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Abstract. Longer lives are an achievement and the course of lifespan is
increasingly influenced by unobservable risk factors altering the chrono-
logical pace of aging. Then, the present work proposes an analytical
approach to characterizing the human lifetime based on the concept of
non-chronological age. Starting from a chronological Gompertz mortal-
ity framework, we define the non-chronological lifespan and characterize it
probabilistically by deriving, in closed-form, the expression for the cumula-
tive distribution function, the density of deaths function, and the mortality
hazard function. We find that non-chronological death probabilities are a
time-dependent affine transformation of chronological death probabilities
for a newborn, and we highlight the link between the non-chronological
lifetime and the concept of individual frailty in heterogeneous mortality
modelling. We believe that our proposal may contribute to shaping a new
perspective on longevity risk measurement and management.
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1 Introduction

In the last decades, the human lifetime has grown continuously and human mor-
tality has shifted to later ages ([8]). Mortality deferment to older ages was empir-
ically observed by investigating changes in the main lifetime indicators expressed
in terms of chronological age, such as the mortality hazard, the survival function,
and density of deaths function (see, e.g., [6]). While living longer, aka longevity, is
a positive achievement at the individual level, it implies significant unexpected
financial exposures for governments, annuity providers, and pension schemes,
namely ‘longevity risk’ in actuarial jargon. Such a risk is a compelling matter of
interest for both actuaries and policymakers, and both demographic and actu-
arial literature have seen an enriched focus on mortality modelling and forecast-
ing. Nowadays, thanks to the advances in medical literature, new perspectives
on longevity analysis have emerged. In particular, the concept of biological age
has been introduced, that is the age indicating how old the human mechanism is
at both the cellular and molecular levels (see, e.g., [2]). The biological age may
be misaligned with respect to the corresponding chronological age, and it can
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reasonably be acknowledged as a key element in analyzing lifespan randomness.
The biological age is usually estimated by collecting data concerning physio-
logical and molecular variables for a large sample of people, and, by means of
multivariate regression, the sign of statistically-significant regression coefficients
leads an increment or a reduction of the corresponding chronological age. In
other words, due to biological (and observable) factors, person’s age does not
move necessarily in lockstep with calendar time and different individuals may age
at different rates. Within the actuarial literature, in [3] the meaning and the use
of the biological age is discussed for the first time. On one side, this paper high-
lights that the biological age is a relevant variable to predict the risk of chronic
disease and maximize the health span, but not necessarily lifespan; on the other,
the presence of a non-chronological age that differs from the chronological one
impacts lifespan and the longevity risk measurement. Therefore, by referring to
a Gompertz-Makeham mortality framework, [3] paves the way to construct a
non-chronological age, namely longevity-risk-adjusted global age (L-RaG), dif-
ferent from the biological one and in contrast to the chronological age. Another
type of non-chronological age is defined in [1], namely survivorship-age (s-age),
representing the age at which a proportion of a population is still alive. The
underlying idea is to invert the relation between the survival function and the
chronological age, so that the latter becomes a function of the survival levels. The
authors investigate the behaviour of the mortality hazard associated to the s-
age, showing that populations experience a similar risk of dying at specific levels
of survivorship. The L-RaG and the s-age are outcomes of distinct approaches,
but both state the existence of a non-chronological age determined without the
use of observable biological factors. Interestingly, we note that this is what hap-
pens when frailty-based models are employed in shaping heterogeneous mortality
due to unobservable risk factors (see, e.g., [4,5]). Indeed, some biological factors
entailing the gap between the non-chronological age and the chronological one
may be not directly observable or not available, and, in addition, they imply a
mortality differentiation among individuals. Then, the gap between these ages
may be assimilated into an unobserved frailty. To some extent, this is also the
intuition behind the work in [7]. The authors assume a Generalized Gompertz
distribution (GG) for the lifetime and prove that, under specific assumptions,
the frailty can be interpreted as a random correction to the chronological age.
However, their proposal allows the presence of negative chronological ages. In
the vein of the aforementioned literature, the present work aims to character-
ize the human lifetime taking into account a random shift of the chronological
age. More in detail, we primarly consider a chronological age-based mortality
by means of the Gompertz model, and then we assume a Generalized Gompertz
distribution for the random shift to probabilistically define a non-chronological
lifetime. As a result, we provide closed-form expressions for the cumulative dis-
tribution function, the density of death function and the mortality hazard under
the non-chronological lifetime. Our proposal contributes to the current litera-
ture by posing a new modelling perspective concerning the lifespan randomness
due to unobservable risk factors, avoiding the possibility of negative lifetimes.
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The paper is organized as follows. In Sect. 2 we recall the Gompertz mortality
framework and we introduce the GG distribution. In Sect. 3 we develop our pro-
posal by defining the non-chronological lifetime and providing analytical results
concerning its distribution. Finally, Sect. 4 poses conclusions.

2 Chronological Lifetime in a Gompertz Framework

Given a probability space (Ω,F ,P), let T0 be the random lifetime for a newborn.
We assume that T0 is Gompertz distributed, i.e., T0 ∼ G(h, g), with cumulative
distribution function (cdf) and probability density function (pdf) given, respec-
tively, by

FT0(x) = 1−exp
{

−h(egx − 1)
g

}
, fT0(x) = h egx exp

{
−h(egx − 1)

g

}
, (1)

and the following mortality hazard holds

μ(x) =
fT0(x)

1 − FT0(x)
= h egx. (2)

Equation (2) represents the well-known Gompertz mortality law (under the
chronological age), where the parameter h is the initial mortality level and the
parameter g indicates the rate of aging. For any chronological age x > 0, the
residual random lifetime is defined as Tx = T0 − x |T0 > x, and its cdf, pdf and
mortality hazard in the Gompertz mortality framework are, respectively,

FTx
(t) = 1 − exp

{
−h

g
egx(egt − 1)

}
, (3)

fTx
(t) = h eg(x+t) exp

{
−h

g
egx(egt − 1)

}
, (4)

μ(x + t) = h eg(x+t), (5)

where t > 0. As argued in [7], the lifetime distribution for a newborn can be
described in more general terms by adopting the GG distribution. In detail, we
say that T0 has the Generalized Gompertz distribution, GG(a, b, c), a ∈ R, b, c >
0, if the cdf and the pdf are, respectively, defined as

FT0(x) = 1−Γ
(
c, exp

(
x−a

b

))
Γ (c)

, fT0(x) =
1

bΓ (c)
exp

{
c

x − a

b
− exp

(
x − a

b

)}
,

(6)
where Γ (c, w) =

∫ +∞
w

uc−1e−udu is the upper incomplete Gamma function and
Γ (c) = Γ (c, 0) is the complete Gamma function. We notice that cdf and pdf in
(6) are defined for x ∈ R, that is negative lifetimes may occur with positive prob-
ability. Despite this drawback, in [7] it is shown that, when the lifetime under
a frailty-based model is considered, a GG-frailty defines a random age correc-
tion to the chronological lifetime. In the next section, we propose chronological
lifetime shifting by using the GG distribution and avoiding negative lifetimes.
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3 Shifting the Chronological Lifetime

Let us introduce the non-chronological lifetime T̃ . We assume that for a newborn
T̃0 = T0 almost surely, while the residual lifetime can be defined according to
the passage of age in a non-chronological manner:

T̃x = T0 − (x + Δ) |T0 > x, (7)

where (x + Δ) is a non-chronological age, being Δ a random shift in width and
sign, and with T0 and Δ stochastically independent. The cdf of (7) is defined in
the following Proposition 1.

Proposition 1. Let the non-chronological lifetime T̃x be defined as in (7), and
assume that Δ ∼ GG(0, b, c), with b, c > 0 and cdf given by

FΔ(δ) = 1 −
Γ

(
c, e

δ
b

)
Γ (c)

, δ ∈ R. (8)

Then, if the chronological lifetime has Gompertz distribution, i.e. T0 ∼
G(h, g), h, g > 0, the cdf of the non-chronological lifetime is

F
˜Tx

(t) = B(t) + A(t)FT0(x + t), t > 0, (9)

where FT0(x + t) = 1 − exp
{

−h
g (eg(x+t) − 1)

}
, and

A(t) =
g

c
gh −1 b

c
g −1 h

c(h−1)
hg (1 + hb)− c

g Γ
(

c
b , e

−gt
(

1+hb
gb

))
(1 − FT0(x))Γ (c)

, (10)

B(t) =
1

1 − FT0(x)
−

Γ
(
c, e− t

b

)
Γ (c)

(
2

1 − FT0(x)
− 1

)
− A(t). (11)

Proof. Since T̃x = T0 − (x + Δ) |T0 > x, then the cdf of the non-chronological
lifetime is determined by computing

F
˜Tx

(t) = P (T0 ≤ x + Δ + t |T0 > x)

=
1

1 − FT0(x)

∫ +∞

−t

P (x < T0 ≤ x + δ + t) dFΔ(δ)

=
1

1 − FT0(x)

{∫ +∞

−t

FT0(x + δ + t) dFΔ(δ) − FT0(x)(1 − FΔ(−t))
}

.

(12)
By assuming that T0 ∼ G(h, g), with h, g > 0, the expression of FT0(x) is the

cdf in (1), while the cdf’s expression of Δ is given by (8). Then, by substituting
in (12), we get

F
˜Tx

(t) = exp
{

h

g
(egx − 1)

}
− Γ (c, e− t

b )
Γ (c)

(
2 exp

{
h

g
(egx − 1)

}
− 1

)

−
Γ

(
c
b , e

−gt
(

1+hb
gb

))
bgΓ (c)

( g

h

) c
gh

(
1 + hb

hb

)− c
b

exp
{

−h

g
egx(egt − 1)

}
.

(13)
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Due to (1) and (3), it holds that:

exp
{

h

g
(egx − 1)

}
=

1
1 − FT0(x)

, exp
{

−h

g
egx(egt − 1)

}
=

1 − FT0(x + t)
1 − FT0(x)

.

(14)

By substituting (14) in (13), and rearranging the terms, the expressions (9)-
(11) follow, completing the proof. ��

From Proposition 1, we highlight the following considerations:

• Firstly, (9) provides the probability of death at the non-chronological age
ξ := x + Δ, namely tq̃ξ by exploiting the actuarial notation, and it differs
from the corresponding probability of death at the chronological age x, i.e.
tqx. The latter can written as

tqx = B + A x+tq0, (15)

where x+tq0 is the probability of death by the chronological age (x + t) for
a newborn, A = 1

1−FT0 (x)
, and B = − FT0 (x)

1−FT0 (x)
. Looking at (9) and (15), we

observe that both the chronological and the non-chronological probabilities of
death are affine functions of the probability x+tq0. The coefficients of the tqx’s
affine transformation are time-invariant, while they become time-dependent
(and more complex) when the probability tq̃ξ is computed. To some extent,
while the chronological probabilities of death are defined in a static way, the
non-chronological probabilities stem from a time-dependent adjustment of
x+tq0;

• The Generalized Gompertz distribution assumption for Δ can be related to
the frailty coefficient characterizing the frailty-based mortality models. In
particular, a Gamma distribution is usually adopted for the frailty coefficient
which is applied, in a multiplicative way, to the population mortality hazard
(see, e.g., [4,5]). Then, for all the Gamma realizations in the interval (0, 1)
the individual mortality hazard is lower than that of the population (lower
individual frailty), and the opposite case occurs for realizations in (1,+∞)
(higher individual frailty). For the purposes of our proposal, we highlight
that the Gamma and Generalized Gompertz distributions are connected. For
instance, Δ = b ln(Y ) ∼ GG(0, b, c), with b > 0, if Y ∼ Gamma(c, 1), c > 0.
In other words, our proposal supposes a non-chronological lifetime obtained
as a frailty-based shift of the chronological lifetime. Then, for every realiza-
tion y ∈ (0, 1) we attain negative outcomes for Δ, implying a reduction of
the chronological age and an increment of the lifetime (i.e. lower frailty);
conversely, for every realization y ∈ (1,+∞), we have positive values for Δ,
a consequent growth of the chronological age and a shortened lifetime (i.e.
greater frailty).

Moreover, by differentiating (9), the pdf of the non-chronological lifetime is

f
˜Tx(t)

=
d

dt
F

˜Tx(t)
= C(t) + A(t)fT0(x + t), (16)
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where fT0(x + t) is defined in (1) (with x replaced by x + t), and

C(t) = B′(t) + A′(t)FT0 (x + t), (17)

B′(t) =
exp

{
−e− t

b − tc

b

} (
1− 2

1− FT0 (x)

)

bΓ (c)
− A′(t), (18)

A′(t) =
exp

{
− e−gt(1 + bh) + g2tc

bg

}
1

1− FT0 (x)

(
1 + bh

b

) c(g−b)
bg

g
c(b−gh)

ghb h
c(h−1)

gh

bΓ (c)
. (19)

Finally, the non-chronological mortality hazard can be computed as

μ̃(x + t) =
f

˜Tx(t)

1 − F
˜Tx(t)

.

4 Conclusion

In this work, we have proposed an analytical approach to define a non-
chronological lifetime and investigated its main probabilistic features. We have
found that non-chronological death probabilities are a time-dependent affine
transformation of chronological death probabilities for a newborn. In addition,
we have highlighted how the shift between the non-chronological and chrono-
logical lifetimes and the concept of individual frailty in heterogeneous mortality
models may be related.
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