related metrics in 
practice. 

References 

1. Albert, R., Barabási, A.-L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 
47–97 (2002) 

2. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 
(1999) 

3. Bavelas, A.: A mathematical model for group structure. Hum. Organ. Appl. Anthropol. 7(3), 
16–30 (1948) 

4. Bianchi, G.: Performance analysis of the IEEE 802.11 distributed coordination function. IEEE 
J. Sel. Areas Commun. 18(3), 535–547 (2000) 

5. Brunnstrom, K., Beker, S.A., de Moor, K., Dooms, A., Egger, S. et al.: Qualinet white paper 
on definitions of Quality of Experience (2013). https://hal.science/hal-04638470v1. Accessed 
11 Sep 2023 

6. Cetinay, H., Mas-Machuca, C., Marzo, J.L., Kooij, R., Van Mieghem, P.: Comparing 
destructive strategies for attacking networks. In: Rak, J., Hutchison, D. (eds.) Guide to Disaster-
Resilient Communication Networks, pp. 117–140. Springer, Berlin (2020) 

7. Chu, Y., Rao, S.G., Seshan,. S., Zhang, H.: A case for end system multicast. IEEE J. Sel. Areas 
Commun. 20(8), 1456–1471 (2002) 

8. Dijkstra, E.: A note on two problems in connexion with graphs, Numerishe Mathematik 1, 
269–271 (1959) 

9. Draves, R., Padhye, J., Zill, B.: Comparison of routing metrics for static multi-hop wireless 
networks, ACM SIGCOMM Comput. Commun. Rev. 34(4), 133–144 (2004) 

10. Fiedler, M., Hossfeld, T., Tran-Gia, P.: A generic quantitative relationship between quality of 
experience and quality of service. IEEE Netw. 24(2), 36–41 (2010) 

11. Freeman, Linton C. A set of measures of centrality based on betweenness. Sociometry 40(1), 
35–41 (1977) 

12. Hedrick, C.: Routing Information Protocol, Request for Comments (RFC) 1058, IET. https:// 
datatracker.ietf.org/doc/html/rfc1058. Accessed 30 Sept 2023 

13. Hossfeld, T., Heegaard, P.E., Varela, M.: QoE beyond the MOS: Added value using quantiles 
and distributions. In: Proceedings of the 2015 Seventh International Workshop on Quality of 
Multimedia Experience (QoMEX’15), pp. 1–6 (2015) 

14. Hossfeld, T., Heegaard, P.E., Varela, M., Skorin-Kapov, L.: Confidence interval estimators for 
MOS values ((2018)). arXiv:1806.01126 . https://arxiv.org/abs/1806.01126. Accessed 14 Sept 
2023 

15. Hossfeld, T., Keimel, Ch., Hirth, M., Gardlo, B., Habigt, J., Diepold, K., Tran-Gia, P.: Best 
practices for QoE crowdtesting: QoE assessment with crowdsourcing. IEEE Trans. Multimedia 
16(2), 541–558 (2014)

https://hal.science/hal-04638470v1
https://hal.science/hal-04638470v1
https://hal.science/hal-04638470v1
https://hal.science/hal-04638470v1
https://hal.science/hal-04638470v1
https://datatracker.ietf.org/doc/html/rfc1058
https://datatracker.ietf.org/doc/html/rfc1058
https://datatracker.ietf.org/doc/html/rfc1058
https://datatracker.ietf.org/doc/html/rfc1058
https://datatracker.ietf.org/doc/html/rfc1058
https://datatracker.ietf.org/doc/html/rfc1058
https://datatracker.ietf.org/doc/html/rfc1058
https://arxiv.org/abs/1806.01126
https://arxiv.org/abs/1806.01126
https://arxiv.org/abs/1806.01126
https://arxiv.org/abs/1806.01126
https://arxiv.org/abs/1806.01126
https://arxiv.org/abs/1806.01126


References 87

16. Hossfeld, T., Schatz, R., Egger, S.: SOS: The MOS is not enough! In: Proceedings of the 2011 
Third International Workshop on Quality of Multimedia Experience, pp. 131–136 (2011) 

17. Hossfeld, T., Schatz, R., Varela, M., Timmerer, C.: Challenges of QoE management for cloud 
applications. IEEE Commun. Mag. 50(4), 28–36 (2012) 

18. ITU-T: Recommendation E.800 – Definitions of terms related to quality of service (2008). 
https://www.itu.int/rec/T-REC-E.800. Accessed 11 Sept 2023 

19. ITU-T Recommendation P.10/G.100: vocabulary for performance and quality of service. 
Amendment 5 (2016). https://www.itu.int/rec/T-REC-P.10-201607-S!Amd5/en. Accessed 11 
Sept 2023 

20. ITU-T: Recommendation P.800 – Methods for Subjective Determination of Transmission 
Quality. https://www.itu.int/rec/T-REC-P.800-199608-I. Accessed 11 Sept 2023 

21. Jarschel, M., Schlosser, D., Scheuring, S., Hossfeld, T.: An evaluation of QoE in cloud 
gaming based on subjective tests. In: Proceedings of the 2011 5th International Conference 
on Innovative Mobile and Internet Services in Ubiquitous Computing, pp. 330–335 (2011) 

22. Kalesnikau, I., Pioro, M., Rak, J., Ivanov, H., Fitzgerald, E., Leitgeb, E.: Enhancing resilience 
of FSO networks to adverse weather conditions. IEEE Access 9, 123541–123565 (2021) 

23. Lareida, A., Meier, D., Bocek, T., Stiller, B.: Towards path quality metrics for overlay networks. 
In: Proceedings of the 2016 IEEE 41st Conference on Local Computer Networks (LCN’16), 
pp. 156–159 (2016) 

24. Lee, S.S.W., Li, K.-Y., Lin, Ch.-Ch.: Modeling and algorithm for multiple spanning tree 
provisioning in resilient and load balanced Ethernet networks. Math. Probl. Eng. 2015, 676542 
(2015) 

25. Li, J., Chee Shiu, W., Chang, A.: The number of spanning trees of a graph. Appl. Math. Lett. 
23(3), 286–290 (2010) 

26. Luce, R.D., Perry, A.D.: A method of matrix analysis of group structure. Psychometrika 14(1), 
95–116 (1949) 

27. Maniadakis, D., Balmpakakis, A., Varoutas, D.: On the temporal evolution of backbone 
topological robustness. In: Proceedings of the 2013 18th European Conference on Network 
and Optical Communications & 2013 8th Conference on Optical Cabling and Infrastructure 
(NOC-OC&I’13), pp. 129–136 (2013) 

28. Manzano, M., Calle, E., Harle, D.: Quantitative and qualitative network robustness analysis 
under different multiple failure scenarios. In: Proceedings of the 2011 3rd International 
Congress on Ultra Modern Telecommunications and Control Systems and Workshops 
(ICUMT’11), Budapest, Hungary, pp. 1–7 (2011) 

29. Manzano. M., Sahneh, F., Scoglio, C., Calle, E., Marzo, J.L.: Robustness surfaces of complex 
networks. Nat. Sci. Rep. 4, 6133 (2014) 

30. Moeller, S.: Quality of Telephone-Based Spoken Dialogue Systems. Springer, New York 
(2005) 

31. Moy, J.: OSPF Version 2, Request for Comments (RFC) 2328, IETF. https://datatracker.ietf. 
org/doc/html/rfc2328. Accessed 30 Sept 2023 

32. Natalino, C., Ristov, S., Wosinska, L., Furdek, M.: Functional metrics to evaluate network 
vulnerability to disasters. In: Rak, J., Hutchison, D. (eds.) Guide to Disaster-Resilient 
Communication Networks, pp. 47–62. Springer, Berlin (2020) 

33. Natalino, C., Yayimli, A., Wosinska, L., Furdek, M.: Content accessibility in optical cloud 
networks under targeted link cuts. In: Proceedings of the 2017 International Conference on 
Optical Network Design and Modeling (ONDM’17), pp. 1–6 (2017) 

34. Ohta, S., Makita, H.: Anycast routing based on the node degree for ad hoc and sensor networks. 
In: Proceedings of the 2013 IEEE 16th International Conference on Computational Science and 
Engineering, pp. 439–446 (2013) 

35. Pyo, C.W., Harada, H.: Throughput analysis and improvement of hybrid multiple access in 
IEEE 802.15.3c mm-wave WPAN. IEEE J. Sel. Areas Commun. 27(8), 1414–1424 (2009) 

36. Qi, Z., Sun, J., Li, W.: A routing algorithm based loading ratio in nodes. In: Proceedings of the 
Canadian Conference on Electrical and Computer Engineering 2004, pp. 595–598 (2004)

https://www.itu.int/rec/T-REC-E.800
https://www.itu.int/rec/T-REC-E.800
https://www.itu.int/rec/T-REC-E.800
https://www.itu.int/rec/T-REC-E.800
https://www.itu.int/rec/T-REC-E.800
https://www.itu.int/rec/T-REC-E.800
https://www.itu.int/rec/T-REC-E.800
https://www.itu.int/rec/T-REC-E.800
https://www.itu.int/rec/T-REC-E.800
https://www.itu.int/rec/T-REC-P.10-201607-S!Amd5/en
https://www.itu.int/rec/T-REC-P.10-201607-S!Amd5/en
https://www.itu.int/rec/T-REC-P.10-201607-S!Amd5/en
https://www.itu.int/rec/T-REC-P.10-201607-S!Amd5/en
https://www.itu.int/rec/T-REC-P.10-201607-S!Amd5/en
https://www.itu.int/rec/T-REC-P.10-201607-S!Amd5/en
https://www.itu.int/rec/T-REC-P.10-201607-S!Amd5/en
https://www.itu.int/rec/T-REC-P.10-201607-S!Amd5/en
https://www.itu.int/rec/T-REC-P.10-201607-S!Amd5/en
https://www.itu.int/rec/T-REC-P.10-201607-S!Amd5/en
https://www.itu.int/rec/T-REC-P.10-201607-S!Amd5/en
https://www.itu.int/rec/T-REC-P.10-201607-S!Amd5/en
https://www.itu.int/rec/T-REC-P.10-201607-S!Amd5/en
https://www.itu.int/rec/T-REC-P.800-199608-I
https://www.itu.int/rec/T-REC-P.800-199608-I
https://www.itu.int/rec/T-REC-P.800-199608-I
https://www.itu.int/rec/T-REC-P.800-199608-I
https://www.itu.int/rec/T-REC-P.800-199608-I
https://www.itu.int/rec/T-REC-P.800-199608-I
https://www.itu.int/rec/T-REC-P.800-199608-I
https://www.itu.int/rec/T-REC-P.800-199608-I
https://www.itu.int/rec/T-REC-P.800-199608-I
https://www.itu.int/rec/T-REC-P.800-199608-I
https://www.itu.int/rec/T-REC-P.800-199608-I
https://datatracker.ietf.org/doc/html/rfc2328
https://datatracker.ietf.org/doc/html/rfc2328
https://datatracker.ietf.org/doc/html/rfc2328
https://datatracker.ietf.org/doc/html/rfc2328
https://datatracker.ietf.org/doc/html/rfc2328
https://datatracker.ietf.org/doc/html/rfc2328
https://datatracker.ietf.org/doc/html/rfc2328


88 3 System- and Element-Related Metrics Useful in the Evaluation of Resilience

37. Rak, J., Hutchison, D. (eds.): Guide to Disaster-Resilient Communication Networks. Springer, 
Berlin (2020) 

38. Rak, J., Walkowiak, K. Reliable anycast and unicast routing: Protection against attacks. 
Telecommun. Syst. 52, 889–906 (2013) 

39. Rohrer, J.P., Jabbar, A., Sterbenz, J.P.G.: Path diversification: A multipath resilience mech-
anism. In: Proceedings of the 2009 7th International Workshop on Design of Reliable 
Communication Networks (DRCN’09), pp. 343–351 (2009) 

40. Routray, S.K., Sahin, G., da Rocha, J.R.F., Pinto, A.N.: Statistical analysis and modeling of 
shortest path lengths in optical transport networks. J. Lightwave Technol. 33(13), 2791–2801 
(2015) 

41. Rueda, D.F., Calle, E. Marzo, J.L. Robustness comparison of 15 real telecommunication 
networks: Structural and centrality measurements. J. Netw. Syst. Manag. 25, 269–289 (2017) 

42. Santos, D., De Sousa, A., Mas-Machuca, C., Rak, J.: Assessment of connectivity-based 
resilience to attacks against multiple nodes in SDNs. IEEE Access 9, 58266–58286 (2021) 

43. Schatz, R., Hossfeld, T., Janowski, L., Egger, S.: From packets to people: Quality of experience 
as a new measurement challenge. In: Biersack, E., Callegari, C., Matijasevic, M. (eds.) Data 
Traffic Monitoring and Analysis. Lecture Notes in Computer Science, vol. 7754. Springer, 
Berlin, Heidelberg (2013) 

44. Strogatz, S.H., Watts, D.J.: Collective dynamics of ‘small-world’ networks. Nature 393, 440– 
442 (1998) 

45. Tang, L., Liu, H.: Community Detection and Mining in Social Media. Morgan and Claypool 
Publishers (2010) 

46. Van Mieghem, P.: Performance Analysis of Communications Networks and Systems. Cam-
bridge University Press, Cambridge (2010) 

47. Van Mieghem, P.: Pseudoinverse of the Laplacian and best spreader node in a network. Phys. 
Rev. E 96(3), 032311 (2017)


	3 System- and Element-Related Metrics Useful in the Evaluation of Resilience
	3.1 The Formal Representation of Networked Systems Architecture
	3.2 Centrality Metrics for Evaluation of Resilience of Single System Elements
	3.3 Structural Metrics for Evaluation of Resilience of Networked Systems Architectures
	3.4 Reasons for Diverse Characteristics of System Elements
	3.5 Functional Metrics for Networked Systems Resilience Evaluation
	3.5.1 Network-Level Metrics
	3.5.2 Packet-Level Metrics
	3.5.3 Subjective Metrics

	3.6 Selected Examples for Adaptation of Metrics in Networked Systems
	3.7 Summary
	References




